
Using Tracing to Enhance Data
Cache Performance in CPUs

The creation of a Trace-Assisted Cache to increase cache hits and
decrease runtime

Jonathan Paul Rainer

A thesis presented for the degree of
Doctor of Philosophy (PhD)

Computer Science
University of York
September 2020

Abstract

The processor-memory gap is widening every year with no prospect of reprieve.
More and more latency is being added to program runtimes as memory cannot
satisfy the demands of CPUs quickly enough. In the past, this has been alleviated
through caches of increasing complexity or techniques like prefetching, to give
the illusion of faster memory. However, these techniques have drawbacks because
they are reactive or rely on incomplete information. In general, this leads to large
amounts of latency in programs due to processor stalls. It is our contention that
through tracing a program’s data accesses and feeding this information back to the
cache, overall program runtime can be reduced. This is achieved through a new
piece of hardware called a Trace-Assisted Cache (TAC). This uses traces to gain
foreknowledge of the memory requests the processor is likely to make, allowing
them to be actioned before the processor requests the data, overlapping memory and
computation instructions.

Comparing the TAC against a standard CPU without a cache, we see improvements
in runtimes of up to 65%. However, we see degraded performance of around 8%
on average when compared to Set-Associative and Direct-Mapped caches. This is
because improvements are swamped by high overheads and synchronisation times
between components. We also see that benchmarks that exhibit several qualities: a
balance of computation andmemory instructions and keeping data well spread out in
memory fare better using TAC than other benchmarks on the same hardware. Overall
this demonstrates that whilst there is potential to reduce runtime via increasing
the agency of the cache through Trace Assistance, it requires a highly efficient
implementation to be competitive otherwise any potential gains are negated by the
increase in overheads.

i

Contents

Abstract i

Contents ii

List of Tables vi

List of Figures vi

List of Listings viii

Research Data ix

Acknowledgements xi

Declaration xii

I Introduction 1

1 Introduction 3
1.1 Motivation . 3

1.1.1 Caches & Memory Hierarchies 5
1.1.2 Predicting Dynamic Behaviour 6
1.1.3 Tracing & Trace Assisted Caching 7

1.2 Thesis Aims . 8
1.3 Thesis Structure . 9

II Background 11

2 Literature Review 13
2.1 Introduction . 13
2.2 Cache Intrinsic Techniques . 15

2.2.1 Cache Replacement Policy 17
2.2.2 Augmenting Cache Architectures 36
2.2.3 Summary . 44

2.3 Cache Extrinsic Techniques . 46
2.3.1 Prefetching . 46
2.3.2 Scheduling . 51
2.3.3 Program Transformation & Data Layout 53

ii

Contents

2.3.4 Summary . 54
2.4 Incorporating Tracing to Reduce Latency 54

2.4.1 Tracing as a Control Loop 55
2.4.2 Tracing for In-Silicon Debugging 56

2.5 Review Summary . 57
2.5.1 Potential for the Application of Tracing 58

3 Trace Assisted Caching 59
3.1 Motivation . 59

3.1.1 Defining the Key Problems 60
3.1.2 Exploring the Design Space 63
3.1.3 Tracing . 66

3.2 High Level Design . 66
3.2.1 Trace Recorder . 67
3.2.2 Intelligent Cache & Memory System 70

3.3 Justification of Success . 74
3.3.1 Protections against Performance Degradation 74

III Experiments 79

4 Implementing the Platform 81
4.1 Pre-existing Components . 81
4.2 Trace Recorder (Gouram) . 83

4.2.1 A Note on Names . 83
4.3 Trace Assisted Cache (Enokida) . 84

4.3.1 Trace Repository . 84
4.3.2 Trace Assisted Cache (Enokida) 93

4.4 Experimental Hardware . 107
4.4.1 Expectations of the Platform 107
4.4.2 Implementing the Platform 110

4.5 Summary . 118

5 Experiments & Results 121
5.1 Experimental Setup . 121

5.1.1 Use of the Experimental Approach 122
5.1.2 Process for Each Experiment 124
5.1.3 Specific Experimental Concerns 125

5.2 Results . 127
5.3 Exploring Cache Metrics . 131

5.3.1 Standard Caches . 131
5.3.2 Trace-Assisted Caches . 135
5.3.3 Summary . 141

IV Analysis & Conclusion 143

6 Analysis 145
6.1 Causes of Lack of Improvement . 145

iii

Contents

6.1.1 Lack of Capacity to Improve 145
6.1.2 Gap Between Memory Instructions 146
6.1.3 Types of Misses . 151
6.1.4 Overheads Incurred . 151

6.2 Benchmark by Benchmark Analysis 155
6.2.1 janne_complex . 155
6.2.2 fac . 157
6.2.3 fibcall . 160
6.2.4 duff . 162
6.2.5 insertsort . 165
6.2.6 fft1 . 167

6.3 Resolving Problems of the Implementation 168
6.3.1 Move Towards an OoO architecture 168
6.3.2 Reducing Overheads . 172

6.4 Applicability of Results . 173
6.4.1 Dependence on Processor Configuration 173
6.4.2 Dependence on ISA Choice 174
6.4.3 Dependence on the Size of the Cache 175
6.4.4 Dependence on Choice of Benchmark 176

6.5 Programs That Benefit from Trace Assisted Caching 177
6.6 Summary . 178

7 Conclusion & Further Work 179
7.1 Answering the Research Questions 179
7.2 Contributions . 180
7.3 Future Work . 181

7.3.1 Applications to High Performance Computing 181
7.3.2 Improving the Fidelity and Stored Size of Captured Traces 182
7.3.3 Quantifying the Link Between Slack and Effectiveness . . . 183
7.3.4 Expanding the TAC to Other Processors 183

V Appendices 185

A Trace Recorder (Gouram) Implementation 187
A.1 RI5CYMemory Protocol . 187
A.2 The IFModule . 190

A.2.1 Instruction Fetch State Machine 190
A.2.2 Branch Decision State Machine 192
A.2.3 The Output State Machine 194

A.3 Examples . 195
A.3.1 Simple Load Example . 195
A.3.2 Complex Branching Example 199

A.4 The EXModule . 204
A.4.1 The Main State Machine . 205
A.4.2 Example . 207

B Trace Recorder (Gouram) Implementation 211

iv

Contents

C Calculation of Trace-Assisted Cache Overheads 213
C.1 Cache Hit (No Preemptive Action) 215
C.2 Cache Hit (Following a Preemptive Hit) 215
C.3 Cache Hit (Following a Preemptive Miss) 216
C.4 Cache Hit (Following a Preemptive Miss & Writeback) 217
C.5 Cache Miss (No Preemptive Action) 217
C.6 Cache Miss (With Writeback) . 217
C.7 Summary & Final Table . 218

Acronyms 219

Bibliography 223

v

List of Tables

2.1 Potential Runtime Reductions Across Cache Policies 34

4.1 List of Names . 84
4.2 Hardware Utilisation - Direct-Mapped Standard Cache 114
4.3 Hardware Utilisation - Set-Associative Standard Cache 115
4.4 Hardware Utilisation - Direct-Mapped Trace-Assisted Cache (TAC) 116
4.5 Hardware Utilisation - Set-Associative TAC 117
4.6 Hardware Utilisation - VexRiscv 119

5.1 Improvement/Degradation of Runtime Between Hardware Variants 132
5.2 Cache Behaviour - Standard Direct-Mapped 133
5.3 Cache Behaviour - Standard Set-Associative 134
5.4 Cache Behaviour - Direct-Mapped TAC - Hits 137
5.5 Cache Behaviour - Direct-Mapped TAC - Misses and Writebacks . 138
5.6 Cache Behaviour - Set-Associative TAC - Hits 139
5.7 Cache Behaviour - Set-Associative TAC - Misses and Writebacks . 140

6.1 Memory Operations per Cache Operation Table 151
6.2 Length of Time Taken For Operations in a Standard Cache 153
6.3 Length of Time Taken For Operations in a TAC 155

B.1 Runtime Data - All Hardware Variants 212

C.1 Length of Time Taken For Operations in a TAC - Reproduction . . 218

List of Figures

1.1 Processor Memory Performance Gap Graph 4
1.2 Memory Hierarchy . 5

2.1 Memory Hierarchy - Simple Embedded System 13
2.2 Memory Hierarchy - Complex Desktop 14
2.3 Literature Review Structure . 16
2.4 Flooding Example . 22
2.5 Graph of Miss Ratios Across Cache Replacement Policies 33

vi

List of Figures

2.6 Extended Miss Rate Comparison for Cache Intrinsic Techniques . 45
2.7 The Limitations of Static Analysis 55

3.1 Pipeline Diagram - No Extra Information 62
3.2 Pipeline Diagram - With Complete Information 62
3.3 Basic Processor Architecture . 67
3.4 Basic Architecture with Trace Recorder 68
3.5 Program Fragment with Trace . 69
3.6 Illustration of Preemptive Scenarios 72
3.7 Illustration of a Block on Preemptive Actions 73
3.8 Illustration of a Sub-optimal Preemptive Scenario 76
3.9 Illustration of Worst-Case Preemptive Scenario 76

4.1 The Basic Implemented Architecture 83
4.2 TAC High Level Architecture . 85
4.3 Trace Repository Read Mode State Machine 86
4.4 TAC State Machine . 95
4.5 TAC Operation - Preemptive STORE 104
4.6 TAC Operation - Central Processing Unit (CPU) override 105
4.7 TAC Operation - Preemptive LOAD 106
4.8 TAC Operation - Result of Preemptive Action 106
4.9 Tree Diagrams of module inter-relationships in Simple and Complex

Hardware Platforms. 113

5.1 Results - Runtime Graph Across Hardware Variants 128
5.2 Results - Improvement Graph -NewHardare Variant Against NoCache

Performance . 130

6.1 Graph to Compare Cache Misses with Runtime 147
6.2 Memory Activity Diagram - insertsort 148
6.3 Memory Activity Diagram - prime 149
6.4 Standard Cache State Machine . 152
6.5 Memory Activity Diagram - fibcall 161
6.6 Memory Activity Diagram - duff 164
6.7 Memory Activity Diagram - fft1 169
6.8 Memory Activity Diagram - matmult 170

A.1 Gouram High Level Architecture 188
A.2 RI5CYMemory Protocol Signals . 188
A.3 Example Memory Transactions . 190
A.4 Trace Recorder State Machines . 191
A.5 Branching Behaviour Edge Case . 193
A.6 Fetching the Instruction 0x00112e23 from Memory. 195
A.7 Blank State Diagram for the IF Tracker 196
A.8 Trace Recorder Example - Detection of the Start of a Memory Transac-

tion . 196
A.9 Trace Recorder Example - Detection of the GNT Signal 197
A.10 Trace Recorder Example - Detection of the End of the Decode Phase 198
A.11 Trace Recorder Example - Outputting Data 198

vii

A.12 Signal Diagram - Potential Incorrect Fetches Example 200
A.13 Trace Recorder Complex Example - Detection of a Branch Instruction 201
A.14 Trace Recorder Complex Example - Arrival of a Second Fetch . . . 201
A.15 Signal Diagram - Calculating the Valid Window 202
A.16 Trace Recorder Complex Example - Branch Decision is Made . . . 203
A.17 Trace Recorder Complex Example - Outputting Data and Returning to

Normal Tracking . 204
A.18 EXModule State Machine . 206
A.19 Memory Transaction from Instruction 0x00112E23 208
A.20 Signal Diagram - Tracked Region Highlighted 209
A.21 Signal Diagram - Tracked Region Highlighted - rvalid and addr

Search . 209

C.1 TAC State Machine - Reproduction 214

List of Listings

3.1 Simple Assembly Code with Dependencies 61

4.1 LISTEN_FOR_REQ state from Trace Repository State Machine 89
4.2 GET_TRACE_FROM_MEMORY state from Trace Repository State Machine 90
4.3 Xilinx Parameterized Macro (XPM) Setup for Trace Repository . . 90
4.4 WAIT_FOR_VALID state from Trace Repository State Machine 92
4.5 MAKE_REQ_TO_CACHE state from TAC State Machine 97
4.6 CACHE_HIT_GNT state from TAC State Machine 99
4.7 SLEEP state from TAC State Machine 101
4.8 Code Snippet from nsichneu.c . 103

6.1 Source Code for janne_complex benchmark 155
6.2 Source Code for fac benchmark. 157
6.3 RISC-V assembly code decompilation of fac 158
6.4 Source Code for fibcall Benchmark 160
6.5 Source Code for duff benchmark 162
6.6 RISC-V assembly code decompilation of insertsort 166

Research Data

All of the research data, including automation and hardware code, generated in this
project can be found in the following locations:

Software

• Kuuga - The Source Code for each of the hardware variants used to generate
the runtime data seen within this thesis - [172] - Jonathan Rainer. Jonathanrain-
er/Kuuga: Initial Release. Zenodo. Sept. 2020. doi: 10.5281/ZENODO.4045227

• Ichĳou - The Source Code for the automation framework that takes a C bench-
mark file, generates the required hardware and outputs the results - [171] -
Jonathan Rainer. Jonathanrainer/Ichĳou: Initial Release. Zenodo. Sept. 2020. doi:
10.5281/ZENODO.4045225

ix

https://doi.org/10.5281/ZENODO.4045227
https://doi.org/10.5281/ZENODO.4045225

• Sawatari - The Source Code for the visualisation tool that produces the Memory
Activity Diagrams seen in Chapter 6 - [173] - Jonathan Rainer. Jonathanrainer-
/Sawatari: Initial Release. Zenodo. Sept. 2020. doi: 10.5281/ZENODO.4045229

Data

• Runtime Data - [170] - Jonathan Rainer. Experimental Data (Including Hardware
Variants) Measuring Runtime for Trace Assisted Caching. en. Sept. 2020. doi:
10.5281/ZENODO.4040337

• Memory Activity Data - [169] - Jonathan Rainer. Experimental Data (Including
Hardware Variants) Measuring Memory Activity for Trace Assisted Caching. en. Sept.
2020. doi: 10.5281/ZENODO.4042892

https://doi.org/10.5281/ZENODO.4045229
https://doi.org/10.5281/ZENODO.4040337
https://doi.org/10.5281/ZENODO.4042892

Acknowledgements

As I come to write this final section of my PhD I think back over the last 4 years with
a great deal of fondness. Throughout those years I’ve met and received help from so
many people, that to thank them all by name would have doubled the size of this
thesis! So now as I write these acknowledgements I apologise if I’ve missed anyone
out. Please know that even if you don’t appear by name in what follows, if you have
offered me so much as a word or kind gesture during the last four years you have my
eternal gratitude.

My first thanks have to go to my supervisor Professor Neil Audsley and my internal
examiner Professor Alan Burns. Their sage guidance and advice on the construction
of this thesis has brought forth something that I would never have thought possible
when I began in 2016. I’d also like to thank my external examiner Professor Geoff
Merrett for undertaking this role in unusual circumstances due to the Coronavirus
Pandemic. Further to that I’d like to thank the Engineering and Physical Sciences
Research Council (1796038) for the funding of the first three years of my PhD, without
which my PhD would not have been possible.

I’d also like to extend my warmest thanks to the Department of Computer Science
at York, and every student within it. Since I arrived in the department in 2011, as a
young student who’d never programmed before, the department has nurtured me
and taught me so much. Specifically I’d like to thank Dr. Ian Gray and Dr. Russell
Joyce for not only being the most helpful whenever I had problems with the Xilinx
tools; but also for providing endless hours of discussion, when I probably should
have been writing my thesis. My thanks also extend to all the administrative staff
in the Department of Computer Science, and specifically Debra Lashua, Jo Maltby
and Claire Fox. All of you encouraged me in so many aspects of my PhD and
helped me navigate the administrative minutiae that so often bedevils and waylays
us.

During my PhD I had the opportunity to teach a whole range of modules in a
multitude of capacities, so I’d like to thank Dr. Mike Freeman, Dr. Steve King, Dr.
Lillian Blot, Dr. Anna Bramwell-Dicks and all the other academics with whom I had
the pleasure to teach. Your commitment to your students is exemplary and some
of my favourite memories of my PhD were teaching in your classes. I’d also like to

xi

thank Jane Dalton and Karen Clegg for running the York Learning and Teaching
Award (YLTA) while I was working on my PhD. In completing the award I learned
more than I ever thought I would about how to construct learning experiences and
become a better teacher, something that I’ve taken with me into everything I’ve done
since.

Of course writing a PhD doesn’t just require academic support but support from our
friends and family. As such I’d like to thank Richard Sharp, Dr. Jamie Wood, Dr.
Rob Alexander, Dr. Greg Reynolds, Dr. Sam Simpson, Jo Maltby and Nicola Peard
for being such wonderful friends throughout the last 4 years. I’ve lost count of the
number of times a bad day of experiments was made so much better by going on
adventures with my friends.

For the final year of my PhD I moved into a new phase of life, working full-time for
Anaplan. I would like to thank the company as a whole for being so supportive of
my research, but would also like to thank the individuals within the company for
being so welcoming. My particular thanks go to Louis Rose, Graeme Neath, Cliff
Evans, Katherine Carvey, Chloe Taylor, Ben Speight and Jason Reich, for providing
me with such a warm welcome and for further supporting me in the writing of this
thesis.

My final and biggest thanks has to go to my wife Lauren and my parents, John and
Julie Rainer. I got married to Lauren in 2018, almost exactly half way through my PhD
and she could not have been more supportive. Even through the trials and adversity
of a career-shift, and everything else life has thrown at her over the last four years,
I’ve never doubted her love and support for all I do. To my parents also, who first
encouraged me when I wanted to take computers apart with a screwdriver, thank
you so much for everything, I would not be here without you.

There are worlds out there where the sky is burning, where the sea’s asleep, and
the rivers dream. People made of smoke, and cities made of song. Somewhere
there’s danger, somewhere there’s injustice, and somewhere else the tea’s getting
cold. Come on, Ace, we’ve got work to do! - The Doctor - Survival - Episode 3

Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This work
has not previously been presented for an award at this, or any other, University. All sources
are acknowledged as References.

xiii

Part I

Introduction

1

1 Introduction

This chapter outlines the motivation behind the programme of research into TACs
and lays out the aims and research questions. A structure of the thesis is also
presented.

1.1 Motivation

At its most basic, a computer consists of a CPU, a store of memory and an I/O system
to facilitate the movement of data between the first two parts. The operation of a
computer is then to repeatedly fetch an instruction from memory (along with any
operands the instruction might refer to), execute the instruction and then possibly
write back any results to memory [162]. Main memory therefore plays an integral role
in the operation of a computer, and so thememory access time1 is one of the key factors
that dictates the overall execution time of a program [83, 154].

With that in mind, the aim when designing memory systems is to try and keep access
times comparable to CPU clock speeds. So that when an instruction is issued, the
data is available immediately without having to stall the whole system. However,
this can become problematic very quickly. Static Random Access Memory (SRAM),
the fastest type of off-chip memory available commercially, provides access times of
0.5 - 2.5ns but costs somewhere in the region of £400 - 800 per GB. By comparison,
Dynamic Random Access Memory (DRAM) memory is substantially cheaper, at
between £8 - £16 per GB but only boasts access times of 50 - 70ns [83], a difference of
two orders of magnitude in price and access time. In addition, for the same amount
of silicon more DRAM than SRAM can be fabricated. As a result, having a very
large store of very fast access memory is impossible if you want it to be economically
viable.

Moreover, since the invention of the first computing machines, there has been a gap
between the speed at which a processor can issue instructions and the speed at which
memory can satisfy them [227]. This has become known as the ‘processor-memory
gap’, with processors improving in speed exponentially thanks to Moore’s Law, but

1The time between issuing a request to memory and getting a valid response.

3

1 Introduction

1980 1985 1990 1995 2000 2005 2010100

101

102

103

104

105

Year

Re
qu

es
ts

M
ad

e/
Se

rv
ic
ed

Pe
rS

ec
on

d
Comparison of the Number of Processor Memory Requests Per
Second and the Number of DRAM Accesses Serviced per Second

Processor
Memory

Figure 1.1: This graph (taken fromHennessy and Patterson [82]) shows the number of
requests to memory made by processors (on average) against the number
of DRAM accesses per second. In an ideal situation the number of requests
memory could satisfy per second would be above the number of requests
the processor could issue per second (the red line would be above the
blue line). But as can be seen that is not the case, and up until 2005 this
gap was ever widening. The levelling off in processor performance is
mostly due to the move to multi-core architectures (and the corresponding
drop in the development of ever faster single cores), and consequently
memory has somewhat caught up between 2005 and 2010. However it’s
worth emphasising that the the scale used is logarithmic, consequently the
gap between the performance of memory and processors is still 3 orders
of magnitude. At the current rates it would take over 100 years to close
the gap, assuming that processors don’t further increase in performance
between now and then, showing that finding mechanisms to alleviate this
large performance gap are still important today. Further details of this
graph can be seen in Hennessy and Patterson [82].

4

1.1 Motivation

Network Storage

Disk-based Storage

Main Memory (DRAM)

Last Level Cache (LLC)

Level 2 Cache (SRAM)

Level 1 Cache (SRAM)

CPU Registers

Figure 1.2: The pyramid shows an example memory hierarchy for a desktop computer
where height is proportional to cost and inversely proportional to speed of
access. The decreasing size of each pyramid step also shows the capacity
of each type of memory present in the system.

memory technologies increasing at a fraction of that rate, as Figure 1.1 shows. This is
a problem because the abstraction presented to programmers abstracts away time,
making it appear that each statement or instruction takes an equal amount of time
to execute. Therefore, a choice has to be made either to remove the abstraction and
include time as a concern for programmers or to hide the latency and restore the
abstraction in the vast majority of cases. Since most programming languages and
tools are unsuited to modelling time [67], the second approach is most often taken,
with caches and memory hierarchies being the most common vehicle by which this is
achieved.

1.1.1 Caches & Memory Hierarchies

Memory hierarchies, first seen in super-computers in the 1960’s [83], structure main
memory as a hierarchy of different memory technologies [226] (see Figure 1.2). When
this is combined with caching it gives the illusion of very fast memory accesses [194].
Caching works by setting aside a small portion of very fast memory to contain a
copy of some of the elements of main memory. When a processor requests a piece of
data, if the data is already in the cache, the request can be dealt with almost instantly
leading to very low memory latency2. Alternatively, if the data is not in the cache

2This is known as a cache hit.

5

1 Introduction

then the cache communicates with main memory to get the required data and either
fills an empty space in the cache or evicts data currently occupying a slot in the cache3.
Cachesmove data in and out based on their replacement policy and this can vary from
a very simple First-In-First-Out (FIFO) policy, to something much more complicated
[238]. If the cache replacement policy is designed well, then in the majority of cases
any data requested by the CPU will be in the cache when it is requested. This leads
to a drop in average memory access time and then the ’processor-memory gap’ is
alleviated. This reduces costs because caches are very small by comparison to main
memory but if deployed correctly can give the illusion that main memory is as fast as
something much more expensive.

Nevertheless, caching does introduce a number of problems. Some cache misses are
inevitable as the cache becomes full or because the cache is initially empty, but these
still significantly impact performance [238]. This is exacerbated in modern processors
due to the use of deep pipelines to increase instruction-level-parallelism. In pipelined
architectures a stall in a memory operation can cause a subset (or in the worst case
every) instruction in the pipeline to be stalled, meaning that cache misses not only
impact the instruction they occur as part of, but surrounding instructions as well
[83]. At the same time, memory operations take up between 30% and 40% of the
instructions in a typical program [24, 116], which leaves the majority of instructions
not requiring a reference to external memory (apart from the initial fetch). This means
there are many occasions where the memory bus is idle between satisfying memory
operations, known as slack time. This has been recognised by Out-of-Order (OoO)
processors for a long time. It is addressed by using static analysis and compile time
techniques to allow instructions to be re-ordered without changing the semantics of
the program [82], for example memory LOAD operations may be scheduled while the
processor is doing computation. However, this technique is limited, because those
techniques reveal nothing about the dynamic behaviour of a program, meaning that
not all the slack can be utilised [225].

1.1.2 Predicting Dynamic Behaviour

A natural question to ask is whether we could exploit the slack that exists within
programs without the effort of changing the order their instructions execute in?
The problem is that no processor is clairvoyant. In other words, a processor is
only ‘conscious’ of the instruction it is executing at the current time. It has no
concept of a state before or after the execution of the current instruction and simply
keeps applying the fetch, decode, execute cycle until the power is turned off. As a

3This is known as a cache miss.

6

1.1 Motivation

consequence there needs to be some ‘intelligence’ applied somewhere else in the
process, as changing the way the processor works, at such a deep level, would be very
challenging.

Toget round this problem, authors have implemented techniques like cachepreloading
[146], which loads the cache with data before the first instruction has been executed.
Others have used prefetching [69]. Here, when a cache miss happens, not only is the
requested data fetched, but a selection of other data too. The problem with these
approaches is that they are ill-suited to caching data, as opposed to instructions,
which is where this thesis focuses. Prefetching and preloading bothwork very well for
instruction data due to its characteristics [113, 194]. However, both of these methods
lack a way of feeding back information from the program itself to inform the choice of
data to preload. Rather, they rely on heuristics or other methods, and even if they do
offer a feedbackmechanism is is often limited in its applications (i.e. compiler-directed
prefetching relying on loop structures to work effectively).

1.1.3 Tracing & Trace Assisted Caching

Tracing is the act of recording every action taken by a processor in the execution of
a program. It is a technique often used for debugging and profiling applications
and the traces are often recorded during execution and then examined offline due
to their size and complexity. However, in recent times, many commercial tracing
solutions have started to appear [41, 140], with very condensed trace formats and fast
hardware buffers. This innovation has developed to such a point that it would almost
be possible to consider trace data online, as the processor produced it. However, very
little research has been done in this area [159], as many commercial solutions do not
offer the level of introspection that would be required.

However, with many new CPU designs being released under the OpenHardware
[144] umbrella it is now possible to see how complex processors manipulate data
and track various events that occur within the processor without breaking any rules
around intellectual property. Consequently the following question must be asked:
if we could take the information we can measure from a trace and feed it back to a
more intelligent cache, would it be able to make better decisions about which pieces
of data to keep in the cache and which to evict?

Suppose we have a CPU with a Harvard Architecture and a piece of hardware that
can accurately track all accesses to data memorymade by this CPU. If this information
could be stored and communicated to a cache, it should be possible to base the cache
replacement policy on this data. The cache could then act in a predictive fashion,
executing LOADs before they are required and dealing with write-backs for STOREs.

7

1 Introduction

Therefore, there should never need to be a cache miss in the ideal case. This approach
would better utilise the available slack time within a program and lead to reductions
in the execution time of programs. I have dubbed this approach ’Trace Assisted
Caching’ and the development and implementation of this technique is detailed in
forthcoming chapters.

1.2 Thesis Aims

This thesis presents evidence to explore the following researchquestions:

1. Can feeding trace information back to a cache be used to decrease the runtime
of programs?

2. Can this approach outperform a processor running the same computation but
with a standard cache?

3. Does this approach introduce any overheads when compared to a processor
with a standard cache?

4. Under what circumstances does the addition of trace information give the
maximal benefit?

In order to answer these questions a hardware platform will be constructed that
implements a TAC. We can then measure the runtime of programs in this hardware
platform as compared to a platform with only a processor. This should give us
insight in to the first of the four questions, then extending this investigation to
a processor with a standard cache will give us insight into the second and third
questions. At that point it should be possible to extract particularly positive or
negative cases and the commonalities between these should give insight into the final
question.

All these questions are going to be explored in the context of embedded systems that
contain caches of some variety. We are not interested in systems that have direct
access to memory because these are often very simple systems that do not require
complex caching. In addition, because of the context, when considering resource
usage we are not considering energy usage as a resource. Of course, systems of this
size often have to concern themselves with energy usage, as it is often limited, but
we are not considering trying to design a more energy efficient cache, rather one
that is more performant from a runtime perspective. There is an expectation that
we will have to sacrifice some extra on chip resources (i.e. space) to make this a
reality; but it’s hoped that the trade-off will be commensurate with an increase in
performance, and this will be tracked explicitly by the answers to the third research

8

1.3 Thesis Structure

question. That being said there is a case to be made that a design of this nature may
well be applicable to High Performance Computing (HPC) as well but this comes
with a different set of assumptions around number of cores and caching architecture
and consequently that will not be addressed in this thesis. This thesis focuses on
medium-sized embedded systems that contain caching to some degree, even if those
caches are relatively simple.

1.3 Thesis Structure

With these questions and context in mind the rest of the thesis is structured as
follows:

• Chapter 2 introduces the background literature for this topic and explains the
gaps that necessitate this research direction.

• Chapter 3 presents a more thorough explanation of the Trace Assisted Caching
technique.

• Chapter 4 explains the implementation of the Trace-Assisted Caches.

• Chapter 5 discusses the experiments conducted to measure the performance of
the TAC and presents the results.

• Chapter 6 analyses the results in detail and provides more insight into the
performance observed in the experiments.

• Chapter 7 summarises the work conducted, and its contribution, and then sets
out ideas for future work to extend the effectiveness of the TAC.

9

Part II

Background

11

2 Literature Review

This chapter presents a reviewof the literature surroundingmemory latency reduction.
It first focuses on more traditional methods, considering caching and then other
methods of controlling latency, such as prefetching or scheduling. In the second
section the focusmoves to newer techniques that involve tracing, and thenfinisheswith
a summary and evaluation of the position the literature presents.

2.1 Introduction

Memory hierarchies are necessitated by the inverse correlation of memory speed and
memory cost. This means that, in general, faster memory is more expensive while
slower memory is cheaper. But that does lead to the question of exactly how much
slower each of the levels of the memory hierarchy actually are. This is illustrated in
Figure 2.1 with an example of a mobile device with just one level of caching. As we
can see, as we go down thememory hierarchy the time to access thememory increases
but not at a uniform rate. For example the difference in speed between the the L1 and
L2 cache is an order of magnitude but between main memory and storage is 3 orders
of magnitude. Of course this is one simple example of a memory hierarchy, in more
complex systems you may have up to 3 or more levels of caching and potentially
multiple types of persistent storage, as shown in Figure 2.2.

Registers
Speed: 300ps, Size: 1000B

L1 Cache (SRAM)
Speed: 1ns, Size: 64kB

Main Memory
Speed: 50 - 100ns, Size: 1 - 2GB

Storage
Speed: 25 - 50µs, Size: 4 - 64GB

Figure 2.1: A memory hierarchy for a simple embedded system with one level of
caching. This could be likely be something be a smartphone. This is
adapted from data presented in Hennessy and Patterson [82].

13

2 Literature Review

Registers
Speed: 300ps, Size: 2000B

L1 Cache
Speed: 1ns, Size: 64kB

L2 Cache
Speed: 5-10ns, Size: 256kB

L3 Cache
Speed: 10 - 20ns, Size: 8 - 32MB

Main Memory
Speed: 50 - 100ns, Size: 8 - 64GB

Storage
Speed: 50 - 100µs, Size: 256 - 2048GB

Figure 2.2: A memory hierarchy for a more complex desktop system used to run
multiple workloads at once. This is adapted from data presented in
Hennessy and Patterson [82].

The figures presented in Figures 2.1 and 2.2 are of course only guides. Other factors
too can influence the exact amount of latency that each portion of the memory
hierarchy experiences. For example the state of the connection between different
levels of the hierarchy is very important, as is the physical location of the memory
source. Not only that but there are also design choices around memory hierarchies,
such as the relative size of each component. Some processors choose to prioritise
a very large L1 cache to keep data as close to the processor’s registers as possible,
while others choose to increase the size of the LLC to try and keep more on chip for
longer as in general off or cross-chip communication is much slower than on-chip
communication. Not only that but the size of the memory itself also influences the
speed of access. As memory size increases the amount of address decoding logic
also increases so larger memory at certain levels of the hierarchy can increase access
time as well. All in all the construction of a memory hierarchy is a complex and
multi-faceted optimisation problem that does not have a simple answer. That being
said this thesis focuses on how we can use the existing resources to their best effect
so we will not be focusing explicitly on trying to solve this optimisation problem.
However it’s important to identify the major sources of latency that exist in this
hierarchy, so that we can then find targeted solutions to resolve the problems they
introduce.

By way of circumscribing the discussion, in this review we will not consider the
implementation of memory hardware, despite it being the largest source of latency.
This is because, as Hennessy and Patterson [83] describes, choosing a memory
technology is a trade-off between speed and cost, with the general principle being

14

2.2 Cache Intrinsic Techniques

that faster memory is more expensive per unit. In my review of the literature I did not
find any papers proposing to have resolved this trade-off. All propose improvements
to existing technologies or new ones that fit into the existing cost/speed model. If
we want to improve overall memory latency the most efficient approach is to reduce
the amount of times that main memory is accessed as this will have more of an
impact, if it can be reduced enough, than piecemeal improvements to memory access
speed.

Further to this point, it is appreciated that there are an enormous amount of factors
that can impact latency and overall program runtime. These include, but are not
limited to, the compiler chosen for the code, the structure of the programs, the
memory layout decided by the linker, the programming language and so on. In
addition a lot of these factors are linked together, for example the choice of compiler
can produce code that is more or less amenable to the hardware it runs on, i.e. using
a vendor specific compiler as opposed to a general purpose one. This is possible
because the compiler has knowledge of the internal structure of the processor that
the general purpose one does not. As a consequence of the large number of potential
factors we will focus on the cache itself and the environment within which it operates,
acknowledging the interlinked factors as we go but avoiding in depth discussion of
every factor that could potentially influence latency and program runtime. Finally
it’s worth re-iterating that our context is medium-sized embedded systems, similar to
those presented in Figure 2.1 above, consequently even though we might consider
work that implements web caches or Operating System (OS) caches we’re looking
at them in the context of how the ideas might be applied to embedded systems,
rather than attempting to suggest that ideas used at one scale of caching are instantly
applicable to another.

Due to this literature review covering a broad range of topics, most in considerable
depth, the diagram presented in Figure 2.3 maps out the various topics and their
relationship to each other. Reading the review in concert with this diagram can help
to locate yourself within the research presented and see the relationships between
the topics included.

2.2 Cache Intrinsic Techniques

Since their first introduction to super-computers in the 1960’s [83] caches have become
a standard part of almost any memory architecture. Iterative improvements, thanks
to Moore’s law, have pushed the performance of caches to higher and higher levels,
hiding more and more latency as their information density has increased. Despite
advances in technology, it is still the case that the cache replacement policy is the most

15

2
LiteratureReview

Memory Latency Re-
duction Techniques

Cache Intrinsic Techniques

Replacement Policy

Arrival Time Based

Frequency Based

Recency Based

Combined Re-
cency & Frequency

Beyond Recency
and Frequency

Cache Architectures

Increased Associativity

Multi-Banked Caches

Multi-Level Caches

Non-Blocking Caches

Pipelined Caches

Victim CachesCache Extrinsic

Prefetching

Scheduling

Program Transform-
ation & Data Layout

Tracing
As a Control Loop

In-Silicon Debug

Figure 2.3: The structure of the Literature Review showing the topics and subtopics covered, organised into sections. The review is
conducted via a depth-first search of these topics.

16

2.2 Cache Intrinsic Techniques

significant factor in determining how effective a cache will be at reducing memory
latency [82].

2.2.1 Cache Replacement Policy

In its simplest form a cache replacement policy is a way of deciding which cache line
is replaced when a cache reaches capacity. For Direct-Mapped caches they are not
important, as the structure of the cache dictates the policy, but in Set-Associative
caches the choice of replacement policy is absolutely crucial [82]. As a consequence
there has been much research into which policies yield the best outcomes across a
variety of metrics.1

However, before we begin discussing these policies in depth it is useful to have in
mind two policies that are often referred to in the literature, but are not actually
implemented. The first of these is known as OPT [91, 127] a theoretical optimal
replacement policy, which can perfectly predict which cache block will be needed
furthest in the future. This means OPTwill provably suffer the lowest number of cache
misses of any cache policy [127]. The second theoretical replacement policy is that of
random replacement or RAND. Under this scheme when a decision on replacement has
to be made, the choice is made completely at random without reference to any other
information [21]. Again this method is not usually implemented by cache designers
when optimising for latency reduction [99], but its utility lies as the lower extreme of
a continuum, bounded by OPT at the upper extreme. This continuum allows policy
designers to empirically assess new policies in relation to OPT and RAND, as well as
against similar replacement policies.

Arrival-Time Based Techniques

One of the more simple cache replacement policies is to decide which cache line
is to be replaced based on when the cache line entered the cache. This is known
as the cache line’s arrival time. The most common formulation of this is a policy
that removes the item inserted furthest back in the past, implemented using a FIFO
queue. This technique is often chosen because it has a very low hardware requirement
[151], which leads to a low cost. On the other hand it does not perform well at
reducing latency [208, 238], often performing similarly to RAND, despite the slight
increase in hardware. FIFO is also susceptible to Belady’s Anomaly [22], which
1In this discussion of cache policies reducing miss rate and reducing latency can be thought of as
synonymous, due to cache misses being the main source of latency. For example, as we saw in
Figure 2.1 and 2.2 the difference between accessing data stored in the cache and in main memory can
be up to 2 orders of magnitude (1ns for the L1 cache as compared to 100ns for main memory). As a
result the more cache misses can be converted to cache hits the more the latency will be reduced.

17

2 Literature Review

means there is no guarantee that larger caches will produce lower miss rates. Due
to the low performance, research into using FIFO queues has been limited, with
FIFO often being used a baseline [63] rather than being implemented in its own
right.

However, some work has been done to improve FIFO. Turner and Levy [210] develops
the idea into Segemented First-In-First-Out (SFIFO), which partitions main memory
into two sections. This creates a pseudo multi-level cache (see Section 2.2.2), but at
a lower hardware cost. In the same vein, Deville [55] augments FIFO with a usage
counter per set, to do the partitioning in a more granular way. In more recent times
Wei-Che Tseng et al. [223] have experimented with combining a FIFO policy and
cache-line locking. All these policies perform comparably to Least Recently Used
(LRU) (see subsection on Recency Based Techniques) and use less hardware. Overall,
FIFO is a good baseline to build from and a viable option to implement if resources
are limited. However, we can use more information to make better decisions if we
consider frequency of access.

Frequency Based Techniques

A slightly more sophisticated approach to cache replacement is counting the number
of times a cache block or line has been accessed and then evicting the one with the
lowest frequency of access. This approach is known as Least Frequently Used (LFU).
In terms of implementation, the most common form is to turn the cache into a priority
queue, where keys are calculated according to a variety of formulae [158]. In addition,
implementations choose between perfect LFU, where every object is uniquely tracked
across replacements, and in-cache LFU, where counts are only tracked when items are
in the cache, with the latter option being most common [158].

Despite its simplicity of concept, standard LFU has several problems. The first is
cache pollution [99], where a cache block has a high number of accesses very early
on, but is never referenced again. Having built up a high frequency count, the
block stays in the cache for a long time, effectively reducing its capacity. The second
problem is that often many different cache blocks have the same frequency count and
therefore require tie-breaking arbitration [158]. Moreover, the hardware to keep track
of all frequency counts, potentially across multiple replacements, gives a very high
hardware overhead and increased energy consumption [151].

To be specific, LFU requires # ∗ log2 - bits per cache set, where # is the number
of elements per set and - is the accuracy of the counter you require, as well as the
circuitry required to implement a priority queue [151]. This is compared to LRU
which only requires # ∗ log2 # bits [151] and the circuity required to implement a

18

2.2 Cache Intrinsic Techniques

linked list, which is much less as all that is required are some pointers and the data,
as opposed to the self organising structure of a priority queue. Not only that but
comparing the two equations it becomes obvious that the difference comes down to
the resolution of the counter -. It might be tempting to think that setting - = #

would suffice and then there would be parity of cost (excluding the cost of the priority
queue). However, this is not optimal because the required counter resolution is
intimately related to the dynamics of the program itself. To explain, if you choose
so that the number of bits is matched between LRU and LFU but the program
references some memory items 100s of times, LFU’s utility is severely diminished.
To extend this example, imagine a 128 line cache, split into 16 sets. Using LRU this
would consume an extra 8 ∗ log2(8) = 24 bits, but if we make the assumption we
require counter resolutions in the 100s, LFU would require 8 ∗ log2(128) = 8 ∗ 7 = 56
extra bits. This demonstrates how much extra resource could be consumed by LFU to
give the same utility as LRU.

Some work has attempted to address the shortcomings of LFU with a variety of
augmentations, most of which relate to adding ageing parameters to counter cache
pollution. Arlitt et al. [14] suggests calculating the keys (8) in the priority queue
that powers LFU using the formula 8 = �8 ∗ �8 + !. In this formulation �8 is the
cost of bringing an object into the cache, �8 is the frequency that LFU tracks and !
is equal to 5 where 5 is the most recently evicted cache element. They dub this
policy, Least Frequently Used with Dynamic Aging (LFUDA). Others, like Robinson
and Devarakonda [181], choose to age slightly differently by protecting new entries
to the cache and ageing the entire cache by reducing all reference counts � to

⌈
�
2
⌉

whenever the average reference count exceeds a predefined maximum value. Both
of these techniques produce results comparable to LRU, but the hardware cost is
much higher due to the number of counters. In addition both approaches are
concerned with the size of objects in the cache, something that is not a concern in this
work.

A further augmentation of LFU from Kelly, Jamin and MacKie-Mason [101] allows
weighting parameters that come from the memory system to indicate how ‘useful’ the
caching of an element is. The problem, the authors admit, is the difficulty of obtaining
the weights and additionally that this approach still requires the implementation
of LRU to resolve ties. A final interesting approach to frequency type statistics is
from Mekhiel [129], which proposes a two level cache with the Most Frequently Used
(MFU) elements going into the equivalent of an L1 cache and the LFU elements going
into an L2 cache. This allows frequently accessed data to be easily available to the
CPU and not easily evicted. This still suffers from the same cache pollution problems
and high hardware overhead mentioned previously.

19

2 Literature Review

A slightly different approach is to take inspiration from probability theory as Least
Frequently Used (with : previous references) (LFU-K) [195] does, to predict the
number of occurrences of an element (page, cache block etc.) in a reference string.
The development from LFU is that it adds extra terms into the estimation formula
to account for the changing probability of referencing an element over time. In this
work Sokolinsky demonstrates that in terms of reducing cache miss rate, LFU-K
outperforms LFU and LRU. However, the effectiveness of this technique is intrinsically
linked to the estimation of two parameters, < and ℎ, neither of which is a trivial
task. In addition this augmentation targets database systems, so complex calculations
can be handled by a collection of powerful CPUs. As our context is medium sized
embedded systems this technique is less immediately applicable, unless a method of
estimating the probability functions easily could be found.

LFU is an improvement on simple FIFO policies, but suffers from the problem of
cache pollution and a very high hardware requirement, particularly in the perfect case
[158]. Considering recency rather than frequency has long been considered a better
metric to approximate how far in the future a piece of data will be needed; therefore,
the next section covers techniques that consider recency.

Recency Based Techniques

Recency, as a general class of algorithms orders the elements in a cache by the time
they were last referenced. This leads to two very general categories of recency-based
algorithms, Most Recently Referenced (MRRe) and Least Recently Referenced (LRRe).
MRRe algorithms aremuch less common than LRRe and in general are less performant
due to their poor temporal locality [151]. Therefore, we will not focus on them in
this thesis. The most popular LRRe algorithm is LRU [99, 157, 194], which makes
use of temporal locality, and given a few simplifying assumptions, is very easy to
implement.

In terms of the performance of LRU if we consider the work of Robinson and
Devarakonda [181], for a 2MB cache OPT has a Miss Ratio of around 15% when
run using the UNIX trace. By comparison for a cache of the same size LRU has a
Miss Ratio of around 25%. This gap is much more pronounced at smaller cache
sizes where for the same trace OPT displays a Miss Ratio of 22% while LRU is 40%
so this is particularly a problem for the medium sized embedded systems we’re
interested in as their memory size and by consequence their cache size is very
small.

LRU has other problems as well, it performs very badly in a shared data environment
or when using virtual memory [19]. In addition, when the working set [53] of the

20

2.2 Cache Intrinsic Techniques

program exceeds the size of the cache, cache-thrashing [54] occurs. This is most
commonly seen in large loops [118]. There is also the problem of dead blocks [120],
where blocks read into memory are never referenced again, but take time to be
evicted, clogging up the cache. Finally, as Lin and Reinhardt [118] describe, LRU
lacks a desirable property: as associativity in the cache increases the miss rate should
decrease; however, the opposite is often true.

Statistical Inference

Due to these shortcomings, the important aspects of LRU from our point of view are
the extensions to LRU to overcome them. The first of these is to try and use statistical
inference or measured history of accesses to predict the future behaviour of a program
and act accordingly. This is the approach taken by O’Neil, O’Neil and Weikum [141]
where the Least Recently Used (with : previous references) (LRU-K) algorithm is
described. This technique uses Bayesian methods to estimate the inter-arrival times
of memory references from the collected set of past references. Vakali [214] continues
this idea with the History Least Recently Used (HLRU) policy. Under this scheme a
function ℎ8BC(G, ℎ) is defined, which returns the ℎth past reference to the cache object
G. It then uses the maximum value of ℎ8BC from among the cached objects to decide
on a replacement.

Wong and Baer [228] describes two algorithms Profile Reference Locality (PRL) and
Online Reference Locality (ORL). The essential idea of these algorithms is to favour
lines that exhibit temporal locality by marking them using special instructions. PRL
does the identification offline using profiling, but ORL does the profiling at runtime,
keeping a table of hits to non-Most Recently Used (MRU) lines and using this to set
temporal bits. This then allows lines that exhibit temporal locality to be favoured at
eviction time over those that don’t. All of these policies show increased performance
over LRU to varying degrees, but the problem with all of them is the extra hardware
and book-keeping required. In addition, none of these algorithms address some of
the underlying flaws in LRU, such as its susceptibility to flooding [71]. The next set of
approaches address these concerns.

Overcoming Flooding

Flooding is a phenomenon particularly associated with LRU, which happens when
applications try to access a large address space in a sequential fashion, and is most
commonly seen in large loops. As more addresses are accessed and the cache capacity
is exhausted, old elements (those at the beginning of the space) are evicted from the
cache. Then when the loop begins again old elements are no longer present leading
to further unnecessary memory accesses, this process is shown in Figure 2.4. This
means that the cache policy has no positive impact on the execution at all. To address

21

2 Literature Review

1 ...
2 start:
3 addi a0, 100
4 addi t0, 0x2000
5 add t6, zero, zero
6 loop_start:
7 lw t2, 0(t0)
8 lw t3, 4(t0)
9 lw t4, 8(t0)
10 lw t5, 12(t0)
11 computation:
12 add a1, t1, t2
13 and a1, a1, t3
14 sub a1, a1, t4
15 mul a1, a1, t5
16 loop_check:
17 addi t6, 1
18 add t0, t0, 16
19 bne t6, a0, loop_start
20

Cache - First Iteration - Line 10
0x4512 - (Addr: 0x2000)
0x2378 - (Addr: 0x2004)
0x9174 - (Addr: 0x2008)

Cache - Second Iteration - Line 7
0x7170 - (Addr: 0x200c)
0x2378 - (Addr: 0x2004)
0x9174 - (Addr: 0x2008)

Cache - Second Iteration - Line 8
0x7170 - (Addr: 0x200c)
0x4512 - (Addr: 0x2000)
0x9174 - (Addr: 0x2008)

Figure 2.4: Flooding usually occurs in large loops, where the working set of the
program exceeds the size of the cache, as the example above demonstrates.
On the first three loads of the first iteration, everything proceeds as usual.
Once Line 10 is hit however, the element from address 0x2000 is evicted
under the LRUpolicy, leading to the situationwe see in the second example
cache above. Then when Line 7 executes in the second iteration, we are
forced to evict the element from address 0x2004. Consequently, the cache
is useless in this situation, as every memory access will be a miss. This is
flooding.

this Glass and Cao [71] proposes the SEQ algorithm which records long sequences
of requests for sequential pages and applies MRU replacement to those sequences.
Otherwise it defaults to simple LRU. However, this has a high overhead to implement
compared to LRU and only considers one cause of flooding.

Smaragdakis, Kaplan andWilson [193] further develops these ideas to create the Early
Eviction Least Recently Used (EELRU) algorithm. Here the definition of ‘sequential’
is weakened to make the algorithm more amenable to data structures that are not
contiguous in memory. It does this via an adaptive feature in which the behaviour
of the algorithm changes between standard LRU and what Smaragdakis, Kaplan
and Wilson refer to as the Wood, Fernandez and Long (WFL)[229] algorithm, which
can evict pages before they become the LRU page. EELRU merges these together

22

2.2 Cache Intrinsic Techniques

by calculating probabilistically whether WFL will have more hits than measured
from LRU over multiple sets of parameters for WFL. Midorikawa, Piantola and
Cassettari [131] builds on these ideas further by proposing Least Recently Used with
Working Area Restriction (LRU-WAR), which switches between LRU and MRU when
sequential sections are detected.

A further approach to the problem of flooding is cache partitioning, as proposed
by Kim et al. Here the cache is divided into three regions, a sequential region, a
looping region and an other region. When a reference is requested it is classified
into one of the three categories and then different replacement algorithms are run on
each region accordingly. This is implemented in software, however as our context is
medium-sized embedded systems this would be very difficult to implement because
not only would you require all the tracking apparatus as mentioned in our discussion
of LFU but also the decision mechanism to decide which part of the cache the new
arrival should reside in. An even more interesting attempt at partitioning, using LRU
in one portion of the cache and RAND in the other to break the predictable way LRU
responds to flooding, is proposed by Das et al. [49].

All of these techniques are at least comparable to LRU and many perform at least
as well, but all have their problems. Several of them have very high hardware
requirements, particularly Kim et al. [110] as 3 separate replacement policies are
implemented. In addition, very few guarantees can be made on the behaviour in
Das et al. [49] because of the use of RAND. The main problem that a lot of these
policies have though is that because they are attempting to classify memory access
in an online fashion they have to store a lot of state. In order to cut this down some
authors have suggested the use of static analysis and this what the next section
explores.

Static Analysis

Static analysis and the use of compiler techniques to enhance caching, augment
compilers and programs with cache hints, adding to the amount of information
available to a cache when a replacement decision needs to be made. Jain et al. [88]
tackles this by augmenting the Instruction Set Architecture (ISA) of a processor with
KILL, KEEP and COND-KILL instructions, which are used instead of normal LOAD and
STOREwhen a variable is considered dead. The KILL instruction is used for short-lived
variables or ones that are only accessed once and KEEP for long-lived variables. This
method shows an increased hit rate over multiple levels of associativity. Wang et al.
[218] simplifies this further through the use of an ‘evict-me’ bit which is set when a
reference is accessed that is “sufficiently far away” [218] or has no reuse. This is done
by issuing a different instruction, so that the compiler is responsible for setting the
evict-me bit. The problem with techniques of this kind is that they are difficult to

23

2 Literature Review

implement for existing systems because they require changes to the ISA. Moreover
there is a lack of integration between compilers, processors and caches, which would
mean crafting a new toolchain for approaches like this to work.

Adding Costs to Misses

A consistent assumption of all the techniques seen so far is that cache misses all
have a uniform cost to them. However, research in the recent past has shown this is
not the case [167]. This may be for simple reasons, such as the data is stored in the
L2 cache rather than in main memory, or it may be that memory access times are
variable dependent upon the particular placement of data in memory. Consequently,
several authors have attempted to integrate cost functions into LRU algorithms to
improve performance by prioritising low-cost misses. Jeong and Dubois [90] is an
early example of this, where each block is not only associated with a last reference
time, but also with a cost of replacement. This way the algorithm can make a choice
between evicting the LRU element or evicting the non-LRU element with a lower cost.
Over several iterations of the algorithm, a 15-18% increase on LRU is recorded, with
minimal extra hardware requirement, up to 35-bits extra for a 4-way associative cache
with 64-byte blocks.

This approach is developed further inKharbutli and Sheikh [107]with the introduction
of the Locality-Aware Cost-Sensitive (LACS) algorithm. Instead of using a 2-cost
model, where a miss is cheap or expensive, this technique records latency when a
miss happens for a particular element. These costs are incremented and decremented
as other events occur in the cache, such as a hit to an element or a different element
not being accessed for a long period of time. This results in large drops in the
miss rate, but depends a lot on the working set size relative to the size of the cache.
Das and Kapoor [47] takes a similar approach but use latencies calculated from
a Network-on-Chip (NoC) rather than a traditional hardware arrangement. The
big problem with these approaches is how the cost function is arrived at and what
variables it considers. The examples previously presented use different criteria, but
the potential list of criteria is endless, making it difficult to draw out the salient
metrics for reducing latency. Also, none of these authors contend with the problem of
calculating the cost as a program is running; Jeong and Dubois [90] uses information
that can easily be inferred from memory addresses and Kharbutli and Sheikh [107]
uses simple counters.

Insertion Policies

One of the consistent problems of LRU is that in reality it is only a small subset of
cache elements that actually get referenced after they are read into the cache [168].
This means that a lot of elements sit in LRU caches for a long time reducing effective

24

2.2 Cache Intrinsic Techniques

cache capacity. The root cause is that under standard LRU all elements are inserted in
theMRU position and then progress to the LRU position over time. Qureshi et al. [165,
168] asks whether changing this might lead to better cache utilisation and proposes a
suite of new insertion policies to achieve this. The policy they eventually arrive at is
known as the Dynamic Insertion Policy (DIP), which combines standard LRU with a
policy known as the Bimodal Insertion Policy (BIP). The algorithm switches between
these two policies when one performs better than the other. In order to track the utility
of switching, a technique known as set-duelling is used, where a small part of the
cache is dedicated to each policy and the miss-rate for each part is calculated before
it is decided which algorithm should be used for the rest of the cache. In terms of
effectiveness, DIP represents a 21.3% reduction in Misses per Thousand Instructions
(MPKI) as compared to LRU, representing an over 60% reduction of the gap to OPT,
which itself improves on the performance of LRU by 32.2%.

Sreedharan and Asokan [197] take a similar approach, but use a reference count
attached to each cache block. If it is high, the insertions happen at the MRU position.
Gu and Ding [74] take a slightly different approach they call collaborative caching.
Here the cache is split in half into MRU and LRU sections so that data can be inserted
in different places. The problem with the last two solutions particularly concerns
how to gain the information to decide when to use each instruction on the fly. In
Qureshi et al. [168] and Sreedharan and Asokan [197] there are mechanisms to decide;
however, this does not exist in Gu and Ding [74] as it is a more theoretical paper. All
these policies improve performance and some close the gap to OPT significantly, but
there are still times where caching policies like these will make mistakes due to the
relative paucity of information. Therefore, our next set of solutions addresses this
problem through mistake correction.

Mistake Correction

Kampe, Stenstrom and Dubois [98] suggest that the wide gap between OPT and LRU
is indicative of LRU making too many mistakes. They demonstrate this through
experimentation with the SPEC95[176] where in the case of the su2 and tomcatv
benchmarks OPT improves LRU by 60% and 80% respectively. In response they
propose a policy of self-correcting LRU, which adds a feedback loop to the LRU policy
and starts with the goal that no mistake should occur more than once. To do this they
employ a shadow directory to track when blocks are evicted too early and a mistake
history table to persist the information even after blocks are removed from the shadow
cache. There is also an MRU victim cache, which catches blocks that bypass the cache
and ones that are evicted from the MRU position so that miss-predictions can be
quickly recovered from. These improvements together give a 24% improvement in
miss rates in their experiments, but this is at the cost of quite a lot of extra hardware

25

2 Literature Review

and bookkeeping to manage this extra state.

Defining New Metrics

Some policies take a slightly different view of resolving the problems with LRU by
defining new recency metrics built on LRU. One of the first examples of this is the
Low Inter-reference Recency Set (LIRS)[92], which instead of tracking the time each
block was last referenced tracks the Inter-Reference Recency (IRR).2 The assumption
of the policy is that if the IRR is high for a block it will continue as such, so it is safe to
replace, because it will not be needed in the near future. Choo, Lee and Yoo [36] scales
back this idea slightly and defines a Degree of Inter-reference Gap (DIG) scheme that
tracks the number of references between consecutive accesses to a block multiple
times instead of just once as in the case of LIRS. Jaleel et al. [89] develops from a policy
of Not Recently Used (NRU) by expanding the number of counter bits available to
encode more history in the counter. This technique is known as Re-reference Interval
Prediction (RRIP) and has static and dynamic variants.

Having now toured many different manifestations of LRU and other recency based
policies we can see a pattern emerging. When compared to OPT, LRU will always
make mistakes and miss-predictions, so will never track OPT’s performance perfectly.
There are many techniques to close the gap somewhat, but no technique has done it
perfectly up to now. This implies that recency is not the only piece of information
needed to make the best caching decisions; therefore, the next set of policies to be
considered combine recency and frequency to close the information gap with OPT
and attempt to match its performance.

Methods Combining Recency and Frequency

Having considered recency and frequency in isolation it makes sense to ask, can the
two sources of information be usefully combined? Many authors have attempted to
bridge this gap and their solutions fall into a few key categories.

LRU with Cache Partitioning

Cache partitioning involves logically subdividing the cache into multiple regions,
where each region has a different probability of replacement. Consequently, some
elements become more protected than they would under a standard LRU or LFU
policy. This is often combined with frequency counts, which is the approach taken by
Robinson and Devarakonda [181], where the cache is partitioned into new, middle and
old. Elements start in newwhen they are first referenced, and here they are protected
from reference counter increases. As time goes one they slowly move towards old
2For a block �, the number of blocks that are referenced between subsequent references to �.

26

2.2 Cache Intrinsic Techniques

as the time since their last reference increases. When it is time for replacement, the
element with the lowest reference count in the old section is selected, with LRU
used to break ties. Karedla, Love and Wherry [99] takes a similar approach, but only
divides the cache into two sections and abstracts the frequency count to either 1 or 2
or more. Osawa, Yuba and Hakozaki [145] meanwhile uses generational caching to
split the cache into # generations with cache elements moving towards generation #
on every hit. Also presented is the addition of a small history list, which means that
if an entry is found there on insertion, it can be inserted into generation 2 instead of 1,
as it is more recent than something the cache has never seen.

Juan and Chengyan [97] takes a similar approach to Osawa, Yuba and Hakozaki in
using # partitions of the cache, but they apply it to Chip Multi-Processors (CMPs)
and so use the cache organisation to give each core a part of the cache, while allowing
stealing between cores if that is of benefit. The problem with a lot of these schemes is
whilst they are often very good, (for example, Robinson and Devarakonda [181] boasts
of closing 34% of the gap between OPT and LRU), they rely on “user-specified magic
parameters” [19] to set the size of the generations for highest effect. Implementing
these in reality would require a lot of performance tuning or guessing to get the
correct size of generations. If this were wrongly set, a lot of accesses in a short period
could mean that elements were protected, when in reality it might only be a particular
short burst of accesses that required that element. As a result cache partitioning is
often used as an auxiliary tool to enhance other algorithms, as opposed to being used
on its own.

New Cache Structures

One of themore popular techniques to integrate recency and frequency is to introduce
new structures into the cache to re-organise the data. These structures are mostly
logical in nature, but can be very effective. The first of these is 2Q [93], which divides
the cache into two queues known as �< and �1. �1 is further subdivided in two �1 8=

and �1>DC . The essential principle is to admit “only hot pages to the main buffer” [93]
so �1 acts as a filter. If a page is not re-referenced while in �1 it is unlikely to be hot
and so is evicted. This approach is expanded even further in Zhou, Philbin and Li
[237] where the idea is expanded to = LRU queues where = is a tunable parameter.
This has a low overhead compared to LRU and boasts a moderate improvement of
between 5-10% when = = 2.

Megiddo and Dharmendra S. [128] present the Adapative Replacement Cache (ARC),
a self-tuning cache that uses a cache directory to list elements that have been accessed
either once recently (!1), or twice or more (!2). The algorithm then attempts to
keep ? pages from !1 and 2 − ? pages from !2 in the cache, where 2 is the size of
the cache and ? is altered as hits and misses occur on different elements. This was

27

2 Literature Review

further advanced by Bansal and Modha [19], which combines the algorithm with
CLOCK [40], turning !1 and !2 into clocks in order to remove some of the disadvantages
of LRU not addressed by ARC. The adaptability of ARC is only triggered on a page
miss, so Chen et al. [35] advanced the algorithm even further by basing it on hits
to cache elements instead. This improved performance compared to ARC, because it
eliminates the lag on the adaptability due to waiting for the first page to miss before
it triggers.

In work by Li, Liu and Bi [115], only one queue is used as a cache directory and
each cache block is associated with an ' and � value to track recency and frequency
respectively. This cache directory (&>DC) maintains two counters $ and �. When
an entry is found in &>DC before insertion into the cache, � is incremented. $ is
incremented otherwise. The ratio between these counters decides whether the ' or
the � value is used when a replacement is required. Zhang and Xue [234] split each
’way’ in an =-way cache into : groups where elements bubble up these groups on a hit
and removals are taken from the set of elements at the bottom of each of the groups.
Taking LRU as a baseline they measured that OPT reduced MPKI by 30% while their
solution reduced it by 13%, closing the gap by 47%, one of the best reductions in this
subsection.

New Objective Functions

Rather than introducing new structures into their cache architecture some research
attempts to integrate frequency and recency together by defining a new object-
ive function to use for replacement. In strict LRU the objective function can be
formulated in natural language as “which element has been accessed least re-
cently?”, but some research attempts to change that to make better replacement
decisions.

Reddy and Fletcher [175] creates an objective function that applies a weighting to the
contribution of recency and frequency, using a parameter to control the weighting.
Donghee Lee et al. [59] takes this a stage further and subsumes this all into a simple
function controlled by a parameter � which is shown to subsume all weightings
of frequency and recency. This was later developed by Cui and Samadzadeh [42].
AbdelFattah and Samra [1] takes a similar approach, but calculates all the weights
relative to every other element in the cache and then sums them using constants for
weights, concluding that weighting frequency five times as much as recency gives
the best performance. This is further optimised by AnandKumar et al. [11]. Das
and Banerjee [45] takes another similar approach, but simply takes the product of
frequency and recency allowing each to weight the other.

All previous papers on objective functions use methods that weight the contribution

28

2.2 Cache Intrinsic Techniques

to replacement of frequency and recency, but other papers try to define entirely new
metrics that move beyond this. Tian and Liebelt [205] considers effectiveness as
“the rate of re-use of the block over [a] future time period” [205], which is realised

as A ∗ '2>D=C
5 ∗ �2>D=C

where A and 5 are the recency and frequency weights, the '2>D=C is a

count of re-references and �2>D=C is a count of how long has elapsed since the last
re-reference. These new objective functions have a wide spectrum of success, from
improvements of 9% over LRU to outperforming ARC, which itself outperforms LRU
by a considerable factor. The problem with implementing many of them would
be the explosion of counters and calculation units that would be required, even
in relatively simple cases with small caches. In addition, the problem of ‘magic
parameters’[19] recurs, most of the proposed solutions rely on having a good sense of
what the workload for the cache will look like a-priori, which is simply impossible
for a standard implementation.

Adding Frequency as a Second Criterion

A final category of integrations of recency and frequency are algorithms that simply
augment LRU with information about frequency, adding it as a second criterion by
which to select a replacement candidate. This is certainly true of Chang, McGregor
and Holmes [29], which uses a policy LRU* where cache hits increment a counter
on each cache element. On a replacement every item checked has its hit counter
decreased by 1 and a replacement is only made when a counter hits zero for a
particular element. This is further developed in Alghazo, Akaaboune and Botros [7],
whereby for each replacement the LRU and second LRU are compared, with frequency
counters used to decide if the LRU element should be saved. Dybdahl, Stenström
and Natvig [62] rounds out this set of enhancements by increasing the frequency
differently for reads and writes and implementing cache bypassing for particularly
high frequency counter values to immediately promote elements to high levels of the
cache hierarchy if necessary. In terms of utility, these schemes have similar problems
to redefining the objective function, in that the proliferation of counters may make
them a problem in CPU caches as opposed to simulations. The problem of ‘magic
parameters’[19] also persists, with many of these algorithms having multiple tuning
parameters that would need to be estimated prior to use.

Beyond Recency and Frequency Combinations

In recent years there have been attempts to move beyond collecting frequency
and recency information to create a replacement policy. These fall roughly into
three categories, the first being tracking new metrics and using those to inform

29

2 Literature Review

the replacement policy; the second is switching policies on the fly (based either on
miss-rate or other metrics); and thirdly, reorganising the cache.

Defining New Metrics

Taking newmetrics first, the earliest example of this is the work of Rizzo and Vicisano
[180] which calculates a value (+) for each element in the cache as + = �

� ∗ %A , where
� is the cost of retrieval, � is the benefit of removal and %A is the probability of
re-reference. Each of these values has other factors that feed into its calculation,
which allows the policy to shape itself around these multiple factors. In Kharbutli
and Solihin [108] two new metrics are proposed the Access Interval Predictor (AIP)
and Live Time Predictor (LvP). AIP increments a counter for a cache line whenever an
access is made to another line in the same cache set. LvP, on the other hand, counts
the number of accesses to a line in a single generation (time from insertion to eviction
from the cache). In either case once the counter reaches a particular threshold the
line is evicted. Keramidas, Petoumenos and Kaxiras [103] takes a slightly different
approach and attempts to predict the reuse distance or the number of accesses to
the L1 cache between address references. All these techniques suffer from similar
problems, in that many of them rely on ‘magic parameters’[19] which have to be set a
priori.

The work of Duong et al. [61] and to some extent Tada [203] takes a slightly different
approach in that they abstract specific metrics into an overall ‘score’ for each cache
element. When it comes time to evict an element it’s the one with the lowest score
that is evicted. Scores are set initially on entry into the cache and are then altered
as different events occur, with Duong et al. [61] having tunable parameters for
how events affect overall scores. In general, these policies show that increasing the
information available to the caching policy will increase its ability to make better
decisions, something that we will return to in our analysis of the literature and ideas
to move forward.

Dynamically Changing Policy

The second type of policy in this area is an attempt to take the best elements from
multiple cache policies by changing the policy that the cache applies dynamically
based upon observable conditions within the cache itself. An early example of this
is in Altman, Agarwal and Gao [8] where the adaptivity happens offline through
the use of genetic algorithms, but this does not account for changing policy as a
program executes, as later work does. The real genesis of this idea, in an online
form, is ACME [13, 73, 177], which uses small virtual caches to test the effect of a
suite of policies on the miss rate of the cache and then computes a set of weights
that minimises the miss rate via machine learning. Subramanian, Smaragdakis and

30

2.2 Cache Intrinsic Techniques

Loh [202] develop a similar idea, but give a more realistic implementation than the
original presentation of ACME by focussing on combining only 2 cache policies and
implementing partial tags to reduce the hardware cost. This approach sees reductions
in miss rates across a wide variety of benchmarks and cache configurations, and
represents some of the best that replacement policies can achieve in terms of miss-rate
reductions. Not only that, but since this approach is adaptable, it requires no ‘magic
parameters’[19].

A sub-variant of this idea is presented in Jongmoo Choi et al. [94] as well as other
research [4, 5, 30, 31, 192], with the key difference between them being the metrics
they choose to use to perform the adaptation. Jongmoo Choi et al. uses estimated
forward distances, Chang, Chiang and Yu uses classification of Program Counter (PC)
accesses into sequential and looping accesses and Aguilar and Leiss uses a variety of
metrics that are all observable by the cache directly. All this put together gives some
of the best results in this category of implementation, but there are still problems.
For one, the virtual caches required or the extra metric tracking can take up a lot of
extra hardware, particularly if a machine learning element is included. In addition,
all of these policies are still under-performing if compared to OPT [127]. There is
still a significant gap that needs to be closed in order to really attack the latency that
caches introduce and sadly despite their promise, these techniques still do not achieve
that.

Cache Reorganisation

A third attempt to move beyond recency and frequency combinations is to re-organise
the cache in light of other information such as PC values. The first of these is
Chaudhuri [32], which changes the insertion policy in order to make sure dead
blocks are not kept in the cache longer than necessary, while the working set of
the cache remains untouched. Manikantan, Rajan and Govindarajan [124] takes a
slightly different approach by dividing up the ways in the cache to prioritise a set of
delinquent PC values that contribute large numbers of misses to the overall count.
This set of PCs is detected and changed adaptively as the program executes. Finally,
Khan, Wang and Jiménez [105] builds on earlier work seen in Johnson and Shasha [93]
to dynamically alter the size of the once referenced and more than once referenced
cache partitions. All of these obtain some speed up (particularly when looking at
processors with multiple cores) and most are adaptive, but the hardware overhead
is still prohibitive when considering a CPU cache rather than a web or software
cache.

31

2 Literature Review

Summary

In the last section we have seen various attempts to reduce the miss-rate of caches
through the augmentation of their replacement policies but how do these different
attempts compare? Figure 2.5 shows the improvement in cache miss rate, where
LRU is used as a reference. This graph is necessarily incomplete as not all papers
provide this data and care has been taken, where possible, to use comparable cache
sizes and benchmarks for each measure but of course this was not possible in all
cases.

Taking all these works in mind, how much further does it take us towards resolving
the problem of increasing memory latency? A lot of the policies considered do make
significant progress in reducing the number of cachemisses (and hence the cachemiss
ratio) as Figure 2.5 shows, and therefore reducing effective latency. However, there
are two problems that this body of work does not address, the ceiling placed upon
effectiveness by OPT, and the lack of consideration of non-functional requirements by
some paper authors.

OPT Ceiling

Having considered all these cache policies, one thing is consistent: none of the policies
ever matches the theoretical performance of OPT for the same cache size. This is
clearly shown in Figure 2.5, as OPT achieves a 70% improvement over LRU while the
next nearest policy is only at 56%. While this makes sense, because it is impossible to
argue that a perfect knowledge of the future is better than an imperfect knowledge
of the present, this leaves us in a very frustrating situation because it cuts down the
utility of trying to reduce memory latency with cache policies.

For example, let us consider the figures presented in Panda, Patil and Raveendran
[151] and take an example program that consists of 100000 executed instructions. In
line with the measurements made in Bienia et al. [24] and Limaye and Adegbĳa [116]
let us assume that of these 100000 instructions, 35000 are memory instructions. Let us
further assume, that as per our context, we only have a single level of set-associative
caching, the processor has a single core and that memory accesses takes 2 cycles for a
cache hit and 150 cycles for a cache miss. These figures are consistent with the figures
presented in Hennessy and Patterson [82], assuming a 500MHz clock speed. Finally
let us assume that it takes 4 cycles to execute an instruction. If we suppose that LRU
under this configuration of hardware has a miss-rate of around 20%3. Ignoring for a
moment the effects of pipelining, if we apply the measures stated above we get the
following table.

3This is sensible because this rate is to be used as the reference, we could choose any value but this fits
with data gathered in Qureshi et al. [168].

32

2.2
CacheIntrinsicTechniques

RA
N
D

FIFO
FBR
LFU

D
A

SID
E

PRR
LRU
A
RC

SSA
RC

LRU
-2

Re-use
D
istance

Prediction
SFLRU

(D
C
)

SCO
RE

SFLRU
(IC

)
H
LRU

(2)
SLRU
PA

C
M
A
N

M
Q

EBR
C
A
R

EELRU
RFR
2Q H
LRU

(4)
LFU

-K
O
RL/PRL

Evict-M
e

Self-C
orrecting

LRU
LH

BS
SEQ
LRFU
U
BM

Random
-LRU

C
RFP

LIRS
D
IG

LRU
-W

A
Rlock

O
PT

0 %

1 %

2 %

3 %

4 %

5 %

Replacement Policy

M
is
sR

at
io

Comparing Cache Miss Ratio Under Different Replacement Policies

Figure 2.5: This graph shows a selection of the replacement policies covered in the previous section and the calculated miss ratio that
policy achieves. This is extrapolated by taking the miss-rates presented in the papers and calibrating them against the miss
rate presented in Hennessy and Patterson [82], for a 32KiB Cache, 4-way associative cache. As can be seen although many
policies improve on LRU and some by significant amounts, OPT is still the lowest miss rate. This shows that despite all the
progress in cache technologies replacement policies are still bounded above by OPT in terms of effectiveness. However even
then, OPT does not reach a miss rate of 0% meaning there to reduce latency beyond that currently offered by cache policies we
need to look beyond the cache to other mechanisms.

33

2 Literature Review

Replacement
Policy

Miss Rate Cache Misses Estimated
Runtime
(Cycles)

Estimated
Runtime (us)

RAND 24.40% 8540 1733920 3467.84
LRU 20.00% 7000 1506000 3012.00
SLRU 17.60% 6160 1381680 2763.36
LFU-K 16.00% 5600 1298800 2597.60
LRFU 14.00% 4900 1195200 2390.40

LRU-WARlock 8.80% 3080 925840 1851.68
OPT 6.00% 2100 780800 1561.60
Perfect 0.00% 0 470000 940.00

Table 2.1: This table shows the effect of changing replacement policies on the number
of cache misses that could be incurred as well as the estimate runtime for
the example program described in the paragraph above. It should be noted
that there are a lot of simplifying assumptions that have been made but the
overall message is clear, focusing a large amount of effort in closing the
gap to OPTwill not yield the biggest gains. If we want to make significant
progress in reducing memory latency and therefore program runtime we
need to be looking beyond OPT and therefore beyond cache replacement
polices.

If we consider that OPT is provably optimal [127] then we are forced to accept that
the maximum speed up we could obtain by focusing on cache policies is around a
third, based on the difference between the best performing cache policies we have
and OPT. However as we can also see from the table, even OPT is someway from a
perfect cache policy since, despite it’s clairvoyant nature, it’s still essentially reactive.
What this means is that it always takes action when requested, rather than querying
it’s knowledge of the future to arrange circumstances so misses could be avoided. Of
course even in these cases it’s possible that situations could arise whereby a miss is
unavoidable (i.e. misses that occur when the cache is cold) but this table shows that
in terms of potential gain we have to move beyond OPT rather than focusing on trying
to close the gap between our best performing policies and OPT.

Implementation Concerns

If we take a broad look at the papers we’ve considered in the previous section
we see that they fall into three distinct categories, with respect to implementing
their ideas. The first, are papers that are purely theoretical, they don’t consider
an implementation and are simply concerned with presenting the the theoretical
properties of the techniques they describe. Sadly this covers 38 of the 60 papers
considered, and includes work by Ari et al. [13], Arlitt et al. [14], Das and Banerjee
[45] and Gu and Ding [74]. This is a problem because as there is no implementation

34

2.2 Cache Intrinsic Techniques

there is no consideration of non-functional properties, like time and space, which
are incredibly important when we’re considering applying this to a real system as it
allows us to understand the domain into which these solutions could be deployed. For
example some solutions are targeted at Web or OS caches, which have very different
time and space requirements when compared to hardware caches. In addition they
don’t attempt to quantify any overheads their techniquesmight introduce which again
makes it more challenging to assess the efficacy of the technique when compared to
other approaches.

The second category are those that do consider implementation to some degree
but then fall back to simulation for their experiments. This covers 18 of the 60
papers, and includes work by Das and Kapoor [47], Johnson and Shasha [93],
Subramanian, Smaragdakis and Loh [202] and Wong and Baer [228]. The level to
which this is done varies however, the vast majority consider the hardware costs of
their implementation and some focus on time complexity as well. Of these that are
considered though very few of these claims are backed up by experiment and again
are still not implemented. This is clearly better than the previous category of not
even considering the implementation, and were they to be implemented they would
seem to be efficient, but still leads to problems because a lot of the claims made are
simply assertions, they’re not backed up by measurement in the vast majority of
cases.

Finally the third category is those that actually do implement their cache policies
but as we shall see even then these are not very helpful to us. 4 out of the 60 papers
([94, 110, 177, 237]) actually do this but of those 4, 3 of them implement their chosen
technique in software on top of an OS, and the last one is implemented as a web proxy
cache which is on a different scale to the kind of caching we’re considering. Even in
these cases, very little about non-functional requirements is written, again making it
difficult to understand exactly how efficient these might be so again it’s challenging
to understand how they might aid or hinder our efforts to reduce memory latency in
a real scenario.

This shows there is a large gap in research of cache policies around implementing
the designs that are proposed, and consequently measuring the non-functional
properties that these policies have. For example, as we’re considering medium sized
embedded systems it’s important that we know how much extra hardware would be
required, both for the storage of the extra data but also for the calculations associated
with the cache. Some solutions simply require an extra bit to be added to a cache
whereas others require calculations that may need extra functional units adding to
the processor. Without these results it makes comparing the approaches very difficult,
and also makes it more difficult to rule out unworkable solutions for our context if

35

2 Literature Review

the paper does not make it clear.

2.2.2 Augmenting Cache Architectures

Having considered cache policies, we can now turn our attention to Cache Architec-
tures and how effectively designing them can lead to reductions in latency. In the
coming section we will consider: Associativity, Multi-Banking, Multi-Level Caches,
Non-Blocking Caches, Pipelined Caches and Victim Caches.

At the outset of this section it is important to restate the purpose of this literature
review, which is to explicitly search for evidence of a reduction in latency via the use
of the above techniques. As a consequence, several papers in each of the areas just
described will be omitted, as they are primarily concerned with saving energy in the
cache rather than reducing memory access latency. It is also worth pointing out that
trace caches [174, 182], though very useful for reducing latency in instruction caches,
will not be included either, because this thesis focuses on reducing data cache latency
and trace caches specifically target instruction caches.

Increasing Associativity

Put simply, the level of associativity a cache presents is the number of alternative
places a cache block could be placed for a given cache index [147]. For example, if you
have a cache with 128 entries that is divided into 8 equally sized sets then the cache
has an associativity of 16, as there are 16 different places you could place an element
for a given set. Associativity forms a continuum that ranges from 1, which we refer
to as a Direct-Mapped cache, to an associativity of = where = is the size of the cache.
This latter form of cache is known as fully associative.

Increasing associativity introduces a trade-off, because as associativity increases, the
miss rate for a cache goes down. This is because there are multiple locations for each
element inside the cache, cutting down on conflict misses.4 However, because these
locations all have to be searchedwhen querying the cache, the access time for elements
in the cache goes up on average [104]. Consequently many researchers have tried to
find ways to balance this trade-off, with the ultimate goal of producing a cache with a
high level of associativity and a correspondingly low access time.

There are three general approaches to solving this problem, the first is to accept that
to have the benefits of associativity searches are inevitable, and therefore to focus on
making them as fast as possible.

4Conflict misses occur when a new block is forced to displace one currently in the cache, because they
map to the same cache address.

36

2.2 Cache Intrinsic Techniques

Fast Searching

Kessler et al. [104] is one of the first to attempt this approach and formulates a scheme
whereby the tags for elements in the cache are stored in associative sets, but are
ordered by MRU. This arrangement could allow some searches to be ended early, if
MRU is a proxy for most likely to be accessed, and thus save time on average. As
an alternative, the work also introduces partial comparison for tags. This means it
is only necessary to consider the first : =

⌊
C
0

⌋
bits, where C is the length of the tag

in bits and 0 is the level of associativity. This means tags that are definitely not in
the cache can easily be thrown out, which on average decreases the access time, as
a search is avoided. However, although overall this approach gives associativity
for a relatively low cost, there are many factors that govern its performance that
are outside its control. These include the design of the program and various cache
design parameters, including the length of tags, so it fails to be a good candidate for
latency reduction. Calder, Grunwald and Emer [27] takes a similar approach, but
uses a steering bit to direct the search towards one or the other bank within the cache.
When this is correct it negates the need for a second costly search and so reduces
the average case access time. The approach taken by Calder, Grunwald and Emer
is described by Zhang, Zhang and Yan [233] as optimal for a 2-way Set-Associative
cache.

Building on the aforementioned optimality, Zhang, Zhang and Yan presents an
approach that provides multiple entry points into each set, known as “major loca-
tions” [233]. It then tracks “selected locations” [233], which are locations that have
been loaded from main memory as a result of other misses to this major location.
Consequently, it is possible to construct a simple search algorithm, that checks the
major location first (which is kept updated with the MRU element) and then, if that
fails, checks the selected locations until either a LOAD from main memory is required
or the data has been found. This way the number of searches required is reduced
as the likelihood is the check to the MRU element will succeed. The problem with
these techniques is that although they improve access time on average, they introduce
variable latency and complexity for very small gains. In addition, these are very much
attempts to mitigate the problem of latency to provide parity with a Direct-Mapped
cache, and as will become clear in later sections, there is much more to be done to
bring significant latency reductions.

Removing Searching Entirely

An alternative approach to that discussed above is to try and remove the problem
of search time entirely by making it unnecessary. This is the approach favoured
by Agarwal and Pudar [2] which implements pseudo-associativity by having two

37

2 Literature Review

hashing functions to reduce conflict misses. The index from the address is put
through the first hash function and if this results in a clash it is then put through the
second. This eliminates the need for searches and via some optimisations means the
second lookup can easily be bypassed. Hallnor and Reinhardt [77] also uses hashes
to create an Indirect Index Cache. This cache both eliminates searches and breaks
the link between the placement of tags in the tag array and location of cache data
in the data array. This is done by hashing tags directly from addresses and then
looking up the result in a hash table which contains the index required to find the
associated data. Unfortunately, from the results presented the performance is only
competitive with current caches. There are no large gains to be made in reducing
latency.

Seznec and Bodin [26, 186, 187] also use hashing functions to eliminate searching
by using a separate hashing function for each way in the cache. Djordjalian [57]
builds on Seznec, but builds to a higher level of associativity by grouping 4-ways into
subsets of 2 and then re-using Seznec’s technique on each of the sub-levels. Sanchez
and Kozyrakis [184] takes this even further and uses multiple hashing functions to
simulate arbitrary levels of associativity with the Z-Cache, but with much improved
performance due to search reduction. The problem with a lot of these schemes is that
they require a lot of extra hardware to implement, especially in terms of functional
units if complicated hash functions are required. Not only that, but the high hardware
cost does not have a matching large drop in latency associated with it; therefore, it is
uneconomical to add such a high hardware cost for relatively little gain. In addition,
the extra latency added from calculation of the hash function, while it may be less
than searching a whole cache, is not trivial. Thus, in a lot of cases, it may be that one
source of latency is simply being traded for another.

Selective Application

Some research attempts to maximise the benefits of associativity by only applying
it when the program will benefit. For example, if a working set fits perfectly in a
Direct-Mapped cache, then all the extra cycles spent on managing a fully associative
cache are wasted. Batson and Vĳaykumar [20] takes this idea and fuses together the
ideas of direct-mapping and set-associativity by trying tomap everything directly and
falling back to a Set-Associativemapping only if that fails. This work also incorporates
a predictor for the Set-Associative side to reduce probing delay. Aly, Nallamilli and
Bayoumi [9] uses the idea of different mapping functions in parallel and varies the
associativity on the fly, based on offline profiling of the program. The speed-up
gained, however, is only 2%, with most of the other gains being in power reduction.
In addition, the applicability is limited, because it requires a-priori knowledge of the
code that is going to run, making this only applicable for a limited class of embedded

38

2.2 Cache Intrinsic Techniques

systems.

Qureshi, Thompson and Patt [166] takes the idea of variable associativity but rather
than using lookup tables to remap memory throughout the cache, the size of the tag
store is increased, so there is no longer a 1-1 correspondence between a tag and a
location in the data store. This is dubbed the V-Way Cache and these features mean
associativity can increase and decrease as the workload demands. The V-Way cache
is used as a component in Deepika and Lee [51], where the primary way for an index
is directly mapped to the data, but the V-Cache is used for the other minor ways.
This does lead to a large drop in miss rates, but at the cost of more hardware and
higher power utilisation. Das and Kapoor [48] takes a slightly different approach and
partitions the ways in an associative LLC into normal and reserve portions. Recently
evicted blocks can then be shared between reserve portions to effectively increase
the associativity of certain sets in the cache as the need arises. In the extension work
[46] the sharing is limited to “fellow sets” [46], or sets that are ‘near’ to each other
and miss rate reductions of 30% are recorded when compared against their baseline
CMP.

Multi-Banked Caches

Multi-banked caches focus on architecting the cache into multiple portions that are
all placed on a common interconnect. This interconnect allows them to interface with
several LOAD and STORE units, increasing the potential for cache parallelism, and in
the best case, spreading the data more evenly throughout the cache [178]. When a
memory read or write is required the address is routed in two phases, first to the
correct bank and then to the correct line. This allows for accesses that have very
similar low order bits to be spread out amongst multiple banks to allow faster recall.
Rivers et al. [178] combines this technique with memory re-ordering by the compiler
to increase the efficacy of the approach. One of the problems with the interconnect
approach is that bank conflicts can introduce non-determinism in the latencies seen
when accessing data. Neefs, Vandierendonck and De Bosschere [137] solves this by
extending the work of Rivers et al. [178], adding a predictor. This means that on a
correct prediction the latency is constant and known in advance. However, the latency
reductions are quite low, and in the optimal case rely on a clairvoyant prediction
mechanism, which is impossible to implement.

Multi-Level Caches

One of the larger areas of research in increasing cache performance has been the
use of multi-level caches. Their development follows a roughly chronological

39

2 Literature Review

progression, necessitated by the ever-increasing nature of the processor memory gap,
but little appetite to spend orders of magnitude more on memory hardware. Over
time, it has become the pre-eminent mechanism for increasing cache effectiveness
used in modern processors. The technique works by having multiple caches that
increase in size and ‘distance’ from the processor. These are usually arranged into
numbered levels (L1, L2 etc.), where the number increases with the distance and
access time.

Early Work

The development of multi-level caches begins with the acceptance, after analysis in
Przybylski, Horowitz and Hennessy [161], that there are limits to the effectiveness of
a single cache, no matter how large it may be. Przybylski, Horowitz and Hennessy
[160] characterises the optimal cache as having a short cycle time (serves hits quickly)
and a lowmiss ratio. It suggests expanding to two levels of caching to reduce the miss
penalty in the L1 cache without having a corresponding increase in cycle time [95].
Azimi, Prasad and Bhat [17] refines this notion and shows that while this technique
is very good at reducing latency, the key is placement of cache objects within the
cache hierarchy, in order that more latency is not introduced with second level cache
misses. Moreover, Tang and So [204] discusses the benefits of making the L2 cache
much larger than the L1 to reduce lengthy miss pauses, but also acknowledges the
degree to which the workload itself determines the most effective cache hierarchy. In
effect there is no silver bullet for every conceivable program.

Expanding Beyond Two Levels

Expanding beyond two levels of caching, Zhao et al. [236] considers four levels of
caching, with the LLC being composed of DRAM, the same memory technology that
main memory is usually constructed from. Although the capacity of main memory
is reduced due to chip space constraints, lower latencies are seen, because the data
has not got to travel off-chip. The problem with a large DRAM LLC is storing a large
number of tags to address it. There are several options, but the optimal one is to
only use partial tags and accept a string of false positives, while also using a sectored
cache on chip. Wu et al. [230] extends this and proposes that every level of the cache
should be constructed from a different memory technology to gain the most from the
in-built advantages of each. A variety of cache designs are proposed, and even 3D
stacking is introduced, which achieves an 18% Instruction-per-Cycle (IPC) increase
compared to a standard three level cache. This does not address all concerns though,
as problems with the endurance of memory technologies are not considered. There
is also an acknowledgement that much better performance could be gained if the

40

2.2 Cache Intrinsic Techniques

construction of the cache were tuned to the specific requirements of the program to
run.

Hameed, Bauer and Henkel [78], extended in 2014 [79] takes a similar view, but
proposes a hybrid LLC composed of DRAM and SRAM to act as its own independent
cache. A MissMap [121] is used to decide on whether there is a hit in the DRAM
or not and set-duelling is used to decide on a policy to refill the L3-DRAM, a large
source of latency. There are even proposals to allow applications at runtime to decide
whether to bypass the LLC [219]. This decision is made by monitoring the miss-rate
or the miss latency for an LLC access and there are lots of technical challenges this
poses, including issues of cache coherency that are yet to be addressed. All this
culminates in the work of Tsai, Beckmann and Sanchez [207], which proposes that
software should define the cache hierarchy from a pool of generic resources. This
is very much the optimal utilisation of this technique, as some workloads will not
benefit from deep hierarchies and actually a large L1 cache may be preferable, for
example.

Replacement Policies in Light of Multi-Level Caches

Little work has been done on replacement policies that act across all levels of the cache
hierarchy. Indeed, the opposite is often true, with attempts frequently made to keep
caches self contained, simple and without an overall managing process, even if they
exist as part of a hierarchy. Thus, most of the work on replacement policies simply
adapts work seen in Section 2.2.1. Kelwade et al. [102] considers several policies
including PROMOTE, DEMOTE and a hybrid method. The first two policies use the
number of promotions and demotions in the hierarchy to decide which block should
be replaced, but the latter combines those two measures to give better performance.
Cache replacement policy over multiple levels of caching is certainly an area ripe for
further research, particularly perhaps used as a supplement to existing techniques to
identify hot and cold data and thus cache data more effectively.

Non-Blocking Caches

Non-blocking caches attempt to decouple the cache from synchronously accessing
external memory. First proposed by Kroft [112] in 1981, this approach works by
effectively buffering the memory operations that miss in the cache in Miss Inform-
ation/Status Holding Registers (MSHRs). This allows stalls for data dependencies
on reads to be ignored until they become essential, and via the use of write buffers,
allows writes to memory to be dealt with asynchronously. Chen and Baer [34] found
that write penalties could be eliminated entirely, as long as reads could bypass writes
in a write buffer.

41

2 Literature Review

There are limits to the technique, however. Belayneh and Kaeli [23] discusses that
in general, the more resources spent on these caches (wider buffers etc.), the better
they become, but eventually other unrelated delays dominate the latency calculations,
so there is a sense of diminishing returns. To be specific, in the examples shown in
their paper, increasing the number of MSHRs to 6 virtually removes most structural
hazards, but 29.4% of load misses are data dependant so this is unaffected by the
number of MSHRs. Tuck, Ceze and Torrellas [209] develops this idea further and
proposes a hierarchical MSHR structure to support many more outstanding misses.
Each cache bank contains its ownMSHR along with a bloom filter that links to a large
MSHR file. This leads to a large increase in performance, but the limitation is then
on the compiler and the program author. If the code consists of relatively few data
hazards, this technique will work very effectively, but there is no guarantee of this.
Closer hardware and software co-operation is needed to consistently produce code
that can exercise these structures to their best effect.

Pipelined Caches

Applying the same techniques to caches as to CPU designs, pipelined caches [142,
143] have also been proposed as a way to counter latency. They work in a similar way
to the multiple stage pipelines that are seen in CPUs, so any memory access required
because of a cache miss or similar can be split into several smaller phases that can
be interleaved. For example Gunadi and Lipasti [75] uses 4 stages: in the first stage
subarray decoding for data and tag is performed. This is followed by the second stage
where row decoders are activated and the tag array is read. In the third stage the data
array is ready and partial tag comparison is performed. Finally in the fourth stage
the rest of the tag bits are compared and then data is further selected, if the cache is
an associative one. Breaking the process of caching into multiple stages allows caches
to effectively hide some of the latency they experience in accessing memory and
challenges the dichotomy that as cache size increases so does access time. Agarwal,
Roy and Vĳaykumar [3], Martin et al. [126] and Srivastava et al. [198] show examples
of this. Unfortunately this technique has been rather ignored in the recent past, with
only Hong and Kim [84] developing the idea. They use asymmetric pipelining to
resolve the problem that SRAM cell access can be somewhat unpredictable in its
latency, by extending the cell access phase in the pipeline. The SRAM also adds
pseudo-multi-banking to regain any bandwidth lost.

42

2.2 Cache Intrinsic Techniques

Victim Caches

The final architectural technique employed to reduce latency is victim caches. First
proposed by Jouppi [96] in 1990, they grew out of the idea of miss caching. In this
technique, when a cache miss occurs, a small (2-5 entry) fully associative cache is also
loaded with the data that is being loaded into the main cache. As a result, if in future
the entry disappears from the main cache because of a conflict miss, the data will be
retained in the miss cache, so retrieving it will be faster than requesting it from main
memory. The victim cache takes this one step further by removing the duplication
present in miss caching. Hence, in a scheme with victim caching, anything that
is evicted from the main cache is stored in the victim cache instead of duplicating
the main cache. This leads to a stark drop in the number of conflict misses, some
benchmarks increasing from removing 0% of conflict misses to 45% of conflict misses
and in one case removing conflict misses altogether.

This idea is further developed by Stiliadis and Varma [199] which adds a more
selective element to the victim cache. This formulation acts very much like Jouppi
[96]. However, if an access misses in the main cache, but hits in the victim cache, a
prediction algorithm is invoked to decide if the main cache and victim cache should
be swapped. Similarly, if the access misses in both caches the prediction algorithm
is again used to decide which element should be evicted. This approach improves
on Jouppi, but is deficient when turned towards data caches, because the elements
retrieved are inherently less predictable than instructions. Hormdee, Garside and
Furber [85] develops the idea into an asynchronous formulation, but achieves little in
terms of latency reductions.

The next step change in victim caches comes from Khan et al. [106] which proposes
virtualising victim caches through the re-use of dead blocks. The idea is that if a
block is dead it is taking up valuable capacity with no benefit. Khan et al. uses this to
suggest that these dead-blocks could be re-appropriated as a victim cache, so that all
the benefits of retaining elements are kept, but without any extra hardware to store
them. This leads to a significant decrease in MPKI, but is entirely dependent on the
effectiveness of the dead block predictor, as a incorrect identification can lead to extra
latency being incurred to re-load the evicted block. A selection of papers following
this improve further on the concept. Asaduzzaman, Allen and Jareen [16] proposes
a Smart Victim Cache which includes a level of cache locking to keep good data
in the cache longer. Navarro and Hübner [136] proposes an adaptive victim cache
that adapts its size and level of associativity as the program progresses. However, it
does not provide any concrete methods to achieve this. Finally, Subha [201] suggests
changing the victim cache from being fully associative to using a small register to cut
down cache searches. Overall, victim caches are a very useful concept and have been

43

2 Literature Review

extended to cover a wide range of use-cases. There needs to be more research into
the adaptive models considered by Navarro and Hübner [136], as this could be a very
fruitful area of research, but the extra resource they require needs to be justified and
may not always be utilised to its fullest capacity.

2.2.3 Summary

We have now come to the end of our consideration of cache intrinsic techniques and
have seen the plethora of techniques available. These techniques are summarised
in the graph presented in Figure 2.6, which includes the extra entries considered in
this section to give an overall picture of cache intrinsic changes and their effects on
miss rates. Sadly there are many fewer entries to be included in this graph because
the data for many techniques was not available in the papers referenced. In addition
it is difficult to compare many of these techniques fairly because there are so many
factors that can impact a cache’s miss rate and these are varied to a greater or lesser
degree by each author in different ways, making it difficult to establish a reliable
baseline. To further compound the problem, as each author has a different focus when
presenting these techniques it may be the case that metrics crucial to our comparisons
are omitted, because they are not relevant to the discussions in the paper. The best
way to accurately compare all these techniques would be to implement them all with
a known fixed set of constraints and then measure them, however that would be
prohibitively time consuming and would not add significantly to the discussion in
this thesis.

Considering the techniques presented in Figure 2.6, many of themprovide appreciable
reductions in latency, however there are several fundamental problems that prevent
any of these techniques entirely solving the problem we presented in Chapter
1.

Cache replacement policies are all bounded above by OPT and even with the best
adaptive policies no researchers claim they have found a way to produce miss rates
below what could be expected from OPT. Moreover, even OPT does not claim a miss
rate of zero. It will still incur misses due to cache capacity for example; hence, even
trying to implement OPT is not a complete solution, if our aim is to push latency as
low as possible. Not only that but very few of these policies are actually implemented
so it’s very difficult to gain an insight into their impact on non-functional properties
of the cache. In terms of Cache Architectures, we see a similar story. There are many
good options here, but a lot of them aim for parity of latency with existing models,
rather than trying to push the latencies lower. In addition most of the techniques that
score best in terms of low cache miss-rates require very complex hardware to achieve,

44

2.2
CacheIntrinsicTechniques

Reactive-A
ssociative

C
ache

RA
N
D

FIFO
FBR
LFU

D
A

SID
E

PRR
LRU
A
RC

SSA
RC

LRU
-2

Re-use
D
istance

Prediction
SFLRU

(D
C
)

SCO
RE

SFLRU
(IC

)
H
LRU

(2)
SLRU
PA

C
M
A
N

M
Q

EBR
C
A
R

V-W
ay

C
ache

EELRU
RFR
2Q SM

C
-C

ache
PM

C
-C

ache
(n=4)

H
LRU

(4)
LFU

-K
O
RL/PRL

Evict-M
e

Self-C
orrecting

LRU
LH

BS
Skew

ed
A
ssociative

C
ache

SEQ
LRFU
U
BM

Random
-LRU

C
RFP

A
synchronousV

ictim
C
ache

LIRS
D
IG

LRU
-W

A
Rlock

C
olum

n
A
ssociative

C
ache

O
PT

0 %

1 %

2 %

3 %

4 %

5 %

6 %

Technique

M
is
sR

at
e

Miss Rate for Selection of Cache Intrinsic Policies

Figure 2.6: The graphs extends Figure 2.5 by adding the further cache augmentations which it was possible to compare. This was made
difficult by a lack of comparable metrics but allows us to see that still OPT is the best strategy to reduce miss rate and therefore
latency. There also maybe grounds to combine some of these techniques, as many of the papers on cache augmentations did
not explicitly consider replacement techniques.

45

2 Literature Review

or require wholesale re-thinking of how caching works. This leads to the question
of whether anything else could be changed to reduce latency outside of the cache,
which our next section will discuss.

2.3 Cache Extrinsic Techniques

If we return to Figure 2.3, we can now consider the second branch of methods to
reduce latency, which are not focused on the cache. First we will consider prefetching,
a schemewhere latency is reduced by trying to executememory operations in advance
of the need for them. That will be followed by a section on Memory Scheduling and
how re-ordering memory accesses can be beneficial. Finally, there will be a short
section on Code Transformations to aid latency reduction.

2.3.1 Prefetching

Prefetching, at its heart, is very simple. It means attempting to issue memory
instructions before they are needed by the CPU, so that the long latencymainmemory
access can be hidden. Obviously this is idealised, but many authors have constructed
schemes that perform a function similar to this with varying degrees of success.
Prefetching methods are loosely split into software and hardware types, but some
combine elements of both. A crucial point tomake here is that, asmentioned in Section
1.1.2, the difficulty of prefetching varies enormously with the kind of items that are
being prefetched (instructions or data), due to the characteristics of each. On thewhole,
programs are structured in large blocks of sequentially executed code, as the success
of the basic block abstraction of programming shows. Therefore, prefetching is much
easier because the shape of programs in memory is more predictable. By contrast,
data can have very little apparent structure in memory. Particularly for complex,
pointer-laden, data structures, patterns of data can appear almost random, without
any intuition as to the underlying structure. As a consequence, data prefetching is
much more difficult and requires either an acceptance of a high rate of misprediction
or a high degree of introspection in the program to achieve. Consequently, in this
section we focus on data prefetching.

Software-based Prefetching

Software-based Prefetching tends to involve either the compiler or the programmer
giving explicit instructions to the memory control system to perform a prefetch action.
This is exactly the approach taken by Callahan, Kennedy and Porterfield [28] in that

46

2.3 Cache Extrinsic Techniques

the compiler decides when a prefetch instruction should be executed. This is focused
on loops and makes the assumption that the latency of a load in the loop will be
covered by one iteration of the loop. With this in mind prefetches are inserted into
the loop body, so that on the next iteration of the loop the necessary data will always
be present. However, this is quite a primitive approach, so in work by Mowry, Lam
and Gupta [133] the algorithm is refined, in an attempt to prefetch for only those
accesses that are likely to be cache misses.

Zhang and Torrellas [235] takes the idea of explicitly inserting instructions further
by marking groups of records that should be prefetched together in the code. This
allows the compiler to bind these seemingly disparate pieces of data together, so that
when they are accessed in the program, they can be prefetched. Another approach to
software prefetching is proposed by Lipasti et al. [119], in the form of Speculatively
Prefetching Anticipated Interprocedural Dereferences (SPAID). This is a heuristic that
inserts prefetch instructions for the data referenced by pointers when they are used
as arguments to a procedure. Luk and Mowry [122] takes a similar approach, but
considers pointers in recursive data structures, proposing several different algorithms
for prefetching them. The problem with both of these schemes is that one is only
proposed and the other is implemented by hand, adding lots of complexity to the task
of a programmer. They also leave open the question of how the recursive structure or
pointer candidates are discovered, which is the key to the efficacy of approaches like
this.

There are several problems with software prefetching that mean it’s not worth
exploring any further. The first is that the addition of prefetch instructions can as
much as double the size of the executable code [113]. This a problem for two reasons.
Firstly, it is uneconomical to double the code size when we’re considering medium
sized embedded systems due to the obvious memory constraints; secondly, there is no
guarantee that all the extra instructions will be effective. The placement of software
prefetch instructions must be made at the ‘Goldilocks’5 point, before the actual
memory request is made. If the prefetch is made too close to the memory request, it
will not have time to complete before it is required; so the processor will still stall. On
the other hand, if it is made too far away from the access, then there is a chance it could
be displaced from the cache by another memory operation, which would still cause a
cache miss. If that were not challenging enough, to even calculate the ‘Goldilocks’
point would require knowledge of the system that is either very hard to attain or
may not even be knowable statically. This includes the latencies of all the memory
components involved or the state of each component at a particular code point. As a
result, this section will focus on hardware-based prefetching.

5Not too close, but not too far away.

47

2 Literature Review

Hardware-based Prefetching

In comparison to software-based prefetching, hardware-based prefetching does not
rely on the programmer or compiler to insert prefetch instructions. Instead, the
prefetching happens entirely transparently to the programmer and is handled by struc-
tures in hardware that dictate when and how prefetches occur.

The earliest example of this is Smith [194], describing One Block Lookahead (OBL),
which simply fetches the block next to the current one. This can be triggered either on
every miss, on every memory access or using a tagging system. Hence, it prefetches
on a miss or when a prefetch is good, i.e. it prevents a miss. Jouppi [96] develops this
idea with a hardware structure known as a stream buffer. This uses Smith’s ideas
but places the prefetched data into an auxiliary structure, rather than straight into
the cache. This avoids the issue of having prefetched data replaced by another cache
operation. This is also effective at reducing the program runtime, as Farkas, Jouppi
and Chow [64] demonstrates, with 26% reductions on average.

Regular Data Patterns

Fu and Patel [65] develops the ideas of OBL by defining it as a special case of sequential
prefetching, where the memory unit is instructed to get the next ? consecutive blocks
after the desired block. However, as they point out, some data is stored in a pattern
which is still regular, but has large gaps. Therefore, they introduce stride prefetching,
whereby ? blocks are still prefetched, but each block is separated by a given number of
bytes. Baer and Chen [18] makes the stride dynamic by predicting it based on tracking
good and bad prefetches and correcting the stride length accordingly. A similar
approach is taken by Fu, Patel and Janssens [66], with the use of a stride prediction
table, although this is limited to prediction in loops only. Dahlgren, Dubois and
Stenstrom [43] takes on the idea of adaptation, but applies it to sequential prefetching
instead, monitoring the number of successful prefetches and slowly increasing the
degree of prefetching.6 Meanwhile, Palacharla and Kessler [148] synthesises several
ideas to extend stream buffers with filtering and non-unit strides. Chen and Baer
[33] extends previous work [18] to create a correlated reference prediction table that
solves the problem of miss-prediction when nested loops are involved. All of these
approaches show reductions in execution time for the benchmarks they use, but they
are still focused on predictable regular data patterns like loops or contiguous memory
sections. The next step in the development of this method is accounting for irregular
data patterns.

6how many elements are prefetched in each iteration.

48

2.3 Cache Extrinsic Techniques

Irregular Data Patterns

One of the first pieces of work to attempt to account for irregular data patterns is
Alexander and Kedem [6]. In this approach stride prefetching is taken as a baseline,
but instead of trying to predict individual addresses to prefetch this work attempts to
predict blocks of addresses. This takes advantage of the fact that memory references
tend to cluster. Therefore, if you can predict a block of addresses effectively, you will
decrease latency through spatial locality. Lin, Reinhardt and Burger [117] tries to
use spatial locality as well by fetching around misses, but also couples the prefetch
to the memory controller, so that prefetches are only issued when the memory
system is idle. Though this method sees large speed-ups in some benchmarks,
the authors admit more work is still to be done to shape the prefetching to the
application.

Solihin, Lee and Torrellas [196] attempts to solve the problem of prefetching complex
structures by using pair-based correlation prefetching. Under this scheme chains of
misses are detected by the system and stored so that action can be taken on multiple
misses at once, after they have been observed the first time. Cooksey, Jourdan and
Grunwald [39] develops the ideas of address identification and pointer chasing by
attempting to identify virtual addresses as they are returned from memory systems,
so they can be prefetched. This is combined with a standard stride prefetcher to give
12.6% speed-up on average throughout a suite of benchmarks. Finally, Yu et al. [232]
also uses correlation prefetching for the specific case of accesses in high performance
computing of the form, A[B[i]]where A and B are arrays.

Despite all this, prefetching the disparate memory accesses that often occur in
general programs is still difficult to do through correlation as there is not enough
information to predict some accesses. Many authors recognise this and as OoO
processors developed, the next step in hardware based prefetching was to separate
out the prefetch controller to allow it to be asynchronous from the processor. This
effectively lets the processor define locality rather than the placement of objects in
memory.

Asynchronous Prefetching

One of the first steps down the path to asynchronicity was by Veidenbaum and
Gallivan [216], who took the drastic step of splitting memory and computation onto
two entirely separate processors, with a specialised compiler. They reasoned that
this would give the ultimate overlap, as the memory processor could run ahead
of the computation processor. However, this approach was rendered less effective
by the inability of the compiler and programmer to produce code amenable to this
process. For example, if a program has lots of memory accesses with no, or very

49

2 Literature Review

few, computation instructions between them, the ability to prefetch will be severely
diminished as there will not be enough time to have completely performed a prefetch
operation before the data is requested. Roth, Moshovos and Sohi [183] takes a more
conservative approach and proposes a structure based on a correlation table and a
prefetch buffer. This is combined with a method of pointer chasing that allows the
prefetcher to remain ahead of the processor. However, there are issues with address
identification and also problems with letting the prefetcher run too far ahead due to
the ‘Goldilocks point’ mentioned in the previous section.

Vander Wiel and Lilja [215] takes a similar approach to Veidenbaum and Gallivan
in letting the compiler control which prefetches are issued, but offloading the task
of issuing them to a separate data-prefetch-controller. Work by Collins et al. [37],
developed in 2002 [38], takes the idea of separate execution, but optimises it by
precomputing a subset of the program to prefetch dynamically and then executing it
in a separate thread context. This is augmented in the later paper by adding a pointer
cache to break load dependencies, where memory instructions wait for pointers that
are also stored in memory.

Mutlu et al. [134, 135] takes this concept the furthest with the run-ahead processor.
Under this scheme when a long latency instruction is hit, the program state is
checkpointed, as in a context switch, and the processor is left to run. This allows
independent memory instructions to execute without needing to wait. None of the
operations are actually committed to the processor’s registers, as once the long latency
instruction stops, processing is resumed and all interim results are erased, but this
means that in the ideal case, a lot of prefetching has happened in the run-ahead
period.

All these techniques show promise, but they rely on a lot of assumptions, particularly
about the amount of independent instructions that a processor has between long
latency instructions. Unfortunately, some programs are very prone to not exhibiting
this behaviour. Therefore, although these techniques are useful, there are limitations
on what they can achieve without substantial care on the programmer’s part or an
incredibly sophisticated compiler, with knowledge of the internal hardware of the
processor.

Adaptive Prefetching

All these methods lead to increases in the performance of the system under test, but
still suffer from the inherent problems seen in previous iterations of hardware-based
prefetching. To move beyond those limitations, adaptive schemes are introduced so
that the prefetching mechanism itself is not a-priori dictating the form of memory
accesses, but is instead being driven by the compiler. This development is very

50

2.3 Cache Extrinsic Techniques

similar to the development of cache policies that we saw in Section 2.2.1. Nesbit,
Dhodapkar and Smith [138] were some of the first to try this approach. Building on
their work on global history buffers [139] Nesbit, Dhodapkar and Smith use a system
of calculating address deltas to find the next address to prefetch. The adaptive part
comes by monitoring this algorithm and tuning the zone size and prefetch degree or
turning off prefetching altogether when it is degrading performance. This idea is
developed further by Arora, Banerjee and Davina [15] which takes the monitoring
and optimisation idea and switches between multiple prefetching algorithms, as the
prefetchingdegree changes in apredictableway. This is taken to its ultimate conclusion
by Panda and Balachandran [150] which uses multiple expert predictors andweighted
majority voting to decide the best element to prefetch.

2.3.2 Scheduling

Scheduling based techniques are often used to re-order accesses to memory to
decrease latency. All are designed in some way to make the schedule of memory
accesses more suited to the underlying memory technology and this is done in a
number of ways.

New Scheduling Algorithms

Kiniwa and Kameda [111] were one of first authors to pursue this route, taking a
similar approach to the work on non-blocking caches that we saw in Section 2.2.2.
Under this scheme all memory requests are placed into a queue and this can be
re-ordered to maximise the length of time elements spend in the cache. Unfortunately,
this method requires some knowledge of future events, so is not a completely online
process, and has a significant overhead to implement. Yang et al. [231] look at
resolving LOAD-LOAD dependencies7 faster, via a data forwarding mechanism to allow
more overlapping. This has somewhat limited utility, but is the only place that
explicitly considers data hazards in this context. Luo et al. [123] tries a similar
approach but uses genetic algorithms to generate a scheduling algorithm offline.
This gains a modest speed-up, but requires the software under discussion to display
predictable patterns of execution.

The same is true of Kegley et al. [100] and Wei-Che Tseng et al. [222]. However, rather
than genetic algorithms, they propose a slightly different optimisation approach by
making tasks ‘wander’ around the schedule in the latter case and assigning a System
Metric for Applciation Cache Knowledge (SMACK) score to various schedules in
the former. Qazi et al. [164] describes a method of re-organising loop operations

7places where processors load an address from memory and then immediately access it.

51

2 Literature Review

to fill up empty slots and so make them more efficient, although the reduction in
latency is quite small and its unclear how to apply the technique outside of the
predictable context of loop execution. Modgil and Sehgal [132] take a more drastic
approach and allow the memory controller to adapt its policy on when to act on write
commands based on the level of memory traffic it observes. This is certainly a step
in the right direction, but the performance increases are highly correlated with the
memory configuration, showing this policy is much less general than necessary for
our purposes.

Exploiting the Underlying Memory Structure

Approaching this from the point-of-view of a scheduling algorithm requires more
information than the system can provide in the current paradigm. Other research
has instead chosen to exploit the properties of the underlying memory technologies.
Rixner et al. [179] increases the complexity of the memory controller, adding queues
of pending references and an address arbitrator to produce a stream of DRAM
instructions that (in more aggressive cases) take advantage of row and column locality
to reduce the number of actual access the DRAM must make. Shao and Davis
[188] takes the idea further in the context of OoO processors and groups memory
transactions into bursts due to the non-uniform access latency of Synchronous
Dynamic Random Access Memory (SDRAM).

These methods are all reasonable and achieve approximately a 30% performance
increase [179] and 21% execution time decrease [188], but the real problem with
reducing particularly DRAM latency is that the memory has preset timing parameters
to ensure the data is valid when it is accessed. These parameters change incredibly
slowly are now very long compared to processor cycle times. However, Hassan et al.
[80] makes the observation that it is possible to reduce the timing parameters if the
data has been accessed recently, due to the electrical properties of DRAM. Therefore,
they propose a small cache of recently accessed rows that dictate the values of the
timing parameters, allowing a performance increase for row local data. Shin et al.
[189] pushes this idea even further, but rather than caching the rows, they track the
time between refreshes, exploiting electrical properties of the DRAM to restore data
that had previously been present more quickly. Kim et al. [109] brings a similar
approach, describing a new kind of DRAM called Solar-DRAM. This new memory
type has different regions characterised as strong or weak, allowing different timing
parameters to be used for different regions. The idea here would be to place key data
in the strong regions, so as to speed up latency when required.

52

2.3 Cache Extrinsic Techniques

Augmenting the Memory Controller

Rather than approach this from the point of view of the memory technology, other
research has added new hardware to thememory controller, in general to integrate the
controller more with the cache and memory systems. Stuecheli et al. [200] proposes
a virtual write queue and scheduled write-backs so the memory controller directs
the cache to transfer lines, and the writes are ‘harvested’ from the LRU part of the
LLC, this section becoming the virtual write queue. Wasly and Pellizzoni [220] on the
other hand splits the memory controller out of the processor completely and uses the
existing Direct Memory Access (DMA) module to control memory behaviour, instead
of delegating this responsibility to theCPU. This has a lot of similarities toVeidenbaum
and Gallivan [216], though prefetching is not considered.

All these methods exhibit performance increases against the benchmarks they run
but there are fundamental problems with attacking this problem from the point of
view of scheduling, no matter which general approach is taken. The big problem
is that in many cases there simply is not enough information available online to
make the best decisions. This problem stems from a number of sources: the lack
of integration between the cache, memory controller and memory hardware; the
simplicity of memory controllers due to the lack of available space on a processor die;
and the lack of knowledge in a compiler of the underlying memory system. This last
point has been addressed in the literature, and in the last part of this section we will
therefore consider how programs can be transformed and data can best be laid out in
memory to reduce latency.

2.3.3 Program Transformation & Data Layout

The idea that there are better and worse ways of laying out data in memory is not new.
So many processes (prefetching and caching among others) rely on the idea that data
used together will be ‘physically’ close together, so it makes sense to use processes to
increase the likelihood of this occurring, if at all possible. This is the approach taken
by Panda, Dutt and Nicolau [152] which considers clustering of variables in the code
and the insertion of dummy instructions to make sure that pieces of data accessed
together are assigned to different cache lines, so that they do not displace each other.
Other research considers loop fusion, a technique first demonstrated by Gao et al.
[68] in 1993. Here multiple loops can be merged together into a single loop to reduce
program runtime.

Amyriad of techniques can be added on top of this to increase the technique’s efficacy:
Ding and Kennedy [56] proposes the use of hyper-graphs to discover the data sharing
between loops, an improvement on the original technique as it means more than two

53

2 Literature Review

loops can be fused if there is sufficient data sharing. Gomez et al. [72] pushes this even
further and proposes loop morphing which, via loop splitting and fusion, can make
even non-conformable loops fuse under some circumstances. Marchal, Catthoor and
Gomez [125] in turn describes a technique where loop fusion is done incrementally
and over several passes to gain the maximum speed up. On the data side there has
been comparatively little work done from the point of view of latency reduction.
Qazi et al. [164] describes a technique where you can search the array accesses for
potential conflicts and place them in different parts of memory, akin to Panda, Dutt
and Nicolau [152]. In recent times more significant work has been done in Wei et al.
[224] which uses a mix of offline profiling and online monitoring to place data and
code into an environment of different memory types. This leads to a reduction in
average memory latency of 12.1% and reduced energy costs.

2.3.4 Summary

This marks the end of our consideration of cache extrinsic techniques, so what havewe
learned? Many of these techniques do produce appreciable reductions in both latency
and overall program runtime which would seem to make them ideal candidates to
answer some of the questions posed in Chapter 1. Prefetching in particular seems
very promising, but all the examples seen are still only able to exploit fairly simple
predictable patterns, rather than covering the diversity of expression that can be seen
in programs, such as pointer-laden data structures and or non-deterministic system
calls like malloc. Scheduling and program transformation are also a sensible ideal,
but they have very little consideration for dynamic behaviour due to the disconnection
between many of the hardware elements present. What is necessary to improve a
lot of these techniques is the ability to consider dynamic behaviour alongside static.
This would allow us, over time, to get a real picture of what operations actually
cause latency, rather than accepting a lack of information on this point. If a way
existed to feedback this dynamic behaviour to the cache and memory system, it could
be incorporated with the static information and used to improve the quality of the
predictions made by these techniques. One way to include this dynamic information
is through the use of tracing and creating a feedback loop throughout the memory
system, something the next section explores.

2.4 Incorporating Tracing to Reduce Latency

In the third portion of this literature review we consider tracing. Tracing is very
simply a way of producing an ordered list of all the instructions a program has

54

2.4 Incorporating Tracing to Reduce Latency

performed during its operation. This may not immediately seem useful, but the huge
benefit of traces is that they include dynamic information about memory accesses
that would not normally be accessible. For example, imagine there are two memory
accesses to two addresses, one is stored in register t3 and the other in register t4. If
we see, in a program listing, that we store to the address in t3 and read from the
address in t4, is it impossible, without simulating the program and all the previous
register interactions, to know if they are the same address. This prevents a lot of
optimisations and insights that would be possible if this information was available,
as Figure 2.7 demonstrates.

SW a0, 8(t3)
ADD a0, a0, a3
LW a1, 0(t4)

0x1F8

t3

0x200

t4

Figure 2.7: This shows a programming code fragment of RISC-V assembly code and
two registers t3 and t4. Without conducting extensive simulation of all
register accesses it would be impossible for a static analysis tool to know
that at this point in the program that the memory address referred to
by the first STORE instruction and the last LOAD instruction are the same.
Consequently re-ordering these instructions, though it might look safe
could lead to the program not functioning as the programmer intended.

There has been very little work in online trace processing, i.e. processing and reacting
to the trace while the program is running, and even less work on applying those
ideas to the problem of latency reduction. However, some work has been done to
utilise tracing in various offline processes, some of which are detailed in the next
few sections. To bring this consideration of the literature to a close we will also
consider some examples of work done on using tracing as a method of on-chip
debugging, as this forms the basis for the implementation that will be presented in
future chapters.

2.4.1 Tracing as a Control Loop

Tracing is most often used as a tool to generate large amounts of data that can be
explored offline, with engineers then making manual adjustments to the program as

55

2 Literature Review

a result of the knowledge gained from the trace. Hu and Chen [86] is an example
of this with the TraceDo System. This system, aggregates traces from DSPs in the
System-on-Chip (SoC) and streams them into an emulator that adds timestamps to
the various events. The data is then explored offline and is used to optimise long
running functions in the program. Wang, Gao and Zhang [217] makes similar use
of an emulator, but utilises the trace to drive cache emulation in a separate process,
continuing a trend of making information useful to the programmer, but not to the
system. This trend continues in Li and Mayer [114] and Mertz and Nunes [130]. In
addition they both focus on trace collection and reducing the size of the traces collected,
rather than on acting on the information the traces give.

The problem with all of these ideas is that they all consider trace analysis and action
as something to be done offline, rather than as part of the system itself. However,
some authors have tried to make this work. Singh et al. [191] describes a process of
mapping applications to cores on a Multi-Processor System-on-Chip (MPSoC) while
the applications are running. This is a step towards the kind of closed loop feedback
that would be of benefit, but sadly the trace collection is done at design-time not
runtime. In addition this model targets throughput rather than latency reduction, but
there is no reason why the objective function used could not be changed. Shoukry
et al. [190] proposes a system for scheduling content delivery on mobile devices,
attempting, via the analysis of usage patterns, to predict what content users will want
and fetching it via WiFi, rather than placing a large burden on Mobile Data Networks.
Though this example is from an entirely separate field, this approach is exactly the one
we should aim to emulate. There are questions to be answered about how accurate
their statistical modelling is, but nevertheless this is an example of a tight feedback
loop, using traces to predict activity to increase performance.

2.4.2 Tracing for In-Silicon Debugging

To finish this short section on tracing we will consider the use of tracing as a method
of in-silicon debugging. While the relevance of this may not be immediately apparent,
many of these papers formed the basis for the implementation of the solution that
will be presented in Chapters 3 and 4. The first of these is Uzelac and Milenković
[213], which presents an off-chip debug host that mirrors the internals of the system
being traced. This idea in turn is picked up by Decker et al. [50], which also starts to
do the analysis in this offline module, converting the trace stream to series of events
that can be processed. This idea, of taking a large amount of trace information and
filtering the crucial events, while also having to deal with instruction reconstruction,
is crucial for the development of our solution in Chapter 3. A couple of ancillary
issues are covered by other papers: Scheipel, Mauroner and Baunach [185] describes a

56

2.5 Review Summary

method of tracking execution time in RISC-V processors without interfering with the
system itself, but this is conceived as a set of performance counters on the chip. This
is developed by Delshadtehrani et al. [52] who describe a programmable co-processor
for tracking execution time which was crucial for the design of Gouram, which will
be seen in Chapter 4 and Appendix A.

2.5 Review Summary

Having considered a large number of papers in the last three sections, we are forced
to ask where this leaves us. The state of the art in each of the areas we’ve looked at
appears to be as follows. When considering Cache Replacement Policies, the state of
the art is very much as it has been for a long time, in fact much cache research has
dried up in recent years as policies are “good enough” [158]. Consequently, especially
in the field of medium-sized embedded systems we’re looking at, the state of the
art is still LRU and approximations to it [44], despite the fact that other policies will
perform better, because space is at a premium and approximations of LRU are very
easy to implement. Not only that but as many of the papers have shown it’s more
economical to increase the size of the cache instead of increasing it’s complexity in
terms of raw performance.

In terms of techniques that are external to the cache the state of the art here, considering
the context within which we are working, is that of stride or unit-prefetching, again
for reasons of simplicity of implementation, and there are further moves to shift
complexity into the compiler and linker at compile-time rather than into the hardware
at runtime. In other domains, particularly in servers or HPC other techniques are
being employed that includemultiplememory fabrics [149] andwork like JENGA[207]
to define caches in software, but it’s difficult to apply that to the embedded context
due to the need to apply as much resource as possible to the computation job in hand
rather than to simply managing memory, despite the impact that might have on the
runtime of the system.

So it would appear our goal of reducing latency appears to be blocked along the
many paths we have considered. Solutions which attempt to improve the cache, via
cache policy, are bounded above by OPT as shown in Figure 2.6, which does not itself
reduce misses to 0, due to compulsory misses and a finite cache capacity. Solutions
that target the cache architecture are fine in their way, but do not address the basic
problem that they are trying to make decisions with a paltry amount of information
because of the need to decouple all these systems from each other. Certain papers
propose integrating the cache and memory controllers, for example [200], but there
is a lack of integration across all components of the system, from the compiler to

57

2 Literature Review

the memory hardware, that would give the information necessary to make better
decisions.

Moving outside the cache, prefetching seems like a sensible way to solve these
problems, and could be added on to almost any other solution, but its failures
come down again to the lack of information available to the prefetching unit. As a
result, most prefetching comes down to recognising patterns or attempting to derive
the future from the past. Whilst this is good, it is not foolproof, especially as the
diversity of applications increases. Scheduling and program transformation also
look promising, but the inability to incorporate dynamic information limits their
utility to what can be predicted statically, which is a relatively small amount of
information.

2.5.1 Potential for the Application of Tracing

Hence, it would appear that there is little more that can be done, other than tinker at
the edges with cache policies or prefetch units and hope that the processor-memory
gap shrinks of its own accord. But what if there was a way to address the lack of
information that is at the heart of the problems we have seen? What if we could
fuse together prefetching and cache policy with dynamic information gathered from
traces? Caches could act preemptively to fetch data they know might be required,
utilising existing slack in programs to improve their overall runtime by better hiding
the latency that exists. This is the basis of Trace Assisted Caching which will be
explored in much more detail in the next chapter.

58

3 Trace Assisted Caching

Having now considered the literature we move on to a theoretical explanation of
Trace Assisted Caching, the new technique this thesis proposes. We will start by
exploring the motivation for this new technique. We follow that with a theoretical,
processor agnostic, description of how it works and then conclude with a section
that explains how this technique will bring benefit to hardware that implements this
system.

3.1 Motivation

If we return to the central question of this thesis, we are trying to understand how
memory latency can be reduced to reduce overall program runtime. However, the
results of the literature review in the previous chapter appear to show that though
progress has been made in multiple areas there is are still problems to be addressed.
Cache policies definitely show some potential, however there is an upper limit on their
ability to reduce latency, as demonstrated in Figure 2.6. Some of the gap between this
ceiling and the state of the art has been closed with the research we have discussed,
but a lot of researchers have effectively abandoned work on cache policies because
they are now “good enough” [158, pg. 13 (386)] and the extra effort expended is not
commensurate with the gains. To add to that, we cannot implement OPT efficiently,
because it relies on clairvoyance to achieve its high performance, but even if we could
there is a question as to whether we should. OPT, whilst the most effective cache
policy from the point of view of miss rate, does not boast a 100% hit rate, because it is
essentially reactionary. All the cache policies we have considered up to this point are
in this vein; they all take action in response to a request for data rather than looking
to find leading indicators and taking action on those, meaning that latency in waiting
for memory to respond could be overlapped with computation when memory is
inactive. Thus, all these reasons necessitate looking beyond cache policies if we want
to reduce runtime in a non-piecemeal fashion.

59

3 Trace Assisted Caching

3.1.1 Defining the Key Problems

If we look at the other key areas of the literature we see the same story repeatedly.
So where does the root cause lie? It stems from two key problems: the first is
that techniques are making decisions based upon limited information and have a
limited choice of reactions when a point of decisions arises. In the case of caches, for
example, which can only react to information once a miss has happened, the only
option they have is to perform a costly memory access. With more information they
could react earlier and have more scope to perform other actions, which when used
correctly, should lead to lower program runtime. Even with prefetching, which is
more pro-active, the problem recurs. Simpler prefetch schemes like OBL or stride
are limited in the information they have, or can be undermined by memory padding
or poor memory layout choices. Even in more advanced schemes, prefetching often
lacks the information it needs, like effective addresses, to make very high quality
decisions.

The second key problem is the abstraction presented bymost programming languages,
thatmemory and computation instructions take a similar amount of time. Maintaining
this abstraction gives us pipeline stalls and the need for caching and memory
hierarchies in the first place and leads to a co-assumption that because they take the
same length of time they should operate synchronously. Some work, particularly
in the realm of prefetching has tried to address this [134, 215, 216], by proposing
systems where the memory system can work independently of the computation
system. However, even these papers do not go as far as they could, because of a lack
of information. In particular, if you cannot predict effective addresses, you are forced
to incur lots of stalls in your memory execution, while you wait for non-obvious
effective addresses to be calculated. This will increase the level of synchronicity
between memory and computation which you are trying to avoid. Otherwise, you
accept that you are predicting these memory accesses and have to allow for incorrect
predictions and roll-backs. These two points together form the starting point from
which the ideas that support Trace Assisted Caching arise.

To take this idea further, let us engage in a thought experiment by relaxing some of the
aforementioned assumptions. Let us suppose we have a processor that can record and
efficiently query information about any instruction that it has previously executed. It
can ask how long a previous instruction execution took, what the effective address of
that instruction was, which branch was taken by an instruction and so on. We are
not assuming that this processor is perfectly clairvoyant, something that is clearly
impossible in general, so it is possible that even with this level of recall the processor
will make mistakes. For example, if a processor is in a loop with 50 iterations and it
tries to use the information for branch prediction it would be unable to predict the

60

3.1 Motivation

break out of the loop using this method alone. By setting these parameters we keep
the processor within the realms of possibility, but open ourselves to the potential for
some interesting performance improvements.

Let us imagine a processor with a 4-stage pipeline, namely Fetch (IF), Decode (ID),
Execute (EX) and Write-back (WB). Let us further suppose that there are no data
forwarding mechanisms and for the sake of argument let us assume that fetches from
main memory take 5 clock cycles from the submission of the request to the data being
available. Now, let us imagine the processor is executing the code fragment in Listing
3.1. The execution in terms of pipeline stages will probably look something like the
diagram in 3.1, where it takes 14 clock cycles to execute these 5 relatively simple
instructions.

Listing 3.1: This code executes a few computational instructions that have interde-
pendencies.

1 addi t3, 100

2 add t2, t2, t3

3 lw t4, -440(s0)

4 mul t2, t2, t4

5 mv a0, t2

Because of the data dependencies in the processor, this is the limit that we can reach in
terms of effectiveness, but now imagine we ran the same program on a processor that
had all the advantages previously described. It has a store of information pertinent
to all the previous runs of this particular program, can query it efficiently and its
memory system can act asynchronously from the computation side of the CPU.
With this system we could very easily have the memory query for the most likely
memory location and execute it early, in order to avoid a lot of the stalls that we
see. With a situation like that we would see something like the diagram in Figure
3.2.

As the caption states this has reduced the runtime of the program by almost 30%
and while this experiment is somewhat artificial, it does lead to the question: what
allows that to happen? The answer is the availability of effective addresses much
earlier than they would usually be available. In Figure 3.1 the effective address
of the LOAD instruction in Line 3 of Listing 3.1 is only known at clock cycle 4, so a
number of stalls are introduced, because of the data dependencies in this part of the
program. If the address were known earlier, then the request could also be made
earlier, eliminating those stalls and their knock-on effects. However, it is not just a
large number of effective addresses that are needed. There also needs to be a way to

61

3
TraceA

ssisted
Caching

Instruction Pipeline Stage
ADDI IF ID EX WB
ADD IF ID EX WB
LW IF ID EX EX EX EX EX WB
MUL IF ID STALL STALL STALL STALL STALL EX WB
MV IF STALL STALL STALL STALL STALL ID STALL EX WB

Clock Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Memory System PR PR PR PR AV

Figure 3.1: The pipeline execution continues as normal until clock cycle 4 where the LW instruction enters its Execution phase. Because
loading a value from main memory takes 5 clock cycles this extra latency is not only added to the LW, but also to the MUL and
MV instructions. Overall this leads to a program runtime of 14 clock cycles, when the optimal time, assuming no pipeline stalls,
would be 8. To further clarify, the memory system row contains PR and AV standing for Processing and Available respectively.

Instruction Pipeline Stage
ADDI IF ID EX WB
ADD IF ID EX WB
LW IF ID EX WB
MUL IF ID STALL EX WB
MV IF STALL ID STALL EX WB

Clock Cycle 0 1 2 3 4 5 6 7 8 9
Memory System PR PR PR PR AV

Figure 3.2: If we assume the preemptive action to take is the one at line 3 in Listing 3.1, then because the effective address can be known at
clock cycle 1, the memory system can begin this load much earlier. As a consequence, the stalls associated with performing
the memory operation are eliminated from the program’s runtime, reducing the overall runtime by 4 clock cycles. A decrease
of nearly 30%.

62

3.1 Motivation

tie those effective addresses to the instructions that create them, because we need to be
able to understand what is safe and unsafe to do preemptively. For example, if there
was a preemptive LOAD into an address that was expecting a STORE then the loaded
value will be overwritten by the preemptive LOAD. Therefore, when the processor
actually executes the LOAD, it will read an incorrect value. Consequently, we need
both pieces of information, effective address and instruction, in order to understand
how and whether preemptive action is possible.

3.1.2 Exploring the Design Space

Now we have an idea of the information we require to make the solution viable,
several decisions have to be made before we can start exploring exactly how this
system is designed. For example, if we need to capture this data when should
it be captured? We have effectively three choices, design time, compile time or
runtime.

When Should Information Be Captured?

If we first consider design time we almost immediately start to run into problems.
Firstly there are limits to the amount of information that can be known statically
about a program in this context. For example, if there is an instruction of the form
LW t4, -300(t1). To calculate this effective address we need the data that is in
t1, but of course that cannot become available until the previous instruction has
completed its execution and t1 could hold any value. Therefore, predicting it is
next to impossible without simulating the entire program. Now on the surface this
doesn’t seem to be a problem, but in order for that simulation to be entirely accurate
it would be necessary to have accurate simulation models for every component in
the system that’s involved in deciding the effective address. For example, we would
need accurate models of the CPU, the memory controller, the memory hardware, the
OS and many more components besides. These models are often not available and
sometimes have non-deterministic elements. Consequently getting to the dynamic
information that we need to move this approach beyond the application of static
analysis is very difficult or even impossible to get in this context.

Moving to compile time, we have a similar problem in that it’s possible to write
programs that are very difficult to analyse without also turning the compiler into
a simulator. Furthermore, if we attempt to make this approach work at compile
time, we risk this approach becoming very implementation specific. It may indeed
be possible to augment compilers with information about the platform they are
compiling for beyond that which they currently have. Say that it was known that

63

3 Trace Assisted Caching

variables were going to be allocated sequentially from address 0x200, then this would
be information that could be encoded into the compiler to work out more of the
effective addresses than is possible statically. However this would then force the use
of a particular compiler that had this knowledge and would mean changing any other
component in the toolchain would require changes to the compiler as well. It also
could limit the applicability of this research to one very specific toolchain which is
not desirable.

On a related note, a trade-off we would have to make with any system like this is
that we will be sacrificing space to store the extra information that we need to make
this approach work. We could try and achieve this by adding extra markers to the
compiled assembly code, but this could have the same problem as Software-based
Prefetching where the code-size may well increase beyond the capacity of the system.
In that case we have to accept that the data will need to be stored elsewhere which
would mean we could not take a Commercial Off-The-Shelf (COTS) compiler and
start using it, we would again be forcing the use of a particular compiler which had
the ability to extract and store this extra data, further constraining any potential users
and the applicability of this research.

This leads us naturally to considering how we might do this at runtime, here there
are none of the problems of what we can know statically because we can capture
dynamic information as it happens if we can record the program somehow. In
addition we don’t need accurate models because we have the actual system. Now
of course this would mean we would require some kind of ‘training’ phase where
the program simply executes and we record information before it can be used, but it
may be possible to circumvent this by priming this store of information at design or
compile-time so this can be eliminated.

Of course there are further trade-offs we have to make, we’re going to have to expend
more resources within the system itself to make this happen at run-time, as many
systems do not have the capability to capture information at the level of granularity
that we require. In addition we need somewhere to store this information, however
that would be required in any event if we chose compile-time or design-time. The
key trade-off we’re going to make is how much of an overhead, in terms of time,
is this system going to add? Now clearly the ambition of this system is to convert
cache misses into cache hits by overlapping the cache misses as shown in Figures 3.1
and 3.2, and if that is the case it’s hoped that this trade-off will be balanced by the
commensurate gains we make. This is key to the entire project, if we cannot find a
way to ensure that the overheads do not exceed the gains then this solution is simply
not feasible.

So it seems as though runtime gives us the most capacity for improvement over static

64

3.1 Motivation

techniques while also presenting us with trade-offs that we will have to keep a close
eye on if we want to ensure this method is a success. The next question is therefore
exactly where this system should be integrated, can we keep the chip architecture the
same and simply observe external signals or do we need to augment the CPU itself to
gain access to the information we need?

Where should this system be integrated?

As we have now decided on runtime as the best time to capture this information
where is it best to site the mechanisms we’re planning to use? Can we simply add
this component off-chip with respect to the CPU or are we going to need to update
the CPU structure in order to make this work? Initial experiments focused on trying
to place a component outside of the CPU that had knowledge of the instructions
the processor was receiving, and the data requests the processor was producing by
monitoring the instruction and data lines the CPU exposed. However this ran into two
problems very quickly. The first was that it was very difficult to match instructions
that were sent to the processor with the memory addresses that were requested.
This is explained further in Appendix A, but briefly there are situations where the
processor will fetch an instruction from memory, but not actually execute it. If this
instruction is an instruction with memory consequences it can lead to a situation
where each of the inferences as to which instruction matches which effective address
are off-by-one or more if this happens repeatedly. This has no solution because there
is no external signal given, per instruction, as to whether it is actually executed or
not, at least not within the processor models considered.

With that in mind this approach has fundamental problems, as we are relying on
the fact that we can successfully associate memory addresses with instructions in an
accurate way. As a result we are forced to the conclusion that we cannot treat the
processor as a black-box that we can simply measure inputs and outputs from. We
need to expose signals that were previously hidden in order to be able to successfully
associate memory instructions with effective addresses in order for this approach to
successfully work.

With all this in mind now that we are now looking at a system that works at run-time
and will have to update an existing CPU architecture in order to work successfully.
So where does this leave us? We know we are now working at runtime and need a
way to record program interactions so we can extract the required information from
them. This naturally leads us towards tracing as a method of getting the information
we require. The next section explores tracing as a solution and show a high-level
design for a system that implements it.

65

3 Trace Assisted Caching

3.1.3 Tracing

A program trace is an ordered list of events that track the execution of a particular
program from start to finish. What constitutes an event in a trace is very much defined
by the granularity of the trace itself. If we are tracing at the level of clock cycles then an
event might be a change of signal value, but if we are tracing at the level of instructions
then it might only be code branches that constitute an event.

With that in mind, what might we need to record to realise the ambitions in the
previous section? We would certainly need to record at the level of instructions in
the program, but we would also need to trace the data concerned with the program
as well, because it is the effective addresses we need to record for the technique to
work. This means that we will have to record at the level of pipeline stages and then
aggregate the recordings up to instruction level. If we did not do this, we would have
no way to guarantee that the correct instruction matched the correct effective address,
as mentioned in the previous section.

However, tracing is not the whole story, we also need some method to store the traces
and to query them efficiently. It may be possible to do this in the same memory as
the program data, but that will be explored as we design the solution. Further, we
also need some way of adding agency to the existing cache, so that it is able to action
the memory requests from the trace. This is almost akin to a small processor within
the cache, though one that is very limited. There will also need to be some degree of
co-ordination between this system and the CPU, otherwise it would be very easy for
the state of memory to become incorrect with respect to the program’s semantics. In
the next section we discuss a high-level design for the system and how it might be
implemented.

3.2 High Level Design

Now that we have seen a theoretical description of how Trace Assisted Caching
works let us consider a high-level design for the system. Chapter 4 will focus on the
implementation, but let us consider how the key pieces in this scheme would work.
First, let us imagine a single-core, Harvard Architecture, CPU with an L1 data cache,
akin to the medium sized embedded system we presented in Figure 1.2. This cache
can be Direct-Mapped or Set-Associative and implements a replacement policy of
some kind as appropriate. This can be seen in Figure 3.3.

As alluded to in theprevious section, there are twokeypieces that form the architecture
for Trace Assisted Caching: the trace recorder and the intelligent cache. Each will be

66

3.2 High Level Design

CPU
Instruction
Memory

L1 Data
Cache

Data
Memory

Figure 3.3: The basic design begins with a processor with a Harvard Architecture.
This allows the effect of any caching on the data side to be isolated and
quantified more easily.

described in turn. We will also describe any changes that would need to be made to
the processor to support these new pieces of hardware.

3.2.1 Trace Recorder

The trace recorder would sit attached to the processor and would monitor the internal
control signals emitted by the processor. These internal signals would not only
be those that manipulated memory, but would initially be every pipeline phase
of every instruction the processor executed. This would require changes to the
processor, externalising previously internal signals to allow us to track the execution
of instructions, as explained in the previous section. A diagram of this can be seen
in Figure 3.4. Perhaps it would be simpler to rely on dedicated, preexisting tracing
hardware, such as CoreSight[41], but this does not provide the level of introspection
to track every pipeline stage. At present CoreSight only provides branch-tracing for
programs[41] which does not help us as we’re interested in data. Further, we do not
want this system to introduce a performance penalty to the running system. Therefore,
anything that means the processor has to perform more actions than it would on a
normal execution, like outputting to a trace port or adding extra instructions, must
be avoided.

The amount of data a trace like this would generate is potentially gargantuan,
multiplying the amount which already exists in instruction traces by the length of the
pipeline, but there are several reasons why this level of detail is required. The first is
that the goal is to link together instructions in the programwith the effective addresses
they generate. If we record at a coarser granularity, it can be very difficult to associate
memory accesses with the instructions that generated them. This is particularly true
in very complex programs, unless an Instruction Set Simulator (ISS) is implemented,
which can be co-simulatedwith the actual processor. Recording at the level of pipeline
stages and aggregating to instructions later means there is no ambiguity. This also
means that we have to take into account branching behaviour and stalls in our recorder,
and this will be explored further in Appendix A. This would give us a complete trace,
at the level of pipeline stages, for any program that runs on the processor. In addition
tracing at the level of pipeline stages means that we are recording a serialised data

67

3 Trace Assisted Caching

CPU
Instruction
Memory

Trace
Recorder

Trace
Repository

L1 Data
Cache

Data
Memory

Figure 3.4: The trace recorder takes in information from both the instruction stream
and the data stream to produce a stream of pipeline stages bundled into
instructions. It will also consider signals that were previously internal
to the processor so it can track the execution of pipeline stages. This is
stored in the trace repository after filtering to remove all non-memory
instructions.

stream. Thus, there is no need to do any de-multiplexing or complex analysis to
associate memory operations with instructions, at the level of pipeline stages there
can only be one instruction per stage at a time.

Now we have this data it is imperative that we filter it down in some way. Even for
a small processor running a short program, gigabytes of data could be generated
and this is simply not viable to store or query efficiently, especially in the context
of an embedded processor. The first thing we can do is to throw away the details
of each individual pipeline stage. These are not needed to instruct the memory
system directly. We use them as a way to ensure the correct ordering of the memory
instructions and the correct association of effective addresses. The second piece of
filtering is to remove any instructions that do not have memory implications. This
could be as much as 60% of the instructions captured. We are fortunate when using
a processor like the RI5CY that only LOAD and STORE can access memory and these
are easily identified by their opcodes. In other architectures this may not be the case,
especially if the architecture is more Complex Instruction Set Computer (CISC)-like.
By filtering and aggregating using these two criteria we can produce a trace that is an
ordered list of instructions linked to effective memory addresses. An example of this
is shown in Figure 3.5.

A further point to add here regards the trade-off between space and accuracy. Under
the scheme as currently described we veer very much towards the accuracy end of
the spectrum with regards to the data that is stored. The trace we store is a complete
record of all the memory accesses made by the processor during the execution of
the program, so it is completely accurate in the information it records. There is
certainly an argument to say that all this data is not necessary and there are probably

68

3.2 High Level Design

refinements and simplifications to be made, such that only the most pertinent data
is retained, as this will give the largest return on investment. This is not something
we have actively explored in this thesis. However, the topic will be returned to in
Chapter 6.

fe010113 addi sp,sp,-32
258 00112e23 sw ra,28(sp)

00812c23 sw s0,24(sp)
260 02010413 addi s0,sp,32

fe042423 sw zero,-24(s0)
268 00500793 li a5,5

fef42223 sw a5,-28(s0)
270 fe042623 sw zero,-20(s0)

0280006f j 29c
278 fec42503 lw a0,-20(s0)

f85ff0ef jal ra,fac
280 00050713 mv a4,a0

fe842783 lw a5,-24(s0)
288 00e787b3 add a5,a5,a4

fef42423 sw a5,-24(s0)
290 fec42783 lw a5,-20(s0)

00178793 addi a5,a5,1
298 fef42623 sw a5,-20(s0)

fe442783 lw a5,-28(s0)
2A0 fec42703 lw a4,-20(s0)

fce7dae3 ble a4,a5,278
2A8 fe842783 lw a5,-24(s0)

00078513 mv a0,a5
2B0 01c12083 lw ra,28(sp)

01812403 lw s0,24(sp)
2B8 02010113 addi sp,sp,32

00008067 ret

Effective Address Instruction
fefc 00112e23
fef8 00812c23
fee8 fe042423
fee4 fef42223
feec fe042623
fee4 fe442783
feec fec42703
feec fec42503

Figure 3.5: On the left a fragment of the disassembled version of the benchmark fac.c
can be seen, which is part of the Mälardalen Benchmark Suite [76]. On the
right the trace that relates to this part of the file can be seen, with effective
addresses next to each memory instruction. The colours indicate which
trace element maps to each instruction in the disassembled file and it can
be seen that the trace follows the execution of the program, following
jumps and branches as they arise.

We now need to turn our attention to a second problem, how should this data be
stored? We cannot employ the same data memory as the running processor, because
it could affect the retrieval of actual program data. Therefore, we need a separate
memory store to keep these traces accessible to the cache. This takes the form of a

69

3 Trace Assisted Caching

trace repository that is stored in a physically separate memory, so it can be queried
by the cache on each clock cycle when the program is run for a second time. It
is also possible to seed this trace repository with data from a previous run if we
did not want to have to run the program once in a ‘training phase’. Issues such as
where this repository is to be stored, how it might be fetched from efficiently and
how it might be built up iteratively over multiple runs will be dealt with in future
sections.

So how might all this work in practice? The program would execute as normal,
though the cache would be bypassed during the recording phase. This is so that we
record the ‘worst case’ behaviour, rather than that caused by the cache. While the
CPU executes, the control signals it generates are tracked and recorded by the trace
recorder, filtered as the recording occurs, and sent to the trace repository. Once the
program reaches its end, marked by it entering the processor’s trap state, the trace
recorder will stop recording. The data held in the repository is then available for the
second and further runs of the program.

3.2.2 Intelligent Cache & Memory System

Now that we have a highly filtered version of the trace stored we can start to use it
to allow the cache and memory system to work asynchronously from the processor.
This works in the following way: on every clock cycle, instead of sitting waiting for
the processor to issue a command to it, the cache polls the trace repository. The trace
repository then sends to the cache the next trace in the stream that it had recorded in
the previous run of the program. The cache now has potentially two requests it could
service, a preemptive request or an on-demand request. In all cases the on-demand
request would take priority, because we do not want to introduce further latency by
delaying a request from the processor. If we did allow this, it might be possible for
the program to exhibit performance worse than the training run and this is something
we wish to avoid at all costs.

If there is no on-demand request, the cache seeks to service the preemptive request and
there are four scenarios that could occur, depending on the content of the instruction
to be executed. These four scenarios are illustrated in Figure 3.6.

Scenario 1: If the preemptive instruction is a LOAD and there is space within the
cache then simply execute the instruction.

Scenario 2: If the preemptive instruction is a STORE and there is space in the cache
then you cannot execute it, because you do not know what data is to

70

3.2 High Level Design

be stored there. However, you can reserve the space in the cache to
make sure it is not overwritten by another action.

Scenario 3: If it is a LOAD, but there is no space in the cache, then perform a
write-back and then do the same as in Scenario 1.

Scenario 4: If it is a STORE and there is no space, again perform the write-back
and then reserve the space.

All this means that when the processor catches up to the preemptive action it will
either, have the data already, in the case of scenarios 1 or 3, or it will be guaranteed
to not have to perform a write-back in the case of scenarios 2 or 4. As a result,
latency will decrease, because all these operations will have been done ahead of
time.

There are some limitations to this approach of course, most of which relate to how
far ahead of the processor the memory system can go. For one thing no attempt is
made to re-order the memory operations in the way that an OoO processor would.
This is mostly to simplify the implementation and to avoid the complex problems
of ensuring consistency over multiple interleavings of the instructions. That being
said if an OoO processor was presented with this information it certainly possible
that it could make less conservative re-orderings but this purely speculative and
potentially something to be explored as future work. As a result of this, there are
situations where no more preemptive actions can be taken until the processor has
performed some critical action. For example, should a processor issue preemptive
instructions, such that it tries to perform a LOAD to a location that is being reserved
for a STOREwhere the memory addresses are not the same, then it will not take any
action until the processor has completed the STORE. This is because the cache cannot
know in advance what data will be part of the STORE operation and therefore cannot
writeback that data until it is known. This is shown in Figure 3.7. In this situation
the processor will keep polling to discover if the operation has happened and can
then act accordingly. There is a potential for future work to consider continuing to
execute independent instructions at this point, but that was not considered in this
thesis.

A final point to address is that this scheme is agnostic to the implementation details
of the cache that it works with. In this thesis both an 8-way Set-Associative and a
Direct-Mapped cache were used, but there is nothing special about these choices. It
would be very easy to implement higher associativity caches or larger caches with
very few changes to the Trace Assisted mechanism. This also brings up the possibility
of varying the replacement policy for the cache but again that was not considered in
this thesis.

71

3 Trace Assisted Caching

Trace Repositoryfe442783, fee4
Latest Trace Entry

R O D

0 1 0x12345678

0 1 0xFFEEDDCC

0 1 0xFEDCBA98

Main Memory

Cache

0xFEE4 0xFFEEDDCC

(a) Scenario 1 - A load where the cache has capacity, the load is simply executed by the cache
and stored in the correct location.

Trace Repositoryfe042423, fee8
Latest Trace Entry

R O D

0 1 0x12345678

1 0 0x00000000

0 1 0xFEDCBA98

Cache

Main Memory

(b) Scenario 2 - A store where the cache has capacity, the store cannot be actioned because the
data to store is not known in advance, but the cache element is reserved.

Trace Repositoryfe442783, fee4
Latest Trace Entry

R O D

0 1 0x12345678

0 1 0xAABBCCDD

0 1 0xFEDCBA98

Cache

Main Memory
0x2524FF6A 0xAABBCCDD

(c) Scenario 3 - If the cache does not have capacity for a load then perform the write-back to
memory first and then act in accordance with Scenario 1

Figure 3.6: Illustrations of the four scenarios described. The R, O and D columns
above the cache in each diagram stand for Reserved, Occupied and Data
respectively. The bold text indicates elements that change throughout the
scenario. The cache may also have other elements, such as validity bits,
but these are omitted for the sake of clarity and are mostly implementation
details. Scenario 4 is printed on the next page.

72

3.2 High Level Design

Trace Repositoryfe042423, fee8
Latest Trace Entry

R O D

0 1 0x12345678

1 0 0x2524FF6A

0 1 0xFEDCBA98

Cache

Main Memory

0x2524FF6A

(d) Scenario 4 - If the cache does not have capacity for a store, then again perform a write-back
and proceed as Scenario 2.

Trace Repositoryfe042423, fee8
Latest Trace Entry

R O D

0 1 0x12345678

1 0 0x2524FF6A

0 1 0xFEDCBA98

Cache

Main Memory

No action
can be taken!

Figure 3.7: In this situation the latest trace entry is attempting a LOAD into a location
that is reserved for a store. At this point the preemptive execution cannot
continue because the STORE has not yet happened. The only option is for
the preemptive instruction to poll the cache until the STORE has happened
and then processing can continue.

73

3 Trace Assisted Caching

This is Trace Assisted Caching, recording the traces of programs, filtering them
and then allowing the cache to run-ahead of the processor, leveraging the trace
information to preemptively perform memory operations. How do we know whether
this is going to be a success? And, how do we know that we are not going to
introduce performance regressions from this technique? The next section answers
these questions.

3.3 Justification of Success

Nowwe understand how Trace Assisted Cachingworks at a high level we need to look
more closely into how we expect to benefit from this system. It is potentially a high
investment in extra hardware, as a trace recorder is required, as well as the changes
to the cache and the trace repository. Hence, there needs to be a commensurate
benefit in runtime reduction to justify the expense. We have already seen in Figures
3.1 and 3.2 the method by which we should benefit, by overlapping long and short
latency instructions to remove potential pipeline stalls. This has benefits through the
whole program and is additive to any other techniques that might be used to reduce
runtime, but what about performance degradation? Without careful thought it can
be easy to get into the situation where trying to improve performance is worse than
not having used the technique at all. How can we be sure that this technique will not
introduce a performance penalty that will eliminate all the gains it might otherwise
have made?

3.3.1 Protections against Performance Degradation

Let us consider the three scenarios that might arise when we try to execute a
preemptive instruction before the processor requires the data it references. There are
three scenarios, detailed below:

Situation 1 The memory instruction is predicted far enough ahead of time such
that the data is ready in the cache before the processor requests it.
This is the situation depicted in Figure 3.2.

Situation 2 Thememory instruction is predicted ahead of its execution, but not far
enough to be ready when the processor requests it. In this situation,
there will still be some benefit, but the pipeline will still stall. This is
depicted in Figure 3.8.

Situation 3 There is not enough time to perform the memory instruction ahead
of it being needed. The processor reverts to the original behaviour or

74

3.3 Justification of Success

the address predicted is incorrect and the time spent preemptively
accessing memory is wasted. Here no benefit will be experienced.
This is depicted in Figure 3.9.

It’s worth pointing out here that due to the constraints mentioned in Section 3.2.2
we can never get into a situation where the preemptive fetch happens ‘too early’ and
is therefore replaced by the cache before it can of use. To take an example suppose
we have three LOAD instructions A, B and C where A and C map to the same cache
block but B doesn’t. To get into the situation described above the cache would have
to fetch the data at C before the processor had completed the load from A from its
perspective. However that’s impossible because when the cache loads into the cache
block that could hold A or C that block is marked as ‘in use’ so the cache will stall
and wait until the processor has completed the LOAD from A, which will have no
memory consequences as the data is already present, before it continues. So there
is no need to worry about data becoming invalid once it has been preemptively
fetched.

In all of these situations the effect on the length of time taken for thememory operation
ranges from nothing, where it is as effective as in the first run of the program, to a
memory instruction that has virtually no latency. Because we are not attempting to
re-order the memory operations, we are not allowing the processor to overtake the
preemptivememory system. Therefore, the only thing it will experience is much faster
memory accesses in a transparent way. There is, of course, the chance that no benefit
is gained from any of these enhancements, which admittedly questions the case for
the economics of this technique, but at the very least this technique is not actively
harmful to the program running on it in terms of its runtime.

A further point that must be considered is about programs that are not well-suited
for this technique. Specifically programs that repeatedly cause situations as in Figure
3.7, or programs that are heavily computational and so access memory very little. In
these cases, we will repeatedly see the kinds of behaviour described in Situation 3,
and the technique will have little to no impact on latency. This technique relies on
exposing more potential for concurrent memory and processor execution, but this has
to be present in the first place in order to be exposed. If there is no scope to allow this
interleaving in the first place, there is no improvement to be had. One of the research
questions is around identifying sets of circumstances where this technique will
perform better, and one of the outcomes of this thesis should be the ability to quantify
exactly which types programswill benefit most from this technique. If this is achieved
it will be much easier to appropriately target the technique, rather than wasting time
trying to speed up fundamentally ill-suited programs.

75

3
TraceA

ssisted
Caching

Instruction Pipeline Stage
ADDI IF ID EX WB
ADD IF ID EX WB
LW IF ID EX EX EX WB
MUL IF ID STALL STALL STALL EX WB
MV IF STALL STALL STALL ID STALL EX WB

Clock Cycle 0 1 2 3 4 5 6 7 8 9 10 11
Memory System PR PR PR PR AV

Figure 3.8: In this scenario we assume that for some reason the request to memory does not begin until Clock Cycle 2. In that instance we
still introduce some stalling, but runtime is still decreased, so there is still a net positive effect. This shows that any advantage
gained should be beneficial, accepting that there may be cases where knock-on effects could occur.

Instruction Pipeline Stage
ADDI IF ID EX WB
ADD IF ID EX WB
LW IF ID EX EX EX EX EX WB
MUL IF ID STALL STALL STALL STALL STALL EX WB
MV IF STALL STALL STALL STALL STALL ID STALL EX WB

Clock Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Memory System PR PR PR PR AV

Figure 3.9: In this scenario we start a preemptive memory access in Clock Cycle 0, but when the CPU starts to perform the access in
Clock Cycle 3, this is actually not the address the CPU is requesting. As a result execution continues as though no preemptive
behaviour had happened. As a consequence, apart from an extra piece of data in the cache. This is no different from a cache
miss, so the runtime is made no worse by the preemptive action having taken place. Of course the extra data in the cache
could have positive or negative consequences, but these are difficult to quantify and this situation is quite rare in the programs
studied.

76

3.3 Justification of Success

It would be remiss of us, when considering performance degradation, not to think
about what happens in the case of a miss-prediction. An example of this might
be if there are memory instructions that rely on data that must be input to the
program at the start. Consequently it would be impossible to predict those addresses
before the program starts and running the program repeatedly will not generate
any useful patterns, because the addresses are input dependent. It’s possible to
make an argument that extra work at compile-time could resolve this problem, but
as explained in Section 3.1.2, even if we used compile time to construct some kind
of dependency graph where we could relate each memory access to the input data
somehow this still doesn’t resolve the problem of methods of accessing memory
that obscure the true values, we still have the static analysis problem, see Figure 2.7.
Further it’s not just the effective address values that could be input dependent but
also the whole structure of the program, and this will have an impact on the collected
traces. In this work we do not deal explicitly with this problem, however, Chapter 7
lays out the work that would need to done ot begin to address this. For the purposes
of this thesis we are going to assume that repeated runs of a program work with the
same input data each time for the purposes of simplicity.

This chapter has described a design for what a TAC would look like and examines
some of the theoretical hurdles that will have to be considered in order to implement
such a scheme. The next chapter deals with the implementation of this scheme in
the context of a Field Programmable Gate Array (FPGA) running a soft-core RISC-V
processor.

77

Part III

Experiments

79

4 Implementing the Platform

So far in this thesis we have seen examples of what a system that implements
Trace Assisted Caching might look like from a very high level. For the purposes
of context, our ambition for this experiment is to design the hardware that would
be necessary to implement Trace Assisted Caching in a medium-sized embedded
system. To evaluate the efficacy of the design we will then synthesise this design so
that it can be realised inside the Xilinx VC707 FPGA [211]. We will then perform
measurements on the newly designed hardware, as well as on other simpler designs,
to demonstrate the performance increase that is seen as a result of Trace Assisted
Caching.

In this chapter we are going to explore the actual implementation of the scheme
that was undertaken as part of this thesis. We will first explore some of the
pre-existing components that were used. We then follow that by discussing the
development of each of the new elements that were necessary to implement the
scheme. To conclude we will discuss the resource implications of the chosen
implementation.

4.1 Pre-existing Components

When beginning the construction of the hardware necessary to implement Trace
AssistedCaching there are severalmodules thatwe can re-purpose fromother projects.
Starting with the processor as a whole, for these experiments we are going to use
the RI5CY [70] processor from the PULP Foundation which implements the RISC-V
ISA[221]. The RI5CY is a 32-bit, in order processor with a 4-stage pipeline. It supports
the RV32I, RV32C and RV32M standards found within the RISC-V standard, which
allows for integer computation, compressed instructions and integer multiplication
and division. There is an optional floating point module, but that will not be included
in our instance of the RI5CY, because it simplifies tracking the computation of the
instructions. A big benefit of the RI5CY is that it has a Harvard Architecture, making
it ideal for these experiments, because we can isolate the data memory to more
accurately quantify the benefit from Trace Assisted Caching. In addition, because
the RISC-V ISA is based on classic Reduced Instruction Set Computer (RISC) we do

81

4 Implementing the Platform

not have to be concerned about multiple esoteric addressing modes or microcode, as
we might have to with a CISC architecture. To be precise, only LOAD and STORE are
allowed to access memory, which simplifies the task of tracking memory operations
significantly.

As the RI5CY processor is released under the OpenHardware [144] initiative, all of the
source code is publicly available to be scrutinised and adapted if necessary. We will
need to make certain changes to the RI5CY processor to expose some internal signals,
but because we have source code access, and because Xilinx’s Vivado Design Suite
can synthesise this code into a hardware description for an FPGA, this is relatively
straightforward. This will be dealt with more fully in the next section, where we
discuss the Trace Recorder. A further benefit of using the RI5CY processor is that it has
already been integrated into the PULPino [206] SoC which was built using the Xilinx
Vivado toolchain. This means there are several ancillary hardware blocks available
online that allow the RI5CY’s native memory protocol to interface with the Xilinx
AXI protocol, used to communicate easily with the various hardware blocks on the
FPGA. This means we can re-use lots of different AXI-basedmemory implementations,
without having to write our own adapter. This adapter is known as a core2axi
block.

Another important factor is the memory technology we will use to support the
processor. Xilinx provides a feature as part of newer versions of Vivado known as
XPMs [212]. These XPMs allow us to specify the parameters of memory implementa-
tion (size, address width, latency etc.) and then delegate the problem of constructing
such a memory system to Vivado’s in-built tool set. As memory system design can
be one of the more complex areas of design when dealing with FPGAs, and it is not
something we are that interested in for these experiments, it makes sense to make
use of this facility rather than manually crafting our own memory implementation.
We can communicate with this memory system using the AXI protocol [10], for which
all the interfaces are generated by Vivado. This allows us to specify the instruction
memory and data memory separately, in a much simpler way than having to write
all the code to implement the AXI protocol and manage individual physical memory
elements.

Therefore, at this point we have a fully functioning processor, connected to two
physically separate memory implementations, generated by the XPMs. Between
the processor and the AXI ports on the XPM generated memory are two core2axi
blocks that convert the processors native memory protocol to a set of signals which
conform to the AXI4 standard. A diagram of the current architecture can be seen in
Figure 4.1.

82

4.2 Trace Recorder (Gouram)

RI5CY

c
o
r
e
2
a
x
i

c
o
r
e
2
a
x
iInstruction

Memory
(XPM) -
BRAMs

Data
Memory
(XPM) -
BRAMs

Figure 4.1: The resulting architecture that is used as a starting point for implementing
the more complex parts of Trace Assisted Caching. The Memory protocols
used are the RI5CY’s built in protocol, before the core2axi adapter, where
the protocol is converted to AXI4 for communication with the XPMs. The
XPMs are implemented as collections of Block Ram Access Memories
(BRAMs). The use of BRAMs over the onboard DRAM and the mitigations
around latency are explored in Section 5.1.3.

4.2 Trace Recorder (Gouram)

The next stop on the journey to building the hardware platform we require will
be to construct the Trace Recorder, which shall be called Gouram, so that that the
TAC has a source of trace data. There was some consideration initially of using
an existing system, particularly considering the RISC-V debug and trace standard
was recently published [153], and a version has been created for the RI5CY [163].
However, the implementation offered by the PULP project does not offer data tracing
at present, which we require. Therefore, we were forced to construct our own Trace
Recorder to work in concert with the TAC. The exact details of the implementation
can be found in Appendix A. We will not focus on the details in this section, suffice
to say that we can assume we have a reliable method of producing the required
trace data. Great effort has been taken to decouple the Trace Recorder from the
TAC, such that if an implementation is developed that is more integrated with the
CPU or uses fewer resources, it can be used instead, as long as there is interface
compatibility.

4.2.1 A Note on Names

As stated in the previous section the Trace Recorder is referred to interchangeably in
this thesis as Gouram, and it is labelled as such in the source code for the hardware.
The Trace Assisted Cache is named Enokida and encompasses the traditional cache
implementation module and the extra hardware required to add the trace-assistance.
Due to implementation requirements a name was also required for the non-trace-
assisted version of the cache (in reality a very thin wrapper around a traditional cache
implementation) and this is called Saruyu. Finally the altered RI5CY CPU is referred

83

4 Implementing the Platform

to as Godai. The full hardware platform developed for this solution, including Godai,
Enokida and Gouram is referred to collectively as Kuuga.

For ease of reference these are all containedwithin the following table.

Name Description
Kuuga The entire hardware platform implemented for these experiments,

containing a modified CPU (Godai), a trace assisted or standard cache
(Enokia/Saruyu) and a Trace Recorder (Gouram).

Gouram The Trace Recorder, (see Appendix A)
Godai A modified version of the RI5CY CPU that exposes internal signals
Enokida The trace assisted cache, consisting of a standard cache implementation plus

the extra hardware associated with co-ordinating communication with the
Trace Repository and CPU memory requests.

Saruyu The standard cache, a very thin wrapper around the same cache
implementations used in Enokida, but without any of the trace assistance

hardware.

Table 4.1: This table lists the names of the components created for this thesis and
gives a brief description of their function.

4.3 Trace Assisted Cache (Enokida)

Now that we have a process that can produce a large amount of trace data for a
standard run of a program, we need a mechanism to act on the information collected,
the TAC itself. This section divides into two, because we utilise two different cache
architectures to demonstrate the benefits this technique derives, even with very
different underlying cache implementations.

The overall functioning of the TAC consists of two modules that are intimately linked,
but serve separate functions: the Trace Repository, which is responsible for tracking
the state of the trace entries; and, a cache implementation. This architecture is laid out
in Figure 4.2, with the connections between them also shown. We will explain each
module in turn and then follow with an example that tracks how they link together
to give the functionality we require.

4.3.1 Trace Repository

In keeping track of the state of the traces, the Trace Repository operates in one of two
states, read or write mode. In write mode the Trace Repository sits and listens to the
trace events that are output from Gouram and stores them in BRAMmemory in the

84

4.3 Trace Assisted Cache (Enokida)

Trace Assisted Cache

Trace Repository

Controller

Standard
CacheProcessor Data Memory

Figure 4.2: A very high level block diagram of the structure of the TAC. The logic for
the controller is contained within the same SystemVerilog module as the
container, labelled Trace Assisted Cache in the diagram.

order they are received. This means that a non-insignificant amount of memory is
required to store the necessary traces.

As will be demonstrated in Section 4.3.2, each trace entry consists of a 48-bits split
into a 16-bit address and a 32-bit instruction so we will require 48-bits per memory
instruction executed. With this in mind, and due to resource limitations on the
FPGA the Trace Repository is limited to 217 = 131072 entries, which comes to 768KiB.
This is much larger than the capacity of the cache itself and in a medium sized
embedded system this could be prohibitively large. It’s important to remember
however that the Trace Repository is not storing the data associated with the memory
requests. The fact that this much memory is required by the Trace Repository is one
of the limiting factors in the wider applicability of this technique. Chapter 7 discuss
some of the methods by which this might be overcome, however these were not
implemented in this thesis due to time constraints and the proof-of-concept nature of
this solution.

Read Mode

When the Trace Repository is in read mode it follows a very simple state machine,
shown in Figure 4.3. As a result, when the Trace Repository is in the LISTEN_FOR_REQ
state, it is trying to ensure that it is always ready to respond to the request for a trace,
should it arise. To that end, every clock cycle, it checks if a trace has been requested
and whether it has a trace to return. If the answer to the second part of that question
is no, it proceeds to query the underlying memory structure (Transition G) to get a
trace back from memory and to be in a state where it would be actionable if a request
were called for.

85

4 Implementing the Platform

LISTEN_FOR_REQstart WAIT_FOR_VALID

GET_TRACE_FROM_MEMORY

A

B

C

D

E

G

F

Figure 4.3: This state machine describes the behaviour of the Trace Repository when
in read mode. It sits waiting in the LISTEN_FOR_REQ state until a request
is made to the Trace Repository and then acts accordingly.

Whenever the TAC is idle, i.e. when it is not processing a memory request either from
the processor or from the Trace Repository, the control module signals the repository
to get the next trace that is not currently being processed. As the process above has
been running constantly in the background, let us assume that when the request
comes the repository is ready to respond. At this point, the repository checks if
the trace it has recalled from memory is executable at the current time, by taking
transition B to the WAIT_FOR_VALID state. When in this state the Trace Repository
queries it’s own representation of the state of the cache to check the status of the slot
that this piece of data would be mapped to, were it actioned. This will resolve in
one of two ways, either the slot is available (it is empty or the entry that is present
is not the subject of a pending memory operation) or the slot is not. If the slot is
available then obviously we can proceed, because there are no dependencies. If the
data has already been processed, then it must have already been used and we are not
re-ordering, which means it can be replaced with no ill effects. So in either case the
trace entry is returned to the TAC to be acted upon.

However if this is not the case, then there are two further options. If a memory

86

4.3 Trace Assisted Cache (Enokida)

instruction has arrived at the cache from the processor, then this supersedes any trace
memory operations, so we set the cancelled signal high to acknowledge this to the
top-level of the cache. Alternatively if we cannot execute the instruction because
of what is in the cache, we sit in the WAIT_FOR_VALID state (transition D), where
we repeatedly ask the cache if we can now act on the trace that has been retrieved
from memory. This is not optimal because it may be the case that other independent
instructions could execute while the dependency is resolved. However as we are not
implementing re-ordering this is not a situation we can take advantage of. As the
processor is still executing while this happens, every time the question is asked the
state of the cache could be quite different, so this is a legitimate question to ask on each
clock cycle. Once it is appropriate to proceed, the underlying cache implementation
is signaled with the address and the instruction type (LOAD or STORE) so the cache
can act upon the information in the trace. After this, the repository returns to the
LISTEN_FOR_REQ state (transition C) and the process starts again.

Tracking the Active Set of Memory Instructions

There is a second important function that the repository also fulfils, which is tracking
the traces as the memory instructions they denote are enacted in the cache, so that it
is clear which are in-flight and which are not. It also has to keep track of the memory
instructions executed directly by the processor, so that traces are not returned from
the repository if they have already been acted upon. In order to do this, the repository
maintains a small circular buffer of in-flight memory operations, known as the active
set of memory operations.

Consequently, whenever the cache completes a memory transaction and stores it, it
fires a signal called mark_done and sets several corresponding flags. There are three
separate situations that might arise at this point and they are all handled slightly
differently by the repository1:

1. The cache has executed a memory instruction from the Trace Repository, but
there is still some work to be done by the system for this instruction to be
considered as complete. For example, if the repository returns a store operation,
it is impossible to predict the value that would need to be stored, so we can
reserve the space, but we cannot action the store until the data is available from
the processor.

2. This is a counter-point to the previous point, whereby the processor is now
completing an instruction that was set up by the repository, for example a

1We are making several assumptions here that the order of memory operations is consistent between
the trace and the running program. These are addressed in Chapter 7 with some strategies to remedy
this dependency, however for the purposes of our experiments, as is explained in Chapter 5, these
assumptions hold.

87

4 Implementing the Platform

STORE instruction. It should be noted that this also includes the effective NO-OP
situation, where the processor requests a LOAD, but the cache has already done
this LOAD ahead of time.

3. A memory operation has been completed by the cache in the standard way, as
the processor requested the data before the cache had time to request the trace
to action it.

In the first situation we add the trace in question to the in-flight set of memory
instructions and designate it as processing by advancing a processing pointer. In the
second case we designate the trace as complete by advancing a retired pointer and add
to the counter of committed memory operations that lets us know when processing
is complete. In the final case the repository does both things, and advances both
pointers. We then update the cache_tracker, which is a data structure designed
to preserve the link between the index of the trace in memory that is executing and
the cache index that the trace is mapped to. This is very important when asking
whether a new trace instruction can be executed or not without having to query
the cache directly. Furthermore, in the Set-Associative cache implementation of
the Trace Repository, there are extra steps to track the replacement order of the
cache sets through a fifo_tracker data structure. This is because in the case of the
Direct-Mapped cache, the index can be predicted from the effective address of the
memory instruction. However, in a Set-Associative world we need to track the state
of each of the sets, which in this case is modelled as a series of FIFO queues, so extra
tracking data is required here.

A final function the repository serves is to return trace indexes or the address of
the trace in the memory that backs the Trace Repository. This is done by linearly
searching the active set, which is very small, and the importance of this will be-
come clearer once we explain how the trace assisted cache functions, in the next
section.

Liveness & Correctness

A very reasonable question at this point is: how can we guarantee the correct
functioning of this state machine? Further, how can we guarantee it will function
without deadlocking? In an idealised scenario, we could produce formal proofs
for each component, but that was not undertaken as part of this thesis due to the
large amount of time spent on the implementation of the platform. However, taking
each state in turn, there are several arguments we can make that give very strong
indications that the state machine in Figure 4.3 possesses the properties of liveness
and correctness.

88

4.3 Trace Assisted Cache (Enokida)

Listing 4.1: This SystemVerilog code details the LISTEN_FOR_REQ state’s operation
inside of the Trace Repository’s state machine.

163 LISTEN_FOR_REQ:

164 begin

165 automatic bit next_trace_ready = (action_pointer + 1

== last_addr) && trace_valid;

166 if (next_trace_ready && trace_req)

167 begin

168 if (committed_counter == capture_pointer+1)

processing_complete <= 1'b1;

169 else

170 begin

171 next_available <= action_pointer+1;

172 if (can_next_available_be_executed(trace.

mem_addr))

173 begin

174 trace_out <= trace;

175 trace_index_o <= action_pointer+1;

176 entry_valid <= 1'b1;

177 state <= LISTEN_FOR_REQ;

178 end

179 else if (cancel) cancelled <= 1'b1;

180 else state <= WAIT_FOR_VALID;

181 end

182 end

183 else

184 begin

185 entry_valid <= 1'b0;

186 cancelled <= 1'b0;

187 if (!next_trace_ready)

188 begin

189 trace_valid <= 1'b0;

190 trace_entries_addr_i <= action_pointer+1;

191 trace_entries_ena_i <= 1'b1;

192 last_addr <= action_pointer+1;

193 latency_counter <= READ_LATENCY;

194 state <= GET_TRACE_FROM_MEMORY;

195 end

89

4 Implementing the Platform

196 end

197 end

Initially there will be no data retrieved from memory so next_trace_readywill be
0. As a result, it will take the else branch of the if statement and its state will
change to GET_TRACE_FROM_MEMORY. There is no chance of deadlock at this stage,
because if next_trace_ready is 0, and next_trace_ready is declared as a bit value,
so can only be 0 or 1, it forces the state machine into the GET_TRACE_FROM_MEMORY
state.

Listing 4.2: This SystemVerilog code details the GET_TRACE_FROM_MEMORY state’s op-
eration inside the Trace Repository’s state machine.

198 GET_TRACE_FROM_MEMORY:

199 begin

200 if (latency_counter > 0) latency_counter <=

latency_counter -1;

201 else

202 begin

203 state <= LISTEN_FOR_REQ;

204 trace.mem_addr <= trace_entries_data_o[

DATA_ADDR_WIDTH+DATA_DATA_WIDTH -1:

DATA_DATA_WIDTH];

205 trace.instruction <= trace_entries_data_o[

DATA_DATA_WIDTH:0];

206 trace_valid <= 1'b1;

207 end

208 end

Listing 4.3: This SystemVerilog code details the parameters passed to the XPM that
backs the Trace Repository showing how the latency is controlled by the
localparam on line 64 being passed to the parameter in line 78.

64 localparam READ_LATENCY = 1;

65
66 xpm_memory_spram #(

67 .ADDR_WIDTH_A($clog2(TRACE_ENTRIES)), //

DECIMAL

68 .AUTO_SLEEP_TIME(0), // DECIMAL

90

4.3 Trace Assisted Cache (Enokida)

69 .BYTE_WRITE_WIDTH_A((DATA_ADDR_WIDTH + DATA_DATA_WIDTH))

, // DECIMAL

70 .ECC_MODE("no_ecc"), // String

71 .MEMORY_INIT_FILE("none"), // String

72 .MEMORY_INIT_PARAM("0"), // String

73 .MEMORY_OPTIMIZATION("true"), // String

74 .MEMORY_PRIMITIVE("block"), // String

75 .MEMORY_SIZE((DATA_ADDR_WIDTH + DATA_DATA_WIDTH)*

TRACE_ENTRIES), // DECIMAL

76 .MESSAGE_CONTROL(0), // DECIMAL

77 .READ_DATA_WIDTH_A(DATA_ADDR_WIDTH + DATA_DATA_WIDTH),

// DECIMAL

78 .READ_LATENCY_A(READ_LATENCY), // DECIMAL

79 .READ_RESET_VALUE_A("FF"), // String

80 .USE_MEM_INIT(0), // DECIMAL

81 .WAKEUP_TIME("disable_sleep"), // String

82 .WRITE_DATA_WIDTH_A(DATA_ADDR_WIDTH + DATA_DATA_WIDTH),

// DECIMAL

83 .WRITE_MODE_A("no_change") // String

84)

Once in the GET_TRACE_FROM_MEMORY state (Listing 4.2) transition E will be taken
multiple times until the latency_counter variable is 0. This must occur as the
READ_LATENCY parameter is set to a positive value, as can be seen in Listing 4.3. It
would also be impossible for this to be set to a negative value, because the XPM
declaration that can also be seen in Listing 4.3will throw an exception if READ_LATENCY
is set to a negative value and the code will not synthesise, so we will not deadlock
here. Once in the else branch we can guarantee that the information will be ready to
read from memory, because we are targeting BRAMs which require [212] a latency of
1 to be set for READ_LATENCY_A. This will cause us to take transition E once; after that
the data will be ready, because we have spent the 1 cycle required to retrieve it. Again,
as we are assuming the correct functioning of the XPM. Therefore, we can assume we
will receive the correct data once we read it out of the output ports of the XPM. Once
that is complete, we will return to the LISTEN_FOR_REQ state via transition F, but with
entry_valid now set to 1.

So far we have not observed a situation where a deadlock is possible and we can guar-
antee that wewill have correct data at each phase. Nowback into LISTEN_FOR_REQ, we
can guarantee that last_addrwill equal action_pointer + 1, because it will have
been set as such the last time we were in this state. Consequently, next_trace_ready

91

4 Implementing the Platform

will become 1. Now, if trace_req is not high, then the else branch of the if statement
will be taken, but because next_trace_ready is set to 1, transition A will be taken
rather than G.

At this point one of two things will happen: either the processor will continue to
process computation instructions, so the TAC will be allowed to send the trace_req
signal, as previously described; or, the processor will complete the memory operation
referred to by the trace that has been fetched. If the latter happens then the
action_pointerwill be advanced, so next_trace_readywill become 0 and the same
process we have just seen will continue.

However, in the former case, execution will advance to the first branch of the if
statement. Let us assume that it is not the last trace to be executed, otherwise
processing_complete would be set to 1. This would lead to trace_req never being
set to 1 again. Thus, transition A would always be taken, and the state machine
would have entered a trap state. In the case that it is not the last trace, the function
can_next_available_be_executedwill be computed. This function has no loops, so
must return a result. Assuming the TAC has reported correctly thus far, it will have
an accurate model of the cache to query. Consequently, an answer will be provided.
If the answer is positive, the trace will be output as expected, if not transition B
will be taken because the trace cannot be actioned without potentially changing the
semantics of the program.

Listing 4.4: This SystemVerilog code details the WAIT_FOR_VALID state’s operation
inside of the Trace Repository’s state machine

209 WAIT_FOR_VALID:

210 begin

211 if (can_next_available_be_executed(trace.mem_addr))

212 begin

213 trace_out <= trace;

214 trace_index_o <= next_available;

215 entry_valid <= 1'b1;

216 state <= LISTEN_FOR_REQ;

217 end

218 else if (cancel)

219 begin

220 cancelled <= 1'b1;

221 state <= LISTEN_FOR_REQ;

222 end

223 end

92

4.3 Trace Assisted Cache (Enokida)

At this point, it is natural to ask the question, couldwe get stuck in the WAIT_FOR_VALID
state? If we consider the code in Listing 4.4, then we see this is impossible, because
on every transition it asks whether the instruction can be executed. Again, assuming
the TAC is responding correctly, then the cache model must be accurate. If we now
consider the processor, it must be executing an instruction that is before the one that
has been retrieved from the repository or in fact is the instruction retrieved from the
repository. This is because the action_pointer that governs where the next trace is
to be retrieved from is updated on every memory access, be it preemptive or from
the processor. Therefore, either the trace retrieved is the current instruction being
executed or is ahead of the processor by some distance.

If it is the case that the processor is executing an instruction that is behind the one
retrieved, then we know that it must action all the memory instructions between the
one it is currently executing and the one that is waiting to be valid. Consequently,
the instruction we are waiting for will either eventually be executable, because
the memory instruction that blocks it must be executed by the processor, or the
cancel signal will be fired, which will mean transition C will be taken and further
progress can be made. Once we are back in the LISTEN_FOR_REQ state, trace_req
will be 0, because the TAC sets it as such once it has received the trace from the
Trace Repository. Therefore, transition A or G will be taken and the process begins
again.

Consequently, there does not appear to be a way for the machine to deadlock. It
would also appear to be correct from the point of view of returning the data we
require as we require it. Clearly this is not a formal proof, but it should suffice for the
Proof-of-Concept nature of this thesis. Any further work that expands the role of the
Trace Repository would be well advised to invest time in a formal proof. One final
point is that this discussion is based on the assumption that the memory instructions
are the same between the first and second run of the program, which is true for the
benchmarks studied in this thesis.

4.3.2 Trace Assisted Cache (Enokida)

So now we understand the Trace Repository, our attention can turn to the TAC. Here
all of the work we have done comes together and we see our goal of a cache that
can act preemptively, backed by the knowledge from the Trace Repository, has been
realised. Again, there are small differences between the way the cache acts if it is
backed by a Direct-Mapped, as opposed to a Set-Associative, but these are minor and
will be flagged as we explore the implementation.

93

4 Implementing the Platform

Operation of the Cache

In a similar manner to the Trace Repository the cache can effectively be in two modes.
These are either a pass-through mode, where it delegates the memory calls through
directly to the memory system or an active mode where it uses the trace information
to make preemptive decisions. The first mode is used when the Trace Repository is
filling up with data, typically in the first execution of a program. This is encompassed
by the ID, CPG and CPR states in Figure 4.4. The second mode is then used to act on
that data.

In the second mode the cache again acts as a relatively complex state machine, as in
Figure 4.4. We will explore each state in turn and then present an example which
demonstrates how all of these pieces fit together to give the complete implementation
we are looking for. To begin, Enokida starts in the IDLE/ID state, where it resets
various variables and sends a request to the Trace Repository, enabling a trace to be
ready in the next state, should it be possible to act on it. This is dealt with as in Section
4.3.1. After that, it transitions (G) into the MAKE_REQ_TO_CACHE/MRC state, where the
address that is being requested is checked against the cache to see if a write-back is
necessary and if the entry is valid. This has to be checked at this point, because the
CPU memory protocol only guarantees the correctness of the address at this point in
time. Thus, requesting this data early is important.

Once that has been achieved, in the next clock cycle, Enokida makes a decision as to
whether to action the trace it recalled from the Trace Repository or whether to act on a
request coming from the CPU directly. As our intended result is not to introducemore
latency to existing memory operations, we cause the CPU operations to take priority
and so cancel the preemptive operation if both are available at the same time. This is
communicated back to the Trace Repository as described in Section 4.3.1. Once this has
been decided, the relevant data is bundled into a request to the cache implementation
and this is sent to the cache. We then transition (I) into the CACHE_HIT_GNT/CHG state,
where several different things might happen.

In the first case if we are acting on a trace from the Trace Repository, it may be the
case that the data that is already present in the cache at the location we would need is
not yet ready to be written back. For example, it may be the subject of a STORE or a
LOADmay be in progress. If that is the case we have no choice but to wait for the CPU
to finish with the data. Consequently the cache goes into a SLEEP state (transition K)
until such time as another memory operation from the CPU arrives and unblocks the
preemptive operation (transition �). If that is not the case then we also need to check
if we are in the position where there is nothing to be done, so that we can move on.
This can sometimes happen if we are dealing with a STORE operation from the Trace

94

4.3
TraceA

ssisted
Cache(Enokida)

IDstart

CPG CPR

MRC

SLEEP

CHG

CHD

CMML

CMMS

CMTL

CMTS

UM UTR

WB

A
B

C

D

E

F
G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

�

�

�

&
�

Figure 4.4: This state machine details the operation of the trace assisted cache. The names of the states are abbreviated to allow a more
concise presentation of the diagram and some states have been merged for similar reasons.

95

4 Implementing the Platform

Repository and there is no need to write anything back from the cache to memory. In
that case, we set the processing flag high and advance to UPDATE_TRACE_REPO/UTR
via transition L. Finally, if neither of those situations is in play, the machine wait for
the cache to respond to our request (transition J).

Once it has responded, we will either see a cache hit or a miss. In the case of a hit, if
the instruction was a LOADwe can transition to CACHE_HIT_DATA (via M), where we
manipulate the memory protocol responses to make it appear as though a memory
transactionhas occurredveryquickly and thenproceed toupdateUPDATE_MAPPING/UM
via transition S. In this state the Trace Repository is queried to find the index of the
trace that has just executed. This is then placed into a map that is indexed by the cache
index, so Enokida has knowledge of where the data related to each trace is actually
stored in the cache. After this, the Trace Repository is updated in UPDATE_TRACE_REPO,
via transition U. Alternatively if it is a STORE, we mark the cache location as reserved
and then transition to UPDATE_TRACE_REPO.

Alternatively, if our request to the cache comes back amiss, thenwe need towrite-back
the data that is already present. Therefore, we transition to SERVICE_WB_WAIT_GNT
and then SERVICE_WB_WAIT_RVALID (all encapsulated in the WB state and reached
via transition N), which stimulates the memory to writeback what is presently in
the cache to memory. After that or once the cache miss is detected, we then need
to deal with the substance of the memory operation. There are four possible trans-
itions here, and the correct one is decided as a combination of the source of the
memory instruction and the type of instruction it is. For example, we could trans-
ition to SERVICE_CACHE_MISS_TRACE_LOAD/CMTL if the memory instruction came
from the Trace Repository and it was a LOAD, and so on for the other combina-
tions.

Let us deal with STORE operations first. If they come from a trace entry, then we
transition to SERVICE_CACHE_MISS_TRACE_STORE/CMTS via transition R. This state
then either reserves the entry in the cache once the data is available, or in the case
where we are storing something that is not full-word length, performs a write-back
first to preserve the data that is already present. Once this happens, we transition
to UPDATE_TRACE_REPO via �. If the operation comes from the CPU, however, then
we perform the operation by passing the signals directly through to memory and
then updating the necessary indexes as the data enters the cache, passing through
state CMMS and transition P. Finally, then we can transition to UPDATE_TRACE_REPO via
transition . If the operation is a LOAD and has come from the CPU, then we again
pass through the signals and update the cache indexes as a result. If it is a LOAD that
comes from a trace instruction, we instrument the memory as though we were the
CPU and update the cache indexes accordingly. This passes through analogous states

96

4.3 Trace Assisted Cache (Enokida)

and transitions to the STORE operation.

Once all this is complete, we transition to the UPDATE_TRACE_REPO state, whereby the
trace index that has been actioned is sent off to the Trace Repository to be marked as
done and then Enokida returns to the IDLE state via transition � for the process to
begin again. The operation of the Set-Associative cache, as opposed to the Direct-
Mapped, is very similar in this case. However, there is some more book keeping
to be done in the Set-Associative version, because the cache index cannot easily be
obtained from the memory address in the same way that the Direct-Mapped cache
can.

Liveness & Correctness

In a similar manner to our discussions on liveness and correctness in the previous
section, we need to undertake a similar analysis for the TAC. Again, let us assume
that the Trace Repository, the underlying cache implementation and the processor are
correctly implemented and deadlock free. To begin, we can exclude any thoughts of
deadlock from the states that operate in the pass-through mode previously described.
Because of the assumptions we have made, these states enact the memory side of the
protocol that is detailed in the RI5CYmanual [12]. If we assume that the processor is
correct and deadlock free, this cannot deadlock and will produce the correct results,
because it conforms to the contracts laid out in the user manual.

Listing 4.5: This SystemVerilog code details the MAKE_REQ_TO_CACHE state’s operation
inside of the TAC state machine.

212 MAKE_REQ_TO_CACHE:

213 begin

214 mem_data.ready <= 1'b0;

215 proc_cache_data_rvalid_o <= 1'b0;

216 proc_cache_data_rdata_o <= 32'b0;

217 if ((entry_valid || proc_cache_data_req_i) && !

prev_signals_saught)

218 begin

219 addr_to_check <= (proc_cache_data_req_i) ?

proc_cache_data_addr_i : trace_out.mem_addr;

220 prev_signals_saught <= 1'b1;

221 end

222 else if (prev_signals_saught)

223 begin

224 req <= 1'b0;

97

4 Implementing the Platform

225 // If it's the case that a memory request is

waiting as well then give that priority

226 if (proc_cache_data_req_i)

227 begin

228 // Cancel a request to the Trace Repo if there

is one.

229 cancel <= 1'b1;

230 cpu_req.addr <= proc_cache_data_addr_i;

231 cpu_req.rw <= proc_cache_data_we_i;

232 cpu_req.data <= (proc_cache_data_we_i) ?

proc_cache_data_wdata_i : 0;

233 cpu_req.valid <= 1'b1;

234 mem_trace_flag <= 1'b0;

235 load_store_in <= proc_cache_data_we_i;

236 end

237 else

238 begin

239 cpu_req.addr <= trace_out.mem_addr;

240 cpu_req.rw <= check_store(trace_out.

instruction);

241 cpu_req.data <= 32'b0;

242 cpu_req.valid <= 1'b1;

243 mem_trace_flag <= 1'b1;

244 load_store_in <= check_store(trace_out.

instruction);

245 end

246 state <= CACHE_HIT_GNT;

247 end

248 end

Thus, if we now consider the MRC state in Listing 4.5,2 when this state is entered
for the first time we know that either entry_valid is high or will become high
eventually. This is because we have assumed the correct functioning of the Trace
Repository, or that proc_cache_data_req_i could be high now or must become high
at some point in the future, as the processor is assumed to be functioning correctly.
Consequently, when the first if statement is reached, though it may take a few cycles
of waiting, prev_signals_saughtmust become high, which will allow, after the next

2In a similar fashion to the previous section, Listings 4.5 - 4.7 are based on the single SystemVerilog
file that governs the TAC; hence, the discontinuous line numbers. They are also taken from the
Direct-Mapped version of the TAC, as for these states, there is no difference in their operation.

98

4.3 Trace Assisted Cache (Enokida)

cycle sets up the cpu_req variable, transition M to be taken. Consequently, there
cannot be deadlock here, as there is no way that prev_signals_saught could remain
unset and thus keep the machine locked in this state. In terms of correctness, if
proc_cache_data_req_i becomes high at any point during this state, it will override
the trace entry, which is the desired behaviour. Therefore, we can be sure that the
correct request to the cache will be made, so that both properties are satisfied thus
far.

Listing 4.6: This SystemVerilog code details the CACHE_HIT_GNT state’s operation
inside of the TAC state machine.

249 CACHE_HIT_GNT:

250 begin

251 if (cancelled) cancel <= 1'b0;

252 if (wb_necessary && !proc_cache_data_req_i)

253 begin

254 addr_to_check <= cpu_req.addr;

255 state <= SLEEP;

256 end

257 if (!cpu_req.rw && indexed_cache_entry_valid &&

mem_trace_flag && !wb_necessary)

258 begin

259 processing_flag <= 1'b1;

260 if (cpu_res.checked)

261 begin

262 state <= UPDATE_TRACE_REPO;

263 end

264 end

265 else

266 begin

267 if (cpu_res.checked)

268 begin

269 cpu_req.valid <= 1'b0;

270 if(cpu_res.ready)

271 begin

272 if (!mem_trace_flag)

273 begin

274 proc_cache_data_gnt_o <= 1'b1;

275 cache_hit_count <= cache_hit_count +

1;

99

4 Implementing the Platform

276 cache_trans_count <= cache_trans_count

+ 1;

277 state <= CACHE_HIT_DATA;

278 end

279 else

280 begin

281 processing_flag = 1'b1;

282 mapping_cache_to_trace_index[cpu_req.

addr[INDEXMSB:INDEXLSB]] <=

trace_index_o;

283 state <= UPDATE_TRACE_REPO;

284 end

285 end

286 else if (mem_req.rw)

287 begin

288 cached_addr <= mem_req.addr;

289 cached_data <= mem_req.data;

290 state <= SERVICE_WRITE_BACK_WAIT_GNT;

291 end

292 else

293 begin

294 if (mem_trace_flag) state <= (check_store(

trace_out.instruction)) ?

SERVICE_CACHE_MISS_TRACE_STORE :

SERVICE_CACHE_MISS_TRACE_LOAD_WAIT_GNT;

295 else state <= (proc_cache_data_we_i) ?

SERVICE_CACHE_MISS_MEM_STORE :

SERVICE_CACHE_MISS_MEM_LOAD_WAIT_GNT;

296 end

297 end

298 end

299 end

When we reach the CHG state (Listing 4.6), again we are not going to deadlock because
there are three situations, one of which will occur with certainty. Either the first
if statement will be taken, indicating that even though a preemptive action should
occur, we are blocked from doing so. Therefore, the cache should take transition K; or,
we can already calculate that there is no work to be done, so transition L can be taken
to the UTR state; finally, since we have assumed the cache will respond eventually,

100

4.3 Trace Assisted Cache (Enokida)

the else branch of the second if statement can be taken, which then causes one of
potentially many actions to occur. At the end of each of these actions is a different
transition, dependent first on if there is a cache hit or miss and then on whether the
source of the memory operation is a trace or comes from the processor. Therefore,
again at this point, there cannot be deadlock, because there is no fourth alternative
allowing transition J to be taken forever.

Once the CHG state has been left, we enter a series of states that have no loops and
either implement the memory protocol from the RI5CY manual or perform book-
keeping. With that in mind, both the correctness and liveness of the machine is
therefore dependent on the contracts set in other components that we consider to
be deadlock-free and correct. This is true of the CHD, CMML, CMMS, CMTL, CMTS and WB
states. The only states that are left which are of concern are the SLEEP state, and the
UM and UTR states.

Listing 4.7: This SystemVerilog code details the SLEEP state’s operation inside the
TAC state machine.

207 SLEEP:

208 begin

209 // Continue to sleep unless it's the case that the

blocking entry has been retired, or that a memory

request starts

210 if (proc_cache_data_req_i) state <= MAKE_REQ_TO_CACHE;

211 end

Turning to the last few states, in the case of the SLEEP state (Listing 4.7), we know
that the processor cannot be ahead of the Trace Repository in the instructions it
executes. Consequently, if the SLEEP state is entered it must be the case that the Trace
Repository is ahead of the processor. Therefore, either the next memory instruction
it executes will be the one referred to by the entry in the Trace Repository or it will
occur some time later. Consequently, we know the proc_cache_data_req_i signal
will go high at least once, allowing transition � to be taken. As any actions initiated by
the processor will override any preemptive actions, a material change to the state of
the cache will take place, meaning that when the check for the preemptive instruction
is made again, it will be considering a different state and there is further chance for
progress.

Considering the last two states, UM and UTR, if we assume the correct functioning of
the other components, then neither of these could cause deadlock and will update
the correct parts of the state to be considered correct. As a result, we can guarantee

101

4 Implementing the Platform

that transition � will always be reached. Thus, the process can begin again. On a final
point, if we have reached the end of processing, i.e. the processor has moved to the
trap state, then the TAC will lock up as well in the IDLE state, but this is expected
behaviour to make our experiments easier to measure.

Again, the discussion that is presented above is by no means a rigorous proof of the
correctness of this machine. For complete confidence a full proof and the application
of model-checking would need to be used, not only for this machine, but for all
the components that make up the experimental platform. An alternative would be
to start from scratch with a formal specification and refine the state machine and
implementation from that. However, in both these cases the complexity involved
was time-prohibitive, but this informal proof provides enough confidence to proceed
in engineering the system. Any future work should seek to add the theoretical
guarantees of correctness presented here.

Cache Implementations

The previous section describes the operation of Enokida, but it relies on a standard
cache implementation that acts as a submodule of the overall cache. As already stated
in this chapter, we use two different cache architectures, the first one being a 128 entry
Direct-Mapped cache write-back cache that is taken from Hennessy and Patterson
[82] directly. The Set-Associative cache is based on the same implementation as the
Direct-Mapped, but is further adapted to be Set-Associative. After the adaptation it
becomes an 8-way associative cache, so we have 16 sets of 8 cache blocks and each
set is ordered in a FIFO fashion for simplicity. It is worth pointing out that there
is no compulsion for this to be the case and it would be very easy to change the
cache architecture to a full associative or even a non-standard architecture without
changing Trace Assisted Caching at all. Any other number of techniques could also be
used alongside Trace Assisted Caching including dead-block prediction and others,
if it were so desired. However, this is not an avenue that has been explored in this
thesis.

Example

Nowwe have fully described the hardware that implements the ideas from Chapter 3,
we can see an end to end example of exactly how this technique works. For this
purpose, we will look at the execution of a small part of nsichneu.c, the decompiled
RISC-V assembly, which is shown in Listing 4.8. We will only focus on the first
few memory operations that are executed, as these are the most illustrative. We
also assume that this program has already run to completion once, so that the

102

4.3 Trace Assisted Cache (Enokida)

trace cache is filled with useful information to reduce the runtime on a subsequent
run.
Listing 4.8: This is a snippet from the execution of nsichneu.c, address 0x200 is the

start of main and so execution begins from there.

200 a0010113 addi sp,sp,-1536

204 5e812e23 sw s0,1532(sp)

208 60010413 addi s0,sp,1536

20C 00200793 li a5,2

210 fef42623 sw a5,-20(s0)

214 4580906f j 966c <main+0x946c>

218 fec42783 lw a5,-20(s0)

21C fff78793 addi a5,a5,-1

... ...

966C fec42783 lw a5,-20(s0)

9670 00f05463 blez a5,9678 <main+0x9478>

9674 ba5f606f j 218 <main+0x18>

After some boot up code that is omitted for brevity, execution of the example begins
at address 0x200, which the processor will execute. The Trace Repository is already
primed with data as soon as the fetch begins for 0xA0010113, so the Trace Repository
will return the pair (5E812E23, 0xFEFC) to the cache. This pair is the raw trace entry
that is stored inside the Trace Repository from a previous run of this program, the
first element of the pair stores the instruction, as can be seen on line 204 in Listing 4.8.
The second element contains the effective address that instruction generated in the
previous run. With this information the cache can begin it’s work, as this instruction
is a STORE it will look at the contents of the cache, discover that the appropriate
entry is empty, mark it as reserved and then signal the TAC to update the state of
that particular trace. This will update the trace as stored in the Trace Repository’s
active set, as it is still technically ‘in-flight’. The movement of data in the architecture
described can be seen in Figure 4.5.

While this is happening the processor is still executing 0xA0010113, so the Trace
Repository will return a new pair (0xFEF42623, 0xFEEC), corresponding to 0x210 in
Listing 4.8. The sequence of events will then be very similar to before, the cache will
look into the space it has available, discover the entry required is empty, reserve it and
then return control to the Trace Repository. At this point the Trace Repository will add
this STORE trace to its active set, as a second in flight instruction.

At this point the processor is processing 0x5E812E23, which means that the Trace
Repository, despite returning the pair (0xFEC42783, 0xFEEC) will be ignored in favour

103

4 Implementing the Platform

Trace Repository

Processor

Controller Standard
Cache

Data Memory

(0x5E812E23, 0xFEFC)

No Data

0xFEFC

Figure 4.5: The first step of this example shows the Trace Repository signalling an
intent to store data at 0xFEFC. This is communicated to the cache, which
then reserves the space and then the controller communicates with the
Trace Repository to mark that trace as in-flight. On an additional point
the diagram is very similar to the one in Figure 4.2, however modules
have been split apart to better illustrate the passing of signals between
the modules. As a result they have been recoloured to reinforce the fact
they are part of the same system, even though they appear separate in the
diagram.

of servicing the processor’s request. This request will store the data from register s0 at
address 0xFEFC, which in reality fills up the already reserved space in the cache from
the previous trace execution of the STORE instruction. At this point, this is exactly
what would have happened in any case, because the cache is cold. The real power
of this solution comes in the next action. Once this happens the Trace Repository
is again signalled to update the state of its active set. This update causes the object
that represents the trace element (0x5E812E23, 0xFEFC) to be marked as complete, so
it can be safely overwritten, as it is no longer in flight. This can be seen in Figure
4.6.

Now the processor moves on to executing 0x00200793, but the Trace Repository
has returned the same pair as previously (FEC42783, FEEC). This pair can now be
actioned, so the cache performs a LOAD to the correct place in the cache for address
FEFC. This LOAD happens much earlier than it otherwise would have done, not taking
place from the processor’s point of view for another four instructions. This allows
more overlapping, so that when the memory bus would have been idle, it is now
performing useful work. This LOADwill execute, be stored in the cache and then the
Trace Repository will be signalled to mark this trace element as done, because it has
been completely performed, unlike the STORE operations where we need to wait for

104

4.3 Trace Assisted Cache (Enokida)

Trace Repository

Processor

Controller Standard
Cache

Data Memory

(0xFEC42783, 0xFEEC)

(0xFEFC, 0x1122AABB)

0xFEFC

Figure 4.6: In this step the processor overrides the pair from the Trace Repository by
requesting to store 0x1122AABB at address 0x1122AABB. This is communic-
ated to the cache, which writes the data, as the memory has not been used
before.

the data to become available. This can be seen in Figure 4.7.

The Trace Repository then returns a new pair (0xFEC42783, 0xFEEC). However, again
the processor wants to execute the instruction at 0x210, so that supersedes the
preemptive call. This STORE takes very little time, because again the data can very
quickly be stored in the cache. Then, the processor will take the JUMP instruction
to 0x966C, as per the instruction at 0x214 and will execute the load instruction at
0x966C to load data from 0xFEEC. Now at this point, under normal circumstances the
processor would have to stall and wait for this LOAD to complete, because the data
cannot be in the cache and the caches are cold, so a long wait would ensure. However,
because of Trace Assisted Caching, this is not the case and the data is in fact already
available in the cache. This means that the instruction takes relatively little time and
the processor can move on to the next branch instruction instead. This can be seen in
Figure 4.8.

This pattern is repeated throughout the execution of this code, with the cache getting
as far ahead of the processor as it can without violating the semantics of the program
being executed and then the processor catching up as it actually executes the program.
This means the process is transparent as far as the processor is concerned; from
its point of view, it seems as though every memory access that is preemptively
resolved is a cache hit, so all of the modifications are confined to the cache not to the
processor.

105

4 Implementing the Platform

Trace Repository

Processor

Controller Standard
Cache

Data Memory

(0xFEC42783, 0xFEEC)

No Data

0xFEEC

0xFEEC

Figure 4.7: Here the processor is not requesting any memory operations, so the
Trace Repository’s request for a LOAD can be actioned. This misses in the
cache and is then passed to the data memory to be recalled. Once this
is completed, the Trace Repository can be updated to mark this trace as
complete.

Trace Repository

Processor

Controller Standard
Cache

Data Memory

(FEC42783, FEEC)

0xFEEC

0xFEEC

Figure 4.8: Now that the cache is primed with the information from 0xFEEC, when
the processor requests the data it becomes a cache hit, when otherwise it
might have been a cache miss. This then reduces the overall runtime of
the program by having overlapped this fetch with the processor executing
other instructions.

106

4.4 Experimental Hardware

4.4 Experimental Hardware

In this final section on experimental design, we will consider what our expectations
might be of a platform that follows the design we have already laid out. This
includes not only the Trace Recorder, but also the TAC and its associated Trace
Repository. We will then conclude by thinking about the very practical concerns of
implementing the platform, before moving on to conducting the experiments in the
next chapter.

4.4.1 Expectations of the Platform

A fair question to ask before we consider the concrete implementation of the experi-
mental hardware platform is how we expect it to behave with regards to some key
parameters. What should the time and space requirements be for a system like this?
What kind of expectations can we set around its behaviour? And, how effective do
we think it will be?

Time & Space Requirements

Taking the questions of time and space first, the TAC is essentially implemented
as two large modules, a cache implementation and the Trace Repository. These
are composited by a higher level SystemVerilog wrapper that co-ordinates their
interactions and communicates with memory. Taking these three components in
turn, the cache implementation (either Direct-Mapped or Set-Associative) is relatively
fixed and also does not have a complicated implementation. We would expect
it to have a fairly low usage of both memory3 and computation resources 4 as a
result, and contribute only a small amount to the overall hardware footprint of the
platform.

Turning now to the Trace Repository, we need a mechanism to communicate the
traces that have been captured back to the processor as it is running; as a result this
component consumes a large amount of hardware. In our current design the Trace
Repository stores 48-bit traces (32 bits for the instruction that generated the memory
access being tracked and 16 bits for the effective address). This means that if we
wanted a Trace Repository to take up the same amount of memory resource as the
cache, we could only have 85 trace entries stored at once. This is not enough for
any reasonable speed ups. Therefore, the decision was made to include the whole

3BRAMs and LookUp Table (LUT) memory.
4LUTs, Flip-Flops (FFs) and Digital Signal Processor (DSP) resources.

107

4 Implementing the Platform

trace for this implementation to demonstrate the technique, accepting that there will
certainly be more efficient ways to filter this data to gain the maximum advantage for
a minimal resource spend.

The Trace Repository also features several data structures that are needed in order
to track the execution of traces. These include a set of in-flight memory operations,
held in a circular buffer and known as the ‘active-set’, as well as a tracker that
matches cache indexes with trace indexes, so we know how the two relate. This
is further compounded in the Set-Associative case, because the state of the FIFO
queues have to be tracked as well. These data structures scale as the cache does, with
more cache entries prompting larger trackers. The active set may need to scale as
well, but the size is determined much more by program dynamics, as it relates to
the amount of instructions that can be executed before the preemptive execution is
blocked.

Putting all this together, we would expect the Trace Repository to contribute a large
amount of hardware to that used by the TAC, especially in the Set-Associative case,
where more needs to be tracked. Looking at the SystemVerilog wrapper that co-
ordinates these two smaller components, wewould expect this to have negligible extra
effect on memory resources. The only data structure it contains that is not a signal
or a simple variable is a mapping of cache to trace indexes, which is a copy of that
held by the Trace Repository. Consequently we would expect the Trace Repository to
dominate these areas in terms of resource usage, as this is where a large amount of
hardware will be needed to realise the design.

In terms of computation resource requirements, wewould expect the Trace Repository
to score very low, as it is essentially a glorified memory representation. The Trace
Repository does not need to perform calculations or reformat the data it presents,
so we would expect this measure to be very low when compared to a standard
cache. This is particularly true in the Set-Associative case as it features a lot of extra
querying hardware to find the correct placement of data elements in a set. Similarly,
we would expect the wrapper to contribute very little. Even though it contains a large
state machine, each of the phases does very little in terms of computation, setting
some signals here and there, but mostly waiting and acting as a coordinator, rather
than trying to compute results. As a result we would expect the usage in these
categories to be very low across the board, with the exception of the Set-Associative
cache.

Time requirements are a slightly different story. It has to be possible for the Trace
Repository to respond on every clock cycle to allow trace requests to execute as soon as
possible. However, there is very little the Trace Repository does other than co-ordinate
querying an underlying memory implementation and presenting the results, so its

108

4.4 Experimental Hardware

time requirement in terms of clock cycles will be very low. The cache, of course, has
to co-ordinate with main memory, so requires a lot more time to be spent, which will
dwarf any extra cycles the repository makes by a large amount.

Moving to the question of the overarching SystemVerilogwrapper, this contains a very
large state machine, which adds multiple clock cycles on top of every memory request,
regardless of whether it is preemptive or not. This is because, in this implementation,
a lot of co-ordination with the Trace Repository is required, even in the case that a
memory access is made from the CPU, so there can be no preemptive element. We
will explore this further in Chapter 6, but the overhead of adding the TAC is quite high
in terms of clock cycles. Therefore, we would expect that it would not perform as well
as the cache in the case of there being no preemptive actions at all. This is because an
overhead is being incurred on every memory access, with no chance for the required
overlapping to occur to reduce or outweigh this penalty. The other elements should
introduce negligible time constraints, so we would expect the wrapper to be the
largest contributor to any time overheads that we may see in the data. It is hoped
that this can be accounted for and will not force worse performance than a standard
cache, but this has to be accepted as a possibility.

Behaviour & Effectiveness

In terms of settings expectations for behaviour and effectiveness, it seems unlikely that
the TAC will outperform a standard cache in all situations that could be presented.
For a start, it would be exceptional if the TAC outperformed a standard cache in a
situation where the active set of a program fitted entirely into the cache. Because
the TAC relies on overlapping computation and memory instructions to achieve a
runtime decrease, if there are no, or very few, memory interactions, then there will
no spare capacity for the overlapping, and thus no performance increase. It would be
reasonable to expect there to be parity between the two implementations, since in
this situation they would be performing exactly the same operations. However, as
mentioned in the previous section, there is quite a high clock cycle overhead on the
TAC, this seems less likely in practice.

Secondly, we would not expect the TAC to perform particularly well for programs
where there is very little gap between the memory instructions executed, i.e. there is
very little ‘slack’ in the memory utilisation figures. We will define this more precisely
in Chapter 6, but for now, if we consider that the TAC exists to re-order memory
operations in such a way as to decrease runtime, if there are no gaps into which
memory operations can be moved, it will be impossible to re-order them. In addition,
due to the way that the TAC will be engineered, any CPU requests will automatically

109

4 Implementing the Platform

trump any preemptive requests. Therefore, it may well be the case that we could
incur a large amount of overhead with regards clock cycles for no benefit, because all
the TAC does is act like the cache implementation at its heart, rather than in a more
intelligent way.

All that being said, it should be expected that if we are in a situation where the
cache hit rate is fairly low and the memory accesses in the program are fairly spread
out, then the TAC should perform much better than a standard cache, because
there is more potential for the overlapping that is crucial to its success. Exactly
how much overlapping of the memory instructions is required in order to perform
better than a standard cache, while outweighing the overhead the TAC adds, is a
question that the experimental results should help us answer. We will return to this
in Chapter 6.

4.4.2 Implementing the Platform

Now we have considered what we might expect from the experimental hardware
platform comes the task of actually constructing it. All the source code and auto-
mation scripts that power the experiments can be seen in Zenodo [171, 172]. This
section will discuss some of the finer details of the implementation of the plat-
form, how it was tested and some of the post-implementation results from the
Xilinx Vivado suite. This will allow us to compare our expectations with the actual
implementation.

The hardware was created using the Xilinx Vivado suite of tools, version 2018.2. The
source code for the hardware is written in SystemVerilog and synthesised using
Vivado’s internal synthesiser and bit-file generator. The hardware platform is com-
posed of several custom designed hardware blocks, including:

• A delay element (which emulates the large delays seen when consulting main
memory, this will be discussed further in Chapter 5)

• The TAC (Enokida)

• The Trace Recorder (Gouram)

• The chosen cache implementation (Direct-Mapped/Set-Associative)

The designs also feature a System Integrated Logic Analyser (ILA)[155], a block that
Xilinx themselves provide, so that signals can be monitored in a way that is akin
to their simulation environment, but without the flexibility of software simulation.
This will be used to measure runtime and extract various counter values from the
system-under-test once the program has completed its execution. More about this

110

4.4 Experimental Hardware

process is discussed in Chapter 5, as well as the automation framework designed to
extract this data.

Testing

As Vivado allows us to create a block design describing our hardware platform and
then re-use that design in multiple projects, we took this approach when testing
the platform. Several testbenches were designed, each of which could utilise the
same block design and input a memory file as the experimental hardware, but in an
environment that allowed much more introspection than after the design has been
synthesised and a bitfile created. The simulation environments also made use of a
proprietary Xilinx AXI Verification IP (VIP)[156] block that effectively mocked out
the memory implementation to allow us to focus on confirming the effectiveness of
the hardware that had been designed.

For purposes of clarity, it’s worth mentioning at this point that a lot of this testing was
not done using the real hardware itself. Vivado offers a comprehensive simulation
suite that allows you to do functional and some non-functional testing inside of the
tool itself. This was very useful when testing, not only because it allows a global view
of all the signals that are being communicated in a design, but also because it allowed
single step debugging over some of the complex synchronisation and state machine
mechanics that were present. In addition Vivado bundles a lot of functionally accurate
models of the components you can synthesise in the tool, however it makes very few
guarantees about the timing accuracy of some of these models. It would have been
very convenient to simply use the more accurate simulations to take measures of
latency and other non-functional properties. This would have given us the ability
to better analyse any delays or overheads introduced by the process and also would
give us richer data to analyse, rather than being constrained by the data limits of the
ILA that Xilinx provides. Unfortunately there were several issues with doing this,
and these are explored in the opening sections of Chapter 5.

Very little, if any automated testing was done in these environments. This was
not because it was not possible, but because the nature of the hardware that was
being written was iterative, and it was very obvious when mistakes existed as the
hardware would get stuck and programs would fail to complete. As a result, a lot of
end-to-end testing was used to confirm that the caches performed as expected. As
the final state of the program could be known in advance, it was easy to capture this
in testbenches and then use those to quickly iterate on multiple hardware designs.
In future, or if this work were to be continued, some extra time investing in a
more comprehensive, module level set of testcases would be a welcome addition

111

4 Implementing the Platform

to the platform. SystemVerilog has had a rich assertion language for a long time
versions of Vivado have been published since this work was done that support those
features. Therefore, in future versions of the platform this would be worthwhile
pursuing.

Actual Implementation Figures & Implications

Once the system was tested, the code could then be synthesised and a bitfile created,
with appropriate ILA triggers applied. This allows us to inspect the utilisation figures
to see how they compare to our expectations in sections above. In Tables 4.2 to 4.5,
we can see the number of resources that are consumed by each of the components
of interest, broken down by sub-module where appropriate. It should be noted
that in Tables, 4.2 and 4.3, Gouram (the Trace Recorder) is instantiated in the Top
Level design, for debugging purposes, even though it is not shown in this table.
Diagrams showing how those submodules are related are included in Figures 4.9a
and 4.9b.

From looking at these tables we can see that the Trace Recorder Gouram is the
largest consumer of resources, taking up the vast majority of the resources of the
whole platform, with the worst offenders being the EX Tracker and the various
buffers that power it. This is very much an artifact of the Proof-of-Concept nature
of this implementation, but is also due to the fact that architecturally we chose an
asynchronous model for tracking the memory requests. As can be seen from the
tables, the IF tracker takes a synchronous approach and this is much more efficient
in terms of resources.

Looking at the caches specifically, we see that the Direct-Mapped cache takes many
fewer resources across multiple categories than a Set-Associative cache of the same
size. This is not surprising, because a Direct-Mapped cache does not have any of the
search hardware required in the Set-Associative cache. Specifically on this search
hardware, this was implemented using a for loop construct in SystemVerilog. Since
implementing this, it has come to light that when this synthesises, it trades space for
time and synthesises parallel hardware to satisfy the specification. Unfortunately this
only came to light during the data analysis and due to the length of time required to
gather the data there was no opportunity to explore alternatives.

Regarding the Trace Repository in the TAC, as we predicted the Trace Repository is
the largest element by an order of magnitude and contains a large amount of BRAMs
to implement the XPM that backs the Trace Repository. This is a further topic we
will return to in later chapters. This is something we could also further optimise and

112

4.4
Experim

entalH
ardw

are

Top Level Design

Sayuru (Cache)

Tag Module Data Module

RI5CY

(a) This tree diagrams shows how the modules that make up our hardware platform (Kuuga) are arranged hierarchically when instantiated with a
standard cache.

Top Level Design

Enokida (TAC)

Cache

Tag Module Data Module

Trace Repository

XPM Memory

Gouram (Trace Recorder)

IF Tracker EX Tracker

Trace Buffer req Buffer addr Buffer rvalid Buffer

RI5CY

(b) This tree diagrams shows how the modules that make up our hardware platform (Kuuga) are arranged hierarchically when instantiated with a TAC.

Figure 4.9: Tree Diagrams of module inter-relationships in Simple and Complex Hardware Platforms.

113

4
Im

plem
enting

thePlatform

Name Slice LUTs Slice Registers F7 Muxes F8 Muxes Slice LUT as Logic

Top Level Design 141939 27736 18598 4985 39679 140364
— RI5CY 6234 2535 502 77 1875 6234
— Sayuru (Direct Mapped) 1048 2250 224 112 836 1016
—— Direct Mapped Cache Implementation 848 1794 224 112 692 816
——— Tag Store 742 1792 224 112 653 742
———Data Store 96 0 0 0 40 64

LUT as Memory LUT Flip Flop Pairs Block RAM Tile DSPs

1575 16229 279.5 6
0 1364 0 6
32 269 0 0
32 1 0 0
0 0 0 0
32 0 0 0

Table 4.2: This table shows the hardware utilisation breakdown for our hardware platform, using a Direct-Mapped cache with no trace
assistance.

114

4.4
Experim

entalH
ardw

are

Name Slice LUTs Slice Registers F7 Muxes F8 Muxes Slice LUT as Logic

Top Level Design 145894 30694 19768 5545 42519 144283
— RI5CY 6233 2535 502 77 1788 6233
— Sayuru (Set-Associative) 5016 5208 1394 672 3044 4948
—— Set-Associative Cache Implementation 4816 4738 1394 672 2901 4748
——— Tag Store 4679 4736 1362 672 2857 4675
———Data Store 128 0 32 0 45 64

LUT as Memory LUT Flip Flop Pairs Block RAM Tile DSPs

1611 17179 279.5 6
0 1369 0 6
68 1460 0 0
68 1171 0 0
4 1169 0 0
64 0 0 0

Table 4.3: This table shows the hardware utilisation breakdown for our hardware platform, using a Set-Associative cache with no trace
assistance.

115

4
Im

plem
enting

thePlatform
Name Slice LUTs Slice Registers F7 Muxes F8 Muxes Slice LUT as Logic

Top Level Design 158675 35606 19766 5250 45136 156338
— RI5CY 6233 2535 502 77 1845 6233
— Gouram 128452 15430 17720 4762 35800 128452
—— IF Module 27770 7606 4936 98 7611 27770
—— EX Module 100669 7790 12784 4664 28227 100669
——— Trace Buffer 2176 1771 192 0 669 2176
———Memory rvalid Buffer 44045 620 6024 2204 12010 44045
———Memory req Buffer 44208 624 6024 2204 12058 44208
———Memory addr Buffer 1246 4136 544 256 1705 1246
— Enokida (TAC) 15965 8023 1238 360 5253 15885
—— Trace Repository 14411 5544 790 142 4273 14411
——— Trace Repository Memory Implementation 254 13 0 0 201 254
—— Direct Mapped Cache Implementation 1333 1794 448 218 1024 1301
——— Tag Store 1231 1792 448 218 983 1231
———Data Store 96 0 0 0 40 64

LUT as Memory LUT Flip Flop Pairs Block RAM Tile DSPs

2337 21342 664 6
0 1362 0 6
0 10665 0 0
0 7450 0 0
0 3168 0 0
0 1763 0 0
0 560 0 0
0 532 0 0
0 38 0 0
80 4578 256 0
0 4320 256 0
0 5 256 0
32 3 0 0
0 2 0 0
32 0 0 0

Table 4.4: This table shows the hardware utilisation breakdown for our hardware platform, using a Direct-Mapped TAC.

116

4.4
Experim

entalH
ardw

are

Name Slice LUTs Slice Registers F7 Muxes F8 Muxes Slice LUT as Logic

Top Level Design 183448 43555 28249 9022 53788 181025
— RI5CY 6232 2535 502 77 1816 6232
— Gouram 128434 15430 17720 4762 36198 128434
—— IF Module 27743 7606 4936 98 7609 27743
—— EX Module 100678 7790 12784 4664 28628 100678
——— Trace Buffer 2176 1771 192 0 670 2176
———Memory rvalid Buffer 44046 620 6024 2204 12076 44046
———Memory req Buffer 44217 624 6024 2204 12141 44217
———Memory addr Buffer 1246 4136 544 256 1790 1246
— Enokida (TAC) 40709 15972 9721 4132 14087 40543
—— Trace Repository 33527 10458 7384 3007 10677 33527
——— Trace Repository Memory Implementation 254 13 0 0 225 254
—— Set-Associative Cache Implementation 6839 4740 2337 1125 3271 6769
——— Tag Store 6670 4738 2305 1125 3197 6664
———Data Store 160 0 32 0 72 96

LUT as Memory LUT Flip Flop Pairs Block RAM Tile DSPs

2423 23678 664 6
0 1364 0 6
0 10651 0 0
0 7449 0 0
0 3156 0 0
0 1768 0 0
0 551 0 0
0 522 0 0
0 39 0 0
166 6857 256 0
0 5419 256 0
0 7 256 0
70 1165 0 0
6 1163 0 0
64 0 0 0

Table 4.5: This table shows the hardware utilisation breakdown for our hardware platform, using a Set-Associative TAC.

117

4 Implementing the Platform

potentially implement further caching to both reduce hardware requirements and
also reduce the overhead it introduces.

Overall regarding resources it is obvious that the TAC requires a higher level of
resource spend than a standard cache of the same size. Comparing Table 4.2 and
Table 4.4, specifically Enokida to Saruyu, the latter takes 15965 LUTs while the former
is only 1048, and similar drops are seen throughout the resources measured. A
similar story is seen in the other tables (4.3 and 4.5 where the former takes 5016
LUTs and the latter 15965. This is reasonable, not only because it is much larger
than the bare cache implementations that are recorded in the tables, but also because
if we consider other sources we see similar implementations fall along the same
lines. If we consider the VexRiscv [81], a processor that implements the same RISC-V
standard as the RI5CY, we can see from Table 4.6 that the caches are much more
efficiently implemented. Our implementations only include a 0.5Kib cache, while this
implementation includes a 4Kib Instruction Cache and a 4Kib Data Cache. Clearly
many more resources are being used in our designs than necessary, even when
comparing raw implementations. Furthermore, the figures for our implementation
have not been engineered to reduce resource consumption, whilst the VexRiscv is a
commercial offering. However, it demonstrates the potential for optimisation that
exists, which gives us hope that even though this Proof-of-Concept implementation
is very resource hungry, this will not be the case indefinitely, if more time is spent on
the implementation.

Despite the high level of hardware spend the tables document, it is hoped that the
high level of resource usage will lead to a commensurate high level of improvement
to justify the large hardware spend, compared to having a non Trace Assisted Cache.
This could be lower were it to be implemented differently and this is certainly a target
for optimisation in future versions. However, this broadly falls into line with what we
would expect to see for the TAC, in that it takes up more resources than a standard
cache, but hopefully produces results which a standard cache would never be able
to.

4.5 Summary

This chapter has shown how the experimental platform we are going to use was
implemented. From high level descriptions down to discussions of the correctness of
the hardware designed, we now have a high level of confidence that the hardware
will perform as required in order to conduct the experiments and answer our research
questions. We have also discussed the time and space usage of this new technique,
which provides another axis on which to compare our implementation with that of

118

4.5
Sum

m
ary

Name Slice LUTs Slice Registers F7 Muxes F8 Muxes Slice LUT as Logic

Top Level Design 1952 1489 2 0 644 1951
— VexRiscV (Caches Included) 1937 1456 2 0 635 1937
—— VexRiscV 1937 1456 2 0 635 1937
———Data Cache 718 163 0 0 282 718
——— Instruction Cache 490 75 0 0 183 490

LUT as Memory LUT Flip Flop Pairs Block RAM Tile DSPs

1 582 5.5 4
0 569 5.5 4
0 569 5.5 4
0 35 2.5 0
0 43 1.5 0

Table 4.6: This table shows the hardware utilisation breakdown in a competitor to RI5CY, the VexRiscv. This is an in order 5-stage design
that includes an instruction and data cache bundled with the processor. These results were measured on the same FPGA as the
RI5CY to allow a direct comparison.

119

4 Implementing the Platform

a standard cache. We have seen the very high level of resource usage that the TAC
consumes and hope that it will be justified by the performance increase the TAC
allows in the programs we test.

The next step is to design an experiment such that we can verify whether the
addition of this new technique is in fact worthwhile. Using these experiments
we can more robustly quantify the improvement and also begin to identify and
generalise a pattern for the types of program that are most amenable to this technique.
The next chapter describes how this experiment is set up and then documents the
results.

120

5 Experiments & Results

Now that we have an experimental platform we need to define a series of experiments
to verify the claims made about the reduction in runtime the TAC should enable.
This chapter covers those experiments and presents the results before also engaging
in a discussion of those results.

5.1 Experimental Setup

By way of an experiment, we need a series of tests that can verify whether we see
reductions in the runtime of programs when a TAC is used. To achieve this we have
taken a benchmark suite that will serve as a stimulus, in this case the Mälardalen
Worst-Case Execution Time (WCET) [76] benchmark. This benchmark was chosen
because it is well established and well used. In addition it does not rely on particular
hardware implementations, as all the benchmarks are provided as compilable C code.
There are discussions to be had around how much the choice of benchmark will
influence the results, for example Mälardalen is very focussed on code that is difficult
to predict a WCET for so you often find unstructured code or code with lots of nested
loops. Clearly that has an impact on the situations that arise during the execution
of the code and its conceivable that there are some situations that will more favour
Trace Assisted Caching. We will discuss this further in Chapter 6 once the data has
been analysed as it would be premature to speculate about this before the results
were known.

With a benchmark decided, we need to further decide on the hardware variations
we will exercise with the benchmarks. We use five different configurations that take
into account a control implementation (so simply a processor with no data caching
whatsoever), and the four combinations that arise from choosing a Direct-Mapped or
Set-Associative cache and including the Trace Assisted hardware or not. This leads to
the following five hardware variations:

1. A RI5CY processor directly connected to data memory with no caching (No
Cache)

121

5 Experiments & Results

2. A RI5CY processor with a standard Direct-Mapped cache connected to data
memory (Saruyu - Direct-Mapped)

3. A RI5CY processor with an 8-way Set-Associative cache connected to data
memory (Saruyu - Set-Associative)

4. A RI5CY processor with a Direct-Mapped TAC connected to data memory
(Enokida - Direct-Mapped)

5. A RI5CYprocessorwith an 8-way Set-Associative TACconnected to datamemory
(Enokida - Set-Associative)

These variations were chosen because they allow us to answer the research questions
posed in Chapter 1. The first question around runtime reduction can be answered by
comparing the No Cache Hardware Variant to the other 4, while the second question
can be answered by pairwise comparing Saruyu and Enokida for the same underlying
cache implementation. By tracking not only runtime but also the number of situations
each cache experiences as the benchmarks execute we will also be in a position to
answer the third question around overheads; and the final question can be answered
by considering data from the two Enokida variants.

Not only this but by varying the cache implementations, it allows a view onto the
impact of associativity on the performance of the TAC. By including a Set-Associative
and a Direct-Mapped cache it is possible to see how increasing associativity helps
or hinders the TAC. Of course this could be further expanded by including a
fully-associative cache, so that the full continuum was covered. However, because
fully-associative caches of a large size are rarely implemented, it was difficult to
find an implementation that could be synthesised, so this was not included in this
thesis.

Each of these hardware variations will be loaded with the executable code of one of
the benchmark tests, loaded onto a Xilinx VC707 FPGA and then monitored using
the ILA provided by Xilinx to track the execution time of the benchmark in clock
cycles. This will be then be stored and can be compared against the other hardware
variations.

5.1.1 Use of the Experimental Approach

It’s worth exploring at this point the use of this experimental approach at all. Much
research in the area of caching and architecture uses simulation as it allows a much
deeper level of introspection into the underlying dynamics at play. In addition it
would allow a better separation of cost and benefit, which might better allow us to

122

5.1 Experimental Setup

answer the third research question from Chapter 1. This was originally how the
experiments were planned to be run, for the reasons previously stated, however as
mentioned in Section 4.4.2 there were several issues that prevented this from working
in the manner originally envisioned.

The first problem was that had we used a simulator like gem5[25] or a similar tool we
would have lost access to a lot of preexisting code that allowed us to focus on only
implementing the new pieces of the architecture rather than every other part of the
system. As RI5CY and the Pulpino SoC are synthesised using Vivado there are already
a lot of components written and maintained by the project that are written with the
Vivado toolchain in mind. Furthermore Vivado has access to a lot of proprietary
Xilinx hardware models which again reduce the burden of work from having to
implement our own interconnects or memory modules had we used something like
gem5.

The second problemwas much more of an issue in that Vivado has limited simulation
options in that its most accurate simulations require you to have already completed
the ‘Implementation’ phase of design. However even then there were many situations
where designs worked in simulation but actually failed on the real hardware. This
was mostly due to a lack of specificity in the SystemVerilog specification around
default values and required several complex workarounds to reproduce in simulation,
common cases in the actual hardware. Not only this but to get the hardware
descriptions to the point of being able to use this level of simulation it was necessary
to expend nearly as much time it took to generate the bitfile. Specifically, in Vivado the
process of generating a bitfile goes through 4 phases, each component is synthesised
in isolation, the whole system design is synthesised, the synthesised design is then
implemented on the chosen hardware and finally a bitfile is created. To pass through
the first three stages took around 50 minutes per design, and the generation of
the bitfile around 30 seconds. So with the combination of the questions around
accuracy and the fact that it confers no time advantage made experimentation more
attractive, despite the fact that the level of information that could be attained was
lower.

That being said, a lack of information was sometimes a benefit, particularly for the
largest traces, adpcm being a prime example, trying to simulate the program even
simply in a functional simulator, proved to be impossible on multiple occasions due
to the length of the benchmark and the amount of data it produced. Even though
actually implementing the design did cause a lot of information to be untracked,
using the ILA made more benchmarks tractable than some alternatives because it
focused the information captured.

So for these reasons, although it trades off a lot of the capabilities of introspection

123

5 Experiments & Results

that would have been useful, taking the experimental approach allowed us to re-use
many components that cut down the implementation time, allowed us more accurate
results and also allowed us a broader range of benchmarks to compare. That being
said the introspection was not lost as with some work the functional simulations
could be correlated with the hardware behaviour, allowing more introspection than
the hardware alone provided.

5.1.2 Process for Each Experiment

Each experiment follows a predefined set of steps:

1. Compile thebenchmark into an executableusing theriscv32-unknown-elf-gcc
compiler. This requires a custom linker script as the Harvard memory layout is
very different to the von Neumann architecture that gcc is expecting.

2. Take the compiled binary and decompile it to convert it into Xilinx’s proprietary
mem format, which is essentially a textual representation of the binary contents
of the memory we want to load. As part of this process, the instruction and
data segments of memory will be split into separate mem files. This will be
passed into the hardware synthesis process in order to load the program into
the BRAM, because although Xilinx has tools to do this post-synthesis, they do
not support custom processor designs.

3. Generate a top-level design that references the generated mem files and the pre-
existing Block Designs for the hardware variation that is required. These block
designs also include monitoring tools in order to track the runtime effectively
from within the FPGA.

4. Synthesise and implement this design as a bitfile that can be loaded onto the
FPGA. There is some extra complexity here, because triggers for the logic
analyser have to be loaded so that they run at boot. Thus, there is a small
amount of back and forth between the FPGA and the host machine to arrange
this.

5. Load the bitfile onto the FPGA and then connect to the ILA to extract the data
generated while the program was running.

a) In cases where the TAC was not included the program was run once and
the results collected. In the other cases, the program was run twice, the
first time as though it had no cache run to prime the trace repository and
the second time with the Trace Assisted Caching enabled. The second time
end-to-end is reported and the first run through of the program is ignored.

124

5.1 Experimental Setup

Great care was taken to ensure that the same event markers were used to
measure the end-to-end time, so that neither hardware variation had any
advantage or disadvantage.

b) This required small changes to Gouram and Enokida in order to recognise
when the program had turned from a first run into a second. This was
accomplished by injecting an artificial store into the zero register. As this is
not something anyone could want to do, it was considered to be different
enough that it would not be confused for a genuine instruction. In future
implementations, this could become a custom RISCV instruction, but as
that is relatively complex to achieve, it was deemed out of scope for this
thesis.

6. Export this data into a script that calculates the runtime of the program and the
values of various counters for cache misses, cache hits and so on. The runtime
specifically was calculated by triggering the ILA on the JUMP instruction, before
the first instruction of the main function. This trigger was set to be in the
middle of the capture window for the ILA, so that it would also capture the first
instruction of main. It was then possible to scan through the address values
recorded and work backwards to the first clock cycle of a data_req signal that
related to the first instruction of main. This calculated the start time. As the
end time was dictated by the program hitting the trap state, the decision was
made to designate the end time as the start of the third repetition of the JUMP
instruction that formed the trap state. This was consistent for each hardware
variant.

7. Store these values and then begin again with a new hardware configuration or
benchmark as appropriate.

All these steps were automated via a automation framework, known as Ichĳou
[171].

5.1.3 Specific Experimental Concerns

In discussing the experiment, there are a few important issues that should be raised
at this point to give a full and accurate account of exactly how the experiments work.
The first point to make is that not all the Mälardalen benchmarks were run for these
experiments. It was decided that only a subset of 25 out of the full set would be run,
leaving out the following benchmarks:

• compress

• crc

125

5 Experiments & Results

• edn

• fir

• lms

• ndes

• sqrt

• st

• whet

They were largely discounted for three key reasons, with each presenting one or more
of the following problems:

1. The Benchmarks required access to memory directly - In certain benchmarks,
particularly compress, it is assumed you can know a-priori howmuchmemory
will be available to the program. However, because of the way Vivado generates
memory, this introduced a circular dependency into the automation script.
Consequently it was very difficult to tune the parameter effectively, so the
decision was made to exclude benchmarks that exhibited this behaviour.

2. Intrinsic use of Floating Point Operations - The RI5CY processor that was
used for these experiments, whilst having the option to be configured with a
floating point unit, was not configured as such for these experiments due to the
complicated pipeline behaviour that would introduce. This is not to say that
our approach wouldn’t work but would have required the repetition of work
already completed to track the stages of the floating point pipeline. As a result,
for reasons of simplicity, this particular avenue was not explored. Consequently,
any benchmarks that relied on the use of floating point numbers were excluded.

3. Traces Too Large for trace repository - The trace repository was limited in size
to 131,072 trace entries. Consequently, any benchmarks that had more than
that number of memory operations could not be used. This eliminated some of
the largest benchmarks due to their length and the profligate way they utilised
memory instructions.

It is also worth mentioning that some of the other benchmarks had to be slightly
modified in order to remove their reliance on floating point calculations. The
three benchmarks that suffered from this were minver, select and qsort-exam,
consequently they are postfixed by -intwhen they are presented in the results. There
were also a few small fixes to the logic in some benchmarks, as some were hitting
segmentation faults in the processor and reading undefined data.

126

5.2 Results

In addition, benchmarks like bsort, that rely on arbitrary data, were changed to use
a fixed known value before the execution of the benchmarks. For example, in bsort
there was a fixed array of 100 numbers given to the function, rather than generating
them randomly on each run. This was done because we had made a simplifying
assumption that the two runs of a program would be consistently parameterised so
as to focus on the implementation of the TAC, rather than focusing on other issues.
Relaxing these restrictions is considered future work.

A further point to make is that extra hardware was also introduced to artificially delay
calls to memory. Though this was not ideal, it was necessary for two reasons. The first
was that the FPGA we used, the VC707, did not have an easy way to communicate
with its on-board DRAM when the definition of memory that was expected by
the RI5CY was out of sync with what was provided by the on-board DRAM. This
meant it was very difficult to store the programs we wanted in memory and then
measure the interactions with the DRAM. BRAMs, on the other hand, could be
reconfigured into any non-standard configuration and is compatible with the Xilinx
XPM system. Therefore we arrived at a compromise, that we would use BRAMs,
which have very low latency, and delay them by introducing artificial delay modules.
This effectively simulates a very slow main memory compared to a CPU, which can
execute instructions much faster. To be specific the delay module introduced a delay
of 50 cycles to the round-trip latency of a request to memory. As seen in Figure
2.1 this is roughly in line with what would be expected from main memory in a
medium-sized embedded system.

With all this in hand, we can now progress to the results of these experiments
and attempting to understand what they tell us about runtime decreases in these
circumstances.

5.2 Results

The results of the experiments are presented below in several forms, the first of
which is a graph that shows the runtime, in clock cycles, of each of the benchmarks
executed on the different hardware variants. The benchmarks are ordered by
increasing number of memory instructions recorded, a very rough approximation of
complexity.

Turning back to our research questions from Chapter 1 we can immediately pick
out some interesting details from this graph. The first is that the blue lines in each
bar group are never exceeded by any of the other hardware variants. That being
the case it’s fairly easy to conclude that the adding the TAC does reduce runtime,

127

5
Experim

ents&
Results

bs janne_com
plex

fac

fibcall

insertsort

select-int

qsort-exam
-int

duff

cover

cnt

m
inver-int

recursion

expint

jfdctint

ud qurt

fdct

nsichneu

prim
e

ns ludcm
p

fft1

bsort100

m
atm

ult

adpcm

103

104

105

106

107

Benchmark

Ru
nt
im

e
(C

lo
ck

C
yc
le
s)

A Graph to Show the Runtime of Benchmarks when executed on Hardware with Different Cache Configurations

No Cache
Direct Mapped Cache

8-Way Set Associative Cache
Direct Mapped TAC

8-Way Set Associative TAC

Figure 5.1: This graph shows the runtime of each of the benchmarks as it executed on each hardware variant. The raw data used to plot
this graph can be seen in Appendix B.

128

5.2 Results

however as it also clear from the graph it does not reduce runtime as much as
the standard caches in any of the benchmarks that were tested. There are several
particular occasions where the performance is very close, such as cnt, prime and
expint but other occasions where performance is barely comparable between the
solutions, such as fac and recursion. In Chapter 6 we’ll analyse these particularly
poorly performing benchmarks as they have several interesting features that give
insight into why there is such a performance disparity. To make clear the difference in
performance Figure 5.2, will now plot the percentage improvement of each hardware
variant over the No Cache variant. This will allow us to normalise the performance
differences so we can see how much improvement or degradation is experienced in
each case.

Figure 5.2 shows in even more clarity exactly where the performance differences are
in the various benchmarks. In general the results are somewhat disappointing as,
even though we expended much more hardware, as we saw at the end of Chapter
4, the performance of the TAC never exceeded the performance of the standard
caches. From these results it would therefore appear as though we have to answer
our second research question in the negative, as there are no examples of the TAC
outperforming the standard caches for any of the benchmarks we tested. The
outliers mentioned in the previous paragraph also become more pronounced when
the data is viewed in this format, particularly in the cases of fac, recursion and
minver-int.

A further point to be made is that when we consider associativity the Set Associative
cache, without trace assistance, is consistently the best across every benchmark.
Specifically, it improves runtime over not having a cache by around 67% on average
and by 18% over a Direct-Mapped cache of the same size, as can be seen in Table 5.1.
This is despite the usual trade off between higher associativity and higher access times,
as mentioned in Chapter 2. Though no concrete analysis has been done as to exactly
the reasoning for this, since this thesis is concerned with the effects of adding the TAC
not the changes in associativity, it is conceivable that due to the relatively small size of
the cache the searching overhead is not comparable to the time it takes to writeback
an element to main memory. Since this phenomena happens much more frequently
in Direct-Mapped caches due to their design this could explain the consistently better
performance. However of course this is speculative and would need measurements
of each of the phenomena in question to quantify exactly.

To look more specifically at the exact performance differences, Table 5.1 shows
the percentage improvement or degradation when comparing the different caching
hardware variants to each other and from this we can see that the TAC always
exhibits a degradation, in one case of over 40%, when compared to a standard

129

5
Experim

ents&
Results

bs janne_com
plex

fac

fibcall

insertsort

select-int

qsort-exam
-int

duff

cover

cnt

m
inver-int

recursion

expint

jfdctint

ud qurt

fdct

nsichneu

prim
e

ns ludcm
p

fft1

bsort100

m
atm

ult

adpcm

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Benchmark

Pe
rc
en

ta
ge

Im
pr
ov

em
en

to
ve

rR
un

ni
ng

w
ith

N
o
C
ac
he

A Graph to Show the Percentage Improvement for each Benchmark against running the benchmark without a Cache

Direct Mapped Cache
Direct Mapped Trace-Assisted Cache

8-Way Set Associative Cache
8-Way Set Associative Trace-Assisted Cache

Figure 5.2: This graph shows the percentage improvement for each hardware variant over our control hardware, which has no caching
at all and is directly connected to memory. This allows us to show how much adding the TAC is of benefit and sometimes
of detriment to different benchmarks on different pieces of hardware.The raw data used to plot this graph can be seen in
Appendix B.

130

5.3 Exploring Cache Metrics

cache.

This adds further weight to our negative answer to our second research question,
and in the next chapter we will explore exactly the reasons for some of these very
large degredations in performance, particularly focusing on the largest outliers, duff,
fibcall, fac and janne_complex among others. At the other end of the spectrum,
some of the degradations are around 1%, such as insertsort, fac and fft1. What
makes these benchmarks so amenable to this technique, while some seem almost
allergic to it? This will also be explored in the next chapter. The key figure to bear
in mind from this table specifically is that the average degradation in performance
is 8%, which considering the large hardware spend identified in Chapter 4 is very
disappointing.

5.3 Exploring Cache Metrics

To begin that process of making sense of these results we can also consider some of
the ancillary metrics that were captured during the experiments, particularly those
around cache behaviour. Therefore, in the next set of tables we show increasingly
more detailed data about each cache implementation.

5.3.1 Standard Caches

For the simple caches we are more limited in the information we can capture, because
the number of situations that can arise is not as great as in a TAC. Consequently, every
memory access is either a cache hit or a cache miss and may involve a write-back to
memory if the desired location is full. This can be split further into hits and misses
that are in response to LOAD or STORE instructions. Tables 5.2 and 5.3 display this
information for a standardDirect-Mapped cache and a standard 8-way Set-Associative
cache respectively.

If we consider these tables at face value we start to see some indications as to the
performance differences. We will expand upon these in the next chapter, but if we
consider that the central idea of Trace Assisted Caching is that cache misses can be
converted into cache hits through overlapping if we look at benchmarks like expint,
insertsort and prime the number of misses present is very low as a proportion of
the total number of memory interactions. For example in Table 5.2 expint records
only 20 out of over 2000 memory interactions that were cache misses, while for
insertsort it’s 33 out of around 800, which gives limited space for any improvement
from the TAC. In the Set-Associative case it’s even more pronounced, with only 15

131

5
Experim

ents&
Results
Benchmark Improvement

(Set-Associative vs. No
Cache)

Improvement
(Set-Associative vs.
Direct-Mapped)

Degradation
(Set-Associative TAC

vs. Standard
Set-Associative)

Degradation
(Direct-Mapped TAC

vs. Standard
Direct-Mapped)

bs 73.68% 17.98% 10.50% 8.37%
janne_complex 83.07% 0.00% 19.60% 19.66%

fac 62.19% 37.42% 1.07% 7.11%
fibcall 87.04% 10.18% 41.28% 37.52%

insertsort 75.56% 8.58% 0.80% 1.26%
select-int 75.64% 32.37% 5.14% 5.25%

qsort-exam-int 76.40% 41.51% 10.98% 6.84%
duff 79.36% 29.49% 18.93% 14.98%
cover 62.39% −2.86% 2.65% 4.45%
cnt 51.63% 3.94% 2.36% 3.25%

minver-int 70.50% 30.38% 9.65% 6.65%
recursion 65.69% 34.93% 8.22% 7.92%
expint 77.22% 2.68% 7.06% 6.60%
jfdctint 65.42% 19.61% 15.26% 12.03%
ud 69.49% 20.71% 9.04% 8.21%
qurt 46.43% 15.25% 3.94% 3.66%
fdct 74.86% 35.27% 13.24% 10.78%

nsichneu 58.78% 8.86% 7.66% 6.79%
prime 77.78% 1.70% 5.07% 7.06%
ns 62.22% 4.13% 3.67% 3.40%

ludcmp 47.00% 16.40% 3.29% 3.99%
fft1 48.02% 13.47% 1.10% 3.16%

bsort100 67.08% 16.80% 3.61% 4.68%
adpcm 78.73% 36.35% 14.35% 10.76%
matmult 44.35% 12.05% 2.45% 1.67%

Table 5.1: This table details the performance increase/decrease when comparing the runtime of each of the benchmarks in the situations
given in the headings. For example, the Improvement (Set-Associative vs. No Cache) gives the percentage improvement of the
runtime when a Set-Associative cache is added compared to not having a cache at all.

132

5.3
Exploring

CacheM
etrics

Benchmark Cache Hits
(Load)

Cache Hits
(Store)

Cache Misses
(Load)

Cache Misses
(Store)

Writebacks
(Proceeding

Load)

Writebacks
(Proceeding

Store)

bs 42 8 7 8 2 0
janne_complex 128 43 0 8 0 0

fac 91 35 37 45 23 37
fibcall 238 115 2 10 2 2
duff 794 196 56 150 51 80

qsort-exam-int 564 147 107 76 57 36
select-int 598 155 62 56 44 33
insertsort 594 189 11 22 7 5
expint 1504 497 5 15 5 5
cover 889 366 206 9 29 1

recursion 812 431 217 280 190 235
jfdctint 1253 337 272 342 159 245

minver-int 1092 282 190 151 124 88
fdct 1556 555 340 254 199 153
ud 1657 425 286 115 115 69
cnt 861 399 158 126 45 101

nsichneu 2202 3 269 490 211 271
prime 3899 1727 9 23 8 15
qurt 1214 645 257 454 203 292
ns 4646 932 823 8 112 0

ludcmp 3208 1338 981 1165 626 617
fft1 3897 2707 687 926 574 488

bsort100 48170 13233 8294 1657 4944 692
adpcm 76672 32876 6592 6220 6209 6037
matmult 43550 6984 19392 4722 4075 793

Table 5.2: This table lists the number of each type of event that occurs during the run of each benchmark with regards to cache behaviour
when run using a Direct-Mapped Cache. Hits and misses are broken up into LOAD and STORE operations, as are cache misses.
Writebacks are split up similarly, but the split is made based on the instruction they preceded.

133

5
Experim

ents&
Results

Benchmark Cache Hits
(Load)

Cache Hits
(Store)

Cache Misses
(Load)

Cache Misses
(Store)

Writebacks
(Proceeding

Load)

Writebacks
(Proceeding

Store)

bs 44 8 5 8 0 0
janne_complex 128 43 0 8 0 0

fac 113 48 15 32 14 15
fibcall 240 115 0 10 0 0
duff 801 236 49 110 24 3

qsort-exam-int 661 187 10 36 10 5
select-int 651 177 9 34 8 4
insertsort 605 196 0 15 0 0
expint 1509 497 0 15 0 0
cover 879 367 216 8 38 0

recursion 936 565 93 146 81 111
jfdctint 1371 456 154 223 134 169

minver-int 1232 346 50 87 39 46
fdct 1767 720 129 89 71 52
ud 1827 463 116 77 71 35
cnt 894 398 125 127 46 86

nsichneu 2331 3 140 490 122 346
prime 3906 1733 2 17 2 2
qurt 1339 916 132 183 83 122
ns 4741 932 728 8 67 0

ludcmp 3610 2085 579 418 304 241
fft1 4327 3364 257 269 159 168

bsort100 52035 14524 4429 366 3332 277
adpcm 82571 38699 693 397 418 282
matmult 49985 9172 12957 2534 1745 871

Table 5.3: A this table features the same categories of presentation as Table 5.2, but focuses on the Set-Associative cache.

134

5.3 Exploring Cache Metrics

misses for both expint and insertsort for the same number of memory accesses
overall.

If we compare that with the performance measures we’ve seen, particularly in Figure
5.2, we would expect to see parity in the ideal case but this is consistently not the case.
In fact expint and prime experience non-trivial performance degradations compared
to their equivalents running with standard caches. expint has a degradation of
7.06% when comparing Set-Associative Caches and 6.6% in the Direct-Mapped case,
whereas prime has a 5.07% degradation in the Set-Associative case and 7.06% in the
Direct-Mapped case. This suggests that there are overheads being introduced by
the TAC which are being incurred even in the cases where there is little potential
for it to act. This goes someway to explaining the average performance penalty that
is incurred in the transition to using a TAC and this will be explored more fully in
Chapter 6.

5.3.2 Trace-Assisted Caches

If we now move on to the TAC we can track many more events, because we introduce
more possibilities through the addition of the preemptive behaviour. Cache hits are
split into three variants for both LOAD hits and STORE hits. The first of these is the
simplest, which is a straight cache hit. Here, the CPU requests some data and it is
already in the cache with no preemptive action having been taken to place it there
directly. Of course it may be the case that the set of previous instructions that caused
this piece of data to occupy this place in the cache had preemptive elements, but
we only track at the granularity of individual memory instructions, not chains of
instructions that cause an outcome.

The second type of cache hit has a preemptive element, but that preemptive element
was a cache hit. This means that when the trace was recalled from the trace repository
it was found that the data was already in the cache, so no action was required. The
third type is a cache hit with a preemptive miss, this is the same as the previous
type, but a cache miss occurred, so there is the potential for a real memory operation
to have occurred also. The measurements relating to events of this type can be
seen in Table 5.4 for the Direct-Mapped cache and Table 5.6 for the Set-Associative
Cache.

Cache misses are still fairly simple, because if data is not present in the cache
there cannot have been any preemptive action, otherwise the cache query would
have hit. As a result, they are only split into LOAD and STORE. Writebacks are also
tracked separately, but are further subdivided by whether they occurred as part of
a preemptive action or in response to a CPU request. The measurements for these

135

5 Experiments & Results

events are shown in Table 5.5 for the Direct-Mapped Cache and Table 5.7 for the
Complex Cache.

Considering this new data there are two key points that will inform some of our
discussions in the later chapters. The first is that we had been assuming that
the a high number of preemptive actions would be a positive indicator of higher
performance relative to the standard caches but this is not the case. Taking bsort100
in the Direct-Mapped case, 11478 preemptive actions out of a total number of 71354
memory interactions. However, according to Table 5.1 there is still a degradation
in performance of 4.68%. This implies there is not a direct correlation between the
number of preemptive actions taken and the corresponding performance increase
and adds further weight to the idea that overheads are being introduced somewhere
in the process. A further interesting example of this phenomena is matmult with
31409 preemptive actions but still a 1.67% degradation. While this is better it still
underscores that the standard caches are more economic as they produce better
performance and utilise fewer resources as shown in Chapter 4.

To dig into this slightly further it’s not only the number of preemptive actions that
occur its also the type of action that has a bearing, for example in the case of fibcall
all the preemptive actions are STORE operations. When we combine that with the fact
that there are few if any writebacks recorded this shows that even though these STORE
operations are being made preemptively they’re not reducing runtime very much
because they are mostly storing data in the cache rather than in main memory. This
gives the impression that for workloads that can store their working set effectively in
the cache, the TAC is not going to give any advantage because there are relatively few
memory operations that actually access main memory and so very few operations to
overlap.

On a related note the fact that the type of preemptive instruction is very important is
also demonstrated by adpcm. If we consider in Table 5.3 that it records 418 Writeback
proceeding a load but then in the comparative table (Table 5.7) for the TAC that is
only reduced to 381 while the performance is degraded by 14.35% but if we consider
fft1 it manages to reduce the same figures from 147 to 85 and shows only a 1.1%
degradation. This further demonstrates that not all preemptive operations contribute
equally and this is a theme we’ll explore further in Chapter 6 with reference to specific
benchmarks and their properties.

Anomalies

At this point it is worth addressing some of the anomalies that this very granular
data has. If we consider Table 5.6, we can see that the columns Cache Hit (Loads +

136

5.3
Exploring

CacheM
etrics

Benchmark Cache Hits
(Loads + No
Preemption)

Cache Hits
(Loads +

Preemptive
Hit)

Cache Hits
(Loads +

Preemptive
Miss)

Cache Hits
(Store + No
Preemption)

Cache Hits
(Store +

Preemptive
Hit)

Cache Hits
(Store +

Preemptive
Miss)

bs 37 5 2 8 0 2
janne_complex 114 14 0 43 0 1

fac 85 6 0 33 2 1
fibcall 238 0 0 115 0 2
duff 794 0 0 193 3 3

qsort-exam-int 529 35 0 144 3 14
select-int 564 34 0 137 18 14
insertsort 583 11 0 189 0 12
expint 1504 0 0 497 0 3
cover 711 178 11 364 2 2

recursion 799 13 0 374 57 4
jfdctint 1249 4 0 305 32 15

minver-int 989 103 0 261 21 10
fdct 1536 20 0 548 7 3
ud 1542 115 3 415 10 8
cnt 446 415 0 391 8 10

nsichneu 951 1251 3 2 1 4
prime 3899 0 0 1296 431 3
qurt 1140 74 11 628 17 1
ns 4598 48 8 932 0 2

ludcmp 2906 302 13 1309 29 3
fft1 3596 301 19 2651 56 2

bsort100 37515 10655 0 12424 809 14
adpcm 73667 3005 0 27147 5729 4
matmult 12195 31355 0 6934 50 4

Table 5.4: This table captures the behaviour of the Direct-Mapped TAC with regards to the cache hits it experiences over the course of
running each benchmark.

137

5
Experim

ents&
Results

Benchmark Cache Misses
(Load)

Cache Misses
(Store)

Writeback
(Load)

Writeback
(Store)

Writeback
(Preemptive

Load)

Writeback
(Preemptive

Store)

bs 5 6 2 0 0 0
janne_complex 0 7 0 0 0 0

fac 37 44 23 37 0 0
fibcall 2 8 2 2 0 0
duff 56 147 51 80 0 0

qsort-exam-int 107 62 57 36 0 0
select-int 62 42 44 33 0 0
insertsort 11 10 7 5 0 0
expint 5 12 5 5 0 0
cover 195 7 29 1 0 0

recursion 217 276 190 235 0 0
jfdctint 272 327 159 245 0 0

minver-int 190 141 124 88 0 0
fdct 340 251 199 153 0 0
ud 283 107 115 69 0 0
cnt 158 116 45 101 0 0

nsichneu 266 486 211 271 0 0
prime 9 20 8 15 0 0
qurt 246 453 203 292 0 0
ns 815 6 112 0 0 0

ludcmp 968 1162 626 617 0 0
fft1 668 924 574 488 0 0

bsort100 8294 1643 4944 692 0 0
adpcm 6592 6216 6209 6037 0 0
matmult 19392 4718 4075 793 0 0

Table 5.5: This table captures the behaviour of the Direct-Mapped TAC with regards to the cache misses and writebacks it experiences
over the course of running each benchmark.

138

5.3
Exploring

CacheM
etrics

Benchmark Cache Hits
(Loads + No
Preemption)

Cache Hits
(Loads +

Preemptive
Hit)

Cache Hits
(Loads +

Preemptive
Miss)

Cache Hits
(Store + No
Preemption)

Cache Hits
(Store +

Preemptive
Hit)

Cache Hits
(Store +

Preemptive
Miss)

bs 44 0 4 8 0 2
janne_complex 128 0 0 43 0 1

fac 115 0 2 52 0 10
fibcall 240 0 0 115 0 2
duff 802 0 1 236 0 4

qsort-exam-int 660 0 8 187 0 23
select-int 652 0 6 177 0 22
insertsort 605 0 0 196 0 12
expint 1509 0 0 497 0 5
cover 879 0 180 366 0 4

recursion 946 0 65 573 0 54
jfdctint 1367 0 1 441 0 42

minver-int 1224 0 31 338 0 35
fdct 1771 0 2 714 0 15
ud 1821 0 93 461 0 41
cnt 889 0 110 402 0 107

nsichneu 2324 0 71 7 0 2
prime 3907 0 1 1734 0 5
qurt 1335 0 29 906 1 26
ns 4739 0 643 932 0 2

ludcmp 3608 0 186 2106 0 61
fft1 4356 0 104 3371 0 10

bsort100 52036 0 4304 14527 0 40
adpcm 82576 0 62 38707 0 91
matmult 49575 0 12631 8811 0 2059

Table 5.6: This table captures the behaviour of the Set-Associative TAC with regards to the cache hits it experiences over the course of
running each benchmark.

139

5
Experim

ents&
Results

Benchmark Cache Misses
(Load)

Cache Misses
(Store)

Writeback
(Load)

Writeback
(Store)

Writeback
(Preemptive

Load)

Writeback
(Preemptive

Store)

bs 1 6 0 0 0 0
janne_complex 0 7 0 0 0 0

fac 11 18 11 4 2 6
fibcall 0 8 0 0 0 0
duff 47 106 21 4 1 1

qsort-exam-int 3 13 3 4 8 1
select-int 2 12 2 4 5 0
insertsort 0 3 0 0 0 0
expint 0 10 0 0 0 0
cover 36 5 5 0 34 0

recursion 18 84 18 61 57 44
jfdctint 157 193 141 164 1 14

minver-int 27 60 21 39 24 12
fdct 123 80 72 48 2 7
ud 29 38 15 17 56 21
cnt 20 16 8 3 38 82

nsichneu 76 484 68 329 66 0
prime 0 11 0 1 1 0
qurt 104 162 73 116 16 22
ns 87 6 5 0 62 0

ludcmp 395 336 211 182 92 39
fft1 124 252 85 153 62 5

bsort100 124 320 100 263 3239 12
adpcm 626 298 381 194 37 72
matmult 736 836 189 752 1878 138

Table 5.7: This table captures the behaviour of the Set-Associative TAC with regards to the cache misses and writebacks it experiences
over the course of running each benchmark.

140

5.3 Exploring Cache Metrics

Preemptive Hit) and the analogous column for STORE operations are empty on every
benchmark except 1. In addition, there are no reported preemptive writebacks in
Table 5.5. With regards to the first point, there are several explanations as to why this
is, ranging from a complex set of cache behaviours combined with the behaviour of
the preemptive unit, to a bug in the counters that are used within the hardware to
measure these metrics. However, we will not focus on that explicitly in the upcoming
sections, for several reasons. The first is that these are very much ancillary metrics
that help to give context to the main data in Figure 5.1 and Table B.1. Therefore,
their accuracy is helpful, but not crucial to the overall picture that the data provides
to us. Moreover, the issue that may be present in the hardware is most likely one
of miscategorisation, rather than an error in measurement, because we know that
there should be no more interactions with memory as we add the TAC; they should
simply be re-ordered, and if you calculate the number of memory accesses these
figures entail the numbers are still consistent. As a result, this data is still useful to
talk broadly about the number of preemptive actions taken, which is how it will be
used in Chapter 6.

The second point, on the number of writebacks, has very similar features to the first
point. However, it also has the added caveat that if we look at the results reporting
0 writebacks, it is quite consistent with the number of preemptive misses recorded.
Therefore, as the previous paragraph points out, this data is still useful and will be
expounded on further in Chapter 6.

5.3.3 Summary

Putting all this together the results give a fairly negative impression when compared
to our research questions. They show that while it’s true the TAC reduces runtime,
when compared to a standard cache it does so less and costs more hardware resources
to do so. In some benchmarks this can be as bad as a performance reduction of 40%,
however on average the degradation is less at around 8%.

In terms of reasoning as to why this is, the results seem to suggest that there are
overheads being introduced by the technique that are retarding its performance as
compared to a standard cache. Further it appears that individual program dynamics
play a big role in exactly how effective the technique is. The next chapter will
take a more in depth approach and consider the outlying data, digging deeper into
individual benchmarks to help us both answer our remaining research questions
positively or negatively but also to further our understanding of why and how the
technique could be improved with more work in future.

141

Part IV

Analysis & Conclusion

143

6 Analysis

Having undertaken a surface-level analysis of the data we collected in the previous
chapter we will now proceed more closely analyse the measurements taken. We know
from the previous chapter that we saw a degradation in performance from the use of
the TAC, so we will first consider some of the generalised causes of this degradation
and use those causes to categorise the set of benchmarks. After that, we will consider
six benchmarks, fac, insertsort, fibcall, janne_complex, fft1 and duff, each
showing a very large or very small degradation, to give us some insight into the
best and worst performing benchmarks. We will then conclude by generalising this
approach to codify the characteristics of a benchmark that will benefit from Trace
Assisted Caching.

6.1 Causes of Lack of Improvement

The overall story of the data we have seen is that the addition of a TAC actively
inhibited the performance of the CPU over using a standard cache. This story was
repeated in both the Direct-Mapped and Set-Associative cases. In this section we will
focus on the major causes of this degradation and link the benchmarks to those causes
to build a broad picture of what is most inhibiting performance.

6.1.1 Lack of Capacity to Improve

The first reason why we may not see an improvement in performance is that some
benchmarks may have already achieved their maximum effectiveness simply by
adding a cache. For example, let us consider a program that has an active set
smaller than the capacity of the cache. If we then further suppose the active set
is sympathetically laid out in memory, so as not to incur any conflicts over cache
locations, then once all the data has been loaded into the cache, there will be no further
interactions with memory. Programs like this will run incredibly fast, because main
memory has been cut out of the loop entirely. However, this situation is antithetical
to Trace Assisted Caching.

145

6 Analysis

The rationale behind Trace Assisted Caching is that overlapping main memory
accesses, with the execution of normal instructions, will reduce runtime and improve
system performance. However, cases like this are antithetical to that idea, because
there are no interactions with memory to overlap. Using Trace Assistance will
then become a hindrance to the performance of a program, because there are more
overheads associated with Trace Assisted Caching than with using a standard cache
(see Section 6.1.4).

The marker for problems of this sort are benchmarks where the recorded number
of cache misses is very low as a proportion of the total number of memory requests.
This is true of janne_complex, fibcall, select-int, insertsort, expint and prime,
and the trend is more pronounced in the Direct-Mapped case, as shown in Figure 6.1.
This figure also shows that while there is some relationship it’s not as simple as this
being the only contributory factor.

Furthermore, if we consider a Memory Activity Diagram1 of memory activity across
the four hardware variants that contain caches, we can see this behaviour clearly. As
Figures 6.2 and 6.3 show, we see lots of activity initially and then a large period where
no memory accesses occur before the program terminates.

All this demonstrates that in this situation there is little that can be done by the TAC
to decrease the runtime of the program, because there are no (or very few) memory
operations it can overlap. Consequently, in these situations the TAC will only add
overhead, leading to the longer runtimes we have recorded.

6.1.2 Gap Between Memory Instructions

The second reason why we may not see improvement is that for Trace Assisted
Caching to be effective there has to be a reasonable gap between pairs of memory
instructions that map to the same cache block. This is somewhat explained in Section
4.3.1, but is worth explaining again in this context.

Suppose we fetch a trace from the trace repository that was a LOAD from a particular
memory address. Then further suppose the cache block it is to be loaded into is
empty, so this piece of data can be loaded from memory preemptively and execution
continues. Now, if the processor is someway behind the preemptive execution and
then suppose the trace repository fetches the next trace to action and it is a LOAD from
a different address that maps to the same cache block. If we allow this to go ahead,
when the first LOAD is executed by the processor it will receive the data intended
for the second LOAD, which is clearly incorrect. This obviously cannot be allowed to
1A 1D heatmap that shows a colour if memory is active i.e. serving a request from the processor, and
no colour if not.

146

6.1 Causes of Lack of Improvement

(a) Direct-Mapped Cache

0 % 10 % 20 % 30 % 40 %
103

104

105

106

Cache Misses as a Proportion of Memory Accesses

Ru
nt
im

e
(C

lo
ck

C
yc
le
s)

(b) Set-Associative Cache

0 % 5 % 10 % 15 % 20 % 25 %

103

104

105

106

Cache Misses as a Proportion of Memory Accesses

Ru
nt
im

e
(C

lo
ck

C
yc
le
s)

Figure 6.1: The two graphs above compare the runtime of each benchmark against the
proportion of cache misses the processor experienced the Direct-Mapped
and Set-Associative TAC runs of each benchmark. The trend lines are
plotted using linear regression and show that while some data points track
the trend line there are many outliers, which clearly shows that more than
this one variable is responsible for the results experienced.

147

6
A
nalysis

Figure 6.2: This diagram shows the slices of time where memory was active during the execution of each of the hardware variants for
the insertsort benchmark. For the purposes of these diagrams we consider memory to be active between the start of the
processor’s request to memory and the rvalid signal going high. We can clearly see that there is an initial period of activity
and then a large period of time where memory is not utilised at all. This is consistent with the behaviour described.

148

6.1
CausesofLack

ofIm
provem

ent

Figure 6.3: Similarly to Figure 6.2, this Memory Activity Diagram shows the slices of time where memory was active during the execution
of each of the hardware variants for the prime benchmark. Again we see similar behaviour.

149

6 Analysis

happen if we want to maintain consistency, so the only option is to effectively make
the preemptive part of the cache do nothing while we wait for the processor to catch
up.

The consequence of this is that the preemptive elements of this scheme can only be so
effective if there is a large enough gap between memory instructions that address
the same cache block to not cause blockages and stalls like this. There is an obvious
‘sweet-spot’ whereby the processor is far enough behind the TAC to allow the TAC to
conduct preemptive actions, but close enough so that any stalling instructions will
not effect the execution of the TAC for very long. To further complicate matters, this
threshold or gap is dynamic because it depends on the density of instructions, the
cache hardware and mapping scheme that are used and a variety of other factors. As
a result, if programs are very dense in the number of memory instructions and the
breadth of addresses they reference, there may be little opportunity for the TAC to
make an impact.

This kind of behaviour is exemplified in benchmarks where we see little reduction in
the number of misses between having and not having a TAC, or in situations where
the benchmark is very memory bound, i.e. all the data cannot be held in the cache
at once. This is particularly true in all the Direct-Mapped TAC measurements, as
seen by comparing Tables 5.2 and 5.5, but also in duff, jfdctint and fdct, as shown
by comparing Table 5.3 with 5.7. The reason for this is because the Direct-Mapped
cache is so limited in its choice of data placement it is going to need to writeback to
memory much more than the Set-Associative cache would, so the situation described
above is more common.

Furthermore, this makes the whole process very sensitive to sudden large bursts of
latency. For example, if preemptively, the cache encounters a LOAD that also requires
a writeback very early on in the execution of the program, then there is a delay of at
least 100 cycles while both of these operations execute. (For more details see Section
6.1.3). Once that is complete the likelihood is that another memory operation is
already waiting, because the number of computation instructions required to cover
this gap would be significant if they execute in 4 cycles each. To make matters worse,
this process is self-perpetuating, once the preemptive unit is behind, unless there
is a long run of computation instructions, it is unlikely that it will catch up again.
There are ways this could be alleviated, with techniques that are more akin to OoO
processors, and we will consider some of those in Section 6.3.

150

6.1 Causes of Lack of Improvement

LOAD STORE
Hit 0 0
Miss 1 0

Miss with Writeback 2 1

Table 6.1: This matrix shows how many memory operations it would take to respond
to a request to LOAD or STORE data based on what happens in the cache i.e.
hit or miss.

6.1.3 Types of Misses

A further point to consider when talking about the performance of Trace Assisted
Caching is that it is not just the amount of misses that affect the potential for an
increase in performance. It is important to remember that even though we can, and
often do, count all cache misses as fundamentally equivalent, this is rarely the case.
This is even more pronounced when considering the preemptive case because of
the unique behaviour of the TAC. If we are preemptively attempting to load a value
from memory and we have to writeback a value already present in the cache, that
whole action incurs a double penalty, as this necessitates two independent memory
operations. At the other end of the spectrum, if we have a memory operation that
does not require a writeback and is a STORE, then the penalty is negligible because
preemptive stores cannot make any data changes to the cache.

Consequently, if we think about cache operations, they can be sorted along two
dimensions. The first is whether the operation is a LOAD or STORE and the second is the
type of hit or miss. This forms a matrix which is shown in Figure 6.1. If we consider
Table 6.1 carefully then we can see that the type and combination of misses that a
program exhibits without a TAC will have a major impact on the amount of runtime
that could be saved by applying Trace Assistance. Of course this is multi-dimensional
and depends on other factors such as the gaps between these hits and misses, but
if we consider a benchmark like bsort100 that incurs 4429 LOAD writebacks in the
Set-Associative case and 8294 in the Direct-Mapped case (Tables 5.2 and 5.3), then
you can imagine that it is going to be more difficult to overlap those effectively,
because they are double the length of a simple LOADmiss, so many more computation
instructions will be required.

6.1.4 Overheads Incurred

The final, and perhaps most significant problem the TAC has when trying to increase
performance is the overhead it introduces. A constant problem when designing
new cache optimisations is that often the overhead in performing the optimisation

151

6 Analysis

WOR CHG

CHD

WB

CML

CMS

A
B
C

D

E

F

G

H

I

J

K

L

Figure 6.4: The state machine that details the operation of our standard cache imple-
mentation.

can exceed the gains that made from actually applying it. In this case, the essential
problem is the book keeping and querying of the trace repository that has to occur
for every memory request the CPU makes. Even if this is kept to a minimal number
of cycles, this will accumulate over the course of a long running program, and may
eliminate any benefit. To further re-enforce this point, if we consider the points
made in Section 6.1.3, then we can also see that the types of cache interactions will
have a distinct impact on the overheads involved. For example, if multiple memory
operations are required, say in the case of a LOAD that misses and has to writeback the
data before starting, then a much higher overhead will be incurred than for a straight
miss.

Byway of example, let us consider the process of a cache hit andmiss, in theworst case,
between a Direct-Mapped TAC and a standard Direct-Mapped cache. To make this
easier, we will use the State Machine for the standard cache, shown in Figure 6.4. By
way of explanation, the data captured for the next section was taken from simulations
of the hardware inside of Vivado’s simulator, this allowed us to expose the internal
operations of the cache components, while abstracting away from the details of the
memory implementation.

Overheads in Standard Cache Implementation

First, if we consider a cache hit on our Direct-Mapped cache implementation (Saruyu)
we are already in the WAIT_ON_REQ/WOR state at the start, so let us assume that the

152

6.1 Causes of Lack of Improvement

data_req signal has just gone high to signal that the CPU requires some data. The
state machine will recognise that signal has gone high, set some control signals and
move to the CACHE_HIT_GNT/CHG state, taking one clock cycle. The control signals
set query the cache to see if the data that is required are already present. This will
take up one extra cycle due to the cache implementation. Hence, in the next clock
cycle we can process the result from the cache and discover this request is a hit, so
we transition to CACHE_HIT_DATA/CHD. Then, in the next clock cycle this will return
the data to the CPU and return us to the WAIT_ON_REQ state, taking overall four
clock cycles. This is the same no matter whether the memory request is a LOAD or a
STORE.

If it had been a cache miss instead, then the beginning of the transaction would occur
as before, except that after CACHE_HIT_GNT, assumingwe did not need towriteback, we
would transition to SERVICE_CACHE_MISS_LOAD/CML or SERVICE_CACHE_MISS_STORE
/CMS as appropriate. In the latter case, we expend one clock cycle before returning
to WAIT_ON_REQ, so this flavour of memory transaction also takes four clock cycles.
However, in the former case, with a LOAD miss, we have to perform a read from
memory, so this transaction will take 3 + �2 where �2 is the end-to-end time taken
between requesting the memory read and having the data available to us. If a
writeback has to occur in either case, then we have to add on a further �2 to account
for having to write back the data to memory.

To summarise, if we consider how long in clock cycles it takes to perform each type of
memory transaction, we get Table 6.2.

LOAD STORE

Cache Hit 4 4
Cache Miss 3 + �2 4

Cache Miss (WB) 3 + 2�2 3 + �2

Table 6.2: This table summarises how long each type of memory transaction will take
for the cache to execute. Here �2 refers to the length of time taken from
first requesting a memory access to the point at which the rvalid signal is
raised and the data is accessible.

To demonstrate these figures are reliable we can try to reconstruct the measurements
from these estimates as follows. First, based on simulations of the running program,
we can assume that �2 in this case is 52, as there is a 50 cycle delay on the memory
operation to emulate slow main memory, and then 2 further cycles to perform
the access for real. Now let us consider fac in Table 5.2 running on a standard
Direct-Mapped cache.

To begin we have 126 cache hits that occur throughout the execution of the program
(91 + 35), which each take 4 cycles from a memory perspective, so that adds up to 504

153

6 Analysis

cycles. Following that, we incur 14 LOAD cache misses and 8 STORE misses, neither
of which require writebacks, so 14 ∗ (52 + 3) = 14 ∗ 55 = 770 and 8 ∗ 4 = 32 cycles,
which cumulatively brings us to 1306 cycles. Finally, we have 23 LOAD operations that
required a writeback totalling 23 ∗ (3 + 2 ∗ 52) = 2461 and 37 STORE operations that
also require a writeback totalling 37 ∗ (3 + 52) = 2035. Putting this all together gives
us 5802 cycles. That leaves 1529 cycles to perform the rest of the computation, giving
us a Clock Cycles Per Instruction (CPI) of around 3.3, very much in line with our
expectations.

Overheads in the TAC

Now, turning our attention to the TAC, there are many more situations that can arise
due to the preemptive operations. All these situations are documented as the column
headings of Tables 5.4 and 5.5, but will be repeated here for ease of reference. These
are:

• Cache Hit (No Preemptive Action) - H

• Cache Hit (Following a Preemptive Hit) - HPH

• Cache Hit (Following a Preemptive Miss) - HPM

• Cache Hit (Following a Preemptive Miss & Writeback) - HPMW

• Cache Miss (No Preemptive Action) -M

• Cache Miss (With Writeback) -MW

Each of the items in the list has a separate LOAD and STORE variant. The full list of
times taken can be seen in Table 6.3. For exact details on how all these figures are
derived see Appendix C.

Returning to the two tables, as we can see there is a very large difference between
the amount of time taken to service similar operations between the two broad types
of implementation. This means that even before the TAC has begun, it is at a
disadvantage compared to the standard cache and would need to overlap a lot of
memory instructions to out-perform the standard implementations. This goes a long
way to explaining why we see the results that we do, with respect to no TAC entry
outperforming a non-TAC, over any benchmark. Furthermore, this affects every
benchmark that was run, because these overheads are incurred on every memory
access no matter the outcome, so any improvements here will see improvements
across the entire suite of benchmarks.

154

6.2 Benchmark by Benchmark Analysis

LOAD STORE

H 10 10
HPH 19 20
HPM �2 + 20 21
HPMW 2�2 + 20 �2 + 21

M �2 + 10 11
MW 2�2 + 10 �2 + 11

Table 6.3: This table shows how long it would take each different type of memory
transaction to progress through the system. Of course, especially in the case
of the preemptive elements, the times quoted may happen in two distinct
blocks, once when the preemptive element happens and the other after
that, when the data is actually requested. A further point is that some of
the time allocated into the transactions for book-keeping actually occurs
overlapped with the next instruction. Therefore, while these figures are
indicative, they cannot be used to directly reconstruct the times taken in the
data without accounting for overlapping. For more details see Appendix C.

6.2 Benchmark by Benchmark Analysis

Having now considered some of the more generalised arguments as to why this
technique may have yielded disappointing results, there are several benchmarks that
display abnormal behaviour with respect to the average improvement or degrada-
tion.

6.2.1 janne_complex

Startingwith oneof the smallest benchmarks, janne_complex is a synthetic benchmark
that consists of two loops, where the maximum number of iterations in the inner loop
is dependent on the current number of iterations of the outer loop. This is often used
to test WCET calculations. The source code for the benchmark can be seen in Listing
6.1.

Listing 6.1: Source code that implements the janne_complex benchmark. The com-
mentary has been removed for ease of presentation.

1 int complex(int a, int b)

2 {

3 while(a < 30)

4 {

5 while(b < a)

6 {

7 if(b > 5)

155

6 Analysis

8 b = b * 3;

9 else

10 b = b + 2;

11 if(b >= 10 && b <= 12)

12 a = a + 10;

13 else

14 a = a + 1;

15 }

16 a = a + 2;

17 b = b - 10;

18 }

19 return 1;

20 }

21
22 int main()

23 {

24 int a = 1, b = 1, answer = 0;

25 answer = complex(a, b);

26 return answer;

27 }

If we consider the measurements taken, this shows identical runtime performance
between a Direct-Mapped and Set-Associative cache, but it then has a nearly 20%
performance degradation when compared to the equivalent TAC, as shown in Table
5.1. This is over twice the average degradation of 8%, despite the TAC managing to
overlap one STORE operation in both the Set-Associative and Direct-Mapped cases.
This is a classic example of the problemdescribed in Section 6.1.4, where the overheads
of the TAC are swamping any benefits it might have brought with it. Specifically,
overlapping one STORE instruction would reduce the runtime by at most 50 cycles,
but the overheads incurred would increase every LOAD hit by 9 cycles and there
are 128 recorded cache hits with no preemptive action in the Set-Associative case.
Therefore, it is unsurprising that this is the case when Trace Assisted Caching is
applied.

Another interesting property of this benchmark is that after a few initial STOREmisses,
that are somewhat inevitable unless the cache is prepopulated, all the action takes
place inside the cache itself. This is obvious from the figures as there are nowritebacks
and only seven cache misses that resulted from STORE operations. Consequently,
memory is never accessed, so there is very little capacity to overlap the remaining
operations. This adds further credence to the ideas presented in 6.1.1, that a low
number of misses relative to the overall number of memory transactions leaves little
space for Trace Assisted Caching to achieve anything, though as the graphs in that
section showed that is not the whole story. Ideally therefore, we would expect parity
of performance between the two, but as the overheads are introduced, this is sadly

156

6.2 Benchmark by Benchmark Analysis

not the case, leading to the results we see.

6.2.2 fac

Turning now to fac, we see a quite different story to janne_complex. fac is again
a simple benchmark that recursively calculates the sum of the first 5 factorials
i.e. 0! + 1! + 2! + 3! + 4! + 5!. The code for this benchmark can be seen in List-
ing 6.2.

Listing 6.2: Source code that implements the fac benchmark to calculate the sum of
factorials.

1 int fac (int n)

2 {

3 if (n == 0)

4 return 1;

5 else

6 return (n * fac (n-1));

7 }

8
9 int main (void)

10 {

11 int i;

12 int s = 0;

13 volatile int n;

14
15 n = 5;

16 for (i = 0; i <= n; i++)

17 s += fac (i);

18
19 return (s);

20 }

If we focus on the Set-Associative case we see that the TAC vs non-TAC performance
only differs by around 50 clock cycles or 1.09%, as per Table 5.1. This is an example
where clearly the overheads introduced are to some extent balanced by the savings
that are made through the overlapping and this is borne out when we look at the
results.

As we can see in Tables 5.6 and 5.7 the TACmanages to overlap 10 of the STOREmisses
with writebacks and 2 of the LOAD misses with writebacks. These 12 preemptive
operations also allowed another 6 operations to be converted from hits to misses,
causing a substantial decrease in runtime that was effectively balanced by the
overheads incurred. The reason it can do this, whilst other benchmarks do not display

157

6 Analysis

this behaviour, is obvious if we consider the disassembled binary of the benchmark,
as in Listing 6.3.

Listing 6.3: This listing is the decompiled assembly code for fac, created using a
RISC-V port of objdump.

200 fe010113 addi sp,sp,-32

204 00112e23 sw ra,28(sp)

208 00812c23 sw s0,24(sp)

20C 02010413 addi s0,sp,32

210 fea42623 sw a0,-20(s0)

214 fec42783 lw a5,-20(s0)

218 00079663 bnez a5,224 <fac+0x24>

21C 00100793 li a5,1

220 0200006f j 240 <fac+0x40>

224 fec42783 lw a5,-20(s0)

228 fff78793 addi a5,a5,-1

22C 00078513 mv a0,a5

230 fd1ff0ef jal ra,200 <fac>

234 00050713 mv a4,a0

238 fec42783 lw a5,-20(s0)

23C 02f707b3 mul a5,a4,a5

240 00078513 mv a0,a5

244 01c12083 lw ra,28(sp)

248 01812403 lw s0,24(sp)

24C 02010113 addi sp,sp,32

250 00008067 ret

254 fe010113 addi sp,sp,-32

258 00112e23 sw ra,28(sp)

25C 00812c23 sw s0,24(sp)

260 02010413 addi s0,sp,32

264 fe042423 sw zero,-24(s0)

268 00500793 li a5,5

26C fef42223 sw a5,-28(s0)

270 fe042623 sw zero,-20(s0)

274 0280006f j 29c <main+0x48>

278 fec42503 lw a0,-20(s0)

27C f85ff0ef jal ra,200 <fac>

280 00050713 mv a4,a0

284 fe842783 lw a5,-24(s0)

158

6.2 Benchmark by Benchmark Analysis

288 00e787b3 add a5,a5,a4

28C fef42423 sw a5,-24(s0)

290 fec42783 lw a5,-20(s0)

294 00178793 addi a5,a5,1

298 fef42623 sw a5,-20(s0)

29C fe442783 lw a5,-28(s0)

2A0 fec42703 lw a4,-20(s0)

2A4 fce7dae3 ble a4,a5,278 <main+0x24>

2A8 fe842783 lw a5,-24(s0)

2AC 00078513 mv a0,a5

2B0 01c12083 lw ra,28(sp)

2B4 01812403 lw s0,24(sp)

2B8 02010113 addi sp,sp,32

2BC 00008067 ret

If we look at the structure of this benchmark, at the beginning of each of the
major subroutines (0x200 and 0x254) there are multiple store operations. As these
operations can occur relatively quickly from the point of view of the TAC, the LOAD
operations, which take much longer, can be started much sooner than would be the
case if we were executing under a standard cache. In addition, the density of memory
operations is lower in the most frequently traversed section of the code, with the
highly dense sections occurring at the end of a subroutine or the end of the program.
This demonstrates the suppositions made earlier in the chapter that it is not simply
the overall amount of memory operations available that determines the effectiveness,
but also the distribution of those operations throughout the program that has an
impact.

The corollary of looking at fac is that it shows that while there is work to be done
in addressing the level of overheads, it can be the case that the penalty and benefit
balance out. In which case, if we could reduce the overheads involved with the
technique, while retaining the ability to overlap memory operations in this way,
we could conceivably reach a point where the TAC performed even better than the
standard caches. This is not only because we have reduced the overheads, but also
because that could potentially unlock more overlapping if more memory requests
can be serviced by the TAC. Though of course, this brings into question data hazards
inherent in the program, which are much harder to remedy after the program has
been compiled.

159

6 Analysis

6.2.3 fibcall

fibcall is a relatively simple benchmark that calculates the sum of the first =
Fibonacci numbers in an iterative fashion. The source code for the benchmark is
reproduced in Listing 6.4.

Listing 6.4: This listing implements the fibcall benchmark that calculates the sum
of = Fibonacci numbers.

1 int fib(int n)

2 {

3 int i, Fnew, Fold, temp,ans;

4
5 Fnew = 1; Fold = 0;

6 for (i = 2; i <= n; i++)

7 {

8 temp = Fnew;

9 Fnew = Fnew + Fold;

10 Fold = temp;

11 }

12 ans = Fnew;

13 return ans;

14 }

15
16 int main()

17 {

18 int a;

19
20 a = 30;

21 fib(a);

22 return a;

23 }

In this case, the addition of the TAC leads to an increase of not around 8%, as the
average would suggest, but of around 41% (1109 cycles) in the case of the Direct-
MappedCache and 38% (1096 cycles) in the case of the Set-AssociativeCache, as shown
in Table 5.1. If we look at the Memory Activity Diagram of its execution, in Figure
6.5, we see that the behaviour of fibcall is quite similar to that of janne_complex,
in that after the initial misses, there are long periods of time where main memory is
not accessed at all. Consequently, before we even consider other factors, the potential
for improvement is quite low. But why is the degradation so great in both of these
cases?

If we look more closely we see that all the misses that are incurred in both cases
are always STORE operations and there are no writebacks. Thus, there is a low

160

6.2
Benchm

ark
by

Benchm
ark

A
nalysis

Figure 6.5: The heatmap for the execution of fibcall, if we consider the Direct-Mapped cases at the top, we can see behaviour analogous
to that when describing janne_complex.

161

6 Analysis

potential for overlapping before we begin, because STORE misses will not execute
a memory operation. This leads us to the conclusion that everything is done in
cache. If we combine that with the fact that fibcall has 70% of the instructions it
executes as memory instructions, compared to just below 50% for janne_complex,
we see that there are simply more chances to incur the overheads between the
two benchmarks. Therefore, despite the fact that the two display relatively similar
behaviour, the number of memory operations as a proportion of the total number of
instructions executed has a large influence on the performance hit incurred by adding
the TAC.

This is an opportune corrective to simplistic thinking around some of the issues we
will see in Section 6.5. It is not as simple as saying that the more memory operations
(and therefore misses) a program has, the more it will benefit, because having a
higher proportion of memory operations to computation instructions also gives more
opportunity for overhead costs to accumulate. Any analytical characterisation of
programs to try and discover whether Trace Assisted Caching will help will need to
take this into account.

6.2.4 duff

Turning now to look at duff we see a slightly different picture again. duff is based
on ”Duff’s Device“ [60] a method of unrolling loops in C and forcing the compiler to
emit an unstructured loop. In terms of performance we see a 18.93% degradation
when comparing the Set-Associative cache and Set-Associative TAC and a 14.98%
degradation for the Direct-Mapped version as per Table 5.1. The source code for this
benchmark can be seen in Listing 6.5.

Listing 6.5: This listing implements the duff benchmark, based on Duff’s Device [60].

1 #define ARRAYSIZE 100

2 #define INVOCATION_COUNT 43 /* exec time depends on this one! */

3
4
5 void duffcopy(char *to, char *from, int count)

6 {

7 int n=(count+7)/8;

8 switch(count%8){

9 case 0: do{ *to++ = *from++;

10 case 7: *to++ = *from++;

11 case 6: *to++ = *from++;

12 case 5: *to++ = *from++;

13 case 4: *to++ = *from++;

14 case 3: *to++ = *from++;

162

6.2 Benchmark by Benchmark Analysis

15 case 2: *to++ = *from++;

16 case 1: *to++ = *from++;

17 } while(--n>0);

18 }

19 }

20
21
22 void initialize(char *arr, int length)

23 {

24 int i;

25 for(i=0;i<length;i++)

26 {

27 arr[i] = length-i;

28 }

29 }

30
31
32 char source[ARRAYSIZE];

33 char target[ARRAYSIZE];

34
35 int main(void)

36 {

37 initialize(source, ARRAYSIZE);

38 duffcopy(source, target, INVOCATION_COUNT);

39 return 0;

40 }

First, this benchmark is clearly different to the ones we have considered previously,
because it operates on an array of 100 items, as dictated by the constant in the program.
As a result, since arrays are contiguous in memory in C and caches work by allocating
multiple entries inmemory to a single cache entry, this cannot all be stored in the cache
at once. As a result, it cannot simply be the case that overheads are overwhelming
any benefits. That being said, there are very few gains made by the TACs with only 5
operations occurring preemptively in the Set-Associative case and 6 as per Tables 5.6
and 5.7 in the Direct-Mapped case, as per Tables 5.4 and 5.5.

If we consider the benchmark source code in Listing 6.5 we can see why this is,
because there is very little computation at all occurring in this benchmark. Trace
Assisted Caching as a technique assumes a reasonable balance of computation and
memory access, but since Duff’s Device is completely dedicated to array copying,
and therefore memory accesses, there is no computation with which to overlap the
memory instructions for any benefit.

But it is not only the amount of memory instructions that is important, duff executes
1196 memory instructions over the course of its execution, which means just over

163

6
A
nalysis

Figure 6.6: A Memory Activity Diagram for the execution of duff, we can see that particularly in the later parts of the program the
accesses become much more clustered and close together than in earlier segments.

164

6.2 Benchmark by Benchmark Analysis

58% of the instructions are memory instructions. However, another benchmark like
expint has a similar proportion, but only experiences a 7.06% degradation. Therefore,
it cannot be this alone that determines effectiveness, but also the spread of those
memory instructions. If we consider the Memory Activity Diagram produced for
duff in Figure 6.6, we can see that the memory accesses are very clustered around
particular execution times in the program. Combine this with the fact that we
know the accesses are all to a contiguous data store and we can see the copy will be
sequential, as per Listing 6.5. This is a recipe for the TAC having no time to make any
preemptive moves before being overwhelmed by CPU demand. This suggests that
when considering characteristics in Section 6.5, we need to not only consider absolute
amounts, but also the spread of memory instructions in the program, as it can lead to
programs that have broadly similar miss patterns, but very different performance
characteristics, as a result.

6.2.5 insertsort

Turning now to consider insertsort we see a slightly more positive picture, with
degredations of only around 1% between Standard and TACs, as per Table 5.1.
insertsort implements the standard Insertion Sort algorithm over 10 elements and
as such has a very low proportion of misses, even before any Trace Assistance is
applied. Considering what we have seen in previous sections, we would imagine this
would lead to a much larger degradation, but this is not the case here. Particularly in
the Set-Associative case, the TAC manages to overlap 12 more operations than the
standard cache, which leads to the difference of only 94 cycles between the Trace
Assisted and non Trace Assisted Caches.

The reason this is so successful, relatively speaking, is that even though it is han-
dicapped by the overheads, the majority (65%) of instructions presented have no
memory component at all. This means that though the overheads are certainly
present, their effect is mitigated, as proportionally there are fewer of them. Again this
adds evidence to the idea that parity with the standard caches is not so far away and
in reality tweaking the implementation of the TAC to take advantage of situations
like this could push us to that point very quickly.

A further point here is that if we consider the disassembled executable file in Listing
6.6, we see there is a large section at the beginning of the program that is very
amenable to Trace Assisted Caching. In this section we see lots of STORE operations,
all to distinct addresses. These would normally be fast in a cache anyway, not
requiring a main memory access as the cache is cold, but with Trace Assistance they
can all be brought forward and executed very quickly. This benefit will only be

165

6 Analysis

accessible in the TAC, generating a stream of misses in a standard cache that could
not be avoided.

Listing 6.6: This listing is the decompiled assembly code for insertsort, created
using a RISC-V port of objdump. This is only the start of the mainmethod
of the program, but demonstrates how ammenable the early part of the
program is to Trace Assisted Caching, as there are multiple stores made
to distinct memory addresses in a startup phase.

200 fe010113 addi sp,sp,-32

204 00812e23 sw s0,28(sp)

208 02010413 addi s0,sp,32

20C 001007b7 lui a5,0x100

210 0007a023 sw zero,0(a5) # 100000 <a>

214 001007b7 lui a5,0x100

218 00078793 mv a5,a5

21C 00b00713 li a4,11

220 00e7a223 sw a4,4(a5) # 100004 <a+0x4>

224 001007b7 lui a5,0x100

228 00078793 mv a5,a5

22C 00a00713 li a4,10

230 00e7a423 sw a4,8(a5) # 100008 <a+0x8>

234 001007b7 lui a5,0x100

238 00078793 mv a5,a5

23C 00900713 li a4,9

240 00e7a623 sw a4,12(a5) # 10000c <a+0xc>

244 001007b7 lui a5,0x100

248 00078793 mv a5,a5

24C 00800713 li a4,8

250 00e7a823 sw a4,16(a5) # 100010 <a+0x10>

254 001007b7 lui a5,0x100

258 00078793 mv a5,a5

25C 00700713 li a4,7

260 00e7aa23 sw a4,20(a5) # 100014 <a+0x14>

264 001007b7 lui a5,0x100

268 00078793 mv a5,a5

26C 00600713 li a4,6

270 00e7ac23 sw a4,24(a5) # 100018 <a+0x18>

274 001007b7 lui a5,0x100

278 00078793 mv a5,a5

166

6.2 Benchmark by Benchmark Analysis

27C 00500713 li a4,5

280 00e7ae23 sw a4,28(a5) # 10001c <a+0x1c>

284 001007b7 lui a5,0x100

288 00078793 mv a5,a5

28C 00400713 li a4,4

290 02e7a023 sw a4,32(a5) # 100020 <a+0x20>

294 001007b7 lui a5,0x100

298 00078793 mv a5,a5

29C 00300713 li a4,3

2A0 02e7a223 sw a4,36(a5) # 100024 <a+0x24>

2A4 001007b7 lui a5,0x100

2A8 00078793 mv a5,a5

2AC 00200713 li a4,2

2B0 02e7a423 sw a4,40(a5) # 100028 <a+0x28>

2B4 00200793 li a5,2

2B8 fef42623 sw a5,-20(s0)

2BC 0d00006f j 38c <main+0x18c>

2C0 ...

It also shows an interesting point that differentiates it from the behaviour we see in
fac, which is that fac performs much worse in terms of proportion of unavoidable
cache misses, because it is written recursively and compiled in the same way. Because
of the implementation of subroutines in the RI5CY every JAL instruction requires
a stack frame and return address to be saved to memory, this causes lots of extra
memory accesses that do not actually aid the advancement of the program, but are
merely book-keeping to ensure the processor can continue. As insertsort is written
in an iterative rather than recursive way, this is not necessary. Though we are not
exploring compiler optimisations explicitly in this thesis, it is interesting to note that
transformations of programs into those that are tail-recursive maywell be advisable in
this context. Reducing the number of memory operations that occur, as a proportion
of the instructions executed will give more space and potential slack to allowmemory
instructions to be executed preemptively.

6.2.6 fft1

Drawing this section to a close let us consider, fft1. fft1 computes a Fast Fourier
transform, and from the figureswe can see the performance of the Set-Associative TAC
only degraded by 1.1% compared to the Standard Set-Associative cache. Of course
this is still a degradation but the balance of memory to computation instructions

167

6 Analysis

appears to have protected it more than some of the other examples where double
digit degradations were seen. It boasts only 8217 memory instructions out of 67965
instructions overall, a proportion of 12.1%, whichmeans there is a lot of space between
memory instructions for overlapping to take place. This is shown most clearly in
the memory activity graphs in Figure 6.7, where if we consider the Set-Associative
Cache, we see a large clump of instructions around 74744 that are spread out more
efficiently in the Set-Associative TAC below it. This is also repeated around 164438
clock cycles.

The obvious questions now are: why is it not more effective even than this? And,
why do we still see a performance degradation? The only reason that more memory
instructions are not brought forward earlier is because of data dependencies in the
program. Unfortunately, with code like the Fast-Fourier Transform this is inevitable,
simply due to the very calculation being performed requiring multiple pieces of
data per output result (as each of the # outputs requires a sum of # terms). This
combined with the overheads is what causes the degradation, small as it is, to
occur.

This pattern is repeated in other benchmarks as well, with matmult being the most dir-
ect parallel. Here only 18% of the instructions executed are memory instructions and
so the same behaviour can be observed, as shown in Figure 6.8.

6.3 Resolving Problems of the Implementation

Now we have toured over both the general and specific causes of problems for the
TAC when trying to match the performance of the standard caches let us turn to some
solutions.

6.3.1 Move Towards an OoO architecture

One of the single biggest restraints on the performance of the TAC was the need to
maintain sequential consistency within the programs being executed. As a result, it
was observed during many of the simulation runs that the preemptive elements of
the TAC would sit doing very little for long periods of time if it were the case that
there were a lot of dependent memory transactions in particular parts of the program.
This was compounded by the fact that it was also observed that once the preemptive
parts of the TAC got behind the CPU they rarely caught up again unless there was a
marked shift in the number of memory accesses made. Clearly some of this is the
result of the overheads and those will be dealt with in the next section, but one option

168

6.3
Resolving

Problem
softheIm

plem
entation

Figure 6.7: The Memory Activity Diagram for the execution of fft1, we can see the clustering mentioned around 74744 and 164438 clock
cycles.

169

6
A
nalysis

Figure 6.8: The Memory Activity Diagram for the execution of matmult. If we consider the Set-Associative section at the bottom, we can
see that the clumping is less obvious, but certainly occurs at 441613 and 1545645.

170

6.3 Resolving Problems of the Implementation

to improve the performance is to relax the sequential consistency constraint the TAC
currently imposes.

This could be done in two stages. The first would require implementing something
like the scheme seen for Non-Blocking Caches [34, 112] whereby the TAC can analyse
if its waiting for a read or a write in the blocking location. The cited papers use
MSHRs to maintain the in-flight writes whilst reads can continue assuming they are
independent of the writes that are stored in the MSHRs. This should allow the TAC to
continue execution pre-emptively even though from a strictly sequentially consistent
point of view it shouldn’t be able to.

The second phase would be to then move even further towards a completely OoO
architecture instead. The big problem that stymies OoO processors, however, is how
to decide if certain re-orderings of programs are safe [225], i.e. if you make them,
are the semantics of the program changed? And the big problem with calculating
this is the aliasing problem referred to in Figure 2.7. As a consequence many OoO
implementations are incredibly conservative and don’t gain the maximum speedups
they could because they have to make guarantees about program semantics. If it were
possible to re-engineer the TAC so that it used the information it knew about the
running of the program to re-order thememory operations it could conceivably run for
longer periods without having to stall and therefore executing many more operations
in a way that overlaps with computation. This would be possible because the trace
would have the effective address information present within it so there would be no
ambiguity as to the memory locations accessed. Consequently re-orderings could be
guaranteed to be safe, with the caveat that this relies on the assumption of consistency
between the traces and the actual addresses required.

It’s important to remember also that moving towards an OoO architecture would
increase the salience of solving the inconsistent memory access problem referenced
earlier. The move towards an OoO would have to resolve the problem of effectively
tracking the progress of a program as it executes so that the trace entries would be
correctly associated with the correct processor instructions. Solving this would also
reduce the dependence of the TAC on the program producing the same order of
memory accesses on repeat runs.

In terms of a quantification this would be difficult to quantify exactly because the data
that we have does not give us information about how long, or how many times the
TACwas effectively stalled waiting for a memory address to be marked as ‘completed‘.
However it’s fairly obvious that the more we can execute preemptively and the longer
this can run for the fewer cachemisses will occur from the perspective of the processor
and consequently the shorter the runtime will be. This is certainly something that is
worth exploring, perhaps in future work.

171

6 Analysis

6.3.2 Reducing Overheads

Reducing the overheads that are incurred from the use of the TAC would have
the biggest impact on the runtimes that were measured through the course of
these experiments. The fact that, amongst other problems, the time to get a cache
response doubles, even in the case of a cache hit, is highly undesirable but there
are several options that could be pursued to reduce the overheads, ranging in
complexity.

The first, and most simple option, would be to invert responsibilities slightly in the
case of cache requests that originate in the CPU rather than from the trace repository.
If a request like this was made the trace-assisted part of the cache would be entirely
ignored and the request would be processed as though it was a request to a standard
cache. If just this happened then there would be problems with keeping the state
of the trace repository consistent with what’s really been executed. However this is
where the inversion of responsibility arises, because the cache would then publish it’s
state the trace repository in an asynchronous fashion so the costly action of having to
update both the internal cache representation in the TAC and the trace repository
could be cut out.

If thatwere tohappenwecould eliminate theneed topass through theUPDATE_MAPPING
and UPDATE_TRACE_REPO states, saving 4 cycles from this operation. That would flow
through the other operations as well reducing the length of all of them by at least 4
cycles, if not 8 in the cases where preemptive action is taken.

The second and slightly more involved process would be to further reduce the number
of cycles required by integrating more of the components into the same SystemVerilog
module. At the moment there are multiple examples of transactions betweenmodules
taking 3 or more cycles due to handshakes and acknowledgements. Were those to be
integrated there would be no need for the synchronisation so that would be another
substantial reduction across all the scenarios. Furthermore integrating more of the
modules would reduce the duplication that is present within the components. For
example the trace repository has to store a representation of the cache in order to
track the state of what has and has not been actioned. Integrating further would
remove the need for this because the trace repository could access the state of the
cache directly, rather than having to synchronise its own representation. This would
be similar to the inversion of responsibilities referenced earlier.

All this together would make it possible to reduce the amount of time taken per
scenario that arises in Table 6.3. In the case of simple Hits and Misses to 6 cycles,
only 2 more than a standard implementation and the other scenarios by 8 or more
clock cycles depending upon the exact details of their passage through the state

172

6.4 Applicability of Results

machine. This would not only have an impact on the overall run-time because each
scenario takes less time, but the shorter that the preemptive actions are the more
that can be executed in the gaps between memory instructions so this has a double
benefit.

6.4 Applicability of Results

We have now seen many specific examples of the TAC degrading performance for
specific benchmarks and have also posed some solutions that would allow us to
reduce the overheads it introduces. However on question we still have not addressed
is: exactly how much are the results we have presented dependent on the design
choices made in Chapter 4? This clearly has big consequences for how applicable
these results might be if Trace Assisted Caching were to be more broadly applied.
Therefore, let us consider a number of questions:

1. How dependent are the results on choosing a RISC-V processor, configured as
we did i.e. with a simple 4-stage pipeline?

2. How dependent are the results on choosing the RISC-V ISA, as opposed to
another?

3. How dependent are the results on the particular size of cache chosen and how
might a larger or smaller cache impact the results?

4. How dependent are the results on the Mälardalen benchmark workloads
exercising the processor in a particular way? How might this be different with
other benchmark suites?

6.4.1 Dependence on Processor Configuration

The processor we used in these experiments was a 4-stage RISC-V processor, but how
much did this impact the results we measured? Clearly if we had chosen an OoO
processor, as opposed to an in-order processor, then we would have introduced a
large amount of non-determinism into the execution. That wouldmean this technique
would fail to be of much use in its current form. That is not to say the technique
would be useless, as the information it provides would be useful, but it would need
to be reformulated to work with the new processor type, as described in Section
6.3. So, in that sense, the results are highly dependent on the in-order nature of the
processor.

173

6 Analysis

If we consider the length of the pipeline as another architectural choice, would a
deeper pipeline have exhibited better or worse performance, from the point of view
of the metrics we measured? Deeper pipelines tend to lead to higher clock speeds, as
more instructions can be in-flight at once. This could lead to a performance increase,
but also this opens up more opportunities for data hazards to arise, as the instruction
window widens. Therefore, it is very difficult to say without data whether this
would be of benefit or not. From the point of view of the technique, an increased
instruction window may actually lead to fewer opportunities to overlap memory
instructions, because of the increasing probability that the CPU will want to execute a
memory instruction. Clearly more experiments would be needed to confirm this, but
it would not be impossible to imagine a situation where the pipeline becomes so deep
that the CPU is constantly requesting memory addresses and the TAC is rendered
useless.

What if we considered a smaller pipeline, would this have a huge impact? Clearly,
reducing the size of the instruction window lowers the probability that the CPU will
be executing an instruction with memory implications. It could therefore be argued
that the logical conclusion would be to reduce the pipeline size to 0 to maximise the
chance for overlapping. While this argument has some merits, there will come a
point where the benefit gained will be swamped by the lower overall clock-speed and
the data-hazards that are inherent in the programs. There is no point in allowing the
maximum degree of look-ahead to the TAC, but then designing a program that has
lots of data hazards, so that the TAC is stalled waiting a lot of the time. Therefore, it
would seem that pipeline depth could affect the performance of this technique a lot
and a lot of further evidence would need to be gathered in order to determine the
optimal pipeline length, all other factors being equal.

6.4.2 Dependence on ISA Choice

A further question that is worth discussing is: how dependent are the results on the
choice of ISA? The point has already been made that the RISC-V ISA is very helpful
to us in trying to track memory interactions, because only two instruction LOAD and
STORE allow memory access. Therefore, it is very easy to filter out the instructions
with memory implications. However, suppose we changed the ISA to a different,
more CISC-like ISA, how might this change our results?

In the first place, the specifics of the ISA would matter a huge amount. For example,
if we were allowed to use memory locations as operands to assembly language
instructions, it would break one of the key features that allows Trace Assisted Caching
to work. This is the fact that we can link instructions to the memory accesses they

174

6.4 Applicability of Results

generate. If we ended up in a situation where that were not true and perhaps
non-determinism were involved in the decision of when a memory operand was
resolved, that could hamper the ability of the TAC to be effective, because it would be
unclear when a preemptive instruction was safe to execute. Microcoded architectures
might be more of a challenge too, but again it would depend on the exact details of
their implementation, for the reasons stated above.

The key question we have to answer when considering ISAs is: Is there a clear
link between an instruction being issued and a memory request being made? If
this link involves non-determinism or is in any way ambiguous, the TAC is going
to struggle, because it relies on the fact that we can predict when an instruction
will be safe to execute preemptively. In an architecture where memory operations
are allowed in a broader range of categories, this is much harder to predict. If
there is non-determinism, then the likelihood of it introducing errors becomes ever
increased.

6.4.3 Dependence on the Size of the Cache

For the experiments performed the size of the cache remained consistent, however
varying the size of the cache is one of the easiest ways to affect greater cache
performance across a large number of metrics. For example increasing the size of the
cache decreases the number of memory addresses that will map to the same address
under a Direct-Mapped scheme and increases the number of alternative positions
available in a Set-Associative scheme. But how would a reduction or increase in the
size of the cache affect the TAC?

In the first place an increase in the size of the cache would cause fewer cache misses
which would mean there would be less work for the TAC to perform as the increase
in the size of the cache is effectively doing the work of the TAC, by increasing the
number of options available for data placement. This should allow a reduction in the
number of dependent memory operations, particularly in the Set-Associative case
and so that should allow the TAC to progress further without effectively stalling. That
being said however, this will only work up to a point, as the cache comes closer and
closer to the size of the working set of the program the effectiveness of Trace Assisted
Caching will actually decrease because the fewer memory operations there are to
overlap the less ‘latent performance’ there is within the program. This is shown by
benchmarks like fibcall where there is very little memory traffic once the working
set is loaded into memory, and the performance is degraded as a result. Consequently
were the size of the cache to be increased to this level for each benchmark we would
see similar behaviour.

175

6 Analysis

A reduction in cache size would probably have a similar effect for the opposite reason,
as the cache size reduced and more and more memory traffic was seen there would
be few opportunities to overlap memory and computation, leading to to the TAC
potentially being overwhelmed by the amount of operations the CPU required. An
increase in the number of cache misses (due to the lower cache capacity) would also
lead to a corresponding increase in the need for LOADwritebacks so it would make
it twice as difficult to perform these instructions preemptively, as they are twice as
long as a standard memory interaction. Therefore perversely, reducing the size of the
cache could have an even greater impact as there would be more memory operations
to overlap but without a corresponding increase in computation instructions to hide
this difference.

6.4.4 Dependence on Choice of Benchmark

To close this section it’s important to consider the impact of our choice of benchmark
upon the outcomes we have seen. The Mälardalen benchmark is designed to assess
a processor’s performance in the field of WCET calculations an as such contains
within it lots of features that may not be found in standard programs. Many of the
benchmarks contain multiple nested loops, loops with bounds fed in by the user,
matrices, recursion and unstructured code, all features that a good WCET estimation
tool should support but not representative of the kind of programs that most benefit
the TAC.

For example benchmarks like janne_complex, fibcall and others that don’t exhibit a
huge benefit when using a TAC are really concerned with the control structure in the
program and making that difficult to analyse. This is in contrast to other benchmarks
like fft1which, whilst still performing computation, better balance the number of
computation and memory-based instructions, leading to better performance from the
TAC overall. While it is good to exercise the difficult cases to give a realistic idea of
the limitations of the technique it would have been beneficial to gain an idea of the
performance on a more representative set of benchmarks.

In that case its conceivable that the average level of performance degradationwould go
down because a key determinant of performance, and this is explored further in 6.5, is
the mix of computation and memory-based instructions. A different benchmark suite,
that was less concerned with producing corner-cases for WCET would have provided
this and could have reduced the average degredation significantly, especially if it could
have avoided the computation or control flow focused benchmarks, like fibcall and
tac. Interesting future work would be to look to turn this question around slightly
and to try and generate a benchmark set that obtained the optimal performance for

176

6.5 Programs That Benefit from Trace Assisted Caching

the TAC but this would be intimately related to the problem presented in Section 6.5
or deciding on the characteristics of programs to accentuate and whether it’s possible
to generate those in an automated fashion or not.

6.5 Programs That Benefit from Trace Assisted Caching

So with all this information in mind the question that seems most prescient is: can we
characterise the kinds of programs that are most amenable to Trace Assisted Caching?
Some of the in depth analysis of the benchmarks presented in this Chapter do start to
point towards a few key features that correlate to increased performance from the
TAC, but this section will make those connections explicit.

The first of these is relatively straightforward, in that Trace Assisted Caching works
best when applied to programs that have a capacity to be improved, i.e. have a
relatively large proportion of misses that could be overlapped and converted into hits.
This is what we see in the negative in benchmarks like fibcall and in the positive in
insertsort. However, some caution has to be applied here, as it is not as simple as
suggesting that a high miss count will lead to better TAC performance, as shown by
Figure 6.1. This leads to the second point, there must be space within the program for
the overlapping to occur. It is not good having a very high miss count, because there
are so many memory requests that the memory system could never hope to satisfy
them. Consequently, there is a balance to be struck between a high enough proportion
of misses to allow overlapping and enough space between memory operations to
allow the overlapping to occur. This is something that should be quantified, but
would require a different set of experiments that explore how artificially increasing
the miss rate and density of memory instructions alters the performance of the TAC,
something the current data we possess does not allow.

A third point is that the benchmarks most amenable to Trace Assisted Caching
generally have a much higher proportion of computation instructions to memory
instructions, as we saw in our examination of fft1 and matmult. This happens
because the more computation instructions introduced, the more time there is for
instructions to be overlapped. Thus, the better the performance overall. Of course,
this is also a reflection of the fact that, in general, the fewer memory operations
you have, the faster the program is going to run, due to the fact that instructions
that do not need to travel ‘off-chip’ will take much less time than those that do. Of
course, this is not to suggest that artificial instructions should be added in order to
increase the proportion of computational instructions, but if a program is already
computationally intensive, this could be a good candidate to be assisted by Trace
Assisted Caching.

177

6 Analysis

A final characteristic is something of a combination effect and we see it in benchmarks
like duff, where the reason it is so problematic for the TAC to help is because all
the memory accesses are ‘close together’ in memory. This means they will not
distribute well over the cache, but also they are all dependent on each other. This
leads to high amounts of misses that are difficult to counter, because they occur in
a cluster and rely on data that is not produced until it is too late for the TAC to act.
Consequently, a program will be amenable to Trace Assisted Caching if it can avoid
clusters of memory accesses that have data hazards between them and where address
computation for those accesses cannot occur until very close to them. This may need
to be enforced by the compiler rather than by the programmer, but if this were the
case it is much more likely that Trace Assisted Caching would be effective, because,
unlike in the case of duff, more of the operations have a higher chance of being
overlapped.

6.6 Summary

In summary, in this analysis we have considered the data created by running the same
set of Benchmarks over 5 different hardware variations and observing the differences
in performance between them. We have seen that while the TAC did not outperform
the standard caches on any benchmark, the reasons for that are not unknown and
some solutions proposed. We have also formulated a set of loose criteria that appear
to characterise those benchmarks that are particularly amenable to the technique and
it should be possible to use those to predict, based on measurements of the programs
running on standard hardware, whether it is worth investigating a TAC to improve
the performance of the program.

In the final chapter we will consider our results in the round and we will also consider
what future work this informs. Finally we will present how this research fits into
the larger picture of the field as a whole and how that should influence future work
going forward.

178

7 Conclusion & Further Work

In Chapter 1 we posed the following research questions:

1. Can feeding trace information back to a cache be used to decrease the runtime
of programs?

2. Can this approach outperform a processor running the same computation but
with a standard cache?

3. Does this approach introduce any overheads when compared to a processor
with a standard cache?

4. Under what circumstances does the addition of trace information give the
maximal benefit?

In order to answer these questionswe designed new pieces of hardware andmeasured
the impact those hardware changes had on performance. These measurements were
both from the perspective of the overall runtime of the program and from the
perspective of the cache behaviour the hardware exhibited. From doing this we
are now in a position to effectively answer these four questions, place our work
within the context of the wider field of cache design, propose future work to
extend what has been achieved and finally to summarise the contributions of this
thesis.

7.1 Answering the Research Questions

In terms of the first research question, the results presented in Chapter 5 and analysed
further in Chapter 6 definitely show that feeding back trace information can reduce
the runtime of programs. We consistently saw through the presentation of the
results that there were no circumstances in which having a TAC actively degraded the
performance of the processor, as compared to not having a cache.

The next research question however we have to answer in the negative, despite
the fact that in some cases the degradation was only 1% we never observed a
situation whereby the TAC outperformed a cache of the same size when running

179

7 Conclusion & Further Work

the same computation. Throughout Chapter 6 we analysed some of the reasons for
these performance degredations; which chiefly revolved around the introduction
of unacceptable overheads. These overheads prevent the gains the TAC makes in
overlapping computation with memory instructions from having more of an impact.
This in turn answers the third research question, as we saw in Chapter 6 and the
work in Appendix C, overheads are introduced for every code path through the
TAC when you compare the same operation taking place in a standard cache, the
most egregious example being that the time to service a cache hit doubles when
using a TAC. The reason for a lot of these overheads is the need to synchronise state
between the different modules that make up the hardware as well as the protocols for
communicating between them, in Chapter 6 we explore solutions for resolving this in
a future version of the hardware.

Turning to the final research question, this thesis has allowed us to begin to understand
the characteristics that make certain programs muchmore amenable to Trace Assisted
Caching than others. Examples of this include having a high proportion of misses
that can be overlapped, having a good proportion of computation instructions and
memory accessing instructions, and having the data that is to be used well spread
out in memory. These metrics would need to be made much more precise and the
relationship between them and the performance of the TAC much more rigorously
defined to be able to use them as predictive factors of performance. In order to do
this you would need to define many more experiments where these factors could
be varied independently to establish the sensitivity of performance to these factors.
In this thesis we’ve certainly shown they do have an impact with the examples
presented, and it will be for future researchers to precisely quantify their impact and
the sensitivity of performance to these measures.

In summary this thesis has presented a system that does reduce runtime but is
restrained from producing a net gain because of the overheads it incurs in its
operation. There are solutions the thesis posits as to how this could be mitigated with
further research, but at the present time a TAC will perform 8% worse on average
than a standard cache of the same size, while consuming many times the resources of
the standard cache.

7.2 Contributions

With all that in mind what contributions to knowledge does this thesis make? The
first is that it presents a novel technique for reducing the overall runtime of programs
in Trace-Assisted Caching. This technique works by the recording and application of
traces to running programs to effectively allow incredibly accurate prefetching. This

180

7.3 Future Work

is demonstrated through experiments which show runtime reductions compared to a
standard CPU with no cache. The technique does not perform as well as standard
caches, but the thesis presents several potential solutions that when analysed show
that a net gain should be possible with changes to the particular implementation of
Trace-Assisted Caching presented here.

The second contribution is a methodological one, the trends in cache research up to
this point had very much been in the vein of cramming the largest cache possible
onto the available silicon. However this thesis shows that there is potential benefit
to investigating caches that are more integrated into the systems they are part of,
not only being ‘conscious‘ of themselves but of the state of other components in the
system. Further to that this thesis provides a software toolkit [171, 172] that can be
used to investigate caches both in simulation and in real hardware, with measurement
and end-to-end orchestration built in. In summary we have not only started to open
up a new vein of research but are also providing the tools to allow others to go even
further.

7.3 Future Work

Of course there ismuch futurework that could bedone to expand the scope of thiswork
and increase the performance of the TAC. Some of this is detailed below, with some
brief discussion of what solutions in that area might look like.

7.3.1 Applications to High Performance Computing

Our work with Trace Assisted Caching has focused on medium-sized embedded
systems and this has driven the design decisions made and the choice of processor
upon which to experiment within this thesis. However, if we consider some of the
work done in the area of HPC it may well be possible to apply Trace-Assisted Caching
here too. The essential principle of the technique would stay the same but there
are several issues that would have to be solved before HPC applications could be
effectively evaluated.

Firstwould behowdoesTraceAssistedCachingwork in aworld ofmultiple processors,
multiple cores per processor and multiple levels of shared caching? Of course this is
becoming a problem for embedded systems too due to the advances of Moore’s law,
but in HPC applications this is even more pronounced. To some extent this depends
on the coalescence of future work around a standardised design for shared caching
and cache coherency in the world of multi-core but if we consider an architecture

181

7 Conclusion & Further Work

with dedicated L1 caches and shared L2 caches, trace-assisted caching could be
used either locally, so it only influenced the movement of data in the L1 caches or
globally.

The second issue is also around how we apply this kind of work to more complex
cache architectures, common in more complex processors. In recent papers [78, 79,
207] we’ve seen 3 or 4 levels of caching as standard and even moves to define the
whole cache architecture from a pool of generic resources so it won’t be known until
runtime. For this thesis trace-assisted caching was proposed as operating over a
single level of caching but with multiple levels of caching it would be possible to use
it influence not only the movement of data between main memory and the cache but
between individual levels of the cache itself. This is of course speculative but it could
be possible to reduce the number of misses in lower levels of the cache, where they
are more costly, by more tightly optimising the contents of the higher cache levels
through Trace Assisted Caching.

7.3.2 Improving the Fidelity and Stored Size of Captured Traces

One of the key assumptions made in this thesis was the relative predictability of
memory accesses, specifically that between runs of a program the memory accesses
would be consistent, allowing one run to be representative of the program as well
as allowing the trace repository to consistently match its progress with that of the
CPU. Clearly in reality this isn’t the case and two key problems arise, the first is
that if commands like malloc are used within the program, this introduces non-
determinism which clearly would break the two previously stated assumptions. The
second problem is one of programs whose path of execution is dictated by data
provided at runtime. In the pathological case this might look like a switch statement
at the start of the program that, based on user input chooses one of several very
different code paths. In order to make trace-assisted caching more resilient to these
cases, there are several enhancements that could be made.

The first thing to improvewould be to give the trace repository the chance to aggregate
data across multiple runs of the program, augmenting each location with some kind
of probabilistic measure. At present we do a single run of the program and then
attempt to improve the performance from that trace, but one run of a program with
non-determinism does not capture the depth and complexity of the addresses it
accesses. Consequently there should be some mechanism to allow the trace recorder
to record and aggregate multiple runs of the program. Hence, when the cache is
trying to make a decision, it can pick the most likely rather than most recent memory
address for each memory instruction. A further enhancement here might be, in

182

7.3 Future Work

concert with the compiler and linker, to mark instructions as non-deterministic and
to therefore ignore them. Clearly this reduces the potential for memory operation
overlapping but if there is no practical way to predict them it may be more advisable
to accept the limitation.

Along a similar line, trying to reduce the size of the traces that need to be stored
‘on-chip’ would severely reduce the resource burden that trace-assisted caching places
upon any system. At the moment, as was demonstrated in Chapter 4, the trace
repository is one of the biggest consumers of resource and the reason for that is the
131072 entry BRAM array it maintains to store the traces. One way to severely reduce
that would be to apply the concepts from memory hierarchies and perform wider
reads for say 4 or 8 trace entries at a time, from a very cheap but slow external memory
store, throwing away old entries as their utility expires. This already happens in
the TAC to some extent where it maintains a working-set of the in-flight memory
operations, a similar idea could be applied to the trace repository.

7.3.3 Quantifying the Link Between Slack and Effectiveness

One of the key elements of Chapter 6 was the recognition that there are some features
of programs that make them more amenable to this technique than others. Part of
that discussion is around a quantity called slack that we can loosely define as the
aggregate amount of time the memory bus that connects the CPU and cache spends
idle. It would be of great use to the study of Trace Assisted Caching to more formally
quantify what this quantity exactly is and how it links to the effectiveness of the
technique overall. For example, we know that simply measuring the total amount of
time the memory spends idle is not sufficient, because questions of distribution are in
play too, so there is a lot of very fertile research to be done to tease apart those ideas.
If the ultimate outcome of this research is a way to learn, either from source code
or from a compiled executable, whether a program is likely to benefit from Trace
Assisted Caching, it would be a hugely positive step forward.

7.3.4 Expanding the TAC to Other Processors

A final piece of future work would be to expand the TAC to support other instruction
sets and other processors. At the moment, there is only support for the RISC-V ISA
and for only one processor that implements that instruction set. This was chosen
because it was adaptable and open, but the real challenge would be to define common
interfaces this system can use, so that it could conceivably be deployed into any
system that provided the information it needed. Several challenges would have to be

183

7 Conclusion & Further Work

overcome, including the fact that in more CISC-like processors more than just LOAD
and STORE can access memory. In addition, the inclusion of microcode or microops
can make the matching of causes to effects more difficult, especially if the new
processor is an OoO processor, as suggested in earlier sections.

It would also be positive to quantify exactly what information is required to enact
Trace Assisted Caching and to see if there is a correspondence between that and the
information provided in the Nexus Debug Standard[87] at any level. This would
allow us to provide a more portable alternative, based on widely accepted standards.
This was processor manufacturers and designers could easily knowwhat information
is required rather than having to re-engineer a bespoke solution for any new processor
that may want to use the system.

184

Part V

Appendices

185

A Trace Recorder (Gouram)
Implementation

To implement trace recording we need a way to track the execution of each instruction
as it passes through the various pipeline stages of the processor. Further to that, we
need to track the effective addresses of each memory instruction as it is generated
by the running program. The basic construction for this new piece of hardware will
be made of two sub-modules. The first will track the IF/ID phase of the pipeline
execution and the second will track the EX phase. We do not need to track the WB
phase, because it will have no bearing on either the effective address or the timing of
other instructions as it is merely a formality that results get written back to registers.
This overall architecture can be seen in Figure A.1. First to help us understand how
each phase will work it is important that we understand the memory protocol that
is implemented by the RI5CY processor. With that in hand we can move forward to
describing each of sub-blocks and then the overall trace recorder module and the
data it produces.

A.1 RI5CY Memory Protocol

Thememoryprotocol that is implemented by the RI5CY is documented in the processor
manual [12]. However, it bears slightly further explanation. There are certain parts
of the protocol that we will rely on or have to workaround in order for Gouram
to function correctly. To begin, there are 8 signals that the Load-Store Unit (LSU)
uses to communicate with the memory hardware and these are listed in Figure A.2,
reproduced from the processor manual:

The protocol then proceeds thus. When an instruction requires access to memory the
LSU sets data_req_o high, whilst at the same time placing the calculated address
(data_addr_o), byte enable bits (data_be_o), any data to be written to memory
(data_wdata_o) and selecting a read or a write with data_we_o. Then the processor
waits for the memory system to respond by setting data_gnt_i high. Once this has
happened, the processor can change any of the 4 signals it set originally, assuming
them to be cached in the memory controller now data_gnt_i is high. This may

187

A Trace Recorder (Gouram) Implementation

Gouram

IF Tracker

Monotonic
Counter

EX Tracker

Tr
ac
e
D
at
a
O
ut
pu

t

In
pu

ts
ig
na

ls
ob

se
rv
ed

fr
om

pr
oc
es
so
r

Figure A.1: The modules and connections that make up Gouram and its tracking
capabilities. There are other ancillary connections that are omitted from
this diagram, including the clock and reset lines for each module, to add
clarity to the diagram.

Signal Bit Width Direction Description

data_req_o 1 Output Request ready, must stay high until
data_gnt_i is high for one cycle.

data_addr_o 32 Output Address

data_we_o 1 Output Write Enable, high forwrites, low for reads.
Sent together with data_req_o.

data_be_o 4 Output Byte Enable. Is set for the bytes
to write/read, sent together with
data_req_o.

data_wdata_o 32 Output Data to bewritten tomemory, sent together
with data_req_o.

data_rdata_i 32 Input Data read from memory.

data_rvalid_i 1 Input data_rdata_i holds valid data when
data_rvalid_i is high. This signal will
be high for exactly one cycle per request.

data_gnt_i 1 Input The other side accepted the request.
data_addr_omay change in the next cycle.

Figure A.2: List of input and output signals provided by the LSU to implement the
memory protocol for the RI5CY, reproduced from the processor manual
[12].

188

A.1 RI5CYMemory Protocol

happen in the same cycle that data_req_o goes high or it may take several cycles
with a slower memory technology.

After the grant, the memory system will execute the load or store as required and
once it has completed it will set data_rvalid_i high. This will happen after at
least 1 clock cycle from the setting of data_gnt_i to high. Once data_rvalid_i
is high data_rdata_i will contain the fetched data from memory in the case of a
LOAD or arbitrary data in the case of a STORE. If another memory request is queued,
data_req_owill be set high at the same time that data_rvalid_i is and the processor
continues. Several examples of timing diagrams are included in Figure A.3 to illustrate
how this protocol works.

clk

data_req_o

data_addr_o 0xFEEC

data_be_o 0xF

data_gnt_i

data_rvalid_i

data_rdata_i 0xAABBCCDD

(a) A LOAD instruction to retrieve the contents of address 0xFEEC from memory.
clk

data_req_o

data_addr_o 0xFEEC

data_we_o

data_be_o 0xF

data_wdata_o 0x4256FFCC

data_gnt_i

data_rvalid_i

(b) A STORE instruction to 0xFEEC from the processor.

It should be pointed out that this protocol works for the instruction memory as well,
but uses a reduced number of signals, as the instruction memory cannot be written
to. These signals are labelled inst_req_o etc.

189

A Trace Recorder (Gouram) Implementation

clk

data_req_o

data_addr_o 0xFEEC 0xFFF8

data_be_o 0xF 0xF

data_we_o

data_wdata_o 0x778899AA

data_gnt_i

data_rvalid_i

data_rdata_i 0xAABBCCDD

(c) A LOAD followed immediately by a STORE

Figure A.3: Several examples of the signal transitions that occur when memory
transactions happen. More of these diagrams can be seen in the RI5CY
instruction manual. It should be noted, however, that the diagram in the
manual labelled “back-to-back” does not occur in our context, because of
the memory implementation used.

A.2 The IF Module

Now that we have the memory protocol in hand, we can begin to construct sub-
modules to record various parts of the execution of instructions. Looking at this
generically, the first thing that will happen is the instruction will be fetched from
the instruction memory. As we can have no idea what the instruction is going to
be until it has been fetched, we have no choice but to track everything fetched by
the processor and to then throw out the non-memory instructions later. This leads
us to defining a module called the IFmodule, which will follow a predefined state
machine. The machine and its transitions can be seen below, and by example we will
work through each of the transitions to describe its function. The SystemVerilog code
that was produced for this and subsequent hardware pieces can be seen in Zenodo
[172].

A.2.1 Instruction Fetch State Machine

Upon boot, each of the state machines will be reset to the IDLE state and each clock
cycle will check for the signals necessary to transition to the other states. The first
thing that will happen is the program counter will attempt to fetch the next instruction,

190

A.2 The IFModule

TRACK_REQstart TRACK_GNT TRACK_RVALID
A

B

C

D

E

(a) Instruction Fetch State Machine - This effectively tracks the internal state of the fetch
process

IDLEstart CHECK_BRANCH_DEC

F
G

H

(b) Branch Decision State Machine - This tracks if a branch decision needs to be made and
acts accordingly.

FIND_DATAstart OUTPUT_DATA

I

J

(c) Output State Machine - This uses the results from the first two state machines to output
the correct data to the next phase of the process

Figure A.4: The three state machines that make up the execution of the IF Module
inside Gouram. These state machines all work concurrently as per the
semantics of SystemVerilog.

191

A Trace Recorder (Gouram) Implementation

as pointed to by the program counter. This will cause the instr_req_o signal to be
set high, which will trigger the IDLE state to make a decision as to whether to take
transition A or B. The RI5CY manual defines that instr_gnt_i could become high in
the same clock cycle as instr_req_o. If that is the case, we then need to transition
to TRACK_RVALID, otherwise the gnt signal will be missed, so transition B is taken.
Otherwise, it is transition A. If transition B is taken then the instruction address and
the value of monotonic counter are stored, as they could change in the next clock
cycle, which means the information would be lost. This data is stored in a buffer that
builds up the required information over time and then sets a flag to mark it as ready
to be passed to the next phase.

If transition A is taken, the state machine then waits for instr_gnt_i to go high and
then captures the same information as described previously. In either case, once we
arrive in state TRACK_RVALID, the state machine waits for instr_rvalid_i to be set
high and when that happens the instruction data is captured into the buffer along
with the time at which the instr_rvalid_i went high, again from the monotonic
counter. After this, either transition D is taken to bring us back to waiting for a new
req signal or because it is possible for rvalid and req signals to overlap, it is also
possible that we might have to transition back to TRACK_GNT instead. This is covered
by transition E.

A.2.2 Branch Decision State Machine

It is easy to think at this point that our job is complete and we should simply output
the data now it has been captured. However, the problem with this is that the
instructions that are fetched could very easily be a JUMP or BRANCH instruction and this
is not resolved until the Decode phase. Furthermore, because that takes a non-trivial
amount of time, it is often the case that the processor will fetch instructions that are
never actually executed, because they are invalidated once the branch or jump has
been taken. Consequently, before we decide if we can output the instruction we have
just captured, we have to wait for its decode phase to end and any branch conditions to
be calculated. This is especially complicated by the fact that the instructions affected
are the ones that occur in the window between the calculation of the jump or branch
address and the successful fetch of the branch instruction. This is shown in Figure
A.5.

When we want to track instructions that execute while a branch condition is being
calculated, we work in the following way. When the decode phase is complete for a
potential branching instruction, the code will extract the instruction from the tracking
buffer and also will test whether this instruction was granted after the last branch

192

A.2 The IFModule

counter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

clk

instr_req_o

instr_addr_o 0x27C 0x280 0x284 0x29C 0x2A0

instr_gnt_i

instr_rvalid_i

instr_rdata_i 0xF85FF0EF 0x00050713 0xFE442783

data_req_o

data_addr_o 0xfee4

data_gnt_i

data_rvalid_i

data_rdata_i 0x00000005

is_decoding

jump_done

Figure A.5: Due to the long running data memory fetch that completes during Clock
Cycle 12, the decode phase for the fetched 0xF85FF0EF, a jump instruction,
does not get decoded until Clock Cycle 12. Due to the architecture of the
RI5CY processor jump addresses are calculated in the Decode Phase, so
the decision as to whether to jump or not is not made until Clock Cycle
12 either. However, as the blue highlighted signals show, the instruction
at address 0x280 has already been fetched when the decision is made to
jump to address 0x29C. This occurs, and so the next fetch is correct and the
processor has a method of ignoring these incorrect fetches. This means
we have to implement something similar so we do not track instructions
that never happened. This example explicitly targets jump instructions,
but the delay is even more pronounced in branch instructions, as the
target address, and by proxy branch decision, are calculated in the EX
phase.

193

A Trace Recorder (Gouram) Implementation

decision was made. For the sake of argument let us assume that is true, so we are
not at present in a branching state. The next operation will be to store the time at
which the decode phase ended and then we will test what kind of instruction we
are dealing with. This is important because there are 3 situations that could arise
here:

1. The instruction is not a branching or jump instruction and has not been output
while the processor is in a branching state. In which case we can simply output
this into the next module in the tracker.

2. The instruction is a jump instruction, in which case it will be executed immedi-
ately, because the calculation of the address is done in the Decode phase for
optimisation reasons.

3. The instruction is a branching instruction, so we have to wait for the end of the
execution phase before we know if we have to jump.

If we are in situation 3, we trigger the Branch Decision State Machine to take transition
G. We also set the branching variable such that we now know that we are waiting for
a branch decision to be made. This means that no more of the tracking buffer will be
processed until we have reached a branch decision. Once that happens, we store the
time at which the branch decision was made, what it was and update the cut off time
accordingly. We also mark the instruction as ready for output in the tracking buffer.
After this, transition H is taken to move us back to the IDLE state. If we had been in
situation 2, something similar would have happened, but it would have happened
immediately after the end of the decode phase.

A.2.3 The Output State Machine

As all the state machines are asynchronous, except for where they explicitly synchron-
ise, the last state machine is comparatively simple. The FIND_DATA state simply sits
and scans through the tracking buffer to see if there are any pieces of data that can be
output. If it finds one, it checks to see if it is a LOAD or a STORE instruction and it also
checks that it was not fetched during a period where a branch decision was pending
and eventually taken. This stops the situation where the processor eagerly fetched
the next sequential instruction, but actually ended up branching and so executed a
completely different instruction. At this point it takes transition I to the OUTPUT_DATA
state. Once in that state, the data is transferred to the next module that makes up
Gouram, along with some other data to help find the length of the execution phase.
The data is marked as having been output and then transition J is taken and the
process begins again.

194

A.3 Examples

A.3 Examples

What is described is very complicated, because tracking the behaviour of the processor
as it calculates branches is highly non-trivial. The best way to explore how this
works is by following two examples from end to end. The first example will be the
instruction at address 0x258 in Figure 3.5, which is 0x00112e23. The second will be a
more complex branching example by following 0xfce7dae3 at address 0x2a4, which
also appears in the same figure.

A.3.1 Simple Load Example

The diagram of the signals issued by the memory system can be seen in Figure A.6.
We will also track the contents of the tracking buffer and the state machines so we can
see how all of the aspects of this fit together. An empty entry in the tracking buffer and
the state machines at the start of the execution can be seen in Figure A.7 respectively.
The names of the states in the machine have been shortened into acronyms for reasons
of space, but they are the same as the diagram in Figure A.4.

counter 0 1 2 3 4 5 6 7 8

clk

inst_req_o

instr_addr_o 0x258

instr_gnt_i

instr_rvalid_i

instr_rdata_i 0x00112e23

is_decoding

id_ready

Figure A.6: Fetching the Instruction 0x00112e23 from Memory.

The process begins as instr_req_o goes high at Clock Cycle 2 and this will cause the
Instruction Fetch State Machine to take transition A to the TRACK_GNT phase. In doing
so the tracking buffer will have its entry cleared out. This is necessary because it is a
circular buffer, so there could be data left over from a previous instruction. Then the
value of the counter will be stored at the start of the instr_req. This can be seen in
Figure A.8.

195

A Trace Recorder (Gouram) Implementation

INST ADDR REQ_START GNT RVALID DEC_END

X X X X X X

BRANCH_DEC BRANCH_DEC_TIME OUTPUT_READY FINISHED

X X 0 0

(a) Schematic of a single record in the tracking buffer that will be filled out as this example
progresses.

TRstart TG TRV
A

B

C

D

E
FDstart OD

I

J

(b) A reduced version of the previously described state machines to allow us to follow the
progress of the hardware as we progress through the example. The light blue highlight
indicates the current state of the machine, with the Output State.

Figure A.7: The state of the IF tracker, we will return to updated versions of these
diagrams as we progress through the example

INST ADDR REQ_START GNT RVALID DEC_END

X X 2 X X X

BRANCH_DEC BRANCH_DEC_TIME OUTPUT_READY FINISHED

X X 0 0

TRstart TG TRV
A

B

C

D

E
FDstart OD

I

J

Figure A.8: In this phase of the example the start of an instruction transaction has
been detected, so we progress to the TRACK_GRANT phase and record the
start of the request in the REQ_START field of the tracking buffer.

196

A.3 Examples

Then the grant phase will continue until clock cycle 3, when instr_gnt_i goes high.
This will cause the tracking buffer to be updated with the instructions address and
the time at which the instr_gnt_i went high and cause transition C to be taken.
Then at Clock Cycle 5, TRACK_RVALID will store the final pieces in the tracking buffer.
The net result of these two steps can be seen in Figure A.9. Following this transition,
D will be taken back to TRACK_REQ to track the next instruction.

INST ADDR REQ_START GNT RVALID DEC_END

0x00112e23 0x258 2 3 5 X

BRANCH_DEC BRANCH_DEC_TIME OUTPUT_READY FINISHED

X X 0 0

TRstart TG TRV
A

B

C

D

E
FDstart OD

I

J

Figure A.9: In this phase, the grant signal is detected, which means we can populate
the ADDR and GNT fields of the tracking buffer, as they are guaranteed at
this point. Furthermore, when transition C is taken and we move into the
TRACK_RVALID state we can also populate the RVALID and INST fields.

Once the decode phase of this instruction is complete, the processor signals this
by setting the internal signals is_decoding and id_ready high in clock cycle 6. At
this point the tracking buffer will be linearly scanned and the entry generated for
0x00112e23 will be marked as the earliest unprocessed index. Since we have not yet
encountered a branch or jump instruction, we are not in a pending branching state.
Consequently we store the end of the decode phase and then mark this instruction as
ready for output.

In the next clock cycle, the Output State Machine will scan the tracking buffer until
it finds data that is marked ready for output (it additionally checks some other
conditions but we will omit these for now). It will find the data for 0x00112e23, and
run a check to ensure this is a LOAD/STORE instruction by looking at its opcode and so
will take transition I to the OUTPUT_DATA state, where it will transfer the data into the
next module. Following that, it will mark 0x00112E23 as finished and take transition
J to the FIND_DATA state. This can be seen in Figure A.11.

197

A Trace Recorder (Gouram) Implementation

INST ADDR REQ_START GNT RVALID DEC_END

0x00112e23 0x258 2 3 5 6

BRANCH_DEC BRANCH_DEC_TIME OUTPUT_READY FINISHED

X X 1 0

Figure A.10: When the endof thedecodephase is detected,we canmark the instruction
as ready to output and track the time at which the decode phase is
completed.

INST ADDR REQ_START GNT RVALID DEC_END

0x00112e23 0x258 2 3 5 6

BRANCH_DEC BRANCH_DEC_TIME OUTPUT_READY FINISHED

X X 1 1

TRstart TG TRV
A

B

C

D

E
FDstart OD

I

J

Figure A.11: Now we are in the output data phase, this record is marked as finished,
so it will not be considered again when the tracking buffer is searched.
We then move back to looking for another instruction transaction in the
TRACK_REQ state.

198

A.3 Examples

A.3.2 Complex Branching Example

The previous example is relatively simple, but introducing branching causes several
other factors to have to be taken into account. For this example we will use the signal
diagram in Figure A.12. An important point to note about this diagram is that a LOAD
from data memory is already in progress when this diagram starts, this prevents the
decode phase for 0x2A4 starting as soon as it is fetched and sets this train of events in
motion.

The dynamics of the Instruction Fetch State Machine are quite similar. However,
the big change occurs when the decode phase ends for 0xFCE7DAE3. At the start
it proceeds very much as before. 0xFCE7DAE3 is identified by the module as the
earliest unprocessed instruction and we are not currently branching, so we mark the
end of the decode phase, but then we detect 0xFCE7DAE3 as a branching instruction.
Therefore, we set the branch_pointer to mark this instruction as the object of the
branching behaviour and then trigger the Branch Decision State Machine to take
transition G. The net result of this can be seen in Figure A.13.

Now, because 0xFCE7DAE3 is a branching instruction that relies on a condition, it
needs to enter the execution phase in order to calculate whether a branch will be
taken or not. However, rather than simply stalling the processor when this happens,
the next instruction sequentially is fetched from instruction memory, in this case
0xFE842783. Due to the previously mentioned fetch from data memory, this fetch
actually completes before a branch decision can be made, causing a new entry to
enter the tracking buffer, as in Figure A.14

Let us assume that in this case the branch is in fact taken, so the next instruction to
be executed will be 0xFEC42503, at address 0x278. In the CHECK_BRANCH_DECISION
phase, the branch_decision signal goes high, so we then store the time at which
that occurred and set the cut off time as 112. This cut off time is important, because
it defines the time at which an instruction grant would need to take place after to
be a valid fetch, forming a window with the lower bound set by the grant time of
the branching instruction itself. A visual representation of this can be seen in Figure
A.15.

We then also set a marker to state that we are in a branching state and mark the
branching instruction as ready to output. The effect of these concurrent changes,
both the fetch from 0x2A8 and the effect of the branch decision state machine can be
seen in Figure A.16. The Branch Decision State Machine then returns to the IDLE
state.

199

A
TraceRecorder(G

ouram
)Im

plem
entation

counter 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

clk

instr_req_o

instr_addr_o 0x2A4 0x2A8 0x2AC 0x278 0x27C

instr_gnt_i

instr_rvalid_i

instr_rdata_i 0xFCE7DAE3 0xFE842783 0xFEC42503

data_req_o

data_addr_o 0xfee4

data_gnt_i

data_rvalid_i

data_rdata_i 0x00000005

is_decoding

id_ready

branch_decision

Figure A.12: In this signal diagram we join as a LOAD from data memory is already in progress, only finishing at cycle 112. This causes a
large delay in between the successful fetch of the branching instruction and its eventual decoding and address calculation.
The processor has built in mechanisms to stop any incorrect fetches that occur in between from propagating, so this is
something we have to emulate in the tracker.

200

A.3 Examples

INST ADDR REQ_START GNT RVALID DEC_END

0xFCE7DAE3 0x2A4 2 3 7 12

BRANCH_DEC BRANCH_DEC_TIME OUTPUT_READY FINISHED

X X 0 0

TRstart TG TRV
A

B

C

D

E
Istart CBD

F
G

H

FDstart OD

I

J

Figure A.13: At this point we have already fetched and decoded the instruction in
question. However, because 0xFCE7DAE3 is a branching instruction we
have to engage the Branch Decision State Machine to help us decide
whether fetches made before the condition is known are valid or not.

INST ADDR REQ_START GNT RVALID DEC_END

0xFCE7DAE3 0x2A4 102 103 107 112

0xFE842783 0x2A8 107 108 112 X

BRANCH_DEC BRANCH_DEC_TIME OUTPUT_READY FINISHED

X X 0 0

X X 0 0

Figure A.14: As the decoding and address calculation are delayed, a second record
enters the tracking buffer. This record may be an entirely legitimate
fetch or it may be an oversight on the part of the processor. We need to
know definitively in order to achieve a trace that has parity with what
was executed.

201

A
TraceRecorder(G

ouram
)Im

plem
entation

counter 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

clk

instr_req_o

instr_addr_o 0x2A4 0x2A8 0x2AC 0x278 0x27C

instr_gnt_i

instr_rvalid_i

instr_rdata_i 0xFCE7DAE3 0xFE842783 0xFEC42503

data_req_o

data_addr_o 0xfee4

data_gnt_i

data_rvalid_i

data_rdata_i 0x00000005

is_decoding

id_ready

branch_decision

Figure A.15: The highlighted region indicates the region within which any successful fetches should be ignored. It ranges from the cycle
after the grant of the branching instruction to the cycle in which the branch decision signal goes high. Now because the
grant signal for 0x2A8 falls in this window, it must be disregarded.

202

A.3 Examples

INST ADDR REQ_START GNT RVALID DEC_END

0xFCE7DAE3 0x2A4 102 103 107 112

0xFE842783 0x2A8 107 108 112 X

BRANCH_DEC BRANCH_DEC_TIME OUTPUT_READY FINISHED

1 112 0 0

X X 0 0

TRstart TG TRV
A

B

C

D

E
Istart CBD

F
G

H

FDstart OD

I

J

Figure A.16: At some point after CHECK_BRANCH_DECISION is entered, the
branch_decision flag goes high to indicate the branch is to be taken.
That means that because 0x2A8 follows 0x2A4 sequentially it must be
disregarded and the next decode phase assigned to the next instruction
after it to ensure consistency.

203

A Trace Recorder (Gouram) Implementation

Now the Output State Machine will deal with both the accumulated instructions.
First it will process the 0xFCE7DAE3 and this will simply be set to finished immediately
as it is not a LOAD or STORE instruction. However, then it reaches the next instruction
after clock cycle 108. At first it will a similar process to the simple example, it will be
selected as the earliest unprocessed index but then, because, as can be seen in Figure
A.15 its grant occurs before the cut off time, we were still in branching state when the
fetch occurred so this fetch is invalid. Consequently we simply mark this instruction
in the tracking buffer as finished, and then search again for another instruction to
assign this decode phase to. The net result of this can be seen in the final contents of
the tracking buffer, as shown in Figure A.17.

INST ADDR REQ_START GNT RVALID DEC_END

0xFCE7DAE3 0x2A4 102 103 107 112

0xFE842783 0x2A8 107 108 112 X

0xFEC42503 0x278 112 113 117 118

BRANCH_DEC BRANCH_DEC_TIME OUTPUT_READY FINISHED

1 112 1 1

X X 0 1

X X 1 0

Figure A.17: The final state of the tracking buffer: the branching instruction is marked
as finished, even though it was not output due to it not being a memory
operation; the incorrect fetch is marked as finished and not output as it
was incorrectly tracked; and finally, the next correct fetch is ready for
output the next time the OUTPUT_DATA state is returned to.

This mirrors what happens in the processor where instructions that are incorrectly
predicted are invalidated and therefore never propagate throughout the processor.
Once we reach an instruction that is beyond the calculated cut off point, we are
non-longer in a branching state and so can start outputting data again in a similar
fashion to before.

A.4 The EX Module

Once the process has completed in the IFmodule, the pertinent data is passed into
the EXmodule, which tracks the data memory querying part of the process. Since we

204

A.4 The EXModule

have already filtered out a lot of the instructions, the process in this phase is slightly
simpler. However, since there are dependencies between instructions, this module
cannot act synchronously with the processor. This means there are several signal
buffers that record previously seen signal values and are then queried, so that the
beginning and the end of the transactions can be seen.

A.4.1 The Main State Machine

This module consists of a single state machine that is constructed as per Figure A.18.
The process begins in EX_START, where a trace buffer that is populated by the data
coming in from the IFmodule signals that data is available to be processed. If this is
the case, transition A is taken to the GET_DATA state. In that state, the data is extracted
from the buffer and held in an internal trace buffer, so it can be built up before being
eventually sent to the trace repository to be recalled later. Importantly, in this phase
a query is also sent to a signal tracking module that asks if the start of a memory
request event has been seen between the current time and the end of the decode
phase of the data that has just come from the buffer.

The signal tracker is a relatively simplistic implementation of a bufferwith surrounding
logic to detect the start and end of transactions. It features a circular buffer that is a
configurable size to track each of the signals of interest and then can look back over
the signal values of the past to attempt to detect the timing of the values associated
with particular memory transactions. Special care has to be taken to track these events
properly and there is a feedback cycle between the EXmodule and the signal trackers
to ensure that events associated with old events are not considered when new events
are asked for.

After transition, C is taken to the CHECK_MEM_REQ state, the state machine will wait
in the CHECK_MEM_REQ state until the signal tracker has reported back its discoveries.
This introduces a single cycle of delay, for which the pertinent memory signals are
also captured. Therefore, these can be added to the information reported back by the
signal tracker. This information is reported in the form of a pair that indicates the start
and end of the data memory request. Now there are four possibilities at this point
and the module will take different actions accordingly, thus:

1. The requesting phase of the memory transaction occurred entirely in the past
tracked by the signal tracker. If this is the case, then we record the start time of
the transaction and then set up a parallel query with 2 signal trackers, one for
the associated rvalid values and the other for the data address associated with
the transaction. We know these must occur between the current time and the
end of the requesting phase.

205

A
TraceRecorder(G

ouram
)Im

plem
entation

EX_STARTstart GET_DATA CHECK_MEM_REQ

SCAN_MEM_REQ

CHECK_MEM_RVALID

SCAN_MEM_RVALID

OUTPUT_RESULT

A

B

C

D

E
F

G

H

I

J

Figure A.18: The central state machine that controls the operation of the EX module. This works asynchronously with the processor,
operating in a producer/consumer model with the IFmodule, which works synchronously with the processor.

206

A.4 The EXModule

2. The requesting phase started in the one cycle between asking the signal tracker
and it reporting a result. In which case, we act as in Situation 1, but set a
different window to look for rvalid and address values.

3. The requesting phase is starting in the current clock cycle, so again act as
Situation 1, but with different parameters.

4. The memory request has not yet started.

If we are in Situations 1 - 3we can take transitionD and advance to CHECK_MEM_RVALID,
but situation 4 requires us to take transition E and sit in state SCAN_MEM_REQ, which
polls the data_req_o signal until it sees the signal go high. At that point transition
F can be taken to CHECK_MEM_RVALID, with the new signal tracker appropriately
primed.

Once in the CHECK_MEM_RVALID state, we have to wait for 2 separate processes to
return a value. The first is the search for the address. As we already know the point
at which the request started, this is a simple matter of looking back that many clock
cycles. The search for the rvalid is similar, but has to scan over a window, as the
search for the req signal did. Once the address is returned and the signal is valid,
this is stored in the internal trace buffer and a flag is set. At the same time the signal
buffer is searching for the time at which the rvalid signal occurred and it reports
this as a pair in a very similar way to checking for the req signal as before. Once this
pair has returned, it is checked to decide if we are in analogous situations to those
above: either the signal was entirely in the past, it happened while the search was
going on, it is happening right now or it has not happened yet.

Once it has been classified into one of those categories, this information is combined
with the address information and stored in the trace buffer if necessary. Then adecision
is made, either we need to scan for the rvalid signal because it has not happened
yet, so transition G is taken and we sit polling the rvalid signal in SCAN_MEM_RVALID
or we move to output the result to the trace repository in OUTPUT_RESULT. Once in
OUTPUT_RESULT the now complete trace element is sent to the trace repository and
transition J is taken back to the starting state.

A.4.2 Example

To demonstrate this process fully we will discuss the progression of 0x00112E23
through this state machine. First, we will assume that the memory transaction
associated with this instruction happened as in Figure A.19. Let us assume we have
now arrived at clock cycle 57, the point the data associated with 0x00112e23 is pulled
out of the trace buffer.

207

A Trace Recorder (Gouram) Implementation

counter 50 51 52 53 54 55 56 57 58 59

clk

data_req_o

data_addr_o 0xFEEC

data_we_o

data_be_o 0xF

data_wdata_o 0x4256FFCC

data_gnt_i

data_rvalid_i

Figure A.19: A memory transaction to triggered by instruction 0x00112E23, a STORE
to 0xFEFC.

We start in the EX_START phase and then the data_present flag goes high to indicate
data is present. We then transition into the GET_DATA phase on the next clock cycle
(58), where the data associated with 0x00112e23 is transferred into the internal
trace buffer of the EX module. At the same time, we trigger the signal tracker to
check for data_req_o signals in the last 7 clock cycles, as the decode phase for this
instruction ended at 51 and we are currently in clock cycle 58. We then transition to
the CHECK_MEMORY_REQS phase where we wait for the signal tracker to return. At the
same time as this, we are tracking the state of the data_req_o signal, so we do not
have a blindspot where the signal tracker has no records.

The signal tracker will then begin to scan the area highlighted in blue in Figure A.20.
Once the scanning is complete, in clock cycle 59, it will return a pair (52,53) indicating
the start and end of the transaction. We then store the start in the trace buffer and
then trigger two more signal buffer searches for the address and the rvalid times.
These will be asked to look 6 clock cycles back because the current time is now 59
clock cycles and the end of the req phase was at 53. This can further be seen as the
green coloured section in Figure A.21.

We then move to the CHECK_MEM_RVALID phase where after 1 clock cycle the address
signal tracker returns the value 0xFEEC and this is stored in the trace buffer. In the
next cycle the rvalid tracker returns a pair with the value 55 and 55, which means
we have managed to find the rvalid in the window tracked by the signal tracker.
We store this information in the signal buffer and then move to the OUTPUT_RESULT
phase.

208

A.4 The EXModule

counter 50 51 52 53 54 55 56 57 58 59

clk

data_req_o

data_addr_o 0xFEEC

data_we_o

data_be_o 0xF

data_wdata_o 0x4256FFCC

data_gnt_i

data_rvalid_i

Figure A.20: The yellow highlighted region of the signal diagram indicates the current
time at which the request to the signal tracker is made. The blue region
then indicates the signals that the signal tracker has stored in its internal
buffer and therefore can be queried. Due to not wanting to cause a race
condition, the current clock cycle cannot be queried and so has to be
tracked separately.

counter 50 51 52 53 54 55 56 57 58 59

clk

data_req_o

data_addr_o 0xFEEC

data_we_o

data_be_o 0xF

data_wdata_o 0x4256FFCC

data_gnt_i

data_rvalid_i

Figure A.21: The green highlighted region of the diagram indicates the area that will
be queried by the signal tracker, to find the addr value and rvalid time.
This is similar to the previous example. The time at which the request
was made also has to be stored so it can be queried later, but this is dealt
with outside the signal tracker.

209

A Trace Recorder (Gouram) Implementation

Finally we have all the information required about this instruction’s execution,
so we output this data to be stored in the trace repository to be recalled later as
required.

210

B Trace Recorder (Gouram)
Implementation

This Appendix details the raw test results for each benchmark that were presented in
Chapter 5. These can be seen on the next page.

211

B
TraceRecorder(G

ouram
)Im

plem
entation

Benchmark Instruction Count CPU
Memory
Requests

No Cache Direct-
Mapped
Cache

Set-
Associative

Cache

Direct-
Mapped
TAC

Set-
Associative

TAC

bs 143 65 3762 1207 990 1308 1094
janne_complex 348 179 10306 1745 1745 2088 2087

fac 463 208 12133 7331 4588 7852 4637
fibcall 531 365 20494 2956 2655 4065 3751

insertsort 2292 816 47812 12782 11685 12943 11779
select-int 2202 871 50212 18087 12233 19036 12862

qsort-exam-int 2144 894 51629 20835 12187 22261 13525
duff 2047 1196 67781 19837 13987 22809 16635
cover 3672 1470 85619 31308 32202 32702 33056
cnt 7236 1544 108261 54511 52362 56281 53598

minver-int 4372 1715 99610 42206 29382 45012 32217
recursion 4070 1740 102930 54276 35317 58576 38221
expint 3459 2021 120046 28095 27341 29950 29270
jfdctint 4244 2204 124183 53410 42937 59837 49489
ud 6605 2483 147342 56702 44957 61355 49020
qurt 19487 2570 218446 138064 117011 143123 121626
fdct 5338 2705 152684 59301 38386 65694 43467

nsichneu 8126 2964 173511 78484 71527 83812 77005
prime 11771 5658 335896 75915 74626 81273 78412
ns 22359 6409 412216 162450 155743 167967 161456

ludcmp 44522 6692 531080 336652 281458 350079 290711
fft1 67964 8217 723781 434812 376260 448540 380409

bsort100 194422 71354 4206306 1664337 1384797 1742266 1434788
adpcm 259169 122360 7044636 2354271 1498442 2607582 1713484
matmult 433484 74648 5148631 3257762 2865108 3312116 2935222

Table B.1: Data for each benchmark indicating the number of instructions that each benchmark generates when compiled and the number
of memory requests made by the CPU during the benchmark’s run.

212

C Calculation of Trace-Assisted Cache
Overheads

When running a more complex cache, it will naturally incur a higher overhead
than would a simpler cache of the same size. Further to that, since this new
cache can undertake preemptive actions beyond that of a standard cache, there
are more situations that can arise. This appendix details the calculations of the
approximate level of overhead incurred for each type of transaction the cache may
undertake.

To aid us in this discussion we will first recall that the set of transactions that can be
undertaken is the following:

• Cache Hit (No Preemptive Action) - H

• Cache Hit (Following a Preemptive Hit) - HPH

• Cache Hit (Following a Preemptive Miss) - HPM

• Cache Hit (Following a Preemptive Miss & Writeback) - HPMW

• Cache Miss (No Preemptive Action) -M

• Cache Miss (With Writeback) -MW

We will also recall that each of these transactions has a separate LOAD/STORE variant.
To further aid our discussion we reproduce Figure 4.4 as Figure C.1. We will tackle
each transaction one-by-one over the following appendix, showing how the overheads
accumulate through each transaction, eventually culminating in the table shown in
6.3. It is worth pointing out before we begin this appendix that the figures we arrive
at only detail the time spent serving a particular memory instruction. They do not, in
the case of HPH, HPM or HPMW, account for the gap between the preemptive action
and then the cache hit.

213

C
Calculation

ofTrace-A
ssisted

CacheO
verheads

IDstart

CPG CPR

MRC

SLEEP

CHG

CHD

CMML

CMMS

CMTL

CMTS

UM UTR

WB

A
B

C

D

E

F
G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

�

�

�

&
�

Figure C.1: State machine showing the operation of the TAC. This appendix will breakdown the operations that traverse the state machine
to show how overheads accumulate throughout the system.

214

C.1 Cache Hit (No Preemptive Action)

C.1 Cache Hit (No Preemptive Action)

To begin we will look at one of the simplest cases the cache displays, a hit that is instig-
ated by the CPU and has no preemptive component. This begins in the IDLE (ID) state
where 1 clock cycle is spent before taken transition G to the MAKE_REQUEST_TO_CACHE
state, MRC. Now since the request is coming from the CPU, 1 cycle will be consumed
to set up the signals to check the state of the cache, used in the next state to see if
an early exit is required, and then another cycle is consumed to actually query the
cache for the data required. Then transition I is taken to the CACHE_HIT_GNT (CHG)
state.

Already at 3 cycles, transition J will be taken several times, until the cache has
responded to the initial request. Throughout most simulations this was only once
round the loop, consuming 1 cycle. After that, having discovered the data is in
the cache, it will take transition M to the CACHE_HIT_DATA (CHD) state consuming
another cycle. Therefore, we have consumed 5 so far. In this state various signals
are set so as to inform the CPU that the data was in fact in the cache and then
we transition, via S, to the UPDATE_MAPPING (UM) state. In this state 3 cycles are
consumed whilst communication takes place with the trace repository to get back
the correct cache index for this piece of data, allowing the TAC to update its internal
representation of the cache, and then transition U is taken to the UPDATE_TRACE_REPO
(UTR) state. Finally here 1 cycle is consumed before transition � is taken back to the
IDLE state.

If we add all this up, then we see the following: ID contributes 1 cycle, MRC contributes
2 cycles, CHG contributes 2 cycles, CHD contributes 1 cycle, UM adds 3 cycles and UTR
adds 1 cycle. This leads to a Cache Hit, LOAD or STORE, taking 10 cycles from start to
finish.

C.2 Cache Hit (Following a Preemptive Hit) - HPH

In the case that we have a cache hit, but it has been proceeded by a preemptive hit,
then this is a 2-stage process, the second phase of which has been covered in Section
C.1. The first part though will be a little different, and will differ dependent on if we
are dealing with a LOAD or a STORE. The first part of the preemptive action will be the
same as in Section C.1 so ID will be the starting state and then MRC will be entered.
At this point, however, because this is in the preemptive portion of the execution we
need to query the trace repository properly to retrieve the trace we want to action. In
the worst case, i.e. there is no buffered trace ready to serve, this will take 4 cycles and

215

C Calculation of Trace-Assisted Cache Overheads

there is an additional 2 cycles added to perform the same functions we saw previously
in Section C.1.

At this point, if the instruction is a LOAD we only spend 1 cycle in CHG before
transitioning to UTR, because there is no work to be done. This is a preemptive hit by
definition, so the data is already present. Therefore, there is nothing to be done other
than to update the trace repository. If the instruction is a STOREwe need to update
the state of the cache, so a further cycle is expended to do that, before transitioning to
UTRwhere a further 1 cycle is consumed.

If we put this together, we see our preemptive hit takes, in the LOAD case 1+6+1+1 = 9,
and 1 + 6 + 2 + 1 = 10 in the STORE case. This gets added to the 10 cycles from Section
C.1. Therefore, we consume 19 cycles spread over two distinct periods if the memory
instruction is a LOAD, and 20 cycles if the instruction is a STORE.

C.3 Cache Hit (Following a Preemptive Miss) - HPM

Now if we encounter a preemptive miss, more actions need to be taken in both the
LOAD and STORE case. The first part of the process is very similar to that which we saw
in Section C.2, but it diverges after the CHG state, by which point 9 cycles have been
consumed. At this point the cache will detect that there has been a miss, so action
needs to be taken to retrieve the data from memory. In this situation we know we
will not have to writeback any data, so the process will proceed via transition Q or R
to SERVICE_CACHE_MISS_TRACE_LOAD (CMTL) or SERVICE_CACHE_MISS_TRACE_STORE
(CMTS) as appropriate. In the former case, this will then trigger a memory transaction
to fetch the data from memory and this will consume a large number of clock cycles.
To keep the figures generic and not tied down to a specific memory implementation
we will use �2 , as we did in Chapter 6. After this transition, � will be taken, where 1
cycle will be consumed updating the trace repository, before returning to the IDLE
state.

If the memory operation is a STORE, however, then CMTS will only consume 1 cycle,
as all it does is to mark the spot in the cache as reserved and as it does not have
to writeback, has no further work to do. This is then followed by the same 1 cycle
to update the trace repository as in the LOAD state. So putting this together, a LOAD
transaction, that preemptively misses will take 9 + �2 + 1 = �2 + 10 clock cycles,
whilst a STORE transaction will take 9+ 1+ 1 = 11 clock cycles. We then need to add a
further 10 cycles for the cache hit behaviour we have already recorded in Section C.1.
This leads to �2 + 20 cycles for a LOAD and 21 cycles for a STORE.

216

C.4 Cache Hit (Following a Preemptive Miss & Writeback)

C.4 Cache Hit (Following a Preemptive Miss & Writeback) -
HPMW

In the previous section we considered a Cache Hit preceded by a preemptive miss,
but what if the cache block is not empty when the preemptive miss occurs? In this
case we need to traverse an extra state to write the data back to the cache, before the
miss is resolved. This behaviour is exactly the same whether the memory operation
is a LOAD or a STORE. Practically progress around the state machine is exactly the
same as in Section C.3, but instead of taking transition O or P the cache signals that a
writeback is required and so takes transition N instead. While in state N it performs
a STORE operation to writeback the data already present in the cache. This takes
�2 clock cycles, as it is a whole memory transaction, and then control progresses
along transition V or W as appropriate. The rest of the operation is as per Section
C.3.

As this is additive on top of the process described in Section C.3, we simply need
to add �2 to each of the figures we discovered previously. That tells us that a LOAD
operation that finds itself in this situation will take 2�2 + 20 cycles to complete and a
STORE operation �2 + 21 cycles to complete.

C.5 Cache Miss (No Preemptive Action) - M

Turning now to cache misses, these are handled very similarly to preemptive misses
and take the same amount of clock cycles, but different states are traversed. Rather than
transitions Q and Rbeing taken, transitions O and P are taken instead, leading to the state
SERVICE_CACHE_MISS_MEM_LOAD (CMML) state or the SERVICE_CACHE_MISS_MEM_STORE
(CMMS) state, respectively. When in these states CMML takes �2 cycles, as we have to
fetch the required data from memory and CMMS takes only 1 cycle, as the data only
needs to be written into the cache.

Because there is no preemptive component here, the cache is simply reacting to the
demands of the CPU, as per Section C.3, this situation consumes �2 + 10 clock cycles
in the case of a LOAD and 11 clock cycles in the case of a STORE.

C.6 Cache Miss (With Writeback) - MW

Finally we consider a cache miss with writeback. Again this proceeds very similarly
to its preemptive cousins, everything will occur as in Section C.5, but instead of

217

C Calculation of Trace-Assisted Cache Overheads

transitions O and P, transition N is taken to the WRITEBACK state (WB). Here �2 cycles
will be consumed regardless of the type of memory transaction and then transitions W
or Vwill be taken and the process will continue as per Section C.5. This adds an extra
�2 clock cycles to each measure of time, which leads to a LOAD transaction taking
2�2 + 10 clock cycles and a STORE taking �2 + 11 clock cycles.

C.7 Summary & Final Table

Now we have seen how each of the measures of time is built up, we can present the
final table.

LOAD STORE

H 10 10
HPH 19 20
HPM �2 + 20 21

HPMW 2�2 + 20 �2 + 21
M �2 + 10 11
MW 2�2 + 10 �2 + 11

Table C.1: This table shows how long it would take each different type of memory
transaction to progress through the system. This is the same table presented
in Chapter 6.

218

Acronyms

AIP Access Interval Predictor.

ARC Adapative Replacement Cache.

BIP Bimodal Insertion Policy.

BRAM Block Random Access Memory.

CISC Complex Instruction Set Computer.

CMP Chip Multi-Processor.

COTS Commercial Off-The-Shelf.

CPI Clock Cycles Per Instruction.

CPU Central Processing Unit.

DIG Degree of Inter-reference Gap.

DIP Dynamic Insertion Policy.

DMA Direct Memory Access.

DRAM Dynamic Random Access Memory.

DSP Digital Signal Processor.

EELRU Early Eviction Least Recently Used.

FF Flip-Flop.

FIFO First-In-First-Out.

FPGA Field Programmable Gate Array.

HLRU History Least Recently Used.

HPC High Performance Computing.

219

Acronyms

ILA Integrated Logic Analyser.

IPC Instruction-per-Cycle.

IRR Inter-Reference Recency.

ISA Instruction Set Architecture.

ISS Instruction Set Simulator.

LACS Locality-Aware Cost-Sensitive.

LFU Least Frequently Used.

LFUDA Least Frequently Used with Dynamic Aging.

LFU-K Least Frequently Used (with : previous references).

LIRS Low Inter-reference Recency Set.

LLC Last Level Cache.

LRRe Least Recently Referenced.

LRU Least Recently Used.

LRU-K Least Recently Used (with : previous references).

LRU-WAR Least Recently Used with Working Area Restriction.

LSU Load-Store Unit.

LUT LookUp Table.

LvP Live Time Predictor.

MFU Most Frequently Used.

MPKI Misses per Thousand Instructions.

MPSoC Multi-Processor System-on-Chip.

MRRe Most Recently Referenced.

MRU Most Recently Used.

MSHR Miss Information/Status Holding Register.

NoC Network-on-Chip.

NRU Not Recently Used.

220

Acronyms

OBL One Block Lookahead.

OoO Out-of-Order.

ORL Online Reference Locality.

OS Operating System.

PC Program Counter.

PRL Profile Reference Locality.

RISC Reduced Instruction Set Computer.

RRIP Re-reference Interval Prediction.

SDRAM Synchronous Dynamic Random Access Memory.

SFIFO Segemented First-In-First-Out.

SMACK System Metric for Applciation Cache Knowledge.

SoC System-on-Chip.

SPAID Speculatively Prefetching Anticipated Interprocedural Dereferences.

SRAM Static Random Access Memory.

TAC Trace-Assisted Cache.

VIP AXI Verification IP.

WCET Worst-Case Execution Time.

WFL Wood, Fernandez and Long.

XPM Xilinx Parameterized Macro.

221

Bibliography

[1] Adwan AbdelFattah and Aiman Abu Samra. “Least Recently Plus Five Least
Frequently Replacement Policy (LR+5LF)”. en. In: The International Arab Journal
of Information Technology 9.1 (2012), p. 6.

[2] A. Agarwal and S.D. Pudar. “Column-Associative Caches: A Technique For
Reducing The Miss Rate Of Direct-Mapped Caches”. In: Proceedings of the 20th
Annual International Symposium on Computer Architecture. May 1993, pp. 179–190.
doi: 10.1109/ISCA.1993.698559.

[3] A. Agarwal, K. Roy and T.N. Vĳaykumar. “Exploring High Bandwidth
Pipelined Cache Architecture for Scaled Technology”. In: Automation and
Test in Europe Conference and Exhibition 2003 Design. Mar. 2003, pp. 778–783.
doi: 10.1109/DATE.2003.1253701.

[4] J. Aguilar and E. L. Leiss. “A Coherence-Replacement Protocol For Web Proxy
Cache Systems”. In: International Journal of Computers and Applications 28.1 (Jan.
2006), pp. 12–18. issn: 1206-212X. doi: 10.1080/1206212X.2006.11441783.

[5] JoseAguilar andErnst Leiss. “AGeneralAdaptiveCacheCoherency-Replacement
Protocol for Web Proxy Cache Systems”. en. In: Computación y Sistemas 8.1
(2004), pp. 1–14.

[6] T. Alexander and G. Kedem. “Distributed Prefetch-Buffer/Cache Design for
High Performance Memory Systems”. In: Proceedings. Second International
Symposium on High-Performance Computer Architecture. Feb. 1996, pp. 254–263.
doi: 10.1109/HPCA.1996.501191.

[7] J. Alghazo, A. Akaaboune and N. Botros. “SF-LRU Cache Replacement Al-
gorithm”. In: Records of the 2004 International Workshop on Memory Technology,
Design and Testing, 2004. Aug. 2004, pp. 19–24. doi: 10.1109/MTDT.2004.
1327979.

[8] Erik R Altman, Vinod K Agarwal and Guang R Gao. “A Novel Methodology
Using Genetic Algorithms for the Design of Caches and Cache Replacement
Policy”. en. In:Proceedings of the 5th International Conference onGenetic Algorithms.
Morgan Kaufmann Publishers, 1993, pp. 392–399. isbn: 1-55860-299-2.

223

https://doi.org/10.1109/ISCA.1993.698559
https://doi.org/10.1109/DATE.2003.1253701
https://doi.org/10.1080/1206212X.2006.11441783
https://doi.org/10.1109/HPCA.1996.501191
https://doi.org/10.1109/MTDT.2004.1327979
https://doi.org/10.1109/MTDT.2004.1327979

Bibliography

[9] R.E. Aly, B.R. Nallamilli and M.A. Bayoumi. “Variable-Way Set Associative
Cache Design for Embedded System Applications”. In: 2003 46th Midwest
Symposium on Circuits and Systems. Vol. 3. Dec. 2003, 1435–1438 Vol. 3. doi:
10.1109/MWSCAS.2003.1562565.

[10] AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite ACE and
ACE-Lite. en. Feb. 2013.

[11] K. M. AnandKumar et al. “A Hybrid Cache Replacement Policy for Het-
erogeneous Multi-Cores”. In: 2014 International Conference on Advances in
Computing, Communications and Informatics (ICACCI). Sept. 2014, pp. 594–599.
doi: 10.1109/ICACCI.2014.6968209.

[12] Andreas Traber, Michael Gautschi and Pasquale Schiavone Davide. RI5CY:
User Manual. Nov. 2017.

[13] Ismail Ari et al. “ACME: Adaptive Caching Using Multiple Experts”. In:
Distributed Data & Structures 4, Records of the 4th International Meeting (WDAS
2002), Paris, France, March 20-23, 2002. Ed. by Witold Litwin and Gérard Lévy.
Vol. 14. Proceedings in Informatics. Carleton Scientific, 2002, pp. 143–158.

[14] Martin Arlitt et al. “Evaluating Content Management Techniques for Web
Proxy Caches”. en. In: ACM SIGMETRICS Performance Evaluation Review 27.4
(Mar. 2000), pp. 3–11. issn: 01635999. doi: 10.1145/346000.346003.

[15] H. Arora, S. Banerjee and V. Davina. “A Composite Data Prefetcher Frame-
work for Multilevel Caches”. In: 2014 International Conference on Advances in
Computing, Communications and Informatics (ICACCI). Sept. 2014, pp. 1827–1833.
doi: 10.1109/ICACCI.2014.6968442.

[16] Abu Asaduzzaman, Mark P. Allen and Tania Jareen. “An Effective Locking-
Free Caching Technique for Power-Aware Multicore Computing Systems”.
In: 2014 International Conference on Informatics, Electronics Vision (ICIEV). May
2014, pp. 1–6. doi: 10.1109/ICIEV.2014.6850861.

[17] M. Azimi, B. Prasad and K. Bhat. “Two Level Cache Architectures”. In: Digest
of Papers COMPCON Spring 1992. Feb. 1992, pp. 344–349. doi: 10.1109/CMPCON.
1992.186736.

[18] Jean-Loup Baer and Tien-Fu Chen. “An Effective On-Chip Preloading Scheme
to ReduceDataAccess Penalty”. In:Proceedings of the 1991ACM/IEEEConference
on Supercomputing. Supercomputing ’91. New York, NY, USA: ACM, 1991,
pp. 176–186. isbn: 978-0-89791-459-8. doi: 10.1145/125826.125932.

224

https://doi.org/10.1109/MWSCAS.2003.1562565
https://doi.org/10.1109/ICACCI.2014.6968209
https://doi.org/10.1145/346000.346003
https://doi.org/10.1109/ICACCI.2014.6968442
https://doi.org/10.1109/ICIEV.2014.6850861
https://doi.org/10.1109/CMPCON.1992.186736
https://doi.org/10.1109/CMPCON.1992.186736
https://doi.org/10.1145/125826.125932

[19] Sorav Bansal and Dharmendra S. Modha. “CAR: Clock with Adaptive Re-
placement”. In: Proceedings of the 3rd USENIX Conference on File and Storage
Technologies. FAST ’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 187–
200.

[20] B. Batson and T.N. Vĳaykumar. “Reactive-Associative Caches”. In: Proceedings
2001 International Conference on Parallel Architectures and Compilation Techniques.
Sept. 2001, pp. 49–60. doi: 10.1109/PACT.2001.953287.

[21] L. A. Belady. “A Study of Replacement Algorithms for a Virtual-Storage
Computer”. In: IBM Systems Journal 5.2 (1966), pp. 78–101. issn: 0018-8670. doi:
10.1147/sj.52.0078.

[22] L. A. Belady, R. A. Nelson and G. S. Shedler. “An Anomaly in Space-Time
Characteristics of Certain Programs Running in a Paging Machine”. In: Com-
munications of the ACM 12.6 (June 1969), pp. 349–353. issn: 00010782. doi:
10.1145/363011.363155.

[23] SamsonBelayneh andDavidR.Kaeli. “ADiscussion onNon-Blocking/Lockup-
Free Caches”. en. In: ACM SIGARCH Computer Architecture News 24.3 (June
1996), pp. 18–25. issn: 01635964. doi: 10.1145/381718.381727.

[24] Christian Bienia et al. “The PARSEC Benchmark Suite: Characterization and
Architectural Implications”. en. In:Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques - PACT ’08. Toronto, Ontario,
Canada: ACM Press, 2008, p. 72. isbn: 978-1-60558-282-5. doi: 10.1145/
1454115.1454128.

[25] NathanBinkert et al. “TheGem5 Simulator”. In: SIGARCHComput. Archit. News
39.2 (Aug. 2011), pp. 1–7. issn: 0163-5964. doi: 10.1145/2024716.2024718.
url: https://doi.org/10.1145/2024716.2024718.

[26] F. Bodin andA. Seznec. “SkewedAssociativity Improves ProgramPerformance
and Enhances Predictability”. In: IEEE Transactions on Computers 46.5 (May
1997), pp. 530–544. issn: 2326-3814. doi: 10.1109/12.589219.

[27] B. Calder, D. Grunwald and J. Emer. “Predictive Sequential Associative Cache”.
In: Proceedings. Second International Symposium on High-Performance Computer
Architecture. Feb. 1996, pp. 244–253. doi: 10.1109/HPCA.1996.501190.

[28] David Callahan, Ken Kennedy and Allan Porterfield. “Software Prefetching”.
en. In: ACM Press, 1991, pp. 40–52. isbn: 978-0-89791-380-5. doi: 10.1145/
106972.106979.

[29] Chung-yi Chang, Anthony James McGregor and Geoffrey Holmes. The
LRU*WWW Proxy Cache Document Replacement Algorithm. en. Working Pa-
per. 1999.

225

https://doi.org/10.1109/PACT.2001.953287
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1145/363011.363155
https://doi.org/10.1145/381718.381727
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/12.589219
https://doi.org/10.1109/HPCA.1996.501190
https://doi.org/10.1145/106972.106979
https://doi.org/10.1145/106972.106979

Bibliography

[30] H. Chang, C. Chiang and Y. Yu. “An Adaptive Buffer Cache Management
Scheme”. In: 2016 International Computer Symposium (ICS). Dec. 2016, pp. 124–
127. doi: 10.1109/ICS.2016.0033.

[31] Hsung-Pin Chang and Cheng-Pang Chiang. “PARC: A Novel OS Cache
Manager”. en. In: Software: Practice and Experience 48.12 (2018), pp. 2193–2222.
issn: 1097-024X. doi: 10.1002/spe.2633.

[32] Mainak Chaudhuri. “Pseudo-LIFO: The Foundation of a New Family of
Replacement Policies for Last-Level Caches”. en. In: ACM Press, 2009, p. 401.
isbn: 978-1-60558-798-1. doi: 10.1145/1669112.1669164.

[33] Tien-Fu Chen and Jean-Loup Baer. “Effective Hardware-Based Data Prefetch-
ing for High-Performance Processors”. In: IEEE Transactions on Computers 44.5
(May 1995), pp. 609–623. issn: 2326-3814. doi: 10.1109/12.381947.

[34] Tien-Fu Chen and Jean-Loup Baer. “Reducing Memory Latency via Non-
Blocking and Prefetching Caches”. In: Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS V. Boston, Massachusetts, USA: Association for Computing
Machinery, Sept. 1992, pp. 51–61. isbn: 978-0-89791-534-2. doi: 10.1145/
143365.143486.

[35] Z. Chen et al. “SSARC: The Short-Sighted Adaptive Replacement Cache”. In:
2009 11th IEEE International Conference on High Performance Computing and
Communications. June 2009, pp. 551–556. doi: 10.1109/HPCC.2009.82.

[36] Hyunseung Choo, Young Jae Lee and Seong-Moo Yoo. “DIG: Degree of Inter-
Reference Gap for a Dynamic Buffer Cache Management”. In: Information
Sciences 176.8 (Apr. 2006), pp. 1032–1044. issn: 0020-0255. doi: 10.1016/j.ins.
2005.01.018.

[37] J.D. Collins et al. “Dynamic Speculative Precomputation”. In: Proceedings. 34th
ACM/IEEE International Symposium on Microarchitecture. MICRO-34. Dec. 2001,
pp. 306–317. doi: 10.1109/MICRO.2001.991128.

[38] J. Collins et al. “Pointer Cache Assisted Prefetching”. en. In: IEEE Comput. Soc,
2002, pp. 62–73. isbn: 978-0-7695-1859-6. doi: 10.1109/MICRO.2002.1176239.

[39] Robert Cooksey, Stephan Jourdan and Dirk Grunwald. “A Stateless, Content-
Directed Data Prefetching Mechanism”. In: ACM SIGOPS Operating Systems
Review 36.5 (Oct. 2002), pp. 279–290. issn: 0163-5980. doi: 10.1145/635508.
605427.

[40] Fernando J. Corbató. “A Paging Experiment with the Multics System”. In: In
Honor of Philip M.Morse. Ed. byHerman Feshbach, K. Uno Ingard and PhilipM.
Morse. Cambridge: M.I.T. Press, 1969, pp. 217–228. isbn: 978-0-262-06028-8.

226

https://doi.org/10.1109/ICS.2016.0033
https://doi.org/10.1002/spe.2633
https://doi.org/10.1145/1669112.1669164
https://doi.org/10.1109/12.381947
https://doi.org/10.1145/143365.143486
https://doi.org/10.1145/143365.143486
https://doi.org/10.1109/HPCC.2009.82
https://doi.org/10.1016/j.ins.2005.01.018
https://doi.org/10.1016/j.ins.2005.01.018
https://doi.org/10.1109/MICRO.2001.991128
https://doi.org/10.1109/MICRO.2002.1176239
https://doi.org/10.1145/635508.605427
https://doi.org/10.1145/635508.605427

[41] CoreSight Base System Architecture. en. July 18.

[42] Jike Cui and Mansur. H. Samadzadeh. “A New Hybrid Approach to Exploit
Localities: LRFU with Adaptive Prefetching”. In: SIGMETRICS Perform. Eval.
Rev. 31.3 (Dec. 2003), pp. 37–43. issn: 0163-5999. doi: 10.1145/974036.974041.

[43] Fredrik Dahlgren, Michel Dubois and Per Stenstrom. “Fixed and Adaptive
Sequential Prefetching in Shared Memory Multiprocessors”. In: 1993 Interna-
tional Conference on Parallel Processing - ICPP’93. Vol. 1. Aug. 1993, pp. 56–63.
doi: 10.1109/ICPP.1993.92.

[44] Gille Damien. “Study of Different Cache Line Replacement Algorithms in
Embedded Systems”. Masters Thesis. Stockholm: KTH Royal Institute of
Technology, 2007.

[45] S. Das and A. Banerjee. “An Arbitration on Cache Replacements Based on
Frequency — Recency Product Values”. In: 2016 International Conference on
VLSI Systems, Architectures, Technology and Applications (VLSI-SATA). Jan. 2016,
pp. 1–6. doi: 10.1109/VLSI-SATA.2016.7593031.

[46] Shirshendu Das and Hemangee K. Kapoor. “Dynamic Associativity Manage-
ment Using Fellow Sets”. In: 2013 International Symposium on Electronic System
Design. Dec. 2013, pp. 133–137. doi: 10.1109/ISED.2013.33.

[47] ShirshenduDas andHemangeeK.Kapoor. “LatencyAwareBlockReplacement
for L1 Caches in Chip Multiprocessor”. In: 2017 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). July 2017, pp. 182–187. doi: 10.1109/ISVLSI.
2017.40.

[48] Shirshendu Das and Hemangee K. Kapoor. “Victim Retention for Reducing
Cache Misses in Tiled Chip Multiprocessors”. en. In: Microprocessors and
Microsystems 38.4 (June 2014), pp. 263–275. issn: 01419331. doi: 10.1016/j.
micpro.2013.11.005.

[49] Shirshendu Das et al. “Random-LRU: A Replacement Policy for Chip Mul-
tiprocessors”. en. In: VLSI Design and Test. Ed. by Manoj Singh Gaur et al.
Communications in Computer and Information Science. Berlin, Heidelberg:
Springer, 2013, pp. 204–213. isbn: 978-3-642-42024-5. doi: 10.1007/978-3-642-
42024-5_25.

[50] N. Decker et al. “Online Analysis of Debug Trace Data for Embedded Systems”.
In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE). Mar.
2018, pp. 851–856. doi: 10.23919/DATE.2018.8342124.

[51] Bobbala Lakshmi Deepika and Byeong Kil Lee. “Hybrid-Way Cache forMobile
Processors”. In: 2011 Eighth International Conference on Information Technology:
New Generations. Apr. 2011, pp. 707–712. doi: 10.1109/ITNG.2011.125.

227

https://doi.org/10.1145/974036.974041
https://doi.org/10.1109/ICPP.1993.92
https://doi.org/10.1109/VLSI-SATA.2016.7593031
https://doi.org/10.1109/ISED.2013.33
https://doi.org/10.1109/ISVLSI.2017.40
https://doi.org/10.1109/ISVLSI.2017.40
https://doi.org/10.1016/j.micpro.2013.11.005
https://doi.org/10.1016/j.micpro.2013.11.005
https://doi.org/10.1007/978-3-642-42024-5_25
https://doi.org/10.1007/978-3-642-42024-5_25
https://doi.org/10.23919/DATE.2018.8342124
https://doi.org/10.1109/ITNG.2011.125

Bibliography

[52] L. Delshadtehrani et al. “Nile: A Programmable Monitoring Coprocessor”. In:
IEEE Computer Architecture Letters 17.1 (Jan. 2018), pp. 92–95. issn: 1556-6056.
doi: 10.1109/LCA.2017.2784416.

[53] Peter J. Denning. “The Working Set Model for Program Behavior”. In: Com-
munications of the ACM 11.5 (May 1968), pp. 323–333. issn: 00010782. doi:
10.1145/363095.363141.

[54] Peter J. Denning. “Thrashing: Its Causes and Prevention”. en. In: ACM Press,
1968, p. 915. doi: 10.1145/1476589.1476705.

[55] Yannick Deville. “A Low-Cost Usage-Based Replacement Algorithm for Cache
Memories”. en. In: ACM SIGARCH Computer Architecture News 18.4 (Dec. 1990),
pp. 52–58. issn: 01635964. doi: 10.1145/121973.121979.

[56] Chen Ding and K. Kennedy. “The Memory of Bandwidth Bottleneck and Its
Amelioration by a Compiler”. In: Proceedings 14th International Parallel and
Distributed Processing Symposium. IPDPS 2000. May 2000, pp. 181–189. doi:
10.1109/IPDPS.2000.845980.

[57] A. Djordjalian. “Minimally-Skewed-Associative Caches”. In: 14th Symposium
on Computer Architecture and High Performance Computing, 2002. Proceedings.
Oct. 2002, pp. 100–107. doi: 10.1109/CAHPC.2002.1180765.

[58] Donghee Lee et al. “Implementation and Performance Evaluation of the LRFU
Replacement Policy”. In: Proceedings 23rd Euromicro Conference New Frontiers
of Information Technology - Short Contributions -. Sept. 1997, pp. 106–111. doi:
10.1109/EMSCNT.1997.658446.

[59] Donghee Lee et al. “LRFU: A Spectrum of Policies That Subsumes the Least
Recently Used and Least Frequently Used Policies”. In: IEEE Transactions on
Computers 50.12 (Dec. 2001), pp. 1352–1361. doi: 10.1109/TC.2001.970573.

[60] Tom Duff. Re: Explanation, Please! English. Aug. 1988.

[61] Nam Duong et al. “SCORE: A Score-Based Memory Cache Replacement
Policy”. en. In: (June 2010).

[62] Haakon Dybdahl, Per Stenström and Lasse Natvig. “An LRU-Based Re-
placement Algorithm Augmented with Frequency of Access in Shared Chip-
Multiprocessor Caches”. In: Proceedings of the 2006 Workshop on MEmory
Performance: DEaling with Applications, Systems and Architectures. MEDEA ’06.
New York, NY, USA: ACM, 2006, pp. 45–52. isbn: 978-1-59593-568-7. doi:
10.1145/1166133.1166139.

228

https://doi.org/10.1109/LCA.2017.2784416
https://doi.org/10.1145/363095.363141
https://doi.org/10.1145/1476589.1476705
https://doi.org/10.1145/121973.121979
https://doi.org/10.1109/IPDPS.2000.845980
https://doi.org/10.1109/CAHPC.2002.1180765
https://doi.org/10.1109/EMSCNT.1997.658446
https://doi.org/10.1109/TC.2001.970573
https://doi.org/10.1145/1166133.1166139

[63] R. Fares et al. “Performance Evaluation of Traditional Caching Policies on
a Large System with Petabytes of Data”. In: 2012 IEEE Seventh International
Conference on Networking, Architecture, and Storage. June 2012, pp. 227–234. doi:
10.1109/NAS.2012.32.

[64] K.I. Farkas, N.P. Jouppi and P. Chow. “How Useful Are Non-Blocking Loads,
Stream Buffers and Speculative Execution in Multiple Issue Processors?”
In: Proceedings of 1995 1st IEEE Symposium on High Performance Computer
Architecture. Jan. 1995, pp. 78–89. doi: 10.1109/HPCA.1995.386553.

[65] John W. C. Fu and Janak H. Patel. “Data Prefetching in Multiprocessor Vector
Cache Memories”. In: Proceedings of the 18th Annual International Symposium
on Computer Architecture. ISCA ’91. Toronto, Ontario, Canada: Association
for Computing Machinery, Apr. 1991, pp. 54–63. isbn: 978-0-89791-394-2. doi:
10.1145/115952.115959.

[66] JohnW. C. Fu, Janak H. Patel and Bob L. Janssens. “Stride Directed Prefetching
in Scalar Processors”. In:ACMSIGMICRONewsletter 23.1-2 (Dec. 1992), pp. 102–
110. issn: 1050-916X. doi: 10.1145/144965.145006.

[67] Carlo A. Furia et al. “Modeling Time in Computing: A Taxonomy and a
Comparative Survey”. en. In: ACM Computing Surveys 42.2 (Feb. 2010), pp. 1–
59. issn: 03600300. doi: 10.1145/1667062.1667063.

[68] G. Gao et al. “Collective Loop Fusion for Array Contraction”. In: Languages and
Compilers for Parallel Computing. Ed. by Utpal Banerjee et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1993, pp. 281–295. isbn: 978-3-540-48201-7.

[69] Jamie Garside. “Real-Time Prefetching On Shared-Memory Multi-Core Sys-
tems”. Doctoral. York, UK: The University of York, July 2015.

[70] Michael Gautschi et al. “Near-Threshold RISC-V Core With DSP Extensions
for Scalable IoT Endpoint Devices”. en. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 25.10 (Oct. 2017), pp. 2700–2713. issn: 1063-8210,
1557-9999. doi: 10.1109/TVLSI.2017.2654506.

[71] Gideon Glass and Pei Cao. “Adaptive Page Replacement Based on Memory
Reference Behavior”. In: Proceedings of the 1997 ACMSIGMETRICS International
Conference on Measurement and Modeling of Computer Systems. SIGMETRICS
’97. New York, NY, USA: ACM, 1997, pp. 115–126. isbn: 978-0-89791-909-8. doi:
10.1145/258612.258681.

[72] J.I. Gomez et al. “Optimizing the Memory Bandwidth with Loop Morphing”.
In: Proceedings. 15th IEEE International Conference on Application-Specific Systems,
Architectures and Processors, 2004. Sept. 2004, pp. 213–223. doi: 10.1109/ASAP.
2004.1342472.

229

https://doi.org/10.1109/NAS.2012.32
https://doi.org/10.1109/HPCA.1995.386553
https://doi.org/10.1145/115952.115959
https://doi.org/10.1145/144965.145006
https://doi.org/10.1145/1667062.1667063
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1145/258612.258681
https://doi.org/10.1109/ASAP.2004.1342472
https://doi.org/10.1109/ASAP.2004.1342472

Bibliography

[73] Robert B Gramacy et al. “Adaptive Caching by Refetching”. In: Advances in
Neural Information Processing Systems 15. Ed. by S. Becker, S. Thrun and K.
Obermayer. MIT Press, 2003, pp. 1489–1496.

[74] Xiaoming Gu and Chen Ding. “On the Theory and Potential of LRU-MRU Col-
laborative Cache Management”. In: Proceedings of the International Symposium
on Memory Management. ISMM ’11. New York, NY, USA: ACM, 2011, pp. 43–54.
isbn: 978-1-4503-0263-0. doi: 10.1145/1993478.1993485.

[75] Erika Gunadi and Mikko H Lipasti. “Cache pipelining with partial operand
knowledge”. In: Proceedings of the Workshop on Complexity-Effective Design. 2004.

[76] Jan Gustafsson et al. “The Mälardalen WCET Benchmarks – Past, Present and
Future”. In: WCET2010. Ed. by Björn Lisper. Brussels, Belgium: OCG, July
2010, pp. 137–147.

[77] E.G. Hallnor and S.K. Reinhardt. “A Fully Associative Software-Managed
Cache Design”. In: Proceedings of 27th International Symposium on Computer
Architecture (IEEE Cat. No.RS00201). June 2000, pp. 107–116. doi: 10.1145/
339647.339660.

[78] Fazal Hameed, Lars Bauer and Jörg Henkel. “Adaptive Cache Management
for a Combined SRAM and DRAM Cache Hierarchy for Multi-Cores”. In:
2013 Design, Automation Test in Europe Conference Exhibition (DATE). Mar. 2013,
pp. 77–82. doi: 10.7873/DATE.2013.030.

[79] Fazal Hameed, Lars Bauer and Jörg Henkel. “Reducing Latency in an SRAM/-
DRAM Cache Hierarchy via a Novel Tag-Cache Architecture”. In: 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC). June 2014, pp. 1–6. doi:
10.1145/2593069.2593197.

[80] H. Hassan et al. “ChargeCache: Reducing DRAM Latency by Exploiting Row
Access Locality”. In: 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). Mar. 2016, pp. 581–593. doi: 10.1109/HPCA.
2016.7446096.

[81] Spinal HDL. VexRiscv. Spinal HDL. Nov. 2018.

[82] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Sixth. Cambridge, MA: Morgan Kaufmann Publishers, 2019. isbn:
978-0-12-811905-1.

[83] John L. Hennessy and David A. Patterson. Computer Organization and Design:
The Hardware/Software Interface. RISC-V edition. Cambridge, Massachusetts:
Morgan Kaufmann Publishers, an imprint of Elsevier, 2018. isbn: 978-0-12-
812275-4.

230

https://doi.org/10.1145/1993478.1993485
https://doi.org/10.1145/339647.339660
https://doi.org/10.1145/339647.339660
https://doi.org/10.7873/DATE.2013.030
https://doi.org/10.1145/2593069.2593197
https://doi.org/10.1109/HPCA.2016.7446096
https://doi.org/10.1109/HPCA.2016.7446096

[84] Seokin Hong and Soontae Kim. “AVICA: An Access-Time Variation Insensitive
L1 Cache Architecture”. In: 2013 Design, Automation Test in Europe Conference
Exhibition (DATE). Mar. 2013, pp. 65–70. doi: 10.7873/DATE.2013.028.

[85] D. Hormdee, J.D. Garside and S.B. Furber. “An Asynchronous Victim Cache”.
In: Proceedings Euromicro Symposium on Digital System Design. Architectures,
Methods and Tools. Sept. 2002, pp. 4–11. doi: 10.1109/DSD.2002.1115345.

[86] X. Hu and S. Chen. “Applications of On-Chip Trace on Debugging Embedded
Processor”. In: Eighth ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD
2007). Vol. 1. July 2007, pp. 140–145. doi: 10.1109/SNPD.2007.227.

[87] IEEE-ISTO 5001-2003 - The Nexus 5001 Forum Standard for a Global Embedded
Processor Debug Interface. Standard. New Jersey, USA: IEEE Industry Standards
and Technology Organization, June 2012.

[88] P. Jain et al. “Software-AssistedCacheReplacementMechanisms for Embedded
Systems”. en. In: IEEE, 2001, pp. 119–126. isbn: 978-0-7803-7247-4. doi: 10.
1109/ICCAD.2001.968607.

[89] Aamer Jaleel et al. “High Performance Cache Replacement Using Re-Reference
Interval Prediction (RRIP)”. en. In: Proceedings of the 37th Annual International
Symposium on Computer Architecture - ISCA ’10. Saint-Malo, France: ACM Press,
2010, p. 60. isbn: 978-1-4503-0053-7. doi: 10.1145/1815961.1815971.

[90] J. Jeong and M. Dubois. “Cost-Sensitive Cache Replacement Algorithms”.
en. In: IEEE Comput. Soc, 2003, pp. 327–337. isbn: 978-0-7695-1871-8. doi:
10.1109/HPCA.2003.1183550.

[91] Jaeheon Jeong and Michel Dubois. “Optimal Replacements in Caches with
Two Miss Costs”. In: Proceedings of the Eleventh Annual ACM Symposium on
Parallel Algorithms and Architectures. SPAA ’99. New York, NY, USA: ACM, 1999,
pp. 155–164. isbn: 978-1-58113-124-6. doi: 10.1145/305619.305636.

[92] Song Jiang and Xiaodong Zhang. “LIRS: An Efficient Low Inter-Reference
Recency Set Replacement Policy to Improve Buffer Cache Performance”.
en. In: Proceedings of the 2002 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems - SIGMETRICS ’02. Marina
Del Rey, California: ACM Press, 2002, p. 31. isbn: 978-1-58113-531-2. doi:
10.1145/511334.511340.

[93] Theodore Johnson and Dennis Shasha. “2Q: A Low Overhead High Perform-
ance Buffer Management Replacement Algorithm”. In: Proceedings of the 20th
International Conference on Very Large Data Bases. VLDB ’94. San Francisco,

231

https://doi.org/10.7873/DATE.2013.028
https://doi.org/10.1109/DSD.2002.1115345
https://doi.org/10.1109/SNPD.2007.227
https://doi.org/10.1109/ICCAD.2001.968607
https://doi.org/10.1109/ICCAD.2001.968607
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1109/HPCA.2003.1183550
https://doi.org/10.1145/305619.305636
https://doi.org/10.1145/511334.511340

Bibliography

CA, USA: Morgan Kaufmann Publishers Inc., Sept. 1994, pp. 439–450. isbn:
978-1-55860-153-6.

[94] Jongmoo Choi et al. “Design, Implementation, and Performance Evaluation
of a Detection-Based Adaptive Block Replacement Scheme”. en. In: IEEE
Transactions on Computers 51.7 (July 2002), pp. 793–800. issn: 0018-9340. doi:
10.1109/TC.2002.1017699.

[95] N.P. Jouppi and S.J.E. Wilton. “Tradeoffs in Two-Level on-Chip Caching”. In:
Proceedings of 21 International Symposium on Computer Architecture. Apr. 1994,
pp. 34–45. doi: 10.1109/ISCA.1994.288163.

[96] Norman P. Jouppi. “Improving Direct-Mapped Cache Performance by the Ad-
dition of a Small Fully-Associative Cache and Prefetch Buffers”. In: Proceedings
of the 17th Annual International Symposium on Computer Architecture. ISCA ’90.
New York, NY, USA: ACM, 1990, pp. 364–373. isbn: 978-0-89791-366-9. doi:
10.1145/325164.325162.

[97] F. Juan andL.Chengyan. “An ImprovedMulti-Core SharedCacheReplacement
Algorithm”. In: 2012 11th International Symposium on Distributed Computing
and Applications to Business, Engineering Science. Oct. 2012, pp. 13–17. doi:
10.1109/DCABES.2012.39.

[98] Martin Kampe, Per Stenstrom and Michel Dubois. “Self-Correcting LRU
Replacement Policies”. In: In Proceedings of the 1st Conference on Computing
Frontiers. 2004, pp. 181–191.

[99] R. Karedla, J. S. Love and B. G. Wherry. “Caching Strategies to Improve Disk
System Performance”. In: Computer 27.3 (Mar. 1994), pp. 38–46. issn: 0018-9162.
doi: 10.1109/2.268884.

[100] Russell Kegley et al. Predictive CacheModeling and Analysis. en. Technical Report
AFRL-RI-RS-TR-2011-266. Fort Worth, TX: Lockheed Martin Aeronautics
Corporation, Nov. 2011.

[101] Terence Kelly, Sugih Jamin and Jeffrey K. MacKie-Mason. “Variable Qos from
SharedWeb Caches: User-Centered Design and Value-Sensitive Replacement”.
en. In: SSRN Electronic Journal (1999). issn: 1556-5068. doi: 10.2139/ssrn.
975737.

[102] K. Kelwade et al. “Reputation Based Cache Management Policy for Perform-
ance Improvement”. In: 2017 International Conference on Intelligent Sustainable
Systems (ICISS). Dec. 2017, pp. 582–587. doi: 10.1109/ISS1.2017.8389236.

[103] Georgios Keramidas, Pavlos Petoumenos and Stefanos Kaxiras. “Cache Re-
placement Based on Reuse-Distance Prediction”. en. In: IEEE, Oct. 2007,
pp. 245–250. isbn: 978-1-4244-1257-0. doi: 10.1109/ICCD.2007.4601909.

232

https://doi.org/10.1109/TC.2002.1017699
https://doi.org/10.1109/ISCA.1994.288163
https://doi.org/10.1145/325164.325162
https://doi.org/10.1109/DCABES.2012.39
https://doi.org/10.1109/2.268884
https://doi.org/10.2139/ssrn.975737
https://doi.org/10.2139/ssrn.975737
https://doi.org/10.1109/ISS1.2017.8389236
https://doi.org/10.1109/ICCD.2007.4601909

[104] R.E. Kessler et al. “Inexpensive Implementations Of Set-Associativity”. In:
The 16th Annual International Symposium on Computer Architecture. May 1989,
pp. 131–139. doi: 10.1109/ISCA.1989.714547.

[105] S. M. Khan, Z. Wang and D. A. Jiménez. “Decoupled Dynamic Cache Segment-
ation”. In: IEEE International Symposium on High-Performance Comp Architecture.
Feb. 2012, pp. 1–12. doi: 10.1109/HPCA.2012.6169030.

[106] Samira Khan et al. “Using Dead Blocks as a Virtual Victim Cache”. In: 2010
19th International Conference on Parallel Architectures and Compilation Techniques
(PACT). Sept. 2010, pp. 489–500.

[107] Mazen Kharbutli and Rami Sheikh. “LACS: A Locality-Aware Cost-Sensitive
Cache Replacement Algorithm”. In: IEEE Transactions on Computers 63.8 (Aug.
2014), pp. 1975–1987. issn: 2326-3814. doi: 10.1109/TC.2013.61.

[108] Mazen Kharbutli and Yan Solihin. “Counter-Based Cache Replacement Al-
gorithms”. In: Proceedings of the 2005 International Conference on Computer
Design. ICCD ’05. USA: IEEE Computer Society, Oct. 2005, pp. 61–68. isbn:
978-0-7695-2451-1. doi: 10.1109/ICCD.2005.41.

[109] J. Kim et al. “Solar-DRAM: Reducing DRAM Access Latency by Exploiting
the Variation in Local Bitlines”. In: 2018 IEEE 36th International Conference on
Computer Design (ICCD). Oct. 2018, pp. 282–291. doi: 10.1109/ICCD.2018.
00051.

[110] Jong Min Kim et al. “A Low-Overhead High-Performance Unified Buffer
Management Scheme That Exploits Sequential and Looping References”. In:
Proceedings of the 4th Conference on Symposium on Operating System Design &
Implementation - Volume 4. OSDI’00. Berkeley, CA, USA: USENIX Association,
2000.

[111] Jun Kiniwa and Tiko Kameda. “Lookahead Scheduling Requests for Efficient
Paging”. en. In: RIMS Kôkyûroku. Algorithms and Theory of Computing 1041
(Apr. 1998), pp. 27–34.

[112] David Kroft. “Lockup-Free Instruction Fetch/Prefetch Cache Organization”.
In: Proceedings of the 8th Annual Symposium on Computer Architecture. ISCA
’81. Minneapolis, Minnesota, USA: IEEE Computer Society Press, May 1981,
pp. 81–87.

[113] Jaekyu Lee, Hyesoon Kim and Richard Vuduc. “When Prefetching Works,
When It Doesn’t, and Why”. In: ACM Transactions on Architecture and Code
Optimization 9.1 (Mar. 2012), 2:1–2:29. issn: 1544-3566. doi: 10.1145/2133382.
2133384.

233

https://doi.org/10.1109/ISCA.1989.714547
https://doi.org/10.1109/HPCA.2012.6169030
https://doi.org/10.1109/TC.2013.61
https://doi.org/10.1109/ICCD.2005.41
https://doi.org/10.1109/ICCD.2018.00051
https://doi.org/10.1109/ICCD.2018.00051
https://doi.org/10.1145/2133382.2133384
https://doi.org/10.1145/2133382.2133384

Bibliography

[114] Lin Li and Albrecht Mayer. “Trace-Based Analysis Methodology of Program
Flash Contention in Embedded Multicore Systems”. en. In: Proceedings of
the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).
Research Publishing Services, 2016, pp. 199–204. isbn: 978-3-9815370-7-9. doi:
10.3850/9783981537079_0442.

[115] Z. Li, D. Liu and H. Bi. “CRFP: A Novel Adaptive Replacement Policy Com-
bined the LRU and LFU Policies”. In: 2008 IEEE 8th International Conference
on Computer and Information Technology Workshops. July 2008, pp. 72–79. doi:
10.1109/CIT.2008.Workshops.22.

[116] Ankur Limaye and Tosiron Adegbĳa. “A Workload Characterization of the
SPEC CPU2017 Benchmark Suite”. In: 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). Belfast: IEEE, Apr. 2018,
pp. 149–158. isbn: 978-1-5386-5010-3. doi: 10.1109/ISPASS.2018.00028.

[117] Wei-Fen Lin, S.K. Reinhardt and D. Burger. “Reducing DRAM Latencies
with an Integrated Memory Hierarchy Design”. In: Proceedings HPCA Seventh
International Symposium on High-Performance Computer Architecture. Jan. 2001,
pp. 301–312. doi: 10.1109/HPCA.2001.903272.

[118] Wei-Fen Lin and Steven K Reinhardt. Predicting Last-Touch References under Op-
timal Replacement. en. Technical Report CSE-TR-447-02. University of Michigan,
2002, p. 17.

[119] M.H. Lipasti et al. “SPAID: Software Prefetching in Pointer- and Call-Intensive
Environments”. In: Proceedings of the 28th Annual International Symposium on
Microarchitecture. Nov. 1995, pp. 231–236. doi: 10.1109/MICRO.1995.476830.

[120] Haiming Liu et al. “Cache Bursts: A New Approach for Eliminating Dead
Blocks and Increasing Cache Efficiency”. In: 2008 41st IEEE/ACM International
Symposium on Microarchitecture. Nov. 2008, pp. 222–233. doi: 10.1109/MICRO.
2008.4771793.

[121] Gabriel H. Loh and Mark D. Hill. “Efficiently Enabling Conventional Block
Sizes for Very Large Die-Stacked DRAM Caches”. In: 2011 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). Dec. 2011,
pp. 454–464.

[122] Chi-Keung Luk and Todd C. Mowry. “Compiler-Based Prefetching for Recurs-
ive Data Structures”. In: Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS
VII. Cambridge, Massachusetts, USA: Association for Computing Machinery,
Sept. 1996, pp. 222–233. isbn: 978-0-89791-767-4. doi: 10.1145/237090.237190.

234

https://doi.org/10.3850/9783981537079_0442
https://doi.org/10.1109/CIT.2008.Workshops.22
https://doi.org/10.1109/ISPASS.2018.00028
https://doi.org/10.1109/HPCA.2001.903272
https://doi.org/10.1109/MICRO.1995.476830
https://doi.org/10.1109/MICRO.2008.4771793
https://doi.org/10.1109/MICRO.2008.4771793
https://doi.org/10.1145/237090.237190

[123] L. Luo et al. “Design and Realization of an Optimized Memory Access
Scheduler”. In: 2010 Third International Joint Conference on Computational Science
and Optimization. Vol. 2. May 2010, pp. 288–292. doi: 10.1109/CSO.2010.81.

[124] R Manikantan, Kaushik Rajan and R Govindarajan. “NUcache: An Efficient
Multicore Cache Organization Based on Next-Use Distance”. In: 2011 IEEE
17th International Symposium on High Performance Computer Architecture. Feb.
2011, pp. 243–253. doi: 10.1109/HPCA.2011.5749733.

[125] P. Marchal, F. Catthoor and J.I. Gomez. “Optimizing the Memory Bandwidth
with Loop Fusion”. In: International Conference on Hardware/Software Codesign
and System Synthesis, 2004. CODES + ISSS 2004. Sept. 2004, pp. 188–193. doi:
10.1109/CODESS.2004.241216.

[126] A.J. Martin et al. “The Design of an Asynchronous MIPS R3000 Micropro-
cessor”. In: Proceedings Seventeenth Conference on Advanced Research in VLSI.
Sept. 1997, pp. 164–181. doi: 10.1109/ARVLSI.1997.634853.

[127] R. L. Mattson et al. “Evaluation techniques for storage hierarchies”. In: IBM
Systems Journal 9.2 (1970), pp. 78–117. doi: 10.1147/sj.92.0078.

[128] Nimrod Megiddo and Modha Dharmendra S. “ARC: A Self-Tuning, Low
Overhead Replacement Cache”. en. In: Proceedings of FAST ’03: 2nd USENIX
Conference on File and Storage Technologies. Vol. 3. San Francisco: USENIX
Association, Apr. 2003, pp. 115–130.

[129] Nagi N Mekhiel. “Multi-Level Cache With Most Frequently Used Policy: A
New Concept In Cache Design”. en. In: Proceedings of the ISCA 8th International
Conference. Honolulu, Hawaii, Nov. 29, p. 5. isbn: 1-880843-14-5.

[130] JhonnyMertz and Ingrid Nunes. “On the Practical Feasibility of SoftwareMon-
itoring: A Framework for Low-Impact Execution Tracing”. In: 2019 IEEE/ACM
14th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). May 2019, pp. 169–180. doi: 10.1109/SEAMS.
2019.00030.

[131] Edson T. Midorikawa, Ricardo L. Piantola and Hugo H. Cassettari. “On Ad-
aptive Replacement Based on LRU with Working Area Restriction Algorithm”.
In: SIGOPS Oper. Syst. Rev. 42.6 (Oct. 2008), pp. 81–92. issn: 0163-5980. doi:
10.1145/1453775.1453790.

[132] A. Modgil and V. K. Sehgal. “Improving the Performance of Chip Multipro-
cessor by Delayed Write Drain and Prefetcher Based Memory Scheduler”. In:
2018 Second International Conference on Electronics, Communication and Aerospace
Technology (ICECA). Mar. 2018, pp. 1864–1869. doi: 10.1109/ICECA.2018.
8474846.

235

https://doi.org/10.1109/CSO.2010.81
https://doi.org/10.1109/HPCA.2011.5749733
https://doi.org/10.1109/CODESS.2004.241216
https://doi.org/10.1109/ARVLSI.1997.634853
https://doi.org/10.1147/sj.92.0078
https://doi.org/10.1109/SEAMS.2019.00030
https://doi.org/10.1109/SEAMS.2019.00030
https://doi.org/10.1145/1453775.1453790
https://doi.org/10.1109/ICECA.2018.8474846
https://doi.org/10.1109/ICECA.2018.8474846

Bibliography

[133] Todd C. Mowry, Monica S. Lam and Anoop Gupta. “Design and Evaluation of
a Compiler Algorithm for Prefetching”. In: Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS V. Boston, Massachusetts, USA: Association for Computing
Machinery, Sept. 1992, pp. 62–73. isbn: 978-0-89791-534-2. doi: 10.1145/
143365.143488.

[134] O. Mutlu et al. “Runahead Execution: An Alternative to Very Large Instruction
Windows for out-of-Order Processors”. In: The Ninth International Symposium
on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings. Feb.
2003, pp. 129–140. doi: 10.1109/HPCA.2003.1183532.

[135] O. Mutlu et al. “Runahead Execution: An Effective Alternative to Large
Instruction Windows”. In: IEEE Micro 23.6 (Nov. 2003), pp. 20–25. issn: 1937-
4143. doi: 10.1109/MM.2003.1261383.

[136] Osvaldo Navarro and Michael Hübner. “An Adaptive Victim Cache Scheme”.
In: 2014 International Conference on ReConFigurable Computing and FPGAs
(ReConFig14). Dec. 2014, pp. 1–4. doi: 10.1109/ReConFig.2014.7032496.

[137] H. Neefs, H. Vandierendonck and K. De Bosschere. “A Technique for High
Bandwidth and Deterministic Low Latency Load/Store Accesses to Multiple
Cache Banks”. In: Proceedings Sixth International Symposium onHigh-Performance
Computer Architecture. HPCA-6 (Cat. No.PR00550). Jan. 2000, pp. 313–324. doi:
10.1109/HPCA.2000.824360.

[138] K.J. Nesbit, A.S. Dhodapkar and J.E. Smith. “AC/DC: An Adaptive Data
Cache Prefetcher”. In: Proceedings. 13th International Conference on Parallel
Architecture and Compilation Techniques, 2004. PACT 2004.Oct. 2004, pp. 135–145.
doi: 10.1109/PACT.2004.1342548.

[139] K.J. Nesbit and J.E. Smith. “Data Cache PrefetchingUsing a Global History Buf-
fer”. In: 10th International Symposium on High Performance Computer Architecture
(HPCA’04). Feb. 2004, pp. 96–96. doi: 10.1109/HPCA.2004.10030.

[140] Nios II Processor Reference Guide. July 2019.

[141] Elizabeth J. O’Neil, Patrick E. O’Neil and Gerhard Weikum. “The LRU-K Page
Replacement Algorithm for Database Disk Buffering”. en. In: ACM Press, 1993,
pp. 297–306. isbn: 978-0-89791-592-2. doi: 10.1145/170035.170081.

[142] K. Olukotun, T. N. Mudge and R. B. Brown. “Multilevel Optimization of
Pipelined Caches”. In: IEEE Transactions on Computers 46.10 (Oct. 1997),
pp. 1093–1102. doi: 10.1109/12.628394.

236

https://doi.org/10.1145/143365.143488
https://doi.org/10.1145/143365.143488
https://doi.org/10.1109/HPCA.2003.1183532
https://doi.org/10.1109/MM.2003.1261383
https://doi.org/10.1109/ReConFig.2014.7032496
https://doi.org/10.1109/HPCA.2000.824360
https://doi.org/10.1109/PACT.2004.1342548
https://doi.org/10.1109/HPCA.2004.10030
https://doi.org/10.1145/170035.170081
https://doi.org/10.1109/12.628394

[143] Kunle Olukotun, Trevor Mudge and Richard Brown. “Performance Optimiza-
tion of Pipelined Primary Cache”. en. In: ACM SIGARCH Computer Architecture
News 20.2 (June 1992), pp. 181–190. issn: 01635964. doi: 10.1145/146628.
139726.

[144] Open Source Hardware Association - Homepage. https://www.oshwa.org/.

[145] Noritaka Osawa, Toshitsugu Yuba and Katsuya Hakozaki. “Generational
Replacement Schemes for a WWW Caching Proxy Server”. en. In: High-
Performance Computing and Networking. Ed. by Gerhard Goos et al. Vol. 1225.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 940–949. isbn: 978-3-
540-69041-2. doi: 10.1007/BFb0031665.

[146] T. Ozawa, Y. Kimura and S. Nishizaki. “Cache Miss Heuristics and Preloading
Techniques for General-Purpose Programs”. In: Proceedings of the 28th Annual
International Symposium on Microarchitecture. Nov. 1995, pp. 243–248. doi:
10.1109/MICRO.1995.476832.

[147] Peter S. Pacheco. “Parallel Hardware and Parallel Software”. en. In:An Introduc-
tion to Parallel Programming. Elsevier, 2011, pp. 15–81. isbn: 978-0-12-374260-5.
doi: 10.1016/B978-0-12-374260-5.00002-6.

[148] S. Palacharla and R. E. Kessler. “Evaluating Stream Buffers as a Secondary
Cache Replacement”. In: ACM SIGARCH Computer Architecture News 22.2 (Apr.
1994), pp. 24–33. issn: 0163-5964. doi: 10.1145/192007.192014.

[149] Y. Pan and T. Zhang. “Improving VLIW Processor Performance Using Three-
Dimensional (3D) DRAM Stacking”. In: 2009 20th IEEE International Conference
on Application-Specific Systems, Architectures and Processors. July 2009, pp. 38–45.
doi: 10.1109/ASAP.2009.11.

[150] B. Panda and S. Balachandran. “Expert Prefetch Prediction: An Expert Predict-
ing the Usefulness of Hardware Prefetchers”. In: IEEE Computer Architecture
Letters 15.1 (Jan. 2016), pp. 13–16. issn: 1556-6056. doi: 10.1109/LCA.2015.
2428703.

[151] Parag Panda, Geeta Patil and Bĳu Raveendran. “A Survey on Replacement
Strategies in Cache Memory for Embedded Systems”. en. In: 2016 IEEE Distrib-
uted Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). Mangalore,
India: IEEE, Aug. 2016, pp. 12–17. isbn: 978-1-5090-1623-5. doi: 10.1109/
DISCOVER.2016.7806218.

[152] Preeti Ranjan Panda, Nikil D. Dutt and Alexandru Nicolau. “Memory Data
Organization for Improved Cache Performance in Embedded Processor Ap-
plications”. en. In: ACM Transactions on Design Automation of Electronic Sys-

237

https://doi.org/10.1145/146628.139726
https://doi.org/10.1145/146628.139726
https://doi.org/10.1007/BFb0031665
https://doi.org/10.1109/MICRO.1995.476832
https://doi.org/10.1016/B978-0-12-374260-5.00002-6
https://doi.org/10.1145/192007.192014
https://doi.org/10.1109/ASAP.2009.11
https://doi.org/10.1109/LCA.2015.2428703
https://doi.org/10.1109/LCA.2015.2428703
https://doi.org/10.1109/DISCOVER.2016.7806218
https://doi.org/10.1109/DISCOVER.2016.7806218

Bibliography

tems (TODAES) 2.4 (Oct. 1997), pp. 384–409. issn: 1084-4309, 1557-7309. doi:
10.1145/268424.268464.

[153] Gajinder Panesar and Iain Robertson, eds. RISC-V Processor Trace. Mar. 2020.

[154] D. Patterson et al. “A Case for Intelligent RAM”. In: IEEE Micro 17.2 (1997),
pp. 34–44. issn: 02721732. doi: 10.1109/40.592312.

[155] PG172 - Integrated Logic Analyzer v6.2 - LogiCORE IP Product Guide. Oct. 2016.

[156] PG267 - AXI Verification IP v1.1 - LogiCORE IP Product Guide. Apr. 2017.

[157] James E Pitkow and Margaret M Recker. “A Simple Yet Robust Caching
Algorithm Based on Dynamic Access Patterns”. en. In: Proceedings of the Second
International WWW Conference. Oct. 1994, p. 8.

[158] Stefan Podlipnig and Laszlo Böszörmenyi. “A Survey of Web Cache Replace-
ment Strategies”. In: ACM Comput. Surv. 35.4 (Dec. 2003), pp. 374–398. issn:
0360-0300. doi: 10.1145/954339.954341.

[159] Mounika Ponugoti and Aleksandar Milenkovic. “Enabling On-the-Fly Hard-
ware Tracing of Data Reads in Multicores”. en. In: ACM Transactions on
Embedded Computing Systems 18.4 (June 2019), pp. 1–27. issn: 15399087. doi:
10.1145/3322642.

[160] S. Przybylski, M. Horowitz and J. Hennessy. “Characteristics Of Performance-
Optimal Multi-Level Cache Hierarchies”. In: The 16th Annual International
Symposium on Computer Architecture. May 1989, pp. 114–121. doi: 10.1109/
ISCA.1989.714545.

[161] S. Przybylski, M. Horowitz and J. Hennessy. “Performance Tradeoffs in Cache
Design”. In: [1988] The 15th Annual International Symposium on Computer
Architecture. Conference Proceedings. May 1988, pp. 290–298. doi: 10.1109/ISCA.
1988.5239.

[162] Steven A. Przybylski. Cache and Memory Hierarchy Design: A Performance-
Directed Approach. en. San Mateo, Calif: Morgan Kaufmann Publishers, 1990.
isbn: 978-1-55860-136-9.

[163] PULP Foundation. Trace Debugger for RISC-V Core. June 2018.

[164] A. Qazi et al. “Optimization of Access Latency in DRAM”. In: 2016 International
Conference on Computing, Electronic and Electrical Engineering (ICE Cube). Apr.
2016, pp. 163–168. doi: 10.1109/ICECUBE.2016.7495216.

[165] M. K. Qureshi et al. “Set-Dueling-Controlled Adaptive Insertion for High-
Performance Caching”. In: IEEE Micro 28.1 (Jan. 2008), pp. 91–98. doi: 10.
1109/MM.2008.14.

238

https://doi.org/10.1145/268424.268464
https://doi.org/10.1109/40.592312
https://doi.org/10.1145/954339.954341
https://doi.org/10.1145/3322642
https://doi.org/10.1109/ISCA.1989.714545
https://doi.org/10.1109/ISCA.1989.714545
https://doi.org/10.1109/ISCA.1988.5239
https://doi.org/10.1109/ISCA.1988.5239
https://doi.org/10.1109/ICECUBE.2016.7495216
https://doi.org/10.1109/MM.2008.14
https://doi.org/10.1109/MM.2008.14

[166] M.K. Qureshi, D. Thompson and Y.N. Patt. “The V-Way Cache: Demand-Based
Associativity via Global Replacement”. In: 32nd International Symposium on
Computer Architecture (ISCA’05). June 2005, pp. 544–555. doi: 10.1109/ISCA.
2005.52.

[167] Moinuddin K. Qureshi et al. “A Case for MLP-Aware Cache Replacement”. In:
ACM SIGARCH Computer Architecture News 34.2 (May 2006), pp. 167–178. issn:
0163-5964. doi: 10.1145/1150019.1136501.

[168] Moinuddin K. Qureshi et al. “Adaptive Insertion Policies for High Performance
Caching”. en. In: ACM SIGARCH Computer Architecture News 35.2 (June 2007),
p. 381. issn: 01635964. doi: 10.1145/1273440.1250709.

[169] Jonathan Rainer. Experimental Data (Including Hardware Variants) Measuring
Memory Activity for Trace Assisted Caching. en. Sept. 2020. doi: 10.5281/ZENODO.
4042892.

[170] Jonathan Rainer. Experimental Data (Including Hardware Variants) Measuring
Runtime for Trace Assisted Caching. en. Sept. 2020. doi: 10.5281/ZENODO.
4040337.

[171] Jonathan Rainer. Jonathanrainer/Ichĳou: Initial Release. Zenodo. Sept. 2020. doi:
10.5281/ZENODO.4045225.

[172] Jonathan Rainer. Jonathanrainer/Kuuga: Initial Release. Zenodo. Sept. 2020. doi:
10.5281/ZENODO.4045227.

[173] Jonathan Rainer. Jonathanrainer/Sawatari: Initial Release. Zenodo. Sept. 2020.
doi: 10.5281/ZENODO.4045229.

[174] A. Ramirez, J.Ll. Larriba-Pey and M. Valero. “Trace Cache Redundancy:
Red and Blue Traces”. In: Proceedings Sixth International Symposium on High-
PerformanceComputerArchitecture.HPCA-6 (Cat.No.PR00550). Jan. 2000, pp. 325–
333. doi: 10.1109/HPCA.2000.824361.

[175] Mike Reddy and Graham P. Fletcher. “Intelligent Web Caching Using Docu-
ment Life Histories: A Comparison with Existing Cache Management Tech-
niques”. In: 1998.

[176] Jeff Reilly. “A brief introduction to the SPEC CPU95 benchmarks”. In: SPEC
Newsletter, Sep (1995).

[177] Faizal Riaz-ud-Din and Markus Kirchberg. “Acme-DB: An Adaptive Caching
Mechanism Using Multiple Experts for Database Buffers”. en. In: Enterprise
Information Systems VI. Ed. by Isabel Seruca et al. Berlin/Heidelberg: Springer-
Verlag, 2006, pp. 72–81. isbn: 978-1-4020-3674-3. doi: 10.1007/1-4020-3675-
2_9.

239

https://doi.org/10.1109/ISCA.2005.52
https://doi.org/10.1109/ISCA.2005.52
https://doi.org/10.1145/1150019.1136501
https://doi.org/10.1145/1273440.1250709
https://doi.org/10.5281/ZENODO.4042892
https://doi.org/10.5281/ZENODO.4042892
https://doi.org/10.5281/ZENODO.4040337
https://doi.org/10.5281/ZENODO.4040337
https://doi.org/10.5281/ZENODO.4045225
https://doi.org/10.5281/ZENODO.4045227
https://doi.org/10.5281/ZENODO.4045229
https://doi.org/10.1109/HPCA.2000.824361
https://doi.org/10.1007/1-4020-3675-2_9
https://doi.org/10.1007/1-4020-3675-2_9

Bibliography

[178] J.A. Rivers et al. “On High-Bandwidth Data Cache Design for Multi-Issue
Processors”. In: Proceedings of 30th Annual International Symposium on Microar-
chitecture. Dec. 1997, pp. 46–56. doi: 10.1109/MICRO.1997.645796.

[179] Scott Rixner et al. “Memory Access Scheduling”. In: Proceedings of the 27th
Annual International Symposium on Computer Architecture. ISCA ’00. Vancouver,
British Columbia, Canada: Association for Computing Machinery, May 2000,
pp. 128–138. isbn: 978-1-58113-232-8. doi: 10.1145/339647.339668.

[180] Luigi Rizzo and Lorenzo Vicisano. “Replacement Policies for a Proxy Cache”.
In: IEEE/ACM Transactions on Networking 8.2 (Apr. 2000), pp. 158–170. issn:
1063-6692. doi: 10.1109/90.842139.

[181] John T. Robinson and Murthy V. Devarakonda. “Data Cache Management
Using Frequency-BasedReplacement”. In:Proceedings of the 1990ACMSIGMET-
RICSConference onMeasurement andModeling of Computer Systems. SIGMETRICS
’90. New York, NY, USA: ACM, 1990, pp. 134–142. isbn: 978-0-89791-359-1. doi:
10.1145/98457.98523.

[182] E. Rotenberg, S. Bennett and J.E. Smith. “A Trace Cache Microarchitecture and
Evaluation”. In: IEEE Transactions on Computers 48.2 (Feb. 1999), pp. 111–120.
issn: 2326-3814. doi: 10.1109/12.752652.

[183] Amir Roth, Andreas Moshovos and Gurindar S. Sohi. “Dependence Based
Prefetching for Linked Data Structures”. In: ACM SIGPLAN Notices 33.11 (Oct.
1998), pp. 115–126. issn: 0362-1340. doi: 10.1145/291006.291034.

[184] Daniel Sanchez and Christos Kozyrakis. “The ZCache: Decoupling Ways and
Associativity”. In: 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. Dec. 2010, pp. 187–198. doi: 10.1109/MICRO.2010.20.

[185] T. Scheipel, F. Mauroner and M. Baunach. “System-Aware Performance Mon-
itoring Unit for RISC-V Architectures”. In: 2017 Euromicro Conference on Digital
System Design (DSD). Aug. 2017, pp. 86–93. doi: 10.1109/DSD.2017.28.

[186] André Seznec. “A Case for Two-Way Skewed-Associative Caches”. In: Proceed-
ings of the 20th Annual International Symposium on Computer Architecture. ISCA
’93. San Diego, California, USA: Association for Computing Machinery, May
1993, pp. 169–178. isbn: 978-0-8186-3810-7. doi: 10.1145/165123.165152.

[187] André Seznec andFrancois Bodin. “Skewed-AssociativeCaches”. en. In:PARLE
’93 Parallel Architectures and Languages Europe. Ed. by Arndt Bode, Mike Reeve
and Gottfried Wolf. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 1993, pp. 305–316. isbn: 978-3-540-47779-2. doi: 10.1007/3-540-
56891-3_24.

240

https://doi.org/10.1109/MICRO.1997.645796
https://doi.org/10.1145/339647.339668
https://doi.org/10.1109/90.842139
https://doi.org/10.1145/98457.98523
https://doi.org/10.1109/12.752652
https://doi.org/10.1145/291006.291034
https://doi.org/10.1109/MICRO.2010.20
https://doi.org/10.1109/DSD.2017.28
https://doi.org/10.1145/165123.165152
https://doi.org/10.1007/3-540-56891-3_24
https://doi.org/10.1007/3-540-56891-3_24

[188] Jun Shao and Brian T. Davis. “A Burst Scheduling Access Reordering Mech-
anism”. en. In: 2007 IEEE 13th International Symposium on High Performance
Computer Architecture. Scottsdale, AZ, USA: IEEE, 2007, pp. 285–294. isbn:
978-1-4244-0804-7. doi: 10.1109/HPCA.2007.346206.

[189] W. Shin et al. “DRAM-Latency Optimization Inspired by Relationship between
Row-Access Time andRefresh Timing”. In: IEEETransactions onComputers 65.10
(Oct. 2016), pp. 3027–3040. issn: 0018-9340. doi: 10.1109/TC.2015.2512863.

[190] O. Shoukry et al. “Proactive Scheduling for Content Pre-Fetching in Mobile
Networks”. In: 2014 IEEE International Conference on Communications (ICC).
June 2014, pp. 2848–2854. doi: 10.1109/ICC.2014.6883756.

[191] Amit Kumar Singh et al. “Resource and Throughput Aware Execution Trace
Analysis for Efficient Run-TimeMapping onMPSoCs”. en. In: IEEETransactions
on Computer-Aided Design of Integrated Circuits and Systems 35.1 (Jan. 2016),
pp. 72–85. issn: 0278-0070, 1937-4151. doi: 10.1109/TCAD.2015.2446938.

[192] Yannis Smaragdakis. “General Adaptive Replacement Policies”. en. In: ACM
Press, 2004, p. 108. isbn: 978-1-58113-945-7. doi: 10.1145/1029873.1029887.

[193] Yannis Smaragdakis, Scott Kaplan and Paul Wilson. “EELRU: Simple and
Effective Adaptive Page Replacement”. In: Proceedings of the 1999 ACM SIG-
METRICS International Conference on Measurement and Modeling of Computer
Systems. SIGMETRICS ’99. New York, NY, USA: ACM, 1999, pp. 122–133. isbn:
978-1-58113-083-6. doi: 10.1145/301453.301486.

[194] Alan Jay Smith. “Cache Memories”. In: ACM Comput. Surv. 14.3 (Sept. 1982),
pp. 473–530. issn: 0360-0300. doi: 10.1145/356887.356892.

[195] Leonid B. Sokolinsky. “LFU-K: An Effective Buffer Management Replacement
Algorithm”. en. In:Database Systems for Advanced Applications. Ed. by YoonJoon
Lee et al. LectureNotes inComputer Science. Berlin,Heidelberg: Springer, 2004,
pp. 670–681. isbn: 978-3-540-24571-1. doi: 10.1007/978-3-540-24571-1_60.

[196] YanSolihin, JaejinLee and JosepTorrellas. “Using aUser-LevelMemoryThread
for Correlation Prefetching”. In: ACM SIGARCH Computer Architecture News
30.2 (May 2002), pp. 171–182. issn: 0163-5964. doi: 10.1145/545214.545235.

[197] S. Sreedharan and S. Asokan. “A Cache Replacement Policy Based on Re-
Reference Count”. In: 2017 International Conference on Inventive Communication
and Computational Technologies (ICICCT). Mar. 2017, pp. 129–134. doi: 10.1109/
ICICCT.2017.7975173.

[198] A. Srivastava et al. “190-MHzCMOS 4-Kbyte PipelinedCaches”. In:Proceedings
of ISCAS’95 - International Symposium on Circuits and Systems. Vol. 2. Apr. 1995,
1053–1056 vol.2. doi: 10.1109/ISCAS.1995.519948.

241

https://doi.org/10.1109/HPCA.2007.346206
https://doi.org/10.1109/TC.2015.2512863
https://doi.org/10.1109/ICC.2014.6883756
https://doi.org/10.1109/TCAD.2015.2446938
https://doi.org/10.1145/1029873.1029887
https://doi.org/10.1145/301453.301486
https://doi.org/10.1145/356887.356892
https://doi.org/10.1007/978-3-540-24571-1_60
https://doi.org/10.1145/545214.545235
https://doi.org/10.1109/ICICCT.2017.7975173
https://doi.org/10.1109/ICICCT.2017.7975173
https://doi.org/10.1109/ISCAS.1995.519948

Bibliography

[199] D. Stiliadis and A. Varma. “Selective Victim Caching: A Method to Improve
the Performance of Direct-Mapped Caches”. In: IEEE Transactions on Computers
46.5 (May 1997), pp. 603–610. issn: 2326-3814. doi: 10.1109/12.589235.

[200] J. Stuecheli et al. “Coordinating DRAM and Last-Level-Cache Policies with
the Virtual Write Queue”. In: IEEE Micro 31.1 (Jan. 2011), pp. 90–98. issn:
0272-1732. doi: 10.1109/MM.2010.102.

[201] S. Subha. “An Architecture for Victim Cache”. In: 2016 2nd International
Conference on Advances in Electrical, Electronics, Information, Communication and
Bio-Informatics (AEEICB). Feb. 2016, pp. 255–258. doi: 10.1109/AEEICB.2016.
7538284.

[202] Ranjith Subramanian, Yannis Smaragdakis and Gabriel H. Loh. “Adaptive
Caches: Effective Shaping of Cache Behavior to Workloads”. In: Proceedings of
the 39th Annual IEEE/ACM International Symposium onMicroarchitecture. MICRO
39. Washington, DC, USA: IEEE Computer Society, 2006, pp. 385–396. isbn:
978-0-7695-2732-1. doi: 10.1109/MICRO.2006.7.

[203] Jubee Tada. “A Cache Replacement Policy with Considering Global Fluc-
tuations of Priority Values”. en. In: International Journal of Networking and
Computing 9.2 (July 2019), pp. 161–170. issn: 2185-2847.

[204] Ju-Ho Tang and Kimming So. “Performance and Design Choices of Level-
Two Caches”. In: 1994 Proceedings of the Twenty-Seventh Hawaii International
Conference on System Sciences. Vol. 1. Jan. 1994, pp. 422–430. doi: 10.1109/
HICSS.1994.323143.

[205] Geng Tian and Michael Liebelt. “An Effectiveness-Based Adaptive Cache
Replacement Policy”. In: Microprocessors and Microsystems 38.1 (Feb. 2014),
pp. 98–111. issn: 0141-9331. doi: 10.1016/j.micpro.2013.11.011.

[206] Andreas Traber and Micheal Gautschi. PULPino: Datasheet. June 2017.

[207] P. Tsai, N. Beckmann and D. Sanchez. “Jenga: Software-Defined Cache Hier-
archies”. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). June 2017, pp. 652–665. doi: 10.1145/3079856.3080214.

[208] R. F. Tsao, L. W. Comeau and B. H. Margolin. “A Multi-Factor Paging Ex-
periment: I. The Experiment and Conclusions”. en. In: Statistical Computer
Performance Evaluation. Ed. by Walter Freiberger. Academic Press, Jan. 1972,
pp. 103–134. isbn: 978-0-12-266950-7. doi: 10.1016/B978- 0- 12- 266950-
7.50012-8.

242

https://doi.org/10.1109/12.589235
https://doi.org/10.1109/MM.2010.102
https://doi.org/10.1109/AEEICB.2016.7538284
https://doi.org/10.1109/AEEICB.2016.7538284
https://doi.org/10.1109/MICRO.2006.7
https://doi.org/10.1109/HICSS.1994.323143
https://doi.org/10.1109/HICSS.1994.323143
https://doi.org/10.1016/j.micpro.2013.11.011
https://doi.org/10.1145/3079856.3080214
https://doi.org/10.1016/B978-0-12-266950-7.50012-8
https://doi.org/10.1016/B978-0-12-266950-7.50012-8

[209] James Tuck, Luis Ceze and Josep Torrellas. “Scalable Cache Miss Handling for
HighMemory-Level Parallelism”. In: 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). Dec. 2006, pp. 409–422. doi: 10.
1109/MICRO.2006.44.

[210] Rollins Turner and Henry Levy. “Segmented FIFO Page Replacement”. en. In:
ACM Press, 1981, pp. 48–51. isbn: 978-0-89791-051-4. doi: 10.1145/800189.
805473.

[211] UG885 - VC707 Evaluation Board for the Virtex-7 FPGA User Guide. en. Feb. 2019.

[212] UG974 - UltraScale Architecture Libraries Guide. en. Apr. 2018.

[213] Vladimir Uzelac and Aleksandar Milenković. “Hardware-Based Load Value
Trace Filtering for On-the-Fly Debugging”. In:ACMTrans. Embed. Comput. Syst.
12.2s (May 2013), 97:1–97:18. issn: 1539-9087. doi: 10.1145/2465787.2465799.

[214] A. I. Vakali. “LRU-Based Algorithms for Web Cache Replacement”. en. In:
Electronic Commerce and Web Technologies. Ed. by Kurt Bauknecht, Sanjay
Kumar Madria and Günther Pernul. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2000, pp. 409–418. isbn: 978-3-540-44463-3. doi:
10.1007/3-540-44463-7_36.

[215] S.P. VanderWiel andD.J. Lilja. “ACompiler-AssistedData PrefetchController”.
In: Proceedings 1999 IEEE International Conference on Computer Design: VLSI
in Computers and Processors (Cat. No.99CB37040). Oct. 1999, pp. 372–377. doi:
10.1109/ICCD.1999.808569.

[216] A.V.VeidenbaumandK.A.Gallivan. “DecoupledAccessDRAMArchitecture”.
In: Proceedings Innovative Architecture for Future Generation High-Performance
Processors and Systems. Oct. 1997, pp. 94–103. doi: 10.1109/IWIA.1997.670415.

[217] R. Wang, Y. Gao and G. Zhang. “Real Time Cache Performance Analyzing for
Multi-Core Parallel Programs”. In: 2013 International Conference on Cloud and
Service Computing. Nov. 2013, pp. 16–23. doi: 10.1109/CSC.2013.11.

[218] Zhenlin Wang et al. “Using the Compiler to Improve Cache Replacement
Decisions”. In: Proceedings.International Conference on Parallel Architectures and
Compilation Techniques. Sept. 2002, pp. 199–208. doi: 10.1109/PACT.2002.
1106018.

[219] Tripti S. Warrier, Kanakagiri Raghavendra and Madhu Mutyam. “SkipCache:
Application Aware Cache Management for Chip Multi-Processors”. In: IET
Computers Digital Techniques 9.6 (2015), pp. 293–299. issn: 1751-861X. doi:
10.1049/iet-cdt.2014.0150.

243

https://doi.org/10.1109/MICRO.2006.44
https://doi.org/10.1109/MICRO.2006.44
https://doi.org/10.1145/800189.805473
https://doi.org/10.1145/800189.805473
https://doi.org/10.1145/2465787.2465799
https://doi.org/10.1007/3-540-44463-7_36
https://doi.org/10.1109/ICCD.1999.808569
https://doi.org/10.1109/IWIA.1997.670415
https://doi.org/10.1109/CSC.2013.11
https://doi.org/10.1109/PACT.2002.1106018
https://doi.org/10.1109/PACT.2002.1106018
https://doi.org/10.1049/iet-cdt.2014.0150

Bibliography

[220] S. Wasly and R. Pellizzoni. “Hiding Memory Latency Using Fixed Priority
Scheduling”. In: 2014 IEEE 19th Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS). Apr. 2014, pp. 75–86. doi: 10.1109/RTAS.2014.
6925992.

[221] AndrewWaterman and Krste Asanovic, eds. The RISC-V Instruction SetManual.
en. June 2019.

[222] Wei-Che Tseng et al. “Optimal Scheduling to Minimize Non-Volatile Memory
Access Time with Hardware Cache”. In: 2010 18th IEEE/IFIP International
Conference on VLSI and System-on-Chip. Sept. 2010, pp. 131–136. doi: 10.1109/
VLSISOC.2010.5642609.

[223] Wei-Che Tseng et al. “PRR: A Low-Overhead Cache Replacement Algorithm
for Embedded Processors”. In: 17th Asia and South Pacific Design Automation
Conference. Jan. 2012, pp. 35–40. doi: 10.1109/ASPDAC.2012.6164972.

[224] W.Wei et al. “Exploiting Program Semantics to Place Data inHybridMemory”.
In: 2015 International Conference on Parallel Architecture and Compilation (PACT).
Oct. 2015, pp. 163–173. doi: 10.1109/PACT.2015.10.

[225] Jack Whitham and Neil Audsley. “Time-Predictable Out-of-Order Execution
for Hard Real-Time Systems”. en. In: IEEE Transactions on Computers 59.9 (Sept.
2010), pp. 1210–1223. issn: 0018-9340. doi: 10.1109/TC.2010.109.

[226] M. V. Wilkes. “Slave Memories and Dynamic Storage Allocation”. en. In: IEEE
Transactions on Electronic Computers EC-14.2 (Apr. 1965), pp. 270–271. issn:
0367-7508. doi: 10.1109/PGEC.1965.264263.

[227] Maurice V. Wilkes. “The Memory Gap and the Future of High Performance
Memories”. en. In:ACM SIGARCH Computer Architecture News 29.1 (Mar. 2001),
pp. 2–7. issn: 01635964. doi: 10.1145/373574.373576.

[228] W.A. Wong and J.-L. Baer. “Modified LRU Policies for Improving Second-
Level Cache Behavior”. In: Proceedings Sixth International Symposium on High-
Performance Computer Architecture. HPCA-6 (Cat. No.PR00550). Jan. 2000, pp. 49–
60. doi: 10.1109/HPCA.2000.824338.

[229] Christopher Wood, Eduardo B. Fernandez and Tomas Lang. “Minimization
of Demand Paging for the LRU Stack Model of Program Behavior”. en. In:
Information Processing Letters 16.2 (Feb. 1983), pp. 99–104. issn: 0020-0190. doi:
10.1016/0020-0190(83)90034-0.

[230] XiaoxiaWu et al. “Hybrid Cache Architecture with Disparate Memory Techno-
logies”. In: Proceedings of the 36th Annual International Symposium on Computer
Architecture. ISCA ’09. Austin, TX, USA: Association for ComputingMachinery,
June 2009, pp. 34–45. isbn: 978-1-60558-526-0. doi: 10.1145/1555754.1555761.

244

https://doi.org/10.1109/RTAS.2014.6925992
https://doi.org/10.1109/RTAS.2014.6925992
https://doi.org/10.1109/VLSISOC.2010.5642609
https://doi.org/10.1109/VLSISOC.2010.5642609
https://doi.org/10.1109/ASPDAC.2012.6164972
https://doi.org/10.1109/PACT.2015.10
https://doi.org/10.1109/TC.2010.109
https://doi.org/10.1109/PGEC.1965.264263
https://doi.org/10.1145/373574.373576
https://doi.org/10.1109/HPCA.2000.824338
https://doi.org/10.1016/0020-0190(83)90034-0
https://doi.org/10.1145/1555754.1555761

[231] ZhenYang et al. “OverlappingDependent LoadswithAddressless Preload”. In:
2006 International Conference on Parallel Architectures and Compilation Techniques
(PACT). Sept. 2006, pp. 275–284.

[232] X. Yu et al. “IMP: IndirectMemory Prefetcher”. In: 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). Dec. 2015, pp. 178–190.
doi: 10.1145/2830772.2830807.

[233] Chenxi Zhang, Xiaodong Zhang and Yong Yan. “Multi-Column Implement-
ations for Cache Associativity”. In: Proceedings International Conference on
Computer Design VLSI in Computers and Processors. Oct. 1997, pp. 504–509. doi:
10.1109/ICCD.1997.628915.

[234] Chuanjun Zhang and Bing Xue. “Divide-and-Conquer: A Bubble Replacement
for Low Level Caches”. In: Proceedings of the 23rd International Conference on
Supercomputing. ICS ’09. New York, NY, USA: ACM, 2009, pp. 80–89. isbn:
978-1-60558-498-0. doi: 10.1145/1542275.1542291.

[235] Zheng Zhang and Josep Torrellas. “Speeding up Irregular Applications in
Shared-Memory Multiprocessors: Memory Binding and Group Prefetching”.
In: Proceedings of the 22nd Annual International Symposium on Computer Ar-
chitecture. ISCA ’95. S. Margherita Ligure, Italy: Association for Computing
Machinery, May 1995, pp. 188–199. isbn: 978-0-89791-698-1. doi: 10.1145/
223982.224423.

[236] Li Zhao et al. “Exploring DRAM Cache Architectures for CMP Server Plat-
forms”. In: 2007 25th International Conference on Computer Design. Oct. 2007,
pp. 55–62. doi: 10.1109/ICCD.2007.4601880.

[237] Yuanyuan Zhou, James Philbin and Kai Li. “The Multi-Queue Replacement
Algorithm for Second Level Buffer Caches”. In: Proceedings of the General Track:
2001 USENIX Annual Technical Conference. USA: USENIX Association, June
2001, pp. 91–104. isbn: 978-1-880446-09-6.

[238] Hussein Al-Zoubi, Aleksandar Milenkovic and Milena Milenkovic. “Per-
formance Evaluation of Cache Replacement Policies for the SPEC CPU2000
Benchmark Suite”. en. In: Proceedings of the 42nd Annual Southeast Regional
Conference on - ACM-SE 42. Huntsville, Alabama: ACM Press, 2004, p. 267. isbn:
978-1-58113-870-2. doi: 10.1145/986537.986601.

245

https://doi.org/10.1145/2830772.2830807
https://doi.org/10.1109/ICCD.1997.628915
https://doi.org/10.1145/1542275.1542291
https://doi.org/10.1145/223982.224423
https://doi.org/10.1145/223982.224423
https://doi.org/10.1109/ICCD.2007.4601880
https://doi.org/10.1145/986537.986601

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Listings
	Research Data
	Acknowledgements
	Declaration
	Declaration
	Introduction
	Introduction
	Motivation
	Caches & Memory Hierarchies
	Predicting Dynamic Behaviour
	Tracing & Trace Assisted Caching

	Thesis Aims
	Thesis Structure

	Background
	Literature Review
	Introduction
	Cache Intrinsic Techniques
	Cache Replacement Policy
	Augmenting Cache Architectures
	Summary

	Cache Extrinsic Techniques
	Prefetching
	Scheduling
	Program Transformation & Data Layout
	Summary

	Incorporating Tracing to Reduce Latency
	Tracing as a Control Loop
	Tracing for In-Silicon Debugging

	Review Summary
	Potential for the Application of Tracing

	Trace Assisted Caching
	Motivation
	Defining the Key Problems
	Exploring the Design Space
	Tracing

	High Level Design
	Trace Recorder
	Intelligent Cache & Memory System

	Justification of Success
	Protections against Performance Degradation

	Experiments
	Implementing the Platform
	Pre-existing Components
	Trace Recorder (Gouram)
	A Note on Names

	Trace Assisted Cache (Enokida)
	Trace Repository
	Trace Assisted Cache (Enokida)

	Experimental Hardware
	Expectations of the Platform
	Implementing the Platform

	Summary

	Experiments & Results
	Experimental Setup
	Use of the Experimental Approach
	Process for Each Experiment
	Specific Experimental Concerns

	Results
	Exploring Cache Metrics
	Standard Caches
	Trace-Assisted Caches
	Summary

	Analysis & Conclusion
	Analysis
	Causes of Lack of Improvement
	Lack of Capacity to Improve
	Gap Between Memory Instructions
	Types of Misses
	Overheads Incurred

	Benchmark by Benchmark Analysis
	janne_complex
	fac
	fibcall
	duff
	insertsort
	fft1

	Resolving Problems of the Implementation
	Move Towards an OoO architecture
	Reducing Overheads

	Applicability of Results
	Dependence on Processor Configuration
	Dependence on ISA Choice
	Dependence on the Size of the Cache
	Dependence on Choice of Benchmark

	Programs That Benefit from Trace Assisted Caching
	Summary

	Conclusion & Further Work
	Answering the Research Questions
	Contributions
	Future Work
	Applications to High Performance Computing
	Improving the Fidelity and Stored Size of Captured Traces
	Quantifying the Link Between Slack and Effectiveness
	Expanding the TAC to Other Processors

	Appendices
	Trace Recorder (Gouram) Implementation
	RI5CY Memory Protocol
	The IF Module
	Instruction Fetch State Machine
	Branch Decision State Machine
	The Output State Machine

	Examples
	Simple Load Example
	Complex Branching Example

	The EX Module
	The Main State Machine
	Example

	Trace Recorder (Gouram) Implementation
	Calculation of Trace-Assisted Cache Overheads
	Cache Hit (No Preemptive Action)
	Cache Hit (Following a Preemptive Hit)
	Cache Hit (Following a Preemptive Miss)
	Cache Hit (Following a Preemptive Miss & Writeback)
	Cache Miss (No Preemptive Action)
	Cache Miss (With Writeback)
	Summary & Final Table

	Acronyms
	Bibliography

