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Abstract

Climate change is impacting ecosystems, and its effect on host-parasite
systems is being noticed globally. With changing seasons comes chang-
ing species behaviour, and how these alternative behaviours might im-
pact host-parasite systems is an important study area. Here we use and
adapt classic susceptible-infected-recovered (SIR) compartmental dis-
ease models of hosts and parasites to consider how seasonality in both
birth and transmission affect dynamics. We use the models to explore
how seasonality drives behaviour of a population and its disease dynam-
ics. We summarise how each seasonal component impacts population
dynamics individually before incorporating both seasonal terms into the
theoretical models. Simultaneous incorporation of seasonality in birth
rate and seasonality in transmission leads to a wide range of population
dynamics in each case where notably the timing of birth and transmission
in relation to each other plays a pivotal role in determining the recur-
rence of disease cycles. The results obtained help us to understand, for
example, how a host-parasite system might react after changing their be-
haviour due to a changing climate. We explore population management,
or harvest, strategies with the aim of controlling the size of disease out-
breaks without reducing population levels to critically low values. The
timing of harvesting, in relation to the seasonal birth and transmission, is
an important factor in determining the most appropriate disease control
strategy. Overall, we show that the presence of seasonality in both birth
and transmission plays a large role in determining population and dis-
ease dynamics, and that harvesting strategies can help to reduce disease
whilst maintaining population size.
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Chapter 1

Introduction

The Intergovernmental Panel on Climate Change (Houghton et al., 2001) define
Climate Change as:

A statistically signifiant variation of the mean state of the climate or of
its variability, typically persisting for decades or longer.

Since climate change encompasses several different areas, including global warming,
changes in ocean pH, and air and water quality, an understanding of how each of
these components is impacting our ecosystems is vital. The effects are being noticed
in both human and wildlife populations, where species interactions are changing in
response. With climate change progressing faster than we have previously observed
and documented (IPCC Core Writing Team, 2014), there is an urgent need to tackle
the climate crisis if we wish to ameliorate damaging environmental consequences
(Gilman et al., 2010).

Climate change can be considered anthropogenic (Parratt et al., 2016); it is
a consequence of human initiated actions. The shifting of our seasons, observed
through changes in weather events, can lead to changing transmission dynamics of
infectious diseases. Since wildlife behaviour and physiology can be driven by changes
in temperature, global warming will be likely to impact the habitual behaviour of
species (Lafferty, 2009). Wildlife hosts and their parasites co-exist in their environ-
ments where interactions between the two, under specific environmental conditions,
lead to the spread of disease. Climate change can affect the geographic distribu-
tion, life-cycle traits and physiology of both hosts and parasites, which can lead to
changes in host-parasite relationships (Gallana et al., 2013). Also, climate change
can alter the seasonal contacts between population members and hence cause the
force of infection to change, which in turn can result to changes in disease dynamics
(Silk et al., 2017). There have been theoretical studies, with models showing that
seasonal changes, either in host or parasite, can create surges in disease incidence
within a population (Fisman, 2007). Considering that climate change can influence
both hosts and parasite behaviour, this result is vitally important. Further, empir-
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ical studies have shown that warming can increase the virulence of parasites. Paull
and Johnson (2011) indicated the negative implications of rising temperatures on a
snail host-parasite system, where warming shifted the infection season to match the
vulnerable life-stages of the snail host. Avian population behaviour, as changes in
response to climate, has also been investigated. There is evidence of both shifting
breeding time, and in the timing and duration of migration. In fact, studies have
shown that migration may not be completed at all by some species (Ketterson et al.,
2015). Such findings provide evidence that ecological systems can be subject to be-
havioural alterations due to climate change. We also know that different parasites
will respond to climate change (global warming) in different ways. For example, an
infectious disease such as malaria thrives in warm and damp conditions, and is thus
more likely to benefit under current climate change predictions (Lafferty, 2009).

Infectious diseases can impact population dynamics through reducing survival
rates and/or fecundity (Dobson and Hudson, 1992; Hudson et al., 1998). If the
impact of disease on these rates is sufficiently strong, populations can dramati-
cally change, and this is particularly true in seasonal (heterogeneous) environments
(Smith et al., 2008). It has been shown, however, that parasites may actually reg-
ulate population abundance (Tompkins and Begon, 1999; Tompkins et al., 2001).
Albon et al. (2002) give empirical evidence that, for a reindeer population infected
by a parasitic nematode of the intestine, the parasite can regulate population abun-
dance of hosts.

As the behaviour of wildlife populations and parasites change due to our changing
climate, an understanding of how these interactions are altering is an important
area of study. Mathematical modelling can help us explore how climate change
affects host-parasite relationships. We can use mechanistic modelling techniques
to understand these complex systems, examining individual components and their
connections to each other. The models devised are known as compartmental models,
and are used extensively in infectious disease modelling.

§ 1.1 SIR Models

Mathematical modelling of infectious diseases using the susceptible-infected-recovered
(SIR) compartmental model framework was first introduced by Kermack and McK-
endrick (1927), and since its introduction (with formalised work by Dietz (1967)),
it has been widely used in the field of mathematical biology modelling. To model
a host-parasite relationship using the SIR framework, we formulate a system of
ordinary differential equations (ODEs). We have three variables of interest; the
population size of susceptible individuals, of infected individuals and of those re-
covered from disease, and we want to know how these populations change through
time, a dynamic variable. Since we assume that time is the only dynamic variable,
we are therefore neglecting spatial variations, allowing the formulation of a simple
ODE system. We model disease at the population-level, hence the deterministic
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framework here uses a mean-field approach. This means that we use the assump-
tion that the individual effect of population members on each other can be given by
a single approximation (Sharkey, 2008). Our ODE system thus has an equation for
each of: S; susceptible individuals, I; those infected, and R; individuals who are re-
covered (either permanently or temporarily) from the disease. The total population
size is given by N = S + I + R. Population members move from being suscep-
tible, to infected, to recovered (and back to susceptible if appropriate) according
to certain rates. Other demographic processes are considered when formulating a
model. We consider the process of new population members being added (births),
and individuals leaving the population (deaths). A flow diagram helps to visualise
the demographics, and thus prepare a system of ODEs from which we can explore
population dynamics of a host-parasite system:

Susceptible
S

Infected
I

Recovered
R

bN

dS (d+ α)I dR

βSI γI

Figure 1.1: Schematic diagram of an SIR compartmental model.

We assert that all newborn population members are susceptible, and these new
individuals enter the population at per capita rate b. That is, the offspring of an
infected individual is not born with the disease and instead is another susceptible
individual. This means that we do not consider our disease to be able to transmit
via vertical means (i.e. we have no mother-offspring transmission). The absence
of vertical transmission is true for many diseases, such as Chronic Wasting Disease
in cervids (Miller et al., 2006). More recent studies have found that there is no
evidence of vertical transmission for SARS-CoV-2 (Grimminck et al., 2020). The
per capita death rate of members is given by the parameter d, and infected mem-
bers are subject to an increased death rate due to disease; we call this a virulence
and denote it by α. If recovery is possible, this happens at the per capita rate γ.
In this system, transmission occurs upon direct contacts between susceptible and
infected population members, with transmission coefficient β. This type of trans-
mission is known as density-dependent (Anderson and May, 1981), since it assumes
contact rates increase as population sizes increase. Other types of transmission are
possible, depending on the system being studied. The most commonly used trans-
mission, aside from the density-dependent transmission described above, is known
as frequency-dependent transmission. For frequency-dependent direct contact trans-
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mission, the likelihood of contracting infection is independent of the total population
size. We may consider this transmission most appropriate for sexually transmitted
infections in human populations, or for vector-borne diseases, for example. There
has been debate on how best to model transmission of infectious diseases in wildlife
populations (Mccallum et al., 2001), though in this thesis we will only consider
density-dependent transmission.

Using the flow diagram, we can write our system of ODEs representing the
host-parasite system:

dS

dt
= bN − βSI − dS (1.1)

dI

dt
= βSI − (d+ α+ γ)I (1.2)

dR

dt
= γI − dR (1.3)

The total population, N = S + I +R, is a dynamic variable with

dN

dt
= (b− d)N − αI.

The allowance for N to be dynamic, i.e. population size is not fixed, is important for
modelling host-parasite systems where births and deaths are not equal, and when
virulence has a significant impact on the population (Hethcote, 1994). The average
infectious period is given by 1

Γ , where Γ = d + α + γ; this is the average time that
an individual will spend infected, and is an important quantity in the formulation
of the Basic Reproductive Ratio (see section 1.2).

To solve this system of ordinary differential equations, we set each equation equal
to 0 and solve to find steady-state solutions S∗, I∗, R∗. For our system of equations
(1.1)-(1.3) we obtain the following solutions:

• an extinction equilibrium, (S∗, I∗, R∗) = (0, 0, 0);

• a disease-free equilibrium, (S∗, I∗, R∗) = (S, 0, 0) (occurring only when b = d);

• and an endemic equilibrium,

(S∗, I∗, R∗) =

(
Γ

β
,
−dΓ(b− d)

bdβ + γβ − dβΓ
,
−γΓ(b− d)

β(bd+ γ − dΓ)

)
.

We notice in particular here that the disease-free equilibrium occurs only when
the birth and death rates are equal; i.e. b = d. Stability of the equilibrium points
can be found by considering the Jacobian matrix, and the corresponding eigenvalues,
for the equations (1.1)-(1.3). In this system, infection will persist if the extinction
and disease-free equilibriums are unstable, and the endemic equilibrium is stable.
Computing the Jacobian and corresponding eigenvalues in the extinction state, we
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have: λ1 = b − d, λ2 = −d, and λ3 = −d − α − γ. Since parameters in the model
will be positive, both λ2 < 0 and λ3 < 0. Therefore for an unstable equilibrium we
require λ1 > 0, i.e. d < b. For the disease-free state, we have eigenvalues: λ1 = 0,
λ2 = −d and λ3 = βS∗−d−α−γ. Therefore, an unstable equilibrium occurs when
S∗ > d+α+γ

β . This requirement is related to both the basic reproductive ratio and
the threshold for disease outbreak covered in the next sections.

§ 1.2 The Basic Reproductive Ratio

The Basic Reproductive Ratio, R0, is an important number that can be found from
an SIR epidemiological model. It is defined as:

The average number of secondary infections arising from the introduction
of a single infectious individual in an entirely susceptible population.
(Anderson and May, 1991)

Using the value of R0 computed, we can determine whether an infectious disease can
spread in a naive population (a population who have not previously been exposed
to the emerging disease). When R0 > 1, infection will be able to spread through
the susceptible population, but if R0 < 1, this will not be possible. Larger values of
R0 indicate that an epidemic outbreak will be harder to control.

Using the definition by Anderson and May (1981), R0 is computed in the fol-
lowing way:

R0 = (expected number of secondary infections)× (infectious period)

That is, for the system described in section 1.1,

R0 =
βN

d+ α+ γ
(1.4)

since βN gives the number of secondary infections and 1
d+α+γ indicates amount of

time an individual spends in the infected class.

§ 1.3 Thresholds for Disease Outbreak

The threshold level determining whether a disease will occur in a population is a
key tool in infectious disease research since diseases cannot spread through a popu-
lation if a proportion of members exceeds a certain threshold level (Potapov et al.,
2012). Thresholds can only be calculated using data available; it can be difficult
to obtain sufficient empirical data for their formulation (Deredec and Courchamp,
2003). Therefore, empirically derived thresholds may be miscalculated due to com-
plex host-parasite structure, missing data or inaccuracies (Lloyd-Smith et al., 2005).
Hence, theoretically derived thresholds are important.
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The growth of infection in a population depends on the rate of change of in-
fected population members through time. Using the framework of Kermack and
McKendrick (1927), infections will rise when

dI

dt
> 0. (1.5)

For the basic model, as defined in section 1.1, we can see that this condition is
equivalent to the following:

dI

dt
= βSI − (d+ α+ γ)I > 0

βSI > (d+ α+ γ)I

S >
d+ α+ γ

β
S

N
>

1

R0
.

Thus, infection will break-out when the number of susceptible population members
is sufficiently high; the proportion of these individuals in the whole population must
be greater than the inverse of the basic reproductive ratio. We call this the threshold
for disease outbreak (Keeling and Rohani, 2008).

This threshold is related to Re, the Effective Reproduction Number. The basic
reproduction number R0 was computed assuming an entirely disease-free population,
however in established host-parasite systems, it is likely that disease will already
exist in the population. The effective reproduction number gives an expression for
the average number of new infections occurring at time t, from an infected population
member, in an environment where infection already exists in the population. To
compute Re, the basic reproductive ratio is multiplied by the current proportion of
susceptible population members. That is:

Re =
S

N
R0. (1.6)

Rearranging the equation for the threshold, we find the relationship to Re. That is,
we find that disease incidence will increase when

S

N
R0 > 1

i.e. Re > 1.

Therefore, we have determined that infection will continue to persist in the popula-
tion if Re > 1. We can see that this is in line with the condition for emerging disease
growth in a naive population, since we have R0 > 1 leading to infection spreading.

In the seasonal models presented in this thesis, the threshold is an important
concept and tool for analysing the behaviour of our systems and will be used to help
explain the behaviours we observe.
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§ 1.4 Other Compartmental Disease Models

In Anderson and May (1979) and Anderson and May (1981), variations of the classic
SIR compartmental disease model are defined, analysed and discussed. These mod-
els form the frameworks exhibited in theoretical modelling to date. In this section
we introduce the two types of models we will use in later sections of this thesis, and
additionally introduce a model that has been popularly used in infectious disease
modelling.

1.4.1 SIR−D Model

We now introduce the model that will form the framework of the model used in
Chapter 3. The model is described by the term SIR −D, or susceptible-infected-
recovered-decaying, and is based on Model G from Anderson and May (1981). The
decaying class represents an environmental reservoir of disease, which Anderson
and May (1981) coined in their model as a free-living parasite stage. We define
an additional transmission pathway, whereby susceptible hosts can contract disease
through direct contacts with an environmental reservoir of infectious material. The
material within this class originates from the death of infected population members,
and from living infectious material expelled by infected individuals. We maintain the
assumption that disease can transmit directly from infected to susceptible members
via the transmission term βSI, which is in contrast to Anderson and May (1981)
who assume only free-living infection transmission of disease. A schematic diagram
helps to view the transitions between compartments in this model:

Susceptible
S

Infected
I

Recovered
R

Decaying
D

bN

dS dR

βSI + δSD γI

uD

εI

(d+ α)I

Figure 1.2: Schematic diagram of an SIR-D compartmental model.

The system of ordinary differential equations representing the population and
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disease dynamics for this model is then:

dS

dt
= bN − βSI − dS − δSD (1.7)

dI

dt
= βSI + δSD − (d+ α+ γ)I (1.8)

dR

dt
= γI − dR (1.9)

dD

dt
= (d+ α)I + εI − uD (1.10)

where parameters are as described in section 1.1, with some additions. The trans-
mission coefficient of decaying matter to susceptible individuals is given by δ; ε is a
shedding rate of infectious material from living infected members that reaches the
decay pool; and u is the per capita rate at which decaying material ceases to be
infectious.

It is worth noting here that it is possible to obtain a stable limit cycle as a
solution to this model; i.e. population abundances can oscillate without an external
force added. Anderson and May (1981) note that this is most likely to occur in
their model (the model above, without the direct transmission βSI) for systems
where infectious material exists for a long time (u small), and where the infectious
disease is highly pathogenic (high α). In the model described by equations (1.7)-
(1.10) presented here, we found existence of stable limit cycles through numerical
simulations, and this is explored further in chapter 3.

1.4.2 SIR with Constraints

For many populations, it is possible that the density of hosts will impact their
relationship with parasites. For example, an increased density of hosts could lead
to competition for resources such as space, and food, which could ultimately lead
to an increased death-rate in the population, or a reduction in host fecundity, for
example. In this situation, we may need to incorporate additional density-dependent
constraints into our SIR model to account for such effects. If the density-dependence
acts on the population death rate, it does so in a manner that is linearly proportional
to the total population size, N , as described by Model F in Anderson and May
(1981). For a density-dependent factor given by the parameter q, the natural death
rate d changes to the form d+ qN . The system of differential equations for the SIR
model as in 1.1 then becomes:

dS

dt
= bN − βSI − (d+ qN)S (1.11)

dI

dt
= βSI − (d+ qN + α+ γ)I (1.12)

dR

dt
= γI − (d+ qN)R (1.13)
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For the models formulated in chapters 2, 3 and 4, we will consider density-
dependence in the host death rate.

1.4.3 SEIR Model

One of the most widely applied compartmental disease models is that of an SEIR
form, where this stands for susceptible-exposed-infectious-recovered. Though not
used in this thesis, the extensive studies of the SEIR model framework have pro-
duced some key results for the field of infectious disease modelling (to be noted
later), and so we feel it appropriate to include a brief description of such a model
here. This type of compartmental disease model is used when there is a latent period
of infection from the disease, i.e. an individual becomes infected (exposed), but is
not yet infectious. There is a time-lag between contracting disease, and being able
to pass the disease on. An example system of ordinary differential equations for this
type of model is:

dS

dt
= bN − βSI − dS (1.14)

dE

dt
= βSI − (d+ v)E (1.15)

dI

dt
= vE − (d+ α+ γ)I (1.16)

dR

dt
= γI − dR (1.17)

where parameters are as described in section 1.1, and v is the constant rate at which
exposed members become infectious.

§ 1.5 Seasonality in SIR Models of Wildlife Systems

Seasonality can be considered as the driving force of disease incidence and epidemics
in host-parasite systems (Schwartz, 1985), since both host and pathogen behaviour
can alter throughout the course of a season. For example it is common for wildlife
hosts to have a defined breeding season (Rowan, 1938), for species to exhibit seasonal
social patterns, and for pathogens to be more prevalent at certain time-points during
the year (Lafferty, 2009). Empirical evidence showing that changes in social contacts
within a population, hence driving seasonality in disease transmission, is mounting
(Silk et al., 2017) and there is increasing evidence that wildlife populations with
seasonal social behaviour can cause seasonal disease transmission (Duke-Sylvester
et al., 2011). To fully understand host-parasite relationships, therefore, it is of great
importance to acknowledge and understand the impact of seasonality (Altizer et al.,
2006), and accept that seasonal forcing is ever-changing with the increasing rate of
climate-change (Walther et al., 2002).
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Seasonality is incorporated into SIR models as an external periodic force. Clas-
sically, modelling efforts for wildlife populations have incorporated only one external
forcing; usually either in the species birth rate, or the transmission. In this thesis
our models will consider more than one seasonal component and their impact on
host-parasite dynamics. With incorporation of seasonal forcing, theoretical studies
thus far have shown that any pattern of recurrent epidemics, from annual dynamics
to chaos, are possible (Stone et al., 2007). The precise configuration of external forc-
ing, i.e. which parts of a system experience seasonality, is important in determining
output dynamics. With multiple seasonal forcing functions, interactions between
the different functions can lead to changes in the system (Greenman and Pasour,
2011).

The standard SIR model (section 1.1), with seasonality in transmission (or
contact rate), can have multiple stable solutions of varying cycle lengths (Dietz,
1976; Smith, 1983). Inclusion of a seasonal birth rate into an SIR disease model
can also decrease the stability of the system; this is partly due to the time-delay
induced by such seasonality (May, 1974; White et al., 1996). The reduction in
stability in both cases can in turn lead to highly complex dynamics (May, 1976).
In general, deterministic SIR models possess a stable fixed point, but the addition
of seasonal forcing can lead to series of period-doubling bifurcations (Keeling et al.,
2001). In an SEIR model (section 1.4.3), for example, seasonality in birth rate,
where birth rate is given by a pulse, has been shown to be destabilising. Depending
on initial conditions, the induced dynamics can become highly complex (White et al.,
1996). With periodic contact rate (transmission) in the standard SEIR model,
the initial population conditions are important for determining the occurrence of
disease outbreaks. Multiple stable solutions exist, where small changes can change
the period of epidemics. The seasonality is the driving force of disease incidence
(Schwartz, 1985). The magnitude and timing of seasonal forcing has been shown to
play a role in driving disease dynamics in a system (Schwartz, 1985; Keeling et al.,
2001; Begon et al., 2009). It can also be noted that, with multiple forcing functions
acting on a host-parasite model, dynamics are sensitive to the relative timings and
amplitude of both of the seasonal components (Greenman and Pasour, 2011).

In addition to natural seasonal forcing, such as birth and contact rates, it is
possible that human-mediated forcing could impact a host-parasite system. For ex-
ample seasonality can come in the form of human intervention practices (Greenman
and Norman, 2007), a means of controlling the size of a population with the aim
of limiting disease spread or attaining management targets. Unlike natural forcing
mechanisms from birth or transmission rates, anthropogenic forcing can be manip-
ulated to achieve desired results, and thus has the potential to control the dynamics
of a system.

Including a seasonally varying process, or multiple seasonal components, in an
SIR model increases the complexity of analysis. Simulation-based approaches to
analysis provide an opportunity to explore a wide-range of parameter values. Nu-
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merical simulations can show how the addition of seasonality impacts the population
dynamics, persistence of disease and the stability of the host-parasite system being
studied. Therefore, such approaches are very useful in monitoring the changing rela-
tionships between wildlife populations and infectious diseases, and can help inform
management strategies for infectious disease control. Previous studies have used nu-
merical simulation methods to explore seasonality in host-parasite disease systems
(Dorélien et al., 2013; Peel et al., 2014; Maji et al., 2018). Bifurcation analyses with
numerical continuation software (He and Earn, 2007; Best, 2013; Taylor, 2014) have
also been explored, and these are often used in tandem with numerical simulations.
In addition, studies such as those in Hosseini et al. (2004) and Swinton et al. (1998)
were able to compare their theory with empirical data to show consistency between
theoretical modelling and real-world data. It is possible to conduct algebraic anal-
ysis, but only in more simple systems where linearisation of the system is possible
(Greenman and Pasour, 2011).

§ 1.6 Disease Control and Management Strategies

With the increasing emergence of highly infectious diseases, modelling different man-
agement strategies to determine appropriate controls is becoming ever-more impor-
tant. Population management of wildlife can be incorporated into SIR models in
several different ways. The strategy which needs to be implemented in a system to
control or eradicate disease depends on different factors, for example we might need
to consider:

• if the disease is fatal;

• if vaccinations are available;

• if harvest can be targeted at only those infected, and

• what results we want to obtain from the management.

When determining an appropriate management strategy, the desired outcome
is an important factor in the decision making process. It may be that the harvest
strategy needs to maximise yield, for example if the wildlife population is harvested
for meat, fur or skin. Traditionally referred to in fisheries management processes,
and without consideration of disease, the concepts of Maximum Sustainable Yield
(MSY) and Maximum Annual Yield (MAY) are theoretical concepts giving values
for the highest numbers of fish that can be taken from a population, without such
population being driven to local extinction (Maunder, 2008; Tsikliras and Froese,
2019). The concepts of MSY and MAY can be used for management considerations
of other wildlife populations since its goals, described above as maximising yield
whilst maintaining population numbers, can be generalised to suit other populations
such as wild herds of reindeer.
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Due to the cost of implementing management strategies, it is important that
quantitative results from modelling infectious diseases with management are accu-
rate, and hence it is crucial to have an appropriate model for the system being
studied. Some of the types of management strategies that can be used are high-
lighted in the following sections.

1.6.1 Mass Vaccination

Mass vaccination strategies are most commonly used to help control human infec-
tious diseases, such as smallpox, measles and meningitis, and involve administering
vaccines to large populations in a short time interval. The goal of such vaccination
programmes is often to develop herd-immunity, a strategy that means an appro-
priate proportion of the population is immunised giving protection to those not
immune and helping to prevent disease outbreaks. The basic reproductive ratio of
a disease helps to determine the proportion of the population that is required to be
immunised to prevent epidemics. This herd-immunity threshold, denoted by HT is:

HT = 1− 1

R0
(1.18)

For example, for a disease with a high R0 such as measles where estimates have
shown the basic reproductive rate to be as high as R0 = 18 (Guerra et al., 2017),
we require HT = 1 − 1/18 = 0.94 or 94% of the population to be immunised to
prevent further disease spread. However, for a disease with a smaller R0 such as
Ebola with estimates around R0 = 2 (Camacho et al., 2014; Khan et al., 2015),
only 50% of the population (HT = 1 − 1/2 = 0.5) are required to be immune to
stop epidemics. Mass vaccinations can also be routinely performed, i.e. they can be
carried out annually at the same time as a measure to control seasonal outbreaks of
disease such as influenza.

1.6.2 Contact Tracing and Isolation

Contact tracing is an effective means of controlling infectious diseases. An individ-
ual known to be infected traces all of their recent contacts, and these individuals can
then be tested and treated for the disease if required. Using isolation as a method
to prevent further spread by those contacts is also an effective solution which goes
hand-in-hand with contact tracing. We may typically think of these methods for
the control of sexually transmitted infections, but more recently we have seen this
method used for the SARS epidemic (Donnelly et al., 2003a) and the 2020 coron-
avirus outbreak (Kucharski et al., 2020). Again, this method is most appropriate
for human diseases, and is particularly successful when cases of infection are low
(Eames and Keeling, 2003). Contact tracing is not likely to be an effective means of
infectious disease control in free-ranging wildlife populations, such as the ones con-
sidered when formulating the models in this thesis. This is because contact tracing
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relies on known contact structure within the population being studied, whereas our
models assume random interactions between population members.

To demonstrate how contact tracing can be incorporated into an SIR model,
we show a framework based on the method used by Eames and Keeling (2003). A
new class is implemented to consider traced (or isolated) individuals, T . The SITR
model could be described by the following set of ordinary differential equations:

dS

dt
= −βSI (1.19)

dI

dt
= βSI − γI − cIT (1.20)

dT

dt
= cIT − aT (1.21)

dR

dt
= γI + aT (1.22)

Individuals in the treatment class are there for only a short time, to represent
the speed at which tracing can be implemented. Treated individuals cannot spread
infection further, for example due to their isolation, or their decision to avoid further
contacts. In this model, β is the contact rate of susceptible and infected individuals,
γ the per capita recovery rate in the absence of tracing, a is the length of time in
the traced class, and c is the contact tracing rate. This is a simple example of how
contact tracing may be incorporated in the model.

1.6.3 Constant Catch and Constant Effort

Constant catches and constant efforts are typically associated with fisheries manage-
ment, and have previously been studied in conjunction with the concept of Maximum
Sustainable Yield (MSY) (Azar et al., 1994; Duarte, 1994; Azar et al., 1996).

The constant catch process involves the removal of individuals in a population
using the same abundance each time harvest is performed, e.g. per day, 20 fish
are removed from a lake. This strategy is most suited to a population where such
constant removal will not lead to the depletion of the population to a level which
would not allow the constant catch to be sustained. Constant effort is performed
in relation to the existing population abundance, where a proportion of individuals
are removed continuously at a certain rate.

Suppose we model the population dynamics of our species by the following equa-
tion:

dF = (b− d)F −H(F ) (1.23)

where b represents a birth rate, d a death rate, and H(F ) gives the function for the
harvest strategy. Then, a constant catch harvest would be given by a constant func-
tion, e.g. H(F ) = c, whilst a constant effort harvest would involve the population,
e.g. H(F ) = cF , where c ∈ R. The more effective method of these two strategies is
system dependent (Azar et al., 1996).
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This method can be applied to a host-parasite system using an SIR model, where
we can choose to harvest any combination of the population members, depending
on the system being studied. Supposing it is not possible to distinguish susceptible,
from infected, or recovered individuals, we would need to apply the harvest function
to all three compartments of the disease model. Then, our system of equations
would look something like the following:

dS

dt
= bN − βSI − dS − cS (1.24)

dI

dt
= βSI − (d+ α+ γ)I − cI (1.25)

dR

dt
= γI − dR− cR (1.26)

where c ∈ R represents the proportion of each population class harvested as a
constant effort.

1.6.4 Seasonal Harvest

Wildlife populations are frequently managed in short harvest seasons, performed
at a specific time with the aim of achieving a maximised yield whilst maintain-
ing a sustainable population (Choisy and Rohani, 2006). Seasonal harvesting can
follow constant-catch, or constant-effort frameworks, where the harvest takes an
“on/off”approach, being performed only for a short time-frame rather than contin-
uously through a season.

For example, if a harvest function is represented by the term H, a seasonal
harvest could be given by the piecewise continuous function:

H =

{
c if n+ s < t ≤ n+ r,
0 otherwise.

(1.27)

Here, c ∈ R is the harvest rate, n ∈ Z is the year of harvest, and s, r ∈ R with
0 < s < r < 1 and r − s the length of the harvest season. To apply this is an SIR
framework, with H as defined by the piecewise function above, we can write the
system of equations as:

dS

dt
= bN − βSI − dS −HS (1.28)

dI

dt
= βSI − (d+ α+ γ)I −HI (1.29)

dR

dt
= γI − dR−HR. (1.30)

With this framework c is the harvest rate of the population during the defined
season, representing the constant effort style management.
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§ 1.7 Methodology

1.7.1 ode15s

For the numerical simulations in this thesis, Matlab (MATLAB version R2018a)
software is used and the ode15s solver implemented in order to solve our systems
of ordinary differential equations. This stiff ODE solver is used as it increases the
efficiency of our numerical simulations over a non-stiff solver such as the widely used
ode45 solver. The ode15s solver uses a multistep process and uses a quasi-constant
step size (it is a variable order and variable step solver) (Shampine and Reichelt,
1997) to solve our system of ordinary differential equations numerically. It is better
able to cope with the rapidly changing solutions from our system of differential
equations that describe disease dynamics. An example (dummy) code using the
ode15s solver for an SIR system is shown in figure 1.3.

We choose to analyse our system via numerical simulation methods since our
model is highly complex. This allows us to explore a wide range of parameter
combinations, detailing the possible outcome of population and disease dynamics
for different host-parasite scenarios.

1.7.2 Bifurcation Diagrams

A bifurcation diagram shows qualitative and quantitative changes in model dynam-
ics as one model parameter is varied. Figure 1.4 shows an example of the type of
bifurcation diagram used throughout this thesis. Across the x-axis of our bifurca-
tion diagram (bottom panel in figure 1.4) we vary a control parameter, in this case
β2, and the y-axis reads the corresponding level of infection in the population (pro-
portion infected; on a log-scale) for the specific value of β2. The number of points
corresponding to any one x value at any one time indicates how often the disease
dynamics re-occur, i.e. one point above an x value translates to annual dynamics,
two points a biennial cycle, and so forth. The dynamics are sampled at the same
time-point each year, and the corresponding plotted points/branches show those val-
ues. The top two figures in 1.4 show the proportion of infected population members
in time-series data, for two different values of β2. We show where these correspond
to the bifurcation via the vertical lines overlaying the bifurcation diagram.

We compute our bifurcation diagrams using code written in Matlab (MATLAB
version R2018a). Our code is adapted for our specific models using the available
program files in Keeling and Rohani (2008), accessible from Chapter 5: Program
5.2 at the following webpage:

• https://homepages.warwick.ac.uk/ masfz/ModelingInfectiousDiseases/index.html

We begin by defining the fixed model parameters, and define a vector of values
for the bifurcation parameter of interest. For example, if we want to vary β2 between
0 and 1, we may specify β2 = [0 : 0.001 : 1], so that 1000 different values of β2 are
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Figure 1.3: Example code using ode15s to solve an SIR model.
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Figure 1.4: An example bifurcation diagram showing changing dynamics as the
control parameter β2 is varied, with time-series plots above to highlight the corre-
sponding patterns shown by the bifurcation.
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used in computing the bifurcation diagram. As standard, we use 1000 values of
each bifurcation parameter of interest in this thesis. Additionally at this stage, we
define a maximum run time t ∈ Z (years) for which the iterative process will run,
and specify initial population conditions. The maximum time used is 500 years in
all bifurcations following, unless otherwise stated, and initial population conditions
are defined in the relevant sections. We use a for loop to run through each value of
the control parameter, and implement the ode15s solver (see above) for each such
value. Unless otherwise stated for all bifurcations, following the completion of one
simulation cycle for a control parameter the bifurcation code uses extrapolated initial
conditions to continue the bifurcation for the next parameter value. This means that
the number of population members at the end of one simulation is used to start
the next, and therefore initial conditions are continuously changing throughout the
bifurcation process. Then, the code uses the interp1 function to perform a linear
interpolation between the time-sampled points t and the corresponding infection
abundance (obtained from the ode15s output) for the final 10 years of simulations
([t− 9 : t]). Finally, we use the semilogy function to plot the bifurcation parameter
values on the x-axis, and the associated log-scaled interpolated infection abundances
on the y-axis. The code in figure 1.5 gives an example (dummy) code for this process.

We recognise that this definition/use of the term Bifurcation Diagram may not
be familiar to the reader. We have used this definition as it is used by Keeling and
Rohani (2008) to consider seasonally-forced systems where the forcing has a one-year
period. Due to the use of annually forced seasonal parameters throughout this thesis,
we are therefore largely interested in the qualitative patterns, and consequently take
the approach described above where we sample one time-point per year, almost as
in a discrete-time system.

1.7.3 Pie Diagrams

Throughout the thesis, pie diagrams are used to explore different combinations of
parameter values and initial conditions when solving our systems of differential
equations (see example figure 1.6). Using nested for loops in Matlab (MATLAB
version R2018a), different combinations of parameter pairings were inputted into
the ode15s solver, along with a vector of initial population conditions. For every
combination of parameter values and initial conditions, the MATLAB code imple-
mented the ode15s solver, recorded the period of the cycle of epidemics, and created
pie charts for each pair of parameters with coloured sections to indicate the different
cycle lengths observed for such pairings, dependent on the initial conditions. The
simulations were run for a minimum of 500 years and solutions were tested to deter-
mine if the periodic solution had a length of 1− 10 years, or if it exceeded 10 years
in length. The initial conditions tested in simulations are uniquely defined in each
relevant figure. In order to test the period of epidemics, we recorded the maximum
total population abundance observed over the course of one year, and repeated this
for the 100 years preceding the maximum simulation length. We then compared the
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Figure 1.5: Example Matlab code for drawing bifurcation diagrams.
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Figure 1.6: An example of pie charts displayed throughout the thesis. In (a) resulting
dynamics for a particular pair of parameters are either annual, or repeating every
four years. In (b) dynamics are always annual. In (c) we either have annual dynamics
or dynamics repeating every 10 years or more, and in (d) dynamics repeat every
three years for all initial conditions explored.

maximum abundance recorded in the first year (i.e. maximum time - 100), with
the second year, and determined the percentage difference. In order to be classed
as equivalent, the percentage error between values needed to be less than 2%. For
example, if the difference between the maximum in year 1, and the maximum in
year 2 was > 2%, but the difference between years 1 and 3 was less than 2%, we
recorded an epidemic cycle of length 2.

1.7.4 Fourier Spectra

Fourier spectra allow us to determine the dominant period of epidemics resulting
from model simulations and will be shown throughout this thesis. To compute
Fourier spectra, we used the Matlab (MATLAB version R2018a) function fft ; a
command which calculates the discrete Fourier transform of the resulting population
dynamics, by using a fast Fourier transform algorithm. The aim of the computation
is to find the frequency of the possible population dynamic cycles, where these
cycles are buried in noisy data. The computation does not tell us the specific cycle
length, but does indicate the dominant periods present for the model using certain
parameter combinations. For the computation of Fourier spectra in this thesis, the
Matlab code first creates a data set for the spectra, and in our case this is information
about total population size through time. We run the code for 500 years in the first
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Figure 1.7: An example Fourier spectra indicating the dominant periodic cycles in
a dynamic system. The underlying epidemic periods are either annual or biennial.

instance to remove transient dynamics, and then run the simulations for a further
1000 years, taking 12 equally-spaced samples per year for creation of the signal.
Our code applies the Fourier transform, extracts the powers of frequencies and
takes the inverse of these to obtain epidemic periods. An example Fourier spectra
can be seen in figure 1.7. This plot shows an example of a Fourier spectra for a
host-parasite system where dynamics are either dominated by annual or biennial
underlying dynamics.
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§ 1.8 Thesis Outline

In this thesis we explore the impact of multiple seasonal components acting on
a host-parasite system, focussing on seasonality in birth rates and transmission.
We consider host-parasite systems where disease can spread in different ways, and
consider the effects of harvesting strategies on such systems.

In Chapter Two an SIR model with two seasonal components, one in birth
and one in transmission, is formulated. We consider both a system where recovery
from disease is not possible, and one where hosts can fully recover and gain lifelong
immunity. In particular we explore the timing of the seasonal components, and how
dynamics can change depending on the relative timing of the seasonal birth and the
seasonal transmission.

In Chapter Three an additional transmission pathway is considered. Transmis-
sion is possible via direct contact, as in Chapter Two, and also available via an
environmental reservoir of free-living infectious material. We formulate a model
to incorporate both seasonality in birth and transmission, alongside an additional
compartment to represent environmental transmission of disease. We explore how
changing the seasonality impacts population and disease dynamics, and highlight
the bi-stability of the system. We pay attention to how alternative initial conditions
can affect dynamics and also how changing other parameters changes the system
behaviour.

In Chapter Four seasonal harvesting strategies are introduced, and we incorpo-
rate these into the models from Chapter Two and Chapter Three. We specifically
explore how the timing of harvesting a population is crucial in determining the dis-
ease cycle, and how small changes in harvest rate can alter dynamics dramatically,
indicating bi-stability in the system. We note how increasing harvest rates can ac-
tually increase population numbers (a phenomenon we can link to a principle known
as the “Healthy Herd Hypothesis”), and find harvest strategies that can maximise
susceptible populations whilst minimising infection.



Chapter 2

How seasonal variations in birth
and transmission rates impact
population dynamics in a basic
SIR model

§ 2.1 Introduction

Climate change, encompassing global warming, changes in ocean pH, air and water
quality, humidity and precipitation patterns, is likely to exacerbate the current in-
tricacy of relationships between hosts, parasites and transmission vectors (Altizer
et al., 2013). Though not all host-parasite relationships will respond to warming in
the same way, due to differences in range and location (also known as climate enve-
lope), changes to the timings of our seasons as a result of global warming will impact
the dynamics of populations and diseases (Sutherst, 2001; Kutz et al., 2005; Mc-
Carthy et al., 2001; Parmesan, 2006). We expect biological organisms to respond to
changing environments, in particular by altering the timing of seasonally-dependent
demographic processes. Two such time-varying processes are the species breeding
schedule, and the timing of social gatherings.

Infectious diseases are ubiquitous in the natural world, and seasonality is well
recognised as pivotal in determining disease dynamics (Soper, 1929). Understanding
how infectious diseases can impact a host population is an important area of study
as we endeavour to ensure species thrive in their natural environments, aiming to
avoid population decline or indeed extinction. The dynamics of infectious diseases in
wildlife populations is a well-studied area both in theory and in practice. Numerous
studies have incorporated a form of seasonality into models of wildlife diseases, either
in host birth rate (Roberts and Kao, 1998; White et al., 1999; Smith et al., 2008;
Peel et al., 2014; Ferris and Best, 2018) or the transmission parameter.

The most common functional form for transmission seasonality is a sinusoidal
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function. These have been incorporated into host macro-parasite models (White
et al., 1996; Taylor et al., 2015) and host micro-parasite models (Ireland et al.,
2004, 2007; Best, 2013). There are several reasons we might see a seasonal trans-
mission rate in host-parasite relationships. For example, parasite abundance could
be impacted by seasonal factors such as temperature and rainfall (Pascual and Dob-
son, 2005), or the host species could exhibit seasonal changes in immunity (Altizer
et al., 2004; Laakkonen et al., 1999). In many natural populations, seasonal social
behaviour will drive fluctuating transmission rates. For example, avian species ex-
hibit seasonal behaviour in their migrations (Helm et al., 2006), and deer species in
gathering for the breeding season (Lincoln, 1992).

Seasonality is likely to affect more than one trait in host-parasite relationships
(Cable et al., 2017) since it is common for wildlife populations to exhibit separate
breeding and social seasons (e.g. group migration), where the latter implies increased
transmission rates due to elevated density of hosts in one area. Theoretical work on
host-parasite dynamics using an SIR-type framework with one seasonal component
is common, but very few studies with more than one seasonal element exist. We are
aware of three such studies for wildlife systems (Swinton et al., 1998; Hosseini et al.,
2004; Greenman and Pasour, 2011). We note here that multiple seasonal compo-
nents have been considered in other frameworks, such as disease models for human
populations (Dorélien et al., 2013) and predator-prey models in wildlife (Rinaldi
and Muratori, 1993). Multiple seasonal components in an SIR model have shown
different outcomes depending on the relative timing of seasonality. For harbour seals
studied in Swinton et al. (1998), the seasonal processes of birth and transmission
occur simultaneously, leading to a large annual fluctuation. On the other hand in
Hosseini et al. (2004) where births and transmission are not synchronous, the sea-
sonal components can each cause their own infection peak, resulting in a so-called
multi-annual cycle. Greenman and Pasour (2011) further showed that two seasonal
components, when out of phase, could lead to chaos in population dynamics. Given
that many wildlife populations exhibit seasonal behaviours in both birth and ag-
gregation (Altizer et al., 2006), we feel that both seasonal components should be
incorporated into host-parasite predictive models.

In this work we explore how a seasonal host birth rate and a seasonal transmis-
sion parameter drive population and disease dynamics in a host-parasite system,
and investigate how changes to the timing and amplitude of these processes alter
dynamics. We introduce the model in 2.2, formulating the basic reproductive rate
R0 and the threshold for disease persistence. In 2.3.1 we explore the model dy-
namics in the absence of seasonality, and with only one seasonal component present
before introducing both seasonal terms simultaneously. In 2.3.2 we investigate how
changing the timing of birth and transmission impacts the population. By varying
disease parameters in 2.3.3 we show how complex cycles can emerge, and then in
2.3.4 we show how recovery can stabilise dynamics. Finally in 2.4 we conclude our
findings and discuss the results.
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§ 2.2 The Model

Our model is based on those developed by Anderson and May (1981), with adap-
tations to consider both seasonal birth and transmission rates. The population
dynamics of a host-parasite system are henceforth described by the following equa-
tions:

dS

dt
= b(t)N − β(t)SI − (d+ qN)S (2.1)

dI

dt
= β(t)SI − (γ + d+ qN + α)I (2.2)

dR

dt
= γI − (d+ qN)R (2.3)

In this system, d represents the per capita natural death rate of individuals, α
a disease-induced death rate (or virulence) and individuals are assumed to recover
at per capita rate γ. The parameter q represents a density-dependent factor in the
death rate, since it is assumed that increased competition between host population
members will increase fatality, and the total population size is given byN = S+I+R.

Since we are concerned with the impact of a changing climate on the timing
of our seasons we include time-dependent parameters in the model. It is assumed
that when population members gather in groups, this results in an increased disease
transmission (i.e. transmission is density-dependent), and that this can fluctuate
throughout the course of a season depending on the social calendar of the species.
We define β(t) = β0(1+β1 cos(2π(t+β2))) to be the varying transmission, where β0

is the baseline transmission, β1 the amplitude of seasonality and β2 the timing of the
transmission peak (i.e. the time of peak socialising). Similarly, the birth rate b(t)
is seasonal to represent a population with a particular breeding season. We define
b(t) = b0(1 + b1 cos(2π(t+ b2))), with b0 the baseline birth rate, b1 the amplitude of
seasonality and b2 the timing of the birth peak.

For the numerical simulations, Matlab (MATLAB version R2018a) software is
used and the ode15s solver implemented (see section 1.7.1). We first consider a
wildlife population with average lifespan of 1 year (d = 1), an average offspring
per individual of 2 per year (b0 = 2), and a disease from which it is not possible
to recover (γ = 0). Infected individuals are subject to an increased per capita
death rate due to disease virulence, and we define α = 7. This means that the
virulence of our disease decreases the lifespan of infected hosts to approximately 1.5
months, since the per capita death rate of infected members becomes d + α = 8.
The baseline transmission of the disease is assumed to be β0 = 1. We assume first
that neither birth or transmission are seasonal and hence set b1 = b2 = β1 = β2 = 0.
When the seasonality is introduced, the default parameter set is as described by
table 2.1. Using initial conditions with no seasonality included, dynamics settle to
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Table 2.1: Initial parameter values used for double-seasonality model simulations.
*initial population conditions unless otherwise stated.

Parameter Description Baseline

b0 baseline birth rate 2
b1 amplitude of birth 0.9
b2 timing of birth peak 1

12
β0 baseline transmission rate 1
β1 amplitude of transmission 0.9
β2 timing of transmission peak 7

12
d natural death rate 1
α disease-induced mortality 7
γ recovery rate 0
q density-dependent control 0.015
S0 initial susceptible 90*
I0 initial infected 10*
R0 initial recovered 0*

a constant steady-state as anticipated. What we are most interested in however,
is how dynamics change as we gradually introduce a seasonal transmission or a
seasonal birth, and then the two combined.

§ 2.3 Results

To calculate R0, we observe that the average time an infected member stays in their
disease class is d+α+qN (in the absence of recovery), and the number of secondary
infections produced is β(t)N . Assuming the entire population is disease-free, we thus
define

R0 =
β(t)N∗

d+ α+ qN∗ (2.4)

where N∗ is the disease-free equilibrium.

The threshold level of the susceptible population which determines whether cases
of disease will increase, happens when dI

dt > 0 (see section 1.3). That is, for this
model,

β(t)S(t)I(t)− (d+ α+ qN(t))I(t) > 0 (2.5)

β(t)S(t) > d+ α+ qN(t) (2.6)

S >
d+ α+ qN(t)

β(t)
(2.7)

S >
N(t)

R0
. (2.8)
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Since our transmission is a seasonally varying parameter, the threshold also varies
with the seasonality. This threshold therefore allows us to work out, at any time t,
whether disease will grow in the population.

2.3.1 Introducing seasonality

Figure 2.1 displays four bifurcation diagrams which allow us to explore how intro-
ducing seasonality in birth and transmission impacts disease dynamics (see section
1.7.2 for detail about this method). When periodically forced, SIR models can show
oscillations which are integer multiples of the period of forcing; this is known as sub-
harmonics. Since we introduce periodic forcing with a period of 1-year, we could
anticipate any period of dynamics p with p > 1 ∈ Z. Such subharmonics can move
through period-doubling bifurcations (i.e. changes to the system result in dynam-
ics doubling in length), and this can potentially lead to chaotic dynamics. When
introducing seasonal transmission with no seasonal birth (figure 2.1a) we see this
impact on population dynamics, i.e. we see a period-doubling bifurcation (Dietz,
1976; Aron and Schwartz, 1984) as subharmonics are produced from the introduc-
tion of a periodically-forced variable. Once β1 is large enough, population dynamics
after transient time settle to an oscillating steady-state where they repeat every
two years. When we introduce seasonality in the birth, where no seasonality in the
transmission rate exists (figure 2.1b), annual dynamics are dominant, however with
fixed initial conditions we also see a small region of 6-year cycles, and small areas
of 3-year and 12-year dynamics. For alternative starting values of S0 and I0, the
dynamics can remain on an annual cycle (as shown by the blue line in figure 2.1b).
This indicates bi-stability, i.e. there are multiple stable solutions where the outcome
is dependent on the starting populations used. This highlights the importance of
the initial population conditions in determining the population and disease pattern
(Ireland et al., 2004) and confirms that we can obtain qualitatively different results
for different initial conditions (Keeling and Rohani, 2008). The first two bifurcation
diagrams suggest that seasonality only in transmission is more stable than when we
consider seasonality only in the birth rate, since seasonal birth can induce cycles
other than annual or biennial.

If we now assume high amplitude oscillations in birth (b1 = 0.9) and vary β1 we
initially move through a period of chaos before dynamics become more regular (figure
2.1c). As b1 is introduced into the model with fixed initial conditions and β1 = 0.9
(figure 2.1d), dynamics move through a period of more complex dynamics before
settling to a biennial cycle for higher values of b1. The plot shows that a biennial
cycle will exist throughout depending on varying initial conditions, seen by the blue
lines in the figure; therefore we have another indication of bi-stability/multiple stable
attractors when varying the value of b1. From the plots displayed in figure 2.1 it
appears that with the incorporation of two seasonal components we see a stabilising
effect on the model (i.e. dynamics become more regular), with dynamics settling to
a biennial cycle when both amplitudes b1 and β1 are larger.
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(a) (b)

(c) (d)

Figure 2.1: Bifurcation diagrams to show the changing dynamic behaviour when:
(a) seasonality in transmission is gradually introduced into the model with no sea-
sonality in birth. (b) seasonality in birth is gradually introduced into the model
with no seasonality in transmission. (c) seasonality in transmission is gradually in-
troduced to the model with seasonal birth amplitude b1 = 0.9. (d) birth seasonality
is introduced to the model when seasonal transmission has amplitude β1 = 0.9.
Note: y-axis scales are different for each figure. Blue lines indicate the existence of
stable annual (b) or biennial (d) cycles independent of the parameter value.
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These results are confirmed by figure 2.2a, where we display an array of pie
charts (the first such plot of this kind can be found in Taylor et al. (2013), see
section 1.7.3 for methodology) where every chart indicates which k-period cycles
can occur for each pair of b1, β1 ∈ [0 : 0.1 : 1] when computed for different starting
conditions (S0, I0 ∈ [10, 90], S0 + I0 = 100). In general we see that as both b1 and
β1 increase dynamics are more likely to be non-annual, and when removing both of
the seasonal terms simultaneously, dynamics tend to repeat annually.

Though we notice that the inclusion of two seasonal terms has a partial stabilising
affect on the dynamics, the amplitude of birth b1 appears to have more influence
on the resulting dynamics. With mid-high β1 and low-mid b1 we can obtain 3 or
6 year cycles, but then increasing b1 results in dynamics on the more stable 2-year
cycle. This suggests that the additional seasonality in birth can stabilise the disease
dynamics. Whilst high b1 produces more stable behaviour, high β1 can still give
3/6/10+ year cycles. The natural frequency of the system (i.e. the frequency of the
system in the absence of external forcing) is un-altered in these cases. This is because
we are only considering changes to components of the periodic forcing, namely b1
and β1, hence these resulting dynamics observed in figure 2.2a must be due to the
combination of the two seasonally forced functions. For other combinations of the
seasonal amplitudes we observe instances of cycles exceeding 10 years in length. For
example, when 0.6 ≤ β1 ≤ 1 and b1 = 0.6, we see several possibilities for these
10+ year dynamics to unfold, suggesting possible chaotic behaviour. The array of
dynamics we observe show that the same equilibrium is not always reached for a set
parameter regime. The resultant dynamics depend on the initial conditions as there
are multiple stable attractors and the specified initial conditions set the behaviour
seen. Such bi-stable behaviour suggests that this general result, that increasing
amplitudes stabilise dynamics, will not always hold. Indeed, for an alternative
parameter set we can see different dynamics (figure 2.2b). Increasing the virulence
to α = 8 and the baseline transmission coefficient to β0 = 1.5, we see a wider range
of possible cycles. The general pattern remains as b1 and β1 are varied between 0 and
1 as we see dynamics moving from annual, to biennial with increasing amplitudes.

Fourier spectra allow us to determine the dominant period of the epidemics. To
compute the spectra, we used the Matlab function fft (see section 1.7.4). Figure
2.3 shows how changing parameter values can result in different epidemic cycles.
The model with baseline parameters as specified by table 2.1, and the model with
seasonality only in transmission (figures 2.3a and 2.3b) show very similar likelihoods
of different dominant epidemic cycles. For seasonality in birth only, however, the
Fourier spectra indicates that different epidemic cycles are likely (figure 2.3c), with
triennial dynamics dominating the spectrum. These results are concomitant with
the bifurcations displayed in figure 2.1, as the Fourier spectra provide a snapshot of
some of the dynamics observed. Figure 2.3 also confirms that a seasonal birth rate
in the absence of seasonal transmission, for our particular parameter set described
by table 2.1, can be more complex than the converse.
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(a) The resulting k-period cycles when varying b1 and β1 for different sets of initial conditions
(S0, I0 ∈ [10, 90], S0 + I0 = 100) and other parameters as defined in table 2.1.

(b) The resulting k-period cycles when varying b1 and β1 for different sets of initial conditions
(S0, I0 ∈ [10, 90], S0 + I0 = 100) and: b0 = 2, b2 = 1/12, β0 = 1.5, β2 = 7/12, d = 1, α = 8,
q = 0.015.

Figure 2.2
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(a) β1 = 0.9, b1 = 0.9 (b) β1 = 0.9, b1 = 0

(c) β1 = 0, b1 = 0.9

Figure 2.3: Fourier spectra for different sets of initial conditions. (a) baseline pa-
rameters as in table 2.1. (b) seasonal transmission only; β1 = 0.9, b1 = 0. (c) only
birth seasonal; β1 = 0, b1 = 0.9.
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2.3.2 Timing of seasonal events

To explore how varying the timing of our seasons impacts population and disease
dynamics, we consider bifurcation diagrams with b2 and β2 as the control parame-
ters. Since b2 and β2 can vary within our defined season length of 1-year, we allow
b2, β2 ∈ [0, 1), where a season peaking at time 0 is the same as the season peaking
at time 1. Figure 2.4a shows dynamics moving between 1 and 2-year cycles as the
peak of births is varied across a one-year period. Similarly, figure 2.4b shows the
changes for varying β2. In both circumstances we see that disease dynamics occur
annually, or every other year. From figure 2.4a is it clear that when births peak
between approximately 0.5− 4.5 months prior to transmission (the timing of which
is indicated by the vertical line), population and disease dynamics are regulated
to an annual cycle hence the dynamics are most stable if reproduction peaks just
before transmission. This is re-iterated by figure 2.4b, as the most stable dynamics
are observed when transmission peaks 0.5 − 4.5 months after birth, equivalent to
our previous observation. We see from figure 2.5a that behaviour switches primar-
ily between annual and biennial cycles for any initial conditions, however there are
other regimes present including some instances of more complex 10+ year behaviour
depending on the timing of birth and transmission. Clearly, the interplay of b2 and
β2 is important for determining the disease cycle, but we can also note from this
figure that the timings of b2 and β2 are not interchangeable. This is because our
plot is not symmetric; i.e. the dynamics resulting from b2 = 0/12, β2 = 1/12 (always
an annual cycle) are not the same as those when b2 = 1/12, β2 = 0/12 (always bi-
ennial). Hence, we must include the possibility for both births and transmission to
vary in their timing. Despite some alternative dynamics present due to changes in
initial population abundances, this plot again shows that the most stable behaviour
(annual cycles) occur when births peak slightly before transmission.

We know that 2-year (biennial) cycles usually emerge when, after a peak in the
transmission rate, the population of susceptible members is too low and has not re-
covered before the occurrence of another epidemic (i.e. it is below the threshold level
of susceptible population members required for disease outbreak, see 2.2) (Keeling
and Rohani, 2008). In our model, when the surge in births occurs just before an
epidemic happens, the susceptible population is suitably high enough that the basic
reproductive rate is greater than 1, leading to the more stable dynamics we observe.
Figure 2.5b shows the population dynamics after transient time for the model with
parameters as in table 2.1 and the threshold level of susceptible population members
required for disease outbreak. The plot is in agreement with what we expect; when
the abundance of susceptibles (green line) is greater than the threshold (blue line)
we see a rise in the infection level (red dashed line). Due to the high amplitude of
the transmission β, there are periods when the level of susceptibles is required to
be very high for a disease outbreak. These periods correspond to when the trans-
mission rate is at/around its lowest values since it is much harder for an epidemic
to occur in these instances. Thus high amplitude oscillations in transmission rate
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(a) (b)

(c) (d)

Figure 2.4: Bifurcation diagrams indicating the period of disease cycles when b2 and
β2 are varied in different situations. In (a) and (b), initial conditions are as in table
2.1. In (c) we consider the impact of high transmission and in (d) high virulence for
varying values of b2. The vertical lines highlight the value of β2 in (a), (c), (d) and
of b2 in (b).
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(a)

(b)

Figure 2.5: (a) the resulting k-period cycles when varying b2 and β2 for different
sets of initial conditions (S0, I0 ∈ [10, 90], S0 + I0 = 100) and other parameters
as defined in table 2.1. Blue indicates annual cycles, red shows two-year, yellow
three-year, orange four-year, grey six-year and white depicts 10+ year dynamics.
(b) threshold level of susceptible population members required for disease outbreak
(blue), plotted with the number of susceptible (green) and infected (red) members
in the current population where parameters are defined as in table 2.1.

lead to slower growth of epidemics and therefore longer period cycles.

For other parameter regimes we see results consistent with the finding that a
birth peak shortly before a transmission peak has the most stabilising effect on
the population dynamics. For example, in a system with higher transmission rate
or a system with high virulence, we see the same broad dynamic patterns (figures
2.4c and 2.4d). The bifurcation in figure 2.4c considers a much higher baseline
transmission rate of β0 = 4, with other parameters as in table 2.1. Here we see a
similar pattern to those observed in figures 2.4a and 2.4b. Despite the evident chaos
displayed in some areas of figure 2.4d, it is clear that dynamics are predominantly
most stable when births peak before the transmission. This is seen by the region
of 2-year cycles for b1 in mid-April to mid-August. The parameters for this plot
included an increased virulence and a decreased death rate (α = 12 and d = 0.1)
and kept other parameters as previous. Hence, these figures indicate that when
moving to parameter regimes which result in more complex dynamics, the system
still remains most stable when birth peaks shortly before transmission. Therefore,
we are confident that the timing of the two seasonal components in relation to each
other has an important role in determining the population dynamics.
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2.3.3 Varying Disease Parameters

In figure 2.6 we see that for smaller α and β0 values, population dynamics follow
an annual cycle only. However as the two parameters are increased the dynamics
become increasingly less-stable, where highest values of α and β0 display the possi-
bility of 10+ year dynamics. In between the extremes, a variety of possible dynamics
are recorded. For example, when α = 6.5 and β0 = 1 we detect bi-stability, either
seeing biennial dynamics or a cycle exceeding 10 years depending on initial numbers
of susceptible and infected population members. Figure 2.6 depicts this situation
by showing how population dynamics are settled in a 2-year regime, but then dis-
ruption by an external change at time x (indicated by the vertical blue line) such as
an extreme weather event, culling, or hunting, leads to an instant switch to a much
more complex regime. This sudden change in population and disease dynamics is
the consequence of the bi-stable solution of the system. The dramatic change we
see, in this case caused by a 10% “cull”of the population, would be significant in the
study and application of this theory to real-world systems. For example, such re-
moval of individuals could upset the ratio of male-female population members, and
hence impact the reproductive capacity of the population (Acevedo-Whitehouse and
Duffus, 2009). Successive events of this nature could ultimately lead to the collapse
of a population, causing local, regional or national extinction (Thomas et al., 2004).

2.3.4 Recovery

If the host is able to recover from infection and gain life-long immunity, we need to
consider this in our model. Using baseline parameters as in table 2.1, with S0 = 90,
I0 = 10, R = 0, we produce a bifurcation diagram to indicate how increasing values
of γ (the per capita recovery rate) influence the dynamics of disease (figure 2.7). We
can see that, as γ increases, dynamics move from a biennial to an annual pattern,
hence recovery has a stabilising effect on dynamics. We acknowledge here that
two lines in the bifurcation appear to cross paths, but can confirm that this point
remains a biennial cycle. The appearance of the crossing paths is due to the time
points at which we sample dynamics and draw the path.

Amplitude of Birth and Transmission

With a recovery rate of γ = 2, we re-evaluated the impact of changing the amplitude
of the seasons on the population and disease dynamics. Figure 2.8 shows a similar
pattern of dynamics to the results shown in figure 2.2a, where increasing amplitudes
tend to lead from annual to biennial dynamics, but we now see no instances of higher-
period epidemics; i.e. no instances where dynamics repeat more often than two years.
We can see that dynamics are still dependent on initial conditions, as there are two
cases where dynamics are shown to be either annual or biennial, depending on the
values of S0 and I0. The higher the value of b1 +β1, the more likely dynamics are to
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Figure 2.6: The resulting k-period cycles when varying α and β0 for different sets
of initial conditions (S0, I0 ∈ [10, 90], S0 + I0 = 100) and other parameters as
defined in table 2.1, with bi-stability in population dynamics demonstrated by the
occurrence of an external event where dynamics change from a biennial cycle to 10+
year dynamics. Blue indicates annual cycles, red shows two-year, yellow three-year,
orange four-year, purple five-year, grey six-year, green eight-year and white depicts
10+ year dynamic behaviour.

Figure 2.7: Bifurcation diagram to show how the introduction of recovery impacts
disease dynamics, where other parameters are as table 2.1.
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Figure 2.8: The resulting k-period cycles when varying b1 and β1 for different sets
of initial conditions (S0, I0 ∈ [10, 90], S0 + I0 = 90, R0 = 0) with γ = 2 and other
parameters as defined in table 2.1. Blue indicates annual cycles and red shows
two-year cycles.

be biennial rather than annual, as was shown similarly in figure 2.2a where larger
b1 + β1 resulted in cycles of length greater than one year.

Timing of Birth and Transmission

In contrast to the wide variety of dynamics displayed by figure 2.5a, we see only
annual and biennial patterns of disease in figure 2.9; another indication that the
inclusion of recovery is helping to stabilise behaviour. However, despite this stabil-
isation by recovery, dynamics are still being driven by the relative timings of the
birth and transmission seasons. We can clearly see that, again, annual dynamics oc-
cur when births peak shortly before the transmission, and biennial dynamics occur
elsewhere.

We can explore this stabilising behaviour through Fourier spectra. In figure 2.10a
we display Fourier spectra alongside a time-course of dynamics for the same set of
parameter values (figure 2.10b). The parameters chosen to produce these plots were
selected as figure 2.5a indicated that dynamics would be complex for this particular
parameter set. Through the time-course we can see clearly that the population
and disease dynamics are complex, with no pattern of recurring behaviour. This is
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Figure 2.9: The resulting k-period cycles when varying b2 and β2 for different sets
of initial conditions (S0, I0 ∈ [10, 90], S0 + I0 = 90, R0 = 0) with γ = 2 and other
parameters as defined in table 2.1. Blue indicates annual cycles and red shows
two-year cycles.

reflected in the Fourier spectra, where there are no definite signals showing integer-
period dynamics displayed. The ‘spikes ’in this plot are not smooth, indicating
uncertainty in the dominant signals and likely complex behaviour. In contrast,
figure 2.10c shows the dominant cycles through the Fourier spectra when recovery
is introduced, at rate γ = 2, where other parameters are as above. There are clearly
dominant integer-period cycles of 1 and 2 years in length, hence the inclusion of
recovery has stabilised the noisy data.

Varying Other Parameters

We saw in section 2.3.3 that changing the virulence of infection, alongside the base-
line transmission coefficient β0 had substantial effects on disease dynamics, partic-
ularly for higher values of α and β0. Through our study of the possible dynamics,
displayed in figure 2.6, we saw that, depending on initial conditions, dynamics could
repeat annually, biennially or on 3, 4, 5, 6, 8 or 10+ year cycles. The most complex
dynamics were predominantly seen at the highest values of α, and annual dynamics
were the only cycle observed for α < 5.5. When re-drawing figure 2.6 with γ = 2 we
see that dynamics are entirely on either annually repeating cycles or 2-year cycles
(figure 2.11). The increase to the recovery rate has regulated our previously ob-
served population dynamics to more stable regimes, where even the most complex
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(a) (b)

(c)

Figure 2.10: (a) Fourier spectra and (b) time-series data for disease dynamics when
β0 = 1, β1 = 0.9, β2 = 8/12, γ = 0, b0 = 2, b1 = 0.9, b2 = 11/12, d = 1, α = 7,
q = 0.015, S0 = 30, I0 = 70, and R0 = 0. (c) Fourier spectra for the model with the
above parameter values, where recovery is introduced at rate γ = 2.
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Figure 2.11: The resulting k-period cycles when varying α and β0 for different sets
of initial conditions (S0, I0 ∈ [10, 90], S0 + I0 = 100, R = 0) with γ = 2 and other
parameters as defined in table 2.1. Blue indicates annual cycles and red shows
two-year cycles.

dynamics are now biennial. We notice that now, dynamics are always annual for
α < 6.25. Therefore, the minimum virulence value for which more complex dynam-
ics can occur has increased (from 5.5 to 6.25), and we hence explore larger values
of virulence to check for more complex dynamics beyond the values previously ex-
plored. A bifurcation diagram for α (figure 2.12a) using baseline parameters as in
table 2.1, with γ = 2, indicates that we will observe more complex dynamics for
more virulent diseases when the host is able to recover. We see that, for α ≥ 11, it is
possible for population dynamics to repeat every four years via two period-doubling
bifurcations, and subsequent doubling leads to 8-year dynamics, and then chaotic
behaviour. For α > 13 dynamics become more stable again, settling into a 3-year
cycle. A further bifurcation, figure 2.12b where α > 15, shows us how the dynam-
ics can additionally change as the virulence increases. The 3-year cycles undergo
period-doubling bifurcations to 6-year dynamics, and subsequently we again observe
chaotic dynamics before the population eventually goes to extinction when α > 21.
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(a) (b)

Figure 2.12: Bifurcation diagrams to show the changing disease cycles as α is varied
with recovery γ = 2 and parameters otherwise as in table 2.1.

(a) (b)

Figure 2.13: Fourier spectra when β0 = 1.5, β1 = 0.9, β2 = 7/12, b0 = 2, b1 = 0.9,
b2 = 1/12, d = 1, α = 8.5, q = 0.015, S0 = 90, I0 = 10, and R0 = 0, where in (a)
γ = 0 and (b) γ = 2.

We can again compare two Fourier spectra to show the difference recovery can
make to complex dynamics. In figure 2.13 we can see the difference in dominant
dynamics through the two Fourier spectra displayed. In figure 2.13a the data is
extremely noisy, whereas in figure 2.13b the dominant cycles are annual and biennial.
Figure 2.6 shows that dynamics should be unpredictable (10+ years in length) for
the parameter set used and using the same parameters, with γ = 2, figure 2.11
indicates biennial dynamics. Hence, our results have been confirmed through the
Fourier spectra.

§ 2.4 Discussion

In this work we explored the impact of seasonality in two life-history traits, birth
and transmission, on a host-parasite system. Our results indicate that the relative
timing of the two seasonal traits is crucial to the resulting dynamics, with dynamics
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stabilising when births peak shortly before transmission. The relative amplitudes of
the two fluctuating terms also has an important effect, with dynamics often being
partially stabilised when both seasonal components have high amplitudes. We also
found bi-stability between different cycle lengths to be a common outcome, and
observed multiple stable attractors, meaning dynamics can switch to an alternative
regime quickly.

Seasonality in wildlife host-parasite systems is ubiquitous, and as climate change
alters the timing of our seasons, it is imperative to incorporate this into our predic-
tive models (Altizer et al., 2006). We found that the relative timing of birth and
transmission peaks determined switching between more and less complex cycles,
where the occurrence of annual dynamics when births peaked just before transmis-
sion was consistently observed, with more complex, even chaotic, dynamics else-
where. We found that simultaneous breeding and social peaks, in the majority of
cases, did not lead to annual patterns. We demonstrated that our occurrence of an-
nual dynamics for certain seasonal combinations is due to the fact that when births
peak just before a disease outbreak, the susceptible population is replenished, rais-
ing the value of the basic reproductive rate allowing the next epidemic to occur.
In contrast, when the birth rate peaks at other points in the year, the susceptible
population is too low when the transmission rate increases, and a sustained disease
outbreak is not possible until a future year when the population has sufficiently
recovered (Keeling and Rohani, 2008). This is a reminder that R0 depends on host
demography as well as parasite traits. We may, therefore, predict that any changes
to the timing of breeding or population gathering could have significant effects on
the dynamics of particular populations.

Though we have discussed that our seasonal transmission is a result of social
gathering, it is important to remember that variation in transmission rates can
occur for other reasons. For example, temperature and rainfall aid transmission
of vectored diseases (Lindgren et al., 2000), and species with ephemeral resources
may aggregate around food sources when supplies are scarce (Páez et al., 2018).
While we have assumed here that the two seasonal terms are independent, they
may be part of the same biological process. For example, a population may gather
together for a breeding season which would in turn increase transmission due to
its density dependence. However, the spike in birth will only happen some time
after this gathering (i.e. due to gestation periods). In this case the gestation period
would be the key driver of the dynamics. We see that with a transmission peak
before births occur, dynamics are more likely to be more complex, so this timing of
seasonal forcing must as closely as possible represent the population being studied
in order to gather realistic predictions.

We also explored how changing the amplitude of the seasonal breeding and trans-
mission terms would impact the dynamics. When both amplitudes are small, dynam-
ics remained annually repeating. Upon introducing larger variation in the seasonal
forcing, complexity initially increases, however at high amplitudes in both birth and
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transmission the system tended to settle to biennial dynamics. This generalises the
result from Dorélien et al. (2013) that high seasonality in both terms leads to more
stable dynamics when the events are timed differently in the year. The most com-
plex behaviour we observed occurred at intermediate amplitudes of both breeding
and transmission. This complexity occurs as a result of emerging 3/6/12-year cy-
cles. In general however, the pattern is of 1/2-year dynamics. Therefore, depending
on how strongly seasonal the breeding and/or transmission of a population is can
determine how stable their population dynamics are.

We investigated how other epidemiological parameters, particularly α and β0,
impacted the dynamics and saw that increasing both led to a higher chance of more
complex dynamics occurring, i.e. highly infectious fast-killing diseases are more
likely to lead to chaotic dynamics. Both α and β0 are closely tied to the threshold
for disease persistence (S > d+α+qN

β(t) ). As the virulence α increases, the threshold
will increase, and therefore it becomes less likely that the susceptible population will
surpass this required level for disease outbreak. On the other hand, large baseline
transmission β0 means that our threshold is reduced, and it will thus fluctuate with
smaller amplitude. Once the susceptible population has built high enough a large
outbreak of disease occurs, but due to the high virulence it is rapidly diminished
and consequently the susceptible population falls. However, since the threshold is
smaller, the susceptible population has the opportunity to surpass the threshold level
and hence cause more infection. The inter-play of these two parameters on which
the threshold depends thus results in complex behaviour which is hard to predict,
causing uncertainty in the time that epidemic outbreaks will occur. Depending on
initial conditions and parameter values, there are instances of bi-stability which
indicate that we have multiple stable attractors. As we demonstrated, this can lead
to significant changes in the nature of the population dynamics if a sudden external
change occurs. We note that, for the more complex behaviour to be observed, we
require at least one of b1 or β1 to be high. This is in agreement with results from
Keeling and Rohani (2008). The results hence show that the more deadly a disease,
the more likely we are to be uncertain about population dynamics. This finding
could be useful for informing management strategies of populations and help to
regulate host-parasite interactions.

The inclusion of recovery in the model consistently stabilised population dy-
namics, often resulting in either annual or biennial dynamics when considered. We
showed that, for varying amplitudes of birth (b1) and transmission (β1), higher
values were more likely to show biennial dynamics. The results again showed the
existence of bistable solutions, since dynamics were able to be either annual or bi-
ennial for a fixed parameter set, depending on the initial values of susceptible and
infected population members. When varying the timing of our seasonal parameters,
we found that population dynamics remained to be driven by the timings of birth
and transmission, though these dynamics were stabilised to either annual or biennial
cycles. When births peaked approximately 1 − 4 months before transmission, we
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again observed the most stable dynamics (annual repeats), with biennial dynam-
ics elsewhere. Fourier spectra showed the difference in dominant cycles for certain
parameter combinations. With no recovery, the Fourier spectra showed highly com-
plex/noisy data with no dominant cycles, whilst with recovery, dynamics were clearly
either annual or biennial shown by the strong infection peaks in the spectra. Rising
virulences (α), and larger baseline transmission (β0) led to more complex dynamics
than the converse, though again we only observed biennial dynamics as the most
complex cycle. The results here also confirmed the possibility of bi-stability in the
model, since for certain parameter sets, dynamics could either be annual or biennial
depending on initial population conditions. With recovery rate γ = 2, dynamics
were shown to always be annual for α ≤ 6 regardless of the value of β0. This is in
contrast to our previous work with no recovery, where dynamics were always annual
only for α ≤ 5.25. Hence, recovery allows for a greater disease virulence before dy-
namics become more complex; this is due to the fact that recovery induces removal
of individuals from the infected class before death and/or virulence can act upon
those population members. With this in mind, we explored larger values of virulence
α to determine if recovery still regulated dynamics. We found that, for α ≥ 11, it
was possible for population and disease dynamics to change to more complex cycles,
showing that complex behaviour is still possible when a population is able to recover
from the disease being studied. Overall, we found that recovery means population
dynamics are more likely to be stable. This will aid decision making processes for
population management since dynamics are more predictable and far less likely to
switch behaviour rapidly. Although complex behaviour is possible, it is much less
frequent and dynamics are predominantly between annual and biennial dynamics
only.

In this study we made a number of assumptions that should be tested in future
work. A clear question is whether the results found here would remain if seasonality
instead occurred in different traits. We chose the two most obvious forms of sea-
sonal behaviour, breeding and transmission, but we may also expect mortality and
virulence to show seasonal trends, depending on the particular host-parasite system
being studied. Based on our work, we suggest that timing will again be key due
to the impact on the susceptible density and the basic reproductive ratio. Here we
used a baseline SIR model but many variations to this model exist, as described in
Anderson and May (1981). For example, we may wish to consider systems where
there is a free-living parasite stage, or the impact of a latent period to the dynam-
ics. These will both induce a delay in the infection process which may then have
important consequences to the relative timing of seasonal traits. We may also want
to consider alternative functions to represent our seasonally varying processes, such
as in Hosseini et al. (2004) where the authors developed a square-wave function for
seasonal birth. Such functions give the seasonality an ‘on/off ’form. For a function
with this structure, the seasonal parameter is fixed at 0 for a portion of the year,
and then ‘turned-on ’to some value at the required time-point. For example, if we



CHAPTER 2. HOW SEASONAL VARIATIONS IN BIRTH AND
TRANSMISSION RATES IMPACT POPULATION DYNAMICS IN A
BASIC SIR MODEL 45

know our population breeds only in the months of June and July, we could fix b0 = 0
for January-May and August-December, and fix b0 = x, where x is the appropriate
birth rate, for June and July. Our choice of function would be dependent on the
system we want to study.

Our work indicates that a host-parasite system which is affected by seasonally
changing components can be highly complex, highlighting the need to include appro-
priate seasonal terms and use relevant parameter values in models of host-parasites
relationships to obtain biologically meaningful results. Changes to seasons impact
population dynamics, and with the increasing threat of a changing climate, we need
to continue to study how it can and will shape the future of our wildlife populations
and their diseases.



Chapter 3

How environmental
transmission and seasonal
variations impact population
dynamics using a
compartmental disease model

§ 3.1 Introduction

The environment can play a large role in the transmission of disease; through con-
taminated food and water sources, excreted materials and decaying matter, infection
can spread to susceptible members of a population. Environmental transmission is
thus important to include in models of host-parasite relationships and has been
considered appropriate for several specific wildlife diseases. These include: chronic
wasting disease (CWD) (Miller et al., 2006), avian influenza (Breban et al., 2009),
bovine spongiform encephalopathy (BSE) (Anderson et al., 1996), and rabbit haem-
orrhagic disease (RHD) (Henning et al., 2005). Theoretical work and models with
environmental (also coined indirect) transmission are less common in literature,
even though this form of transmission has been determined as being important
for many types of diseases, such as prions, bacteria, macro-parasites and pathogenic
viruses (Lange et al., 2016). Hence, for numerous populations and their contractable
diseases, we should consider that parasite transmission can occur through the envi-
ronment, as well as directly from host-host (Caley et al., 2009; Almberg et al., 2011;
Lange et al., 2016).

Different pathogens will behave in the environment in different ways. For exam-
ple, BSE in cattle can multiply in soil, but other diseases will remain dormant. Some
diseases, such as the prion CWD, can persist in the environment for long periods,
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whilst others will not survive for an extended period outside of their host (Almberg
et al., 2011; Blackburn et al., 2019). Persistence of infectious material in the envi-
ronment will also be dependent on conditions such as temperature and precipitation
(Blackburn et al., 2019). Therefore global changes in climate, or other factors, will
impact environmental transmission routes. In turn this has the potential to change
host-parasite relationships (Al-Shorbaji et al., 2015).

Prion diseases have received considerable attention in work on host-parasite re-
lationships with environmental transmission; they can persist in the environment for
long periods, sometimes out-living their host species (Georgsson et al., 2006; Wig-
gins, 2009; Sharp and Pastor, 2011). It is common for prion diseases to maintain
themselves for such extended periods in ground conditions (e.g. soil), though they
can also live in shared food resources, decaying carcasses and excreted materials
(Miller et al., 2004). In the case of CWD, transmission can occur both directly
and indirectly (Vasilyeva et al., 2015). However, prion diseases are typically trans-
mitted through the ingestion of infectious material (indirect), rather than directly
from host-host (Miller et al., 2004; Georgsson et al., 2006; Wiggins, 2009). Miller
et al. (2006) demonstrated how important the environment is in the transmission of
CWD through the formulation and analysis of several SI-type models, where the SI
model with indirect transmission most appropriately represented the empirical data
available for their comparison work. However, despite recognition that the ungulate
populations able to contract CWD display seasonal patterns in both breeding and
aggregation (Sharp and Pastor, 2011; Vasilyeva et al., 2015), Miller et al. (2006)
do not consider this. As stated in chapter 2, we believe the inclusion of seasonally
varying rates to be extremely important in accurately investigating and representing
host-parasite dynamics.

Another example of a disease for which a typical SIR model is not sufficient
to represent observed dynamics is Avian Influenza. It is necessary to include an
environmental transmission path in order to ensure predictive models are represen-
tative of empirical results (Breban et al., 2009). In addition, the seasonal breeding
and migratory behaviours should be considered in modelling this host-parasite re-
lationship. In a stochastic model of these host-parasite dynamics in ducks, Breban
et al. (2009) find that even when environmental transmission is small, it plays a
clear role in determining disease dynamics. The persistence of the disease is mostly
dependent on the existence of the indirect transmission path however, and this has
further been shown by Sauvage et al. (2003); Rohani et al. (2009); Almberg et al.
(2011). This is due to the interaction of the direct and environmental transmis-
sion routes. In the model, the environmental disease reservoir is dependent on the
infected population abundance, which in turn depends on the direct transmission
of disease from susceptible members. Therefore, the environmental pool is created
from seasonal intra-species interactions in this case. However in an SEIR-type
model developed by Al-Shorbaji et al. (2015) including environmental transmission,
but without seasonality, the direct transmission path played a bigger role in disease
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outbreaks than the indirect transmission route. This could be due to the size of
the host population determining how much the environmental transmission drives
disease dynamics (Breban et al., 2009).

In this chapter we formulate a new SIR-type model to investigate disease dy-
namics in a population subject to seasonality in birth and direct host-host transmis-
sion. Additionally, it will be possible for susceptible members to contract disease
from an environmental reservoir of disease via an indirect transmission process, not
considered seasonal. In 3.2 we introduce our new model, the parameters, seasonal
components and define the threshold level for disease outbreak. In 3.3 we explore
the impact of having only one seasonal term in the model (3.3.1), and then how two
seasonal terms change the dynamics (3.3.2). We then consider alternative initial
conditions in 3.3.3, the timing of our seasonal events in 3.3.4 and varying disease
parameters in 3.3.5. Finally in 3.4, we discuss our results and their implications.

§ 3.2 The Model

Our model is based on that in chapter 2, with adaptations to consider environmental
transmission of disease. The population dynamics of a host-parasite system are
henceforth described by the following equations:

dS

dt
= b(t)N − β(t)SI − (d+ qN)S − δSD (3.1)

dI

dt
= β(t)SI + δSD − (d+ qN + α)I (3.2)

dD

dt
= (d+ qN + α)I + εI − uD (3.3)

In this system, d represents the per capita natural death rate of individuals and
α a disease-induced death rate (or virulence). The parameter q represents a density-
dependent factor in the death rate, since it is assumed that increased competition
between host population members will increase fatality. The total population size
is given by N = S + I, as we assume that recovery is not possible (i.e. the disease
is fatal).

We introduce an additional disease class, D, representing an environmental reser-
voir of diseased material. The matter within this class is produced by a proportion of
living infected members (representing excreted material), and the deceased infected
population. Matter within the class exists in the environment for a specified time
only. The transmission of decaying matter to susceptible individuals relies on con-
tacts, with new infection occurring with parameter δ. Such contacts could involve
susceptible members being near a diseased carcass, or ingesting disease prions via
excreted material, for example. A proportion ε of the decay pool is produced from
living infected population members (excretion of infectious material), and since de-
caying material stays infectious for a specified time it has a per capita removal rate,
in this case u. We define this avenue of transmission to be an indirect pathway, since
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infection arises as a consequence of environment-host contacts, rather than host-host
contacts. This indirect transmission parameter δ is considered constant throughout
this chapter, but could be an additional seasonal parameter in advancements.

We assume that a greater group size results in an increased host-host disease
transmission (i.e. direct transmission is density-dependent), where the gathering of
a group could be due to several natural processes for example migration, feeding or
hibernation. We define β(t) = β0(1+β1 cos(2π(t+β2))) to be the varying transmis-
sion rate where β0 is the baseline transmission rate, β1 the amplitude of seasonality
and β2 the timing of the transmission peak (i.e. the time of peak socialising). The
birth rate b(t) is also considered to be seasonal to represent a population with a
particular breeding season. We define b(t) = b0(1 + b1 cos(2π(t + b2))), with b0 the
baseline birth rate, b1 the amplitude of seasonality and b2 the timing of the birth
peak.

Following the method of Van Den Driessche (2017), we can compute the basic
reproductive ratio. The complete R0 is the sum of the respective R0 values from the
direct transmission pathway, and the indirect transmission pathway. For the direct
transmission component of R0, we have

β(t)N

d+ α+ qN

and for the indirect transmission (following R0 calculations in Anderson and May
(1981); Sharp and Pastor (2011)), we have

δ(d+ qN + α+ ε)N

u(d+ α+ qN)
.

Therefore, the basic reproductive ratio for our model is

R0 =
N(β(t)u+ δ(d+ qN + α+ ε)

u(d+ α+ qN)
(3.4)

where N is at the disease-free equilibrium.

The threshold level of susceptible individuals which determines if an outbreak of
disease will occur, or if the disease will die-back, happens when dI

dt > 0 (as described
in section 1.3). That is,

β(t)S(t)I(t) + δS(t)D(t)− (d+ α+ qN(t))I(t) > 0 (3.5)

β(t)S(t)I(t) + δS(t)D(t) > (d+ α+ qN(t))I(t) (3.6)

S(t) >
(d+ α+ qN(t))I(t)

β(t)I(t) + δD(t)
. (3.7)

(3.8)
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3.2.1 Cyclic behaviour of the underlying model

An interesting and important point of note for a model of this form is the possibility
that the underlying dynamics (i.e. the model in the absence of seasonality) can cycle
rather than settle to a stable equilibrium. This phenomenon was described by model
G in Anderson and May (1981). The authors explain how S, I and D can oscillate,
and the form that the stable limit cycle takes (i.e. the amplitude and period)
is dependent on the parameter values used in model simulations. In Anderson and
May (1981), this cyclic behaviour is more likely to occur for high-strength pathogens
(high α) where the infectious stage lasts for a long time (small u).

Our defined model is highly complex, where it is difficult to perform algebraic
analysis, even in the absence of seasonality. We therefore use numerical simulation
methods to assess the behaviour of our host-parasite system.

§ 3.3 Results

For the numerical simulations, Matlab software (MATLAB version R2018a) is used
and the ode15s solver implemented, as in chapter 2. For simulation purposes and
to provide a reference point, we fix a default set of parameter values (table 3.1).
The breeding rate of the population has a baseline of b0 = 2 offspring per year,
and the baseline transmission is β0 = 1. Both seasonal parameters have amplitude
b1 = β1 = 0.9, where births peak in month 1 (b2 = 1/12) and transmission in month 7
(β2 = 7/12). The death rate of the population is one-year (d = 1), and the virulence
is α = 7. This means that the average lifespan of a susceptible individual is 1 year,
but infected members have a reduced lifespan of 1.5 months, since d+α = 1+7 = 8.
We take these parameter values for consistency, since these were the baseline values
used in chapter 2. Decaying matter is able to stay infectious for a period of 6 months,
and excreted material enters this class with rate ε = 12. Susceptible population
members can pick up disease from the decaying matter at rate δ = 0.1. A summary
of all baseline parameter values can be found in table 3.1.

In the absence of seasonality, b1 = β1 = 0, population and disease dynamics os-
cillate to an equilibrium state (figure 3.1) where numbers of susceptible and infected
population members remain constant. Since we earlier explained the possibility of
cyclic behaviour in an unforced environmental transmission model, we note that
this fixed equilibrium is specific to our defined baseline parameter set (see table
3.1). With the inclusion of seasonal forcing however, dynamics display a wide range
of behaviours.

3.3.1 Single Seasonal Forcing

Seasonal Birth

Without seasonal transmission (β1 = 0), simulation of the model with other param-
eters as specified in table 3.1 shows dynamics repeating every three years. With
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Table 3.1: Initial parameter values. *initial population conditions, unless otherwise
stated.

Parameter Description Baseline

b0 baseline birth rate 2
b1 amplitude of birth 0.9
b2 timing of birth peak 1

12
β0 baseline transmission rate 1
β1 amplitude of transmission 0.9
β2 timing of transmission peak 7

12
d natural death rate 1
α disease-induced mortality 7
q density-dependent control 0.015
δ transmission rate from environment 0.1
ε excretion rate 12
u death rate of decaying matter 6
S0 initial susceptible 90*
I0 initial infected 5*
D0 initial decaying 5*

Figure 3.1: Oscillation of dynamics to a stable equilibrium for the model in the
absence of seasonality, where parameter values are as defined in table 3.1 with
b1 = β1 = 0.
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alternative values of b0 and b1 however, we can additionally observe annual, biennial
and four-year cycles (see figure 3.2). The occurrence of epidemics is dependent on
the values of b0 and b1, and these also assert the prevalence of disease. Figure 3.2
shows a surface map to indicate the changing prevalence of infection for 10, 000 dif-
ferent pairings of b0 and b1, with contour lines to indicate the period of epidemics.
We set 1.5 ≤ b0 ≤ 5 and 0 ≤ b1 ≤ 1 with parameter values sampled at regular
intervals. The infection level presented is the largest prevalence observed during
the disease cycle. It is clear from this plot that, when behaviour switches from
one cycle to another, this impacts the maximum prevalence of disease seen within
the population during a cycle, with longer cycle lengths tending to lead to higher
maximum prevalences. We must note here that the occurrence of three-year cycles
is fairly uncommon, yet our initial conditions and parameter values lead us to this
cycle. Further analysis showed us that the cycle length can also be dependent on
initial conditions, with bi-stability and multiple-stable attractors existing. The de-
fault parameter values taken are carried over from chapter 2, with the new additions
of δ, ε and u estimated from different sources (Williams et al., 2002; Miller et al.,
2006; Potapov et al., 2016). We recognise the rarity of the three-year cycle, and
have described the reasoning for its occurrence here.

Seasonal Transmission

Omitting seasonal forcing in the birth rate but incorporating seasonality in trans-
mission sees infections peak either annually or triennially (figure 3.3). Here we
sample 10, 000 pairs of β0 and β1 values at regular intervals, with 0 ≤ β0 ≤ 4.5 and
0 ≤ β1 ≤ 1. The values of β0 and β1 determine the disease pattern observed with
the largest explored values of both always resulting in triennial dynamics. There is
an additional window of three-year cycles occurring for high β1 and mid β0. Higher
maximum prevalences are only associated with non-annual dynamics; this is due
to the way in which population abundances change through time in relation to the
threshold for infection outbreak. As described in section 1.3, the number of sus-
ceptible population members must surpass a certain threshold for an outbreak of
infection to occur. Figure 3.4 shows the thresholds for each possible cycle, with 3.4a
highlighting a threshold for annual dynamics and 3.4b a threshold for triennial in-
fection dynamics. From these plots we can see that when the susceptible population
numbers (green line) move above the threshold (blue line) the number of infected
population members (red line) increases, and when susceptible members dip below
this threshold, we see a decrease in the infection.

3.3.2 Two Seasonal Terms

We now explore the population and disease dynamics when both birth and direct
host-host transmission are considered seasonal. We assume b1 = β1 = 0.9 and
b2 = 1/12, β2 = 7/12. Performing simulations for transient time (1000 years to
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Figure 3.2: Surface map to indicate the maximum prevalence of infection observed
during a disease cycle when varying the values of baseline birth rate b0 and amplitude
of the seasonal birth b1 with no seasonality in transmission. Low prevalence is
indicted by dark blue, and high prevalence by yellow. Contour lines indicate regions
of different period epidemics, where inside the red lines dynamics are biennial, in
the blue line dynamics are triennial and on the green line dynamics repeat every
four years. The black dot indicates our baseline parameter values (on a three-year
cycle).
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Figure 3.3: Surface map to indicate the prevalence of infection when varying the
values of baseline transmission rate β0 and its amplitude β1 with no seasonality
in birth. Contour lines indicate regions of different period epidemics, where inside
the blue line dynamics are triennial and otherwise annual. The black dot indicates
our baseline parameter values (on an annual cycle) and the red dot relates to the
proceeding figure.
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(a)

(b)

Figure 3.4: Threshold level of the susceptible population needed for a disease out-
break to occur. In (a), baseline parameters are implemented with b1 = 0 (see black
dot on figure 3.3). In (b), β0 = 3.5, b1 = 0 and other parameters use baseline values
as defined in table 3.1 (see red dot on figure 3.3).
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ensure dynamics have reached a steady-state), with fixed initial conditions S0 = 90,
I0 = 5, D0 = 5 and parameters as in table 3.1, population and disease dynamics
settle to a cycle repeating every three years. Infection (and hence decaying material)
breaks out in the population once the number of susceptible members is sufficiently
high, at which point this number declines before rebuilding again. The threshold
number of susceptible members required for infection to increase in the population
(equation (3.8)) is calculated and plotted as a function of time in figure 3.5 alongside
the dynamics of susceptible and infectious individuals. To plot the threshold, we use
the output vectors of S(t) and I(t) from the ode15s MATLAB simulation, create
vectors of the same length for each parameter necessary to compute the threshold
(see equation (3.8)), and code the threshold equation into MATLAB in order to plot
the figure depicted (figure 3.5). We see again that when the number of susceptible
individuals surpasses the threshold line, infection levels begin to increase. Once
the number of un-infected hosts declines, dipping under the threshold, we infection
begins to decline.

As baseline rates and seasonal amplitudes had specific impacts on population
dynamics in the model with single seasonality, we explore how changing these rates
(β0, β1, b0, b1) impact the dynamics under dual-seasonality. We show the different
epidemic periods that occur as a result of altering b1 and β1 in figure 3.6. We sam-
ple 10, 000 parameter pairs, taking values at regular intervals with 0 ≤ b1 ≤ 1 and
0 ≤ β1 ≤ 1 and fix initial conditions as above (S0 = 90, I0 = 5, D0 = 5). Cycle
lengths are calculated using the same method as when computing pie diagrams (see
section 1.7.3). The surface plot indicates that both amplitudes impact the overall
dynamics. We see that non-annual dynamics occur only when b1 > 0.6 (therefore
annual dynamics only for any β1 with b1 < 0.6). Increasing β1 at high amplitudes
of birth impacts resulting infection periods also, as we see decreased stability for
increasing β1, with indication of a 9 year cycle. For a surface plot of b0 vs β0

(figure 3.7, where parameter values are sampled at regular intervals as previously
described) we see that dynamics are more varied, often switching from annual to
triennial with small changes in parameter values. Both b0 and β0 appear to have
an impact on the resulting epidemic periods, where larger values of baseline birth
rates settle epidemics to either annual or biennial cycles, and smaller values make
dynamics less predictable. Changing the baseline transmission β0 at lower baseline
birth rates alters the period of disease cycles more readily; we observe rapid switch-
ing between different cycles with 6, 8 and 10+ year dynamics recorded for several
parameter combinations. These more complex cycles and switching behaviours are
also clearly seen as we vary both β0 and β1 simultaneously. Figure 3.8 shows us
how biennial dynamics dominate with high amplitudes and relatively high baseline
transmission, and how annual dynamics prevail for any amplitude when baseline
transmission is small. It is the change in β0 that perhaps has the most profound
impact on determining the period of epidemics, a result in line with those observed
in figure 3.7. We sampled 10, 000 parameter pairs, again taking values at regular
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Figure 3.5: The level of susceptible population members needed (blue line) to cause
infection to rise in the total population, where parameter values are those in table
3.1.

intervals. Bifurcations for each of β0, β1, b0, b1 show how these parameters can indi-
vidually change the period of epidemics. As shown in figure 3.9, we observe annual,
biennial, triennial and six-year cycles, and these are in agreement with our surface
plots. These bifurcations show that we have multiple stable attractors as dynamics
jump from one state to another when using fixed initial conditions (figures (b) and
(d)), and this is explored further in the proceeding sections. With this, we can be
confident that initial conditions are important for determining these disease cycles,
as the dynamics observed represent certain basins of attraction for the set initial
conditions used.

The variation in observed epidemic periods as a result of changes to β0, β1, b0, b1
with both terms seasonal is more wide-ranging than results obtained in section
3.3.1. For example we now see epidemic cycles greater than 6 years in length, and
particularly we note that highly unstable 10+ year dynamics are found for different
combinations of baseline birth, b0, and baseline transmission β0.

3.3.3 Alternative Initial Conditions

Changing the initial proportions of susceptible and infected individuals, along with
the amount of decaying matter, can alter the dynamics resulting from a simulation
of the model. With different initial population conditions, though keeping the same
baseline parameter values (given in table 3.1), we observe annual, three-year and
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Figure 3.6: A surface plot to indicate how changing amplitudes of seasonality, b1
and β1, can impact the repeating dynamics of disease, where other parameter values
are those in table 3.1. Different colours represent different periods of disease cycles.

Figure 3.7: A surface plot to indicate how changing the baseline values of birth
and transmission, b0 and β0, can impact the recurrence of epidemics, where other
parameter values are those in table 3.1. Different colours represent different periods
of disease cycles.
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Figure 3.8: A surface plot to indicate how changing the baseline value of transmission
and it’s amplitude, β0 and β1, can impact the recurrence of epidemics. Different
colours represent different periods of disease cycles.

(a) (b)

(c) (d)

Figure 3.9: Bifurcations to show changing disease dynamics for varying values of
b0, b1, β0 and β1, with other parameters as in table 3.1.
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four-year disease cycles (figure 3.10), but interestingly biennial dynamics are never
recorded for this particular parameter set. By changing the baseline parameter val-
ues, we can observe biennial dynamics, as was observed in figure 3.9. These plots
therefore show that we have multiple stable attractors, each with its own basin of
attraction (Keeling and Rohani, 2008) (i.e. sets of initial conditions S0, I0, D0 which
always result in the particular dynamic). In figure 3.10, we show the occurrence of
epidemics for pairs of S0, I0 ∈ 100, and four different values of D0. There is a clear
pattern of recurring behaviour, and it is particularly noticeable that initially high
numbers of both susceptible and infected population members will result in trien-
nial dynamics. Fourier spectra help to highlight the elevated likelihood of observing
triennial epidemic dynamics. The Matlab function fft is used to compute the dis-
crete Fourier transform (DFT), a technique to change our time domain signal to its
equivalent frequency domain signal. In figure 3.11 we see the occurrences of different
disease cycles with initial conditions as in table 3.1. This spectrum confirms our
observations in the surface plots (figure 3.10) that triennial epidemics are the most
often occurring.

3.3.4 Timing of seasonal events

As we saw in chapter 2 the timing of the peaks and troughs of seasonal breeding
and transmission within the specified one-year period can drive the dynamics of
the epidemic cycles. Altering the timing of the peak for one of the demographic
processes helps us to explore the different dynamics that could be produced. A
bifurcation diagram is a good visual tool for this. Figure 3.12 shows how varying
the timing of birth (b2) will lead to different periods of epidemics when β2 = 7

12 , and
we can clearly see that the timings have a large impact on the occurrence of disease
outbreaks. This bifurcation also highlights the importance of the initial population
conditions, since it is clear that we switch between multiple stable attractors, and
there is an annual cycle underlying throughout (blue line in figure 3.12). Notably,
the incidence of epidemics is most stable when births peak 0.5−5.5 months prior to
the transmission peak, or when births peak 2.5 − 5 months after the transmission.
This can be explained by considering how rising numbers of susceptible population
members (due to new births) and increasing transmission rates (more susceptible
members becoming infected) interact, along with the threshold numbers required
for an epidemic (described in section 1.3). This result is concomitant with those in
chapter 2. We see again that the most stable behaviour occurs for births happening
shortly before the peak in transmission.

In figure 3.13 we can see how the seasonal birth and transmission rates, sepa-
rated by a period of 6 months, and the threshold, interact to result in outbreaks of
infection. It takes time for the number of susceptible population members to build
high enough above the threshold to cause disease outbreak, and once high enough we
observe the epidemic. Due to the simultaneous decrease in birth rate and increasing
transmission rates as the number of susceptible reaches its peak, we see a sharp de-
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(a) (b)

(c) (d)

Figure 3.10: Surface plots indicating the period of epidemics for different population
starting conditions, with all other parameters as in table 3.1.
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Figure 3.11: Fourier spectra highlighting the dominant epidemic periods for the
model using baseline parameters as specified in table 3.1.

cline in the number susceptible and hence the rise in infection. This increase to the
infected population, alongside the subsequent decreasing transmission rate assists
the growth of the threshold;

S >
(d+ α+ qN)I

β(t)I + δD
.

From this, we can see that the level of susceptibles required for disease to persist
will increase when β(t) decreases. We also note here the recurring pattern of the
threshold we observe in figure 3.13. The level builds gradually over a period of three-
years, matching the dynamics of the population, since the threshold is dependent
on both the population of infecteds, and the total population size. Following the
increase to the threshold, it is then less likely that the number of susceptible members
will be able to surpass the level despite the growing birth rate. We then do not see
an increase in infection as susceptible numbers have not recovered sufficiently.

3.3.5 Varying Disease Parameters

Non-seasonal model parameters will also have an impact on population and disease
dynamics if varied. In particular, we note that it can be possible for the underlying
model to oscillate in the absence of seasonality, depending on parameter values.

In figure 3.14 we see that increasing the strength of disease (virulence, α) can
have a large impact on the resulting dynamics. Whilst for all β0 and α < 5 we have
only annual cycles, when α > 5 there is a much wider range of possible epidemic
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Figure 3.12: A bifurcation of parameter b2 showing how changing the timing of
seasonal birth can impact the period of disease outbreaks, with the dominant annual
highlighted in blue. Parameter values used are those in table 3.1.

cycles, with the largest values of both resulting in the least stable 10+ year dynamics.
Therefore, we are seeing that high virulence is driving more complex behaviour (a
result we have seen in previous models, e.g. in chapter 2, section 2.3.3). We explored
the behaviour of the unforced underlying model, and found that for all pairs of α
and β0, there were no occurrences of cyclic behaviour. Therefore, the patterns
observed in figure 3.14 are not impacted by underlying cycling. The surface plot is
computed for 10, 000 pairs of parameter values, taken at regularly spaced intervals
with 0 ≤ β0 ≤ 5 and 0 ≤ α ≤ 10. We note here that the other parameters are as in
table 3.1.

The transmission rate governing the indirect transmission of diseased material
from the environment to living susceptible members, δ, and the excretion rate of
infectious material from living infected members into the decaying class, ε, have some
interesting interacting dynamics when we consider different combinations of the two
parameters. Depending on the value of each of δ and ε we observe different disease
dynamics, from annual to 10+ year patterns. Higher values of both tend to lead
to more unstable dynamics (i.e. dynamics not repeating annually), though there
are many other combinations displaying non-annual patterns. Figure 3.15 shows a
surface plot to indicate how changing the values of δ and ε alters the occurrence of
epidemics. We consider 10, 000 pairs of δ and ε, with 0 ≤ δ ≤ 1 and 0 ≤ ε ≤ 20,
where values are taken at regular intervals. In addition, we explored the underlying
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Figure 3.13: Population dynamics after transient time, with seasonal birth and
transmission rates highlighted alongside the threshold of susceptible population
members needed to infection to rise. Parameter values used are those in table
3.1.
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Figure 3.14: Surface plot to indicate how changing the values of α and β0 can impact
the cycles of disease epidemics, where other parameter values are those in table 3.1.
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Figure 3.15: Surface plot to indicate how changing the values of δ and ε alters the
occurrence of epidemics, where other parameter values are those in table 3.1. The
red line separates the regions with and without oscillatory behaviour in the unforced
model, where to the right of the line, unforced dynamics are cyclic.

dynamics in the absence of seasonality. Through exploring each pair of δ and ε,
with b1 = β1 = 0, we find that increasing both δ and ε leads to cyclic dynamics in
the unforced model. The behaviour is shown by the red line on the surface plot in
figure 3.15, where to the right of the line, the unforced model displays oscillatory
dynamics. Through further analysis, we determined that the cycles existing to the
right of the red line do remain at integer periods, despite the underlying oscillatory
(not necessarily integer period) dynamics.

Comparing our two transmission forms, δ and β0, we also see varying behaviour
depending on the specific combination of parameter values. We performed a simu-
lation of the model, recording the length of the disease cycle for 10, 000 parameter
pairings. The values of δ and β0 are selected at regular intervals, where 0 ≤ δ ≤ 1
with step 0.01 and 0 ≤ β0 ≤ 2 with step 0.02. Using this, we created a histogram
(figure 3.16) to display how often each disease cycle length occurs. In this we see
that 1, 3 and 4 year cycles dominate, with a few occurrences of other cycle lengths.
In figure 3.17, we see that we are more likely to observe the less predictable 10+
year dynamics for low values of the baseline transmission β0 and high values of the
transmission from decaying material δ. This figure also confirms our observations
from the histogram as we see an abundance of 1, 3 and 4 year cycles. This is in
contrast to results seen previously in chapter 2 section 2.3.1, where high values of β0

were required for more complex dynamics to be observed. Therefore, there is an im-
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Figure 3.16: Histogram to display how many occurrences of each cycle length we
observe for 10000 combinations of δ and β0, where 0 ≤ δ ≤ 1 and 0 ≤ β0 ≤ 2 are
sampled at regular intervals.

portant interplay between the two transmission types. In the absence of seasonality,
it is possible that the underlying dynamics cycle. Shown in figure 3.17, we see the
region where the non-forced model exhibits oscillatory behaviour. To the left of the
red line (where we have high δ and low β0), the unforced model cycles. We note that
the occurrence of biennial cycles is rare. We might have anticipated period-doubling
from annual to biennial to four-year cycles with changing transmission rates, how-
ever in this case we are therefore likely to have multiple stable attractors, where
dynamics switch rapidly between different cycles. Again we explored the periods
of the cycles existing in the region where underlying dynamics oscillate, and again
found that cycles repeated at integer periods.

§ 3.4 Discussion

The ability for infectious materials to exist in the environment, and transmit to
susceptible hosts is not an uncommon occurrence. For example, prion diseases
such as chronic wasting disease can persist in the environment for a long time,
even out-living their host (Sharp and Pastor, 2011; Almberg et al., 2011). Avian
influenza is another disease with the ability to transmit through the environment,
with the host species also exhibiting seasonal changes in their behaviour (Breban
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Figure 3.17: Surface plot to indicate how changing the values of δ and β0 result in
different disease cycle lengths. The red line separates the regions with and without
oscillatory behaviour in the unforced model, where to the left of the line, unforced
dynamics are cyclic.
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et al., 2009). Seasonality in species behaviour, for example in the processes of
birth and aggregation, is also common in many wildlife populations. However,
theoretical work to date has rarely explored the combination of both environmental
transmission and seasonal demography in hosts. Given the need to more accurately
model host-parasite systems (Altizer et al., 2006), such an omission in literature
needs addressing. The work in this chapter has explored how seasonal birth and
transmission can impact a host-parasite relationship, where infection can transmit
both directly and through the environment. We specifically explored how changes
to the seasonal components, through magnitude, amplitude and timing, can impact
dynamics. In addition, changes in other parameters were explored to understand
how different host-parasite systems may behave.

The environment can play an important role in the transmission of disease from
infected members of a population to those who remain susceptible, be it through
shared food resources, excreted material, or decaying matter. This environmen-
tal transmission process, teamed with seasonality in birth and direct transmission
routes, has not been considered in previous theoretical work, and in this chapter
we have shown how the three processes interact to produce different population
dynamics depending on parameter combinations. With this model, we have been
able to explore the impact of seasonally varying processes on a host-parasite re-
lationship where it is possible for disease to spread directly from host to host, or
indirectly through the environment. We found results both in agreement with those
from chapter 2, and some contrasting. For example, dynamics were most stable
for births occurring in the months before the peak of transmission, as in chapter
2. However in contrast, increasing amplitudes of the seasonal components did not
stabilise dynamics in this model. In addition, with the possibility of the underly-
ing dynamics cycling in this model with indirect transmission, we found that lower
values of baseline birth rate β0 could lead to more complex dynamics, a result not
seen in chapter 2. The existence of complex dynamics arising from small changes
in parameter values means that to apply this model to biological systems, we need
detailed information about the demographics of hosts, and of the behaviour of the
disease.

It is well known that ungulate species, including mule deer, show seasonal pat-
terns in both breeding and group behaviour (Lincoln, 1992; Bartmann et al., 1992;
Williams and Miller, 2002). In the study by Miller et al. (2006), SIR-style models
with indirect (environmental) transmission were found to be the best fit for data on
chronic wasting disease in mule deer, however, their model did not consider the pos-
sibility of seasonally varying rates. Therefore, this is a clear example of an existing
host-parasite system in the wild where our model would be suited to representing
the relationship and behaviours of a population and the disease. With appropriate
parameter values, and representations of seasonal processes, we could be able to
enhance the results of Miller et al. (2006) by providing a model which considers
seasonality in breeding and aggregation. Information about the host-parasite sys-
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tem from empirical evidence would be necessary for finding appropriate parameter
values, and our model outcomes could be compared to existing results.

Breban et al. (2009) used an SIR-style model with environmental transmission,
direct transmission, migration and seasonal transmission dynamics to model avian
influenza. The disease, showing recurring patterns of epidemics every 2 − 4 years,
was not sufficiently represented by a standard SIR model, but the inclusion of en-
vironmental transmission helped to more accurately describe dynamics. The model
in this study was designed to match the specified system, showing the necessity for
seasonally varying rates with indirect transmission pathways. Therefore, our model
would be applicable to this type of host-pathogen system, where we could adapt the
model as necessary to suit specific systems.

In chapter 2, and in Dorélien et al. (2013) for example, increasing the amplitudes
of the seasonally varying processes stabilised dynamics when the seasonal events
occurred at different times in the calendar year. For the model in this chapter, having
incorporated an environmental transmission pathway, we obtain different results.
The indirect transmission route and seasonality lead to more complex dynamics
as amplitudes increase with the possibility of three, six-year or nine-year cycles
depending on the amplitude values. In this case, therefore, the stability of the system
is decreasing as amplitudes increase. The addition of environmental transmission to
the model also plays a role in these patterns of dynamics. The indirect transmission
and the presence of infectious material in an environmental reservoir means that the
susceptible pool of members is reduced for an extended period after the initial disease
epidemic, which makes an immediate repeat of disease less likely. The dynamics are
in this case exacerbated by the increasing amplitude of seasonality, and dynamics
become more complex as they increase. Again, as seen in chapter 2, we see that
the strength of the seasonality of breeding and of transmission can determine the
stability of population dynamics and disease cycles.

Given the ubiquity of seasonal processes in wildlife systems, and the impact that
climate change is having on our seasons, the study of changes to the timing of seasons
is important. We demonstrated the switching between stable cycles, and highly
complex dynamics, depending on the timing of our seasonal processes. The most
stable dynamics occurred when births peaked shortly before the main transmission
season; this result is in line with our findings from the model in chapter 2. Also
similarly to our previous model, we found that when breeding and transmission
seasons were matched in time, dynamics were more complex. This behaviour can
be explained by considering the threshold for disease outbreak, and the interactions
between the seasonal birth and transmission processes. Rising birth rates lead to an
influx of susceptible population members, which in turn will increase the infected
population due to a greater abundance of hosts available for infection, raising the
susceptible population above the threshold. If the possibility of transmission is also
to rise following births, this cements the infection increase, regulating the dynamics.
However, for different timing of births, it may not be possible for the susceptible
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pool to be sufficiently replenished over the threshold for disease to break out in the
population, meaning it is not possible for disease to increase. This is especially true
for this model where environmental transmission, as explained above, lengthens the
removal time of individuals from the population. This delay in an increase to the
susceptible pool means that dynamics are less likely to be regulated to a more stable
cycle, and this is further pronounced when the underlying dynamics of the model
cycle. With the possibility for highly complex dynamics to occur depending on initial
population conditions and the relative seasonal timings, we can thus conclude again
that the timing of seasonal processes can significantly impact our population and
disease dynamics.

In line with the results from chapter 2 section 2.3.3, high virulence and baseline
transmission resulted in the most varied and complex dynamics observed. Thus
again we see that a deadly and highly transmissible disease will cause more un-
certainty in the population cycles. We can see why this occurs by considering the
threshold for disease outbreak: S(t) > (d+α+qN(t))I(t)

β(t)I(t)+δD(t) . Large virulence leads to a
larger threshold, whilst rising transmission causes the threshold to decrease, and
fluctuate with smaller amplitude. Complex behaviour results from the inter-play
between these two parameters; the changing threshold makes dynamics hard to pre-
dict leading to uncertainty in outcomes. The results also suggested the existence
of multiple-stability due to the rapid changes in dynamics for small changes in pa-
rameter values. Acknowledging that dynamics could be highly unpredictable for
diseases with large transmissibility and virulence is important when the manage-
ment of populations and disease needs to be considered. This is because any man-
agement should ensure that required targets are met (Wobeser, 2002), and dealing
with highly-sensitive systems may require a very specific and detailed management
approach. For endangered species where disease management would aim to save
populations from extinction, knowledge and understanding of the host-parasite dy-
namics is even more imperative (Woodroffe, 1999; Millán et al., 2009).

As shown by Anderson and May (1981), the presence of an indirect transmission
route can lead to cyclic dynamics in an unforced SIR-style model. This is due
to the environmental transmission pathway inducing a delay in replenishment of
susceptible members following an epidemic. In this model with both an indirect
and a direct transmission path, governed by the parameters β0 and δ, we saw that
cyclic underlying dynamics occurred for higher values of δ with lower values of β0.
These underlying cyclic dynamics led to more complex cycles when seasonality was
also incorporated into the model. This contrasts results found both previously in this
chapter, and in chapter 2, where we have seen that dynamics are more complex with
increasing β0. We see here that increasing the environmental transmission parameter
δ has a stronger influence on dynamics since we observe that low β0 with rising δ
led to the most complex behaviour. Therefore the presence of these underlying
dynamics leads to the alternative pattern of behaviour (low baseline transmission
leads to more complex dynamics) observed when seasonality is acting on the model,
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and we see the strength of the environmental transmission in determining the pattern
of disease.

One note from the analysis of this model is the rarity in occurrences of biennial
dynamics. Period-doubling bifurcations can be common in seasonal models of host
parasite relationships (Dietz, 1976; Aron and Schwartz, 1984), where annual dynam-
ics give way to biennial dynamics, followed by four-year cycles as transmission rates
are varied. With this in mind, we propose that our model contains multiple stable
attractors, switching dynamics rapidly from one state to another, with biennial dy-
namics omitted. Further analysis in our work showed this existence, where initial
population conditions were important for determining disease cycles.

Given the novel nature of this work, there is scope for progress both theoreti-
cally and empirically whereby advances could explore specific host-parasite systems,
incorporating both our two seasonal components and the environmental reservoir of
disease. They could involve age and/or space structure (e.g. see Valle et al. (2013);
Getz et al. (2019)), recovery from disease, latency in infection and waning immunity,
for example. In addition, host-parasite systems can have further complexity, with
multiple hosts and multiple parasites where both direct and indirect transmission of
disease can occur. Exploring the possibility of disease control is also an important
area of study.

As climate changes begin to alter host-parasite relationships, exacerbating the
prevalence of infections due to global warming, the need to model and predict man-
agement strategies for optimal disease and population control will become increas-
ingly important. Using mathematical modelling techniques, we can help to alleviate
the damaging consequences of a changing climate.



Chapter 4

How seasonal harvest impacts
host-parasite dynamics with
seasonality in birth and
transmission

§ 4.1 Introduction

Mathematical models are a crucial tool in developing management strategies for in-
fectious disease outbreaks, and their use in recent years has been increasing since we
have seen outbreaks of new infections in both humans and wildlife (Wearing et al.,
2005; Caley et al., 2009; Boyce et al., 2012; Porter et al., 2013; Kucharski et al.,
2020). However, the need to recognise and acknowledge any underlying mechanisms
of infectious diseases in wildlife populations is crucial before extensive control can be
implemented (Gulland, 1995). Ideally field studies would coincide with theoretical
modelling, but in the absence of practical observations and data collection, mecha-
nistic models can sufficiently capture the behaviour of a host-parasite relationship
and can aid understanding of how the system can be managed under seasonal con-
trol. In this work, we use mechanistic disease modelling to explore management
strategies of infectious diseases.

Wildlife populations are frequently managed for human exploitation, where har-
vesting seasons are short, and performed at a specific time in order to achieve optimal
yield whilst maintaining a sustainable population (Choisy and Rohani, 2006). Opti-
mal strategies can be hard to find however, since the behaviour of species is predicted
to fluctuate increasingly as extreme weather becomes more persistent due to climate
change (Houghton et al., 2001), and wildlife populations are constantly adapting to
their ever changing environment (May et al., 1978). In addition, different species
will have different responses to the impacts of climate change; some populations for
example, white-tailed deer, will benefit (Johnston and Schmitz, 1997), whilst others
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such as polar bears will suffer (Stirling et al., 1999). Therefore, to find a success-
ful harvest strategy, reliable knowledge of population dynamics is essential (Stokes,
2012). Finding management strategies which can be flexible and adaptable will be
of significant importance in designing control strategies, and here we seek to explore
changeable management processes.

Harvesting or management strategies do not exclusively occur for the benefit of
the human population. Instead of focussing on a maximised yield, harvests may
occur with the aim of controlling and/or eradicating disease. A prominent example
of harvesting for disease control is the culling of badgers in the United Kingdom,
as a suggested means of controlling Bovine Tuberculosis (TB) outbreaks in cat-
tle/livestock (Donnelly et al., 2003b). Another example is the attempted control of
fox rabies in Europe (Woodroffe et al., 2004). In designing programmes of manage-
ment, the aim of the control is necessary in order to achieve desired outcomes.

Susceptible-Infected-Recovered (SIR) compartmental models are an important
tool for exploring how populations and disease can be controlled together through
management strategies. The incorporation of harvesting into SIR models to in-
vestigate optimal control strategies of wildlife populations has been well studied,
with research efforts also including the study of populations with density-dependent
constraints and those under a seasonal influence (Kokko and Lindström, 1998; Xu
et al., 2005; Choisy and Rohani, 2006; Greenman and Pasour, 2011). Seasonally
varying harvests are, by definition, adaptable. They can be manipulated to ac-
commodate changes in species behaviour, and changes in environmental conditions
(Boyce et al., 2012), for example by altering the timing of harvests or the magni-
tude of the management. Despite evidence that harvest timing can have substantial
effects on dynamics (Cid et al., 2014), the result of varying timing of harvest has
not been extensively studied. Depending on the time it is performed, harvest can
lead to highly complex dynamics (Tang and Chen, 2004), or population extinction
(Cid et al., 2014). In addition, since diverse environments are common for many
species, imposing upon the dynamics of populations and infectious diseases within
them, successful management of host-parasite relationships also relies on how such
diversity impacts the population (Parratt et al., 2016). Therefore, studying seasonal
processes in host-parasite relationships is vital as it will enhance knowledge on best
practises for disease management (Fisman, 2007). In determining the most appro-
priate management strategies for different host-parasite systems, we must ensure
decisions are led using accurate models of host-parasite relationships, particularly
if the disease is widely distributed, highly pathogenic (Duke-Sylvester et al., 2011)
and occurring in a complex environment. Managing diseases in wild populations
can be difficult, where detailed knowledge of both the species and the pathogen is
essential (Wobeser, 2002). Hence, an optimal control strategy can only be achieved
if the host-parasite system is fully understood.

Since seasonality has long been recognised as important in determining popula-
tion and disease dynamics (Soper, 1929), and seasonality affects multiple traits in
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host-parasite relationships (Cable et al., 2017), we deem it important to consider
multiple seasonal processes in our models. The inclusion of external periodic forcing
into an SIR-type model, in addition to the possibility of seasonal harvest, will have
an impact on the resulting dynamics. The interplay between forcing functions, in
terms of both their timing and amplitude can excite changes (Greenman and Pa-
sour, 2011). Such changes will also depend on the type of forcing, i.e. whether it is
internal to the system (for example birth rates, transmission, death), or whether it
is external (for example, human-initiated activities such as culling, or vaccination).
Using multiple external forcing, we aim to more accurately represent host-parasite
systems, and explore how they interact to produce different dynamics. We explored
multiple internal forcing functions acting on host-parasite systems in chapters 2 and
3. In chapter 2 we explored a host-parasite system using an SIR model, and in chap-
ter 3 we extended this to consider the possibility of environmental transmission. In
this chapter, we add an external forcing function to our previously developed models
to represent a harvest strategy.

The impact of seasonally harvesting in a host-parasite system with multiple other
seasonal processes has not, to our knowledge, been investigated. Here we seek to
determine how harvest strategies can be used to regulate a population with both
seasonal births and seasonal transmission of an infectious disease, and explore other
impacts that different harvest strategies can have on both the host population and
the disease dynamics. We will aim to find a harvest strategy that maximises the
population of susceptible members, minimises infection and produces a high yield.
We explore variations of the classic SIR models developed by Anderson and May
(1981). Our models are deterministic and in continuous-time, with seasonality in
both the birth and transmission rates. We consider a population subject to density-
dependent constraints in the death rate, and a disease from which it is not possible
to recover. The host population is assumed to be well-mixed, that is, there is no age
or sex structure considered. Harvest strategies come in the form of time-dependent
functions, where we will particularly look at how the timing of harvest in relation
to the seasonal births and transmission impacts disease dynamics.

§ 4.2 The Model

Our model is of an SI form; we are considering a population subject to a fatal infec-
tious disease, appropriate for diseases such as Bovine Spongiform Encephalopathy
(BSE) (Anderson et al., 1996), Chronic Wasting Disease (CWD) (Miller and Con-
ner, 2005), and Transmissible Mink Encephalopathy (TME) (Imran and Mahmood,
2011). We define the system of ordinary differential equations depending on whether
the harvest season is active or inactive. The equations governing our population dy-
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namics are:

dS

dt
= b(t)N − β(t)SI − (d+ qN)S − h(t)S (4.1)

dI

dt
= β(t)SI − (d+ qN + α)I − h(t)I (4.2)

where h(t) defines the harvest season with

h(t) =

{
h0 if n.s < t < n.r,
0 otherwise.

(4.3)

The increase to the death rate caused by harvest during the defined period, which
we will call for ease the harvest rate, is given by h0, whilst s represents the start date
of the harvest season, r the season end date and n ∈ N the year of harvest. This
form of harvest can be described as a constant effort harvest. During the defined
season individuals are removed with a constant rate, where larger populations will
see greater removal as interactions between the hunter and the hunted are more
likely. We could think of this harvest being performed by the same hunter sitting in
the same place every day during the harvest season. In 4.1 and 4.2, b(t) describes
the seasonal birth rate, β(t) the seasonal transmission (due to, for example, seasonal
social gatherings), d the natural per capita death rate, α the disease-induced death
rate (or virulence) and q our density-dependent crowding constraint on the death
rate. We assume that it is not possible to target harvest only on infected population
members, and thus the harvest strategy applies equally to both susceptible and
infected individuals. The seasonal transmission rate is of the form:

β(t) = β0(1 + β1 cos(2π(t+ β2))) (4.4)

with β0 the baseline transmission rate, β1 the amplitude of seasonality and β2 de-
termining the timing of the cosine peak. Similarly, the birth rate b(t) is seasonal
and is of the form:

b(t) = b0(1 + b1 cos(2π(t+ b2))) (4.5)

with b0 the baseline birth rate, b1 the amplitude of seasonality and b2 the timing of
peak births.

The natural death rate of our population is assumed to have a density-dependent
constraint acting upon it. Such increases to natural death rate can be a conse-
quence of over-crowding in a population with perhaps competition for limited food
resources, small sized areas in which to inhabit, or rivalries for attracting a mate.
Inclusion of the density-dependent term in the death rate has been used in numer-
ous studies of wildlife populations including those by Anderson and May (1981),
Greenhalgh (1990) and Hosseini et al. (2004). Our transmission is considered to be
direct; we rely upon contact between susceptible and infected population members
for disease to spread. As we are considering the impact of harvest on a wildlife pop-
ulation, the transmission is density-dependent; as population size increases, so too
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Table 4.1: Initial parameter values.

Parameter Description Baseline

b0 baseline birth rate 2
b1 amplitude of birth 0.9
b2 timing of birth peak 6

12
β0 baseline transmission rate 1
β1 amplitude of transmission 0.9
β2 timing of transmission peak 11

12
d natural death rate 1
α disease-induced mortality 7
q density-dependent control 0.015
h0 harvest factor varying
s start date of harvest varying
r end date of harvest varying
S0 initial susceptible 90
I0 initial infected 10

does contact rates between population members. This assumes that the population
is well-mixed, i.e. individuals are equally likely to interact with one another at any
time during the year, be it during breeding, foraging, socialising etc..

To avoid additional complexity in the analysis we fix the birth and transmission
seasons, and their rates. For this we assume breeding and social gatherings are
out of phase, which is common for many free-ranging wildlife populations (see, for
example, Altizer et al. (2004), Helm et al. (2006) and Gilg et al. (2012)) and fix
b2 = 6/12 and β2 = 11/12 so that transmission peaks five months after the peak of
births. This reflects newborns entering a population whilst the group is more spread
out, with transmission rising as individuals start to gather more after breeding has
taken place. In chapter 2, figure 2.5a indicates that no matter the initial population
conditions, dynamics will repeat on a biannual cycle for the given set of initial
parameter values. So although the dynamics are not the most stable, we do know
that initial conditions will not change the cycle length in the absence of harvest.
In this work we explore how changes in harvest strength and timing impact the
population and disease dynamics. We will make changes to the start and end dates
of the harvest season, and alter the abundance of the population harvested during
such a season. As in previous work, numerical simulations are performed using
Matlab (MATLAB version R2018a), and we implement the ode15s solver.

§ 4.3 Results

Assuming the population is not harvested at any time, dynamics of disease repeat
every two years (figure 4.1a, confirming the result from figure 2.5a in section 2.3).
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These biennial dynamics see a year with proportionally high numbers of infection
one year, followed by a smaller infection level the year after.

4.3.1 Harvest Strength and Timing

To explore the impact of changing harvest strength, we fix parameters as in table 4.1
and set s = 10/12, r = 12/12 in the first instance, so that harvest coincides with the
peak transmission time, i.e. when the population is gathered together more densely,
making a harvest easier to perform. In figure 4.1 we can see the effect of differ-
ent harvesting strengths on the population of susceptible and infected individuals.
Since harvest is occurring when infected numbers are near their lowest values, and
susceptible members near their highest, this harvest strategy is mostly removing
susceptible individuals. We notice in the first instance that the strength of harvest
determines the occurrence of epidemics; with no harvest we have biennial dynamics,
yet when h0 ∈ [1, 3, 4, 5] (4.1b and 4.1d - 4.1f), dynamics of disease repeat annually.
For h0 = 2 (4.1c), dynamics repeat every three years where there are two years of
low infection followed by a year with a larger outbreak, and when h0 = 6 (4.1g) the
whole population goes to extinction. This strategy therefore, if not performed cor-
rectly, could have a detrimental effect to a population since under or over harvesting
could cause the dynamics to change to a non-annual cycle, or indeed eradicate the
entire population. Additionally, we notice that the maximum number of infected
individuals is similar when either we have no harvest, or when h0 = 2. Having said
this, harvesting at rate h0 = 2 gives a higher number of susceptible individuals every
third year than the maximum achieved with no harvesting. Therefore, although the
strategy is less stable, being on a three-year cycle, we can observe greater numbers
of healthy (susceptible) individuals in certain years.

A bifurcation diagram (figure 4.2a) shows the changes in disease cycles as h0 is
varied from 0 to 5. We can see regions close to h0 = 2 and h0 = 3 where dynamics
become less-stable and can change the length of epidemic cycles (red line) with
fixed initial conditions, but a mathematically stable annual cycle exists throughout
(black line) despite the even more complex cycles that can emerge around h0 =
0.5− 1. Therefore these dynamics are clearly dependent on initial conditions as the
bifurcation diagram shows that we have multiple stable attractors (we can switch
from one regime to another very quickly depending on the initial conditions). An
example of such a switch is shown in figure 4.2b, where an addition of 10 susceptible
members to the population at time x alters dynamics from a stable annual cycle
to a more complex cycle (eventually settling to a six-year regime), with harvesting
performed at rate h0 = 1. This helps to show the bi-stability in the model, whereby a
small change in population size can lead to quite different dynamics. We note here
that we explored other changes to the populations, and these also disrupted the
stable annual cycle. For example, when removing 10% of the population, we see a
change to a complex regime which settles back to an annual cycle after approximately
20 years. The addition of 5 susceptible members also caused the annual cycle to
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alter, displaying complex dynamics for 25 years before settling back to an annual
regime. In computing the bifurcation, we sampled dynamics at annual intervals.
The figure suggests that the branches between h0 ≈ 1.2 and h0 ≈ 1.75 will join up,
but we do not see these in the bifurcation due to the basin of attraction being very
small, and the way in which we have sampled the dynamics. To show the possibility
of these branches meeting, we tested alternative initial population conditions at
harvesting rate h0 = 1.5. Computing 99 iterations, with S0 + I0 = 50 and S0, I0 ∈
[0.5 : 0.5 : 50], our pie chart displayed the existence of three-year disease cycles
for certain sets of initial conditions (see figure 4.3). Therefore, this work suggests
that non-integer combinations of initial population conditions are required for such
dynamics to occur, and we have a small basin of attraction for these dynamics since
they are not observed in the bifurcation diagram, where we sample only integer
initial conditions.

Using these two plots, we can see the two benefits of keeping on an annual
cycle; dynamics are predictable and infection is kept low. We explore the impact
of changing initial population conditions in figure 4.4 where here we can see that
dynamics can be dependent on the initial abundances of susceptible and infected
individuals. The pie charts show the resulting periodic cycles after running the
model for transient time using 100 different starting conditions, S0, I0 ∈ [1, 99] with
S0, I0 ∈ Z and S0 + I0 = 100. For h0 = 3 and h0 = 4, dynamics of disease will
always be annual, regardless of the initial population conditions. However when
h0 = 1 or h0 = 2, the initial abundances of susceptible and infected individuals
determine the cycle observed. With h0 = 1 dynamics either repeat annually or
every six years, where the latter is the dominant cycle. When h0 = 2, disease
reoccurs either annually or every three years. In terms of management therefore,
it would be advisable to steer clear of harvesting around certain values to avoid
unintentionally changing the dynamics and it is imperative that initial population
abundances are known. In general, though, as h0 increases infection levels decrease,
and from h0 = 6 infection (and in fact the whole population) is eradicated.

To help visualise how increasing h0 is impacting the population dynamics, we
compare the strategies h0 = 1 and h0 = 3. In figure 4.5 we can see the population
dynamics of susceptible individuals in 4.5a and infected members in 4.5b where
parameters used are those in table 4.1. As the harvest season begins, the susceptible
population has just reached its peak. The impact of h0 is seen in the decline of
susceptible members, where the increased strength of h0 = 3 causes a sharper decline
in the susceptible population than when h0 = 1. This larger decline causes the
abundance of susceptible members to be lower immediately at the end of the harvest
season for h0 = 3. This decrease in the size of the population will lead to a decrease
in the death rate (due to our density dependent constraints, whereby death rate
increases with a larger total population size). In addition, this smaller susceptible
pool will produce fewer infections since the transmission rate is defined by βSI.
Together, this means that a slower rate of decline is observed as infection builds from
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(a) h0 = 0

(b) h0 = 1 (c) h0 = 2

(d) h0 = 3 (e) h0 = 4

(f) h0 = 5 (g) h0 = 6

Figure 4.1: Population dynamics of susceptible (solid green line) and infected (red
dashed line) individuals under different harvesting strategies. The shaded regions
indicate the timing of the two-month harvest season.
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(a) Bifurcation diagram showing the different population cycles observed whilst varying h0
when s = 10/12, r = 12/12. The black line shows the stable cycle existing throughout, whilst
the red line shows the possibility of changing cycle lengths from multiple stable attractors.

(b) How population dynamics can rapidly change as a result of adding 10 susceptible mem-
bers into the population at time x, where h0 = 1, s = 10/12, r = 12/12 and other parameters
as in table 4.1. Green shows susceptible, and red infected, population members.

Figure 4.2
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Figure 4.3: Pie chart to indicate the possibility of both annual and three-year cycles
for different initial conditions S0 + I0 = 50 and S0, I0 ∈ [0.5 : 0.5 : 50]. Other
parameters are as specified in table 4.1 with h0 = 1.5, s = 10/12, r = 12/12.

the transmission season. Now the susceptible population is larger at its minimum
value when h0 = 3 compared with its minimum when h0 = 1 due to this decrease in
death rate. Hence when h0 = 3 there are more susceptible members going into the
breeding season, and thus as birth rate increases, the susceptible population builds
to a greater abundance in the case of higher harvesting rates. In this case, it is also
true that the lower numbers of infected individuals leads to a decreased reduction
to the susceptible pool. In the infected population the harvest season begins as
infection is rising; a consequence of both the maximised susceptible population and
the increasing transmission rate. Stronger harvest, therefore, slows the growth rate
of infection during the harvesting season leading to smaller numbers of infected
members once the season has ended. This, along with the smaller abundance of
susceptible members as explained above, means that when h0 = 3 infection cannot
rise as much as when h0 = 1. Therefore the harvesting is both limiting infection in
the population (figure 4.5b) whilst increasing the abundance of susceptible members
(figure 4.5a).

4.3.2 Alternative Harvest Timing

Though harvesting at different times may be more complicated to perform as in-
dividuals are less densely populated, it is important to explore whether a different
strategy could lead to more optimal results. Can performing harvesting at a differ-
ent time lead to infection extinction with a lower harvesting rate? Can we maximise
the proportion of susceptible members at any one time? We explore this below.

In figure 4.6 we present bifurcations for harvesting during different times of the
year, where we have used initial conditions as specified in table 4.1. From the
bifurcations we can see that our original strategy of harvesting during the peak
transmission season (figure 4.2a) displays slightly more stable dynamics, indicated
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Figure 4.4: Pie charts indicating the likelihood of different dynamics for each of the
harvesting strategies at the four harvest rates h0 = 1, 2, 3, 4. The rows represent each
simulated harvest strategy, where for example, 8/12 − 10/12 indicates the harvest
begins in month 8, and ends in month 10.



84

(a) (b)

Figure 4.5: Comparing the strategies of harvesting h0 = 1 and h0 = 3. In (a) we
compare the susceptible populations and in (b) the infected populations.

by the smaller areas of chaotic and non-annual dynamics, whilst the new strategies
presented show a wider range of possible dynamics, depending on initial conditions.
We are most likely to alter dynamics to a highly complex, or even chaotic, cycle
for a harvest from s = 0/12 to r = 2/12, or, s = 2/12 to r = 4/12, of which the
latter time coincides with the peak infection levels in the system in the absence
of harvest. We note here that peak transmission and peak infection should not be
confused: peak transmission occurs at the value of β2 where population members
are gathered more closely together, and peak infection levels in the population occur
later as a consequence of the peak transmission season increasing the likelihood of
susceptible individuals becoming infected. The other harvesting strategies presented
show largely similar dynamics, and all eventually eradicate the disease for higher
values of h0. The bifurcation diagrams show again that a stable one-year cycle exists
throughout, so again we remind ourselves that dynamics are dependent on initial
conditions. We also note here that varying the timing of harvest does not appear to
have a significant impact on the quantitative elements of the model, i.e. infection
levels are similar no matter when the harvest season occurs. It is the complexity of
disease dynamics that display greater changes for the different harvesting seasons.
We computed these bifurcations taking samples at yearly intervals. We also found
the same results held for computations at six-month sampling intervals.

These findings are re-iterated by the pie charts shown in figure 4.4, where we
show the likelihood of dynamics for each harvesting rate in each scenario where the
occurring dynamics are dependent on the initial population conditions. As in chapter
2, the displayed pie charts indicate which k-period cycle occurs for different starting
conditions. In this figure, there are 99 sets of initial conditions used in simulation,
where S0, I0 ∈ [1, 99], S0 + I0 = 100 and S0, I0 ∈ Z. Using these pie charts, we can
see how the different harvesting strengths impact dynamics. For h0 = 2 dynamics
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are always triennial, no matter the initial conditions, and for h0 = 4 the dynamics
are always annually repeating. Thus in these cases, it is the harvest strength and
it’s potential interaction with other seasonal parameters that drive the behaviour of
the system. When either h0 = 1 or h0 = 3 however, the initial population conditions
have an impact on the resulting population dynamics observed. For h0 = 3 we either
observe annual or four-year cycles, though for harvesting from s = 8/12 to r = 10/12
dynamics are only ever annual. Our most complex observed behaviour occurs for
the smaller harvesting rate of h0 = 1. Depending on the timing of harvest and the
initial population conditions, we can observe annual, six, and nine year cycles, and
also cycles exceeding ten years in length. With this information in mind, it would
be crucial to avoid harvest at and around this rate since it can cause dynamics
to become highly complex. An example of these complex dynamics can occur for
harvesting from s = 2/12 to r = 4/12 with rate h0 = 1. In figure 4.7a we show a
20-year time-course, where it is clear that dynamics are not on a cycle of less than
ten years in length, and by plotting the phase-plane of the S − I dynamics (figure
4.7b), it is evident that our dynamics are repeating every 12 years. We note that
these plots display a very strong three-year signal in the dynamics. Using a Fourier
plot, we can show the strength of this triennial signal (figure 4.7c) and using this
we can conclude that our dynamics are not quasi-periodic, since the strong signals
occur at integer values, and that the triennial cycle is indeed dominant.

The results from the pie charts suggest that a higher harvesting rate of h0 = 4
will be the most effective in controlling occurrence of dynamics, but it is imperative
to ensure that this harvest rate also achieves our other aims (as outlined in section
4.1), principally minimising infection and maximising the number of susceptible
individuals.

We now fix our initial conditions at S0 = 90, I0 = 10 and show in figure 4.8
the progression of how the maximum number of susceptible individuals and the
maximum proportion of infected individuals changes as we increase the harvest-
ing strength h0 for the different times of harvesting. After running the model for
transient time (in this case 1000 years, ensuring dynamics have settled to their equi-
librium state), we record the maximum susceptible abundance and the maximum
infected proportion during one further disease cycle. This allows us to observe how
high the population numbers reach during the disease cycle, and what proportion
of the population is infected at the peak of an outbreak. With this information,
we can clearly see if harvest strength or timing, or a combination of the two, can
help to reduce maximum infection levels and/or increase healthy population num-
bers. For h0 = 1 the timing of harvest does not have a significant impact on what
happens to the maximum proportion of infection within the population during a
cycle, nor the maximum number of susceptible individuals observed in each disease
cycle. This matches with our findings above, where the harvest strength did not
impact dynamics, it was the initial conditions controlling the epidemic cycles and
hence population numbers. Infection levels and maximum susceptible members do
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Bifurcations showing how changing h0 impacts disease cycles for har-
vesting at different times during the year.
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(a) Population dynamics after transient time for harvesting from 2/12 − 4/12 at
rate h0 = 1.

(b) Phase-plane for the dynamics of S and I.

(c) Fourier signals indicating strength of different disease cycle lengths.

Figure 4.7
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(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 4.8: Maximum numbers of susceptible individuals, and the maximum pro-
portion of the population infected, for different harvesting strengths and different
timings of harvest. We record the maximum susceptible abundance and the max-
imum infected proportion during one disease cycle, once dynamics have settled to
their equilibrium state.
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not alter much when h0 = 2, except for harvest timed between month 0 and month
2. Though this strategy decreases the infection, it also lowers the maximum abun-
dance of susceptible members. When we have a harvesting strength of h0 = 3 the
abundance of susceptible members does not alter greatly between harvest timings,
however the maximum infection proportion can significantly change depending on
when harvesting occurs in the year. When harvesting from months 10−12, 0−2 and
8− 10 we are able to minimise infection in the population, making these strategies
effective. Therefore, for these harvests with initial conditions S0 = 90, I0 = 10, we
are in an annual regime, whilst for harvesting from 2−4, 4−6, 5−7 and 6−8 we are
in a less stable four-year cycle as indicated is possible in figure 4.4. If h0 = 4 all in-
fection levels are low, meeting one of our principle aims. The maximum abundance
of susceptible members changes depending on the timing of harvest, with months
10 − 12 and 8 − 10 giving us the highest number of these healthy individuals. We
know that we are in an annual cycle here for all harvest strategies (figure 4.4), and
so this confirms that the harvest rate h0 = 4 is effective in meeting our management
aims. The population dynamics when h0 = 5 are significantly different depending
on when the harvest occurs. The entire population is eradicated in harvesting be-
tween months 4− 6, whilst infection is lost and susceptible numbers are maximised
when harvesting from months 8 − 10 and 10 − 12, making these ideal strategies.
In the other cases we see good numbers of susceptible individuals and insignificant
amounts of infection, making these also good strategies for meeting management
aims. In all cases when h0 = 6, both the susceptible and infected populations have
been eradicated.

As identified in three of the six cases above, harvesting between months 8 and 10
appears to give effective results from the management whereby susceptible individ-
uals are maximised and the infection proportion is minimised. This basic analysis
suggests that harvesting shortly before the peak of transmission, therefore, could be
as effective as harvesting during the peak transmission season. We note here that
all simulations are carried out, in this case, for a fixed pair of initial population con-
ditions. Therefore, having a detailed knowledge of population numbers is essential
for performing an effective harvest.

4.3.3 Comparing Harvest Seasons 8− 10 and 10− 12

Figure 4.9 compares the susceptible and infected population levels for harvesting
strength h0 = 3 in the strategies where harvest occurs from months 8/12−10/12 and
10/12−12/12, again where we use the initial population conditions S0 = 90, I0 = 10.
We must note here that these initial conditions ensure we stay on the more stable
annual disease cycle when h0 = 1, despite evidence from figure 4.4 that this is often
not the case for this harvest scenario. In the first instance we can see clearly that the
infected populations show very little difference in their dynamics and abundance. In
the earlier harvesting scenario, the susceptible population undergoes removal whilst
still building to its potential maximum following the peak birth season. The onset of
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Figure 4.9: Comparing susceptible and individual population levels for harvesting
strength h0 = 3 when harvest is timed from 8/12− 10/12 and 10/12− 12/12 where
the initial conditions used are those in table 4.1.
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harvest leads to a decline in the number of susceptible individuals, which as described
previously in section 4.3.1 will lead to a decrease in the death rate (due to density
dependent constraints). The decline observed is not as sharp as that seen during
the 10/12− 12/12 month harvest since transmission is still building during months
8 − 10. These two factors mean a slower rate of decline in susceptible members is
observed both during the harvest season and once the harvest season ends. This
leads to a higher minimum susceptible population. However as harvest occurs before
the susceptible numbers can reach their maximum, this value is slightly lower than
that observed when harvest occurs from 10/12−12/12. To further try to determine
the more appropriate harvest strategy, we look at the numbers of the population
that are harvested during each season. To do this, we created a ‘harvested ’class,
which counted the number of individuals removed due to the harvest parameters
h0S and h0I. We ran our simulation for transient time (1000 years) to ensure
dynamics had reached a steady-state before counting the numbers harvested in the
proceeding harvest season. In figure 4.10 we show the harvested population numbers
in both the 8/12− 10/12 and 10/12− 12/12 month harvests for the five harvesting
strengths h0 = 1, 2, 3, 4, 5. As the harvest rate h0 increases, the harvested population
abundance increases at an approximately linear rate. We can see that harvesting
from 8/12− 10/12 gives us a slightly higher yield in all cases, though the difference
is again not significant. With these results in mind, it does not appear to matter
significantly which harvest strategy, in terms of timing, would be best to take. From
the results in figures 4.4, 4.8 and 4.10, a harvest rate of h0 = 4 will give the best
results in terms of minimising infection whilst maximising susceptible population
numbers. If the harvest rate can be kept at h0 = 4 to ensure the populations do
not go to extinction or enter an alternative disease cycle, the decision on harvest
timing may need to be made based on other factors such as resource availability or
the seasonal environmental conditions.

4.3.4 Changing the length of the harvest season

We initially fixed a two-month window for our harvest season, so we now explore
how a different approach in season length could impact dynamics of disease in the
population. Exploring a season length of four months, we see that lower harvesting
rates can be as effective as our higher harvesting rates from a two-month harvest
season. When harvesting from s = 8/12 to r = 12/12, a rate of h0 = 2.5 gives a max-
imum susceptible abundance of 17 individuals, and the harvest yields 11 individuals
from the population over the course of the harvest season (see figure 4.11). This is
similar to harvesting at rate h0 = 5 for the two-month strategies s = 8/12, r = 10/12
and s = 10/12, r = 12/12. The result shows that, for this set of parameter values
and initial conditions, we can double the season length and half the harvest rate for
similar yield to be achieved. With the fixed harvest rate of h0 = 2.5, comparing
the four-month strategy to our 8 − 10 and 10 − 12 strategies explored in section
4.3.3 shows a marked improvement in yield and maximum numbers of susceptible
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Figure 4.10: Comparing the numbers of population members harvested for different
harvest rates when harvest is timed from 8/12−10/12 and 10/12−12/12 where the
initial conditions used are those in table 4.1. Harvested numbers are counted over
one season after dynamics have reached a steady-state.

population members, and we also observe a decline in infection levels. Figure 4.12
shows the comparison, highlighting how the four-month strategy compares to the
two-month counterparts. Whilst there is little difference in the maximum suscep-
tible abundance observed, both the maximum infected proportion and abundance
harvested are more desirable for the longer harvest season as infection is eradicated
and yield is high. A bifurcation diagram for the harvest rate h0 in the four-month
harvest season shows the possibility of alternative disease cycles (figure 4.13). Sim-
ilarly to those bifurcations in figures 4.2a and 4.6f, figure 4.13 shows a consistent
annual cycle is present with, though depending on initial conditions we may observe
alternative dynamics, indicating the bi-stability of the system. These alternative
dynamics are further noted by the pie charts in figure 4.14, where we show the dif-
ferent disease cycles observed for h0 = 0.5, 1, 1.5, 2. Similarly to the results in 4.3.2,
larger values of h0 lead to the most stable dynamics with both h0 = 1.5 and h0 = 2
always giving annually repeating dynamics. Thus the harvest rate h0 is dominant
in controlling the disease cycle.

§ 4.4 Model with Environmental Transmission

In certain wildlife-disease systems, the omission of environmental transmission in
models of host-parasite dynamics can lead to failing management strategies (Lange
et al., 2016). With environmental transmission, controlling diseases can become
more complicated. Removal of infectious material from the environment is likely
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(a) (b)

Figure 4.11: (a) maximum susceptible abundance and (b) abundance harvested, for
six different four-month harvesting strategies.

to be resource heavy and labour intensive, in both determining the existence of en-
vironmental infectious material, and performing its removal (Breban et al., 2009;
Rohani et al., 2009). In this section we seek to investigate management strate-
gies in a model where disease is able to pass to susceptible hosts through indirect
environmental transmission, as well as directly from host-host.

Our model here is an adaptation of that used in chapter 3, where we have
included a harvesting season. Our system is modelled by the following equations:

dS

dt
= b(t)N − β(t)SI − (d+ qN)S − δSD − h(t)S (4.6)

dI

dt
= β(t)SI + δSD − (d+ qN + α)I − h(t)I (4.7)

dD

dt
= (d+ qN + α)I + εI − uD (4.8)

where h(t) defines the harvest season with

h(t) =

{
h0 if n.s < t < n.r,
0 otherwise.

(4.9)

Parameters are as described in section 4.2 with the following additions: D repre-
sents an environmental reservoir of diseased material which includes the deceased
infected population, and a proportion ε of living infected members (from excreted
material). Susceptible individuals contract disease from the decay pool by direct
contacts, with new infection occurring with parameter δ. Decaying material only
stays infectious for a specified time, and is removed at rate u. In table 4.2 we give
the baseline parameters rates used in the analysis. As in previous work, the nu-
merical simulations are performed using Matlab (MATLAB version R2018a) with
implementation of the ode15s solver.
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(a)
(b)

(c)

Figure 4.12: Comparing the different harvest seasons 8/12 − 10/12, 10/12 − 12/12
and 8/12−12/12 when h0 = 2.5. (a) maximum susceptible abundance, (b) maximum
infected proportion and (c) abundance harvested.
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Figure 4.13: Bifurcation diagram indicating the changing disease cycles as h0 is
varied from 0-2.5, where initial conditions are specified in table 4.1.

(a) (b) (c) (d)

Figure 4.14: Pie charts indicating the recurrence of disease for the longer harvest
season s = 8/12, r = 12/12 in four harvesting strengths h0 = 0.5, 1, 1.5, 2. Cycle
lengths are indicated by colours; see figure 4.4 for colour key.
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Table 4.2: Initial parameter values.

Parameter Description Baseline

b0 baseline birth rate 2
b1 amplitude of birth 0.9
b2 timing of birth peak 6

12
β0 baseline transmission rate 1
β1 amplitude of transmission 0.9
β2 timing of transmission peak 11

12
d natural death rate 1
α disease-induced mortality 7
q density-dependent control 0.015
δ transmission rate from environment 0.1
ε excretion rate 12
u death rate of decaying matter 6
h0 harvest rate varying
s start date of harvest varying
r end date of harvest varying

4.4.1 Results

In the absence of harvest, population dynamics repeat every three years, as seen in
chapter 3, section 3.3. Figure 4.15 shows us the population and disease dynamics
over a period of six years and with this we can see the triennial pattern where a
larger disease outbreak occurs once every three years. We note that this applies for
our specified set of parameter values and initial conditions, where other values could
give alternative results. In addition, we must note that we have chosen the same
values as in chapter 3, section 3.3, where the underlying model does not produce
cyclic dynamics in the absence of seasonality. Therefore it is important to consider
that the results definitely hold for this specific case only.

With the introduction of harvest, we can easily control disease outbreaks in
effective ways. Assuming the two-month harvest season occurs during the peak
transmission season (s = 10/12, r = 12/12), harvest rate does not need to be
high for population dynamics to regulate to an annual cycle. Indeed, a harvest
rate of h0 = 1 leads to annual dynamics with a fairly low infection level upon
outbreak (figure 4.16a). Increasing the harvesting rate to h0 = 5 leads to the almost
eradication of disease (figure 4.16b), and in figure 4.17 we can see that increasing the
harvest rate both increases the susceptible population abundance and decreases the
infection within the population, until we reach h0 = 6 where the entire population
has died. We must note again here that these results hold for the fixed set of
parameter values used, and could change for alternative values.

A bifurcation diagram using fixed initial conditions (figure 4.18) of the dynamics
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Figure 4.15: Population dynamics in the absence of seasonal harvesting with pa-
rameters as defined in table 4.2 over a six-year period.

as h0 is varied from 0−5 highlights our findings. We can see that a very small harvest
leads to annual dynamics, and there is only a small region between h0 = 1 and h0 = 2
where the disease cycle changes; in this instance to a four-year cycle. The dynamics,
therefore, remain fairly stable using this harvest strategy and we can achieve our
aim to reduce infection whilst maintaining the susceptible population. This reflects
our findings from chapter 3 in that, this SIRD model with dual seasonality is in
general more stable than the model from chapter 2. It is important to note here
that we have used a fixed set of initial conditions for commencing the simulation;
S0 = 90, I0 = 5, D0 = 5. We explored other initial conditions, and did not find
any alternative disease cycles for integer values of h0. For example, we computed
the bifurcation diagram using extrapolated initial conditions (values dependent on
the results of previous simulations), and additionally explored pie diagrams which
showed only one-year cycles. Hence, we are confident in the dominance of this
one-year cycle.

Similarly to section 4.3.2, we explore if other harvesting strategies can result
in higher susceptible population numbers and lower infection levels with smaller
harvesting rates. We explore harvesting strengths h0 = 2−5 and in figure 4.19 results
are displayed. We can see that for h0 = 3−5 the strategies with s = 8/12, r = 10/12
and s = 10/12, r = 12/12 lead to the highest numbers of susceptible individuals at
their maximum whilst also displaying low levels of infection. This is in-line with
our results from section 4.3.2 with both strategies appearing equally effective in
disease and population management. We see different results when h0 = 2 (figure
4.19a). For our fixed set of parameter values, and initial population conditions,
harvesting from months 0 − 2 and 2 − 4 give the highest numbers of susceptible
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(a) (b)

Figure 4.16: Proportions of susceptible and infected individuals when (a) h0 = 1,
and (b) h0 = 5 for s = 10/12 and r = 12/12.

(a) (b)

Figure 4.17: (a) the maximum number of susceptible population members, and
(b) the maximum proportion of infected individuals, for five different harvesting
strengths when s = 10/12 and r = 12/12.
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Figure 4.18: Bifurcation diagram of h0 showing the changing disease cycle lengths
when harvest occurs from s = 10/12 to r = 12/12, where initial conditions are
specified in table 4.2.

population members. However, it must be noted that these cases also result in
high maximum proportions of infection. This is due to the dynamics being in a
non-annual cycle. We can check this through bifurcation diagrams of h0 for each
of the harvest strategies with s = 0/12, r = 2/12 and s = 2/12, r = 4/12. Figure
4.20 shows that when h0 = 2 in both cases we do have dynamics on a non-annual
cycle for our initial conditions specified in table 4.2, with these dynamics repeating
every four years. These strategies are therefore less stable, and since infection can
reach high levels every four years, they do not meet our aims despite also having
high maximum numbers of susceptible members in the population. Thus again we
see that harvesting just before, or during, the peak transmission season is likely to
produce the best possible results from a population harvest.

4.4.2 Comparing harvest seasons 8/12-10/12 and 10/12-12/12.

As with the model in section 4.2, harvesting timed at either s = 8/12, r = 10/12
or s = 10/12, r = 12/12 appear to give the best results in terms of maximising
the susceptible population and minimising infection. It is difficult to assert which
method would be the most effective from our analysis conducted above, and so
we look into the abundances of the population harvested during each season. Fig-
ure 4.21 shows the harvested population abundances for four different harvesting
strengths h0 = 1, 2, 3, 4, 5 in both of the harvest seasons s = 8/12, r = 10/12
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(a)

(b)
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(c)

(d)

Figure 4.19: Maximum numbers of susceptible individuals and the maximum pro-
portion of infection in the population for different harvesting strengths and different
timings of harvest.
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(a)

(b)

Figure 4.20: Bifurcation diagrams of h0 for the harvesting strategies with seasons
(a) s = 0/12, r = 2/12 and (b) s = 2/12, r = 4/12 with other parameter values as
in table 4.2.
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Figure 4.21: Comparing the numbers of population members harvested for different
harvest strengths when harvest is timed from 8/12− 10/12 and 10/12− 12/12.

and s = 10/12, r = 12/12. From this we can see that, as in 4.3.3, harvesting
from 8/12 − 10/12 results in a slightly higher yield compared with harvesting at
10/12− 12/12. The differences in yield increase as h0 increases, but we still cannot
say that these are significantly different to make a big impact on deciding which
method would be most suitable to implement. We can say that either method
would be more effective than any other timing of harvest, and that an exact deci-
sion may need to be based on other factors such as environmental conditions, costs
and availability of resources.

4.4.3 Increasing the length of the harvest season.

As in 4.3.4 we look at extending the length of the harvest season. We see again
that a longer season with smaller harvest rate can produce similar results (in terms
of maximising the susceptible populations and harvested yield) as a shorter season
with a higher harvest. With the two-month season s = 10/12, r = 12/12, the maxi-
mum susceptible population with a harvest rate of 5 is approximately 13 individuals,
and the yield harvested is 7 individuals per season. In our extended season from
s = 8/12, r = 12/12, the yield harvested is again 7, and the maximum number
of susceptible members is 12. So these two strategies are comparable in terms of
meeting management targets. Figure 4.22 compares strategies s = 8/12, r = 10/12,
s = 10/12, r = 12/12 and s = 8/12, r = 12/12, showing the differences in the max-
imum susceptible abundance, maximum infected proportion and harvest numbers
for each harvest season with h0 = 2.5. The longer harvest season is producing more
yield. This is intuitive since it has more time to interact with the population to
gain such yield. Despite the apparent benefits of this longer season, there may be
difficulties in performing harvests over a longer period of time. Harvesting seasons of
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Figure 4.22: Comparing the maximum abundance of susceptible individuals, maxi-
mum infected proportion and numbers harvested during the season for the harvest-
ing strategies s = 8/12, r = 10/12, s = 10/12, r = 12/12 and s = 8/12, r = 12/12,
where h0 = 2.5.

longer duration may not be possible for several reasons. For example the weather or
climate may not be favourable for a long enough period, resources may be not avail-
able for an extended time, and a longer season requires a greater time-commitment
from harvesting parties. Therefore, again we see that optimal strategies for different
diseases and different systems would be dependent on other information, and not
just on the results we produce from model simulations.

§ 4.5 Discussion

In this chapter we have shown that performing a seasonal harvest of a population
who are subject to a fatal infectious disease, can help to increase susceptible pop-
ulation abundance whilst minimising infection and regulating the population cycle,
when the population is subject to multiple periodic forcing in demographic rates.
We implemented an SI model including seasonal variation in birth and transmis-
sion, and fixed the values of other parameters. An additional seasonal component
representing a harvesting strategy, where strength, timing and duration could be
altered, was included and we explored how different harvest tactics could impact
population and disease dynamics. The success of the harvest strategy depended
on its three elements: the strength of harvest, the time it was performed, and the
length of the harvest season. Crucially, we found that the initial conditions and
parameter values used for model simulation play an important role in determining
the disease dynamics, and highlighted the bi-stability of the system from this. The
bi-stable solutions can fundamentally change the behaviour of the host and disease
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dynamics, so in managing a population, one must ensure the initial conditions are
accurate. This is especially crucial for highly pathogenic and wide-spread diseases
(Duke-Sylvester et al., 2011). As we seek to protect vulnerable wildlife populations,
particularly due to our ever changing climate, predictive mathematical models are
key for assessing the impact of management programmes and their effectiveness in
maintaining wild populations (Gulland, 1995).

In many natural wildlife populations, groups aggregate at specific times in the
year; for example whale sharks gather seasonally near Australian coastlines (Wilson
et al., 2001). Such aggregation means that individuals are more densely popu-
lated, and hence in the presence of an infectious disease, direct host-host contacts
will increase therefore raising transmission. Should such a disease require control,
harvest/management strategies can be used. As well as minimising infection in a
population, management strategies can be used for the benefit of the human popu-
lation. For example, we may harvest a population for its meat, fur, or skin (Golden,
2011). As wildlife populations gather in larger groups, targetted harvests can be
easier to manage since individuals live in closer quarters. Performing harvests at this
time also coincides with the peak in possible disease transmission. We found that,
for a harvest season coinciding with the increased transmission season, population
and disease dynamics were dependent on the strength of harvest and the population
abundances. Introduction of harvest settled the population and disease dynamics to
more stable regimes, particularly as the harvest strength was increased. However,
we highlighted the existence of bi-stability in the model, where differing population
abundances could switch the dynamics between cycles of different lengths. This
has been seen in other work, for example in Tang and Chen (2004). For smaller
harvesting rates, dynamics were more likely to alter but as the baseline rate of har-
vest increased, dynamics became more stable. This was true up to a certain point,
whereby beyond the harvest rate of h0 = 6 in our original analysis of both models,
the entire population was eradicated. Over-harvesting has occurred in the natural
world, with one of the most prominent examples being the loss of whale species
during the prolific whaling exploits in the 1800’s (Pimm, 2020). For our chosen pa-
rameter values and initial conditions, we conclude that a harvest rate of 3 ≤ h0 ≤ 5
for the timing 10/12−12/12 would be a good strategy. Such management is carried
out at the most suitable time, and would avoid under or over harvesting. Of course,
the parameter values used in our analysis are unlikely to be exactly as in the real
world. However, the cases where we have highlighted the most stable dynamics in
our analysis should be sufficient to cover any small errors or deviations in parameter
values.

Although for practical reasons it may be easier to perform harvests at a time
when populations are gathered together, other factors come into play. Managers
would be required to think about factors such as costs, the availability of tools or
resources, the weather and climate and perhaps even on any impact on tourism
or the economy (Regehr et al., 2017; Gren et al., 2018). Therefore it is important
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to determine how any targets of particular management can be achieved through
harvesting at different times. If we want to maximise the harvest yield, whilst
minimising infection within a population, we found that harvesting slightly before
the peak in transmission improved results, though the difference between this and
harvesting during maximum transmission were not substantial. This was for the
specific set of initial conditions explored, where S0 + I0 = 100. Performing a popu-
lation harvest at alternative times was unable to match the effectiveness of the two
strategies where s = 8/12, r = 10/12 and s = 10/12, r = 12/12.

When considering population management, we often see short harvest seasons
in order to maximise yield with minimum disruption to the population (Choisy
and Rohani, 2006). In extending (doubling) the length of our season, we were able
to reduce harvest rates by half to eradicate disease and maximise the abundance
of susceptible population members. At the same harvest rates, the longer season
increased population numbers and raised the harvested yield. At first sight it would
therefore seem that a lengthened season is preferable, however we must consider
other factors in this assumption. Performing harvest over a longer period of time
could be more resource intensive, for example. In addition, it is likely that there
would be a need for more time-commitment from hunters, therefore raising the
cost of services (Diekert et al., 2016). These factors would need to be taken into
consideration when designing an appropriate management strategy. Whether the
benefits of a longer season (increased yield, etc.) outweigh the additional costs is
important to discern.

As mentioned above, our analysis used specific parameter values and initial con-
ditions which are not likely to be true to many real host-parasite systems, but our
simulations are able to provide an insight into the possible patterns we may ob-
serve in population dynamics. In model simulations when making alterations to
the harvest strength, timing and duration, bi-stable/multiple stable solutions were
a common occurrence, meaning that it was possible for dynamics to change rapidly
with a small change in conditions. Alongside the initial population conditions S0,
I0, D0, the rate of harvest h0 played a large role in determining the specific dis-
ease dynamics we observed. In exploring different initial population conditions for
varying harvest strengths, it was possible for population and disease dynamics to be
highly unpredictable, causing a large degree of uncertainty in the model outcome.
Through our analysis of both models, however, we found an abundance of stable
solutions which would be robust to any small changes or alterations in parameter
values. Higher rates of harvest (provided the rate was not too high so to cause ex-
tinction), gave the most stable solutions, where every set of initial conditions tested
resulted in annual dynamics only. Such results are important for the potential de-
sign and implementation of management strategies that will be effective, and robust
to small changes since it is important for strategies to be adaptable (Johnson et al.,
1993; Morgan and Shepherd, 2006; Yletyinen et al., 2018).

Of course, we have made a number of assumptions in both the formulation
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of the model, and in the analysis. As mentioned in chapters 2 and 3, there are
numerous extensions that could be made to the models in order to suit other host-
parasite systems. For example, we may need to add latency, vertical transmission or
additional interacting populations. Also, we have fixed our seasonal components of
breeding and aggregation. An extension of the models and analysis could consider
different forms of the seasonality functions (see for example Hosseini et al. (2004)), or
indeed could consider seasonality in other demographic processes, such as the death
rate. On the whole, as in the previous chapters, the timing of seasonal processes is a
key driver of population and disease dynamics. Any effective management strategies,
therefore, need to consider how the timing of seasonality would impact results.

Seasonal fluctuations in the birth rates of wildlife, and in the transmission dis-
eases, are common throughout the natural world. Many wildlife populations are
harvested periodically for the benefit of humans; for meat, skin or fur, for example.
Yet, theoretical studies of host-parasite relationships subject to multiple external
periodic forcing have rarely considered how harvest can help to control, or even erad-
icate, disease. In this work I have shown that seasonal harvest can simultaneously
maximise population abundance and maximise harvest yield, whilst minimising in-
fection. This work shows, therefore, that both humans and the wildlife populations
they manage, can benefit from a seasonal harvest in a fluctuating environment.



Chapter 5

Discussion

In this thesis I have explored mechanistic models of host-parasite relationships,
where such hosts exhibit seasonal birth patterns and the transmission of disease is
also modelled as a seasonal process. I have considered how recovery can influence
the host-parasite dynamics, and how a seasonal harvest of the population can help
to regulate disease cycles and maximise population abundance. I have specifically
looked at how changing the timing of seasonal processes influences population and
disease dynamics and have highlighted how very small changes can dramatically
impact dynamics. This section brings together the work from each chapter, and
highlights potential avenues for future work.

§ 5.1 Summary

Throughout this thesis, a key theme was the recurring importance of the timing
of seasonal processes in determining the population and disease dynamics in our
systems. Whether this was in the seasonal birth, transmission, or harvest, timing
was crucial. Though previous studies have considered two seasonally varying rates
in models of host parasite relationships (Swinton et al., 1998; Hosseini et al., 2004;
Choisy and Rohani, 2006) for example, none have delved rigorously into the impact
of the timing of seasons on the host and disease dynamics. The work contained in
this thesis, therefore, brings new insight into how the dynamics of populations and
the diseases they carry behave when affected by multiple seasonal components.

In chapters 2 and 3, where we explored SIR-style models with seasonal forcing
in birth and transmission, we found that dynamics were most stable when births
reached their peak shortly before the transmission rate. For the model in chapter 2,
we explained this result in relation to the basic reproductive ratio (see section 2.3.2).
When births peak, the pool of susceptible individuals is maximised as an influx of
members enters the class. This raises the basic reproductive ratio R0, allowing an
epidemic to occur. The outbreak is accentuated by the rising transmission. With
decreasing transmission and a dwindling susceptible pool, infections decrease, but
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the susceptible population starts to build again as birth rates increase. This cycle
allows a regular disease pattern to be observed. When the birth rate occurs at
a different time in the annual calendar, the susceptible pool of members may not
be high enough to cause a disease outbreak when transmission rises. This leads
to a lag in the increase of disease, meaning an outbreak will occur in a following
year after the sufficient recovery of the susceptible population. In chapter 3, we
explained this pattern of behaviour in relation to the threshold for disease outbreak.
This threshold was introduced in section 1.3 and defined in section 3.2. Similarly
to above, the abundance of susceptible members determines the possibility of a rise
in infection. When susceptible individuals reach and surpass the threshold level,
infection will rise and lead to the cycle as explained above. With alternatively timed
births, a wide array of dynamics are possible. Due to the abundance of observable
dynamics from changes to the timing of seasonal forcing in both of the models,
we conclude confidently that such timings are imperative. The determination of
cycles is important in our study of host-parasite systems as it aids understanding of
how the host and disease interact, and therefore how we might be able to mitigate
negative impacts of infection in a population. With a more stable disease cycle,
patterns are recognisable and consistent, hence helping in the process of managing
populations.

For the harvest models presented in chapter 4, the seasonal forcing in birth and
transmission were fixed with a five-month interval between their peaks. This allowed
us to explore the impact of changing the timing of harvest with otherwise fixed sea-
sonality. With harvest represented by a constant effort function and fixed to be
performed for a two-month period, removing population members whilst transmis-
sion rates were rising/reaching their peak gave optimal management results in terms
of maximising yield, minimising infection and maximising the susceptible popula-
tion. When harvest was timed elsewhere within the annual population calendar,
different and less optimal results were obtained through the strategy. Our analysis
of this variation in seasonal timings showed again an array of possible dynamics,
where in this case we required a management targeted during peak transmission
times to achieve optimal results as described above. The application of harvest to
both of the modelling frameworks used in chapters 2 and 3 was applied assuming
fixed conditions in the original models. In this sense, we have explored a specific
population system, varying only the harvest strategies. Therefore, it is important to
note that the conclusion of harvest being optimal when timed to coincide with peak
transmission may only be most suited to the host demographic situation explored
in this chapter, where we assumed breeding and transmission peaks to be separated
by a period of five months. Such pattern of breeding and transmission is commonly
observed among wildlife, particularly in bird species where spring/summer breeding
and autumn/winter migration (i.e. grouping leading to increased likelihood of direct
transmission) is common (Rohwer et al., 2009; Curley et al., 2020).

In 2011, a study of the World’s species estimated that there would be a total
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of 8.7million (±1.3million) different lifeforms on Earth (Mora et al., 2011). Of this
number, the estimated abundance of Animalia was 7.77million different species.
Predictions for the current number of Animalia species that have been formally
classified varies slightly between sources, though in Mora et al. (2011), the number
was said to be around 1.2million. With such an abundance of unique species on
Earth, social and breeding behaviours between types will be vastly different. In
fact, even within species we can observe differences in behaviour. For example,
a study on Acorn Woodpeckers showed that some formed cooperative groups on
a year-round basis, whilst others chose to form temporary isolated pairs during
the breeding season, but re-join the larger groups for migration (Stacey and Bock,
1978). In this system, we would expect an increased transmission rate during the
migration season, as isolated pairs join with the larger group again. In addition,
we could expect the seasonal fluctuation in such transmission rate to be of a small
amplitude if the abundance of isolated pairs is far fewer than the year-round group.
In contrast to this population behaviour, there are certain species who will gather to
breed, and thus breeding and aggregation (transmission) would become part of the
same biological process. For example, harbour seals congregate in certain months
to find a partner and breed (Swinton et al., 1998), and this increase in population
density would lead to an increasing transmission in directly transmitted diseases.
Thus, in modelling specific populations, knowledge of the precise behaviours of hosts
is required, since even within species, behaviour can vary.

The amplitude of our seasonally varying terms also determined the pattern of
disease reoccurrence, though our two models from chapter 2 and chapter 3 showed
different patterns of results. In the latter, where transmission of disease occurred
through the environment as well as by direct contact, increasing seasonal amplitudes
of birth and transmission led to the appearance of more complex dynamics. In con-
trast, when increasing amplitudes in our first model in chapter 2, dynamics moved
through a period of complex behaviours, but settled to more stable cycles (bien-
nial) with larger values. The fluctuation in seasonal rates, therefore, plays a role
in determining disease cycles. We must note that the analysis was carried out for
otherwise fixed parameter values and certain initial population conditions. In rep-
resenting specific host-parasite systems therefore, detailed knowledge of appropriate
parameter values would be vital for accurate disease modelling.

The initial population conditions used in model simulations were influential on
the resulting population dynamics in all models explored in this thesis. The conse-
quential existence of bi-stability and multiple-stable solutions had profound effects
on our results. The presence of these types of solutions in our systems of differential
equations is important due to their potential impact on population and disease dy-
namics. Bi-stability or multiple stable solutions occur when different attractors are
simultaneously stable depending on the initial population conditions used for model
simulation. Each stable solution has a specific basin of attraction (Keeling and
Rohani, 2008), which contains all the initial conditions that will eventually settle
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dynamics to the stable state observed. This means that, depending on how we com-
pute our model simulations, we could see different results for the same parameter
values (with different initial population conditions). This is an important property
of seasonal models. Some basins of attraction may be extremely small, meaning
certain dynamics could occur only for a very specific set of initial conditions. This
means that we could omit acknowledging the presence of certain dynamics, because
our simulations have not covered the initial conditions required to result in such
behaviour.

In chapter 2 rapid switching between different dynamic attractors was observed,
where small changes in population sizes could disrupt stable dynamics and alter
the disease cycle. We saw several instances where dynamics switched between an-
nual, biennial and higher-order cycles depending on population abundances. Such
behaviour was found when altering the timing of seasons, when changing the am-
plitude of the seasonal components, and when investigating dynamics for highly
virulent, transmissible diseases. Recovery, in general, stabilised the population dy-
namics. However, bi-stability was still evident in analysis where dynamics switched
from annual to biennial cycles with different initial population conditions. The
possibility of these rapid changes is important in the application of our models to
existing natural populations. Recognising the potential for dynamic change to oc-
cur quickly under certain conditions means studies of populations and control of
diseases can account for such behaviour.

With transmission possible through an environmental reservoir, as explored in
chapter 3, bi-stability and multiple stable attractors were commonly observed. De-
pending on initial conditions and parameter values, we saw a multitude of dynamics
and rapid switching between states, but the existence of biennial solutions was rare.
For our chosen set of fixed parameter values we did not record any biennial dy-
namics. In exploring basins of attraction for the cycles discovered (annual, triennial
and four-year cycles), we observed a clearly structured pattern in the basins (fig-
ure 3.10), where triennial dynamics were the most often occurring cycle. Fourier
spectra confirmed this observation, in the dominance of the three-year signal, and
the absence of biennial dynamics. We note here that, as explained above, basins of
attraction for certain dynamic attractors can be very small. Therefore, it is possible
that biennial dynamics occur more frequently, but we have not explored the initial
conditions which lead to these cycles.

Seasonal removal of population members, both susceptible and infected, as ex-
plored in chapter 4 also gave rise to bi-stability. Whilst we observed changes in dy-
namics as a consequence of altering the timing and magnitude of harvest, changes in
population abundance also had the potential to switch dynamics between different
states. Similarly to chapter 3, biennial dynamics were rarely observed. However, in
chapter 4, this absence was noticeable for both the basic SI model and the SID
model. Again, we must highlight that our analysis used specific sets of parameter
values, and additionally we predominantly varied initial conditions as integer val-
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ues. Therefore, our analysis could be omitting the biennial dynamics due to the
conditions in the basin of attraction not being explored.

The rapid switching of population dynamics we have observed in results from
model simulations are reflective of situations that have been observed in real world
populations. Anthropogenic changes present a huge challenge to wildlife, as popula-
tions must rapidly adapt to overcome alterations to their habitats and livelihoods.
These human-mediated changes, be it in deforestation, construction, or excessive
harvest, for example, often occur very quickly, meaning species must adapt quickly
in order to survive (Wong and Candolin, 2015). Different studies have shown the
behavioural changes adopted by certain wildlife species in response to anthropogenic
change. For example, a study on the foraging behaviour of urban hedgehogs (Dowd-
ing et al., 2010) showed the species was more likely to forage later in the day to avoid
human contact. The study showed differences in the responses of males and females,
a result which could therefore have consequential impacts on breeding and hence
population abundance. In their study, Legagneux and Ducatez (2013) demonstrated
the ability of certain European bird species to alter their flight distances and speeds
in response to new road developments. However, should a population be unable
to respond quickly enough, newly built roads can be fatal for bird species. This
could be due to the increased likelihood of collision with traffic, habitat loss or due
to prey encountering predators more frequently. Immediate changes in the species
environment can thus cause rapid population change, altering host abundance. In-
troduction of new species to existing habitats can be calamitous for native/existing
species. Lehtonen et al. (2012) summarised the negative impact on a native fish
species, the Arrow cichlid, when an invasive species, the bigmouth sleeper goby, was
introduced to its habitat. The goby caused a decline in the success rate of breed-
ing, leading to population reduction in the Arrow cichlid. In similar cases, where
new species are introduced to existing ones, the inability of the existing species to
respond could lead to catastrophic change in population abundance (Phillips and
Suarez, 2012).

Additionally, anthropogenic changes can cause alterations in host-parasite rela-
tionships, and hence the dynamics of disease (Budria and Candolin, 2013). Desneux
et al. (2007) highlighted how a particular parasitic wasp had a reduced ability to
search for hosts due to the excessive use of pesticides in farming. Though this could
benefit the host species, it could also lead to random change in host-parasite encoun-
ters, and hence disease dynamics. Certain species can regulate parasites through
mutual grooming within the population (Okuno et al., 2012). This avoidance be-
haviour could be impacted by human-initiated rapid change, for example if habitats
become fragmented or destroyed. Such activity may require populations to spend
more time on foraging, and therefore time spent on grooming would reduce and
lead to a sharp increase in parasitic success (Wong and Candolin, 2015). Therefore,
these observed changes in species behaviour could lead to the altered population
and disease patterns we discovered in the analysis of our models, lending our results
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applicable to real-world situations.

The nature of transmission, as shown in chapters 2 and 3, has an impact on pop-
ulation and disease dynamics. We saw this through the consequential changes in
dynamics when varying the parameters associated with the seasonal transmission,
β0, β1, β2. Since the seasonal transmission played a large role in determining the
threshold for disease outbreak, we were able to attribute any changes to this thresh-
old. There has been much debate on the most appropriate form of transmission to
use in modelling disease (Mccallum et al., 2001; Begon et al., 2002), and perhaps
one of the limitations to our definition of transmission is the assumption that con-
tacts between population members are equally likely, regardless of their age, sex
or hierarchy in the group. Despite this, SIR-style models, both with and without
the presence of seasonally varying components, have been able to sufficiently model
real-world host-parasite dynamics. For example, in the work of Anderson et al.
(1981) rabies virus in European red foxes was explored, and the authors were able
to provide models which matched empirical data, despite the limitations of their
SEI model. Therefore, the mathematical modelling style we use can provide good
approximations for population and disease dynamics, with transmission not neces-
sarily needing to precisely match the exact real-world form to give suitable results.
Of course, modelling techniques and model formulations can always be tweaked in
some way, but we can be confident that our modelling framework can provide a solid
guide in representing empirical observations.

In the 2018 review on infectious disease modelling of wildlife by Berg et al.
(2018), the authors highlighted the need to explore how harvest strategies can impact
disease spread, and how this modelling will be essential for informing managers in
designing suitable practices. A compartmental modelling framework with inclusion
of seasonality was suggested by the authors. In chapter 4, we have taken the first
steps in exploring how different intensities of harvest can impact a host-parasite
system, filling this knowledge gap as indicated by the Berg et al. (2018) review.
We discussed that using our models and results in application to existing host-
parasite systems requires some knowledge of both the host and disease behaviour,
since reliable knowledge of the system helps to accurately parameterise the model,
and thus gives us confidence in the simulation results. The data we deem necessary
to obtain would be information on population size, lifespan of hosts, breeding and
social habits and the virulence of the particular disease. With this information
driving the parametrisation of models, our framework could be a useful tool for
managing populations and disease.

§ 5.2 Future Work

In this thesis I have developed extensions to the classic SIR models originally for-
mulated by Kermack and McKendrick (1927), by including two seasonally varying
terms; one in host birth rate, and the other in transmission. Specifically, I have
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explored the impact of changing the magnitude, amplitude and timing of such sea-
sonal components on the population and disease dynamics, and have investigated
the effects of changing initial conditions and other parameter values. The models
consider density-dependence in the host death rate, and mostly assume that recovery
is not possible. Additionally, I have considered how a seasonal harvest can influence
population and disease dynamics. There are very few previous theoretical studies
involving two seasonally varying terms in an SIR-type model for wildlife diseases,
and only one known to us to also consider harvest. These studies take varying
forms of seasonality, omit density-dependence in the death rate and consider that
recovery is possible. Thus, this thesis contains unique work, giving scope for further
developments to be made.

The first area we consider to be relevant for future work is consideration of al-
ternative and/or additional transmission types, for example, vertical transmission.
This type of transmission involves disease passing from mother to offspring, either
during pregnancy or birth. To model this type of transmission, a fraction p of new-
born individuals would go straight into the infection class I, giving the fraction
(1−p) of newborns to the susceptible class S. As we saw in chapter 3, the inclusion
of an additional transmission pathway caused dynamics to alter. Thus for wildlife
diseases where vertical transmission is possible, such as Bovine TB (Morris et al.,
1994), Mycoplasma (Whithear et al., 1989) and Avian Encephalomyelitis (Calnek
et al., 1960), where populations could also be influenced by seasonality in birth and
transmission, our models would be more suitable for exploring the population and
disease dynamics. We anticipate that the addition of vertical transmission into our
model from chapter 2 would be likely to regulate dynamics to more stable cycles.
This would be as a result of the addition of vertical transmission in the threshold for
disease outbreak. Formulating a threshold whilst considering vertical transmission,
we obtain a decreasing level as the fraction born infected, p, increases. Therefore,
the susceptible population has a greater chance of surpassing the threshold to cause
a rise in infection, leading to an increased chance of more stable dynamics. This is
similarly the case should vertical transmission be incorporated into the environmen-
tal transmission model from chapter 3, due to the impact of the newborn infected
fraction on the threshold for disease outbreak.

Numerous diseases have been observed to cause a so-called latent period of in-
fection in their host, e.g. Avian Influenza (Hénaux et al., 2010), Phocine Distemper
Virus (Duignan et al., 2014) and Ebola (Getz et al., 2019). This means that a
susceptible host can contract disease, but remain unaffected for a period of time,
before displaying symptoms/becoming infectious themselves. Models considering
this delayed infection are known as SEIR models (see section 1.4.3), and have been
extensively studied in application to epidemiological systems. Studies using these
models have considered externally forced systems (Aron and Schwartz, 1984; Gren-
fell et al., 1995; Earn et al., 2000; Bauch and Earn, 2003), but to the best of our
knowledge have not taken account of both multiple external periodic forcing and
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harvest. Therefore, the application of our models, adapted to include the possi-
bility of latency, could be important in more accurately modelling several systems.
In turn, the enhanced accuracy in modelling will assist in informing management
strategies of populations and disease, helping to control outbreaks of infections.

Susceptibility to disease can be dependent on age. For example, naive members
of a population, i.e. those that are very young, can experience an enhanced suscep-
tibility to infectious agents due to their immaturity. We could also see the converse,
where older generations become more susceptible to certain diseases as their age in-
creases. Age-structured models have been used in abundance for human infectious
diseases. Recently, age-structure has been used in work on coronaviruses (Colombo
et al., 2020), and previously on diseases such as smallpox (Valle et al., 2013), measles
and rubella (Anderson and May, 1983). Consideration of age-structure is also nec-
essary for certain wildlife diseases, e.g. bovine spongiform encephalopathy, since
susceptibility to disease decreases as age increases (Keeling and Rohani, 2008). If
these populations and diseases occur in a seasonally varying environment, where
births and disease transmission fluctuate, models should reflect this behaviour.

Recently we have seen increasing applications of spatially-structured models
for representing disease transmission, for example during the COVID-19 pandemic
(Colombo et al., 2020). In wildlife populations, for example, we have seen the need
for space-structure in modelling the spread of rabies in the United States (Murray
et al., 1986; Smith et al., 2002; Ruan, 2017). This spatial spread, teamed with
the likelihood of seasonal breeding and social behaviour in populations, demands
models including these when exploring infectious diseases. Spatial structure can
be incorporated into models in different ways. Keeling and Rohani (2008) give a
comprehensive review of different methods. One example is the concept of a meta-
population model which has been used previously in studies of infectious diseases in
wildlife (White and Harris, 1995; Swinton et al., 1998; Smith et al., 2002). In these
models, the population is sub-divided into different groups, where each has inde-
pendent dynamics, but members can move between groups. For example, we could
have two groups where dynamics are governed by differential equations dSA

dt , dIA
dt ,

dSB
dt , dIB

dt . Demographic rates (e.g. births, deaths) can be the same in each group,
or different, and we could include a parameter to enable a group member from A to
move into group B and vice versa if appropriate. Future models of wildlife disease
and their control could consider space-structure in addition to seasonally varying
components to more accurately represent certain systems (Cross et al., 2009; White
et al., 2017). This will be particularly important in considering the impact of climate
change and anthropogenic activities on wildlife populations (Rushing et al., 2019).
With global warming, there is an increasing likelihood of disease spreading further.
In Northern regions where climate change is being felt the most (IPCC Core Writing
Team, 2014; Omazic et al., 2019), diseases are more likely to be spreading, partic-
ularly in the poleward direction. In fact, studies have shown that land-dwelling
species are moving North with an average rate per decade of 17km (Chen et al.,
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2011). This has profound impacts on host-parasite relationships. As highlighted by
Hoberg and Brooks (2015), diseases that are sensitive to climate will have an oppor-
tunity to spread to new areas under the current impacts of global warming. This
could also mean infection spreading to new species who have not previously been
exposed to the travelling disease (Jones et al., 2008). Therefore, we can recognise
the importance of spatial modelling in investigating host-parasite relationships, and
how these may change through time.

In informing management strategies, results from data-driven models would be
a more reliable source than our theoretical computations. For design of appropriate
control strategies for specific diseases and populations, our models as described in
chapter 4 could be quantified by host and infection data. Knowledge of popula-
tion structure (contacts), abundance and breeding habits could provide appropriate
parameter values for hosts, whilst historical data on the progression of infection
numbers would help in estimating disease parameters. By quantifying a model in
this way, disease dynamics can be more accurately studied, and therefore control
strategies can be designed with greater accuracy (Pomeroy et al., 2017).

We recognise that we have only considered sinusoidal functions to represent our
seasonally varying processes of birth and transmission in this thesis, and acknowl-
edge that other functions could be more appropriate depending on the behaviour
of the population being studied. In previous work we have seen seasonality repre-
sented by functions such as square-waves (Hosseini et al., 2004; Smith et al., 2008;
Begon et al., 2009), or instantaneous pulses (Roberts and Kao, 1998; White et al.,
1999). In some bat species for example (George et al., 2011), births occur in a
very short time-frame (in this case, late June), at an annual interval. Therefore,
an instantaneous pulse of birth would be more appropriate for a system like this.
Other species exhibit longer breeding seasons, where outside of the season, births al-
most never occur. Birth seasons such as these have been observed in pandas (Owen
et al., 2005), and so for populations such as these, a square function could more
appropriately represent their seasonal birth. This reiterates our point that, should
we wish to accurately model populations with the potential to manage infectious
diseases, we must have a detailed understanding of the host demographics to obtain
reliable modelling results. The number of possible forms that seasonality functions
could take means that there are likely to be a variety of new results and dynamics
observable in analysis of such systems. Review of different seasonality forms, when
multiple seasonal processes act on a host-parasite system would be an interesting
development to this thesis.

This thesis took a simulation based approach in analysing our mathematical
models, using Matlab (MATLAB version R2018a), though we recognise that other
methods are available and could be suitable. In extension to our work, we recog-
nise that numerical continuation software such as MatCont (Dhooge et al., 2004)
and AUTO (Doedel, 1981) could have complemented our results. The functionality
of these software, in providing interactive analysis of dynamical systems and auto-
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matic bifurcations, could have furthered our work by accompanying the simulations
performed in Matlab. Alternative modelling approaches are available, including the
use of stochastic simulation methods. For such models, a fixed set of parameter
values and initial conditions will not necessarily lead to the same output, unlike in
deterministic models (Allen, 2017). The use of stochastic methods in SIR mod-
els has been used widely, though they are less-common for non-domestic wildlife
diseases since estimates for parameter values are not as easily obtainable or pre-
dictable for these populations (McCormack and Allen, 2007; Allen et al., 2011).
Using stochastic models for the frameworks in this thesis could aid consideration
of random movements (spatial structure) of individuals, and could help to explore
the impact of random environmental effects. Asymptotic analysis is an alternative
method of analysing an SIR model, with previous work having used this technique
for both theoretical and empirical studies (Oli et al., 2006; Perasso and Razafison,
2014; Kröger and Schlickeiser, 2020). The method allows systematic analysis of ap-
proximate solutions, when exact solutions to systems of differential equations cannot
be found (Murray, 1984; Howison, 2005). Due to the complexity of the models we
proposed, numerical simulations provided us with the opportunity to explore mul-
tiple parameter combinations and initial conditions systematically and efficiently.
This allows application of our models to a variety of host-parasite systems, with the
possibility to explore the population and disease dynamics under different scenar-
ios. Further extensions to our work could explore alternative analytical methods
and modelling approaches.

With our ever-changing World, seasonal changes are becoming more prominent,
affecting host-parasite systems globally. Increasing the accuracy of host-parasite
models with control, for application to wildlife systems, is imperative if we wish to
conserve species for generations to come.
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