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Abstract 

The growing number of digitised biological specimens brings new possibilities for the study of a 

wide range of evolutionary questions at broad scales. Taking measurements on digital photos 

often requires annotations (e.g. placing points on focal locations), and many projects label their 

digitised specimen datasets (commonly more than thousands of images) manually, which could 

take a huge amount of time. Deep learning is the state-of-the-art for many computer vision tasks. 

Deep learning models can be trained on a set of manually annotated images, and can make 

accurate predictions based on what they learned. To what extent deep learning can help to 

improve the measurement process on digitised collections has yet to be thoroughly explored. 

Here, I have applied deep learning models to three tasks on two datasets (bird specimens and 

Littorina shell images), and show that predicted labels are remarkably accurate and that 

downstream biological analyses using these labels generated biologically meaningful results. First, 

I used pose estimation models (algorithms originally designed to identify human body parts) to 

locate keypoints on bird specimens. The results showed high accuracy with 95% of the validation 

images (N=5,094) correctly predicted, and rapid generation of data (less than three days to 

predict keypoints on the whole dataset of >120,000 images). Colours measured by points showed 

that male birds tend to be more colour-diverse than females. Second, I applied deep learning 

models to segment the overall plumage areas on the bird dataset. More than 95% of the plumage 

areas were correctly segmented, and it also took less than three days to segment the whole 

dataset. I found that colour diversities (calculated from segmentations) among closely related 

birds tend to be similar across more than 7,500 bird species. Finally, I built PhenoLearn, a user 

friendly tool that provides functions such as manual annotation (to create training images), 

predicting using deep learning, and reviewing predictions. I illustrate the broader applicability of 

PhenoLearn in an example of morphological landmarking on Littorina shell images. More than 

98% of the predicted landmarks were placed within the acceptable range. The methods and tools 

introduced here both illustrate the value of deep learning and significantly increases accessibility 

to deep learning approaches for non-expert biologists allowing the rapid accumulation of 

phenotypic datasets at large scales. Taken together, these results show that deep learning 
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methods have great potential for speeding up the measuring process on digitised specimens 

while producing accurate annotations.  
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Chapter 1 General Introduction 

1.1 What is phenomics 

The field of phenomics was originally defined as a discipline for understanding biochemical and 

physiological pathways by measuring phenotypes (Bilder et al. 2009). The field focuses in 

particular on the genetics of complex diseases (Schork 1997), including disease prediction 

(Manolio et al. 2009), and estimating the heritability of complex diseases. More recently, the 

scope of phenomics has expanded and is now more broadly defined as the acquisition of high-

dimensional and large-scale phenotypic data (Houle et al. 2010) such as identifying breeding 

values of crop plants (Monteiro et al. 2002; Araus and Cairns 2014). A growing subfield of 

phenomics encompasses studying patterns and processes from biodiversity data (Klingenberg 

and Gidaszewski 2010; Benton 2015). A major challenge for all applications of phenomics is to 

develop high-throughput pipelines for large-scale data. 

While generating genomic data has become progressively more cost-effective allowing 

compilation of complete genome databases for numerous organisms (Roach et al. 2010; Jarvis et 

al. 2014; Zhang et al. 2014), phenotypic databases are less well developed in part due to low 

efficiency in collecting phenotypic information (Lussier and Liu 2007). Measurement of large 

samples of organisms is particularly important in studies of biodiversity that address evolutionary 

and ecological questions. Natural history museums house extensive, but largely underexploited, 

collections of biological specimens. Measurement is often limited by access to, and quality of, 

specimens yet museum collections house vast numbers of specimens, estimated to be around 

1.2 × 10^9 to 1.9 × 10^9 units in museum collections globally in 2010 (Ariño 2010). Collection 

digitisation is an important aim for many natural history museums, which can provide a rich 

source of phenotypic and biodiversity data (Blagoderov et al. 2012). Digitisation (including 2D 

photos, videos and 3D scans) and associated metadata is a common way to store permanent 

records of specimens as digital data while keeping their colour, shape and posture information 

(Rohlf 2006; Stevens et al. 2007). Some studies have built automatic phenotyping pipelines based 

on computational methods such as machine learning (Pearson et al. 2020; Porto and Voje 2020; 

Soltis et al. 2020). However, most the digitised data cannot be used in analyses directly, so 
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powerful, high-throughput, pipelines for getting useful information and measurements are 

necessary.  

1.2 Mobilising data from biodiversity images 

Digital photos of specimens can be labelled in numerous ways to extract or measure phenotypic 

information. Point placement is probably the most common annotation to measure the location 

on an image (Figure 1.1A). Point annotations can be used as landmarks to identify morphological 

features (e.g. homologous points) on specimen images (Adams, Rohlf, and Slice 2013; Bookstein 

1991). Polygons are an annotation that can measure focal areas on photos, for example to 

identify body parts of birds to measure their colour information (Dale et al. 2015; Cooney et al. 

2019). Segmentation is a commonly used method to label regions of interest in medical images 

like cells (Meijering 2012; Xing and Yang 2016) and organs (Balafar et al. 2010; Mharib et al. 2012). 

Segmentation has also been used to measure phenotypes of live plant photos (Minervini et al. 

2014; Scharr et al. 2016). An example of segmenting a specimen image is shown in Figure 1.1B. 

Detecting (e.g. placing bounding boxes around focal specimens as shown in Figure 1.1C), 

identifying (e.g. classifying whether focal specimens appear as shown in Figure 1.1D) or even 

counting the number of specimens have been widely used on photos collected in the wild (e.g. 

images from camera traps; Karanth 1995; Wegge et al. 2004; Khorrami et al. 2012). Results can 

be used to study questions such as the density of one or multiple types of organisms. Besides 

digitised museum collections, here, photos collected in the wild or from live specimens should 

also be considered as biodiversity images or digitised specimen images. In this thesis, I aim to 

assess and apply deep learning models on biodiversity to improve measuring speed, focusing on 

digitised museum collections, but where the results are equally applicable to wildlife and live 

specimen photos. 
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Figure 1.1. Examples of annotations that can be used on digitised images (one image of a bird specimen 

from Project Plumage was used here). (A) Points are used to identify the beak tip and eye of the bird; (B) 

The whole bird is segmented, and the remaining parts of the image were not segmented; (C) The bird is 

detected and located using a bounding box. (D) The image is classified as ‘bird’ and one bird was presented 

in the image. 

Placement of annotations and measurements by people with expert knowledge is widely used 

on digitised datasets, and can produce accurate annotations. However, it can be slow when 

datasets are large, and the number of experts is insufficient. Crowdsourcing provides an 

alternative way of annotating images. Crowdsourcing can speed up the annotation process by 

opening up digitised datasets to a large, relatively open and often rapidly-evolving group of 

internet users. Crowdsourcing has been used in landmarking of thousands of 3D scans of bird 

beaks (www.markmybird.org) to study patterns of diversification through time across birds 

(Cooney et al. 2017). Other crowdsourcing applications include paying internet users to landmark 

fish images using an internet application based on Amazon Mechanical Turk (Chang and Alfaro 

2016). There are also many citizen science projects of annotating large-scale specimen datasets 
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on Zooniverse (www.zooniverse.org), which is a web-based platform that allows users to create 

and customise their own citizen science projects. Zooniverse includes Project Plumage (placing 

annotations on digitised bird specimen images to measure plumage colours; see data section in 

this chapter, chapter 2 and 3 for detail), and many other projects related to biology that are 

mainly used in identifying and counting specimens in photos or on digitising specimen metadata. 

However, the faster accumulation of data is traded off against potentially lower accuracy of 

crowdsourcing compared to experts’ labelling and the fluctuant engagement of citizens. 

Manually annotating images (both expert-only and crowdsourcing) can not meet the goal of 

creating a high-throughput phenotyping pipeline, therefore semi- or fully automatic and accurate 

measurement placement methods are crucial. Deep learning is a possible solution for producing 

large-scale sets of annotations on images accurately, rapidly, and automatically requiring only a 

small training set (comparing to the whole dataset) of manual annotations. Notably, some of the 

projects on Zooniverse (e.g. Zen of Dragons, www.zooniverse.org/projects/willkuhn/zen-of-

dragons) aimed to build training sets with crowdsourcing for machine learning or deep learning 

models. 

1.3 Deep Learning 

Neural networks are one of the main methods in machine learning. Regular neural networks have 

three types of layers (input, hidden and output) as shown in Figure 1.2A. Nodes (or neurons) can 

be seen as values, and edges can be seen as transforming from input values (start of the edge) to 

output values (end of the edge). After processing inputs in the hidden layer, outputs are 

generated in the output layer. Initial parameters (e.g. weights and biases) of transformations 

would normally generate outputs that are far from the ground truth (i.e. humans’ outputs). A 

loss function is used to show the difference between predicted outputs and the ground truth. 

The gradient of the loss is then used to update parameters using the gradient descent algorithm 

by backpropagating through each layer (Bishop 2007), aiming to make the updated network 

produce to generate outputs that are similar to the ground truth. This step can be seen as the 

network learning (or training the network). 

http://www.zooniverse.org/projects/willkuhn/zen-of-dragons
http://www.zooniverse.org/projects/willkuhn/zen-of-dragons
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More recently, deep learning, a newly emerged field using neural networks with multiple hidden 

layers, has led to great improvements in many computer vision problems such as image 

classification and object detection. Deep learning has been the key technique for real-world 

applications like facial recognition (Bulat and Tzimiropoulos 2017; Ranjan et al. 2017) and 

autonomous driving (Treml et al. 2016; Al-Qizwini et al. 2017). The main architecture of the deep 

neural networks used to solve computer vision and image problems is the convolutional neural 

network (CNN), which was originally proposed for handwritten digit recognition (LeCun et al. 

1990).  

CNNs take images as the input, treating each pixel as an input node. Because regular neural 

networks have fully-connected layers (nodes from adjacent layers are fully pairwise connected), 

there will be a large number of inputs (e.g. a 256 x 256 RGB image has 196,608 pixels), which 

produces too many transformation parameters and makes the learning inefficient and prone to 

overfitting. Convolutional layers (Conv layers) are used to reduce node parameters by sharing 

parameters using the convolution operation. Conv layers transform inputs (e.g. pixel values of 

the input images) into a three-dimensional output (imagine an image with multiple channels; 

dimension: width x height x depth) and normally an output has more channels (depths) than the 

input (see Conv layer in Figure 1.2B). During the convolution, multiple nodes (i.e. pixels) are 

convoluted into one output node. Pooling layers are normally applied following Conv layers and 

served as down-sampling results (reducing width and height) by taking the average or maximum 

value of selected regions (see Pooling layer in Figure 1.2B), which create outputs with suitable 

dimensions. After multiple layers of Conv and pooling layers, layers for generating the final 

outputs are added depending on the task. Fully-connected layers are common for classification 

problems (Krizhevsky et al. 2012; Simonyan and Zisserman 2014), generating nodes that 

represent scores of the classes (Figure 1.2C). Using convolution layers is another choice that 

produces image-like outputs that can be used in segmentation tasks (Figure 1.2D; Long et al. 

2015). Similar to the neural network, backpropagation and gradient descent are used to optimise 

CNNs. After deep learning networks are trained, image features can then be automatically 

learned and extracted avoiding the need to use pre-defined features such as scale-invariant 

feature transform (SIFT, Lowe 1999). 



18 
 

 

Figure 1.2. (A) A regular neural network with one hidden layer. (B) A convolutional neural network (CNN) 

with convolutional layers and pooling layers. Blue grids and squares show that multiple nodes (grids) from 

inputs are calculated into one output node in Conv and Pooling layers. Outputs of multiple Conv and 

pooling layers can then be used in tasks like (C) classification (the image scores 0.9 of being a bird and 0.1 
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of being others) and (D) segmentation (red areas are segmented as bird and black areas are segmented 

as the background). 

 

The development of graphic processing units (GPU) and programming libraries in recent years 

has enabled parallel large-scale calculations over hundreds and thousands of threads (NVIDIA 

2017) making the approach computationally efficient. In 2012, a deep learning method won the 

best model for the ImageNet challenge (an image classification challenge; www.image-net.org; 

Deng et al. 2009) for the first time (Krizhevsky et al. 2012). Since then, different architectures 

have been designed to improve feature extraction with deeper and more complex combinations 

of layers (Simonyan and Zisserman 2014; Szegedy et al. 2014; He et al. 2016).  

1.3.1 Deep learning challenges 

The top-performing models of many computer vision challenges that cover classification (Deng 

et al. 2009), object detection (Deng et al. 2009; Lin et al. 2014), pose estimation (Johnson and 

Everingham 2011; Andriluka et al. 2014), and semantic segmentation (Everingham et al. 2015) 

are all deep learning-based. These challenges aim to solve similar problems as annotating 

digitised specimen images (Figure 1.1 and Figure 1.3), suggesting the possible applications of 

using deep learning on specimen datasets. 

Pose estimation uses deep neural networks to identify human body parts and joints as points on 

images (Figure 1.3A). Methods such as Stacked Hourglass (Newell et al. 2016) and Convolutional 

pose machine (CPM, Wei et al. 2016) have achieved high accuracy in identifying human posture 

images. Pose estimation models have been applied in other fields, such as tracking mice (Mathis 

et al. 2018b) and identifying fruit flies postures (Pereira et al. 2019), which have shown the 

potential for placing points on specimen photos.  

Semantic segmentation using deep learning is the state-of-the-art for segmenting images into 

different classes and categories automatically (Long et al. 2015; Chen et al. 2017b), and has 

outperformed other classic segmentation methods (e.g. thresholding) on many tasks. An 

example result of semantic segmentation is shown in Figure 1.3B. Semantic segmentation 

http://www.image-net.org/
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methods have achieved high accuracies on many datasets and segmentation challenges, for 

example, PASCAL VOC 2012 (Everingham et al. 2015) is a segmentation challenge that aims to 

segment images with complex background and objects into 20 classes (e.g. humans and cars). 

Semantic segmentation networks have also been designed for segmenting biomedical images 

(Ronneberger et al. 2015; Li et al. 2018). It is possible to use semantic segmentation methods to 

automatically segment focal areas on specimens.  

Classification challenges aim to use computer algorithms to classify images into different classes 

(Figure 1.3C) while object detection is targeted at detecting focal objects and locating them (e.g. 

placing bounding boxes around detected objects) on images (Figure 1.3D). Image classification 

(Simonyan and Zisserman 2014; He et al. 2016) and object detection (Ren et al. 2015) algorithms 

have been widely used in detecting and classifying images of wildlife animals (Kellenberger et al. 

2017, 2018; Norouzzadeh et al. 2018; Schneider et al. 2018). The numbers of images taken from 

(UAV) and camera traps are normally very large, so using deep learning can speed up the 

measuring step. 

Digitisation normally produces images with high imaging standards (e.g. a consistent background, 

a fixed number of specimens per one image). Previous studies have shown that deep learning 

can predict accurate annotations on images that are more complex, variant and less consistent 

than specimen images from digitisation. This suggests that deep learning is potentially a powerful 

tool that could be applied to many large-scale image databases. 
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Figure 1.3. Examples of different deep learning challenges. (A) Identifying human body parts and joints to 

measure humans’ postures from the Leeds Sports Pose Dataset (Johnson and Everingham 2011). (B) 

Segmenting the human and the motorcycle on an image from PASCAL VOC 2012 challenge (Everingham 

et al. 2015). (C) Detecting different objects on images from ImageNet Large Scale Visual Recognition 

Challenge (Deng et al. 2009). (D) Classification examples from the work of Krizhevsky et al. (2012; a part 
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of Figure 4 in Krizhevsky et al.’s paper is used here). Examples A-D are similar to annotations in Figure 1.1 

A-D respectively. 

1.4 Thesis objectives & data 

The overall aim of this thesis is to implement a high-throughput annotation pipeline on digitised 

specimen images using deep learning models. To achieve this aim, I tried multiple deep learning 

architectures including Stacked Hourglass (Newell et al. 2016), convolutional pose machine (Wei 

et al. 2016) and DeepLabV3+ (Chen et al. 2018), which can predict points and segmentations. I 

applied these methods to three problems in two different image datasets. 

1.4.1 Data 

1.4.1.1 Avian plumage colour 

Birds have evolved into a wide diversity of colour space (Stoddard and Prum 2011). Birds can 

perceive light across a wider spectrum, including parts of the ultraviolet spectrum, than humans 

(Goldsmith 1990; Cuthill et al. 2000). Studies have mapped birds colours into an avian-visual 

based tetrahedral colour space based on the four cones receptor cone types (Stoddard and Prum 

2008, 2011; Cooney et al. 2019). Bird’s plumage has functions from crypsis or camouflage to mate 

choice/attraction and social signalling (Hill et al. 2006a). Understanding how birds see their 

plumage colours helps to answer questions such as whether plumage colour evolution is driven 

by sexual selection (Dale et al. 2015; Dunn et al. 2015; Cooney et al. 2019) or natural selection 

(Slagsvold et al. 1995; Willink et al. 2014; Dunn et al. 2015); whether colour producing 

mechanisms limit the evolution of plumage colours (Stoddard and Prum 2011); how ecological 

factors impact on colours (Dalrymple et al. 2015). 

Spectrometers, the traditional way of measuring colours on specimens (Ewen et al. 2006; 

Stoddard and Prum 2008, 2011), can only measure the colour information of a small point for 

every measurement, and it is cumbersome and time-consuming to measure an area of colour 

information which including many points. Measuring the actual specimens can be invasive and it 

will be hard to replicate the measuring procedures. Digital photos provide high-quality colour 

information of different wavelengths (e.g. visible or ultraviolet light) with specialised cameras 
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and calibrations (Stevens et al. 2007; Troscianko and Stevens 2015). These techniques enable 

biologists to quantify signalling traits such as colouration and pattern by placing annotations on 

digital images. More than tens of thousands of annotations are placed manually in studies (Dale 

et al. 2015; Cooney et al. 2019). Raw colour pixel values are normally transformed to fit the 

research goals. For example, raw pixels values (i.e. values from RGB and UV channels) from 

photos are transformed into a tetrahedral colour space to simulate how birds’ receptor see 

colour (Stoddard and Prum 2011). Building a dataset of bird plumage colours that covers a wide 

range of avian species can be useful for analysing questions related to bird plumage colour at a 

large scale. Measuring colours on digital photos instead of the actual specimens has advantages 

of non-invasive manipulations, easy-to-reuse. Another important aspect of using digital photos 

is that people can apply computational methods such as computer vision and deep learning 

algorithms to increase the efficiency of colour measuring on a huge amount of photos. 

To study avian plumage colours of global bird species, an online citizen science project Project 

Plumage (www.projectplumage.org) was created to measure plumage colours on digitised bird 

specimens. The images were taken in the bird collections at the Natural History Museum, Tring. 

All images follow a standardised design (see chapter 2 and section 2.2 for detail). Each image 

includes one specimen and a set of five Labsphere Spectralon Diffuse reflectance standards that 

allow images to be standardised. Specimens were imaged in both the human-visible and 

ultraviolet (UV) light spectra. There are a total of 122,610 images, and 121,547 images (1,063 

images were excluded due to problems associated with extracting correctly calibrated colour 

values) were used in colour analysis which covers 8,509 species, 178 families, and 34 avian orders 

(more than 85% of bird orders). Citizens have to place 7 to 10 points per images (the number of 

points is dependent on the view of the specimen) and segment the whole bird’s plumage region 

using polygons. One image needs to be labelled by three persons in order to reduce variance and 

error from annotators. Based on manual processing (time for users that are familiar with the 

labelling, placing points takes 1 to 3 minutes and segmenting takes 3 to 5 minutes per image) and 

the participation of citizens (number of images labelled per day), I estimate that it would take 

more than one year to label all images. 

http://www.projectplumage.org/
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1.4.1.2 Littorina shell shape 

Shell morphological traits have been used to study parallel evolution (Hollander and Butlin 2010; 

Butlin et al. 2014; Ravinet et al. 2016). Littorina shell images were provided courtesy of Prof. 

Roger Butlin (Department of Animal and Plant Sciences, University of Sheffield). The data includes 

images of Littorina specimens collected from around Europe with landmarks placed on shell 

images to measure shell shape. 15 landmarks are placed on the shell based on the study of 

Ravinet et al. (2016). The aim of placing landmark points on shells is different from placing points 

on Project Plumage images. Placing morphological landmarks often requires higher accuracy than 

using points to identify regions, as a landmark normally captures the accurate homologous 

location (e.g. the apex of the Littorina shell). 

1.5 Thesis outline 

In this thesis, I tested and applied deep learning networks on images from Project Plumage in the 

first two data chapters. Chapter 2 focuses on predicting points (pose estimation) and chapter 3 

focuses on predicting regions (semantic segmentation). Deep learning networks need training 

sets (i.e. manually labelled images). Here, I used annotations labelled by people with expert 

knowledge rather than citizen-labelled annotations to ensure high-quality annotations. In 

chapter 4, I introduced a new software tool, PhenoLearn, that provides biologists with a pipeline 

from labelling training images to predicting the whole dataset of digitised specimen images.  

1.5.1 Chapter 2. Point measurements on bird plumage colours 

Bird plumage colour has functions from crypsis or camouflage to mate choice/attraction and 

social signalling (Hill et al. 2006a). Many studies have measured bird plumage on specific body 

regions to quantify their colours. Body region measurements (e.g. point or patch) are commonly 

used in extracting colours of specific body regions. Plumage colours of body regions are 

commonly measured using spectrometers (Stoddard and Prum 2008, 2011; Dunn et al. 2015) or 

(more recently) by placing points or polygons (Cooney et al. 2019; Miller et al. 2019) on digital 

photos with special reflectance calibrations (Troscianko and Stevens 2015). For images in Project 

Plumage, keypoints need to be placed for (i) measuring plumage colours in specific locations on 

the body and (ii) calibrating lighting variations among images. 
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Here, I trained two pose estimation networks, Stacked Hourglass (Newell et al. 2016) and CPM 

(Wei et al. 2016), on a subset of 5,094 expert-labelled images. Additionally, I trained models with 

different input configurations (e.g. input image resolution, training length). For the best model, 

predictions across 95% of the validation images were reviewed as correct by humans. I used the 

best model from evaluations (both geometric and colour accuracy) to predict colour for the 

whole Project Plumage dataset. Finally, I used point predictions to create bird plumage colour 

space across more than 7,000 bird species and measure colour volumes using convex hull and 

alpha shape (Edelsbrunner and Mücke 1994; Gruson 2020) for all and individual body regions. I 

also compared colour volumes between males and females to test whether males are more 

colour diverse than females as shown in previous studies (Cooney et al. 2019). 

1.5.2 Chapter 3. Segmenting bird plumage areas 

In Chapter 2 I used point measurements to measure colour on body regions. However, the 

information in the whole plumage area which point measurements fail to capture might be 

important. Segmentation is commonly used in biomedical images for segmenting focal regions 

such as cells, organs, bones and fossils (Aljabar et al. 2009; Baiker et al. 2010; Meijering 2012; 

Davies et al. 2017). It has also been used in segmenting digitised natural history datasets (Kumar 

et al. 2015; Unger et al. 2016). Here, I used DeepLabv3+ (Chen et al. 2018), one of the most 

accurate semantic segmentation networks, to learn expert-labelled images and predict the whole 

Project Plumage Dataset. I then compared segmentation results of DeepLabv3+ to results from 

four classic segmentation methods (thresholding, region growing, Chan-Vese and graph cut). I 

also tested the model performance on low-quality datasets and small size training sets. Thus, I 

can evaluate how resilient deep learning is to these two factors and provide guidance for 

biologists before starting projects using semantic segmentation. Over 95% of the plumage areas 

were correctly predicted in the best model. I then created the overall bird plumage colour space 

using predicted segmentations of the whole project plumaged dataset. Convex hull volume is a 

common metric used to measure colour diversity (as well as the size of other trait spaces) 

(Stoddard and Prum 2011; Tuset et al. 2014; Renoult et al. 2017). However, it may not be suitable 

for quantifying colour diversities measured using segmentation, due to the effect of outliers 

(caused by an increasing number of colour measures from segmentation) and because it does 
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not account for variation in the proportions of different colour hues. I designed a metric, named 

proportional colour diversity, which measures colour diversity while accounting for colour 

proportions. Finally, I visualised phylogenies of plumage colour diversities across more than 7,500 

species and calculated phylogenetic signals. 

1.5.3 Chapter 4. Building a tool for the deep learning pipeline 

Results from the first two data chapters were very promising, as points and segmentations were 

predicted reliably accurately. Therefore I further explored a pipeline for using deep learning in 

phenotyping digital images. Image annotation (for measuring phenotypic traits) can be done on 

many tools such as ImageJ (Schindelin et al. 2012). Similarly, there are many software packages 

and tools for biologists to run phenotypic analysis (Klingenberg 2011; Adams and Otárola-Castillo 

2013; Maia et al. 2013). However, deep learning normally requires coding using deep learning 

libraries (Abadi et al. 2016) and there are few tools that are designed for non-experts to utilise 

the power of deep learning on digitised images in an easy-to-use interface. 

To fill this gap, I developed PhenoLearn, an open-source image analysis tool that generates 

annotations for digitised collections using deep learning. PhenoLearn has functions including (i) 

labelling images, (ii) training deep learning networks, (iii) evaluating networks, (iv) predicting 

annotations for the rest of the images with trained networks and (v) reviewing predictions. These 

functions can produce accurate measurements on digitised datasets especially large-scale 

datasets, including visualising all the manipulations with user interfaces and minimum 

requirements for deep learning knowledge on the part of the users. I then showed an example 

application on a digitised Littorina shell dataset, predicting landmark points on these images. 

Morphospaces from both predicted and manually labelled landmarks were built, and I evaluated 

morphospaces to see if deep learning landmarks can detect shell morphological differences 

between two ecotypes (Butlin et al. 2014; Ravinet et al. 2016). 
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Chapter 2 A Deep Learning application on colour 

measurements of plumage regions on standardised 

avian specimen images 

Abstract 

A growing number of biological specimens are being digitised, particularly from museum and 

herbarium collections. A key challenge in mobilising these data for scientific research is 

measuring the digitised data automatically where manual measurements become hugely time-

consuming for large data sets. Deep learning is becoming the state-of-the-art for many computer 

vision tasks along with improvements in computational power. It is therefore useful to explore 

how deep learning can perform on measuring digitised specimen data. I used more than 120,000 

digital photographs of bird specimens that cover most of the world’s extant species to identify 

plumage colour. Bird plumage colours can be quantified by using pixel values around particular 

body region keypoints. I used pose estimation methods (Stacked Hourglass and Convolutional 

Pose Machine) from deep learning to predict these keypoints automatically. My results show that 

the deep learning model can produce accurate results, with 95% of predicted keypoints in the 

correct areas. It took approximately three days to predict the whole plumage dataset, compared 

to hundreds of days required for expert labelling. I applied the method to measure avian colour 

volume using two methods (convex hull and alpha shape). The overall avian colour volume 

calculated from the whole dataset shows that bird plumage colours have only evolved to occupy 

about a quarter to one-third of the total possible colour space. The results show that it is possible 

to use deep learning to implement accurate, automatic and high-throughput keypoint 

localisation on plumage photos. I also provide guidelines for building a workflow of digitising and 

measuring large-scale biological data. 
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2.1 Introduction 

Measurement of phenotypic traits from large collections of digitised specimens is an increasingly 

important step in studies of biodiversity that address evolutionary and ecological questions. 

While generating genomic data has become progressively more cost-effective allowing the 

compilation of complete genome databases for numerous organisms (Roach et al. 2010; Jarvis et 

al. 2014; Zhang et al. 2014), phenotypic databases are less well developed in part due to low 

efficiency in collecting phenotypic information (Lussier and Liu 2007). A significant challenge is to 

develop high-throughput phenotyping pipelines for such large-scale data. Globally, natural 

history museums house extensive, but often underexploited, collections of biological specimens. 

Measurement is often limited by access to, and quality of, specimens, yet estimated 1.2 to 1.9 

billion specimens in museum collections globally (Ariño 2010). Collection digitisation is a major 

goal for many natural history museums and can provide a rich source of phenotypic and 

biodiversity data (Blagoderov et al. 2012; van den Oever and Gofferjé 2012).  

Digitisation (including 2D photos, videos and 3D scans) and collecting associated metadata is a 

straightforward way to store permanent records of specimens as digital data (Stevens et al. 2007; 

Kuzminsky and Gardiner 2012; Mantle et al. 2012; Goswami 2015; Hudson et al. 2015). However, 

most of the raw digitised data (e.g. images, scans) cannot be used in ecological and evolutionary 

analyses without extensive processing. To mobilise natural history data, robust, high-throughput 

data extraction (e.g. phenotyping or trait measurements) pipelines are necessary. Images may 

contain diverse information including colour, shape, and posture. Imaged specimens can be 

labelled in numerous ways to extract information of interest. For example, specific labelled points 

of the organism can be landmarked and then used in geometric morphometrics (Bookstein 1991; 

Conde-Padín et al. 2009; Zelditch et al. 2015; Chang and Alfaro 2016; Ravinet et al. 2016) or 

position tracking (Mathis et al. 2018a), segmentations can be used to extract morphological traits 

(Meyer and Beucher 1990; Gehan et al. 2017), polygons can be used to measure colours on 

specimens (Cooney et al. 2019). A problem common to any form of labelling is that it is often 

slow and labour intensive. Manual labelling and measuring by experts is a common but time-
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consuming way of phenotyping from digitised specimens especially datasets that are becoming 

increasingly large. 

Seeking ways that can increase the labelling speed while maintaining accuracy is, therefore, a 

growing challenge for biodiversity science. Crowdsourcing provides an alternative to expert-only 

labelling. Crowdsourcing can improve the labelling rate by opening up digitised data to a large, 

relatively open and often rapidly-evolving group of internet users. For example, morphometric 

landmarks can be collected on 2D and 3D data through crowdsourcing websites allowing 

downstream analyses of large-scale evolutionary trends (Chang and Alfaro 2016; Cooney et al. 

2017). However, the advantages of faster accumulation of data are traded off against 

fluctuanting engagement of citizens and, for some tasks, potentially lower accuracy of 

crowdsourcing compared to experts’ labelling (Kamar et al. 2012). A potentially more tractable 

or complementary solution to large scale labelling is the use of advanced computational 

techniques. 

Computer vision algorithms provide powerful tools in which the main goal is to enable computers 

to understand images and videos as close to the way that humans do as possible. Deep learning, 

a subfield of machine learning, uses neural networks with tens or hundreds of layers and has led 

to vast improvements in many computer vision problems such as image classification, object 

detection, and pose estimation (Krizhevsky et al. 2012; He et al. 2016; Newell et al. 2016; Redmon 

et al. 2016; Wei et al. 2016; Chen et al. 2017b). Convolutional neural networks (CNN) are an 

important component in deep learning and were proposed for handwritten digit recognition 

(LeCun et al. 1998) and are now widely used in image and video problems. CNNs overcome input 

complexity from images or videos and the use of convolutional layers provides learning 

parameters that can be shared across inputs, increasing the network performance by reducing 

overfitting and computational costs (reducing the total number of parameters). After many 

convolutional layers, different levels of image features are automatically extracted from the 

training set. The extracted features are used in machine learning models for different vision tasks. 

The use of deep learning in biological data processing and analysis has been growing rapidly. For 

example, leaves of 44 plant species were identified with over 90% accuracy using CNN (Lee et al. 
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2015). This work also has shown that features extracted by deep learning could achieve more 

accurate prediction than hand-engineered image features. Image classification algorithms have 

been used to identify species from digital data including identifying animal species and extracting 

numbers of animals from camera-trap images (one species per image) and from underwater 

photos (Kellenberger et al. 2017; Rathi et al. 2017; Norouzzadeh et al. 2018; Schneider et al. 2018). 

Classification accuracies from these studies were higher than 90%. These results have shown that 

deep learning can provide fast, automated and accurate solutions in a range of biological 

applications. However, extraction of phenotypic data from digitised collections often requires 

more complex tasks than recognition. For example, identifying and placing landmarks on 

biological digital data can be used to capture morphometric data, behaviour and other biological 

information. Although few studies have been conducted, deep learning approaches, and 

landmark detection in particular, are particularly promising for keypoint localisation from natural 

history collections. For example, recent studies used deep learning to classify and localise 

different features (leaf tips, bases, ear tips and ear bases) of wheat from photos (Pound et al. 

2017). Similarly, pose estimation methods have been used to detect landmarks and track 

behaviours of both Drosophila and mice from videos (Mathis et al. 2018a; Pereira et al. 2019). 

Here, I focused on applying deep learning to extract colour information from images of birds. 

Birds have evolved into a wide diversity of colour space (Stoddard and Prum 2011). Birds also see 

colour differently from humans and can perceive light across a wider spectrum. This is because 

birds have four receptor cones, compared to three in humans, and are sensitive to ultraviolet 

(UV) light (Goldsmith 1990; Cuthill et al. 2000). The total extent of perceivable colour expressed 

in bird plumage has been referred to as the avian plumage colour gamut (Stoddard and Prum, 

2011). The breadth and diversity of the colour gamut are expected to reflect the many functions 

that plumage colour serves from crypsis or camouflage to mate choice/attraction and social 

signalling (Hill et al. 2006a). Measuring and understanding the avian colour gamut is therefore 

important in the study of a wide range of questions linking plumage evolution to natural and 

sexual selection (e.g. Dale et al. 2015; Dunn et al. 2015; Gomes et al. 2016; Cooney et al. 2019).  

Measuring colour from all of the birds of the world (10,000 bird species) is only possible by using 

natural history collections. I utilise part of an extensive set of photos of bird specimens 
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representing >85% of all of the world’s bird species taken under controlled lighting conditions at 

the Natural History Museum, Tring. Body region measurements (e.g. point or patch) are 

commonly used in extracting colours of specific body regions. Colours can be measured directly 

from specimens using spectrometers (Stoddard and Prum 2008, 2011; Dunn et al. 2015) or 

placing points or polygons (Cooney et al. 2019; Miller et al. 2019) on digital photos with special 

reflectance calibrations (Troscianko and Stevens 2015). The primary goal is therefore to find an 

automated landmark detection algorithm that places point labels with sufficient accuracy to 

measure colours that are comparable with expert identification of body regions. 

Pose estimation uses deep neural networks to identify human body parts and joints as points on 

images. Methods such as Stacked Hourglass (Newell et al. 2016), DeepCut (Pishchulin et al. 2016) 

and Convolutional Pose Machine (Wei et al. 2016) have predicted accurately on pose estimation 

datasets such as MPII Human pose dataset (seven points for seven body parts per human. 

Andriluka et al. 2014) and Leeds Sports Pose (LSP, 14 points for 14 joint locations per one human. 

Johnson and Everingham 2011). For the MPII dataset, 90.9% of the predicted points from Stacked 

Hourglass were located within half of the head lengths (individual heads are used rather than the 

average head) from their ground truth. The result is considered very accurate. Here, I explore the 

use of pose estimation to measure colour from specific body regions. Previous studies have used 

deep learning algorithms to detect landmarks to track animals’ positions or postures in videos 

(Mathis et al. 2018a; Pereira et al. 2019). These studies were mainly applied to a small number 

of animals on many frames of videos. Here, I used fixed images where the subjects have variant 

looks but similar postures, and tested whether pose estimation can place multiple accurate 

points on digitised bird specimen photos. 

If colours measured by point predictions are accurate then the colour information dataset can be 

used to study evolutionary and ecological questions about bird plumage, especially plumages 

among body regions. I calculated the size of the avian colour gamut as a use case for the dataset. 

The size of the avian colour gamut can be measured in numerous ways but typically requires 

consideration of the perception of the receiver. Mapping colour into a tetrahedral colour space 

using avian visual models can be used to describe how birds see plumage colour (e.g. Stoddard 

and Prum 2011). The axes of the tetrahedral colour space are defined in relation to the four 
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receptor cone types (ultraviolet (u), shortwave (s), mediumwave (m) and longwave (l)) in the 

avian visual system. Despite the theoretical extent of colour that can be expressed within the 

avian tetrahedral colour space, the evidence suggests that only a limited range of colours are 

expressed in bird plumage. For example, Stoddard and Prum (2011) estimated a colour space of 

bird plumage colour containing 111 species from 55 families in 18 avian orders (Stoddard and 

Prum 2011). This avian colour space filled only 26-30% of the total available avian colour space, 

suggesting that there are limitations on birds ability (i.e. colour producing mechanisms) to 

produce certain colours or colours that birds avoid to evolve, despite retaining the ability to 

perceive them. 

Stoddard and Prum (2008, 2011) used the convex hull volume to measure colour space volume. 

Convex hull volume is widely used as a colour volume metric (Stoddard and Prum 2008, 2011; 

Cooney et al. 2019). However, it may overestimate the volume due to its convex property. For 

example, a set of points that has a shape similar to a star and its best fit shape should be a star-

like shape. But its convex hull is a pentagon-like shape, which has larger areas than the star-like 

shape. Despite the fact that birds are the most colour-diverse terrestrial vertebrate, this implies 

that the avian colour gamut may be smaller than previous estimates suggest. Alpha shape is an 

alternative method of estimating the volume of a colour space, and can produce non-convex 

shapes (Edelsbrunner et al. 1983; Edelsbrunner and Mücke 1994). A brief definition of the alpha 

shape is written in the appendix along with examples that are shown in Supplementary Figure 

6.1.1. It, therefore, is a potentially more precise way to measure volume and that reduces the 

extent of overestimation associated with the convex hull volume (Cholewo and Love 1999; 

Gruson 2020).  

For this paper, I aimed to find deep learning networks from the pose estimation that can predict 

points that are accurate enough to extract colour information on plumage images at a level 

comparable to expert labelling. The neural network is a black-box model, so it is necessary to test 

different network configurations and hyperparameters (i.e. configurations for the training 

process, such as training steps and learning-rate) to find the best configuration. I trained and 

validated a range of different pose estimation networks and training configurations. I then 

evaluated the results with respect to (i) accuracy of point placements and (ii) accuracy of colour 
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measurement. Additional experiments and evaluations were used to further assess the 

robustness and the network performance (e.g. test how colour diverse images affect the model 

performance). I used the best-performed model to extract colour measurements from more than 

7000 species. I then constructed a tetrahedral colour space based on avian visual models. The 

colour space was used to generate a new estimation of the avian colour gamut and assess how 

the gamut varies among species and body patches. Finally, I discussed the potential for deep 

learning approaches to replace manual labelling in similar phenotypic datasets. 

2.2 Data and Methods 

2.2.1 Imaging and raw data 

The images and labels used in this study were collected as part of a broader study of bird diversity 

and form part of the online citizen science project Project Plumage (www.projectplumage.org). 

The images were taken in the bird collections at the Natural History Museum, Tring. All images 

follow a standardised design as described by Cooney et al. (2019). I repeat the main protocols 

here for convenience. Each image includes one specimen and a set of five Labsphere Spectralon 

Diffuse reflectance standards (2%, 40%, 60%, 80% and 99% reflectance arranged left to right in 

each image (referred as Standard 1-5) photographed against a black background under controlled 

lighting conditions (two Bronocolor Pulso G 1600 J lamps with UV filters removed and powered 

by a Broncolor Scoro 1600S Power Pack). Specimens are placed with heads on the left and tails 

on the right in images where possible. Due to variation in size and shape of different species (e.g. 

exceptionally long neck or legs) some museum specimens are arranged in non-standard ways (e.g. 

fold necks to fit specimens in the camera). Photos were taken from three views (back, belly and 

side) for each specimen and each view is imaged twice, once in the human-visible and once in 

the ultraviolet (UV) light spectra. All photos were taken using a Nikon D7000 DSLR camera and a 

Nikon 105mm f/4.5 UV Nikkor lens. The camera was modified (by Advanced Camera Service, 

Norfolk; http://advancedcameraservices.co.uk/) to allow both human visible and ultraviolet (UV) 

wavelengths of light to be recorded. Pairs of images were taken in the human-visible or UV 

spectrum by using either a Baader UV/IR Cut filter / L filter (transmits light in the human visible 

range 400-680nm) or a Baader U-Venus-Filter (transmits light in the UV range 320–380 nm). The 
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same camera settings were used for all photographs (1/250 sec, f/16.0, ‘Daylight’ white balance, 

RAW photo format), with the exception that ISO was for human visible (ISO 100) UV images (ISO 

1000) differed to achieve correct exposure. The human-visible image and UV image of the same 

specimen with the same view are identical (e.g. bird settings, backgrounds) except the pixel 

values. So when referring to image numbers, human-visible and UV images of the same specimen 

with the same view were counted as one image (i.e. a specimen was taken from three views for 

both spectra, it is counted as three images). Images were saved in RAW format at a resolution of 

4,948 x 3,280 pixels. The full Project Plumage data set consists of 122,610 images but here I used 

a subset of 5,094 images to test the performance of pose estimation methods and demonstrate 

the utility of machine learning in data extraction. Then I applied the best-performed pose 

estimation method to the whole Project Plumage dataset and built a bird plumage colour space 

using keypoint predictions. 

2.2.2 Image labelling (keypoints for pose estimation) 

Pose estimation requires the definition of keypoints. In human pose estimation applications, 

these are typically joints (e.g. shoulder, elbow). 15 labels (keypoints) were used to capture colour 

information from different bird body regions. Each of the three views outlined above includes 

labels placed on specific body regions (Figure 2.1). Photos of all three views have five labels at 

the centre of each of the reflectance standards. Body region labels were placed in the centre of 

the corresponding body region. Bird body regions may be occluded in some images, and these 

regions were not labelled by experts. The image labels are used to localise each body region and, 

in downstream analyses, can be used to measure colours of this region (e.g. using points to create 

patch measurements like Cooney et al’s 2019 work). A total of 5,094 photos representing three 

views of 1698 bird species were labelled manually by one expert (YH). After accounting specific 

body regions for views and occluded body regions, the sample sizes across keypoints were: 

N(Standard 1-5)=5,094, N(Throat, Breast, Belly, Flight feathers)=1,698, N(Mantle)=1,697, 

N(Coverts)=1,696, N(Crown, Nape)=1,695, N(Tail)=1,678 and N(Rump)=1,422. The sample of 

1,698 bird species encompass representatives of 81% bird genera and 27 bird orders, so the 

labelled images capture much of the extent of variation in plumage colour, patterns, and body 
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shape among birds. These expert-labelled images were used to train and validate the deep 

learning models.  

 

Figure 2.1. Examples of keypoints on the Project Plumage images, which capture (a) five reflectance 

standards and five body regions (crown, nape, mantle, rump and tail) of the back view; (b) Three body 

regions (throat, breast and belly) of the belly view; (c) Two body regions (wing coverts and flight feathers) 

of the side view. 

2.2.3 Deep Learning workflow overview 

After expert keypoint labelling, the core workflow involves four steps: a) image preparation, b) 

model training, c) model predictions on the trained network, and d) evaluating model 

performance. This workflow is summarised in Figure 2.2. Image preparation (pre-processing) 

includes resizing images or labels so that they can be fed into the network (Figure 2.2a). I here 

used 5 fold cross-validation and split data into training and validation sets with an 80:20 ratio. 

Cross-validation can provide an accurate estimate of model performance by averaging 

performance for different partitions (5 partitions for 5 fold cross-validation) of training and 

mutually exclusive validation sets. A common approach in a deep learning pipeline is to split data 

into the training set, validation set, and test set where the test set is used to provide the final 

benchmark (e.g. ImageNet; Krizhevsky, Sutskever, and Hinton 2012; He et al. 2016). I used only 

the training and validation sets so that every image from the labelled dataset (covering a wide 

range of extant bird species) can have a predicted keypoint from the same data partition routine. 

This allows the relationship between bird taxonomy and network performance to be evaluated 

(i.e. to assess whether performance varies among groups of bird species due to broad differences 

in size, shape and colouration of specimens). 
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The model is trained with a training set under pre-defined network hyperparameters (i.e. 

configurations for the training process, such as training steps and learning-rate). For each training 

step, the network generates predictions with input images, from which a loss function that 

represents differences between ground truth (expert labels) and predictions can be calculated. 

Gradient descent is then applied to optimise the network parameters and decrease the value of 

the loss function using its gradient (Ruder 2016). The goal is for the network to generate 

predictions that are iteratively closer to the ground truth in the next step (Figure 2.2b). When the 

network converges or training finishes, the ground truth data from the validation set is used to 

evaluate the precision and accuracy of the validation set result from the trained network (Figure 

2.2c). 
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Figure 2.2. Workflows for applying the Stacked Hourglass (Newell et al. 2016) to predict keypoints on an 

example image from Project Plumage. (a) The preparation (pre-processing) step resizes images and 

transfers coordinates into heatmaps. (b) The pre-processed training data is used to train the network. (c) 

The trained network is used to generate predictions of validation images. Then post-processing (e.g. 

transfer heatmaps back to coordinates) and evaluations are applied on predictions. 
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In this section, I describe the workflow using the Stacked Hourglass neural network architecture 

(one of the most accurate models for identifying single human posture; Newell, Yang, and Deng 

2016) with a fixed set of hyperparameters and input images. In section 2.2.4 I describe 

experimental manipulations to compare with an alternative neural network architecture (the 

convolutional pose machine, CPM - an earlier deep learning model which influenced the Stacked 

Hourglass model; Wei, 2016). I further assess the effects of manipulating the model 

hyperparameters, and the input image (e.g. image resolution and different ways of pre-

processing images).  

2.2.3.1 Image preparation 

Here, I used 5,094 expert-labelled images (1698 images per view) with 15 labels. Images were 

first converted to JPG from RAW format, which can be easily read and saved by numerous 

software tools (e.g. Python, R and MATLAB). Only the human-visible visible spectrum versions 

were used in training, therefore a pixel has values from R, G and B channels, ranging from 0 to 

255. I split the images into training (80% of images) and validation sets (20% of images). Due to 

the memory of the graphics processing unit (here an NVIDIA GTX 1080Ti with 12GB GPU memory) 

and the model complexity, it was necessary to reduce the input resolution. While the original 

Stacked Hourglass paper uses 256 x 256 pixels as the input resolution (Newell et al. 2016) the 

resolution of the raw project plumage images is 4,948 x 3,280 pixels. I down-sampled images 10-

fold to 494 x 328 pixels using bilinear interpolation from OpenCV (a computer vision library; 

Bradski 2000). I have tested that this resolution can be trained on the GPU without any difficulties 

while keeping as much information from the original images as possible. 

2.2.3.2 Model training and application 

Stacked hourglass and CPM outputs heatmaps instead of coordinates. Outputting heatmaps has 

been shown to outperform other output formats in pose estimation in many studies (Newell et 

al. 2016; Pishchulin et al. 2016; Wei et al. 2016). The CNN reduces the input resolution to extract 

image features due to convolution and pooling layers (LeCun et al. 1990; Krizhevsky et al. 2012), 

heatmaps generated from Stacked Hourglass (using 494 x 328 pixels as the input resolution) have 

a resolution of 62 x 41 pixels which is 8 times smaller than the input resolution. Ground truth 
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heatmaps are generated as 2-dimensional Gaussian distributions around each keypoint. I applied 

a Gaussian peak with a standard deviation of 2 to the location of scaled coordinates to create 

each of the 15 ground truth heatmaps (Figure 2.2a). Where a body region did not appear in an 

image (i.e. it was completely occluded or did not belong in the view), an empty heatmap was 

used (Figure 2.2a). After pre-processing, the original data and labels were turned into input 

images with a resolution of 494 x 328 pixels and ground truth heatmaps with a resolution of 61 x 

41 pixels, which were ready for training. 

The data set was divided into batches of four images, and one batch per training step was fed 

into the model to generate prediction heatmaps. Using batches balances the memory usage of 

the GPU and the optimisation of each step (Hinton et al. 2012). In this method, a loss function 

for the network, which shows the difference between predictions and ground truth, was 

calculated as the mean squared error between prediction heatmaps and ground truth heatmaps 

(the heatmap dimension: 62 x 41 x 15). To minimise the loss function, model parameters were 

updated using the ADAM optimiser (Kingma and Ba 2014) along with the gradient of the loss 

function, as shown in Figure 2.2b. 0.01 was used as the initial learning rate. Through the training 

process, the learning rate was cosine decayed and restarted at the initial value after reaching 

zero, which increases the possibility to reach a better local optimum (Loshchilov and Hutter 2016). 

The length of the first period of decay-restart was set to one epoch (an epoch is defined as one 

pass of the full training set for the network). After each period, the new period was two times 

longer than the previous one (i.e. the second period takes two epochs to decay to zero, the third 

period takes four epochs and so on). 15 epochs were chosen to have the model trained for four 

complete decay-restart periods, which the model converged (i.e. the loss has stopped 

decreasing). 

After the training finished, validation images were fed into the trained network to generate 

prediction heatmaps. Heatmaps were resized back to the same resolution (4948 x 3280 pixels) as 

the original images. The coordinate of one prediction was generated using the location of the 

maximum value (or the average of locations if there are multiple maximum values) of the 

corresponding heatmap (Figure 2.2c). The network generated 15 keypoints for each image 

without checking and excluding possible occluded points. Keypoints that were not in the view 
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were discarded (e.g. seven keypoints were retained for a side view image, see Figure 2.1c). To 

make predictions and ground truth comparable, occluded points in the expert labels were not 

evaluated. The model training and predicting were implemented using Python 3 and Tensorflow 

1.12 (Abadi et al. 2016), a deep learning library, on one NVIDIA GTX 1080Ti GPU (12GB GPU 

memory). 

2.2.3.3 Evaluation 

I evaluated the model performance at the original image resolution (4,948 x 3,280 pixels) and 

used metrics that describe the accuracy of predictions of the validation set from both geometric 

and colour perspectives. The pixel distance is the most straightforward metric to use for 

comparing geometric accuracy, and is simply the Euclidean distance (measured in pixels) from 

the input ground truth keypoint coordinates to the predicted coordinates (the pixel location with 

the maximum heatmap value). Pixel distance can be used to assess each keypoint individually 

and as the average for all keypoints within an image. 

An alternative geometric measure is the Percentage of Correct Keypoints (PCK) which is a 

commonly used metric in pose estimation (Newell et al. 2016; Wei et al. 2016). PCK is the 

percentage of predictions that have pixel distances below a given threshold (Andriluka et al. 

2014). I used PCK with a threshold of 100 pixels (PCK-100). PCK-100 is suitable for evaluating the 

accuracy of the five reflectance standard predictions because the minimum radius of reflectance 

standard circles is slightly greater than 100 pixels and ground truth points of standards were 

always placed in the centre of standards. The areas of body regions were variable (e.g. the crown 

is usually smaller than the breast or belly) and in some cases, the body region could be smaller 

than 100 pixels across at its minimum, however, PCK-100 provides a starting point for 

standardising the evaluation across all 15 keypoints. 

For some use cases point accuracy may be critical (e.g. if the goal is to place landmark points for 

geometric morphometric analyses of shape). However, the ultimate goal of labelling points on 

the Project Plumage dataset is to extract colour information for regions and to do so 

automatically and accurately enough to replace human labels. It is therefore necessary to 

evaluate similarity in the colour information between predictions and ground truth. I extracted 
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pixels for colour comparison by placing an area around the body region keypoint using a fixed-

size bounding box measuring 20 x 20 pixels (I refer this extraction method as Bbox-20). This is 

small enough to account for the smallest body regions within the dataset, such as the flight 

feathers of hummingbirds. I used the averaged RGB values of extracted pixels (i.e. one mean RGB 

value for one body region) as simple metrics of colour. I further calculated the average 

normalised RGB and lightness, both derived from raw RGB. The normalised RGB is obtained by 

dividing the original RGB by the sum of RGB ( 𝑅′ =
𝑅

𝑅+𝐵+𝐺
 ,  𝐺′ =

𝐺

𝑅+𝐵+𝐺
, 𝐵′ =

𝐵

𝑅+𝐵+𝐺
 ). 

Normalised RGB provides an estimate on chromatic information (e.g. hue). Lightness is the 

average of the sum of maximum RGB and minimum RGB. To evaluate colour similarity between 

ground-truth and predicted values, Pearson's correlation coefficients (R) were calculated for all 

and individual extracted region across images. 

Taken together, these evaluation metrics capture the precision, accuracy, and biological 

relevance (i.e. plumage colours) of the predicted points. 

2.2.4 Experimental manipulations to increase the model 

performance 

The workflow described above was based on a Stacked Hourglass neural network with 15 training 

epochs and input resolution of 494 x 328 pixels. Neural network architectures, input image 

resolutions, length of the training process and other factors may be critical to the model accuracy. 

I applied a series of manipulations to assess how they affect the accuracy of model predictions 

relative to the expert ground truth. All configurations were trained and cross-validated 5-fold for 

a robust validation result (all 5,094 images have predictions). 

2.2.4.1 How do architecture & resolution affect the performance 

I compared two network architectures (Stacked Hourglass and CPM) with different image 

resolutions. Specifically, I used resolutions that were 10, 15, and 20 times lower than the input 

images (i.e. 494 x 328, 329 x 218 and 247 x 164 pixels). This image resolution manipulation gives 

five comparisons against the benchmark configuration (Stacked Hourglass, 494 x 328 pixels) 

described in section 2.2.3.2.  
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I used this experiment to identify the best combination of the architecture and image resolution 

as the basis for subsequent manipulation. I found that the Stacked Hourglass method 

outperformed CPM in all cases and that the highest resolution input images (494 x 328) 

consistently gave the best results (see 2.3.1 for full details). Therefore later manipulations all 

used Stacked Hourglass as the network and 494 x 328 pixels as the resolution. 

2.2.4.2 How does training duration affect the performance 

To ensure the model converged within 15 epochs, I assessed the effects of training durations on 

network performance by manipulating the number of epochs for the Stacked Hourglass 

architecture with 494 x 328 pixels images. I compared the 15 epochs network with a longer 

network consisting of 31 epochs which will allow the model to train 5 periods of decay. 

2.2.4.3 How does image pre-processing affect the performance 

Pre-processing images can improve network performance (Krizhevsky et al. 2012; Chen et al. 

2016). I manipulated different aspects of the input images to assess their effects on network 

performance. First, background and reflectance standards take up large proportions of each 

image (e.g. Figure 2.1). Increasing the area filled by the specimen may provide more specimen 

information for the model to learn. To assess this, I cropped specimens with bounding boxes to 

create specimen-only images. Cropped images were padded and scaled into a uniform resolution 

(1024 x 256 pixels). Second, the RGB histograms of Project Plumage images are mostly left-

skewed because the image background is black with images typically having more dark pixels 

than bright pixels. I applied the histogram equalisation (effectively stretching the histogram) 

using OpenCV (Bradski 2000) to increase the contrast within each image. 

Three kinds of pre-processed datasets were generated: (i) specimen-only images, (ii) applying 

histogram equalisation on the original images, and (iii) applying histogram equalisation on 

specimen-only images. Examples of pre-processed images are shown in Supplementary Figure 

6.1.2. These datasets were then used in training and evaluation. 
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2.2.4.4 How do image augmentation and subsetting the model affect 

the performance 

For the final manipulation, I assessed the effects of image augmentation (equivalent to the term 

data augmentation in some papers) and splitting the model per view. Image augmentation is a 

technique that increases the size of the training set by altering the existing images (Perez and 

Wang 2017) and it was used in the original work of Stacked Hourglass (Newell et al. 2016). In this 

project, the augmented training set consisted of the images from the original training set and 

images which were randomly rotated (-8° to -1°, 1° to 8°), translated in both x and y axes (100 to 

500 pixels) and scaled (0.8 to 1.25). Image variations among views may limit the model learning, 

I trained one model per view separately with the augmented data rather than one all-view model. 

2.2.4.5 Methods of selecting pixels for heatmaps 

Extracting pixels for each body region is a key step for measuring different aspects of the birds 

plumage colour. Using bounding boxes can generate fast (i.e. measuring pixels in a rectangle or 

square is fast on computers) and uniform colour measures (i.e. colours were extracted under a 

fixed-size bounding box) across results from tested models. It is good for comparing across results 

due to its fast and uniform features. However, using the fixed-size bounding box may not be the 

optimum approach to measure the colour information for the final result (i.e. predictions from 

the best model). Body region sizes vary and the fixed-size bounding box may not adequately 

capture colour variation within regions. Although ground truth heatmaps have uniformed sizes 

(i.e. Gaussian peaks with a standard deviation of 2 on the heatmap scale), prediction heatmaps 

can have different sizes. Supplementary Figure 6.1.3 shows prediction heatmap examples of the 

crown and rump on an image. The rump (Supplementary Figure 6.1.3b) has a larger heatmap 

than the crown (Supplementary Figure 6.1.3a). Prediction heatmaps are distributions of 

probabilities for the location of the focal keypoint and provide an alternative to using fixed 

bounding boxes for the pixel extraction. Heatmaps were interpolated to the range of 0 to 100, 

where a pixel value then correspond to how likely the keypoint is located in the pixel. I used 90 

as the threshold to determine which pixels should be included within each body region (I refer 

this extraction method as Heatmap-90), which created regions that were non-uniform in size and 
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shape to measure colours (number of pixels inside predicted heatmaps (based on the resolution 

of 4,948 x 3,280 pixels), mean: 6,484; minimum: 1,600; maximum: 30,560, which are 

approximately equal areas of squares with lengths of 80, 40 and 174). Colour information 

correlations were evaluated on the best result from the experimental models described above 

and were compared to the same metrics extracted by Bbox-20.  

2.2.5 Post-hoc tests on the model performance 

2.2.5.1 Performance based on the expert evaluation 

Predictions from the best configuration selected from the metrics introduced above were 

manually checked by two experts (YH and CRC) and classified as correct or incorrect. For one 

photo, if all keypoints are placed somewhere inside and not around the border of the correct 

corresponding body regions, the labels of the image are correctly predicted. If at least one point 

is placed outside its body region, the image is considered incorrectly predicted. The boundary of 

a body region can be subjective, and I want to minimise the human variance and error, so 

predictions were cross-checked by the two people (YH and CRC). In addition, the manual checking 

error rate of every order was calculated to evaluate whether error rates are similar across 

taxonomical groups. The accuracy of the manual check result provides further verification on how 

well the deep learning model can predict labels on the Project Plumage data. 

Training sets for many deep learning applications are generated by humans who may place 

keypoints differently on the same image. If differences among human labellers are similar to the 

error of the deep learning predictions then it is possible to say that the predicted result of deep 

learning is good enough. I took 300 images (100 images per view) sampled from the expert-

labelled dataset to be labelled by another two people with expert knowledge (CRC and GHT). The 

pixel distances between the original expert points (YH) and the points placed by CRC and GHT 

were used to quantify human variability in image labelling. Then, pixel distances were calculated 

pair-wise from four results (YH, CRC, GHT and predictions). Pixel distances were categorised into 

three groups by datasets used for comparing (i) predictions vs trainer (i.e. between predictions 

and YH), (ii) predictions vs non-trainer (i.e. between predictions and CRC or GHT), (iii) between 
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experts. Statistical tests (ANOVA and Tukey test) were applied to quantify how close the 

predicted coordinates were to those from different experts using R. 

2.2.5.2 Performance with low-quality data 

Images from Project Plumage were taken in a highly consistent manner by controlling the 

placement of the specimen, light environment and background (Blagoderov et al. 2012; Hudson 

et al. 2015). Not all datasets are likely to be so consistent. I therefore tested whether greater 

variability in data quality could limit performance by generating lower quality datasets. To do this 

I applied a series of affine transformations to the images and their labels as well. Four datasets 

were created with different transformations applied: (i) rotation (angles between -45° to 45°), (ii) 

translation on both x and y axes (-500 to 500 pixels), (iii) horizontal flip 50% images randomly, (iv) 

the combination of all three transformations. 45 degrees rotation and 500 pixels translation give 

images large transformations while keeping all keypoints inside the image. In contrast to not 

manipulating the validation set in image augmentation, here transformations were applied to 

both training images and validation images. The transformed datasets are trained and evaluated 

with the model of Stacked Hourglass, the input resolution of 494 x 328 pixels and the training 

duration of 15 epochs. 

2.2.5.3 Effects of within specimen colour variability 

Specimens vary greatly in the diversity of colour. Some birds have body regions that are 

polychromatic whereas others are entirely monochromatic. In the context of colour data, it is 

important to assess the performance of the deep learning methods on specimens with different 

degrees of colourfulness. I quantified the colour variability of each specimen by calculating the 

average pairwise colour distance between body regions. Three types of colour variability were 

used based on colour distances of RGB (both chromatic and achromatic information), normalised 

RGB (hue information) and lightness (achromatic information). Colours were extracted using the 

ground truth label with the Bbox-20 extraction method. I then evaluated the correlations 

between pixel distances and three colour variability measures. The colour information metrics 

were split by quartiles of each of the three colour variabilities to see if colour variabilities affect 

colour measuring accuracies. 
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2.2.6 Measuring bird plumage colour volume 

2.2.6.1 Building bird plumage colour space 

I applied the best configuration (the model of Stacked Hourglass, the input resolution of 494 x 

328 pixels, the training duration of 15 epochs and using images without any manipulations. See 

Result section for detail) to generate predictions for the rest of the images and combining 5,094 

predictions in the validation step. Together predictions of 122,610 images were generated. 

Occluded point checking was not applied to predictions, as no accurate and automatic method is 

able to do the checking. The proportion of occluded body regions was low in the expert-labelled 

dataset (Rump has the highest occluded region rate which is about 16%, the rest of the body 

regions have rates less than 1.1%). The colour space should be similar to the one excluding 

occluded regions based on the occluded region rate. 

The average pixel values from the deep-learning predicted heatmap regions (Heatmap-90) were 

used as the raw colour information for the corresponding body regions. In total 405,155 plumage 

colour points from 8,509 species were generated using 121,547 photos (a small number of photos 

were excluded from the initial dataset, contains 122,610 images, due to problems associated 

with extracting correctly calibrated colour values) and their keypoints. The average RGB colour 

value of each predicted heatmap was converted into u, s, m, l receptor cone stimulation values 

using the avian UVS visual model in pavo (Endler and Mielke 2005; Stoddard and Prum 2008; 

Maia et al. 2013). These values were then mapped into a tetrahedral colour space. Each species 

has up to six specimens (three males, three females), and each specimen has three views that 

contain 10 body region patches. I took the average colour across specimens for each species, 

patch, and sex. This reduced the raw data to 157,349 colour points. To ensure that male and 

female colour spaces are comparable, I only kept species which have both male and female data. 

The final colour data has 143,932 colour points (N(Male), N(Female)=71,966), which covers 7200 

species, 174 families, and 34 avian orders. 
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2.2.6.2 Quantifying colour volumes 

I used the convex hull volume and alpha shape volume to estimate colour volumes of the overall 

data and across individual patches for both sexes, male and female. Both volumes were 

calculated using pavo 2.5.0 (Maia et al. 2019; Gruson 2020).  

Convex hull volume has been used in many studies for measuring the colour diversity of colour 

spaces (Renoult et al. 2017). In contrast to the convex hull, where the same set of data points 

always have the same convex hull volume, the alpha shape volume is positively correlated with 

its shape parameter: the α value. α* is defined as the smallest α (resulting the smallest volume) 

while all data points are included in the volume calculation (Cholewo and Love 1999; Gruson 

2020), and can be seen as the optimal α for measuring the volume of a set of data points. Section 

6.1.1 and Supplementary Figure 6.1.1 in the appendix give detail and an example of how α values 

affect the alpha shape and how to calculate α*. 

α* varies among different sets of data points so that, for example, α* for colour measures from 

the crown may not be the same as α* measured from the belly. Using respective α* for every 

alpha shape may make volume comparisons inaccurate and inconsistent. Section 6.1.1 explains 

the impact of using respective α* on the volume estimation and Supplementary Figure 6.1.4 

shows an example. 

To solve this, I estimated a global constant α. To ensure that every alpha shape includes all data 

points, the smallest constant α is defined as the largest α* among all calculated patches and sexes. 

This α value is 0.2262 for this dataset, which is the α* for male breast (Supplementary Figure 

6.1.5b). A qualified α should meet the condition that the female and male volumes should be 

smaller than the combined-sexes volume across patches. If there are multiple values that meet 

this condition, then I defined the smallest α as the optimal one. I tested three α values (0.2262, 

0.5 and 1.0) along with patches respective α* values. Only the α=0.2262 satisfied the condition 

(see Supplementary Table 6.1.1). Alpha shape volumes have similar trends to convex hull 

volumes across patches (see Supplementary Figure 6.1.5a), the bigger α is, the higher volume 

similarity is. I therefore used the minimum possible consistent α (0.2262) to estimate alpha shape 

volumes. 
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I aimed to test whether the difference between male and female volume (convex hull and alpha 

shape) can explain bird colour diversity between sexes. For overall and each patch data points, 

they were randomly split into a pair of equal-sized groups and 1000 pairs of groups were sampled. 

I then compared volume differences of the null 1000 paired groups to the observed male-female 

differences. If the male-female difference is significantly different from random sample 

differences, it shows that the male-female difference is associated with sex differences in colour 

volume rather than arising by chance alone. 

2.3 Results 

2.3.1 Effects of architecture & resolution on the performance 

I compared input image sizes and network architecture and I found that there were significant 

effects on pixel distances from architectures and resolutions (Supplementary Table 6.1.2). The 

Stacked Hourglass method with the highest pixel resolution had the best performance (Figure 

2.3a, Supplementary Figure 6.1.6). Pixel distances of the Stacked Hourglass model were 

significantly better (i.e. smaller) than CPM under the same input resolution (except for rump, see 

Supplementary Figure 6.1.6a). The mean differences of pixel distances (of all and individual 

keypoints) between two networks have no values larger than 55 pixels under the resolution of 

4,948 x 3280 pixels (about 1.6% of the image height, 3.280 pixels).  

The input resolution was positively related to performance. An image resolution of 494 x 328 

pixels has the lowest pixel distance and 247 x 164 pixels has the highest (Supplementary Figure 

6.1.6b). Overall, among the six trained configurations, the CPM network with 247 x 164 pixels 

input images had the largest pixel distance between the ground truth and model predictions and 

the Stacked Hourglass with 494 x 328 has the lowest pixel difference. The best configuration 

inferred by pixel distance(the Stacked Hourglass with 494 x 328) can predict all standards inside 

reflectance standards as PCK-100 of the reflectance standards 1-5 are 100% (the blue line in 

Figure 2.3b) and ground truth points were always placed in standard centres and the minimum 

radius was larger than 100 pixels. Using colour metrics (colour extraction method: Bbox-20), the 

Stacked Hourglass with 494 x 328 pixels images was again the best performing method, having 
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the highest overall and per-region RGB correlation coefficient (Figure 2.3c). Correlations are 

consistently higher for hue (normalised RGB) than for lightness (Table 2.1).  

Accuracies varied for different keypoints (Figure 2.3). As noted above, the reflectance standards 

were consistently identified accurately. In contrast, even the best model configuration was less 

reliable for certain body regions, most notably the tail, rump, flight feathers, and coverts. These 

regions were sometimes not present in the training images (rumps were frequently obscured or 

partially occluded, Figure 2.6c shows an example) or were small and indistinct (coverts) to the 

human eye (Figure 2.6h shows an example). However, correlation coefficients for colour 

remained above 0.92 for normalised RGB and above 0.75 for lightness when using the Stacked 

Hourglass with 494 x 328 even for these body regions (Table 2.1). This suggests that the deep 

learning algorithm provides accurate estimates of chromatic colour. 

  



50 
 

 

Figure 2.3.Evaluation results of models with different network architecture and input resolution. The plots 

show comparisons of model performance by comparing metrics from the ground truth data with the 

model prediction: (a) Pixel distances of all and individual keypoints. The p values of ANOVA are displayed 

in plots. Details of ANOVA tests can be found in Supplementary Table 6.1.2. Tukey test results can be 

found in Supplementary Figure 6.1.6. (b), PCK-100 of all and individual keypoints; (c) RGB Colour 

correlations of all and individual keypoint-defined body regions (colour extraction method: Bbox-20). 
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Table 2.1. Tables of evaluation results of the best configuration (Stacked hourglass with the input 

resolution of 494 x 328 pixels, the training duration of 15 epochs and using the unmanipulated images 

and labels). 

 Pixel 
distance 

Pck-
100 

R 
(RGB; 
Bbox-
20) 

R (Norm 
RGB; 
Bbox-
20) 

R 
(Lightness; 
Bbox-20) 

R (RGB; 
Heatmap-
90) 

R (Norm 
RGB; 
Heatmap-
90) 

R 
(Lightness; 
Heatmap-
90) 

Overall 
(N=42,145) 

47.3 89.3 0.914 0.949 0.910 0.941 0.965 0.938 

Standard 1 
(N=5,094) 

18.2 100       

Standard 2 
(N=5,094) 

18.7 100       

Standard 3 
(N=5,094) 

20.4 100       

Standard 4 
(N=5,094) 

23.9 100       

Standard 5 
(N=5,094) 

28.4 100       

Crown 
(N=1,695) 

42.7 95.0 0.903 0.957 0.899 0.944 0.976 0.94 

Nape 
(N=1,695) 

56.4 89.1 0.903 0.955 0.901 0.93 0.967 0.929 

Mantle 
(N=1,697) 

77.5 74.8 0.892 0.951 0.885 0.93 0.969 0.925 

Rump 
(N=1,422) 

147.4 44.6 0.797 0.921 0.776 0.834 0.938 0.815 

Tail 
(N=1,678) 

106.7 65.0 0.802 0.941 0.785 0.835 0.962 0.819 

Throat 
(N=1,698) 

52.1 91.2 0.935 0.956 0.932 0.957 0.974 0.955 

Breast 
(N=1,698) 

67.8 81.5 0.921 0.965 0.913 0.948 0.975 0.945 

Belly 
(N=1,698) 

85.6 72.2 0.937 0.963 0.93 0.955 0.973 0.95 

Coverts 
(N=1,696) 

111.5 57.8 0.782 0.922 0.766 0.853 0.949 0.839 

Flight 
feathers 
(N=1,698) 

123.0 54.2 0.798 0.945 0.773 0.857 0.961 0.839 
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2.3.2 Effects of training duration, image pre-processing, data 

augmentation and workflow subsetting on the performance 

I applied image pre-processing methods, longer training epochs, and image augmentation with 

model subsetting based on the best network and resolution configuration tested above. Only 

body regions were evaluated because the reflectance standards can be predicted perfectly and 

because they are absent from the specimen-only images (See Supplementary Figure 6.1.2). So 

the overall pixel distance and PCK-100 only included body regions. There were significant effects 

on pixel distances of overall and nine individual regions (Except for rump) between these 

experimental runs (Figure 2.4a, Supplementary Table 6.1.3). No improvements were found in 

pixel distance, whether averaged across all keypoints, or for each keypoint individually for any of 

the manipulations to training, images, data, and workflow (Supplementary Figure 6.1.7a). 

Manipulations except for the histogram equalised specimen-only images have significantly larger 

pixel distances than the original result. Similarly, there was no clear improvement for using either 

the PCK-100 metric or the colour correlation (colour extraction method: Bbox-20) as shown in 

Figure 2.4b and Figure 2.4c. 
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Figure 2.4. Evaluations of the best model from section 2.3.1 and applying it with image pre-processing, 

longer training duration, and data augmentation and workflow subsetting. The plots show comparisons 

of model performance by comparing metrics from the ground truth data with the model prediction: (a) 

Pixel distances of all and individual body region keypoints; Y-axis is the pixel distance, X-axis is 

configurations. Details of ANOVA tests can be found in Supplementary Table 6.1.3. Tukey test results can 

be found in Supplementary Figure 6.1.7. (b) PCK-100 of all and individual body region keypoints; (c) 

Correlations of all and individual keypoint-defined body regions (colour extraction method: Bbox-20). 
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2.3.3 Methods of selecting pixels for heatmaps 

After testing different configurations that cover different networks, input resolution, training 

steps, pre-processing, image augmentation and model subsetting, Stacked Hourglass with 494 x 

328 pixels resolution without any extra manipulations provided the best configuration. I 

therefore used predictions of all 5,094 expert-labelled images with this model in analyses and 

evaluations hereafter. In section 2.2.4.5, I tested using prediction heatmaps with a threshold of 

90 to extract colour information. This approach had the potential to better capture the region 

around the keypoint based on the data and model, rather than relying on an arbitrary, fixed (in 

size and shape) box. Lower threshold values could be used to extract larger areas at the cost of a 

lower probability of being in the correct body region. The threshold results are similar to those 

with the Bbox-20: colours were correlated better for hue (normalised RGB) than lightness (Table 

2.1). Combining all body regions, the correlation coefficients using Heatmap-90 were 0.941 for 

raw RGB, 0.965 for hue, and 0.938 for lightness (Figure 2.5). Considering each body region 

individually, RGB correlations ranged from 0.834 (rump) to 0.957 (throat), from 0.938 (rump) to 

0.976 (crown) for hue, and from 0.815 (rump) to 0.955 (throat) for lightness. As with the Bbox-

20 results, rump, tail, coverts and flight feathers were the four regions with the lowest correlation 

coefficient of all three metrics of colour information. However, the correlation coefficients are 

generally higher using Heatmap-90 than using Bbox-20 (Table 2.1). 
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Figure 2.5. Correlations between predicted colour information (Y-axis) and ground truth colour 

information (X-axis) of all and per body region keypoints (Colour extraction method: Heatmap-90). (a) RGB 

(value ranges from 0 to 255). (b) Normalised RGB (value ranges from 0 to 1). (c) Lightness (value ranges 

from 0 to 100). 
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2.3.1 Post-hoc tests on the model performance 

2.3.1.1 Performance based on the expert evaluation 

In total, predictions on 234 images (back view: 97, belly view: 15 and side view: 122) out of 5,094 

were manually marked as incorrect. So more than 95% of the predictions were qualified as 

correct predictions and can be used in future analysis. 308 regions were predicted incorrectly 

among the 234 images (Occurrences: 165 images had one error regions; 64 images had two error 

regions; 5 images had three error regions). Supplementary Figure 6.1.8a shows counts of 

different regions causing incorrect predictions. Flight feathers, coverts, tail, rump and crown 

were the top five most problematic regions, which is consistent with the higher pixel distances 

and lower PCK-100 and colour metrics for these body regions. 

Causes of error could be broadly classified by four non-mutually exclusive features that increase 

difficulties for a human to place labels: (i) small area, (ii) similar colour to adjacent parts, (iii) rare 

posture of the specimen, (iv) partially occluded body regions. Occurrences of these features per 

error regions are shown in Supplementary Figure 6.1.8b. Figure 2.6 shows some correct examples 

and incorrect examples with their explanations in the figure legend. The dataset includes 27 

orders and 1,698 genera of specimens, and the image numbers and incorrect predictions rates 

by bird orders are listed in Supplementary Table 6.1.4. Galliformes (11 error images out of total 

15 images), Sphenisciformes (2 out of 3), Pelecaniformes (2 out of 6), Procellariiformes (1 out 3) 

were the top four orders in error ratio. The order Passeriformes had the most images (3405 

images and about 67% of the dataset, an order of magnitude more than the second most 

abundant order, the Apodiformes with 363 images), the error rate of Passeriformes was only 3% 

and ranked 19th in 27 orders. 
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Figure 2.6. Examples (a)-(d) are correct predictions, which show that the model can place accurate labels 

on images with (a) a specimen with high colour diversity, (b) a big specimen and very small reflectance 

standards, (c) a specimen with interferential objects such as a specimen tag, (d) a specimen which its 

regions are similar to other parts of the image. The examples (e)-(h) are incorrect with the four 

characteristics of error regions: (e) The tail was incorrectly labelled to the wing, and the tail is partially 

occluded by a wing. (f) The eye of the bird was miss-identified as the crown, while the specimen was 

placed in a rare posture (twisted-head) in the image. (g) The predictions of the wing were placed on the 

body, and the wing has a similar colour to the rest body regions. (h) The predictions were not placed on 

the wing, and the wing is small. (Note: I cropped only focal parts of images to achieve better visualisation). 

 

I further assessed variations in pixel distances across three groups (predictions vs trainer, 

predictions vs non-trainer and between experts). There were no average pixel distances greater 

than 200 pixels (Figure 2.7). There is a significant effect of the overall pixel distance among the 

three groups (ANOVA: F=26.2; df=2.0, 14910; p<0.01) and ANOVA per individual keypoints are 

shown in Supplementary Table 6.1.5.  

The overall distance of predictions vs trainer was not significantly different from the distance 

between experts, suggesting that pose estimation can perform as well as expert labelling 

(Supplementary Figure 6.1.9a). The overall pixel distance from predictions to non-trainer, 
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however, was larger than the other two groups (predictions vs trainer and between experts), 

which shows that the model does not predict labels from non-training experts as reliably. In 

addition, all mean differences of pixel distances (of all and individual keypoints) are smaller than 

100 (Supplementary Figure 6.1.9a). 

Average pixel distances of reflectance standards between experts (range: 12.2 to 18.9 pixels) 

were smaller than average pixel distances for predictions vs trainer and for predictions vs non-

trainer (range: 17.0 to 34.8 pixels). There were significant effects in four regions (nape, mantle, 

belly and coverts) when comparing the between experts group and the predictions vs trainer 

group, with the predictions vs trainer distance being smaller in all four regions. Covert was the 

only body region where the distances between experts are significantly different from the 

distances of predictions vs non-trainers (distances between experts are smaller). 
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Figure 2.7. Pixel distances of overall and individual keypoints across three groups (predictions vs trainer, 

predictions vs non-trainer and between experts); Purple points are the mean values, red dotted lines are 

the pixel distance of 200. ANOVA results are listed in Supplementary Table 6.1.5. Tukey test results can 

be found in Supplementary Figure 6.1.9a 
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2.3.1.2 Performance with low-quality data 

I assessed model performance using four low-quality datasets (see section 2.2.5.2). Low-quality 

datasets had a significant negative effect on the accuracy (ANOVA of pixel distance for all 

keypoints: F=87.2; df=4.0, 210,700; p<0.01. Supplementary Table 6.1.6 shows ANOVA results for 

individual keypoints. Supplementary Figure 6.1.9b shows results of Tukey-tests). Performances 

of different transformed datasets were consistently worse than the original dataset as shown in 

Supplementary Figure 6.1.9b and Supplementary Figure 6.1.10. Mirror and combined datasets 

had worse performance than translated and rotated datasets. However, all differences of mean 

overall pixel distance were less than 10 pixels (translation: 3.6, rotation: 4.8, mirror: 9.1, 

combined: 8.1), which were more accurate than using CPM (See section 2.3.1) suggesting that 

the effect of poor quality data on performance is minor.  

2.3.1.3 Effects of within specimen colour variability 

Correlations of pixel distances and colour variability are shown in Supplementary Figure 6.1.11. 

Pixel distance values are either positively but weakly correlated with colour variability measure 

by RGB (R values ranged from 0.032 to 0.21. See Supplementary Figure 6.1.11a) and lightness (R 

values ranged from 0.039 to 0.22. See Supplementary Figure 6.1.11c) of all and induvial body 

regions except for flight feather measured by RGB (p=0.087). No correlations of individual body 

regions were found between pixel distances and normalised RGB, the correlation of all body 

regions are negative but even weaker (R=-0.018, p=0.023. See Supplementary Figure 6.1.11b). 

The result shows that RGB and lightness variability of images had negative effects on the result 

accuracy while hue had a positive effect, though these effects were very weak.  

Most of the colour information correlations decreased as the quartile increases as shown in 

Supplementary Figure 6.1.12. 30% of the images were divided into the same quartiles between 

using RGB and normalised RGB as the splitting method. 80% of the images were in the same 

quartile whether using RGB or lightness to define groups. Specimens with both black and white 

plumage were likely to be categorised in the top quartile using RGB and lightness as the 

measurement while specimens with colourful plumages tended to be in the top quartile using 

the normalised RGB measurement (Supplementary Figure 6.1.13). 
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2.3.2 Colour volumes of world birds 

Pixels were extracted on heatmaps generated from the Stacked Hourglass with input resolution 

of 494 x 328 pixels, the training duration of 15 epochs and using the original images and labels. 

The total possible volume of avian tetrahedral colour space is 0.2165 – this represents the upper 

limit on the volume of colours that could theoretically be perceived by birds. The convex hull 

volume of all colour points in the dataset is 0.0755 (~34.9% of the total colour space), and the 

alpha shape (α =0.2262) volume is 0.0487 (~22.5% of the total colour space). Male volume is 

larger than female volume for the overall data and across individual patches as shown in Figure 

2.8 and Figure 2.9 and Supplementary Table 6.1.1. Alpha shape volumes are always smaller than 

convex hull volumes as shown in Figure 2.8, Figure 2.9 and Supplementary Figure 6.1.5a. The 

mantle has the largest volume and the tail has the smallest volume (using both convex hull and 

alpha shape) in males. In contrast, the nape has the largest convex hull volume, whereas the 

breast has the largest alpha shape volume, and the tail has the smallest volume (using both 

convex hull and alpha shape) in females.  

Detailed statistics such as volumes, hue disparity and colour span for every patch are listed in 

Supplementary Table 6.1.7. For all and individual patches, the convex hull and alpha shape 

volume differences between male and female are all significantly larger than differences 

between two randomly sampled groups as shown in Supplementary Figure 6.1.14. This suggests 

that male birds have larger volumes than female birds for every body region. 
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Figure 2.8. Tetrahedral colour spaces for all and individual patches for male. Convex hull (light grey) and 

alpha shape (dark grey) are used to calculate volumes. V(C) is the convex hull volume, V(A) is the alpha 

shape volume and N represents the number of colour points. Vertices of the tetrahedron are coloured as 

violet (u), blue (s), green (m), and red (l). 
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Figure 2.9. Tetrahedral colour spaces for all and individual patches for female. Convex hull (light grey) and 

alpha shape (dark grey) are used to calculate volumes. V(C) is the convex hull volume, V(A) is the alpha 

shape volume and N represents the number of colour points. Vertices of the tetrahedron are coloured as 

violet (u), blue (s), green (m), and red (l). 

2.4 Discussion 

2.4.1 Pose estimation on Project Plumage 

I found that pose estimation methods can automatically locate reliably accurate keypoints on 

Project Plumage images. I then use colour information extracted by predicted keypoints from 
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more than 120,000 images to estimate the bird plumage colour space. I tested whether pose 

estimation networks could be used to identify keypoints on images to extract colour information 

from broader regions around each keypoint. While my application of pose estimation differs from 

its original objective (i.e. identifying human parts and joints; Andriluka et al. 2014), I found that 

the model performs well with output often comparable to the ground truth expert labelling. 

Stacked Hourglass clearly outperformed CPM and input resolutions of 494 x 328 pixels generated 

the best result of those tested. CPM was one of the first deep learning algorithms applied to pose 

estimation using heatmap output and intermediate supervision (Wei et al. 2016) to increase the 

model accuracy. In contrast, Stacked Hourglass (Newell et al. 2016) uses residual modules from 

the deep residual network (He et al. 2016), which is the state-of-the-art architecture for feature 

extracting in deep learning and is one of the best models for identifying single human posture on 

the MPII Dataset (Andriluka et al. 2014). 

Pose estimation networks have been typically applied to human posture images while achieving 

accurate results. Human posture photos often contain varieties of human postures, clothes, and 

backgrounds, and, from the human perspective, seem more visually complex than the plumage 

images that I focus on. However, while posture can create clearly defined keypoints, the focal 

regions that I aim to identify are more ambiguous in the definition. This creates a different set of 

challenges for expert labelling that could potentially limit the performance of deep learning 

algorithms. In the Project Plumage data, different experts placed the same label on the same 

specimen in different locations but are still considered correct. Because body regions were not 

homologous parts (e.g. landmark points in morphology studies, Bookstein 1991), and people 

have different opinions on areas defining each body region, it can be difficult to place a body 

region point in the same location. The mantle and belly were the most variable among experts. 

These two regions often had larger areas than the rest of the regions, so it was easy for experts 

to pick different, but correct locations. On the other hand, from experts' experiences, keypoints 

were more challenging to place confidently for some regions than others. For example, 

identifying (i) crowns on folded or twisted heads (e.g. Figure 2.6f), (ii) rumps or tails that were 

partially occluded by wings or museum labels (e.g. Figure 2.6e), and (iii) coverts and flight 

feathers that had small areas (e.g. Figure 2.6h) or similar colours (e.g. Figure 2.6g) are particularly 
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difficult. Other regions are more straightforward, e.g. the neck, breast and belly from the belly 

view all have relatively large areas and are rarely occluded. Deep learning models may share 

similar difficulties in labelling plumage images to humans. Experts’ experiences were similar to 

errors made by the deep learning predictions (Supplementary Figure 6.1.8a). Differences among 

experts can be seen as the ceiling of the model performance. Differences between experts did 

not surpass the difference between predicted labels and labels from the trainer expert 

(predictions vs trainer) across all body regions (Supplementary Figure 6.1.9a). Predicted labels 

were closer to the YH’s labels than CRC and GHT. This is not surprising because the model was 

trained on the original expert labels (YH), while labels of other experts (CRC and GHT) were 

completely independent. The errors of predictions are generally similar to the differences 

between experts. Although pixel distances of five standard points from predictions vs trainer 

were larger than those distances from between experts (Supplementary Figure 6.1.9a), PCK-100 

for five standards from predictions vs trainer were all 100, suggesting that all standard 

predictions were placed inside reflectance standard circles (ground truth points were placed in 

circle centres and the minimum radius was larger than 100 pixels). The colour information 

correlations show that colours extracted by deep learning predictions were highly correlated with 

colours extracted by ground truth labels. This is especially true for the chromatic information 

(normalised RGB), which is the main colour information used in creating the tetrahedral colour 

space, and had coefficients higher than 0.9 for all and individual body regions. 

2.4.1.1 Colour volumes measured by deep learning 

After using the colour information measured by deep learning to build the colour space, I found 

that bird plumage colours only evolved to occupy a quarter to one-third of the total possible 

colour space. Based on the results from expert checking (95% of images were predicted correctly) 

and evaluation metrics, I suggest that the predictions on the best configuration of the deep 

learning network are sufficiently accurate to generate usable biologically meaningful data (i.e. 

the bird plumage colour space). The deep learning model to the project plumage data set 

required less than three days to predict all photos. I used 7200 species with data for both males 

and females compared to 111 species for male-only (92 shared species) in Stoddard and Prum 

(2011). It is therefore predictable that the total colour volume is larger than found by Stoddard 
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and Prum (colour space proportion: 34.9% vs 26-30%) when based on the same volume metric, 

since adding species should increase volume by chance alone. However, the alpha shape (α 

=0.2262) volumes cover on average 61.3% of the convex hull volumes. The alpha shape measures 

the actual colour volume more precisely with the possibility of being a concave shape. This is very 

likely for data points that are mostly clustered together and where a small number of points are 

far from the cluster centre, the convex hull tends to create large areas of empty colour space to 

include all points, as shown in Figure 2.8 and Figure 2.9. In contrast, the edges of the alpha shape 

fit points closer than the convex hull edges. Colour gamuts measured by the alpha shape in this 

paper all have smaller volumes than when measured by the convex hull. Gruson (2020)’s result 

also shows that the alpha shape estimates smaller volumes than the convex hull for the 

tetrahedral colour space uses birds from the Nouragues rainforest, in French Guiana. Together, I 

suggest that previous calculations of the size of the avian colour gamut have been overestimated. 

The alpha shape is more accurate in measuring a single colour gamut, and the actual volume 

value is important (e.g. use the volume to calculate the colour gamut proportion in the overall 

possible volume in Stoddard and Prum (2011)). However, because the alpha shape is sensitive to 

the α value. When comparing alpha shape volumes across sets of colour points, the choice of the 

α value should be examined carefully (e.g. checking if the male or female alpha volume is larger 

than both sexes alpha volume) to avoid comparison inaccuracy like Supplementary Figure 6.1.4. 

As with Stoddard and Prum’s colour space, I found that bird plumage colours are less diverse at 

short wavelengths (the s cone which corresponds to blue colours) than along wavelengths 

associated with the other three receptor cones. Male volumes are larger than female volumes 

across all patches, confirming the expectation that male birds have more diverse plumage colour 

than female birds. Previous studies have suggested that male plumage colour is driven by sexual 

selection often favouring more diverse and extreme colours (Gomes et al. 2016; Cooney et al. 

2019). The crown, nape and breast have relatively large volumes (measured with both convex 

hull and alpha shape) whereas the coverts and flight feathers have small volumes. This is 

consistent with patch-specific rates of evolution in Cooney et al (2019) implying that different 

selection pressures act on different body regions. 
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Overall, these results illustrate that deep learning can be successfully used to create a 

comprehensive and reliable bird plumage colour dataset using vastly less time and human 

resources than manual labelling. This dataset has great potential in understanding questions 

related to the bird plumage colour.  

2.4.2 Experience and guide for future projects 

My analyses highlight the potential of automated labelling of biological specimens with these 

methods. The designs and layouts of the Project Plumage dataset were highly consistent: each 

image contains one specimen, and the view information is always known, and the orientation of 

the specimen is always the same. However, breaking down the consistency by using low-quality 

datasets did not cause major decreases in model performance. This result is encouraging because 

it implies that the system developed here could be applied to other data sets. I am somewhat 

cautious here because some of the worst predictions were found in the more unusual specimens, 

for example, very large specimens relative to the size of the standards (Figure 2.6b, although it 

was correctly predicted), specimens with uncommon placements (Figure 2.6f), and very small 

specimens (Figure 2.6h). This indicates that specimen variability is a challenge and highlights the 

need for large and representative training sets. For example, in expert-labelled data, the order 

Passeriformes represents about 70% of the training set whereas other orders such as Galliformes, 

Sphenisciformes, Pelecaniformes and Procellariiformes are poorly represented, have more 

unusual shapes and are associated with the highest error rates. Expanding the training set, or 

training for specific groups as subsets may therefore be beneficial. 

Specimen variability also poses a challenge for assessing the accuracy of predicted keypoints. In 

human pose estimation a variant of PCK, called PCKh (h stands for the head) is often used. PCKh 

uses a certain proportion of the human head length as the threshold, providing an intuitive metric 

to measure the accuracy of predictions of pose estimation. As the head-body ratios of humans 

are very similar, this approach normalises the uncertainty introduced by the depth of humans in 

photos. This metric has been widely used in evaluating pose estimation methods (Insafutdinov 

et al. 2016; Newell et al. 2016; Wei et al. 2016). However, bird specimens were variable in size 

and shape, it is difficult to find one meaningful PCK threshold. PCK-100 is suitable for measuring 
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the accuracy of predictions for the five reflectance standards. The variability of the PCK 

performance against different thresholds shows the problem of using fixed thresholding 

(Supplementary Figure 6.1.15). The five reflectance standards have steep growths, while the 

rump, tail, covert and flight feather have flat growths, and they are the most challenging regions 

as shown in the result section. However, PCK that uses a proportion of a certain body part may 

be an ideal metric for geometric morphometrical datasets. Width, length or dimensional values 

(e.g. diagonal length) of focal areas can be measured invariantly by landmarks like the height of 

Littorina shells (Ravinet et al. 2016), and the length of squirrel’s mandible (Zelditch et al. 2015). 

It is important to choose the metrics according to the datasets and labels. Pixel distance is a 

straightforward metric to compare models trained by different configurations, but it is not 

intuitive in the context of the data that I wish to capture (i.e. colour information). By using colour 

metrics that directly relate to the variables that I might wish to measure, I have provided an 

alternative to distance-based indices of model performance. The correlation coefficient gives an 

intuitive metric to show how accurately predictions capture colours. RGB, normalised RGB and 

lightness measure different types of colour information. The metrics used in the evaluation have 

a good match with the actual correctness of predictions. In the expert checked result, the belly 

is the view that has the least incorrect predictions. The flight feathers, coverts, tail, and rump are 

the top regions of erroneous predictions, which is similar to the colour correlation result of the 

best model (Supplementary Figure 6.1.8, Table 2.1). Comparing to use the end result (i.e. 2D 

coordinates) from the pose estimation to create fixed-size and -shape measurements (e.g. 

bounding boxes), I adapted the output heatmaps from Stacked Hourglass to create a more 

intuitive and size- and shape-varied colour extraction method. The visualisation (Supplementary 

Figure 6.1.3) and colour information correlations between two extraction methods based on the 

heatmap and the bounding box (Table 2.1) may suggest that using heatmaps rather than points 

on measuring colours on specimen body regions could be a better option. More tests examining 

a wider range of extraction methods than those considered here (Heatmap-90 vs Bbox-20) would 

be beneficial and the specific choice of extraction may be dataset dependent.  

The major advantage of deep learning is that it can significantly increase the speed of data 

measurements. For Project Plumage, using pose estimation, hundreds of days of human work 
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(estimated by the progress on www.projectplumage.org) were reduced to less than three days 

(predicting points on 122,610 images) with the computing power of GPU. Because of the 

limitation of GPU memory, it is computational-expensive or even impossible to train networks 

on the original image resolution. Images were down-sampled into a uniform and reasonable 

resolution and used for training. Although lower input resolution had a negative effect on 

prediction accuracy (Figure 2.3), the maximum possible resolution (a 10-fold reduction in 

resolution) can generate reliable predictions. Therefore, I recommend that analyses are 

conducted at the highest manageable resolution for the available computing hardware. More 

powerful GPUs could increase speed further, or potentially allow the training network to handle 

higher resolution images.  

Taken together, I propose a general workflow to label points on other large-scale biodiversity 

datasets, with the following steps:  

i. Imaging specimens. Specimens should be digitised in a consistent setup (same orientation, 

background, lighting) where possible. This will reduce the complexity of the training/learning step. 

However, if it takes too much time to place objects centre and upright precisely, or if imaging live 

specimens that cannot be so easily manipulated, it is possible to have less precise placement 

steps.  

ii. Creating the training set. The training set should be labelled or checked by experts to keep its 

quality. Here, I did not explore the effects of varying the size of the training set but usually the 

more, the better. Images used in the training set should be representative of the whole dataset. 

Predictions for unusual images that are poorly represented in the training set are less likely to be 

reliable. 

iii. Training the model. When training the neural network, different configurations should be 

tested, including different architectures, input resolutions and other hyperparameters. Although 

experimental manipulations did not make the model perform better for this dataset, they are 

useful techniques to try on other projects. However, if it takes a rather long time to train, start 

with the highest input resolution on the original network without any improvement techniques. 
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It will provide a baseline, and it is useful to guide different combinations of hyperparameters for 

the subsequent test runs. 

vi. Evaluating the predictions. Appropriate metrics should be used to fit the goal of a project. In 

contrast to requiring high colour accuracy, studies that aim to generate keypoints (or landmarks) 

for geometric morphometrics (Chang and Alfaro 2016), or for tracking animal movements or 

behaviours (Mathis et al. 2018a), require high spatial accuracy. Exploring examples of poor 

predictions and running post-hoc tests can help to understand if there are common causes of low 

performance and can be useful for tuning the network performance. 

v. Post-processing. A good practice is to check and correct predictions manually. If the dataset 

size is huge, only checking predictions with high error risk from post-hoc tests is a pragmatic 

compromise between efficiency and accuracy. 

 

2.5 Conclusions 

With the help of deep learning neural networks and the growth of large-scale biological data, it 

is possible to develop a high-throughput data collection method on digitised data. Although the 

result of deep learning can hardly surpass the human result, this paper shows that a real-world 

example can provide a result that is remarkably close to expert labelling. The colour information 

extracted by deep learning from the Project Plumage dataset is accurate enough to use in 

analyses and could be further optimised with time-saving checking and correction steps. Colour 

volumes from more than 80% of bird species have solidified statements that bird plumage colours 

only occupy a proportion of the total available avian colour space and male birds tend to have 

more diverse plumage colour than female. 
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Chapter 3 Segmenting biological specimens from 

photos: a comparison of classic computer vision and 

segmentation methods 

Abstract 

The growing number of digitised biological specimens brings new possibilities for the study of a 

wide range of evolutionary questions at broad scales. For example, digital images of specimens 

can be used to measure biological traits such as size, area, shape and colour. Image segmentation 

is a common method for separating focal areas from images, such as segmenting cells from 

microscope images, which can then be used for further analysis. However, the performance of 

alternative segmentation methods on large biodiversity datasets has not been adequately tested. 

Here, I used digital photographs (more than 120,000 images) of birds from museum specimens 

that cover most of the world’s extant species and a manually segmented dataset (5,094 images) 

to compare the performance of deep learning models with classic computer vision as tools to 

measure colour. I applied semantic segmentation using the DeepLab deep neural network, which 

is considered state-of-the-art for many segmentation tasks, on the labelled dataset. DeepLab 

achieved scores of over 90% in measures of accuracy and precision. Classic segmentation 

methods (e.g. thresholding and graph cut) were clearly outperformed by DeepLab. The results 

show that deep learning can segment plumage photos accurately and efficiently. I then applied 

DeepLab to the whole dataset (>7,500 bird species) to demonstrate the utility of the method. 

Specifically, I (i) generated measures of colour diversity among bird species, and (ii) assessed the 

phylogenetic distribution of colour diversity. I found that colour diversity is normally distributed 

and shows a moderately strong phylogenetic signal (closely related species share similar colour 

diversity). Finally, I provide guidelines for building a workflow of digitising and segmenting large-

scale biological datasets. 
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3.1 Introduction 

Globally, natural history museums house extensive, but often underexploited, collections of 

biological specimens. There are an estimated 1.2 to 1.9 billion specimens in museum collections 

globally (Ariño 2010). Collection digitisation is a major goal for many natural history museums 

and can provide a rich source of phenotypic and biodiversity data (Blagoderov et al. 2012, 

https://www.dissco.eu/). Digitised objects and specimens are often stored as images that 

provide a permanent record (Flemons and Berents 2012; Nelson et al. 2012; Holovachov et al. 

2014; Hudson et al. 2015) but subsequent analysis typically requires additional image processing 

to extract usable data. A particularly important and widely used step in data extraction from 

specimen images is segmentation. Image segmentation is a pixel-level label that can define 

regions or contours of interest and has been used in many fields, including facial recognition 

(Saito et al. 2016), robot vision (Milioto et al. 2018), and automated driving (Treml et al. 2016; 

Siam et al. 2018). It is a particularly important method for processing medical images. For 

example, segmentation has been used to measure and visualise the morphology of cells 

(Meijering 2012; Xing and Yang 2016), brains (Whitwell 2009), whole-body skeletons (Baiker et 

al. 2010), and phenotypes of embryos (Johnson et al. 2006). Segmentation has also been used in 

phenotyping live plant photos (Minervini et al. 2014; Scharr et al. 2016). Scans (e.g. CT, micro-CT 

or MRI) of fossils require segmentation to generate the accurate scans (Ebey Honeycutt et al. 

2014; Davies et al. 2017; Park et al. 2017). Segmented fossil scans are often used as the input 

data of morphometric and functional analyses. However, segmentation has not yet been widely 

used in phenotyping natural history photos. While segmentation results of natural history photos 

are often used as inputs for classification problems as segmentation can extract precise specimen 

information from images (Kumar et al. 2015; Unger et al. 2016). 

One key challenge is that manually segmenting images (especially when applied to large datasets, 

such as those that can be taken from museum collections) is time-consuming and usually takes 

more time and effort than placing straightforward labels (e.g. points and bounding boxes). 

Automated methods often rely on forms of thresholding. Broadly, a wide variety of segmentation 

methods, including both classic computer vision methods and the emerging approach of deep 

https://www.dissco.eu/
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learning semantic segmentation, have the potential to provide accurate, high-throughput 

pipelines to phenotype natural history datasets. Popular methods and some applications in 

natural history datasets are introduced below. 

Table 3.1 summarises commonly used segmentation methods. Methods such as thresholding and 

watershed are fast and do not need much prior information. Other methods including region 

growing, active contour, and graph cut, need seeds (i.e. starting locations) as input. With the help 

of seeds, these methods can make predictions based on spatial information. Many interactive 

segmentation methods, such as lazy-snapping (Li et al. 2004) and GrabCut (Rother et al. 2004) 

were developed based on graph cut. Atlas-based segmentation and statistical shape models (SSM) 

use prior shape knowledge learnt from a training set to segment images. And they have been 

widely used in facial recognition and medical image segmentation (Cootes et al. 2000; Pohl et al. 

2006; Aljabar et al. 2009; Heimann and Meinzer 2009).  

Table 3.1. Overview of some commonly used and classic segmentation methods 

METHOD DESCRIPTION PRIOR SHAPE 
KNOWLEDGE? 

SEEDS FOR 
INITIALISATION? 

THRESHOLDING Segments an image by allocating each pixel to 
either the foreground or the background 
based on a pre-defined value.  
Can be set either manually or automatically 
calculated based on image features such as 
the image histogram or entropy (Sezgin and 
Sankur 2004). 

No No 

WATERSHED Uses the concept of flooding waters from low-
intensity regions to high-intensity regions, and 
boundaries are edges between fields of 
waters (Vincent and Soille 1991). 

No No 

REGION 
GROWING 

Segments neighbour pixels of initial seeds 
which have intensity difference less than a 
specific range.  
Finishes when no new pixel is segmented 
(Adams and Bischof 1994). 

No Yes 

ACTIVE 
CONTOUR 

Developed by Kass, Witkin and Terzopoulos in 
1988. A closed contour is placed on the image, 
it then transforms to minimise the sum of the 
internal and external energy. 

No Yes 
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The converged contour is used as the 
segmentation.  

CHAN-VESE An improved method of active contour that 
can capture separated regions with one initial 
contour (Chan and Vese 2001), because it uses 
level sets to represent contours rather than 
the parametric format. 

No Yes 

GRAPH CUT Foreground and background seeds are placed. 
The algorithm sees an image as a graph and 
pixels as nodes. Each pixel has edges to its 
neighbour pixels and edges to a source node 
(foreground) and a sink node (background). 
Weights of edges are based on pixel 
intensities and identities (i.e. foreground, 
background or to be segmented). The 
minimum cut cuts the graph into two 
subgraphs that have the largest weighted sum 
(Boykov and Jolly 2001). The result is the 
foreground subgraph. 

No Yes 

ATLAS-BASED 
SEGMENTATION 

An atlas is first created using one scan, the 
average of scans or a statistical representation 
of a population of scans.  
Segments images by aligning themselves with 
the atlas using global (e.g. affine and rigid) 
and local (e.g. elastic, B-splines) 
transformations (Cabezas et al. 2011).  

Yes No 

STATISTICAL 
SHAPE MODEL 

Uses a point distribution model (PDM) to 
make landmark predictions on images. PDM 
consists of the mean shape and modes of 
shape variation, it therefore can represent a 
range of shapes by tuning the shape 
variations.  
Algorithms with different criterion are used to 
optimise the shape on given images (Cootes et 
al. 2000, 2001). 

Yes No 

 

Many of the methods introduced above have been used in segmenting specimen photos. Lazy 

snapping (initiated with manual seeds placement) was used to segment leaves and then to 

extract shapes and outlines to use as features in a leaf classifier (Unger et al. 2016). Similarly, the 

interactive graph cut was used in segmenting animals from ~4000 photos of internet images 

(Kumar et al. 2015) to generate colour features and train a classifier. Henries and Tashakkori 

(2012) used thresholding to create an initial segmentation of plants (leaves, stems and branch), 

and used watershed to optimise the results. The thresholding-watershed pipeline was also used 
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in the pre-processing step of a digitisation software tool to segment insects from photos of 

museum trays (Hudson et al. 2015). Examples such as these show how computer vision-based 

thresholding has dominated approaches to segmentation. However, newly emerging deep 

learning semantic segmentation techniques have the potential to improve accuracy for high-

throughput image analysis pipelines. Indeed, advances in deep learning have facilitated the 

extraction of phenotypes from labels automatically placed on digitised collections. My previous 

work, for example, automatically placed keypoints of body regions on 122,610 bird photos using 

deep learning in just three days (Chapter 2). 

Semantic segmentation using deep neural networks has developed rapidly, as growing 

computational power and applications using the graphics processing unit (GPU) improve 

optimisation speed greatly. The convolutional neural network (CNN) is the core deep neural 

network architecture for feature extraction from images (Krizhevsky et al. 2012; He et al. 2016). 

CNNs transforming input images into predictions using convolutional and pooling layers. 

Networks extract images features during the training (i.e. trying to generate closer predictions to 

the ground truth labels). Features are then used in computer vision tasks such as image 

classification, pose estimation and semantic segmentation. There are many variations of CNN 

architectures, with the common goal of building networks with deeper and deeper layers to 

extract features more accurately and precisely (Szegedy et al. 2014; Ioffe and Szegedy 2015; He 

et al. 2016).  

Early semantic segmentation studies classified superpixels, patches of images, or detected 

bounding boxes of objects (Farabet et al. 2012; Girshick et al. 2014; Pinheiro and Collobert 2014). 

The outputs of these deep neural networks were typically refined by post-processing methods 

(Farabet et al. 2012; Hariharan et al. 2014). However, precise predictions were challenging 

because these networks do not make pixel-wise predictions. The fully convolutional network 

(FCN) was the first network architecture to make pixel-wise predictions (Long et al. 2015). 

Because convolutional and pooling layers often downsample the original input image, the output 

of the convolutional part has a lower resolution than the original image. Backwards convolutional 

layers can be used to upsample the result as a backward convolutional layer simply reverses a 

convolution layer. The output of the FCN is a heatmap (with the resolution same as the input 
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image) which can represent the class of each pixel from the input image. Segmentation accuracy 

of the FCN, measured as the mean intersection over union (mIOU), has been shown to perform 

well and, for example, reached 62.2% on the PASCAL Visual Object Classes 2012 (PASCAL VOC 

2012) dataset (thousands in segmented photos of 21 classes, Everingham et al. 2015), an 

improvement of 20% over previous methods. 

More recently, a group of networks named DeepLab has been developed that adapted the pixel-

wise prediction idea from the FCN while improving its network architecture. There are four 

versions of the DeepLab architecture. Version 1 uses a fully connected conditional random field 

(CRF) to post-process the result from the fully connected network and has improved the mIOU 

of PASCAL VOC 2012 to 71.6% (Chen et al. 2014). While keeping the CRF as the post-processing 

step, version 2 uses atrous convolutions with bilinear interpolation, instead of the backward 

convolutional layer, to save memory and time (Chen et al. 2017b). The atrous convolutions can 

adjust the stride used for sampling the input signal while extracting enough features to control 

the output resolution. Atrous convolutional layers with different rates are used to learn multi-

scale features and the module is called the atrous spatial pyramid pooling (ASPP). Intermediate 

results from the ASPP are upsampled using bilinear interpolation. This improvement increased 

accuracy (mIOU of PASCAL VOC 2012: 79.7%) and was less computationally expensive. Version 3 

(DeepLabv3) uses the cascaded atrous convolution module and improved ASPP (batch 

normalisation added) module (Chen et al. 2017a). This version can capture more features from 

different scales and achieved a mIOU of 85.7% on PASCAL VOC 2012 without any post-processing 

such as CRF. DeepLab version 3 plus (DeepLabv3+) extended DeepLabv3 by adding a decoder 

module which helps to refine the segmentation and has achieved 89.0% of mIOU on PASCAL VOC 

2012 (Chen et al. 2018). The DeepLab family provides accurate pixel-wise semantic segmentation 

networks and is currently one of the most accurate semantic segmentation methods available. 

Despite the improvement that deep learning offers for image segmentation, it has not yet been 

widely applied in segmenting specimen photos. One recent exception is the application of 

DeepLabv3 to segment specimens from noisy backgrounds in herbarium photos (Hussein et al. 

2020). In this application, the non-specimen areas were replaced by white colour to provide a 
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noise-free background. Processed photos were then used in an identification task. With a dataset 

of around 400 photos, accuracy as high as 98% mIOU was achieved. 

Here, I assessed the performance of deep learning segmentation in comparison to classic 

computer vision methods using photos of bird specimens taken at the Natural History Museum, 

Tring, UK. Segmentation results of specimen photos are often used as the input for specimen 

classification and identification, but applications of segmentation on phenotyping medical 

images show the broader potential for use as a phenotyping pipeline for different types of natural 

history data. For example, it is possible to use photographs to objectively measure colour from 

digital images from calibrated cameras (Troscianko and Stevens 2015). I aim to test different 

methods in order to build a pipeline that can segment bird photos automatically and accurately. 

I used, evaluated, and compared classic and deep learning segmentation methods to segment 

the specimen from the background and to remove obstructions (labels, string etc.) that obscure 

the specimen. I then selected the most accurate segmentation method to apply on a bird 

specimen photo dataset that covers more than 7,500 bird species. Colour information measured 

from the output segmentation result was used to study the plumage colour diversity across birds. 

3.1.1 Application: global variation in intraspecific colour diversity 

Birds have evolved into a wide diversity of colours (Stoddard and Prum 2011). Birds can perceive 

light across a wider spectrum, including parts of the ultraviolet spectrum, than humans 

(Goldsmith 1990; Cuthill et al. 2000). Numerous studies have mapped bird colours into an avian-

visual based tetrahedral colour space based on the four cones receptor cone types (ultraviolet 

(u), shortwave (s), mediumwave (m) and longwave (l)) (Stoddard and Prum 2008, 2011; Cooney 

et al. 2019). The true (i.e. from an avian perspective) colourfulness or colour diversity of bird 

plumage can then be measured in the avian colour space. The colour diversity of an individual 

bird is thought to be related to and constrained by the underlying colour producing mechanisms 

(Stoddard and Prum 2011). For example, melanin-based plumage colours are mainly black, grey 

and brown, while carotenoid-based plumage colours are mainly red, orange and yellow (Hill et 

al. 2006b). Stoddard and Prum (2011) suggested that colour diversity within species is partly 

determined by the range of colour producing mechanisms of each species. This link between 
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individual colour diversity and colour producing mechanism implies that colourfulness may be 

evolutionarily constrained (Stoddard and Prum 2011) due to conserved developmental genetic 

pathways. However, many studies have also shown that plumage colour diversity can be driven 

by both natural (Slagsvold et al. 1995; Willink et al. 2014; Dunn et al. 2015) and sexual selection 

(Price and Eaton 2014; Dale et al. 2015; Dunn et al. 2015) which may imply greater evolutionary 

lability. The extent to which colourfulness (i.e. within species diversity of colour) is 

phylogenetically conserved among bird species is unknown. Understanding the diversity and 

distribution of plumage colourfulness may also have implications for bird conservation. For 

example, Garnett et al. (2018) showed that humans are intrinsically interested in colourful birds 

and suggested that promoting birds that are colourful but not well-known to the public may be 

a viable approach to raise conservation awareness and attention.  

I used the best-trained model to predict plumage area segmentation and extract colour 

measurements from more than 7,500 bird species. I then used the segmentations to build a 

tetrahedral colour space based on avian visual models for each species. Segmenting the whole 

specimen allows measurements of the entire range of colours and patterns on the bird. This 

contrasts with the more common approach of measuring the colour of specific body regions 

directly from specimens using spectrometers (Stoddard and Prum 2008, 2011) or placing points 

or polygons (Cooney et al. 2019, Chapter 2) on digital photos with special reflectance calibrations 

(Troscianko and Stevens 2015). I compared tetrahedral colour spaces between segmentation 

(this chapter) and patch measurements (Chapter 2). To unleash the advantage of colour 

information completeness provide by segmentation, I designed a metric that can estimate colour 

diversity and the proportions of different colours. I used this proportional colour diversity metric, 

and the convex hull volume, a common metric for colour diversity (Stoddard and Prum 2008; 

Renoult et al. 2017), to visualise the phylogenetic distribution and measure the phylogenetic 

signal of colourfulness for birds. Finally, I discuss the potential of using segmentation to measure 

phenotypes on natural history datasets. 
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3.2 Data and methods 

3.2.1 Data 

The images and labels used in this study were collected as part of a broader study of bird diversity 

and form part of the online citizen science project Project Plumage (www.projectplumage.org). 

The images were taken in the bird collections at the Natural History Museum, Tring. All images 

followed a standardised design (see Cooney et al. 2019 and section 2.2 of this thesis for detail). 

Each image had only one specimen, and one specimen was imaged from three views (back, belly 

and side). Each specimen and each view was imaged twice (human-visible and ultraviolet (UV) 

light spectra). Here, I counted human-visible and UV images as one image that has different 

channels (RGB and UV channels). The full Project Plumage dataset consists of 122,610 images, 

here I used a manually labelled subset (N=5,094) to test the performance of segmentation 

methods and demonstrate the utility of automated segmentation. I then applied the best 

segmentation method on the full dataset to generate segmentation for every image. And using 

colour measurements from segmentations to explore questions about the bird plumage colour 

diversity. 

3.2.1.1 Image labelling 

Polygons are placed on photos to segment plumage areas as shown in Figure 3.1. Multiple 

polygons can be used to capture unconnected areas (Figure 3.1b). Figure 3.1c shows an example 

of using nested polygons to label non-plumage areas inside plumage areas (e.g. eyes and feet). A 

segmentation then contains two classes, plumage and non-plumage areas. One key rule is that 

segmentation should not include any regions outside the plumage area, and it is preferable to 

segment within the focal area (i.e. to be conservative in the estimation of the plumage area). This 

is because the colour space should only contain plumage colour information. A total of 5,094 

photos representing three views of 1,698 bird species were labelled manually by two experts. 

The sample of 1,698 bird species encompass representatives of more than 81% of bird genera 

and 27 bird orders, so the labelled images should capture a large extent of the total variance in 

plumage colour, patterns, and bird body shape in the whole Project Plumage dataset. 
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Figure 3.1. Examples of using polygons to segment plumage areas of specimens. (a) A specimen is 

segmented using a single polygon. (b) A specimen is segmented using multiple polygons. (c) A specimen 

is segmented using nested polygons as the eye is not plumage area and is excluded using a nested polygon. 

3.2.2 Deep learning in segmentation. 

I applied DeepLabv3+ to a segmentation workflow with three steps: i) data preparation, ii) model 

training, and iii) evaluation. In the data preparation step, I converted images and labels into 

formats which can be fed into the network. I then used 5 fold cross-validation and split data into 

training and validation sets with an 80:20 split. Cross-validation can provide an accurate estimate 

of model performance by averaging performance for different partitions (5 partitions for 5 fold 

cross-validation) of training and mutually exclusive validation sets. A common approach used in 

many studies or projects (e.g. methods in solving the ImageNet challenge; Krizhevsky, Sutskever, 

and Hinton 2012; He et al. 2016) is to split data into a training set, a validation set, and a test set 

where the test set is used to provide the final benchmark. I used only the training and validation 

sets so that every image from the labelled dataset (covering a wide range of extant bird species) 

can have a prediction from the same data partition routine. This allows the relationship between 

bird taxonomy and network performance to be evaluated (i.e. to assess whether performance 

varies among groups of bird species due to broad differences in size, shape and colouration of 

specimens). After data splitting, I trained the model with the training set under the pre-defined 

network hyperparameters. For each training step, the network generates predictions from input 

images. The model optimises the loss between output heatmaps and ground truth heatmaps 

(converted from segmentations, see next section) by updating its parameters with the gradient 

of the loss function (Ruder 2016). After training, I used the validation set to evaluate model 

performance.  
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3.2.2.1 Data preparation 

DeepLab outputs heatmaps at the same resolution as the input image, and with channel numbers 

equal to class numbers (e.g. if the resolution of an input image is 4,948 x 3,280 pixels, and there 

are two classes to be predicted, then the output heatmap has a resolution of 4,948 x 3,280 pixels 

and two channels or a dimension of 4,948 x 3,280 x 2). The output heatmap pixel value (0 to 1) 

of each channel represents the probability that the pixel belongs to the corresponding class. An 

example of the segmentation-heatmap relation is shown in Supplementary Figure 6.2.1a. The 

ground truth heatmaps have the same dimension (resolution and number of channels) as the 

output heatmaps. I converted coordinates of polygons to heatmaps, with the first channel as the 

non-plumage area and the second channel as the plumage area. Pixels of the non-plumage area 

were set to 1 for the first channel and 0 for the second channel, and vice versa for pixels of the 

plumage area. 

DeepLabv3+ may not work using input images with excessively large resolution due to the 

memory limitations of the graphics processing unit (GPU) and the model complexity. I therefore 

downsampled images to 618 x 410 pixels (from 4,948 x 3,280 pixels) using bilinear interpolation 

from OpenCV (a computer vision library. Bradski 2000). This resolution is eight times smaller than 

the original resolution and is the largest possible resolution that could be trained on the NVIDIA 

GTX 1080Ti GPU (12GB GPU memory) which I used to train models without any difficulties. I also 

downsampled ground truth segmentations to match this resolution. Finally, I split the images into 

the training set and validation set with an 80:20 ratio. 

3.2.2.2 Training 

I divided training images into batches of four images. The model takes one batch per training step 

to balance the memory usage of the GPU and the optimisation at each step (Hinton et al. 2012). 

I used the sum of cross-entropy between pixel values of output heatmaps and ground truth 

heatmaps as the loss function. To minimise the loss function, I used the ADAM optimiser (Kingma 

and Ba 2014) and the gradient of the loss function to update model parameters. I set the initial 

learning rate to 0.01. Through the training process, the learning rate was cosine decayed and 

restarted at the initial value after reaching zero, which increases the possibility to reach a better 
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local optimum (Loshchilov and Hutter 2016). The length of the first period of decay-restart was 

set to one epoch (an epoch is defined as one pass of the full training set for the network). After 

each period, the new period is two times longer than the previous one (i.e. the second period 

takes two epochs to decay to zero, the third period takes four epochs and so on). I trained the 

model over 31 epochs (i.e. five complete decay-restart periods), after which the optimisation had 

converged (i.e. the loss has stopped decreasing). I implemented and trained the network using 

Python 3 and Tensorflow 1.12 (Abadi et al. 2016), a deep learning library, on one NVIDIA GTX 

1080Ti GPU (12GB GPU memory). After the training process, I passed the validation images into 

the trained network to generate validation predictions. I resized the predicted segmentations to 

the same resolution (4,948 x 3,280 pixels) as the original images and used these resized 

predictions for the evaluation. 

3.2.2.3 Evaluation 

I used three metrics for the performance evaluation: the mean intersection over union (mIOU), 

precision, and recall. The mIOU is the average IOU of all classes (e.g. plumage area and non-

plumage area for the Project Plumage dataset), and it is widely used as the evaluation metric for 

semantic segmentation (see section 3.1). The IOU of class 𝑖 is 𝐼𝑂𝑈𝑖 =  
𝑝𝑖𝑖

𝑝𝑖𝑖 + 𝑝𝑖𝑗 + 𝑝𝑗𝑖
, where: 𝑝𝑖𝑖 are 

pixels of class 𝑖 and classified as class 𝑖 (true positive); 𝑝𝑖𝑗 are pixels of class 𝑖 but classified as 

other classes (false negative); and 𝑝𝑗𝑖  are pixels of others classes classified as class 𝑖 (false 

positive). IOU is a straightforward metric to measure the segmentation performance by 

combining aspects of both precision and recall but it can be useful to consider precision and recall 

separately. Precision shows the proportion of correct predictions whereas recall measures the 

segmentation area that the model does not predict. I used the following formulas for precision 

and recall of class 𝑖: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  
𝑝𝑖𝑖

𝑝𝑖𝑖 + 𝑝𝑗𝑖
, and 𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  

𝑝𝑖𝑖

𝑝𝑖𝑖 + 𝑝𝑖𝑗
. I used IOU and precision to 

measure the network performance as they both reflect well on the plumage area segmentation 

accuracy based on the project-specific goal of minimising the inclusion of non-plumage regions 

of the image. Achieving high recall is less critical but nonetheless important because I do not want 

results with excessively low recall (i.e. extremely conservative). Segmentations have only two 

classes (plumage area and non-plumage area) that are mutually exclusive, so mean metrics and 
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plumage area metrics are highly correlated and have similar values. I therefore report metrics 

based on the evaluation of the plumage area only rather than the mean (e.g. mIOU), which fits 

the target of this paper better (i.e. focused only on the plumage area). 

I tested the effect of excluding the non-plumage area on the accuracy of colour measurements. 

To do this, I created segmentations using two kinds of morphological transformation: erosion and 

dilation (Haralick et al. 1987). Eroded segmentations have 100% precision (compared to the 

ground truth) and less than 100% recall. Dilated segmentations have 100% recall and less than 

100% precision. Examples of these transformations are shown in Supplementary Figure 6.2.1b 

(erosion) and c (dilation). I created the erosion and dilation segmentations using a kernel (a 

structuring element) size of five applied for 1-9 iterations. The average IOU of each iteration 

ranged from 84.8% to 98.3%, and the average IOU difference of file-wise eroded minus dilated 

segmentations is -0.8%. The eroded segmentations and dilated segmentations have similar IOU, 

allowing the extracted colour information accuracies to be compared with respect to precision 

and recall.  

I used the Earth mover’s distance (EMD), a common metric to measure the similarity between 

two distributions, to calculate image similarity (Rubner et al. 2000). The EMD between the 

normalised histogram of a ground truth segmentation and its corresponding dilated or eroded 

segmentation was used to measure the colour information accuracy of each transformed 

segmentation. I then calculated the difference between EMD and IOU scores for eroded 

segmentations versus their corresponding dilated version (i.e. 𝐸𝑀𝐷𝑒𝑟𝑜𝑑𝑒𝑑 − 𝐸𝑀𝐷𝑑𝑖𝑙𝑎𝑡𝑒𝑑  and 

𝐼𝑂𝑈𝑒𝑟𝑜𝑑𝑒𝑑 − 𝐼𝑂𝑈𝑑𝑖𝑙𝑎𝑡𝑒𝑑). Finally, I can quantify the effect of excluding the non-plumage area on 

the colour information accuracy by looking at the erode-dilated difference distribution of all 

segmentations. 

3.2.3 Experimental manipulations to increase the model 

performance 

The workflow described in section 3.2.2 uses unmodified RGB images with the largest possible 

resolution (618 x 410 pixels). I used workflow manipulations to test whether the following factors 

affect model performance: (i) image properties (the input resolution and input channels), (ii) 
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image augmentations, and (iii) subsetting neural networks. I trained and cross-validated all 

configurations to ensure robust validation results.  

3.2.3.1 How does input resolution affect the performance? 

DeepLab has been shown to perform better when using the original input resolution compared 

to resized resolutions (Chen et al. 2017b), in particular downscaled images result in lower 

accuracy for pose estimation and classification (Kim, Kwon Lee, and Mu Lee 2016, Chapter 2). I 

used resolutions that were 10 and 16 times lower than the input images (i.e. 494 x 328 pixels and 

309 x 205 pixels) to test whether performance degrades at lower resolutions. 

3.2.3.2 How does input channels affect the performance? 

Previous studies have included non-visible light (e.g. UV and IR) information as the input in deep 

learning tasks, sometimes leading to better performance when compared to using only RGB 

channels (Basu et al. 2015; Potena et al. 2016; Milioto et al. 2018). The Project Plumage image 

data set includes two sets of images, one filtered to include only human visible (RGB) wavelengths 

and one to include only UV wavelengths, because bird plumage frequently includes UV reflecting 

regions. All images were taken against a black background made of theatre blackout curtains with 

very low reflectance of the UV light. The specimens should therefore reflect more UV light than 

the background. To test whether the inclusion of UV improved network performance, models 

were trained with i) images using UV channels only and ii) images using RGB plus UV channels. 

3.2.3.3 How does image augmentation affect the performance? 

Image augmentation is a common technique that increases the size of the training set by creating 

new labelled training images from manipulating the existing images and their labels, and has 

been shown to improve the model performance of DeepLab (Chen et al. 2017b). I created an 

augmented training set from the original training set in which images and their segmentations 

were randomly rotated (-15° to -1°, 1° to 15°), translated in both x and y axes (100 - 500 pixels), 

scaled (0.1 – 1.1). I used the augmented dataset to train the model with evaluation performed 

on the original validation set. 



85 
 

3.2.3.4 How does subsetting models affect the performance? 

I used one model on images from all views (all-views model) for the model in section 3.2.2 and 

previous experiments, but image variations of different views may introduce difficulties for the 

network to learn. I therefore additionally trained and validated separate models for each of the 

three image views (back, belly and side). This reduces the input data for each model run to 1,698 

images (compared to 5,094 images). 

3.2.4 Applying classic methods to segment the Project Plumage 

dataset 

In addition to examining different DeepLabv3+ configurations, I also assessed and compared the 

performance of classic computer vision techniques. Specifically, I used thresholding, region 

growing, Chan-Vese, and Graph cut from the OpenCV library on the expert-labelled dataset. I 

used image smoothing as the global pre-processing step, which is a commonly used pre-

processing step for many classic segmentation methods. Images were converted to greyscale for 

thresholding. Along with segmenting the plumage area, thresholding will inevitably segment 

parts of the reflectance standards (standards cover the whole range of the greyscale values). I 

therefore selected the most upper connected component (the specimen is always placed above 

the reflectance standards and I assumed the segmented plumage area is not connected with 

other segmented parts) as the plumage area segmentation. I tested whether using the modal 

pixel value of the image with a positive offset of 15 performs better than Otsu’s method (Otsu 

1979) and adaptive thresholding methods, and I used this to threshold images. Many classic 

computer methods require spatial information as starting values (see Table 3.1). These are 

usually points within the focal region. I used body region predictions (2D points that are placed 

on specific bird body regions) as initial spatial information using data from my previous chapter 

(see Chapter 2). Region growing segments the initial pixels’ neighbour pixels if the neighbour 

pixel values are within a certain range of the initial pixels’ values, and it iterates the same 

procedure by examining the neighbour pixels of newly segmented pixels until no more pixels can 

be segmented (Adams and Bischof 1994). I tried 150 ranges from different upper (even numbers 

from 2 to 30) and lower (even numbers from 2 to 20) boundaries for region growing. I found that 
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the best combination for the highest IOU is a lower boundary of 6 and an upper boundary of 30 

(see section 3.3.3 and Supplementary Figure 6.2.2). I made the initiated area for the Chan-Vese 

algorithm from squares with 20 pixels length around body region predictions and applied the 

algorithm for 100 iterations (Chan and Vese 2001). For the Graph Cut method (Boykov and Jolly 

2001), I set the body region predictions as the foreground. The consistent setup for imaging 

specimens means that specimens would not be placed near the top, bottom, left and right 

boundaries, and would always be placed above the reflectance standards. I therefore set pixels 

within 20 pixels of the top, left and right edges and below the standard predictions as background. 

I applied the morphological close (close segmentation holes) and open (remove segmentation 

noises) to all results as a global post-processing step (Haralick et al. 1987). I then evaluated and 

compared the segmentation results from each computer vision model with the best result from 

DeepLabv3+. 

3.2.5 Post-hoc tests on the model performance 

3.2.5.1 Quality of the training data 

Images from Project Plumage were taken in a highly consistent manner by controlling the 

placement of the specimen, light environment and background (Blagoderov et al. 2012; Hudson 

et al. 2015). However, not all datasets are likely to be so consistent due to practical limits (e.g. 

inadequate lightings). I tested whether greater variability in data quality could limit performance 

by generating lower quality datasets. To do this, I applied a series of image manipulations in 

which (i) images were rotated (angles between -45 to 45), translated (-500 to 500 pixels on x and 

y axes) and scaled (scale ratio from 0.8 to 1.2), (ii) 50% of images were randomly horizontally 

flipped, (iii) images were given new contrast and brightness (α from 0.5 to 2 and β from -50 to 

50) using brightness and contrast adjustment functions in OpenCV (Bradski 2000; Bradski and 

Kaehler 2008), and (iv) a combination of manipulations from (i), (ii) and (iii). I applied these 

operations to both training images and validation images (in contrast to image augmentation 

outlined above where I did not manipulate the validation set). I trained and evaluated the 

transformed datasets under the same protocol as described in section 3.2.2. 
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3.2.5.2 The size of the training data 

Another of my goals was to quantify the impact on performance when using smaller training sets. 

Previous studies suggest that larger training set sizes may improve the performances of deep 

learning models (Joulin et al. 2016; Hestness et al. 2017; Sun et al. 2017). I used a subset of 1,018 

images (20% of the dataset) as the only validation set for every result in this section. The training 

set (4,076 images) was randomly sampled five times for one proportion selected from 15 

proportions (1%, every 5% from 5% to 50% and every 10% from 50% to 90%). These training 

subsets and the original training set were used to train models under the same training protocol 

as described in section 3.2.2. IOU, precision and recall were then used to evaluate the results. 

3.2.5.3 Effects of orders and plumage area properties 

The expert-labelled dataset includes images representing the majority of bird genera and so 

includes diverse sizes, shapes and colours. I studied the relationship between the taxonomic 

information and model performance by testing for differences in the accuracy of predictions 

between orders (N=27). I also explored how other plumage area properties, including contrast 

and colour variability, affected performance. A plumage area with high contrast to its 

surrounding non-plumage area may be easier to segment in DeepLabv3+ than low contrast 

plumage areas (and many classic methods normally perform well on high contrast images). To 

test this I first calculated the mean of absolute Laplacian derivatives of images. A large Laplace 

derivative of a pixel indicates it is likely to be the part of an edge (high contrast around this pixel), 

which has been widely used for image edge detection (Berzins 1984; van Vliet et al. 1989). Then 

I used the pixels around the plumage area borders by using pixels of the difference between a 

dilated and eroded (both are applied with a kernel size of five for one iteration) segmentation. 

The mean derivatives of these pixels were used to represent the contrast between the 

foreground and the background. A large value means that the plumage area is very different from 

its surrounding non-plumage area and vice versa. 

Plumage can be mono- or multi-coloured. I hypothesised that colour variability introduces 

difficulties for the model to segment the complete plumage area. Classic methods, like 

thresholding and region growing, can perform poorly on high colour variability images (see 
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section 3.3.3). To test this I used metrics from Chapter 2 to measure the colour variability: 

average pair-wise colour distances between body regions using RGB (both chromatic and 

achromatic information), normalised RGB (hue information), or lightness (achromatic 

information). I then evaluated correlations between metrics (IOU, precision and recall) of 

segmentations and plumage area properties. 

3.2.6 Plumage colour diversity of world birds 

3.2.6.1 Building bird plumage colour space 

Using the segmentation pipeline evaluated earlier in this chapter, I applied the best-trained 

DeepLabv3+ to the whole Project Plumage dataset (122,610 images) and generated plumage 

colour data. The way of measuring colour depends on how pixels are sampled from the 

segmentation. Using all segmented pixels for every segmentation can create extremely large data 

sets (the average segmented pixel number of segmentations is 1,079,619). To make the data 

computationally tractable, I used data subsetted to 200 grid cells (provided by CRC), evenly 

placed on segmented pixels for each photo. The average pixel value within a grid cell was used 

as the colour information for one grid cell. Each photo has 200 colour points, and one specimen 

has 600 points (three photos per specimen). Since, for each species, there are up to six specimens 

(three per each sex), the number of colour points per species therefore ranged from 600 to 3,600. 

In total, the segmentation data generated 24,309,400 plumage colour points (i.e. grid cells) from 

121,547 photos (a small number of photos were excluded from the initial dataset due to 

problems associated with extracting correctly calibrated colour values), which covers 8,509 

species, 178 families, and 34 avian orders. Among this data, there are 62,474 male specimens 

(7,873 species) and 57,013 female specimens (7,513 species). Colour data points (RGB value) 

were converted into u, s, m, l receptor cone stimulation values using the avian UVS visual (Endler 

and Mielke 2005; Stoddard and Prum 2008) model in pavo (Maia et al. 2013). These values were 

then mapped into a tetrahedral colour space. 
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3.2.6.2 Calculating and visualising colour diversity of bird plumage 

I used the convex hull volume to measure the colour diversity of avian visual model colour spaces 

(using the segmentation data) across species for both sexes, male and female (Stoddard and 

Prum 2008; Renoult et al. 2017). Other measurements of the volume, like alpha shape (Cholewo 

and Love 1999; Gruson 2020), can reduce the possible overestimation associated with using 

convex hulls. However, alpha shapes of different sets of data points require data-specific 

parameter-tuning to make their volumes comparable (see Chapter 2). Here I focused on 

comparing the volumes across thousands of species and therefore only used the convex hull to 

measure the volume. 

Using the segmentation allows the measurement of colours across the whole specimen. 

Therefore, I developed a flexible new metric called the proportional colour diversity which 

quantifies the colour diversity while accounting for the proportions of every colour. Specifically, 

the proportional colour diversity is the mean of average Euclidean distances to the centroid 

across all octants (using the centroid as the origin of octants). Octants are eight divisions of a 3D 

coordinate system (The equivalent term in 2D is quadrant). The colour points in tetrahedral 

colour space from pavo have 3D cartesian coordinates (x, y, z). I defined the equation of the 

proportional colour diversity as:  

∑
∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑡𝑗 𝑡𝑜 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑

𝑁𝑂𝑐𝑡𝑎𝑛𝑡_𝑖

𝑗=1

𝑁𝑂𝑐𝑡𝑎𝑛𝑡_𝑖

8
𝑖=1

8
 

The 2D version is defined as: 

∑
∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑡𝑗 𝑡𝑜 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑

𝑁𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡_𝑖

𝑗=1

𝑁𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡_𝑖

4
𝑖=1

4
 

Where 𝑁𝑂𝑐𝑡𝑎𝑛𝑡_𝑖  and 𝑁𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡_𝑖  are defined as the number of points in octant or quadrant i. 

Figure 3.2 shows an example of applying the proportional colour diversity in 2D. 
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Figure 3.2. An example of calculating the proportional colour diversity for three groups of points (red, blue 

and green) in 2D. These three groups of points share the same centroid (0, 0). Based on the 2D 

proportional colour diversity equation, the result of the red group is: (
√2+ √5

2
+

√2+ √5

2
+

√2+ √5

2
+

√2+ √5

2
)/4 ≈ 1.83 ;The result of the blue group is: (

√8+ √5

2
+

√8+ √5

2
+

√8+ √5

2
+

√8+ √5

2
)/4 ≈ 2.53 ; The 

result of the green group is: (
√18+ √13+ √13 

3
+ 0 +

√18+ √13+ √13 

3
+ 0)/4 ≈ 1.91. 
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The proportional colour diversity takes account of octants estimates colour diversity rather than 

the colour span. This property is shown in Figure 3.2, of which the green group has smaller 

proportional colour diversity than the blue group. It has the advantage that it uses the average 

distance to centroid estimates diversity based on the distribution of the colour points rather than 

extreme values which can drastically affect the convex hull volume. 

To explore the colour diversity in bird plumage colouration, I visualised variation in the convex 

hull volume and the proportional colour diversity across species for both sexes, male and female 

on a global phylogeny of birds. The tree (containing 9,993 species) used in this paper represents 

a composite maximum clade credibility tree produced by combining the backbone tree from 

Prum et al. (2015) with species-level trees from Jetz et al. (2012) (downloaded from 

www.birdtree.org). For full details see Cooney et al. (2017). The phylogeny was then pruned into 

sub-trees that match species in this data (both sexes: 8,509 species, male: 7,873, female: 7,513). 

Ancestral states were estimated for visualisation purposes only and are based on a Brownian 

motion model. Phylogenetic signals of the convex hull volume (colour diversity) and proportional 

colour diversity for both sexes, males-only, and females-only were calculated using Pagel’s 

lambda (Pagel 1999). The R package phytools was used to estimate ancestral states and 

phylogenetic signal (Revell 2012). The phylogeny plots were made using the ggtree (Yu et al. 2017) 

and ggplot2 (Wickham 2011). 

3.2.6.3 Comparing the patch and segmentation colour data 

To show the differences between the segmentation colour data and the patch colour data (see 

Chapter 2), I compared widely used colour measures (the convex hull volume, colour span and 

hue disparity) in previous studies (Stoddard and Prum 2008; Maia et al. 2013) between the two 

datasets across species for both sexes, male and female. Because the proportional colour 

diversity metric was designed for the segmentation colour data (i.e. for data sets with many 

colour data points, rather than the 10 colour points from the patch data), it was not used in the 

comparison here. I calculated ratios of the convex hull volume, colour span and hue disparity 

from the patch data to those from the segmentation data (
𝐶𝑜𝑙𝑜𝑢𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑝𝑎𝑡𝑐ℎ

𝐶𝑜𝑙𝑜𝑢𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
).  

http://www.birdtree.org/


92 
 

3.3 Results 

3.3.1 Accuracies of the DeepLab model 

Across all three views, the original model achieved 93.1% IOU (per view, back: 94.6%; belly: 91.9%; 

side: 92.9%), 96.3% precision (per view, back: 96.8%; belly: 95.7%; side: 96.4%) and 96.6% recall 

(per view, back: 97.6%; belly: 95.8%; side 96.2%) in the evaluation (Table 3.2).  

Table 3.2. IOU, precision and recall of predictions from the DeepLabV3+ model with the original 

configuration. 

 MEAN SD MIN MAX 

IOU OVERALL (N=5094) 93.1 3.2 53.6 98.5 

BACK (N=1698) 94.6 2.8 67.6 98.5 

BELLY (N=1698) 91.9 3.4 53.6 97.2 

SIDE (N=1698) 92.9 2.9 58.3 97.2 

PRECISION OVERALL (N=5094) 96.3 2.4 70.1 99.9 

BACK (N=1698) 96.8 2.5 70.2 99.9 

BELLY (N=1698) 95.7 2.5 70.1 99.8 

SIDE (N=1698) 96.4 2.0 70.9 99.9 

RECALL OVERALL (N=5094) 96.6 2.5 53.6 99.9 

BACK (N=1698) 97.6 2.0 72.0 99.9 

BELLY (N=1698) 95.8 2.7 53.6 99.6 

SIDE (N=1698) 96.2 2.4 58.3 99.4 

 

88.8% of the segmentations (4,525 out of 5,094) had IOU higher than 90%. The lowest IOU is 

53.6%. Four out of the worst five segmentations were caused by low recalls and all have precision 

higher than 85%. 97.9% of the segmentations (4,985 out of 5,094) had precision higher than 90%. 

The lowest precision was 70.0%. No segmentation had recall lower than 50%. Less than 0.2% of 

the results (7 out of 5,094, per view, back:1; belly:4; side:2) had recall lower than 75%, and less 

than 1.8% of the results (89 out of 5,094, per view, back:13; belly:43; side:33) had recall lower 

than 90%. 
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3.3.2 Experimental manipulations to increase the model 

performance 

3.3.2.1 Effects of input resolution on the performance 

I compared input image resolutions of 618 x 410, 494 x 328 and 309 x 205 pixels (8, 10 and 16 

times lower than the original resolution). There was a significant effect of input image resolution 

on IOU (ANOVA: F=1361.0; d.f=2, 15279; p<0.01), precision (ANOVA: F=1069.2; d.f=2, 15279; 

p<0.01) and recall (ANOVA: F=456.3; d.f=2, 15279; p<0.01). The IOU and recall of 618 x 410 pixels 

and 494 x 328 pixels were not significantly different from each other, while the rest of the 

accuracies (IOU, precision and recall) were positively related to the input resolution 

(Supplementary Figure 6.2.3a, Supplementary Figure 6.2.4a). The image resolution of 618 x 410 

pixels had the best overall performance, while the 309 x 205 pixels had the worst performance. 

3.3.2.2 Effects of input channels on the performance 

Images with UV and RGB + UV channels were also used to train models to compare the effect of 

different input channels (Supplementary Figure 6.2.3b). There was a significant effect of input 

channels on IOU (ANOVA: F=395.6; d.f=2, 15279; p<0.01), precision (ANOVA: F=184.9; d.f=2, 

15279; p<0.01), and recall (ANOVA: F=236.6; d.f=2,15279; p<0.01). RGB was consistently better 

than UV and RGB+UV although the effects tended to be small (evaluation results of UV and 

UV+RGB were <2% worse than RGB as shown in Supplementary Figure 6.2.4b). 

3.3.2.3 Effects of image augmentation on the performance 

I then tested the effect of image augmentation (Supplementary Figure 6.2.3c). IOU was 

significantly higher (t(10186)=5.90, p<0.05) for the original dataset (Mean=93.1, Standard 

deviation (SD)=3.24) than the augmented dataset (Mean=92.7, SD=3.35). I also found a 

significant difference in the precision (t(10186)=6.63, p<0.05) and again the original dataset 

(Mean=96.3, SD=2.38) outperformed the augmented dataset (Mean=96.0, SD=2.56). However, 

there was no significant difference in the recall (t(10186)=1.81, p=0.07).  
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3.3.2.4 Effects of subsetting models on the performance 

Supplementary Table 6.2.1 and Supplementary Figure 6.2.3 (d) shows that subsetting models per 

image view (i.e. back, belly, side) was significantly worse than using the all-views model, except 

for recall on the side view (t(10186)=1.43, p=0.15). The back view had the largest IOU difference 

(the all-views model has 0.7 higher IOU than divided models) and recall difference (recall of the 

all-views model is 0.5 higher), while the side view had the largest precision difference (precision 

of the all-views model is 0.4 higher). 

Overall, none of the experimental manipulations improved model performance compared to the 

original model. I therefore used predictions from the original model as the benchmark result for 

comparison with classic models (see next section). Many examples correctly classified eyes and 

labels as non-plumage area (e.g. Figure 3.3a.ii, a.iii and a.iv). 3 out of 4 (Figure 3.3a.vi, a.vii and 

a.viii) of the worst IOU segmentations were caused by the low recall problem (large green areas). 

The two worst recall examples (Figure 3.3c.vii and c.viii) had many plumage areas un-detected, 

and these images have light black backgrounds and long camera distances (due to the large size 

of the specimens). Other low recall examples failed to detect complete tails as these tails are 

extremely thin or irregular (Figure 3.3c.v and c.vi). Thin tails can also cause low precision: the 

model misclassified background around thin tails as plumage area (Figure 3.3b.vii). Legs that are 

placed on the top of the plumage area can be hard for the model to exclude (Figure 3.3b.v). Figure 

3.3b.vi shows an example of misclassifying an irregular beak as the plumage area. 
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Figure 3.3. Images of the best, 50th, 75th and 95th percentile (ranked by metrics from high to low; from i 

to iv) and 4 worst predictions (from v to viii) based on a) IOU, b) precision and c) recall. The IOU, precision 

and recall (from left to right) are displayed on the top right corner of each image. Blue is correctly 

predicted by the model (True positive); Red is the non-plumage area that has been classified as plumage 

area by the model (False positive); Green is the plumage area that has been classified as non-plumage 

area (False Negative). 

 

3.3.3 Accuracies of classic methods on segmenting the Project 

Plumage dataset 

I compared the results of the best DeepLab configuration with four classic computer vision 

segmentation methods (thresholding, region growing, Chan-Vese and GraphCut). I used the 

region growing result with the lower boundary of 6 and the upper boundary of 30, which 

achieved the best IOU (Supplementary Figure 6.2.2). IOU varied significantly among 

segmentation methods (ANOVA: F=3141.3; d.f=4, 25465; p<0.01), as did precision (ANOVA: 

F=1678.6; d.f=4, 25465; p<0.01) and recall (ANOVA: F=1989.6; d.f=4, 25465; p<0.01). DeepLab 

had a superior performance for IOU, precision and recall, as well as the lowest variance in 

performance metrics, compared to classic methods (Figure 3.4). Specifically, DeepLab 

outperformed classic results by at least 23.4% on IOU, 6.4% on precision and 9.5% on recall 

(Supplementary Figure 6.2.4c). Graph cut had the best IOU among tested classic methods, while 

Chan-Vese had the best precision and Thresholding had the best recall, suggesting Graph cut was 

the overall best classic method in plumage images, Chan-Vese segmented area conservatively, 

and thresholding tend to segment lots of non-plumage regions. 

The worst examples from classic methods were clearly far worse than those from DeepLabv3+. 

Examples in Figure 3.5 show that dark plumage, high plumage colour variability and museum 

labels can be obstacles for classic methods whereas DeepLabv3+ predicted accurately on the 

same images. 
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Figure 3.4. The performance of predictions (N=5,094) from DeepLabv3+ and tested classic methods 

(thresholding, region growing, Chan-Vese and Graph cut) for (a) IOU, (b) Precision, and (c) Recall. 
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Figure 3.5. Examples of poorly segmented results from classic methods as well as deep learning 

predictions of the corresponding images. (a) Thresholding; (b) Region growing; (c) Chan-Vese; (d) Graph 

Cut. Yellow is the segmentation from classic methods. Deep learning results are represented in blue, red 

and green as defined in Figure 3.3. 

3.3.4 Post-hoc tests on the model performance 

3.3.4.1 Results of eroded and dilated segmentations 

The distribution between IOU difference and EMD difference is shown in Supplementary Figure 

6.2.5. IOU difference (Mean=-0.8, SD=0.99, t(50939)=-186.7, p<0.05) and EMD difference 

(Mean=9.2E-5, SD=1.2E-4, t(50939)=-178.8, p<0.05) were both significantly smaller than 0. The 

result shows that dilated segmentations had slightly higher IOU than the corresponding eroded 
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ones. The mean and median of EMD difference (𝐸𝑀𝐷𝑒𝑟𝑜𝑑𝑒 − 𝐸𝑀𝐷𝑑𝑖𝑙𝑎𝑡𝑒𝑑) were smaller than zero 

which show that eroded segmentations have more similar frequency distributions to the ground 

truth than the corresponding dilated ones do. 

3.3.4.2 Quality of the training data 

I assessed how DeepLabv3+ performed on four low-quality datasets (see section 3.2.5.1). Low-

quality datasets had a significant negative effect on the IOU (ANOVA: F=205.3; df=4.0, 25465; 

p<0.01), precision (ANOVA: F=132.8; df=4.0, 25465; p<0.01) and recall (ANOVA: F=88.0; df=4.0, 

25465; p<0.01). The original dataset produced more accurate results than low-quality datasets 

(Supplementary Figure 6.2.6). The 4th dataset (the combination of translation, rotation, scale, 

horizontal flip and manipulations of brightness and contrast) had the worst performance and 

examples of its predictions are shown in Supplementary Figure 6.2.7. The 4th dataset was 1.9%, 

1.2% and 0.9% worse than the original dataset on IOU, precision and recall (Supplementary Figure 

6.2.4d). 

3.3.4.3 Size of the training data 

Model performance was positively related to the training set size following an approximately 

logarithmic pattern (Supplementary Figure 6.2.8). At least 10% of the dataset was required to 

attain IOU higher than 90%, at least 5% of the dataset to get precision and recall higher than 90%, 

and 15% of the dataset for precision and recall higher than 95%. With 100% of the dataset used 

for training, the model achieved 93.3% for IOU, 96.3% for precision and 96.8% for recall. 

3.3.4.4 Effects of orders and plumage area properties 

Supplementary Table 6.2.2 shows the average IOU, precision and recall per order. The 

Galliformes had the lowest IOU (84.6%) and recall (88.8%), whereas Ciconiiformes had the lowest 

precision (88.2%). However, the expert-labelled dataset had only 15 (~0.3% of the dataset) 

Galliformes and 9 (~0.2%) Ciconiiformes specimens. Columbiformes had the highest IOU (95.2%) 

and precision (97.8%). The most abundant order was the Passeriformes with 3408 images (~66.9% 

of the total, compared to 7.1% for the second most abundant order), having IOU of 93.3% (15th 

of 27 orders), precision of 96.4% (14th of 27 orders), and recall of 96.6% (15th of 27 orders). 
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Examples with the highest and lowest plumage area contrast and colour variability scores are 

shown in Supplementary Figure 6.2.9. IOU, precision and recall generally declined with increasing 

plumage area contrast (Supplementary Figure 6.2.10a) and increasing colour variability 

(Supplementary Figure 6.2.10b,c,d), but the correlations were weak and appear to be driven in 

part by lower sample sizes at higher contrasts and greater colour variability values. 

3.3.5 Plumage colour diversity of world birds 

3.3.5.1 Calculating and visualising colour diversity of bird plumage 

Supplementary Table 6.2.3-Supplementary Table 6.2.5 show the top 200 bird species ranked by 

convex hull volume based on the segmented data. The top 200 includes 34 families (top family: 

Psittacidae; 47 species), 14 orders (top order: Passeriformes; 97 species) for both sexes; 35 

families (top family: Psittacidae; 50 species), 12 orders (top order: Passeriformes; 108 species) 

for male; 43 families (top family: Psittacidae; 59 species), 17 orders (top order: Psittaciformes; 59 

species) for female. The top three species ranked by male species colour volume using the 

segmentation data are the Paradise Tanager (Tangara chilensis), Red-legged honeycreeper 

(Cyanerpes cyaneus) and Mrs. Gould's sunbird (Aethopyga gouldiae) (Figure 3.6a). The top ranked 

species by female colour volume is the Paradise Tanager (Tangara chilensis), but the second and 

third ranked species - black-crowned pitta (Pitta ussheri) and Garnet pitta (Pitta granatina) - 

differ from male ranking (Figure 3.6b).  



101 
 

 

Figure 3.6. (a) Back (first column), belly (second column) and side (third column) images of the top 3 

convex hull volume male species (row 1-3: Tangara chilensis, Cyanerpes cyaneus and Aethopyga gouldiae) 
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and (b) the top 3 convex hull volume female species (row 1-3: Tangara chilensis, Pitta ussheri and Pitta 

granatina). 

 

Supplementary Table 6.2.6-Supplementary Table 6.2.8 show the top 200 species ranked by 

proportional colour diversity. The top 200 includes 30 families (top family: Psittacidae; 59 species), 

5 orders (top order: Passeriformes; 106 species) for both sexes; 34 families (top family: 

Psittacidae; 53 species), 6 orders (top order: Passeriformes; 118 species) for male; 32 families 

(top family: Psittacidae; 70 species), 9 orders (top order: Psittaciformes; 70 species) for female. 

The top three species ranked by proportional colour diversity in males are the Red-legged 

honeycreeper (Cyanerpes cyaneus), Purple honeycreeper (Cyanerpes caeruleus) and Collared lory 

(Phigys solitarius) (Figure 3.7a). In contrast, the top 3 female species are Papuan Lorikeet 

(Charmosyna papou), Collared lory (Phigys solitarius) and Scarlet macaw (Ara macao) are shown 

in Figure 3.7b. There are 62 species (both sexes list), 71 species (male list) and 82 species (female 

list) shared between the top 200 convex hull volume and proportional colour diversity lists. 
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Figure 3.7. (a) Back (first column), belly (second column) and side (third column) images of the top 3 

proportional colour diversity male species (row 1-3: Cyanerpes cyaneus, Cyanerpes caeruleus and Phigys 
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solitarius)  and (b) the top 3 proportional colour diversity female species (row 1-3: Charmosyna papou, 

Phigys solitarius and Ara macao). 

Phylogenetic visualisations of the convex hull volume in plumage colour evolution across male 

and female species are shown in Figure 3.8. This highlights that high convex hull volume is 

conserved within certain orders (Psittaciformes and Coraciiformes). Pagel’s Lambda for the 

convex hull volume across the whole phylogeny are 0.743 (both sexes; lambda=0: likelihood ratio 

(LR)=4555.89; p<0.001.), 0.789 (males; lambda=0: LR=4958.65; p<0.001.) and 0.719 (females; 

lambda=0: LR=3659.7; p<0.001.). Phylogenetic visualisations of proportional colour diversity in 

plumage colour evolution across male and female species are shown in Figure 3.9. Species in 

orders of Psittaciformes and Coraciiformes also generally have high proportional colour diversity. 

Pagel’s Lambda for the proportional colour diversity across the whole phylogeny are 0.876 (both 

sexes; lambda=0: LR=6499.31; p<0.001.), 0.883 (males; lambda=0: LR=5892.02; p<0.001.) and 

0.838 (females; lambda=0: LR=4807.65; p<0.001.). The result indicates that both colour volume 

and proportional colour diversity have strong correlations to phylogenetic signals but with 

significant departures from a Brownian motion null model. Phylogenetic signals in proportional 

colour diversity are higher than colour volume signals, and male colour has a higher signal than 

female colour within each colour diversity measure. 
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Figure 3.8. Phylogenetic visualisation of convex hull volume (log transformed) in plumage colour of (a) 

males (across 7,873 species) and (b) females (across 7,513 species) from the segmentation data. 

Histograms (inset) show the convex hull volume distribution (log transformed) 
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Figure 3.9. Phylogenetic visualisation of the proportional colour diversity (log transformed) in plumage 

colour of (a) males (across 7,873 species) and (b) females (across 7,513 species) from the segmentation 

data. Histograms (inset) show the proportional colour diversity distribution (log transformed) 

3.3.5.2 Comparing the patch and segmentation colour data 

For both sexes, male and female, all ratios (convex hull volume, colour span and hue disparity) 

were significantly smaller than 1 as shown in Supplementary Figure 6.2.11. The convex hull 

volume ratio was the smallest among the three tested measures. 8,499 species (99.9% out of 
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8,509) for both sexes, 7,866 (99.9% out of 7,873) species for male, and 7,510 species (99.9% out 

of 7,513) for female had larger convex hull volumes based on the segmentation data than the 

patch data. 6,275 species (73.7% out of 8,509) for both sexes, 5,564 (70.7% out of 7,873) species 

for male, and 5,694 species (75.8% out of 7,513) for female had larger colour spans based on the 

segmentation data than the patch data. 6,474 species (76.1% out of 8,509) for both sexes, 5,780 

(73.4% out of 7,873) species for male, and 5,901 species (78.5% out of 7,513) for female had 

great hue disparity based on the segmentation data than the patch data. 

3.4 Discussion 

3.4.1 Segmentation methods 

DeepLab, a semantic segmentation method using deep learning, can automatically segment 

generally accurate bird plumage areas from other parts across more than 120,000 Project 

Plumage image. The results show that segmentation using DeepLab strongly outperformed all 

classic computer vision methods. Indeed segmentations from classic methods are frequently so 

poor that they would often be unusable for downstream analyses of colour. Of the classic 

methods, Graph cut had the best average plumage area IOU but was 23.4% worse than the 

average IOU from DeepLabv3+. In contrast to the DeepLab predictions, images with dark birds 

and prominent label tags could not be reliably segmented using classic methods. Dark birds were 

normally under or over segmented, and label tags were included as plumage area (e.g. Figure 

3.5a). Besides deficiencies shown in these examples, setting starting parameters for classic 

methods, for example choosing threshold values for thresholding and region growing by hand-

crafted image features, is a troublesome task (Chang and Li 1994; Fan et al. 2001). They are 

suitable for segmenting objects that are clearly different from the backgrounds. Deep learning 

models learn to detect image features automatically from training and so require expert labelling 

only for a subset of images. Classic methods such as Chan-Vese and Graph cut require some 

starting spatial information for all images limiting their use for large data sets of thousands of 

images such as Project Plumage. Here, I used the spatial information derived from deep learning 

point predictions (Chapter 2) to seed classic methods because there is not an automatic and 

simple way to generate accurate spatial information for this data, other than from manual or 
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deep learning. However, other projects may not have sufficient digitisation information. Based 

on accuracy and image complexity, I conclude that deep learning is far more suitable than classic 

methods in segmenting the plumage area. 

I tested how reliably DeepLabv3+ segments data from Project Plumage. Experimental 

configurations were evaluated to identify configurations that maximised model performance. I 

found that input image resolution had positive effects on performance, as expected and 

previously reported for DeepLabv2 (Chen et al. 2017b). Image augmentation, additional channels 

and subsetting models did not improve the performance. In my experimental runs, the best 

performance overall was achieved with DeepLabv3+ and an input resolution of 618 x 410 pixels. 

The IOU was about 93% which is higher than DeepLabv3+’s performance (mIOU: 89.0%) on the 

standard PASCAL VOC 2012 data set (Chen et al. 2018). This higher level performance may be 

due to the lower complexity of the Project Plumage dataset compared to PASCAL because (i) the 

Project Plumage dataset has only two classes (plumage and non-plumage) while PASCAL dataset 

has 21 classes (Everingham et al. 2015) and (ii) images consist of few and fixed focal objects (one) 

under a consistent, high resolution imaging setup. In contrast, the PASCAL images are more 

varied (e.g. different objects, backgrounds). These two factors may explain why no improvements 

were observed with image augmentation, additional channels and subsetting models as the 

model had already been trained well with the original dataset and configurations. 

DeepLabV3+ can identify the plumage area (precision: 96.3%) and plumage area completeness 

(recall: 96.6%) reliably. Figure 3.3 and Figure 3.4 illustrate most of the predictions are reliable 

and therefore usable. Unwanted parts of the images include eyes and specimen labels. Eyes are 

small and labels often resemble tails in terms of position and shape - they are considered hard to 

be excluded by the model. However, DeepLab did surprisingly well in excluding them. It took less 

than 3 days to train a DeepLabV3+ model with training set size of 4,074 (80% of 5,094 images 

from the dataset splitting) images and trained for 31 epochs and less than five days to generate 

predictions for the 122,610 images that constitute the full Project Plumage dataset on one 

NVIDIA GTX 1080 (12GB GPU memory). Although the predictions are sometimes less accurate 

than expert manual segmentations, DeepLabv3+ can generate usable segmentations quickly and 

save a huge amount of time. 
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Ideas about how deep learning can perform on less perfect museum digitised datasets (small size 

or low-quality datasets) were tested, and the results on tested datasets were promising. Large 

training sets are commonly used in deep learning. DeepLab (Chen et al. 2017b) used a training 

set size of 1400 images in PASCAL VOC 2012 (Everingham et al. 2015) and 2975 images in 

Cityscapes (Cordts et al. 2016). Tasks like classification and pose estimation have used even larger 

datasets, such as 1.2 million training images in ImageNet classification (Deng et al. 2009) and 

more than 28,000 images in MPII pose estimation challenge (Andriluka et al. 2014). My results 

are consistent with previous studies that the training set size was positively related to the model 

performance (Joulin et al. 2016; Hestness et al. 2017). However, small training set sizes did not 

decrease the performance drastically. It is possible to use just 15% of the original dataset (~600 

images) to generate segmentations with 90% IOU on 1,018 validation images. This is still much 

more accurate than results using classic methods’ results. The highly consistent imaging layout 

in Project Plumage may reduce the size of training data needed to get an acceptable result from 

deep learning. Modern pipelines for museum collection digitization typically follow similarly 

consistent standards such as uniform specimen placements, background and light environment 

(Hudson et al. 2015; Unger et al. 2016; Hussein et al. 2020) suggesting that such data can be 

analysed with deep learning. However, high standard digitisation is time-consuming. I simulated 

varied camera distances, angles, specimen placements, orientation and light environments by 

manipulating original images to create less consistent images. Using low-quality datasets did not 

provide excessively inaccurate predictions, and the worst performance (low-quality dataset 4) 

was much better than classic methods’ results. This result along with promising results on low 

consistent datasets such as PASCAL VOC 2012 shows that the DeepLab is likely to be robust on 

less consistent datasets.  

3.4.2 Bird plumage colour space 

I used predicted segmentations to assess and visualise the phylogenetic distribution of bird 

plumage colour diversity and found that the colour diversity is normally distributed and shows a 

moderately strong phylogenetic signal. I used the segmentation data to estimate and visualise 

plumage colour diversity that covers more than 85 % of the total 9,993 bird species (79.7% of 

species for males only and 75.1% of species for females only). Lambda values on both the convex 
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hull value and the proportional colour diversity show that there are strong phylogenetic signals 

in colour diversity for all three configurations (both sexes, male-only and female-only). The 

signals in the proportional colour diversity are stronger than signals in the convex hull volume. 

The result of phylogenetic signals indicates that the proportional colour diversity is consistent 

with the idea that colour producing mechanisms constrain the evolution of plumage colour 

(Stoddard and Prum 2011). Phylogenetic signals in colouration can also occur if closely related 

species share similar selection pressures (e.g. most birds of prey are camouflaged brown/white). 

Birds with limited mechanisms can evolve large overall colour volume (i.e. convex hull) by taking 

extreme values along a limited number of axes whereas large proportional colour diversity is 

achieved by evolving along multiple divergent colour axes. Under the same possible colour 

volume, measuring the average distance can therefore be more reliable than measuring the 

convex hull volume (affected a lot by extreme values or the shape of the data points) while is 

sensitive to whether colour points are diverse. The proportional colour diversity metric is 

therefore likely to be a more reliable proxy for the range of colour producing mechanisms which 

themselves may be phylogenetically conserved. 

The proportional colour diversity can estimate proportions of colours and reveals different 

patterns compared to the colour volume. Supplementary Figure 6.2.12a and b show the colour 

spaces of Tangara chilensis (2nd for the convex hull volume; 140th for the proportional colour 

diversity) and Buthraupis montana (480th for the convex hull volume; 9th for the proportional 

colour diversity). The majority of colour points are located densely near the centroid for the 

Tangara chilensis colour space, with less dense clusters stretching to more extreme colours. In 

contrast, Buthraupis montana’s colour points are distributed in two similarly dense clusters. 

Buthraupis montana therefore has higher proportional diversity than Tangara chilensis.  

More striking differences in the inference of the volume versus proportional colour diversity 

metric emerge when the colour space includes outliers. The proportional colour diversity metric 

is robust to outlier colour points which have extreme stimulation values in the tetrahedral space. 

Supplementary Figure 6.2.12c shows the colour space of Rostrhamus sociabilis (10th for the 

convex hull volume; 4,979th for the proportional colour diversity). There is one large outlier in 

the shortwave receptor cone, which affects the convex hull volume drastically. This outlier may 
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be due to prediction or colour processing error. The robustness to outliers of this measure may 

explain why there are fewer orders and families represented in the top 200 species for the 

proportional diversity metric compared to the convex hull volume (see section  3.3.5.1 and 

Supplementary Table 6.2.3-Supplementary Table 6.2.8).  

Body region measurement (e.g. point or patch) and segmentation are two types of 

measurements on colour information and they can be used in different situations. Body region 

measurement is used to measure colour information on specimens for many projects (Stoddard 

and Prum 2008, 2011; Dale et al. 2015; Cooney et al. 2019, see also Chapter 2). The top 5 species 

for males (Charmosyna papou, Tangara chilensis, Amazona albifrons, Trichoglossus rubritorquis 

and Erythrura gouldiae) in Stoddard and Prum (2011) are ranked 23rd, 1st, 224th, N/A (Project 

Plumage dataset does not have images for this species) and 137th in my male colour spaces using 

the segmentation data. While they are ranked 11th, 1st, 515th, N/A (missing species) and 33th 

in the male colour spaces using the patch data. It is intuitive to use body region measurement if 

the project focuses on the colour of body regions. Comparing to the region measurement, 

segmentation focuses on the whole plumage area of specimens, which captures complete colour 

information on specimens. The segmentation data has higher colour span, hue disparity and 

convex hull volume than the patch data (Supplementary Figure 6.2.11) in the project plumage 

photos. The result shows that the colour points of the segmentation are more diverse than colour 

points from patches of 10 body regions. When measuring the overall colour of specimens, using 

segmentation may be a better method than region measurements. Extracting colours evenly on 

three views of a specimen can introduce duplicate colour measurements (e.g. apart from the side 

view, wings may appear in the back and belly view). Better measuring methods on segmentation 

should be designed to reduce the duplication problem. The segmentation of the Project Plumage 

dataset retains spatial information of plumage colours, which could be used to further quantify 

plumage patterns (Van Belleghem et al. 2018) across broad avian species. This would allow, for 

example, studies of the evolution of camouflage patterns (Troscianko et al. 2016; Stevens et al. 

2017). 

An example where segmentation captures more colour information than patch-based measure 

is the convex hull volume rank for male Amazona albifrons (224th for the segmentation data, 
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515th for the patch data among 7,873 male species). Here, the head has four distinct colours in 

the human visible spectrum (blue, green, red and white). However, the patch method only 

measures the average value in the crown patch, which fail to capture colour diversity in the head, 

while the segmentation method captures the extent of the whole head. 

3.4.3 Possible improvements and application suggestions 

Biologists should choose methods within their knowledge to improve deep learning results. 

Normally, better deep learning model architectures generate more accurate results. However, 

designing networks requires a lot of mathematical and statistical expertise. Finding an optimal 

hyperparameter configuration on a wider hyperparameter space can potentially increase model 

accuracy but tuning hyperparameters is a tedious task. The trade-off between segmentation 

accuracy and expertise or time may not fit the goal of phenotyping museum collections. Ways of 

improving segmentation accuracy that are feasible and easy to apply for biologists include 

manual correction and post-processing on predictions, which are intuitive and easy to apply. A 

manual checking and editing workflow is a feasible step for the optimisation (see Chapter 2). 

Images can be prioritized for checking, for example by checking those from high error rate orders 

first. The difference between eroded and dilated segmentations (Supplementary Figure 6.2.5) 

have shown that segmenting inside the plumage tended to be more similar to the ground truth. 

Image erosion can be applied as a post-processing method to make more conservative 

segmentations. Therefore, increasing the possibility of placing segmentations inside the plumage 

area. However, the use of automated processes such as this should be used with caution and 

may sacrifice some IOU and recall to improve precision. 

Globally, biological and museum collections represent a huge and relatively underused resource. 

My study demonstrates that segmenting images using deep learning is a powerful and promising 

approach for high-throughput data extraction on collections. Projects, like Project Plumage 

(122,610 images) require a large amount of time and resource to digitise collections often using 

highly standardised setups and manually labelling (5,094 images in the Project Plumage analysis 

presented here). The results in section 3.3.4.2 and 3.3.4.3 (results about the size and quality of 

the training data) implied that it is possible to lower criteria without sacrificing a great deal in the 
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segmentation accuracy. For setting up new projects, I therefore recommend pilot studies 

digitising a small number of images with flexible imaging setups followed by manually segmenting 

images to create the labelled dataset, then training and evaluating the model using this dataset. 

If deep learning results are reliable and usable, continue with relaxed pipelines, which can save 

time and resources. Otherwise, iterate with a higher quality standardized digitising setup and 

more labelled training images until predictions are accurate enough or the model performance 

stops increasing. 

3.5 Conclusion 

With the help of deep neural networks and the growth of large-scale biological data, it is possible 

to develop a high-throughput segmentation pipeline on digitised data. Deep learning can 

segment bird specimen photos accurately, while other classic segmentation methods can not, at 

least on the data assessed here. The colour information extracted from the Project Plumage data 

is accurate enough to use in analysis and could be further optimised with time-saving checking 

and correction steps. Here I demonstrate the utility of the segmented colour data from Project 

Plumage by visualising plumage colour diversity across species on a global bird phylogeny and 

showing that plumage colour diversity has strong phylogenetic signals. 
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Chapter 4 PhenoLearn: A software package and 

workflow for annotating digital images of biological data 

Abstract 

Measuring phenotypic traits on digitised data is becoming more and more common in ecological 

and evolutionary studies. Due to the number of museum collections and requirements from 

biological questions (e.g. macroevolution and comparative studies), collection digitisation can 

generate large scale datasets. Measuring traits on digital images normally requires annotations 

(e.g. landmark points). Placing annotations accurately with high-throughput pipelines is 

important to shorten the time span of a project. Deep learning is state-of-the-art for predicting 

points and segmentations on images automatically and has great potential to be applied to many 

digitised natural history datasets which would otherwise take extensive human effort to measure. 

I introduce PhenoLearn, an open-source image analysis tool to apply deep learning on digitised 

biological specimens. PhenoLearn currently supports the placement of points and the 

segmentation of objects within images. Users can use the software to annotate images and 

create training sets, which are used to train deep learning models. Models can be evaluated and 

then selected to predict annotations for whole datasets. PhenoLearn also has features to review 

images and predictions with high efficiency. PhenoLearn has a user interface to visualised 

through these functions, which reduce the expertise of deep learning to use it. Along with its 

deep learning based pipeline, PhenoLearn may be used to place annotations on any image 

dataset according to the needs. Here I describe the main features of PhenoLearn and use it to 

place landmarks on photos of shells of the marine gastropod genus Littorina. I use the landmarks 

to compare deep learning with manual landmarking in detecting morphological differences 

between two shell ecotypes (‘crab’ vs ‘wave’). 
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4.1 Introduction 

Measuring traits on digitised specimens is increasingly used to phenotype specimens for a range 

of tasks. Similar to analysing medical imaging data using annotations like points and 

segmentations (Balafar et al. 2010; Mharib et al. 2012), studies have used annotations to 

measure phenotypic traits on digitised specimen data such as images (Zelditch et al. 2015; Chang 

and Alfaro 2016; Ravinet et al. 2016; Cooney et al. 2019) and 3D scans (Cooney et al. 2017; Felice 

and Goswami 2017; Giacomini et al. 2019). Digital imaging allows rapid and non-invasive 

measurements on natural history collections and can be used to make detailed image 

annotations, including points, polygons (e.g. bounding boxes), and segmentations, which can 

mobilise collections for biological analyses. Digitising specimens and mobilising datasets are two 

major goals to utilise the full potential of natural history collections (Blagoderov et al. 2012). 

Although there are many specimens yet to be digitised (an estimated 1.2-1.9 billion specimens in 

natural history collections globally from Ariño 2010), new workflows and techniques, like the tray 

scanning system (Blagoderov et al. 2010), whole drawer imaging (Mantle, la Salle, and Fisher 

2012; Holovachov, Zatushevsky, and Shydlovsky 2014) and automatic metadata recognition 

(Heidorn and Wei 2008; Drinkwater, Cubey, and Haston 2014) have increased the speed of 

digitisation. While placing annotations on digitised collections manually can be time-consuming, 

especially for datasets at a macroevolutionary-scale. Robust, high-throughput data extraction 

(e.g. phenotyping or trait measurements) pipelines are necessary. 

The most common way to place annotations is by placing them visually with the help of 

interactive software tools. For example, Fiji, a distribution of the opensource software ImageJ, is 

a powerful toolbox for biological image analysis (Rasband and others 1997; Schindelin et al. 2012). 

Users can annotate images along with image processing, analysis and visualisation using a 

straightforward user-interface. Users can also write and contribute plugins for custom methods. 

Other popular annotation tools such as LabelIMG (Tzutalin 2015) are easy to install, user-friendly 

and open-source. Web-based annotation tools, such as VGG image annotator (Dutta and 

Zisserman 2019), are also increasingly popular. Web-based applications make crowdsourcing 

annotation possible. For example, Amazon Mechanical Turk has been used to landmark images 
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of fish (Chang and Alfaro 2016), while citizen scientists have helped to place landmarks on 

thousands of 3D bird beak scans (Cooney et al. 2017) and to identify phenological states of more 

than 7000 thousand herbarium specimen images (Park et al. 2019). 

Annotation opens up a wide range of scientific enquiry. For examples, point placement is perhaps 

the most commonly used annotation and can measure the exact pixel location on images. Point 

annotations can be used as landmarks to identify morphological features on specimens such as 

homologous point (Adams, Rohlf, and Slice 2013; Bookstein 1991). In Chapter 2 I used the point 

to locate body regions to measure colour. Examples of large scale studies (i.e. more than 10 

landmarks on hundreds to thousands of images) that used points to measure phenotypic traits 

are listed in Table 4.1. Other studies also used polygons to measure focal regions, for example, 

studies have placed more than ten thousand polygons on bird images to measure plumage 

colours of body regions (Dale et al. 2015; Cooney et al. 2019). Placing one polygon normally takes 

a longer time than placing a point, as points are basic components for polygons (i.e. points need 

to be placed as vertices). Segmentation is a commonly used method to annotate regions of 

interest in medical images like cells (Meijering 2012; Xing and Yang 2016), brains (Balafar et al. 

2010) and livers (Mharib et al. 2012). Segmentation has also been used in phenotyping live plant 

photos (Minervini et al. 2014; Scharr et al. 2016). My previous chapter (Chapter 3) has segmented 

the whole bird plumage area on photos to measure the plumage colour diversity of birds. 

Segmentation is powerful to capture region-based features (e.g. plumage areas). However, the 

applications and many aspects of segmenting digitised specimen images for phenotypic 

measurements are yet to be explored.  
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Table 4.1. Studies and datasets that have used point annotations to measure traits on digitised specimens. 

Dataset Annotations Reference 

741 images of lanternfish specimens taken in 
lateral view. 

Measure the overall body shape: 

• 23 Landmarks 

(Denton and 
Adams 2015) 

1677 images of squirrel mandibles taken in 
lateral view. 

Measure the mandible shape: 

• 14 Landmarks 

(Zelditch et 
al. 2015) 

7044 images of sigmodontine rodents (2402 of 
skulls taken in ventral view; 2401 of skulls taken 
in lateral view; 2241 of mandibles taken in 
lateral view). 

Measure the skull shape: 

• Ventral view of skulls: 56 
landmarks 

• Lateral view of skulls: 19 
landmarks 

Measure the mandible shape: 

• lateral view of 
mandibles: 13 landmarks 

(Maestri et 
al. 2017) 

359 images of lizard heads taken in dorsal view. Measure the head shape: 

• 28 landmarks 

(Lazić et al. 
2015) 

5,631 images of bird specimens  Locate the calibration standards: 

• All views: 5 points 

(Cooney et 
al. 2019) 

5,094 images of bird specimens (1,698 images 
taken for dorsal, lateral and ventral view) 

Locate the calibration standards: 

• All views: 5 points 
Locate body regions: 

• Dorsal view: 5 points 

• Lateral view: 2 points 

• Ventral view: 3 points 

Chapter 2 

 

The types of datasets highlighted above often need thousands or tens of thousands of 

annotations. The factors of time and human work may even limit the ideal dataset sizes for some 

studies. If it is possible to find ways to move away from completely manual annotation, the data 

contained within digital images can potentially be unlocked much more efficiently. The recent 

success of deep learning networks for many imaging processing has made the possibility of high-

throughput placement of accurate annotations on digital specimen images a reality. Deep 

learning networks (Insafutdinov et al. 2016; Newell et al. 2016) have placed point annotations 

accurately to identify human joints and body parts on human pose estimation datasets (Andriluka 

et al. 2014). Semantic segmentation methods (Chen et al. 2017b, 2018) have generated reliable 

results on segmenting images into 21 categories (Everingham et al. 2015). Network architectures 
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have been designed to segment biomedical images (Ronneberger et al. 2015; Li et al. 2018). My 

previous works have applied deep learning networks to place points (Chapter 2) and 

segmentations (Chapter 3) on digitised bird images. Deep learning predictions were accurate for 

downstream analyses, and I have used predictions to calculate colour diversities of birds across 

more than 7,000 species for the overall bird and individual regions. 

Taken together, these examples show the potential for deep learning in high-throughput 

phenotypic measurements on large specimen digitisation datasets. Tools such as MATLAB 

(MATLAB 2018) and Supervisely (https://supervise.ly/) provide users with a workflow for 

annotating a part of the dataset as the training set, selecting a deep learning model from a model 

pool for training, and predict the whole dataset using the trained model. No coding is involved 

and the tools are accessible but limited to the set of provided deep learning tools. 

There are many computational tools and packages for phenotypic analysis. Tools like geomorph 

(Adams and Otárola-Castillo 2013) and MorphoJ (Klingenberg 2011) quantify, analyse and 

visualise morphological and shape information using landmarks as the input (Adams and Otárola-

Castillo 2013). R packages like pavo (Maia et al. 2013) and patternize (Van Belleghem et al. 2018) 

visualise and analyse colours and patterns using pixel values from images as the input. With these 

computational packages, annotations can be converted to meaningful traits quickly. Therefore 

the step of measuring digitised datasets is crucial between digitisation and phenotypic analysis. 

A robust, high-throughput data extraction (e.g. phenotyping or trait measurements) pipeline can 

bring the whole process from the digitisation to datasets of specimen phenotypes faster. 

To enable rapid annotations from large digitisation datasets (i.e. more than thousands of images), 

I aimed to build a standalone, open-source and user-friendly software tool for biologists, which 

implements an innovative phenotypic annotation workflow using deep learning. Here I introduce 

PhenoLearn, an image analysis tool for deep learning on digitised biological (and other) 

specimens. The PhenoLearn software is designed for use after the initial data digitisation (imaging) 

step to annotate data using either the point placement or segmentation prior to user-specific 

data analyses as shown in Figure 4.1. PhenoLearn’s functions enable users to (i) build a training 

set by manual labelling (for the current version, annotations include the point and segmentation); 

https://supervise.ly/
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(ii) train deep learning models, and use the best-performed model to predict the whole dataset; 

(iii) review and correct the predictions to increase accuracy. I first described the core functionality 

of PhenoLearn. I then used PhenoLearn to locate landmarks on photos of the shells of the marine 

gastropod genus Littorina. Finally, I used the output from PhenoLearn to build a shell-shape 

morphospace and tested for environmental variation in shell shape relating to the dominance of 

selective processes of ecology (crab predation) compared to the environment (wave action) 

following Ravinet et al. (2016). 
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Figure 4.1. The workflow from digitisation to phenotypic analysis and major modules of PhenoLearn. 

 

4.2 Software Description 

Below I describe the interface and main analytical components of a typical PhenoLearn workflow 

which covers annotating images, using deep learning to predict annotations and reviewing 
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predictions. PhenoLearn was written in Python 3.7 and tested on Mac OS and Windows 10. Deep 

learning methods were implemented using TensorFlow (Abadi et al. 2016), a machine and deep 

learning library. I provide a more detailed exploration of the software as the user manual in 

section 6.4. 

4.2.1 User interface 

The main user interface for PhenoLearn is shown in Figure 4.2a. PhenoLearn has three main 

viewing panels: the file panel (Figure 4.2a.iv), the visualisation panel (Figure 4.2a.v) and the 

annotation panel (Figure 4.2a.vi). The file panel shows the data at the file level and each image 

in the dataset is listed in this panel. After the user selects a file, the image is displayed in the 

visualisation panel, and it allows users to interact with the image and place annotations. The 

visualisation panel also has a review mode (Figure 4.2c) that views multiple images increasing the 

efficiency of reviewing existed annotations. The review assistant can be used to filter images for 

reviewing (Figure 4.2a.iv.ii). The annotation panel shows annotation details and has two tabs 

(Figure 4.2a.vi.i and Figure 4.2a.vi.ii) for two types of annotations (points and segmentations), 

and each tab lists the names of existing annotations. The property editor (Figure 4.2a.vi.iii) below 

the annotation list shows properties of the selected annotation and allows users to change them 

as required. The menu (Figure 4.2a.i) has functions such as loading, saving annotations and 

zooming images. The mode bar (Figure 4.2a.ii) contains modes such as viewing and labelling 

images. The tool bar (Figure 4.2a.iii) shows tools for annotation (e.g. paint or erase segmented 

regions). The status bar (Figure 4.2a.vii), at the bottom of the window, shows the status such as 

the pixel coordinates and RGB value of the mouse location on the image. Functions that include 

deep learning are displayed in another interface, which is mainly used to read configurations for 

training (Figure 4.2b), evaluation and prediction.  
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Figure 4.2. The user interface of PhenoLearn. (a) The main interface consists of (i) Menu; (ii) Mode bar; 

(iii) Tool bar; (iv) The file panel displays image names in (iv.i) the file list; (iv.ii) The review assistant is used 

in reviewing images and is located in the bottom of the file panel; (v) The visualisation panel shows the 

selected image and its annotations; (vi) The annotation panel lists point names in (vi.i) the point tab. (vi.ii) 

The segmentation tab is the alternative tab of the annotation panel. Properties of the selected annotation 

are listed in (vi.iii) the property editor. (vii) The status bar shows information about the image. (b) The 

interface for configuring the training process. (c) The interface when the review mode is activated. The 

visualisation panel displays multiple images and their annotations. The annotation panel is hidden and the 

review assistant shows specimen characteristics that can be used to filter images. 

4.2.2 Annotating digitised specimens 

A high-quality training set is essential for deep learning. Although there is not a defined gold 

standard for the size of the training set, training sets of many well-known deep learning studies 

include thousands of images (Szegedy et al. 2014; He et al. 2016; Newell et al. 2016; Chen et al. 

2018). Studies have shown that the size of the training set normally has a positive effect on the 

deep learning model accuracy (Joulin et al. 2016; Hestness et al. 2017; Sun et al. 2017). However, 

in Chapter 3, I was able to achieve high-quality segmentations on photos of bird specimens using 

about 200 training images. In any situation, the training set should be representative of the range 

of image types in the full data to maximise the quality of deep learning predictions. Random 

sampling is a common way to sample training images to avoid bias training sets.  

PhenoLearn (www.github.com/EchanHe/PhenoLearn) provides tools to efficiently create and 

visually check training sets for the point annotation and segmentation of 2D images (See software 

manual and Supplementary Figure 6.3.1 for full instructions on the annotation process). The 

annotation process is started by selecting a folder containing the training images. The user can 

then view the images and add annotations (Supplementary Figure 6.3.2a shows an example of 

adding a point and Supplementary Figure 6.3.2b shows an example of adding segmentation 

areas). Each annotation (i.e. individual point or segmentation) is given a user-defined name that 

can be descriptive or simply a set of unique numeric identifies. Users can add any number of 

annotations and can also edit and delete points or segmentations for each image (Supplementary 

Figure 6.3.2c shows an example of deleting a point). The annotation file is saved as a JSON file 
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with image and annotation details stored using dictionary and array data types (see section 6.3.1 

and Supplementary Figure 6.3.3). An annotation process can be continued at any time by loading 

a saved annotation file from an unfinished process. 

The two deep learning networks used in PhenoLearn, Stacked Hourglass (Newell et al. 2016) and 

DeepLabV3+ (Chen et al. 2018), take input images under a uniform resolution. Image scaling and 

padding (i.e. add edges to an image to change its resolution) are commonly applied to make 

images into the same resolution (Simonyan and Zisserman 2014; He et al. 2016; Chen et al. 

2017b). Therefore, images of a dataset that are going to be used in PhenoLearn should have a 

uniform resolution, either obtained directly from the digitisation or from unifying (e.g. image 

scaling) the resolution-varied images. 

4.2.3 Applying deep learning models 

Labelled images from the training set are used as the input to train deep learning models. I used 

two deep learning networks in PhenoLearn, (i) Stacked hourglass for predicting landmark points 

(Newell et al. 2016)s, and (ii) DeepLabV3+ for segmentations (Chen et al. 2018). These two 

networks performed well on predicting keypoints and segmentations on bird specimen photos in 

Chapter 2 and Chapter 3.  

Hyperparameters define how a model is trained. A hyperparameter is a parameter that is set 

before the training (e.g. the learning rate), while parameters are referred to as parameters in the 

deep neural network which will be updated through the training process. Tuning 

hyperparameters and training different models can be time-consuming. Here, PhenoLearn only 

allows users to change some of the key hyperparameters such as the learning rate, input 

resolution, and training length (tuneable hyperparameters are listed in Supplementary Table 

6.3.1). These hyperparameters can be entered in a form as shown in Figure 4.2b. Input and output 

options such as the annotation file (see annotation file in Supplementary Table 6.3.2) also need 

to be specific in order to start training (see software manual for the detail of setting up the 

training process). The training takes many iterations to optimise network parameters well. For 

each iteration, the network takes the input, generates the prediction, and calculates the loss 

function. The loss function shows the difference between the ground truth and predictions. Then, 
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gradient descent (Ruder 2016) using the gradient of the loss function reduces the loss and 

optimise network parameters. The loss is an important metric to measure how the network is 

trained and whether the training is converged (i.e. the point at which the degree of loss does not 

decrease further over long time periods).  

During the training, users can view the loss of the model through Tensorboard (a model 

visualisation tool from Tensorflow; www.tensorflow.org/tensorboard) using the outputted log 

file (see log file in Supplementary Table 6.3.3). The result file (i.e. predicted annotation file), 

performance file (evaluation result using the metrics introduced later in this section) and 

checkpoint file (to restore the trained model in the predicting process) are generated once the 

training finishes (see the detail of these files in Supplementary Table 6.3.3). The result and 

performance files can be saved in CSV spreadsheet format, which can be used conveniently by 

other tools (e.g. R or MATLAB) for evaluations or analyses.  

PhenoLearn also has build-in evaluation functions to evaluate results from different models. A 

trained model can be assessed by evaluating how predictions of the validation set are different 

from the expert labelled (ground truth) annotations. I used pixel distance and Percentage of 

Correct Keypoints (PCK) with a user-defined threshold in evaluating points prediction. PCK is the 

percentage of predictions that have pixel distances under a given threshold (Andriluka et al. 

2014). The PCK is an intuitive metric, if a good threshold is selected. The intersection over union 

(IOU), precision and recall are used to evaluate the segmentation (see section 6.3.2 for detail of 

these metrics). Precision shows how many predicted areas are correct. Recall shows how many 

correct areas are predicted. IOU is a metric that takes account of both precision and recall. The 

mean IOU (mIOU) of all segmentation classes is considered the best metric for measuring the 

segmentation performance (Long et al. 2015; Chen et al. 2017b). After comparing the evaluation 

results of all trained models, the best model is then used to generate predictions for the whole 

dataset (see software manual for the detail of setting up the evaluation and predicting process. 

Supplementary Figure 6.3.4a and b show interfaces of evaluation and predicting. Supplementary 

Figure 6.3.5a shows an example of comparing results from different models). 

https://www.tensorflow.org/tensorboard
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The evaluation can also assess whether specimen characteristics (if provided, see metadata file 

in Supplementary Table 6.3.2) affect accuracy. The relation between specimen characteristics 

and the prediction accuracy helps users to understand datasets better. If a characteristic is 

numerical (e.g. body mass or length), the correlation is calculated between the characteristic and 

accuracy. For categorical characteristics (e.g. taxonomic ranks or ecological factors), boxplots are 

used to show differences among categories (an example is shown in Supplementary Figure 

6.3.5b). These results show how different specimen characteristics affect the prediction accuracy, 

and users can later use these variables to help the review process (see section 4.2.4), for example, 

only review images with certain characteristics. 

4.2.4 Reviewing the deep learning predictions 

Manual review and correction of predictions are not commonly used to improve deep learning’s 

accuracy. Investigators can accept the pure deep learning’s results based on the speed-accuracy 

trade-off between reviewing huge datasets (more than tens of thousands of images) and perfect 

results. An extreme situation arises in many real-time tasks that require excessively high accuracy 

(e.g. self-driving and facial recognition), where manual correction cannot be applied quickly 

enough to meet the real-time requirement. 

Some applications of machine learning to medical images require manual correction (Lustberg et 

al. 2018; Schlegl et al. 2018) but may also be useful in correcting predictions in a broader range 

of applications, including phenotyping digital natural history collections. Measurements should 

be as accurate as possible, because prediction errors will propagate to downstream analyses. 

Knowledge of the specimen characteristics can help to deal with the speed-accuracy trade-off by 

reviewing images that are likely to be incorrectly predicted based on these characteristics. For 

example, validation results of Chapter 2 and Chapter 3 have shown that the accuracies of some 

avian orders are lower than the average accuracy and would be priorities for error checking. I 

assume these orders will have low accuracies in the whole dataset (training sets are well selected 

to reflect the whole dataset). Images from these orders rather than all images are reviewed. 

Users can review predictions in PhenoLearn using the prediction file and the dataset folder. 

Reviewing all predictions one by one is not very efficient and can be a tedious job. PhenoLearn 
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provides a review assistant in review mode with the aim to increase review efficiency (see 

software manual and Supplementary Figure 6.3.6 for detailed instructions on the review process). 

The review mode displays multiple thumbnails and their annotations in the visualisation panel as 

shown in Figure 4.2e. Users can rapidly review predictions using the review mode and note the 

images with incorrect predictions using a checkbox. Selecting images with the checkbox defines 

them as a subset for detailed checking and correction. The checked images can then be viewed 

and any incorrect predictions can then be corrected, or can be simply discarded. The review 

assistant also allows users to review images preferentially (e.g. images with higher chances of 

having incorrect annotations) by organizing specimen characteristics, such as sizes, if such 

features are known (Supplementary Figure 6.3.2d). 

4.3 Application – morphology and ecotype in Littorina 

4.3.1 Data and labels 

I applied the pipeline introduced above to Littorina shell images to predict landmarks which are 

used to estimate the shell shape. I used the predictions from PhenoLearn to test the classic crab 

vs wave hypothesis on the effects of ecology on morphology (Butlin et al. 2014; Ravinet et al. 

2016). The hypothesis predicts that the morphology of Littorina shells reflects ecological 

differences in habitat (crab-rich or wave-swept intertidal habitats) that determine the dominant 

selection pressure. Crab dominated habitats are expected to be associated with large, thick shells, 

with a relatively small aperture and wary behaviour, whereas wave-swept habitats with low crab 

predation are predicted to be associated with small, thin shells, a relatively large aperture and 

bold behaviour (Johannesson et al. 2010). 

Shell images were provided courtesy of Prof. Roger Butlin and both labels and data collection 

protocols (outlined below) were provided by Zuzanna Zagrodzka (both Department of Animal 

and Plant Sciences, University of Sheffield). In each image, the shell was placed on a pink colour 

Play-Doh©  background, next to a 5-mm graph paper, with a label of shell ID on the side. All shells 

were imaged under a Leica M80 (8:1 zoom) microscope using a Leica MC 170 HD camera. The 

digitised images have different pixel resolutions (1280 x 960, 1944 x 1458, 2074 x 1556, 2592x 

1944, 5760 x 3840) and an example image is shown in Figure 4.3a. 
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As shown in Figure 4.3b, 15 morphometric landmarks (LMs) are placed on a shell following the 

configuration in Ravinet et al. (2016). The landmarks can be considered in two forms, 

independent and dependent. The landmarking rules are listed in  

Supplementary Table 6.3.4. Dependent landmarks require reference lines that are extrapolated 

from independent landmarks. The rules for placing reference lines are listed in Supplementary 

Table 6.3.5. Based on the landmarking rules, landmarks can be manually placed in four steps. The 

first step is placing five independent landmarks (LM1, LM2, LM3, LM4 and LM13). The second 

step is drawing Line1 and Line4. LM10 and LM11 can then be placed. The third step is drawing 

Line2 and Line3. LM5 and LM12 can then be placed. The fourth step is drawing Line5, Line6, Line7 

and Line8. LM6, LM7, LM8, LM9, LM 14, LM15 can then be placed. Inkscape was used to draw 

reference lines and tpsDig2 (Rohlf 2006) was used to place landmarks, and they are saved as TPS 

files. 

 

Figure 4.3. (a) An example of a digitised Littorina shell image. (b) The 15 landmarks and 8 reference lines 

are placed on a shell. 

4.3.2 Method 

A total of 681 labelled images were used in training. 544 images were used as training images, 

and the remaining 137 images were used as validation images. Images were first resized into a 

uniform resolution using bilinear image interpolation in OpenCV-python (a python computer 

vision library). The resolution of 2592 x 1944 was used as most of the images have this resolution. 
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Landmarks were scaled and converted into a CSV file that meets the input file standard in 

PhenoLearn and PhenoLearn was used to train the deep learning network. 

After comparing pixel distances of the validation set for models with different configurations, the 

model with the learning rate of 0.01 (0.001 and 0.0001 were also tested), the batch size of four 

(one and two were also tested) and input resolution scale of 5 (7, 8 and 10 were also tested) 

generated the most accurate result. The resolution scaling gave an image resolution of 518 x 388 

pixels (5 times smaller than 2592 x 1944 pixels). The data type was set to point, and the Stacked 

hourglass was therefore used as the deep learning network. 

I then used the trained model to predict landmark positions on another dataset (188 Littorina 

saxatilis specimen images) that has manually placed landmarks and where the specimens belong 

to one of two ecotypes: crab (N=100) or wave (N=88). This can be used to evaluate whether deep 

learning can separate crab and wave specimens in morphospace, as is expected from previous 

studies on manual landmarks (Butlin et al. 2014; Ravinet et al. 2016). The ecotype describes the 

dominant selection pressure based on the location of collection. Specimens in the crab ecotype 

are likely to be subject to crab predation, whereas specimens in the wave ecotype are exposed 

to regular strong wave action (Johannesson et al. 2010). These alternative selection pressures 

are predicted to drive shell shape. A subset of the images from the dataset was labelled a second 

time by the same expert. I compared the landmarks between the first and second labelling to 

estimate the human variance in labelling Littorina shells. Among the re-labelled images, 20 crab 

and 20 wave images were re-labelled. 

4.3.2.1 Inferring dependent landmarks 

The raw deep learning predictions learn and predict each landmark independently, as a result, 

the placement of some landmarks may not meet the landmarking rules (e.g. the line passing LM5 

and LM8 may not be parallel to the line passes LM12 and LM14). Shell outlines for the example 

data set have previously been estimated using thresholding methods to remove the pink 

background. I, therefore, implemented a landmarking generation algorithm to place dependent 

landmarks based on the independent landmarks and the shell outline using computational 

geometry (e.g. finding the tangent line and its intersection point to an outline; see Algorithm 1 in 
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section 6.3.5). Independent landmarks (LM1, LM2, LM3, LM4, LM10, LM11 and LM13) are used 

to calculate dependent landmarks and reference lines. Independent LMs that are on the shell 

outline (I refer as independent outline LMs, which are LM1, LM2, LM3, LM10 and LM13) are firstly 

optimized. The optimisation checks whether independent outline predictions are on the outline, 

and change locations of not-on-outline predictions to their closest points on the outline. 

Dependent LMs can be split into semi- and fully-dependent landmarks. Semi-dependent 

landmarks (LM6 and LM7) use their deep learning predictions as prior positions. The final 

prediction is generated based on the prior position and the landmarking rules (e.g. the final 

prediction of LM7 is the nearest location from deep learning prediction LM7 to Line5). Dependent 

landmarks (LM5, LM8, LM9, LM12, LM14 and LM15) are calculated using independent landmarks 

and reference lines. 

Stacked Hourglass (Newell et al. 2016) was used to predict independent and semi-dependent 

landmarks. The landmark generation algorithm was then applied to deep learning predictions to 

generate final landmark predictions. The assumptions for this algorithm are that deep learning 

predictions for the independent and semi-independent landmarks and the thresholding of the 

shell outline are sufficiently accurate to allow inference of the dependent landmarks. 

The main drawback of this algorithm is that, if I follow the manual rules, it is impossible to 

automatically generate some landmarks (e.g. LM6, LM7 and LM11) and lines (e.g. Line1) that are 

related to the lip, operculum and aperture. This is because the manual landmarking configuration 

does not include any information of outlines of the lip, operculum and aperture. For example, 

Line1 is defined as passing LM1 and touching the inner margin of the aperture on the left and is 

therefore impossible to calculate using computational geometry without the operculum outline. 

Line1 is then used to define the LM10 on the outline of the shell. To solve this problem, they were 

generated in a different way. Specifically, I defined LM1 and LM10 as independent landmarks and 

calculate Line1 by connecting LM1 and LM10 in the algorithm. This does not guarantee that Line1 

touches the operculum, but does allow geometry-based placement of other lines and landmarks. 

A future step of solving this drawback is to generate accurate operculum and lip outlines 

automatically. It is possible, for example, to use PhenoLearn to generate operculum and lip 
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segmentations if suitable training data are available. Here, I refer to the processed deep learning 

result or GeomDL as the outcome of applying the geometric landmark generation algorithm to 

the raw deep learning result. 

Besides evaluating the processed deep learning result, I also assessed the causes of error in the 

placement of dependent landmarks. The dependent LM error of the processed deep learning 

result can be caused by inaccuracy of the independent LM predictions or by the placement of 

landmarks with the landmark generation algorithm. The latter would occur if the algorithm places 

dependent LMs differently to a manual implementation of the rules. This is most likely if the 

threshold outline differs from the human perception of the outline of the shell (e.g. LM12 can be 

placed differently even if Line1 is the same, as humans and machine learning may recognise the 

intersection between Line3 and the shell differently). The additional assessment gives four 

alternative sets of results to compare among themselves and with GeomDL. Alternative result 1 

is the raw deep learning result (RawDL). Alternative result 2 is the processed deep learning result 

but with the predicted LM10 replaced with the ground truth LM10 (GeomDL_10). Alternative 

result 3 is the processed deep learning result but with the predicted LM1 and LM10 replaced with 

the ground truth LM1 and LM10 (GeomDL_1_10). Alternative result 4 is the result of applying the 

algorithm to the ground truth independent landmarks (I refer to this as the processed ground 

truth or GeomGT). The algorithm generates correct dependent LMs if both the independent LMs 

and the shell outline are correct. Similarly, if the manually placed independent landmarks are 

correctly placed then GeomGT has, in theory, correct LMs. The comparison of GeomGT to the 

raw ground truth result shows if the dependent landmark differences are due to placements of 

manual landmarks or to the geometric landmark generation algorithm. In addition, I compared 

GeomDL to GeomGT, which shows whether GeomDL is closer to GeomGT or to the raw ground 

truth. 

4.3.2.2 Morphospace 

After training and selecting the best model, I used the model outputs described above to 

generate landmark predictions, output as a CSV file. To evaluate GeomDL and alternative results, 

I calculated pixel distances (under the original image resolution of 2592 x 1944) of landmarks and 
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compared morphospaces to the ground truth. Although the pixel distance is a straightforward 

metric to measure prediction accuracies, it may not reflect accuracies closely on each individual 

shell as sizes of shells varied among images. To control the effect from the shell size, I used PCK 

with proportions of each shell’s height (the distance between LM1 to LM10) as thresholds. I used 

5% and 10% of the shell height (PCKht@0.05 and PCKht@0.1). This is similar to PCKh (h stands 

for the head) used in human pose estimation tasks (Andriluka et al. 2014; Newell et al. 2016), 

which uses a proportion of the head of each human as the threshold to measure the correct 

percentage. 

TPS files were converted from CSV files, which can be used as inputs for geometric morphometric 

analyses (Gower 1975; Bookstein 1991). Landmarks were aligned using Generalized Procrustes 

Analysis (GPA). Principal component analysis (PCA) was then applied on aligned landmark 

coordinates to summarise the shape variation. GPA and PCA were applied to landmarks from the 

ground truth and predicted results (a total of 16,920 landmarks from six sets of landmarks). This 

ensures that all landmarks are arrayed on the same set of PC axes, which ensures the PCs and 

morphospaces of the six sets of landmarks (the ground truth, GeomDL and four alternative 

results) are directly comparable. I then visualised the morphospaces to assess how well the 

alternative landmarking methods (e.g. deep learning with the landmark generation algorithm) 

differentiate between crab and wave ecotypes. These steps were run using the R package 

Geomorph (Adams and Otárola-Castillo 2013). 

4.3.3 Results 

The pixel distances and correlations of PC1 to PC9 between the ground truth and re-labelled 

landmarks of a subset of the validation dataset (N=40; crab=20, wave=20) are shown in 

Supplementary Figure 6.3.7. These results of PC1-9 provide a baseline expectation of variation in 

landmarking with which to compare the machine learning results. The landmark with the largest 

pixel distance is LM15 (~30 pixels). The remaining landmarks have pixel distances less than 20 

pixels as shown in Supplementary Figure 6.3.7a. The first 9 principal component (PC) axes explain 

more than 95% of the total variation in shell shape, and their correlations are shown in 

Supplementary Figure 6.3.7b. The majority of correlation coefficients are greater than 0.8. Only 
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PC2 has correlation coefficients below 0.8. These results suggest that variation in manual 

landmarking is minor.  

I then used the best model to predict the validation dataset (N=188; crab=100, wave=88) and 

generated results such as GeomDL. Landmark accuracy, measured as pixel distance between 

landmark positions from GeomDL and the ground truth (manually labelled landmarks) varied 

from ~9-60 pixels. LM14 was the worst predicted landmarks for GeomDL, with an average of 59.8 

pixels between the predicted and the ground truth position (4.9% of the average shell height 

which is 1,214 pixels measured from LM1 to LM10). LM2 was the best predicted LM scoring the 

pixel distance of 9.9 (0.8% of the average shell height). Dependent LMs generally had larger pixel 

distances than independent ones (Figure 4.4). 

Among the independent LMs, those on the outline (LM1, LM2, LM3, LM10 and LM13) were 

predicted more accurately than those that are not on the outline (LM4 and LM11) as shown in 

Figure 4.4a. The optimisation of shell outline LMs improved accuracy for LM2 and LM13. The 

RawDL were more accurate than GeomDL in all dependent LMs besides LM15, which highly 

depends on LM11 (the worst LM among independent LMs). GeomDL_10 and GeomDL_1_10 did 

not improve dependent LM accuracy comparing to GeomDL as shown in Figure 4.4b. The 

difference between GeomDL and GeomGT is smaller than the difference between GeomDL and 

the raw ground truth result (grey and dark blue plots in Figure 4.4b). Dependent LMs (except for 

LM15) of GeomGT were closer to GeomDL than to the raw ground truth (light yellow and dark 

blue plots in Figure 4.4b). 
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Figure 4.4. Boxplots of per-landmark pixel distance of different comparison groups. (a) Independent 

landmarks; (b) Dependent landmarks. Groups of pixel distance result: the ground truth vs GeomDL (grey); 

the ground truth vs RawDL (dark yellow); the ground truth vs GeomDL_10 (light blue); the ground truth 

vs GeomDL_1_10 (green); the ground truth vs GeomGT (light yellow) and GeomGT vs GeomDL (dark blue). 

Significance symbols above the brackets in (b) show the comparison between GeomGT vs GeomDL and 

the ground truth vs GeomGT. Rest of the symbols are comparison between the ground truth vs GeomDL 

(grey plots) and other groups (ns: p > 0.05; *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****: p <= 0.0001). 

 

PCK values were evaluated for three groups, (i) the ground truth vs GeomDL, (ii) the ground truth 

vs RawDL and (iii) GeomGT vs GeomDL (Supplementary Table 6.3.6). More than 98% of the 

predicted landmarks (N=2,820) were located with 10% of shell heights. PCKht@0.05 of the 

ground truth vs GeomDL had the lowest value (85.2) among the three groups. However, when 

comparing GeomDL to the GeomGT, the overall PCKht@0.05 was 93, as PCKht@0.05 of the most 

dependent LMs were improved greatly. The PCK result shows that the majority of the predictions 
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were located within 5% to 10% of their shell heights, suggesting that predictions were reliably 

accurate. 

I generated principal components based on Procrustes aligned coordinates to quantify the 

morphospace. The first four PC axes explain 80% of the total variation, and PC points of these 

axes of the ground truth and GeomDL are shown in Figure 4.5. PC1 is positively related to the 

width of the operculum. PC2 is positively related to the length of the aperture and negatively 

related to the proportion of the operculum to the whole shell. PC3 mainly explains the distance 

from LM11 to the operculum. PC4 is positively related to the distance of the end of the suture 

(LM4) to the shell outline. PCs between crab and wave are distributed similarly in the 

morphospace in both the ground truth and GeomDL. In particular, there was a clear separation 

between crab and wave on PC2, where crab specimens had large PC2 values and wave specimens 

had small PC2 values. 

Most of the distributions between crab and wave of the first eight PC axes (explain 93% of the 

variation) were similar among the ground truth and all tested results (see Supplementary Figure 

6.3.8 and Supplementary Figure 6.3.9). The PC4 values between crab and wave of the six results 

were not significantly different from each other except for RawDL. The PC6 values between crab 

and wave were not significantly different except for the ground truth. 

All PCs of GeomDL correlated better with GeomGT than with the raw ground truth as shown in 

Supplementary Figure 6.3.10. GeomGT and the ground truth were highly correlated in PC2 

(R=0.99). GeomDL_10 and GeomDL_1_10 did not improve correlations with the ground truth 

much. Among GeomDL, RawDL, GeomDL_10 and GeomDL_1_10, RawDL had the best 

correlations with the ground truth in PC1-6. 
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Figure 4.5. Distributions of PC1-2 and PC3-4 from the ground truth and GeomDL (N=188. 100 crab 

specimens and 88 wave specimens). Grey points are specimens with the crab ecotype. Yellow points are 

specimens with the wave ecotype. 
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4.3.4 Littorina discussion  

The deep learning result (GeomDL or RawDL) is able to detect the difference between the two 

ecotypes along multiple axes and this is consistent with trends from the ground truth data (Figure 

4.5, Supplementary Figure 6.3.8). Crab and wave specimens were split clearly along multiple PC 

axes (PC1, PC2, PC3, PC7) with a strong separation on PC2. Most of the crab ecotype shells had 

large PC2 values, which describes a longer spire and smaller aperture than small PC2 values 

associated with wave-ecotype shells. Studies using the same landmark setup have shown that 

crab ecotype shells tend to have a smaller aperture and higher spire than wave ecotype ones 

(Butlin et al. 2014; Ravinet et al. 2016). Morphospaces from these studies also separated two 

ecotypes well. Therefore, a well-trained deep learning landmark prediction can provide 

meaningful results in geometric morphometric analyses. Although the biological conclusions are 

robust to the landmarking method, the different approaches do yield differences in the position 

of specimens within the morphospace. 

Deep learning predicts landmarks with distinct features well (e.g. the shell apex). The overall 

average pixel distance of GeomDL to the ground truth is 31.5 (2.5% of the average shell height). 

In general, independent outline LMs were predicted more accurately than independent LMs that 

are not on the outline. LM11 is the worst predicted independent LM, because it is not on the 

outline and it has fewer features than LM4 (the end of the suture is distinct in shells) for a deep 

learning network to learn and predict. The PCs of GeomDL are consistently positively correlated 

with PCs created from the ground truth. The high correlation in PC2 axis is especially important 

(PC2 has the highest correlation among PC1-8, R=0.88. See Supplementary Figure 6.3.10a), 

because it is the axis that most strongly separates the crab and wave (Figure 4.5).  

Errors of GeomDL can be caused by inaccurate deep learning predicted independent LMs, which 

will generate inaccurate dependent LMs. To test whether it is the main cause, I tried to increase 

the accuracy of Line1 (a line passes LM1 and LM10). Line1 is the most important reference line 

used in the algorithm for generating dependent LMs. GeomDL_10 (using the ground truth LM10 

instead of deep learning’s) and GeomDL_1_10 (using the ground truth LM1 and LM10 instead of 

deep learning’s) were compared to the ground truth. However, an accurate Line1 did not improve 
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the geometrical and morphological differences, as shown in the evaluation of pixel distances 

(Figure 4.4) and PC correlations (Supplementary Figure 6.3.10c and d). 

The error can also be caused by the landmark generation algorithm. The landmark generation 

algorithm seems to introduce error in the dependent LM generation. Pixel distances of 

dependent LMs between GeomGT and the raw ground truth have shown that dependent LMs 

placed by human and the algorithm were geometrically different (light yellow plots in Figure 4.4b). 

Their pixel distances were similar to distances between GeomDL and ground truth (grey and light 

yellow plots in Figure 4.4b). The raw ground truth and GeomGT were highly correlated in PC2 

(R=0.99) which primarily describes the length of the aperture, and is mainly defined by 

independent LMs (LM1, LM2, LM3 and LM13). Correlations of other PCs were not correlated as 

well as PC2, only PC7 and PC8 had R greater than 0.85 (Supplementary Figure 6.3.10e). 

The reason that the algorithm generates dependent LMs differently from human maybe because 

outlines detected by humans differ from outlines from thresholding, which will cause intersection 

points to be placed differently. Outlines within a small range of pixels can all be considered 

correct. Supplementary Figure 6.3.11 shows an example of unprocessed and processed ground 

truth landmarks. Landmarks (except for the processed LM6 and LM7) and reference lines are 

correctly placed based on the rules ( 

Supplementary Table 6.3.4 and Supplementary Table 6.3.5). The LM6 and LM7 (both semi-

dependent LMs) of the processed ground truth (GeomGT) are defined as the nearest points on 

Line5 to their raw positions (see Algorithm 1). In Supplementary Figure 6.3.11, they do not match 

the landmarking rule (LM6 and LM7 should be on the lip edges). Currently, this landmark placing 

algorithm is a reliable way to ensure LM6 and LM7 are placed on Line5. If the outline of the lip is 

provided, it is possible to use intersection points between Line5 and the lip outline as the LM6 

and LM7 (LM6: right intersection, LM7: left intersection). In addition, variations seem to 

accumulate through the algorithm steps. LM8 has a larger pixel distance than LM5, and LM14 has 

a larger pixel distance than LM12 (see Figure 4.4). LM5 and LM12 are first generated dependent 

LMs that are used to calculate LM8 and LM14 (see Algorithm 1). PC correlations between 

GeomGT and the raw ground truth were not perfectly correlated (e.g. the R-value of PC1 is 0.74, 
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see Supplementary Figure 6.3.10e) suggesting that the geometric landmark generation algorithm 

introduces variances in placements of dependent LMs. 

Since the landmark generation algorithm introduces variations on dependent LMs’ positions. It 

is more sensible to compare dependent LMs and morphospaces of GeomDL to GeomGT than to 

the raw ground truth. The evaluation results showed that differences between GeomDL and 

GeomGT were generally smaller than differences between GeomDL and the raw ground truth. 

The average pixel distance of GeomDL vs GeomGT is 19.67 (GeomDL vs the ground truth is 31.51) 

and 93.0% of the predictions were located within 5% of the shell heights. Dependent LM pixel 

distances (except for LM15) of GeomDL vs GeomGT had significantly lower pixel distances than 

GeomDL vs the raw ground truth (grey and dark blue plots in Figure 4.4b). LM15 was generated 

based on LM11 and the shell outline. And LM11 was the worst predicted independent LM. In 

contrast, the prediction error is the main cause of the LM15 error. For PC axes correlations 

between GeomDL and GeomGT, of PC1-7 were above 0.7, among them PC1 and PC2 had higher 

than 0.88 (Supplementary Figure 6.3.10f), which explain almost 60% of the variation. 

Another interesting thing is that RawDL had a more similar morphospace (based correlations of 

PC axes) and smaller dependent LM pixel distance to the ground truth. The raw landmark 

predictions do not follow the landmarking rule strictly (e.g. the line passes LM5 and LM8 may not 

be parallel to the line passes LM12 and LM14) but because the deep learning network learns to 

predict each landmark separately without constraint, the predictions are close to the results from 

manual labelling. 

An important message raised in this example application is that the design of a dataset has great 

impacts on the deep learning performance. The landmarks used here for Littorina were not 

designed for a deep learning application, instead they were designed specifically for manual 

landmarking. As a result, there are difficulties in identifying some LMs or reference lines where 

the training data does not provide adequate information to train the deep learning algorithm. 

There are several approaches that could be considered in designing the training data. One 

solution may be to segment the operculum as well, so deep learning can be used to predict the 

operculum and generate more accurate reference lines for the dependent LMs. Alternatively, an 
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additional landmark could be added on the landmark to allow the placement of line 1. Although 

the additional landmark may not be needed for subsequent geometric morphometric analysis, it 

could improve the placement of dependent landmarks. Finally, deep learning results can be 

manually reviewed for accuracy and discarded or corrected as necessary. This can be done with 

the PhenoLearn review module. In general, emergent issues illustrate that ideally machine 

learning training sets should be designed from the outset with prediction in mind. 

4.4 Conclusions 

Together, the result shows the potential of deep learning on high-throughput phenotyping of 

digitised photos. PhenoLearn implements the pipeline of phenotyping digital images using deep 

learning with a user interface and result visualisation, including functions to (i) build training sets, 

(ii) train deep learning networks, (iii) use trained networks to predict annotations which are used 

to measure phenotypic traits and (iv) review the predictions. With these functions implemented, 

PhenoLearn can fill the gap between digitisation and biological analysis by implementing a high-

throughput and accurate phenotyping pipeline. Along with automatic and high-throughput 

digitisation methods (Blagoderov et al. 2010; Hudson et al. 2015) and powerful software tools 

and packages for phenotypic analysis such as geometric morphometric analysis (Klingenberg 

2011; Adams and Otárola-Castillo 2013) and colour and pattern analysis (Maia et al. 2013; 

Troscianko and Stevens 2015; Van Belleghem et al. 2018), the time for turning natural history 

collections to macro-scale phenotypic datasets will be greatly reduced (Figure 4.1).  

Two aspects of the design of PhenoLearn make it suitable for users that are not experts in 

machine learning. The first is that PhenoLearn encapsulates deep learning networks and only 

allows users to tune some of the key hyperparameters which are normally tuned first in many 

studies. By only tuning these hyperparameters, PhenoLearn can achieve accurate trait 

measurements on digitised specimen photos and can generate biological meaningful results (see 

Chapter 2, Chapter 3 and the Application section) that are consistent with studies that use 

manually measured traits (Stoddard and Prum 2011; Ravinet et al. 2016).  

Second, from a biological study perspective, I suggest that manually reviewing predictions or 

trying simple post-processing methods to increase measurement accuracy is more practical than 
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digging into the network optimisation to increase deep learning accuracy. Reviewing a large size 

set of predictions manually can be time-consuming. PhenoLearn provides annotation 

visualisation on checking and correcting predictions. The review mode, which displays multiple 

images, speeds up the review process. By adding the metadata information (e.g. taxonomical 

information), images with high chances of being incorrectly predicted can be reviewed first. 

Therefore PhenoLearn allows users themselves to balance the trade-off between measurement 

accuracy and time cost. 

New features can be added to PhenoLearn easily due to the modular design. PhenoLearn is open-

source, so people can contribute functions that fit their goals or analysis. With more and more 

functions added, PhenoLearn has the potential of becoming a powerful platform for high-

throughput phenotyping. Improvements of new features can be made from aspects such as these: 

• Adding new types of annotations. Placing bounding boxes can be added for detecting 

focal regions such as recognising specimens on the museum trays (Hudson et al. 2015). 

Deep learning networks used in object detection that identify bounding boxes such as R-

CNN (Ren et al. 2015) can be used to predict bounding boxes.  

• Adding new and improving current evaluation metrics. The PCK in PhenoLearn only 

supports a fixed value threshold. Dynamic thresholds (e.g. PCKht in the Application 

section) can be added as a way of selecting the threshold, and PCK can measure 

accuracies more intuitively for datasets that have size varied specimens (e.g. the Littorina 

dataset). 

• Adding post-processing methods. Post-processing predictions can make them more 

accurate or fit closer phenotyping goals. For example, eroding segmentations is a 

common method to shrink the segmentation area (Haralick et al. 1987). It can be applied 

to predictions, if the goal is to generate conservative inferences on the focal areas. Adding 

build in post-processing functions in PhenoLearn can let users apply and evaluate post-

processing in PhenoLearn without doing it on another platform (e.g. ImageJ). 

• Implementing a web application. Web applications have been widely used in 

crowdsourcing labelling on digitised specimens (Chang and Alfaro 2016; Cooney et al. 
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2017). In addition, citizens can contribute to reviewing the predictions from deep learning 

(Keshavan et al. 2019). 

Taken together PhenoLearn can fill the gap between the fast-growing automatic digitisation 

methods and computational analysis on phenotypes, introducing an accurate and high-

throughput pipeline for measuring digital specimen images using deep learning. 
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Chapter 5 General Discussion 

To achieve the main aim of building high-throughput pipelines of phenotyping or measuring 

digitised specimen datasets, I applied deep learning and other computational methods to place 

annotations on specimen images from two datasets (bird specimens and Littorina shells). 

Annotations have been placed accurately from both algorithm-based (e.g. whether predicted 

annotations match the expert-labelled annotations) and biological perspectives. The time to 

generate annotations for large-scale datasets (especially the bird images, of which there are 

more than 120,000 images) is reduced from processing in units by-months or years to processing 

by hours or days. Annotations were used to build and visualise bird plumage colour spaces 

(Chapter 2 and 3) as well as morphospaces of Littorina shells in Chapter 4.  

5.1 Deep learning in phenotyping 

Deep learning models generated reliable predictions (points and segmentations) for digitised 

specimen datasets for all three data chapters. My results suggest that deep learning could be a 

solution for a high-throughput pipeline for measuring phenotypic traits on specimen images in a 

range of applications. In all applications examined here, including keypoint placement and 

segmentation, deep learning performed well. 

Keypoints were correctly placed on 95% of the validation images from Project Plumage (N=5,094 

images) after checking by experts. The Percentage of Correct Keypoints (PCK) using 100 pixels as 

the threshold scored 100 for all five reflectance standards, suggesting all points were predicted 

correctly which were located inside standards circles. Because colours (values of selected pixels) 

from body regions were extracted using predicted body region points, a reasonable way of 

extracting pixels is important. Geometric shapes with fixed sizes around the points (e.g. squares 

and circles) fail to capture the size variance across body regions in the data set (e.g. the crown is 

normally smaller than the mantle). The preceding results of points from the Stacked Hourglass 

(Newell et al. 2016) are heatmaps (the value of each pixel in a heatmap is the likelihood of the 

pixel being the location of a point). Using heatmaps is a useful alternative method for extracting 

areas, as the sizes of the heatmaps vary among birds and body regions (see Chapter 2). Using 
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heatmap output instead of the final point outputs can be generalised to datasets that aim to 

locate multiple small regions (e.g. body regions). Chromatic information (i.e. hues) is often used 

in bird plumage colour analysis (Stoddard and Prum 2008, 2011). The hue information extracted 

from deep learning predictions of individual body regions were correlated well with hue 

information extracted from ground truth labels (all coefficients were larger than 0.93). 

I applied keypoint placement to an alternative dataset of Littorina shells collected for geometric 

morphometric analysis. Here there is a need for higher precision in keypoint placement. Although 

landmark points on Littorina shell images were not checked by humans, PCKs using proportions 

(5% and 10%) of shell heights as thresholds (PCKht@0.05 and PCKht@0.1) were intuitive to 

evaluate predicted landmark accuracies. Six out of seven independent landmarks (landmarks 

predicted directly by deep learning) had PCKht@0.05 greater than 97, suggesting 97% of 

predictions were located within 5% height of the shell. The worst independent landmark (LM11) 

had 73.4 PCKht@0.05 and 96.8 PCKht@0.1, showing predictions of LM11 were not drastically 

worse than the rest landmarks. The biological conclusions drawn from geometric morphometric 

analysis of deep learning landmark points were consistent with those from manual landmarking. 

Finally, I applied deep learning models to segment bird specimens from their background for the 

measurement of overall body colour. More than 95% of the segmented (segmented as the 

plumage area) pixels were correctly segmented (high precision) and more than 95% of plumage 

area pixels were segmented (high recall) using DeepLabv3+ (Chen et al. 2018). Importantly, 

DeepLabv3+ also outperformed the four classic methods tested in Chapter 3. 

Taken together, the evaluation results (from human, geometric and colour perspectives) showed 

that deep learning produced reliably accurate point and segmentation predictions on both bird 

(Project Plumage) and Littorina shell images. 

Besides deep learning models, I have used other computational approaches for measuring 

phenotypes in this thesis, which again reinforces the importance of utilising computational power 

to build high-throughput phenotyping pipelines. Customised metrics were designed to fit 

datasets better in the evaluation and quantifying phenotypes. For the Project Plumage dataset, 

the colour information correlation was used to evaluate colours measured by points, which is 

mailto:PCKht@0.05
mailto:PCKht@0.
mailto:PCKht@0.05
mailto:PCKht@0.05
mailto:PCKht@0.1
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more meaningful than pixel distances for colour measurements. Proportional colour diversity, 

the alpha shape, and the convex hull all have different biological meanings in describing the 

colour diversity of bird plumage colour (Chapter 3). In some circumstances, deep learning may 

not provide an end-to-end result (e.g. Littorina landmarks in Chapter 4). Therefore, other 

automatic methods may be required, such as the landmark placing algorithm used in Chapter 4 

that generates a set of landmarks using deep learning predicted landmarks. 

Although deep learning predictions are almost inevitably worse (i.e. the best possible outcome 

is a perfect match) than manual annotations by experts, they are nonetheless reliable predictions, 

often within the bounds of inter-human variation (Chapter 2). If predictions from deep learning 

are not consistently accurate enough and it is difficult to increase the accuracy using 

computational methods, some extra manual work (e.g. reviewing and editing) can be done to 

improve predictions, which still takes less time than placing annotations manually.  

Not only did the evaluation results show that deep learning generates accurate results, but the 

three predicted datasets (body region heatmaps and whole-body segmentation from Project 

Plumage, and morphological landmarks on Littorina shells) in my data chapters were used to 

generate biological results which were consistent with previous studies. This lends further weight 

to the argument that deep learning is potentially a powerful and reliable tool for phenotypic 

analysis. 

5.1.1 Bird plumage colour 

In Chapter 2 I showed that the male birds are more colour-diverse than female birds for all and 

each individual body regions. This has previously been suggested by studies which found that 

male’s plumage colour has evolved into wider colour spaces (Dale et al. 2015; Cooney et al. 2019). 

Colour space volumes measured by the convex hull or the alpha shape across more than 7,000 

species showed that bird maximally occupied only about one-third of the total possible volume 

of the tetrahedral colour space. Stoddard and Prum’s work (2011) found a similar result with 

colour volume only filling a fraction of the whole colour space. They suggest that this may be 

caused by limitations associated with the different colour producing mechanisms on birds. The 

colour diversity of the overall plumage colour was similar among closely related species, and is 
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moderately correlated with the bird phylogeny. Phylogenies visualised in Chapter 3 showed 

which clades have more diverse plumage colours (e.g. Psittaciformes and Coraciiformes) than 

others and largely confirm intuition based on observations in the human visible spectrum. 

The plumage colour measured by deep learning included predictions for 8,509 bird species. This 

is by far the largest colour data set for birds using objectively measured colour (i.e. as opposed 

to scoring from illustrations or plates in field guides and handbooks). As such it can provide a 

plumage colour dataset that is useful to analyse evolutionary, ecological, and biodiversity 

questions on a macro-scale. In that sense, it is similar to other recent large scale data sets, such 

as the Mark My Bird (www.markmybird.org) bird beak dataset which measures beak shapes using 

morphological landmarks (2,028 species were used in the analysis and 8,896 species were 

labelled; Cooney et al. 2017), and the morphology data set of Pigot et al. (2020). Such data sets 

potentially open up new avenues for research and show the importance of having large-scale 

phenotypic datasets.  

5.1.2 Littorina shell morphology 

Both manual and deep learning landmarks revealed morphological differences between wave 

and crab ecotypes. Wave ecotype shells have larger apertures and lower spires than crab 

ecotypes (see Chapter 4). Previous studies have shown similar results between crab and wave 

ecotypes using manual landmarks (Butlin et al. 2014; Ravinet et al. 2016), again confirming the 

robustness of deep learning, even on data sets that were not designed with deep learning in mind. 

5.2 Pipelines and applications 

The major advantage of deep learning is the speed with which huge data sets can be generated. 

Here, predictions of points and segmentations of more than 120,000 images were generated in 

less than six days using one computer and one high-end consumer level but affordable graphics 

processing unit (NVIDIA GTX 1080Ti). Using deep learning has greatly increased the speed of 

measuring colour information on Project Plumage images (it was estimated to take years to finish 

the annotation process on Project Plumage). For many digitised specimen datasets where their 

phenotypic traits were measured by manual annotations (e.g. placing morphological landmarks) 

http://www.markmybird.org/
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in previous studies (Denton and Adams 2015; Zelditch et al. 2015; Maestri et al. 2017), deep 

learning may create faster measurements than manual annotation. 

With the help of deep learning and the increasing computational power, biologists can try to 

build phenotypic datasets using measurements placed by deep learning models. Where possible 

the first step is to design annotations or measurements that are suitable for deep learning. There 

is not a universal rule or gold standard for how to design annotations for deep learning, but 

annotations should be placed by people with expert knowledge without difficulties. It is highly 

recommended to build high-quality (annotations are correctly placed) and manually labelled 

training sets, as deep learning models will learn what annotations are fed during the training. 

People should consider whether annotations are logically-workable for deep learning. 

Dependent landmarks of Littorina shells in Chapter 4, for example, cannot be predicted by deep 

learning models because these landmarks can only be calculated using pre-existing landmarks. 

Chapter 3 and 4 used low-quality datasets and achieved predictions almost as accurate as using 

original images suggesting that the digitisation set-up (e.g. lights, backgrounds and specimen 

placements) can be flexible. It is not necessary to spend a huge amount of time keeping 

everything under extremely high standards and consistency. The number of images labelled by 

experts does not need to be large at the beginning - my advice is to start from annotating a small 

number (e.g. tens or hundreds of specimens depends on the dataset) of images. After evaluating 

trained models, extra labelled images can be added, if the accuracy does not match the 

expectation. 

Coding deep learning models and tuning model hyperparameters can be time-consuming. I 

introduced the software pipeline PhenoLearn (Chapter 4) that can be used to visualise the 

hyperparameter-tuning and allow biologists or others with limited deep learning expertise to 

train deep learning models. Training, evaluating models, and using models to predict annotations 

are all encapsulated in PhenoLearn. Users only need to control the user interface to produce 

predictions for large scale datasets. PhenoLearn also supports manual annotations of images, 

which creates training images. Sometimes, biologists want higher-quality measurements than 

the raw deep learning result. In PhenoLearn, manual review and editing can be achieved in a 

simple but effective and intuitive way. PhenoLearn has a review module to enable users to review 
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and edit predictions efficiently by displaying multiple images and annotations and prioritising 

images with high error-rate characteristics (if metadata or specimen information is provided). 

Reviewing does not have to rely on experts, and crowdsourcing can now play an important role 

in reviewing as deep learning can generate mostly accurate annotations (Keshavan et al. 2019). 

Reviewing annotations is generally easier than placing them, as it requires less time and 

operations. Biologists can also decide to let citizens do either the review or both review and 

correction depending on the task difficulties. Based on the performance of the validation set, an 

overall correct prediction rate can be estimated. If, as I find here, deep learning generates high 

proportions of accurate predictions (e.g. 95% validation images are correct in Chapter 2), then 

correcting error predictions would not be a massive task. 

Although I focus on specimen images (both from museum collections and the field), results from 

this thesis and previous studies have strengthened the case for the use of deep learning methods 

for a wide range of biodiversity datasets. Aside from classifying whether animals are presented 

or locating animals with bounding boxes using deep learning (Kellenberger et al. 2017, 2018; 

Norouzzadeh et al. 2018; Schneider et al. 2018), it is possible to identify keypoints and segment 

animals on images from camera traps or drones. Other studies have shown how deep learning 

can be used to provide extra annotations from automated scans of specimens in museum 

drawers (Mantle et al. 2012; Hudson et al. 2015). PhenoLearn can be a platform for biologists to 

carry out many of these manipulations. Because it is open-source, the functions can be 

supplemented and extended by other contributors to make it even more suitable for a greater 

range of biodiversity datasets. 

5.3 Limitations 

The automatic phenotyping pipeline introduced in PhenoLearn may not perfectly predict 

measurements previously designed for biodiversity datasets. Many measurements were 

designed to fit the way of measuring photos (e.g. manual annotation), which may not be suitable 

for deep learning networks to learn and predict. Landmarks of the Littorina shell predicted in 

Chapter 4 were originally designed by Ravinet et al. (2016) with the expectation that landmarking 

would be manual, that is, deep learning was not considered in the study design. It is impossible 
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to use deep learning to predict all landmarks in the Littorina data set, as some landmarks 

(dependent landmarks) can only be correctly placed based on other landmarks and outlines of 

shell parts. In addition, dependent landmarks are difficult for automatic methods to generate. 

Humans can place landmarks without explicitly highlighting some information (e.g. a human can 

recognise shell outlines without explicitly drawing them), while computational approaches may 

need this information as a guide. Sometimes, changes need to be applied to make measurements 

suitable for deep learning. For example, placing points on Project Plumage can be considered as 

a measurement alteration. The dataset and the way of measuring body regions were designed 

based on the measurements used by Cooney et.al (2019), in which they manually placed polygons, 

rather than points, to measure plumage colours in the bird body region. However, identifying 

multiple small areas or polygons that can be similar is difficult for deep learning. Therefore, points 

were used instead of polygons, since points can more easily be predicted by using well-developed 

pose estimation networks. 

Methods used in measuring plumage colours introduced in Chapter 2 and 3 are not fully-

automatic to match the annotation rules from Project Plumage. One main obstacle is that there 

is not an accurate and high-throughput method to detect occluded body regions. Pose estimation 

networks identify locations of occluded body regions (Andriluka et al. 2014; Newell et al. 2016; 

Wei et al. 2016), which is different from the goal of detecting and removing occluded points. 

Failure to detect occluded regions can lead to bias in analysing colours, especially for the rump, 

which is the region that has the highest chance of being occluded (16% of rumps were fully-

occluded among the expert-labelled images). Some of the ‘rumps’ measured by deep learning 

predictions are wings, because wings can cover the entire rump in some specimens. Therefore, 

results from the rump should be cautiously treated or those ‘rumps’ should be detected and 

discarded using either manual or automatic methods.  

The way of measuring the overall plumage area can also be improved. There are duplicated areas 

if using segmentations for all three views to measure plumage areas (e.g. areas like wings may 

appear in photos of different views). Although methods can be designed to automatically detect 

duplicate areas, re-designing how the overall plumage area is measured, for example, only using 

segmentations from two views (e.g. using only back and belly view), is a quick and simple solution. 
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The ideal deep learning pipeline should use high-quality images where possible within the 

constraints of the available GPU hardware. The Project Plumage images are originally in RAW 

format and are converted to JPG to reduce file sizes prior to uploading to projectplumage.org. 

For consistency with the images seen by users on project plumage, I also used JPG images for 

deep learning tasks. This has some advantages in that JPG is a common format and it is easy for 

tools like Python to read and write. Therefore, I used JPG images for training. However, JPG is a 

lossy format and image information might be compressed. The use of JPG images may therefore 

lower the deep learning performance (Dodge and Karam 2016). Due to the time limitation, I did 

not generate loss-less formats from raw images, however, compared to studies that assessed the 

effects of image quality (Dodge and Karam 2016), images used in this thesis appear to retain, at 

least to the human eye, high quality. 

5.4 Future work 

This section focuses on four main aspects of potential future work, (i) improving prediction 

accuracy; (ii) future analysis using annotations generated in this thesis; (iii) extending PhenoLearn; 

and (iv) applying deep learning to other types of natural history datasets. 

(i) Improving prediction accuracy 

Model prediction accuracy can be improved by tuning the deep learning architecture and 

hyperparameters but this can require a great deal of trial and error and expertise. In contrast, 

post-processing methods can be a simple but effective way to improve accuracy. For example, I 

suggest applying erosion techniques (Haralick et al. 1987) on the segmentations. Erosion works 

by shrinking the segmented areas. This means that segmentations are more likely to be placed 

inside the plumage area (i.e. high accuracy), which fits the Project Plumage segmentation goal 

better (i.e. segment only the plumage area). Dilation can be applied to expand segmented areas, 

which can be used for the contrary goal (i.e. the actual focal areas tend to be larger than the 

predicted areas). 

Another area that may prove fruitful is to improve accuracy by combining predicted points and 

segmentation. Automatic checking can be used to flag abnormal predictions, if predicted body 
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region points (excluding points for identifying reflectance standards) were located outside the 

predicted segmentation. For a stricter rule, extraction areas (based on output heatmaps) can be 

used to replace points, as colours were extracted in these areas. Flagged images can have either 

error predicted points (Figure 5.1a, heatmaps if the strict rule is used), very conservative 

segmentations (Figure 5.1b) or both conditions. Flagged images can be either manually edited by 

humans or fixed by algorithms. A possible idea for the algorithm can be first detecting what 

causes the error. If it is a Figure 5.1a case, outlier points are moved inside the segmentation. 

While if it is a Figure 5.1b case, segmented areas can be increased till all points are covered.  

 

Figure 5.1. Examples of flagged images by checking the geometric relation between the points (red points) 

and the segmentation (areas in blue) using a drawing to simulate the belly view of a bird specimen. (a) 

the segmentation was correctly predicted but the neck point (the leftmost point) was placed outside the 

segmentation. (b) All points were correctly predicted while the segmentation only occupied a proportion 

of the bird, which makes the neck point outside of the conservatively predicted segmentation. 

(ii) Future analysis with model predictions 

In this thesis, I focused only on the colours directly. However, segmentations generated in 

Chapter 3 can also be used in analysing colour pattern to understand questions like mimicry 

(Stoddard and Stevens 2010; Van Belleghem et al. 2020), camouflage (Troscianko et al. 2016) and 

mate choice/attraction signalling traits (Ferns and Hinsley 2004; Pérez-Rodríguez et al. 2013; 

Marques et al. 2016). Colour patterns can be quantified using functions and models. As 

summarised in the work of Pérez-Rodríguez et al. (2017), patterns like barred (Gluckman and 

Cardoso 2009) and spotted (Stoddard and Stevens 2010), which exist on bird plumages (e.g. 

barred owl and European starling), can be quantified. Software tools and packages have been 
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implemented to quantify colour patterns (Troscianko and Stevens 2015) and colour pattern 

variations (Van Belleghem et al. 2018). These studies and tools have suggested it is worth 

considering the colour pattern analysis on the Project Plumage dataset. 

Further explorations include comparing results between deep learning and crowdsourcing. In 

Chapter 2 and 3, I only evaluated the differences between deep learning results to annotations 

labelled by people with expert knowledge on bird anatomy. However, Project Plumage is a citizen 

science project and is generating large datasets itself. Since completing chapter 2, the Project 

Plumage workflows for placing points on body regions have been completed including >72,000 

sets of landmark placements from >24,000 images of 8409 species. Workflows for segmentation 

are currently ~50% complete. When citizens have completed labelling Project Plumage images, 

it will be interesting to estimate annotation differences between deep learning and crowd-

sourcing. The result will provide extra evidence on (i) whether deep learning is an ideal solution 

for phenotyping large scale biodiversity datasets, (ii) whether citizen science data is sufficiently 

reliable to replace, or supplement expert data as the training set for deep learning. 

(iii) Extending PhenoLearn 

Adding new functions to PhenoLearn, such as supporting new annotation types or developing a 

web-based version (Figure 5.2) have the potential to further expand the accessibility of deep 

learning methods to biologists. New annotations like bounding boxes can be added, so users can 

annotate bounding boxes and PhenoLearn can predict them using object detection neural 

networks such as faster R-CNN (Ren et al. 2015). With bounding boxes implemented, animals can 

be detected on images such as those from camera-traps. Implementing a web-based PhenoLearn 

can provide a platform for the public to label training images (if they can provide high-quality 

annotations) and review predictions. 
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Figure 5.2. Possible new features (red rectangles) that extend PhenoLearn based on the pipeline (left) 

proposed in Chapter 4. With PhenoLearn supporting bounding boxes, tasks for detecting animals using 

camera trap images can be carried out on PhenoLearn. The public can participate to annotate and review 

images with web-based PhenoLearn. 

(iv) Other types of natural history data set. Apply deep learning or machine learning to Mark My 

Bird 3D beaks.  

Many studies use geometric morphometrics based on three-dimensional (3D) scans (Cooney et 

al. 2017; Buser et al. 2018; Giacomini et al. 2019; Felice et al. 2020). Analysing a specimen in 3D 

can capture both 2D and 3D (i.e. shape variations along the third axis) shape variations, while 2D 

images from multiple views (e.g. dorsal, ventral and lateral view) are required to capture these 

features. 

A good example dataset is the Mark My Bird dataset (collected from bird collections at Natural 

History Museum, Tring), which placed 3D landmarks on 3D beak scans (more than 8,000 scans 
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and they are stored as 3D polygon meshes) to quantify beak shapes (Cooney et al. 2017). 

Landmarks and semi-landmarks were used to identify homologous structures like the beak tip 

and curves like tomial edges (see Figure 5.3 for the detail of landmarks). I previously explored 

automatical landmarking by thresholding 3D mesh properties. Properties like curvatures 

(Koenderink and van Doorn 1992; Rusinkiewicz 2004) and the shape diameter function (SDF, 

Shapira et al. 2008) which quantifies whether the space around the vertex is wide or narrow (e.g. 

the beak tip should have a small SDF value as the space around the tip is narrow) indicate distinct 

features on 3D data. Using these methods, only candidate points of the beak tip (low SDF values) 

and tomial edges (low curvature values) can be generated (Figure 5.4a). However, this result is 

far from the final landmarks (e.g. having too many candidate points) and it can be inaccurate on 

uncommon bird beaks (Figure 5.4b). Studies have explored classifying and segmenting 3D objects 

(Guo et al. 2015; Cherabier et al. 2016). A study has estimated 3D postures of Drosophila based 

on 2D images taken from cameras at different angles (Günel et al. 2019). Therefore, it is 

promising to apply deep learning methods on 3D beak scans, and may well be used in labelling 

datasets like Phenome10k (phenome10k.org, Goswami 2015), an online repository for 3D scans 

of biological and palaeontological specimens from the Natural History Museums. 
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Figure 5.3. Landmarks and semi-landmarks that were placed on scans of the Mark My Bird 3D beak dataset. 

Four landmarks need to be placed to identify the tip (red point 1), posterior margin along the midline 

dorsal profile (red point 2), left and right tomial edges (red point 3 and 4). A total of 75 semi-landmarks 

were placed along the dorsal profile (black points between red point 1 and 2, N=25), left (black points 

between red point 1 and 3, N=25) and right (black points between red point 1 and 4, N=25) tomial edges.  
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Figure 5.4. Example results of applying mesh properties on (a) a common beak and (b) an uncommon beak. 

Left: Candidate points of the beak tip (brown points) and tomial edges (cyan points) and the manually-

labelled landmarks (yellow points). Centre: Mean curvature values (high: blue, medium: green, low: red). 

Right: SDF values (high: blue, medium: green, low: red). 

5.5 Conclusion 

In this thesis, I have explored the use of deep learning models and other computational 

algorithms in improving the speed of phenotypic measurements (e.g. placing annotations on 

images to measure phenotypic traits) while remaining reliably accurate compared to 

measurements from traditional methods (e.g. manual annotations). My results were encouraging, 

suggesting that deep learning has a great deal of potential for high throughput phenotyping of 

specimens. Two datasets of digitised specimen photos were assessed, a bird specimen dataset 

and a Littorina shell dataset. Points and segmentations needed to be placed on bird images to 

measure plumage colours from body regions and the overall bird. Deep learning placed 95% of 

points and more than 95% segmentations (based on correctly segmented pixels) correctly among 

5,094 expert-labelled images. I then generated points and segmentations for all bird images 

(more than 120,000 images covering more than 8,000 bird species) in less than a week, which 

could take years for manual labelling. Bird plumage colour spaces across more than 7,000 bird 
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species were built, and I found that there is a moderately strong phylogenetic signal in bird 

plumage colour diversity (closely related species share similar colour diversity), as well as male 

birds tend to be more colour-diverse than female ones which are from the same species. 

Morphological landmarks were placed by deep learning and additional computational algorithms. 

Morphospaces from manual and deep learning landmarks were similar. PhenoLearn, a software 

tool which aims for setting up high-throughput phenotyping pipelines using deep learning models, 

was introduced in this thesis. Its functions which cover manual annotation, applying deep 

learning models and reviewing deep learning predictions are all implemented with user 

interfaces. In summary, the results from this thesis suggest deep learning can speed up the 

measurement process on digitised specimens (either from museum collections or live specimens) 

while providing accurate and reliable measurements. 
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Chapter 6 Appendix 

6.1 Chapter 2 supplementary Material 

6.1.1 Alpha shape 

Here, I introduce the alpha shape definition in 2D space, which is easy to illustrate. The 3D alpha 

shape has the same definition as the 2D version after replacing triangles with tetrahedrons, 

circumcircles with circumspheres and areas with volumes (Edelsbrunner and Mücke 1994). 

Before calculating the alpha shape, the Delaunay triangulation need to be first applied to the 

data points. The Delaunay triangulation of a set of points are triangles that use data points as 

vertices, while no points are inside circumcircles of any triangles as shown in Supplementary 

Figure 6.1.1a. The shape of the Delaunay triangulation is identical to the convex hull. An alpha 

shape with a given α value is the shape of triangles with circumcircle radii smaller than α 

(Edelsbrunner and Mücke 1994; Cholewo and Love 1999). α* is the α value that makes the area 

of the alpha shape smallest while containing all points (Supplementary Figure 6.1.1b). Alpha 

shapes with α values smaller than α* can not contain all data points (Supplementary Figure 

6.1.1c). An α value larger than α* may increase the area (e.g. Supplementary Figure 6.1.1d). 

α* varies among different sets of data points so that, for example, α* for colour measures from 

the crown may not be the same as α* measured from the belly. Using respective α* for every 

alpha shape may make volume comparisons inaccurate and inconsistent. Supplementary Figure 

6.1.4a shows an example of how alpha shapes (using its own α*) are not ideal for comparison 

(the example is in 2D, the area is the equivalent value for the volume in 3D). Dataset A has a 

greater convex hull area than Dataset B (Supplementary Figure 6.1.4a.1 and a.2), but a smaller 

alpha shape area (Supplementary Figure 6.1.4a.3 and a.4). One reason is that there are many 

points along the x-axis for Dataset A, forming many triangles with small circumcircle radii in the 

Delaunay triangulation (Cholewo and Love 1999). So the α* can be small and many triangles can 

be removed to create a very concave alpha shape (see section 6.1.1 and Supplementary Figure 

6.1.1). On the contrary, Dataset B has sparse points across the x-axis, and most of the triangles 

have similar circumcircle radii. There is not an α value that can remove many triangles while 
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containing all points in the alpha shape. So the alpha shape of Dataset B (Supplementary Figure 

6.1.4a.4) looks less concave than the one in Dataset A (Supplementary Figure 6.1.4a.3). The 

problem can be seen in Supplementary Figure 6.1.4c showing alpha shapes of flight feathers for 

both sexes combined, males-only, and females-only using α*. The female α* and alpha volumes 

are larger than the male volume or the total volume of males and females. The female alpha 

shape volume is very similar to its convex hull volume (Supplementary Figure 6.1.4b). This non-

intuitive result illustrates the difficulty in comparing volumes based on different α*. 
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6.1.2 Supplementary Figures 

 

Supplementary Figure 6.1.1. An example of the relation between alpha shape areas and the α values for 

5 data points (red points) in 2D. (a) The Delaunay triangulation of the data, which contains 4 triangles 

(blue triangles). Green circles are the circumcircles of the 4 triangles. The shape of the triangulation is 

identical to the convex hull or the alpha shape with an α value larger than the radius of the largest 

circumcircle which is 0.6562 in this example. (b) The alpha shape using α* (0. 5528). Triangles with 

circumcircle radii larger than 0. 5528 are removed, while all data points are included in the alpha shape 

(c) The alpha shape using an α value between 0.5134 to 0.5528 (smaller than α*). Only the triangle on the 

top is kept as it has a circumcircle radius of 0.5134. (d) The alpha shape using an α value between 0.5677 

to 0.6562. Only the triangle on the right is removed because it has a circumcircle radius of 0.6562. 
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Supplementary Figure 6.1.2. Examples of pre-processed photos. (a) The original image; (b) applying 

histogram equalisation on the original image; (c) the specimen-only image after cropping; (d) the 

histogram equalised specimen-only image. 
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Supplementary Figure 6.1.3. Predicted heatmaps of two body regions on an example image. (a) The 

predicted heatmap of the crown has a smaller area than the one of the (b) rump which has an ellipse-like 

shape and can capture more area of the rump region than using a fixed-size area. 
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Supplementary Figure 6.1.4. (a.1) The convex hull of Dataset A, which has an area of 5; (a.2) The convex 

hull of Dataset B which has an area of 4.5; (a.3) The alpha shape using α* of Dataset A, which has an area 

of 2.9; (a.4) The alpha shape using α* of Dataset B, which has an area of 4.15. (b) Convex hulls of the flight 
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feathers for both sexes, male and female. (c) Alpha shapes using respective α* of the flight feathers for 

both sexes, male and female.  
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Supplementary Figure 6.1.5. (a) Volumes of overall and individual patches’ colour points for both sexes, 

male and female using convex hull and alpha shape with four α values which are respective α*, α=0.226 

(the largest α* among these patches), α=0.5 and α=1. (b) α* values of the all and individual body patches 

for both sexes, male and female. 
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Supplementary Figure 6.1.6. Plots of Tukey’s test (95% family-wise confidence level) on whether pixel 

distances differences of all and individual keypoints between architectures and resolutions are 

significantly different (blue: significance; grey: no significance) from 0 (red dotted lines). (a) Comparisons 

for configurations with different networks but the same resolution. (b) Comparisons for configurations 

with different resolutions but the same network. (c) Rest pair-wise Comparisons. Differences that include 

the original configuration (Stacked Hourglass with the resolution of 494 x 328 pixels) are plotted using the 

circle shape, while the rest of the differences are plotted using the triangle shape. (Abbreviations: HG: 

Stacked Hourglass; CPM: Convolutional pose machine; 10: Resolution of 494 x 328 pixels; 15: Resolution 

of 329 x 218 pixels; 20: Resolution of 247 x 164 pixels) 
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Supplementary Figure 6.1.7. Plots of Tukey’s test (95% family-wise confidence level) on whether pixel 

distances differences of all and each individual body region points between the original configuration 

(Stacked Hourglass, 494 x328 pixels and 15 epochs) and experimental manipulations are significantly 

different (blue: significance; grey: no significance) from 0 (red dotted lines). (a) Comparisons that include 

the original configuration. (b) Comparisons for that do not include the original configuration. 

(Abbreviations, Ori: Original configuration; SO: Specimen-only images; HE: Histogram equalised images; 

SO & HE: Histogram equalised specimen-only images; 31: Model trained for 31 epochs; AS: Image 

augmentation and model subsetting). 
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Supplementary Figure 6.1.8. Histograms of the expert evaluation (a) Error prediction counts (N=308) of 

each body region (N=308). (b) Feature counts of error predicts from each body regions. 
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Supplementary Figure 6.1.9. (a) Plots of Tukey’s test (95% family-wise confidence level) on whether pixel 

distances differences of all and individual keypoints across three groups from section 2.2.5.1 (predictions 

vs trainer, predictions vs non-trainer and between experts) are significantly different (blue: significance; 

grey: no significance) from 0 (red dotted lines). (b) Plots of Tukey’s test (95% family-wise confidence level) 

on whether pixel distances differences of all and individual keypoints across the original and low-quality 

datasets are significantly different (blue: significance; grey: no significance) from 0 (red dotted lines). 

Purple dotted lines are pixel distance of 10. 
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Supplementary Figure 6.1.10. Pixel distances of all and individual keypoints for the original and four low-

quality datasets. 
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Supplementary Figure 6.1.11. Correlations between pixel distances and colour variabilities measured by 

(a) RGB, (b) normalised RGB and (c) lightness of all and individual body regions. 
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Supplementary Figure 6.1.12. RGB, normalised RGB and lightness correlation coefficients of the overall 

prediction and predictions from each quartile split by colour variabilities measured by (a) RGB, (b) 

normalised RGB and (c) lightness. 
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Supplementary Figure 6.1.13. Images with the highest colour variabilities (average pair-wise colour 

distances of RGB, normalised RGB and lightness) of each view (back, belly and side). 
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Supplementary Figure 6.1.14. Comparing (a) Convex hull and (b) alpha shape (α=0.2262) volume 

differences between male and female to 1000 volume differences between two groups of random-split 

data points for overall and individual body patches. The red dotted lines are the volume differences 

between male and female. * means the volume difference between male and female is significantly 

different from the difference between two random groups and NS means no significance. 
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Supplementary Figure 6.1.15. Plots of PCK against PCK thresholds (0 to 500 pixels) of 15 keypoints. Red 

dotted lines are where PCKs score more than 95. 
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6.1.3 Supplementary Tables 

Supplementary Table 6.1.1. Volume differences between both sexes and male (B-M), both sexes and 

female (B-F) and female and male (M-F) from 5 volume calculation methods (Convex hull, alpha shape 

using α*, alpha shape using α=0.2262, alpha shape using α=0.5 and alpha shape using α=1). Black numbers 

are differences above zero and red numbers are differences. 

 Convex hull α* 

 B-M B-F M-F B-M B-F M-F 
Overall 6.05E-04 2.24E-02 2.18E-02 2.25E-03 1.59E-02 1.37E-02 
crown 3.62E-03 1.58E-02 1.22E-02 -1.43E-03 6.88E-03 8.31E-03 
nape 1.72E-03 1.77E-02 1.60E-02 -1.49E-03 5.10E-03 6.59E-03 
mantle 2.27E-03 2.76E-02 2.53E-02 3.85E-03 2.67E-03 -1.18E-03 
rump 1.46E-04 1.88E-02 1.87E-02 -1.13E-03 6.70E-03 7.83E-03 
tail 2.75E-03 1.90E-02 1.63E-02 5.22E-04 4.83E-03 4.31E-03 
throat 3.60E-04 1.98E-02 1.94E-02 -2.39E-03 6.62E-03 9.01E-03 
breast 2.17E-04 2.26E-02 2.24E-02 4.89E-04 2.04E-02 1.99E-02 
belly 3.40E-04 1.70E-02 1.67E-02 1.76E-03 1.07E-02 8.94E-03 
coverts 1.26E-03 9.72E-03 8.46E-03 1.82E-03 7.52E-03 5.71E-03 
Flight feathers 1.10E-03 4.48E-03 3.38E-03 1.06E-03 -1.11E-03 -2.18E-03 

 
 
 

The Largest α*, α=0.2262 α=0.5 

B-M B-F M-F B-M B-F M-F 
Overall 6.52E-04 1.35E-02 1.29E-02 4.88E-04 1.55E-02 1.50E-02 
crown 2.98E-03 9.42E-03 6.44E-03 3.12E-03 1.19E-02 8.78E-03 
nape 6.80E-04 1.38E-02 1.31E-02 8.39E-04 1.82E-02 1.73E-02 
mantle 1.06E-04 1.48E-02 1.47E-02 2.29E-03 2.18E-02 1.95E-02 
rump 8.01E-04 1.34E-02 1.26E-02 1.89E-03 1.41E-02 1.22E-02 
tail 1.31E-03 7.41E-03 6.10E-03 1.86E-03 1.19E-02 1.01E-02 
throat 1.67E-04 1.22E-02 1.20E-02 5.54E-04 1.43E-02 1.37E-02 
breast 4.89E-04 1.23E-02 1.18E-02 4.86E-04 1.47E-02 1.42E-02 
belly 1.03E-05 1.04E-02 1.03E-02 -2.30E-05 1.32E-02 1.33E-02 
coverts 9.00E-04 4.87E-03 3.97E-03 1.77E-03 6.77E-03 5.00E-03 
Flight feathers 3.87E-04 2.99E-03 2.60E-03 3.95E-04 3.11E-03 2.71E-03 

 
  α=1 

  B-M B-F M-F 
Overall  1.10E-03 1.77E-02 1.66E-02 
crown  1.58E-03 1.20E-02 1.04E-02 
nape  1.03E-03 1.54E-02 1.44E-02 
mantle  2.86E-03 2.58E-02 2.29E-02 
rump  -1.48E-03 1.54E-02 1.69E-02 
tail  2.20E-03 1.83E-02 1.62E-02 
throat  4.85E-05 1.63E-02 1.63E-02 
breast  3.55E-04 1.73E-02 1.69E-02 
belly  2.81E-04 1.48E-02 1.46E-02 
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coverts  2.11E-03 9.35E-03 7.24E-03 
Flight feathers  1.24E-03 4.18E-03 2.93E-03 
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Supplementary Table 6.1.2. ANOVA results on pixel distances of overall and individual keypoints across 

tested input image resolutions (494 x 328, 329 x 218 and 247 x 164 pixels) and network architectures 

(Stacked hourglass and CPM). 

 ANOVA 

Overall F=3529.6; df=5.0, 252864.0; p<0.01 
Standard 1 F=1093.3; df=5.0, 30558.0; p<0.01 
Standard 2 F=2263.7; df=5.0, 30558.0; p<0.01 
Standard 3 F=1368.7; df=5.0, 30558.0; p<0.01 
Standard 4 F=1242.7; df=5.0, 30558.0; p<0.01 
Standard 5 F=1142.0; df=5.0, 30558.0; p<0.01 
Crown F=154.0; df=5.0, 10164.0; p<0.01 
Nape F=189.3; df=5.0, 10164.0; p<0.01 
Mantle F=79.9; df=5.0, 10176.0; p<0.01 
Rump F=13.2; df=5.0, 8526.0; p<0.01 
Tail F=81.2; df=5.0, 10062.0; p<0.01 
Throat F=174.4; df=5.0, 10182.0; p<0.01 
Breast F=136.2; df=5.0, 10182.0; p<0.01 
Belly F=66.8; df=5.0, 10182.0; p<0.01 
Coverts F=56.4; df=5.0, 10170.0; p<0.01 
Feathers F=49.7; df=5.0, 10182.0; p<0.01 
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Supplementary Table 6.1.3. ANOVA results on pixel distances of overall and individual keypoints across 

the original model (Stacked hourglass with the input resolution of 494 x 328 pixels, the training duration 

of 15 epochs and using the unmanipulated images and labels) and the five tested experimental 

manipulations (using specimen-only images, using histogram equalised images, using histogram equalised 

specimen-only images, trained for 31 epochs and using image augmentation and model subsetting. See 

section 2.2.4 for detail). 

 ANOVA 

Overall F=16.1; df=5.0, 100044.0; p<0.01 
Crown F=3.0; df=5.0, 10164.0; p<0.01 
Nape F=3.2; df=5.0, 10164.0; p<0.01 
Mantle F=5.4; df=5.0, 10176.0; p<0.01 
Rump F=0.7; df=5.0, 8526.0; p=0.589 
Tail F=3.6; df=5.0, 10062.0; p<0.01 
Throat F=2.9; df=5.0, 10182.0; p=0.012 
Breast F=3.6; df=5.0, 10182.0; p<0.01 
Belly F=2.5; df=5.0, 10182.0; p=0.026 
Coverts F=6.4; df=5.0, 10170.0; p<0.01 
Flight feathers  F=5.5; df=5.0, 10182.0; p<0.01 
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Supplementary Table 6.1.4. Numbers of error images and error rates per order among the 5,094 expert-

labelled images. There are 234 incorrect predicted images from the final result. 

Order Error Images Error Rate (%) 

Galliformes (N=15) 11 73.3 
Sphenisciformes (N=3) 2 66.7 
Procellariiformes (N=3) 1 33.3 
Pelecaniformes (N=6) 2 33.3 
Ciconiiformes (N=9) 2 22.2 
Pteroclidiformes (N=6) 1 16.7 
Mesitornithiformes (N=6) 1 16.7 
Bucerotiformes (N=42) 6 14.3 
Gruiformes (N=111) 14 12.6 
Caprimulgiformes (N=48) 5 10.4 
Apodiformes (N=363) 34 9.4 
Charadriiformes (N=246) 18 7.3 
Strigiformes (N=66) 4 6.1 
Accipitriformes (N=195) 11 5.6 
Trogoniformes (N=18) 1 5.6 
Coraciiformes (N=96) 4 4.2 
Piciformes (N=198) 7 3.5 
Columbiformes (N=120) 4 3.3 
Passeriformes (N=3405) 104 3.0 
Cuculiformes (N=66) 2 3.0 
Leptosomiformes (N=3) 0 0.0 
Falconiformes (N=33) 0 0.0 
Musophagiformes (N=15) 0 0.0 
Opisthocomiformes (N=3) 0 0.0 
Otidiformes (N=6) 0 0.0 
Eurypygiformes (N=3) 0 0.0 
Coliiformes (N=6) 0 0.0 
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Supplementary Table 6.1.5. ANOVA results on pixel distances of overall and individual keypoints across 

three comparison groups (predictions vs trainer, predictions vs non-trainer and between experts). Data 

size: 300 images. 

 ANOVA 

Overall F=26.2; df=2.0, 14910.0; p<0.01 
Standard 1 F=33.0; df=2.0, 1797.0; p<0.01 
Standard 2 F=79.3; df=2.0, 1797.0; p<0.01 
Standard 3 F=199.2; df=2.0, 1797.0; p<0.01 
Standard 4 F=226.2; df=2.0, 1797.0; p<0.01 
Standard 5 F=307.0; df=2.0, 1797.0; p<0.01 
Crown F=1.7; df=2.0, 597.0; p=0.190 
Nape F=8.3; df=2.0, 597.0; p<0.01 
Mantle F=20.4; df=2.0, 597.0; p<0.01 
Rump F=0.2; df=2.0, 517.0; p=0.850 
Tail F=2.2; df=2.0, 592.0; p=0.110 
Throat F=0.9; df=2.0, 597.0; p=0.400 
Breast F=3.6; df=2.0, 597.0; p=0.029 
Belly F=10.6; df=2.0, 597.0; p<0.01 
Coverts F=14.5; df=2.0, 597.0; p<0.01 
Flight feathers  F=2.5; df=2.0, 597.0; p=0.079 
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Supplementary Table 6.1.6. ANOVA results on pixel distances of overall and individual keypoints across 

the original and four tested low-quality datasets. 

 ANOVA 

Overall F=87.2; df=4.0, 210720.0; p<0.01 
Standard 1 F=532.7; df=4.0, 25465.0; p<0.01 
Standard 2 F=260.0; df=4.0, 25465.0; p<0.01 
Standard 3 F=146.1; df=4.0, 25465.0; p<0.01 
Standard 4 F=33.5; df=4.0, 25465.0; p<0.01 
Standard 5 F=18.4; df=4.0, 25465.0; p<0.01 
Crown F=9.9; df=4.0, 8470.0; p<0.01 
Nape F=10.1; df=4.0, 8470.0; p<0.01 
Mantle F=7.3; df=4.0, 8480.0; p<0.01 
Rump F=1.7; df=4.0, 7105.0; p=0.145 
Tail F=9.1; df=4.0, 8385.0; p<0.01 
Throat F=8.4; df=4.0, 8485.0; p<0.01 
Breast F=6.7; df=4.0, 8485.0; p<0.01 
Belly F=3.3; df=4.0, 8485.0; p=0.011 
Coverts F=12.6; df=4.0, 8475.0; p<0.01 
Flight feathers  F=11.8; df=4.0, 8485.0; p<0.01 
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Supplementary Table 6.1.7. Colour statistics for both sexes, male and female across patches. Alpha shapes 

were all calculated using α=0.2262 

 

Patch Sex Convex hull Volume % 
colour space 

Alpha shape volume % 
colour space 

Crown Both 5.00E-02 23.1 3.27E-02 15.1 

 Male 4.64E-02 21.4 2.97E-02 13.7 

 Female 3.42E-02 15.8 2.32E-02 10.7 

Nape Both 5.57E-02 25.7 3.23E-02 14.9 

 Male 5.39E-02 24.9 3.17E-02 14.6 

 Female 3.80E-02 17.5 1.85E-02 8.6 

Mantle Both 5.65E-02 26.1 3.20E-02 14.8 

 Male 5.42E-02 25 3.19E-02 14.8 

 Female 2.89E-02 13.3 1.72E-02 7.9 

Rump Both 4.88E-02 22.5 2.96E-02 13.7 

 Male 4.87E-02 22.5 2.88E-02 13.3 

 Female 3.00E-02 13.9 1.62E-02 7.5 

Tail Both 3.31E-02 15.3 1.66E-02 7.7 

 Male 3.03E-02 14 1.53E-02 7.1 

 Female 1.41E-02 6.5 9.24E-03 4.3 

Throat Both 3.96E-02 18.3 2.38E-02 11 

 Male 3.93E-02 18.1 2.36E-02 10.9 

 Female 1.98E-02 9.2 1.16E-02 5.4 

Breast Both 5.23E-02 24.2 3.24E-02 15 

 Male 5.21E-02 24.1 3.19E-02 14.7 

 Female 2.97E-02 13.7 2.01E-02 9.3 

Belly Both 4.27E-02 19.7 2.74E-02 12.7 

 Male 4.24E-02 19.6 2.74E-02 12.7 

 Female 2.57E-02 11.9 1.71E-02 7.9 

Coverts Both 3.05E-02 14.1 1.81E-02 8.3 

 Male 2.92E-02 13.5 1.72E-02 7.9 

 Female 2.08E-02 9.6 1.32E-02 6.1 

Flight Feathers Both 2.29E-02 10.6 1.55E-02 7.2 

 Male 2.18E-02 10.1 1.16E-02 7 

 Female 1.84E-02 8.5 2.36E-02 5.8 

 

Patch Sex Mean colour 
span 

Colour span 
Variance 

Mean hue 
disparity 

hue disparity 
Variance 

Crown Both 1.05E-01 6.39E-03 5.51E-01 3.59E-01 

 Male 1.18E-01 8.23E-03 6.49E-01 4.40E-01 

 Female 9.10E-02 4.32E-03 4.45E-01 2.53E-01 
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Nape Both 1.04E-01 6.16E-03 5.83E-01 4.20E-01 

 Male 1.16E-01 7.84E-03 6.85E-01 5.11E-01 

 Female 9.07E-02 4.24E-03 4.75E-01 3.00E-01 

Mantle Both 9.31E-02 4.19E-03 4.94E-01 3.18E-01 

 Male 1.01E-01 5.08E-03 5.76E-01 4.01E-01 

 Female 8.42E-02 3.18E-03 4.06E-01 2.15E-01 

Rump Both 9.76E-02 4.79E-03 4.82E-01 3.04E-01 

 Male 1.06E-01 5.89E-03 5.52E-01 3.83E-01 

 Female 8.90E-02 3.58E-03 4.08E-01 2.11E-01 

Tail Both 8.21E-02 3.18E-03 4.93E-01 3.73E-01 

 Male 8.55E-02 3.54E-03 5.48E-01 4.29E-01 

 Female 7.81E-02 2.78E-03 4.35E-01 3.07E-01 

Throat Both 9.17E-02 4.87E-03 3.90E-01 1.81E-01 

 Male 1.01E-01 6.13E-03 4.64E-01 2.55E-01 

 Female 8.13E-02 3.48E-03 3.11E-01 9.25E-02 

Breast Both 1.07E-01 5.92E-03 4.49E-01 2.25E-01 

 Male 1.18E-01 7.38E-03 5.21E-01 2.94E-01 

 Female 9.54E-02 4.30E-03 3.74E-01 1.44E-01 

Belly Both 9.36E-02 4.78E-03 3.77E-01 1.51E-01 

 Male 1.02E-01 5.71E-03 4.22E-01 1.92E-01 

 Female 8.52E-02 3.77E-03 3.30E-01 1.05E-01 

Coverts Both 8.94E-02 3.66E-03 4.72E-01 3.17E-01 

 Male 9.45E-02 4.13E-03 5.33E-01 3.82E-01 

 Female 8.36E-02 3.11E-03 4.09E-01 2.43E-01 

Flight Feathers Both 8.64E-02 3.33E-03 4.61E-01 3.21E-01 

 Male 8.13E-02 3.48E-03 3.11E-01 9.25E-02 

 Female 1.01E-01 6.13E-03 4.64E-01 2.55E-01 
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6.2 Chapter 3 supplementary Material 

6.2.1 Supplementary Figures 

 

Supplementary Figure 6.2.1. Example segmentations and corresponding heatmaps and grid cells can be 

seen as pixels. Heatmaps have grid cells of 1 for plumage area and grid cells of 0 for non-plumage area. 

The example in (a) is defined as the ground truth segmentation of an images with plumage area 

segmented as yellow cells and non-plumage area as white cells. The example in (b) is an eroded 

segmentation (grey cells) based on (a). The example in (c) is a dilated segmentation (both green and yellow 

cells) based on (a). 
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Supplementary Figure 6.2.2. The IOU (y-axis) of region growing using different upper (colours) and lower 

boundaries (x-axis). 
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Supplementary Figure 6.2.3. The performances (IOU, precision and recall) of predictions (N=5,094) from 

all experimental runs and the original model. (a) Input resolutions. (b) Input channels. (c) Image 

augmentation. (d) Subsetting models. The original model uses one DeepLabv3+ model to train non-

augmented dataset for all views with 618 x 410 pixels as the input resolution, RGB as the input channels. 

Significant symbols are t-test results between the original model (the left most column) and (c) and (d) 

experimental runs (ns: p > 0.05; *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****: p <= 0.0001). 
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Supplementary Figure 6.2.4. Plots of Tukey’s test (95% family-wise confidence level) on whether metric 

(IOU, precision and recall) differences between experimental runs are significantly different (blue: 



195 
 

significance; grey: no significance) from 0 (red dotted lines). Experimental runs are (a) input resolutions; 

(b) input channels; (c) DeepLabv3+ and classic methods; and (d) low-quality datasets. 

  



196 
 

 

Supplementary Figure 6.2.5. The IOU difference (x-axis) and EMD difference (y-axis) of every eroded 

ground truth segmentation subtracting its corresponding dilated version (N=50,940). 
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Supplementary Figure 6.2.6. The performances (IOU, precision and recall) of predictions (N=5,094) using 

the original dataset and low-quality datasets. Dataset (i) rotated (angles between -45 to 45), translated (-

500 to 500 pixels on x and y axes) and scaled (scale ratio from 0.8 to 1.2) images; Dataset (ii) horizontal 

flip 50% images randomly; Dataset (iii) images with random contrast and brightness; Dataset (iv) the 

combination of (i), (ii) and (iii). 
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Supplementary Figure 6.2.7. Examples of predictions using Dataset (iv) of the low-quality datasets. 

  



199 
 

 

Supplementary Figure 6.2.8. The performances (IOU, precision and recall) of the same validation set 

(N=1,018) using 15 proportions (1%, every 5% from 5% to 50% and every 10% from 50% to 90%) of the 

original training set. 
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Supplementary Figure 6.2.9. Photos with the maximum (top) and minimum (bottom) (a) plumage area 

contrast, (b) Pair-wise RGB distance, (c) Pair-wise normalised RGB distance and (d) Pair-wise lightness 

distance. 
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Supplementary Figure 6.2.10. Scatter plots of performances (IOU, precision and recall) of predictions 

(N=5,094) and images’ colour properties (a) Plumage area contrast; (b) Pair-wise RGB distance; (c) Pair-

wise normalized RGB distance; (d) Pair-wise lightness distance. The r-value and p-value are shown in each 

plot. 
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Supplementary Figure 6.2.11. The ratios of the convex hull volume, colour span and hue disparity from 

the patch data to ones from the segmentation data for (a) both sexes, (b) male and (c) female. Ratios were 
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tested whether they are different from 1 (red dotted lines) using t-test, significance are shown as *, non-

significances are shown as ns.  
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Supplementary Figure 6.2.12. Colour points and their convex hull (Grey) in the tetrahedral colour space 

of three species, (a) Tangara chilensis species (N=3,600), (b) Buthraupis montana (N=3,600) and (c) 

Rostrhamus sociabilis (N=3,600). 
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6.2.2 Supplementary Tables 

Supplementary Table 6.2.1. T-test results of IOU, precision and recall between all-views model and 

subsetting models. 

 IOU PRECISION RECALL 

OVERALL (N=5094) Mean difference=0.6 
t(10186)=7.98, p<0.01 

Mean difference=0.4 
t(10186)=6.75, p<0.01 

Mean difference=0.3 
t(10186)=5.19, p<0.01 

BACK (N=1698) Mean difference=0.7 
t(10186)=5.80, p<0.01 

Mean difference=0.3 
t(10186)=2.89, p<0.01 

Mean difference=0.5 
t(10186)=5.53, p<0.01 

BELLY (N=1698) Mean difference=0.5 
t(10186)=4.22, p<0.01 

Mean difference=0.4 
t(10186)=3.68, p<0.01 

Mean difference=0.2 
t(10186)=2.44, p=0.015 

SIDE (N=1698) Mean difference=0.5 
t(10186)=4.36, p<0.01 

Mean difference=0.4 
t(10186)=5.96, p<0.01 

Mean difference=0.1 
t(10186)=1.42, p=0.15 

 

Supplementary Table 6.2.2. IOU, precision and recall of predictions from the best DeepLabV3+ model per 

bird order. 

ORDER IOU PRECISION RECALL 

Columbiformes (N=120) 95.2 97.8 97.2 
Leptosomiformes (N=3) 94.7 97.2 97.4 
Procellariiformes (N=3) 94.6 97.3 97.2 
Strigiformes (N=66) 94.6 96.6 97.9 
Charadriiformes (N=246) 94.3 96.7 97.5 
Gruiformes (N=111) 94.3 97.2 97.0 
Mesitornithiformes (N=6) 94.3 96.6 97.6 
Caprimulgiformes (N=48) 94.2 96.7 97.3 
Falconiformes (N=33) 94.2 96.5 97.6 
Trogoniformes (N=18) 93.6 96.5 96.9 
Piciformes (N=198) 93.6 96.4 96.9 
Accipitriformes (N=195) 93.5 96.8 96.5 
Pteroclidiformes (N=6) 93.4 96.9 96.2 
Passeriformes (N=3408) 93.3 96.4 96.6 
Cuculiformes (N=66) 93.3 96.4 96.7 
Musophagiformes (N=15) 93.1 96.7 96.2 
Coraciiformes (N=96) 93.0 96.3 96.5 
Sphenisciformes (N=3) 92.9 94.7 98.0 
Opisthocomiformes (N=3) 92.0 95.8 95.9 
Eurypygiformes (N=3) 91.5 96.0 95.1 
Pelecaniformes (N=6) 91.4 93.2 97.9 
Otidiformes (N=6) 91.4 95.8 95.2 
Coliiformes (N=6) 90.8 95.2 95.3 
Apodiformes (N=363) 90.3 94.8 95.0 
Bucerotiformes (N=42) 89.1 94.0 94.4 
Ciconiiformes (N=9) 85.3 88.2 96.2 
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Galliformes (N=15) 84.6 94.9 88.8 

 

Supplementary Table 6.2.3. Top 200 convex hull volume species 

Species name Colour 
volume 

% 
Avian colour 
space 

Family Order 

Pitta ussheri 7.73E-02 35.7 Pittidae Passeriformes 

Tangara chilensis 7.28E-02 33.6 Thraupidae Passeriformes 

Pitta granatina 6.02E-02 27.8 Pittidae Passeriformes 

Cyanerpes cyaneus 5.89E-02 27.2 Thraupidae Passeriformes 

Aethopyga gouldiae 5.44E-02 25.1 Nectariniidae Passeriformes 

Vini australis 5.38E-02 24.8 Psittacidae Psittaciformes 

Alisterus chloropterus 5.28E-02 24.4 Psittacidae Psittaciformes 

Pitta megarhyncha 5.26E-02 24.3 Pittidae Passeriformes 

Aglaiocercus coelestis 5.16E-02 23.8 Trochilidae Apodiformes 

Rostrhamus sociabilis 5.03E-02 23.2 Accipitridae Accipitriformes 

Nectarinia hunteri 5.02E-02 23.2 Nectariniidae Passeriformes 

Pitta gurneyi 4.86E-02 22.4 Pittidae Passeriformes 

Tanysiptera galatea 4.83E-02 22.3 Alcedinidae Coraciiformes 

Pyrilia pyrilia 4.71E-02 21.8 Psittacidae Psittaciformes 

Malurus splendens 4.71E-02 21.8 Maluridae Passeriformes 

Pitta superba 4.69E-02 21.6 Pittidae Passeriformes 

Charmosyna papou 4.62E-02 21.3 Psittacidae Psittaciformes 

Alisterus amboinensis 4.58E-02 21.1 Psittacidae Psittaciformes 

Tangara fastuosa 4.53E-02 20.9 Thraupidae Passeriformes 

Chlorophonia pyrrhophrys 4.46E-02 20.6 Thraupidae Passeriformes 

Nectarinia regia 4.43E-02 20.5 Nectariniidae Passeriformes 

Vini kuhlii 4.40E-02 20.3 Psittacidae Psittaciformes 

Prosopeia splendens 4.37E-02 20.2 Psittacidae Psittaciformes 

Platycercus eximius 4.36E-02 20.1 Psittacidae Psittaciformes 

Heliodoxa jacula 4.25E-02 19.6 Trochilidae Apodiformes 

Forpus modestus 4.17E-02 19.2 Psittacidae Psittaciformes 

Phigys solitarius 4.15E-02 19.2 Psittacidae Psittaciformes 

Pteroglossus viridis 4.12E-02 19 Ramphastidae Piciformes 

Campylopterus hemileucurus 4.10E-02 18.9 Trochilidae Apodiformes 

Psittacula longicauda 4.09E-02 18.9 Psittacidae Psittaciformes 

Nectarinia loveridgei 4.05E-02 18.7 Nectariniidae Passeriformes 

Parotia helenae 4.04E-02 18.7 Paradisaeidae Passeriformes 

Nectarinia chloropygia 4.00E-02 18.5 Nectariniidae Passeriformes 

Aglaiocercus kingi 3.96E-02 18.3 Trochilidae Apodiformes 

Pitta sordida 3.95E-02 18.2 Pittidae Passeriformes 

Psephotus varius 3.92E-02 18.1 Psittacidae Psittaciformes 

Dryocopus javensis 3.87E-02 17.9 Picidae Piciformes 
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Pitta baudii 3.87E-02 17.9 Pittidae Passeriformes 

Passerina ciris 3.85E-02 17.8 Emberizidae Passeriformes 

Astrapia nigra 3.83E-02 17.7 Paradisaeidae Passeriformes 

Pitta steerii 3.82E-02 17.7 Pittidae Passeriformes 

Erythrura pealii 3.82E-02 17.7 Estrildidae Passeriformes 

Anisognathus notabilis 3.82E-02 17.7 Thraupidae Passeriformes 

Trichoglossus haematodus 3.80E-02 17.6 Psittacidae Psittaciformes 

Nectarinia fuelleborni 3.79E-02 17.5 Nectariniidae Passeriformes 

Forpus coelestis 3.79E-02 17.5 Psittacidae Psittaciformes 

Malurus amabilis 3.78E-02 17.4 Maluridae Passeriformes 

Lorius lory 3.75E-02 17.3 Psittacidae Psittaciformes 

Pitta moluccensis 3.73E-02 17.2 Pittidae Passeriformes 

Megalaima rafflesii 3.70E-02 17.1 Ramphastidae Piciformes 

Syrmaticus soemmerringii 3.69E-02 17 Phasianidae Galliformes 

Ceyx erithaca 3.66E-02 16.9 Alcedinidae Coraciiformes 

Pitta arcuata 3.64E-02 16.8 Pittidae Passeriformes 

Prosopeia tabuensis 3.63E-02 16.8 Psittacidae Psittaciformes 

Parotia wahnesi 3.58E-02 16.5 Paradisaeidae Passeriformes 

Loddigesia mirabilis 3.58E-02 16.5 Trochilidae Apodiformes 

Touit purpuratus 3.56E-02 16.5 Psittacidae Psittaciformes 

Anthreptes metallicus 3.56E-02 16.4 Nectariniidae Passeriformes 

Pteridophora alberti 3.56E-02 16.4 Paradisaeidae Passeriformes 

Nectarinia sperata 3.54E-02 16.4 Nectariniidae Passeriformes 

Aethopyga siparaja 3.52E-02 16.3 Nectariniidae Passeriformes 

Nectarinia afra 3.51E-02 16.2 Nectariniidae Passeriformes 

Alcedo meninting 3.47E-02 16 Alcedinidae Coraciiformes 

Tangara cyanocephala 3.45E-02 15.9 Thraupidae Passeriformes 

Ceyx lecontei 3.42E-02 15.8 Alcedinidae Coraciiformes 

Neophema splendida 3.41E-02 15.8 Psittacidae Psittaciformes 

Nectarinia notata 3.39E-02 15.6 Nectariniidae Passeriformes 

Musophaga rossae 3.35E-02 15.5 Musophagidae 
Musophagiform
es 

Lorius hypoinochrous 3.35E-02 15.5 Psittacidae Psittaciformes 

Actophilornis africanus 3.34E-02 15.4 Jacanidae Charadriiformes 

Goura scheepmakeri 3.33E-02 15.4 Columbidae Columbiformes 

Bycanistes bucinator 3.32E-02 15.3 Bucerotidae Bucerotiformes 

Charmosyna josefinae 3.30E-02 15.3 Psittacidae Psittaciformes 

Pyrrhura rhodocephala 3.30E-02 15.2 Psittacidae Psittaciformes 

Nectarinia superba 3.25E-02 15 Nectariniidae Passeriformes 

Nectarinia mediocris 3.24E-02 15 Nectariniidae Passeriformes 

Coracias caudatus 3.23E-02 14.9 Coraciidae Coraciiformes 

Pitta maxima 3.22E-02 14.9 Pittidae Passeriformes 

Alcedo quadribrachys 3.22E-02 14.9 Alcedinidae Coraciiformes 

Purpureicephalus spurius 3.22E-02 14.9 Psittacidae Psittaciformes 

Nectarinia moreaui 3.21E-02 14.8 Nectariniidae Passeriformes 
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Ara chloropterus 3.20E-02 14.8 Psittacidae Psittaciformes 

Tangara velia 3.20E-02 14.8 Thraupidae Passeriformes 

Euphonia finschi 3.18E-02 14.7 Thraupidae Passeriformes 

Nectarinia johannae 3.18E-02 14.7 Nectariniidae Passeriformes 

Phaenicophaeus cumingi 3.16E-02 14.6 Cuculidae Cuculiformes 

Chloropsis hardwickii 3.15E-02 14.5 Chloropseidae Passeriformes 

Tangara seledon 3.14E-02 14.5 Thraupidae Passeriformes 

Pyrilia caica 3.11E-02 14.4 Psittacidae Psittaciformes 

Tangara callophrys 3.08E-02 14.2 Thraupidae Passeriformes 

Picus puniceus 3.08E-02 14.2 Picidae Piciformes 

Pitta iris 3.07E-02 14.2 Pittidae Passeriformes 

Atthis ellioti 3.07E-02 14.2 Trochilidae Apodiformes 

Chlorophonia callophrys 3.07E-02 14.2 Thraupidae Passeriformes 

Campephilus principalis 3.07E-02 14.2 Picidae Piciformes 

Eunymphicus cornutus 3.06E-02 14.1 Psittacidae Psittaciformes 

Ptiloris magnificus 3.04E-02 14 Paradisaeidae Passeriformes 

Irena puella 3.03E-02 14 Irenidae Passeriformes 

Aethopyga mystacalis 3.02E-02 14 Nectariniidae Passeriformes 

Pyrilia barrabandi 3.01E-02 13.9 Psittacidae Psittaciformes 

Nectarinia tacazze 3.01E-02 13.9 Nectariniidae Passeriformes 

Nectarinia calcostetha 3.01E-02 13.9 Nectariniidae Passeriformes 

Trichoglossus ornatus 2.99E-02 13.8 Psittacidae Psittaciformes 

Musophaga violacea 2.97E-02 13.7 Musophagidae 
Musophagiform
es 

Psophia crepitans 2.95E-02 13.6 Psophiidae Gruiformes 

Rhinoplax vigil 2.94E-02 13.6 Bucerotidae Bucerotiformes 

Manucodia keraudrenii 2.93E-02 13.5 Paradisaeidae Passeriformes 

Cicinnurus respublica 2.93E-02 13.5 Paradisaeidae Passeriformes 

Malurus cyanocephalus 2.93E-02 13.5 Maluridae Passeriformes 

Loriculus galgulus 2.92E-02 13.5 Psittacidae Psittaciformes 

Hemicircus concretus 2.92E-02 13.5 Picidae Piciformes 

Charmosyna margarethae 2.90E-02 13.4 Psittacidae Psittaciformes 

Nectarinia preussi 2.89E-02 13.4 Nectariniidae Passeriformes 

Syrmaticus reevesii 2.89E-02 13.3 Phasianidae Galliformes 

Pyrilia pulchra 2.88E-02 13.3 Psittacidae Psittaciformes 

Ramphomicron 
microrhynchum 

2.88E-02 13.3 Trochilidae Apodiformes 

Lepidothrix isidorei 2.88E-02 13.3 Pipridae Passeriformes 

Ramphocelus flammigerus 2.86E-02 13.2 Thraupidae Passeriformes 

Aethopyga ignicauda 2.86E-02 13.2 Nectariniidae Passeriformes 

Coracias benghalensis 2.86E-02 13.2 Coraciidae Coraciiformes 

Pitta angolensis 2.86E-02 13.2 Pittidae Passeriformes 

Agapornis pullarius 2.86E-02 13.2 Psittacidae Psittaciformes 

Nisaetus alboniger 2.84E-02 13.1 Accipitridae Accipitriformes 

Hylocharis sapphirina 2.84E-02 13.1 Trochilidae Apodiformes 
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Campephilus robustus 2.84E-02 13.1 Picidae Piciformes 

Cyclopsitta diophthalma 2.84E-02 13.1 Psittacidae Psittaciformes 

Nectarinia violacea 2.84E-02 13.1 Nectariniidae Passeriformes 

Anthreptes platurus 2.84E-02 13.1 Nectariniidae Passeriformes 

Chloropsis aurifrons 2.84E-02 13.1 Chloropseidae Passeriformes 

Prioniturus flavicans 2.84E-02 13.1 Psittacidae Psittaciformes 

Tauraco ruspolii 2.83E-02 13.1 Musophagidae 
Musophagiform
es 

Grus virgo 2.83E-02 13.1 Gruidae Gruiformes 

Nectarinia stuhlmanni 2.82E-02 13 Nectariniidae Passeriformes 

Pionopsitta pileata 2.80E-02 12.9 Psittacidae Psittaciformes 

Agapornis fischeri 2.79E-02 12.9 Psittacidae Psittaciformes 

Psarisomus dalhousiae 2.79E-02 12.9 Eurylaimidae Passeriformes 

Fregata magnificens 2.79E-02 12.9 Fregatidae Suliformes 

Pitta nympha 2.79E-02 12.9 Pittidae Passeriformes 

Elvira chionura 2.79E-02 12.9 Trochilidae Apodiformes 

Chrysuronia oenone 2.78E-02 12.9 Trochilidae Apodiformes 

Nectarinia purpureiventris 2.78E-02 12.8 Nectariniidae Passeriformes 

Chrysolophus amherstiae 2.77E-02 12.8 Phasianidae Galliformes 

Psophia viridis 2.76E-02 12.8 Psophiidae Gruiformes 

Colibri serrirostris 2.75E-02 12.7 Trochilidae Apodiformes 

Cyanerpes caeruleus 2.75E-02 12.7 Thraupidae Passeriformes 

Momotus aequatorialis 2.75E-02 12.7 Momotidae Coraciiformes 

Myophonus horsfieldii 2.75E-02 12.7 Turdidae Passeriformes 

Chiroxiphia boliviana 2.74E-02 12.7 Pipridae Passeriformes 

Halcyon pileata 2.74E-02 12.6 Alcedinidae Coraciiformes 

Cyanerpes nitidus 2.73E-02 12.6 Thraupidae Passeriformes 

Platycercus icterotis 2.72E-02 12.6 Psittacidae Psittaciformes 

Parotia lawesii 2.72E-02 12.6 Paradisaeidae Passeriformes 

Anthreptes neglectus 2.72E-02 12.5 Nectariniidae Passeriformes 

Pavo cristatus 2.72E-02 12.5 Phasianidae Galliformes 

Ceyx lepidus 2.71E-02 12.5 Alcedinidae Coraciiformes 

Klais guimeti 2.71E-02 12.5 Trochilidae Apodiformes 

Damophila julie 2.71E-02 12.5 Trochilidae Apodiformes 

Eclectus roratus 2.71E-02 12.5 Psittacidae Psittaciformes 

Manucodia jobiensis 2.70E-02 12.5 Paradisaeidae Passeriformes 

Anthreptes aurantium 2.69E-02 12.4 Nectariniidae Passeriformes 

Aethopyga saturata 2.69E-02 12.4 Nectariniidae Passeriformes 

Niltava sundara 2.69E-02 12.4 Muscicapidae Passeriformes 

Pitta reichenowi 2.68E-02 12.4 Pittidae Passeriformes 

Campephilus rubricollis 2.66E-02 12.3 Picidae Piciformes 

Merops muelleri 2.65E-02 12.3 Meropidae Coraciiformes 

Psittacula cyanocephala 2.65E-02 12.3 Psittacidae Psittaciformes 

Niltava grandis 2.65E-02 12.3 Muscicapidae Passeriformes 

Charmosyna placentis 2.65E-02 12.2 Psittacidae Psittaciformes 
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Alcedo cristata 2.64E-02 12.2 Alcedinidae Coraciiformes 

Pitta elegans 2.64E-02 12.2 Pittidae Passeriformes 

Ramphocelus passerinii 2.64E-02 12.2 Thraupidae Passeriformes 

Nectarinia minulla 2.64E-02 12.2 Nectariniidae Passeriformes 

Astrapia mayeri 2.63E-02 12.2 Paradisaeidae Passeriformes 

Lepidothrix coronata 2.62E-02 12.1 Pipridae Passeriformes 

Thalurania furcata 2.60E-02 12 Trochilidae Apodiformes 

Brotogeris cyanoptera 2.60E-02 12 Psittacidae Psittaciformes 

Ploceus nelicourvi 2.60E-02 12 Ploceidae Passeriformes 

Nectarinia bocagii 2.58E-02 11.9 Nectariniidae Passeriformes 

Lophorina superba 2.58E-02 11.9 Paradisaeidae Passeriformes 

Nectarinia pembae 2.58E-02 11.9 Nectariniidae Passeriformes 

Alisterus scapularis 2.58E-02 11.9 Psittacidae Psittaciformes 

Campochaera sloetii 2.57E-02 11.9 
Campephagida
e 

Passeriformes 

Eriocnemis luciani 2.56E-02 11.8 Trochilidae Apodiformes 

Chiroxiphia caudata 2.56E-02 11.8 Pipridae Passeriformes 

Charmosyna pulchella 2.55E-02 11.8 Psittacidae Psittaciformes 

Astrapia splendidissima 2.55E-02 11.8 Paradisaeidae Passeriformes 

Psittacula calthropae 2.55E-02 11.8 Psittacidae Psittaciformes 

Ara macao 2.54E-02 11.8 Psittacidae Psittaciformes 

Manucodia comrii 2.53E-02 11.7 Paradisaeidae Passeriformes 

Psophia leucoptera 2.52E-02 11.6 Psophiidae Gruiformes 

Nectarinia coccinigaster 2.52E-02 11.6 Nectariniidae Passeriformes 

Colibri coruscans 2.51E-02 11.6 Trochilidae Apodiformes 

Laniocera rufescens 2.51E-02 11.6 Cotingidae Passeriformes 

Barnardius zonarius 2.50E-02 11.6 Psittacidae Psittaciformes 

Epimachus meyeri 2.50E-02 11.6 Paradisaeidae Passeriformes 

Micropsitta bruijnii 2.50E-02 11.5 Psittacidae Psittaciformes 

Platycercus elegans 2.48E-02 11.5 Psittacidae Psittaciformes 

Tauraco schuetti 2.48E-02 11.5 Musophagidae 
Musophagiform
es 

Aethopyga nipalensis 2.47E-02 11.4 Nectariniidae Passeriformes 

Ptiloris intercedens 2.47E-02 11.4 Paradisaeidae Passeriformes 

 

Supplementary Table 6.2.4. Top 200 convex hull volume male species 

 

Species name Colour 
volume 

% 
Avian colour 
space 

Family Order 

Tangara chilensis 3.09E+01 30.9 Thraupidae Passeriformes 

Cyanerpes cyaneus 2.66E+01 26.6 Thraupidae Passeriformes 
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Aethopyga gouldiae 2.51E+01 25.1 Nectariniidae Passeriformes 

Vini australis 2.27E+01 22.7 Psittacidae Psittaciformes 

Pitta ussheri 2.22E+01 22.2 Pittidae Passeriformes 

Alisterus chloropterus 2.21E+01 22.1 Psittacidae Psittaciformes 

Aglaiocercus coelestis 2.21E+01 22.1 Trochilidae Apodiformes 

Pitta granatina 2.15E+01 21.5 Pittidae Passeriformes 

Pitta megarhyncha 2.09E+01 20.9 Pittidae Passeriformes 

Pyrilia pyrilia 2.06E+01 20.6 Psittacidae Psittaciformes 

Nectarinia regia 2.05E+01 20.5 Nectariniidae Passeriformes 

Prosopeia splendens 2.00E+01 20 Psittacidae Psittaciformes 

Pitta superba 1.97E+01 19.7 Pittidae Passeriformes 

Pteroglossus viridis 1.87E+01 18.7 Ramphastidae Piciformes 

Malurus splendens 1.86E+01 18.6 Maluridae Passeriformes 

Nectarinia loveridgei 1.83E+01 18.3 Nectariniidae Passeriformes 

Psephotus varius 1.81E+01 18.1 Psittacidae Psittaciformes 

Dryocopus javensis 1.78E+01 17.8 Picidae Piciformes 

Psittacula longicauda 1.77E+01 17.7 Psittacidae Psittaciformes 

Aglaiocercus kingi 1.76E+01 17.6 Trochilidae Apodiformes 

Vini kuhlii 1.75E+01 17.5 Psittacidae Psittaciformes 

Pitta baudii 1.72E+01 17.2 Pittidae Passeriformes 

Charmosyna papou 1.66E+01 16.6 Psittacidae Psittaciformes 

Platycercus eximius 1.66E+01 16.6 Psittacidae Psittaciformes 

Lorius lory 1.65E+01 16.5 Psittacidae Psittaciformes 

Astrapia nigra 1.64E+01 16.4 Paradisaeidae Passeriformes 

Heliodoxa jacula 1.64E+01 16.4 Trochilidae Apodiformes 

Phigys solitarius 1.63E+01 16.3 Psittacidae Psittaciformes 

Megalaima rafflesii 1.61E+01 16.1 Ramphastidae Piciformes 

Anisognathus notabilis 1.59E+01 15.9 Thraupidae Passeriformes 

Pitta arcuata 1.59E+01 15.9 Pittidae Passeriformes 

Parotia helenae 1.58E+01 15.8 Paradisaeidae Passeriformes 

Forpus modestus 1.56E+01 15.6 Psittacidae Psittaciformes 

Pteridophora alberti 1.55E+01 15.5 Paradisaeidae Passeriformes 

Tangara cyanocephala 1.54E+01 15.4 Thraupidae Passeriformes 

Nectarinia afra 1.52E+01 15.2 Nectariniidae Passeriformes 

Nectarinia sperata 1.51E+01 15.1 Nectariniidae Passeriformes 

Alisterus amboinensis 1.50E+01 15 Psittacidae Psittaciformes 

Trichoglossus haematodus 1.48E+01 14.8 Psittacidae Psittaciformes 

Anthreptes metallicus 1.48E+01 14.8 Nectariniidae Passeriformes 

Pitta gurneyi 1.47E+01 14.7 Pittidae Passeriformes 

Nectarinia fuelleborni 1.47E+01 14.7 Nectariniidae Passeriformes 

Alcedo meninting 1.47E+01 14.7 Alcedinidae Coraciiformes 

Pitta moluccensis 1.45E+01 14.5 Pittidae Passeriformes 

Nectarinia hunteri 1.44E+01 14.4 Nectariniidae Passeriformes 

Purpureicephalus spurius 1.44E+01 14.4 Psittacidae Psittaciformes 

Tangara seledon 1.43E+01 14.3 Thraupidae Passeriformes 
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Chloropsis hardwickii 1.42E+01 14.2 Chloropseidae Passeriformes 

Neophema splendida 1.41E+01 14.1 Psittacidae Psittaciformes 

Parotia wahnesi 1.39E+01 13.9 Paradisaeidae Passeriformes 

Campylopterus hemileucurus 1.39E+01 13.9 Trochilidae Apodiformes 

Nectarinia superba 1.39E+01 13.9 Nectariniidae Passeriformes 

Chlorophonia pyrrhophrys 1.38E+01 13.8 Thraupidae Passeriformes 

Malurus amabilis 1.38E+01 13.8 Maluridae Passeriformes 

Nectarinia mediocris 1.38E+01 13.8 Nectariniidae Passeriformes 

Lorius hypoinochrous 1.37E+01 13.7 Psittacidae Psittaciformes 

Pyrilia barrabandi 1.35E+01 13.5 Psittacidae Psittaciformes 

Pitta maxima 1.34E+01 13.4 Pittidae Passeriformes 

Nectarinia notata 1.34E+01 13.4 Nectariniidae Passeriformes 

Tanysiptera galatea 1.33E+01 13.3 Alcedinidae Coraciiformes 

Irena puella 1.33E+01 13.3 Irenidae Passeriformes 

Loriculus galgulus 1.33E+01 13.3 Psittacidae Psittaciformes 

Nectarinia tacazze 1.32E+01 13.2 Nectariniidae Passeriformes 

Aethopyga mystacalis 1.32E+01 13.2 Nectariniidae Passeriformes 

Cicinnurus respublica 1.32E+01 13.2 Paradisaeidae Passeriformes 

Nectarinia violacea 1.31E+01 13.1 Nectariniidae Passeriformes 

Forpus coelestis 1.31E+01 13.1 Psittacidae Psittaciformes 

Nectarinia johannae 1.31E+01 13.1 Nectariniidae Passeriformes 

Prioniturus flavicans 1.31E+01 13.1 Psittacidae Psittaciformes 

Nectarinia stuhlmanni 1.30E+01 13 Nectariniidae Passeriformes 

Trichoglossus ornatus 1.29E+01 12.9 Psittacidae Psittaciformes 

Actophilornis africanus 1.29E+01 12.9 Jacanidae Charadriiformes 

Tangara velia 1.28E+01 12.8 Thraupidae Passeriformes 

Ara chloropterus 1.28E+01 12.8 Psittacidae Psittaciformes 

Nectarinia preussi 1.28E+01 12.8 Nectariniidae Passeriformes 

Aethopyga ignicauda 1.27E+01 12.7 Nectariniidae Passeriformes 

Anthreptes platurus 1.27E+01 12.7 Nectariniidae Passeriformes 

Aethopyga siparaja 1.27E+01 12.7 Nectariniidae Passeriformes 

Pyrilia pulchra 1.27E+01 12.7 Psittacidae Psittaciformes 

Manucodia keraudrenii 1.25E+01 12.5 Paradisaeidae Passeriformes 

Elvira chionura 1.24E+01 12.4 Trochilidae Apodiformes 

Loddigesia mirabilis 1.23E+01 12.3 Trochilidae Apodiformes 

Pitta sordida 1.22E+01 12.2 Pittidae Passeriformes 

Alcedo quadribrachys 1.22E+01 12.2 Alcedinidae Coraciiformes 

Touit purpuratus 1.21E+01 12.1 Psittacidae Psittaciformes 

Cyclopsitta diophthalma 1.21E+01 12.1 Psittacidae Psittaciformes 

Eunymphicus cornutus 1.19E+01 11.9 Psittacidae Psittaciformes 

Nectarinia purpureiventris 1.18E+01 11.8 Nectariniidae Passeriformes 

Prosopeia tabuensis 1.18E+01 11.8 Psittacidae Psittaciformes 

Pitta steerii 1.17E+01 11.7 Pittidae Passeriformes 

Aethopyga saturata 1.17E+01 11.7 Nectariniidae Passeriformes 

Picus puniceus 1.17E+01 11.7 Picidae Piciformes 
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Chlorophonia callophrys 1.16E+01 11.6 Thraupidae Passeriformes 

Nectarinia calcostetha 1.16E+01 11.6 Nectariniidae Passeriformes 

Syrmaticus reevesii 1.16E+01 11.6 Phasianidae Galliformes 

Ramphocelus flammigerus 1.16E+01 11.6 Thraupidae Passeriformes 

Chloropsis aurifrons 1.15E+01 11.5 Chloropseidae Passeriformes 

Charmosyna placentis 1.15E+01 11.5 Psittacidae Psittaciformes 

Pitta angolensis 1.15E+01 11.5 Pittidae Passeriformes 

Nectarinia moreaui 1.14E+01 11.4 Nectariniidae Passeriformes 

Anthreptes neglectus 1.14E+01 11.4 Nectariniidae Passeriformes 

Ptiloris magnificus 1.14E+01 11.4 Paradisaeidae Passeriformes 

Passerina ciris 1.14E+01 11.4 Emberizidae Passeriformes 

Touit huetii 1.14E+01 11.4 Psittacidae Psittaciformes 

Ploceus nelicourvi 1.13E+01 11.3 Ploceidae Passeriformes 

Ramphomicron 
microrhynchum 

1.13E+01 11.3 Trochilidae Apodiformes 

Tauraco ruspolii 1.13E+01 11.3 Musophagidae 
Musophagiform
es 

Pitta elegans 1.13E+01 11.3 Pittidae Passeriformes 

Nectarinia talatala 1.12E+01 11.2 Nectariniidae Passeriformes 

Nectarinia pembae 1.12E+01 11.2 Nectariniidae Passeriformes 

Aethopyga nipalensis 1.11E+01 11.1 Nectariniidae Passeriformes 

Myophonus horsfieldii 1.11E+01 11.1 Turdidae Passeriformes 

Psittacula cyanocephala 1.11E+01 11.1 Psittacidae Psittaciformes 

Campochaera sloetii 1.10E+01 11 
Campephagida
e 

Passeriformes 

Hylocharis sapphirina 1.10E+01 11 Trochilidae Apodiformes 

Micropsitta bruijnii 1.10E+01 11 Psittacidae Psittaciformes 

Pionopsitta pileata 1.10E+01 11 Psittacidae Psittaciformes 

Nisaetus alboniger 1.10E+01 11 Accipitridae Accipitriformes 

Coeligena helianthea 1.09E+01 10.9 Trochilidae Apodiformes 

Epimachus meyeri 1.09E+01 10.9 Paradisaeidae Passeriformes 

Charmosyna josefinae 1.09E+01 10.9 Psittacidae Psittaciformes 

Nectarinia minulla 1.09E+01 10.9 Nectariniidae Passeriformes 

Alcedo vintsioides 1.08E+01 10.8 Alcedinidae Coraciiformes 

Charmosyna margarethae 1.08E+01 10.8 Psittacidae Psittaciformes 

Parotia lawesii 1.08E+01 10.8 Paradisaeidae Passeriformes 

Ceyx lepidus 1.07E+01 10.7 Alcedinidae Coraciiformes 

Campephilus imperialis 1.07E+01 10.7 Picidae Piciformes 

Astrapia mayeri 1.07E+01 10.7 Paradisaeidae Passeriformes 

Nectarinia shelleyi 1.07E+01 10.7 Nectariniidae Passeriformes 

Nectarinia jugularis 1.07E+01 10.7 Nectariniidae Passeriformes 

Manucodia comrii 1.06E+01 10.6 Paradisaeidae Passeriformes 

Pitta reichenowi 1.06E+01 10.6 Pittidae Passeriformes 

Todus angustirostris 1.06E+01 10.6 Todidae Coraciiformes 

Nectarinia mariquensis 1.06E+01 10.6 Nectariniidae Passeriformes 
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Lepidothrix isidorei 1.06E+01 10.6 Pipridae Passeriformes 

Erythrura gouldiae 1.06E+01 10.6 Estrildidae Passeriformes 

Chrysolophus amherstiae 1.06E+01 10.6 Phasianidae Galliformes 

Lepidothrix coronata 1.05E+01 10.5 Pipridae Passeriformes 

Ramphocelus passerinii 1.05E+01 10.5 Thraupidae Passeriformes 

Anisognathus igniventris 1.05E+01 10.5 Thraupidae Passeriformes 

Pavo muticus 1.05E+01 10.5 Phasianidae Galliformes 

Astrapia splendidissima 1.05E+01 10.5 Paradisaeidae Passeriformes 

Pavo cristatus 1.05E+01 10.5 Phasianidae Galliformes 

Tachyphonus coronatus 1.05E+01 10.5 Thraupidae Passeriformes 

Masius chrysopterus 1.04E+01 10.4 Pipridae Passeriformes 

Neophema pulchella 1.04E+01 10.4 Psittacidae Psittaciformes 

Musophaga violacea 1.03E+01 10.3 Musophagidae 
Musophagiform
es 

Oreopsittacus arfaki 1.03E+01 10.3 Psittacidae Psittaciformes 

Anthreptes aurantium 1.03E+01 10.3 Nectariniidae Passeriformes 

Megalaima oorti 1.03E+01 10.3 Ramphastidae Piciformes 

Halcyon pileata 1.03E+01 10.3 Alcedinidae Coraciiformes 

Halcyon leucocephala 1.03E+01 10.3 Alcedinidae Coraciiformes 

Nectarinia ludovicensis 1.02E+01 10.2 Nectariniidae Passeriformes 

Nectarinia minima 1.02E+01 10.2 Nectariniidae Passeriformes 

Charmosyna wilhelminae 1.02E+01 10.2 Psittacidae Psittaciformes 

Nectarinia coccinigaster 1.02E+01 10.2 Nectariniidae Passeriformes 

Eumomota superciliosa 1.02E+01 10.2 Momotidae Coraciiformes 

Myzomela rosenbergii 1.02E+01 10.2 Meliphagidae Passeriformes 

Thalurania furcata 1.02E+01 10.2 Trochilidae Apodiformes 

Anthreptes rhodolaemus 1.01E+01 10.1 Nectariniidae Passeriformes 

Alcedo cristata 1.01E+01 10.1 Alcedinidae Coraciiformes 

Charmosyna pulchella 1.01E+01 10.1 Psittacidae Psittaciformes 

Pyrilia haematotis 1.01E+01 10.1 Psittacidae Psittaciformes 

Ara ararauna 1.01E+01 10.1 Psittacidae Psittaciformes 

Agapornis pullarius 1.01E+01 10.1 Psittacidae Psittaciformes 

Agapornis fischeri 1.01E+01 10.1 Psittacidae Psittaciformes 

Eupodotis melanogaster 1.01E+01 10.1 Otididae Otidiformes 

Ceyx erithaca 1.01E+01 10.1 Alcedinidae Coraciiformes 

Merops muelleri 1.01E+01 10.1 Meropidae Coraciiformes 

Hemicircus concretus 1.00E+01 10 Picidae Piciformes 

Aethopyga christinae 1.00E+01 10 Nectariniidae Passeriformes 

Eclectus roratus 1.00E+01 10 Psittacidae Psittaciformes 

Psittinus cyanurus 1.00E+01 10 Psittacidae Psittaciformes 

Lophorina superba 1.00E+01 10 Paradisaeidae Passeriformes 

Seleucidis melanoleucus 1.00E+01 10 Paradisaeidae Passeriformes 

Agapornis roseicollis 9.90E+00 9.9 Psittacidae Psittaciformes 

Ptilorrhoa castanonota 9.90E+00 9.9 Eupetidae Passeriformes 

Niltava vivida 9.90E+00 9.9 Muscicapidae Passeriformes 
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Niltava davidi 9.90E+00 9.9 Muscicapidae Passeriformes 

Aceros waldeni 9.90E+00 9.9 Bucerotidae Bucerotiformes 

Chiroxiphia boliviana 9.80E+00 9.8 Pipridae Passeriformes 

Platycercus icterotis 9.80E+00 9.8 Psittacidae Psittaciformes 

Lorius chlorocercus 9.80E+00 9.8 Psittacidae Psittaciformes 

Nectarinia senegalensis 9.80E+00 9.8 Nectariniidae Passeriformes 

Nectarinia johnstoni 9.80E+00 9.8 Nectariniidae Passeriformes 

Ephippiorhynchus asiaticus 9.80E+00 9.8 Ciconiidae Ciconiiformes 

Erythrura regia 9.70E+00 9.7 Estrildidae Passeriformes 

Lamprolaima rhami 9.70E+00 9.7 Trochilidae Apodiformes 

Niltava grandis 9.70E+00 9.7 Muscicapidae Passeriformes 

Ara macao 9.70E+00 9.7 Psittacidae Psittaciformes 

Cnemophilus loriae 9.70E+00 9.7 
Cnemophilida
e 

Passeriformes 

Ploceus velatus 9.60E+00 9.6 Ploceidae Passeriformes 

Pyrilia caica 9.60E+00 9.6 Psittacidae Psittaciformes 

Ceyx lecontei 9.60E+00 9.6 Alcedinidae Coraciiformes 

Nectarinia zeylonica 9.60E+00 9.6 Nectariniidae Passeriformes 

Parotia carolae 9.60E+00 9.6 Paradisaeidae Passeriformes 

Calyptomena hosii 9.60E+00 9.6 Eurylaimidae Passeriformes 

Monarcha chrysomela 9.60E+00 9.6 Monarchidae Passeriformes 

Cyanocorax yucatanicus 9.60E+00 9.6 Corvidae Passeriformes 

Nectarinia habessinica 9.50E+00 9.5 Nectariniidae Passeriformes 

 

Supplementary Table 6.2.5. Top 200 convex hull volume female species 

Species name Colour 
volume 

% 
Avian colour 
space 

Family Order 

Tangara chilensis 6.36E-02 29.4 Thraupidae Passeriformes 

Pitta ussheri 6.05E-02 27.9 Pittidae Passeriformes 

Pitta granatina 5.06E-02 23.4 Pittidae Passeriformes 

Charmosyna papou 3.89E-02 18 Psittacidae Psittaciformes 

Phigys solitarius 3.75E-02 17.3 Psittacidae Psittaciformes 

Vini australis 3.71E-02 17.1 Psittacidae Psittaciformes 

Pitta megarhyncha 3.55E-02 16.4 Pittidae Passeriformes 

Pitta sordida 3.45E-02 15.9 Pittidae Passeriformes 

Pitta superba 3.38E-02 15.6 Pittidae Passeriformes 

Goura scheepmakeri 3.24E-02 15 Columbidae Columbiformes 

Touit purpuratus 3.24E-02 14.9 Psittacidae Psittaciformes 

Prosopeia tabuensis 3.20E-02 14.8 Psittacidae Psittaciformes 

Alisterus amboinensis 3.20E-02 14.8 Psittacidae Psittaciformes 

Pitta moluccensis 3.19E-02 14.7 Pittidae Passeriformes 
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Musophaga rossae 3.16E-02 14.6 Musophagidae 
Musophagiform
es 

Pitta steerii 3.11E-02 14.4 Pittidae Passeriformes 

Pitta iris 3.07E-02 14.2 Pittidae Passeriformes 

Tanysiptera galatea 3.07E-02 14.2 Alcedinidae Coraciiformes 

Syrmaticus soemmerringii 3.01E-02 13.9 Phasianidae Galliformes 

Ceyx erithaca 2.99E-02 13.8 Alcedinidae Coraciiformes 

Trichoglossus haematodus 2.92E-02 13.5 Psittacidae Psittaciformes 

Vini kuhlii 2.91E-02 13.4 Psittacidae Psittaciformes 

Bycanistes bucinator 2.87E-02 13.3 Bucerotidae Bucerotiformes 

Charmosyna josefinae 2.84E-02 13.1 Psittacidae Psittaciformes 

Anisognathus notabilis 2.79E-02 12.9 Thraupidae Passeriformes 

Megalaima rafflesii 2.77E-02 12.8 Ramphastidae Piciformes 

Platycercus eximius 2.77E-02 12.8 Psittacidae Psittaciformes 

Alisterus chloropterus 2.70E-02 12.5 Psittacidae Psittaciformes 

Tangara velia 2.60E-02 12 Thraupidae Passeriformes 

Musophaga violacea 2.59E-02 12 Musophagidae 
Musophagiform
es 

Pyrilia caica 2.57E-02 11.9 Psittacidae Psittaciformes 

Psophia crepitans 2.53E-02 11.7 Psophiidae Gruiformes 

Erythrura pealii 2.53E-02 11.7 Estrildidae Passeriformes 

Lorius hypoinochrous 2.53E-02 11.7 Psittacidae Psittaciformes 

Rostrhamus sociabilis 2.52E-02 11.6 Accipitridae Accipitriformes 

Coracias benghalensis 2.48E-02 11.5 Coraciidae Coraciiformes 

Charmosyna margarethae 2.47E-02 11.4 Psittacidae Psittaciformes 

Chlorophonia pyrrhophrys 2.46E-02 11.4 Thraupidae Passeriformes 

Eunymphicus cornutus 2.42E-02 11.2 Psittacidae Psittaciformes 

Brotogeris cyanoptera 2.41E-02 11.1 Psittacidae Psittaciformes 

Fregata magnificens 2.38E-02 11 Fregatidae Suliformes 

Ceyx lecontei 2.35E-02 10.8 Alcedinidae Coraciiformes 

Manucodia jobiensis 2.34E-02 10.8 Paradisaeidae Passeriformes 

Pyrilia pyrilia 2.31E-02 10.7 Psittacidae Psittaciformes 

Vini stepheni 2.31E-02 10.7 Psittacidae Psittaciformes 

Psarisomus dalhousiae 2.30E-02 10.6 Eurylaimidae Passeriformes 

Alcedo quadribrachys 2.28E-02 10.6 Alcedinidae Coraciiformes 

Pitta arcuata 2.27E-02 10.5 Pittidae Passeriformes 

Laniocera rufescens 2.25E-02 10.4 Cotingidae Passeriformes 

Rhinoplax vigil 2.21E-02 10.2 Bucerotidae Bucerotiformes 

Coracias caudatus 2.16E-02 10 Coraciidae Coraciiformes 

Charmosyna pulchella 2.16E-02 10 Psittacidae Psittaciformes 

Pogonocichla stellata 2.14E-02 9.9 Muscicapidae Passeriformes 

Platycercus elegans 2.14E-02 9.9 Psittacidae Psittaciformes 

Pitta nympha 2.14E-02 9.9 Pittidae Passeriformes 

Pyrilia pulchra 2.13E-02 9.8 Psittacidae Psittaciformes 

Coracias temminckii 2.10E-02 9.7 Coraciidae Coraciiformes 
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Psophia leucoptera 2.09E-02 9.6 Psophiidae Gruiformes 

Phaenicophaeus cumingi 2.08E-02 9.6 Cuculidae Cuculiformes 

Cyanocorax sanblasianus 2.08E-02 9.6 Corvidae Passeriformes 

Agapornis fischeri 2.07E-02 9.6 Psittacidae Psittaciformes 

Lybius dubius 2.07E-02 9.6 Ramphastidae Piciformes 

Momotus aequatorialis 2.06E-02 9.5 Momotidae Coraciiformes 

Cephalopterus ornatus 2.03E-02 9.4 Cotingidae Passeriformes 

Lorius lory 2.03E-02 9.4 Psittacidae Psittaciformes 

Colibri coruscans 2.02E-02 9.3 Trochilidae Apodiformes 

Ramphastos vitellinus 1.99E-02 9.2 Ramphastidae Piciformes 

Campephilus principalis 1.96E-02 9.1 Picidae Piciformes 

Pitta reichenowi 1.92E-02 8.9 Pittidae Passeriformes 

Eos cyanogenia 1.89E-02 8.7 Psittacidae Psittaciformes 

Pitta maxima 1.89E-02 8.7 Pittidae Passeriformes 

Pitta angolensis 1.88E-02 8.7 Pittidae Passeriformes 

Micropsitta keiensis 1.88E-02 8.7 Psittacidae Psittaciformes 

Centropus goliath 1.87E-02 8.7 Cuculidae Cuculiformes 

Metopidius indicus 1.87E-02 8.6 Jacanidae Charadriiformes 

Megalaima asiatica 1.86E-02 8.6 Ramphastidae Piciformes 

Tauraco schuetti 1.85E-02 8.6 Musophagidae 
Musophagiform
es 

Phalacrocorax africanus 1.84E-02 8.5 
Phalacrocoracida
e 

Suliformes 

Pyrrhura egregia 1.84E-02 8.5 Psittacidae Psittaciformes 

Phoeniculus purpureus 1.82E-02 8.4 Phoeniculidae Bucerotiformes 

Centropus anselli 1.81E-02 8.4 Cuculidae Cuculiformes 

Buthraupis eximia 1.81E-02 8.3 Thraupidae Passeriformes 

Prosopeia splendens 1.80E-02 8.3 Psittacidae Psittaciformes 

Aratinga solstitialis 1.80E-02 8.3 Psittacidae Psittaciformes 

Merops bulocki 1.80E-02 8.3 Meropidae Coraciiformes 

Trichoglossus ornatus 1.80E-02 8.3 Psittacidae Psittaciformes 

Pyrrhura rhodocephala 1.80E-02 8.3 Psittacidae Psittaciformes 

Lathamus discolor 1.79E-02 8.3 Psittacidae Psittaciformes 

Klais guimeti 1.78E-02 8.2 Trochilidae Apodiformes 

Chloropsis aurifrons 1.78E-02 8.2 Chloropseidae Passeriformes 

Eos histrio 1.77E-02 8.2 Psittacidae Psittaciformes 

Ara macao 1.76E-02 8.2 Psittacidae Psittaciformes 

Psophia viridis 1.76E-02 8.1 Psophiidae Gruiformes 

Chlorophonia callophrys 1.76E-02 8.1 Thraupidae Passeriformes 

Turnix pyrrhothorax 1.76E-02 8.1 Turnicidae Charadriiformes 

Agapornis pullarius 1.76E-02 8.1 Psittacidae Psittaciformes 

Neophema chrysostoma 1.76E-02 8.1 Psittacidae Psittaciformes 

Psittaculirostris edwardsii 1.75E-02 8.1 Psittacidae Psittaciformes 

Balearica regulorum 1.74E-02 8.1 Gruidae Gruiformes 

Ploceus melanogaster 1.74E-02 8 Ploceidae Passeriformes 
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Lamprotornis 
purpureiceps 

1.74E-02 8 Sturnidae Passeriformes 

Brotogeris chrysoptera 1.73E-02 8 Psittacidae Psittaciformes 

Malurus cyanocephalus 1.73E-02 8 Maluridae Passeriformes 

Brotogeris tirica 1.72E-02 7.9 Psittacidae Psittaciformes 

Ara chloropterus 1.71E-02 7.9 Psittacidae Psittaciformes 

Campephilus robustus 1.71E-02 7.9 Picidae Piciformes 

Campephilus rubricollis 1.71E-02 7.9 Picidae Piciformes 

Eurystomus glaucurus 1.70E-02 7.9 Coraciidae Coraciiformes 

Eriocnemis luciani 1.70E-02 7.9 Trochilidae Apodiformes 

Syrmaticus reevesii 1.70E-02 7.9 Phasianidae Galliformes 

Alcedo semitorquata 1.70E-02 7.8 Alcedinidae Coraciiformes 

Amazona finschi 1.68E-02 7.7 Psittacidae Psittaciformes 

Megalaima henricii 1.67E-02 7.7 Ramphastidae Piciformes 

Aratinga auricapillus 1.66E-02 7.7 Psittacidae Psittaciformes 

Halcyon pileata 1.66E-02 7.7 Alcedinidae Coraciiformes 

Leptoptilos javanicus 1.66E-02 7.7 Ciconiidae Ciconiiformes 

Ceyx lepidus 1.65E-02 7.6 Alcedinidae Coraciiformes 

Psittacula calthropae 1.65E-02 7.6 Psittacidae Psittaciformes 

Ducula concinna 1.65E-02 7.6 Columbidae Columbiformes 

Merops muelleri 1.65E-02 7.6 Meropidae Coraciiformes 

Grus virgo 1.64E-02 7.6 Gruidae Gruiformes 

Eos reticulata 1.63E-02 7.5 Psittacidae Psittaciformes 

Tangara mexicana 1.62E-02 7.5 Thraupidae Passeriformes 

Coracias cyanogaster 1.62E-02 7.5 Coraciidae Coraciiformes 

Pogoniulus bilineatus 1.61E-02 7.5 Ramphastidae Piciformes 

Malimbus scutatus 1.61E-02 7.4 Ploceidae Passeriformes 

Malurus amabilis 1.61E-02 7.4 Maluridae Passeriformes 

Ramphastos dicolorus 1.61E-02 7.4 Ramphastidae Piciformes 

Erythrura regia 1.60E-02 7.4 Estrildidae Passeriformes 

Myophonus melanurus 1.60E-02 7.4 Turdidae Passeriformes 

Botaurus stellaris 1.60E-02 7.4 Ardeidae Pelecaniformes 

Eulampis holosericeus 1.60E-02 7.4 Trochilidae Apodiformes 

Malimbus rubricollis 1.59E-02 7.3 Ploceidae Passeriformes 

Tanysiptera riedelii 1.59E-02 7.3 Alcedinidae Coraciiformes 

Actophilornis africanus 1.58E-02 7.3 Jacanidae Charadriiformes 

Cyanoramphus unicolor 1.57E-02 7.3 Psittacidae Psittaciformes 

Glossopsitta concinna 1.57E-02 7.2 Psittacidae Psittaciformes 

Phalacrocorax urile 1.56E-02 7.2 
Phalacrocoracida
e 

Suliformes 

Anastomus lamelligerus 1.55E-02 7.2 Ciconiidae Ciconiiformes 

Lybius bidentatus 1.55E-02 7.1 Ramphastidae Piciformes 

Buccanodon duchaillui 1.54E-02 7.1 Ramphastidae Piciformes 

Tangara cyanocephala 1.54E-02 7.1 Thraupidae Passeriformes 

Loriculus philippensis 1.53E-02 7.1 Psittacidae Psittaciformes 
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Merops gularis 1.53E-02 7.1 Meropidae Coraciiformes 

Tanygnathus 
megalorynchos 

1.53E-02 7.1 Psittacidae Psittaciformes 

Dryocopus schulzi 1.52E-02 7 Picidae Piciformes 

Cyanocorax luxuosus 1.52E-02 7 Corvidae Passeriformes 

Aquila verreauxii 1.52E-02 7 Accipitridae Accipitriformes 

Micropsitta pusio 1.51E-02 7 Psittacidae Psittaciformes 

Butorides striata 1.51E-02 7 Ardeidae Pelecaniformes 

Florisuga mellivora 1.51E-02 7 Trochilidae Apodiformes 

Chloropsis palawanensis 1.51E-02 7 Chloropseidae Passeriformes 

Amazona viridigenalis 1.51E-02 7 Psittacidae Psittaciformes 

Tauraco macrorhynchus 1.50E-02 7 Musophagidae 
Musophagiform
es 

Baryphthengus martii 1.50E-02 6.9 Momotidae Coraciiformes 
Psittaculirostris 
desmarestii 

1.50E-02 6.9 Psittacidae Psittaciformes 

Merops variegatus 1.50E-02 6.9 Meropidae Coraciiformes 

Bostrychia carunculata 1.50E-02 6.9 
Threskiornithida
e 

Pelecaniformes 

Pyrrhura picta 1.49E-02 6.9 Psittacidae Psittaciformes 

Centropus cupreicaudus 1.49E-02 6.9 Cuculidae Cuculiformes 

Chloropsis kinabaluensis 1.49E-02 6.9 Chloropseidae Passeriformes 

Ardeotis arabs 1.49E-02 6.9 Otididae Otidiformes 

Aprosmictus jonquillaceus 1.49E-02 6.9 Psittacidae Psittaciformes 

Boissonneaua jardini 1.48E-02 6.8 Trochilidae Apodiformes 

Nectarinia oritis 1.48E-02 6.8 Nectariniidae Passeriformes 

Agapornis roseicollis 1.48E-02 6.8 Psittacidae Psittaciformes 

Centropus violaceus 1.48E-02 6.8 Cuculidae Cuculiformes 

Oreopsittacus arfaki 1.48E-02 6.8 Psittacidae Psittaciformes 

Eudocimus ruber 1.47E-02 6.8 
Threskiornithida
e 

Pelecaniformes 

Galerida modesta 1.47E-02 6.8 Alaudidae Passeriformes 

Todiramphus lazuli 1.47E-02 6.8 Alcedinidae Coraciiformes 

Dicrurus aeneus 1.46E-02 6.7 Dicruridae Passeriformes 

Chalcopsitta sintillata 1.46E-02 6.7 Psittacidae Psittaciformes 

Alectroenas pulcherrima 1.45E-02 6.7 Columbidae Columbiformes 

Tauraco schalowi 1.45E-02 6.7 Musophagidae 
Musophagiform
es 

Buthraupis montana 1.45E-02 6.7 Thraupidae Passeriformes 

Amazona oratrix 1.45E-02 6.7 Psittacidae Psittaciformes 

Urocissa caerulea 1.45E-02 6.7 Corvidae Passeriformes 

Anisognathus igniventris 1.44E-02 6.7 Thraupidae Passeriformes 

Pionites melanocephalus 1.44E-02 6.7 Psittacidae Psittaciformes 

Halcyon malimbica 1.44E-02 6.7 Alcedinidae Coraciiformes 

Centropus monachus 1.44E-02 6.6 Cuculidae Cuculiformes 
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Melanerpes chrysogenys 1.44E-02 6.6 Picidae Piciformes 

Dryocopus hodgei 1.43E-02 6.6 Picidae Piciformes 

Momotus mexicanus 1.43E-02 6.6 Momotidae Coraciiformes 

Pteroglossus torquatus 1.43E-02 6.6 Ramphastidae Piciformes 

Centropus sinensis 1.43E-02 6.6 Cuculidae Cuculiformes 

Ceyx melanurus 1.42E-02 6.6 Alcedinidae Coraciiformes 

Manucodia comrii 1.42E-02 6.5 Paradisaeidae Passeriformes 

Tachuris rubrigastra 1.42E-02 6.5 Tyrannidae Passeriformes 

Psittacula longicauda 1.41E-02 6.5 Psittacidae Psittaciformes 

Megalaima nuchalis 1.40E-02 6.5 Ramphastidae Piciformes 

Dicrurus paradiseus 1.39E-02 6.4 Dicruridae Passeriformes 

Tangara seledon 1.38E-02 6.4 Thraupidae Passeriformes 

Amazona autumnalis 1.38E-02 6.4 Psittacidae Psittaciformes 

Lamprotornis purpureus 1.38E-02 6.4 Sturnidae Passeriformes 

Jacana jacana 1.38E-02 6.4 Jacanidae Charadriiformes 

Pteruthius rufiventer 1.38E-02 6.4 Timaliidae Passeriformes 

Aglaiocercus coelestis 1.37E-02 6.3 Trochilidae Apodiformes 

Chlorostilbon maugaeus 1.37E-02 6.3 Trochilidae Apodiformes 

 

Supplementary Table 6.2.6. Top 200 proportional colour diversity species 

Species name Proportional colour diversity Family Order 

Phigys solitarius 1.79E-01 Psittacidae Psittaciformes 

Charmosyna papou 1.76E-01 Psittacidae Psittaciformes 

Pitta ussheri 1.61E-01 Pittidae Passeriformes 

Cyanerpes caeruleus 1.60E-01 Thraupidae Passeriformes 

Tangara callophrys 1.59E-01 Thraupidae Passeriformes 

Alcedo quadribrachys 1.59E-01 Alcedinidae Coraciiformes 

Anisognathus notabilis 1.57E-01 Thraupidae Passeriformes 

Alisterus amboinensis 1.57E-01 Psittacidae Psittaciformes 

Buthraupis montana 1.55E-01 Thraupidae Passeriformes 

Vini kuhlii 1.54E-01 Psittacidae Psittaciformes 

Pitta granatina 1.54E-01 Pittidae Passeriformes 

Charmosyna josefinae 1.53E-01 Psittacidae Psittaciformes 

Cyanerpes cyaneus 1.51E-01 Thraupidae Passeriformes 

Charmosyna margarethae 1.50E-01 Psittacidae Psittaciformes 

Lorius lory 1.48E-01 Psittacidae Psittaciformes 

Malurus splendens 1.48E-01 Maluridae Passeriformes 

Ara macao 1.46E-01 Psittacidae Psittaciformes 

Charmosyna pulchella 1.43E-01 Psittacidae Psittaciformes 

Actenoides bougainvillei 1.42E-01 Alcedinidae Coraciiformes 

Lorius hypoinochrous 1.37E-01 Psittacidae Psittaciformes 

Cyanerpes lucidus 1.36E-01 Thraupidae Passeriformes 
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Pitta arcuata 1.36E-01 Pittidae Passeriformes 

Platycercus elegans 1.36E-01 Psittacidae Psittaciformes 

Vini australis 1.35E-01 Psittacidae Psittaciformes 

Ceyx lecontei 1.35E-01 Alcedinidae Coraciiformes 

Vini stepheni 1.33E-01 Psittacidae Psittaciformes 

Alcedo leucogaster 1.33E-01 Alcedinidae Coraciiformes 

Chlorochrysa nitidissima 1.32E-01 Thraupidae Passeriformes 

Ceyx erithaca 1.31E-01 Alcedinidae Coraciiformes 

Eclectus roratus 1.30E-01 Psittacidae Psittaciformes 

Pipra filicauda 1.30E-01 Pipridae Passeriformes 

Ceyx pictus 1.29E-01 Alcedinidae Coraciiformes 

Tanysiptera sylvia 1.28E-01 Alcedinidae Coraciiformes 

Anisognathus igniventris 1.27E-01 Thraupidae Passeriformes 

Prosopeia splendens 1.27E-01 Psittacidae Psittaciformes 

Alisterus chloropterus 1.27E-01 Psittacidae Psittaciformes 

Lorius chlorocercus 1.27E-01 Psittacidae Psittaciformes 

Ara chloropterus 1.26E-01 Psittacidae Psittaciformes 

Loriculus amabilis 1.25E-01 Psittacidae Psittaciformes 

Icterus croconotus 1.25E-01 Icteridae Passeriformes 

Lorius albidinucha 1.24E-01 Psittacidae Psittaciformes 

Alisterus scapularis 1.24E-01 Psittacidae Psittaciformes 

Ara ararauna 1.23E-01 Psittacidae Psittaciformes 

Icterus auratus 1.23E-01 Icteridae Passeriformes 

Trichoglossus haematodus 1.22E-01 Psittacidae Psittaciformes 

Halcyon pileata 1.22E-01 Alcedinidae Coraciiformes 

Niltava vivida 1.22E-01 Muscicapidae Passeriformes 

Platycercus eximius 1.22E-01 Psittacidae Psittaciformes 

Alcedo azurea 1.21E-01 Alcedinidae Coraciiformes 

Eos histrio 1.20E-01 Psittacidae Psittaciformes 

Vini peruviana 1.20E-01 Psittacidae Psittaciformes 

Urocissa ornata 1.19E-01 Corvidae Passeriformes 

Alcedo vintsioides 1.19E-01 Alcedinidae Coraciiformes 

Ceyx lepidus 1.19E-01 Alcedinidae Coraciiformes 

Alcedo cristata 1.19E-01 Alcedinidae Coraciiformes 

Pitta baudii 1.18E-01 Pittidae Passeriformes 

Todiramphus leucopygius 1.17E-01 Alcedinidae Coraciiformes 

Loriculus sclateri 1.17E-01 Psittacidae Psittaciformes 

Pericrocotus flammeus 1.16E-01 Campephagidae Passeriformes 

Alcedo meninting 1.16E-01 Alcedinidae Coraciiformes 

Pericrocotus brevirostris 1.15E-01 Campephagidae Passeriformes 

Passerina ciris 1.15E-01 Emberizidae Passeriformes 

Loriculus philippensis 1.14E-01 Psittacidae Psittaciformes 

Icterus jamacaii 1.14E-01 Icteridae Passeriformes 

Psittaculirostris edwardsii 1.14E-01 Psittacidae Psittaciformes 

Malurus pulcherrimus 1.14E-01 Maluridae Passeriformes 
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Prosopeia tabuensis 1.14E-01 Psittacidae Psittaciformes 

Tanysiptera ellioti 1.14E-01 Alcedinidae Coraciiformes 

Tanysiptera carolinae 1.13E-01 Alcedinidae Coraciiformes 

Trichoglossus ornatus 1.13E-01 Psittacidae Psittaciformes 

Icterus pectoralis 1.13E-01 Icteridae Passeriformes 

Piranga leucoptera 1.13E-01 Cardinalidae Passeriformes 

Telophorus dohertyi 1.13E-01 Malaconotidae Passeriformes 

Icterus icterus 1.12E-01 Icteridae Passeriformes 

Pitta dohertyi 1.12E-01 Pittidae Passeriformes 

Touit purpuratus 1.11E-01 Psittacidae Psittaciformes 

Icterus maculialatus 1.11E-01 Icteridae Passeriformes 

Cosmopsarus regius 1.11E-01 Sturnidae Passeriformes 

Lorius garrulus 1.11E-01 Psittacidae Psittaciformes 

Pericrocotus igneus 1.10E-01 Campephagidae Passeriformes 

Eos cyanogenia 1.10E-01 Psittacidae Psittaciformes 

Piranga rubriceps 1.10E-01 Cardinalidae Passeriformes 

Coracias temminckii 1.10E-01 Coraciidae Coraciiformes 

Lorius domicella 1.10E-01 Psittacidae Psittaciformes 

Pachycephala aurea 1.09E-01 Pachycephalidae Passeriformes 

Cotinga cotinga 1.09E-01 Cotingidae Passeriformes 

Niltava davidi 1.08E-01 Muscicapidae Passeriformes 

Loriculus exilis 1.08E-01 Psittacidae Psittaciformes 

Erythrura regia 1.08E-01 Estrildidae Passeriformes 

Niltava sundara 1.07E-01 Muscicapidae Passeriformes 

Pionites leucogaster 1.07E-01 Psittacidae Psittaciformes 

Baryphthengus martii 1.07E-01 Momotidae Coraciiformes 

Pyrilia pyrilia 1.06E-01 Psittacidae Psittaciformes 

Malurus cyanocephalus 1.06E-01 Maluridae Passeriformes 

Icterus graceannae 1.06E-01 Icteridae Passeriformes 

Pericrocotus solaris 1.06E-01 Campephagidae Passeriformes 

Pipra fasciicauda 1.06E-01 Pipridae Passeriformes 

Aratinga solstitialis 1.06E-01 Psittacidae Psittaciformes 

Piranga olivacea 1.05E-01 Cardinalidae Passeriformes 

Ramphastos dicolorus 1.05E-01 Ramphastidae Piciformes 

Todiramphus farquhari 1.05E-01 Alcedinidae Coraciiformes 

Tangara gyrola 1.05E-01 Thraupidae Passeriformes 

Pericrocotus ethologus 1.05E-01 Campephagidae Passeriformes 

Tangara seledon 1.04E-01 Thraupidae Passeriformes 

Tangara arthus 1.04E-01 Thraupidae Passeriformes 

Todiramphus winchelli 1.04E-01 Alcedinidae Coraciiformes 

Campochaera sloetii 1.04E-01 Campephagidae Passeriformes 

Icterus gularis 1.04E-01 Icteridae Passeriformes 

Halcyon cyanoventris 1.04E-01 Alcedinidae Coraciiformes 

Telophorus viridis 1.04E-01 Malaconotidae Passeriformes 

Aprosmictus erythropterus 1.04E-01 Psittacidae Psittaciformes 
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Touit huetii 1.03E-01 Psittacidae Psittaciformes 

Antilophia galeata 1.03E-01 Pipridae Passeriformes 

Merops muelleri 1.03E-01 Meropidae Coraciiformes 

Chlorophanes spiza 1.03E-01 Thraupidae Passeriformes 

Cyornis superbus 1.03E-01 Muscicapidae Passeriformes 

Paroaria dominicana 1.02E-01 Emberizidae Passeriformes 

Cyanerpes nitidus 1.02E-01 Thraupidae Passeriformes 

Telophorus quadricolor 1.02E-01 Malaconotidae Passeriformes 

Pyrilia caica 1.02E-01 Psittacidae Psittaciformes 

Tangara velia 1.02E-01 Thraupidae Passeriformes 

Ficedula sapphira 1.02E-01 Muscicapidae Passeriformes 

Icterus auricapillus 1.02E-01 Icteridae Passeriformes 

Passerina rositae 1.01E-01 Emberizidae Passeriformes 

Cyclopsitta gulielmitertii 1.01E-01 Psittacidae Psittaciformes 

Neopsittacus pullicauda 1.01E-01 Psittacidae Psittaciformes 

Myzomela rosenbergii 1.01E-01 Meliphagidae Passeriformes 

Ceyx fallax 1.01E-01 Alcedinidae Coraciiformes 

Pyrocephalus rubinus 1.01E-01 Tyrannidae Passeriformes 

Niltava sumatrana 1.00E-01 Muscicapidae Passeriformes 

Loriculus galgulus 1.00E-01 Psittacidae Psittaciformes 

Merops breweri 1.00E-01 Meropidae Coraciiformes 

Tanysiptera galatea 1.00E-01 Alcedinidae Coraciiformes 

Icterus wagleri 1.00E-01 Icteridae Passeriformes 

Eubucco bourcierii 1.00E-01 Ramphastidae Piciformes 

Ramphocelus nigrogularis 1.00E-01 Thraupidae Passeriformes 

Euphonia musica 9.99E-02 Thraupidae Passeriformes 

Ramphocelus bresilius 9.98E-02 Thraupidae Passeriformes 

Euphonia cyanocephala 9.97E-02 Thraupidae Passeriformes 

Tangara chilensis 9.95E-02 Thraupidae Passeriformes 

Ramphocelus flammigerus 9.95E-02 Thraupidae Passeriformes 

Pyrilia pulchra 9.94E-02 Psittacidae Psittaciformes 

Aratinga jandaya 9.91E-02 Psittacidae Psittaciformes 

Euphonia elegantissima 9.90E-02 Thraupidae Passeriformes 

Amblyramphus holosericeus 9.90E-02 Icteridae Passeriformes 

Icterus mesomelas 9.90E-02 Icteridae Passeriformes 

Aratinga erythrogenys 9.86E-02 Psittacidae Psittaciformes 

Ploceus insignis 9.86E-02 Ploceidae Passeriformes 

Chrysothlypis salmoni 9.83E-02 Thraupidae Passeriformes 

Pipraeidea melanonota 9.83E-02 Thraupidae Passeriformes 

Semnornis ramphastinus 9.81E-02 Ramphastidae Piciformes 

Pitta erythrogaster 9.80E-02 Pittidae Passeriformes 

Calyptomena whiteheadi 9.79E-02 Eurylaimidae Passeriformes 

Haematoderus militaris 9.79E-02 Cotingidae Passeriformes 

Platycercus icterotis 9.79E-02 Psittacidae Psittaciformes 

Neophema pulchella 9.78E-02 Psittacidae Psittaciformes 
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Coracias cyanogaster 9.77E-02 Coraciidae Coraciiformes 

Alcedo semitorquata 9.72E-02 Alcedinidae Coraciiformes 

Icterus pustulatus 9.70E-02 Icteridae Passeriformes 

Ramphocelus passerinii 9.70E-02 Thraupidae Passeriformes 

Cyclopsitta diophthalma 9.69E-02 Psittacidae Psittaciformes 

Mino anais 9.68E-02 Sturnidae Passeriformes 

Icterus galbula 9.66E-02 Icteridae Passeriformes 

Ploceus dorsomaculatus 9.64E-02 Ploceidae Passeriformes 

Ara glaucogularis 9.64E-02 Psittacidae Psittaciformes 

Cyanolyca pulchra 9.62E-02 Corvidae Passeriformes 

Ploceus bicolor 9.61E-02 Ploceidae Passeriformes 

Calyptomena hosii 9.60E-02 Eurylaimidae Passeriformes 

Tangara fastuosa 9.60E-02 Thraupidae Passeriformes 

Melanerpes flavifrons 9.59E-02 Picidae Piciformes 

Polytelis swainsonii 9.59E-02 Psittacidae Psittaciformes 

Piranga erythrocephala 9.58E-02 Cardinalidae Passeriformes 

Garrulus lidthi 9.57E-02 Corvidae Passeriformes 

Pyrilia barrabandi 9.56E-02 Psittacidae Psittaciformes 

Euphonia saturata 9.56E-02 Thraupidae Passeriformes 

Anaplectes rubriceps 9.55E-02 Ploceidae Passeriformes 

Agapornis fischeri 9.54E-02 Psittacidae Psittaciformes 

Iridosornis rufivertex 9.54E-02 Thraupidae Passeriformes 

Campephaga lobata 9.53E-02 Campephagidae Passeriformes 

Aglaiocercus kingi 9.51E-02 Trochilidae Apodiformes 

Cyornis turcosus 9.51E-02 Muscicapidae Passeriformes 

Aprosmictus jonquillaceus 9.51E-02 Psittacidae Psittaciformes 

Euphonia laniirostris 9.50E-02 Thraupidae Passeriformes 

Ramphocelus sanguinolentus 9.50E-02 Thraupidae Passeriformes 

Halcyon leucocephala 9.48E-02 Alcedinidae Coraciiformes 

Pitta moluccensis 9.46E-02 Pittidae Passeriformes 

Foudia madagascariensis 9.46E-02 Ploceidae Passeriformes 

Malaconotus cruentus 9.46E-02 Malaconotidae Passeriformes 

Pachycare flavogriseum 9.44E-02 Pachycephalidae Passeriformes 

Loriculus stigmatus 9.42E-02 Psittacidae Psittaciformes 

Aethopyga mystacalis 9.41E-02 Nectariniidae Passeriformes 

Delothraupis castaneoventris 9.41E-02 Thraupidae Passeriformes 

Icterus oberi 9.40E-02 Icteridae Passeriformes 

Jacamerops aureus 9.40E-02 Galbulidae Piciformes 

Charmosyna amabilis 9.39E-02 Psittacidae Psittaciformes 

Passerina leclancherii 9.38E-02 Emberizidae Passeriformes 

Meropogon forsteni 9.37E-02 Meropidae Coraciiformes 

Hirundo nigrorufa 9.34E-02 Hirundinidae Passeriformes 

Eos reticulata 9.34E-02 Psittacidae Psittaciformes 

Tangara desmaresti 9.33E-02 Thraupidae Passeriformes 
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Supplementary Table 6.2.7. Top 200 proportional colour diversity male species 

Species name Proportional colour diversity Family Order 

Cyanerpes cyaneus 1.95E-01 Thraupidae Passeriformes 

Cyanerpes caeruleus 1.88E-01 Thraupidae Passeriformes 

Phigys solitarius 1.84E-01 Psittacidae Psittaciformes 

Vini kuhlii 1.68E-01 Psittacidae Psittaciformes 

Pitta ussheri 1.64E-01 Pittidae Passeriformes 

Anisognathus notabilis 1.63E-01 Thraupidae Passeriformes 

Actenoides bougainvillei 1.62E-01 Alcedinidae Coraciiformes 

Charmosyna papou 1.61E-01 Psittacidae Psittaciformes 

Pitta granatina 1.59E-01 Pittidae Passeriformes 

Malurus pulcherrimus 1.58E-01 Maluridae Passeriformes 

Charmosyna josefinae 1.58E-01 Psittacidae Psittaciformes 

Alisterus chloropterus 1.57E-01 Psittacidae Psittaciformes 

Alisterus amboinensis 1.56E-01 Psittacidae Psittaciformes 

Charmosyna pulchella 1.54E-01 Psittacidae Psittaciformes 

Lorius lory 1.54E-01 Psittacidae Psittaciformes 

Pitta arcuata 1.52E-01 Pittidae Passeriformes 

Buthraupis montana 1.49E-01 Thraupidae Passeriformes 

Malurus splendens 1.48E-01 Maluridae Passeriformes 

Charmosyna margarethae 1.46E-01 Psittacidae Psittaciformes 

Alcedo quadribrachys 1.44E-01 Alcedinidae Coraciiformes 

Niltava vivida 1.44E-01 Muscicapidae Passeriformes 

Aprosmictus erythropterus 1.44E-01 Psittacidae Psittaciformes 

Niltava sumatrana 1.44E-01 Muscicapidae Passeriformes 

Ceyx erithaca 1.43E-01 Alcedinidae Coraciiformes 

Platycercus eximius 1.42E-01 Psittacidae Psittaciformes 

Niltava sundara 1.41E-01 Muscicapidae Passeriformes 

Vini australis 1.39E-01 Psittacidae Psittaciformes 

Pipra filicauda 1.39E-01 Pipridae Passeriformes 

Vini stepheni 1.38E-01 Psittacidae Psittaciformes 

Alcedo leucogaster 1.37E-01 Alcedinidae Coraciiformes 

Niltava davidi 1.35E-01 Muscicapidae Passeriformes 

Lorius hypoinochrous 1.34E-01 Psittacidae Psittaciformes 

Passerina ciris 1.33E-01 Emberizidae Passeriformes 

Alcedo cristata 1.32E-01 Alcedinidae Coraciiformes 

Tanysiptera sylvia 1.32E-01 Alcedinidae Coraciiformes 

Chlorochrysa nitidissima 1.32E-01 Thraupidae Passeriformes 

Loriculus galgulus 1.30E-01 Psittacidae Psittaciformes 

Ara chloropterus 1.29E-01 Psittacidae Psittaciformes 

Anisognathus igniventris 1.29E-01 Thraupidae Passeriformes 
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Lorius chlorocercus 1.29E-01 Psittacidae Psittaciformes 

Irena puella 1.29E-01 Irenidae Passeriformes 

Ara ararauna 1.28E-01 Psittacidae Psittaciformes 

Ceyx lepidus 1.28E-01 Alcedinidae Coraciiformes 

Ara macao 1.28E-01 Psittacidae Psittaciformes 

Prosopeia splendens 1.28E-01 Psittacidae Psittaciformes 

Euphonia cyanocephala 1.27E-01 Thraupidae Passeriformes 

Loriculus sclateri 1.27E-01 Psittacidae Psittaciformes 

Cyornis superbus 1.26E-01 Muscicapidae Passeriformes 

Loriculus amabilis 1.26E-01 Psittacidae Psittaciformes 

Icterus croconotus 1.25E-01 Icteridae Passeriformes 

Alisterus scapularis 1.25E-01 Psittacidae Psittaciformes 

Euphonia laniirostris 1.25E-01 Thraupidae Passeriformes 

Vini peruviana 1.25E-01 Psittacidae Psittaciformes 

Euphonia saturata 1.24E-01 Thraupidae Passeriformes 

Alcedo meninting 1.24E-01 Alcedinidae Coraciiformes 

Eos cyanogenia 1.24E-01 Psittacidae Psittaciformes 

Ceyx pictus 1.24E-01 Alcedinidae Coraciiformes 

Lorius albidinucha 1.24E-01 Psittacidae Psittaciformes 

Todiramphus leucopygius 1.23E-01 Alcedinidae Coraciiformes 

Platycercus icterotis 1.23E-01 Psittacidae Psittaciformes 

Euphonia violacea 1.22E-01 Thraupidae Passeriformes 

Euphonia elegantissima 1.22E-01 Thraupidae Passeriformes 

Ficedula sapphira 1.22E-01 Muscicapidae Passeriformes 

Pitta baudii 1.22E-01 Pittidae Passeriformes 

Erythrura regia 1.22E-01 Estrildidae Passeriformes 

Cotinga cotinga 1.21E-01 Cotingidae Passeriformes 

Halcyon pileata 1.20E-01 Alcedinidae Coraciiformes 

Loriculus philippensis 1.20E-01 Psittacidae Psittaciformes 

Urocissa ornata 1.20E-01 Corvidae Passeriformes 

Psittaculirostris edwardsii 1.19E-01 Psittacidae Psittaciformes 

Alcedo azurea 1.19E-01 Alcedinidae Coraciiformes 

Trichoglossus haematodus 1.19E-01 Psittacidae Psittaciformes 

Platycercus elegans 1.19E-01 Psittacidae Psittaciformes 

Cyanerpes lucidus 1.19E-01 Thraupidae Passeriformes 

Ceyx lecontei 1.17E-01 Alcedinidae Coraciiformes 

Passerina leclancherii 1.17E-01 Emberizidae Passeriformes 

Telophorus dohertyi 1.17E-01 Malaconotidae Passeriformes 

Pachycephala aurea 1.16E-01 Pachycephalidae Passeriformes 

Lacedo pulchella 1.16E-01 Alcedinidae Coraciiformes 

Tangara seledon 1.16E-01 Thraupidae Passeriformes 

Euphonia musica 1.15E-01 Thraupidae Passeriformes 

Alcedo vintsioides 1.15E-01 Alcedinidae Coraciiformes 

Icterus jamacaii 1.14E-01 Icteridae Passeriformes 

Nectarinia regia 1.14E-01 Nectariniidae Passeriformes 
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Euphonia concinna 1.14E-01 Thraupidae Passeriformes 

Tangara velia 1.14E-01 Thraupidae Passeriformes 

Aethopyga gouldiae 1.14E-01 Nectariniidae Passeriformes 

Pipra fasciicauda 1.14E-01 Pipridae Passeriformes 

Cosmopsarus regius 1.14E-01 Sturnidae Passeriformes 

Tanysiptera carolinae 1.13E-01 Alcedinidae Coraciiformes 

Eubucco bourcierii 1.13E-01 Ramphastidae Piciformes 

Icterus pectoralis 1.13E-01 Icteridae Passeriformes 

Tangara chilensis 1.13E-01 Thraupidae Passeriformes 

Pipraeidea melanonota 1.12E-01 Thraupidae Passeriformes 

Calyptomena hosii 1.12E-01 Eurylaimidae Passeriformes 

Icterus icterus 1.12E-01 Icteridae Passeriformes 

Muscicapella hodgsoni 1.11E-01 Muscicapidae Passeriformes 

Sericulus chrysocephalus 1.11E-01 Ptilonorhynchidae Passeriformes 

Icterus maculialatus 1.11E-01 Icteridae Passeriformes 

Campochaera sloetii 1.11E-01 Campephagidae Passeriformes 

Lorius garrulus 1.11E-01 Psittacidae Psittaciformes 

Chlorophonia cyanea 1.10E-01 Thraupidae Passeriformes 

Pyrilia pyrilia 1.10E-01 Psittacidae Psittaciformes 

Calyptomena whiteheadi 1.10E-01 Eurylaimidae Passeriformes 

Euphonia rufiventris 1.10E-01 Thraupidae Passeriformes 

Touit purpuratus 1.10E-01 Psittacidae Psittaciformes 

Charmosyna placentis 1.10E-01 Psittacidae Psittaciformes 

Euphonia anneae 1.10E-01 Thraupidae Passeriformes 

Lorius domicella 1.10E-01 Psittacidae Psittaciformes 

Icterus bullockii 1.10E-01 Icteridae Passeriformes 

Cyclopsitta gulielmitertii 1.09E-01 Psittacidae Psittaciformes 

Telophorus quadricolor 1.09E-01 Malaconotidae Passeriformes 

Telophorus viridis 1.09E-01 Malaconotidae Passeriformes 

Icterus cucullatus 1.09E-01 Icteridae Passeriformes 

Ramphocelus nigrogularis 1.09E-01 Thraupidae Passeriformes 

Cyclopsitta diophthalma 1.09E-01 Psittacidae Psittaciformes 

Tangara arthus 1.09E-01 Thraupidae Passeriformes 

Prosopeia tabuensis 1.09E-01 Psittacidae Psittaciformes 

Antilophia galeata 1.09E-01 Pipridae Passeriformes 

Aglaiocercus kingi 1.09E-01 Trochilidae Apodiformes 

Neophema splendida 1.08E-01 Psittacidae Psittaciformes 

Loriculus stigmatus 1.08E-01 Psittacidae Psittaciformes 

Loriculus exilis 1.08E-01 Psittacidae Psittaciformes 

Halcyon leucocephala 1.08E-01 Alcedinidae Coraciiformes 

Eos histrio 1.08E-01 Psittacidae Psittaciformes 

Tangara gyrola 1.08E-01 Thraupidae Passeriformes 

Ramphastos dicolorus 1.08E-01 Ramphastidae Piciformes 

Tarsiger hyperythrus 1.08E-01 Muscicapidae Passeriformes 

Malimbus racheliae 1.08E-01 Ploceidae Passeriformes 
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Trichoglossus ornatus 1.07E-01 Psittacidae Psittaciformes 

Mycerobas affinis 1.07E-01 Fringillidae Passeriformes 

Aglaiocercus coelestis 1.07E-01 Trochilidae Apodiformes 

Icterus graceannae 1.07E-01 Icteridae Passeriformes 

Trogon elegans 1.07E-01 Trogonidae Trogoniformes 

Merops muelleri 1.07E-01 Meropidae Coraciiformes 

Euphonia xanthogaster 1.07E-01 Thraupidae Passeriformes 

Chrysothlypis chrysomelas 1.07E-01 Thraupidae Passeriformes 

Campephaga lobata 1.07E-01 Campephagidae Passeriformes 

Pipra erythrocephala 1.06E-01 Pipridae Passeriformes 

Phoenicircus nigricollis 1.06E-01 Cotingidae Passeriformes 

Aratinga solstitialis 1.06E-01 Psittacidae Psittaciformes 

Xanthopsar flavus 1.06E-01 Icteridae Passeriformes 

Chlorophonia pyrrhophrys 1.06E-01 Thraupidae Passeriformes 

Sialia mexicana 1.06E-01 Turdidae Passeriformes 

Polytelis swainsonii 1.06E-01 Psittacidae Psittaciformes 

Malurus amabilis 1.05E-01 Maluridae Passeriformes 

Piranga rubriceps 1.05E-01 Cardinalidae Passeriformes 

Icterus wagleri 1.05E-01 Icteridae Passeriformes 

Icterus galbula 1.05E-01 Icteridae Passeriformes 

Monticola cinclorhynchus 1.05E-01 Muscicapidae Passeriformes 

Piranga ludoviciana 1.05E-01 Cardinalidae Passeriformes 

Cyornis turcosus 1.05E-01 Muscicapidae Passeriformes 

Icterus mesomelas 1.05E-01 Icteridae Passeriformes 

Cyanolanius madagascarinus 1.05E-01 Vangidae Passeriformes 

Myzomela rosenbergii 1.05E-01 Meliphagidae Passeriformes 

Euplectes gierowii 1.05E-01 Ploceidae Passeriformes 

Cyornis caerulatus 1.04E-01 Muscicapidae Passeriformes 

Actenoides concretus 1.04E-01 Alcedinidae Coraciiformes 

Semnornis ramphastinus 1.04E-01 Ramphastidae Piciformes 

Tangara cyanocephala 1.04E-01 Thraupidae Passeriformes 

Pipra chloromeros 1.04E-01 Pipridae Passeriformes 

Aethopyga ignicauda 1.04E-01 Nectariniidae Passeriformes 

Tangara lavinia 1.04E-01 Thraupidae Passeriformes 

Pyrilia pulchra 1.03E-01 Psittacidae Psittaciformes 

Baryphthengus martii 1.03E-01 Momotidae Coraciiformes 

Touit huetii 1.03E-01 Psittacidae Psittaciformes 

Pyrilia barrabandi 1.03E-01 Psittacidae Psittaciformes 

Halcyon cyanoventris 1.03E-01 Alcedinidae Coraciiformes 

Aprosmictus jonquillaceus 1.02E-01 Psittacidae Psittaciformes 

Paroaria dominicana 1.02E-01 Emberizidae Passeriformes 

Aethopyga nipalensis 1.02E-01 Nectariniidae Passeriformes 

Spermophaga ruficapilla 1.02E-01 Estrildidae Passeriformes 

Ploceus dorsomaculatus 1.02E-01 Ploceidae Passeriformes 

Cyanerpes nitidus 1.02E-01 Thraupidae Passeriformes 
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Pachycare flavogriseum 1.02E-01 Pachycephalidae Passeriformes 

Merops breweri 1.02E-01 Meropidae Coraciiformes 

Aethopyga mystacalis 1.02E-01 Nectariniidae Passeriformes 

Psittacula roseata 1.01E-01 Psittacidae Psittaciformes 

Tangara cyanoventris 1.01E-01 Thraupidae Passeriformes 

Icterus gularis 1.01E-01 Icteridae Passeriformes 

Icterus auricapillus 1.01E-01 Icteridae Passeriformes 

Euphonia trinitatis 1.01E-01 Thraupidae Passeriformes 

Mino anais 1.01E-01 Sturnidae Passeriformes 

Spermophaga haematina 1.00E-01 Estrildidae Passeriformes 

Melanerpes flavifrons 1.00E-01 Picidae Piciformes 

Ramphocelus sanguinolentus 1.00E-01 Thraupidae Passeriformes 

Pericrocotus brevirostris 1.00E-01 Campephagidae Passeriformes 

Pericrocotus flammeus 1.00E-01 Campephagidae Passeriformes 

Thraupis bonariensis 9.98E-02 Thraupidae Passeriformes 

Lanio aurantius 9.98E-02 Thraupidae Passeriformes 

Aratinga jandaya 9.98E-02 Psittacidae Psittaciformes 

Pipra mentalis 9.96E-02 Pipridae Passeriformes 

Euphonia finschi 9.95E-02 Thraupidae Passeriformes 

Platysteira concreta 9.94E-02 Platysteiridae Passeriformes 

Phoenicurus frontalis 9.94E-02 Muscicapidae Passeriformes 

Psittacula cyanocephala 9.93E-02 Psittacidae Psittaciformes 

Chlorophonia callophrys 9.92E-02 Thraupidae Passeriformes 

Chlorochrysa calliparaea 9.90E-02 Thraupidae Passeriformes 

Prionochilus thoracicus 9.88E-02 Dicaeidae Passeriformes 

Pitta erythrogaster 9.86E-02 Pittidae Passeriformes 

 

Supplementary Table 6.2.8. Top 200 proportional colour diversity female species 

Species name proportional colour diversity BLFamilyLatin IOCOrder 

Charmosyna papou 1.80E-01 Psittacidae Psittaciformes 

Phigys solitarius 1.68E-01 Psittacidae Psittaciformes 

Ara macao 1.60E-01 Psittacidae Psittaciformes 

Alcedo quadribrachys 1.57E-01 Alcedinidae Coraciiformes 

Buthraupis montana 1.56E-01 Thraupidae Passeriformes 

Pitta ussheri 1.55E-01 Pittidae Passeriformes 

Charmosyna margarethae 1.53E-01 Psittacidae Psittaciformes 

Alisterus amboinensis 1.50E-01 Psittacidae Psittaciformes 

Pitta granatina 1.49E-01 Pittidae Passeriformes 

Charmosyna josefinae 1.46E-01 Psittacidae Psittaciformes 

Anisognathus notabilis 1.45E-01 Thraupidae Passeriformes 

Lorius hypoinochrous 1.40E-01 Psittacidae Psittaciformes 

Ceyx lecontei 1.37E-01 Alcedinidae Coraciiformes 
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Platycercus elegans 1.33E-01 Psittacidae Psittaciformes 

Vini stepheni 1.32E-01 Psittacidae Psittaciformes 

Charmosyna pulchella 1.32E-01 Psittacidae Psittaciformes 

Vini australis 1.30E-01 Psittacidae Psittaciformes 

Vini kuhlii 1.28E-01 Psittacidae Psittaciformes 

Alcedo leucogaster 1.27E-01 Alcedinidae Coraciiformes 

Halcyon pileata 1.24E-01 Alcedinidae Coraciiformes 

Lorius lory 1.24E-01 Psittacidae Psittaciformes 

Trichoglossus haematodus 1.22E-01 Psittacidae Psittaciformes 

Alcedo azurea 1.22E-01 Alcedinidae Coraciiformes 

Eos histrio 1.21E-01 Psittacidae Psittaciformes 

Pitta arcuata 1.21E-01 Pittidae Passeriformes 

Ara ararauna 1.19E-01 Psittacidae Psittaciformes 

Loriculus amabilis 1.18E-01 Psittacidae Psittaciformes 

Ceyx lepidus 1.18E-01 Alcedinidae Coraciiformes 

Anisognathus igniventris 1.17E-01 Thraupidae Passeriformes 

Coracias temminckii 1.16E-01 Coraciidae Coraciiformes 

Ara chloropterus 1.16E-01 Psittacidae Psittaciformes 

Prosopeia tabuensis 1.16E-01 Psittacidae Psittaciformes 

Vini peruviana 1.14E-01 Psittacidae Psittaciformes 

Lorius chlorocercus 1.14E-01 Psittacidae Psittaciformes 

Alcedo vintsioides 1.14E-01 Alcedinidae Coraciiformes 

Tanysiptera ellioti 1.14E-01 Alcedinidae Coraciiformes 

Prosopeia splendens 1.12E-01 Psittacidae Psittaciformes 

Ceyx pictus 1.12E-01 Alcedinidae Coraciiformes 

Pitta moluccensis 1.12E-01 Pittidae Passeriformes 

Todiramphus leucopygius 1.11E-01 Alcedinidae Coraciiformes 

Baryphthengus martii 1.09E-01 Momotidae Coraciiformes 

Touit purpuratus 1.09E-01 Psittacidae Psittaciformes 

Urocissa ornata 1.09E-01 Corvidae Passeriformes 

Ceyx erithaca 1.09E-01 Alcedinidae Coraciiformes 

Alcedo meninting 1.08E-01 Alcedinidae Coraciiformes 

Halcyon cyanoventris 1.07E-01 Alcedinidae Coraciiformes 

Icterus jamacaii 1.07E-01 Icteridae Passeriformes 

Eos cyanogenia 1.07E-01 Psittacidae Psittaciformes 

Cosmopsarus regius 1.07E-01 Sturnidae Passeriformes 

Tanysiptera galatea 1.06E-01 Alcedinidae Coraciiformes 

Actenoides bougainvillei 1.06E-01 Alcedinidae Coraciiformes 

Icterus gularis 1.06E-01 Icteridae Passeriformes 

Loriculus philippensis 1.06E-01 Psittacidae Psittaciformes 

Todiramphus winchelli 1.06E-01 Alcedinidae Coraciiformes 

Alcedo cristata 1.06E-01 Alcedinidae Coraciiformes 

Icterus graceannae 1.05E-01 Icteridae Passeriformes 

Telophorus dohertyi 1.05E-01 Malaconotidae Passeriformes 

Todiramphus farquhari 1.05E-01 Alcedinidae Coraciiformes 



232 
 

Icterus icterus 1.05E-01 Icteridae Passeriformes 

Platycercus eximius 1.04E-01 Psittacidae Psittaciformes 

Anisognathus somptuosus 1.03E-01 Thraupidae Passeriformes 

Alcedo semitorquata 1.03E-01 Alcedinidae Coraciiformes 

Psittaculirostris edwardsii 1.02E-01 Psittacidae Psittaciformes 

Piranga rubriceps 1.02E-01 Cardinalidae Passeriformes 

Pyrilia caica 1.01E-01 Psittacidae Psittaciformes 

Loriculus sclateri 1.01E-01 Psittacidae Psittaciformes 

Neopsittacus pullicauda 1.01E-01 Psittacidae Psittaciformes 

Malurus cyanocephalus 1.01E-01 Maluridae Passeriformes 

Aratinga erythrogenys 1.00E-01 Psittacidae Psittaciformes 

Trichoglossus ornatus 1.00E-01 Psittacidae Psittaciformes 

Icterus laudabilis 1.00E-01 Icteridae Passeriformes 

Pachycephala aurea 1.00E-01 Pachycephalidae Passeriformes 

Ramphastos dicolorus 9.97E-02 Ramphastidae Piciformes 

Aratinga solstitialis 9.93E-02 Psittacidae Psittaciformes 

Tangara arthus 9.86E-02 Thraupidae Passeriformes 

Telophorus viridis 9.84E-02 Malaconotidae Passeriformes 

Icterus auricapillus 9.82E-02 Icteridae Passeriformes 

Aratinga auricapillus 9.79E-02 Psittacidae Psittaciformes 

Pericrocotus igneus 9.76E-02 Campephagidae Passeriformes 

Delothraupis castaneoventris 9.74E-02 Thraupidae Passeriformes 

Campochaera sloetii 9.73E-02 Campephagidae Passeriformes 

Tangara gyrola 9.72E-02 Thraupidae Passeriformes 

Merops breweri 9.69E-02 Meropidae Coraciiformes 

Ploceus dorsomaculatus 9.67E-02 Ploceidae Passeriformes 

Eclectus roratus 9.64E-02 Psittacidae Psittaciformes 

Merops muelleri 9.62E-02 Meropidae Coraciiformes 

Ploceus bicolor 9.59E-02 Ploceidae Passeriformes 

Alisterus chloropterus 9.54E-02 Psittacidae Psittaciformes 

Icterus mesomelas 9.53E-02 Icteridae Passeriformes 

Erythrura regia 9.50E-02 Estrildidae Passeriformes 

Pyrilia pulchra 9.47E-02 Psittacidae Psittaciformes 

Chlorochrysa phoenicotis 9.45E-02 Thraupidae Passeriformes 

Parula pitiayumi 9.44E-02 Parulidae Passeriformes 

Coracias cyanogaster 9.44E-02 Coraciidae Coraciiformes 

Malaconotus cruentus 9.43E-02 Malaconotidae Passeriformes 

Agapornis fischeri 9.35E-02 Psittacidae Psittaciformes 

Psarisomus dalhousiae 9.35E-02 Eurylaimidae Passeriformes 

Ramphocelus flammigerus 9.33E-02 Thraupidae Passeriformes 

Ara militaris 9.31E-02 Psittacidae Psittaciformes 

Aprosmictus jonquillaceus 9.31E-02 Psittacidae Psittaciformes 

Alcedo cyanopectus 9.31E-02 Alcedinidae Coraciiformes 

Pyrilia pyrilia 9.31E-02 Psittacidae Psittaciformes 

Anisognathus lacrymosus 9.28E-02 Thraupidae Passeriformes 
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Amblyramphus holosericeus 9.27E-02 Icteridae Passeriformes 

Tangara velia 9.26E-02 Thraupidae Passeriformes 

Mino anais 9.22E-02 Sturnidae Passeriformes 

Pitta erythrogaster 9.21E-02 Pittidae Passeriformes 

Jacamerops aureus 9.21E-02 Galbulidae Piciformes 

Tangara chilensis 9.20E-02 Thraupidae Passeriformes 

Melanerpes flavifrons 9.20E-02 Picidae Piciformes 

Icterus wagleri 9.18E-02 Icteridae Passeriformes 

Tanysiptera sylvia 9.16E-02 Alcedinidae Coraciiformes 

Pionites melanocephalus 9.12E-02 Psittacidae Psittaciformes 

Todiramphus diops 9.10E-02 Alcedinidae Coraciiformes 

Aratinga jandaya 9.02E-02 Psittacidae Psittaciformes 

Icterus chrysater 9.02E-02 Icteridae Passeriformes 

Eos squamata 9.02E-02 Psittacidae Psittaciformes 

Tangara seledon 9.02E-02 Thraupidae Passeriformes 

Ramphocelus sanguinolentus 9.02E-02 Thraupidae Passeriformes 

Buthraupis eximia 9.01E-02 Thraupidae Passeriformes 

Psittaculirostris desmarestii 9.00E-02 Psittacidae Psittaciformes 

Pityriasis gymnocephala 8.99E-02 Pityriaseidae Passeriformes 

Myioborus ornatus 8.97E-02 Parulidae Passeriformes 

Pyrrhura picta 8.93E-02 Psittacidae Psittaciformes 

Charmosyna amabilis 8.91E-02 Psittacidae Psittaciformes 

Megalaima rafflesii 8.91E-02 Ramphastidae Piciformes 

Pitta steerii 8.90E-02 Pittidae Passeriformes 

Malimbus malimbicus 8.88E-02 Ploceidae Passeriformes 

Telophorus quadricolor 8.85E-02 Malaconotidae Passeriformes 

Icterus nigrogularis 8.81E-02 Icteridae Passeriformes 

Merops oreobates 8.81E-02 Meropidae Coraciiformes 

Coracias caudatus 8.81E-02 Coraciidae Coraciiformes 

Gymnomystax mexicanus 8.80E-02 Icteridae Passeriformes 

Pyrilia haematotis 8.73E-02 Psittacidae Psittaciformes 

Eurystomus glaucurus 8.73E-02 Coraciidae Coraciiformes 

Ceyx melanurus 8.72E-02 Alcedinidae Coraciiformes 

Pyrrhura molinae 8.71E-02 Psittacidae Psittaciformes 

Todus multicolor 8.70E-02 Todidae Coraciiformes 

Lybius dubius 8.70E-02 Ramphastidae Piciformes 

Pyrrhura leucotis 8.70E-02 Psittacidae Psittaciformes 

Tangara desmaresti 8.70E-02 Thraupidae Passeriformes 

Nyctyornis amictus 8.70E-02 Meropidae Coraciiformes 

Alisterus scapularis 8.69E-02 Psittacidae Psittaciformes 

Loriculus stigmatus 8.68E-02 Psittacidae Psittaciformes 

Priotelus temnurus 8.68E-02 Trogonidae Trogoniformes 

Semnornis ramphastinus 8.67E-02 Ramphastidae Piciformes 

Pyrilia barrabandi 8.65E-02 Psittacidae Psittaciformes 

Coracias spatulatus 8.65E-02 Coraciidae Coraciiformes 
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Cyanicterus cyanicterus 8.62E-02 Thraupidae Passeriformes 

Merops bulocki 8.61E-02 Meropidae Coraciiformes 

Malimbus scutatus 8.59E-02 Ploceidae Passeriformes 

Hyliota violacea 8.59E-02 Sylviidae Passeriformes 

Cymbirhynchus macrorhynchos 8.58E-02 Eurylaimidae Passeriformes 

Pitta angolensis 8.57E-02 Pittidae Passeriformes 

Brotogeris pyrrhoptera 8.55E-02 Psittacidae Psittaciformes 

Ptilinopus pulchellus 8.52E-02 Columbidae Columbiformes 

Eos reticulata 8.50E-02 Psittacidae Psittaciformes 

Nandayus nenday 8.50E-02 Psittacidae Psittaciformes 

Lybius rolleti 8.50E-02 Ramphastidae Piciformes 

Eumomota superciliosa 8.49E-02 Momotidae Coraciiformes 

Pitta megarhyncha 8.47E-02 Pittidae Passeriformes 

Ploceus insignis 8.46E-02 Ploceidae Passeriformes 

Musophaga rossae 8.45E-02 Musophagidae Musophagiformes 

Oreopsittacus arfaki 8.44E-02 Psittacidae Psittaciformes 

Dryocopus schulzi 8.44E-02 Picidae Piciformes 

Ramphastos vitellinus 8.43E-02 Ramphastidae Piciformes 

Heliothryx barroti 8.41E-02 Trochilidae Apodiformes 

Dinopium benghalense 8.41E-02 Picidae Piciformes 

Icterus prosthemelas 8.41E-02 Icteridae Passeriformes 

Ceyx rufidorsa 8.40E-02 Alcedinidae Coraciiformes 

Empidornis semipartitus 8.39E-02 Muscicapidae Passeriformes 

Loriculus beryllinus 8.38E-02 Psittacidae Psittaciformes 

Eunymphicus cornutus 8.38E-02 Psittacidae Psittaciformes 

Coracias benghalensis 8.37E-02 Coraciidae Coraciiformes 

Campephilus rubricollis 8.37E-02 Picidae Piciformes 

Centropus rectunguis 8.36E-02 Cuculidae Cuculiformes 

Lybius bidentatus 8.34E-02 Ramphastidae Piciformes 

Merops leschenaulti 8.34E-02 Meropidae Coraciiformes 

Hypopyrrhus pyrohypogaster 8.33E-02 Icteridae Passeriformes 

Pionus menstruus 8.33E-02 Psittacidae Psittaciformes 

Garrulus lidthi 8.32E-02 Corvidae Passeriformes 

Pachycare flavogriseum 8.30E-02 Pachycephalidae Passeriformes 

Alcedo pusilla 8.29E-02 Alcedinidae Coraciiformes 

Touit dilectissimus 8.29E-02 Psittacidae Psittaciformes 

Todiramphus lazuli 8.29E-02 Alcedinidae Coraciiformes 

Agapornis lilianae 8.27E-02 Psittacidae Psittaciformes 

Cossypha dichroa 8.26E-02 Muscicapidae Passeriformes 

Pseudeos fuscata 8.25E-02 Psittacidae Psittaciformes 

Neopsittacus musschenbroekii 8.24E-02 Psittacidae Psittaciformes 

Aratinga pertinax 8.24E-02 Psittacidae Psittaciformes 

Psitteuteles iris 8.23E-02 Psittacidae Psittaciformes 

Tanysiptera riedelii 8.23E-02 Alcedinidae Coraciiformes 

Todus todus 8.23E-02 Todidae Coraciiformes 
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Pyrrhura calliptera 8.21E-02 Psittacidae Psittaciformes 

Cyclopsitta gulielmitertii 8.20E-02 Psittacidae Psittaciformes 

Aratinga nana 8.19E-02 Psittacidae Psittaciformes 

Amazona ventralis 8.18E-02 Psittacidae Psittaciformes 

Halcyon coromanda 8.17E-02 Alcedinidae Coraciiformes 

Parula gutturalis 8.16E-02 Parulidae Passeriformes 

Ptilorrhoa castanonota 8.16E-02 Eupetidae Passeriformes 
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6.3 Chapter 4 supplementary material 

6.3.1 Data 

A diagram of the data class is shown in Supplementary Figure 6.3.3a. An object of this data class 

should have at least one image and use the image name as the index. One image can have 

multiple annotations (points or segmentations) and specimen characteristics. Annotation names 

are used to index annotations. The absence is used to define whether the part that is supposed 

to be labelled is missing (e.g. a broken snail shell does not have the shell tip). X and y coordinates 

are stored as the point location. Contours are used to define one segmentation, and a contour is 

defined as a list of x and y coordinates that represent contour vertices (see Supplementary Figure 

6.3.3b). The area inside a contour should be segmented. While the intersected area between 

contours should remain non-segmented. 

 

6.3.2 Metrics 

Pixel distance of point 𝑖 between ground truth and predicted points is defined as the Euclidean 

distance between two points, 𝑑 =  √(𝑥𝑖
′ −  𝑥𝑖)2  + (𝑦𝑖

′ − 𝑦𝑖)2 , where 𝑥𝑖
′ and 𝑦𝑖

′ are the x and y 

coordinates of predicted point 𝑖, 𝑥𝑖  and 𝑦𝑖 are the x and y coordinates of the ground truth point 

𝑖. 

IOU of class 𝑖 is defined as 

𝐼𝑂𝑈𝑖 =  
𝑝𝑖𝑖

𝑝𝑖𝑖  +  𝑝𝑖𝑗  +  𝑝𝑗𝑖
 

precision of class 𝑖 is defined as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  
𝑝𝑖𝑖

𝑝𝑖𝑖  +  𝑝𝑗𝑖
 

recall of class 𝑖 is defined as 
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𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  
𝑝𝑖𝑖

𝑝𝑖𝑖  +  𝑝𝑖𝑗
 

and mIOU is defined as 

𝑚𝐼𝑂𝑈 =  

∑
𝑝𝑖𝑖

𝑝𝑖𝑖  +  𝑝𝑖𝑗  +  𝑝𝑗𝑖

𝑛
𝑖=1

𝑛
 

Where 𝑛 is the number of the class of the segmentation (there are two classes for segmenting a 

specimen from a photo, specimen and background), 𝑖 is one of the segmentation class, 𝑝𝑖𝑖 are 

pixels of class 𝑖 and classified as class 𝑖 (true positive); 𝑝𝑖𝑗 are pixels of class 𝑖 but classified as 

other classes (false negative); and 𝑝𝑗𝑖  are pixels of others classes classified as class 𝑖 (false 

positive). 
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6.3.3 Supplementary Figures 

 

 

Supplementary Figure 6.3.1. The flow chart of the annotation process. It explains steps from opening the 

folder to handling annotations (points and segmentations). 

  



239 
 

 



240 
 

 

Supplementary Figure 6.3.2. Examples of (a) placing a point on top of the snail when point mode is 

activated; (b) Left: clicking and dragging to paint the segmentation areas when segmentation mode is 

activated and draw is selected. Right: removing segmentation areas when erase is selected; (c) Deleting a 

point; (d) Using review assistant to remove images with the prefix of ‘NE’; (e) top: ticking two images in 

the review mode. bottom: displaying ticked images when Show Flag Images is activated. 
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Supplementary Figure 6.3.3. (a) A diagram of the data class. One data class has at least one image, and 

one image can have multiple points or segmentations. (b) An example of how contours define a 

segmentation. The intersected square between contour_1 and contour_2 has not been segmented (grey). 

Rest areas are inside contour_1 and are not intersected areas, so they are segmented (pink). 
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Supplementary Figure 6.3.4. User interfaces of the deep learning tool. (a) The evaluation sub-module; (b) 

The predicting sub-module. 
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Supplementary Figure 6.3.5. Examples of evaluating results. (a) Comparing the pixel distances of all and 

each individual points (p1 and p2) from two configurations (only different in input resolution scale. Left 

uses the scale of 1 and right uses the scale of 20). And pixel distances from using the scale of 1 is smaller, 

suggesting it is the better configuration. (b) Relations between pixel distances of all and each individual 

points (p1 and p2) from two categories (blue plots are category a and yellow plots are category b). The 

result shows that images from category b were predicted more accurate than those from category a. 
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Supplementary Figure 6.3.6. The flow chart of the review process. It shows how to use review mode and 

the review assistant to increase the reviewing efficient. 
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Supplementary Figure 6.3.7. Comparisons between the ground truth and the manually re-labelled 

landmarks (40 images). (a) The average pixel distances for individual landmarks. (b) Correlations of PC1-9 

axes.  
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Supplementary Figure 6.3.8. Boxplots of crab (grey, N=100) and wave (yellow, N=88) PC1-8 from the 

ground truth and all tested results. Significant symbols are t-test results between the crab ecotype and 

the wave ecotype (ns: p > 0.05; *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****: p <= 0.0001). 
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Supplementary Figure 6.3.9. Distributions of PC1-2, PC3-4, PC5-6 and PC7-8 from the ground truth and all 

tested results (N=188). Grey points are crab ecotype (N=100); yellow points are wave ecotype (N=88). 
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Supplementary Figure 6.3.10. Correlations of PC1-8 between two results. The comparison groups are 

listed column-wise and they are: (a) The ground truth vs GeomDL; (b) The ground truth vs RawDL; (c) The 

ground truth vs GeomDL_10; (d) The ground truth vs GeomDL_1_10; (e) The ground truth vs GeomGT and 

(f) GeomGT vs GeomDL. 
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Supplementary Figure 6.3.11. An example of ground truth landmarks and reference lines (blue) and 

processed ground truth (GeomGT) landmarks and reference lines (red). Independent landmarks have the 

same coordinates. Dependent landmarks are placed in different locations. 
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6.3.4 Supplementary Tables 

Supplementary Table 6.3.1. Hyperparameters that are tuneable in the training process. 

Hyperparameters  

Input resolution 
downscale 

Due to the limitation of the graphics processing unit memory, deep learning 
networks can not take images with excessively large resolutions. Images 
sometimes needed to be downscaled. The resolution fed into the network is 
𝑊𝑖𝑑𝑡ℎ

𝑠𝑐𝑎𝑙𝑒
 ×  

𝐻𝑒𝑖𝑔ℎ𝑡

𝑠𝑐𝑎𝑙𝑒
. A scale of 1 means the original resolution. 

Learning rate The learning rate controls the degree of the optimization of network 
parameters. A small learning rate can lead to a slow learning process, while a 
large learning rate may not find a good optimal in the parameter space as it 
updates parameters too much. It is important for users to look at the loss 
changes in the log file and to decide suitable learning rates for their datasets. 

Batch size Batch size stands for how many images are fed into the network for each 
training step. Batch sizes smaller than 32 are commonly used in Stacked 
Hourglass and DeepLab (Newell et al. 2016; Chen et al. 2017b). I used batch 
sizes of 4 for both networks on Project Plumage (See Chapter 2 and Chapter 3). 

Training epochs An epoch is defined as one pass of the full training set for the network. Training 
epochs defined the length of the training more straightforward than training 

steps. Training steps= 
Epochs ×Training set size

Batch size
.There is no an one-for-all epoch 

number. I recommend to start with large training epochs and see when the loss 
converges. 

Training/validation 
set split 

The split between the training set and validation set. A number (between 1 and 
100) is entered to defined the proportion of the training set and the proportion 
of the validation set (the sum of them should be 100). Common choices are 
80/20, 70/30 and 60/40. 

 

Supplementary Table 6.3.2. Files used as inputs in PhenoLearn. 

Files  

Annotation file  An annotation file provides image names and annotation information. The file can 
either be a JSON file from PhenoLearn or a CSV spreadsheet. 
 
The structure of the CSV spreadsheet. 
 
Point: 
Columns: file, <name of the point 1>_x, <name of the point 1>_y, …, <name of the 
point n>_x, <name of the point n>_y 
 
Segmentation: 
Columns: file, <name of the segmentation 1>, …,<name of the segmentation n> 

Metadata file A metadata file is a CSV spread sheet that contains image names and specimen 
characteristics.  
 
Columns: file, < characteristic 1>, …, < characteristic n> 
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Supplementary Table 6.3.3. Files generated in the training and predicting process. 

Files  

Validation result 
file 

A validation result saves predicted annotations of validation images. One CSV and 
one JSON prediction file is generated after the training process. 
 
Both CSV and JSON files have the same structures as the ones from the 
annotation file in Supplementary Table 6.3.2. 
 
File location:  
<output directory>/result_<date>_<configurations>.json 
<output directory>/result_<date>_<configurations>.csv 

Performance file A performance file is a file that quantifies the performance of the model on the 
validation set and is generated after the training process. It is a spreadsheet that 
contains evaluation metrics for every validation images. 
 
Point: 
Columns: file, <name of the point 1>, …, <name of the point n> 
Each row contains the name of the file and the pixel distances of corresponding 
points. 
 
Segmentation: 
Columns: file, iou_<name of the segmentation 1>, precision_<name of the 
segmentation 1>, recall_<name of the segmentation 1>, …, iou_<name of the 
segmentation n>, precision_<name of the segmentation n>, recall_<name of the 
segmentation n> 
Each row  
 
A spreadsheet with names of validation images and evaluation results of their 
annotations (i.e. pixel distances for point predictions; IOU, precision and recall for 
segmentation predictions). The performance file is used in the evaluation module 
to visualise the performance of this configuration. 
 
File location:  
<output directory>/performance_<date>_<configurations>.csv 

Log file Tensorflow logs the training metrics (e.g. the training loss) during the training 
process in this file. It can be visualized using Tensorboard (See manual for detail). 
 
File location: 
 <output directory>/log/<date>_<configurations>/ 

Checkpoint file Tensorflow saves the parameters of a trained network in this file. The checkpoint 
file can be loaded when predicting the whole dataset. 
 
File location:  
<output directory>/checkpoint/<date>_<configurations> 
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Prediction result 
file 

A prediction file has predicted annotations for images used in the prediction. 
One CSV and one JSON prediction file is generated after prediction. 
 
Both CSV and JSON files have the same structures as the ones from the 
annotation file in Supplementary Table 6.3.2. 
 
File location:  
<output directory>/pred_<date>_<configurations>.json 
<output directory>/ pred_<date>_<configurations>.csv 

 

Supplementary Table 6.3.4. Landmarks placed on Littorina shells 

Landmarks Definitions 

LM1 The apex of the shell 
LM2 The upper suture of the penultimate whorl (right) 
LM3 The lower suture of the penultimate whorl (right) 
LM4 The end of the suture 
LM5 The point of intersection between Line2 and the contour of the shell (right) 
LM6 The point of intersection between Line5 and edge of the lip (right) 
LM7 The point of intersection between Line5 and edge of the lip (left) 
LM8 The point of intersection between Line5 and the contour of the shell (left) 
LM9 The point of intersection between Line7 and the contour of the shell (bottom) 
LM10 The point of intersection between Line1 and the contour of the shell (bottom) 
LM11 The point of intersection between Line4 and the external edge of the lip 
LM12 The point of intersection between Line3 and the contour of the shell (left) 
LM13 The upper suture of the penultimate whorl (left) 
LM14 The point of intersection between Line6 and the contour of the shell (right) 
LM15 The point of intersection between Line8 and the contour of the shell (right) 

 

Supplementary Table 6.3.5. Reference lines placed on Littorina shells 

Lines Definitions 

Line1 The line starts at the apex of the shell (LM1) and is tangent to the inner margin of the 
aperture on the left. 

Line2 The line which is parallel to Line1 (parallel line) and is tangent to the shell (right) 
Line3 The line which is parallel to Line1 (parallel line) and is tangent to the shell (left) 
Line4 The line starts at the terminal whorl meets the edge of the outer lip of the aperture 

(LM3) and is the tangent line of the left operculum. 
Line5 The line which passes LM 5 and is perpendicular to Line1 
Line6 The line which passes LM 12 and is perpendicular to Line1. 
Line7 The line which is perpendicular to Line1 and is tangent to the shell (bottom). 
Line8 The line which passes LM 11 and is perpendicular to Line1.  
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Supplementary Table 6.3.6. PCKht@0.1 and PCKht@0.05 of all and each individual landmarks for results 

of (i) the ground truth vs GeomDL, (ii) the ground truth vs RawDL and (iii) GeomGT vs GeomDL. 

 

 Ground truth 
vs 
GeomDL 

Ground truth 
vs 
RawDL 

GeomGT 
vs 
GeomDL 

 PCKht@0.05 PCKht@0.1 PCKht@0.05 PCKht@0.1 PCKht@0.05 PCKht@0.1 

Overall 85.2 98.3 90.0 98.7 93.0 98.5 
LM1 99.5 100 100 100 99.5 100 
LM2 100 100 100 100 100 100 
LM3 98.9 99.5 99.5 99.5 98.9 99.5 
LM4 97.9 99.5 97.9 99.5 97.9 99.5 
LM5 87.8 99.5 92 100 93.1 98.4 
LM6 81.4 99.5 87.2 98.9 93.6 98.9 
LM7 75 98.9 82.4 97.9 89.9 98.9 
LM8 69.7 96.8 79.3 95.7 93.1 97.3 
LM9 92 99.5 100 100 96.3 98.9 
LM10 98.9 100 98.9 100 98.9 100 
LM11 73.4 96.8 73.4 96.8 73.4 96.8 
LM12 77.1 97.3 96.3 100 94.1 96.8 
LM13 99.5 100 100 100 99.5 100 
LM14 58 91 78.2 98.4 93.6 96.3 
LM15 68.6 96.3 64.4 93.1 72.9 96.3 
       

 

6.3.5 Algorithms 

Algorithm 1. Generating dependent landmarks from independent landmarks on Littorina shell 

images 
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### Algorithm ### 
## Independent landmarks optimisation 
# Iterate through independent LM predictions that are on the shell outline 
# Move them to the outline 
for LM in [LM1, LM2, LM3, LM10, LM13]: 
    LM = Find_nearest_location_on_outline(shell_outline, LM) 
 
## Dependent landmarks and reference lines 
# Calculate Line1 using LM1 and LM10 
Line1 = Calculate_line(LM1, LM10) 
 
# Line1 and shell outline are used to calculate LM5, LM12, Line2 and Line3 
Line2, LM5 = Find_parallel_line_is_tangent_to_outline(Line1, shell_outline, Position = 'left') 
Line3, LM12 = Find_parallel_line_is_tangent_to_outline(Line1, shell_outline, Position = 
'right') 
 
# Line1, LM5, LM12 and LM11 are used to calculate Line5, Line6 and Line8 
# Then Line5, Line6, Line8 and the shell outline are used to calculated LM8, LM14, LM15, Line7 
and LM9 
Line5 = Find_perpendicular_line_passes_a_point(Line1, LM5) 
Line6 = Find_perpendicular_line_passes_a_point(Line1, LM12) 
Line8 = Find_perpendicular_line_passes_a_point(Line1, LM11) 
LM8 = Find_interstion_between_line_and_outline(shell_outline, Line5) 
LM14 = Find_interstion_between_line_and_outline(shell_outline, Line6) 
LM15 = Find_interstion_between_line_and_outline(shell_outline, Line8) 
Line7, LM9 = Find_parallel_line_is_tangent_to_outline(Line5, shell_outline, Position = 'bot-
tom') 
 
## Semi-dependent landmarks 
# LM6 and LM7 are moved to Line5 
LM6 = Find_nearest_location_on_Line(Line5, LM6) 
LM7 = Find_nearest_location_on_Line(Line5, LM7) 
 
### Functions ### 
Find_nearest_location_on_outline(Outline, Point) 
# Returns: 
##   a point that is on Outline and has the shortest distance to Point 
 
Calculate_line(Point1, Point2) 
# Returns: 
##   a line that passes Point1 and Point2 
 
Find_parallel_line_is_tangent_to_outline(Line, Outline, Position=['top','bot-
tom','right','left']) 
# Returns: 
##   A line that is parallel to Line and tangent to Outline. Position specifies which tangent 
line to return 
##   The intersection point between the returned line and Outline 
 
Find_perpendicular_line_passes_a_point(Line, Point) 
# Returns: 
##   A line that is perpendicular to Line and passes Point 
 
Find_interstion_between_line_and_outline(Outline, Line) 
# Returns: 
##   a point that is on both Line and Outline. 
 
Find_nearest_location_on_Line(Line, Point) 
# Returns: 
##   a point that is on Line and has the shortest distance to Point 
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6.4 Chapter 4 software manual 

6.4.1 Environments 

Python 3.7 

Packages: 

PyQt5 5.15.0 

numpy 1.18 

pandas 1.0 

opencv-python 4.2.0 

tensorflow 1.15 

tensorflow-gpu 1.15 (if GPU available) 

6.4.2 Annotation 

To start a new project, use the Menu->File->open image directory to open the directory of 

training set images. All images (supported formats: JPG, PNG, TIF) in the folder are listed in the 

file panel. Images can be selected in the file panel, and the selected image will be displayed in 

the visualisation panel (Figure 4.2a.v). Users can examine and zoom images (hold Ctrl and scroll 

mouse wheel, or click zoom functions in Menu->View) in the visualisation panel. The status bar 

shows the coordinates and pixel value of the mouse on the image. The default mode is view mode 

(mode selection is located in the mode bar, see Figure 4.2a.ii), users can only view images under 

this mode. 

To add points on an image, point mode needs to be activated first. Points then can be added by 

left-clicking on the image (Supplementary Figure 6.3.2a). A point name is entered in a pop-up 

dialogue box, the name should not be duplicated to other point names in the current image. 

Existed points are listed in the point tab (Figure 4.2a.iv.i). When a point is selected, its properties 

(e.g. point name and coordinates) are shown in the property editor (Figure 4.2a.vi.iii). Users can 

edit point in the property editor, or simply click a point in the image and drag it to change its 
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location. A point can be removed by selecting it and click the remove button in the point tab as 

shown in Supplementary Figure 6.3.2c.  

A segmentation can be added using the add button in the segmentation tab (Figure 4.2a.vi.ii). A 

segmentation I referred here is a segmentation class rather than a connected segmented region, 

therefore a segmentation can have multiple unconnected segmented regions. One colour is 

allocated to one segmentation for displaying its segmented regions. The palette has eight colours, 

if one image has more than eight segmentation, segmentations may share colours. Users need 

to type a name in a pop-up dialogue box to finish adding a new segmentation, the segmentation 

is then listed in the segmentation tab along with other existed segmentations in the current 

image. A newly added segmentation does not have any segmented regions. To segment images, 

users first need to activated mode bar->segmentation and tool bar->Draw. Similar to paint 

programs, regions can be segmented by clicking and dragging the mouse on the image 

(Supplementary Figure 6.3.2b). The size of the painter can be selected in the tool bar (see Figure 

4.2a.iii). Regions can be removed following the same instructions as segmenting but with tool 

bar->Erase activated. The Auto fill function solves the inefficiency of segmenting a large area by 

drawing. Users can first draw a closed contour of the focal region, and click Auto fill (located in 

the tool bar) to segment the whole region by filling areas inside the contour. A segmentation can 

be removed using the Remove button in the segmentation tab. Supplementary Figure 6.3.1 

shows a flow chart of steps of placing points and segmenting images using PhenoLearn. 

Many projects apply the same list of annotations to every image, entering annotation names for 

all images is trivial and time-consuming. The Quick Label mode allows users to label images 

without naming them for every image. Quick label can be activated when all required annotations 

have been all placed on the current image. Annotations of the current image are saved as the 

annotation templated and are shown in in the annotation panel as the instruction. After Quick 

Label is activated, instead of placing and naming a point, a point will be named following the 

template. Segmentations in the template will be automatically added for all images, and users 

then can add segmented regions to them manually. 
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The annotations are saved as a JSON file, which contains image information (e.g. names) and 

annotations (see section 6.3.1 and Supplementary Figure 6.3.3 for detail). PhenoLearn can read 

a saved annotation file and load annotations. Therefore users can save an incomplete annotation 

process, and continue the annotation process by opening the previously saved file and the image 

directory. 

CSV is a file format supported by many software tools used in scientific analyses (e.g. R, Python, 

MATLAB). PhenoLearn also supports CSV import and export, which increases the compatibility of 

annotations from PhenoLearn. When importing a CSV file, columns needed to be assigned into 

the file, point, segmentation, property or unwanted columns. Annotations are then read into 

PhenoLearn after assigning columns. When exporting annotations to a CSV file. A column named 

file is used to save file names. To avoid duplicate or ambiguous column names, prefixes are added 

(pt_ is added to point names, seg_ is added to segmentation names and prop_ is added to 

specimen characteristics). For example, x and y coordinates of point LM1 are stored in columns 

named pt_LM1_x and pt_LM1_y. Values of segmentation S1 are stored in a column named 

seg_S1. The species information is stored in a column named prop_species. 

6.4.3 Deep Learning 

The deep learning module provides three form-like sub-modules that help users to set up model 

training, evaluation, and predicting. The training module enables users to set up network 

hyperparameters (e.g. input resolution scale), I/O (annotation file, input and output directory) 

and the network (i.e. for points or segmentations) for the training (Figure 4.2b). Hyperparameter 

tuning can be very complex because of many hyperparameters are involved in training. To 

simplify it, PhenoLearn only allows users to change some of the key hyperparameters (see 

Supplementary Table 6.3.1 for detail of these hyperparameters).  

A training process generates a log file at the beginning and constantly updates during the training. 

When training finishes, three more files are generated which are result, performance, and 

checkpoint (See Supplementary Table 6.3.3 for detail of these files). Performance and result files 

are saved as CSV files, users can import these files easily using their preferable tools such as R, 

Python or MATLAB. 
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The training normally takes a few days. A progress bar is displayed during the training, and the 

software should remain open until the training finishes. Users can monitor the training process 

using the Tensorboard (www.tensorflow.org/tensorboard), a model visualisation tool from 

Tensorflow (Abadi et al. 2016). By typing tensorboard --logdir=<location of the log file> --host 

localhost in the terminal, and entering http://localhost:6006 in a web browser, training metrics 

such as the relation between the training loss and the training time can be visualized in the web 

browser. 

The evaluation module compares performances from different trained configurations by 

visualising performances across configurations (see Supplementary Figure 6.3.5b). For point 

predictions, plots of overall and each individual point pixel distance and PCK with a user-defined 

threshold are displayed. Mean and per-segmentation class IOU, precision and recall are plotted 

for segmentation predictions. Users can then select the best configuration based on evaluation 

metrics. 

If there is a metadata file that provides specimen characteristics (see Supplementary Table 6.3.2 

for the structure of the metadata file), it can be used in the evaluation module to visualise and 

quantify relations between prediction accuracies and characteristics. Characteristics that affect 

performance greatly can be useful in reviewing predictions of the whole dataset (See section 

4.2.4 review). A scatter plot of performance against characteristic values is displayed for 

numerical characteristics (e.g. body mass or length). For categorical characteristics (e.g. 

taxonomic ranks or ecological factors), performances of different categories are displayed in 

boxplots. Examples are shown in Supplementary Figure 6.3.5c.  

The prediction module reads the image folder, checkpoint file, output folder, the annotation file 

used in training, input resolution scale and the network type (i.e. for points or segmentations) as 

shown in Supplementary Figure 6.3.4b. The checkpoint file, annotation file, input resolution scale 

and the network type are used to create the deep learning network and restore its parameters 

for the prediction. Annotations of images inside the image folder are predicted. During the 

prediction, a progress bar shows the predicting progress. When it completes, the predicted 

annotations are saved as a CSV and a JSON file in the output folder (See Supplementary Table 

https://www.tensorflow.org/tensorboard
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6.3.3 for detail of the prediction file). Prediction files can be opened directly in PhenoLearn. The 

merge function can add specimen characteristics from the metadata file into the prediction file. 

Also, it can merge point and segmentation files together if a project has predictions for both 

annotations. 

6.4.4 Review 

Opening the predicted annotation file and the image folder begins the review process. Review 

can be done by scrolling through image files to check that annotations are incorrect, as shown in 

the Supplementary Figure 6.3.6. Incorrect annotations can then be edited. Reviewing all images 

one by one can be time-consuming, especially since deep learning models normally produce high-

quality predictions. A way to optimise the trade-off between result precision and time is to review 

images with a priori expected higher error rates. Users can reduce the number of images to be 

reviewed using the relation between accuracy and the specimen characteristics. If there are 

specimen characteristics in the annotation file, they will be shown in the review assistant (Figure 

4.2a.iv.ii). Numerical characteristics (e.g. body length) can be used to sort images in the file panel. 

Categorical characteristics (e.g. taxonomic ranks) can be used to reduce images by unticking 

unwanted categories in the review assistant as shown in Supplementary Figure 6.3.2d. 

Review mode in mode bar can be activated to increase the efficiency of the review process. The 

Review mode displays multiple thumbnails and annotations in the visualisation panel as shown 

in Figure 4.2c. Users can tick images with incorrect annotations to flag them. Mode Bar->Show 

Flag Images removes unselected images (Supplementary Figure 6.3.2e), users can then 

deactivate Review mode and correct the flagged images (i.e. images with incorrect labels). 
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