
U S I N G E S T I M AT I O N O F D I S T R I B U T I O N A L G O R I T H M S T O
D E T E C T C O N C U R R E N T FA U LT S

jan staunton

Submitted for the degree of Doctor of Philosophy

Department of Computer Science
University of York

June 2012

Jan Staunton: Using Estimation of Distribution Algorithms to Detect
Concurrent Faults, PhD Thesis, June 2012

A B S T R A C T

With processors tending toward more processing cores instead
of higher clock speeds, developers are increasingly forced to
grapple with concurrent paradigms to maximally exploit new
CPU designs. Embracing concurrent paradigms entails the poten-
tial risk of encountering concurrent software faults. Concurrent
faults result from unforeseen timings of interactions between
concurrent components, as opposed to traditional software faults
that arise from functional failures. As a result, concurrent faults
have a higher probability of surviving the software development
process, potentially causing a catastrophic failure of high cost.

As the complexity of software and hardware systems increases
they become increasingly difficult to test. One measure of com-
plexity is the number of potential execution paths a system can
follow, with a higher complexity attributed to a greater number
of paths. In concurrent software, the number of execution paths
in a system typically increases exponentially as the number of
concurrent components increase. Testing complex concurrent soft-
ware is therefore difficult, with state of the art static and dynamic
analysis techniques yielding only false positives or exhausted
resources. This problem is likely only to be exacerbated given the
trends highlighted above.

Stochastic metaheuristic search techniques can often triumph
where deterministic or analytical techniques fail. Methods such
as Genetic Algorithms and Ant Colony Optimisation have shown
great strength on hard problems, including testing concurrent
software. Metaheuristic techniques often trade a perfect solution
for good enough solutions, and merely accurately detecting a
concurrent fault is better than allowing a fault to survive to a
production system. Whilst metaheuristic techniques have had
some success in this domain, the state of the art still struggles
for a high success rate in some circumstances. There are a few
metaheuristic search techniques that have yet to be tried in this
area, and this thesis presents a study on one such technique.

This thesis presents a literature review, detailing the state of
the art in detecting concurrent faults in software and hardware
systems. Following a review of metaheuristic techniques applied
to finding concurrent faults, I set out a hypothesis asserting that
a particular subclass of metaheuristic techniques, Estimation of
Distribution Algorithms, are effective in detecting and debugging
concurrent faults. To investigate the hypothesis, I first make an
algorithmic proposal based on a particular EDA to search the
state space of concurrent systems. I then demonstrate through

iii

experimentation the ability of the algorithm to detect faults and
to optimise the quality of faults found in systems derived from
industrial scenarios. I also outline methods of using features
unique to EDAs to scale to large systems. Finally, I complete the
thesis with a conclusion examining the hypothesis with respect
to the evidence collected from empirical work, highlighting the
novel aspects of the thesis and outlining future paths of research.

iv

C O N T E N T S

i introduction 1

1 motivation 3

1.1 Multi-processor Systems 3

1.2 Utilising Multiple Cores 3

1.3 Concurrent Software Verification 4

1.4 Metaheuristic Search Techniques 5

1.5 Motivation for research 5

1.6 Research goals 5

1.7 Structure of this report 6

2 hypotheses 7

2.1 Introduction 7

2.2 Hypothesis and Research Strands 7

2.3 Finding Faults in Mainstream Language Code 7

2.4 Finding and Optimising Wide Ranges of Faults in
Complex Systems 8

2.5 Scaling to Large Systems 9

2.6 Summary 9

ii literature review 11

3 concurrent software verification 13

3.1 Introduction to Concurrent Software 13

3.1.1 Scheduling 14

3.1.2 Communication 15

3.2 Prominent faults in concurrent software 17

3.2.1 Deadlock 17

3.2.2 Starvation 22

3.2.3 Livelock 22

3.2.4 Data races 23

3.3 Concurrent software verification 24

3.3.1 Coverage metrics 25

3.4 Static verification techniques 26

3.4.1 Lockset analysis 26

3.4.2 Data-flow analysis 26

3.4.3 Summary of static verification techniques 27

3.5 Dynamic verification techniques 27

3.5.1 Schedule altering techniques 27

3.5.2 Runtime monitoring 28

3.5.3 Summary of dynamic verification techniques 28

3.6 Formal methods 29

3.6.1 Specification/Modelling 29

3.6.2 Annotation-based theorem proving 30

3.6.3 Model checking 30

v

3.6.4 Summary of formal methods 31

3.7 Summary 31

4 model checking 33

4.1 Introduction 33

4.2 Building the Model 34

4.2.1 Transition Systems 35

4.2.2 Paths 37

4.2.3 Reachable States 37

4.2.4 Expressing Models 38

4.3 Specification of Properties 38

4.3.1 Temporal Logics 39

4.4 Verification 40

4.4.1 Checking Invariant Properties 40

4.4.2 Checking Safety Properties 41

4.4.3 Checking Liveness Properties 41

4.4.4 Complete Model Checking Mechanisms 42

4.4.5 On-the-fly Model Checking 42

4.4.6 Guided Model Checking 42

4.4.7 Strengths and Limitations of Model Check-
ing 43

4.4.8 Metaheuristic Model Checking 44

4.5 Summary 44

5 metaheuristic search 45

5.1 Introduction 45

5.1.1 Metaheuristic Search 46

5.2 Local Search 46

5.2.1 Convergence and Optima 47

5.2.2 Landscapes 48

5.2.3 Fitness Function 49

5.2.4 Simulated Annealing 49

5.3 Other Local Search Mechanisms 50

5.4 Population-based Search 50

5.4.1 Evolutionary Algorithms 51

5.4.2 Ant colony optimisation 53

5.5 Estimation of Distribution Algorithms 54

5.5.1 Example EDA 54

5.5.2 Types of EDA 56

5.6 Summary 57

6 metaheuristic search of transition systems 59

6.1 Genetic Algorithms 60

6.1.1 Solution Encoding 60

6.1.2 Fitness Functions 61

6.2 Particle Swarm Optimisation 62

6.3 Ant Colony Optimisation 62

6.3.1 Liveness Properties 63

6.4 Evaluation of Metaheuristic Model Checking Work
So Far 64

vi

6.5 Summary 65

6.5.1 Limitations of State Of The Art 65

6.5.2 Potential Routes Forward 66

6.5.3 Summary 66

iii algorithmic proposal 67

7 algorithmic proposal 69

7.1 Model and Solution Space 69

7.2 Learning the Model 72

7.3 Model Sampling 73

7.4 Fitness Function 74

7.5 Other Parameters and Features 76

7.6 Novelty of Algorithm 77

7.7 Implementation 78

7.7.1 N-gram Implementation 78

7.7.2 Interaction with a Model Checker 78

7.8 Computational Complexity 79

7.9 Summary 79

iv experimentation 81

8 finding deadlock in mainstream language code 83

8.1 Introduction 83

8.2 Experimentation 83

8.2.1 Fitness Function 84

8.2.2 Parameters 85

8.2.3 Results and Discussion 85

8.3 Summary 89

9 finding and optimising counterexamples in in-
dustrial code 91

9.1 Introduction 91

9.2 Experimentation 91

9.2.1 Implementation 91

9.2.2 Connected Component Classification 92

9.2.3 Fitness function 93

9.3 Experiments in Finding and Optimising Counter-
examples 94

9.3.1 Example Promela Models 94

9.3.2 Parameters of the EDA 95

9.3.3 Experiments 96

9.3.4 Discussion of Results 113

9.4 Summary 115

10 scaling to large systems 117

10.1 Introduction 117

10.2 Model Reuse 117

10.2.1 Reuse during Debugging 118

10.2.2 Reuse during Refinement 118

10.2.3 Reuse when tackling Problem Families 118

vii

10.3 Experimentation with Problem Families 119

10.3.1 Sample Models 119

10.3.2 Heuristics 120

10.3.3 Parameters 121

10.3.4 Smaller Instances 122

10.3.5 Larger Instances 122

10.4 Summary 126

v conclusion 127

11 conclusion 129

11.1 Introduction 129

11.2 Hypotheses 129

11.2.1 Finding Faults in Mainstream Language
Code 129

11.2.2 Finding and Optimising Wide Ranges of
Faults in Complex Systems 130

11.2.3 Scaling to Large Systems 131

11.2.4 Over-arching hypothesis 131

11.3 Novel Contributions 132

11.4 Limitations of the Research 133

11.5 Potential Algorithm Refinements 134

11.5.1 Improve the context in which a decision is
made 135

11.5.2 Augmenting the fitness function 136

11.6 Potential Avenues of Future Research 137

11.7 Summary 137

bibliography 139

viii

L I S T O F F I G U R E S

Figure 1 Round robin schedule for processes A, B
and C 14

Figure 2 Mutual exclusion implementation using mon-
itors (Java style) 16

Figure 3 Resource allocation graph for resources 1

through 5 and processes 1 through 5, loosely
based on [Silberschatz et al., 2004] 18

Figure 4 Wait-for graph for processes 1 through 5,
loosely based on [Silberschatz et al., 2004] 18

Figure 5 Wait-for cycle depiction 20

Figure 6 Dining Philosophers problem 21

Figure 7 Naive dining philosopher behaviour 21

Figure 8 Data race example code 23

Figure 9 Nasty interleaving 23

Figure 10 Traffic light transition system, based on the
traffic light example found in [Baier and
Katoen, 2008] 36

Figure 11 Concurrent Dining Philosophers system with
two Philosophers 36

Figure 12 Example landscapes 49

Figure 13 Algorithm of a vanilla EA 52

Figure 14 Algorithm of a vanilla EDA 55

Figure 15 UMDA modelling Process 55

Figure 16 Numbered choices in a transition graph,
from [Alba et al., 2008] 61

Figure 17 Real-Numbered Vector encoding of a path
in a graph, from [Alba et al., 2008] 61

Figure 18 Fitness function for deadlock from [Alba
et al., 2008] 62

Figure 19 A typical trace from JPF 71

Figure 20 Illustration of the N-gram learning pro-
cess 72

Figure 21 Scaling results for dining philosophers 88

ix

L I S T O F TA B L E S

Table 1 Results table from experiments 86

Table 2 Table showing models used in experiments 95

Table 3 Results table from finding and optimising
empirical work. 98

Table 4 Results table from finding and optimising
empirical work. 106

Table 5 Problem families tested in our experiments 119

Table 6 Measurements from the initial runs 123

Table 7 Measurements from the model reuse runs
on the Dining Philosophers 128 system 124

Table 8 Measurements from the model reuse runs
on the Leader 10 system 124

Table 9 Measurements from the model reuse runs
on the GIOP 20 system 125

x

A C K N O W L E D G M E N T S

I would first like to thank my supervisor John A. Clark for his
patience and support throughout my studies, and for letting me
run amok with wild ideas for three years. Many thanks to Simon
Poulding for his friendship, advice and encouragement. It was
a pleasure collaborating with him on our award winning work.
Thanks to all members of the SEBASE project at York throughout
my spell as a Research Student, with specific thanks to David
White for his advice and support. I will forever remember my
time as part of SEBASE with fondness and I hope the team can
forgive me for my regular 1430 sleepies.

Thank you to my wonderful house and flat mates over my time
at York, particularly James Williams, Chris Poskitt, Peter Booth,
Dog, Csaba, and Ed Milner. Particular thanks go to Jimmy who
helped with proof reading, although thanks will be withdrawn if
he traumatises me with his best man speech. (Edit: Post wedding
minor corrections, he did very well!)

I would like to thank the EPSRC for their financial support, on
grant EP/D050618/1, without which none of this would have
been possible. Thank you to the wider SEBASE team for encour-
aging such an interesting field and allowing me to join their flock.
Thanks also to the creators of the various tools I have used during
my thesis, the makers of ECJ, JPF, HSF-SPIN (particular thanks
to Alberto Lluch Lafuente for his help via Skype!).

I would like to thank my family; I hope they will be proud
of me for being the first in the family to achieve a doctorate.
The unshakeable encouragement and support of my sister and
parents has helped me through a long period of studying at York:
8 years in all. And last, but by no means least, I would like to
thank my beautiful fiancée Danusia for her love and support.
(Edit: Post wedding minor corrections, now wife!)

xi

D E C L A R AT I O N

I declare that all the work in this thesis is my own, except where
attributed to another author. Many of the ideas and figures in
this thesis have appeared in the following publications:

1. Jan Staunton and John A. Clark, Searching for Safety Vi-
olations Using Estimation of Distribution Algorithms, in
Software Testing Verification and Validation Workshop, IEEE
International Conference on Software Testing, Verification, and
Validation (ICST 2010).

This paper won best Student Paper Prize for the workshop,
and constitutes the content of Chapter 8.

2. Jan Staunton and John A. Clark, Finding Short Counter-
examples in Promela Models using Estimation of Distribu-
tion Algorithms, in Proceedings of the 13th annual conference
on Genetic and Evolutionary Computation (GECCO 2011).

This paper was nominated for the best paper prize in the
Search-Based Software Engineering track, and constitutes
the content of Chapter 9.

3. Jan Staunton and John A. Clark, Applications of Model
Reuse when using Estimation of Distribution Algorithms
to Test Concurrent Software, in Search Based Software Engin-
eering - Lecture Notes in Computer Science (SSBSE 2011).

This paper constitutes the content of Chapter 10.

xiii

Dedicated to my wife Danusia, and my family.

Part I

I N T R O D U C T I O N

1
M O T I VAT I O N

1.1 multi-processor systems

For many years, Moore’s law provided a fairly accurate measure
of the increase in processing power one can fabricate on a single
chip over time. When purchasing a new processor during this
time, one could expect faster completion of sequential tasks over
an older processor. Recently, this trend has been invalidated due
to the physical limitations of modern day chip manufacturing
processes [Koch, 2005]. In order to continue delivering more
performance per processor over time, CPU manufacturers have
adopted multi-core architectures, processors consisting of two or
more individual processing units called execution cores. Multi-
core processors have also provided a convenient way of delivering
more performance with minimal additional energy usage [Koch,
2005].

The trend of focusing on adding execution cores to chips is
showing no sign of slowing down. At the time of writing, it is
common to find two-core (dual-core) processors in most modern
machines, and in some instances four-core (quad-core) processors
in high end laptops and desktops. Intel, a major chip manu-
facturer, have plans to commercially market processors with 80

processing cores [Intel Corp., 2007].

1.2 utilising multiple cores

Modern operating systems can use multiple processing cores
to run many separate processes concurrently. In many modern
operating systems, upward of 100 individual processes can be
running at any time. The utilisation of multi-core systems by an
operating system can result in a more responsive system overall
when running multiple independent tasks. However, for any
given task to see the benefit of parallel processing, application
developers must explicitly divide the work required across the
cores.

Most modern programming languages support the use of mul-
tiple cores. Parallel processing can be expressed in a variety of
ways, but most use the notion of a sub-process. Languages can
express this explicitly in terms of multiple threads of control
or separate tasks within a program. Developers are now faced
with challenges above and beyond traditional single-threaded
software development. Processes within a concurrent software

3

4 motivation

program can execute at different rates and few software program-
ming languages provide the facilities to express the rate at which
processes execute. This phenomenon requires explicit methods
of coordination to manage access to shared resources, and allow
communication between sub-processes.

1.3 concurrent software verification

As with any language constructs, programming errors can be
made when using the co-ordination primitives to mediate access
to shared resources. There are a number of examples of errors
that concurrent software programmers make, the most notori-
ous being to allow the potential for deadlock and race conditions.
Detecting such errors in concurrent systems is a hard problem,
and verifying that a system if free from errors is often intractable.
The main reason for this is the nondeterminism of execution of a
concurrent software program. Nondeterminism arises from the
varying rates at which each process in a concurrent software pro-
gram execute. The rate at which processes execute is determined
at run time by a scheduling mechanism. Each execution of the
program can yield a different interleaving of actions or commands
performed by each process within the program.

Concurrent faults typically manifest through a subtle interleav-
ing of actions or commands performed by concurrent processes,
and are typically not sensitive to program inputs. Faults may
only be present on certain executions of the program, and those
said executions may occur with low probability during normal
running of the system. Race conditions are particularly notori-
ous, as execution can continue in the presence of race conditions
with functionally incorrect results. Static analysis techniques can
highlight the potential for concurrent faults through examination
of the source code, but produce spurious errors to the point that
trust is lost in such techniques. Dynamic techniques can take a
long time to reveal an error, if at all, and suffer from repeatability
problems.

Another approach to concurrent software verification is to
examine all possible executions of a concurrent program in order
to discover errors. This requires examining the state space of
a program. This can be viewed as a directed graph, where the
nodes are the states of the program. The state of the concurrent
software system consists of the composition of the states of each
process within the system. Edges between states represent the
progression of a single process with in the program, yielding
a potentially new state. The main problem with this approach
is that the state space of a concurrent program can be huge,
potentially large enough to exhaust the computational resources
available to any particular developer.

1.4 metaheuristic search techniques 5

1.4 metaheuristic search techniques

It has been shown that software engineering tasks, particularly
software verification, can be couched as an optimisation prob-
lem [McMinn, 2004; Clark et al., 2003]. Using this formulation
of the problem, metaheuristic search techniques can be applied.
Metaheuristic search techniques are optimisation strategies that
improve candidate solutions iteratively using a fitness function
as a guide, and are typically stochastic in nature. Metaheuristic
search techniques have been used to solve hard optimisation
problems, sometimes scaling better than analytical approaches.
Some example techniques include simulated annealing, evolu-
tionary algorithms, ant colony optimisation and particle swarm
optimisation.

The large state space of a concurrent program presents itself
as a target for search mechanisms. Search mechanisms can focus
the exploration of the state space to areas that are more likely to
contain concurrent faults, discovering faults efficiently with re-
spect to computational resources. They also provide the potential
to scale to large systems which may be of interest to industrial
practitioners. Of particular interest to the author is the potential
for the application of a search mechanism to yield a general con-
current fault finding tool that can be applied over a wide range
of target languages and systems.

1.5 motivation for research

The use of metaheuristic search for the verification of concurrent
software is in the preliminary stages, with the bulk of the work
residing in the proof of concept stage. This work is detailed in
Chapter 6 of this report. There remain a number of metaheuristic
search techniques yet to be tried on this problem. There is the
potential for different representations of the solution space to
be explored. Little investigation has been carried out as to the
scalability of these techniques, as most of the state of the art
has focussed on proving novel concepts. Little is known as to
what constitutes a difficult concurrent bug for a particular search
technique to detect, and whether metaheuristic techniques are
indeed at all necessary for this domain.

1.6 research goals

The aim of this research is to develop a new automatic method
for detecting faults in a concurrent system, making use of a pre-
viously untested metaheuristic search technique based on Estima-
tion of Distribution Algorithms. Metaheuristic search techniques

6 motivation

are not complete mechanisms, so the aim will be to provide a
fault finding tool rather than a complete verification tool.

Thorough investigation as to the scalability of the new ap-
proach will be carried out, using rigorous experimental methods.
Comparisons will be made between the new mechanisms and
previous work reported in the field, including traditional non-
heuristic methods. Work will be carried out investigating the
application of the new mechanism to finding faults other than
deadlock. These can include finding violations of liveness prop-
erties, as well as assertion violations.

1.7 structure of this report

The structure of this thesis is as follows. The following chapter,
Chapter 2, contains the hypotheses investigated in this report.
Part ii consists of the literature survey detailing the difficulty of
finding faults in concurrent systems, and previous efforts in this
domain. Part iii details an algorithmic proposal for finding faults
in concurrent systems based upon Estimation of Distribution
Algorithms. Part iv presents empirical work giving evidence
for and against the hypothesis investigated in this thesis. And
finally, Part v presents conclusions and discusses the overarching
hypothesis of this report in light of the evidence presented in the
experimental chapters.

2
H Y P O T H E S E S

2.1 introduction

In this chapter, I will set out the hypotheses that will be addressed
in this thesis. An overarching hypothesis is given, followed by
more narrow hypotheses that divide the overarching hypothesis
into strands of research. Each strand is then treated individually
in separate chapters, with a summary at the end. The hypotheses
given assume that an approach based on Estimation of Distri-
bution Algorithms (EDAs) to finding concurrent faults will be
developed as part of the investigation.

2.2 hypothesis and research strands

The overarching hypothesis addressed in this thesis as as follows:

Estimation of Distribution Algorithms are an effective mechanism for
detecting and debugging concurrent faults.

In order to investigate this hypothesis, I will report on three
strands of research. The respective strands will:

1. Establish the ability of EDAs to find concurrent faults in
programs described by mainstream industrial languages.

2. Investigate the ability of EDAs to find a wide range of error
types in complex industrially derived systems.

3. Demonstrate the ability of EDAs to scale to large problem
sizes, using features unique to EDAs.

I will now detail the above strands of research and their re-
spective sub-hypotheses.

2.3 finding faults in mainstream language code

Hypothesis: Estimation of Distribution Algorithms are an effective
mechanism for detecting faults in systems described by mainstream

languages.

For an algorithmic proposal to be applicable to real-world
systems, it must be established that the algorithm can examine
systems described by mainstream industrial languages. These

7

8 hypotheses

languages include Java and C++/C. The goal is to detect concur-
rent faults accurately whilst being computationally efficient. If
this ability can be established, then the integration of EDAs into
mainstream programming tools, such as popular integrated de-
velopment environments like Eclipse and Visual Studio, becomes
possible. Consequently, the algorithmic proposal can become a
tool in the arsenal of a concurrent software developer, running
in the background alongside other static analyses and dynamic
checks.

The author believes that, along with other metaheuristic tech-
niques such as Genetic Algorithms and Ant Colony Optimisation,
EDAs will be able to detect concurrent faults in mainstream lan-
guages where other techniques fail. The author also believes that
EDAs have the potential to outperform other metaheuristic tech-
niques in certain situations, achieving an equivalent or higher
detection rate whilst using equivalent or fewer resources. This
strand will establish a proof of concept implementation which
will be extended to provide evidence for the hypotheses in sub-
sequent strands.

2.4 finding and optimising wide ranges of faults in

complex systems

Hypothesis: Estimation of Distribution Algorithms can find not only
faults in complex industrial systems, but also optimise them.

For any algorithmic proposal to gain acceptance by practition-
ers developing systems to be deployed in real world scenarios,
the proposed algorithm must be able to find a wide variety of
fault types in large and complex systems. Error types can be
divided into two categories, safety or invariant properties, and
liveness properties (these categories are explained in the literat-
ure review). If the proposed EDA-based algorithm can be shown
to detect faults efficiently in both categories, then the proposal
can be useful to practitioners in practical scenarios.

In addition to establishing that the proposed EDA-based al-
gorithm can find a wide variety of error types, this strand will
look at finding those faults in systems derived from real world
industrial scenarios. The systems examined will be complex in
nature, to simulate application in practical settings. The qual-
ity of the information relating to the faults found will also be
scrutinised. The author believes that an EDA-based approach
will be able to find higher quality information regarding a fault,
either through yielding a large quantity of useful information, or
eliminating useless information.

2.5 scaling to large systems 9

2.5 scaling to large systems

Hypothesis: Estimation of Distribution Algorithms can scale to find
faults in large complex systems.

The author believes that features unique to EDAs can aid in
performance when detecting faults in large complex systems.
By exploiting features unique to EDAs, an advantage can be
gained over previous work in the problem domain, metaheuristic
or otherwise. By demonstrating the ability of an algorithmic
proposal to scale to large systems, EDA-based concurrent fault
finders gain credibility in potentially being used in industrial
settings as part of a practitioner’s tool set.

2.6 summary

The three strands of research outlined above are addressed in
Chapters 8, 9 and 10 respectively. In the next Part of this thesis, I
will conduct a literature survey detailing previous effort in the
area of detecting concurrent faults.

Part II

L I T E R AT U R E R E V I E W

3
C O N C U R R E N T S O F T WA R E V E R I F I C AT I O N

3.1 introduction to concurrent software

Traditional sequential software programs consist of a sequence of
atomic actions applied to some input data. An atomic action is
indivisible, i.e. cannot be broken down into smaller steps. For a
given input, a sequential program typically exhibits a particular
behaviour, called an execution. The behaviour can be described
by a sequence of states. A state of the software program consists
of the current values in a memory and a program counter that
represents the next action to be executed. The program progresses
by executing the next action represented by the current program
counter on the current state. This yields a new state that poten-
tially includes an incremented program counter. The program
whilst executing is sometimes called a process.

A sequential software program consists of a single process. Re-
peated executions of a sequential program with a particular input
will yield the same behaviour each time, unless there is some
stochastic element to the program1. In mainstream programming
languages such as C and Java a process is implemented as a
thread, and a sequential software program consists of a single
thread. A thread encapsulates the program counter and any im-
plicit state information required for process execution, such as
values in CPU registers.

Concurrent software programs consist of n processes logically
progressing at the same time, where n > 1. Each of the n pro-
cesses is a sequential process as described above. The state of a
concurrent program is made up of the cross product of the states
of the n processes. Concurrent software programs can be useful
when decomposing a problem. For example, when constructing
a reactive software program responding to events in an environ-
ment, dedicating a single process to handle a particular event
is a popular method of implementation. Using this model, the
process can respond to a particular event independently from the
other processes in the software, yielding a quick reaction. In this
type of system, a number of processes are co-operating to solve a
problem. A concurrent software program can be thought of as a
concurrent system, and the terms shall be used interchangeably
throughout this document.

1 Pseudo-random number generators are fundamentally deterministic, and the
input to the random number generator can be considered as input to the
program.

13

14 concurrent software verification

Figure 1: Round robin schedule for processes A, B and C

3.1.1 Scheduling

The rate at which each of the n processes progresses is depend-
ent on the implementation of a process. In a software system, n
processes typically run on one or more processors. The prominent
view of n processes progressing is that of the actions of each
of the n processes are being interleaved on a single processor
according to some scheduling policy, the simplest schedule being
a round robin schedule (Figure 1). The round robin scheduler
switches between each of the n processes, giving each process an
equal amount of time steps to execute actions before switching to
another process. The act of switching between processes is known
as a context switch [Burns and Wellings, 2001]. More advanced
scheduling policies exists, such as pre-emptive scheduling [Sil-
berschatz et al., 2004], which allow for a process to pre-empt or
interrupt the scheduler and be scheduled immediately, without
waiting for the previously determined next turn of the process.
This enables a concurrent system to quickly react to a particular
event, rather than waiting on a predetermined schedule.

In an environment where the execution time of a single pro-
cessor is divided between n different processes, the n processes
do not actually progress at the same time. A single process is
active at any one time, and a scheduler switches between them.
This pseudo-concurrent [Magee and Kramer, 2006] environment
allows the appearance of processes progressing at the same time.
When there are two or more processors executing a concurrent
software program, the processes that make up said concurrent
software program can be divided between the processors. In
an environment where there are say 4 processors, up to 4 pro-
cesses can be physically progressing at the same time. This can
be termed as real concurrent execution, as opposed to pseudo-
concurrent execution [Magee and Kramer, 2006]. In industrial

3.1 introduction to concurrent software 15

systems, it is typical for the number of processes to exceed the
number of available processors to execute them. Therefore, some
pseudo-concurrent execution can and likely will take place even
in real concurrent hardware. In general, viewing real concurrent
execution as pseudo-concurrent execution yields few practical
limitations [Magee and Kramer, 2006] and a pseudo-concurrent
view of concurrent execution is used in a wide variety of analysis
techniques (discussed later).

In general, the scheduling of each process in a concurrent soft-
ware program is hidden from the programmer by the program-
ming language. The scheduling policy is typically implemented
by a runtime schedule manager with a particular scheduling
policy, and is seldom explicitly referenced by the programming
language. Examples of such languages are Ada and Java, both of
which schedule processes at runtime using a runtime schedule
manager. As a consequence, software programmers construct-
ing a concurrent program for either of these languages must
assume that any of the n processes in the program can be active
at any time, and that any currently executing process can be
“swapped out” by the scheduler in favour of any other process
at any time. The scheduling of each of the n processes is viewed
as nondeterministic, and the execution of a concurrent software
program can also be viewed as nondeterministic. There are some
exceptions to this model, such as coroutines and cyclic executives
[Burns and Wellings, 2001], which allow explicit scheduling of
processes as part of the software program specification.

The execution of concurrent software programs has been estab-
lished as nondeterministic. A consequence of this is that a concur-
rent program executed two or more times with the same input
may yield different results. For example, consider a concurrent
software program P with two threads, A and B. Thread A out-
puts the numbers 1 to 26 sequentially in ascending order, whilst
thread B sequentially outputs the letters a through z. A particular
execution of P may yield the output trace 1a2b3c4d5e..25y26z.
However, on a subsequent execution, the threads may be sched-
uled differently, potentially yielding the trace 123a456bcd7e....
The nondeterminism introduced in concurrent software, and con-
current systems in general, is a major hurdle in the verification
of such systems [Clarke et al., 2000].

3.1.2 Communication

The simplest concurrent software program consists of 2 processes
progressing independently, i.e. each individual process can pro-
gress without dependence on the progress of any other process.
An example of such a process is program P described above 2.

2 This is not strictly true, as both processes are sharing an output resource/facility.

16 concurrent software verification

Figure 2: Mutual exclusion implementation using monitors (Java style)

1 //s is a shared memory location

2 synchronize(s) { //lock s

3 //Do something with s

4 s++;

5 } //s is now unlocked

6 //Do some other work... �
In general, a concurrent software program is more complex if
the behaviour of any process within the software program is
dependent on progress of another. Dependencies between a pro-
cess A and a process B are caused by communication between A
and B. Communication can happen implicitly through sharing of
resources, or explicitly through coordination primitives. In order
for process A and B to communicate safely and successfully, the
two processes must explicitly coordinate their actions.

Most mainstream programming languages support a shared-
memory model of communication between threads/processes.
This involves the various processes reading and writing to shared
memory locations in main memory, sharing a global state. In
order to control access to shared memory locations, locking
mechanisms are typically used. Examples of locking mechan-
isms include semaphores, mutexes and monitors [Silberschatz
et al., 2004; Burns and Wellings, 2001]. Locking mechanisms can
be used to ensure mutually exclusive access to a shared memory
location, or to control the order in which processes receive access.
An example of this process is described in Figure 2, showing
how processes can coordinate mutually exclusive access to a
shared memory location. Each thread must explicitly lock s be-
fore manipulating it, ensuring that no two processes read and
write inconsistent values to s in shared memory. Any process
that fails to lock s before manipulation may cause a data race
(discussed later in this chapter). Mainstream languages such as
Java and C# both implement shared-memory model coordination
mechanisms.

Message-passing is another communication mechanism avail-
able in certain mainstream programming languages. Message-
passing between processes can occur in a number of ways. The
first is asynchronous message passing, where the sending pro-
cess sends the message and progresses onward immediately
after sending. The message is buffered somehow until the re-
ceiving process is ready to receive. The second is synchronous
message passing, where both the sending process and receiv-
ing process must explicitly synchronise before a message can
be exchanged. This mechanism does not require a buffer and
is sometimes known as rendezvous [Burns and Wellings, 2001].

3.2 prominent faults in concurrent software 17

Message-passing highly constrains how processes can commu-
nicate, and therefore makes it easier to predict the behaviour of a
system. However, the constraints can make simple communica-
tion (such as that allowed by shared memory models) difficult
and can be computationally expensive at runtime. [Burns and
Wellings, 2001] gives a good overview of the various message
passing schemes and the languages that implement them, with
Ada being a prominent example.

3.2 prominent faults in concurrent software

[Beizer, 1990] describes a taxonomy of bugs that can surface in
sequential software programs, along with techniques for finding
those bugs. Concurrent software programs can exhibit the bugs
outlined in [Beizer, 1990], and additional bugs that manifest them-
selves as a consequence of communication between processes.
Bugs may not exhibit their behaviour on every execution due to
the nondeterministic nature of concurrent software, and indeed
may only manifest themselves during a subtle interleaving of
process actions. [Farchi et al., 2003] outline the fact that concur-
rent bug patterns usually manifest in the form of an unforeseen
interleaving of processes that causes unexpected or undesirable
behaviour.

In this section, I shall outline some of the prominent concur-
rent faults that occur in real concurrent programs along with
examples.

3.2.1 Deadlock

Perhaps the most infamous concurrent fault in the literature
is that of deadlock, also called deadly embrace [Dijkstra, 1968]. A
concurrent software program is in deadlock when none of the
processes that constitute the program can progress. The typical
causes of this particular bug relates to the locking of resources.
The locking of resources R by a set of processes P can be represen-
ted as a resource allocation graph G. There are two types of nodes
in a resource allocation graph, one for processes and one for re-
sources. An arc in the graph G from process Pi to resource Rj
represents the fact that a process in Pi wants to acquire resource
Rj. An arc from resource Rj to process Pi represents Rj having
been locked by process Pi. A particular graph G represents the
resources locked and requested at a particular time instance. If
a cycle exists in G, the processes involved in the locking of the
resources involved in that cycle are said to be deadlocked. This is
illustrated in figure 3.

This graph can reduced to a wait-for graph, where each node is
a process, and an arc from process Pi to Pj represents that Pi is

18 concurrent software verification

Figure 3: Resource allocation graph for resources 1 through 5 and pro-
cesses 1 through 5, loosely based on [Silberschatz et al., 2004]

Figure 4: Wait-for graph for processes 1 through 5, loosely based on
[Silberschatz et al., 2004]

3.2 prominent faults in concurrent software 19

waiting for a resource that Pj currently holds. A wait-for graph
that is equivalent to the resource allocation graph in figure 3 is
depicted in figure 4.

One of the simplest cases of deadlock is as follows. Concurrent
software program P is made up of two processes, A and B. A
and B require access to resources R and S, the access to both is
governed by the locking mechanism described above. Process
A accesses the resources in R and S in that order, and process
B accesses them in the order S and then R. When each process
has acquired both resources, the resources are used and then
released. Each process locks, uses, and unlocks the two resources
ad infinitum.

It is possible for this particular software program to enter a
deadlocked state. If process A locks resource R and then process
B locks resource S, then both processes are waiting for a lock on
the other resource which is held by the other process. Therefore,
neither process can proceed as they are waiting on a lock that
will never be unlocked. This situation could have been overcome
by enforcing that rule that all processes must lock resources in
the same order, i.e. R then S. This deadlocking situation can
be generalised to a circular chain (wait-for cycle) of n processes,
where for all n processes, the ith (0 6 i 6 n) process is waiting on
a resource held by process i+ 1, modulo the number of processes
n. Figure 5 shows a lock graph illustrating a 2 party deadlock
and an n party deadlock.

[Coffman and Elphick, 1971] describe four conditions that
must be present for deadlock to arise. The first (1) is that tasks
must acquire resources for exclusive use, known as the mutual
exclusion condition. Second (2), tasks can hold resources they
require whilst waiting for the acquisition of additional resources,
known as the wait for condition. Third (3), tasks that are holding
resources cannot be forced to release them in favour of a another
task by some resource manager, known as the no pre-emption
condition. And fourth (4), a circular chain of tasks exist such that
each task has locked resources that the next task in the chain
requires, known as the circular wait condition. In order to avoid
deadlock when constructing a concurrent system, one of these
four conditions must be eliminated.

3.2.1.1 Dining philosophers problem

The Dining philosophers problem [Dijkstra, 1968] is likely the
most famous example of a potential deadlock situation. The
situation is as follows. A set of n philosophers share a circular
dining table (Figure 6), in this case 5. Each philosopher alternates
indefinitely between eating spaghetti and thinking. In order to eat,
a philosopher requires two forks. Unfortunately, the philosophers
can only afford a fork each (5 forks in this case). Prior to the

20 concurrent software verification

Figure 5: Wait-for cycle depiction

eating arrangement, a fork is placed in between each pair of
philosophers and they agree that they will only use the fork to
the immediate left or right of them.

The resource in contention in this situation are the forks. In
order for a philosopher to do some processing (eat), a philosopher
must acquire a lock on both the fork to her/his left and right.
Depending on how each of the philosophers behave, there is the
potential for deadlock. For instance, 5 naive philosophers would
implement behaviour described in figure 7.

There is a potential deadlock situation here if every philosopher
follows this behaviour. It is easy to imagine an interleaving of
each of these processes where philosopher 1 picks up the fork to
the left, then philosopher two acquires the fork to the left and
so on. If all the philosophers have acquired the left fork, then
they are all waiting to acquire the right fork, a resource which
has already been acquired by another philosopher. None of the
philosophers can progress, and the philosophers are said to be in
deadlock.

A different policy shared by each philosopher can be estab-
lished such that one of the four conditions for deadlock is nulli-
fied. An example is that acquisition of both forks by any particular
philosopher is atomic, eliminating the wait for condition (2). In
addition, the philosophers could time out if they have waited for
a lock for too long, eliminating the no pre-emption condition (3).

3.2 prominent faults in concurrent software 21

Figure 6: Dining Philosophers problem

Figure 7: Naive dining philosopher behaviour

1 while (hungry) {

2 acquire_left_fork();

3 acquire_right_fork();

4 eat();

5 release_left_fork();

6 release_right_fork();

7 } �

22 concurrent software verification

The dining philosophers problem is important because it shows
the potential for deadlock even when processes do not require
the majority of the resources in a system [Coffman and Elphick,
1971]. The dining philosophers is a demonstration of the most
extreme example of the fourth requirement for deadlock.

3.2.2 Starvation

A phenomenon related to deadlock is that of indefinite blocking,
or the more popular term starvation. Starvation is when a process
cannot progress due to one factor or another. Starvation can occur
in a number of ways, but I feel the behaviour is best expressed
as an example. Consider the dining philosophers problem, with
a co-ordination strategy that involves the use of a single token.
Whichever philosopher currently holds the token can pick up the
required forks and eat. Once a philosopher has eaten, the token
is placed in the middle of the table for any philosopher to pick
up. The token becomes the critical resource in the system, and is
managed by an arbiter.

In this co-ordination system, the token dictates which philo-
sopher can eat making the arbitration of the token a crucial com-
ponent. A “fair” arbitration process could pass the token around
in a round robin fashion. However, a “cruel” arbiter could favour
some philosophers over others, starving (quite literally) the dis-
criminated philosophers. A philosopher can become indefinitely
blocked if they are never given the token under this regime.

3.2.3 Livelock

Livelock is similar to deadlock in that the processes that make up
a software system cannot make meaningful progress. In a dead-
locked system, processes cannot make any progress whatsoever
due to indefinitely waiting on some resource. During livelock,
processes may be progressing in the strictest sense, but not ac-
tually doing anything useful. For example, imagine a situation
where two processes are in deadlock, but there is a external dead-
lock detection agent that recognises the situation, and signals the
two processes to release their respective locks and try again. It is
potentially the case that the two processes could again become
deadlocked, and then forced to releases their locks for second
time and so on. In this situation, the two processes are still pro-
gressing, but not doing anything useful. Whilst the symptom of
deadlock is easy to detect, testing generally for livelock is a more
difficult challenge, as it is difficult to define in the general case.

3.2 prominent faults in concurrent software 23

Figure 8: Data race example code

1 int tmp_var = x;

2 tmp_var = tmp_var + 50;

3 x = tmp_var; �
Figure 9: Nasty interleaving

1 Global: int x = 0;

2 Thread one: int tmp_var = x;

3 Thread two: int tmp_var = x;

4 Thread two: tmp_var = tmp_var + 50;

5 Thread one: tmp_var = tmp_var + 50;

6 Thread one: x = tmp_var;

7 Thread two: x = tmp_var; �
3.2.4 Data races

Race conditions occur when two more more processes access a
shared memory object without proper co-ordination. This results
in the processes interfering with each other, leading to function-
ally incorrect/inconsistent results. Race conditions are particu-
larly notorious as a concurrent software program can potentially
continue processing in the face of race conditions, whereas dead-
lock has an obvious “show stopping” behaviour.

A simple example of a data race is as follows. A concurrent
Java program is made up of two threads/processes that access the
shared/global integer variable x, initially set to 0. Both threads
apply the operations outlined in figure 8, each with a unique
thread-local tmpvar.

The intuitive view of this operation is that both threads will
increment x by 50, yielding x == 100. However, it is possible for
the interleaving outlined in figure 9 to occur. The result in x after
this interleaving is 50. This phenomena is known as interference,
as the execution of each thread has interfered with the execution
of the other.

In order to avoid interference, the threads must negotiate mu-
tual exclusion over the critical section of each thread to ensure the
atomicity of the update of x. A critical section is a segment of
code that manipulates a shared memory object. In this case all
three statements in figure 8 constitute the critical section of each
process. Critical sections are typically related to some shared
memory object. For any shared memory object, at most one pro-
cess can execute a related critical section. Negotiation of critical
sections can be implemented using some of the synchronisation
mechanisms highlighted on page 15.

24 concurrent software verification

Data race errors can be more subtle than the example de-
scribed above. For example, some assignment operations in some
programming languages are non-atomic [Farchi et al., 2003]. For
instance, Java guarantees atomic assignment to all primitive types
except for long and double [Gosling et al., 2005]. An assignment
to a 8 byte variable, such as a long for instance, may divide the
operation into multiple stages, but appear as a single operation
in the program code (e.g. long x = 100). This may lead a program-
mer to believe that there is no interference over the long x, but
an erroneous interleaving could exist. Another example that is
common to a lot of imperative languages is an operation equi-
valent to x++. Again, this looks like a single operation, but can
be broken down at the assembly instruction phase into multiple
stages. [Farchi et al., 2003] describe this as the difference between
a programmer model of the execution of the program (the source
code level) and the actual execution model of the program (the
assembly level).

3.3 concurrent software verification

The verification of sequential software programs has the goal
of verifying whether a software program accurately implements
a specification. The methods for achieving this goal can be di-
vided into formal and informal methods. Formal methods use
complete rigourous mathematical reasoning to prove that a soft-
ware program meets some specification. Formal methods include
deductive theorem proving, modelling and model checking.

Informal methods use non-complete techniques to gain assur-
ance that a software program meets some specification. A good
reference on the testing of sequential software are the compli-
mentary books [Beizer, 1990] and [Beizer, 1984]. The combination
of the two works provides an excellent description of the world
of sequential software testing.

The nondeterminism of concurrent software programs was
introduced above, showing how two executions of a concurrent
software program with the same input can yield different beha-
viours. The nondeterminism introduced by concurrent processes
makes concurrent software more difficult to test than sequential
software. For instance, [Beizer, 1990] describe a great number of
testing methods that rely on deterministic input/output relation-
ships defined by a sequential software function/program. This
deterministic input/output relationship is not held by concur-
rent software programs due to the nondeterministic nature of
the scheduler. Due to the nondeterministic nature of concurrent
software, a bug may only manifest itself on a particular inter-
leaving of processes. This is evident in the dining philosophers

3.3 concurrent software verification 25

problem, where deadlock occurs only on particular interleavings
of philosophers locking forks.

Below is a survey of various techniques for verifying or testing
concurrent software. Both formal and informal methods are in-
cluded, along with a brief section on coverage metrics specific to
testing concurrent software.

3.3.1 Coverage metrics

Software coverage metrics, in single-threaded software testing, define
a measure of completeness for a given set of test cases on some
program [Beizer, 1990]. Some examples of coverage metrics are
statement coverage, branch coverage, and predicate coverage.
Data-flow based metrics can also be used, such as the define-use
metric [Beizer, 1990]. The notion of 100% path coverage defines
a process that exercises a program over all possible executions
of that program, subsuming all other coverage metrics. [Beizer,
1990] states that this may not be achievable, or impractical to
achieve.

100% path coverage of a multi-threaded program requires that
all possible interleavings over all possible inputs are exercised.
The set of all possible executions of a concurrent program can
be extremely large, typically increasing exponentially with the
number of processes. Rather than aiming for 100% path coverage,
a programmer may want to target testing at crucial areas that sat-
isfy coverage metrics for concurrent software. Coverage metrics
from single-threaded software testing can be used, but may not
be useful in revealing bugs that rely on a particular interleaving
of threads/processes.

[Bron et al., 2005] define synchronisation coverage as a possible
metric for revealing illusive bugs in multi-threaded software.
The metric measures how well blocking statements, such as
synchronise and wait in Java, are exercised in a set of given
test cases. To achieve complete synchronisation coverage over a
particular blocking statement B, all processes that can execute
B must be blocked by B, and must cause another process to be
blocked in one or more test cases.

[Lu et al., 2007] abstract slightly from the work of [Bron et al.,
2005] and others to form a hierarchical set of criteria relating
to coverage of possible interleavings, that follow a subsumption
relation similar to the coverage metrics outlined in [Beizer, 1990].
The metrics target interleavings of accesses to shared variables
only, disregarding interleavings that involve processing local to
each process.

26 concurrent software verification

3.4 static verification techniques

Static analysis techniques examine the structure and source code
of a program without actually executing the program [Beizer,
1990]. Static analysis techniques can potentially reveal errors
using fewer computational resources than dynamic techniques
that require the software to be executed. The scalability of static
analysis techniques is usually sensitive to the size of the source
code of a program, rather than the size of the path or state space.

Static analysis techniques typically operate on similar struc-
tures to those used during the compilation of programs. Example
structures include control flow graphs and data flow graphs. The
structures used can be considered as an abstract interpretation
[Cousot and Cousot, 1977] of the program. Because static analysis
techniques operate on an abstract interpretation of a program
(i.e. an approximation), results from such techniques can be inac-
curate, potentially reporting false positives [Beizer, 1990]. What
follows is an overview of some static analysis techniques for
finding concurrent bugs, and a summary of the techniques.

3.4.1 Lockset analysis

Lockset analysis techniques analyse the usage of locks in the
source code of a program. The term Lockset Analysis was coined
in a work on the dynamic analysis of concurrent programs [Sav-
age et al., 1997], but the general mechanism has been applied in
some static analysis work. The basic Lockset analysis algorithm
is extremely simple and assumes that nothing is known about
which locks protect which shared memory objects. The technique
monitors what locks are held by a thread accessing a particular
shared memory object.

The RacerX [Engler and Ashcraft, 2003] static analysis tool util-
ises lockset monitoring to find race conditions and deadlocks in
large programs, and the authors have targetted operating systems
such as Linux and FreeBSD in their work. The primary focus of
the effort in [Engler and Ashcraft, 2003] is to reduce the amount
of spurious errors, given the size of the programs targeted. The
Jlint tool [Artho and Biere, 2001; Artho and Havelund, 2003] also
employs lock monitoring in order to detect potential deadlocks
and data races.

3.4.2 Data-flow analysis

Various data-flow analysis techniques can be used to aid in the
static analysis of concurrent software. Data-flow analysis in con-
current software is a tricky endeavour, as the value of a variable
can be affected by the actions of multiple threads. Various data-

3.5 dynamic verification techniques 27

flow analysis techniques for single-threaded software [Beizer,
1990] have been extended for concurrent software.

Program slicing [Tip, 1994; Weiser, 1981], for instance, has been
extended to concurrent languages such as Java [Zhao, 1999], and
it seems that the ideas can be applied to other languages. For
a particular line of source code l, program slicing identifies all
the lines of code and variables that can affect the outcome of l.
Program slicing, and data-flow analysis in general, can be useful
in identifying the potential for data races, as statements that effect
shared variables can be identified.

3.4.3 Summary of static verification techniques

Static analysis techniques for concurrent software allow for a
quick and cheap test of a software program for potential faults at
run time. Work in the field [Engler and Ashcraft, 2003; Artho and
Biere, 2001; Artho and Havelund, 2003] has noted short runtimes
for incredibly large pieces of software. However, effort is required
to reduce the amount of spurious errors reported to the user, as
too many errors can result in a debugging headache for users.
This problem can make the techniques useless when faced with
large software programs/systems. Static analysis techniques can
point out potential deadlocks and data races within a system, but
other concurrent issues such as starvation and livelock are hard
to detect statically.

3.5 dynamic verification techniques

Dynamic verification techniques analyse programs at run time,
executing a program artefact and monitoring execution in or-
der to detect errors. It has been discussed previously that the
execution of concurrent programs is nondeterministic, and that
concurrent bugs may become apparent in some executions and
not others. The dynamic verification techniques described below
aim to increase the likelihood of a concurrent bug appearing
during a test, or use real execution data to highlight potential
problems.

3.5.1 Schedule altering techniques

The set of possible thread interleavings or executions for a par-
ticular concurrent program can be extremely large. The subset
of the possible interleavings that exhibit concurrent bugs can be
extremely small. There exist a number of heuristic techniques that
attempt to force the execution of a concurrent program at run
time onto a particular interleaving that may reveal a concurrent

28 concurrent software verification

bug. The techniques leave the other functional properties (i.e.
those not related to deadlock and data races) intact.

A number of tools exist for the Java programming language
that attempt this kind of procedure. The ConTest [Edelstein et al.,
2003] tool from IBM creates additional test cases by inserting
schedule altering behaviours into suspicious parts of existing
Java test cases. The schedule altering behaviours are as simple as
sleep(t) and yield() statements, trying to force unforeseen
thread schedules. raceFinder [Ben-Asher et al., 2003] can be
viewed as an extension to ConTest, with a particular focus on data
races. raceFinder uses coverage metrics, such as synchronisation
coverage, to aid a heuristic in choosing which threads are sched-
uled next in particular parts of the code. [Stoller, 2002] describe a
technique that inserts random context switches at selected points
in source code, a technique [Eytani et al., 2007] refer to as noise
making.

A few unit testing frameworks for concurrent software com-
ponents exist that allow programmers to explicitly check certain
interleavings of events in their software. [Pugh and Ayewah, 2007]
describe the MultithreadedTestCase framework that provide a set of
generic tools that do precisely that, allowing test threads to wait
for certain conditions to become true before proceeding, such as
a value being updated in another thread. The tests are manually
generated in this particular framework, but there is potential for
some test cases to generated automatically and inexpensively.
Additionally, the unit tests generated can be used as part of a
regression suite [Beizer, 1990].

3.5.2 Runtime monitoring

Runtime monitoring techniques typically instrument concur-
rent programs in order to analyse behaviour. The Atomizer tool
[Flanagan and Freund, 2008], for instance, uses instrumentation
to perform runtime lockset analysis, leading to greater accuracy
over a static approach. Atomizer tests for atomicity violations.
Atomicity requirements can be specified by user annotations of
source code. The ConTest tool also uses runtime monitoring to
guide the placement of context switching commands, measuring
various coverage metrics at runtime. Static analysis of instrument-
ation logs can be performed in order to determine the precise
cause of an error. This process is sometimes referred to as post-
mortem analysis.

3.5.3 Summary of dynamic verification techniques

Dynamic analysis techniques have an advantage over static tech-
niques in that they examine genuine executions of the software

3.6 formal methods 29

program. Most concurrent bugs, including starvation and live-
lock, can be detected using proper instrumentation and logging
facilities. Tools such as ConTest and raceFinder have shown that
additional effective testing can be generated inexpensively as
part of an existing testing framework. Concrete errors traces are
provided by dynamic techniques, as the bugs found can have the
events leading up to them logged and reported.

Dynamic verification techniques have a few drawbacks. The
major one is that execution of the program can be very expensive.
Due to the nondeterminism in concurrent software, bugs may
still not show up even during heavy stress testing, and may only
show up in a low probability catastrophic event. The unit testing
techniques are limited to the tests that the user specifies, and
may miss crucial interleavings when using substandard unit test
suites.

3.6 formal methods

Formal verification methods attempt to prove that a system cor-
rectly implements some specification. One such method is the use
of deductive mechanisms to prove that a system meets a formal
specification. Descriptions of systems are manipulated in order to
show the equivalence of a specification and some implementation.
In general, this process requires a high degree of manual human
effort, but can be partially automated. As well as refinement to
implementation, the behaviour of models of systems (or indeed
the system artefact itself) can be examined in order to prove par-
ticular properties. Various methods of specification/modelling
and analysis exist, and some are described briefly below.

3.6.1 Specification/Modelling

One method of expressing the behaviour of a concurrent system
and verifying properties of that system is through the use of a pro-
cess algebra [Roscoe et al., 1998]. Process algebras, also known as
process calculi, express the communication and synchronisation
that occurs between a set of processes. Rules for manipulation
of process descriptions are packaged with a particular process
algebra, allowing transformation of systems and proofs of equi-
valence. This allows for formal verification of the behaviour of a
system, showing that systems implement a particular specifica-
tion in all circumstances. Examples of process algebras are CSP
and CCS [Milner, 1982; Hoare and Hoare, 1985; Roscoe et al.,
1998].

Process algebras typically do not model the internal state of
each process that makes up a concurrent system. Languages exist
that express communication between processes as well as their

30 concurrent software verification

internal state. An example language here is the original version
of CSP, from which the programming language occam takes
inspiration [Jones and Goldsmith, 1988; Roscoe et al., 1998]. Lan-
guages that allow the modelling and manipulation of state take
the formal process “closer” to real running code. Although Java is
in the strictly technical sense a language that can describe/model
systems, it lacks the tools for formal manipulation that allow for
transformation and proof.

3.6.2 Annotation-based theorem proving

Theorem proving is a technique used to prove whether some
implementation meets a specification. The implementation in this
case is the program source code. The specification can be in the
form of a full formal document, or annotations in program source
code. Tools that implement this sort of functionality exist for Ada
in the form of an extended SPARK Ravenscar analyser [Amey
and Dobbing, 2003] that allows annotations over concurrent tasks.
Extended static checking systems [Detlefs, 1996], a blanket term
for static analysers that take additional annotations as input, exist
for a variety of other languages such as Java [Flanagan et al.,
2002] and Modula-3 [Leino and Nelson, 1998].

In order to obtain a specification, a potentially large amount
of manual human effort is required. The annotations aid the
programmer in further specifying the design, and the tools auto-
matically check if the current implementation can invalidate that
design.

3.6.3 Model checking

When verifying various properties or behaviours of a model,
an automated approach exists that examines all the possible
behaviours of a model or specification. The state space of a
model is extracted from the model and exhaustively checked for
conformance with a specification given by a human. This process
is known as model checking [Clarke et al., 2000; Baier and Katoen,
2008]. If a violation is found, a concrete trace of events leading
up the error can be reported.

Efficient algorithms exist to check a variety of properties, in-
cluding deadlock and race conditions. Using these techniques,
all possible interleavings of process actions can be examined ex-
plicitly without execution of the program. This eliminates some
of the downfalls of traditional static and dynamic analysis. As
noted earlier, however, checking all possible paths in a concurrent
program can be intractable as large state spaces can exhaust avail-
able memory. Heuristic methods can be used to partially check a
model, focusing on areas of the state space more likely to contain

3.7 summary 31

an error. The heuristic methods available can be thought of as a
testing mechanism for a model, but unlike dynamic testing tech-
niques, have explicit control of the scheduling of the processes
of a system. State spaces can be extracted from program source
code, such as Java and C# and checked in a similar fashion.

3.6.4 Summary of formal methods

Whilst formal methods offer the prospect of proving that a con-
current system always functions correctly in all possible paths,
there are a number of drawbacks. The deductive mechanisms
described above require a great deal of human effort, something
that may not be possible in industrial settings. There is also the
potential misalignment between a formal proof of an abstract
version of a system, and the refined/implemented version of the
system. Model checking goes some way to alleviating the human
effort problem, by automating almost all of the proving process
beyond the specification of properties. However, checking all
possible paths of a typical industrial program can be intractable,
limiting the practical applications this technique.

3.7 summary

This chapter has outlined the basics of concurrent programming,
and the prominent issues when dealing with concurrent soft-
ware verification. The problem of finding concurrent bugs has
been established as difficult due to the nondeterminism of a
software program process schedule. Various methods for testing
concurrent software have been discussed, and a few address the
interleaving issue explicitly.

All of the techniques described have a number of drawbacks
that limit their applicability to industrial systems. The static
analysis techniques are all computationally efficient, but yield a
large number of false positives and are not complete. Dynamic
techniques eliminate false positives, but can be expensive to run
(taking a large number of runs to find errors) and can suffer from
repeatability problems. Whilst formal methods can prove that
systems function correctly in all paths, often the human effort
required is too much, or the computational resources too few.

A potential way forward in this area is to try to eliminate
the failings of the various techniques. It will be difficult to re-
duce the human and computational costs in the formal methods
space when proving programs correct. However, attacking the
downfalls that incomplete methods have may prove fruitful. One
potential avenue of research would be to tune the parameters
of both the static and dynamic methods. However, I see more
potential in the heuristic model checking arena. Heuristic model

32 concurrent software verification

checking mechanisms use a heuristic to narrow down the search
of a state space, and aim for error detection rather than a com-
plete proof of correctness. Heuristic model checking allows a
practitioner to use the rich theoretical and specification frame-
work provided by model checking, whilst potentially avoiding
the high computational cost of exhaustive verification.

Metaheuristic search techniques have shown promise in a wide
variety of areas for finding solutions to problems in large solution
spaces. Searching the potentially vast state space of concurrent
programs seems like a viable target for metaheurstic search al-
gorithms. In the following chapters, I will give a brief introduc-
tion to model checking, metaheuristic search and research that
combines the two. I will outline gaps in the research, and then
describe how I have addressed those gaps.

4
M O D E L C H E C K I N G

4.1 introduction

Model checking is an automated technique used for the verifica-
tion of finite-state concurrent systems [Clarke et al., 2000]. Model
checking is a formal method that can be used to gain assurance
that a model of a system exhibits specified properties. To this
effect, a model checker is employed to systematically check all
possible behaviours of a model of a system to ensure that it meets
a specification. Model checking can be used in addition to or as
an alternative to other methods of verifying a system.

The main concept of the method is that a model of the system
is constructed, usually in the form of a finite-state automaton.
The states in this automaton correspond to the possible states of
the system, and the transitions between those states are actions
that effect some change in the system being modelled. Paths
through the automata correspond to possible behaviours of the
system, sometimes referred to as properties [Baier and Katoen,
2008]. Specifications are written using a language that can express
sets of paths in the automaton. Efficient algorithms are then
employed to ensure that the automaton does in fact model the
specification.

The method was originally developed by two teams working
independently [Clarke and Emerson, 1981; Queille and Sifakis,
1982] and the term ‘Model checking’ was coined by Clarke and
Emerson [Clarke et al., 2000]. Model checking was used success-
fully to verify protocols and hardware systems, and has since
evolved into a useful technique for verifying a broad range of
system classes. Model checking has discovered subtle non-trivial
errors in real software and hardware systems and is gaining
increasing acceptance in industrial settings [Baier and Katoen,
2008]. For example, [Clarke et al., 2000] cites the success of [Clarke
et al., 1995] in finding previously unknown errors in the IEEE
Futurebus+ cache coherency protocol.

The model checking process can be broken down into three
distinct sub-processes, each of which is explained in some detail
below. The three sub-processes are the construction of a model,
the expression of the specification, and the verification or model
checking process. The majority of this section is based upon the
material found in the excellent model checking reference [Baier
and Katoen, 2008], a modern reference with specific coverage
of software model checking. Parts are also derived from the

33

34 model checking

prominent textbook in the field “Model Checking” by Clarke et
al [Clarke et al., 2000]. Both texts are fine references for the major
concepts of model checking, with [Clarke et al., 2000] cited in all
related works.

4.2 building the model

The first stage of model checking is to construct a model of the
system to be checked. This stage consists of expressing the system
in a language from which a state-based model can be derived
[Baier and Katoen, 2008]. A state-based model of the system is a
digraph in which nodes are global unique states of the system,
and edges are the events that transition between states. There are
numerous ways to describe the graph structure. [Clarke et al.,
2000] refer to a Kripke structure, a simple structure capturing a
set of states, transitions between those states and an encoding
of information about those states. [Baier and Katoen, 2008] and
[Magee and Kramer, 2006] refer to transition systems that are
similar to Kripke structures, but expressed slightly differently.
The author prefers to use the transition system approach which
appears more intuitive.

There are numerous languages for specifying the behaviour
of a model from which a state-based model can derived. The
language used is dependant on which model checking tool one
is using. The SPIN model checker [Holzmann, 1997, 2004; Baier
and Katoen, 2008] for example uses the language Promela (short
for process metalanguage) to specify a model of a system. The
Java PathFinder (JPF) model checker [Visser et al., 2003] currently
allows model checking on Java bytecode directly, automatically
generating a transition system over Java bytecode. In this example,
the language for expressing the model is any language that can
be compiled to Java bytecode, such as Java or Python. In the
initial version [Havelund, 1999], JPF translated Java programs
into another language, Promela, which can then be checked using
the SPIN model checker. Model checking tools exist for a variety
of mainstream industry languages, including the .NET platform
[Aan de Brugh et al., 2009] and C/C++ [Clarke et al., 2004].

The generation of the transition system is typically done dur-
ing the verification phase (discussed later), once a model has
been expressed in an appropriate language and a specification
has been obtained. However, I will discuss the concept of a trans-
ition system here in order to give the specification section some
context.

4.2 building the model 35

4.2.1 Transition Systems

To model the execution of a system, a transition system [Baier
and Katoen, 2008] is constructed. A transition system is made up
of states and transitions between those states. A state encodes
some information about the system [Baier and Katoen, 2008].
For example, one may encode a binary variable to encode the
current phase of a traffic light in a traffic light system. A state
only need encode information relevant to the property one is
verifying. For instance, the current state of the weather may be
irrelevant in verifying properties of a traffic light system. The
removal of unnecessary information relevant to the specification
being checked is a form of abstraction [Clarke et al., 2000; Baier
and Katoen, 2008].

Definition 1. Transition system, definition from [Baier and Ka-
toen, 2008].

A transition system TS is a tuple (S,Act,−→,I,AP,L) where

• S is a set of states.

• Act is a set of actions.

• −→⊆ S×Act× S is a transition relation.

• I ⊆ S is a set of initial states.

• AP is a set of atomic propositions. and

• L : S→ 2AP is a labelling function.

A transition, or edge in the system, takes the system from one
state to another. The transition relation −→ describes how the
system behaves over time, linking a state s to a set of successor
states P ⊆ S and associating an action with each possible trans-
ition. A transition from a state s to s ′ is written s α−→ s ′, where
α ∈ Act. A state s can be a successor state of itself.

For example, figure 10 shows the transition system of a model
traffic light. In this transition system, s0, s1 ∈ S and a0,a1 ∈ Act.
The transition relation is made up of s0

a1−→ s1 ∈−→ and s1
a0−→

s0 ∈−→. For the purposes of this example, s0 is the initial state
(I = s0). A model is deterministic if there is one initial state, and
only one transition is possible from all s ∈ S. By this rule, the
traffic light transition system in figure 10 is deterministic. Figure
11 shows a nondeterministic transition system that models a
simple Dining Philosopher system. Act in this case consists of
“Pick-up left fork”, “Pick-up right fork” and “Put down both
forks”. The transition relation derived from this system is large,
and is summarised by the transition system in Figure 11.

36 model checking

Figure 10: Traffic light transition system, based on the traffic light ex-
ample found in [Baier and Katoen, 2008]

Figure 11: Concurrent Dining Philosophers system with two Philosoph-
ers

(T, T)

(L, T) (T, L)

(LR, T) (L, L) (T, LR)

Pickup Left Fork

Pickup Left Fork

Pickup Right Fork
Pickup Right Fork

Pickup Left Fork

Pickup Left Fork

Initial State

Error State

Counterexample/Path

Put down both forks

Put down both forks

4.2 building the model 37

AP is a set of atomic propositions used to encode information
about states in the model. The labelling function L maps a state
s ∈ S to the set of atomic propositions that are true in s. For
example, when modelling a traffic light system, the propositions
AP = {red,green} are adequate for expressing all the possible
states. L maps states to sets of properties in AP. In the traffic
light model, s0 → red ∈ L and s1 → green ∈ L. In the Dining
Philosophers model, the L label means a philosopher has picked
up the left fork, R means the right fork has been locked, and T
means the philosopher is thinking. Each state is made up of the
conjunction of two philosophers states.

4.2.2 Paths

A path fragment ρ through a transition system from states s0 to
sn is an finite alternating sequence of states and actions starting
with state s0 and ending with sn. A path fragment can be either
finite or infinite. Infinite paths are common in systems that do
not terminate, such as the traffic light example above.

ρ = s0a1s1a2...ansn such that si
αi+1−−−→ si+1 for all 0 6 i < n

If a path fragment ρ contains an initial state, then ρ is said to be
initial [Baier and Katoen, 2008]. If ρ ends with a terminal state or
is an infinite path, then ρ is said to be maximal [Baier and Katoen,
2008]. A path of a modelled system refers to a path fragment that
starts in an initial state, and ends in either a terminal state or an
infinite path [Baier and Katoen, 2008]. In other words, a path is a
path fragment that is both initial and maximal. A path represents
a possible execution of the system, and the set of all paths in a
transition system is sometimes known as the execution space. In a
deterministic transition system, there is only one path through
the transition system. In a nondeterministic transition system,
there are two or more paths through the transition system

A model can have a set of terminating states T i.e. states from
which no transition is possible. Path fragments can be expressed
solely in terms of either the states visited (either explicitly or via
the L mapping) or the transitions executed. For example, s0s1
and a1a2 are both examples of path fragments, where si ∈ S and
ai ∈ AP. In the traffic light example, s0a1s1 is a path fragment
that is initial and (s0s1)

ω is an execution and therefore both
initial and maximal. The notation ρω denotes a infinite path that
consists of ρ repeated infinitely.

4.2.3 Reachable States

A state s is said to be reachable if there is an initial path that
includes s. [Baier and Katoen, 2008] defines Reach(TS) as all the

38 model checking

states that are reachable from all the initial states in a transition
system TS. In the traffic light example, Reach(TS) = S, that is, all
states in the traffic light system are reachable from the initial state
via the relation −→. Reach(s) where s ∈ S can also be defined as
all the states reachable from state s via the transition relation.

4.2.4 Expressing Models

A model can be expressed in a number of ways. For instance,
process calculi such as CSP [Hoare and Hoare, 1985; Roscoe et al.,
1998] can be used to express a model from which a transition sys-
tem can be extracted. Promela [Holzmann, 1997] is a prominent
model specification language, used as the input language for the
model checker SPIN [Holzmann, 1997]. JPF [Visser et al., 2003]
has shown that the Java programming language can be used
to specify models, automatically extracting transition systems
from Java bytecode. Model checking tools also exist for the .NET
platform [Aan de Brugh et al., 2009] and C/C++ [Clarke et al.,
2004].

4.3 specification of properties

Once a model of the system has been constructed, or extrac-
ted from mainstream industry languages, the properties of the
model to be verified must be expressed. Specifications are com-
monly formalised in a temporal logic [Baier and Katoen, 2008;
Clarke et al., 2000], a class of languages that can describe paths
(sequences of states) in a model. The use of temporal logic in
automated model checking was introduced by [Clarke et al., 2000;
Clarke and Emerson, 1981; Emerson, 1981]. When temporal logic
is used to reason about the system model, the logic can refer to
either the states along a path, the actions along a path, or both.
A specification consists of the paths, or properties, a transition
system should exhibit. A specification language expresses sets of
paths or properties.

Properties can have one of two forms. The first, safety properties,
specify conditions that must be satisfied in all states or paths
of a model. An example of a safety property is an invariant on
all states and paths in a model. For instance, in the sequential
traffic light model, we may wish to check that both lights never
enter the green state in any part of the model. The other form
is liveness properties, which are used to specify properties that
must be satisfied eventually by a model. An example of a liveness
property in the sequential traffic light model is a “state where
one light is red and one light is green must be reachable”.

[Baier and Katoen, 2008] uses the following perception to define
the two. Safety properties generally state that “a bad event b

4.3 specification of properties 39

must never happen”, and liveness properties generally state that
“a good event g must happen infinitely often”. For an event
e to happen infinitely often, it must be the case that event e
does not not happen for an infinite amount of time [Clarke et al.,
2000; Baier and Katoen, 2008]. An event e in this context is a
particular path fragment ρ, i.e. a particular sequence of states are
visited, or a particular sequence of transitions are executed. Safety
properties are violated by finite paths to states that violate the
given safety property. Liveness properties, however, are violated
by the presence of infinite paths that do not satisfy the given
liveness property [Baier and Katoen, 2008].

4.3.1 Temporal Logics

The prevalent temporal logics used in model checking extend
traditional proposition logic with temporal modalities [Clarke
et al., 2000]. Temporal logics allow the expression of the order
of events, which is useful when describing properties in a state-
space model. There are a number of different temporal logics
available, coupled with efficient algorithms for processing them
with respect to a model [Clarke et al., 2000; Baier and Katoen,
2008].

Most temporal logics allow the expression of the following
two modalities [Baier and Katoen, 2008; Clarke et al., 2000]. The
first, ♦, means eventually in the future from the current time.
An example usage of this operator is ♦a, meaning that the pro-
position a will eventually be satisfied by a state reachable from
the “current” state. The second, �, means always in the future
from now onwards. �a expresses that a holds true in every state
reachable from the current state, including the current state.

The types of temporal logics available to a practitioner depend
on the model checking tool in use. Most model checking tools
allow for the checking of invariant properties as the algorithms
for checking invariant properties are simple. More sophisticated
and established tools, such as the SPIN model checker, allow the
user to specify properties in a temporal logic known as Linear
Temporal Logic (LTL) [Clarke et al., 2000]. Alternative temporal
logics exist, including Computation Tree Logic (CTL) [Clarke and
Emerson, 1981; Queille and Sifakis, 1982], Extended Computation
Tree Logic (CTL*) [Baier and Katoen, 2008].

For a full description of how temporal logics can be used to
express the behaviour of concurrent systems, I refer you to both
[Baier and Katoen, 2008] and [Clarke et al., 2000].

40 model checking

4.4 verification

Once a model has been constructed and the specification real-
ised, the chosen model checking tool performs a search on the
model for violations of the specification. The problem is to verify
that TS |= Φ, that is all states and paths in the transition sys-
tem TS satisfy the specification Φ [Clarke et al., 2000; Baier and
Katoen, 2008]. Traditional model checking algorithms focus on
completeness and correctness using exhaustive algorithms thus
guaranteeing that a model satisfies a given property.

The verification process is largely automatic and has one of
three outcomes [Clarke et al., 2000]. The tool can return yes, indic-
ating that the specification is satisfied by the model. The tool can
also return no, indicating that the model does not satisfy the prop-
erty. When the tool returns no, it can also return a counterexample,
a path in the model that violates the property.

The last result a model checking tool can return is an error
indicating that the tool ran out of resources whilst traversing the
model. This is typically the result of the underlying transition
system being too large to fit into memory. To check safety prop-
erties, an exhaustive search of the model is required to be sure
that no path violates the property. For liveness properties, it is
sufficient to search the model for a single path that satisfies the
property.

If a counterexample is returned, this can then be used to debug
either the specification or the model, depending on where the
error is situated. Whilst one can be assured that the modelled
system satisfies the specification, it is still possible for modelling
and specification errors. Once the error has been corrected the
verification stage is executed again, leading to an iterative process
of verification and debugging until a fixed point is reached. If
a resource is exhausted, the model must be refined in order to
fit the full model into memory. This typically involves removing
irrelevant information, either explicitly or by abstraction.

The algorithm used for the checking the model against a spe-
cification depends on what type of property is being checked,
and how it is expressed. The complexity of the algorithm used
generally increases with the expressiveness of the language used
to specify the property.

4.4.1 Checking Invariant Properties

A invariant is a property of the form �Φ [Baier and Katoen, 2008].
A property of this form describes that all states that are reachable
from the initial state(s) of the transition system must satisfy the
condition Φ. Φ is a formula over the atomic propositions in AP,
and can only refer to states, not paths or path fragments [Baier

4.4 verification 41

and Katoen, 2008]. A property of this form requires an exhaustive
traversal of all reachable states in a transition system. Exhaustive
traversal of a finite transition system is typically performed using
a breadth or depth-first search (BFS or DFS respectively), and
each state s visited is checked for s |= Φ [Baier and Katoen,
2008]. If a state is found where s 6 |=Φ, then the algorithm returns
false, indicating that TS 6 |=Φ. The algorithm can also return a
counterexample, a path fragment through the transition system
that begins in an initial state and ends in the state that violated
Φ. If the algorithm exhaustively checks all states and finds no
violation of Φ, then the algorithm returns true, indicating that
TS |= Φ.

4.4.2 Checking Safety Properties

Invariant properties are a subset of safety properties. Verifying
safety properties that place requirements on paths in a transition
system requires a more complex procedure. Rather than searching
for a reachable state that violates the given safety property, one
must search the transition system for a finite path from the initial
state that violates the safety property. A path is this form is
known as a bad prefix [Baier and Katoen, 2008].

The goal of checking a model for violations of a safety property
Φsafe is to exhaustively search the model for a path in a transition
system that is in the set of all bad prefixes defined by the negation
of the given safety property [Baier and Katoen, 2008]. If a path
π ∈ BadPrefixesTS is found, then π is returned along with false,
indicating that transition system TS 6 |=Φsafe. If no path can be
found that is in the set of bad prefixes after an exhaustive search,
then true is returned indicating that TS |= Φsafe. There is also
a preference on finding shorter bad prefixes, as a short path is
easier to debug. The exhaustive checking of a safety property can
also be performed using a DFS or BFS [Baier and Katoen, 2008].

4.4.3 Checking Liveness Properties

Liveness properties express that “something good will happen”.
In order for a transition system to satisfy a liveness property
Φ, the transition system must be checked for the absence of a
path that does not satisfy Φ. This is equivalent to finding a finite
path fragment that satisfies ¬Φ and then finding a cycle in the
transition system that includes the state that satisfies ¬Φ [Baier
and Katoen, 2008]. Checking a liveness property can be achieved
by repeatedly executing a DFS to find a path that satisfies ¬Φ,
and then executing another DFS from that state to discover a
cycle.

42 model checking

4.4.4 Complete Model Checking Mechanisms

Complete, or global, model checking mechanisms refer to the
verification methods that exhaustively traverse a transition sys-
tem to ensure conformance with a given specification. Different
mechanisms are required depending on the particular property
being verified. [Clarke et al., 2000; Merz, 2001; Baier and Ka-
toen, 2008] excellent resources for these types of mechanisms. For
the sake of brevity, they are not included here as they require
in-depth explanations.

4.4.5 On-the-fly Model Checking

The verification stage can happen off-line or on-the-fly (OTF).
When performing off-line verification, the entire transition sys-
tem is generated and then a graph traversal algorithm is applied
to the generated system. This is known as global model checking
by [Baier and Katoen, 2008]. On-the-fly model checking, on the
other hand, generates the model as part of the graph traversal
algorithm, effectively combining the transition system generation
stage and the traversal stage. OTF model checking has the poten-
tial advantage of revealing counterexamples without having to
generate and store the entire transition system. This approach
is taken by the Java PathFinder tool, as well as other software
model checkers.

4.4.6 Guided Model Checking

When performing the verification stage of the model checking
process, it may be preferable to discover errors in the model as
quickly as possible. Discovering errors quickly can help reduce
the verification and debugging cycle described earlier. When
using on-the-fly model checking, finding the error sooner rather
than later results in less of the model being generated before an
error is found. This may well be the only option when it comes
to checking large systems that are impossible to fit into memory.

Exhaustive DFS as described above traverses the state-space
blindly, expanding the next transition in a system in a fixed order
or random fashion. An improvement can be made by attempting
to choose transitions that will more likely lead to violations of
the specification. This is the essence of guided model checking
[Yang and Dill, 1998], also referred to in the literature as dir-
ected model checking [Edelkamp et al., 2001a]. Guided model
checkers use heuristic information [Russell et al., 1995], gained
from the current state, path and domain specific information, in
order to expand parts of the state-space that are more likely to
contain errors [Yang and Dill, 1998]. The guided model check-

4.4 verification 43

ing algorithms are referred to as the class of best-first search
algorithms in [Russell et al., 1995]. A heuristic in this circum-
stance ranks the possible successor states to expand based on
how “close” they are to a state that violates a property.

A number of algorithms can use heuristics to guide the tra-
versal of the state-space toward errors. The most basic is greedy
best-first search [Russell et al., 1995], which expands the state
ranked highest by the heuristic first. This is similar to DFS, but
the depth-first expansion is chosen according to the heuristic.
More sophisticated mechanisms exist such as A* search [Russell
et al., 1995], which aims to return the shortest path to an error
state.

4.4.7 Strengths and Limitations of Model Checking

Model Checking has a number of advantages over techniques dis-
cussed in Chapter 3 when testing/verifying concurrent software.
Once a system has been described and a specification sourced,
error detection or complete proof can be achieved through auto-
matic methods given enough resources. If a counterexample is
found, the information gained is very useful in debugging as
the precise circumstances of an error are returned. Specifications
can be rich, and can even express temporal aspects through the
use of the temporal logics highlighted earlier. The technique is
quite general, being able to operate in circumstances where a
state space can be extracted from some description of a system,
including mainstream languages such as Java.

Model checking does have some limitations. Whilst one can be
sure that a model satisfies some specification after an exhaustive
check, there is still the issue of whether the model/specification
accurately reflect the intentions of practitioners. This issue is
alleviated to some respect when extracting models automatically
from mainstream languages and checking for generic problems
like deadlock. Model checking has some issues with dense data
types [Baier and Katoen, 2008], such as real values, which can
limit the applicability of the technique in practical circumstances.
Some difficulty arises when systems comprising of components
described by many different languages, as the model checking
apparatus typically does not support this kind of analysis.

The most prominent issue with model checking is what is
known as the state-space explosion problem [Baier and Katoen,
2008; Clarke et al., 2000]. It is typically the case that as the size
of the description of a system increases, or indeed the number
of concurrent components of a system increases, then the size of
the state space to be checked increases exponentially. This prob-
lem makes some systems impossible to check exhaustively, and

44 model checking

can cause issues for guided and metaheuristic model checking
algorithms.

4.4.8 Metaheuristic Model Checking

Along with guided model checking techniques, metaheuristic
model checking attacks the state-space explosion issue by focus-
ing the search of the state space more likely to reveal an error.
By using the model checking framework, comprising of explicit
state space exploration and a rich specification language, a meta-
heuristic search technique can be used to test concurrent systems
for a variety of faults. These faults include anything that can be
specified in a temporal logic, including deadlock. Since model
checkers for mainstream languages such as Java and the .NET
platform exist, practitioners can potentially exploit the benefits of
model checking in practical/industrial scenarios. However, the
same limitations of model checking apply.

A detailed overview of metaheuristic search algorithms is given
in Chapter 5. A critical overview of metaheuristic methods ap-
plied to model checking is given in Chapter 6.

4.5 summary

In this chapter, I have described how model checking techniques
can be used to verify properties of concurrent systems. I have
described how exhaustive techniques verify a system conforms
to a specification, and how the state-space explosion problem
limits the applicability of an exhaustive proof. When faced with
this scenario, I have described how guided and metaheuristic
model checking techniques can be used to show the presence of
an error rather than the absence of one. This approach is effect-
ively software testing, exploring parts of the program state space
that are more likely to contain an error. In this scenario, model
checking tools are exploited for their ability to examine the state
space explicitly, as well as being able to check potentially complex
specifications, rather than their exhaustive proof capabilities.

In the following two chapters, I will give a detailed overview of
metaheuristic search techniques, and show how they have been
applied to the problem of searching transition systems. I will
describe the state of the art, and highlights gaps where I hope to
bring novelty to the field.

5
M E TA H E U R I S T I C S E A R C H

5.1 introduction

A solution space is the set of all solutions to some problem. Some
members of the solution space may be a “better” solution, by
some measure of fitness or evaluation, than other members. A
solution space may be large in size, so large in fact that enumera-
tion of the entire solution space is unfeasible. In situations where
enumeration of the solution space is unfeasible, one can sample
the solution space in the hopes of finding or getting close to the
best solution.

An example problem is the MaxOnes(v) problem, also known
as OneMax [Eiben and Smith, 2003] or the bit counting problem
[Chen et al., 2002]. MaxOnes(v) takes a vector v where each
vector element vi is either 0 or 1 and returns

∑n
i=0 vi where n

is the length of vector v. For example, MaxOnes(100) = 1 and
MaxOnes(111) = 3. The input vector can be referred to as a
string of bits, or a bit string. In this problem, the optimal solution
is a vector w such that all vector elements wi are of value 1, i.e.
the value returned byMaxOnes(w) is the length of vector w. The
MaxOnes problem has a solution space of size 2n where n is
the length of the input vector, which becomes very large for large
n. MaxOnes in this case is the measure of fitness, sometimes
referred to as the fitness function [Eiben and Smith, 2003], objective
function [Russell et al., 1995] or evaluation function [Eiben and
Smith, 2003].

One possible method of sampling the solution space is repeated
uniform random sampling, storing the best solution found so
far. In the MaxOnes example, this would amount to repeatedly
generating a vector w, where each vector element wi is either 0
or 1 with equal probability. MaxOnes(w) is evaluated, and if the
result is better than the result for the best vector so far b, then
b := w. No information from the history of solutions generated
is used. If this method were to run for an infinite amount of time,
this mechanism is guaranteed to stumble upon the fittest solution.
However, in the majority of cases, one does not have an infinite
amount of time, and would like a solution in some finite time
frame. In this case, a more refined sampling strategy is required.

45

46 metaheuristic search

5.1.1 Metaheuristic Search

Metaheuristic search techniques represent one possible imple-
mentation of such a strategy. Metaheuristic search techniques
utilise a heuristic to help solve the problem of finding a solution
in some solution space [Russell et al., 1995]. A heuristic provides
information on how far a particular solution is from some desired
optimum [Russell et al., 1995]. Metaheuristic search techniques
can potentially use information from the history of a search,
i.e. the solutions that have already been checked. Metaheuristic
search techniques aim to sample the solution space effectively in
order to find a solution with less computational cost than explicit
enumeration or random sampling.

The metaheuristic search techniques reviewed in this chapter
take two major inputs. The first is some representation of the
solution space. This is an encoding of the solution space that can
be processed by machines and is typically easily manipulated.
For example, the MaxOnes problem solution space is a bit string
of length n, and an encoding of this solution space can also be a
bit string of length n. Another possible encoding is to use a single
integer i which encodes the number of 1s in the bit string. The
second input is the evaluation function described above. Meta-
heuristic search techniques use this information, and potentially
more, to effectively sample the encoded solution space.

5.2 local search

Local search techniques are a class of metaheuristic search tech-
niques. Local search mechanisms store and operate on a single
point x in the search space [Reeves, 1993]. x represents the current
solution of the current iteration [Russell et al., 1995]. The point x
is a particular instance of an encoding [Eiben and Smith, 2003] of
the solution space. A local search algorithm transitions through a
series of time steps, or iterations. At each time step, a non-empty
set of candidate solutions C is generated. The members of C are
some function of the current solution x. Then, according to a
selection policy, x is assigned to some y ∈ C ∪ (x). This can be
described as accepting a candidate solution in C∪ (x). The local
search algorithm stores the best solution b found so far, updating
b at each time step if a better solution is found. Initially, x is set
to some candidate solution in the solution space. x can be seeded
with a best known solution, or a randomly selected solution. The
algorithm terminates when some termination criterion are met,
such as the optimum solution being found or after some amount
of iterations.

The generation of the candidate solution set C amounts to a
sampling of the neighbourhood of the current solution x [Reeves,

5.2 local search 47

1993]. The neighbourhood of the current solution x is a function of
x and some manipulation operation. The neighbourhood is the set
of all possible results from applying the manipulation function to
the current candidate solution. Therefore, the candidate solution
set C is a subset of the neighbourhood of x. In the MaxOnes
example, a possible manipulation function could be as simple as
flipping a randomly selected bit xi in the current solution vector
x. An example of a bad manipulation operator for the MaxOnes
problem is one that swaps values of a randomly selected bit
xi with another randomly selected bit xj. This manipulation
operator has no effect on result of the fitness function, since the
number of 1s in vector x has not changed.

There are many variations on local search algorithms. A local
search mechanism is typically defined by how the candidate set
C is generated, and what selection mechanism is used. One of the
simple examples is the random walk algorithm. The candidate
set C at each time step only has one member y. The member
is obtained by sampling the neighbourhood as defined above.
The selection policy of the random walk algorithm is to always
choose the generated candidate solution y, even if y is less fit
than current solution x. Given an infinite amount of time, random
walk will find the optimum solution [Russell et al., 1995].

A possible improvement to the random walk algorithm is to
alter the selection policy to only accept the candidate solution
y if the fitness of y is greater than the fitness of x according
to the fitness function. With this selection policy, the current
solution x can only either stay the same or improve over time.
This particular variant of local search is known as hill climbing
[Russell et al., 1995; Reeves, 1993].

5.2.1 Convergence and Optima

Hill climbing highlights one of the potential pitfalls of local search
and search in general. Hill climbing accepts better candidate
solutions only, i.e. the algorithm only moves to better parts of the
solution space. A move in local search is when the current solution
x is changed. If the algorithm only moves to better solutions in
the solution space, then the algorithm risks getting stuck in a
local optima, sometimes called local maxima [Russell et al., 1995].

A solution space can have one or more global optima, i.e.
best solutions in the solution space. An interesting (i.e. non-
trivial) solution space will have one or more local optima. A local
optimum is defined as a point in the search space that is not
a global optima and whose neighbourhood consists of less fit
solutions only [Russell et al., 1995]. Once a hill climbing search
has moved to a point in the search space that is locally optimal,
the search will not progress to any better solutions. The hill

48 metaheuristic search

climbing algorithm is trapped in the local optimum. When a
search algorithm cannot make any progress, i.e. it is not possible
for the algorithm to find a better solution than the current point,
then the algorithm is said to have converged [Reeves, 1993]. Ideally,
one would like for a search algorithm to converge on a global
optimum.

5.2.2 Landscapes

The fitness values of members in a solution space can be plotted
against the aspects, or parameters, that constitute the solution. A
visualisation of the solution space of this kind is known in the
literature as a fitness landscape [Langdon and Poli, 2002; Wright,
1932]. For example, the fitness of MaxOnes can be plotted on
a 2D graph, where the x-axis represents the number of bits set
to 1, and the y-axis represents the respective fitness of x. This
landscape is depicted in figure 12c. The landscapes resemble
mountainous regions of land, in which the height of a particular
point is analogous with a solutions fitness [Langdon and Poli,
2002]. Local search algorithms can be seen as sending an agent
to wander a fitness landscape with visibility restricted to the
neighbourhood, with the mission of finding the highest peak in
the landscape. This leads to the analogies of walking and hill
climbing.

Characterisations can be made of a fitness landscape, and ana-
lysis of a landscape can aid in the choosing of search technique
and the setting of any parameters. Examination of a fitness land-
scape can yield clues as to how hard a problem is for a particular
search technique [Langdon and Poli, 2002]. The MaxOnes land-
scape is an example of a fairly trivial landscape. From any point
in the solution space, except for the global optimum, the only
possible way of improving the solution is to increase the tally
of 1s in the solution. However, interesting solution spaces rarely
exhibit this property.

Interesting solution spaces are likely to be deceptive in nature
[Whitley, 1991]. An example of a fitness landscape of this kind is
depicted in figure 12a. In this landscape, there is one local optima
and one global optima. The local optima is “far away” in terms of
features from the global optima but is of high fitness. The density
of fitter solutions is skewed toward the local optima, which will
cause problems for many search techniques.

Rugged landscapes are landscapes that contain many local op-
tima. Figure 12b depicts a rugged landscape, and figure 12c
shows a landscape that is not classed as rugged. When search-
ing over a landscape that has many local optima, the chance of
converging on a local optimum increases over a landscape that
contains fewer local optimum.

5.2 local search 49

(a) Deceptive landscape (b) Rugged landscape

(c) Easy landscape

Figure 12: Example landscapes

5.2.3 Fitness Function

From the description of fitness landscapes above, one can see that
the difficulty of a problem for a search technique is defined by
the fitness function. The choice of fitness function for use in a
metaheuristic search technique can be crucial. A simple example
to demonstrate this is the use of Gray coding when operating
over a binary string. When one uses a typical binary encoding
scheme for integers, it is not always possible to achieve a similar
phenotype (integer) by making a small change to the genotype
(binary string). However, when using a Gray coding scheme, it
is always possible to reach a similar integer (the preceding or
successive integer) by changing a single bit in the bit string. This
yields a higher likely hood of similar phenotypes resulting from
mutations in the genotype.

5.2.4 Simulated Annealing

In order to increase the chances of converging on the global
optimum, a more sophisticated search mechanism is needed.
Either the neighbourhood sampling mechanism or the selection
policy must be improved in order to avoid getting trapped in
local optima. If one were to focus solely on the selection policy,
the policy must allow the possibility of accepting moves that

50 metaheuristic search

aid in escaping from local optima. One such selection policy
forms part of the implementation of a technique called simulated
annealing [Kirkpatric et al., 1983]. Simulated annealing is based on
observations of the metallurgic process of annealing. The process
of annealing strengthens a metal by heating it up, and allowing it
to cool slowly. Cooling the metal slowly allows for the structures
within the metal to form a stronger overall structure, as opposed
to quick cooling which is more likely to result in the overall
structure being in a weaker state [Russell et al., 1995].

A similar idea is employed in simulated annealing. The selec-
tion policy employs the notion of a temperature. The temperature
represents the probability of accepting a candidate solution if
it is a move to a less fit solution in the search/solution space.
The higher the temperature, the higher the probability that a
worsening move is accepted. Also, the more sacrificial the move
is, the less likely it is to be accepted. The temperature is gradually
reduced according to a cooling schedule over the course of the al-
gorithm until it reaches some minimum level. As the temperature
approaches the minimum level, the algorithm degrades into hill
climbing as there is zero probability of the algorithm accepting
a worsening move. At this time, it is assumed a good portion of
the search space has been sampled, and that a good solution has
been found. If this is not the case, the temperature is raised and
the algorithm continues to sample the solution space.

5.3 other local search mechanisms

Many variations on traditional local search algorithms can be
devised in order to more effectively sample the solution space.
For instance, Tabu search [Glover, 1986; Reeves, 1993] exploits
information from the history of moves gathered during the course
of a search. Tabu search maintains a tabu list that contains recently
visited areas or states, which the algorithm is prohibited from
returning to. Restricted parts of the search space are gradually
forgotten over a number of iterations. The selection policy of
tabu search denies any move that is on the tabu list, but can be
overridden by aspiration criteria [Reeves, 1993]. For example, one
does not wish to deny a move to a solution that is the best so far
even if the move is in the tabu list.

5.4 population-based search

The above sections discuss algorithms that operate on a single
point in the solution space. In this section, metaheuristic search
techniques that operate on a set of points in the solution space,
commonly referred to as the population, shall be discussed. By
operating on multiple points in the search space, one can exploit

5.4 population-based search 51

the additional information provided by storing multiple points
in the solution space in the hope of converging on global optima
using less computational resources. In the fitness landscape ana-
logy, this is equivalent to having multiple searching agents on
the landscape, co-ordinating in order to efficiently head toward
the global peak [Langdon and Poli, 2002].

5.4.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are one class of stochastic population-
based metaheuristic search techniques. EAs attempt to exploit
the theory of Darwinian evolution [Darwin, 1860] and natural se-
lection in order to evolve a population of solutions over a series of
generations. Simulated selection pressure and reproductive mech-
anisms are employed to guide the population toward a set of
solutions to some problem. The reproductive mechanisms are
used by EAs as a way of exploiting the additional information
in a population of solutions to help guide the search [Eiben and
Smith, 2003].

Evolutionary algorithms operate on a population of solutions.
Initially, the population can be randomly generated or seeded
with previously best known solutions. EAs step through a num-
ber of iterations, and the population at iteration i is referred to as
generation i. Each generation of solutions is evaluated according
to a fitness function, and those values are linked to each solution.
The evaluation by fitness function is analogous to a creatures abil-
ity in the natural world to obtain resources and survive [Eiben
and Smith, 2003].

To generate the successor generation i+ 1, solutions are selec-
ted from generation i. This selection process is typically biased
toward the fitter individuals in the population based on their
fitness function value, mimicking competition for survival (selec-
tion pressure) in the Darwinian view of the natural world. The
selected individuals from generation i are described as seeding
generation i+ 1 [Eiben and Smith, 2003]. An EA then generates
new candidate solutions by combining the selected solutions us-
ing reproductive operators, sometimes known as recombination
operators, analogous to sexual reproduction in the natural world.
The hope is that the “children” of the recombination process
will exhibit the features that made the selected “parents” evalu-
ate highly in terms of fitness. Parent solutions are recombined
enough times to yield an equally sized successor generation.
Mutation in the natural world can also be modelled, and is typic-
ally applied after the recombination stage. A mutation operator
is applied to members of generation i + 1 typically with low
and independent probability. A mutation operator takes a single
solution and outputs a similar but different solution.

52 metaheuristic search

Figure 13: Algorithm of a vanilla EA

1 //Initial population with random or seeded solutions

2 INITIALISE(population);

3 //While the termination condition is not satisfied

4 while (NOT(TERMINATION_CONDITION)) {

5 //Evaluate all solutions in population

6 EVALUATE(population);

7 //Select parents from previous generation

8 parents = SELECT(population);

9 //Produce children from parents using

recombination operators

10 new_pop = RECOMBINE(parents);

11 //Apply low probability mutation to children

12 MUTATE(new_pop);

13 //New solutions become new generation

14 population = new_pop;

15 } �
This process of selection, recombination and mutation is ap-

plied repetitively. The use of artificial selection pressure and
recombination operators act as a guide to increasing the average
fitness of the population [Eiben and Smith, 2003]. The recombina-
tion and mutation operators aid in maintaining diversity within
a population, in order to increase the chance of novel solutions
being discovered [Eiben and Smith, 2003]. The process is repeated
until some termination criterion is satisfied. The termination cri-
terion can be that an optimal solution is found, or that a certain
number of solutions have been evaluated. The process is depicted
in figure 13 showing an algorithmic description.

Variations can exist on the pseudo-code above. For instance,
when constructing the next generation, one can use a steady-state
approach where a finite number of solutions in the previous
generation are replaced by newly constructed solutions. This is
opposed to the generational approach above, where the entire
population is replaced by a newly constructed set of solutions.
Despite some of the variations, the underlying concept of selec-
tion and recombination is common throughout all instances of
EAs.

5.4.1.1 Prominent Examples of EAs

One of the most of prominent instances of an EA is the Genetic
Algorithm (GA). Widely attributed to [Holland, 1975], GAs are
the archetypical implementation of an EA for bit string solu-
tion spaces, or indeed vectors of most data types. The MaxOnes
problem outlined above has a bit string solution space, meaning
that popular GA methods and implementations can be applied.

5.4 population-based search 53

Vector recombination and mutation operators are defined and
have been well studied for various problem types [Goldberg,
1989]. GAs have been shown empirically to be effective in many
problem domains [Goldberg, 1989], and theoretical work exists
attempting to explain why GAs perform well [Holland, 1975]. In
the next chapter, I will describe how GAs have been applied to
the transition system search problem.

Other instances of EAs include Genetic Programming [Koza,
1992], that selectively samples the solution space of computer
programs in order to find solutions to programming problems,
and Grammatical Evolution [Ryan et al., 1998] which searches
the space of solutions that conform to particular grammars.

5.4.2 Ant colony optimisation

Ant colony optimisation (ACO) is a stochastic population-based
metaheuristic search technique that exploits observations on the
path finding ability of ant colonies when foraging for resources
[Dorigo and Di Caro, 1999]. ACO operates on solution spaces
represented as a graph structure. The nodes of this graph struc-
ture are components of a solution. The edges of the graph are
possible connections between each component, and each link has
an associated cost. There can also be a set of constraints over the
nodes and edges in the graph. A solution s in this structure is
represented by a sequence of states linked by connections that
satisfies any given constraints. s has a cost, defined by the cost of
all the links between the states in the sequence s.

ACO simulates a set of agents (Ants) that co-operate to discover
a solution. ACO discovers a sequence of states in the graph struc-
ture defined above that has minimal cost. Each agent traverses the
structure in an effort to discover a minimal costing path through
the graph. The ant starts in a particular component, and traverses
edges that are feasible with respect to the constraints. The ant
does this repeatedly, incrementally building a sequence of states
representing a solution. A choice of multiple edges is decided
by a probabilistic function, which is a function of the problem
constraints, the fitness function and an implicit communication
medium between ants.

The ant agents implicitly communicate via the use of pher-
omones. As an ant traverses an edge, the ant deposits pheromones
upon that edge. The more pheromone on an edge, the more likely
an ant is to choose to traverse that edge. Pheromone deposits
evaporate over time, evaporating more quickly on edges with
higher cost. Over time, given enough ant agents navigating the
graph structure, short paths to goal states (or good solutions) are
reinforced. The implicit self-organisation of the ant agents via
pheromone communication classes ACO as a swarm intelligence

54 metaheuristic search

optimisation algorithm, where multiple agents cooperate to solve
a problem.

A detailed description of ACO can be found in [Dorigo and
Di Caro, 1999]. ACO has been found to be effective when solving
a variety of problems, including routing/traffic problems [Sim
and Sun, 2003], scheduling problems [Merkle et al., 2002] and
data mining [Parpinelli et al., 2002]. ACO has shown strength
in problems where the goal state changes over time, such as
dynamic traffic management [Sim and Sun, 2003].

Another notable swarm intelligence inspired algorithm exists,
namely Particle Swarm Optimisation [Kennedy and Eberhart,
1995] (PSO), which draws inspiration from the intelligence move-
ment of flocks of birds and schools of fish. PSO is designed to
optimise vectors of real numbers, but can be adapted to optimise
discrete problems such as those suited to ACO.

5.5 estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) [Mühlenbein and
Paaß, 1996] operate on a probabilistic model of the solution space,
whilst maintaining a population of solutions at each iteration.
A model of the solution space is constructed from the better
solutions in an initial random sample of the solution space. This
model is then used to generate a new set of candidate solutions,
and the better solutions from the new set are used to improve
the model. This process is repeated until some termination cri-
terion has been reached. EDAs are also known as probabilistic
model-building genetic algorithms (PMBGAs) [Pelikan et al.,
2002]. EDAs can be thought of as a subset of Evolutionary Al-
gorithms, where the recombination and mutation step are imple-
mented by a model building and model sampling step.

5.5.1 Example EDA

To describe the function of an EDA, I shall describe one of the
simplest implementations. This algorithm is known as the Uni-
variate Marginal Distribution Algorithm (UMDA) Mühlenbein
and Paaß [1996]. The algorithm samples solution spaces described
by strings of bits and roughly follows the generic EDA algorithm
described in Figure 14.

The algorithm holds an initial model of solutions in the solution
space. This model is represented by a vector m of probabilities
mi that is a fixed length. Initially, nothing is known about the
solution space, so each probability is set to 0.5, and these values
are updated as the algorithm progresses. The algorithm builds
an initial set of candidate solutions that are bit strings the same
length as m. For each bit i in each candidate solution c, a random

5.5 estimation of distribution algorithms 55

Figure 14: Algorithm of a vanilla EDA

1 //Initial model with no bias toward any solution

2 INITIALISE(model);

3 //Initial sample of the solution space

4 SAMPLE(sample);

5 //While the termination condition is not satisfied

6 while (NOT(TERMINATION_CONDITION)) {

7 //Evaluate all solutions in the sample

8 EVALUATE(sample);

9 //Select best candidates from sample

10 best = SELECT(sample);

11 //Update model based on best candidates

12 UPDATE(model,best);

13 //Sample solution space with model

14 SAMPLE(sample, model);

15 } �

0.66 0.33 0.66

1 0 1

0 1 1

1 0 0

Selected individuals

UMDA Model

Figure 15: UMDA modelling process

real-valued number r between 0 and 1 is generated. If r < mi
then ci is set to 1, r > mi then ci is set to 0. Each ci in the model
represents the probability of the ith bit of a candidate solution
being a 1.

Once a set of candidate solutions are generated, the candidates
are evaluated and the best n candidates are selected from the
candidate solution set using standard EA selection operators.
Then, each element mi of the model m is updated by taking the
average of all the sis, where s is a member of the selected best n
individuals. For example, the candidate solutions 100, 011 and
101 would result in the model 0.66..., 0.33..., 0.66.... This process
is illustrated in Figure 15.

56 metaheuristic search

5.5.2 Types of EDA

The various forms of EDAs differ from each other in terms of
the complexity of the model that they construct [Pelikan et al.,
2002]. [Pelikan et al., 2002] gives a good survey of the various
PMBGAs and the model constructions they employ. The simplest
algorithms assume that genes are independent of one another.
The algorithm described above, UMDA, is an example of an EDA
that assumes that there are no interactions between the bit vari-
ables. Other example algorithms that use a gene independent
model are the population-based incremental learning (PBIL) al-
gorithm [Baluja, 1994] and the compact GA (cGA) [Harik et al.,
1998].

More complex EDAs exist that assume interactions between
genes. Graduating from simple approaches such as UMDA,
slightly more complex algorithms assume that simple relation-
ships exist between genes. An example algorithm of this kind
is the mutual information-maximising input clustering (MIMIC)
algorithm [de Bonet et al., 1997], that assumes a chain distribu-
tion between neighbouring genes [Pelikan et al., 2002]. MIMIC
assumes that a gene directly influences its immediate neighbour.
At the most complex end of the EDA spectrum, the Bayesian
Optimisation Algorithm (BOA) [Pelikan et al., 2000] can build
arbitrarily complex models using little domain specific informa-
tion. The model takes the form of a bayesian network between
the variables in the solution space. The more complex the model,
the more expensive the the algorithm is in terms of computation
costs [Pelikan et al., 2002]. There are also a variety of EDAs for
modelling real numbered vectors. Additionally, EDA equivalents
of Genetic Programming have been developer with some success
[Pelikan et al., 2002].

5.5.2.1 Advantages and Disadvantages of an EDA

EDAs have been shown to outperform GAs and other evolution-
ary algorithms on a variety of difficult optimisation problems
[Pelikan et al., 2002], as well as being more robust when faced
with the deceptive problems described earlier in this chapter. This
suggests that a greater success can potentially be achieved using
EDAs instead of GAs or ACO for searching transition systems.
Any reduction in the number of states explored during the search
of a transition system is desirable, as expanding the state space
through on-the-fly methods tends to be the most expensive aspect
of model checking.

The primary disadvantage of using EDAs is that the model
building step for the more complex algorithms, such as BOA,
tends to be computationally expensive. For problems with a large
number of variables (i.e. a large bit string per solution) the cost of

5.6 summary 57

building a Bayesian network model of the best solutions can be
prohibitively high. GAs and other EAs tend to have computation-
ally cheap recombination operators and therefore do not suffer
from this problem. I believe, however, that the expense incurred
by using EDAs to search will be overwhelmed by the expense of
exploring the state space of a transition system

In addition to this, the majority of EDA algorithms operate
on bit string solution spaces. Whilst some work has been done
applying the model building meme to other solution spaces, such
as PIPE Salustowicz and Schmidhuber [1997], it can require a
great deal of effort to define probabilistic modelling techniques
for richer variable types.

5.6 summary

In this chapter I have introduced metaheuristic search techniques,
and have highlighted prominent algorithms within the field. In
the next chapter, I will survey the state of the art of applying the
techniques discussed in this chapter to the problem of searching
transition systems/state spaces. I will then highlight a gap in the
research, and outline an algorithm proposal to fill this gap.

6
M E TA H E U R I S T I C S E A R C H O F T R A N S I T I O N
S Y S T E M S

Making use of model checking frameworks allows us as research-
ers to check for a wide variety of fault types, assuming that your
fault can be expressed in the specification language of a given
model checking tool. The property “a system must never dead-
lock”, for example, can be expressed as an invariant that says
that in all states of a concurrent transition system, at least one
subsystem must be able to progress. As stated earlier, an invari-
ant can only refer to state properties in AP. When safety is of
primary concern, the invariant property must be checked by us-
ing a systematic traversal of the state-space in order to find states
that violate the invariant, and returning a counterexample for
debugging purposes. When searching for safety errors, a counter-
example consists of a finite path to the error state, known as a
bad prefix. Searching for liveness errors in a transition system
is a more complicated task than searching for safety violations,
as an infinite path that violates a property must be discovered.
This involves finding a path that violates the property, and then
a cycle to the state at the end of that path.

In order to focus the traversal on states which are more likely
to violate the invariant, a guided complete model checking al-
gorithm with a suitable heuristic can be used to find erroneous
states sooner without having to expand the entire state-space.
Despite initially focusing on areas of the state-space that may
violate the property, guided model checking algorithms may run
into resource constraints if the transition system of a model is too
large to fit into memory. In this situation, it may be desirable to
sample the state-space intelligently in order to gain assurance of
the correctness of the software. This arguably amounts to a form
of testing [Beizer, 1984], showing that an erroneous state exists
and providing a counterexample for debugging purposes.

One method of doing this is to use a non-systematic, yet re-
source efficient algorithm to efficiently sample the state-space.
Stochastic metaheuristic search techniques are one possible av-
enue of interest. Search techniques operate on a solution space. A
solution in this case is a path to the state that violated the invari-
ant property. One possible solution space is the execution space,
or path space, of the transition system, which can be thought of
as the set of all possible paths through a system. The potential
is that one can use fewer resources in order to obtain a precise
ordering of events that leads to the deadlock of a system. What

59

60 metaheuristic search of transition systems

follows is a survey of metaheuristic techniques that have been
applied in this domain.

6.1 genetic algorithms

[Godefroid and Khurshid, 2004] and [Alba et al., 2008] have both
applied GAs to finding paths to invariant violations in finite
state transition systems. Both works use GAs to search over the
set of all possible executions of a transition system. Both works
highlight the huge reduction in computational resources required
to detect faults using the GA-based approach. [Godefroid and
Khurshid, 2004] implemented their approach on top of the Ver-
iSoft model checker, that builds abstract models over arbitrary
programming languages like C and C++. [Alba et al., 2008] im-
plemented their approach on the Java PathFinder model checker
that builds abstract models over Java bytecode.

6.1.1 Solution Encoding

To encode a path in the transition system, [Godefroid and Khur-
shid, 2004] use a bit string representation. [Alba et al., 2008]
encode a path using a vector of floating point numbers. Both
methods constitute the genotype of the respective approaches.
[Godefroid and Khurshid, 2004] highlight some of the core issues
when encoding paths for use in search algorithms. The first issue
is that the number of transitions from each state cannot be known
a priori, leading to the requirement of a solution encoding that
can handle arbitrary numbers of transitions from any state. The
second issue is that the encoding will have to handle paths of
arbitrary length as, in general, the length of a path to an invariant
violation cannot be known a priori.

Due to the different genotype encoding methods, both works
use different methods for mapping the genotype to a phenotype.
The phenotype in this case is a path in the model constructed
by the model checkers used by the respective implementations.
[Godefroid and Khurshid, 2004] use a bit string that is interpreted
dynamically to handle arbitrary numbers of transitions at any
state. The path length problem is dealt with by searching up
to a fixed path length d. If a path with length n less than d

is encountered, then there are spare bits after the nth bit. The
path is said to have an effective length of n. Standard bit string
mutation and crossover operators are applied to positions up to
the effective length n.

[Alba et al., 2008] use a vector of real numbers v in the range
[0..1) to encode a path in the transition system. When making
a choice in the transition system using the ith element vi, vi is
simply multiplied by the number of transitions available at the

6.1 genetic algorithms 61

Figure 16: Numbered choices in a transition graph, from [Alba et al.,
2008]

In the particular problem we are solving, the number of
transitions needed to reach a goal state (the path size) is
unknown beforehand, that is, we do not know the length of
the shortest path from the initial state to a goal state. If
the individuals were composed of a fixed length sequence of
transitions, the algorithm might always fail in finding a goal
state. We solve the path size problem using variable-length
chromosomes. This allows our GA to create solutions of
variable number of transitions and determine which size is
best.

As is shown in Figure 1, the number of enabled transi-
tions in each state is not always the same and is unknown
until that state is visited by the model checker. One pos-
sible solution to deal with unknown number of transitions
would be to use an integer to identify the transition. This
raises two questions: what should be the maximum value of
that integer and, what to do if in a particular state there
are fewer transitions than the corresponding value in the
chromosome? There is no easy answer to these questions.
One might use the maximum number of transitions avail-
able in a model as the maximum integer, but that number
is not always easy to figure out, and sometimes is simply
impossible to determine. Then comes the second problem:
if the next integer in the chromosome is s and the state
had only n transitions available (with s > n) which tran-
sition t would we choose? We could choose to cut s at n
with t = Min(s, n) but that would create a bias toward
n. Something similar, but harder to detect, would happen
if we used a modulo operation like t = (s mod n). Con-
sider the following example: a state has 3 transitions and
the GA uses the maximum transition number as 5. Thus, in
that particular state, the choices available to the GA would
be: s = 0) t = 0, s = 1) t = 1, s = 2) t = 2,
s = 3) t = 0, s = 4) t = 1. That would result in
transition 2 to have half the chances of being selected than
transition 0 or 1.

We chose to use a representation for the transition other
than an integer. To represent the selected transition s in
a state we use a floating-point number in the range [0..1).
To determine the transition t in a state with n transitions,
we just use the formula t = bs £ nc. Since s is normal-
ized (between 0 and 1, exclusive), the resulting value t is an
integer number between 0 and the number of possible tran-
sitions in the state, uniquely identifying a transition. This
allows an unknown number of transitions while maintain-
ing a linear conversion from the selected transition to the
available transition. However, this may create a problem
with the mutation operator because the number of possible
values for the gene (the alphabet) is (theoretically) infinite,
but the meaning of that alphabet is finite. The mutation

Figure 1: Example graph showing the states of a
program and the variable number of transitions in
each state.

operator must be able to guarantee that, when changing the
value of the gene, the new value means a new path choice
after the linear conversion.

3.2 Crossover and Mutation
To allow the chromosome to grow and shrink, the crossover

operator has been adapted. Our crossover chooses a diÆer-
ent position for each parent and then swaps the genes after
that position to form the oÆspring. The oÆspring will prob-
ably have diÆerent sizes than their parents. Also, as we
use floating-point numbers instead of a more traditional bit
encoding, the cut positions are always between transition
choices. There is little sense in using two positions per par-
ent because, when inserting at the middle diÆerent values
and probably diÆerent number of transitions, the remain-
ing values lose their meaning. An example of the crossover
operator described can be seen in Figure 2.

Our mutation operator traverses all the genes in the in-
dividual and, with a given probability, creates new random
values for those genes. However, since we are using floating-
point numbers to encode the individual, we must guarantee
that when we change the gene value, that change really af-
fects the path choice that gene represents. We make this
guarantee by traversing the path identified by the chromo-
some up to the selected gene and checking how many tran-
sitions are available at that point. We then check which of
those transitions corresponds to the current gene value and
generate new random values until one is found correspond-
ing to a diÆerent transition and use it to replace the gene
value. Our mutation operator does not change the size of
the chromosome, and that might be a change to consider in
the future.

3.3 Fitness Function
Genetic Algorithms are function optimizers. They usu-

ally maximize or minimize the value of a given function. In
our case, we want to detect paths that lead to deadlocks,
and prefer shorter paths. As such, our fitness function f(x)
is defined as shown in (1), where the variable numblocked
represents the number of blocked threads generated by the
path while pathlen represents the number of transitions in
the path and deadlock is 1 if a deadlock was found, 0 oth-
erwise. The Genetic Algorithm will try to maximize f(x).

f(x) = deadlock + numblocked +
1

1 + pathlen
(1)

Equation (1) assumes that the number of threads in the
model to be checked is constant or that a deadlock only
occurs when all the threads are blocked. If that is not the
case, a much bigger deadlock value must be used when a
deadlock is found.

4. EXPERIMENTS
In this section we present the results of our experiments.

The experiments have been performed with Java Pathfinder

Figure 2: The crossover we implemented allows for
chromosome length changes to occur

1737

Figure 17: Real-Numbered Vector encoding of a path in a graph, from
[Alba et al., 2008]

In the particular problem we are solving, the number of
transitions needed to reach a goal state (the path size) is
unknown beforehand, that is, we do not know the length of
the shortest path from the initial state to a goal state. If
the individuals were composed of a fixed length sequence of
transitions, the algorithm might always fail in finding a goal
state. We solve the path size problem using variable-length
chromosomes. This allows our GA to create solutions of
variable number of transitions and determine which size is
best.

As is shown in Figure 1, the number of enabled transi-
tions in each state is not always the same and is unknown
until that state is visited by the model checker. One pos-
sible solution to deal with unknown number of transitions
would be to use an integer to identify the transition. This
raises two questions: what should be the maximum value of
that integer and, what to do if in a particular state there
are fewer transitions than the corresponding value in the
chromosome? There is no easy answer to these questions.
One might use the maximum number of transitions avail-
able in a model as the maximum integer, but that number
is not always easy to figure out, and sometimes is simply
impossible to determine. Then comes the second problem:
if the next integer in the chromosome is s and the state
had only n transitions available (with s > n) which tran-
sition t would we choose? We could choose to cut s at n
with t = Min(s, n) but that would create a bias toward
n. Something similar, but harder to detect, would happen
if we used a modulo operation like t = (s mod n). Con-
sider the following example: a state has 3 transitions and
the GA uses the maximum transition number as 5. Thus, in
that particular state, the choices available to the GA would
be: s = 0) t = 0, s = 1) t = 1, s = 2) t = 2,
s = 3) t = 0, s = 4) t = 1. That would result in
transition 2 to have half the chances of being selected than
transition 0 or 1.

We chose to use a representation for the transition other
than an integer. To represent the selected transition s in
a state we use a floating-point number in the range [0..1).
To determine the transition t in a state with n transitions,
we just use the formula t = bs £ nc. Since s is normal-
ized (between 0 and 1, exclusive), the resulting value t is an
integer number between 0 and the number of possible tran-
sitions in the state, uniquely identifying a transition. This
allows an unknown number of transitions while maintain-
ing a linear conversion from the selected transition to the
available transition. However, this may create a problem
with the mutation operator because the number of possible
values for the gene (the alphabet) is (theoretically) infinite,
but the meaning of that alphabet is finite. The mutation

Figure 1: Example graph showing the states of a
program and the variable number of transitions in
each state.

operator must be able to guarantee that, when changing the
value of the gene, the new value means a new path choice
after the linear conversion.

3.2 Crossover and Mutation
To allow the chromosome to grow and shrink, the crossover

operator has been adapted. Our crossover chooses a diÆer-
ent position for each parent and then swaps the genes after
that position to form the oÆspring. The oÆspring will prob-
ably have diÆerent sizes than their parents. Also, as we
use floating-point numbers instead of a more traditional bit
encoding, the cut positions are always between transition
choices. There is little sense in using two positions per par-
ent because, when inserting at the middle diÆerent values
and probably diÆerent number of transitions, the remain-
ing values lose their meaning. An example of the crossover
operator described can be seen in Figure 2.

Our mutation operator traverses all the genes in the in-
dividual and, with a given probability, creates new random
values for those genes. However, since we are using floating-
point numbers to encode the individual, we must guarantee
that when we change the gene value, that change really af-
fects the path choice that gene represents. We make this
guarantee by traversing the path identified by the chromo-
some up to the selected gene and checking how many tran-
sitions are available at that point. We then check which of
those transitions corresponds to the current gene value and
generate new random values until one is found correspond-
ing to a diÆerent transition and use it to replace the gene
value. Our mutation operator does not change the size of
the chromosome, and that might be a change to consider in
the future.

3.3 Fitness Function
Genetic Algorithms are function optimizers. They usu-

ally maximize or minimize the value of a given function. In
our case, we want to detect paths that lead to deadlocks,
and prefer shorter paths. As such, our fitness function f(x)
is defined as shown in (1), where the variable numblocked
represents the number of blocked threads generated by the
path while pathlen represents the number of transitions in
the path and deadlock is 1 if a deadlock was found, 0 oth-
erwise. The Genetic Algorithm will try to maximize f(x).

f(x) = deadlock + numblocked +
1

1 + pathlen
(1)

Equation (1) assumes that the number of threads in the
model to be checked is constant or that a deadlock only
occurs when all the threads are blocked. If that is not the
case, a much bigger deadlock value must be used when a
deadlock is found.

4. EXPERIMENTS
In this section we present the results of our experiments.

The experiments have been performed with Java Pathfinder

Figure 2: The crossover we implemented allows for
chromosome length changes to occur

1737

state in question. In order to handle paths of arbitrary length,
the chromosome is permitted to vary in length according to spe-
cialised crossover and mutation operators. These processes are
both illustrated in Figures 16 and 17. [Alba et al., 2008] outline
a memory operator (MO) mechanism that exploits the history of
the GA search. The MO uses the observation that the earlier
transitions of a path through the state-space tend to “lock” on
certain values. The MO stores the fitter prefixes in order to save
on memory later in the search, allowing longer paths to be ex-
plored. This approach appears analogous to the memory saving
techniques employed when using ACO [Alba and Chicano, 2007,
2008] which is discussed later in this chapter.

6.1.2 Fitness Functions

Both works describe fitness functions for detecting deadlock
in a transition system. [Godefroid and Khurshid, 2004] use an
interesting heuristic that sums the number of possible transitions
from all states along the candidate solution path. The assumption
here is that the number of possible transitions will decrease over
the course of a path, finally leading to deadlock. It is not clear
from the paper as to whether the length of the path is taken
into account, but I assume that shorter paths with fewer possible
transitions are favoured. [Alba et al., 2008] use a somewhat basic
fitness function in their work, and it is described by the equation
in figure 18. In this equation, deadlock is set to 1 when the
final state is in deadlock, numblocked is the number of blocked

62 metaheuristic search of transition systems

Figure 18: Fitness function for deadlock from [Alba et al., 2008]
f(x) = deadlock+numblocked+ 1

1+pathlen

threads in the final state of the path and pathlen is the length of
the path in terms of the number of transitions.

[Godefroid and Khurshid, 2004] also briefly describe some
elements of a fitness function for finding arbitrary invariant
specification violations, however the description is very brief.
Both works highlight that some work on the fitness function will
be needed in order to check for other invariant properties, but the
principals of the solution space encoding can remain the same.
Whilst the fitness functions discussed by both works are adequate
for finding invariant violations in a large class of systems, for
greater efficiency improvements must be made in this area. Some
potential improvements will be discussed later in this report.

6.2 particle swarm optimisation

Using the vector of real number solution encoding described
above, [Ferreira et al., 2008] have also applied the Particle Swarm
Optimisation (PSO) algorithm to finding counterexamples in
transition systems. To this end, a population of particles fly
around an n-dimensional hyperspace, where n is the length of the
floating point vector. Each particle is a solution in their approach.
Each of the n dimensions represents one floating point value in
a vector solution, and has a boundary of [0..1). The position of
each solution particle p is updated at every iteration according to
a simple rule, which is a function of the nearest neighbours of p
as well as the best solution in the population. The hope is that
aspects of “swarm intelligence” [Kennedy and Eberhart, 1995]
are exploited in order to optimise solutions until a goal is found.
The solution length is fixed apriori, so some knowledge of the
depth of the error must be known by a practitioner. This can lead
to some wasted effort if the discrepancy between the actual error
depth and the solution length is large.

6.3 ant colony optimisation

[Alba and Chicano, 2007] apply ant colony optimisation to finding
safety errors in PROMELA models using the HSF-SPIN frame-
work. Ant colony optimisation aims at finding low cost paths
through graphs that represent a solution. In this instance, the ant
agents are tasked with co-operatively discovering short paths to
safety violations in a transition system. The problem of finding
counterexamples in transition systems is naturally analogous to
ACO, as both are searching graph structures. The cost of solu-

6.3 ant colony optimisation 63

tions in this case is simply the length of the counterexample with
respect to the number of transitions.

[Alba and Chicano, 2007] describe a mechanism for dealing
with large transition systems known as the missionary technique,
as part of the algorithm ACO for huge graphs (ACOhg). Once
an ant has reached a predefined depth, the best paths that the
ants have discovered are stored. A new ACO stage then begins,
forgetting any previous pheromone trails that have been built.
In the new stage, the ants start in the last states of the stored
best paths, continuing the search. This technique is used to avoid
storing large amounts of data to represent pheromone trails, as
pheromone data is potentially required for every edge/transition
in the system. The number of edges/transitions in a system can
be unknown a priori, and can be intractably large.

[Alba and Chicano, 2007] report excellent results using this
mechanism on a variety of benchmark problems. The authors
compare the approach against guided model checking techniques,
such as A* and best-first search, as well as the GA of [Godefroid
and Khurshid, 2004]. The affinity of ACO’s target domain and
the problem of searching a transition system is evident in this
work, producing quite remarkable results. ACOhg outperforms
the traditional mechanisms in terms of the rate at which it found
errors, as well as the counterexample length. Shorter counter-
examples are preferred. It would have been interesting to see a
comparison with the GA from [Alba et al., 2008], although the
evidence suggests that ACOhg would vastly outperform the GA.
The approach has also been shown to work well with partial
order reduction techniques [Chicano and Alba, 2008b].

6.3.1 Liveness Properties

[Alba and Chicano, 2008] have taken the ACO-based approach to
model checking and extended it to support the checking of live-
ness properties. The authors have dubbed the algorithm ACOhg-
live. ACOhg-live operates on the product automaton approach
to model checking [Vardf and Wolper, 1986; Baier and Katoen,
2008]. In this approach, the negation of the liveness property is
transformed into a Büchi automaton using an automated process.
A Büchi automaton differs from traditional automaton in the
way it accepts strings. The language which a Büchi automaton B
accepts is made up of all the strings that visit an accepting state
in B infinitely often. A product automaton of the negated liveness
property automaton and the transition system is created, with
both automatons transitioning synchronously. The end result is a
product automaton that can be searched in the same fashion as
when searching for deadlock.

64 metaheuristic search of transition systems

Ant agents are then employed to search over the product auto-
maton. The ant agents co-operatively find the shortest path to
an accepting state in the product automaton. Once an accept-
ing state is found, ACOhg-live allows a finite amount of time
for the ant agents to shorten the path as far as possible. After
this finite amount of time, a secondary stage commences. This
stage aims to find a cycle in the graph from the found accepting
state back to itself. If none can be found in some time period,
the entire process is repeated from the initial stage. The process
uses techniques to avoid unnecessary repetition of work, and
implements a PROMELA mechanism that allows the process to
ignore irrelevant parts of the automaton.

6.4 evaluation of metaheuristic model checking work

so far

Using all of the approaches described above, is has been reported
that each technique manages to effectively narrow the search
space in order to discover deadlock errors. Each approach out-
performs an exhaustive search of the transition system in terms
of the error detection rate (the probability of finding an error) as
well as computational resource usage. In addition to this, [Alba
and Chicano, 2008] reports excellent results when searching for
liveness violations in PROMELA models. The authors report that
the method obtains shorter counterexamples for all the models
tested, and in some cases uses much less memory and CPU time.

Recently as of the time of writing, [Chicano et al., 2011] have
performed a comparison of the techniques described above, along
with Simulated Annealing (SA), when searching for deadlock
errors in Java programs using the Java PathFinder tool. The
authors examine four different systems, Dining Philosophers
(Loop and no-loop), Stable Marriage Problem , the Global Inter-
Operability Protocol (GIOP) and a communication protocol called
GARP. The authors included depth-first search (DFS), breadth-
first search (BFS), A* search, beam search (BS) and random search
(RS).

The comparison shows that all the metaheuristic mechanisms
have a higher or equivalent error detection rate than that of DFS,
BFS and A*. However, the comparison shows that all of the al-
gorithms (including traditional as well as RS) fail on the Dining
Philosopher model as it is scaled up to large sizes. Somewhat sur-
prisingly, the comparisons also show Random Search achieving
an equivalent or higher hit rates than every other algorithm in
the comparison, suggesting that RS is the most robust (in terms
of error detection) option of those compared.

[Chicano et al., 2011] also show the abilities of the algorithms
compared to optimise the errors found. An optimised error is an

6.5 summary 65

error with the shortest path to said error. Shorter errors are pre-
ferred as superfluous information related to the error is removed.
With regards to finding optimal errors, all of the metaheuristic
approaches are able to optimise errors (when they can be detec-
ted) whilst traditional techniques (including A*) cannot. Random
Search, whilst being robust in the error detection rate, tends to
find poor quality paths to errors in almost all cases.

6.5 summary

6.5.1 Limitations of State Of The Art

The state of the art in the area of applying metaheuristic search to
searching transition systems shows some promise with regards
to error detection rates and the optimisation of path lengths.
However, there appears to be a trade off between robustness
(with regards to error detection) and optimisation capability
in the algorithms available at the time of writing. All of the
traditional, guided and metaheuristic search mechanisms appear
to fall short on the robustness criterion, whilst random search
has high robustness but lacks an ability to perform optimisation.

It seems as if the GA, ACO, PSO and SA approaches are too
conservative in their exploration of the state space, whilst random
search is broader but not as broad as the likes of A* and other
traditional mechanisms. With respect to GAs, I believe this is
due to the way the way the paths are encoded and the variable
length crossover mechanism. It is plausible that too much effort
is spent on learning the appropriate length of the vector before
any optimisation takes place. Additionally, the mapping of floats
to choices may also cause problems, as changes at the beginning
of the path can have huge consequences for future transitions.
The can potentially lead to the loss of partial solutions toward
the end of the vector in values at the beginning of the vector are
changed. Since PSO and SA are also using this encoding, this
problem may be limiting both of those algorithms. Additionally,
it is has not been proven that GAs, PSO and SA can find liveness
errors, whilst ACO has been proven effective at this task.

ACO seems to have a problem with memory usage when
applied to search transition systems, and this has been addressed
with the ACO “huge graph” (ACOhg) variant of the algorithm.
However, I believe this locking in of solutions may be having a
detrimental affect upon the search process, leading to a more
conservative search. This is evident in the results of [Chicano
et al., 2011], showing that random search has a equivalent or
higher hit rate on all of the benchmark problems tested.

66 metaheuristic search of transition systems

6.5.2 Potential Routes Forward

The majority of the popular metaheuristic optimisation algorithms
have been applied by others to the problem of finding counter-
examples in large state spaces. There is one notable exception,
however, and that is the use of Estimation of Distribution Al-
gorithms (EDAs). Using the real number vector representation
of [Alba et al., 2008], one could quite easily apply some of the
real number vector EDAs described in [Pelikan et al., 2002] to the
problem. However, I believe that the real number vector encoding
has problems due to later vector elements being highly depend-
ant on earlier ones. Consequently, small changes earlier in the
genotype can result in disproportionate fitness changes, and a
potential loss of partial solutions later on in the vector. Due to
this, I believe an entirely new approach must be developed that
steers clear of the real number vector approach, whilst attacking
the limitations of the algorithms discussed above.

6.5.3 Summary

In this chapter I have highlighted and evaluated the current state
of the art in applying metaheuristic search algorithms to the
problem of finding counterexamples in large transition systems.
It is my belief that a new encoding and approach to searching
transition systems must be proposed and evaluated. The new
approach must be as robust as random search, whilst main-
taining the optimisation capability of established metaheuristic
techniques. The algorithm must be agnostic to the depth of the
error within the transition system, as it seems that error depth
limits the efficacy of both GAs and PSO. The new approach must
be memory efficient, in order to avoid the memory saving tricks
employed in both ACOhg and the memory operator in the GA
based approach. The new technique must also maintain the run
time and error detection rate advantages over traditional trans-
ition system search techniques that other metaheuristic search
techniques seem to have.

To this end, in the next chapter I will describe in detail an
EDA-based approach to searching transition systems based on
work in [Poli and McPhee, 2008]. In the chapters following that
description, I will present empirical work that demonstrates
the potential of the new approach when used to find faults in
transition systems, to optimise the length of those faults and to
scale to large systems.

Part III

A L G O R I T H M I C P R O P O S A L

7
A L G O R I T H M I C P R O P O S A L

The algorithmic proposal described below aims to address the
apparent flaws in the current state of the art of metaheuristic
search of transition systems. The main problem seems to stem
from the arbitrary length of paths to errors that can crop up
in test suites and real systems. Whilst ACO can handle paths
of arbitrary lengths, it has a real problem with memory usage
and hence the need for memory optimisations in the form of
ACOhg [Chicano and Alba, 2008a]. Whilst GAs, PSO and SA
annealing all have low memory usage, measures are required in
order to adjust the solution representation on the fly to account
for arbitrary path lengths. I believe the algorithm proposed below
lies somewhere in the middle of this trade off, having reasonable
memory usage and the ability to represent arbitrarily long paths.
With this improvement, the hope of achieving the robustness of
random search whilst being able to optimise solutions could be
achieved.

What follows is a detailed description of the proposed al-
gorithm, with justifications for various choices at each stage of
the design.

7.1 model and solution space

The solution space of paths in a transition system requires a novel
modelling and encoding mechanism to address the problems
outlined above. There are a number of choices available when
encoding and modelling paths in a transition system. When
making this choice, a number of factors must be considered. One
of the major factors when choosing a modelling and solution
representation is the ability to represent paths of arbitrary length.
In some situations, knowing the length of a counterexample may
be infeasible. The majority of EDA algorithms can effectively
deal only with representations of a fixed or known size, and
are focused on optimisation bit strings. I also want to avoid
mapping real number vectors to choices used in the GA, PSO
and SA algorithms discussed in the previous chapter. EDAs
for optimising real numbered vectors are few in number, and
empirical evaluation of such techniques on a wide variety of
problems do not exist. Additionally, the loss of partial solutions
discussed in the previous chapter would also be problematic
when using EDAs to optimise real numbered vectors.

69

70 algorithmic proposal

In order to encode paths in a transition system, a simple string
representation is used. A path in a transition system can be
viewed as a sequence of actions causing transitions between
states. The alphabet of the string representation used in this work
is the set of actions that can be executed in the transition system.
The choice of action set is problem dependent and can be at any
level of abstraction. In this work, we retrieve the alphabet from
Java Path Finder APIs [Visser et al., 2003], where each alphabet
member represents a choice of action in the transition system.
Each alphabet member consists of Java file names, line numbers
and byte code instructions.

Examples of the typical alphabet members from the Java Path
Finder, a prominent Java software model checker, are shown in
Figure 19. All alphabet members are of the same format, apart
from a few special instructions. In the alphabet member on line 6

of Figure 19, <examples/DiningPhil.java:38> refers to the file-
name and line number currently being executed.
< synchronized (left) {> is the contents of line 38 in Din-
ingPhil.java and <monitorenter> is the instruction being ex-
ecuted. Note that the alphabet is thread independent in an effort
to scale well with symmetrical problems, e.g. dining philosopher
systems. A typical path in a system is shown in Figure 19. In
the path, there are a few special instructions at the start of the
path that do not follow the format described. These instructions
are special Java instructions relating to the creation of the initial
objects and are at the beginning of every path in JPF.

When searching over other forms of models, such as Promela
models or C code, a suitable alphabet must be chosen. The ra-
tionale for the alphabet used in this work is as follows. The
alphabet must be fine grained enough to include some refer-
ence to the bytecode instruction or atomic action being executed.
Simply referring to the line number in a Java or high level source
code file may ignore a lot of crucial detail, as many bytecode
or atomic instructions can be executed when executing a high
level statement. However, referring to atomic instructions alone
is not enough as it is highly likely a particular atomic instruction
is executed as a part of many high-level statements in a given
program. Good results were obtained using a combination of
the high-level statement being executed as well as the atomic
instruction during small-scale empirical evaluation.

To model strings in the solution space, a variant of N-gram GP
is used [Poli and McPhee, 2008]. An n-gram is a subsequence
of length n from a longer sequence. N-gram GP learns the joint
probabilities of fit string subsequences of length n. In this work,
the n-grams represent recent histories of n actions, and the distri-
butions associated with these N-grams are sampled to determine
the best action to choose next. N-gram GP has the advantage of

7.1 model and solution space 71

1 <null transition>

2 <[synthetic] [clinit]<clinit>><[synthetic] [clinit]<clinit>><invokeclinit

>

3 <java/lang/ThreadGroup.java:859><(java/lang/ThreadGroup.java:859)><

monitorexit>

4 <examples/DiningPhil.java:38>< synchronized (left) {><runstart>

5 <examples/DiningPhil.java:38>< synchronized (left) {><getfield>

6 <examples/DiningPhil.java:38>< synchronized (left) {><monitorenter>

7 <examples/DiningPhil.java:33>< start();><invokevirtual>

8 <java/lang/ThreadGroup.java:844><(java/lang/ThreadGroup.java:844)><

monitorenter>

9 <examples/DiningPhil.java:39>< synchronized (right) {><getfield>

10 <examples/DiningPhil.java:39>< synchronized (right) {><monitorenter>

11 <examples/DiningPhil.java:41>< }><monitorexit>

12 <java/lang/ThreadGroup.java:859><(java/lang/ThreadGroup.java:859)><

monitorexit>

13 <examples/DiningPhil.java:38>< synchronized (left) {><runstart>

14 <examples/DiningPhil.java:42>< }><monitorexit>

15 <examples/DiningPhil.java:33>< start();><invokevirtual>

16 <examples/DiningPhil.java:38>< synchronized (left) {><getfield>

17 <examples/DiningPhil.java:41>< }><monitorexit>

18 <examples/DiningPhil.java:42>< }><monitorexit> �
Figure 19: A typical trace/string/path from JPF on the Dining Philo-

sopher problem with 2 philosophers. This trace does not
include a deadlocked state. Note the lack of references to
specific threads.

72 algorithmic proposal

not being limited to a fixed size representation. One can sample
from an N-gram GP model until some stopping criterion is met.
This will discussed in the model sampling section.

7.2 learning the model

The model learning step used in this work is a simple frequency
count of actions after each unique n-gram. A set of fitter paths or
strings S is selected from the current population. Then, a count
of frequencies is performed on all the unique n-grams over all
the strings in S. The frequency count is then normalised to obtain
a probability distribution. An illustration of this process can be
found in Figure 20, where the As and Bs maps onto alphabet
members like those shown in Figure 19. In addition to learning
all the n-gram distributions, the distributions for (n-1)-grams and
(n-2)-grams and so on are also learned down to 1-grams.

B A B A B B

Current N-gram
Observed next choice

Frequencies

A B: A = 1

A B: A = 1
B A: B = 2

A B: A = 1, B = 1
B A: B = 2

Step q:

Step q + 1:

Step q + 2: B A B A B B
B A B A B B

B A B A B B B A: B = 1

B A: B = 1

Step q + 3:

Figure 20: Illustration of the N-gram learning process (2-grams in this
case). A frequency count is performed for each unique N-
gram in the selected set of strings. The boxes represent a basic
sliding window algorithm, with frequency counts display on
the right.

When learning the model, there is a choice between building
an entirely new model from the selected individuals or updat-
ing the existing model using the selected individuals. In this
work, the entirely new model approach was taken as it proved
more effective when evaluated empirically. After each generation,
the model is destroyed and a new one constructed using the
procedure described above. This eliminates any kind of "update
rate" parameters which may have to be tuned to match problem
characteristics.

There is a small issue with regard to the substrings at the start
of each string/path. At the beginning of each path, there are
substrings that are less than the required n-gram length n. This
is dealt with in the same way as the work in [Poli and McPhee,
2008]. A distribution is learned for all of the n-grams up to length
n at the start of the strings only. From then onwards, the method
outlined above is used.

7.3 model sampling 73

The model learned using this method can be described as
a strategy for traversing the transition system. Given a recent
history of actions of length n, the n-gram model can be queried
to obtain a distribution that can be used to choose the best next
action. If the alphabet is thread agnostic then this model has the
potential of describing concise solutions for highly symmetrical
problems. The model is also agnostic to the type of property
being verified.

7.3 model sampling

To sample the model learned above, paths are generated using the
learned model as a guide for choosing actions in a state. To gen-
erate an individual/path in the transition system, the sampling
method initially starts with an empty string p representing the
history of actions and the initial state i of the transition system.
Then, an algorithm called MakeAChoice() is executed, which
takes a state s (initially i) and the history of actions p as argu-
ments and returns an action/transition a that is possible from s.
The transition a is then chosen in the model checker, yielding a
new state i ′. The action a is appended to p to accurately reflect
the history of actions on the current path. MakeAChoice() is
then called with i ′ and p as arguments to yield the next state.
This process is repeated until either a state that has previously
been encountered on this path, or an end state is reached.

The MakeAChoice() algorithm can be broken down into a
number of stages. The first stage is distribution acquisition, in
which the model is queried for a relevant distribution given a
recent history of actions. From the input string p, the n most
recent actions are obtained from the end of p. This n-gram r

is then used to query the model to obtain a distribution. If no
distribution is known for r, r ′ is created using the most recent
n− 1 actions in p and the model is queried again. This shortening
of the n-gram is repeated until a distribution is found, or until
the n-gram length is 0. If no distribution can be found for the
n-gram, or any shorter n-gram, then a “blank” distribution is
obtained. If a blank distribution is returned from the model, this
indicates that the n-gram was not observed during the model
learning phase of the EDA.

Once a distribution is obtained, the distribution sampling stage is
executed. MakeAChoice() takes a state s as an argument. From
s, a set of transitions T are available. The goal of the distribution
sampling stage is to choose one of the transitions available from
s. Each transition in T represents the progress of a component
within the transition system, in this case a thread of a multith-
readed program. Each transition in T has an associated action
that caused that transition. Therefore, there is a set of actions A

74 algorithmic proposal

possible from state s. A number of transitions may be caused by
concurrent components taking the same action. For instance, a
group of threads may be competing to obtain a lock on an object.
Thus in some instances, the cardinality of the set of possible
actions A may be less than the cardinality of T .

In this proposal, the distributions in the model are distributions
over the possible actions from a state rather than the transitions.
The rationale behind this is to aid in the scalability of the ap-
proach on problems with symmetrical descriptions, such as the
dining philosophers coordination problem, whilst gracefully de-
grading for non-symmetrical problems. If n threads (where n > 1)
are poised to take an action, and that action is chosen, then one
of the n threads is chosen at random.

When the set of actions A are the same actions as those rep-
resented by the obtained distribution, then a choice is made
according to that distribution. However, when A is not perfectly
described by the obtained distribution, a few special cases which
must be handled during the MakeAChoice() procedure. If these
special cases are ignored, then paths that do not exist within the
transition system could be generated. The first is when there are
actions in the distribution that are not in A. When this occurs,
the excess actions in the distribution are culled and the distribu-
tion is normalised. Then an action is selected according to the
distribution.

The second case is when one or more actions in A are not in
the distribution. In this algorithm, a low probability of selection
is given to those actions that are not in the distribution. The
actions in A that are in the distribution are given their respective
probabilities, whilst those that are not in the distribution are given
half the lowest probability. Then the distribution is normalised
and sampled to yield a choice of action. An alternative to this can
be to set the probabilities of actions that are not in the distribution
to some arbitrarily low value.

A third case also exists. If no distribution can be found for a
recent history, a blank distribution is returned and a uniformly
random choice is made between the actions in A. In addition,
to generate the initial population, the model could be seeded
with a blank distribution for every n-gram. With this approach,
all individuals in the initial population would be generated at
random.

7.4 fitness function

An EDA samples a solution space in a meaningful way in order to
find good solutions, using a fitness function as a guide. Solutions
are selected from the population, with a bias toward the fitter
individuals. The selected solutions are then used to learn the

7.4 fitness function 75

n-gram model. In this proposal, truncation selection is used as
this seems a popular choice in the EDA community [Pelikan et al.,
2002]. Truncation selection simply selects the top n or n% of the
population.

Metaheuristic search algorithms can be viewed as function
optimisers, aiming to minimise or maximise a particular objective
function. The solution space outlined earlier is the set of all
possible paths in the transition system of the code under test.
Good solutions in this solution space are those that end with
an error and are short. Solutions in the solution space that are
“closer” to leading to an error state must rank higher than those
that are “far away”.

Determining how close a path is to a path ending in an error
state is an open and challenging question. For instance, the se-
quence of actions and states leading up to a deadlocked state in a
commercial software system may be very different from a dead-
lock in a poor dining philosophers coordination policy. Defining
a general deadlock finding fitness function is likely impossible,
with each problem potentially requiring a custom fitness func-
tion with domain specific knowledge to be effective. A possible
avenue of research is to automatically derive helpful metrics for
this purpose using analysis of the system under test.

Algorithm 1 Fitness function used to rank individuals.

Require: A, B are Individuals;
if A.error_found 6= B.error_found then

return IndividualWithErrorFound(A,B);
else if A.error_found andB.error_found then

return IndividualWithShortestPath(A,B);
else

return IndividualWithLowestStateMetricSummation(A,B);
end if

Algorithm 2 State metric summation algorithm.

Require: I is an Individual;
aggregateState = 0;
for all States s ∈ I.Path do

aggregateState += s.SingleStateMetricFromModelCheckingTool;
end for

One problem that must be addressed is the fact that path
based heuristics do not exist in model checking tools. Every
heuristic available in mainstream model checking tools gives
heuristic information about a single state only, estimating how
close that state is to some desired goal. Determining the fitness
of an entire path, as opposed to a state, requires a different
approach. One could potentially choose a representative state

76 algorithmic proposal

for the path, either a random state in the path or the end state,
and use that as a measure of the path’s overall fitness. However,
previous work [Alba and Troya, 1996; Godefroid and Khurshid,
2004; Alba et al., 2008] suggests that combining the individual
state heuristic along the path can be effective. In this proposal,
we take a similar approach by simply summing the individual
state heuristic values along the path. It is assumed that the lower
the overall summation value, the closer the path is to an error or
goal state. This algorithm is outlined in Figure 2.

The summation algorithm in Figure 2 is then used by a fitness
function to rank paths described in Figure 1. The function is a
path comparison function, comparing two paths and returning
the more desirable path. The fitness function is structured simply,
and the functions called in the algorithm perform the actions in-
dicated by their respective names. IndividualWithShortestPath(A,B),
for instance, returns the individual with the shortest path. The
fitness function will always favour a path that contains an error
state to one that does not. If both paths contain an error state,
then the shortest path is favoured. If neither path contains an
error state, then the path that has the lowest metric summation
is chosen. This is a generic fitness function for ranking paths in
a variety of situations, either detecting or optimising errors for
example. If the goal is to simply detect errors and stop, then
the shortest path and error found metrics do not get exercised.
However, if the goal is to find and optimise errors, then the other
two metrics will be exercised once errors are found. Algorithm 2

also has an implicit path shortening effect, as the summation of a
shorter path will likely have a lower metric than that of a longer
one.

7.5 other parameters and features

A common feature of EDA implementations is a mutation op-
erator, similar to that used in genetic algorithms. The purpose
of such an operator is to introduce new genetic material into a
population. In this proposal, mutation occurs when choices are
made. When making a choice during the path generation phase
of the algorithm, with probability m, a uniformly random choice
is made from the available actions. If m is set to 1.0, all choices
are made at random yielding a random path search mechanism.
The probability of mutation in the majority of implementations
of EDAs or GAs is typically set to a low value as a high value
can be disruptive to the search process.

A common feature in Evolutionary Algorithms is the notion of
elitism, and is sometimes implemented in EDA work. Elitism is
the practice of copying the best n individuals from one generation
to the next without mutation or change, whilst the rest of the

7.6 novelty of algorithm 77

population are generated in the usual way. In this proposal,
elitism was implemented and seemed to give better results than
an EDA without elitism in small-scale experimentation.

7.6 novelty of algorithm

N-gram GP in vanilla form [Poli and McPhee, 2008] is aimed at
generating and searching strings that are then interpreted as a
program. It is the author’s belief that this is the first time N-gram
GP, or indeed n-gram sequence modelling, has been applied in
the context of searching state spaces or transition systems. This
proposal constitutes the first time anything labelled as an EDA
has been applied to the problem of searching transition systems
or state spaces, therefore the first time an EDA has been applied
in a model checking context. I believe that the algorithm poten-
tially has applications outside of searching transition systems,
particularly in circumstances where a labelled state space is being
searched.

The model sampling phase of the algorithm constitutes the
main difference between N-gram GP [Poli and McPhee, 2008]
and this proposal. Vanilla N-gram GP is not restricted by an
underlying model in the choices that can be made at each stage.
Any alphabet member can follow any other during the course
of model sampling. This can be pitched as a state space search,
where each state consists of the action sequence or program
generated so far, and all actions are possible from every state.

The approach addresses directly some of the shortcomings
of other metaheuristic approaches to this problem. Firstly, the
arbitrary path length limitation of a floating point solution space
encoding, used by the GA, PSO and SA algorithms highlighted
in the previous chapter, has been addressed. The proposed al-
gorithm can generate paths of arbitrary length, requiring no prior
knowledge of the potentially solution depth in the state space.
Secondly, I believe that the memory usage concerns of ACO have
been addressed. Rather than store pheromone values for a po-
tentially huge number of arcs in the state space, a more limited
number of distributions are stored for the action space of the
model. Whilst the action space of a transition system could be as
large the number of edges, in the benchmark scenarios examined
by previous work it is always the case that the action space is
much smaller than the number of edges. This potentially deliv-
ers a memory usage reduction for the algorithm, avoiding the
necessity of memory saving measures such as those in [Alba and
Chicano, 2008].

Overall, this proposal transforms elements of a formal method
into a form of software testing. I feel it best to think of the
algorithm as focussed stress testing, akin to tools like ConTest

78 algorithmic proposal

[Edelstein et al., 2003] but with the precise counterexample and
repeatability that model checking offers. The proposal has the
potential to drastically reduce the time to detect an error in a
concurrent system, whilst eliminating false positives.

7.7 implementation

7.7.1 N-gram Implementation

Due to the recent development of n-gram GP, at the time of
writing there is no generic framework for producing n-gram GP
like algorithms. In order to experiment with the above proposal,
I had to implement a bespoke framework. I briefly evaluated
a variety of EA frameworks. Framework performance was not
an issue, as the majority of the computational effort will be
made expanding states in model checking tooling. Extensibility
was my primary concern, and since I had experience with a
particular framework in the past, ECJ, I decided to capitalise on
time invested. Additionally, for the following chapter, the model
checking tool used during experimentation is also written in Java,
allowing for easy interoperability.

ECJ has a number of useful features (generic genetic operators,
multithreaded evaluation, sane parameter system etc), but has no
generic EDA implementation. ECJ is highly equipped for solu-
tion interaction, for example the combination of (typically) two
solutions to create new solutions. EDAs on the other hand focus
on a global view of the population, selecting a large number of
individuals and creating a model. This renders a large chunk
of ECJ features somewhat useless. However, by creating a new
"breeder" within ECJ, I managed to salvage other the above men-
tioned ECJ features. The breeder implemented a basic truncation
selection and a basic bean counting algorithm to construct the
n-gram model.

7.7.2 Interaction with a Model Checker

The custom ECJ implementation controls a model checker to
produce a population of paths. The custom ECJ implementation
does this by choosing actions repeatedly, starting in an initial
state, until a valid path is produced. Each model checker used
in the experimental chapters of this thesis offer the same basic
feature. Given a model/system and a history of actions, a model
checker will return a set of options from which to choose from.
For instance, the Java PathFinder (JPF) model checker takes a
Java program, and allows an outside mechanism to control which
thread progresses next. Given the set of choices, the implementa-

7.8 computational complexity 79

tion of the proposed EDA has to present a strategy for choosing
an option.

Injecting a strategy for choosing into the JPF model checker
was easy enough, as I had access to JPF source code so everything
could be done in process. However, for the later chapters a C-
based model checker was used. After discounting Java’s native
API due to awkwardness, I decided on an out of process ap-
proach, passing an encoded strategy from Java to C via the file
system. Then, in the HSF-SPIN model checker, a lightweight path
expansion process used the strategy to expand a path, and then
return the sequence to ECJ. HSF-SPIN allows for searching of
models described in PROMELA, a popular language/toolkit in
the model checking community. Implementation of the model
checking expansion phase was abstracted, yielding a clean(ish)
interface of passing strategies to other toolkits. The abstraction
amounted to “Given this strategy, return me a sequence of alpha-
bet members/actions/strings”.

A large amount of time (6 months+) was spent making ECJ
interact with the JPF model checker, due to having to under-
stand the inner workings of JPF and long execution times. Half
way through my PhD programme, I started using the enormous
computation power of the SEBASE (now NSC) grid, which sped
up development on the HSF-SPIN interaction. This environment
allowed for checking of larger PROMELA models, experiments
which feature in later chapters.

7.8 computational complexity

Empirical comparison of various metaheuristic algorithms on
model checking algorithms are difficult due to the variability
of implementations. For instance, it is difficult to discount the
unnecessary memory usage of unused parts of ECJ.

7.9 summary

In this chapter, I have outlined an algorithmic proposal based
upon Estimation of Distribution Algorithms to find error states
in transition systems. In the following chapters, I will show em-
pirically the potential of this algorithm to discover multiple error
types in a wide variety of transition systems. Additionally, I will
show how the models can be reused in order to save effort in
the software development cycle, something I believe is unique to
EDAs and the proposed algorithm above.

Part IV

E X P E R I M E N TAT I O N

8
F I N D I N G D E A D L O C K I N M A I N S T R E A M
L A N G U A G E C O D E

8.1 introduction

In this chapter, I will demonstrate the potential for the EDA-based
algorithm proposed in the previous chapter to find concurrent
faults in systems described by mainstream languages. Specifically,
this chapter will focus on the task of finding deadlock in Java pro-
grams. As established in Chapter 3, deadlock in shared-memory
concurrent systems can be subtle, and can avoid detection when
faced with strenuous stress testing. However, the proposed al-
gorithm will potentially focus much of the stress testing effort on
areas of the system’s state space that are more like to contain an
error.

By targeting a mainstream language such as Java, integra-
tion of the proposed algorithm into Integrated Development
Environments (IDEs) such as Eclipse become a possibility. One
can imagine dedicating a percentage of our envisioned many
core computers [Intel Corp., 2007] in the future to searching the
state space of concurrent software. This could happen in the
background, and alert developers to problems in the same way
that static analysis can reveal dead code and compilation errors.
Model checkers exist for a wide variety of mainstream languages,
including the .NET platform [Aan de Brugh et al., 2009] and
C/C++ [Clarke et al., 2004]. Tools like these can be used for
integration into their respective popular IDEs.

The work in this chapter is based on [Staunton and Clark,
2010].

8.2 experimentation

To experiment with the proposed algorithm, the implementation
described in Chapter 7 was used with the Java PathFinder model
checker. An implementation of the Dining Philosophers problem
is used to test the proposed algorithm. In this experimentation,
a naive coordination strategy is used for benchmark. The bench-
mark, known in the JPF community as DiningPhil, implements
the following policy. All philosophers first pick up the fork to
the left, then the fork to right, eat, and then release the right and
left fork in that order. The philosophers then terminate execution.
The implementation used in these experiments is the Java class
included with JPF. The size of the state space of this particular

83

84 finding deadlock in mainstream language code

Dining Philosopher implementation grows exponentially with
the number of philosophers. [Alba et al., 2008] report state space
sizes of 2094 and 120544 for 3 and 4 philosophers. Experiments
were carried out on varying sizes of the DiningPhil problem,
from 4 to 40 philosophers.

8.2.1 Fitness Function

The fitness function used for this set of experiments follows
the generic fitness function outlined in the algorithmic proposal
chapter. The algorithm described in 3 is identical to the 1 in the
previous chapter, apart from we are trying to maximise our cu-
mulative state metric. The heuristic information for each state is
gathered from heuristics available within Java PathFinder. Spe-
cifically, the “blocked threads” metric from JPF was used, which
returns the number of threads blocked in a given state.

Algorithm 3 Fitness function used to rank individuals. Individu-
als that are “closer” to deadlock are favoured.
Require: A, B are Individuals;

return IndividualWithHighestBlockMetric(A,B);

Algorithm 4 Blocked threads metric algorithm.

Require: I is an Individual;
aggregateBlocked = 0;
for all States s ∈ I.Path do

aggregateBlocked += s.NumberOfBlockedThreads;
end for

The fitness function described in Algorithm 3 depends on dead-
lock being defined as all threads in the program being blocked,
rather than a subset. The assumption is that states with a higher
number of blocked threads are closer to deadlock than those in
which all threads can progress. By summing the blocked thread
heuristic for each state along a path, a measure of the overall
“blockiness” for the path is produced. The assumption is that the
more high blocking states there are in a path, the closer that path
is to leading to a deadlock state. This is an approach taken by
previous work [Godefroid and Khurshid, 2004; Alba et al., 2008].
Algorithm 3 is similar to that outlined in Algorithm 1. However,
in this work only error detection is considered, so parts of the
generic algorithm that are irrelevant have been removed.

8.2 experimentation 85

8.2.2 Parameters

The parameters chosen for this set of experiments are the result of
small-scale empirical evaluation and are kept constant for all ex-
periments. An n-gram length of 3 was used, meaning models for
3-grams, 2-grams and 1-grams are constructed from each genera-
tion. The population size for each generation was set to 150. This
means that 150 paths are sampled from the model to build each
generation. The mutation parameter for these experiments is set
to 0.001, meaning that on average 1 in 1000 transition choices are
made randomly, disregarding the model. The elitism parameter
was set to 1, meaning that the top individual from the population
is copied to the next generation. In order to build the model from
which the next generation is sampled, truncation selection selects
the top 20% of individuals from the population. This means that
the top 30 individuals from the current population are used to
build the EDA model. The algorithm terminates when a solution
is found. Initially, the model is a blank model meaning that all
the paths evaluated during the first generation are completely
random.

8.2.3 Results and Discussion

Comparisons of the EDA with other techniques are also shown.
The other techniques are depth-first search, breadth-first search
and random search. Depth-first search examines the “deepest”
states before any others, whereas breadth-first search favours
the “shallowest” states. The random search algorithm behaves
precisely like the proposed technique in this paper, however all
choices are made at random. The algorithm, starting from the ini-
tial state, chooses transitions at random until a previously found
state is encountered, or an end state is reached. The algorithm
repeats this process until a deadlock state is found. The random
search process is equivalent to the EDA with the mutation para-
meter set to 1.0. Since the EDA is a pseudo-random probabilistic
process, the results reported are statistics of 50 independent ex-
ecutions. Each run was performed using a unique seed for the
pseudo-random number generator. The results for the random
search algorithm are also statistics of 50 independent runs, each
with a unique seed for the pseudo-random number generator.

The results from the experiments are shown in Table 1. Each
of the algorithms were run on the Dining Philosopher problem
using gradually increasing numbers of philosophers. Since DFS
and BFS are deterministic algorithms, the result of only one
execution is shown. Statistically significant differences from the
EDA, with a confidence level of 0.05, are shown using (+) to
indicate a significant result, and (−) is indicate otherwise. When

86 finding deadlock in mainstream language code

Table 1: Results for each of the algorithms
Problem Size DFS BFS RS EDA

4

Errors / runs 1/1 1/1 50/50 50/50

Med. Time (s) (+)0.491 (+)3.971 (-)7.246 7.811

Min. Time (s) 0.491 3.971 3.453 4.175

Max. Time (s) 0.491 3.971 18.165 11.933

Med. Max. Mem. Usage (MB) (-)482 (+)80 (+)951 951

Med. States Visited (-)312 (-)13029 (+)7,738 5,697

Med. Paths Evaluated - - (+)221 163

Med. Generations - - 1 1

8

Errors / runs 1/1 0/1 0/50 50/50

Med. Time (s) (-)25.191 - - 22.512

Min. Time (s) 25.191 - - 11.428

Max. Time (s) 25.191 - - 40.859

Med. Max. Mem. Usage (MB) (-)496 - - 1,199

Med. States Visited (+)238,264 - - 58,146

Med. Paths Evaluated - - - 822

Med. Generations - - - 5

12

Errors / runs 1/1 0/1 0/50 50/50

Med. Time (s) (+)16375.392 (4h32m55s) - - 49.936

Min. Time (s) 16375.392 (4h32m55s) - - 24.420

Max. Time (s) 16375.392 (4h32m55s) - - 107.376

Med. Max. Mem. Usage (MB) (-)3233 - - 2,130

Med. States Visited (+)150841824 - - 152,443

Med. Paths Evaluated - - - 1,448

Med. Generations - - - 9

16

Errors / runs 0/1 0/1 0/50 50/50

Med. Time (s) - - - 102.709

Min. Time (s) - - - 38.498

Max. Time (s) - - - 299.005

Med. Max. Mem. Usage (MB) - - - 2,895

Med. States Visited - - - 299,370

Med. Paths Evaluated - - - 2,128

Med. Generations - - - 14

comparing the 50 independent executions of the EDA against
the single result from a deterministic algorithm, the Wilcoxon
signed-rank test is used. When comparing the EDA against the
random search approach, both using a sample of 50 independent
executions, a Mann-Whitney rank sum test is used. Both tests
are valid under general conditions, for instance the assumption
of normality is not required. These tests are the non-parametric
equivalents to the one and two-sided t-tests.

The “Errors / runs” row of the results table shows the number
of runs which found an error. The time statistics are wall clock
times measured with millisecond accuracy. Memory statistics are
collected from the measurements of JPF. The number of paths
evaluated results are only relevant to the random search and the
EDA, since DFS and BFS operate on a state by state basis.

When testing the algorithms against the 4 philosopher problem,
the DFS algorithm is not only the fastest algorithm in terms
of time, but also the most efficient in terms of the number of
states visited as well as memory usage. Also worth noting is the
equivalent results of the random search algorithm and the EDA
approach. One can see from the median number of generations

8.2 experimentation 87

required for the EDA to find an error that the median is 1. This
indicates that the EDA approach in some cases was finding errors
without performing any learning, showing that a random search
is enough for such a small problem. However, the median number
of states examined before finding an error is significantly less
for the EDA as opposed to random search. This is explained by
when both the EDA and RS fail to find an error in the initial
random stage, the EDA is influenced by a generation of model
building, and is therefore quicker to find an error in subsequent
generations. This reduces the median number of states needed
to find an error for the EDA, as opposed to random search
which has no model to search by. An odd result was the memory
usage reported for the BFS algorithm. BFS typically exhibits high
memory usage, and the low memory usage reported by JPF for 4

philosophers may be due to a bug.
When the problem size is increased to 8 philosophers, the

results start to favour the EDA. Both BFS and random search
fail to find errors in the 8 philosopher problem. BFS ran out of
memory (even when given an upper limit of 30GB), and random
search examined 30000 paths before terminating. Whilst the time
taken to find an error is equivalent between the EDA and DFS, the
number of states examined before an error is found is significantly
less when using the EDA. Also worth noting is that the median
number of generations required to find the error was 5, indicating
that the EDA in some cases required several rounds of model
learning before an error could be found.

This trend continues when analysing problems with increasing
numbers of states. For the 12 philosopher problem, DFS requires
an enormous amount of time to find an error. The average time re-
quired for the EDA to find an error is significantly less. The most
striking difference however is the number of states examined
before finding an error. Whilst the DFS results have jumped from
2.4× 105 states for 8 philosophers to 1.5× 108 for 12, the EDA
numbers have increased more gradually. The EDA, on average,
examined 1.5× 105 states before finding an error in the 12 philo-
sopher problem. This indicates that the EDA is focusing the
search more effectively on areas of the state space that are more
likely to contain deadlocked states.

For the 16 philosopher problem, the EDA is the only technique
that finds deadlock when given reasonable resources. DFS ran
out of memory after 24 hours of searching, using all of a 30GB
memory limit. The EDA, however, found an error with an average
time of roughly two minutes, using less memory.

An often cited advantage of EDAs, as opposed to standard
evolutionary techniques such as GAs, is the insight into the target
problem the model itself can yield. Whilst the model learned by
an EDA is not itself a solution to the problem, the model can

88 finding deadlock in mainstream language code

4 8 12 16 20 24 28 32 36 40

Number of paths evaluated against number of philosophers

Number of philosophers

N
u

m
b

e
r

o
f

p
a

th
s

 e
v

a
lu

a
te

d

0
.0

e
+

0
0

2
.0

e
+

0
4

4
.0

e
+

0
4

6
.0

e
+

0
4

8
.0

e
+

0
4

1
.0

e
+

0
5

1
.2

e
+

0
5

1
.4

e
+

0
5

Figure 21: Boxplots showing the number of paths evaluated by the EDA
before finding an error against the number of philosophers.

reveal important insights and provide helpful debugging inform-
ation. The output of a typical evolutionary algorithm run is a bag
of solutions and nothing more. The model learned by the EDA
model checking algorithm proposed in this paper could indeed
provide insight into the target problem. The model structure
can highlight interesting interleaving of actions between threads
that lead to increased blocking, or whatever attribute the fitness
function is trying to optimise.

One interesting phenomenon that was noted from the ex-
periments is that the models from which the error paths were
sampled are all similar. The model from which the solution for
8 philosophers was sampled is similar in structure and distribu-
tions to the model for 32 philosophers. This indicates that the
EDA is learning a strategy for finding errors in the DiningPhil
family of problems. The model learned from solving the 4 philo-
sopher problem can easily be sampled from to aid in solving
the 32 and higher philosopher problems. One can exploit this
phenomena to exert less computational effort by using models
learned from smaller variants of problems to effectively search
much larger problems. This kind of approach is often used when
verifying hardware designs [Clarke et al., 2000].

8.3 summary 89

Figure 21 shows the results of the EDA applied to increasingly
larger DiningPhil problems. The parameters for these runs are
the same as those described earlier. The boxplots show the out-
liers, lower, median and upper quartiles for a sample of 50 runs.
The number of paths evaluated before finding an error are plot-
ted against the number of philosophers in the target problem,
ranging from 4 to 40 philosophers. The figure shows an upward
trend in the number of paths evaluated before an error is found
for increasing numbers of philosophers. The trend, however, is
impressive given that the state space of the problem is increasing
at an enormous rate.

Showing results from larger numbers of philosophers is unfor-
tunately difficult due to the high memory usage of JPF on such
large problems. The majority of the memory usage of the EDA
can be attributed to JPF, as the EDA is lightweight in terms of
both memory and computational effort. With a more efficient
model checker or with refinements to JPF, I believe there is no
reason why larger instances of the dining philosophers problem
can not be solved. For instance, I believe that the implementation
for this proof on concept could use JPF more efficiently, allowing
for checking on larger systems. However, due to time constraints
this was not possible.

8.3 summary

In this chapter, I have shown how the proposed algorithm can
be used to detect deadlock in systems described by mainstream
programming languages. The approach was demonstrated us-
ing the Java PathFinder model checker, a popular tool that can
analyse compiled Java programs. The proposed algorithm was
shown to outperform common model checking algorithms depth-
first search and breadth-first search, as well as a random search
procedure on large instances of the Dining Philosopher prob-
lem. For larger instances of the Dining Philosophers problem
(16 philosophers and above), the EDA was the only algorithm
to find deadlocked states using reasonable resources. The EDA-
based approach produced results using a competitive amount
of resources for smaller instances that are trivially solved using
random search and deterministic techniques. This means that
there is little additional cost to running the EDA as opposed to
other techniques, whilst retaining the advantages shown in the
experimentation.

In this chapter, only the dining philosophers system is used to
demonstrate the potential of the proposed technique. Whilst the
algorithm in the proposed form seems effective on the Dining
Philosophers problem, the simple recent history algorithm may
not be as effective on a wider range of systems. However, I believe

90 finding deadlock in mainstream language code

that the algorithm can be extended in certain circumstances to
potentially handle more difficult problems. As well as making
transition choices based upon a recent history, other contextual
information can be used. For instance, using the current length of
the path during the sampling stage of the could help make a more
informed decision about which action to choose. A different n-
gram model could be used for choices at depth 0-20, 21-40 etc. N-
gram models could be based upon the current active classes in a
given state, allowing for history models to be different depending
on which types of threads are interacting.

In this work, only the Dining Philosophers example is used
to prove the potential of the algorithm. It is safe to say that the
Dining Philosopher problem is not representative in common
industrial concurrent systems, and can be considered as a theor-
etical exercise. In the next chapter, I will show how the algorithm
can be used not only on examples derived from industrial code,
but also to find other errors types such as assertion violations
and liveness properties.

9
F I N D I N G A N D O P T I M I S I N G
C O U N T E R E X A M P L E S I N I N D U S T R I A L C O D E

9.1 introduction

In the previous chapter I have shown how the algorithmic pro-
posal can be used to find deadlock in Java programs, proving
the potential for finding deadlock efficiently in mainstream lan-
guage code where other techniques fail. The example used was
the Dining Philosophers problem, which most would argue is
not representative of a typical concurrent system found in indus-
trial settings. In this chapter, I demonstrate how the proposed
algorithm can be used not only on more complex system de-
scriptions, but also to find error types other than deadlock. The
complex system descriptions examined in this chapter are taken
from models included with the SPIN/HSF-SPIN distribution
[Edelkamp et al., 2001a], and are derived from industrial settings
by manual translation into a format more amenable to check-
ing. Analysing arbitrary systems, such as an open source Java
program, is outside the scope of this chapter.

As well as demonstrating the ability of the proposed algorithm
to find multiple error types on more complicated systems, I es-
tablish the ability of the EDA to find high quality solutions to the
model checking problem. The quality of a solution, or counter-
example, is measured solely in terms of the length of the path
to an error. Shorter counterexamples are favoured over longer
ones. A developer trying to debug an error is only interested in
the actions that are necessary to cause the error. A long path to
an error, as opposed to a short path to the same error, contains
superfluous information with regards to what causes an error.
The ability of metaheuristic algorithms to optimise the quality of
solutions found to the model checking problem has been estab-
lished, so to compete the same must be able to be said about the
proposed algorithm.

The work in this chapter is based on [Staunton and Clark,
2011b].

9.2 experimentation

9.2.1 Implementation

In order to demonstrate the capabilities described above, this
work uses a well established model checker both in the hardware

91

92 finding and optimising counterexamples in industrial code

and software model checking community called SPIN. Specific-
ally, we use the HSF-SPIN [Edelkamp et al., 2004] variant, a
framework which allows heuristic algorithms to be implemented
within the SPIN environment. SPIN takes system descriptions
written in the PROMELA language and can check the system
against a wide variety of specification types, including absence
of deadlock, assertion violations and properties specified using
Linear Temporal Logic (LTL). The experimentation here again
uses the implementation described in Chapter 7, using ECJ to
drive the HSF-SPIN model checker.

LTL is a rich language for describing properties of paths over
time, including both deadlock and assertion violations. In or-
der to check for violations of a specification expressed in LTL,
automata-based model checking is a typically implemented by
a model checker. Most model checkers (including SPIN) create
(at least conceptually) a Büchi automaton that is equivalent to
the negation of the LTL formulae. A Büchi automaton differs
from regular finite automaton only in the acceptance condition.
Whereas regular finite automata accept strings that end in an
accepting state, Büchi automata require an infinite string that
visits an accepting state infinitely often. The negation of the LTL
formulae is used because typically the LTL formulae describe
the correct behaviour of the system, therefore the negation of
the formulae describe behaviours that should never happen. The
created Büchi automaton accepts paths which violate the LTL
specification. In the SPIN model checker, the Büchi automaton is
expressed using a never claim and can be automatically created
from the negation of LTL formulae.

9.2.2 Connected Component Classification

HSF-SPIN implements a particular method that can reduce com-
putational effort whilst model checking, and that method is ex-
ploited in this work. The detection and classification of strongly
connected components within a negated LTL Büchi automata
equivalent can help detect irrelevant paths in the product auto-
mata. A subset S of nodes in a graph are strongly connected if
for all nodes v and u in S, there is a path from v to u, and a path
from u to v. A strongly connected component (SCC) is a strongly
connected set of nodes that is not linked to any other by a cycle.
The SCCs of a never claim can be computed in linear time, and
a library for doing so is provided in HSF-SPIN. The library can
also be used to classify certain types of SCC.

[Edelkamp et al., 2004] describes a number of useful types of
SCC. The first is the N-SCC, an SCC with no accepting cycles.
Second, the P-SCC (partial SCC) an SCC with at least once cycle
that does not contain an accepting state, and one cycle that does

9.2 experimentation 93

contain an accepting state. Finally, the F-SCC, in which all cycles
contain an accepting state. For liveness specifications that contain
N-SCCs and F-SCCs, once a cycle is found and it is part of an
F-SCC, then an error has been discovered due to all cycles in an
F-SCC being accepting. Accepting states found in N-SCCs can be
ignored because no accepting cycles exist in N-SCCs, potentially
saving some computational effort. Classifying and exploiting
SCCs seems to result in a higher hit rate in the ACOhg algorithm
[Alba and Chicano, 2008], and the same exploitation occurs in
the implementation used in this work.

9.2.3 Fitness function

The fitness function used in this work differs slightly from the
function used in the previous chapter. The pseudo-code of the
ranking function can be found in Algorithm 5. The fitness func-
tions compares two individuals, returning the “fitter" individual.
The fitness function firstly prefers paths that contain errors to
paths that do not contain an error. If both paths contain an error,
then the shorter path is preferred. If neither path contains an
error, then the decision falls back to the HSF-SPIN metric. The
HSF-SPIN metric is described in Algorithm 6.

Algorithm 5 Fitness function used to rank individuals. Individu-
als that are “closer” to violating a property are favoured.

Require: A, B are Individuals;
if A.error_found 6= B.error_found then

return IndividualWithErrorFound(A,B);
else if A.error_found andB.error_found then

return IndividualWithShortestPath(A,B);
else

return IndividualWithLowestHSFSPINMetric(A,B);
end if

Algorithm 6 HSF-SPIN heuristic metric algorithm.

Require: I is an Individual;
aggregateMetric = 0;
for all States s ∈ I.Path do

aggregateMetric += s.HSFSPINMetric;
end for
return aggregateMetric/LengthOfPath;

The algorithm described in Algorithm 6 aggregates a heur-
istic value calculated by HSF-SPIN for all the states of a path,
and then averages that value over the path length. This calcula-
tion gives a heuristic value for the entire path which the EDA

94 finding and optimising counterexamples in industrial code

seeks to minimise. The choice of average over summation of the
per-state heuristic was decided on after brief experimentation
yielded positive results by using an average. The heuristics used
in this work are described in the experimental section. The fit-
ness function described above favours shorter counterexamples
to longer ones. Because of this, if the algorithm is allowed to
execute further once an error is found, there is the potential for
shorter counterexamples to be found.

9.3 experiments in finding and optimising counter-
examples

In this section, we present the results of experiments in finding
and optimising counterexamples in Promela models using the
EDA-based approach. We compare the EDA-based approach to
traditional deterministic algorithms included in the HSF-SPIN
package. Rather than just running the EDA until an error is
found, we allow the EDA to run for 200 generations allowing the
EDA to potentially optimise the length of the counterexample.
The implementation allows us to not store previously visited
states in memory, keeping memory usage to a fairly constant
level of around 300MB or less depending on the Promela model.
This measurement includes the Java and HSF-SPIN process. To
demonstrate the capabilities of the EDA-based approach, we have
selected a number of models that violate safety, assertion and
liveness properties.

9.3.1 Example Promela Models

The HSF-SPIN software distribution includes a number of differ-
ent models and systems that violate a variety of different kinds
of properties. In this work, we use the models listed in Table
2 to demonstrate the efficacy of the EDA-based approach. The
table shows the name of the model, the maximum number of
processes created, the number of Lines of Code in the model and
the property the model violates.

The selected models exhibit a range of property violations
which include safety and liveness properties. The first two (phil-
loop and phil-noloop) are Promela implementations of the Dining
Philosophers coordination problem. In both of these examples,
each philosopher effectively locks/picks up the left fork, then
then right fork, then releases them in that order. The “locking” is
implemented by reading and writing to channels that represent
the forks. The first model performs this behaviour in an infin-
ite loop, whilst the second model terminates each philosopher
after executing the fork retrieval. The deadlock-giop model is an
implementation of the CORBA General Inter-Orb Protocol with a

9.3 experiments in finding and optimising counterexamples 95

Table 2: Models and the respective properties violated.
Model Processes LoC Property

phil-loopn n+ 1 34 Deadlock

phil-noloopn n+ 1 35 Deadlock

deadlock-giopn n+ 6 717 Deadlock

pots 3 453 Deadlock

leadern n+ 1 117 Assertion

alter 2 64 �(p→ ♦q)∧�(r→ ♦s)

elevn n+ 3 191 �(p→ ♦q)

ltlgiopn n+ 6 740 �(p→ ♦q)

sgc 20 1001 ♦p

faulty timeout phase that can lead to deadlock. The pots model
is an implementation of the Plain Old Telephony System which
exhibits a deadlock. leader implements an election algorithm for
nodes in a unidirectional ring configuration and violates a con-
sistency assertion. alter is an implementation of the alternating
bit protocol. The elevn models an elevator that services n floors
in a building. The ltlgiop model is the same implementation as
the deadlock-giop model but includes an LTL property which the
model violates. Finally, the sgc simulates the operator protocol
of a power planet. The giop series of models have been derived
from an industrial standard, and the phil, elev and giop models
are stated as having very large state spaces [Alba and Chicano,
2008].

9.3.2 Parameters of the EDA

The parameters used in this experiment were chosen through
small-scale experimentation on the selection of Promela models,
using the parameters from [Staunton and Clark, 2010] as a guide.
An n-gram length of 3 was used, meaning models for 3-grams,
2-grams and 1-grams are constructed from each generation. The
population size for each generation was set to 150. This means
that 150 paths are sampled from the model to build each gen-
eration. The mutation parameter for these experiments is set to
0.001, meaning that on average 1 in 1000 transition choices are
made randomly, disregarding the model. The elitism parameter
was set to 1, meaning that the top individual from the population
is copied to the next generation. In order to build the model from
which the next generation is sampled, truncation selection selects
the top 20% of individuals from the population. This means that
the top 30 individuals from the current population are used to
build the EDA/N-gram model. All individuals in the population
are replaced at each generation with individuals sampled from
the model. The algorithm terminates once it reaches 200 genera-

96 finding and optimising counterexamples in industrial code

tions, allowing for the potential optimisation of counterexamples.
Initially, the model is a blank model meaning that all the paths
evaluated during the first generation are completely random.

9.3.3 Experiments

In this section, we present results from experimentation that
compares the EDA-based approach against traditional determ-
inistic approaches for finding short property violations. When
searching for deadlock, we use the active processes heuristic
provided by HSF-SPIN and compare against the A* algorithm.
The active processes heuristic simply returns the number of active
processes/enabled transitions in a particular state. If the heur-
istic returns 0 and the state is not a valid terminal state, then
the state is a deadlocked state. When searching for the assertion
violation in the leader model, we use the formula-based heuristic
and A*. The formula-based heuristic is described in [Edelkamp
et al., 2001b] and returns an estimate on the number of transitions
from a given state s to a violation based upon satisfaction of sub-
formulae in a specified property. And finally, we use the endstate
of claim distance heuristic and the improved nested depth-first
(INDFS) search when searching for LTL violations. The endstate
of claim distance heuristic estimates the distance a given state
is from an accepting state in the product Büchi automaton. In
this scenario, INDFS uses the heuristic to determine the order in
which new states are expanded during the depth-first expansion.
The same heuristic is used for the EDA and for the respective de-
terministic approaches, with the deterministic approaches using
the heuristic on individual states rather than paths. In order to
gain statistically sound results, we run the EDA-based approach
100 times (with the exception of ltlgiop20 due to time constraints)
as the algorithm is probabilistic.

Table 3 shows the results from this experiment, along with
some statistical comparison information. The performance with
respect to a selection of measures of each algorithm (apart from
the EDA) is compared with the performance of the EDA. These
measures include the length of the error found, the generation in
which the error was found and the number of states expanded
before the error is found. These measurements are shown for the
first error found by the EDA, and the best error found. In some
cases, the number of states expanded may be lower than the path
length to the error. This is due to path length being the number of
action choices made, and more than one state can be expanded as
the result of an action choice. The states measurement is provided
by the HSF-SPIN model checking tool, whilst the path length is
the number of actions that are chosen by the EDA algorithm to
generate the path. For each measurement, the mean is given in

9.3 experiments in finding and optimising counterexamples 97

the left column whilst the median resides on the right. Lower
and upper quartiles are given below each statistic, lower on the
left, upper on the right. We opted to not show wall clocks times
as the number of states expanded is a more realistic measure of
the algorithms performance. The vast majority of the CPU time
and memory used during the course of a run is spent expanding
states, as opposed to building models/evaluating statistics. Most
run times, of both the EDA and the deterministic approach,
range from a 4 milliseconds to a maximum of 4 hours. Statistical
comparisons are indicated with plus and minus symbols, plus
being significant and minus not significant. In order to compare
the EDA-based algorithm against the deterministic variants, we
use the Wilcoxon signed-rank test with a significance level of
α = 0.05. We have also performed comparisons with random
search.

98 finding and optimising counterexamples in industrial code

Table 3: Results for the EDA and the respective deterministic al-
gorithms.

Statistic EDA Deterministic

pots

Errors/Runs 100/100 1/1

First error:

Length 68.08 69 67(+)

67 69

Generation 19.34 9 −

1 24.75

States 44, 292.95 22, 926.5 7060(+)

5047.5 55791.75

Best error:

Length 68.64 69 67(+)

69 69

Generation 42.15 24 −

7.75 60.25

States 92, 286.66 58, 298 7060(+)

20, 998.25 135, 721.5

phil-noloop64

Errors/Runs 100/100 1/1

First error:

Length 258 258 258(−)

258 258

Generation 6.35 6 −

5 7

States 324, 209.42 333, 886.5 258(+)

258, 062.25 381, 206

Best error:

Length 258 258 258(−)

258 258

Generation 6.35 6 −

5 7

States 324, 209.42 333, 886.5 258(+)

258, 062.25 381, 206

Continued on next page...

9.3 experiments in finding and optimising counterexamples 99

Continued from previous page...

Statistic EDA Deterministic

phil-noloop128

Errors/Runs 100/100 1/1

First error:

Length 514 514 514(−)

514 514

Generation 18.93 18 −

15 22

States 1, 859, 306.63 1, 762, 271.5 514(+)

1, 520, 985.75 2, 138, 105

Best error:

Length 514 514 514(−)

514 514

Generation 18.93 18 −

15 22

States 1, 859, 306.63 1, 762, 271.5 514(+)

1, 520, 985.75 2, 138, 105

phil-loop64

Errors/Runs 100/100 1/1

First error:

Length 611.4 594 258(+)

517 687

Generation 0 0 −

0 0

States 1, 732.25 1, 414.5 258(+)

760.25 2547

Best error:

Length 268.84 258 258(−)

258 258

Generation 29.21 9 −

8 12

States 826, 669.98 312, 698.5 258(+)

279, 739.5 384, 795

Continued on next page...

100 finding and optimising counterexamples in industrial code

Continued from previous page...

Statistic EDA Deterministic

phil-loop128

Errors/Runs 100/100 1/1

First error:

Length 1, 294.12 1, 272 514(+)

1166 1431

Generation 0 0 −

0 0

States 2, 766.09 2, 276.5 514(+)

1, 188 3, 497.75

Best error:

Length 735.32 754 514(+)

665 834

Generation 68.62 5.5 −

2 147.25

States 4, 267, 972.45 708, 306 514(+)

302, 913.75 8, 760, 617.25

deadlock-giop20

Errors/Runs 100/100 0/1

First error:

Length 197.4 199 Failed

196 215

Generation 0 0 −

0 0

States 140.44 142 Failed

139 156

Best error:

Length 141 141 Failed

141 141

Generation 0.48 0 −

0 1

States 17, 553.87 18, 917 Failed

6, 212 25, 854.25

Continued on next page...

9.3 experiments in finding and optimising counterexamples 101

Continued from previous page...

Statistic EDA Deterministic

deadlock-giop40

Errors/Runs 100/100 0/1

First error:

Length 283.29 279 Failed

276 297

Generation 0 0 −

0 0

States 190.46 182 Failed

179 199

Best error:

Length 221 221 Failed

221 221

Generation 0.39 0 −

0 1

States 19, 836.35 17, 704 Failed

5, 905.75 30, 796

leader5

Errors/Runs 100/100 1/1

First error:

Length 69.17 69 58(+)

65.75 73

Generation 0 0 −

0 0

States 48.17 48 5, 108(+)

44.75 52

Best error:

Length 55 55 58(+)

55 55

Generation 9.52 7 −

4 11

States 69, 607.76 53, 748.5 5, 108(+)

29, 533.25 79, 322.25

Continued on next page...

102 finding and optimising counterexamples in industrial code

Continued from previous page...

Statistic EDA Deterministic

leader10

Errors/Runs 100/100 1/1

First error:

Length 124.24 125 88(+)

119 130

Generation 0 0 −

0 0

States 83.24 84 4, 876, 999(+)

78 89

Best error:

Length 75.65 76 88(+)

75 76

Generation 86.86 75 −

35.75 135.25

States 926, 073.91 800, 486.5 4, 876, 999(+)

386, 996.25 1, 440, 948.55

alter

Errors/Runs 100/100 1/1

First error:

Length 26.32 24 64(+)

16 36

Generation 0 0 −

0 0

States 15.31 14 32(+)

10 20

Best error:

Length 8 8 64(+)

8 8

Generation 0 0 −

0 0

States 202.36 170 32(+)

62.5 312.75

Continued on next page...

9.3 experiments in finding and optimising counterexamples 103

Continued from previous page...

Statistic EDA Deterministic

elev20

Errors/Runs 100/100 1/1

First error:

Length 767.72 529 1, 159(+)

491.5 1, 015.5

Generation 0.01 0 −

0 0

States 4, 127.04 2, 978 558(+)

1, 300 5, 785.5

Best error:

Length 378.88 381 1, 159(+)

375 381

Generation 70.78 53 −

25.75 105.5

States 1, 698, 200.08 1, 266, 285 558(+)

604, 450 2, 567, 113.75

elev40

Errors/Runs 100/100 1/1

First error:

Length 1, 196.82 723 2, 039(+)

678.5 1, 209.5

Generation 0.03 0 −

0 0

States 8, 104.37 5, 494 978(+)

2, 659.25 11, 691.75

Best error:

Length 578.98 581 2, 039(+)

575 581

Generation 55.99 39 −

20 78.25

States 2, 254, 850.07 1, 603, 325 978(+)

789, 908 3, 186, 499.25

Continued on next page...

104 finding and optimising counterexamples in industrial code

Continued from previous page...

Statistic EDA Deterministic

ltlgiop10

Errors/Runs 100/100 0/1

First error:

Length 209.66 184 Failed

160 244.75

Generation 0 0 −

0 0

States 3, 153.72 707.5 Failed

366.75 5, 552.5

Best error:

Length 73.45 74 Failed

70 76

Generation 111.54 113 −

67.75 149

States 7, 291, 250.65 7, 297, 643 Failed

4, 757, 607.75 10, 092, 245

ltlgiop20

Errors/Runs 100/100 0/1

First error:

Length 348.9 338 Failed

260.75 436.5

Generation 0 0 −

0 0

States 57, 244.90 50, 511 Failed

15, 577.75 85, 825.5

Best error:

Length 96.58 96 Failed

92 98

Generation 105.75 117 −

58.5 159.25

States 44, 940, 817.34 49, 606, 760 Failed

24, 707, 603.75 67, 728, 321.25

Continued on next page...

9.3 experiments in finding and optimising counterexamples 105

Continued from previous page...

Statistic EDA Deterministic

sgc

Errors/Runs 100/100 1/1

First error:

Length 19.54 18 46(+)

18 22

Generation 0 0 −

0 0

States 4.4 4 11(+)

4 5

Best error:

Length 18 18 46(+)

18 18

Generation 0 0 −

0 0

States 6.28 4 11(+)

4 9

106 finding and optimising counterexamples in industrial code

Table 4: Results for the EDA and Random Search.

Statistic EDA Random Search

pots

Errors/Runs 100/100 100/100

First error:

Length (-) 68.08 69 68.12 69

67 69 67 69

Generation 19.34 9 − −

1 24.75

States (-) 44, 292.95 22, 926.5 22, 284.23 16, 306

5047.5 55791.75 5, 589.5 31, 081.75

Best error:

Length (+) 68.64 69 68.32 69

69 69 67 69

Generation 42.15 24 − −

7.75 60.25 − −

States (+) 92, 286.66 58, 298 45, 845.55 29, 342

20, 998.25 135, 721.5 12, 270.25 63, 006.5

phil-noloop64

Errors/Runs 100/100 0/100

First error:

Length (+) 258 258 Failed

258 258

Generation 6.35 6 − −

5 7

States (+) 324, 209.42 333, 886.5 Failed

258, 062.25 381, 206

Best error:

Length (+) 258 258 Failed

258 258

Generation 6.35 6 − −

5 7

States (+) 324, 209.42 333, 886.5 Failed

258, 062.25 381, 206

Continued on next page...

9.3 experiments in finding and optimising counterexamples 107

Continued from previous page...

Statistic EDA Random Search

phil-noloop128

Errors/Runs 100/100 0/100

First error:

Length (+) 514 514 Failed

514 514

Generation 18.93 18 − −

15 22

States (+) 1, 859, 306.63 1, 762, 271.5 Failed

1, 520, 985.75 2, 138, 105

Best error:

Length (+) 514 514 Failed

514 514

Generation 18.93 18 − −

15 22

States (+) 1, 859, 306.63 1, 762, 271.5

1, 520, 985.75 2, 138, 105 Failed

phil-loop64

Errors/Runs 100/100 100/100

First error:

Length (-) 611.4 594 615.72 588

517 687 534 682

Generation 0 0 − −

0 0

States (-) 1, 732.25 1, 414.5 1, 506.09 1, 055.5

760.25 2547 599.5 2, 121.5

Best error:

Length (+) 268.84 258 319.16 318

258 258 313 326

Generation 29.21 9 − −

8 12

States (+) 826, 669.98 312, 698.5 5, 827, 332.94 5, 042, 235

279, 739.5 384, 795 2, 465, 755.75 9, 407, 784

Continued on next page...

108 finding and optimising counterexamples in industrial code

Continued from previous page...

Statistic EDA Random Search

phil-loop128

Errors/Runs 100/100 100/100

First error:

Length (-) 1, 294.12 1, 272 1, 272.12 1, 278

1166 1431 1133 1391

Generation 0 0 − −

0 0

States (-) 2, 766.09 2, 276.5 3, 737.85 2, 469

1, 188 3, 497.75 1, 676.5 4, 280.25

Best error:

Length (-) 735.32 754 763.76 772

665 834 746 786

Generation 68.62 5.5 − −

2 147.25

States (+) 4, 267, 972.45 708, 306 12, 079, 792.36 12, 584, 058.5

302, 913.75 8, 760, 617.25 4, 085, 110 18, 707, 884.75

deadlock-giop20

Errors/Runs 100/100 100/100

First error:

Length (-) 197.4 199 203.59 199

196 215 196 218

Generation 0 0 − −

0 0

States (-) 140.44 142 145.98 142

139 156 139 159

Best error:

Length (-) 141 141 141 141

141 141 141 141

Generation 0.48 0 − −

0 1

States (-) 17, 553.87 18, 917 22, 896.67 15, 647

6, 212 25, 854.25 5, 583.5 31, 655

Continued on next page...

9.3 experiments in finding and optimising counterexamples 109

Continued from previous page...

Statistic EDA Random Search

deadlock-giop40

Errors/Runs 100/100 100/100

First error:

Length (-) 283.29 279 286.79 279

276 297 276 298

Generation 0 0 − −

0 0

States (-) 190.46 182 190.73 182

179 199 179 199

Best error:

Length (-) 221 221 221 221

221 221 221 221

Generation 0.39 0 − −

0 1

States (+) 19, 836.35 17, 704 30, 456.97 20, 623.5

5, 905.75 30, 796 10, 137.5 39, 338.75

leader5

Errors/Runs 100/100 100/100

First error:

Length (-) 69.17 69 69.59 69

65.75 73 66 73

Generation 0 0 − −

0 0

States (-) 48.17 48 48.59 48

44.75 52 45 52

Best error:

Length (+) 55 55 55.12 55

55 55 55 55

Generation 9.52 7 − −

4 11

States (+) 69, 607.76 53, 748.5 422, 239.46 298, 308

29, 533.25 79, 322.25 98, 509.75 673, 580.5

Continued on next page...

110 finding and optimising counterexamples in industrial code

Continued from previous page...

Statistic EDA Random Search

leader10

Errors/Runs 100/100 100/100

First error:

Length (-) 124.24 125 124.91 126

119 130 118.75 131

Generation 0 0 − −

0 0

States (-) 83.24 84 83.91 85

78 89 77.75 90

Best error:

Length (+) 75.65 76 91.12 91.5

75 76 90 93

Generation 86.86 75 − −

35.75 135.25

States (-) 926, 073.91 800, 486.5 1, 022, 467.47 903, 307

386, 996.25 1, 440, 948.55 444, 148.25 1, 582, 721.75

alter

Errors/Runs 100/100 100/100

First error:

Length (-) 26.32 24 28.46 30

16 36 18 36

Generation 0 0 − −

0 0

States (-) 15.31 14 16.41 17

10 20 11 20

Best error:

Length (-) 8 8 8 8

8 8 8 8

Generation 0 0 − −

0 0

States (-) 202.36 170 190.52 125

62.5 312.75 55 230.45

Continued on next page...

9.3 experiments in finding and optimising counterexamples 111

Continued from previous page...

Statistic EDA Random Search

elev20

Errors/Runs 100/100 100/100

First error:

Length (-) 767.72 529 723.78 526

491.5 1, 015.5 461 708.5

Generation 0.01 0 − −

0 0

States (-) 4, 127.04 2, 978 4, 046.71 3, 223

1, 300 5, 785.5 1, 257 5, 546

Best error:

Length (+) 378.88 381 388.76 389

375 381 389 389

Generation 70.78 53 − −

25.75 105.5

States (+) 1, 698, 200.08 1, 266, 285 883, 742.55 680, 025.5

604, 450 2, 567, 113.75 401, 169.25 1, 181, 546

elev40

Errors/Runs 100/100 100/100

First error:

Length (-) 1, 196.82 723 1, 159.6 723

678.5 1, 209.5 664 917

Generation 0.03 0 − −

0 0

States (-) 8, 104.37 5, 494 7, 182.44 4, 811

2, 659.25 11, 691.75 2, 335.5 9, 248

Best error:

Length (+) 578.98 581 588.76 589

575 581 589 589

Generation 55.99 39 − −

20 78.25

States (+) 2, 254, 850.07 1, 603, 325 1, 599, 969.86 1, 204, 717

789, 908 3, 186, 499.25 481, 500.75 2, 413, 688

Continued on next page...

112 finding and optimising counterexamples in industrial code

Continued from previous page...

Statistic EDA Random Search

ltlgiop10

Errors/Runs 100/100 100/100

First error:

Length (-) 209.66 184 217.08 188

160 244.75 159.75 249

Generation 0 0 − −

0 0

States (+) 3, 153.72 707.5 2, 742.45 839.5

366.75 5, 552.5 405.25 5641

Best error:

Length (+) 73.45 74 114.64 114

70 76 114 116

Generation 111.54 113 − −

67.75 149

States (+) 7, 291, 250.65 7, 297, 643 2, 714, 784.96 2, 648, 932

4, 757, 607.75 10, 092, 245 1, 426, 870.5 4, 067, 802

ltlgiop20

Errors/Runs 100/100 100/100

First error:

Length (-) 348.9 338 330.44 301.5

260.75 436.5 224.75 407.25

Generation 0 0 − −

0 0

States (-) 57, 244.90 50, 511 53, 843.89 43, 084

15, 577.75 85, 825.5 10, 389.5 76, 062

Best error:

Length (+) 96.58 96 175.77 176

92 98 174 178

Generation 105.75 117 − −

58.5 159.25

States (+) 44, 940, 817.34 49, 606, 760 27, 733, 336.12 22, 856, 985

24, 707, 603.75 67, 728, 321.25 11, 932, 572.25 40, 329, 617.5

Continued on next page...

9.3 experiments in finding and optimising counterexamples 113

Continued from previous page...

Statistic EDA Random Search

sgc

Errors/Runs 100/100 100/100

First error:

Length (-) 19.54 18 20.38 18

18 22 18 22

Generation 0 0 − −

0 0

States (-) 4.4 4 4.64 4

4 5 4 5

Best error:

Length (-) 18 18 18 18

18 18 18 18

Generation 0 0 − −

0 0

States (-) 6.28 4 7.25 4

4 9 4 9

9.3.4 Discussion of Results

Initial observations from the results table reveal that the EDA is
the only algorithm to achieve a 100% hit rate on all of the sample
models. The deterministic approaches fail to find an error on
the deadlock-giop and the ltlgiop examples, either hitting a 64GB
memory limit or going over a time limit of 24 hours. Random
search also failed to discover an error on the phil-noloop model
family. These models are particularly large, and the results show
the ability of the EDA to focus the search on promising areas of
the state space revealing errors by expanding fewer states, and
consequently using less memory and CPU time. In the phil-noloop
model, there is only one path to get to the error (always take left),
and this explains the similarity between first and best paths found
by both the EDA and the deterministic algorithms. The 100% hit
rate on all the test cases shows that the EDA-based approach
is a very promising algorithm for discovering counterexamples
in large state spaces, especially with respect to robustness and
sensitivity to the state space explosion problem. The ACOhg
algorithm in [Chicano and Alba, 2008a; Alba and Chicano, 2008]
shows a less than 100% hit rate on the ltlgiop and philosophers
models, suggesting that the EDA-based approach may have an
advantage on some of the larger models.

114 finding and optimising counterexamples in industrial code

In the majority of test cases the EDA found a statistically signi-
ficantly shorter counterexample than the deterministic approach,
with the exception of the pots model and the larger phil-loop
model. However, the difference in the length of the best paths
found is a matter of 1 or 2 states on the pots model. The larger
difference on the phil-loop128 model is likely explained by the way
the heuristic is constructed. By using the average of the heuristic
values of states in a path as the heuristic value for a path in the
EDA, the EDA may favour longer paths in some instances. For
example, a longer path of low heuristic values may be favoured
over a short path with high heuristic values. This result shows
that the EDA can be sensitive to the heuristic used, and that some
models may require a carefully thought out heuristic in order for
the EDA to be effective. This effect is only evident in the phil-loop*
models, and in the majority of cases does not seem to hinder the
EDA On the phil-loop* models, the EDA is beating random search
by either finding a shorter counter example, or expanding fewer
states on average. The ability to optimise counterexamples makes
the EDA an appealing approach, as shorter counterexamples re-
move superfluous information enabling a software tester/model
checking practitioner to focus on the underlying cause of an issue.
To optimise the counterexample, however, more states must be
expanded in order to learn a model that reflects shorter counter-
examples. This is shown in the results table on the majority of the
models with the exception of the leader model, where the EDA
managed to find a shorter error by expanding far fewer states
and therefore using less memory and CPU time.

In some cases, the number of states required to find the first
error in an EDA run is either less than or statistically insignific-
antly greater than or equal to the results from the deterministic
algorithms. In the cases where the EDA does expand more states
to find the first error, mere milliseconds are added to the EDA
search time with respect to the deterministic search time. How-
ever, this is not the case on the phil-noloop and pots models, where
the states required to find the first error is far greater than the
deterministic algorithm. However in the vast majority of cases,
the EDA found the first error by expanding a reasonable amount
of states. The results shown in this experiment show that the
EDA is capable of finding errors in a short space of time, even
in models (the giop based models) that are deemed very large by
previous work [Alba and Chicano, 2008].

In the majority of the tests, one can observe that the number
of generations required to find the first error is on average zero.
This indicates that the EDA algorithm found the first error using
random search alone due to the EDA starting with a blank model.
When given a blank model, all transitions are chosen at random.
It is the case that random search is also able to find an error

9.4 summary 115

with a 100% hit rate in all of the test cases with the exception of
the phil-noloop model. However in all but three cases (the elevn,
alter and sgc models), the EDA was able to shorten the error
statistically significantly when compared to the best error found
by random search. The fact that random search is able to find an
error with a 100% hit rate in the majority of the tests, as well being
statistically equivalent to the EDA when faced with the elev, alter
and sgc models suggests that a comparison with random search is
necessary when evaluating probabilistic algorithms in the model
checking domain. It also suggests that as part of a benchmark
suite of tests for model checking algorithms, relevant models
that defeat random search must be found. We can state, however,
that the EDA-based approach achieves a 100% hit rate, whilst
being able to more effectively optimise counterexamples in the
majority of our selected benchmark tests when compared with
random search and the most prominent deterministic algorithms.
Due to the fact that the first error is often found in the first
generation, the HSF-SPIN aspect of the fitness function is seldom
exercised. Therefore, the path shortening pressure governs the
selection process in the majority of the scenarios. This explains the
negligible difference I observed in preliminary testing between
the averaging and summation based fitness functions.

On some of the tests, the EDA finds the best error in generation
0 100% of the time. The models in which this occurs are the sgc
and alter models. The best error found in these systems is the
shortest possible error that can be found. This indicates that the
model is trivial for any sensible algorithm, since the shortest
possible error can be found using random search without any
guidance/learning. These trivial models are likely not good can-
didates for future model checking benchmarks and we suggest
that the use of these models should be avoided.

9.4 summary

In this chapter, I have shown how the proposed algorithm can
not only find counterexamples to a variety of property types
in systems derived from industrial code, but can also optim-
ise the quality of said errors. I have compared the algorithm
against prominent deterministic approaches using similar heur-
istics, showing that the EDA can find shorter counterexamples in
the majority of the test cases. In two cases, we have shown that
the EDA can find errors where traditional approaches fail due to
exhaustion of resources, showing that the EDA can effectively fo-
cus the effort of the search. The optimisation of counterexamples
is a key feature that model checking practitioners could find use-
ful. Current prominent mechanisms, namely the improved nested
depth-first search algorithm, do not provide this ability. Although

116 finding and optimising counterexamples in industrial code

they can be extended to potentially do so, it is not clear how well
an extended nested depth-first search algorithm would scale on
large state spaces. The EDA-based approach shows promise with
respect to large state spaces, with the results of the experiment
showing robustness when tested with a variety of models. With
respect to the state of the art in the domain, the EDA-based
algorithm has a higher success rate than ACO on a number of
models, including the giop model and the Dining Philosopher
models.

In addition to the work of the previous chapter showing the
ability to find deadlock in concurrent systems, I have shown that
the EDA can find violations of assertions and liveness properties,
a key step in demonstrating the efficacy of an EDA-based ap-
proach. When proposing the algorithm, I was initially concerned
that the EDA can only be effective on highly symmetric toy prob-
lems such as the Dining Philosophers problem. However, the
results show that the EDA can find errors in large asymmetric
systems that are derived from industrial scenarios. The results
suggest that an EDA-based approach to searching a state space
can be used to find an error of any kind provided a suitable
heuristic can be defined. In addition to this, the EDA could po-
tentially be used as a counterexample optimiser as a supplement
to another algorithm known to be effective on a particular model.
For instance, one could use a traditional algorithm to find an
error in the phil-loop series of models, and then use the EDA-
based algorithm with a state-distance heuristic to find a shorter
counterexample.

An often cited potential feature of EDAs is the ability to gain
information or insight by examining the models created at each
generation during the run. A typical Evolutionary Algorithm
produces a sequence of bags of solution to a problem, whilst
an EDA additionally produces a sequence of models. The ana-
lysis or reuse of this modelling information may yield savings
in computational effort when used for model checking, giving
the algorithmic proposal of this thesis a unique advantage over
existing model checking mechanisms. In the next chapter, I set
out to explore this aspect of the algorithmic proposal and how
reuse of model information can save effort when verifying large
industrially relevant systems.

10
S C A L I N G T O L A R G E S Y S T E M S

10.1 introduction

In the previous two chapters, I have established the proposed
algorithm as a credible contender in the space of algorithms that
detect counterexamples in large transition systems. As well as
having a robust detection rate when compared to all other al-
gorithms, the EDA-based approach can optimise the quality of
the solutions found. By finding shorter counterexamples, prac-
titioners of model checking or concurrent software developers
can obtain concise information about an error leading to more
efficient debugging.

An often cited advantage of EDAs over other metaheuristic
approaches is the potential for the model information created
during the run of an EDA to be used to improve the performance
of the EDA with respect to some criteria [Pelikan et al., 2002;
Očenášek, 2002]. Given that the EDA-based model checking al-
gorithm I have proposed in this thesis is the only EDA-based
approach available to the model checking community, this cap-
ability could give the EDA a unique advantage over all other
algorithms in the model checking domain.

In this chapter, I will show how the proposed algorithm and the
use of modelling information can be used to save large amounts
of computational effort in practical software engineering scen-
arios, and show empirically the potential in on of those scenarios.
The work in this chapter is based on [Staunton and Clark, 2011a].

10.2 model reuse

A typical GA run will produce a sequence of bags of solutions to
a target problem. In the case of detecting concurrent faults, this
will amount to sets of paths within the transition system which
may or may not lead to an error. Whilst it is possible to use some
of these solutions to seed future runs, even a small change to the
target problem could destroy the applicability of these solutions.
Similarly, Ant Colony Optimisation constructs pheromone trails
that may lose relevance once the target problem has been changed.
The EDA-based model checking technique, on the other hand,
produces a strategy for navigating a transition system in addition
to structures that represent solutions. We believe that with some
simple steps the models can be used to reduce computational
effort on future instances of similar problems. Outlined below

117

118 scaling to large systems

are a number of potential practical scenarios for model reuse that
could greatly reduce computational effort.

10.2.1 Reuse during Debugging

The first proposed scenario for model reuse is during the test-
ing/debugging phases of the development life cycle. It is plaus-
ible that during any execution of the EDA a constructed model
can represent a strategy for finding not just a single error but
multiple errors, as well as “problem areas” of the state space.
If a single error has been found in an execution e on the ith
revision of the system, e could be halted in order to fix the bug.
This would create the i+ 1th revision. Once the error has been
corrected, execution can continue using the model constructed
in the last generation of e, labelled m. It is also plausible that
erroneous actions from the ith revision of the system in m can be
mapped to the corrected actions in the revised system, allowing
for the EDA to focus on these areas initially. This may potentially
eliminate computation if errors still exist in the area of the state
space where the initial error was found. Equally, if a practitioner
is confident that the error has been corrected, the area of the state
space can be added to a tabu list, allowing the EDA to focus
effort elsewhere.

10.2.2 Reuse during Refinement

Another potential scenario for reusing models is during refine-
ment. During implementation, versions of the system are refined
to meet various ends, including performance improvements and
bug fixing. Refinements may increase the size of the transition
system enormously. In order to combat this, it is plausible that
the EDA can be executed on the more abstract version of the sys-
tem/software in order to determine potential problem areas that
rank highly with the fitness function. The models constructed
during these initial explorations can then potentially be used to
explore future refinements of the system. If refining the system
increases the state space size significantly, then significant com-
putational effort could be spared. There is also the potential to
map actions from the abstract system to actions in the refined
system, potentially increasing the saving of computational effort.

10.2.3 Reuse when tackling Problem Families

In my published work [Staunton and Clark, 2010, 2011b] and in
earlier chapters I have speculated that the EDA-based technique
is learning effective strategies for navigating the state spaces of

10.3 experimentation with problem families 119

problem families, rather than just the problem instance itself.
A problem family is simply a system which can be scaled up
and down respective to some parameter, typically the number
of processes/threads in the system/software. This opens up the
possibility of models learned whilst tackling small instances of a
problem family can be used to save effort whilst finding errors
in larger instances. Finding the same error in a number of in-
stances of a problem family can provide additional debugging
information, potentially shortening the debugging life cycle. Prob-
lem families arise frequently in practical situations [Clarke et al.,
2000], in both hardware and software systems.

In this work, we provide empirical evidence showing how com-
putational effort can be saved when detecting errors in problem
families. Extra information can be gained from detecting faults in
varying instances of a problem family, and this can save time and
ultimately lower costs when building and debugging practical
systems.

10.3 experimentation with problem families

10.3.1 Sample Models

In order to demonstrate the ability for model reuse, we aim to
show that the EDA can learn structures in three problem families.
The three test cases used in this work are listed in Table 5. The
test cases are diverse in the system description as well as the
property under test. The first is a non-looping implementation of
the Dining Philosophers system.

Table 5: Models and the respective properties violated.
Model Processes LoC Property

Dining Philosopher No Loopn n+ 1 35 Deadlock

Leader n n+ 1 117 Assertion

GIOP n n+ 6 740 �(p→ ♦q)

For the second test case, a leader election system is modelled
by the Leader model. In this model, n processes must agree on
a common leader process in a unidirectional ring configuration.
The faulty protocol used to establish a leader allows members
of the ring to disagree on a leader. An assertion represents this
specification, and the EDA algorithm will be aiming to find
violations of this assertion. The final test case implements the
CORBA Global Inter-ORB protocol (GIOP) with n clients using
a single server configuration. The system violates a property
specified in LTL. This model is particularly large, and is reported
as difficult to find errors in for large n (large n being n >= 10)
[Alba and Chicano, 2008; Staunton and Clark, 2011b]

120 scaling to large systems

In this set of examples, we have a deadlock, an assertion and an
LTL violation in order to show the applicability of the technique
to errors other than deadlock. Whilst the Dining Philosophers
problem is a well studied toy problem, the GIOP model is de-
rived from an industrial source, adding credibility to using this
approach in industrial scenarios. Finally, whilst the Dining Philo-
sophers model is symmetrical in nature (all the processes have
the same description), the GIOP model is asymmetric, adding
further weight to the empirical argument that the technique could
be effective in industrial scenarios.

10.3.2 Heuristics

The fitness function detailed in Algorithm 7 is used to rank
solutions and makes use of heuristic information implemented in
the HSF-SPIN framework [Edelkamp et al., 2001a]. The heuristics
implemented in HSF-SPIN give information about a single state
only. Algorithm 8 combines the information from the individual
states in a path to give a heuristic measure for the entire path.
This is done by simply summing the heuristic information of all
the states along the path. The algorithm aims to minimise this
cumulative total, whilst favouring shorter paths and paths with
errors. The same heuristic is used on all of the runs in this work.

Algorithm 7 Fitness function used to rank individuals. Individu-
als that are “closer” to violating a property are favoured.

Require: A, B are Individuals;
if A.error_found 6= B.error_found then

return IndividualWithErrorFound(A,B);
else if A.error_found andB.error_found then

return IndividualWithShortestPath(A,B);
else

return IndividualWithLowestHSFSPINMetric(A,B);
end if

Algorithm 8 HSF-SPIN heuristic metric algorithm.

Require: I is an Individual;
aggregateMetric = 0;
for all States s ∈ I.Path do

aggregateMetric += s.HSFSPINMetric;
end for
return aggregateMetric;

HSF-SPIN implements a variety of heuristics which can be used
on various types of properties. In Algorithm 6, the s.HSFSPINMetric
is calculated using the following heuristics. We use the active pro-

10.3 experimentation with problem families 121

cesses heuristic for finding deadlock in the Dining Philosophers
model [Edelkamp et al., 2001b,a]. The active processes heuristic,
when given a state, returns the number of processes that can
progress in that state. When looking for assertion violations in
the Leader model, the formula-based heuristic is used [Edelkamp
et al., 2001b,a]. The formula-based heuristic estimates how close a
state is to violating a formula by examining the satisfaction of con-
stituent sub-formulae in that state. And finally, when searching
for LTL formulae violations, we use the HSF-SPIN distance-to-
endstate heuristic [Edelkamp et al., 2001b,a]. The distance-to-
endstate heuristic estimates how many transitions a state is away
from the end state of a product Büchi automaton, a structure used
when verifying LTL properties and implemented in HSF-SPIN.
Put simply, the distance-to-endstate heuristic estimates how far a
state is away from violating the LTL specification.

10.3.3 Parameters

The parameters for all of the executions are derived from small
scale empirical work, as well as experimental results from our
previous publications [Staunton and Clark, 2010, 2011b]. We ex-
pect that these parameters may work well on a wide variety of
problems, but some problems may need extra tuning. An n-gram
length of 3 was used, meaning models for 3-grams, 2-grams
and 1-grams are constructed from each generation. The model is
completely destroyed and rebuilt from the selected individuals
at each generation. This also means that the reused model is
essentially a seed model for the runs on larger instances. The
population size for each generation was set to 150. This means
that 150 paths are sampled from the model to build each gen-
eration. The mutation parameter for these experiments is set to
0.001, meaning that on average 1 in 1000 transition choices are
made randomly, disregarding the model. The elitism parameter
was set to 1, meaning that the top individual from the population
is copied to the next generation. In order to build the model from
which the next generation is sampled, truncation selection selects
the top 20% of individuals from the population. This means that
the top 30 individuals from the current population are used to
build the EDA/N-gram model. All individuals in the population
are replaced at each generation with individuals sampled from
the model. The algorithm terminates once it reaches 200 genera-
tions, allowing for the potential optimisation of counterexamples.
Initially, the model is a blank model meaning that all the paths
evaluated during the first generation are completely random.

122 scaling to large systems

10.3.4 Smaller Instances

In order to learn strategies that can be used on any instance of a
particular problem family, we ran the EDA algorithm on a small
instance of each problem family. For the Dining Philosophers
problem family, a small instance is a system with 32 philosoph-
ers. For the Leader model, we use a unidirectional ring with 3
members. And finally, for the GIOP model, we use a single server
2 client configuration. The smaller instance numbers seemed at
the time to represent realistic values for debugging the respective
systems. Additionally, for the philosophers model, a number was
chosen that couldn’t be discovered trivially by random search.
For each model, we allow the algorithm to run for a fixed number
of generations, allowing execution to continue if an error is found
in order to optimise the model and find shorter counterexamples.
The model constructed from the final generation of a single exe-
cution of the EDA is the model used in the subsequent executions
on the larger instances. The model is simply serialised out to a
file to be used as input to a future run. At this stage, there is
the possibility of inspecting the model in order to make improve-
ments. In this work however, the model is used verbatim in the
execution on the larger model. Models from various runs can po-
tentially be archived for use in future work. Some measurements
from these initial runs can be found in Table 6. We have proven
empirically in earlier papers [Staunton and Clark, 2010, 2011b]
that the EDA is capable of consistently finding good strategies in
the time scales shown in Table 6. The numbers below the First
Error header are numbers relating to the first error found during
the execution. The best error table shows the numbers related to
the shortest error found.

10.3.5 Larger Instances

The larger instances of the problem families consist of the follow-
ing. For the Dining Philosopher problem family, we used a 128

philosopher system. For the Leader system, we used a unidirec-
tional ring with 10 voters. Unfortunately it is not possible to scale
this model further due to implementation limitations on the part
of the system, not the EDA. And finally, for the GIOP system, an
instance with a single server and 20 clients is used. The sizes of
both the Dining Philosopher system and the GIOP system were
chosen due to the availability of measurements on those systems
without model reuse. We are confident that the technique will
scale beyond these numbers, but due to time constraints we could
not explore larger instances.

10.3 experimentation with problem families 123

Table 6: Measurements from the initial runs

Measurement Dining Philosophers Leader GIOP

First error:

Generations 3 0 0

Path Length 34 35 59

States 73,058 35 729

Time 27.45s 0.3s 0.3s

Best error:

Generations 3 0 17

Path Length 34 32 21

States 73,058 2,080 80,478

Time 27.45s 0.63s 3m8s

Total for run:

Generations 50 200 200

States 1,150,400 1,040,495 931,691

Time 13m30s 19m47s 37m33s

The statistics shown in Tables 7, 8 and 9 are taken from 100

executions on the Dining Philosopher, Leader and GIOP systems
respectively. Each of the 100 runs used the single model con-
structed in the initial run stage described in Section 10.3.4. Any
statistics in the “n/m” format are stating the “median/mean”.
In order to compare total amounts of computation, the “With
Model Reuse” column in the tables includes the computation
up to the best error found in the initial runs. We argue that this
is a fair definition of the computation involved in building a
model initially because practitioners are likely to limit the num-
ber of generations to find a good enough error, especially if the
EDA-based technique is used regularly during a development
life cycle. The “Without Initial Run” column shows the numbers
of the reuse run only, without the computation of the strategy
on the smaller instance. Statistical comparisons with the results
obtained without model reuse are indicated with plus (significant
difference) and minus (insignificant difference) symbols. In order
to compare the model reuse runs against the non-reuse runs,
we use the Wilcoxon rank-sum test with a significance level of
α = 0.05.

The results in Table 7 show statistics for the Dining Philosopher
problem family. In the Dining Philosopher system, there is a
single error. The error can be reached in multiple ways but is
always at the same depth/path length. This explains the similarity

124 scaling to large systems

Table 7: Measurements from the model reuse runs on the Dining Philo-
sophers 128 system

Measurement Without Model Reuse With Model Reuse Without Initial Run

First error:

Generations 19/19.4(+) 3/3 0/0

Path Length 130/130(-) 130/130 130/130

States 1,831,394/1,898,568.21(+) 73,831/74,281.1 773/1,223.1

Time 47m24s/1h14m32s(+) 29.572s/30.057s 2.122s/2.606s

Best error:

Generations 19/19.4(+) 3/3 0/0

Path Length 130/130(-) 130/130 130/130

States 1,831,394/1,898,568.21(+) 73,831/74,281.1 773/1,223.1

Time 47m24s/1h14m32s(+) 29.572s/30.057s 2.122s/2.606s

Table 8: Measurements from the model reuse runs on the Leader 10

system
Measurement Without Model Reuse With Model Reuse Without Initial Run

First error:

Generations 0/0(-) 0/0 0/0

Path Length 84/82.75(+) 71/71.21 71/71.21

States 84/82.75(+) 2,151/2,151.21 71/71.21

Time 0.239s/0.622s(+) 1.127s/1.606s 0.497s/0.976s

Best error:

Generations 17/20.26(-) 15/19.23 15/19.23

Path Length 36/35.45(-) 36/35.47 36/35.47

States 193,616/225,050.01(-) 163,429/209,150.82 161,349/207,070.82

Time 22m51s/25m57s(+) 4m7s/5m19s 4m6s/5m18s

between the first and best results. From the numbers achieved, it
is clear that model reuse can have a huge impact on the amount of
computational effort required to find errors in the larger instance.
The mean time to discover an error is reduced by over 99%. This
means that rather than wait an hour for additional information
regarding the error, information can be obtained in a mere 30

seconds, potentially reducing time spent in the debugging cycle
substantially in this case. We expected a large gain on the Dining
Philosopher family as it is a symmetrical problem. The strategy
to finding an error in the Dining Philosopher is trivial, “Always
choose the action that is Pickup the Left Fork”.

The results in Table 8 show statistics for the Leader election
problem family. In this problem family, the results are less im-
pressive than that of the Dining Philosopher family. We attribute
this to the fact that the EDA can find a short counterexample
with little computation, often in the first generation before any
strategy building has taken place. This suggests that the model is
trivial and does not require mechanisms to reduce computational
effort. However, we still obtain a significant speed increase in

10.3 experimentation with problem families 125

Table 9: Measurements from the model reuse runs on the GIOP 20

system
Measurement Without Model Reuse With Model Reuse Without Initial Run

First error:

Generations 0/0.01(+) 17/17 0/0

Path Length 132/150.09(+) 61/73.37 61/73.37

States 40,421/60,681.01(+) 90,773/98,194.14 10,295/17,716.14

Time 1m26s/2m1s(+) 3m28s/3m46s 19.56s/38.017s

Best error:

Generations 30/28.71(+) 20/28.21 3/11.21

Path Length 31/31.21+) 26/25.6 26/25.6

States 13,068,139/12,337,306(+) 1,495,644/4,942,260.07 1,415,166/4,861,782.07

Time 6h47m16s/8h13m24s(+) 57m34s/3h12m14s 54m26s/3h9m6s

terms of time spent searching the transition system. We attribute
this to the EDA exploring a narrower area of the state space on
the larger instance due to the initial strategy constructed from
the smaller instance. This may avoid expanding useless parts of
the search space, resulting in a reduction in CPU and memory
usage.

The most impressive results are listed in Table 9 for the GIOP
problem family. We expected poorer results on this model due
to the description of the system being asymmetric. However, not
only is a 62% reduction of mean time in finding a best error
achieved (86% reduction in the median time), the quality of the
solutions discovered are also improved. The improvement in the
path length of the solutions found allow a practitioner to instantly
assess the properties of the error. In this instance, the paths are of
a similar length meaning it is highly likely that only a subset of
the processes in the system are required to cause the error. If all
20 clients were involved, you can expect a substantial increase in
the path length over the 2 client model. The Dining Philosopher
system, for instance, requires that all processes perform actions
to cause a deadlock, and this is reflected by the increase in path
length from the 32 philosopher system to the 128 philosopher
system. Model reuse and the ability of the EDA to find and
optimise counterexamples efficiently [Staunton and Clark, 2010,
2011b] could make the EDA-based technique a valuable tool for
practitioners, as useful information such as this could be revealed
along with other insights. Furthermore, the practitioner could
gain this information with zero effort, as there is the potential for
this approach to be automated.

The strategy for navigating to an error state in the Dining Philo-
sophers example is trivial, “Always choose the action Pickup the
Left Fork”, and the algorithmic proposal of this thesis seems to be
discovering this strategy efficiently with regards to computational
resources. Reusing this discovered strategy on the larger instance

126 scaling to large systems

reduces the computational effort required to discover an error
in the larger system, suggesting that the strategy constructed is
effective and concise. It is plausible that the algorithm is also
doing the same for the other two systems under test in this em-
pirical work, due to the fact that effort is saved when examining
the larger instances of the respective systems. The fact that the
strategies are reusable even as the underlying system changes
lends weight to the plausibility of the other scenarios outlined as
part of this chapter. For instance, if we can discover a strategy for
finding errors in a given system, one can then use that strategy
as part of regression testing in future iterations of the system,
potentially saving large amounts of time and effort.

10.4 summary

To summarise, presented above is an approach for saving com-
putational and manual effort when building and debugging con-
current systems using the EDA-based technique proposed in
this thesis. This is achieved by reusing information, specifically
information from the models constructed, from an earlier exe-
cution to aid the search in a future execution. The analysis and
reuse of modelling information learned by EDAs is an often cited
advantage [Pelikan et al., 2002], and this advantage has been
demonstrated in a practical scenario. Using this new approach, it
is possible to save computational effort when analysing problem
families, and other scenarios have been described where effort
could potentially be saved. Our results show that information
can been gained using an insignificant amount of additional com-
putational resources. This information can yield insights that
can save time in the debugging phase, which could ultimately
lower development costs. The scenario tested in this paper could
potentially be automated, meaning no manual effort would be
required to gain additional information. At the time of writing,
to the best of my knowledge, this is the first application of EDA
model analysis/reuse in the SBSE domain.

I believe that there is ample scope for further work in this area.
The scenarios for model reuse described and tested in this work
are likely a subset of what is possible. There may well be other
scenarios in which this work could be beneficial, and not just in
the concurrent software testing domain. N-gram GP is essentially
a sequence modelling algorithm, and approaches like this could
be used wherever the solution space can be represented as a
sequence. This could include problems that can be couched as
graph search. We feel that the algorithm proposed in this thesis
can be applied to stress testing. In this application domain, the
EDA could be used to learn problematic sequences that cause the
performance of systems to degrade or indeed completely fail.

Part V

C O N C L U S I O N

11
C O N C L U S I O N

11.1 introduction

This thesis collates empirical work and an algorithmic proposal
that helps determine the validity of a hypothesis, originally set
out in Chapter 2. The hypothesis stated that Estimation of Dis-
tribution Algorithms are an effective mechanism for detecting
and debugging concurrent faults, and comprises are three sub-
hypotheses that lend weight to the overarching hypothesis. For
each sub-hypothesis, I have included a chapter of related empir-
ical work and drawn conclusions from that empirical work. The
empirical work has shown that the algorithm proposed as part of
this thesis can detect a range of concurrent fault types in a variety
of systems, and also provide additional useful information with
regards to debugging and potentially maintaining the system
going forward.

This chapter will summarise the discussion on each
sub-hypothesis, briefly outlining the empirical work of this thesis
and how it reflects upon the overarching hypothesis. Following
this, I will outline the novel contributions of the thesis, discussing
how I have potentially improved upon the state of the art. The
limitations of the research will then be outlined, followed by a
brief overview of how the algorithm may be refined and applied
in other problem domains.

11.2 hypotheses

11.2.1 Finding Faults in Mainstream Language Code

Hypothesis: Estimation of Distribution Algorithms are an effective
mechanism for detecting faults in systems described by mainstream

languages.

The empirical work in Chapter 8 addressed this sub-hypothesis
by applying the algorithmic proposal of this thesis to an example
problem written in Java, a language widely-used to describe
industrial systems. Using a Dining Philosophers system with
varying numbers of concurrent philosophers, the EDA achieved
a 100% success rate in detecting deadlock, starting from scratch
with a blank model. The experiments performed in Chapter 8 in-
dicated that the algorithm scaled well as the number philosophers
in the system increased (See Figure 21).

129

130 conclusion

Whilst other metaheuristic mechanisms can also detect concur-
rent faults in Java programs, the EDA is the first to achieve a 100%
success rate in detecting deadlock. Unfortunately, in the case of
analysis of Java programs, there are few statistics that can be
directly compared between approaches, apart from the detection
rate. In Chicano et al. [2011], experiments show only beam search
achieving a 100% success rate on this particular variant of the
Dining Philosopher problem with large numbers of philosophers
(16+). Other prominent metaheuristic search techniques, such as
Ant Colony Optimisation and Genetic Algorithms, start to fail as
the number of philosophers increases beyond 12.

With regards to the sub-hypothesis, the empirical work in
Chapter 8 shows that indeed EDAs can join other metaheuristic
techniques in claiming the ability to detect faults in concurrent
software written Java, and likely other mainstream languages
such as C++ and the .NET family. With the high success rate on
during experimentation, this lends weight to the validity of the
sub-hypothesis.

11.2.2 Finding and Optimising Wide Ranges of Faults in Complex
Systems

Hypothesis: Estimation of Distribution Algorithms can find not only
faults in complex industrial systems, but also optimise them.

The experimental work in Chapter 9 addressed this
sub-hypothesis and involved analysing transition systems that
included those derived from industrial settings. In addition to
detecting deadlock, the EDA was shown to be able to detect
violations of properties expressed in Linear Temporal Logic. The
algorithm was configured to continue searching for shorter paths
to errors once an error is detected, and the fitness function in-
cluded a selection pressure that favoured shorter paths. The
results from the experimentation in Chapter 9 showed that on
the systems under test, EDAs can find and optimise a variety of
fault types, and do so with a higher success rate than state of the
art metaheuristic mechanisms. This evidence lends weight to the
statement that EDAs can find and optimise faults found in com-
plex industrial scenarios. The shorter paths to errors found by the
EDA are of a higher quality to a practitioner looking to debug an
issue in a particular system. Superfluous action sequences that
are not required to manifest an error are filtered out, allowing a
practitioner to focus on solving the fundamental issue.

11.2 hypotheses 131

11.2.3 Scaling to Large Systems

Hypothesis: Estimation of Distribution Algorithms can scale to find
faults in large complex systems.

This sub-hypothesis is addressed by the empirical work in
Chapter 10, and involved exploiting a feature unique to EDAs
which enables scaling to large systems. The chapter outlined a
number of scenarios in which model reuse, the reuse of strategies
constructed by the algorithmic proposal of this thesis, can be ex-
ploited to scale to larger systems, as well as reduce computational
effort in other software development activities. The empirical
work in Chapter 10 showed how reusing strategies discovered
when analysing smaller instances of a problem can be used to
gain additional information about the fundamental nature of the
problem in larger instances. This could aid in the debugging pro-
cess, and provided a proof of concept that highlights the potential
of model reuse.

The empirical work in Chapter 10 increases confidence in the
validity of this sub-hypothesis. Using a feature unique to EDAs,
the results show that EDAs can scale beyond that which has been
demonstrated for other model checking techniques, heuristic or
otherwise. The mechanism used to achieve this scaling has a
number of potentially useful side effects which are outlined in
Chapter 10.

11.2.4 Over-arching hypothesis

The overarching hypothesis addressed by this thesis is as follows:

Estimation of Distribution Algorithms are an effective mechanism for
detecting and debugging concurrent faults.

The sub-hypotheses and the related empirical work summar-
ised above increase confidence in the validity of this hypothesis.
The work set out in this thesis increases the ability of a practi-
tioner to detect the precise circumstances of a concurrent fault,
and allows for a more effective debugging cycle due to the higher
quality of solutions. The algorithmic proposal improves upon
the state of the art in concurrent fault detection in comparable
circumstances, and shows the potential to be useful in a range
of practical scenarios. Additionally, this thesis has shown that
features unique to EDAs, the building of strategies as well as
solutions, can yield practical benefits in scalability as well as fault
comprehension, as outlined in Chapter 10. I suspect that there
is a wealth of opportunity with regards to this aspect in future
research, and some of these potential avenues of research are
outlined later in this chapter.

132 conclusion

11.3 novel contributions

As part of this thesis, I have made the following novel contribu-
tions to the state of the art:

• Proposed the first EDA-based algorithm for searching la-
belled transition systems, applying the technique to model
checking problems.

Previous work has focussed on approaches such as Ge-
netic Algorithms and Ant Colony Optimisation, which
have shown some weakness when compared with Ran-
dom Search as demonstrated in Chapter 9. The proposal in
this thesis has been shown to scale well to prominent bench-
mark problems in the model checking domain, without
the need for special memory reduction measures. The al-
gorithm is designed in such a way that it can search any
labelled transition system, not just those generated by con-
current systems. There is the potential for the proposal to be
applied to any problems that can be encoded as a “finding
the goal-state in a labelled transition system”.

• Shown that EDAs can not only find errors in concurrent
systems, but optimise those solutions to achieve higher
quality results.

As well as detecting concurrent faults, the algorithmic pro-
posal in this thesis has been shown to improve the quality
of any errors detected. The empirical work in this thesis
has shown that using a fitness function that favours higher
quality solutions and by allowing the algorithm to continue
execution after errors have been detected can yield higher
quality solutions. The quality of a solution in the model
checking domain is determined by the length of the path to
a fault, the shorter the better. In practical concurrent fault
finding scenarios, this can translate to a shorter debugging
cycle by removing superfluous information from found
faults, allowing a user to more quickly determine the cause
of a problem.

• Outlined an information reuse strategy that can signific-
antly reduce the effort required for gaining additional in-
formation, as well as improving the quality of solutions.

As part of the published work in this thesis, several prac-
tical scenarios have been outlined in which huge effort
savings can be obtained by reusing model information con-
structed and output during the course of the execution of
the algorithm. The model constructed as part of the execu-
tion of the algorithm encodes a strategy for navigating a

11.4 limitations of the research 133

transition system. This model can be output as part of the
search process alongside any solutions found. The strategy
can then be re-used in future executions of the algorithm,
whereas solutions alone may be difficult to reuse. The scen-
arios in which this may be useful include regression testing,
tabu search-like elimination of previously found errors, and
searching for faults in problem families. The empirical work
in this thesis examined the latter, showing potentially huge
reductions in this scenario.

• Shown that Random Search is effective on a wide variety
of problems.

Evaluation of the performance of Random Search on the
suite of benchmark problems available to the model check-
ing community has been sparse until recently [Chicano
et al., 2011]. Work undertaken as part of this thesis has
highlighted the strength of Random Search in this prob-
lem domain, with Random Search competing well with
all algorithms considered state-of-the-art. As part of this
work, I have shown that Random Search can perform ad-
equately on all but a few benchmark problems, suggesting
that either more difficult problems should be sought by the
community, or that Random Search may be good enough
for many situations (assuming that the benchmark suite is
representative of common scenarios). At the very least, the
author recommends that Random Search should be used
as a comparison algorithm when performing future work
in this area.

11.4 limitations of the research

Despite making inroads on a major obstacle to model checking
large systems, the state space explosion problem, the approach
investigated as part of this thesis is still bound by capabilities of
the underlying model checker being used. All model checkers
are subject to the limitations detailed in literature such as [Clarke
et al., 2000] and [Baier and Katoen, 2008], and in some cases
model checking tools are limited in the features of a language
they can simulate. In these cases, systems are either impossible
to check, or require simplifications to proceed. Unfortunately,
this can affect the analysis of a wide variety of practical systems.
For instance, checking a system that interacts with an agent over
a network connection can lead to a huge number of additional
states, and may require a simplifying “mock” agent to simulate.
This mock implementation may miss key elements that may cause
faults in the system under test, hindering the checking process.
Due to the practical limitations of model checking, I cannot claim

134 conclusion

that my algorithm can test an arbitrary concurrent program, in
contrast to some static analysis techniques that can [Engler and
Ashcraft, 2003].

As well as limitations in the types of system that the proposed
algorithm can analyse, the types of faults that can be detected are
also limited. Model checking tools typically have limitations on
the types of properties that can be verified. For instance, whilst
the Java PathFinder (JPF) model checker has a general deadlock
finding capability, along with deadlock hinting heuristic meas-
ures, it does not provide a general “unwanted interference” prop-
erty verifier with associated heuristics. In some cases, a manual
definition of a concurrent fault is described and this is typically
expressed using a language such as Linear Temporal Logic (LTL),
which has limited support in practical model checking tools such
as JPF. As a result of these limitations, the empirical work ana-
lysing Java software has focussed on finding deadlock only. For
more complex properties, such as those specified using LTL, a
more esoteric model checker SPIN must be used. The limitations
on JPF (and other industrial language model checkers such as the
C Bounded Model Checker (CMBC)) with respect to verifying
more complex properties may be overcome in the future, and the
approach outlined in this thesis could likely be applied to the
revised toolsets.

Along with other work in the metaheuristic model checking
domain, no effort has been made as part of this thesis to optimise
fitness/objective functions when paired with various metaheur-
istic algorithms. All work to date in this domain has placed a
objective value on a path through a system by summarising the
objective values of the individual states that comprise that path.
The function that achieves this summary is typically just a simple
sum of individual values, or an appropriate averaging function.
Whilst these summation mechanisms may prove effective on
simple systems such as the Dining Philosophers problem, they
may fall short on large practical systems. It is my suspicion that
more complex path ranking mechanisms will be required in order
for metaheuristic approaches to be effective when analysing more
complex problems.

11.5 potential algorithm refinements

In this section, I will provide a brief overview of potential refine-
ments to the algorithm that could serve the approach well in the
scenarios examined in this thesis, as well as others.

The EDA-based approach outlined in this thesis uses a simple
mechanism to make the decision as to which action to choose
next from a given state s when navigating a transition system.
The choice is made using a particular context: Given the previous

11.5 potential algorithm refinements 135

n actions leading up to n, and a n-gram model of fit paths
from a previous generation, which action should be executed
next? The empirical work as part of this thesis has shown that
this simple decision process can be effective on some systems,
however improvement may be necessary to attack other systems.

Whilst any metaheuristic model checking technique would be
augmented by any improvements to underlying tools such as JPF
or SPIN, these kinds of improvements are outside the scope of
this thesis. The algorithm is largely defined by how high ranking
paths in a system under test are modelled, as this defines the
learning process the mechanism used to generated further paths.
Any changes to the modelling mechanism will require compli-
mentary changes to the sampling mechanism. Outlined below
are just a few ways in which the algorithm could be augmented.

11.5.1 Improve the context in which a decision is made

In addition to using the previous n actions and the n-gram model
of fit paths, additional information could be used in choosing the
next action to execute from a given state. As it stands, the pro-
posed algorithm can use n-grams found in later parts of a path to
inform decisions at earlier points during path generation. Whilst
this may be beneficial in some circumstances (e.g. always go left
in Dining Philosophers), in other situations it could potentially
hinder the decision making process. For example, an action that
always occurs at the beginning of every possible sequence, and
could potentially occur later on, may have undue influence on
the decision making process. In these cases, additional inform-
ation can be used to further differentiate choices. Below are a
number of ways the model could be augmented, along with a
brief rationale.

• Differentiate by action depth

The depth at which an action occurs in a sequence is defined
by the action’s position in that sequence. An action a is
deeper than action b if a occurs later in a given sequence,
with an action having a depth of zero if it occurs at the
beginning of a sequence. Using the depth information of
actions and n-gram could further enhance the decision
making process, and tackle the issue highlighted above. For
example, a simple augmentation may be to have different
n-gram models for decisions at depth 0-20, 21-40 and so
on, segmenting the model based on depth. This would
limit the influence of n-grams found in deeper parts of
paths on decisions made at shallower points, and vice-versa.
Whether limiting the influence of n-grams in this way would

136 conclusion

be beneficial to the search process is unclear and requires
further investigation.

• Software Module or Class Name

Using the current software module or class to inform the
decision may be one way of aiding the choosing of actions.
For instance, two classes in a Java program could contain
the same action hoping to acquire a particular lock. The
current n-gram modelling mechanism as described by this
thesis will see both actions as the same. If class information
is taken into account, the model sampling process could
further differentiate between available actions. Construct-
ing n-gram models specifically for each class, or pairs of
interacting classes, may be one way of using this informa-
tion. Implementation of this will be language specific, and
could be automated in languages with obvious modularity
(such as Java or C++ class information). Where obvious
modularity is not available, modules in the description of
the system could be described manually.

• Using domain specific knowledge

During design and implementation of a system, particular
parts of a system may be noted as “danger points” where
concurrent faults are more likely to occur. It may be bene-
ficial to tag these particular areas with annotations in the
system description, which in turn is used by the EDA-based
approach to aid in decision making. A simple form of this
may be to tag particular actions with an “always choose”
annotation, or conversely “never choose”, with the EDA
would taking appropriate action when these annotations
are encountered. Other strategies are undoubtedly possible,
and some augmentations may be problem specific.

11.5.2 Augmenting the fitness function

As mentioned above, the empirical work in this thesis uses a
simple amalgamation of individual state fitnesses to produce a
fitness for an overall path. Whilst this appears to be effective on
the systems analysed as part of this thesis, improvements may
be required for tackling more complex systems. When using a
simple summation of individual state fitness values to obtain an
overall path value, all states along the path potentially have the
same influence as any other. It may be desirable in some cases to
limit the influence of particular states, or accentuate the influence
of others, whilst using the same function to amalgamate the indi-
vidual state values. For instance, one could use domain specific
knowledge to annotate certain classes or methods thought to be

11.6 potential avenues of future research 137

suspicious. The states that touch any annotations could then be
given extra weight, or any states that do not involve annotated
code could be ignore completely during the amalgamation pro-
cess. Additional weighting strategies could be derived from any
of the scenarios outlined in Section 11.5.1. For example, extra
weight could be given to states based on depth if an error is
suspected to be at a particular depth.

11.6 potential avenues of future research

The algorithm detailed in this thesis searches over labelled trans-
ition systems for a goal state, using a heuristic to guide the search.
The empirical work in this thesis has focussed on searching la-
belled transition systems that are generated by concurrent system
specifications. However, I see no reason why this approach could
not be applied to other problems that can be couched in this way.
For instance, any problems that have previously been attacked
by Ant Colony Optimisation may potentially be a target for the
EDA, and the EDA may even compete when the problem evolves
over time. Examples of problems successfully tackled by ACO
include traffic routing and task scheduling.

The EDA may be useful in stress testing scenarios, such as
testing a server component of a system. A stress test may involve
making a high number of requests to a web server and the re-
quests are one of a set number of types. The n-gram modelling
mechanism can be used to generate such sequences, and gen-
erated sequences can be ranked with respect to some kind of
desirable or undesirable behaviour (such as slow response times).
The EDA in effect would be learning fit sequences of actions that
cause the desired behaviours, and problematic sequences may be
subtle in nature (much like finding faults in concurrent software).

11.7 summary

In this chapter, I have summarised the empirical work carried
out as part of this thesis, reiterating how the evidence discussed
in Chapters 8, 9 and 10 increases confidence in the validity of the
hypotheses outlined in Chapter 2. I have highlighted the novel
contributions of this thesis, and briefly discussed some limitations.
I believe that the methods established in this thesis have the
potential for further work, and I have briefly outlined some
potential ways forward. It is a dream of mine to see techniques
such as these churning away in the background of my IDE on my
future 128 core system of the future, and I hope that the work
produced as part of this helps toward that goal.

B I B L I O G R A P H Y

N. Aan de Brugh, V. Nguyen, and T. Ruys. Moonwalker: Verifica-
tion of .NET programs. Tools and Algorithms for the Construction
and Analysis of Systems, pages 170–173, 2009.

E. Alba and F. Chicano. Finding safety errors with ACO. In
Proceedings of the 9th annual conference on Genetic and evolutionary
computation, pages 1066–1073. ACM Press New York, NY, USA,
2007.

E. Alba and F. Chicano. Searching for liveness property violations
in concurrent systems with ACO. In Proceedings of the 10th
annual conference on Genetic and evolutionary computation, pages
1727–1734. ACM New York, NY, USA, 2008.

E. Alba and J.M. Troya. Genetic Algorithms for Protocol Val-
idation. In Parallel Problem Solving from Nature — PPSN IV,
volume 1141 of Lecture Notes in Computer Science, pages 870–
879. Springer Berlin / Heidelberg, 1996.

E. Alba, F. Chicano, M. Ferreira, and J. Gomez-Pulido. Finding
deadlocks in large concurrent java programs using genetic
algorithms. In Proceedings of the 10th annual conference on Genetic
and evolutionary computation, pages 1735–1742. ACM New York,
NY, USA, 2008.

P. Amey and B. Dobbing. High Integrity ravenscar. In Reliable
Software Technologies — Ada-Europe 2003, volume 2655 of Lecture
Notes in Computer Science, pages 637–637. Springer Berlin /
Heidelberg, 2003.

C. Artho and A. Biere. Applying static analysis to large-scale,
multi-threaded Javaprograms. In Software Engineering Confer-
ence, 2001. Proceedings. 2001 Australian, pages 68–75, 2001.

C. Artho and K. Havelund. Applying Jlint to Space Exploration
Software. In Verification, Model Checking, and Abstract Interpret-
ation, volume 2937 of Lecture Notes in Computer Science, pages
61–75. Springer Berlin / Heidelberg, 2003.

C. Baier and J.P. Katoen. Principles of Model Checking. The MIT
Press, 2008.

S. Baluja. Population-Based Incremental Learning: A Method
for Integrating Genetic Search Based Function Optimization
and Competitive Learning. Technical Report CMU-CS-94-163,
Carnegie Mellon University Pittsburgh, PA, USA, 1994.

139

140 bibliography

B. Beizer. Software system testing and quality assurance. Van Nos-
trand Reinhold Company, 1984.

B. Beizer. Software testing techniques. Van Nostrand Reinhold Co.
New York, NY, USA, 1990.

Y. Ben-Asher, E. Farchi, and Y. Eytani. Heuristics for finding con-
current bugs. In Proceedings of the 17th International Symposium
on Parallel and Distributed Processing. IEEE Computer Society
Washington, DC, USA, 2003.

A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications
of synchronization coverage. In Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 206–212. ACM New York, NY, USA, 2005.

A. Burns and A.J. Wellings. Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX. Addison
Wesley, 2001.

J.H. Chen, D.E. Goldberg, S.Y. Ho, and K. Sastry. Fitness In-
heritance In Multi-objective Optimization. In Proceedings of
the Genetic and Evolutionary Computation Conference table of con-
tents, pages 319–326. Morgan Kaufmann Publishers Inc. San
Francisco, CA, USA, 2002.

F. Chicano and E. Alba. Finding liveness errors with ACO. In
Proceedings of the World Conference on Computational Intelligence,
pages 3002–3009, 2008a.

Francisco Chicano and Enrique Alba. Ant colony optimization
with partial order reduction for discovering safety property
violations in concurrent models. Inf. Process. Lett., 106(6):221–
231, 2008b.

Francisco Chicano, Marco Ferreira, and Enrique Alba. Comparing
metaheuristic algorithms for error detection in java programs.
In Myra Cohen and Mel Ó Cinnéide, editors, Search Based
Software Engineering, volume 6956 of Lecture Notes in Computer
Science, pages 82–96. Springer Berlin / Heidelberg, 2011.

J. Clark, JJ Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,
B. Mitchell, S. Mancoridis, K. Rees, M. Roper, et al. Reformu-
lating software engineering as a search problem. In Software,
IEE Proceedings-[see also Software Engineering, IEE Proceedings],
volume 150, pages 161–175, 2003.

E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. Tools and Algorithms for the Construction and Analysis
of Systems, pages 168–176, 2004.

bibliography 141

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, January 2000.

E.M. Clarke and E.A. Emerson. Design and synthesis of syn-
chronization skeletons using branching time temporal logic. In
Workshop on Logics of Programs, pages 52–71. Springer, 1981.

E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L.
McMillan, and L.A. Ness. Verification of the Futurebus+ cache
coherence protocol. Formal Methods in System Design, 6(2):217–
232, 1995.

EG Coffman and MJ Elphick. System Deadlocks. Computing, 3:
67–78, 1971.

P. Cousot and R. Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or
approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, pages 238–252. ACM New York, NY, USA, 1977.

C. Darwin. On the origin of species by means of natural selection, or
the preservation of favoured races in the struggle for life. New York,
D. Appleton and company, 1860.

J.S. de Bonet, C.L. Isbell Jr, P. Viola, M.C. Mozer, M.I. Jordan, and
T. Petsche. MIMIC: Finding Optima by Estimating Probability
Densities. Advances in Neural Information Processing Systems, 9:
424, 1997.

D.L. Detlefs. An overview of the Extended Static Checking system.
In Proceedings of the First Workshop on Formal Methods in Software
Practice, pages 1–9, 1996.

Edsger W. Dijkstra. Cooperating sequential processes. In
F. Genuys, editor, Programming Languages: NATO Advanced
Study Institute, pages 43–112. Academic Press, 1968.

M. Dorigo and G. Di Caro. Ant colony optimization: a new meta-
heuristic. In Evolutionary Computation, 1999. CEC 99. Proceedings
of the 1999 Congress on, volume 2, 1999.

S. Edelkamp, A.L. Lafuente, and S. Leue. Directed explicit model
checking with HSF-SPIN. In Proceedings of the 8th interna-
tional SPIN workshop on Model checking of software, pages 57–79.
Springer-Verlag New York, Inc. New York, NY, USA, 2001a.

S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Protocol verification
with heuristic search. In AAAI-Spring Symposium on Model-based
Validation Intelligence, pages 75–83, 2001b.

142 bibliography

S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-
state model checking in the validation of communication proto-
cols. International Journal on Software Tools for Technology Transfer
(STTT), 5(2):247–267, 2004.

O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur.
Framework for testing multi-threaded Java programs. Concur-
rency and Computation: Practice and Experience, 15, 2003.

A.E. Eiben and J.E. Smith. Introduction to evolutionary computing.
Springer, 2003.

E.A. Emerson. Branching time temporal logic and the design of correct
concurrent programs. Harvard University, 1981.

D. Engler and K. Ashcraft. RacerX: effective, static detection of
race conditions and deadlocks. ACM SIGOPS Operating Systems
Review, 37(5):237–252, 2003.

Y. Eytani, K. Havelund, S.D. Stoller, and S. Ur. Towards a frame-
work and a benchmark for testing tools for multi-threaded
programs. Concurrency and Computation: Practice and Experience,
19(3), 2007.

Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug pat-
terns and how to test them. In IPDPS ’03: Proceedings of the 17th
International Symposium on Parallel and Distributed Processing,
page 286.2, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

M. Ferreira, F. Chicano, E. Alba, D.L. y Ciencias, and J.A. Gomez-
Pulido. Detecting protocol errors using particle swarm optimiz-
ation with java pathfinder. In Proceedings of the High Performance
Computing & Simulation Conference, pages 319–325, 2008.

C. Flanagan and S.N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. Science of Computer Pro-
gramming, 71(2):89–109, 2008.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. Extended static
checking for Java. SIGPLAN Not., 37(5):234–245, 2002.

F. Glover. Future paths for integer programming and links to
artificial intelligence. Computers and Operations research, 13(5):
533–549, 1986.

P. Godefroid and S. Khurshid. Exploring very large state spaces
using genetic algorithms. International Journal on Software Tools
for Technology Transfer (STTT), 6(2):117–127, 2004.

bibliography 143

D.E. Goldberg. Genetic algorithms in search, optimization and machine
learning. Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 1989.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM)
Language Specification, The 3rd Edition. Addison-Wesley Profes-
sional, 2005.

GR Harik, FG Lobo, DE Goldberg, S.G.C. Syst, and M. View. The
compact genetic algorithm. In Evolutionary Computation Proceed-
ings, 1998. IEEE World Congress on Computational Intelligence.,
The 1998 IEEE International Conference on, pages 523–528, 1998.

K. Havelund. Java PathFinder, a translator from Java to Pro-
mela. In Theoretical and Practical Aspects of SPIN Model Checking,
volume 1680 of Lecture Notes in Computer Science, pages 152–152.
Springer Berlin / Heidelberg, 1999.

CAR Hoare and CAR Hoare. Communicating Sequential Pro-
cesses. Communications of the ACM, 21:666–677, 1985.

J.H. Holland. Adaptation in natural and artificial system. Ann
Arbor, MI: University of Michigan Press, 1975.

G.J. Holzmann. The SPIN model-checker. Proceeding FORTE 1999,
28:481–497, 1997.

G.J. Holzmann. The SPIN model checker: Primer and reference manual.
Addison-Wesley Professional, 2004.

Intel Corp. Intel Research Advances ’Era Of Tera’, Febru-
ary 2007. URL http://www.intel.com/pressroom/archive/

releases/20070204comp.htm.

G. Jones and M.H. Goldsmith. Programming in OCCAM2. Prentice
Hall, 1988.

J. Kennedy and R. Eberhart. Particle Swarm Optimization. In
Neural Networks, 1995. Proceedings., IEEE International Conference
on, volume 4, pages 1942–1948. IEEE, 1995.

S. Kirkpatric, CD Gelatt, and MP Vecchi. Optimization by simu-
lated annealing. Science, 220(4598):671–680, 1983.

G. Koch. Discovering multi-core: extending the benefits of
moore’s law. Technology, page 1, 2005.

J.R. Koza. Genetic programming: on the programming of computers
by means of natural selection. MIT press, 1992.

W.B. Langdon and R. Poli. Foundations of genetic programming.
Springer, 2002.

http://www.intel.com/pressroom/archive/releases/20070204comp.htm
http://www.intel.com/pressroom/archive/releases/20070204comp.htm

144 bibliography

K.R.M. Leino and G. Nelson. An extended static checker for
Modula-3. In Proceedings of the 7th International Conference on
Compiler Construction, pages 302–305. Springer-Verlag London,
UK, 1998.

S. Lu, W. Jiang, and Y. Zhou. A study of interleaving coverage
criteria. In Foundations of Software Engineering, pages 533–536.
ACM New York, NY, USA, 2007.

J. Magee and J. Kramer. Concurrency: State Models And Java Pro-
grams. Wiley New York, 2006.

P. McMinn. Search-based software test data generation: a survey.
Software Testing, Verification & Reliability, 14(2):105–156, 2004.

D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimiz-
ation for resource-constrained project scheduling. Evolutionary
Computation, IEEE Transactions on, 6(4):333–346, 2002.

S. Merz. Model checking: A tutorial overview. In Modeling and
Verification of Parallel Processes, volume 2067 of Lecture Notes
In Computer Science, pages 3–38. Springer Berlin / Heidelberg,
2001.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1982.

H. Mühlenbein and G. Paaß. From recombination of genes to
the estimation of distributions I. Binary parameters. Parallel
Problem Solving from Nature-PPSN IV, pages 178–187, 1996.

J. Očenášek. Parallel estimation of distribution algorithms. Doc-
troral dessertation, Faculty of Information Technology, Brno Univer-
sity of Technology, 2002.

R.S. Parpinelli, H.S. Lopes, and A.A. Freitas. Data mining with an
ant colony optimization algorithm. Evolutionary Computation,
IEEE Transactions on, 6(4):321–332, 2002.

M. Pelikan, D.E. Goldberg, and E. Cantu-Paz. Linkage problem,
distribution estimation, and Bayesian networks. Evolutionary
Computation, 8(3):311–340, 2000.

M. Pelikan, D.E. Goldberg, and F.G. Lobo. A survey of optimiza-
tion by building and using probabilistic models. Computational
optimization and applications, 21(1):5–20, 2002.

R. Poli and N.F. McPhee. A Linear Estimation-of-Distribution GP
System. In Genetic Programming, volume 4971 of Lecture Notes in
Computer Science, pages 206–217. Springer Berlin / Heidelberg,
2008.

bibliography 145

W. Pugh and N. Ayewah. Unit testing concurrent software. In
Proceedings of the twenty-second IEEE/ACM international confer-
ence on Automated software engineering, pages 513–516. ACM
New York, NY, USA, 2007.

J.P. Queille and J. Sifakis. Specification and verification of concur-
rent systems in CESAR. In Proceedings of the 5th Colloquium on In-
ternational Symposium on Programming, pages 337–351. Springer,
1982.

C.R. Reeves. Modern heuristic techniques for combinatorial problems.
John Wiley & Sons, Inc. New York, NY, USA, 1993.

A.W. Roscoe, C.A.R. Hoare, and R. Bird. The Theory and Practice
of Concurrency. Prentice Hall, 1998.

S.J. Russell, P. Norvig, J.F. Canny, J. Malik, and D.D. Edwards. Ar-
tificial Intelligence: A Modern Approach. Prentice Hall Englewood
Cliffs, NJ, 1995.

C. Ryan, JJ Collins, and M.O. Neill. Grammatical evolution:
Evolving programs for an arbitrary language. In Genetic Pro-
gramming, volume 1391 of Lecture Notes in Computer Science,
pages 83–96. Springer Berlin / Heidelberg, 1998.

R. Salustowicz and J. Schmidhuber. Probabilistic incremental
program evolution. Evolutionary Computation, 5(2):123–141,
1997.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-
son. Eraser: A dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Systems (TOCS), 15

(4):391–411, 1997.

Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operat-
ing System Concepts. Wiley, December 2004.

K.M. Sim and W.H. Sun. Ant colony optimization for routing
and load-balancing: survey and new directions. Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on, 33(5):560–572, 2003.

Jan Staunton and John Clark. Applications of model reuse when
using estimation of distribution algorithms to test concurrent
software. In Myra Cohen and Mel Ó Cinnéide, editors, Search
Based Software Engineering, volume 6956 of Lecture Notes in
Computer Science, pages 97–111. Springer Berlin / Heidelberg,
2011a.

Jan Staunton and John A. Clark. Searching for Safety Violations
Using Estimation of Distribution Algorithms. Software Testing
Verification and Validation Workshop, IEEE International Conference

146 bibliography

on Software Testing, Verification, and Validation, pages 212–221,
2010.

Jan Staunton and John A. Clark. Finding short counterexamples
in promela models using estimation of distribution algorithms.
In Proceedings of the 13th annual conference on Genetic and evolu-
tionary computation, GECCO ’11, pages 1923–1930, New York,
NY, USA, 2011b. ACM.

S.D. Stoller. Testing concurrent Java programs using randomized
scheduling. Electronic Notes in Theoretical Computer Science, 70

(4):142–157, 2002.

F. Tip. A Survey of Program Slicing Techniques. Centrum voor
Wiskunde en Informatica, 1994.

M.Y. Vardf and P. Wolper. An Automata—Theoretic Approach
to Automatic Program Verification (Preliminary Report). In
Symposium on Logic in Computer Science: Proceedings: Cambridge,
Massachusetts, June 16-18, 1986, page 332. IEEE Computer Soci-
ety Press, 1986.

W. Visser, K. Havelund, G. Brat, S.J. Park, and F. Lerda. Model
Checking Programs. Automated Software Engineering, 10(2):203–
232, 2003.

M. Weiser. Program slicing. In Proceedings of the 5th international
conference on Software engineering, pages 439–449. IEEE Press
Piscataway, NJ, USA, 1981.

L.D. Whitley. Fundamental principles of deception in genetic
search. Foundations of genetic algorithms, 1(3):221–241, 1991.

S. Wright. The roles of mutation, inbreeding, crossbreeding, and
selection in evolution. In Proc of the 6th International Congress of
Genetics, volume 1, pages 356–366, 1932.

C.H. Yang and D.L. Dill. Validation with guided search of the
state space. In Proceedings of the 35th annual conference on Design
automation, pages 599–604. ACM New York, NY, USA, 1998.

J. Zhao. Slicing Concurrent Java Programs. In Proceedings of
the 7th IEEE International Workshop on Program Comprehension,
pages 126–133, 1999.

colophon

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Pal-
atino and Euler type faces (Type 1 PostScript fonts URW Palladio
L and FPL were used). The listings are typeset in Bera Mono, ori-
ginally developed by Bitstream, Inc. as “Bitstream Vera”. (Type 1

PostScript fonts were made available by Malte Rosenau and Ul-
rich Dirr.)

note: The custom size of the textblock was calculated using
the directions given by Mr. Bringhurst (pages 26–29 and 175/176).
10 pt Palatino needs 133.21 pt for the string “abcdefghijklmnopqr-
stuvwxyz”. This yields a good line length between 24–26 pc
(288–312 pt). Using a “double square textblock” with a 1:2 ratio this
results in a textblock of 312:624 pt (which includes the headline in
this design). A good alternative would be the “golden section text-
block” with a ratio of 1:1.62, here 312:505.44 pt. For comparison,
DIV9 of the typearea package results in a line length of 389 pt
(32.4 pc), which is by far too long. However, this information will
only be of interest for hardcore pseudo-typographers like me.

To make your own calculations, use the following commands
and look up the corresponding lengths in the book:

\settowidth{\abcd}{abcdefghijklmnopqrstuvwxyz}

\the\abcd\ % prints the value of the length

Please see the file classicthesis.sty for some precalculated
values for Palatino and Minion.

145.86469pt

Final Version as of 19th October 2012 at 13:06.

	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Declaration
	Dedication
	Introduction
	1 Motivation
	1.1 Multi-processor Systems
	1.2 Utilising Multiple Cores
	1.3 Concurrent Software Verification
	1.4 Metaheuristic Search Techniques
	1.5 Motivation for research
	1.6 Research goals
	1.7 Structure of this report

	2 Hypotheses
	2.1 Introduction
	2.2 Hypothesis and Research Strands
	2.3 Finding Faults in Mainstream Language Code
	2.4 Finding and Optimising Wide Ranges of Faults in Complex Systems
	2.5 Scaling to Large Systems
	2.6 Summary

	Literature Review
	3 Concurrent Software Verification
	3.1 Introduction to Concurrent Software
	3.1.1 Scheduling
	3.1.2 Communication

	3.2 Prominent faults in concurrent software
	3.2.1 Deadlock
	3.2.2 Starvation
	3.2.3 Livelock
	3.2.4 Data races

	3.3 Concurrent software verification
	3.3.1 Coverage metrics

	3.4 Static verification techniques
	3.4.1 Lockset analysis
	3.4.2 Data-flow analysis
	3.4.3 Summary of static verification techniques

	3.5 Dynamic verification techniques
	3.5.1 Schedule altering techniques
	3.5.2 Runtime monitoring
	3.5.3 Summary of dynamic verification techniques

	3.6 Formal methods
	3.6.1 Specification/Modelling
	3.6.2 Annotation-based theorem proving
	3.6.3 Model checking
	3.6.4 Summary of formal methods

	3.7 Summary

	4 Model Checking
	4.1 Introduction
	4.2 Building the Model
	4.2.1 Transition Systems
	4.2.2 Paths
	4.2.3 Reachable States
	4.2.4 Expressing Models

	4.3 Specification of Properties
	4.3.1 Temporal Logics

	4.4 Verification
	4.4.1 Checking Invariant Properties
	4.4.2 Checking Safety Properties
	4.4.3 Checking Liveness Properties
	4.4.4 Complete Model Checking Mechanisms
	4.4.5 On-the-fly Model Checking
	4.4.6 Guided Model Checking
	4.4.7 Strengths and Limitations of Model Checking
	4.4.8 Metaheuristic Model Checking

	4.5 Summary

	5 Metaheuristic Search
	5.1 Introduction
	5.1.1 Metaheuristic Search

	5.2 Local Search
	5.2.1 Convergence and Optima
	5.2.2 Landscapes
	5.2.3 Fitness Function
	5.2.4 Simulated Annealing

	5.3 Other Local Search Mechanisms
	5.4 Population-based Search
	5.4.1 Evolutionary Algorithms
	5.4.2 Ant colony optimisation

	5.5 Estimation of Distribution Algorithms
	5.5.1 Example EDA
	5.5.2 Types of EDA

	5.6 Summary

	6 Metaheuristic Search of Transition Systems
	6.1 Genetic Algorithms
	6.1.1 Solution Encoding
	6.1.2 Fitness Functions

	6.2 Particle Swarm Optimisation
	6.3 Ant Colony Optimisation
	6.3.1 Liveness Properties

	6.4 Evaluation of Metaheuristic Model Checking Work So Far
	6.5 Summary
	6.5.1 Limitations of State Of The Art
	6.5.2 Potential Routes Forward
	6.5.3 Summary

	Algorithmic Proposal
	7 Algorithmic Proposal
	7.1 Model and Solution Space
	7.2 Learning the Model
	7.3 Model Sampling
	7.4 Fitness Function
	7.5 Other Parameters and Features
	7.6 Novelty of Algorithm
	7.7 Implementation
	7.7.1 N-gram Implementation
	7.7.2 Interaction with a Model Checker

	7.8 Computational Complexity
	7.9 Summary

	Experimentation
	8 Finding Deadlock in Mainstream Language Code
	8.1 Introduction
	8.2 Experimentation
	8.2.1 Fitness Function
	8.2.2 Parameters
	8.2.3 Results and Discussion

	8.3 Summary

	9 Finding and Optimising Counterexamples in Industrial Code
	9.1 Introduction
	9.2 Experimentation
	9.2.1 Implementation
	9.2.2 Connected Component Classification
	9.2.3 Fitness function

	9.3 Experiments in Finding and Optimising Counterexamples
	9.3.1 Example Promela Models
	9.3.2 Parameters of the EDA
	9.3.3 Experiments
	9.3.4 Discussion of Results

	9.4 Summary

	10 Scaling to Large Systems
	10.1 Introduction
	10.2 Model Reuse
	10.2.1 Reuse during Debugging
	10.2.2 Reuse during Refinement
	10.2.3 Reuse when tackling Problem Families

	10.3 Experimentation with Problem Families
	10.3.1 Sample Models
	10.3.2 Heuristics
	10.3.3 Parameters
	10.3.4 Smaller Instances
	10.3.5 Larger Instances

	10.4 Summary

	Conclusion
	11 Conclusion
	11.1 Introduction
	11.2 Hypotheses
	11.2.1 Finding Faults in Mainstream Language Code
	11.2.2 Finding and Optimising Wide Ranges of Faults in Complex Systems
	11.2.3 Scaling to Large Systems
	11.2.4 Over-arching hypothesis

	11.3 Novel Contributions
	11.4 Limitations of the Research
	11.5 Potential Algorithm Refinements
	11.5.1 Improve the context in which a decision is made
	11.5.2 Augmenting the fitness function

	11.6 Potential Avenues of Future Research
	11.7 Summary

	Bibliography
	Colophon

