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Abstract

The challenges of verifying the behaviour of robotics systems has motivated the
development of various techniques and tools for supporting the advancement and
verification of robotics systems. This is due to the complex nature of verifying robotics
systems as part of the category of hybrid dynamical systems that combine discrete and
continuous parts. In contrast to the commonly-known computer systems, robotic sys-
tems operate in a physical, real-world environment that may include humans, which
raises a reasonable question of concern about the safety of the systems. Currently, one
of the promising solutions is effective, rigorous verification techniques and tools that
verify and guarantee the safe operation of robotics systems 1 .

Along this line, formal methods provide mathematical models that support the de-
velopment of rigorous verification techniques and tools. In this work, we use formal
methods for the verification of temporal specifications of robotics systems. The process
algebra tock-CSP provides textual notations for modelling discrete-time behaviours,
with the support of various tools for verification. Also, tock-CSP has been used to give
semantics to a domain-specific language for robotics, RoboChart. Similarly, automatic
verification of Timed Automata (TA) is supported by the real-time verification toolbox
Uppaal that facilitates verification of temporal specifications using Time Computation
Tree Logic (TCTL). Timed Automata and tock-CSP differ in both modelling and verifi-
cation approaches. For instance, liveness requirements are difficult to specify with the
constructs of tock-CSP, but they are easy to verify in Uppaal.

In this work, we add a step forward in translating tock-CSP into TA to take advantage
of Uppaal. We have developed a translation technique and tool; our work uses rules
for translating tock-CSP into a network of small TAs, which address the complexity
of capturing the compositionality of tock-CSP. For the validation of our proposed con-
tributions, we use an experimental approach based on finite approximations to trace
sets. We consider trace semantics for validating the translation technique. Thus, we
develop a technique for generating and comparing traces of tock-CSP and TA. In order
to evaluate the translation technique and its corresponding tool, we use two forms of
test cases: a large collection of small processes and case studies from the literature. We
illustrate a plan for using mathematical proof to establish the correctness of the rules
that will cover an infinite set of traces.

1In this work, we consider the definition of robotics systems in a broader sense as described in the IEEE
standard 1875-2015, https://ieeexplore.ieee.org/document/7084073
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Chapter One

1. Introduction

One of the significant achievements of technology is the development of robotics sys-
tems; a category of systems that interprets the environment, takes action, moves (mo-
bile robots) and performs a series of operations while avoiding harmful effects with-
out human intervention. This includes the kind of systems that both interact with and
learn from the environment as well as adjust their behaviour according to their current
knowledge and interpretation of the environment.

The capabilities of these systems offer great promise in the development of tech-
nology, economy and improving life in general. Since robotics systems operate in the
physical world and share an environment with human and other living creatures, one
of the key issues of these systems is their ability to avoid harmful behaviour. In cir-
cumstances where safety is critical, it is therefore imperative that these systems are
developed to minimise the possibility of undesirable behaviour. Currently, ensuring
the behaviours of these systems are both correct and safe remains an open question of
concern [3, 4].

In the recent past, various techniques and tools have been developed to support
the verification of robotics systems. In this regard, one of the promising approaches
is applying rigorous validation and verification techniques to the control software.
However, the effective methods, techniques and tools for checking the behaviour of
robotics systems is one of the conundrums of software engineering [5]. The motivation
behind this work is to discover ways of improving the verification techniques that will
support the development of better robotics systems, thus increase confidence in their
trustworthiness.

In the aim of addressing this problem, we take a step forward for improving the
techniques and tools used for checking the temporal specification of the control soft-
ware for robotics systems. In this work, we consider temporal reasoning, and we de-
scribe a formal translation of tock-Communicating-Sequential-Processes (tock-CSP) [6]
into Timed Automata (TA) [7] that facilitates using the Timed Computational Tree
Logic (TCTL) in the verification of temporal specifications, with the automatic support
of Uppaal [7].

This chapter introduces the research conducted in this work. It begins with dis-
cussing the main motivation of the work, including the four directions that motivate
the work: Software Engineering for Robotics in Section 1.2, Domain Specific Modelling
Languages (DSML) in Section 1.3, formal methods in Section 1.3.1 and then Temporal
Reasoning in Section 1.3.2; followed by Section 1.4 that describes the contributions of
this work. Lastly, the chapter concludes with an outline structure of the rest of the
document in Section 1.5.
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1.1. Motivation

The current technology is highly dependent on software systems. Nowadays, software
systems play a vital role in the operation and control of systems; including robotics.
Software systems open a door for considerable achievement in the area of robotics. In
recent years, robotics systems have been recognised as one of the most important tech-
nologies, as nowadays they are becoming acceptable in almost every sector: industry,
school and home [8, 9]. In industry, for example, robotics systems have successfully
reduced human labour in various sectors, such as automotive and electronics. In the
same vein, it has been reported that robotics systems are significantly increasing pro-
ductivity, and there are more predictions for this technology’s continuous rise in future
years [10, 11].

The capabilities and flexibility of robotic and autonomous systems (RAS) make them
suitable for handling both difficult and harmful tasks [12]. They are also suitable
for use in hazardous environments such as in rescue missions, mining, chemical and
explosives detection [13, 14]. Additionally, they also support life and improve welfare,
for instance, in assisting aged and disabled people to live independently [15].

This research is important because in this current age of technology robotics sys-
tems are moving from a controlled industrial environment to the world for universal
commercial use. Thus, the need for safety becomes a crucial point of concern be-
cause these systems will be operating and interacting with the physical environment
that may involve sharing an environment with humans. Importantly, the environment
may include critical equipment, or the behaviour of the robotics system may involve
operating critical equipment. Ensuring the safety and correctness of their operation is
essential for the continuation of their success.

This can be achieved with rigorous verification and validation (V&V) techniques that
check whether a system satisfies its specification correctly, both logically and tempo-
rally, before launching it into the full operation for universal purpose. For years, these
V&V techniques have been used as an essential part of the Software Engineering (SE)
tool kit [16].

The main objective of the research is extending and complementing the existence
research for addressing the problem of verifying temporal specifications of robotics
applications. Thus, we study the available resources for verifying temporal specifica-
tions of robotics applications, where we select tock-CSP and Uppaal. This is because
tock-CSP captures the generated semantics of the RoboChart models, which will re-
main consistent despite the evolution of the structure of the RoboChart and its tool
RoboTool. This choice will have an additional advantage of enhancing the application
of this research to enable other related researches based on tock-CSP to use our work.

1.2. Software Engineering for Robotics

In this technological era, advancement in hardware development increases the de-
mand for software that operates the hardware correctly. Likewise, robotics increases
the demand for support from SE for developing quality applications for robotics; for
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complementing the robotics hardware with efficient software, which operates and con-
trols an autonomous system safely and correctly [17, 18].

The development of a software system for operating and managing robotics systems
mostly involves various areas of expertise. Although the expertise involved depends
on the type of system and the targeted operating environment, typically this includes
SE, Artificial Intelligence (AI), Electronics, Mechanics, and Human-Computer Interac-
tion (HCI). Combining these kinds of expertise to develop a sound software system
remains a challenging task.

One of the target goals of SE is providing an abstraction that supports smooth col-
laboration among the various experts involved in the development of robotic software
systems. This abstraction provides an effective separation of concern that decom-
poses a system into modules of various concerns each for a specific expertise [17]. SE
techniques, such as Component-Based Software Development (CBSD), provide useful
means for breaking down a complex robotics system into smaller units that are devel-
oped and managed independently [19, 20]. The abstract descriptions of each unit are
used to describe and design a complete system.

Also, in some cases, software systems for RAS are developed with partial infor-
mation of both the system behaviour and its operating environment because robotics
systems perform a series of continuous actions with partial feedback and uncertainty
about the effect of each action. Additionally, in some cases, these systems are expected
to operate in a dynamic environment that evolves and changes at any given time dur-
ing operation. Importantly, this poses the need for exercising extreme caution when
putting the system into operation.

Further, the design and development of robotics systems involve handling a variety
of unrestricted requirements due to the nature of their operating environment, which
comprises mostly open-ended unrestricted environments. More often, these require-
ments are subject to change during the system operation. These concerns create many
complexities in the operation of the systems. However, these complexities can be han-
dled and managed effectively using well-developed systematic techniques for rigorous
verification.

The field of SE has a collection of well-established systematic concepts and ap-
proaches for incorporating various software aspects properly at each phase of soft-
ware development. These concepts have been used successfully to develop software
systems for multiple fields, such as nuclear factory, medicine, archaeology, similar to
the expectation that robotics are expected to be used in multiple fields. These are also
applicable to robotics, specifically in improving the quality of the robotics systems by
providing better techniques for developing software systems that improve safety of
robotics, while still improving both the performance and the complexity of verifying
robotics applications.

In most cases, a robotics system consists of components that operate concurrently
while processing a large amount of accumulated data in real-time and reacting to
the operating environment within the budgeted (scheduled) time due to real-time
constraints. As a result of this, most of the research focuses on improving performance
and addressing complexity. Thus, less attention is paid to other important quality
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issues such as verification, safety, reliability and maintenance [21].
In this case, suitable systematic techniques of SE for combining each aspect of the

software properly at each developmental phase will play a vital role in balancing each
aspect that will enable the production of quality software; the kind of software that is
safe for use in operating robotics systems. This will improve the quality of robotics
systems considerably by making them trustworthy systems. Additionally, DSML will
improve further by narrowing down the scope of robotics systems and reducing the
complexity of both handling the requirements and development of the systems.

In this work, we consider the definition of robotic in broader sense as described in
IEEE Standard 1872-2015 2. As described below:

An agentive device in a broad sense, purposed to act in the physical world
in order to accomplish one or more tasks. In some cases, the actions of a
robot might be subordinated to actions of other agents, such as software
agents (bots) or humans. A robot is composed of suitable mechanical and
electronic parts. Robots might form social groups, where they interact to
achieve a common goal. A robot (or a group of robots) can form robotic
systems together with special environments geared to facilitate their work.

1.3. Domain-Specific Modelling Languages (DSML)

Considering the achievement of software abstraction and Model-Driven Engineering
(MDE) in SE, there are several proposals for developing an effective DSML for sup-
porting Robotic Software System Development (RSSD) [22–24]. A DSML that is well
equipped with desirable features for developing reliable robotics systems; with com-
prehensive formal techniques and tools for exhaustive verification and validation tech-
niques [1].

The concept of modelling systems before their implementation remains an inter-
esting concept that is pushing SE forward. DSML adds a step forward in providing
effective facilities for defining an abstract system that hides unnecessary details. This
concept of DSML is visible in three dimensions: effective separation of concern that
reduces complexity, eases prototyping and overall speeds up the development pro-
cess [24, 25].

Also, the concept of using DSML has been successfully tested for use in the devel-
opment of software systems in various fields that produced a good result in reducing
domain complexities for an appropriate suitable solution to a specific problem. Addi-
tionally, the combination of the various areas of expertise involved in robotics makes
SE and specifically DSML suitable candidates for use in the development of robotic
software systems [24].

In the available literature, many DSMLs have been developed and used in the de-
velopment of robotics systems. Most of these languages consider providing facilities
for improving capabilities of robotics systems, such as motion, recognition and plan-
ning. Among the available DSMLs in the literature, only three DSMLs considered

2https://ieeexplore.ieee.org/document/7084073

4

https://ieeexplore.ieee.org/document/7084073 


using formal techniques for verification. These are GenoM [26], DSML for Adaptive
Systems [27], and RoboChart [13]. Additional details are provided in Chapter 2.

In the case of GenoM, it was initially developed as a tool for generating models from
a combination of models and code, with no basis for using formal techniques. Use of
formal techniques was added as an extension for improving its strength in verification.
In comparison, DSML for Adaptive Systems was developed as a textual language with
a very narrow scope for modelling the adaptation logic only. RoboChart was devel-
oped as a graphical language with a good foundation for using formal techniques,
since its inception. Thus, RoboChart provides formal notations that are suitable for
developing formal models.

In short, complementing a robotics DSML with formal techniques has provided
good additional facilities for improving the quality and safety of robotics systems;
more specifically, in improving the verification aspect that will reduce considerable
defects.

1.3.1. Formal Methods

The use of mathematics for analysis and verification is the basis of formal method
(FM), which enables using well-established theorem proving techniques and model
checking for formal verification. Using FM has motivated the production of a broad
spectrum of mathematical techniques for constructing and analysing models of com-
puter systems with logical reasoning. This leads to a notable contribution to quality
improvement, which has been reported as one of the main strengths and contributions
of the FM in software development. Significantly, this concept improves quality and
productivity, as it is widely recommended that formalisation is used for designing
trustworthy systems [28–31].

In designing systems (such as robotics systems), FM emphasises the concept of cre-
ating abstract models to specify the required characteristics of systems. The abstract
models are subjected to rigorous consistency checks to determine whether they meet
the intended requirements. As intended, formal techniques have been successfully
tested for Verification and Validation (V&V) in various industrial sectors, such as trans-
port, business and critical systems. They have been used in various types of projects
for both hardware and software. For example, FM has been used successfully in de-
signing and verifying microprocessors, internet protocols and scheduling [21, 29, 32].
This success tallies with the expectation that robotics systems are use for various ser-
vices, ranging from toys for fun to large critical industries like nuclear systems.

Using formal verification serves as a better alternative to testing in ensuring the cor-
rectness of a system. This is due to the advantage of formal validation in detecting
bugs at the early development phase, at the design level, rather than at the imple-
mentation level, which is more costly [21]. This advantage plays a significant role in
reducing overall project cost and time. This contribution has been achieved with the
use of formal notations such as CSP [33], Z [34], and Alloy [35] that have been used
for system modelling and verification using formal techniques.

In addition, the approach of using a formal method is suitable for complementing
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and improving the currently used popular approaches for testing and simulation. For
a long time, simulation and testing have been used in software development in various
fields with a satisfactory result. However, both of these approaches are incomplete
because they only check a specifically formulated scenario. It is clear that a collection
of formulated scenarios or test cases only count for a fraction of the targeted operating
environment [21]. This can be improved significantly by using formal techniques for
checking all possible behaviour of the system to establish whether a system satisfies
its specifications. Usually, this is achieved using well-established theorem-proving
techniques and model checking for formal verification.

1.3.2. Temporal Reasoning

In contrast to the previous sections that discussed techniques and tools, this section
focuses on the role of time in organising the flow of activities to define the behaviour of
a system. Timing is an essential component of robotics systems; it is used to assemble
and schedule a series of activities that accomplish a mission correctly. Therefore,
investigating the correctness of system behaviour with respect to the flow of time is
essential in the overall system behaviour, especially the robotics system that operates
in real-time.

Depending on the nature of a system, analysing system behaviour in terms of a
sequence of events could be appropriate for reasoning about untimed safety. However,
in the case of timed sensitive systems, especially, the kind of systems that operate in
real-time, reasoning about time is essential for its safety and correct operation. The
behaviour of timed sensitive systems needs to be specified at the level of timed detail,
which takes into account timing, scheduling, delay and deadline [36].

There are various approaches to modelling temporal specification. For instance, in
refinement modelling approach such as in CSP notations, the facilities for addressing
the timing specification was provided by extending the existing untimed notations.
This is achieved by providing additional constructs for capturing time specification,
such as tock-CSP [6] and Timed CSP [37]. In the same manner, Circus Time [38] is
an extension of Circus with the notion of time. Both of these notations use the dis-
crete approximation of time, which is appropriate at the level of computer application.
However, there are specifications that can not be specified and verified in the discrete-
time model.

Another popular approach of modelling temporal specification is using temporal
logics that provide different constructs for verifying temporal specifications. Both
modelling approaches of refinement and temporal logic are powerful approaches for
model checking systems [39]. The refinement approach models both the system and
its specifications with the same notation [6,37]. Temporal logic enables asking whether
a system is a model for a logical formula of the specification (system |= f ormula) [40].

In the literature, Lowe has investigated the relationship between the refinement ap-
proach (in CSP) and the temporal logic approach [39]. The result of Lowe’s work
shows that, in expressing temporal logic checks using refinement, it is necessary to
use the infinite refusal testing model of CSP. The work highlights that capturing the
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expressive power of temporal logic in specifying the availability of an event (liveness
specification) is not possible. Also, due to the difficulty of capturing refusal testing,
automatic support becomes problematic with the previous version of the CSP sup-
porting tool Failures-Divergence Refinement (FDR) supports refusal testing, but not
its recent efficient version [41].

There are three classes of specifications that can not be express with simple refine-
ment check. Lowe’s [39] proves that simple refinement checks cannot cope with these
three operators: eventually (�p: p will hold in some subsequent state), until (pUq: p
holds in every state until q holds) and negation (¬(�p): p will never hold in the subse-
quent states). All these three operators express behaviour that is captured by infinite
traces. In this work, we introduce a translation tool, presented here, which will fa-
cilitate using the resources of temporal logic (and Uppaal for automatic support) in
checking tock-CSP models, particularly specification that are difficult to specify with
refinement model.

In plain English, example of these specifications are:

1. The robot will eventually reach the target goal.

2. The robot remains in a safe state until the hazard disappear.

3. The robot will not cross the barrier until the barrier open.

Time is in continuous form, but the basis of computing happens to be in digital
form, which is in discrete form. Real life is a continuous flow of events in continuous
form, and correspondingly a real-environment evolves continuously with real-time.
Therefore, a specification of a system that behaves and interacts with a real environ-
ment needs to be more appropriate in the hybrid form; a combination of continuous
and discrete form. Precisely, in the case of reasoning, it has been reported that, the
number of reachable states in modelling a system using a continuous-time model is
always greater than or equal to the number of reachable states in modelling the same
system using a discrete-time model [36, 42, 43]. This shows that in using discrete-time
models alone, it is impossible to reason about the unreachable states. A discrete model
of time has a fixed time interval (time unit). If the interval is too coarse, some reach-
able states will be missed. Thus, it is not possible to draw a complete conclusion about
the behaviour of a system without considering the unreachable states.

On the one hand, it can be argued that finding a good enough granularity can pro-
vide an equivalent correct result, which is similar to modelling the system with a
continuous-time model. On the other hand, there is no known simple way of find-
ing enough granularity that is good enough to provide a similar correct result that
is equivalent to the continuous-time model. Within the studied literature, there is
no well-defined process of finding an optimal granularity that is comparable to a
continuous-time model. It has been mentioned that it is likely that the process of
finding the optimal granularity is as complex as solving the whole problem using the
continuous-time model. In some cases, the procedure could be worse than using the
continuous-time model. This is because the finer the granularity, the more it reduces
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the efficiency of the verification process. In contrast, it is more likely to increase the
complexity of the verification techniques [5, 36].

In the literature, there is an interesting concern about handling temporal specifica-
tions. For instance, all the timed models of the relevant DSMLs found in the literature
have considered using discrete-time approximation for modelling and verification of
temporal specification. In conclusion, most of the modelling notations and constructs
used a form of discrete time in verifying temporal specifications. Considering the
safety concern for real-time systems and the uncertainties associated with discrete ap-
proximation, as highlighted above, there is a need for a better alternative approach for
improvement.

1.4. Contributions

The goal of the proposed work is to facilitate verification of temporal specifications
of robotics systems using Uppaal, which provides facilities for supporting reasoning
with temporal logic, especially for the verification of safety properties. These provided
facilities can complement the limitations of refinement approach in expressing tempo-
ral specifications. Previous research [39] has established that reasoning with simple re-
finement checks has a limited scope in expressing temporal specifications; for instance,
expressing liveness specifications is beyond the scope of refinement checks [39].

In the literature, many techniques and tools have been developed for improving
robotics applications. There is a clear indication of less concern regarding the verifica-
tion of temporal specifications. We discuss this in more detail in the literature review
(Chapter 2). This work focuses on improving the verification tools by translating tock-
CSP into TA that will facilitate reasoning with temporal logic in the verification of
temporal specifications.

The concept of using automata for modelling system behaviour has been extended
with the notion of a clock, which is capable of capturing time using an extension
of automata called Timed-automata. System behaviour is modelled as a network
of timed automata, which enables automatic verification of real-time systems with
a well-known tool called Uppaal model checker [7]; an integrated tool for modelling
and verification of real-time systems. The tool has been developed with a promising
formal approach for verifying system properties, including temporal specifications.
Techniques have been developed for translating RoboChart models into tock-CSP that
facilitates verifying system specifications using a refinement approach with the auto-
matic support of a verification tool called FDR [41]. FDR is an automatic verification
tool for CSP that also supports tock-CSP.

These issues raise a fundamental question in using FM for verifying robotics appli-
cations. The most fundamental question that emerged from early exploratory work
was how to improve formal techniques of verifying temporal specifications that are
compatible with the existing resources of developing robotics, especially the ones that
have a formal basis, such as RoboChart.

The methodology we consider for this work is model transformation. To answer the
research question, we plan to improve the resources used for checking the temporal
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specification of the control software for robotics applications. The aim of this research
work is to investigate suitable ways of using Uppaal to verify tock-CSP specifications
using the resources of temporal logic provided in Uppaal.

To address the research question, we setup the following objectives:

1. The first goal is to study the available resources for verifying temporal specifica-
tions of robotics applications.

2. In the second goal, our work will add a step forward by developing techniques
for automatically translating tock-CSP models into Uppaal models; a kind of
translation that maintains the existing semantics of tock-CSP in generating a cor-
rect and suitable TA model as input to the Uppaal model checker that will fa-
cilitate verifying temporal specifications using TCTL. Therefore, existing works
based on tock-CSP, for instance, RoboChart, will benefit from the facilities of
two well-known verification tools FDR and Uppaal. At the time of conducting
this work, RoboChart is still evolving but the technique will be applicable to
RoboChart because its semantics is in tock-CSP, and other related work around
tock-CSP. Also, these techniques can serve as a link between the two popular
model-checking tools FDR and Uppaal, and a means of combining the two tools
for system verification, with the best of the available resources, like improving
performance in the verification stage.

3. The third goal is to automate the translation technique with a tool that will
improve the usability of the work by making it easy to use. As a result, a sig-
nificant step forward will be made in combining the facilities of both modelling
approaches; as well as improving our understanding of the complex relationship
between tock-CSP and TA, and also their modelling approaches for refinement
and temporal logic, respectively.

4. The fourth goal is to sketch a mathematical proof that will provide additional
justification for the correctness of the translation technique.

1.5. Structure of this Thesis

The rest of the document is structured as follows. Next, Chapter 2 describes the con-
text of the work. We discuss the background study of the relevant DSML and tools for
robotics applications that are available in the literature. The chapter begins with an
overview of software development for robotics systems and discusses the role of DSML
in developing software for robotics. The chapter proceeds with a discussion of inter-
esting desirable features for a suitable DSML for robotics. Additionally, the chapter
presents relevant DSMLs from the literature, we discuss and compare their available
desirable features and also provide a brief account of using formal techniques in the
verification aspect of the studied DSMLs. We consider RoboChart in this work; thus a
separate discussion for RoboChart is added to provide a more detailed discussion of
its constructs. Lastly, the chapter discusses relevant formal techniques and tools that
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are suitable for the verification of robotics systems; specifically CSP, its timed versions:
tock-CSP and Timed CSP, its supporting tool FDR, then also Timed Automata (TA) and
its supporting tool Uppaal. In short, we describe how the literature sets a precedent
and opens questions for the rest of the work.

In Chapter 3, we present the technique we have developed for translating tock-CSP
models into suitable TA for Uppaal model checker. We begin with presenting a BNF
for the tock-CSP that describes the constructs of the tock-CSP we consider in this work.
We describe a technique for translating the constructs of tock-CSP into TA. Examples
are provided for more detailed illustrations both in Chapter 3 and Appendices. How-
ever, the main contribution of this chapter is providing a mechanism for translating
tock-CSP into TA, whereby we can use temporal logic in the verification of the trans-
lated behaviour of tock-CSP.

In Chapter 4, we describe the approach we consider in evaluating the translation
technique. We describe the automation of the translation technique, as well as an-
other technique we developed for evaluating the translation technique. We use two
categories of test cases: a large collection of formulated processes that capture inter-
esting cases and a list of systems from the literature. We illustrate our plan of using
mathematical proof to improve the justification of the translation technique.

Finally, in Chapter 5, we provide a general summary and conclusion of the work.
The chapter begins by summarising the thesis, then highlights recommended direc-
tions of future work for expanding the research.
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Chapter Two

2. Domain-Specific Modelling Languages and Tools for
Robotics Applications

This chapter discusses relevant Domain-Specific Modelling Languages (DSMLs) and
tools that are developed specifically for robotics systems that are available in the liter-
ature. The chapter is divided into nine sections. Section 2.1 traces back the concept of
software development and then narrows down specifically to Robotics Software Sys-
tem Development (RSSD), which includes methods, techniques and approaches for
RSSD. Also, we provide a brief account of both academic and industrial perspectives
of RSSD at the end of this section. In Section 2.2, we describe a DSML and its desir-
able features. Section 2.3 presents the relevant DSMLs and compares their desirable
features. In Section 2.4, we report on the formal verification and validation in DSML
for robotics. Section 2.5 discusses RoboChart and its constructs in more details. In
Section 2.6, we provide an account for automatic verification and validation in the
studied DSMLs. Section 2.7 discusses tock-CSP and its supporting tool the FDR model
checker. Section D discusses the Uppaal model checker with its modelling language
Timed Automata. Finally, in Section 2.9, we conclude the chapter.

2.1. Robotics Software System Development (RSSD)

In the early age of technology, manual 3 robotics systems were developed for indus-
trial purposes. As the computing technology evolved, automatic robotics increasingly
penetrated industrial environments. With the success of control software, industries
have being automating their activities using robotics technology. This success is signifi-
cantly enhancing industrial productivity because robotics systems facilitate continuous
operation with fewer interventions [44].

However, an initial problem arises with the operating environment because most of
the industries were not planned for automation, especially in the design aspect. Also,
industries have inherent complexity related to their nature and settings, such as dy-
namic environment, real-time operation and associated uncertainty in their daily op-
erations. In addressing this problem, the development of robotic systems was adjusted
to match these industrial complexities. This brings about additional constraints in the
development of robotic systems, which leads to various additional complexities, such
as extra components: controllers, sensors and actuators. Usually, these components
are arranged in a complex architecture that fits the purpose of the developed system
according to the structure of the environment. Additionally, due to the complexity of
designing good systems, the controls and communications are tightly coupled with
the physical configurations of the system and the operating environment. Overall,

3Manual robot are operated directly by human, using joystick or other control devices for its operation
with no stored software. For examples, exoskeleton robot, bulldozer and rock drilling.
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this produces a complex system that can only be understood and programmed by
experts [45].

The initial practices of programming robotics systems were manual processes. For
instance, one of the commonly known approaches is Online Programming (OP) - pro-
gramming a robotic system in the presence of its actual hardware component, which is
accompanied with a programming device called a teach pendant. The teach pendant
provides configuration information such as positioning and speed of the hardware
that is used for programming the system. The configuration information is unique to
each robot, not transferable to another robot or device. The approach of online pro-
gramming facilitates robotics applications for a range of tasks, from simple to complex
tasks; that completely depends on the skills of the operator, which limits its capabil-
ity [45, 46].

Advancement of microprocessors brings robot programming closer to computer
programming. This achievement sets up the evolution of offline programming using
software tools, which does not require the presence of physical hardware to program
the robotics system. The robotics system is only needed for testing and evaluation. The
implementation stage is supported by computer-aided design (CAD) tools for mod-
elling both the robot and its operating environment, as well as its configuration. With
the increasing success of offline programming, simulation becomes the most common
base for testing the implementation [45, 46].

Subsequent advancements in programming and supporting tools add a step forward
in developing robotics application, which reduces the complexity, and makes program-
ming easier. Also, the programming becomes closer to the artwork that is driven by
creativity rather than skills because the majority of the hardware complexity becomes
hidden from the programmers. However, another problem arises with the supporting
tools having been created based on demand with neither concern for interoperability
with other components, nor flexibility for reuse in some other related systems and
platforms. This problem caused most of the robotics software projects to be developed
as an independent project, that mostly begins entirely from scratch. In some cases,
a large amount of time is spent on creating infrastructures of a project rather than
the actual work of developing the system. Similarly, all the remaining stages, such
as verification and validation (V&V) become an improvised task which also requires
a large investment, as there is neither method nor tools to guide or support the V&V
stages [46].

In the literature, there were calls for supporting the process of developing robotics
systems with better development tools, which brings about the establishment of vari-
ous projects such as BRICS [47], RoSta [48], OPRoS [49] and Orocos [50]. Best Practice
in Robotics (BRICS) focused on structuring, standardising and formalising the devel-
opment process of the robotics system. Robot Standards and Reference Architectures
(RoSta) focused on providing standardisation for improving the concept of reusing
robotics components and architectures. Open Platform for Robotic Service (OPRoS)
focused on standardising CBSD for robotics systems. Open Robot Control Software
(Orocos) focused on developing a standard framework and repository of robotics tools
and components. These projects improved the RSSD, but other problems persist, and
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new ones emerge.
One of the problems that persist is the lack of a uniform programming platform.

Unlike general computer programming where programming is independent of the
hardware platform, the case of robotics systems is different because most of the robotic
manufacturers developed their tools and programming languages for their own robotic
systems [51]; for example, RAPID for ABB [52], KRL for Kuka [53] and Karel for
Fanuc [54]. In some cases, manufacturers combine multiple general programming
languages for programming their robotics system, which facilitates utilising the best-
provided resources from the available programming languages that are suitable for
programming robotics systems. This enables the best features of each language to be
used for achieving different goals at various stages of the development; for example,
Verilog or VHDL for Hardware, C/C++, Assembly language or Java for Firmware,
Matlab, Octave or Simulink for controls and Python or C/C++ for cognition.

Consequently, initial attempts at addressing the uniformity of programming plat-
forms lead to the development of general programming languages and tools for robotics
systems; for example, ROBOTC [55], Visual Programming Language (VPL) and Urbis-
cript [56]. Additionally, tools were developed that targeted general platforms, such as
Robot Operating System (ROS), Urbi and Open Robot Control Software (OROCOS).
ROS [57] is a set of software libraries and tools for building robotic applications, rang-
ing from simple drivers to a complete system. Urbi is an open-source framework
for complex systems, mainly used to orchestrate components of a system [58]. ORO-
COS [50] is a component-based framework for creating robotics applications using
modular configurable software components.

In a similar manner, some manufacturers take a different approach of providing
configurations or software wrappers that enable using the general languages for pro-
gramming their system. However, these wrappers only provide access to a partial
functionality of the system with limited performance that limits the capability of pro-
gramming the systems [59].

From the literature [60], we find that many concepts, techniques and frameworks
have been developed for supporting specific aspects of robotics, which do not integrate
with one another. This leads to another call for developing an integration umbrella
for the large collection of tools developed for robotics systems. As a result of this,
the Robotics Domain Task Force (Robotics DTF) [61] was established to support the
integration of robotics components using the OMG standards. One of its notable
contributions was developing the RTC specification [62]. RTC specification provides an
integration point for independently developed components that are developed based
on the provided standard specifications. Therefore, components integrate with one
another openly if they are developed according to RTC specification.

To conclude this part, the above-listed works contribute to the advancement of
RSSD. But some of the complexities persist, for instance using the traditional program-
ming approaches, mainly coding at a low level, which happens to be unsuitable for
effective analysis of large and complex programs like robotics applications. This is due
to the lack of clear documentation, rigid design decisions that are difficult to maintain
and lack of opportunity for reusing the components. These are among the significant
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issues for robotics and other large software systems. Furthermore, integrating code is
another common problem, which is commonly achieved by reimplementing the glue
logic code, based on the flexibility and capability of the available middleware, rather
than developing a well-designed system with the suitable building blocks. This prac-
tice has a high tendency of wasting effort, resources and skills. Besides, the overall
ad-hoc approach has no guarantee of producing correct and reliable systems [60].

Currently, there is increasing acceptance of robotics systems for domestics and other
general uses, which raises the need for their safe operation. This is particularly very
important for systems that operate in an unpredictable dynamic environment, includ-
ing a critical environment. In this case, a provision of suitable techniques and tools
for verifying the behaviour of RAS will be an invaluable support to the robotics com-
munity. This is especially useful if the techniques and tools are based on established
SE principles, such as MDE, DSML and Formal Method that will make them compat-
ible with the existing resources. In the next section, we are going to discuss desirable
features for DSML that will support the development of robotic applications.

2.2. Features of DSMLs

This section discusses a selection of desirable features of DSMLs for developing robotics
applications. The features are categorised into four sets, according to the aspect of soft-
ware development to which they are relevant: modelling, reasoning, architecture and
supporting tool. First, the modelling category consists of four items: time, proba-
bility, environment and API. Second, the reasoning category consists of three items:
formal semantics, techniques for both validation and verification and facilities for sim-
ulation. Third, the system category consists of three items: platform independence,
behavioural modelling and architectural style. Finally, the supporting tool category
consists of IDE, framework, executable generation and accessibility.

2.2.1. Modelling

Time Here, we observe the existence of modelling constructs to support the defini-
tion of temporal specification in a system. Although it is possible to formalise a model
of a system by abstracting the time aspects, for control systems in general, and robotic
systems in particular, time is an important aspect. Most systems have a time cycle,
time budgets and deadlines for operations as an important part of the system design.
Explicit time modelling incorporates timing constraints that facilitate control, analysis
and verification with regard to real-time behaviour and process scheduling [36].

Probability An existence of modelling constructs for describing system behaviour in
handling uncertainties during its operation. In the case of uncertainty, handling deci-
sions in an autonomous system is inevitable; therefore, modelling probability becomes
an interesting concern in describing how a system handles uncertainties in making
decisions. This provides a model of the randomness to which the system is exposed
during its operations with respect to its operating environment [63]. Therefore, overall
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a DSML should provide facilities of modelling a system behaviour precisely accord-
ing to the weight of various dynamics and events in the environment as well as other
possible actions.

API Provision of facilities for defining, accessing and reusing generic operations that
are common to robotics systems; for example, in the case of mobile systems move and
stop are common behaviours, though it depends on the type of hardware platform.
These operations are normally provided in accessible libraries that can be used and
reused in developing robotics applications; for instance, RIPE [64], MRROC+ [65] and
the Robotic Platform [66]. Also, flexible robotics API can be extended to create a cus-
tom function in an application. An additional advantage of using API is relieving soft-
ware developers from understanding the low-level control of robotic hardware, which
allows programmers to focus on application development. Facilities for API increases
support for Component-Based Software Development (CBSD) using functional com-
ponents with well-defined interfaces, which significantly increases both quality and
productivity in using the DSML [67].

Environment A construct for modelling an operating environment that provides an
apparent view of the system behaviour in relation to its environment. This is very
important because robotic systems interact with their environment, taking input and
reacting to an event using suitable action or set of actions. This plays an essential role
in verifying system behaviour in various states of the operating environment [24].

2.2.2. Reasoning

Formal Semantics Provision of formalisation techniques that provide a precise math-
ematical specification of a system in an automatable way. This facilitates the use of
formal verification techniques and tools for both verification and analysis. The advan-
tages of these facilities includes eliminating ambiguity that is associated with both the
natural language and graphical language, in addition to facilitating precise integration
between various systems and components that have formal specifications [37].

Verification and Validation Techniques Provision of systematic V&V techniques, more
specifically techniques that enable automated formal V&V. Provision of automatic for-
mal V&V provides an easier way of establishing the existence or absence of specific
behaviour, both good behaviour and harmful one. This is a valuable support for mak-
ing the right decision about the correctness of a system [68].

Simulation Provision of facilities for testing the behaviour of an implementation of
a system in a model of real-world settings. This feature has at least three advantages.
First, simulation provides an easy way of exploring and experimenting with the im-
plementation in control settings. Second, it enables both testing and verification of
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algorithms independent of a hardware platform. Lastly, this feature reduces deploy-
ment complexity and overall increases productivity and accuracy [69].

2.2.3. System Architecture

Platform Independence Eliminating tight coupling between the developed model
and other generated artefacts of the targeted execution context. This makes it flexible
for reusing the generated artefacts in multiple contexts. Also, this facility has an addi-
tional advantage of making it easier to use existing tools and resources when using the
DSML; for example, libraries, runtime environment, platform and frameworks [24].

Behavioural Modelling The capability of a DSML in expressing low-level detail be-
haviour of a system. This includes the available control and flexibility that a developer
has on describing system behaviours and processes [70].

Architectural Style Constructs or structures that the language uses to organise the
system behaviour and its components; for example, the commonly known modular
design that uses modules to organise related operations, data and events [71].

2.2.4. Tool Support

IDE An available tool either textual or graphical that provides a suitable environment
for modelling and development. A good DSML should have a tool to support devel-
opers in the correct usage of both abstract and concrete syntax of the language [47].

Framework This is used to develop the supporting tool and the language itself. For
example, Eclipse Modelling Framework (EMF) is commonly used to support DSML.
EMF is one of the most popular frameworks that has been used to develop many tools
for supporting DSMLs [72].

Executable Generation Part of our interest is to consider DSML that has artefacts
in the form of executable logic, code or models. This can be an executable logic for
direct use either in the hardware or simulation. A code can be in another language
that can be compiled to generate the executable logic. Alternatively, the artefacts can
be a model, in which the code development should be carried out separately [73].

Accessibility A description for accessing the tool and the language itself. Some
DSMLs are provided with completely free access, and some are provided for a fee.
For example, simulation facilities in MATLAB and Octave are examples of paid and
free facilities, respectively. Some DSMLs combine both types of access depending on
the purpose of research, study, testing, personal or commercial, in addition to updated
guides such as documentation, tutorials, manuals and examples [24].
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The features mentioned above are the desirable features of DSML for robotics. The
next section discusses sample DSMLs with respect to these features. We consider each
of the above desirable features in selecting and presenting the studied DSMLs for
robotics found in the literature.

2.3. Sample DSMLs

In this section, nine DSMLs for robotics are presented. In selecting the languages to
be presented here, one of the considerations is the availability of recent works that
indicates active support and continuous development. Secondly, the list is intended to
cover various approaches to system modelling.

There are other interesting languages that were not included in this list for various
reasons because many DSMLs have been developed for robotics, as listed in the lit-
erature [22, 24]. Examples of other interesting DSMLs include ALFA [74], AMARSi
DSL [75], rFSM [76], GSRAPID [3] and GRL [77].

ALFA DSML was developed with reactive control mechanisms for the development
of autonomous mobile robotic systems. ALFA was not developed as a graphical mod-
elling language. The language is old with no active support because the last published
information dated back to 1991 [74]. AMARSi DSL was developed with a narrow
scope and restricted application on modelling complex humanoid movements. MAE-
STRO [78], GSRAPID [79] and GRL [80] are examples of DSMLs that can continue
enriching the list, but the list has to stop at a certain point.

This section is divided into two parts. The first part presents a comparison of the
selected DSMLs based on the features highlighted in the previous section. A summary
of the comparison is provided in Tables 1-4. The second part presents a brief descrip-
tion of each of the studied DSMLs. The description begins with a brief introduction
of RoboChart here and more detail in Section 2.5 because RoboChart is the selected
language for this work.

Tables 1 - 4 present a general comparison of the nine DSMLs listed in this study.

2.3.1. RoboChart

RoboChart is an evolving DSML developed with the aim of improving the safety and
quality of robotic software systems, as well as reducing the complexity of verifying the
behaviour of robotics systems. RoboChart is currently being developed as a formal
graphical modelling language generating a formal specification of graphical models.
This provides a good facility for using theorem-proving tools for automatic verification
as well as simulations [81].

Modelling RoboChart provides notations for modelling system behaviour with ex-
plicit constructs for modelling time, such as specifying time budget and deadlines.
For example, the primitive wait(d) specifies a deadline of d time units. This expresses
that the associated operation should be completed within d time units. The primitive
e < dl specifies a deadline for the event e that has to trigger within dl time units.
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Table 1: Modelling

DSML Time Probability Environment API
Robochart Y Y Y Y

RobotML N N Y Y

GenoM Y N N Y

DSML for Adaptive System N N N Y

Frob Y N N N

DSL for Deployment N N N Y

Roboflow N N N N

Lightrocks N N Y Y

RAFCON N N N Y

Similarly, UML statechart has been extended with probability to model uncertainties
[63]. RoboChart adopts probability as an addition to its notations that enables using a
P-node junction for expressing probability, with the weight of the probability attached
to each transition.

RoboChart enables using API to access common robotic operations. These op-
erations can be integrated into RoboChart models as part of their operations and
events [81].

RoboChart intends to provide a model of environment and platform in its future de-
velopment. This will enable a developer to specify various configurations and settings
that might be difficult to set up in a real-world scenario. This feature is not available
in the current version but is part of the planned features of RoboChart.

Reasoning RoboChart was developed with formal notations with good support for
formal reasoning. Also, RoboChart provides an automated technique for generating
formal semantics in CSP notations that facilitates automated V&V techniques and tools,
such as FDR model checker. This facilitates using mathematical theorems to check
livelock-freedom, deadlock-freedom, determinism and refinement, in addition to the
facilities for establishing an existence or absence of specific interesting behaviour, as
well as using other facilities of the FDR model checker.

RoboChart adopts Object-Oriented simulation that enables direct mapping of the
RoboChart constructs to simulations. It is planned to facilitate simulation using exter-
nal simulation tools such as Gazebo [82] and V-rep [83]. These simulation tools are
equipped with enough Physics engines for various simulation scenarios [81].

System RoboChart is currently being developed independently of any underlying
platform or language. Also, the DSML provides facilities for developing platform-
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Table 2: Reasoning Techniques

DSML API Formal Semantics V&V Simulation
Robochart CSP Y Y

RobotML N N Y

GenoM Fiacre Y N

DSML for Adaptive System Alloy Y N

Frob Equations N N

DSL for Deployment N N N

Roboflow Inference rules N N

Lightrocks N N N

RAFCON N N N

independent models and formal semantics. In the case of architectural style, RoboChart
organises system models using two levels of the major constructs: module and con-
troller, which has the advantage of improving modularity and simplifies component
reuse [13].

Tool Support RoboChart provides a supporting tool called RoboTool that is be-
ing developed as an Eclipse plugin, using EMF for implementing the metamodel of
RoboChart, Xtext for the text editor and Sirus for the graphical editor. In the case of
executable generation, RoboChart focuses on generating mathematical models that are
suitable for both V&V and simulation. Accessibility for the tool and the language itself
is provided free for both personal use and research through its website [13].

2.3.2. RobotML

RobotML is another interesting DSML found in the literature that has been devel-
oped specifically for robotics with the aim of reducing the complexity with the use
of sound SE concepts in developing robotics applications. Model-driven engineering
(MDE) and Component-based software engineering (CBSD) form the basic underlying
concept of RobotML. The language has been developed on eight proposed principles
that define a good DSML for robotics systems. The requirements are (1) ease of use,
(2) a specification of component-based robotic architectures, (3) independent of archi-
tectural style, (4) multiple heterogeneous target platforms 4 (5) platform-independent,
(6) reuse, (7) a smooth evolution of the language, (8) reasoning facilities. Although
reasoning with respect to time and other non-functional requirements is included as

4Ability to run the system components in different platforms, including simulators.
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Table 3: System

DSML Platform Indep. Behaviour Architectural Style
Robochart Y FSM Controller/Module

RobotML Y FSM Packages/Mission

GenoM Y FSM Module

DSML for Y Tabular Configuration
Adaptive System

Frob Y FSM Independent

DSL for Deployment Y NA TSM

Roboflow N Flow chart(graph) Flow graph

Lightrocks Y UML/P Statechart Task/Skill/Action

RAFCON Y FSM Hierarchical

part of these requirements. However, there is no clear consideration in using formal
mathematical techniques for precise reasoning about the behaviour of the system [84].

Modelling RobotML was implemented using a UML metamodel for modelling robotic
applications. It has been mentioned that it is possible to include time in the modelling
system, which can be used for analysis, and scheduling, but there is no detailed in-
formation for the verification of temporal specifications. Additionally, the DSML lacks
constructs for modelling probability. On the positive side, the language provides good
support for using API to connect components, libraries and other existing components,
a good provision for reusing resources. Constructs for the modelling environment are
provided through external simulation engines.

Reasoning RobotML does not facilitate using formal semantics in the reasoning as-
pect, which makes it difficult to use theorem provers for validation and verification.
This is understandable because RobotML is not based on mathematical formalisa-
tion. RobotML uses a different approach for effective modelling using the concept of
ontology to enable effective communication between components. Also, simulation is
facilitated through external simulation tools such as MORSE [85] and CycabTK [84,86].

System RobotML generates platform-independent models that support deployment
and conversion for other platforms. System behaviour is defined using a combination
of precompiled libraries of components, state machines and algorithms. Support for
architectural style is provided using packages to organise system components and
action for describing a mission [84].
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Table 4: Tool Support

DSML IDE Framework Executable Logic Proprietary
Robochart Y EMF Y N

RobotML Y EMF Y N

GenoM Y N Y N

DSML for Y EMF/Kermeta N N
Adaptive System

Frob N N N N

DSL for Deployment Y EMF N N

Roboflow Y PR2 ROS Y N

Lightrocks Y EMF Y N

RAFCON Y GTK+ Y N

Tool Support A graphical modelling tool is provided for supporting the develop-
ment of RobotML models. The tool was developed as an Eclipse plugin. In addi-
tion to using MOKA as an extension that is provided for modelling the executable
components, together with the support of Acceleo (an eclipse plugin) for generating
executable code. The output generated code is suitable for both simulations and phys-
ical hardware systems. Also, both the modelling language and its supporting tool are
available to use free from the project website [87].

A distinguishing feature of RobotML is the concept of using ontology for defin-
ing robotic components and their relationships to realise a correct behaviour for the
targeted system specifications. This concept has been advocated as a good way of
reusing expert knowledge; similar to the approach of using ontology in other com-
puting fields for problem-solving and raising the level of abstraction. For example,
ontology is commonly used to describe systems in the area of Semantic web [88] and
Artificial Intelligent [89]. Although this concept facilitates a useful way of sharing
domain knowledge, however, it has less impact on system V&V and improving for-
mal specifications. This is because formalisation involves using mathematics for pre-
cise specifications and proofs, more especially in developing a complex system like
robotics [84].

2.3.3. GenoM

Another suitable DSML for our intended research is GenoM [31] (Generator Of Mod-
ules) tool, a tool for specification and generation of software modules [26]. It has been
developed as a framework that encapsulates algorithms into an independent unit of a
software component. Each software unit provides a well-defined system functionality
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or service that is suitable for CBSD, in such a way that each component is either an in-
dependent system or embedded-component as part of another system, irrespective of
the underlying middleware. The components communicate independently based on
contract, an as such components may not necessarily be aware of the actual operation
of one another, and it is possible that they are developed independently with differ-
ent programming languages. This contract facilitates communication, scheduling and
control. Also, the connections between components are established using Component
Description Language (CDL) and Internal Data Structure (IDS). Besides, each GenoM
model facilitates system development from combinations of codes from different pro-
gramming languages, such as C/C++, Prolog and Tcl scripts [90].

Modelling GenoM provides constructs for specifying time budget and the dead-
line for scheduling, control and analysis. The provided constructs are suitable for
analysing real-time systems, but no information is available for handling probability
and modelling environmental. However, on the positive side, GenoM supports using
API for communication among components for both generated components and pre-
compiled library components. Each component has a standard description using a
standard template that makes it flexible for using multiple programming languages in
developing the internal structure of a component.

Reasoning GenoM generates formal semantics of its model into formal specification
languages BIP and Fiacre, which is used for automatic V&V using their supporting
model checking tools TINA and D-finder, respectively. It has been mentioned that
the formal semantics are suitable for simulation [31]. However, as at the time of this
report, there is no clear information available for simulation in the GenoM tool [31].

System Initially, GenoM was developed for generating PocoLibs middleware com-
ponents, but the recent version GenoM3 is independent of any platform and program-
ming language [90]. Each component is independent; it has a specification file that
defines its internal data, function, task and services. The specification file is generated
using the provided standard Interface Definition Language (IDL) of Object Manage-
ment Group (OMG). The modules are generated based on their provided specifications
rather than the low-level behaviour, which facilitates encapsulating and integrating
functions into components rather than developing low-level behaviour. The archi-
tectural style uses a modular approach to represent system components in defining
system specifications.

Tool Support GenonM has been developed with a tool that generates executable
components of a system. The tool has been developed independent of any framework,
which is freely accessible through its website [91]. At the time of this study, there
is no official standard release, but the tool is in active development and has updated
supporting documentation.
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2.3.4. A DSML for Adaptation logic

This is a textual DSML for specifying adaptation logic that facilitates separating adap-
tation logic from main system functionality. The aim of the language is addressing the
challenges associated with Dynamic Adaptive Systems (DAS). The approach of the
language combines the advantages of two commonly popular approaches: rule-based
and optimisation-based. This concept takes the advantages of these two approaches
whilst eliminating their shortcomings. The combination enables choosing a suitable
configuration for a particular context based on the combination of constraints [27].

Modelling This DSML specifically targets modelling adaptation logic, so there are
no constructs for time, probability or API. However, the DSML generates a text-based
model of an environment using a collection of context variables [27].

Reasoning The DSML generates formal semantics for the Alloy model checking tool,
which facilitates using the constraint solver of Alloy in generating the possible valid
configurations that are used for formal verification. Also, textual simulation is pro-
vided using the values of the context variables of the adaptation model that facilitates
generating all the possible valid configurations and ranking according to systematic
scores for the configurations [27].

System The DSML generates platform-specific adaptation logics from the models
and simulations. It has been mentioned that the DSML is specifically aimed at mod-
elling the adaptation logic; for this reason, it lacks facilities for modelling high-level
behaviour of a system and its architecture [27].

Tool Support A set of tools are provided to support using the DSML, which includes
text editor, textual simulation and validation tools. The tools are developed using
EMF for modelling and validation of Dynamic Adaptive Systems (DAS). The tool uses
the facilities of the Kermeta platform for both generating semantics and simulation.
However, the tool lacks facilities for generating executable logic. Both supporting tools
and the language are freely available on the project website [92].

2.3.5. Frob

Frob (Functional Robotics) is a high-level control modelling language for robotics,
which is being developed based on the concept of functional programming (separa-
tion of what from how). This approach hides the details of low-level robots’ opera-
tions, including time. A function is considered as the first citizen entity that represents
continuous behaviour. Therefore function serves as the basic unit of robotics system
operations. The language aimed at providing an environment for developing correct
and clean robotics applications without implementation details, which facilitates sys-
tem development in a way that is suitable for formal reasoning.
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One clear advantages of Frob is quick prototyping because it provides a high level fa-
cilities for testing control algorithms. Other advantages include promoting component
reuse and improving modularity. The artefacts of this language provide a top-level
structure of writing code that resembles mathematical equations, which is relatively
similar to using mathematical equations for modelling systems, as commonly used in
engineering and other related fields. This makes it a useful tool for designing and
analysing experimental robotics [18].

Modelling Frob models a system with functions that changes with the flow of time.
This abstracts time from the models with no provision for explicit constructs for mod-
elling time, as well as the absence of facilities for modelling probability. The use
of functional approach provides well-defined interfaces for connecting components.
However, the language lacks support for using external API to access operations ex-
cept through third-party interfaces such as C++. At the time of this work, there is no
clear information about facilities for modelling environment in the language [18].

Reasoning Frob provides suitable models for formal reasoning. However, at the time
of this report, it lacks support for automated formal reasoning. Also, there is no
available information for simulation [18].

System Frob is a platform-independent DSML that uses functional structure to en-
capsulate generic code, which facilitates developing components that are indepen-
dent of any platform [93]. System behaviour is defined as a continuous function that
changes with the flow of time. This enables the state of the system to be determined
at any given time. The language was designed with no specific architectural style, but
is flexible enough to adopt any style [18].

Tool Support Frob was developed as an embedded DSML in Haskell. It is imple-
mented as Haskel’s library. As at the time of this work it lacks tools support, and no
IDE was found specifically developed for Frob. The language provides an ideal tool
for developing a quick prototype of a system that is flexible for both modification and
subsequent implementation in other high-level languages, such as C or C++.

2.3.6. A DSL for Deployment

This DSL [94] is a kind of DSML developed specifically for modelling software deploy-
ment. The aim of the DSL is to address the complexity of deploying applications at
the level of system integration. Thus, the DSL provides a high-level specification that
separates deployment from the main software development, which makes the deploy-
ment stage of software completely independent of the target hardware platform [94].
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Modelling The language focuses on modelling deployment for integration at a high
level. However, the DSL lacks support for modelling low-level behaviour including
time, probability, environment and API [94].

Reasoning The language does not facilitate using formal techniques for automatic
verification. However, there are facilities for using constraints satisfiability checking
for verifying the correctness of a model which has tool support for verification. Also,
it lacks the simulation facilities.

System This DSL was developed independently of any platform with the aim of
improving high-level integration. Therefore, it has no provision for modelling high-
level behaviour. Similarly, it is independent of any architectural style but enables
generating a specific application for a specific architecture using a feature-oriented
approach [94].

Tool Support A graphical IDE tool is provided to support using the DSL that is based
on EMF with Xtext [95] and Sirius [96] for the textual components. The supporting
tool lacks facilities for generating executable logic, but it creates deployment models.
At the time of this work, no information is available for accessing the language and its
associated tools [94].

2.3.7. RoboFlow

The RoboFlow is a DSML for modelling and programming tasks, particularly for mo-
bile manipulators. RoboFlow is specifically developed for a robot that operates in a
human environment to provide support in carrying out a specific task, such as moving
a load to another place or feeding disabled people. Visual flow graph programming is
the central concept of the DSML, which uses boxes for defining procedures, similar to
the popular approach of designing flowcharts. The procedures are associated with pre-
and post-conditions that can easily be arranged in a flow graph to define a task. Each
procedure consists of collections of operations and decisions, graphically represented
with rectangles and diamonds, respectively. These provide constructs that facilitate
easy programming for end-users with little low-level programming skills. The pro-
cedures are designed for a specific type of robotic platform which provides an easy
way of interacting with specific robotic hardware. Overall this DSL provides simple
graphical tools and programming language for modelling simple robotic applications
for a specific platform [15].

Modelling This RoboFlow specifically focuses on task manipulation using predefined
procedures available to targeted robot hardware. A user can arrange the predefined
procedures in various configurations to describe a complete task. It was not developed
with resources for modelling time, probability, environment or API. Also, the DSML is
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intended to be used for a specific system that operates in one particular environment
within a narrow domain.

Reasoning The RoboFlow is equipped with the techniques of using logical inference
rules for reasoning with a manual illustration. [15]. Also, this is the main facility
for formal V&V in the DSML. The RoboFlow was explicitly developed for use in a
specifically targeted hardware platform, as such it has no facilities for simulation [15].

System RoboFlow was developed for programming a specific hardware platform
using the available predefined procedures with no means for modelling the low-level
detail of a behaviour. The provided language uses simple procedures that do not
consider the variation of architectural styles but just a flow graph [15].

Tool Support RoboFlow provides tool support for using the language with a graph-
ical editor, which has been developed with Java applet. The language also uses the
facilities of a package called PR2 for the demonstration aspect. Additionally, the fa-
cilities for modelling mobile behaviour was also provided with another package for
autonomous navigation applications [97]. These two packages are part of the PR2
mobile manipulation platform developed for ROS [98]. The tool is available at this
link [99].

2.3.8. LightRocks DSML

LightRocks (Light Weight Robot Coding for Skills) is a DSML for modelling task as-
sembly that is based on the concept of assembling tasks and skills to describe system
functionality. A task consists of collections of control flow that composes skills: a
primitive operation. Each task is specific to a particular platform. The DSML is de-
signed to provide an efficient separation of concern that relieves domain experts from
the complexities associated with developing robotics applications. Various levels of
abstractions are provided together with a supporting toolchain for improving com-
munication between robotics and domain experts. An additional advantage of the
approach includes promoting reuse of the existing components: skills and tasks. This
has the advantage of effective modularity in developing robotics applications [100].

Modelling LightRocks focuses on assembling and composing skills and tasks to de-
fine behaviour. Therefore the DSML lacks constructs for modelling time, probability
and environment. However, the DSML enables using API to access a precompiled
library of skills [100].

Reasoning LightRocks has no support for using formal semantics and formal V&V.
Similarly, there is no information about supporting simulation [100].
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System LightRocks provides a platform-independent assembling process for robotics
applications. However, the DSML does not provide constructs for modelling high-level
behaviour, because it was developed to abstract low-level detail, that is suitable enough
for composing skills and tasks to define behaviour. There is no available information
about architectural style [100].

Tool Support The language is integrated into the MontiCore toolchain, which pro-
vides a modelling environment for using existing graphical and textual editors that are
used for generating both code and executable logic from the models. Furthermore, the
tool provides support for extending the code generation with other code generators
for other languages and platforms. The tools are available as part of the MontiCore
framework [101] with active support and documentation [100].

2.3.9. RAFCON

RAFCON (RMC advanced flow control) is a graphical tool for modelling task execu-
tion. RAFCON uses hierarchical state machines for visual programming to provide an
easier way to develop robotic applications. The DSML is based on a Python interpreter
that enables the use of Python resources, such as editors and compiler. To ease the de-
bugging process, the DSML makes it flexible to start the state machine at any state to
observe the behaviour of the system from any starting point. Additionally, the DSML
provides debugging functionalities, error handling and mechanisms for recovery. The
DSML supports the approach of divide and conquer to enable collaborative teamwork.
This has the advantage of facilitating collaborative programming to develop big and
complex applications [102]

Modelling The recent version of RAFCON lacks constructs for modelling time, prob-
ability and environment. However, it offers good support for API, which in turn
provides good support for CBSD and enables the integration of modules developed
with different languages [102].

Reasoning There is no clear information for supporting formal semantics that can be
used for reasoning that is suitable for V&V as well as simulation.

System RAFCON is based on a Python interpreter; a platform-independent tool that
uses a state-machine for modelling the behaviour of a system. In terms of architecture,
the language supports hierarchical architectural style [102].

Tool Support RAFCON has a graphical editor for visual programming that supports
using the DSML to ease prototyping as well as developing robotics applications. The
supporting tool is provided as open-source through the project link [103].
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In summary, most of the available DSMLs support and adopt graphical notations.
Also, they promote the idea of generating an executable logic from the models. We
find that state machine notation is the most commonly used structure for modelling
behaviour, and EMF is the favoured framework for graphical modelling. The lan-
guages demonstrate various approaches to formalisation and architectural style. There
is a common use of discrete approximation for handling continuous-time models. But
only one DSML provides constructs for modelling probability. Interestingly, none of
the DSMLs are proprietary, and none of the DSMLs provide facilities for generating
test cases.

2.4. Formal Validation and Verification using DSML

This section provides a brief account of using formal techniques in V&V for the stud-
ied DSMLs, specifically for the development of robotic applications. Although many
DSMLs have been developed that focus on enhancing the development processes,
little attention has been paid to improving V&V and the use of formal techniques.
RoboChart, GenoM and DSML for adaptive system are the only three DSMLs out of
the nine studied DSMLs that used formal techniques for automatic V&V. A brief ac-
count of how these DSMLs use the formal method is highlighted in the subsequent
paragraphs.

RoboChart uses CSP specifications for formal verification of systems. The formal
semantics of RoboChart graphical models are automatically generated into CSP pro-
cesses in a format that is suitable for automatic verification with the FDR model
checker, which verifies system properties using refinement. On encountering failure,
FDR generates a counterexample to illustrate where the system specification is not
satisfied. Like most of the studied DSMLs, this approach is also limited to using a
discrete-time approximation for both modelling and verification.

In the case of GenoM, formal verification was added as an extension to its original
framework, for enhancing its capability with the use of formal techniques. In GenoM,
there are two approaches to formalising, using either Fiacre/TINA toolbox or BIP. The
first approach uses Fiacre/TINA toolbox, which provides automated techniques that
have been developed in two transformation steps. The first step generates Fiacre for-
mal specifications of the GenoM modules. The second step translates the generated
Fiacre specifications into Timed Petri nets that provide suitable input for the TINA
toolbox. The translation is mechanised using a Frac compiler 5, which performs syn-
tax analysis, type checking and code optimisation while preserving the semantics the
models. Then the TINA model checker is used for verifying temporal specifications of
the modules [31].

The second approach for formalising GenoM was developed using a BIP framework,
which has been implemented in three steps: (1) an automatic process for generating
formal models of GenoM modules in the form of BIP models; followed by (2) adding
constraints into the formal models; (3) D-Finder tool is used for the verification of the

5Frac is a compiler for Fiacre programming language.
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generated formal models. The D-Finder tool is a verification tool developed for BIP,
which provides facilities for identifying and eliminating deadlocks.

In the case of GenoM, the first major shortcoming of their approach is a state ex-
plosion. It has been reported that it takes more than two days (48 hours) to verify
a combination of four modules using this procedure [104]. An effort for improving
the performance has been reported [105] using real-time BIP framework, and also in
using a multi-core version of real-time BIP. Secondly, understanding of BIP is needed
for adding constraints in order to use the tool effectively. Additionally, according to
the available information, it is easy to see that using BIP with GenoM is only capable
of checking deadlock. On the temporal constraints, there is no clear information in the
verification of temporal constraints using the continuous-time models.

It is good to note that, firstly, GenoM was initially developed with no basic founda-
tion for using a formal method. The tool was developed for generating modules from
a combination of models and code. As part of the effort of improving the tool, a tech-
nique was created for using templates to generate formal specification from module
specification, rather than the actual implementation of the module. There is a concern
here that at times the implementation may not reflect the specifications correctly. Sec-
ondly, a user must have an understanding of Fiacre modelling specification to be able
to specify some properties for effective use of the GenoM tool for automated formal
verification. Thirdly, in the case of encountering a failure, a counterexample is not
generated in GenoM, which might make it difficult for the user to interpret the result.
Additionally, these shortcomings have the potential to complicate further evolution of
the tool. This is specifically important for formal verification of robotics applications
because these robotics applications evolve rapidly to catch up with addressing future
challenges.

As highlighted in Section 2.3.4, the DSML for adaptive systems uses Alloy formal
specification language to verify interesting properties of the adaptation model. The
DSML uses context variables to record all the factors that affect the correctness of
the adaptation model, mostly factors that trigger an event, and also uses variants to
record the possible options at the variation points. These context variables are used
to generate the possible configurations of the adaptation model. Combinations of
the context variables and variants are used to express the invariants and generate
Alloy specifications. Then, Alloy constraint solving capability is used to solve the
constraints and generate all possible valid configurations of the model. The tool ranks
the generated configurations according to their properties and assigns a score value for
each configuration. If the system encounters a failure, it indicates the configurations
that did not satisfy the constraints [27].

There are limitations that made this DSML for adaptive systems unsuitable for us-
ing advanced formal verification techniques, more especially in the development of
robotics applications. First, it has a narrow scope that focuses on modelling adap-
tation logic only, rather than for modelling a complete system. Additionally, most
significantly, it is not a graphical language; it was entirely developed as a textual lan-
guage with a textual model of the environment, including textual simulation.

Two other uses of formal semantics were highlighted in RoboFlow and Frob. For
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RoboFlow, a manual procedure has been illustrated for using inference rules to gen-
erate formal semantics of RoboFlow models [15]. But the problem is that a manual
procedure is not efficient and not suitable for V&V of large and complex systems like
robotics applications. In the case of Frob, it has been mentioned that Frob is suitable
for formal reasoning [106], but no detailed information is provided for a mechanised
approach of using the formal semantics in V&V.

The success of using the formal method in industries has been reported with sig-
nificant impacts, across various types of projects, such as automotive, business and
critical systems. The report is a continuous survey that investigates the adoption of
the formal method over the years [29]. One of the notable advantages of using formal
techniques is quality improvement, which has been reported as one of the significant
strengths of the formal method. Additionally, product quality plays a vital role in
reducing both maintenance cost and effort. This is due to the capability of formal
techniques of detecting bugs at the early development stages.

Most of the industries that tried formalisation in their projects have reported a good
quality improvement of their product. They have also reported good motivation and
interest to continue using formal techniques in their subsequent projects. But it has
been reported that some kind of training or skills are needed for successful adoption
of formal techniques. This can be supported with the development of automated
tools [29].

The formal method provides a basic mathematical ground for automatic V&V of
system behaviour. This capability of the formal approach in proving and establishing
the correctness or absence of behaviour in a system makes it a suitable companion for
improving DSML. Additionally, the formal approach facilitates a convenient way for
the domain expert to verify their systems using formal techniques without the need
for skills and understanding of the detailed concept of the Formal Method.

2.5. RoboChart in Detail

This section provides a discussion of RoboChart as the selected DSML for this work.
This is because the semantics of RoboChart is generated in tock-CSP, which provides
a good point for connecting refinement models and temporal logic. The section de-
scribes the constructs of RoboChart and provides examples to illustrate using the con-
structs to model a system.

RoboChart is an evolving modelling language developed with a subset of UML state
machines with additional restrictions. It has been designed specifically for modelling
and development of robotic systems to enhance the verification using advanced formal
verification techniques that are based on formal mathematical models. The RoboChart
modelling language provides a suitable construct for using formal techniques in the
development of robotic systems, including constructs for modelling time and proba-
bility. This is not easy when using general programming languages. This approach
enhances the verification aspect that has a high potential for improving the safety of
autonomous robotic systems.

30



Figure 1: Metamodel of RoboChart models (source [1])

RoboChart Meta-model

The metamodel of RoboChart is presented in Figure ?? the high-level constructs and
their relationships. The metamodel begins from a state machine at the bottom; a
basic entity of RoboChart. The state machine has been proven suitable for modelling
system behaviour. System behaviours are defined using the concept of the event-
guard-action rule [81], in which a system reacts to its environment using an event, and
takes appropriate action to perform an operation that triggers a change of state. This
concept is captured with a state machine.

The metamodel of state machine is shown in Figure 2. In RoboChart, a state machine
has a chain of connected states, which is either a simple state or composite state. A
composite state contains other nested states and transitions. Each state has a maximum
of three phases: entry, during and exit; representing an entering stage, an executing
stage and an exiting stage, respectively. The states are connected with transitions,
with an optional triggering event, a guard condition of type Boolean and an action.
The initial state and final state describe the entry and terminating point of a state
machine (or composite state). Additionally, a transition connects a state to a junction
or connects a junction to another junction. A state node describes a stable state of a
system, and an unstable state is described as a junction node, which models a decision
point in a system.

As shown in Figure 1, the state machines are connected either in serial or in parallel
to define a unit of control, called controller in RoboChart. A controller models a
processing unit that describes an independent behaviour of a system. A group of
controllers are connected to generate compound behaviour. Also, each controller can
be connected directly to the hardware platform, either independently or in a group
with other controllers.

To improve modularity, RoboChart provides an additional construct for organising
and connecting related controllers together with their associated platform into a unit
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Figure 2: Metamodel of RoboChart state machine (source [1])

called a module, as shown in Figure 1. A module structures and organises system
components in a well-defined entity that define system architecture. A system can
have many modules, and one of the modules must define the system platform.

A robotic platform has variables, operations and events that describe the system
properties, platform functionalities and the available facilities for interacting with the
environment. The components are accessible to all the controllers and state machines
inside the module.

RoboChart provides an additional top-level structure named package, which stores
information of all the components used in modelling a system. A robot system has one
or more packages; one of the packages must define the system module. The system
module must contain the definition of the platform, and possibly other controllers.

In RoboChart, a communication flow is denoted with a connection arrow that con-
nects two nodes: triggering and responding nodes. By default, communication is
synchronous, which is the default communication between state machines, while asyn-
chronous communication is marked with the label ‘async’. The asynchronous commu-
nication is available between controllers, which communicate either synchronously or
asynchronously. RoboChart can connect two events that have different identifiers. So,
a triggering event may receive a response with an event that has a different identifier.

An event is the main interaction point between components, which facilitates com-
munication between system components, such as controller, platform, and also the
operating environment. There are two types of events: typed and untyped. A typed
event communicates value during an interaction, while an untyped event facilitates
interaction between components without communicating values.

32



At times there is a need to abstract the structure of a component that will enable
the use of the provided component without its detailed implementation. RoboChart
provides another construct inter f ace for accessing components that are provided for
common use. Thus, in RoboChart, the construct inter f ace describes an expected com-
ponent with its communication interface and its parameters, that include variables,
operations and events.

Function and operation are also provided as part of the RoboChart constructs. A
function evaluates a mathematical expression and returns a value, which is used to
evaluate expressions or make subsequent decisions; for example, the function add(x, y)
returns the sum of x and y. Meanwhile an operation performs an action without
returning any value. Typical examples of operations are move, stop and open.

RoboChart uses operations to describe a system functionality for carrying out a task.
An operation is modelled using a state machine. An operation is associated with op-
tional assertions using pre- and post-conditions. The use of assertions ensures the
fulfilment of a contract; when an operation is invoked correctly with correct parame-
ters and values the operation completes the contract correctly, which will ensure the
correct behaviour of a component and system in general. For example, the opera-
tion move(v, t) takes two parameters speed and time. An example of a pre-condition
ensures that both parameters are positive (v > 0 and t > 0).

Each of the RoboChart components: platform, state machine and controller have
their constructs such as variables, events, functions and operations, that describe the
component. The constructs declared inside a component, are local to that component.
A shared element is declared outside the component but has to be inside the enclosing
component that contains all the components that share the element. For example,
variables declared inside a state machine are only accessible to that state machine. In
contrast, variables declared inside a controller are accessible to all the state machines
inside the controller.

Apart from defining operations with state machines, RoboChart provides access to
predefined operations from relevant packages using API. The packages contain stan-
dard operations, events and variables that are used for common system functionalities
that are invoked with a simple API. The functionalities depend on the type of hard-
ware platform. For example, a mobile platform can have functionalities such as start,
move, turn; while a flying robot can have functionalities such as move, up, and down.

RoboChart constructs have been extended to include notations for expressing and
modelling time constraints and other temporal properties. This is inspired by the
constructs of Timed CSP [37] and CircusTime [38]. RoboChart is based on the concept
of event-guard-action; a concept in which transition happens by triggering an event or
satisfying the guard condition or both that leads to a change of state from one state to
another. The condition for triggering an event or transition guard is expressed using
time primitives, which is usually by specifying either a deadline or time budget.
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Modelling Time in RoboChart

In the design of RoboChart, by default, each operation takes a negligible amount of
time, approximately zero, that is represented with no time. An operation that takes
time is accompanied by a time budget that is specified by time primitives such as
wait(t). The primitive wait(t) allocates t units of time to the operation. Similarly,
events have no time restrictions (deadline) unless it is explicitly specified with timing
constructs. For example, an expression e < {t} specifies that the event e must trigger
before t units of time. The timed constructs are used to specify a budgeted time within
which a particular event or action must happen.

Furthermore, clock primitives are also provided for specifying time elapse from
a particular incident or event. For example, the primitives since(S) specifies a time
elapsed since the last clock reset. A clock reset is expressed using a primitive #C.
Finally, the primitive sinceEntry(S) specifies a time elapsed since entering a particu-
lar state S. Additional details of the provided timing constructs are available in the
RoboChart documentation [13].

There are two forms of primitive expressions: simple and compound primitive. A
simple primitive consists of one primitive expression, while a compound primitive
combines multiple primitives using a logical operator, such as conjunction and dis-
junction. For example, with a clock variable t, we can write an expression t > 5 and
t < 10 that specifies the time between 5 and 10 units of time. Also, RoboChart fa-
cilitates using time primitive with constant expression to specify a condition. This
is similar to the concept of Timed Automata [107], which is limited to comparing
one single time clock with a constant expression, using synchronous continuous-time
clock [2]. For example, t > 5 is a valid expression but t1 > t2 is an invalid expression.

Modelling Probability in RoboChart

As highlighted in Chapter 2, RoboChart is the only DSML among the studied DSMLs
that provides a construct for modelling probability; inspired by the concept of proba-
bilistic UML statecharts [63]. This is an extension of UML with the added capability of
using probability to model uncertainties and randomness. The provided construct for
probability models the behaviour of a system in specifying uncertainties. The decision
depends on both the state of the system and the state of its operating environment at
that moment in time.

This concept of probabilistic UML arises from probabilistic automata [2]. In this
concept, several edges emerge from a single node, with a probability attached to each
edge expressing the likelihood of taking the transition. In a probabilistic UML state-
chart, this is represented using P-node [63]. RoboChart adopts a similar concept by
labelling each of the P-node transitions with an expression p(t). The expression quan-
tifies the weight of taking any of the transitions. For example, Figure 3 illustrates
modelling probability in RoboChart. The figure shows a portion of a system at a de-
cision point with three equal options which are captured with a P-node junction that
has three transitions, each associated with a probability of 1/3 .
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Figure 3: Modelling Probability in RoboChart

Example: Autonomous Navigation System (ANS)

Here we developed an example of a system ANS that moves from one position to an-
other specific position. A relatively similar navigation system has been used in the lit-
erature, particularly in presenting two DSMLs, the RobotML [17] and the GenoM [105].
Here, we model the system differently from the way it was presented in the litera-
ture [17, 105], to suit the purpose of our work and illustrations. ANS is a navigation
system that receives a target destination from the robotic platform. Then, the system
determines its current position and computes a route to the destination; and follows
the route to the destination while observing and avoiding obstacles. The system auto-
matically stops on reaching the target destination.

The RoboChart module of this system is presented in Figure 4. The module consists
of an automobile platform connected to four controllers, Navigator, Localiser, Observer
and Trajectory. The function of the controller is as follows. The controller Navigator
controls the movement of the hardware platform. The controller Observer observes
the environment for detecting an obstacle on the path. The controller Localiser tracks
the current location of the hardware in the operating environment. The controller
Trajectory determines a route for navigating the robot to its destination.

The robotic platform has one basic operation move, that takes two parameters: di-
rection to turn and distance to move. The operation move moves the platform in a
specified direction. The system has three sensors for interacting with the environment:
a camera for capturing the current state of the operating environment, an odometer
for tracking the physical displacement of the system, and a GPS for positioning. The
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Figure 4: A RoboChart Module diagram for Autonomous Navigation System

GPS is used to set the target position and also computes the current position (as the
initial position of the system). The GPS communicates both the target position and
the current position using the typed events tp and cp, respectively. The controller
Trajectory responds to these two events. Also, the platform sends the odometer read-
ings to the controller Localiser, which handles the event odometry, and also sends the
camera image to the controller Observer using the event scan. The platform responds
to one event stop for stopping the mobile platform using a break.

The controller Navigator is presented in Figure 4, which responds to two events:
vrt of type Seq(real) that describes the path to the destination, and the event obst that
signals detection of an obstacle. The type Seq(real) is a sequence of pairs of data:
move-turn, move-turn . . . until the destination is reached. Each pair of move-turn
specifies the distance to move and the direction to turn. The turning direction is a
simple direction right and left. But this can be customised with more precise value,
within the range of complete rotation 0− 360 degrees. The controller Navigator raises
two events that are used to navigate the system: newRoute and stop. When the system
encounters an obstacle, it uses the event stop to stop the platform and triggers the
event newRoute to request a new route from the Trajectory.

The internal structure of the controller Navigator is presented in Figure 5. The
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Figure 5: The Navigator Controller

structure is modelled with a state machine that begins in the state WaitingRoute. On
receiving route information through the list vrt, it determines the length of the route
using the function size(vrt) and stores the result in a local variable sz. The function
size(Seq) is a simple function that takes a parameter of type sequence and returns the
length of the sequence. The return value of the function n of type natural is the length
of the sequence. The system reaches its destination when it reaches the end of the
sequence in the variable vrt.

When the system encounters an obstacle with the occurrence of the event obst, the
state machine moves to the state of avoidance, subsequently triggers the event stop,
then requests a new path by triggering the event newRoute. The state machine waits
for a new route at the state WaitingRoute. On receiving a new route, the system
follows the route to the target destination. Also, the time primitives wait(2) in the
state machine specifies a budget of 2 units of time for the operation checkScan().

The controller Observer responds to three events: rt2, scan and cp; and it raises one
event obst. The event rt2 of type sequence specifies the path; scan of type image that
captures the current state of the operating environment; particularly for detecting an
obstacle, and the current position of the system cp of type position. The controller
raises one event obst on detecting an obstacle. This is illustrated in Figure 4. The
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Figure 6: The Observer Controller

controller has one state machine as presented in Figure 6.
The internal structure of the controller Observer is modelled with a state machine

in Figure 6. The state machine specifies a procedure for monitoring the state of the
operating environment to detect an obstacle. The state machine begins at the state
WaitingRoute, on receiving path information through the event rt it stores the path
information in the variable vr and moves on to the state WaitingLocalPosition. On
receiving the current position through the event cp, the system proceeds to the state
WaitingScan and waits for the snapshot of the operating environment.

The operation checkScan() detects an obstacle. The operation takes three parameters,
route, current local position and scan. The controller Observer uses this operation to
raise the event obst for detecting an obstacle, then terminates at the final state receiving
the signal on the event sO, which indicates that the system has arrived at its targeted
destination, and therefore terminates the controller.

Similarly, the controller Localiser is shown in Figure 4 and its detail in Figure 7.
The controller responds to one event odometer of type real, which communicates the
readings of the odometer. Also, the controller raises two events that communicate
the local position to two controllers: Observer and Trajectory. Localiser has one state
machine that has two states: Waiting and Localisation. The state Waiting listens to
the event odometry , while the state Localisation computes the local position using
the operation localisation(), which takes one parameter odometer, for the odometry
readings of the current local position of the robotic platform, and communicates the
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Figure 7: The Localiser Controller

value through the event cp to the controller Observer. The state machine waits for
the next odometry data at the second state Waiting, or terminates when the variable
reached becomes true, which specifies that the system has arrived at the destination.

Finally, the controller Trajectory, illustrated in Figure 4 with additional details in
Figure 8, responds to three events, tp, cp and newRoute, for the target position, local
position and new path, respectively. The controller raises two events r1 and r2 both of
type route, that sends a path definition to the controllers Observer and Navigator.

The controller Trajectory has a state machine that begins at the state Waiting, and
on receiving the two events tp and cp, it invokes the operation f indRoute() to compute
a path to the destination. The detail of the internal structure of this operation is
abstracted, which is either an implementation of an algorithm (software component)
or external services using API 6. In the end, the state machine sends the return value
of this operation and terminates at the final state.

An additional detailed discussion of the timing constructs is available in Section 2.5,
which discusses the detailed explanation of the timed primitives that we used in this
example, such as cp? vcp < 3 and primitives wait().

6Additional details of robotics API is available in this documentation
wiki.roboticsapi.org/Robotics_API_Development_Platform
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Figure 8: The Trajectory Controller

In summary, this section describes the structure of RoboChart and its untimed con-
structs, then follows with a demonstration of the untimed constructs using an au-
tonomous navigation system as an example, which illustrates the use of the construct
to model a system. The next section discusses the semantics of these constructs and
their use for formal verification techniques.

Untimed Semantics

This section describes the formal semantics of RoboChart using CSP notation, and
discusses the relevant semantics of the notations of RoboChart. A more elaborative
discussion of capturing semantics using CSP notations is available in the literature [6].
There are two levels of details for describing semantics; the first untimed construct
does not involve temporal specifications. The second approach does include temporal
specifications, where the timing is essential for the semantics. This section focuses
on the semantics of untimed behaviour using untimed CSP notations. The subse-
quent section discusses modelling the timed behaviour using the provided constructs
of RoboChart.

The semantics of RoboChart is based on the framework Unifying Theory of Pro-
gramming (UTP) due to its capability of expressing timing and probability. The aim
of UTP is to develop a common ground for programming languages from the seman-
tics perspective [108], which provides a common platform for using the semantics to

40



Figure 9: Stack structure of the semantics of RoboChart application, source [2]

compare and analyse different programming languages for a variety of paradigms.
Therefore, UTP provides a suitable base for RoboChart semantics. The models of
RoboChart have semantics in the form of denotational semantics of CSP in terms of
UTP framework. As mentioned in the [37], the denotational semantics is the natural
approach that matches the structure of CSP as well as its semantics. Furthermore, it is
the same denotational approach used for analysis and reasoning about CSP models.

The semantics of RoboChart follows the hierarchical structure of its Metamodel.
RoboChart modules consist of controllers that in turn contain a state machine, which
describes the activities of the modules. Similarly, the semantics of a module is defined
by composing the semantics of its controllers according to their interactions. Also, the
semantics of a controller is deduced from the state machines that model the processes.
This provides a hierarchical structure, as illustrated in Figure 9.

In Figure 9, each of the boxes represents a process. The box with double lines on
both sides represents a memory process. The box with rounded corners represents
a process that models a state. The process module (biggest box) models the whole
system to capture the complete semantics of the system, which consists of the system
memory (platform memory is the LHS box) in parallel with all the processes modelling
the system controllers. Each one of the system controllers (bigger box) has its memory
(controller memory is the RHS box). This is in parallel with the parallel compositions
of all the state machines in the controller. At the bottom of the stack, each of the
state machines has a memory (State Machine Memory) in parallel with the process
modelling the parallel compositions of the composite state (big box), basic state (small
boxes) and substate inside the state of a state machine.

RoboChart focuses on the behaviour of a system, which is expressed using a state
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Figure 10: State Machine Semantics (source [2], fig 5).

machine that models system behaviour as a composition of the possible states of the
system. Each state is modelled as an independent process. The composition of the
state processes with the memory processes provides the semantics of the RoboChart
state machine.

The detailed explanation of the semantics of RoboChart state machine is provided
in [2], using an architecture that is outlined with a state machine in Figure 10. The
figure consists of a state machine that has three states, two basic states: S1 and S2 and
a composite state that also has two sub-states S11 and S12. Each state consists of three
distinct parts: entry specifies the entry action, during specifies the actions between
entry and exit, which may be interrupted with an outgoing transitions, and lastly, the
exit specifies the exit actions. The Initial process models the initial transition from
the initial state with the activation events enter and entered, which models a transition
from one state to another.

For an overview of the examples that follow later, a typical structure of a RoboChart
module consisting of controllers that contains state machines is illustrated in Figure 4
using the Autonomous Navigation System. In modelling the system, the only visible
interactions are the robotic platform events, stop, scan, odometer, tp and lp. The events
of a controller that is synchronised with the system platform are renamed to match the
identifiers of the platform events. In the case of synchronous interactions and parallel
compositions (|[ ]|) hiding (\)are used to synchronise the parallel controllers. An
additional buffer is used in parallel with the controllers for asynchronous interactions.
The semantics of these controllers together with the semantics of the platform memory
(for the variables) produce the semantics of a module in RoboChart. Considering the
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previous example of ANS, the semantics of a RoboChart module is:

ANS Module = ANS Controllers[scan\view]

The event view in the controller is renamed to match the corresponding platform
name scan. The events connect to one another with the same identifier on the platform,
so there is no need for the user to rename the events to match the platform.

Where the parallel controllers are structured as follow:

ANS Controllers = ((NavigatorCTRL|[{|newRoute, rt|}]|TrajectoryCTRL)
\(newRoute, rt))|[{|rt2, obst|}]|ObserverCTRL|[{|cp|}]|Localiser

The controller navigator synchronises with trajectory on the two events: newRoute
and rt. The two controllers navigator and trajectory synchronise with the controller
observer on the events obst and rt2, respectively. The controller observer synchronises
with the localiser on the event cp. Also, all the events have similar names in both
ending nodes, so there is no need to rename the events in the semantics.

The internal semantics of a controller is deduced from the composition and interac-
tion of its state machines and the processes that model the memory, which captures
the variable(s) used in the controller. This follows a similar pattern with the definition
of a module, except here we use state machines instead of controllers. In the case of
multiple state machines in a controller, the semantics of the controller consists of the
parallel composition of all the state machines [2].

Controllers = StateMachine

The formal model of a RoboChart state machine is the composition of all the states
inside the state machine that synchronises with its memory on the combination of the
variables and events used in the state machine [2]. This is illustrated in Figure 10,
which consists of a state machine with three states; two basic states S 1 and S 2 and a
composite state consisting of two substates S 11 and S 12. The semantics is illustrated
with a formal model of a process StateMachine as follows.

StateMachine = ((STM|[vars]|Memory)\I)[ f ]

This process StateMachine is a composition of the states in the process STM and
the process Memory that synchronise on the set containing the events for accessing the
memory variables. The process hides all internal events (I) and uses a function ( f ) to
rename all internal transitions identifiers to match the external events of the hardware
platform.

The semantics of the composition of the states in the state machine is as follows.

STM = (Init|[EntryExitChannels]|States)\(Σ\Plat f ormEvents)

This process for modelling the semantics of the state machine STM consists of the
initial transition process (init) that synchronised with the composition of the states
(States) on the interaction channels (EntryExitChannels) in the state machine. And the
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process hides all the events (Σ) from the environment using the operation \ except the
platform events.

The process Init specifies the initial state, which uses an entry channel entered to
send a request for entering another state. The corresponding response from the tar-
get state is through the channel entered for confirmation of entering the state. The
semantics is specified as follows:

Init = enter.requester.target→ entered.requester.target→ SKIP

A state machine begins with an initial state, then follows with remaining states
in the state machine. The process initial describes an initial transition into the state
machine. Transition to other states is described using the activation events enter and
entered. Similarly exit and exited are events for deactivating a state. Each one of these
four events has two parameters, a state that initiates the request and the target state.
For example, in Figure 10, the process enter? x.S0 models a request for activating state
S0 from a state x, and the subsequent event entered! x.S0 models an acknowledgement
of the request.

The process State describes the composition of states in the state machine [13]. In
a RoboChart model, each state machine begins from the initial state specified in the
Init process, and exiting is always through the final state, except in the case of instant
termination where the state machine just terminates by raising a termination event.

In the case of the example ANS, the state machine in the navigator controller is
presented in Figure 5. A transition for activating a sub-state Moving from the basic
state has a formal model using a process T init, as follows.

T init = enter.Movement.Moving→ entered.Movement.Moving→ SKIP

In the same manner, the formal model of a transition from one state to another
state follows the same pattern. For instance, in the state machine navigator inside the
navigator controller, a transition from the state avoidance to another state WaitingRoute
has a formal semantics, illustrated as follows.

T = enter.Avoidance.WaitingRoute→ entered.Avoidance.WaitingRoute→ SKIP

Each state machine has a memory that contains all its variable(s). There are two
types of provided channels, setChannel and getChannel, for accessing each variable in
the memory. For example, the process P memory has a formal semantics, illustrated
using the operator of external choice as follows.

P memory(v) = (getChannel! v→ P memory(v) 2 setChannel? vnew→
P memory(vnew)2 . . . )

Additionally, the state machine navigator has a memory process Pm that models all
its variables as follows.
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Pm(vrt, n, sz . . . ) = (get vrt! vrt→ Pm(vrt, n, sz . . . )[]set vrt? new vrt→
Pm(new vrt, n, sz . . . )[]get n! n→ Pm(vrt, n, sz . . . )[]
set n? new n→ Pm(vrt, new n, sz . . . )[]get sz! sz→
Pm(vrt, n, sz . . . )[]set sz? new sz→ Pm(vrt, new n, new sz . . . )[] . . . )

A guarded transition is a transition that has guard expression. The semantics of a
guarded transition includes the semantics of the variable used in expressing the guard.
For example, in the state machine navigator, the transition from the state WaitingRoute
to the state Movement has a formal semantics that is specified by the process Tm as
follows:

Tm = rt? vrt→ set vrt! vrt→ (set n! 0→ SKIP; get vrt? vrt→
set sz! length(vrt)SKIP; enter.WaitingRoute.Movement→
entered.WaitingRoute.Movement→ SKIP)

The transition from the state WaitingRoute to the state Movement is connected with
an event rt, so the process Tm begins with that event rt. It then follows with the mem-
ory processes: set vrt, set n, get vrt and set sz for accessing the memory variables.
Then the process continue with the events for both entry request enter, and the corre-
sponding response entered for the transition from the state WaitingRoute to the state
Movement.

The formal model of a state consists of the events inside the state machine for the
three possible categories: entry, during and exit, followed by the choice of possible
transitions that connect the state to other states. An example is the sub-state Moving
in the state machine navigator in Figure 5, which calls the two operations move and
wait for the amount of time specified in the primitives wait(), then takes one of the two
possible transitions. Formal semantics of the untimed model is defined with a process
Pwr as follows.

Pwr = get vrt? vrt→ get n? n→ moveCall → moveRet→ SKIP; STOP/\(t1 and t2)

The process Pwr accesses the variable using the memory processes get vrt? vrt and
get n? n, then calls the move operation using the two events moveCall and moveReturn,
and finally waits for the availability of any of the two transitions t1 and t2.

In conclusion, this section briefly discusses the untimed semantics of the RoboChart
model. The section illustrates a composition of the formal semantics of state machines
that form the semantics of a controller. In the same way, the formal semantics of all
the controllers are put together to form the semantics of the whole system behaviour.
The following section discusses timed semantics of the RoboChart model.

Discrete Timed Semantics

This section discusses the semantics of the discrete timing constructs of RoboChart. We
discuss using CSP and its extension tock-CSP in capturing system specification using
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discrete-time models. An example is provided that illustrates using the construct of
RoboChart for modelling temporal specifications of a system.

The initial version of CSP notation has been as an untimed language, which has
been extended with the notion of time that facilitates analysing real-time systems.
Thus, tock-CSP is a timed version of CSP that has an additional independent timed
event tock, which marks the passage of time. The event tock represents a unit of time
like ’a second’ or ’a tick’ of a wall clock, but the symbol tick (X ) is already part of CSP,
which representes a successful termination of a process, so the symbol tock is used for
describing the progress of time, which also serves as a time synchronisation point
for all the processes and their operating environment. Therefore, any two or more
events that happen between two consecutive tock events, are considered as they occur
simultaneously. Thus, using tock facilitates the analysis of timed systems without
the need for learning new notations and utilise the existing tools of CSP. The timed
semantics of RoboChart is generated using tock-CSP, which is used in RoboTool for
the verification of RoboChart models with the support of the FDR model checker for
automatic verification [37].

To demonstrate modelling the timed specifications in RoboChart, the previous ex-
ample ANS (presented in Section 2.5) has deadlines for specifying time elapsed, which
makes the system synchronise with its operating environment in real-time. The ex-
pression scan? vi < {3} sets a deadline of three timed units for the event scan. Another
example is the expression lp? vlp < {3} that specifies three time units for the event lp.
Similarly, another deadline is added to the event r for receiving a new route on time,
to avoid stopping the platform in one spot while waiting for a new route.

In RoboChart, deducing the timed semantics of a particular state machine is the
parallel composition of the processes of the state machine activities, the processes of
the clock and the processes of the memory that synchronise on a set consisting of their
common events; and is illustrated as follows.

(STM|[a ∪ dc]|(Pmemory|[t ∪ w]|Pclock)\w)\I))[ f ]

The processes state machine STM and Pmemory come from Section 2.5. The other
processes Clock and Memory synchronise on a set combining the events for setting
the clock (w) and timed guarded transitions (t). They also synchronise with the state
machine process STM on a set containing a combination of events for accessing the
memory variable (a) and clock (dc) for resetting the clock after the deadline. Then,
the process hides all internal events (I). Also, the function ( f ) renames the transitions
identifiers to match the platform external events.

In deducing the semantics of RoboChart models, the semantics of the primitive
wait(t) is its corresponding CSP process WAIT t, inspired by the constructs of Timed
CSP. Similarly, the semantics of a deadline for an action A < {t} is deduced as A . t,
inspired by Circus Time. But in the case of a deadline for triggering an event, it is only
enforced after entering the source state that satisfies the guard condition attached to
the transition. In this case, two events are provided, deadline.T.on, when the guard
condition is satisfied, and the second event deadline.T.o f f when the guard condition
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is not satisfied. These are composed with the process during for the source state [2].
For instance, consider a transition Ta that has a deadline da time units, the formal
semantics of the process Pa, as follows:

Pa = deadline.Ta.on→ ((deadline.Ta.o f f → SKIP) . da); Pa

This process Pa synchronises on the event deadline.Ta.on and then also synchronises
on the event deadline.Ta.o f f within the specified time interval da time units, and then
the process and behaves as the process Pa again.

In addition to the time primitives for specifying time budget, RoboChart has a time
clock for specifying a time elapse. The semantics of the time clock is encoded using
a combination of boolean variables and an auxiliary CSP process that synchronises
with the memory processes [2]. For example, a transition between two states that has
a guard since(C) < db, which is modelled with a process Tb is encoded as part of
the process Pmemory, below. The guard expression since(C) < db is encoded using a
variable mb that sets and resets the channel setmb as either true or false.

Pmemory(. . . , mb) = (. . . , 2 setmb? mbnew→ memory(. . . , mbnew) 2 mb&Tb
→ memory(. . . , mb)

The process Pmemory offers multiple channels for accessing the memory, including
the channels for accessing clock variable mb. Here the process illustrates using the
channel setmb to set the clock time to a new value mbnew then the process behaves as
Pmemory with the new value.

In synchronising the memory processes, a process for the waiting condition (wcp) is
introduced as follows.

P(Tb) = Tb→ P(Tb)

wcp = P(Tb)4wcp reset

wcp reset = clockReset.C → setmb! f alse→ wcp body

wcp body = (P(Tb)4db setmb! true→ P(Tb))4 wcp reset

The process P(Tb) is ready to perform the event Tb, which is interrupted by resetting
the clock wcp reset using the event clockReset.C. The event wcp reset updates the
availability of Tb with setting the value of the variable mb false and behaves as the
process wcp body, which offers the event Tb for the time db units of time and then
reset the memory back to true, then continues to offer the event Tb again.

For example, to complete the timed semantics of the state machine navigator Fig-
ure 5 its semantics is express in the process Tp, as follows:

Tp = (NavSTM|[vc ∪ cc]|(NavMmr|[gt ∪ wc]|NavClock)\w)\it)[ f ]
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In this process Tp, the memory of the state machine navigator NavMmr synchro-
nises with the process NavClocks on the set consisting of the combination of the
guarded transitions gt and waiting conditions wc. After that, the process Tp hides
all the waiting conditions wc to hide the event from the operating environment, and
then also synchronises with the process NavSTM on a set that combines both the
events for accessing the variable channels (vc) and the clock channels (cc), while hid-
ing all the internal events in the set it and renaming the transitions to match external
events of the hardware platform.

Similar to the semantics of the untimed model, the timed semantics of all the state
machines in a controller are combined in parallel to form the timed semantics of a
controller. In the same manner, the timed semantics of a system is the parallel combi-
nation of the timed semantics of its controllers.

In conclusion, this section discusses the semantics of RoboChart models using the
CSP notations, as well as tock-CSP for timed semantics of RoboChart. This provides
a way of analysing systems together with their temporal specifications. The tool
RoboTool automates the procedure of generating the CSP semantics with the added
event tock for capturing the progress of time. The FDR [109] provides support for
automatic verification of the generated tock-CSP.

At the time of conducting this work, RoboChart was still evolving. As such we focus
on tock-CSP that capture the generated semantics of the RoboChart models. In the next
section, we are going to discuss using FDR in the verification of a tock-CSP model.

2.6. Automatic Verification

The supporting tool of RoboChart is RoboTool that generates CSP semantics of a
RoboChart model from the graphical models. The generated CSP specifications are
generated in a machine-readable format of CSP known as CSPm [6]. RoboTool gener-
ates both untimed semantics and timed semantics as described in Section 2.5. RoboTool
has been integrated with the FDR model checker [109] for both analysis and verifica-
tion. Therefore, system properties specified using RoboChart are automatically trans-
lated into CSP, which is verified with the FDR model checker.

The FDR model checker is the primary tool for automated analysis and verification
of CSP models. The FDR uses the concept of refinement to verify the requirements of
a system. When FDR encounters a failure, where the requirement does not satisfy the
system specification, it generates a counterexample to indicate where the requirement
does not satisfy the specification. This facility is used to verify deadlock, determin-
ism, divergence and other formulated requirements of the users. Animating system
behaviour is also available using an animator Process Behaviour Explorer (ProBe), ac-
companying the FDR model checker. This makes it possible to visualise and explore
the behaviour of individual processes that describe the behaviours of a system [6].

Integrating RoboTool with FDR involves loading the generated CSP specification
(in .csp file) from the RoboChart package into FDR. Therefore, a system modelled
in RoboTool is automatically verified for deadlock-freedom, determinism and diver-
gence. Other possible verifications include using assertions to verify customised sys-
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Figure 11: Sample assertions that can be verified using RoboTool and FDR for the ANS
example (1 of 2)

Figure 12: Sample assertions that can be verified using RoboTool and FDR for the ANS
example (2 of 2)
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tem behaviour and also enable the verification of the expected hardware specifications
as well as reachability analysis. Additionally, RoboTool automatically generates mul-
tiple assertions for verifying the correctness of a system [81].

For example, in the previous example ANS, the state machine navigator from Fig-
ure 5, an assertion to verify that the navigator state machine is deterministic is as
follows.

• Checking deterministic behaviour
Assert NavSTM :[deterministic]

• Checking divergence behaviour
assert NavSTM :[divergence-free]

• Checking time locks
assert (RUN({tock})|||CHAOS(EE_NavSTM))

[F= (NavSTM \ union(EE_NavSTM, {tock}))

The assertion verifies that the LHS process RUN() always offers the event tock con-
currently (|||) with another process CHAOS(), which performs any of the external
events of the state machine navigator (EE NavSTM). The check is in failure model
for the refinement of the RHS that specifies the possible behaviours of the state ma-
chine navigator (NavSTM) except its external events and tock. Satisfying this assertion
establishes an absence of time locks in the navigator state machine [2].

In using FDR for the verification of the example ANS, as shown in Figure 11 and
Figure 12, FDR shows that 109 automatically generated assertions can be verified using
the combination of RoboTool and FDR based on the behaviour of the example ANS.

2.7. tock-CSP and Timed CSP

CSP provides a framework for analysis, reasoning and also proof about the behaviour
of a system. However, the original version of CSP without the timing information
makes it easier to reason about the design and behaviour of systems without con-
sidering temporal specifications. But in the case of real-time systems and also timed
critical systems, timing is an essential component of the system, which has to be part
of the correctness and reasoning about the behaviour of timed systems. Thus, in this
case, the original untimed CSP approach is not sufficient for the verification of timed
systems. Independent treatment of time is needed to handle timing. This motivates
the development of various approaches for extending CSP with timing information,
notably tock-CSP and Timed CSP.

The time model tock-CSP is one of the approaches of extending CSP with timing
information for capturing temporal specifications. The approach of tock-CSP adds a
model of time-frame to measure the progress of time, which is captured with the
special event tock, forming a version of CSP that models system with their temporal
specifications, as discussed in the previous sections.
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Another approach of modelling temporal specification in CSP is Timed CSP ap-
proach, which adds a sequence of time to describe the timing of each event. The
behaviour of a system is modelled with two sequences, a sequence of events and a se-
quence of real numbers for recording the progress of time. Each element of the timed
sequence specifies the time for the corresponding event in the sequence of events. The
time in which each event occurs is recorded with a real number. Timed CSP uses
the continuous-time model, which is the recommended suitable model of time for
modelling real-time systems. In Timed CSP, a trace is a series of events with their
corresponding series of time. In the literature [6], timed CSP has been described as the
most elegant approach for extending CSP with the temporal constructs.

Unfortunately, this approach complicates the automated verification approach and
traces become infinite, which is problematic for verification. At the time of this work,
this approach is not supported in the FDR because it is a different model from the
original CSP models. Therefore, it needs a new set of theorems and tools, as there
currently is no supporting tool for Timed CSP. Additionally, some specifications are
difficult to specify with the Timed CSP; for instance, specifying a hard deadline is not
possible because there is no way of specifying that an event must happen before a
specific time in Timed CSP [6].

Unlike the original CSP, in tock-CSP events happen in a given time frame. The
time frame is marked with the event tock. Events are recorded sequentially within a
time frame, as many as possible finite events occur within a unit time before the next
occurrence of the event tock [37]. Thus, a trace contains a sequence of events divided
into time frames separated by the event tock. This enables reasoning about the time
at which events happen and a time interval between events. This provides a way for
expressing urgency, delay and deadline.

The event tock is a special event that marks the passage of one unit time, which
serves as an interface of transition from one time-frame to another. Also, the event
tock is a visible event that is neither hidden nor renamed. The behaviour of the event
tock is not affected by either the system or the environment. All processes synchronise
over the event tock. The number of tock events in a process quantifies the amount of
time progress. The quantification depends on the size of each time frame. There is no
minimum separation interval, thus no restriction on granularity.

The approach of tock-CSP retains both the original structure and the notations of
the original CSP. This makes it easier to both understand and utilise the existing tech-
niques, theories and tools of the original untimed CSP, such as FDR [6, 37]. This in-
cludes the constructs of refinement model checking, which check if an implementation
process (Impl) model refines the corresponding specification process (Spec) model.
Like CSP, tock-CSP models can be checked with three options: trace model ([T=),
failure model ([F=) and failure/divergence model ([FD=). For instance, Impl trace-
refines Spec is express as Spec [T= Impl, to mean that the traces of the model Spec
contain the traces of the model Impl [6, 37].

An absence of the event tock in a process specifies that the process is completed
within one time unit. One shortcoming of the tock-CSP approach is that sometimes
adding multiple tocks tends to make system descriptions more cumbersome and dif-

51



ficult to understand [37]. The tock-CSP models time with a discrete model of a clock,
but it has a strong connection with Timed CSP that uses a continuous-time model of
a clock [110]. The event tock happens regularly with the flow of time. Secondly, with
the tock-CSP Approach, we are able to differentiate idle (with the process TOCKS),
urgent (before the next tock) and evolving state (countdown). These three kinds of
specifications are quite tricky if not impossible to specify in the untimed CSP [6, 37].

In the literature [6, 37], it has been recommended that explicit use of the event tock
to specify the progress of time needs to be sensible and reasonable, because of the
tendency to create problems in system description and design, which may lead to
building unrealistic systems. For example, this can lead to building a system that may
block the progress of time or a system that performs an infinite sequence of events
within a finite time. It is recommended and emphasised that a separate check for these
abnormalities should be carried out separately [6]. For instance, timing consistency
checks using failure divergence is as follows.

TOCKS [FD= P\(Events\{tock})

As a result of this, tock-CSP provides a promising approach for modelling systems
with a discrete-time model, which is suitable for automated verification with a well-
established CSP tool called FDR; a model checker for automatic analysis and verifica-
tion of a finite CSP process using refinement checks. FDR uses assertions to check the
behaviour of a process. In the case of encountering a failure, FDR provides a coun-
terexample to illustrate the failure. This provides a means of exploring the possible
behaviours of a process to check if the process either satisfies or violates its specifica-
tion. This provides a way of using refinement approach in verifying the specification
of systems, including robotics applications.

However, refinement approach with tock-CSP has scope and limitations. For in-
stance, tock-CSP is not capable of handling liveness specifications. Along this line, it
has been prove that, tock-CSP using refinement lack the capability and power of ex-
pressing liveness specifications. Further investigation shows that, in general capturing
temporal logic specifications has to be through refusal testing model. However, due
to the difficulty of expressing refusal testing, automatic support becomes problematic.
On the other hand temporal logic provides direct constructs for expressing liveness
specification. In the next section, we are going to discuss details of TA and temporal
logic that we can take advantage in translating tock-CSP to TA [7, 39, 111].

In summary, tock-CSP provides a modelling framework that is capable of express-
ing and analysing timed systems, particularly for event-based systems. It provides
a flexible way of specifying synchronisations between a system and its operating en-
vironment. Also, it enables reasoning about the behaviour of processes that interact
according to the flow of time in discrete format.

2.8. Timed Automata and UPPAAL model checker

A timed automaton is a finite state machine with a finite set of a real-valued clocks.
An edge of TA connects a state with another state to form a transition, which may

52



have constraints that include a clock. The constraint enables the transition when it is
satisfied with the clock value. A TA reads timed-words that describe the behaviour
of a system. In the timed words, each action is associated with a real-valued clock.
A set of the accepted timed words for a TA describes the language of the TA, which
describes its possible behaviour.

Uppaal model checker is a tool for the modelling and verification of real-time sys-
tems. Systems are modelled as a network of the parallel composition of timed au-
tomata (TA) that have an external clock. The clock is modelled with a continuous-time
model, in which time progresses synchronously with the global clock. Time is quanti-
fied with a real number value. Uppaal enables using multiple clocks in a TA. All these
clocks progress synchronously together. An individual clock is reset independently,
which facilitates modelling temporal specifications, such as delay, timed-budget and
urgency [107, 112].

In Uppaal models, each process is modelled as a TA that is mathematically defined
as a tuple (L, l0, C, AE, I), where L describes the set of possible locations, l0 is the
set of possible initial locations, C is the set of clocks, A is the set of actions, E is
the set of possible edges and I associates invariant with a location. The set of edges
E ⊂ L × A × B(C)× 2C × L. This describes an edge from location L with an action
A, and a guard B(C), with a set of clocks that are reset following the transition to a
location L.

The semantics of each TA is defined with a Labelled Transition System (LTS); a tuple
(S, s0,→), where S ⊂ L× RC, a combination of location and their possible clocks value,
s0 is the initial state, transition (→) in the form of S× A× S. There are two possible
transitions. A transition from state to state over either time delay (t) or an action (σ) or
combination of both. The operational semantics of TA is defined as follows, given a TA
that is defined as (L, l0, C, A, E, I) with a LTS as (S, s0,→), the two possible transitions
are expressed as follows.

1. Delay transition:

(l, u) d−→ (l, u + d) ⇐⇒ (∀d : 0 ≤ d′ ≤ d⇒ u + d′ ∈ I(l)

2. Action transition:
(l, u) a−→ (l′, u′) ⇐⇒ ∃e = (l, a, g, r, l′) ∈ E
such that u ∈ g, u′ = [r → 0]u and also u′ ∈ I(l)

In Uppaal, a TA performs an action over an edge synchronously with the envi-
ronment and possibly with some other TA. This leads to a transition from one state
to another or possibly return to the same state. A state in a system encapsulates all
the locations of all the parallel TA, together with their associated clock values and
the values of the related variables. In TA, performing an action triggers a transition
that changes the state of the whole system. Uppaal uses TA to model a system, with
additional features such as clock, template, urgency, committed location, array and
user-defined function, as follows.
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Figure 13: An example of template in Uppaal

Figure 14: Defining a process with a template in Uppaal

Template of automata: defines a generic automaton that describes a generic process.
This concept is similar to the common practice of using a template to define a function
in conventional programming languages. A template takes arguments that define the
parameters of an automaton.

Example 2.1. An example of using a template in Uppaal is shown in Figure 13 and
also instantiating the template as a process in Figure 14. Figure 13 shows a template of
TA that has one argument n, which specifies a deadline for a transition. The deadline is
of type integer between 1 and 9. The process performs the event a within the specified
deadline; then the process repeats the event a as many times as possible. But, if the
event a happens after the deadline, the process terminates with a deadlock.

Variable and Constant Values are the provided constructs for defining values in a
variable that can be used to define a TA or system. Constant value remains unchanged
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throughout the execution of a timed automaton. Additionally, a bounded integer vari-
able is provided that defines a variable with a specific range of possible values, which
is provided for optimising verification to eliminate checking all other irrelevant possi-
ble values and state explosions. For example, a bounded integer variable is declared
as int[min, max] varName. The variable is used like other values to specify a guard,
invariants and assignment expressions, as described in the following BNF.

BoundedInteger ::= ‘int[‘ < min > ‘, ‘ < max > ‘]‘
max ::=< digit >
min ::=< digit >

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | < digit >< digit >

The terms min and max represent any positive integer value, including zero. For a
valid range, the value max has to be greater than the value of min. The complete BNF
of Uppaal is provided in Appendix C 7.

Example 2.2. An example of a statement for declaring a variable with a bounded
integer in the range 0 to 99 is int[0, 99] n;.

Channel declares an action with the keyword chan, and follows with a given identi-
fier of the event. For example, the expression chan move declares an action move that
describes a synchronisation point when an edge fires the action. For example, a TA
that performs the action move! synchronises with another TA that performs the coac-
tion move?; an event that has a similar identifier but labelled with “?”. When many
possible synchronisation edges are ready, one of them is selected non-deterministically.
If none of them are ready, the transition is blocked.

Example 2.3. A statement chan a; declares an event a. An edge that fires the event
a! synchronises on this event with a transition label a? from another TA.

Broadcast provides a construct for multiple synchronisations. A broadcast channel
synchronises more than two TA on a single event. A single TA fires a transition label
with a broadcast channel as sender channel!. Then all the receiving channel? in the
other receiving TAs have to synchronise.

Example 2.4. A statement broadcast chan bc; declares a multi-synchronisation
event bc. An edge fires this event with a transition label bc!, which synchronises with
as many edges as possible on this event using a transition label bc?.

Urgent Channel An urgent channel does not allow any delay on a transition. A tran-
sition label with an urgent channel is taken as soon as the transition becomes available.
Any transition label with the urgent channel cannot have any guard. Also, the urgent

7The BNF is part of the documentation for a parser of the Uppaal tool
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channel is declared using two keywords urgent and chan. For instance, the expression
urgent chan brake declares an urgent channel name brake. A transition labelled
with the event brake is an example of an urgent transition.

Urgent Location An urgent location is a location that does not allow any delay. This
location is similar to a location that has an implicit clock invariant of x ≤ 0. This
means that the process leaves the location instantly. The Uppaal IDE provides options
for declaring a location as an initial, urgent or committed location.

Committed Location is superior to urgent location because, in addition to being an
urgent location, it also blocks any other transition except its transition or any transition
from another committed location. When a process reaches a committed location, it
only progresses from one of the outgoing edges of that location. Example 2.5 illustrates
the differences between urgent and committed locations, as follows.

Figure 15: A system in an urgent location

Example 2.5. In illustrating the differences between the two types of locations, urgent
and committed, we use three processes: Pr1, Pr2 and Envr to model a system. A TA
that models the process is shown in Figure 15. The process Pr1 performs the event
a1, a2, a1 and then deadlocks at the final state s f . The second process Pr2 performs
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Figure 16: A system in a committed location

the action b1, b2 and deadlocks at the final state s f . The third process Envr models the
environment that enables all the events a1, a2, b1 and b2.

In Figure 15, when the system is in the urgent location, the possible transitions are
shown in the top left window of Figure 15. In this case, the two possible transitions are
a2 and b1; a2 on the outgoing edge of the urgent location of the TA Pr1, and b1 on the
outgoing edge of location s0 of the second TA Pr2. But when the system reaches the
committed location, as shown in Figure 16, the only available transition is a2, which is
the only outgoing edge in the committed location of the TA Pr2.

Array construct is provided for declaring multiple clocks, channels, constants and
integer variables. The index value specifies the size of the array, similar to the well-
known array in the data structure.

Example 2.6. An expression of the form chan ch[5]; declares five channels, namely
ch[0], ch[1], ch[2], ch[3] and ch[4]. The appended number describes the index of the
variables.

There are other constructs such as the structure record for storing multipart data,
which is similar to the syntax of the C programming language. A record is declared
with the keyword struct. Additionally, custom data type and user-defined function
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are also available with the same structure of C programming language, except that the
pointer is not allowed in Uppaal.

Guard Expression Guard is a special expression that evaluates to a Boolean value.
Only constants, integer variables and clocks are allowed in expressing a guard. Essen-
tially a guard consists of clocks or clocks compared to an expression. An expression
guard is restricted to using side-effect-free function, which returns a Boolean value.
Also, Uppaal enables the use of multiple conjunctions of guards to specify a com-
pound guard.

Update Expression assigns a new integer value to a clock or variable. A single tran-
sition can update multiple expressions, which include clock or variables.

Invariant is a side-effect-free expression that evaluates to a Boolean value. In defin-
ing an invariant, the only acceptable constructs are clock, integer constant, integer
variables and side-effect-free function.

Uppaal query Uppaal models a system with TA and a query expression is used to
check specifications of interest in the system. The query is expressed using a subset of
the simplified version of TCTL. The query has two parts: the state formula and path
formula. The path formula quantifies the interesting path or trace of a specification,
which is expressed using the four symbols: A, E, [] and <>, where: A specifies all
paths, E specifies some paths, [] specifies all states in the path and <> specifies some
states in the path. A state formula is a side-effect-free expression that evaluates to a
Boolean value. A special keyword deadlock is provided for checking deadlock freedom.

The BNF for the formula for expressing query is as follows:

Querry ::= A[] < property > |A <>< property > |E[] < property > |
E <>< property > |< property >;< property >

property ::= automata.location|data-guard|clock-guard|
< property > and < property > |< property > or < property > |

not < property > |< property > imply < property > |(< property >)

The term automata.location specifies a location of an automaton. The terms data−
guard and clock − quard are guard expressions involving variable and clock, respec-
tively. In specifying a query for verification, Uppaal supports three classes of path
formulæ, reachability, safety and liveness.

Reachability checks the existence of a path from the initial state to a particular state
that satisfies a given condition.

Example 2.7. E <> car.exit
The process car would reach a location car.exit.
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Safety checks a condition that is invariantly true in all reachable states. This is spec-
ified as A[] condition or E [] condition.

Example 2.8. A[] ϕ
The condition ϕ is true in all reachable states.

Example 2.9. A[] (count < 3)
This specifies that a property count < 3 is true in all states along any path.

Example 2.10. E[] ϕ
Existence of complete path with the condition ϕ always true

Example 2.11. E[] (ck < 3)
There exists a complete path in which the clock ck < 3 is true in all the states along
the path.

Liveness checks a condition that is eventually satisfied. This is expressed as A<>
condition. Another alternative form for expressing liveness property is ′lead to′,
which checks a state that eventually leads to another state. For instance, A leads to B
is expressed as A --> B. This means that when the system is in the first state A
happens then eventually the system will be in the second state B.

Example 2.12. A<>ϕ
The condition ϕ will eventually become true along any path.

Example 2.13. A<> (count < 3)
The property count < 3 is true in at least one state along any path.

Example 2.14. car.enter --> car.exit :
This statement specifies that whenever a TA of the process car reaches a state car.enter,
it will eventually reach a state car.exit.

2.9. Final Considerations

In summary, in this section, we present literature for the software development pro-
cess for robotic systems, which has been discussed to address the need for tools and
techniques to support the development of robotics systems. DSL and MDE have been
recognised as the two major SE principles that are indispensable to robotics. The
discussion of DSMLs describes both the concept of DSML and interesting desirable
features that are useful for developing robotic systems.

Sample DSMLs have been discussed, identifying the various interesting features that
they provide. Overall, we discussed that there are many features for enhancing the
developmental process of the robotics application, but it is clear that the verification
aspect receives less attention. This indicates the need for equipping the verification
process with rigorous formal V&V techniques that are suitable for robotic applications.
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Considering the studied DSMLs, it is easy to see that most of them support and
adopt graphical notations and the idea of generating executable logic from the mod-
els. From this study, we found that state machine notation is the most commonly used
for modelling behaviour. The framework EMF is the favoured framework for graphical
modelling. Various approaches to formalisation and architectural style were demon-
strated. There is a common use of discrete approximation for handling continuous-
time models. In the case of handling uncertainties, only one DSML RoboChart pro-
vides the means for modelling probability. Lastly, none of these DSMLs are proprietary
and also none of them provide techniques for generating test cases.

For the industrial use of these DSMLs, no information was found be available avail-
able on how industries are using these DSMLs and the experience they have in using
them. Recently, RobotML [12] was extended with features to increase its fitness for
industrial use, but at this time, useful information is yet to be available for industrial
use of RobotML. This is an interesting aspect to explore in future research.

Limitations have been highlighted in Section 2.4 that made both GenoM and DSML
for adaptive systems unsuitable for modelling continuous-time, particularly towards
improving formal techniques. On the other hand, RoboChart stands apart as an evolv-
ing graphical language with a good foundation for the comprehensive use of the for-
mal method since its inception. As indicated in Tables 1–4, RoboChart has a good
plan for using formal method as well as interesting features suitable for both robotic
system development and verification. This provides a suitable foundation for improv-
ing the language in the aspect of temporal reasoning for robotic systems. This section
includes a discussion of the provided constructs of RoboChart for modelling a system,
which provides a way of modelling and verifying temporal specification.

Automated tools are the main vehicles that make formal techniques practical for use
in verifying real systems, particularly in the verification of large system like robotics
applications. As discussed in this section, there are two popular modelling approach
refinement and temporal logic. Both of these supporting tools have strengths and
weaknesses for verifying software applications. Based on the literature review, we
find that the facilities of Uppaal can complement the strength of FDR in verifying
temporal specifications, particularly verifying specifications that can not be verify with
refinement modelling approach [39].

In this work, we analyse using the facilities of Uppaal to verify temporal specifica-
tions of tock-CSP, which will also provide better techniques for supporting the existing
works that are based on tock-CSP, such as RoboChart for verifying robotics applica-
tions. The next section describes the technique we developed for using the Uppaal tool
to verify tock-CSP model, which will enhance the verification of robotics applications.
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Chapter Three

3. Translation Technique

This chapter describes the technical part of this research. We discuss the technique
we developed for translating tock-CSP models into Uppaal models. First, we begin
with characterising tock-CSP as a language for capturing the semantics of RoboChart
models. Second, we describe our strategy for developing the translation technique.
Third, we present the translation rules for translating tock-CSP into Timed Automata
(TA). Finally, we discuss a justification of the translation rules using trace semantics,
and then conclude the chapter with a final consideration of the translation technique.

In Section 3.1, we characterise tock-CSP as a language for modelling temporal speci-
fications. This section presents a BNF for the language, together with well-formedness
conditions for the BNF. As part of this work, we implement an Abstract Syntax Tree
(AST) of the BNF using Haskell, which we use for both descriptions of the translation
rules and also an implementation of the translation technique. Listing 3.1 presents the
relevant part of the Haskell implementation of the AST.

In this work, we consider translating tock-CSP, which captures the semantics of the
RoboChart. This is because RoboChart is at the development stage during this work
and it will continue to evolve that may lead to changing its structure by the time we
complete this work. However, the semantics of the structure will always confirm to the
constructs of tock-CSP as used in this translation work. As such, our work will apply
to the RoboChart despite its continues development. Besides, this decision expands
the application of our work to cover other relevant work around tock-CSP, such that
any work based tock-CSP will benefit from our work.

In Section 3.2, we describe the strategy we follow in developing the translation tech-
nique. We describe our approach of using small sizes TA to capture the semantics of
tock-CSP. To ease understanding of the approach, we provide an example that demon-
strates the translation strategy in translating tock-CSP processes into Uppaal models.

In Section 3.3, we describe the translation rules we develop for translating tock-CSP
models into suitable Timed Automata for Uppaal. For each construct of the BNF,
we provide a rule for translating the construct into TA. For concise presentations of
the rules, we used Haskell code in precisely presenting the translation rules. Also,
we provide examples that illustrate using each rule in translating tock-CSP processes.
Additional examples are also provided in Appendix D.

3.1. Characterisation of tock-CSP

This section describes the characterisation of tock-CSP using BNF grammar. The fol-
lowing BNF in Figure 17 defines a valid syntax for constructing a tock-CSP process that
we consider within the scope of this work, then, follow with Haskell implementation
of the BNF in Definition 3.1.
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NamedProc ::= Name CSPproc
| Name CSPexpression CSPproc

CSPproc ::= STOP
| Stopu
| SKIP
| Skipu
| Wait(Expression)
| Waitu(Expression)
| Event→ CSPproc
| CSPproc � CSPproc
| CSPproc u CSPproc
| CSPproc ; CSPproc
| CSPproc ||| CSPproc
| CSPproc ‖

{Event}
CSPproc

| CSPprocMCSPproc

| CSPproc
d
� CSPproc

| CSPproc Θ{Event} CSPproc

| CSPproc \ {Event}
| CSPproc[{Event}/{Event}]
| EDeadline(Event, Expression)

Event ::= eventIdenti f ier | tock

Figure 17: BNF of tock-CSP for the translation technique
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The BNF is implemented into AST using Haskell in the following Definition 3.1.

Definition 3.1. Data definition of CSPproc

1 data CSPproc = STOP
2 | Stopu
3 | SKIP
4 | Skipu
5 | WAIT Int
6 | Waitu Int
7 | Prefix Event CSPproc
8 | IntChoice CSPproc CSPproc
9 | ExtChoice CSPproc CSPproc

10 | Seq CSPproc CSPproc
11 | Interleave CSPproc CSPproc
12 | GenPar CSPproc CSPproc [Event]
13 | Timeout CSPproc CSPproc Int
14 | Interrupt CSPproc CSPproc
15 | Exception CSPproc CSPproc [Event]
16 | Hiding CSPproc [Event]
17 | Rename CSPproc [(Event, Event)]
18 | Proc NamedProc
19 | EDeadline Event Int
20 | ProcID String

In the following explanation, we use two metavariables P and Q, and decorations
on these names, to denote elements of the syntactic category CSPproc. We use the
symbol e to represent an element of the set Event. Also, the symbols A and B are used
to represent set of events. Lastly, the parameter d represents a CSP expression that
evaluates to a positive integer 8.

STOP specifies a process at a stable state in which only the event tock is allowed to
happen. This means that the process STOP enables passage of time only, no other
events are allowed to happen.

Stopu specifies a process that immediately deadlocks. Unlike the previous process
STOP, this process Stopu does not allow any time to pass before the deadlock.

SKIP specifies a process that reaches a successful termination point, where it can
either terminate or allow time to pass using the event tock before termination. In

8Additional details is available in https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/
syntax.html#csp-expressions
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essence, only two events are possible at that state, tock for time or tick for termination.

Skipu specifies a process that immediately terminates. Unlike the previous process
Skipu, this process does not allow time to pass before termination. In essence, the
process immediately performs the termination event tick.

WAIT(d) specifies a delay process that remains idle for a certain amount of unit time
d. After the idle time elapses, either the process terminates with the event tick or
allows arbitrary units of times to pass before termination.

Waitu(d) specifies an urgent delay process that remains idle for a fixed amount of
unit time d. The process terminates immediately after the fixed delay time d.

e → P Prefix describes a process that offers to engage with an event e and then
subsequently perform the behaviour of the process P.

P u Q Internal choice specifies a process that has different autonomous choices of
behaviour, P and Q. Independently the process P u Q behaves either as P or Q,
regardless of the choice of the environment. In the case of this internal choice, the
environment has no control over the two possible choices of P and Q.

P � Q External choice specifies a process that is ready to engage in the behaviour
of either P or Q depending on the choice of the environment. The process offers to
engage with the initials of both P and Q, for each chosen initials the process P � Q
provides the corresponding behaviour of either process P or Q. In the case of this
external choice, the environment has control in choosing the behaviour of the process.
This is the complement of the previous internal choice where the process has control
over the choice of the behaviour.

Well-formedness In the case of external choice, there is a restriction that the event
tock is not allowed to appear in the initials of either of the processes in external choice.
That is tock /∈ (initials(P)∪ initials(Q)). This is because having the event tock as part of
the initials will cause non-determinism between the process behaviour and progress
of time.

P; Q Sequential Composition specifies a composition of two processes P and Q that
run one process after the other. The first process P begins until it terminates, then
follows with the behaviour of the subsequent process Q.
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P|||Q Interleaving specifies a parallel composition where both the processes run in-
dependently without any interaction. In this case, the processes have no common
interaction points except for the termination point. Interleaving processes do not syn-
chronise in any of their events.

Well-formedness Implicitly, the processes P and Q have to match the flow of time. If
both processes perform the time event tock, they synchronise with the flow of time on
the event tock, which implies that the two processes implicitly synchronise on the flow
of time and the time event tock.

P ‖
A

Q Generalised parallel specifies a parallel composition of two processes P and

Q that run in parallel and synchronise on a specified set of events A. Independently,
each of the processes performs its events that are outside the set A.

Well-formedness The set A implicitly contains the event tock.

P
d
� Q Timeout delay specifies a composition of two processes P and Q, where a

deadline d is specified for the first process P to engage with performing an event from
its initials initials(P). If the first process P engages, then the whole process behaves
as the process P. After the deadline d time unit, if the first process P did not engage,
the second process Q takes over the control, and the whole process behaves like the
second process Q.

Well-formedness The expression d is restricted to an expression that evaluates to
a natural number. This is because tock-CSP is based on a discrete-time model that
records time-progress with discrete-event tock. Also, the processes P and Q are not
allowed to begin with the timed event tock.

PMQ Interrupt operator describes a process P that can be interrupted by another
process Q at any time during the execution of P. The first process P runs until the
second process Q performs a visible event. Whenever the second process performs an
external action, it interrupts the execution of the first process. The interrupted process
is blocked, and the second process takes over the control, then the whole process
behaves like the second process Q. If the second process Q did not perform an event,
the entire process behaves as the first process P up to its completion.

Well-formedness There is a restriction that the event tock is not allowed to be in the
initials of the second (interrupt) process. This means that an interruption cannot begin
with the event tock, because the time event tock causes non-determinism between the
interrupt and the process of time.
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P Θ{Event}Q The operator exception describes a process that begins until the right-
hand-side process performs an exceptional event to start the left-hand-side process.
So, the process P begins until it performs an event from the exceptional events Event
that triggers the process Q.

P \ A Hiding specifies the behaviour of a process P which hides all the events in
set A. The hidden events A becomes a special event tau that are not visible to the
environment, as such the environment has no control over the hidden events.

Well-formedness In the case of hidden, there is a restriction that hidden events
should not include the time event tock. This is because a process should not control
the progress of time.

P [A/B] Renaming specifies a process that renames a list of its events A with corre-
sponding names of events in list B, in one to one mapping. The renaming operator
transforms a process into another process with the same structure but appears with
different names of the renamed events A.

Well-formedness Here, the restriction is that the event tock should not be renamed
to another event, and no other event can be renamed to be tock. This is because the
time-event tock is a special event dedicated to recording the progress of time.

Edeadline(e, d) , the process event deadline specifies a process that must perform the
event e within the deadline d. So, the event e must happen within the deadline d.

3.2. Strategy for the Translation Technique

The translation technique produces a list of small TAs 9, such that the occurrence of
each tock-CSP event is captured in a small TA with an UPPALL action, which records
an occurrence of an event. The action has the same name as the name of the translated
event from the input tock-CSP process. Then, the technique composes these small TA
into a network of TA that express the behaviour of the original tock-CSP model. The
main reason for using small TA is coping with the compositional structure of tock-
CSP, which is not available in TA [113]. The small TA provides enough flexibility
for composing TA in various ways that capture the behaviour of the original tock-CSP
process.

The connections between the small TAs are developed using additional coordinating
actions, which coordinate and link the small TA into a network of TA to establish
the flow of the translated tock-CSP process. Each coordinating action a! (with an
exclamation mark) synchronises with the corresponding co-action a? (with a question

9In this work, we use TA that has few states and transitions connected together into a network of
Uppaal models

66



mark) to link two TAs, in such a way that the first TA (with a!) communicates with
the second TA that has the corresponding co-action (a?), in the form of synchronous
communication.

Definition 3.2. Coordinating Action

A coordinating action is an Uppaal action that is not part of the original tock-
CSP process. There are six types of coordinating actions:

• Flow action only coordinates a link between two TAs for capturing the
flow of the behaviour of the original tock-CSP process.

• Terminating action records termination information, in addition to coor-
dinating a link between two TA.

• Synchronisation action coordinates a link between a TA that participates
in a multi-synchronisation action and a TA for controlling the multi-
synchronisation.

• External choice action coordinates the translation of external choice such
that choosing one of the processes composed with external choice blocks
the other alternative choices.

• Interrupt action initiates an interruption of a process that enables a pro-
cess to interrupt other processes that are composed with an interrupt op-
erator.

• Exception action coordinates a link between a TA that raises an exception
and a control TA for handling the exception.

The name of each coordinated action is unique to establish correct flow. The name of
a flow action is in the form startIDx, where x is either a natural number or the name
of the original tock-CSP process. Likewise, the name of the remaining coordinating ac-
tion follows in the same pattern keywordIDx where keyword is a designated word
for each of the coordinating actions: finish for terminating action, ext for an exter-
nal choice action, intrp for an interrupting action, and excp for an exception action.
Similarly, the name of a synchronising action is in the form eventName___sync, that
is an event name appended with the keyword ___sync to differentiate the synchro-
nisation event from other events.

Termination actions are provided to capture essential termination information from
the input tock-CSP in the cases where a TA needs to communicate a successful termina-
tion for another TA to proceed. For example, as in the case of sequential composition
P1;P2 where the process P2 begins after successful termination of the process P1.

For each translated tock-CSP specification, we provide an environment TA that has

67



corresponding co-actions for all the translated events of the input tock-CSP process. In
addition, the environment TA has two coordinating actions that link the environment
TA with the network of the translated TA. First, a flow action that links the environ-
ment with the first TA in the list of the translated TA. Also, this first flow action is the
starting action that activates the behaviour of the translated TA. Second, a terminating
action that links back the final TA in the list of the translated TA to the environment
TA, and also records a successful termination of the whole process.

Definition 3.3. Environment TA

An environment TA models an explicit environment for Uppaal models. The
environment TA has one state and transitions for each co-action of all the events
in the original tock-CSP process, in addition to two transitions for the first start-
ing flow action and the final termination co-action.

Example 3.1. A simple example that illustrates a translation of an Automatic Door
System (ADS1), which opens a door, and then after at least one-time unit 10, the system
closes the door. A tock-CSP process for modelling a simple version of ADS is:

ADS1 = open -> tock -> close -> SKIP

Translation of the process ADS1 produces the following list of TA in Figures 18 – 22.

Figure 18: TA1 for the translation of the event open in the process ADS1.

10The models of tock-CSP never blocks time, as such each event tock models at least one or more unit
time. In translating the event tock, we use a recursive transition to capture the progress of time for
at least one time unit.

68



Figure 19: TA2 for the translation of the event tock in the process ADS1.

Figure 20: TA3 for the translation of the event close in the process ADS1.

Figure 21: TA4 for the translation of the termination event tick in the process ADS1.
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Figure 22: TAenv is an explicit environment of the Uppaal model ADS1

In Example 3.1, we illustrate a translation of tock-CSP into a network of TA in Figure
18 – 22. The tock-CSP process ADS01 models the behaviour of an automatic door that
opens a door and then at least after one unit time the system closes the door. Later on,
we will extend the example to include synchronisation.

Translating Multi-synchronisation

In translating multi-synchronisation events, we adopt a centralised approach devel-
oped in [114] and implemented using Java in [115]. The approach describes using
a separate centralised controller for controlling multi-synchronisation events. Here,
we use Uppaal broadcast channel to communicate synchronisation between the syn-
chronisation TA and the TAs that participate in the synchronisation. In the following
Example 3.2 we illustrate the strategy of translating synchronisation. Then, Definition
3.4 provides a definition of the synchronisation TA.

Definition 3.4. Synchronisation TA

A synchronisation TA coordinates synchronisation actions. Each synchronisa-
tion TA has an initial state and a committed state for each synchronisation ac-
tion, such that each committed state is connected to the initial state with two
transitions. The first transition from the initial state has a guard and an action.
The guard is enabled when all the processes are ready for the synchronisation,
which also enables the TA to perform the associated action that notifies the en-
vironment of its occurrence. In the second transition, the TA broadcasts the
synchronisation action to all the processes that synchronise on the synchronisa-
tion action.

When all the participating TA become ready, a synchronisation TA broadcasts the
multi-synchronisation action such that all the corresponding participating TAs syn-
chronise using their corresponding co-action. The provided guard ensures the TA syn-
chronises with the required number of TAs that participate in a multi-synchronisation
action. The guard blocks the broadcast multi-synchronisation action until all the par-
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ticipating TAs become ready, which enables the corresponding guard for broadcasting
the multi-synchronisation action.

Example 3.2. An extended version of the Automatic Door System (ADS2) opens a
door, and after at least one time unit, closes the door in synchronisation with a lighting
controller, which turns off the light. In tock-CSP, its description is as follows.

1 ADS2 = Controller [|{close}|] Lighting
2

3 Controller = open -> tock -> close -> Controller
4

5 Lighting = close -> offLight -> Lighting

For example, a translation of the process ADS, from Example 3.2, produces the net-
work of small TAs in Figure 23. Details of the translated TA are as follows. Starting
from the top-left corner, the first TA captures concurrency by starting the two con-
current automata corresponding to the processes Controller and Lighting in two
possible orders, either Controller then Lighting or vice versa, depending on the
choice of the operating environment. Afterwards, it also waits on state s5 for their
termination actions in the two possible orders, either Controller then Lighting or
vice versa, depending on the process that terminates first. Then, after the termination
of the second process the whole system terminates with the action finishID0, if both
process terminate.

The second (TA02), third (TA03) and fourth (TA04) TAs capture the translation of
the process Controller. TA02 captures the occurrence of the event open. TA03
captures the occurrence of the event tock? (with a question mark) for synchronising
with the environment in recording the progress of time. TA04 captures the occurrence
of the event close, which synchronises with the synchronising controller, the fifth TA
(TA05).

The sixth (TA06) and seventh (TA07) capture the translation of the process Lighting.
TA06 captures the translation of close, which also needs to synchronise with the syn-
chronisation controller (TA05). TA07 captures the event offLight. Finally, the last TA
(TA08) is an environment TA that has co-actions for all the translated events. Also, the
environment TA serves the purpose of ‘closing’ the overall system as required for the
model checker. In the environment TA, we use the variable start to construct a guard
start == 0 that blocks the environment from restarting the system. This concludes the
description of the list of TA for ADS.

Translating Interrupt

In tock-CSP, a process can be interrupted by another process when the two processes
are composed with an interrupt operator (/\). This is due to the compositional struc-
ture of tock-CSP. However, in the case of TA, an explicit transition is needed for ex-
pressing an interrupt, which enables a TA to interrupt another one. So in this transla-
tion work, we provide an additional transition for capturing an interrupt event using
an interrupt action, as defined in the coordination actions (Definition 3.2).
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(a) TA01

(b) TA02 (c) TA03

(d) TA04

(e) TA05

(f) TA06
(g) TA07

(h) TA08

Figure 23: A list of networked TA for the translation of the process ADS2.
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(a) TA01 (b) TA02

(c) TA03
(d) TA04

(e) TA05

(f) TA06

Figure 24: A list of TA for the translated behaviour of the process Pi.

For instance, given a process Pi = P1/\P2, the process P1 can be interrupted by
process P2. Thus, in translating each event of process P1, we provide additional
transitions for the initials of the interrupting process P2, which enables the translated
behaviour of P2 to interrupt the translated behaviour of P1 at any event.

An example of translating interrupt is provided in Figure 24, which illustrates
a translation of the process Pi = (open->STOP)/\(fire->close->STOP). For
the process Pi, the RHS process (fire -> close -> STOP) can interrupt the be-
haviour of (open->SKIP) at any stable state. In the translated behaviour of the LHS
process, we provide additional interrupting actions (fire_intrpt) that enable the
translated behaviour of the RHS process to interrupt the LHS process. The interrupt-
ing actions are provided only for the initials of the RHS process (fire).
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In Figure 24, starting from the top-left, TA01 is a translation of the operator in-
terrupt. The second and third, TA03 and TA04 capture the translation of the LHS
process open->STOP. TA04, TA05 and TA06 are translation of the RHS process
fire->close->STOP. The environment TA is also omitted because it is similar to
the last TA in Figure 23.

The first TA starts both processes using startID00_1! and startID01_2!, re-
spectively. The second TA synchronises on the flow action startID00_1 and moves
to location s2 where the TA has 3 possible transitions for the actions: tock?, open!
and fire_intrpt?. With the co-action tock?, the TA records the progress of time
and remains on the same location s2. With the co-action fire_intrpt?, the TA
is interrupted by the RHS, and it returns to its initial location s1. With the action
open!, the TA progresses to location s5 to perform the flow action startID00_2,
which activates the third TA for the subsequent process STOP.

The third TA03 synchronises on the flow action startID00_2 and moves to loca-
tion s2, where it either performs the action tock? to record the progress of time or is
interrupted with the co-action fire_intrpt?, and returns to its initial location s1.
This completes the behaviour of the process open->STOP.

The fourth TA04 is a translation of the event fire. The TA begins with synchro-
nising on the flow action startID01_2, which progresses by interrupting the LHS
process using the interrupting flow action fire_intrpt, then fire, and proceeds to
startID01_3 for starting TA05. which synchronises on the flow action and moves
to location s2, where it either performs the action tock? for the progress of time and
remains in the same location or performs the action close, and proceeds to location
s5 then performs the flow action startID01_4 for starting TA06, which captures the
translation of the process STOP (deadlock).

Translating External Choice

Similarly, in translating external choice, we provide additional transitions that enable
the behaviour of the chosen process to block the behaviour of the other processes.
Initially, the translated behaviour makes the initials of the translated processes avail-
able such that choosing one of the processes block the other alternative processes with
the co-actions of the provided additional transitions of translating external choice, as
defined in Definition 3.2.

For instance, consider a process P = P1[]P2 that composes P1 and P2 with opera-
tor external choice such that the translated behaviour of the process P is denoted by Tp
(a list of TAs for the translation of the process P). In similar manner, Tp1 and Tp2 are
lists of TA for the translation of the processes P1 and P2, respectively. Then, the first
TA in the list Tp1 has additional transitions for the initials of P2 such that choosing
the behaviour Tp2 block the alternative behaviour Tp1. Similarly, the first TA in the
list of TA Tp2 has additional transitions for the initials of P1 such that choosing the
behaviour Tp1 blocks the behaviour Tp2. Additional examples will follow later in this
chapter and Appendix D.
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(a) TA01 (b) TA02

(c) TA03

(d) TA04

(e) TA05

Figure 25: A list of TA for the translated behaviour of the process Pe.

An example of translating external choice is provided in Figure 25 for the pro-
cess Pe = (left->STOP)[](right->STOP)), which composes the two processes
(left->STOP) and (right->STOP) with the operator of external choice. In Figure
25, starting from the top-left, the first TA01 is a translation of the operator external
choice. TA02 and TA04 are translations of the LHS process left->SKIP. Then, TA03
and TA05 capture the translation of the RHS process (right->SKIP). From the be-
ginning, TA01 has three transitions, each labelled with a flow action. The TA begins
with the first flow action startIDpExtChoice?, then starts the two TAs, for the
translation of both the left and right process, using the flow actions startID00_1!
and startId01_2!, respectively.

Second, TA02 is a translation the event left. Initially, the TA synchronises on the
flow action startID00_1 and moves to location s2 where the TA has 3 possible
transitions labelled with the actions: left_exch?, right_exch! and tock?. With
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the co-action tock?, the TA records the progress of time and remains on the same
location s2. With the co-action right_exch?, the TA performs an external choice
co-action for blocking the TA of the LHS process when the environment chooses the
right process, and the TA returns to its initial location s1. Lastly, the TA performs
the action left_exch! when the environment chooses the LHS process, and the TA
progress to location s3 to perform the chosen action left that leads to location s5 for
performing the flow action startID00_2, which activates TA03 for the subsequent
process STOP. This describes the behaviour of the LHS process left->STOP.

Fourth, TA04 is a translation of right, similar to the previous translation of left
in the second TA. Fifth, TA05 is a translation of the process STOP. The omitted envi-
ronment TA is similar to the last TA in Figure 23.

Translating Hiding and Renaming

Also, in tock-CSP, an event can be renamed or hidden from the environment. In han-
dling renaming, the translation technique carries a list of renamed events. Before
translating each event, the technique checks if the event is part of the renamed events,
and then translates the event appropriately with the corresponding new name. In the
same manner, if an event is part of the hidden events, the technique stores a list of
hidden events, such that on translating a hidden event the technique uses a special
name itau 11 in place of the hidden event.

Later in this section, we provide a function transform(), which composes the
three functions ( transTA(), envTA() and syncTA()) into a system. Details de-
scription of these three functions will come later in this section. The function transform()
prepares the required arguments of the three functions and collects the output list of
TA from these three functions, and then the function transform() assembles the list
of TA into an XML file that is suitable for Uppaal toolbox.

This completes the description of the strategy we follow in developing the transla-
tion technique. The following section describes the details of the translation rules, and
provides examples that demonstrate using each rule in translating a tock-CSP process.

3.3. Translation Rules

This section discusses the details of the translation rules. The section describes the
translation rules in a functional style. Then, the section proceeds with presenting each
translation rule separately. In addition, we provide examples that illustrate using each
of the translation rules in translating a tock-CSP process.

Example 3.3. Here, we use a simple example of TA to illustrate the definition of TA
provided in Figure 26, which is defined in Listing 1 using the syntax of Haskell for
expressing the translation work. The TA has two locations A and B with an inner circle
in the initial location A.

11A special event similar to the event tau in FDR to represent hidden event.
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Figure 26: A sample output TA with two locations and one transition.

Line 1 defines a TA with 6 arguments. First parameter "idTA" specifies an identifier
for the TA, similar to the naming format we use in the translation work. Second and
third parameters are empty lists for both parameters 12 of the TA itself and its local
definitions. Fourth, [loc1, loc2] is a list of locations for the TA that contains 2
locations, loc1 and loc2. Fifth, (init loc1) specifies loc1 as the initial location of
the TA. Lastly, [tran1] is a list of transitions that has one transition for the TA.

1 TA idTA [] [] [loc1, loc2] (Init loc1) [tran1]
2 where
3 idTA = "ta1" + 0 + "_" + 0
4 -- = Location ID Name Label LocType
5 loc1 = Location "idA" "A" EmptyLabel None
6 loc2 = Location "idB" "B" EmptyLabel None
7

8 -- = Transition Source Target [Label]
9 tran1 = Transition loc1 loc2 [lab1]

10

11 lab1 = Sync (VariableID "start") Excl

Listing 1: An abstract definition of a TA that has two locations and one
transition.

Line 3 highlights a definition location from Definition 3.5. Then, Line 4 defines Loc1
as an instance of location with an identifier "idA" and name "A", with an empty label
that indicates no constraint in the location, and also specifies the type of the location
to be None. In the like manner, Line 5 defines loc2 as the second location with an
identifier "idB", name "B", also an empty label that specifies no constraint in the
location, and specifies a type for the location to be of type None.

Line 8 is a comment that highlights a definition of a transition from Definition 3.6.
Then, Line 9 defines tran1 as a transition that connects two locations loc1 and
loc2 with [lab1] as a label of the transition. lab1 is defined in Line 11 using the
definition of label from Definition 3.6 as an Uppaal action with identifier ”start” that
has direction Excl which specifies the action as a sender.

The above Example 3.3 illustrates a simple form of the output TA produced by the
translation function transTA. However, in the translation rule, we will have a TA that
has more than two locations and multiple transitions. The upcoming translation rules
define the function transTA. Each rule defines a translation of one of the constructors
12A TA has its own local parameters for expressing its behaviour.
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of the BNF previously presented in Section 3.1. In the next section, we discuss details
of each of the translation rules together with an example for illustrating using the rule
in translating a process.

Definition 3.5. Location

1 data Location = Location ID Name Label LocType

Definition 3.5 defines a location with a constructor that has 4 parameters, of types
ID, Name, Label and LocType. First parameter of type ID is an identifier for the
location. Second parameter of type Name is a tag for the location. Third parameter
of type Label is a constraint label for the location, defined below in Definition 3.7.
Last parameter of type LocType is a format of the location, which can be one of these
three: urgent, committed, None (which means neither urgent nor committed, just
normal location with no constraint).

Definition 3.6. Transition

1 data Transition = Transition Source Target [Label]

Also, Definition 3.6 defines a data type for Transition, which has a constructor with 3
parameters, of type Source, Target and [Label]. First parameter of type Source,
is a starting location for the transition. The second parameter of type Target is a
destination location for the transition. The third parameter of type [Label] is a list
of labels for the transition.

Definition 3.7. Label

1 data Label = EmptyLabel
2 | Invariant Expression
3 | Guard Expression
4 | Update [Expression]
5 | Sync Identifier Direction

Finally, the label is an expression (or list of expressions) that is associated with ei-
ther a location or a transition. For a location, a label can be empty or invariant that
specifies the constraint condition of the location. While for a transition the label can
be either empty for silent transition or any combination of these three types: Guard,
Update and Sync. Where Sync is a type for an Uppaal action that has an identi-
fier and direction, which is either sender (with a question mark) or receiver (with an
exclamation mark).
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Definition 3.8. Function transTA

1 transTA :: CSPproc -> ProcName -> BranchID -> StartID ->
FinishID -> UsedNames -> ([TA], [Event], [SyncPoint])

The function transTA has 6 parameters. The type of the parameters are CSPproc,
ProcName, BranchID, StartID, FinishID and UsedNames. The first parameter of
type CSPproc, is the input tock-CSP process to be translated. The second parameter
is a name for the process, of type ProcName; an alias for String. While third and
fourth parameters are of type BranchID and StartID; also the alias of type String
and Int respectively. We use the two parameters to generate an identifier for each small
TA in the list of the output TA. In generating the identifiers, we consider the structure
of the binary tree for the AST of the input process, which has branch and depth. So, a
combination of these two parameters branch and depth identifies the position of each
TA in the list of the output TA. Fifth parameter of type FinishID, is a termination
ID. The last parameter of type UsedNames is a collection of names, which we used in
defining the translation function, mainly for passing translation information from one
recursive call to another. We will explain the purpose of these names as we introduce
them in the translation rules. The first three parameters ProcName, BranchID and
StartID are essential for each translation rule.

3.3.1. Translation of STOP

This section describes a translation of a constant process STOP. The section begins
with presenting a rule for translating STOP and then follows with an example that
illustrates using the rule in translating a process.
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Rule 3.1. Translation of STOP

1 transTA STOP processName bid sid _ _ =
2 (([(TA idTA [] [] locs [] (Init loc1) trans)]), [], [] )
3 where
4 idTA = "taSTOP__" ++ bid ++ show sid
5

6 -- = Location ID Name Label LocType
7 loc1 = Location "id1" "s1" EmptyLabel None
8 loc2 = Location "id2" "s2" EmptyLabel None
9 locs = [loc1, loc2]

10

11 -- = Transition Source Target [Label] [Edge]
12 tran1 = Transition loc1 loc2 [lab1] []
13 tran2 = Transition loc2 loc2 [lab2] []
14 intrp = transIntrpt intrptsInits loc1 loc2
15 trans = [tran1, tran2] ++ intrp
16

17 lab1 = Sync (VariableID
18 (startEvent processName (bid ++ sid)) [])
19 Ques
20 lab2 = Sync (VariableID "tock" []) Ques
21

22 -- Get initial events for possible interrupting process
23 (_, _, _, _, _, intrptsInits, _, _) = usedNames

Rule 3.1 expresses the translation of the construct STOP, which produces an output
TA depicted in Figure 27. The figure illustrates the structure of the output TA that has
two locations and two transitions as defined in Lines 7–9 and Lines 11–13, respectively.

Figure 27: A structure of TA for the translation of STOP.

Starting from the beginning of the translation rule, Line 1 provides a definition
of the function transTA for the construct STOP and the 3 essential parameters for
translating the construct STOP, processName, bid and sid . While the remaining
two underscores represent unused arguments for this translation rule. In Haskell, an
underscore indicates a position of unused arguments. For conciseness, we use the
underscore to omit unused arguments and provide only the required arguments for
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each translation rule.
Line 2 defines the output tuple which contains three elements, a list of output TA,

and the remaining two elements for translating multi-synchronisation. For this trans-
lation rule, there is no multi-synchronisation, so the remaining two elements are both
empty for the synchronisation actions and their corresponding identifiers.

Also, in the output tuples, the first element (non-empty element) is a definition of the
output TA for the translation of the constant process STOP, which has six parameters.
First, idTA is an identifier for the TA, which is defined subsequently in Line 4, as
concatenation of the keyword "taSTOP__" with the 2nd and 3rd arguments of the
function transTA, that is bid and sid respectively. Additionally, still in Line 2,
in the definition of the output TA, the 2nd, 3rd and 5th parameters are empty for
the output TA. While the 4th parameter locs is a list of locations for the output TA
defined in Lines 7–9. The 6th parameter (Init loc1) specifies loc1 as the initial
location of the output TA. Lastly, trans describes a list of transitions that connect the
two locations as defined in Line 12–13. Lines 14 defines interrupt transitions in the
case of translating a process that is composed with an operator interrupt.

Finally, Lines 17 – 20 define the labels of the two transitions in the output TA. The
first label lab1 defines a label for the first transition as a first flow action, which
we generate its name using the function startEvent, as defined in the following
Definition 3.9. The second label Lab2 for the second transition is defined as an Uppaal

action “tock” with Ques, which indicates a receiving action.

Definition 3.9. Function startEvent

1 startEvent :: String -> String -> Int -> String
2 startEvent processName bid sid =
3 if notNull processName
4 then "startID" ++ processName
5 else "startID" ++ bid ++ show sid

The function startEvent generates the name of the first flow action. If the input
process has an identifier, we use the identifier in the translated TA as the name of
the first flow action, else the function generates a new name for the first flow action.
The name is a combination of the keyword "startID" with the two identifiers of the
first TA in the list of the translated output, that is a combination of the parameters
BranchID and StartID.

Declaration of the function transIntrpt

1 transIntrpt :: [Event] -> Location -> Location -> [Transition]
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Line 14 defines interrupt transitions using the initials of an interrupting process
defined in the function transIntrpt, as highlighted in the translation strategy in
Section 3.2. The function transIntrpt has three parameters. The types of the pa-
rameters are the list of events (initials of an interrupting process) and two locations
that connect the transition for interrupt. The first argument intrpts is the initials of
an interrupting process and generates a transition for each of the initials.

The list of the initials intrpts comes from the tuple usedNames (Line 23). Previ-
ously, we mentioned that we would explain the names in the point where we start us-
ing the names. Here, we start using the name intrpts from the names usedNames.
The name intrpts is used to collect the initials of interrupting processes for con-
structing interrupting transitions that enable a translated process to interrupt the be-
haviour of another process.

The behaviour of the output TA begins with the first flow action (line 17), which
is constructed using a function startEvent, previously defined in Definition 3.9.
After that, the TA performs the action tock (line 18), repeatedly, which allows time
to progress. An illustration of using this translation rule is provided in the following
Example 3.4.

Example 3.4. An example of translating a process STOP produces a list of TA that
contains two TAs, as illustrated below.

1 transTA STOP "p0_1" 1 0 0 ([], [], [], [], [], [], [], ([],[]))
2 = [

]

Example 3.4 demonstrates a translation of the process STOP using Rule 3.1, which
produces a list of translated TA that contains two TA, a small TA and its corresponding
environment TA. The behaviour of the output TA begins with the environment TA
that performs its first flow action startIDp0_1! with the cooperation of the small
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TA using its corresponding co-action startIDp0_1?. Then, the small TA continues
performing the event tock for the progress of time, and remains in location s2. This
concludes the behaviour of the translated TA for the constant process STOP.

3.3.2. Translation of Stopu (Timelock)

This section describes a translation of constant process Stopu, an urgent deadlock that
does not allow time to pass. The section begins with presenting a rule for translating
the process Stopu. Then, follows with an example that illustrates using the rule in
translating a process.

Rule 3.2 expresses the translation of the constant process Stopu that produces an
output TA that is depicted in the following Figure 28, which is annotated with the
names used in the translation rule. The figure illustrates the structure of the output
TA, which has two locations and one transition as defined in Lines 7–9 and Line 12
respectively.

This description of Rule 3.2 resembles the previous description of Rule 3.1 (transla-
tion of STOP), except that the output TA of this rule does not perform the event tock
that allows time to progress in the previous rule. The structure of this output TA
has two locations, loc1 and loc2 as defined in Lines 7 and 8, respectively, and only
one transition for the coordinating start event (Line 11). This behaviour of the output
TA begins with synchronising on the first coordinating start event and then deadlock
immediately. This is illustrated in the following example for translating the constant
process Stopu.

Rule 3.2. Translation of Stopu

1 transTA Stopu processName bid sid _ _ =
2 ([(TA idTA [] [] locs [] (Init loc1) trans)], [], [])
3 where
4 idTA = ("taSTOP__" ++ bid ++ show sid)
5

6 -- = Location ID Name Label LocType
7 loc1 = Location "id1" "s1" EmptyLabel None
8 loc2 = Location "id2" "s2" EmptyLabel None
9 locs = [loc1, loc2]

10

11 -- = Transition Source Target [Label] [Edge]
12 trans = [Transition loc1 loc2 [lab1] [] ]
13

14 lab1 = Sync (VariableID
15 (startEvent processName (bid ++ sid)) [])
16 Ques
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Figure 28: A structure of TA for the translation of Stopu

Example 3.5. An example for translating an urgent process Stopu.

1 -- transTA :: CSPproc -> procName -> BranchID -> StartID
2 -- -> FinishID -> UsedNames ->
3 -- ([TA], [Event], [SyncPoint])
4

5 transTA Stopu "p0_1" "0" 1 0
6 ([], [], [], [], [], [], [], ([],[]))
7 = [

8 ]

The above Example 3.7 illustrates a translation of the constant process Stopu ac-
cording to Rule 3.2. Also, this example resembles the previous Example 3.4, except
that the behaviour of this TA terminates immediately without performing the event
tock. In this example, the output TA synchronises on the coordinating start event
startID00 and then deadlocks immediately.

3.3.3. Translation of SKIP

This section describes the translation of process SKIP. The section begins with pre-
senting a rule for translating the process SKIP. Then, follows with an example that
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illustrates using the rule in translating a process. However, the behaviour of SKIP can
be interrupted just before termination, so we have to consider a possible interrupt in
translating interrupt.

Rule 3.3 describes a translation of process SKIP into a single output TA, which is
depicted in the following Figure 29. The figure is annotated with the names used in
the translation rule. The structure of the output TA has 3 locations: loc1, loc2 and
loc3 (define in Lines 6 – 9) and 4 transitions tran1, tran2 and tran3 (define in
Lines 11 – 16).

The behaviour of the TA begins on tran1 for a flow action that is defined using
the function startEvent (Definition 3.9). Then, the TA follows one of the 3 transi-
tions: tran2, tran3 or intrp. On transition tran2, the output TA performs the
event tock to record the progress of time, and remains in the same location loc2. On
transition tran3, the output TA performs the event tick and then immediately fol-
lows the subsequent transition tran4 to perform the termination event finishID0!.
Finally, on transition intrp, the TA is interrupted by another process.

Line 15 defines an interrupt transition, which is provided for the case of translating
a process that involves interrupt. Details of translating interrupt will be provided in
Section 3.3.13. Here, we highlight a declaration of the function transIntrpt below,
due to its first appearance in this translation rule.
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Rule 3.3. Translation of SKIP

1 transTA SKIP procName bid sid fid usedNames =
2 ([(TA idTA [] [] locs [] (Init loc1) trans)], [], [])
3 where
4 idTA = "taWait_n" ++ bid ++ show sid
5 loc1 = Location "id1" "s1" EmptyLabel None
6 loc2 = Location "id2" "s2" EmptyLabel None
7 loc3 = Location "id3" "s3" EmptyLabel CommittedLoc
8 locs = [loc1, loc2, loc3]
9

10 tran1 = Transition loc1 loc2 [lab1] []
11 tran2 = Transition loc2 loc2 [lab2] []
12 tran3 = Transition loc2 loc3 [lab3] []
13 tran4 = Transition loc3 loc1 [lab4] []
14 intrp = transIntrpt intrptsInits loc1 loc2
15 trans = [tran1, tran2, tran3, tran4] ++ intrpt
16

17 lab1 = Sync (VariableID (startEvent processName
18 (bid ++ sid)) []) Ques
19 lab2 = Sync (VariableID "tock" []) Ques
20 lab3 = Sync (VariableID "tick" []) Excl
21 lab4 = Sync (VariableID finishLab []) Excl
22

23 finishLab = ("finishID" ++ show fid)
24

25 -- Gets initial events of an interrupting process
26 (_, _, _, _, _, intrptsInits, _, _) = usedNames

Figure 29: A structure of a TA for the translation of the process SKIP.

The list of the initials intrpts comes from the tuple usedNames (Line 27). Pre-
viously, we mentioned that we would explain the names in the point where we start
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using the names. In this rule (Line 27), we start using the name intrpts from the
names usedNames. We used the name intrpts to collect the initials of interrupting
processes for constructing interrupting transitions. This completes the description of
Rule 3.3. The following Example 3.6 illustrate using the rule for translating constant
process SKIP.

Example 3.6. An example for translating a constant process SKIP.

1 transTA SKIP "" "0" 0 0
2 ([], [], [], [], [], [], [], ([],[])) =
3 [

4 ]

Example 3.6 illustrates using Rule 3.6 in a translating a constant process SKIP. The
example uses the definition of the translation function transTA for the construct SKIP
and the required parameters: process SKIP, empty name, ”0” for BranchID, 0 for
StartID, 0 for finishID, and a tuple of empty lists for the usedNames. We used
an empty name to illustrate the translation of a process that has an empty name.

Details of the output TA are as follows. Initially, the output TA synchronises on
the start event startID00?. In this example, the translated process does not have a
name, so the start event is a concatenation of the keyword ”startID” with the number 0
for the parameter BranchID and another number 0 for the parameter StartID. After
that, on location s2 either the TA performs the event tock and returns to the same
location; or performs the event tick and then immediately performs the termination
event finishID0, which notifies the TA environment for a successful termination of
the output TA.

In this example, there is no interrupting process, so the function transIntrpt
produces an empty list for the interrupting transitions. Section 3.3.13 provides an
example that has interrupting transitions. For better understanding, we will discuss
the example with interrupt transitions after discussing the translation of the construct
interrupt. This completes the description of an example for translating a constant
process SKIP.
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3.3.4. Translation of Skipu (Urgent termination)

This section describes the translation of another constant process Skipu, which spec-
ifies an urgent termination that does not allow time to pass before the termination.
The section begins with presenting a rule for translating the process Skipu. And
then, follows with an example that illustrates using the rule in translating a process.

Rule 3.4. Translation of Skipu

1 transTA Skipu procName bid sid fid usedNames =
2 ([(TA idTA [] [] locs [] (Init loc1) trans)], [], [])
3 where
4 idTA = "taSkipu_" ++ bid ++ show sid
5

6 loc1 = Location "id1" "s1" EmptyLabel None
7 loc2 = Location "id2" "s2" EmptyLabel None
8 loc3 = Location "id3" "s3" EmptyLabel CommittedLoc
9 locs = [loc1, loc2, loc3]

10

11 tran1 = Transition loc1 loc2 [lab1] [] tran3 =
Transition loc2 loc3 [lab3] []

12 tran4 = Transition loc3 loc1 [lab4] [] trans = [tran1,
tran3, tran4]

13

14 lab1 = Sync (VariableID (startEvent procName bid sid)
[])

15 Ques
16

17 lab3 = Sync (VariableID "tick" []) Excl
18 lab4 = Sync (VariableID ("finishID" ++ show fid) [])

Excl

Figure 30: A structure of TA for the translation of urgent termination.

Rule 3.4 resembles the previous Rule 3.3, except that on the location s2 the output
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TA does not perform the event tock. This means that the TA terminates immediately,
as illustrated in Figure 30. The following example demonstrates using the rule in
translating a process.

Example 3.7. An example for translating a process for an immediate termination.

1 transTA Skipu "" "0" 0 0
2 ([], [], [], [], [], [], [], ([],[]))
3 = [

4 ]

Similarly, Example 3.7 resembles Example 3.6, except that the output TA termi-
nates immediately. Initially, the TA synchronises on the coordinating start action
startIDp0_2, then the TA performes the event tick and proceeds immediately
to perform a termination action finishID0, which indicates successful termination.
There is no interrupting process in this example, so the interrupting transitions are
empty. This completes the description of Example 3.7, which illustrates a translation
of the constant process Skipu for urgent termination.

3.3.5. Translation of Prefix

This section describes the translation of operator Prefix. The section begins with pre-
senting a rule for translating the operator Prefix and then follows with an example
that illustrates using the rule in translating a process.

This rule for translating the operator prefix happens to be the largest translation rule
because in translating each event, we need to check if the event is part of events that
are hidden, renamed, synchronisation, initial of external choice or initial of another
interrupting process. In each of these cases, the TA has different behaviour that has to
be translated according to the specification of the process.

First, the translation rule defines a function for checking both hidden and renamed
events and then defines eight cases for capturing the possible behaviour of an event in
a process that is part of synchronisation, external choice or interrupt. Due to the length

89



of the rule, here we provide a short version of the rule with a complete definition of
one case. Complete details of the rule are available in Appendix A.

Rule 3.5. Translation of Prefix

1 transTA (Prefix e1 p) procName bid sid fid usedNames =
2 (([(TA idTA [] [] locs1 [] (Init loc1) trans1)] ++ ta1),
3 sync1, syncMapUpdate)
4 where
5 idTA = "taPrefix" ++ bid ++ show sid
6 (syncs, syncMaps, hides, renames, exChs, intrpts,

initIntrpts, excps) = usedNames
7

8 -- Checking hiding or renaming
9 e = checkHidingAndRenaming e1 hides renames

10

11 -- High level definition of locations and transitions for
12 -- the eight possible combination of synchronisation, choice
13 -- and interrupt, 000, 001, 010, 011, 100, 101, 110, 111
14 (locs1, trans1)
15 |((not synch) && (not exChoice) && (not interupt)) = case1
16 |((not synch) && (not exChoice) && ( interupt)) = case2
17 |((not synch) && ( exChoice) && (not interupt)) = case3
18 |((not synch) && ( exChoice) && ( interupt)) = case4
19 |(( synch) && (not exChoice) && (not interupt)) = case5
20 |(( synch) && (not exChoice) && ( interupt)) = case6
21 |(( synch) && ( exChoice) && (not interupt)) = case7
22 |(( synch) && ( exChoice) && ( interupt)) = case8
23

24 case1 = ([loc1, loc2, loc5], [t12, t22, t25, t51])
25 loc1 = Location "id1" "s1" EmptyLabel None
26 loc2 = Location "id2" "s2" EmptyLabel None
27 loc5 = Location "id5" "s5" EmptyLabel CommittedLoc
28 t12 = Transition loc1 loc2 lab1 []
29 t25 = Transition loc2 loc5 lab2 []
30 t51 = Transition loc5 loc1 lab3 []
31 t22 = Transition loc2 loc2 labTock []
32

33 lab1 = [Sync (VariableID (startEvent procName bid sid) [])
Ques]

34 lab2 = [Sync (VariableID (show e) []) Excl]
35 lab3 = [Sync (VariableID ("startID" ++ bid ++ "_" ++
36 show (sid+1)) []) Excl]
37 labTock = [Sync (VariableID "tock" []) Ques]
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Figure 31: A structure of TA for the translation of Prefix.

As discussed in Section 3.1, the operator prefix is a binary operator that combines
an event with a process, syntactically in the form of event->Process. The prefix
event is translated according to one of the eight possible cases for a process that takes
part in synchronisation, external choice and interrupt. Each case defines a different
behaviour for the prefix event in the translation rule.

In Figure 31, we annotate the structure of the TA for translation of an event in
case 1. The TA has 3 locations and four transitions, as defined in Lines 27–29 and
Lines 31–37 respectively. The TA begins with transition tran1 for performing flow
action, and then on location loc2 either the TA performs the action tock to record
the progress of time and return to the same location, or perform the translated action
on transition tran2 that leads to location loc3. Then, on transition tran2, the TA
performs another flow action to activate the subsequent TA. The remaining 7 cases
follow a similar pattern. Details of the remaining 7 cases are provided in Appendix A.

Cases 1 to 4 are cases that did not involve synchronisations. Case 1 is the simple case
where a prefix event is not part of any of one of the three operators. Case 2 defines
a translation of an event that is part of the initials of an interrupting process, which
means that the event is the kind of event that interrupts the behaviour of another
process. Case 3 is for an event that is part of the initials of a process that participate
in external choice only. Case 4 is for an event that is part of a process that engages in
both external choice and interruption.

Cases 5 to 8 are cases that involve synchronisations. Case 5 defines a translation
of an event that is part of synchronisation only, which means that multiple processes
synchronise on performing the event. Case 6 is for the translation of an event that is
part of both synchronisations and interrupts. Case 7 is for the translation of an event
that is part of both synchronisation events and the initials of external choice events.
Finally, case 8 defines a translation of an event that is part of the three operators:
synchronisation, external choice and interrupt.

For each of these 8 cases, Rule 3.5 defines a separate TA for translating the behaviour
of a prefix event. Definition of all the locations and transitions of these eight possible
TAs generates a long list of definitions that makes the size of the rule very large.
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Here, we present a high-level definition of the rule for the main part, which omits the
detailed description of locations and transitions of all the possible output TA for this
translation rule. Details of the translation rule with the complete definitions for all
the locations and transitions are available in Appendix A. In Figure 31, we map the
names with the structure of TA defined in case 1 of the translation rule. Example 3.8
illustrates using the translation Rule 3.5 in translating a process.

Example 3.8. An example that demonstrates using Rule 3.5 in translating a process
e1->SKIP

1 transTA e1->SKIP "p04" "0" 0 0 usedNames =
2 [

3 ] ++ transTA(SKIP)
4 = [
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5 ]

Example 3.8 illustrates using Rule 3.5 in translating a process e1->SKIP, which is
translated into a list containing three TA. The first Ta captures the translation of the
event e1 using Rule 3.5. The second TA captures the translation of the subsequent
process SKIP using Rule 3.3. The last TA is an environment TA for the list of the
translated TA.

The detailed behaviour of the output TA is as follows. Initially, the first TA syn-
chronises on the coordination action startIDp04. Then, on location s2 either the TA
performs the event tock and remains in the same location s2 or the TA performs the
prefix event e1 that leads to performing the subsequent flow action startID01 to
activate to activate the second TA, which synchronises on the flow action startID01.
Then, either the second TA performs the action tock and remains in the same lo-
cation; or TA1 performs the action tick which leads to performing the termination
action finishID for a successful termination. These two TA describe the translation
of process e1->SKIP.

3.3.6. Translation of WAIT n

This section describes a translation of process (WAIT n), which defines a delay of
at least n units time. The section begins with presenting a rule for translating the
process (WAIT n), and then follows with an example that illustrates using the rule in
translating a process.
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Rule 3.6. Translation of WAIT n

1 transTA (WAIT 0) processName bid sid fid usedNames =
2 transTA SKIP processName bid sid fid usedNames
3

4 transTA (WAIT n) processName bid sid fid usedNames =
5 transTA (Prefix Tock Wait (n - 1)) [] bid sid fid usedNames

Rule 3.6 describes a translation of delay process WAIT(n), which is translated in
terms of two constructs: Prefix and SKIP, previously defined in Rule 3.3 and Rule
3.5, respectively. In the syntax of tock-CSP, this is expressed as:

Wait(n) = tock -> Wait (n-1).

The process WAIT(n) is translated into a list of TA, which performs the event tock
n times until the value n becomes 0 and the the TA behaves as SKIP. The base case is
translated according to Rule 3.6. While the remaining cases are translated according
to Rule 3.5. The following example illustrates using the rule in translating a process.

Example 3.9. An example for translating a delay process WAIT(2), which expresses a
delay of 2 units time. The process is translated as follows.

1 transTA (WAIT 2) "p0_3" "0" 0 0
2 ([], [], [], [], [], [], [], ([],[])) =
3 [

4 ] ++
5 transTA (WAIT 1) "" "0" 1 0
6 ([], [], [], [], [], [], [], ([],[])) = [
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7 ] ++
8 transTA (WAIT 0) "" "0" 2 0
9 ([], [], [], [], [], [], [], ([],[])) =

10 ]

Example 3.9 illustrates using Rule 3.6 in translating the process WAIT(2). Initially,
the example defines the function transTA for the construct (WAIT n) and its re-
quired arguments: process is WAIT(2), process name is ”p0 3”, branchID is ”0”,
startID is 0, finishID is 0 and usedNames is the remaining empty lists for the
collection of names that are empty at the beginning. The translation produces a list of
TA TA0, TA1 and TA2 in the example.

Details behaviour of the output TA is as follows. First, TA0 synchronises on the flow
action startIDp0_3, which connects the environment with the first TA in the list of
the translated TA. Then, on location s2, TA0 performs the time event tock at least
once and then performs the subsequent flow action startID01, which connects two
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TA0 and TA1. In this case, TA1 is similar to the previous TA0 because both of them
capture the translation of the event tock; TA1 performs the second action tock and
then performs another flow action startID02, which connects TA1 and TA2. Lastly,
TA2 synchronises on the flow action startID02 and then either TA2 performs the
action tock and remains in the same location; or TA2 performs the action tick and
then immediately proceeds to a terminating action finishID0, which indicates a suc-
cessful termination of the translated process. These three TAs describe the translation
of the process WAIT(2).

3.3.7. Translation of Waitu n (Strict delay)

This section describes the translation of process Waitu n, a strict delay of n time units.
The section begins with presenting a rule for translating the process Waitu n and then
follows with an example that illustrates using the rule in translating a process.

Rule 3.7 describes a translation of strict delay. In Figure 32, we annotate the structure
of the output TA with the names used in the translation rule. The structure of the TA
has 2 locations and three transitions as defined in Lines 6–8 and Lines 10–14. Then,
Line 16 extracts the used names for interrupt. And Lines 18–20 defines the labels of
the transitions. Lines 22–27 defines the guards for controlling the deadlines. Finally,
Lines 30–31 reset the deadline in case of a translating process that has recursive calls.

The behaviour of the output TA begins on transition tran1, where the TA syn-
chronises on a flow action (defined in Line 18). Then, on Location loc2 (defined
in Line 6), either TA follows transition tran2 or tran3. On transition tran2 (de-
fine in Line 10), the TA checks the delay guard dlguard (defined in Line 22), if it is
true the TA performs the time event tock and update the delay timer with the ex-
pression dlupdate (Lines 23–24). Alternatively, if the guard dlguard is false, the
second guard dlguard2 becomes true (Line 27), which enables the TA to perform the
next flow action on transition tran3, as well as resetting the timer in the expression
t_reset (Lines 30–31). This transition completes the behaviour of the translated TA.
The following Example 3.10 illustrates using the rule in translating a process.
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Rule 3.7. Translation of Waitu n

1 transTA (Waitu n) procName bid sid fid usedNames =
2 ([(TA idTA [] [] locs [] (Init loc1) trans)], [], [])
3

4 where
5 idTA = "taWait_u" ++ bid ++ show sid
6

7 loc1 = Location "id1" "s1" EmptyLabel None
8 loc2 = Location "id2" "s2" EmptyLabel None
9 locs = [loc1, loc2]

10

11 tran1 = Transition loc1 loc2 ([lab1] ++ t_reset) []
12 tran2 = Transition loc2 loc2 ([lab2] ++ dlguard
13 ++ dlupdate) []
14 tran3 = Transition loc2 loc1 ([lab4] ++ dlguard2
15 ++ t_reset) []
16 trans = [tran1, tran2, tran3] ++
17 (transIntrpt intrpts loc1 loc2)
18

19 (_, _, _, _, _, intrpts, _, _) = usedNames
20

21 lab1 = Sync (VariableID (startEvent procName bid sid) [])
Ques

22 lab2 = Sync (VariableID "tock" []) Ques
23 lab4 = Sync (VariableID ("finishID" ++ show fid) []) Excl
24

25 dlguard = [(Guard (BinaryExp (ExpID "tdeadline")
26 Lth (Val n)))]
27 dlupdate = [(Update
28 [(AssgExp (ExpID "tdeadline")
29 AddAssg (Val 1))] )]
30

31 -- A guard for exiting a strict delay
32 dlguard2 = [(Guard (BinaryExp (ExpID "tdeadline")
33 Equal (Val n)))]
34

35 -- Reset the deadline time
36 t_reset = [(Update [(AssgExp (ExpID "tdeadline"
37 ASSIGNMENT (Val 0)) ] ) ]
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Figure 32: A structure of a TA for a translation of strict delay.

Example 3.10. An example for translating a process Waitu(2) a strict delay of 2 time
units is illustrated in this example.

1 transTA (Waitu 2) "pa_2" "0" 0 0
2 ([], [], [], [], [], [], [], ([],[]))
3 ; [

]

Example 3.10 illustrates using Rule 3.7 in translating a process Waitu 2. The exam-
ple translates the process Waitu 2 into a list of TA that contains two TAs. In the begin-
ning, the example applies the function transTA on the required parameters: process
is Waitu 2, process name is pa_2, branchID is ”0”, startID is 0, finishID is 0,
usedNames is a tuple of empty elements, each rule begins with empty used names.
As the translation evolves, we build a collection of the names used in the translation
of a process.
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In the resulting output TA, the first TA synchronises on the coordinating flow action
startIDp0_3 and then performs the action tock twice, which disables the first guard
(tdeadline<2) and enables the second guard (tdeadline==2). Finally, the TA
performs the termination action finishID0. This completes the description of an
example for translating the process Waitu 2 into TA.

3.3.8. Translation of Internal Choice

This section describes a translation of operator for Internal choice. The section begins
with presenting a rule for translating the operator internal choice and then follows
with an example that illustrates using the rule in translating a process.

Rule 3.8. Translation of Internal Choice

1 transTA (IntChoice p1 p2) procName bid sid fid usedNames =
2 ([(TA idTA [] [] locs [] (Init loc1) trans )] ++ ta1 ++ ta2,
3 (sync1 ++ sync2), (syncMap1 ++ syncMap2) )
4 where
5 idTA = "taIntCho" ++ bid ++ show sid
6 loc1 = Location "id1" "s1" EmptyLabel None
7 loc2 = Location "id2" "s2" EmptyLabel CommittedLoc
8 loc3 = Location "id3" "s3" EmptyLabel CommittedLoc
9 loc4 = Location "id4" "s4" EmptyLabel CommittedLoc

10 locs = [loc1, loc2, loc3, loc4]
11

12 tran1 = Transition loc1 loc2 [lab1] []
13 tran2 = Transition loc2 loc3 [] []
14 tran3 = Transition loc2 loc4 [] []
15 tran4 = Transition loc3 loc1 [lab4] []
16 tran5 = Transition loc4 loc1 [lab5] []
17 trans = [tran1, tran2, tran3, tran4, tran5]
18

19 lab1 = Sync (VariableID (startEvent procName bid sid) [])
20 Ques
21 lab4 = Sync (VariableID ("startID" ++ (bid ++ "0") ++

show (sid+1)) [])
22 Excl
23 lab5 = Sync (VariableID ("startID" ++ (bid ++ "1") ++

show (sid+2)) []) Excl
24

25 -- translation of RHS and LHS processes
26 (ta1, sync1, syncMap1) =
27 transTA p1 [] (bid ++ "0") (sid+1) fid usedNames
28 (ta2, sync2, syncMap2) =
29 transTA p2 [] (bid ++ "1") (sid+2) fid usedNames
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Figure 33: A structure of a TA for translating Internal choice.

Internal choice is a binary operator that combines two processes P1 and P2. Rule 3.8
translates the operator of internal choice into a TA that coordinates a list of translated
TA Tp1 and Tp2 for the translation of the two processes P1 and P2 respectively, that
are composed with internal choice operator.

In Figure 33, we annotate the structure of the output TA with the names used in
the translation rule. The output TA begins on transition tran1 for performing a flow
action that connects the TA with the network of the TA. Then, the output TA follows
one of the two silent transitions that lead to transition tran4 and tran5 respectively.
On transition tran4 the TA activates the list of TA Tp1 and on transition tran5 the
TA activates the list of TA Tp2.

Details of Rule 3.8 are as follows. Line 1 defines the function transTA for the con-
struct IntChoice and the 5 required parameters for this rule. Line 2 describes the
output tuple that contains three elements, a list of translated TA, a list of synchronisa-
tion actions and a list of identifiers for identifying each synchronisation action.

The output TA has four locations and five transitions, as defined Lines 7–11 and
Lines 13–18 respectively. Lines 20–26 define the label of the transitions. Lines 28–31
defined the subsequent translation of the processes P1 and P2.

The behaviour of the output TA begins with a flow action (defined in Line 20). Then,
on location loc2, the TA follows one of the two silent transitions, that is either tran2
or tran3. Transition tran2 leads to transition tran4, where the TA performs another
flow action (Line 22) that activates Tp1. While transition tran3 leads to transition
tran5, where the TA performs a flow action (define Line 25) that activates Tp2. The
following Example 3.11 illustrates using this Rule 3.8 in translating a process.

Example 3.11. An example for translating a process that composes two processes with
internal choice.

1 transTA((e1->SKIP)|-|(e2->SKIP)) =
2 [
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3 ] ++ ta1 ++ ta2
4 where
5 ta1 = transTA(e1->SKIP)
6 = [

7

8 ] ++ transTA(SKIP)
9 = [

11 ]
12

13 ta2 = transTA(e2->SKIP)
14 = [
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15

16 ] ++ = transTA(SKIP)
17 = [

]

Example 3.11 translates the process ((e1->SKIP)|-|(e2->SKIP)) into a list con-
taining 5 TA. The first TA is a translation of the operator internal choice. Second and
third TA are translations of the LHS process (e1->SKIP). Where the second TA is
a translation of the prefix event e1 using Rule 3.5. And the third TA is a translation
of the subsequent process SKIP using Rule 3.3. Fourth and fifth TA are translations
of the RHS process (e2->SKIP). Fourth TA is a translation of the prefix event e2
using Rule 3.5. While, the fifth TA is a translation of the subsequent process SKIP
using Rule 3.3. Finally, the last TA is an environment TA for the list of the translated
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TA. This completes the list of the output TA that capture the behaviour of the process
((e1->SKIP)|-|(e2->SKIP)).

3.3.9. Translation of External Choice

This section describes the translation of the construct External Choice. The section
begins with presenting a rule for translating the operator for external choice and then
follows with an example that illustrates using the rule in translating a process.

Rule 3.9 defines a translation of external choice. The operator of external choice ([])
is another binary operator that combines two processes P1 and P2. Rule 3.9 translates
the operator external choice into a TA that coordinates a lists of translated TA: Tp1
and Tp2 for the translation of the two processes P1 and P2, respectively.

In Figure 34, we annotate the structure of the output TA with the names used in the
translation rule. The output TA has three transitions, and three locations defined in
Lines 7–10 and 12–15, respectively. Then, Lines 17–21 define the corresponding labels
of the transitions. Lines 27 extracts the initials of the external choice and then updates
the initials in Lines 31–36. Finally, Lines 39–42 define the subsequent translation of
processes P1 and P2, which produces list of TA: Tp1 and Tp2, respectively.

The behaviour of the output TA begins on transition tran1 with performing a flow
action (defined in Line 12). Then, on both transition tran2 (Line 13) and tran3
(Line 14) the TA performs two additional flow actions that activate two list of TA: Tp1
and Tp2 define in Lines 39–34 and 41–42 respectively. Thus, the output TA activates
both Tp1 and Tp2 simultaneously, which makes the behaviour of both Tp1 and Tp2
available to the environment, such that choosing one of the translated list of TA blocks
the other alternative list of TA. That is, choosing Tp1 blocks Tp2, likewise choosing
Tp2 blocks Tp1.

An essential part of translating external choice is translating both processes such
that choosing one process blocks the behaviour of the other process. We achieved
this, with additional transitions in the first TA of each of the translated processes for
the external choice, as discussed in Section 3.2. In the parameters of the translation
function transTA, the parameter usedNames contains the initials of the processes for
external choices, which is updated in Lines 31–36, and then use in translating each
process, specifically in constructing the transition of blocking external choice that has
co-actions (initials of the other processes) for blocking the process that is not chosen by
the environment. The following Example 3.12 illustrates using this rule in translating
a process that composes two processes with the operator of external choice.
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Rule 3.9. Translation of External Choice

1 transTA (ExtChoice p1 p2) procName bid sid fid usedNames =
2 ([(TA idTA [] [] locs [] (Init loc1) trans )] ++ ta1 ++ ta2,
3 (sync1 ++ sync2), (syncMap1 ++ syncMap2) )
4 where
5 idTA = "taIntCho" ++ bid ++ show sid
6

7 loc1 = Location "id1" "s1" EmptyLabel None
8 loc2 = Location "id2" "s2" EmptyLabel CommittedLoc
9 loc3 = Location "id3" "s3" EmptyLabel CommittedLoc

10 locs = [loc1, loc2, loc3]
11

12 tran1 = Transition loc1 loc2 [lab1]
13 tran2 = Transition loc2 loc3 [lab2]
14 tran3 = Transition loc3 loc1 [lab3]
15 trans = [tran1, tran2, tran3]
16

17 lab1 = Sync (VariableID (startEvent procName bid sid) [])
Ques

18 lab2 = Sync (VariableID
19 ("startID" ++ (bid ++ "0") ++ show (sid+1)

) [])
20 Excl
21 lab3 = Sync (VariableID
22 ("startID" ++ (bid ++ "1") ++ show (sid+2)

) [])
23 Excl
24

25 -- Extract a list of names for external choice from the
26 -- parameter usedNames.
27 (syncEv, syncPoint, hide, rename, exChs, intrr, iniIntrr,
28 excps) = usedNames
29

30 -- Updates the used names for subsequent translation
31 exChs' = exChs ++ (initials p2)
32 exChs'' = exChs ++ (initials p1)
33 usedNames' = (syncEv, syncPoint, hide, rename, exChs',

intrr, iniIntrr, excps)
34 usedNames'' = (syncEv, syncPoint, hide, rename, exChs'',

intrr, iniIntrr, excps)
35

36 -- translation of RHS and LHS processes p1 and p2
37 (ta1, sync1, syncMap1) =
38 transTA p1 [] (bid ++ "0") (sid+1) fid usedNames'
39 (ta2, sync2, syncMap2) =
40 transTA p2 [] (bid ++ "1") (sid+2) fid usedNames''
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Figure 34: A structure of the control TA for the translation of external choice.

Example 3.12. An example of translating a process that composes two processes with
the operator of external choice.

41 transTA((e1->SKIP)[](e2->SKIP))
42 = [

43 ] ++ ta1 ++ ta2
44 where
45 ta1 = transTA(e1->SKIP)
46 = [

47 ] ++ transTA(SKIP)
48 = [
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49 ]
50 ta2 = transTA(e2->SKIP)
51 = [

52 ] ++ transTA(SKIP)
53 = [
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]

Example 3.12 illustrates using Rule 3.9 in translating a process
((e1->SKIP)[](e2->SKIP)) into a list of TA that contains 5 TA. The first TA is a
translation of the operator external choice. The TA has three transitions, each labelled
with a flow action, startIDp0_6 startID00_1 and startId01_2. Initially, the be-
haviour of the TA synchronises on the first flow action startIDp0_6 and then imme-
diately performs the two subsequent flow actions startID00_1 and startId01_2
that activates the list of TA for the translations of the processes: (e1->SKIP) and
(e2->SKIP), respectively.

Second and third TA are translations of the LHS process e1->SKIP. Second TA
is a translation the event e1, which synchronises on the flow action startID00_1
and moves to location s2 where the TA has three possible transitions: e1_exch?
e2_exch? and tock?. On the transition tock?, the TA performs the action tock for
the progress of time. On transition e2_exch? the TA performs a blocking event when
the environment chooses the other action e2. Lastly, on transition e1_exch! the TA
performs the action e1_exch! when the environment chooses the action e1 for the
behaviour Tp1. First, the action e1_exch! synchronise with its co-action e1_exch?
to block the alternative behaviour of Tp2, and then immediately proceeds with per-
forming the chosen action e1 that leads to the subsequent flow action startID00_2,
which activates the subsequent TA third TA. The third TA is a translation of the sub-
sequent process SKIP for the LHS process e1->SKIP translated with Rule 3.3.

Fourth and Fifth TA are translations of the RHS process (e2->SKIP). Fourth TA
is a translation of the event e2 using Rule 3.5, similar to the previous translation of
the first TA; and the fifth TA is a translation of the remaining process SKIP using
Rule 3.3. Finally, the last TA is an environment TA for the list of the translated TA,
as defined in Section 3.2. This completes the description of translating the process
(e1->SKIP)[](e2->SKIP) into a list of TA.

3.3.10. Translation of Sequential Composition

This section describes a translation of the operator sequential composition. The section
begins with presenting a rule for translating the operator sequential composition; and
then follows with an example that illustrates using the rule in translating a process.
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Rule 3.10. Translation of Sequential Composition

1 transTA (Seq p1 p2) procName bid sid fid usedNames =
2 ([(TA idTA [] [] locs [] (Init loc1) trans )] ++ ta1 ++ ta2,
3 (sync1 ++ sync2), (syncMap1 ++ syncMap2) )
4 where
5 idTA = "taSequen" ++ bid ++ show sid
6

7 loc1 = Location "id1" "s1" EmptyLabel None
8 loc2 = Location "id2" "s2" EmptyLabel CommittedLoc
9 loc3 = Location "id3" "s3" EmptyLabel None

10 loc4 = Location "id4" "s4" EmptyLabel CommittedLoc
11 locs = [loc1, loc2, loc3, loc4]
12

13 tran1 = Transition loc1 loc2 [lab1] []
14 tran2 = Transition loc2 loc3 [lab2] []
15 tran3 = Transition loc3 loc4 [lab3] []
16 tran4 = Transition loc4 loc1 [lab4] []
17 trans = [tran1, tran2, tran3, tran4]
18

19 lab1 = Sync (VariableID
20 (startEvent procName bid sid) [])
21 Ques
22 lab2 = Sync (VariableID
23 ("startID" ++ (bid ++ "0") ++ show (sid

+1)) [])
24 Excl
25 lab3 = Sync (VariableID ("finishID" ++ show (fid+1)) [])
26 Ques
27 lab4 = Sync (VariableID
28 ("startID" ++ (bid ++ "1") ++ show (sid

+2)) [])
29 Excl
30

31 -- translation of the LHS process
32 (ta1, sync1, syncMap1) =
33 transTA p1 [] (bid ++ "0") (sid+1) (fid+1) usedNames
34

35 -- translation of the RHS process
36 (ta2, sync2, syncMap2) =
37 transTA p2 [] (bid ++ "1") (sid+2) fid usedNames

This operator for sequential composition is another binary operator that composes
two processes P1 and P2 sequentially. Like the previous translation rules, this rule
translates the operator sequential composition into a control TA, which coordinates
the list of TA Tp1 and Tp2 for the translation of the two processes P1 and P2.
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Figure 35: A structure of the control TA for the translation of sequential composition.

In Figure 35, we annotate the structure of the output TA with the names used in the
translation Rule 3.10. The TA has four locations and four transitions that are defined
in Lines 7–11 and Lines 13–17, respectively. In Rule 3.10, the behaviour of the output
TA begins with synchronising on the first flow action (Line 13) and then immediately
performs another two flow action on transition tran2 (Line 14) to activate the trans-
lation of the LHS process Tp1. After that, the control TA waits on location loc3 until
the TA synchronises on a terminating action on transition tran3 (Line 15), which in-
dicates the termination of the first process Tp1 and then immediately activates Tp2
which proceeds up to its termination point. The following Example 3.13 illustrates
using this rule in translating a process.

Example 3.13. An example for translating a process that composes two processes with
the operator for sequential composition.

1 transTA((e2->SKIP);(e1->SKIP)) = [

2 ] ++ ta1 ++ ta2
3 where
4 ta1 = transTA(e2->SKIP)
5 = [
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6 ] ++ transTA(SKIP)
7 = [

8 ]
9 ta2 = transTA(e1->SKIP)

10 = [

11 ] ++ = transTA(SKIP)
12 = [
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13 ]

Example 3.13 illustrates using Rule 3.10 in translating the process
((e2->SKIP);(e1->SKIP)) into a list of TA that contains 5 TA. The first TA is a
translation of the operator sequential composition using Rule 3.10. The second and
third TA are translations of the LHS process (e2-> SKIP), while the fourth and
fifth TA are translations of the RHS process (e1-> SKIP). Finally, the last TA is an
environment TA for the list of the translated TA.

Details behaviour of the list of the translated TA is as follows. The first TA syn-
chronises on the flow action startIDp0_7? and then immediately performs another
flow action startID00_1 to activate the second TA, and then waits on location s3
until the TA synchronises on the termination action finishID1?; which indicates
the termination of the LHS process (e2->SKIP), and then immediately the TA per-
forms the subsequent flow action startID01_2 that activates the fourth TA for the
translation of the RHS process. In the like manner, the fourth TA synchronises on
the flow action and then performs the action e1, which follows with the subsequent
flow action startID01_3 that activates the fifth TA, which synchronises on the flow
action and then performs the action tick, and then follows with a termination action
finishID0, which synchronises with the co-action in the environment TA to indi-
cate successful termination of the whole process. This completes the description of
translating the process ((e2->SKIP);(e1->SKIP)) into a list of TA.

3.3.11. Translation of Generalised Parallel

This section describes a translation of the operator generalised parallel. The section
begins with a rule for translating the operator generalised parallel; and then follows
with an example that illustrates using the rule in translating a process.

111



Rule 3.11. Translation of Generalised Parallel

1 transTA (GenPar p1 p2 es) procName bid sid fid usedNames =
2 ([(TA idTA [] [] locs [] (Init loc1) trans )] ++ ta1 ++ ta2,
3 (es ++ sync1 ++ sync2), (syncMap1 ++ syncMap2) )
4 where
5 idTA = "taGenPar" ++ bid ++ show sid
6 loc1 = Location "id1" "s1" EmptyLabel None
7 loc2 = Location "id2" "s2" EmptyLabel CommittedLoc
8 loc3 = Location "id3" "s3" EmptyLabel CommittedLoc
9 loc4 = Location "id4" "s4" EmptyLabel CommittedLoc

10 loc5 = Location "id5" "s5" EmptyLabel None
11 loc6 = Location "id6" "s6" EmptyLabel None
12 loc7 = Location "id7" "s7" EmptyLabel None
13 loc8 = Location "id8" "s8" EmptyLabel CommittedLoc
14 locs = [loc1, loc2, loc3, loc4, loc5, loc6, loc7, loc8]
15 tran1 = Transition loc1 loc2 [lab1] []
16 tran2 = Transition loc2 loc3 [lab3] []
17 tran3 = Transition loc3 loc5 [lab2] []
18 tran4 = Transition loc2 loc4 [lab2] []
19 tran5 = Transition loc4 loc5 [lab3] []
20 tran6 = Transition loc5 loc6 [lab4] []
21 tran7 = Transition loc5 loc7 [lab5] []
22 tran8 = Transition loc6 loc8 [lab5] []
23 tran9 = Transition loc7 loc8 [lab4] []
24 tran10 = Transition loc8 loc1 [lab6] []
25 trans = [tran1, tran2, tran3, tran4, tran5,
26 tran6, tran7, tran8, tran9, tran10]
27 lab1 = Sync (VariableID (startEvent procName bid sid) []) Ques
28 lab2 = Sync (VariableID ("startID" ++ (bid ++ "0") ++
29 show (sid+1)) []) Excl
30 lab3 = Sync (VariableID ("startID" ++ (bid ++ "1") ++
31 show (sid+2)) []) Excl
32 lab4 = Sync (VariableID ("finishID" ++ show (fid+1 )) []) Ques
33 lab5 = Sync (VariableID ("finishID" ++ show (fid+2 )) []) Ques
34 lab6 = Sync (VariableID ("finishID" ++ show fid ) []) Excl
35

36 (syncEv, syncPoint, hide, rename, exChs, intrr, iniIntrr,
excps) = usedNames

37 syncEv' = es ++ syncEv -- Update synch name
38 usedNames' = (syncEv', syncPoint, hide, rename, exChs, intrr,

iniIntrr, excps)
39 (ta1, sync1, syncMap1) =
40 transTA p1 [] (bid ++ "0") (sid+1) (fid+1) usedNames'
41 (ta2, sync2, syncMap2) =
42 transTA p2 [] (bid ++ "1") (sid+2) (fid+2) usedNames'
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The operator generalised parallel is another binary operator, which is composed of
two processes P1 and P2 that run in parallel and synchronise on a specified set of
synchronisation events. The construct GenPar is translated into two TA: a control
TA and a synchronisation TA. The synchronisation TA (Definition 3.10) coordinates
the synchronisation of the translated processes Tp1 and Tp2. While the control TA
coordinates the behaviour of the translated processes Tp1 and Tp2.

Figure 36: A structure of TA for the translation of operator Generalised Parallel

In Figure 36, we annotate the structure of the control TA with the names used in the
translation rule. The structure of the control TA has 8 locations and ten transitions, as
defined in Lines 6–14 and Lines 15–26 respectively. Lines 27–34 define the labels of the
transitions. Lines 36–37 extracts the used names from the parameter usedNames for
another new name that contains an updated list of synchronisation names syncEv in
Lines 38–40. Then, Lines 41–44 is a recursive call for the translation of the processes
P1 and P2, which produces the list of TA, Tp1 and Tp2.

The behaviour of the control TA begins on tran1 for synchronising on a flow action
and then immediately performs another two flow actions to activate both Tp1 and Tp2
simultaneously, that is on tran2 and tran3 or tran3 and tran4 in both two possible
orders depending on the environment, that is either Tp1 simultaneously with Tp2 or
Tp2 simultaneously with Tp1. Then, the control TA waits on location s4 until either
Tp1 or Tp2 terminates and then waits for the other TA to terminate, depending on
the first process that terminates, either Tp1 and then Tp2 or Tp2 and then Tp1. After
that, the control TA immediately performs another termination action, which records
the termination of the whole process.

The translated processes synchronise on a multi-synchronisation action, which syn-
chronises more than two translated TA: at least two translated processes and the En-
vironment TA. As highlighted in the translation strategy (Section 3.2), in handling
multi-synchronisation, we adopt a centralised approach [114, 115] for using a sepa-
rate controller in handling multi-synchronisation. In this work, we implement the
approach in a functional style with Haskell. In Definition 3.10, the function syncTA
coordinates the synchronisation of multi-synchronisation actions.
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In translating the multi-synchronisation, each translated process that participates in
multi-synchronisation has a client TA, which synchronises on a multi-synchronisation
action. The client TA sends a synchronisation request to the synchronisation controller
TA syncTA and then waits for a synchronisation response.

When the synchronisation controller receives all the synchronisation requests, which
indicates that all the synchronisation clients are ready for the synchronisation, then a
guard for performing the multi-synchronisation action is enabled, and syncTA com-
municates the multi-synchronisation action to the environment and then also imme-
diately broadcast the multi-synchronisation action that responds to all the awaiting
client TA.

On receiving the broadcast multi-synchronisation response, all the awaiting client
TA synchronise and proceed. An example of using this rule in translating a process is
illustrated in the following Example 3.14, which demonstrates using the rule in trans-
lating concurrent processes that are composed with the operator generalised parallel
GenPar in the specification of the process.

In Definition 3.10, we define a function for the synchronisation TA syncTA which
takes two parameters, a list of synchronisation actions and a list of pairs that assign
an identifier to each synchronisation action. The output of the function is a TA with
an identifier ”syncTA” (Line 3). The output TA has one starting location and one
location for each synchronisation action as defined in Definition 3.10 (Lines 4–7). Line
8 defines a function for generating the transitions of the TA. Each synchronisation
action has two transitions one from the initial location and the second transition back
to the initial location. The first transition has a guard that is only enabled when all
the synchronisation TA becomes ready for the synchronisation. This is illustrated in
Example 3.14.
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Definition 3.10. Synchronisation TA

1 syncTA :: [Event] -> [SyncPoint] -> TA
2 syncTA events syncMaps =
3 TA "SyncTA" [] [] (loc:locs) [] (Init loc) trans
4 where
5 loc = Location "SyncPoint" "SyncPoint" EmptyLabel None
6 locs = [(Location ("s"++ show e) ("s"++ show e) EmptyLabel
7 CommittedLoc) | e <- uniq events]
8 trans = transGen loc (uniq events) syncMaps events
9

10 -- Generates transitions for the sync controller
11 transGen :: Location->[Event]->[SyncPoint]->[Event]->[

Transition]
12 transGen l0 [] _ _ = []
13 transGen l0 (e:es) syncMaps syncs =
14 [(Transition
15 l0 l
16 (Sync (VariableID (show e) []) Excl),
17 (Guard
18 (ExpID
19 ((addExpr
20 [("g_" ++ tag)|(e1, tag) <- syncMaps, e == e1

])
21 ++ " == " ++
22 show ((length [e1 | e1 <- syncs, e == e1 ]) +

1) ) ) ),
23 (Update ([ AssgExp (ExpID ("g_" ++ tag))
24 ASSIGNMENT (Val 0) |(e1, tag) <- syncMaps,
25 e == e1] )) ] [])]
26 ++ [Transition
27 l l0
28 [(Sync (VariableID ((show e) ++ "___sync") []) Excl

)] [] ]
29 ++ (transGen l0 es syncMaps syncs)
30 where
31 l = (Location ("s"++ show e) ("s"++ show e)
32 EmptyLabel CommittedLoc)
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Example 3.14. An example that illustrates using both Rule 3.11 and the definition of
synchronisation controller (Definition 3.10) in translating a process.

1 transTA((e1->SKIP)[|{e1}|](e1->SKIP)) = [

2 ] ++ ta1 ++ ta2
3

4 where
5 ta1 = transTA(e1->SKIP)
6 = [

7 ] ++ transTA(SKIP)
8 = [
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9 ]
10

11 ta2 = transTA(e2->SKIP)
12 = [

13 ] ++ transTA(SKIP)
14 = [
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]

Example 3.14 illustrates using Rule 3.11 in translating the process
(e1->SKIP)[|{e1}|](e1->SKIP) into a list of TAs that contains seven TAs. The
first TA captures the translation of the operator generalised parallel. The second and
third TA captures the translation of the LHS process. The fourth and fifth TA captures
the translation of the RHS process. The sixth TA is a synchronisation TA that coordi-
nates the synchronisation of the action e1. Finally, the last TA is an environment TA
for the list of the translated TA for the process (e1->SKIP)[|{e1}|](e1->SKIP).

The behaviour of the translated TA is as follows. The first TA is the control TA
that initially synchronises on the first flow action startIDp0_9 and then immedi-
ately performs two flow actions in two possible orders, either startID00_1 and then
startID01_2 or startID01_2 and then startID00_1, depending on the environ-
ment. Then the control TA waits on location s4 until the control TA synchronises on
the termination action finishID2 and then synchronise on the second termination
action finishID1, for the LHS and RHS processes respectively. Alternatively, the
control TA synchronises first on finishID1 and then synchronises on the termina-
tion action finishID2, depending on the process that terminates first, either the LHS
process or the RHS process.

The second TA synchronises on the flow action startID00_1 and then updates
its guard to indicate its readiness to synchronise on the multi-synchronisation action
e1. Then, on receiving a response for the synchronisation, the TA synchronises on the
broadcast multi-synchronisation action e1___sync?, which enables the TA to proceed
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with performing another flow action that activated the third TA, which captures the
translation of the subsequent process SKIP as described in Rule 3.3. Similarly, the
fourth and fifth TA captures the translation of the RHS process (e1->SKIP).

3.3.12. Translation of Interleaving

This section describes the translation of the operator interleaving. The section begins
with presenting a rule for translating the operator interleaving and then follows with
an example that illustrates using the rule in translating a process.

Rule 3.12. Translation of Interleaving

1 transTA (Interleave p1 p2) procName bid sid fid usedNames
2 = transTA (GenPar p1 p2 []) procName bid sid fid usedNames
3 -- As generalised parallel with empty synch events

The operator interleaving is translated in terms of the constructor for generalised
parallel with empty synchronisation events. In tock-CSP, this is expressed as
(P1 ||| P2) = (P1 |[{}]| P2). Line 1 defines the function transTA for the
construct Interleave and the required parameters. While line 2 defines the output
TA in terms of the construct for the generalised parallel GenPar with empty syn-
chronisation events. The following example illustrates using the rule in translating a
process.

Example 3.15. An example of translating a tock-CSP process that composes processes
with the operator interleaving using Rule 3.12.

1 transTA((e1->SKIP)|||(e1->SKIP)) = [

2 ] ++ ta1 ++ ta2
3 where

119



4 ta1 = transTA(e1->SKIP)
5 = [

6 ] ++ transTA(SKIP)
7 = [

8 ]
9 ta2 = transTA(e1->SKIP)

10 = [

11 ] ++ transTA(SKIP)
12 = [
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]

Example 3.15 illustrates using Rule 3.12 in translating a process into a list containing
6 TA. The first TA is a translation of the operator Interleaving. Second and third TA
are translations of the LHS process (e1->SKIP). Fourth and fifth TA are translations
of the RHS process e1->SKIP). The last TA is an environment TA for the list of the
translated TA.

The behaviour of the TA is as follows. The first TA synchronises on the coordi-
nating start event startIDp0_8 and then immediately performs two flow actions
starID00_1 and startID01_2 simultaneously that activate the translation of the
LHS and RHS processes respectively. And then the first TA waits on location s3 until
it synchronises on a termination action, either finishID1 or finishID2, and then
waits for the second termination action finishID1 or finishID2 depending on the
first terminating process. The action finishID1 is termination action of the translated
LHS process (e1->SKIP), and finishID1 is the termination action of the translated
RHS process (e1->SKIP). Then, the first TA performs another termination action to
record the termination of the whole process.

The second TA is a translation of the event e1 using Rule 3.5. While, the third TA is a
translation of the subsequent process SKIP using Rule 3.3. Also, TA3 is a translation of
the event e2 using Rule 3.5. While TA4 is a translation of the subsequent process SKIP
using Rule 3.3. This completes the description the translated TA in Example 3.15 that
demonstrates using Rule 3.12 in translating the process (e1->SKIP)|||(e1->SKIP)
into a list of TAs.
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3.3.13. Translation of Interrupt

This section describes the translation of the operator Interrupt. The section begins
with presenting a rule for translating the operator Interrupt and then follows with
an example that illustrates using the rule in translating a process.

Rule 3.13. Translation of Interrupt

1 transTA (Interrupt p1 p2 ) procName bid sid fid usedNames =
2 ([(TA idTA [] [] locs [] (Init loc1) trans )] ++ ta1 ++ ta2,
3 (sync1 ++ sync2), (syncMap1 ++ syncMap2) )
4 where
5 idTA = "taIntrpt" ++ bid ++ show sid
6

7 loc1 = Location "id1" "s1" EmptyLabel None
8 loc2 = Location "id2" "s2" EmptyLabel CommittedLoc
9 loc3 = Location "id3" "s3" EmptyLabel CommittedLoc

10 locs = [loc1, loc2, loc3]
11

12 tran1 = Transition loc1 loc2 [lab1] []
13 tran2 = Transition loc2 loc3 [lab2] []
14 tran3 = Transition loc3 loc1 [lab3] []
15 trans = [tran1, tran2, tran3]
16

17 lab1 = Sync (VariableID (startEvent procName bid sid)
[]) Ques

18 lab2 = Sync (VariableID ("startID" ++ (bid ++ "0") ++
19 show (sid+1)) []) Excl
20 lab3 = Sync (VariableID ("startID" ++ (bid ++ "1") ++
21 show (sid+2)) []) Excl
22

23 (syncEv, syncPoint, hide, rename, exChs, intrr, iniIntrr,
24 excps) = usedNames
25

26 -- Updates the parameters for interrupts
27 intrr' = intrr ++ (initials p2)
28 iniIntrr' = iniIntrr ++ (initials p2)
29 usedNames' = (syncEv, syncPoint, hide, rename, exChs,
30 intrr', iniIntrr, excps)
31 usedNames'' = (syncEv, syncPoint, hide, rename, exChs,
32 intrr, iniIntrr', excps)
33

34 (ta1, sync1, syncMap1) =
35 transTA p1 [] (bid ++ "0") (sid+1) fid usedNames'
36 (ta2, sync2, syncMap2) =
37 transTA p2 [] (bid ++ "1") (sid+2) fid usedNames''
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Figure 37: A TA for the structure of the translation of the operator interrupt.

The operator Interrupt is also another binary operator that comprises two processes
P1 and P2 in such a way that the process P1 begins its behaviour that can be inter-
rupted by process P2, whenever process P2 performs an event. The operator Interrupt
is translated into a TA that coordinates the list of TA for the translated processes P1
and P2 into Tp1 and Tp2, respectively.

In Figure 37, we annotate the structure of the translated TA with the names used in
the translation rule. The translated TA has 3 locations and three transitions defined
in Lines 7–10 and Lines 12–15. Lines 17–22 define labels for the transitions. Line
24 extracts the list of used names for interrupt. Lines 28–29 provides a new name
for the updated list of the initials of the interrupting process p2. Also, Lines 31–34
provides a new name for the updated tuples of the used names usedNames. Lines
36–40 define the subsequent translation of the LHS and RHS processes, that is Tp1
and Tp2, respectively.

The behaviour of the control TA begins on transition tran1 for performing a flow
action. And then immediately activates the translation of the processes Tp1 and Tp2.
For the translation of the interrupted process Tp1, each TA in the list Tp1 has an ad-
ditional interrupting transition in each stable location, as described in the Translation
strategy. The additional transition provides a co-action of the initials of the inter-
rupting process Tp2, which enables Tp2 to interrupt Tp1 at any stable location. The
following example 3.16 demonstrates using the rule in translating a process.
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Example 3.16. An example of using Rule 3.13 in translating the process
((e1-> SKIP)/\(e2-> SKIP)) into a list of TA as follows.

1 transTA((e1-> SKIP)/\(e2-> SKIP)) = [

2 ] ++ ta1 ++ ta2
3

4 where
5 ta1 = transTA(e1->SKIP)
6 = [

7 ] ++ transTA(SKIP)
8 = [
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9 ]
10

11 ta2 = transTA(e2->SKIP)
12 = [

13 ] = transTA(SKIP)
14 = [

]

Example 3.16 demonstrates using Rule 3.13 a translation of the process into a list
containing 5 TA. The first TA is a translation of the operator Interrupt. Second and
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third TA are translations of the LHS process (e1->SKIP). The second TA is a transla-
tion of the event e1 using Rule 3.5. And the third TA2 is a translation of the subsequent
process SKIP using Rule 3.6. While the fourth and fifth TAs are the translation of the
RHS process (e2->SKIP). Fourth TA is a translation of the event e2. Fifth TA is a
translation of the subsequent process SKIP. The last TA is an environment TA for the
list of translated TA.

The behaviour of the translated TA begins with the first TA that synchronises on
the flow action startIDp8_1, and then immediately performs two subsequent flow
actions startID00_1 and startID01_2 that activate the second and third TA. The
second TA synchronises on the action startID00_1, then on location s2, the second
TA can be interrupted with co-action of e2_intrpt, or perform the action tock to
record the progress of time or proceeds to perform the action e1! and then immedi-
ately performs another flow action startID00_2 to activate the third TA.

The third TA synchronises on the flow action startID00_2, and then on location
s2, also, the third TA can be interrupted with the co-action e2_intrpt, or perform
the action tock to record the progress of time or progress to perform the action tick
and then immediately perform the termination action finishID0 to record a success-
ful termination of the LHS process without interrupt.

The fourth TA initiates the behaviour of the RHS process that interrupts the be-
haviour of the LHS process. The fourth TA begins with synchronising on a flow action
stardID01_2 initiated by the first TA. Then, on location s2, either the TA performs
the action tock or performs an interrupt action e2_intrpt to interrupt the behaviour
of the LHS process, then proceeds to perform the action e2, and then performs another
flow action startID01_3 to activate the fifth TA, which performs the action tick,
and then performs the termination action finishID0, which records a successful ter-
mination of the process. This completes the description of the list of TAs that capture
the behaviour of the process ((e1->SKIP)/\(e2->SKIP)).

3.3.14. Translation of Exception

This section discussed the translation of the operator Exception. The section begins
with presenting a rule for translating the operator Exception and then follows with
an example that illustrates using the rule in translating a process.
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Rule 3.14. Translation of Exception

1 transTA (Exception p1 p2 es) procName bid sid fid usedNames =
2 ([(TA idTA [] [] locs [] (Init loc1) trans )] ++ ta1 ++ ta2,
3 (sync1 ++ sync2), (syncMap1 ++ syncMap2) )
4 where
5 idTA = "taException" ++ bid ++ show sid
6 loc1 = Location "id1" "s1" EmptyLabel None
7 loc2 = Location "id2" "s2" EmptyLabel CommittedLoc
8 loc3 = Location "id3" "s3" EmptyLabel None
9 loc4 = Location "id4" "s4" EmptyLabel CommittedLoc

10 loc6 = Location "id6" "s6" EmptyLabel CommittedLoc
11 loc7 = Location "id7" "s7" EmptyLabel None
12 loc8 = Location "id8" "s8" EmptyLabel CommittedLoc
13 locs = [loc1, loc2, loc3, loc4, loc6, loc7, loc8]
14 tran1 = Transition loc1 loc2 [lab1] []
15 tran2 = Transition loc2 loc3 [lab2] []
16 tran3 = Transition loc3 loc4 [lab3] []
17 tran4 = Transition loc4 loc1 [lab4] []
18 tran5 = Transition loc3 loc6 [lab5] []
19 tran6 = Transition loc6 loc7 [lab6] []
20 tran7 = Transition loc7 loc8 [lab7] []
21 tran8 = Transition loc8 loc1 [lab4] []
22 trans = [tran1, tran2, tran3, tran4, tran5, tran6, tran7,

tran8]
23 lab1 = Sync (VariableID (startEvent procName bid sid) []) Ques
24 lab2 = Sync (VariableID ("startID" ++ (bid ++ "0") ++
25 show (sid+1)) []) Excl
26 lab3 = Sync (VariableID ("finishID" ++ show (fid+1)) []) Ques
27 lab4 = Sync (VariableID ("finishID" ++ show (fid)) []) Excl
28 lab5 = Sync (VariableID ("startExcp" ++ show (fid+1)) []) Ques
29 lab6 = Sync (VariableID ("startID" ++ (bid ++ "1") ++
30 show (sid+2)) []) Excl
31 lab7 = Sync (VariableID ("finishID" ++ show (fid+1)) []) Ques
32

33 -- Assigns a new name for the updates list usednames
34 (syncEv, syncPoint, hide, rename, exChs, intrr, iniIntrr,

excps) = usedNames
35 excps' = (((fst excps) ++ es), snd excps)
36 usedNames' = (syncEv, syncPoint, hide, rename, exChs, intrr,

iniIntrr, excps')
37

38 -- Subsequent translation of the remaining processes
39 (ta1, sync1, syncMap1) =
40 transTA p1 [] (bid ++ "0") (sid+1) (fid+1) usedNames'
41 (ta2, sync2, syncMap2) =
42 transTA p2 [] (bid ++ "1") (sid+2) (fid+1) usedNames'
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Figure 38: A structure of the control TA for the translation of the operator Exception.

The operator Exception is also another binary operator that combines two processes
p1 and p2. Initially the process behaves as p1 until either p1 terminates or performs
an exception event from the list es which terminates the process p1 and initiates the
process p2. Like the previous binary operators, the operator Exception is translated
into a control TA that coordinates the translation of the two processes p1 and p2 into
Tp1 and Tp2, respectively.

In Figure 38, we annotate the structure of the control TA for the operator exception
with the names used in the translation Rule 3.14. The translated TA has eight locations
and eight transitions defined in Lines 6–13 and Lines 14–22 respectively. Then, Lines
23–31 define the labels of the transitions. Lines 33–38 extracts and updates the list
of names excps, which we used for handling exceptions in the tuples usedNames.
Finally, Lines 41–44 define a recursive call for the subsequent translation of the re-
maining processes.

The behaviour of the control TA begins on transition tran1 for performing a flow
action. Then, on transition tran2 the control TA performs another flow action that
activates Tp1. After that, the control TA remains on location loc3 until either Tp1
terminates successfully or performs an exceptional action from the list es. If Tp1 ter-
minates with performing a termination action the translated TA synchronises with the
corresponding co-action on transition tran3, and then performs another termination
action on transition tran4 for terminating the whole process.

Alternatively, if Tp1 performs an exception action that raises an exception action, the
control TA synchronises with its co-action on transition tran5, and then immediately

128



initiates the translation of Tp2 on transition tran6, and then waits on locationloc7
until the translated list of TA Tp2 performs a termination action and the control TA
synchronises with the corresponding co-action on transition tran7 and then on tran-
sition tran8, the control TA immediately performs another termination action for
terminating the whole process. The following Example 3.17 illustrates using the Rule
3.14 in translating a process.

Example 3.17. An example that illustrates using Rule 3.14 in translating a process.
This example translates the process ((e1->SKIP)[|{e1}|>(e2->SKIP)) into a list
of TA as follows.

1 transTA((e1->SKIP)[|{e1}|>(e2->SKIP)) = [

2 ] ++ ta1 ++ ta2
3

4 where
5 ta1 = transTA(e1->SKIP)
6 = [
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7 ] ++ transTA(SKIP)
8 = [

9 ]
10

11 ta2 = transTA(e2->SKIP)
12 = [

13 ] = transTA(SKIP)
14 = [
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]

Example 3.17 translates the process (e1->SKIP)[|{e1}|>(e2->SKIP) into a list
containing 5 TA. The first TA is a translation of the operator interrupt using Rule 3.14.
Second and third TAs are translations of the LHS process (e1->SKIP). Second TA
captures the translation of the event e1 using Rule 3.5. While the third TA captures
the translation of the subsequent process SKIP using Rule 3.3. Similarly, the fourth
and fifth TA are translations of the RHS process (e2->SKIP). The fourth TA captures
the translation of the event e2 using Rule 3.5. The fifth TA captures the translation of
the subsequent process SKIP using Rule 3.3.

The behaviour of the first TA begins with a flow action startID13_E that comes
from the environment and then immediately performs the subsequent coordination
action startID001 which activates the second TA that initiates the behaviour of the
LHS process (e1->SKIP). After that, the first TA waits on locations3 until it receives
either a termination action finishID1 or an exception action startExcp1.

If the first TA receives a termination action finishID1 which indicates a success-
ful termination of the LHS process (e1->SKIP), then the first TA performs another
subsequent termination action finishID0 to signal a termination of the whole pro-
cess. Alternatively, if the first TA receives an exception action startExcp1, then the
first TA immediately performs the flow action startID012 which activates the RHS
process (e2->SKIP). Then, the first TA waits on locations7 until it receives a termi-
nation action finishID1 and then immediately performs the subsequent termination
action finishID0 to signal the termination of the whole process. This completes the
behaviour of the first TA for the translation of operator Exception in the process
(e1->SKIP)[|{e1}|>(e2->SKIP).
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3.3.15. Translation of Timeout

This section describes the translation of the operator Timeout. The section begins
with presenting a rule for translating the operator timeout and then follows with an
example that illustrates using the rule in translating a process.

According to Roscoe [6], the operator timeout specifies a deadline for the LHS pro-
cess to perform an event before the deadline or the process the RHS process begins
its behaviour and the whole process behaves as the RHS process. In tock-CSP, this is
express in term of internal choice and delay process as follows:

(P1 [d> P2 = P1) |˜| (WAIT(2);P2)

We follow a similar pattern in translating the operator timeout. We translate the
operator in term of the two previous rules for translating internal choice (|-|) and
a process delay WAIT(d). Rule 3.15 expresses the translation rule and Example 3.18
demonstrates using the rule in translating a tock-CSP process.

Rule 3.15. Translation of Timeout

1 transTA (Timeout p1 p2 d) procName bid sid fid usedNames =
2 transTA (IntChoice p1 (Seq (WAIT d) p2 )) procName bid

sid fid usedNames

Example 3.18. An example that illustrates a translation of the process using Rule 3.14.
This example translates the process ((e1->SKIP)[2>(e2->SKIP)) into a list of TA
as follows.
transTA ((e1->SKIP)[2>(e2->SKIP)) =

transTA ((e1->SKIP)|˜|(WAIT(2);(e2->SKIP))) = [
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1 ] ++ ta1 ++ ta2
2

3 where
4 ta1 = transTA(e1->SKIP)
5 = [

6 ] ++ transTA(SKIP)
7 = [

8 ]
9

10 ta2 = transTA ((WAIT 2);(e2->SKIP))
11 = [
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12 ] = ta21 ++ ta22
13 ta21 = transTA(WAIT 2)
14 = [

15 ] ++ transTA(WAIT 1)
16 = [

17 ] ++ transTA(SKIP)
18 = [
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19 ]
20

21 ta22 = transTA(e2->SKIP)
22 = [

23 ] ++ transTA(SKIP)
24 = [

]
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In Example 3.18, we illustrates using Rule 3.15 in the translation of the process
((e1->SKIP)[2>(e2->SKIP)) into a list of TA containing 10 TAs. The first TA is
translation of the operator for internal choice. The second and third is translation of
the LHS process (e1->SKIP). The second TA captures the translation of the event
e1 according to Rule 3.5. The third TA captures the translation of the subsequent
process SKIP. From the fourth to the ninth TA are translations of the RHS process
(WAIT(2);(e2->SKIP)). The fourth TA is a translation of the operator sequential
composition according to Rule 3.10. The fifth and sixth TA are translations of the
delay process WAIT(2) according to Rule 3.6. The seventh TA captures the translation
of the event e2 according to Rule 3.5. The eighth TA captures the translation of the
subsequent process SKIP. The last TA is an environment TA for the list of translated
TA of the process ((e1->SKIP)[2>(e2->SKIP)). This completes the description of
an example that illustrates using Rule 3.15 in translating a process.

3.3.16. Translation of EDeadline (Event Deadline)

This section describes the translation of the construct Edeadline for a process that
assigns a deadline to an event. The section begins with presenting a translation rule
for the construct Edeadline and then follows with an example that illustrates using
this rule in translating a process.

Rule 3.16 defines a translation of the construct Edeadline into a TA. In Figure 39,
we annotate the structure of the TA with the names used in the translation rule. The
TA has three locations and four transitions, as defined in Lines 6–9 and Lines 11–
16 respectively. Lines 18 – 32 define the labels of the transitions. Line 24–25 defines a
label for resetting the timer. Lines 27–28 update the time with one time unit after every
action tock. Lines 30–31 define guards for controlling the deadline. The following
example illustrates using this Rule 3.16 in translating a process.
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Rule 3.16. Translation of EDeadline (Event Deadline)

1 transTA (EDeadline e n) procName bid sid fid usedNames =
2 ([(TA idTA [] [] locs [] (Init loc1) trans)], [], [])
3 where
4 idTA = "taDeadln" ++ bid ++ show sid
5

6 loc1 = Location "id1" "s1" EmptyLabel None
7 loc2 = Location "id2" "s2" EmptyLabel None
8 loc3 = Location "id3" "s3" EmptyLabel CommittedLoc
9 locs = [loc1, loc2, loc3]

10

11 tran1 = Transition loc1 loc2 ([lab1] ++ t_reset) []
12 tran2 = Transition loc2 loc2 ([lab2] ++
13 dlguard ++ dlupdate) []
14 tran3 = Transition loc2 loc3 ([lab3] ++ dlguard2) []
15 tran4 = Transition loc3 loc1 [lab4] []
16 trans = [tran1, tran2, tran3, tran4] ++
17 (transIntrpt intrpts loc1 loc2)
18

19 lab1 = Sync (VariableID (startEvent procName bid sid) [])
Ques

20 lab2 = Sync (VariableID "tock" []) Ques
21 lab3 = Sync (VariableID (show e) []) Excl
22 lab4 = Sync (VariableID ("finishID" ++ show fid) []) Excl
23

24 -- reset timer
25 t_reset = [(Update [(AssgExp (ExpID "tdeadline")
26 ASSIGNMENT (Val 0))] )]
27

28 dlupdate = [(Update [(AssgExp (ExpID "tdeadline")
29 AddAssg (Val 1) ) ] ) ]
30

31 dlguard =
32 [(Guard (BinaryExp (ExpID "tdeadline") Lth (Val n)))]
33 dlguard2 =
34 [(Guard (BinaryExp (ExpID "tdeadline") Lte (Val n)))]
35

36 (_, _, _, _, _, intrpts, _, _) = usedNames
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Figure 39: A structure of the control TA for the translation of the process Edeadline.

Example 3.19. This example illustrates using Rule 3.16 in translating the process
(EDeadline (e1, 3)) into a list of TA as follows.

transTA (EDeadline (e1, 3)) "pdl" "0" 0 0
([], [], [], [], [], [], [], ([],[]))

= [

]
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The behaviour of the first TA begins with synchronising on a flow action startIDpd?
from the environment and then reset deadline tdeadline to zero. After that, on lo-
cation s2 either the TA performs the action tock to record the progress of time or
the TA performs the event e1 within a deadline of 3 time units. After the deadline
tdeadline the guard tdeadline<=3 blocks the event e1 and the TA follows a silent
transition to the initial location s0. The second TA is an environment TA for the list
of translated TA. This completes the behaviour of the TA for the translation of the
process Edeadline(e1, 3).

3.3.17. Translation of Hiding

This section describes the translation of the operator for hiding events in the behaviour
of a process. The section begins with presenting a rule for translating the operator
Hiding, and then follows with an example that illustrates using the rule in translating
a process.

Rule 3.17. Translation of Hiding

1 transTA (Hiding p es ) procName bid sid fid usedNames =
2 transTA p procName bid sid fid usedNames'
3 where
4 (syncs, syncPoints, hides, renames, exChs, intrrs,
5 iniIntrrs, excps) = usedNames
6

7 -- Updates the parameter for hiding
8 usedNames' = (syncs, syncPoints, (es ++ hides),

renames, exChs, intrrs, iniIntrrs, excps)

Rule 3.17 updates the used name for hiding hides, which is used in the subsequent
translations that are handled in Rule 3.5. Line 1 defines the function transTA for
the construct Hiding. Line 2 describes the output in terms of the function transTA
with an updated name usedNames', which contains an updated name hides. Lines
4–5 extract the name hides from the tuples of used names usedNames. Lines 8–9
updates the name usedNames with hiding events for subsequent translation.

Rule 3.5 checks the used name hides in translating each event. If an event is in the
list of hiding events, Rule 3.5 translates the event into a special name itau. While,
if an event is not part of the used names hides, Rule 3.5 translates the event with
its name in the output TA. The following Example 3.20 illustrates using this rule in
translating a process.

Example 3.20. This example demonstrates using Rule 3.17 in translating the process
((e1->SKIP)\{e1}) into a list of TA as follows.

1 transTA((e1->SKIP)\{e1} "p10_1" _ 0 0 usedNames ) =
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2 transTA((e1->SKIP) "p10_1" _ 0 0 usedNames')
3 where
4 (syncs, syncMap, hides, rename, chs, intrpt, initIntrpt) =

usedNames
5

6 usedNames' = (syncs, syncMap, [e1]++hides, rename,
7 chs, intrpt, initIntrpt)
8

9 transTA((e1->SKIP) "p10_1" _ 0 0 usedNames')
10 = [

11 ] ++ transTA(SKIP)
12 = [

]
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Example 3.20 illustrates a translation of a process using 3.17. The example translates
the process ((e1->SKIP)\{e1}) into a list of TAs that contains three TAs. The first
TA is a translation of the hiding event e1 into a special name itau. The second TA is
a translation of the subsequent process SKIP according to Rule 3.3. The third TA is an
environment TA for the list of translated TAs.

The behaviour of the translated TA begins with the first TA, which synchronises
on a flow action startIDp10_1 from the environment TA, then performs the hiding
action itau, and then immediately performs another flow action startID0_1! to
activate the second TA. The second TA synchronises on the flow action startID0_1?,
then performs the flow action tick, and then immediately performs the termination
action finishID0 that records a successful termination of the whole process. This
completes the translation of the process ((e1->SKIP)\{e1}).

3.3.18. Translation of Renaming

This section describes the translation of the operator Renaming. The section begins
with presenting a rule for translating the operator renaming and then follows with an
example that illustrates using the rule in translating a process.

Rule 3.18. Translation of Renaming

1 transTA (Rename p pes) procName bid sid fid usedNames
2 = transTA p procName bid sid fid usedNames'
3 where
4 (syncs, syncPoints, hides, renames, exChs, intrrs,
5 iniIntrrs, excps) = usedNames
6

7 -- Updates the name renames in the list of usedNames
8 usedNames' = (syncs, syncPoints, hides, (renames ++ pes),

exChs, intrrs, iniIntrrs, excps)

Translation of operator Renaming follows similar patterns with the previous Rule
3.17, except that, the parameter for renaming is a list of pairs, an event with its cor-
responding new name. This rule updates the used name renames from the tuples
usedNames. Then in the subsequent translation, Rule 3.5 checks the updated used
name renames in translating each event. If an event is in the list renames, Rule 3.5
replaces the event name with its corresponding new name, such that it appears with
its new name in the translated TA.

Example 3.21. An example for translating a process that demonstra a translation of
the operator Renaming in translating the process ((e1->SKIP)[[e1<-e3]]).

1 transTA(((e1-> SKIP)[[e1<-e3]]) "p11_1" [] 0 0 usedNames)
2 = transTA((e1->SKIP) "p11_1" [] 0 0 usedNames')
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3 where
4 (syncs, syncMap, hides, rename, chs, intrpt, initIntrpt)
5 = usedNames
6

7 usedNames' = (syncs, syncMap, hides, rename ++ [e1, e3],
8 chs, intrpt, initIntrpt)

9 transTA((e1->SKIP) "p11_1" [] 0 0 usedNames')
10 = [

11 ] ++ = transTA(SKIP)
12 = [

]
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Example 3.21 illustrates using Rule 3.18 in translating a process into a list of TA that
contains 3 TA. The first TA is a translation of the event e1, which appears with its
new name e3 in the translated TA. The second TA is a translation of the subsequent
process SKIP. The last TA is an environment TA for the list of translated TA. This
completes description of the translation of the process ((e1->SKIP)[[e1<-e3]]).

3.3.19. Definition of Environment TA

This section defines an explicit environment TA for the translated TA of the Uppaal

models. Definition 3.11 provides a Haskell function that expresses the structure of an
explicit environment TA for the translated Uppaal system. Here we provide the defi-
nition of the environment TA, which we have seen various examples in the provided
examples of the translation rules.

Definition 3.11. A Function for defining an environment TA

1 env :: String -> [Event] -> Template
2 env pid es =
3 Template "Env" [] [] [loc] [] (Init loc) trans
4 where
5 loc = Location "taEnv" "taEnv" EmptyLabel None
6 tll = Transition loc loc
7 -- a common name for defining list of transitions in the

environment TA
8

9 trans =
10 [(tll [(Sync (VariableID id []) Ques)] [])|(ID id)
11 <- es] ++
12 [ tll [(Sync (VariableID "startID0_0" []) Excl),
13 (Guard (BinaryExp (ExpID "start" ) Equal (Val 0)

)),
14 (Update [(AssgExp (ExpID "start" ) ASSIGNMENT (

Val 1))])] [],
15 tll [(Sync (VariableID ("startID" ++ pid) []) Excl),
16 (Guard (BinaryExp (ExpID "start" ) Equal (Val 0))),
17 (Update [(AssgExp (ExpID "start" ) ASSIGNMENT (

Val 1)) ] ) ] [],
18 tll [(Sync (VariableID "finishID0" []) Ques)] [],
19 tll [(Sync (VariableID "tick" []) Ques)] [],
20 tll [(Sync (VariableID "itau" []) Ques)] [],
21 tll [(Sync (VariableID "tock" []) Excl),
22 (Guard (BinaryExp (ExpID "ck") Lte (Val 1))),
23 (Update [AssgExp (ExpID "ck") ASSIGNMENT (Val 0)])
24 ] []
25 ]
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As highlighted in the translation strategy (Section 3.2), each process is translated
into a list of TAs that includes an environment TA. The function defines the envi-
ronment TA that has one location as defined in Line 5. While the remaining Lines
6–25 defines the transitions of the TA. First, Line 6 defines a common name used in
defining the source and targets of all the transitions. Line 9 defines a transition for
each action from the translated process. Lines 10–12 define the first starting flow ac-
tion startID0_0, which initiates the behaviour of the translated TA (for the case of
anonymous function). This starting transition has guards that block the environment
from starting the behaviour multiple times. In the case of a named process, Lines
14–16 defines another transition for starting flow action that has the process name (for
the case of a named process). Line 20 defines the final termination co-action for termi-
nating the whole process. Line 21 defines a transition for a co-action of the translated
action tick. Line 22 defines a transition for a co-action of hiding events itau. Lines
21–23 define a transition for the translated action tock, which is associated with a
clock variable for recording the progress of time. This completes the definition of the
environment TA. Also, this definition completes the presentation of the translation
rules developed for translating tock-CSP into a list of TA.

3.4. Final Considerations

In this chapter, we discussed a technique for translating tock-CSP models into Uppaal

models. The chapter begins with defining a BNF that served as the foundation of the
translation work. The BNF describes the operators we considered for our targeted
work. In essence, the developed BNF defines constructs for the selected operator of
the tock-CSP.

Subsequently, we described the strategy we follow in achieving the translation work.
Basically, we consider small size TAs joined together using additional flow actions,
which we introduce in the translation work. We use the flow actions to coordinate
the connections of the small TAs. The names of the flow actions were generated to be
unique, and also provide a good structure for connecting the TA to form a network of
TA. We consider using small sizes TAs in order to capture the compositional structure
of tock-CSP. We used examples to illustrate using both the small TA and the flow
actions that connect the translated TA.

Based on the developed translation strategy, we presented rules that precisely de-
scribe the translation of tock-CSP into TA. Each translation rule describes a translation
of one construct of the BNF into TA. For precise description, we used Haskell notations
for presenting the translation rules, where we defined a function transTA that defines
a translation of each construct into TAs. The function transTA takes a tock-CSP model
as an argument and provides an output list of TA that captures the behaviour of the
input tock-CSP model. Examples were provided that illustrate using each rule in trans-
lating tock-CSP process. In the next chapter, we are going to discuss the evaluation of
the translation technique.
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Chapter Four

4. Evaluation

In this chapter, we describe the mechanisms we consider in evaluating the translation
technique. In Section 4.1, we described a tool that implements the translation rules
presented in Chapter 3. In Section 4.2, we describe another tool we developed for
validating the translation tool. We use trace semantics for validating the translation
technique. Thus, we develop a technique for generating and comparing traces of tock-
CSP and TA.

Additionally, we use two forms of test cases for evaluating the translation tool, a
collection of small processes and case studies. In Section 4.3, we describe a collection
of small processes we used in assessing the correctness of the translation rules as
part of the translation technique developed. In Section 4.4, we describe the second
category of the test cases for evaluating the translation technique. Developing the
translation technique give us a good opportunity for comparing the performance of
the two model-checkers: FDR and Uppaal in analysing deadlock freedom, where the
input tock-CSP process is constructed manually and the translated TA generated by
our translation tool. Because of that, the results may not be a fair comparison, as
the generated TA may not be the most efficient models for Uppaal. We describe the
result of comparing the performance in Section 4.5. In Section 4.6, we describe a plan
for mathematical proof of the translation technique. Finally, Section 4.7 provides a
summary and conclusion of the chapter.

4.1. Mechanisation of the Translation Rules

In this section, we discuss a prototype tool we developed for automating the trans-
lation technique. After providing the translation rules, it is also useful to translate
tock-CSP automatically, using the translation strategy to validate the translation tech-
nique. Besides, an automatic translation will enable considering the compatibility of
the translation rules and other technical concerns. Thus, we create a tool for automatic
translation based on our translation strategy (Chapter 3).

In implementing the translation tool, we continue using Haskell, the language we
used previously in presenting the translation rules in Chapter 3, alongside using the
Glasgow Haskell Compiler [116]. This reduces the complexity of combining the trans-
lation rules into a single system because the developed description of the translation
rules in Haskell provides executable components of the translation tool. Figure 40
illustrates the structure of the translation tool. The implementation of the tool is avail-
able in the provided repository of the work [117].

Considering the functional structure of Haskell, we have developed another function
transform() that encapsulates the translation rules transTA(), and the remaining
two functions syncTA() and envTA() for synchronisation TA and environment TA,
respectively (as defined in Section 3.3). The function transform uses the translation
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Figure 40: Structure of the function transform for the translation system

rules as part of the system that invokes the appropriate translation rule in translating
each construct of the input tock-CSP specifications into the corresponding translated
TA. Then, finally the function transform completes the translation with providing
both synchronisation TA and an environment TA that closes the translated system, as
described in Chapter 3.

In using the translation tool, the function transform() (Section 3.2) takes a valid
name tock-CSP process as input Abstract Syntax Trees (AST), and initialises the re-
quired arguments for the three functions: transTA, syncTA and envTA. The input
of the translation tool is a valid tock-CSP specification within the scope of this work.

The output of the function transform() is a network of TA for Uppaal, which
is based on a provided Uppaal template for the internal representations of the net-
worked TA, as shown in Figure 41. In this work, we encode the template as a data
structure in Haskell, which captures the output of the translation technique into a suit-
able Uppaal TA. The definition of template TA has five major sections: header, dec-
laration, network of TA, system definition and TCTL queries, as shown in Figure 41.
First, the header section describes the configuration information of the translated TA.
Second, a declaration section defines the terms used in the system. Third, a list of def-
initions for the list of TAs that form the networked TA. Fourth, the system definition
instantiates the definitions of the TA into a system. Lastly, a list of queries describes
requirement specifications of the system. An additional detailed structure of Uppaal

TA is provided in Appendix C.
We provide an interface for running the translation tool, which has a list of com-

mands for accessing the tool. The tool provides an interactive environment for run-
ning the translation tool, which accepts an input tock-CSP, either directly as input to
the command prompt or uploading a tock-CSP file that contains specifications (in AST)
of a system. This completes the description of the translation mechanism. In the next
section, we will discuss the technique consider in generating and comparing the traces
of tock-CSP and its corresponding translated TA.
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Figure 41: Structure of the Uppaal models

4.2. Trace Analysis

This section discusses the mechanism we develop for evaluating the translation rules.
A sound translation preserves properties of the source model. This is determined by
comparing the behaviours of the source model and the translated model [118–121]. In
this work, we use traces to compare the behaviour of the input tock-CSP models and
the traces of the translated TA models.

We have developed another technique along with its software tool, which automates
the validation technique using trace analysis. The structure of the trace analysis tool
is in Figure 42, which has five components, a controller, a translation system (Section
4.1), FDR and Uppaal as black-boxes, and two additional components for analysing
traces in two stages. The tool uses the translation tool in translating tock-CSP model
into TA, and then uses both FDR and Uppaal as black boxes in generating sets of
finite traces. Then, the tool compares the generated traces in two stages, 1st and 2nd
stage.

The benefit of adding the 1st stage is because it is easier to generate the traces with
the 1st stage, unless for concurrency in which the 1st stage generates incomplete traces
of a process that has concurrency, due the complexity of using Uppaal in generating
traces of concurrent processes. Therefore, we create the second stage to complement
the 1st stage with the additional technique for using the power of FDR to generate
traces of a process that contains concurrency. The system begins with the 1st stage if
the traces are complete the system terminates. Otherwise, the system invokes the 2nd
stage for computing the remaining traces.
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Figure 42: Structure of the trace analysis system

In Figure 42, the controller connects the components of the trace analysis system,
which invokes each component of the system one after the other, passing input and
collecting output. The controller passes the required input to a component and collects
output and then proceeds to pass the collected output as input to the subsequent
component of the system for further analysis. We used two stages of analysing traces.
In the first stage, we generate traces from both FDR and Uppaal. If the traces do not
match, we develop the second stage, where we use the power of FDR to complement
Uppaal in analysing the traces.

1st stage of trace analysis We describe the steps of the first stage as follows:

Step 1: The controller takes input specification tock-CSP.

Step 2: Invokes the translation system to get the translated TA.

Step 3: Invokes FDR to generate traces of the input tock-CSP.

Step 4: Invokes Uppaal to generate traces of the translated TA.

Step 5: Compares the generated traces (1st stage of the trace analysis).

Step 6: If the generated traces from FDR and Uppaal do not match, we create a
second stage of the trace analysis, where we check if all the generated traces of tock-
CSP are valid traces of the translated TA.
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In the first stage of the traces analysis, we compare the generated traces of tock-CSP
and TA. However, due to the nature of using TCTL language in formulating queries for
generating the traces, it is impossible to retrieve all the possible traces of TA, especially
for the case of TA that captures concurrency. To address this complexity, we develop
the second stage of the trace analysis, where we use the power of FDR to complement
Uppaal in generating traces. Thus, we verify all the generated traces of tock-CSP are
valid traces of the translated TA, which validates the equivalence of the traces. Details
of the second stage are as follows. As a running example for the second stage, we
consider the following tock-CSP process.

P1 = e1->((e2->SKIP)|||(e3->SKIP))

2nd Stage of the trace analysis: steps of the second stage are as follows:

Step 1: The second stage of the technique begins with appending a special event
mark to the process P to form another process Pm. This is express as follows:

Pm = P;(mark -> STOP)

Note: The selected special event mark must not be part of the process P.

Step 2: We create an auxiliary process that specifies the required length n of a trace.
The process is expressed as follows.

Sl(n) = if n == 0 then (mark -> SKIP)
else ([]ev : Events @ ev -> Sl(n-1))

The process Sn(n) controls the size of a trace, such that either the process terminates
after reaching a trace of size n or the process terminates after performing its last event.
When n == 0, the process terminates after performing the special event mark; other-
wise the process proceeds to perform any event from the set Events and decreases
the value of the parameter n by 1, until n == 0.

Step 3: We put the process Sn(n) in parallel with the constructed process in Step 1.
For the running example, the process is as follows:

Pmn = (Pm [|Events|] Sl(n))

In this case, either the process Pm terminates first or the process Sl(n) terminates
after reaching the required length n of a trace, which forces the concurrent process Pmn
to a deadlock after reaching the target length n for the required length of the traces.
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Step 4: Then, we use FDR to verify an assertion Pmn refines P, which checks if the
process P contains the traces of Pmn, as follows.

assert P [T= Pmn

For the running example, using the process P with n > 3, the assertion fails and
yields a counterexample as follows:

t1 = <e1, e2, e3, m>

The counterexample is one of the complete traces of process P with the addition
of the special event m. This is because of the formulated process Pmn performs the
additional special event mark, which the process P cannot perform. In the case of
a non-terminating process, the function Sl(n) forces the process to terminate after
reaching the target length n. Then, we proceed to find out if the process P has another
trace different from the generated trace t1.

Step 5 We convert the generated trace into a linear process.
For the running example, we convert the trace t1 into the following linear process:

Pt1 = e1->e2->e3->mark->SKIP

Step 6: We use external choice to compose original process P with the constructed
process Pt1; as P[]Pt1. Then, we use FDR again to check if the constructed process
P[]Pt1 contains the traces of the process Pmn, as follows.

(P[]Pt1) [T= Pmn

In the running example, the assertion fails and generates another counterexample,
as follows:

t2 = <e1, e3, e2, mark>

Loop : We repeat Steps 5 and 6 until the assertion passes.
In the case of this running example, the assertion fails. Therefore, we execute the

loop again and we repeat Steps 5 and 6.

Repeating Step 5: We convert the new trace t2 into another linear process.

Pt2 = e1->e3->e2->mark->SKIP

Repeating Step 6: We use external choice to compose the new process Pt2 with the
previously formulated process (P[]Pt1) to form another process (P[]Pt1[]Pt2).
Then, we use FDR to verify if the new process (P[]Pt1[]Pt2) contains the traces of
the process Pm, as follows.

(P[]Pt1[]Pt2) [T= Pmn
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After repeating Step 6, the assertion passes, which indicates that the traces t1 and
t2 are the only traces of length 3 for the input process

P1 = e1->(e2->SKIP)|||(e3->SKIP)

In generating multiple traces with FDR, like most of the model-checking tools, FDR
was developed to produce only one trace (counterexample) at a time. As such, based
on the testing technique developed in [122], we develop a technique that repeatedly
invokes FDR for generating traces until we get the required traces. We used the de-
veloped technique in generating finite length of traces for the input tock-CSP specifi-
cations using FDR.

However, this technique for generating traces using FDR is not suitable for gener-
ating traces using Uppaal. This is due to the differences between the two systems.
FDR was developed based on verification using refinement. Secondly, FDR uses the
same language CSP for both specifications and verification of a system, while Uppaal

was developed based on networks of TA. Also, Uppaal uses different languages for
specification and verification; Uppaal uses TA for modelling the specifications of a
system and TCTL for specifying the verification requirements.

Thus, we developed another technique for generating traces of TA. The technique
we developed is based on a testing technique developed for Uppaal [123]. The basic
idea of the testing technique [123, 124] was described using Uppaal as black-box in
generating test-cases that achieve test coverage criterion in TA. The testing technique
was developed to traverse every edge in TA to achieve edge coverage. The edge cov-
erage criterion was formulated using reachability property with additional auxiliary
variables e1...en of types Boolean; each path has a unique combination of these
variables es. On traversing each path, we assign the value true to all the auxiliary
variables in the path, which facilitates formulating another test case for another path
that has a different combination of the auxiliary variables. In the end, exhausting all
the possible paths provides a set of test cases that achieves test-coverage criterion in a
network of TA that models a system [123, 124].

In generating the traces, we attach two auxiliary variables to each action that cap-
tures a translation of an event. The two variables are path identification variable and
depth value, epn and dp, respectively, as shown in Figures 44, 45 and 47 (Example
4.1). The three TA capture the occurrence of the actions e1, e2 and e3.

Initially, the auxiliary variables of the forms epx are initialised to the value false,
then traversing a path and capturing its trace assigns the value true to all the auxiliary
variables in that path. While the second auxiliary variable dp is initialised to the value
0, traversing each action increases the depth dp with the value 1, which increases
the length of the trace. This technique enables us to capture traces of TA within the
required depth. We illustrate the technique in the following steps.

Example 4.1. Consider a running example of a system that performs an action e1 and
then performs two additional actions e2 and e3, concurrently. We translate the system
into a network of TA in Figures 44 – 49.
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Figure 43: TA1 shows the translation of concurrency operator.

Figure 44: TA2 show the translation of the action e1, with the added auxiliary variables
dp and ep 0 0

Figure 45: TA3 for translating the action e2 with the auxiliary variables
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Figure 46: TA4 captures the termination process SKIP

Figure 47: TA5 for translating the action e3 with auxiliary variables

Figure 48: TA6 for translating the termination process SKIP
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Figure 49: TA7 for an explicit environment of the translated TA

Step 1: We formulate a query for a requirement that the system should reach depth
n for a trace of size n, as follows:

E<> (dp==n)

For the running example, we formulate a query to check that the system should
reach a trace of length 3, expressed as follows:

E<> (dp==3)

Step 2: If the query passes, we get a trace t1 for path p1 from the initial state to
the depth n. The path p1 is characterised with a list of the added auxiliary variables
e1...en, such that all the auxiliary variables in the path are set to the value true on
traversing the path.

For the running example, the query passes and returns the first trace

t1=[e1, e2, e3]

Also we characterise the path with a list of auxiliary variables

[ep_0_0, ep_00_2, ep_01_3]

that are set to true on generating the trace t1 in that path.

Step 3: We update the query by blocking the path p1, expressed as follows:

E<> ((dp == n) and not p1)

Where p1 is a conjunction of the list of auxiliary variables that identify the path p1, as
in the case of this running example, we update the query by blocking the path p1, as
follows:

E<> ((dp == 3) and not (ep_0_0 and ep_00_2 and ep_01_3))
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Loop: We repeat steps 2 – 3 until the query fails.

Repeating Step 2: For the running example, checking for an alternative trace with
the second query fails. This indicates that there is no alternative path for generating
another trace. If the second query passes, we will get another trace t2 for an alternative
path p2.

NOTE: However, there is another alternative trace t2 = [e1, e3, e2] that can
be generated on traversing another path [ep_0_0, ep_01_3, ep_00_2]. However,
it can be seen that the description of the two paths evaluate to the same logical value;
even though they have a different order of the actions, which makes it difficult for
Uppaal to detect the second trace 13. As a result of that, we develop Stage 2 for
analysing the traces, which we used in generating traces that are difficult to generate
in Uppaal.

This is the main reason for generating traces in two stages. In stage 1, we generate
traces using both TA and tock-CSP as well as using both FDR and Uppaal, respectively.
Then, we compare the traces if the traces do not match, we move to Stage 2. Since all
the traces of tock-CSP have precise order in Stage 2, we use the traces in guiding
Uppaal to check if all the traces produced with FDR are valid traces of the translated
TA. Details of Stage 2 are as follows.

We proceed to Stage 2 for checking if all the traces of the input tock-CSP are valid
traces of the translated TA. We continue using the previous running example for the
list of the translated TA in Figures 44 – 49. Previously, we generated the trace t1 =
〈e1, e2, e3〉 for the TA model using Uppaal. Also, in describing the technique for gener-
ating traces of tock-CSP using FDR, we generated the two traces {〈e1, e2, e3〉, 〈e1, e3, e2〉}
for the input tock-CSP model.

Trace analysis Stage 2: the steps for the trace second stage of the trace analysis are
as follows:

Step 1: We take the difference d f between the two lists of traces.

df = (traces of tock-CSP) - (traces of TA)

For the running example, the difference between the two traces is:

df = [[e1, e2, e3], [e1, e3, e2]] - [[e1, e2, e3]]

∴ df = [[e1, e3, e2]]

13Perhaps, there might be another way of using the operator or other similar construct. This is left as
part of the future investigation.
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Step 2: For each trace ti in the traces d f , we convert the trace ti into a linear TA tiTA,
which has a special final state f s.

For the running example, we convert the trace [e1, e3, e2] into TA in Figure 50.

Figure 50: tiTA - a linear TA for the trace [e1, e3, e2]

Step 3: In the list of translated TA, we replace the environment TA with the linear
TA tiTA.

Therefore, for the running example in Figures 44 – 49, we replace the environment
TA Figure 49 with tiTA Figure 50.

Step 4: We formulate a query to check if the system reaches the final state f s of the
trace TA tiTA (after replacing the environment TA).

For the running example, the query is as follows:

E <> fs

Step 5: If the query passes and the system finds a path to the final state f s of the TA
tiTA, then the trace ti is a valid trace of the system. Otherwise, if the query fails, then
there is no path to the final state of the tiTA. Therefore, the trace ti is not an acceptable
trace of the translated TA.

In the case of the running example, the query passes. This indicates that the trace ti
is a valid trace of the system. There is no other trace apart from the trace ti, because the
difference between the two traces is ti only. Therefore, we complete the trace analysis.

This completes the descriptions of the techniques we used for extracting the traces
of both tock-CSP and TA, using both FDR and Uppaal. A prototype implementation
of the trace analysis tool is available in the repository [117]. The tool has an interface
that enables users to interact with the tool. We provide examples inside the prototype
system that help users to understand the system. Figure 51 illustrates part of the
interface, which displays the available commands for interacting with the tool.

The interface shows a brief description of the available commands. The first com-
mand, load Filename reads a file that contains tock-CSP specifications in AST. The
second command process number analyses an existing process from the provided
processes inside the system. In Figure 51, below the list of commands, there is a
table of the provided processes with their corresponding numbers. The numbers
are used for invoking each process from the interface. Figure 52 shows an exam-
ple of analysing process number 20, p2_0 = (e1->(STOP))|˜|(e2->(STOP))},
which illustrates a translation of the construct internal choice. The third command
analyse ASTprocess analyses a process (specified in AST). The fourth command
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Figure 51: Interface of the trace analysis tool
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Figure 52: An example of using the trace analysis tool for comparing the traces.

processes displays a table of the provided processes in the system, as shown in Fig-
ure 51, below the list of commands. The fifth command trace size sets the required
depth of traces for the analysis. Lastly, the command man displays the manual page
of the tool.

Figure 52 shows a sample output of the trace analysis system, which displays a
summary of comparing the generated traces with both FDR and Uppaal. Also, the
system generates a folder named genFiles, which contains files for the details of all
the generated traces of both FDR and Uppaal as well as the details of comparing the
generated traces. This concludes the description of the tool we developed for analysing
and comparing the traces of the input tock-CSP and its corresponding translated TA.

4.3. Experimental Evaluations

This section discusses the list of processes we used in evaluating the translation tech-
nique. In evaluating the translation technique, we consider an experimental approach,
which enables us to use the trace semantics in justifying the correctness of the trans-
lation technique. We begin with formulating a list of processes that covers interesting
conditions (test cases), ranging from basic processes to a list of processes that pair all
the tock-CSP constructors in the provided BNF (Section 3.1).

After formulating the processes, we use the translation tool (see Section 4.1) to trans-
late the tock-CSP processes into TA. Then, we used the traces analysis tool (see Section
4.2) to generate and compare the traces of these formulated processes. The results of
comparing and analysing the traces enable us to reason about the correctness of the
translation technique. For each of the finite processes within a specific length, we con-
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sider traces of length 1, 2, 3 and length 10. We select these lengths as samples because
we will not be able to cover all the possible lengths of the traces. In all the traces,
the traces of the translated TAs model contain the traces of the original input tock-CSP
process. The result justifies that the translated TA captures the behaviour of the input
tock-CSP model.

Additionally, these formulated processes are part of the built-in processes provided
in the translation tool. These provided processes help users to explore and understand
the tool. Each process has a number, and we provide an interface for selecting each
process using the provided processes number (additional details in the appendices).
On entering a process number, the system displays the selected process, translates
the process into TA, then generates and compares the traces of the selected process.
Subsequently, the system displays the summarised results for comparing the traces.
The list of provided built-in processes and the interface provide a good starting point
for interacting and understanding the system.

4.4. Example - Case Studies

In this section, we discuss a list of case studies that illustrate the application of the
translation technique. In selecting the case studies, we consider the wider definition
of robot in a wider sense as described by IEEE Standard 1872-2015 [125] From the
literature, we consider six cases: a cash machine (ATM) [126], a modified version
of the cash machine (ATM2) (Section 4.4.1), an automated barrier to a car park [37]
(Section 4.4.2), a railway crossing system [6] (Section 4.4.3),a thermostat machine for
monitoring ambient temperature [37] (Section 4.4.4) and a simple mobile system [127]
(Section 4.4.5).

First, an overview of these selected case studies is provided in Table 5, while detailed
specifications of the system are described in the following Sections. Second, we write
tock-CSP specifications for the case studies, as listed below for each system. Third, we
use the translation tool in translating the tock-CSP specifications into TA for Uppaal.
Lastly, we use Uppaal for verifying the sample properties listed under the verification
requirements that follow each of the case studies.

4.4.1. Cash Machine (ATM)

This example illustrates a translation of a cash machine that goes through cycles of
accepting a card, requiring its PIN, and servicing one request before returning the
card to the customer. The request can be cash withdrawal, transferring cash and
checking a balance of the account. If the PIN is incorrect, the machine returns the
card and continues with an operation that prepares the machine for accepting another
card [126].

In Listing 2, we present the specification of the system cash machine in tock-CSP.
Line 1 defines the channels used in describing the system. Line 3 defines the time
required for each event. We assign 0 to indicate that each event happens instantly
and takes no time to complete. Line 5 describes the beginning of the timed section
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Case Studies Tool
Average
Timing
(second)

States Transitions Events
States per
Transitions

Thermostat FDR 0.0052 7 16 5 0.4375

Uppaal 0.0106

Bookshop
Payment

FDR 0.0048 7 32 9 0.21875

Uppaal 0.0011

Simple ATM FDR 0.0051 15 33 15 0.4545

Uppaal 0.0084

AutoBarrier FDR 0.0059 35 84 10 0.4167

Uppaal 0.0134

Rail Crossing FDR 0.0054 80 361 12 0.2216

Uppaal 0.0072

Table 5: Timing of the selected test cases with an overview of their structure.

in a CSP file for FDR verification [41]. Lines 7–8 define the process ATM that checks
valid PIN. The process accepts the card and PIN and then internally decides whether
the PIN is valid and behaves as the process Options. For invalid PIN the process
returns the card and waits for another card. Lines 9–13 define the behaviour of the
process Options, which provides three options: withdrawCash, checkBalance
and transfer. The first option withdrawCash takes an amount of the required
money, dispenses the required cash, returns the card and behaves as the process ATM
(waiting for another card). The second option checkBalance displays the account
balance, returns the card and behaves as the process ATM. Last option transfer ac-
cepts both an account number and amount for the transfer; it then returns the card
and behaves as the process ATM. Finally, Line 15 describes an assertion for checking
deadlock freedom in the specifications. This completes the specifications of the system
cash machine in tock-CSP.

Verification requirements: after using our translation technique to translate tock-CSP
into TA, the following sample requirements are specified with TCTL and verified with
Uppaal automatically.

1. A� returnCard
The machine eventually returns the accepted card.
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Listing 2: Specifications of Cash Machine (ATM)
1 channel tock, card, acceptPIN, correctPIN, incorrectPIN, returnCard,

withdrawCash, amount, dispenseCash, returnCArd, checkBalance,
displayBalance, transfer, acceptAccountNo, acceptAmount

2

3 OneStep(_) = 0
4

5 Timed(OneStep){
6

7 ATM = card -> acceptPIN -> (correctPIN -> Options)
8 |˜| (incorrectPIN -> returnCard -> ATM)
9 Options =

10 (withdrawCash -> amount -> dispenseCash -> returnCard -> ATM)
11 [] (checkBalance -> displayBalance -> returnCard -> ATM)
12 [] (transfer -> acceptAccountNo -> acceptAmount ->
13 returnCard -> ATM)
14

15 assert ATM :[deadlock-free]
16 }

2. withdrawCash --> returnCard
After withdrawing cash, eventually the machine will return the card.

3. checkBalance --> returnCard
After checking account balance, eventually the machine will return the card.

4. transfer --> returnCard
Whenever the machine accepts a card, eventually the machine will return the
accepted card.

In a modified version in Listing 3, we extend the previous version of the cash ma-
chine that enables us to formulate additional interesting requirements that we are
unable to specified in the previous version of the models. There are two modifica-
tions. First, the system retains the card after 5 seconds if the user did not take the
card. Second modification, before dispensing the money, the system checks if there is
enough balance for the requested amount to withdraw.

Verification requirements: after using our translation technique to translate tock-CSP
into TA, the following sample requirements are specified with TCTL and verified with
Uppaal, automatically.

1. A� retainCard
The machine eventually retains the card (expected to fail).
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Listing 3: Specifications of Modified Cash Machine (ATM2)
1 channel tock, card, acceptPIN, correctPIN, incorrectPIN, returnCard,

withdrawCash, amount, dispenseCash, returnCArd, checkBalance,
displayBalance, transfer, acceptAccountNo, acceptAmount,
retainCard, insufficientBalance, enoughBalance, takeCard

2

3 OneStep(_) = 0
4

5 Timed(OneStep){
6

7 ATM = card -> acceptPIN -> (correctPIN -> Options)
8 |˜| (incorrectPIN -> ReturnCard)
9

10 Options = (withdrawCash -> Withdrawal)
11 [] (checkBalance -> displayBalance -> ReturnCard)
12 [] (transfer -> acceptAccountNo -> acceptAmount ->

ReturnCard)
13

14 ReturnCard = returnCard -> ((takeCard -> ATM) [] (WAIT(5);(
retainCard -> ATM)))

15

16 Withdrawal = amount ->
17 (enoughBalance -> dispenseCash -> returnCard -> ATM)
18 |˜| (insufficientBalance -> returnCard -> ATM)
19

20 assert ATM :[deadlock-free]
21

22 }

2. returnCard --> retainCard
Returning the card leads to retaining the card (expected to fail, because it holds
only if the user does not take the card).

3. withdrawCash --> dispenseCash
withdrawing cash leads dispensing cash (expected to fail, because the require-
ment holds only if there is enough cash).

4.4.2. Automated Barrier

This example illustrates a translation of an automated barrier that accepts tickets and
raises the barrier exactly two time units after dispensing the ticket. The system lowers
the barrier one timed unit after receiving a signal through. If the signal is not received
after 20 time units of raising the barrier, it emits a beep once per time unit until the
system receives a response action either through or reset. The barrier is lowered one
second after the occurrence of either of these events [37].
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Listing 4: specification of Automated Barrier
1 channel tock, acceptTicket, dispenseTicket, raiseBarrier, beep,
2 through, reset, receivedSignal, lowerBarrier
3

4 OneStep(_) = 0
5 Timed(OneStep) {
6

7 AutoBarrier = acceptTicket -> dispenseTicket -> tock -> tock ->
8 raiseBarrier -> (Response [] (WAIT(20);NoResponse))
9

10 Response = receivedSignal -> tock -> lowerBarrier -> AutoBarrier
11

12 NoResponse = Beeping /\ Action
13

14 Beeping = beep -> tock -> Beeping
15

16 Action = ((through -> SKIP) [] (reset -> SKIP))
17 ;(lowerBarrier -> AutoBarrier)
18

19 assert AutoBarrier :[deadlock-free]
20 }

In Listing 4, we present the specifications of Automated Barrier in tock-CSP that
serves as input to our translation technique. Lines 1–5 are similar to the previous
example. Line 7–8 describe the process AutoBarrier that accepts and dispenses the
ticket, then waits for two times unit before raising the barrier, then behaves as a process
Timeout. Line 10 defines the process Timeout(P, Q, d) that waits d time unit for
the process P to perform a visible action; after the deadline d, the process Timeout be-
haves as Q. Therefore, the process Timeout(Response, NoResponse, 20) waits
for 20 time units for the process Response. After the deadline elapses, the process
behaves as the process NoResponse. Line 12 defines the process Response that per-
forms the event receivedSignal then waits one time unit before lowering the barrier
and behaving as the process AutoBarrier. The process NoResponse performs beep-
ing infinitely (Line 16) until the process is interrupted by the process Action. Line
18 defines the process Action that presents a choice of either performing the action
through before terminating or performing the action reset, that leads to lowering
the barrier and behaving as the process AutoBarrier. Finally, Line 21 defines an as-
sertion for checking deadlock freedom in the system. This completes the specification
of AutoBarrier.

Verification requirements: after using our translation technique to translate tock-CSP
into TA, the following sample requirements are specified with TCTL and verified with
Uppaal automatically.
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1. (A � raiseBarrier)
The system eventually raises the barrier.

2. (E � lowerBarrier)
The system eventually lowers the barrier.

3. raiseBarrier --> lowerBarrier
Whenever the system raises the barrier, eventually the system will lower the
barrier.

4. receivedSignal --> lowerBarrier
After receiving a signal, eventually the system will lower the barrier.

5. acceptTicket --> dispenseTicket
After the system accepts the ticket, eventually the system will dispense the ac-
cepted ticket.

6. beep --> lowerBarrier
The sound beep leads to lowering the barrier.

7. beep U (reset or through)
The system continues beeping until the system receives an action either reset or
through.

4.4.3. Railway Crossing System

This example illustrates a rail crossing system that consists of three components: a
train, a gate, and a gate controller. The gate should be up to allow traffic to pass when
no train is approaching but should be lowered to obstruct traffic when a train is close to
reaching the crossing. It is the task of the controller to monitor the approach of a train
and to instruct the gate to lower within the appropriate time. The train is modelled at
a high level of abstraction: the only relevant aspects of the train’s behaviour are when
the train is near the crossing, when it is entering the crossing, when it is leaving the
crossing; and the minimum delays between these events [37, 126].

In tock-CSP, the input specification of the system is in Listing 5. The gate controller
receives two types of signal from the crossing sensors: nearInd, which informs the
controller that the train is approaching, and outInd, which indicates that the train has
left the crossing. It sends two types of signal to the crossing gate mechanism: down
command and up command, which instruct the gate to go down and up, respectively.
It also receives a confirmation from the gate. These five events form the visible events
of the controller. The gate, modelled by GATE, responds to the commands sent by the
controller. The additional events: up and down are included to model the position of
the gate [37, 126].
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Listing 5: Specifications of the Railway Crossing System
1 channel tock, nearInd, outInd, confirm, upCommand, downCommand,
2 down, up, trainNear, enterCrossing, leaveCrossing, pass
3

4 OneStep(_) = 0
5

6 Timed(OneStep){
7

8 -- The crossing system, in conjunction with the train, is described
as follows:

9 RailSystem = Train [|{nearInd, outInd}|] Crossing
10

11 Crossing = Controller [|{downCommand, upCommand}|] Gate
12

13 Controller = nearInd -> downCommand -> confirm -> Controller
14 [] outInd -> upCommand -> confirm -> Controller
15

16 -- The gate process responds to the controller`s signals
17 -- by raising and lowering the gate
18 Gate = downCommand -> down -> confirm -> Gate
19 [] upCommand -> up -> confirm -> Gate
20

21 -- The process TRAIN will be used to model the approach of the train,
22 -- and its effect upon the crossing system
23

24 Train = trainNear -> nearInd -> enterCrossing ->
25 leaveCrossing -> outInd -> pass -> Train
26

27 assert RailSystem :[deadlock-free]
28

29 }

Verification requirements: after using our translation technique to translate tock-CSP
into TA, the following sample requirements are specified with TCTL and verified with
Uppaal automatically.

1. A� pass
The train eventually passes the gate.

2. trainNear --> down
When the train is near eventually the gate will go down

3. leaveCrossing --> up
Leaving the crossing eventually leads to opening the gate.
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Listing 6: Specifications of Thermostat System
1 channel tock, tooHot, tooCold, turnOff, turnOn
2

3 OneStep(_) = 0
4

5 Timed(OneStep){
6

7 Thermostat = (tooHot -> tock -> tock -> turnOff -> Thermostat)
8 [] (tooCold -> tock -> tock -> turnOn -> Thermostat)
9

10 assert Thermostat :[deadlock-free]
11

12 }

4.4.4. Thermostat System

This example illustrates a thermostat that monitors ambient temperature and controls
a valve to enable or disable a heating system. The system responds to two inputs,
tooHot and tooCold, which is required to perform the events turnOff or turnOn
in response to these two inputs, respectively, after two time units [37].

In Listing 6, we present the tock-CSP specification of the system named Thermostat.
It serves as input to our translation technique. Line 1–5 are similar to example 1.
Line 7 defines the process Thermostat that presents two choices. The first choice
performs the action tooHot, then waits two times before turning off the system, and
then behaves as Thermostat. The second choice is the event tooCold that also waits
two times before turning the system off and behaves as the process Thermostat.

Verification requirements: after translating the system into TA, the following are
sample requirements that can be specified with TCTL and verified with Uppaal auto-
matically.

1. tooHot --> turnOff
Whenever the temperature is too hot, eventually the system will turn off,

2. tooCold --> turnOn
Whenever the temperature is too cold, eventually the system will turn on

3. turnOn U tooHot
The system remains on until it receives a signal tooHot.

4. turnOff U tooCold
The system remains off until it receives a signal for tooCold.
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Listing 7: Specification of Simple Mobile system
1 channel obstacle, tock, moveRet, moveCall, turnCall, turnReturn
2

3 OneStep(_) = 0
4

5 Timed(OneStep) {
6

7 mSystem = EntryMoving /\ (obstacle-> SKIP);EntryTurning;
8 WAIT(3);mSystem
9 EntryMoving = EDeadline(moveCall, 0);EDeadline(moveRet, 0);

10 WAIT(1);EntryMoving
11 EntryTurning = EDeadline(turnCall, 0); EDeadline(turnReturn, 0)
12

13 EDeadline(e, t) = (e -> SKIP) [|{e}|] (WAIT(t) /\ e->SKIP)
14

15 assert mSystem :[deadlock-free]
16 }

4.4.5. A Simple Mobile System

This example illustrates a simple mobile system that moves at a specified linear veloc-
ity lv and observes the presence of an obstacle. When the system detects an obstacle,
the system turns at a specified angular velocity av and then continues moving, repeat-
ing the procedure again [127].

In Listing 7, we present the specification of the simple mobile system. Like the
previous examples, Lines 1–5 are similar to the previous test cases. Line 7 defines
the process mSystem that starts moving until it is interrupted by an obstacle, then
turns for three unit time and continues moving by behaving as the process mSystem.
Lines 10–11 defines the process EntryMoving that moves for one time unit repeatedly.
Line 13 defines the process EntryTurning for turning the system. Line 15 defines
the process Edeadline(e, t) that specifies a deadline t for the event e. Finally,
Line 17 defines an assertion for checking deadlock freedom in the specifications. This
completes the specification of the simple mobile system.

Verification requirements: after using our translation technique to translate tock-CSP
into TA, the following sample requirements are specified with TCTL and verified with
Uppaal automatically.

1. A<> obstacle
The system eventually detects an obstacle 14.

2. moveCall --> obstacle

14If an obstacle exists in the environment, otherwise the system will continue wondering in the operating
environment.
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Whenever the system moves, it will eventually detect an obstacle (if an obstacle
exists in the environment).

3. turnCall --> moveCall
Whenever the system turns, it will eventually moves and progress again.

4. moveCall U obstacle
The system continues to move until it detects an obstacle (if an obstacle exists in
the environment).

Overall, in this section, we presented sample test cases from the literature. We use a
selection of six test cases considered in demonstrating the application of the translation
strategy and its automated tool. Here, we provide detailed specifications of the test
case as well as an overview of the specification in Table 5, which provides insight
into the structure of the test cases. Also, we illustrate a selection of requirements
that can be verified with TCTL, using Uppaal on the translated TA for the input tock-
CSP specifications. As described in details in both Chapter 1 and 2, these selected
requirements illustrate sample requirements that can be verified after translating the
specifications.

These test cases help us in understanding both the strength and limitations of our
translation technique. Also, these test cases helped us in improving and fixing errors
associated with translating recursion.

4.5. Performance Evaluations

In this section, we illustrate one of the applications of our translation technique in
comparing the performance of the two verification tools: FDR and Uppaal, specifically
for automatic verification. We describe the resources as well as the procedure used for
the performance evaluation. Previously in Section 4.3, we discussed a translation of
a list of processes that enables us to compare the performance of FDR and Uppaalin
this section. Evaluating the performance is another experiment that we carry out in
taking advantage of the translation work.

In Section 4.3, we developed an evaluation tool that enables us to evaluate the trans-
lation technique by translating a list of formulated processes, which pairs all the con-
sidered constructors in the presented BNF of this research. We use the collection of
these processes in comparing the performance of the two model-checkers: FDR and
Uppaal in analysing deadlock freedom. We consider checking deadlock freedom us-
ing both FDR and Uppaal on the formulated processes constructed manually and the
translated TA for Uppaal. Details of the processes are available in a provided reposi-
tory of the work [117]. Each verification was repeated ten times. Details of the timings
are available in the repository [117]. A summary of the average timing is presented
in Figure 53, which provides an overview of comparing the performance of the tools:
FDR and Uppaal.

Evaluating the performance is another experiment that we carry out for comparing
the two model checkers. The graph in Figure 53 summarises the recorded timing
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Figure 53: Performance analysis for comparing the performance of FDR and Uppaal

in checking deadlock freedom (time unit in seconds).

for checking deadlock using both FDR and Uppaal, Checking deadlock is one of the
common interesting checks that can be done with both FDR and Uppaal. Secondly,
deadlock checks require an exhaustive verification for checking every state of each
model, which makes it suitable for comparing performance.

For each process in the list of the processes we considered for the evaluation, we
record the times of checking deadlock freedom using both FDR and Uppaal. Also, we
record the average timing after repeating each of the checks ten times. We compare the
recorded timings in Figure 53, which summarises the recorded average timing. The
longer bars (blue) show the recorded timings for FDR, while shorter bars (red) show
the recorded average timings for Uppaal. From the graph, it is clear that the average
performance timings for FDR are above 0.03s, while the average performance timings
for Uppaal is below 0.01s. This first part of the result shows that Uppaal is faster than
FDR for verifying deadlock freedom.

However, with larger processes, FDR performs better than Uppaal, as shown in
Table 5. The table shows the recorded average timing for each of the processes in the
listed case studies (see Section 4.4). The remaining parameters provide an overview of
the processes, which indicates the sizes and structures of the processes. This concludes
the experiment carried out in comparing the performance of FDR and Uppaal. In the
next section, we describe our plan of mathematical proof for justifying the translation
rules.
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4.6. An Overview of Mathematical Proofs

This section discusses our plan for using mathematical proofs in justifying the transla-
tion technique. So far, we use traces for the experimental evaluation of the translation
technique. However, this is an approximation to establishing correctness with a finite
set of traces. Proving correctness for the complete set of traces involves using math-
ematical proof. This is achieved using structural induction. An account of our initial
effort to produce a proof is provided in this section. Here, we illustrate an early part
of the proof with a proof of one of the base cases of the structural induction: a trans-
lation of the basic process STOP. In Appendix F, we provide additional details of the
proof, which includes the base case SKIP, and the induction steps using the construct
of Internal choice, External choice and Sequential composition.

For the proof of our translation function, we need to establish that, for each valid
tock-CSP process CSPproc, written using the terms of the provided BNF (Section 3.1,
Page 61), the following property holds.

1 forall P::CSPproc,
2 (traces_tockCSP P) = (traces_TA . transTA P)

Therefore, for each translation rule (Section 3.3), we need to show that the translated
TA captures the behaviour of its translated construct of tock-CSP in the BNF (Section
3.3). In carrying out the proof we develop functions and tool that help us in developing
and evaluating the proof. We use the tool in evaluating the steps of the proof to
ensure that the steps are correct and consistence. The three major functions use in
the proof are trace'TA, traces_TA and traces_tockCSP. Additional detail of
these functions is available in Appendix F. The first function traces'TA takes a list
of translated TA and computes their traces:

traces'TA :: [TA] -> [Traces]

The second function traces_TA takes a list of TA and returns its traces without the
flow actions, define as follows:

traces_TA :: [TA] -> [Traces]

Lastly, the function traces_tockCSP takes a tock-CSP process and returns its traces,
as defined by Roscoe [6].

traces_tockCSP :: CSPProc -> [Traces]

For example, let us consider TA1 as the TA for the translation of STOP using Rule
3.1 (Page 80). TA1 is define as follows:

TA1 = [
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]

TA1 = [([s0, s1], s0, [ck],
[(startID ++ bid ++ _ ++ sid), tock],
[(s0, (startID ++ bid ++ _ ++ sid), [], [], s1),
(s1, tock, ck<=1, ck, s1)], [])

]

In the context of TA, a path [43,107] is a sequence of consecutive transitions that begins
from the initial state, which may be an empty sequence. And a trace [43,107] (or word
in the language of TA) is a sequence of actions in a given path. There is only one
infinite path in TA1 with two transitions: first, a transition from location s0 to location
s1; second, a transition from location s1 and back to the same location s1. The traces
on the path of TA1 are expressed as follows:

traces'TA TA1 =
[]:[ "startID00":s |s <- [ replicate n "tock" | n <- [0..]]]

The function traces'TA computes the traces of TA1 as follows. The first empty
sequence appears before the first transition. The action startID00 happens on the
first transition. The action tock happens on the second transition, which is repeated
infinitely to produce the infinite traces on the path 〈tock〉n.

The second function traces_TA TA is similar to traces'TA TA but removes all
the coordinating actions (Definition 3.2) from the traces. In the case of TA1 the traces
are as follows:

tracesTA TA1 = []:[(replicate n "tock") | n <- [0..] ]

In the proof we use structural induction over the natural numbers.

1 forall n:Nat,
2 forall P::Proc,
3 traces_tockCSP n P = traces_TA n . transTA P

For the base case of the natural numbers (n = 0), we need to show that:

1 for n=0,
2 forall P::Proc,
3 traces_tockCSP 0 P = traces_TA 0 (transTA P)

This is illustrated as follows:
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1 proofTrans :: CSPproc -> Int -> ProofLayout [[Event]]
2 proofTrans p 0 =
3 traces_tockCSP 0 p
4 :=: --{traces_tockCSP.0, l∼>r}
5 [[]]
6 :=: --{traces_TA.0, r∼>l}
7 traces_TA 0 (transTA p "" 0 0 0 [])
8 :=: QED

In ensuring that the steps of the proof are correct, we used a simplistic tool pcpl to
support the checking of the proof. Additional detail of the tool is also included in
the appendix. The tool checks the syntactic correctness and type correctness of the
formulae to ensure that the steps are consistent with one another. An illustration of
using the tool pcpl can be seen above, in the proof of the base case for integer n = 0.

In using the tool we describe the proof as a function that takes CSP process and
an integer as universally quantified variable used in the proof layout for describing
the proof. The tool pcpl follows the layout to check the proof. The tool has a special
symbol :=: that separates the steps of the proof (similar to the commonly used symbol
=), and Haskell comments in the form of --{} to indicate reasons for the steps. For
example, in the above part of the proof, the steps of the proof are in Lines 3, 5 and
7, separated by the symbol :=:. Lines 4 and 6 are comments for the justification
of the steps enclosed inside the comment symbol --{}. Each reason is structured
to provide a justification (mostly an identifier of a function); and direction of the
application of the function: right (r) to left (l) or left to right, as l<∼r and l∼>r,
respectively; and also a mapping of the substituted value(s) which we did not use
in this illustration. Line 4 describes the reasons as the application of the function
traces_tockCSP from left to right, while Line 6 describes a reason as the application
of the function traces_TA from right to left. For the proof of this base case (n = 0),
since we have used no properties of P, other than P::CSPproc, we can conclude, by
the rule of generalisation:

1 forall P::Proc,
2 traces_tockCSP 0 P = traces_TA 0 (transTA P)

4.6.1. Proof for the Construct STOP (Base case)

We start with the first rule (translation the construct of a basic process STOP; the first
construct of the BNF (Section 17). For the proof by induction, we need to establish
that:

1 traces_tockCSP STOP = traces_TA (transTA STOP)

We need to show that

1 (traces_tockCSP n STOP = traces_TA n (transTA STOP))
2 => (traces_tockCSP (n+1) STOP = traces_TA (n+1) (transTA STOP))

This is illustrated as follows:
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1 -- (traces_tockCSP n STOP = traces_TA n (transTA STOP))
2 -- => (traces_tockCSP (n+1) STOP = traces_TA (n+1) (transTA STOP))
3 proofTrans STOP n =
4 traces_tockCSP (n+1) STOP
5 :=: --{traces_tockCSP.stop, n<∼n+1}
6 [(replicate l "tock") | l <- [0..n+1]]
7 :=: --{List comprehensions }
8 [(replicate l "tock") | l <- [0..n]] ++ [replicate (n+1) "tock"]
9 :=: --{traces_tockCSP.stop}

10 (traces_tockCSP n STOP) ++ [replicate (n+1) "tock"]
11 :=: --{Induction hypothesis}
12 nub ((traces_TA n (transTA STOP "ta" 0 0 0 []))
13 ++ [replicate (n+1) "tock"])
14 :=: --{transTA.stop, l∼>r}
15 nub (traces_TA n taSTOP
16 ++ [replicate (n+1) "tock"])
17 :=: --{tracesTA.n, l∼>r, tas<∼STOP}
18 nub ([t \\ ["startID0_0"] |
19 t <- (traces'TA n taSTOP ) ]
20 ++ [replicate (n+1) "tock"] )
21 :=: --{traces'TA.stop, l∼>r}
22 [t \\ flowActions taSTOP
23 |t <- ([("startID0_0"):s
24 |s <- [(replicate l "tock")|l <- [0..n] ] ] ) ]
25 ++ [replicate (n+1) "tock"]
26 :=: --{Introducing the connection action}
27 [t \\ flowActions taSTOP
28 | t <- ([("startID0_0"):s
29 |s <- [(replicate l "tock")|l <- [0..n] ] ]) ]
30 ++ [ t \\ ["startID0_0"]
31 | t <- [["startID0_0"] ++ (replicate (n+1) "tock")] ]
32 :=: --{List comprehensions}
33 [t \\ flowActions taSTOP
34 | t <- ([("startID0_0"):s
35 |s <- [(replicate l "tock")|l <- [0..n+1] ] ] ) ]
36 :=: --{traces'TA.stop, r∼>l}
37 nub ([t \\ flowActions taSTOP
38 | t <- (traces'TA (n+1) taSTOP ) ] )
39 :=: --{tracesTA.n, r∼>l, n<∼n+1, tas<∼taSTOP}
40 nub (traces_TA (n+1) taSTOP )
41 :=: --{trans.stop, r->l}
42 nub (traces_TA (n+1) (transTA STOP "ta" 0 0 0 []))
43 :=: QED
44 where
45 taSTOP = [([ "s0", "s1"], "s0", ["ck"], ["startID0_0"], [

"tock"], [("s0", "startID0_0", [], [], "s1"), ("s1", "
tock", "ck<=1", "ck", "s1")], [] )]

∴ traces_tockCSP (n+1) STOP = traces_TA (n+1) (transTA STOP)
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This proves that the traces of the translated TA for STOP captures its traces correctly.
In this section, we provide an overview of the proof with illustration of the proof for
the base case. Additional details of the proof is included in the appendix.

4.7. Final Considerations

In this chapter, we described the evaluation approaches we considered in evaluating
the translation technique. We discussed the implementation of the translation rules
into a tool that automates the translation technique. The tool illustrates how the rules
fit together as a system that automates the translation technique. This gives us confi-
dence in using the translation rules as part of the translation strategy.

We used two types of test-cases for the evaluation. First, a collection of small pro-
cesses that pair all the constructs of the tock-CSP within the scope of this work. The
small processes have traces of sizes within the range 0–10, except recursive processes
that have unbounded traces. The second collection of test cases is processes of reason-
able size systems for evaluating the translation technique. However, their traces are
infinite due to the nature of the timed system that must allow the progress of time.

We performed the experiment on Ubuntu 16.04.6 LTS (Xenial Xerus) running on
Intel Core i7-4700MQ (4C/8T, 2.4GHz) processor with 32GB RAM (4x 8GB modules).
This gives us a good opportunity for comparing the performance of FDR and Uppaal,
in analysing deadlock freedom. It would be interesting to see a general comparison of
the tools, but that is a topic for future work. In this work, we take an average of ten
running for each process. The result shows that Uppaal performs better on small pro-
cesses. However, with more substantial processes, FDR performs better than Uppaal

in comparing the performance experiment on the larger test-cases, as described in this
chapter.

Additionally, we have described an initial mathematical proof for establishing the
correctness of the translation rules, given that mathematical proofs provide greater
certainty than trace analysis. Thus, we plan to use structural induction to prove the
translation rules. The mathematical proof will give higher assurance for justifying the
translation rules.

These two validation considerations serve to validate the correctness of the trans-
lation technique, and shows that our strategy is a promising basis for a translating
tock-CSP into TA. In the next chapter, we evaluate the presented work, present conclu-
sion, and discuss future work.
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Chapter Five

5. Summary and Conclusion

We conclude by summarising the research work conducted in this study, in Section
5.1. Then, in Section 5.2, we discuss the limitations of the work and recommend
future directions for improving the work.

5.1. Summary

In this research work, we have discussed the available resources for the verification
of robotics applications in Chapter 2. Perhaps the most fundamental question that
emerged from early exploratory work was how to improve formal techniques of veri-
fying temporal specifications that are compatible with the existing resources of devel-
oping robotics, especially the ones that have a formal basis (Chapter 1). In investigat-
ing this question, we studied the available formal techniques for verifying temporal
specifications. We found that various techniques and tools have been developed for
supporting the advancement of robotics software. However, there is less attention
given to verifying the correctness of the robotics applications; for instance, few tech-
niques have been developed to support the verification of the robotics software.

In the literature (Chapter 2), we studied the existing technique and tools available in
the area of software engineering that focus on three directions: Formal Method, DSML
and Temporal specifications. We found that many DSMLs have been developed to im-
prove the advancement of robotics software systems. However, most of the techniques
lack a formal basis, and there is little proper support for verification, specifically in
verifying temporal specifications (Chapter 1 and 2).

On the basis of four criteria: modelling, reasoning, system and tool support, we
studied a selection of nine DSMLs where we found many interesting resources and
features for enhancing the development of robotics systems (Chapter 2). Based on the
research conducted for this work, there is less attention given to enhancing the verifi-
cation aspect, especially in verifying temporal specifications with respect to real-time.
This indicates the need for improving the verification aspect specifically in verifying
temporal specification.

In the area of formal method, tock-CSP has been developed for modelling temporal
specifications with the support of FDR for automatic verification. Among the studied
DSMLs, RoboChart uses tock-CSP for verifying temporal specifications. Also, we find
that there are existing projects and tools that provide facilities for verifying temporal
specification in a continuous-time model, particularly in the formal verification of
real-time systems. For instance, Uppaal, KRONOS and PRISM are popular real-time
verification tools. From the literature, Uppaal is the most advanced and most efficient
tool that supports the verification of TA with TCTL (Chapter 2).

In Chapter 3, we presented a proposed technique for translating tock-CSP into TA for
Uppaal, which facilitates using temporal logic, and automatic support with Uppaal in
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verifying tock-CSP models. This translation technique provides a way of using TCTL
in specifying liveness requirements that are difficult to specify and verify in tock-CSP.
Also, the result of this work sheds additional insight into the complex relationship
between tock-CSP and TA, as well as the connection between the refinement model
and temporal logic model.

We extended tock-CSP with the additional support of real-time model-checker Uppaal

for verifying temporal specifications, especially for the kind of requirements that are
difficult to verify with FDR, such as liveness specifications. We developed a translation
technique for translating tock-CSP into TA that facilitates using Uppaal for automatic
verification of tock-CSP, which improves the facilities of verifying temporal specifica-
tion in RoboChart and other existing works that are based on tock-CSP.

In developing the translation technique, we provided a BNF that serves as a link for
connecting existing works in tock-CSP with our translation technique. We developed
a translation strategy for the translation technique. Based on the strategy, we came up
with translation rules that describe the translation of each construct of the tock-CSP
into TA, within the scope of our work (Chapter 3).

We considered translating tock-CSP models into a network of small TAs that meets
the specifications of tock-CSP. This is due to the compositional characteristics of tock-
CSP (inherited from CSP) which is not available in TA, and it is challenging translating
tock-CSP into a single TA. With our approach of using a network of small TAs, we
captured the specifications of the tock-CSP into TA, which facilitates using TCTL for
the verification of tock-CSP models.

In justifying the correctness of the translation strategy (Chapter 4), we used trace
analysis to compare the behaviour of the input tock-CSP with the behaviour of the
translated TA. We generated the traces in two stages. In stage 1, we generated traces
from both FDR and Uppaal; if the traces did not match, we created stage 2 of the trace
analysis. In stage 2, we used Uppaal to verify that all the traces of tock-CSP are valid
traces of the translated TA. In this case, we used the power of FDR to complement the
power of Uppaal in generating traces. This is because Uppaal is not capable of gener-
ating traces that evaluate to the same logical value irrespective of the permutation of
the events.

In evaluating the translation technique, we used two categories of test cases. First,
we used a collection of formulated processes for pairing all the essential tock-CSP con-
structs, within the scope of this translation work. Second, a selection of test cases from
the literature were used that helped us to understand the strengths and limitations of
the translation work. The selection of the test cases is in the wider sense as defined
from the IEEE Standard 1872-2015. The collection of these processes gives us the op-
portunity to compare the two model checkers: FDR and Uppaal in analysing deadlock
freedom where the input tock-CSP process is constructed manually and the translated
TA generated by our translation tool. Because of that, the results may not be a fair
comparison, as the generated TA may not be the most efficient models for Uppaal.
The result shows that FDR performs better in the larger processes, while Uppaal per-
forms better in the smaller processes (Chapter 4). However, the boundary between the
range of the processes remains unknown; an interesting investigation for future work.
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Considering that trace analysis is limited to bounded traces, which is limited to
covering safety properties, it is clear that trace analysis covers a partial notion of cor-
rectness that will not be able to cover infinite traces. Thus, we planned to extend
the trace analysis by using mathematical proofs to establish the correctness of the
translation techniques that will cover infinite traces. This was achieved with structural
induction. We provided an illustration of the proof for the base cases and an induction
step. Completing the proof will provide an additional convincing justification for the
technique and its supporting tool. This concludes our contribution for this research
work.

5.2. Future work

In this section, we discuss the limitations that are beyond the scope of our work.
Also, we provide insight into further work that can improve this work in a promising
direction of the future work.

So far, in this work, we have used trace analysis to justify the correctness of the
translation work. We provided a good plan for using structural induction to prove
the correctness of the translation rules. Completing the proof is beyond the scope of
this work. An immediate recommended future work is to complete the proof for the
correctness of the translation technique. Besides, the scope of this work is limited by
trace analysis. It will be interesting if future work will consider expanding the scope
of the proof to include refusal and divergences.

Unifying Theories of Programming (UTP) provides a unified framework for com-
paring semantics of programs that facilitates reasoning about programming theories
as well as links between programmes and theories. To increase the strength of the
translation work, it will be interesting to see an expansion of this work by establish-
ing the correctness of the translation technique via UTP. For instance, by building a
semantic link between tock-CSP and TA using operational semantics of both sides.

The provided BNF (Chapter 3) covers the essential operators of tock-CSP. A natural
extension of this work is to expand the BNF to cover all the operators of tock-CSP.
This will improve the application of the translation technique to translate a broader
category of systems.

In this work, we considered a network of small TAs to develop the translation tech-
nique due to the problem of handling the compositional structure of tock-CSP, as men-
tioned in Chapter 3. It will be interesting to explore translating the tock-CSP into
a large size TA, instead of the small sizes. This has the potential of improving the
performance of Uppaal for automatic verification of the translated TA models.

Also, using the translation technique to translate extensive case studies will help
to further understand the strengths and robustness of our translation work, as well
as additional scope that will limit the application of the translation technique. For
instance, in translating the case studies (Section 4.4), we understand the role of trans-
lating data which makes it necessary to omit additional interesting case studies that
we may like to include, such as Triple Redundancy Protocol, Grid system and Conway
puzzle. Expanding the work to include translating data will be a good addition to this
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work.
Additionally, currently, we translated the event tock into an action that is controlled

by a timed clock in Uppaal. A recommended next step in this work is to relate the
notion of tock to the notion of time in TA and getting rid of tock as an action; such that
we can be able to translate a process like P=tock->tock->tock-SKIP (or WAIT(3))
into a single TA, like in Figure 54, which has clock ck>3 that captures the time. This
additional extension will help us to explore additional interesting facilities of Uppaal

for verifying temporal specifications.

Figure 54: A sketch of a sample translated TA that illustrates a translation of the pro-
cess WAIT(3) with clock clk > 3.

Adding a GUI to the translation tool will be a significant improvement to the tool.
For instance, it will be interesting to see users interacting with the tool through the
GUI. Additionally, incorporating feedback from the results of the analysis directly to
the GUI will make it easier to understand the analysis.

This translation work opens up other directions for future work. For instance, trans-
lating the refinement specifications into TCTL will be a good addition to this work.
This will make it easy to communicate results between FDR and Uppaal.

Another interesting extension of this work is calculating the complexity of the trans-
lation technique and the generated networks of timed automata. This will be useful
for further work in improving the efficiency of both the translation technique and the
translated TA. Although this may not be simple work because many factors need to
be considered in describing the complexity, apart from the size of the input process,
other factors include a compositional structure of the input process, a combination of
operators used in describing the input process, the structure of the input process (such
as recursive, deadlock, and termination) and also both concurrency and the number
of synchronisation points in the process.

Another interesting work is to expand the performance experiment (Section 4.5)
to find out additional details for answering the pending question of why Uppaal

performs better in smaller processes and FDR performs better in larger processes. It
will be interesting to know the clear boundary between the performance of the two
tools in the future extension of this work.

It would be interesting to see how our translation work will match the evolution of
RoboChart models. At the time conducting this work, RoboChart was still evolving.
As such, we focus on tock-CSP that captures the generated semantics of the RoboChart
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models. Part of the future work should investigate the application of this work when
a stable version of RoboChart become available.

In addition, it will be interesting to include other tools such that we can under-
stand the strengths of these tools and utilise them appropriately. There are still many
other aspects that can be further explored in this research direction. These include
consideration of translating tock-CSP into KRONOS, which also provides a verification
engine for verifying TA in modelling and verification of system specifications. It has
a different approach from Uppaal. This completes the work we carried out in this
research.
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Appendices

A. Complete Translation Rule of Prefix

This section describes the translation of operator Prefix. The section begins with pre-
senting a rule for translating the operator Prefix, and then follows with an example
that illustrates using the rule in translating a process.

This rule for translating prefix happens to be the largest translation rule because we
can not translate an event without knowing whether the event used in the prefix is, in
the overall process, being hidden, renamed, or used as part of synchronisation, initial
of external choice or initial of interrupt. In each case the event has different behaviour.

Thus, first the translation rule includes a function for checking both hidden and re-
named events. And then we formulate eight cases for capturing the possible behaviour
of an event that is used as part of synchronisation, external choice or interrupt. Each
case captures a possible behaviour of an event for a process that is part of synchroni-
sation, external choice or interrupt.

Rule A.1. Translation of Prefix (1 of 5))

1 transTA (Prefix e1 p) procName bid sid fid usedNames =
2 (([(TA idTA [] [] locs1 [] (Init loc1) trans1)] ++ ta1),
3 sync1, syncMapUpdate)
4 where
5 idTA = "taPrefix" ++ bid ++ show sid
6 (syncs, syncMaps, hides, renames, exChs, intrpts,

initIntrpts,
7 excps) = usedNames
8

9 -- Checking hiding or renaming
10 e = checkHidingAndRenaming e1 hides renames
11

12 {- High level definition of locations and transitions for
the eight possible combination of synchronisation, choice
and interrupt, 000, 001, 010, 011, 100, 101, 110, 111 -}

13 (locs1, trans1)
14 |((not synch)&&(not exChoice)&&(not interupt)) = case1
15 |((not synch)&&(not exChoice)&&( interupt)) = case2
16 |((not synch)&&( exChoice)&&(not interupt)) = case3
17 |((not synch)&&( exChoice)&&( interupt)) = case4
18 |(( synch)&&(not exChoice)&&(not interupt)) = case5
19 |(( synch)&&(not exChoice)&&( interupt)) = case6
20 |(( synch)&&( exChoice)&&(not interupt)) = case7
21 |(( synch)&&( exChoice)&&( interupt)) = case8

180



Translation of Prefix (2 of 5)

23 case1 = ([loc1, loc2, loc5],
24 [t12, t25, t51] ++ addTran ++ transIntrpt')
25 case2 = ([loc1, loc2, loc3c, loc5],
26 if not $ null intrpts
27 then [t12G, t23ci, t3c5, t51] ++ addTran
28 else [t12, t23ci, t23cgi, t3c5, t51] ++ addTran
29 ++ transIntrpt')
30 {- if a process can interrupt and also be interrupted, then

it can only be interrupted after initiating its interrupt
-}

31 case3 = ([loc1, loc2, loc3c, loc5],
32 [t12, t23c, t3c5, t51] ++ t23e ++ addTran
33 ++ transIntrpt')
34 case4 = ([loc1, loc2, loc3c, loc4c, loc5],
35 [t12G, t23c, t3c4ci, t3c4cgi, t4c5e, t51] ++
36 addTran ++ transIntrpt')
37 case5 = ([loc1, loc2, loc3, loc5],
38 [t12, t23, t35, t51] ++ addTran ++ transIntrpt')
39 case6 = ([loc1, loc2, loc3, loc4c, loc5],
40 [t12G, t23, t34c, t4c5i, t4c5gi, t51] ++
41 addTran ++ transIntrpt')
42 case7 = ([loc1, loc2, loc3, loc4, loc5],
43 [t12, t23ech, t34, t45, t51] ++
44 addTran ++ transIntrpt')
45 case8 = ([loc1, loc2, loc3, loc4, loc5, loc6],
46 [t12G, t23, t34c, t4c6, t65, t65gi, t51] ++
47 addTran ++ transIntrpt')
48

49 -- = Location ID Name Label LocType
50 loc1 = Location "id1" "s1" EmptyLabel None
51 loc2 = Location "id2" "s2" EmptyLabel None
52 loc2c = Location "id2" "s2" EmptyLabel CommittedLoc
53 loc3 = Location "id3" "s3" EmptyLabel None
54 loc3c = Location "id3" "s3" EmptyLabel CommittedLoc
55 loc4 = Location "id4" "s4" EmptyLabel None
56 loc4c = Location "id4" "s4" EmptyLabel CommittedLoc
57 loc5 = Location "id5" "s5" EmptyLabel CommittedLoc
58 loc6 = Location "id6" "s6" EmptyLabel CommittedLoc
59

60 transIntrpt' = (transIntrpt intrpts loc1 loc2)
61

62 -- Additional transitions for tock, external choice
63 addTran | ((not $ elem e syncs)&&(null exChs)) = [t22]
64 | ((elem e syncs) &&(null exChs)) = [t22]
65 | ((not $ elem e syncs)&&(not $ null exChs))= [t22]

++ t21
66 | otherwise = [t22, t33, t44] ++ t21
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Translation of Prefix (3 of 5)

68 t23ci = Transition loc2 loc3c l23ci []
69 t23cgi = Transition loc2 loc3c altIntrpt []
70 l23ci = [(Sync (VariableID ((show e) ++ "_intrpt") [])

Excl), (Update [(AssgExp (ExpID ((show e) ++ "
_intrpt_guard")) ASSIGNMENT TrueExp )])]

71

72 {- An alternative transition in case another event has
already initiates the interrupt. Guard other possible
interrupts, such that any of the interrupt can enable the
alternative transition -}

73 altIntrpt = [(Guard
74 (ExpID (intercalate " || " [l ++
75 "_intrpt_guard"| (ID l) <- initIntrpts])))]
76 -- reset the guards in case of recursive process
77 resetG = [Update [(AssgExp (ExpID (l ++ "_intrpt_guard"))
78 ASSIGNMENT FalseExp)| (ID l) <- initIntrpts

]]
79 t3c5 = Transition loc3c loc5 lab4e []
80 t3c4ci = Transition loc3c loc4c l23ci []
81 t3c4cgi = Transition loc3c loc4c altIntrpt []
82 t4c5 = Transition loc4c loc5 (lab2i ++ lab2d) []
83 t4c5e = Transition loc4c loc5 lab4e []
84 t34c = Transition loc3 loc4c lab4 []
85 t3c4c = Transition loc3c loc4c lab4e []
86 t4c5i = Transition loc4c loc5 l23ci []
87 t4c5gi = Transition loc4c loc5 altIntrpt []
88 t4c6 = Transition loc4c loc6 (lab2i ++ lab2d) []
89 t65 = Transition loc6 loc5 l23ci []
90 t65gi = Transition loc6 loc5 altIntrpt []
91 t12 = Transition loc1 loc2 lab1 []
92 t12G = Transition loc1 loc2 (lab1 ++ resetG) []
93 t23 = Transition loc2 loc3 lab2i []
94 t2c3 = Transition loc2c loc3 lab2i []
95 t23c = Transition loc2 loc3c (lab2i ++ lab2d) []
96 t23ech = Transition loc2 loc3 (lab2i ++ lab2d) []
97 t25 = if elem e hides
98 then Transition loc2 loc5
99 ([(Sync (VariableID "itau" []) Excl)]) []

100 else Transition loc2 loc5 lab2i []
101 t25r = Transition loc2 loc5 ([(Sync (VariableID
102 (show new_e) []) Excl)] ++ labpath) []
103 new_e = head [newname | (oldname, newname) <- renames,

oldname == e]
104 t51 = Transition loc5 loc1 [lab3] []
105 t33 = Transition loc3 loc3 [labTock] []
106 t44 = Transition loc4 loc4 [labTock] []
107 t35 = Transition loc3 loc5 lab4 []
108 t22 = Transition loc2 loc2 [labTock] []
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Translation of Prefix (4 of 5)

109 t21 = [(Transition loc2 loc1 [(Sync (VariableID
110 ((show ch) ++ "_exch") []) Ques)] [])|ch <-

exChs']
111 t23e = [(Transition loc2 loc3 [(Guard (ExpID ((show ch)

++ "_exch_ready")) )] [])|ch <- exChs']
112 t34 = Transition loc3 loc4 lab6 []
113 t45 = Transition loc4 loc5 lab4 []
114

115 lab1 = [Sync (VariableID (startEvent procName bid sid)
[]) Ques]

116

117 lab2i | (elem e syncs)&&(null exChs') = -- check sync
118 [(Guard (BinaryExp (ExpID ("g_" ++
119 (eTag e syncMaps' ""))) Equal (Val 0))),
120 (Update [(AssgExp (ExpID ("g_" ++
121 (eTag e syncMaps' ""))) AddAssg (Val 1))])]
122 | (not $ null exChs') =
123 if (elem e hides)
124 then [(Sync (VariableID "itau_exch" [])

Excl)]
125 else [(Sync (VariableID ((show e ) ++
126 "_exch") []) Excl)]
127 | otherwise = lab4e
128

129 labpath = [(Update [(AssgExp (ExpID "dp") AddAssg (Val 1)),
130 (AssgExp ( ExpID ("ep_" ++ bid ++ "_" ++ show

sid)) ASSIGNMENT TrueExp )])]
131 -- Attaching path variable transition
132 -- Checks for exception
133 lab3 = if elem e (fst excps)
134 then Sync (VariableID ("startExcp" ++ (show fid )

) []) Excl
135 else Sync (VariableID ("startID" ++ bid ++ "_" ++
136 show (sid+1)) []) Excl
137 lab4 = [(Sync (VariableID ((show e) ++ "___sync") [])

Ques)]
138 lab4e | e == Tock = [(Sync (VariableID (show e) [])

Ques)] ++ labpath -- Sync on tocks
139 | elem e hides = [(Sync (VariableID ("itau") [])

Excl)] -- itau for hiding event
140 | otherwise = [(Sync (VariableID (show e) [])

Excl)] ++ labpath -- Fire normal event
141 lab6 = [(Guard (BinaryExp (ExpID ("g_" ++ (eTag e

syncMaps' ""))) Equal (Val 0))), (Update [(AssgExp (ExpID
("g_" ++ (eTag e syncMaps' ""))) AddAssg (Val 1))])]
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Translation of Prefix (5 of 5)

143 lab2d = [(Update [(AssgExp (ExpID ((show ch) ++ "
_exch_ready")) AddAssg (Val 1)) | ch <- exChs'])]

144 gIntrpt = [(Guard (BinaryExp (ExpID "gIntrpt") Equal (Val
1)))]

145 uIntrpt = [(Update [(AssgExp (ExpID "gIntrpt") AddAssg (Val
1))])]

146 labTock = Sync (VariableID "tock" []) Ques
147 synch = elem e syncs
148 exChoice = null exChs
149 interupt = null initIntrpts
150

151 -- Update sync points
152 syncMaps' = if elem e syncs
153 then [(e, (show e) ++ bid ++ "_" ++ show sid )]
154 else [] -- syncMaps_
155

156 -- Combine the synchronisations together
157 syncMapUpdate = syncMaps' ++ syncMap1
158

159 -- Replace renamed event with the new name
160 exChs' = if ( null crs ) then exChs
161 else (exChs \\ [es']) ++ [nn']
162

163 -- rename all events for blocking external choice
164 crs = [(es, nn) | (es, nn) <- renames, ch <- exChs, ch ==

es]
165 (es', nn') = head crs
166

167 {- Update used names and then remove external choice and
interrupt if any, after the first event. -}

168 usedNames' = (syncs, syncMaps, hides, renames, [], intrpts,
[], excps)

169

170 -- Finally recursive call for subsequent translation.
171 (ta1, sync1, syncMap1) = transTA p [] bid (sid+1) fid

usedNames'
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B. List of Small Processes for the Experimental Evaluation

This section describes an overview of the list of processes we use for the experimental
evaluation. Table 6 describes the constant processes, while Table 7 describes a list for
processes for pairing the constructs we consider in this work. The processes in Table 7
illustrates an exhaustive pairing of the constructs with one another.

01 STOP Deadlock (Dl)
02 Stopu Urgent Deadlock (UD)
03 SKIP Termination (Tn)
04 Skipu Urgent Termination (UT)
05 WAIT(n) Delay (Dy)
06 Waitu(n) Strict Delay (SD)

Table 6: Basic processes for the experimental evaluation
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BNF Constructors Dl UD Tn UT Dy SD Px IC EC Il GP SC RP To It ED Hd Rn Ex
Prefix (Px) 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 1G 1H 1J
Internal Choice (IC) 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 2G 2H 2J
External Choice (EC) 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 3G 3H 3J
Interleaving (Il) 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 4G 4H 4J
Generallise Parallel (GP) 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 5G 5H 5J
Sequential (SC) 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 6G 6H 6J
Recursive Process (RP) 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 7G 7H 7J
Interrupt (It) 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 8G 8H 8J
Timeout (To) 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F 9G 9H 9J
Event Deadline (ED) A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF AG AH AJ
Hiding (Hd) B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF BG BH BJ
Renaming (Rn) C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF CG CH CJ
Exception (Ex) D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF DG DH DJ

Table 7: An overview of the small processes for pairing the constructors used in the experimental evaluation.
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C. Abstract Syntax Tree of UPPAAL TA

Source 15

1 BNF for the 4.x XTA format
2 XTA ::= <Declaration>* <Instantiation>* <System>
3 Declaration ::= <FunctionDecl> | <VariableDecl> | <TypeDecl> | <

ProcDecl>
4 Instantiation ::= ID ASSIGNMENT ID '(' <ArgList> ')' ';'
5 System ::= 'system' ID (',' ID)* ';'
6

7 ParameterList ::= '(' [ <Parameter> ( ',' <Parameter> )* ] ')'
8 Parameter ::= <Type> [ '&' ] ID <ArrayDecl>*
9

10 FunctionDecl ::= <Type> ID <ParameterList> <Block>
11

12 ProcDecl ::= 'process' ID <ParameterList> '{' <ProcBody> '}'
13 ProcBody ::= (<FunctionDecl> | <VariableDecl> | <TypeDecl>)*
14 <States> [<Commit>] [<Urgent>] <Init> [<

Transitions>]
15

16 States ::= 'state' <StateDecl> (',' <StateDecl>)* ';'
17 StateDecl ::= ID [ '{' <Expression> '}' ]
18

19 Commit ::= 'commit' StateList ';'
20 Urgent ::= 'urgent' StateList ';'
21 StateList ::= ID (',' ID)*
22

23 Init ::= 'init' ID ';'
24

25 Transitions ::= 'trans' <Transition> (',' <TransitionOpt>)* ';'
26 Transition ::= ID '->' ID <TransitionBody>
27 TransitionOpt ::= Transition | '->' ID <TransitionBody>
28 TransitionBody ::= '{' [<Guard>] [<Sync>] [<Assign>] '}'
29

30 Guard ::= 'guard' <Expression> ';'
31 Sync ::= 'sync' <Expression> ('!' | '?') ';'
32 Assign ::= 'assign' <ExprList> ';'
33

34 TypeDecl ::= 'typedef' <Type> <TypeIdList> (',' <TypeIdList>)*
';'

35 TypeIdList ::= ID <ArrayDecl>*
36 BNF for variable declarations
37 VariableDecl ::= <Type> <DeclId> (',' <DeclId>)* ';'
38 DeclId ::= ID <ArrayDecl>* [ ASSIGNMENT <Initialiser> ]
39 Initialiser ::= <Expression>
40 | '{' <FieldInit> ( ',' <FieldInit> )* '}'

15Taken from UPPAAL documentation in this link http://people.cs.aau.dk/˜adavid/utap/
syntax.html
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41 FieldInit ::= [ ID ':' ] <Initialiser>
42

43 ArrayDecl ::= '[' <Expression> ']'
44

45 Type ::= <Prefix> ID [ <Range> ]
46 | <Prefix> 'struct' '{' <FieldDecl>+ '}'
47 FieldDecl ::= <Type> <FieldDeclId> (',' <FieldDeclId>)* ';'
48 FieldDeclId ::= ID <ArrayDecl>*
49

50 Prefix ::= ( [ 'urgent' ] [ 'broadcast' ] | ['const'] )
51 Range ::= '[' <Expression> ',' <Expression> ']'
52

53

54 -- BNF for statements
55 Block ::= '{' ( <VariableDecl> | <TypeDecl> )* <Statement>* '}'
56 Statement ::= <Block>
57 | ';'
58 | <Expression> ';'
59 | 'for' '(' <ExprList> ';' <ExprList> ';'
60 <ExprList> ')' <Statement>
61 | 'while' '(' <ExprList> ')' <Statement>
62 | 'do' <Statement> 'while' '(' <ExprList> ')' ';'
63 | 'if' '(' <ExprList> ')' <Statement>
64 [ 'else' <Statement> ]
65 | 'break' ';'
66 | 'continue' ';'
67 | 'switch' '(' <ExprList> ')' '{' <Case>+ '}'
68 | 'return' ';'
69 | 'return' <Expression> ';'
70

71 Case ::= 'case' <Expression> ':' <Statement>*
72 | 'default' ':' <Statement>*
73

74 -- BNF for expressions
75 ExprList ::= <Expression> ( ',' <Expression> )*
76 Expression ::= ID
77 | NAT
78 | 'true' | 'false'
79 | ID '(' <ArgList> ')'
80 | <Expression> '[' <Expression> ']'
81 | '(' <Expression> ')'
82 | <Expression> '++' | '++' <Expression>
83 | <Expression> '--' | '--' <Expression>
84 | <Expression> <AssignOp> <Expression>
85 | <UnaryOp> <Expression>
86 | <Expression> <Rel> <Expression>
87 | <Expression> <BinIntOp> <Expression>
88 | <Expression> <BinBoolOp> <Expression>
89 | <Expression> '?' <Expression> ':' <Expression>
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90 | <Expression> '.' ID>
91

92 AssignOp ::= ASSIGNMENT | '+=' | '-=' | '*=' | '/=' | '%='
93 | '|=' | '&=' | 'ˆ=' | '<<=' | '>>='
94 UnaryOp ::= '-' | '!'
95 Rel ::= '<' | '<=' | '==' | '!=' | '>=' | '>'
96 BinIntOp ::= '+' | '-' | '*' | '/' | '%' | '&' | '|' | 'ˆ' | '<<'

| '>>'
97 BinBoolOp ::= '&&' | '||'
98 ArgList ::= [ <Expression> ( ',' <Expression> )* ]
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D. Additional Examples

Additional examples are provided here to illustrate possible synchronisation patterns
of the generallised parallel operator. The process P1, Q1 and R1 can be arbitrary pro-
cesses. But for the purpose of illustration, we consider simple definition for each of
these processes P1, Q1 and R1 as follows:
P1 = c1->cs->SKIP
Q1 = c2->cs->SKIP
R1 = c3->cs->SKIP

Example D.1. P1[|{cs}|](Q1[|∅|]R1)

1 transform(P[|{cs}|](Q1[|∅|]R1)))
2 = transTA(P1[|{cs}|](Q1[|∅|]R1)), startID1, finishID1, ∅, ∅, ∅,)
3 = [

4 ] _ transTA(P1, startID2, finishID2, ∅, {cs} ∅)
5 _ transTA((Q1[|∅|]R1), startID3, finishID3, {cs}, ∅, ∅)
6

7 transTA(P1, startID2, finishID2, ∅, {cs} ∅)
8 = transTA(c1->cs->SKIP, startID2, finishID2, ∅, {cs} ∅)
9 = [

10 ] _ transTA(cs->SKIP, startID4, finishID2, ∅, {cs} ∅)
11 = [

190



12 ] _ transTA(SKIP, startID6, finishID2, ∅, {cs} ∅)
13 = [

14 ]
15

16 = transTA((Q1[|∅|]R1), startID3, finishID3, {cs}, ∅, ∅)
17 = [

18 ] _ transTA(Q1, startID7, finishID7, {cs}, ∅, ∅)
19 _ transTA(R1, startID8, finishID8, {cs}, ∅, ∅)
20

21 transTA(Q1, startID7, finishID7, {cs}, ∅, ∅)
22 = transTA(c2->cs->SKIP, startID7, finishID7, {cs}, ∅, ∅)
23 =[

24 ] _ transTA(cs->SKIP, startID9, finishID7, {cs}, ∅, ∅)

25 ] _ transTA(SKIP, startID11, finishID7, {cs}, ∅, ∅)
26 = [

191



27 ]
28

29 transTA(R1, startID8, finishID8, {cs}, ∅, ∅)
30 = transTA(c3->cs->SKIP, startID8, finishID8, {cs}, ∅, ∅)
31 = [

32 ] _ transTA(cs->SKIP, startID10, finishID8, {cs}, ∅, ∅)
33 = [

34 ] _ transTA(SKIP, startID8, finishID8, {cs}, ∅, ∅)
35 = [

36 ]
37

38 ∴ transform(P1[|{cs}|](Q1[|∅|]R1))
39 = [
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]

Example D.2. (P[|{cs}|]Q1)[|{∅}|]R1

1 transform((P1[|{cs}|]Q)[|{ ∅ }|]R1))
2 = transTA((P1[|{cs}|]Q)[|∅|]R1), startID1, finishID1, ∅, ∅, ∅)
3 = [

4 ] _ transTA((P1[|{cs}|]Q1), startID2, finishID2, ∅, ∅, ∅)
5 _ transTA(R1, startID3, finishID3, ∅, ∅, ∅)
6

7 transTA((P1[|{cs}|]Q1), startID2, finishID2, ∅, ∅, ∅)
8 = [

9 ] _ transTA(P1, startID4, finishID4, ∅, {cs}, ∅)
10 _ transTA(Q1, startID5, finishID5, {cs}, ∅, ∅)
11

12

13 transTA(P1, startID4, finishID4, ∅, {cs} ∅)
14 = transTA(c1->cs->SKIP, startID4, finishID4, ∅, {cs}, ∅)
15 = [
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16 ] _ transTA(cs->SKIP, startID6, finishID4, ∅, {cs}, ∅)
17 = [

18 ] _ transTA(SKIP, startID8, finishID4, ∅, {cs}, ∅)
19 = [

20 transTA(Q1, startID5, finishID5, {cs}, ∅, ∅)
21 = transTA(c2->cs->SKIP, startID5, finishID5, {cs}, ∅, ∅)
22 =[

23 ] _ transTA(cs->SKIP, startID7, finishID5, {cs}, ∅, ∅)
24 = [

25 ] _ transTA(SKIP, startID9, finishID5, {cs}, ∅, ∅)
26 = [
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]

27 transTA(R1, startID3, finishID3, ∅, ∅, ∅)
28 = transTA(c3->cs->SKIP, startID3, finishID3, ∅, ∅, ∅)
29 = [

30 ] _ transTA(cs->SKIP, startID11, finishID3, ∅, ∅, ∅)
31 =[

32 ] _ transTA(SKIP, startID13, finishID3, ∅, ∅, ∅)
33 =[

]
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34 ∴ transform((P1[|{cs}|]Q1)[|∅|]R1)
35 = [

197



]

Example D.3. P1[|∅|](Q1[|{cs}|]R1)

1 transform(P1[|∅|](Q1[|{cs}|]R1))
2 = transTA(P1[|∅|](Q1[|{cs}|]R1), startID1, finishID1, ∅, ∅, ∅)
3 = [

4 ] _ transTA(P1, startID2, finishID2, ∅, ∅, ∅)
5 _ transTA((Q1[|{cs}|]R1), startID3, finishID3, ∅, ∅, ∅)
6

7 transTA(P1, startID2, finishID2, ∅, ∅, ∅)
8 = transTA(c1->cs->SKIP, startID2, finishID2, ∅, ∅, ∅)
9 = [

10 ] _ transTA(cs->SKIP, startID4, finishID2, ∅, ∅, ∅)
11 = [
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12 ] _ transTA(SKIP, startID6, finishID2, ∅, ∅, ∅)
13 = [

14 ]
15

16 = transTA((Q1[|{cs}|]R1), startID3, finishID3, ∅, ∅, ∅)
17 = [

18 ] _ transTA(Q1, startID7, finishID7, ∅, {cs}, ∅)
19 _ transTA(R1, startID8, finishID8, {cs}, ∅, ∅)

20 transTA(Q1, startID7, finishID7, ∅, {cs}, ∅)
21 = transTA(c2->cs->SKIP, startID7, finishID7, ∅, {cs}, ∅)
22 = [

23 ] _ transTA(cs->SKIP, startID9, finishID7, ∅, {cs}, ∅)
24 = [
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25 ] _ transTA(SKIP, startID11, finishID7, ∅, {cs}, ∅)
26 = [

27 transTA(R1, startID8, finishID8, {cs}, ∅)
28 = transTA(c3->cs->SKIP, startID8, finishID8, {cs}, ∅, ∅)
29 = [

30 ] _ transTA(cs->SKIP, startID10, finishID8, {cs}, ∅, ∅)
31 = [

32 ] _ transTA(SKIP, startID12, finishID8, {cs}, ∅, ∅)

33 ]
34

35 ∴ transform(P1[|∅|](Q1[|{cs}|]R1))
36 = [
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]

Example D.4. (P1[|∅|]Q1)[|{cs}|]R1

1 transform((P1[|∅|]Q1)[|{cs}|]R1)
2 = transTA((P1[|∅|]Q1)[|{cs}|]R1, startID1, finishID1, ∅, ∅, ∅)
3 = [

4 ] _ transTA((P1[|∅|]Q1), startID2, finishID2, {cs}, ∅, ∅)
5 _ transTA(R1, startID3, finishID3, {cs}, ∅, ∅)
6

7 transTA((P1[|∅|]Q1), startID2, finishID2, ∅, {cs}, ∅)
8 = [

9 ] _ transTA(P1, startID4, finishID4, ∅, {cs}, ∅)
10 _ transTA(Q1, startID5, finishID5, ∅, {cs}, ∅)
11

12

13 transTA(P1, startID4, finishID4, ∅, {cs}, ∅)
14 = transTA(c1->cs->SKIP, startID4, finishID4, ∅, {cs}, ∅)
15 = [
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16 ] _ transTA(cs->SKIP, startID6, finishID4, ∅, {cs}, ∅)
17 = [

18 ] _ transTA(SKIP, startID8, finishID4, ∅, {cs}, ∅)
19 = [

20 ]
21

22 transTA(Q1, startID5, finishID5, ∅, {cs}, ∅)
23 = transTA(c2->cs->SKIP, startID5, finishID5, ∅, {cs}, ∅)
24 =[

25 ] _ transTA(cs->SKIP, startID7, finishID5, ∅, {cs}, ∅)
26 = [

27 ] _ transTA(SKIP, startID9, finishID5, ∅, {cs}, ∅)
28 = [
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]

29 transTA(R1, startID3, finishID3, {cs}, ∅, ∅)
30 = transTA(c3->cs->SKIP, startID3, finishID3, {cs}, ∅, ∅)
31 = [

32 ] _ transTA(cs->SKIP, startID11, finishID3, {cs}, ∅, ∅)
33 =[

34 ] _ transTA(SKIP, startID13, finishID3, {cs}, ∅, ∅)
35 =[

]

36

37 ∴ transform((P1[|∅|]Q1)[|{cs}|]R1)
38 = [
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Example D.5. P1[|{cs}|](Q1[|{cs}|]R1)

39 transform(P1[|{cs}|](Q1[|{cs}|]R1))
40 = transTA(P1[|{cs}|](Q1[|{cs}|]R1), startID1, finishID1, ∅, ∅, ∅)
41 = [

1 ] _ transTA(P1, startID2, finishID2, ∅, {cs}, ∅)
2 _ transTA((Q1[|{cs}|]R1), startID3, finishID3, {cs}, ∅, ∅)
3

4 transTA(P1, startID2, finishID2, ∅, {cs}, ∅)
5 = transTA(c1->cs->SKIP, startID2, finishID2, ∅, {cs}, ∅)
6 = [

7 ] _ transTA(cs->SKIP, startID4, finishID2, ∅, {cs}, ∅)
8 = [

9 ] _ transTA(SKIP, startID6, finishID2, ∅, {cs}, ∅)
10 = [

11 ]
12 = transTA((Q1[|{cs}|]R1), startID3, finishID3, {cs}, ∅, ∅)
13 = [
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14 ] _ transTA(Q1, startID7, finishID7, {cs}, {cs}, ∅)
15 _ transTA(R1, startID8, finishID8, {cs}, ∅, ∅)
16

17 transTA(Q1, startID7, finishID7, {cs}, {cs}, ∅)
18 = transTA(c2->cs->SKIP, startID7, finishID7, {cs}, {cs}, ∅)
19 = [

20 ] _ transTA(cs->SKIP, startID9, finishID7, {cs}, {cs}, ∅)

21 ] _ transTA(SKIP, startID11, finishID7, {cs}, {cs}, ∅)

22 ]
23 transTA(R1, startID8, finishID8, {cs}, ∅, ∅)
24 = transTA(c3->cs->SKIP, startID8, finishID8, {cs}, ∅, ∅)
25 = [
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26 ] _ transTA(cs->SKIP, startID10, finishID8, {cs}, ∅, ∅)
27 = [

28 ] _ transTA(SKIP, startID8, finishID8, {cs}, ∅, ∅)
29 = [

30 ]
31

32 ∴ transform(P1[|{cs}|](Q1[|{cs}|]R1))
33 = [
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Example D.6. (P1[|{cs}|]Q1)[|{cs}|]R1
34 transform((P1[|{cs}|]Q1)[|{cs}|]R1)
35 = transTA((P1[|{cs}|]Q1)[|{cs}|]R1), startID1, finishID1, ∅, ∅, ∅)
36 = [

1 ] _ transTA((P1[|{cs}|]Q1), startID2, finishID2, ∅, {cs}, ∅)
2 _ transTA(R1, startID3, finishID3, {cs}, ∅, ∅)
3

4 transTA((P1[|{cs}|]Q1), startID2, finishID2, ∅, ∅)
5 = [

6 ] _ transTA(P1, startID4, finishID4, ∅, {cs}, ∅)
7 _ transTA(Q1, startID5, finishID5, {cs}, {cs}, ∅)
8

9

10 transTA(P1, startID4, finishID4, ∅, {cs}, ∅)
11 = transTA(c1->cs->SKIP, startID4, finishID4, ∅, {cs}, ∅)
12 = [

13 ] _ transTA(cs->SKIP, startID6, finishID4, ∅, {cs}, ∅)
14 = [
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15 ] _ transTA(SKIP, startID8, finishID4, ∅, {cs}, ∅)
16 = [

17 transTA(Q1, startID5, finishID5, {cs}, {cs}, ∅)
18 = transTA(c2->cs->SKIP, startID5, finishID5, {cs}, {cs}, ∅)
19 =[

20 ] _ transTA(cs->SKIP, startID7, finishID5, {cs}, {cs}, ∅)
21 = [

22 ] _ transTA(SKIP, startID9, finishID5, {cs}, {cs}, ∅)
23 = [

]

24 transTA(R1, startID3, finishID3, {cs}, ∅, ∅)
25 = transTA(c3->cs->SKIP, startID3, finishID3, {cs}, ∅, ∅)
26 = [
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27 ] _ transTA(cs->SKIP, startID11, finishID3, {cs}, ∅, ∅)
28 =[

29 ] _ transTA(SKIP, startID13, finishID3, {cs}, ∅, ∅)
30 =[

]

31 ∴ transform((P1[|{cs}|]Q1)[|{cs}|]R1)
32 = [
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E. A Basic Tool for Checking the Steps of the Proof

This is the source code of the basic tool for automatically checking the steps of the
proof, mainly formulae, syntax and terms used in the proof 16.

1

2 {- The function pcpl is a quick-and-dirty way of revealing errors in
a particular instance of the claim that every term in the proof is
equal to every other term. If the claim is true, it reports "GOOD
PROOF!", otherwise it reports that the proof is bad, and shows
the values at each step. An incorrect step is revealed by two
adjacent values being different. The code was developed by Jeremy
Jacob.

3 -}
4

5 module ProofLayout where
6

7 import Data.List
8

9 infixr 0 :=:
10 data ProofLayout a = a :=: (ProofLayout a) | QED
11 instance Foldable ProofLayout where
12 foldr f z = ffz
13 where ffz QED = z
14 ffz (l :=: pl) = f l (ffz pl)
15

16 pcpl :: (Eq a, Show a) => ProofLayout a -> IO ()
17 pcpl = putStr . report . allOK . foldr (:) []
18 where
19 allOK pl = (and [ l == m | (l, m) <- zip pl (tail pl)], pl)
20 report (True, _ ) = "GOOD PROOF!\n"
21 report (_ , pl) = "BAD PROOF!\n" ++ foldr ((++) . ("\n "++) .

(++"\n:=:") . show) "QED\n" pl

16Thanks to Jeremy Jacob for providing this code.
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F. Details of the Proof

1 -- Contents
2 -- 1. Proof
3 -- 2. Definitions
4

5

6 module Proof_function where
7

8 import Data.List
9 import ProofLayout

10

11

12 {---------- Begining of the proof --------------------------
13 Proof by induction over the Natural numbers.
14 forall n:Nat, forall P::Proc, traces_tockCSP n P = traces_TA n .

transTA P
15

16 BASE CASE for n=0 -----------------------------------------------
17 for n=0,
18 forall P::Proc, traces_tockCSP 0 P = traces_TA 0 (transTA P)
19 -}
20

21

22 proofTrans :: CSPproc -> Int -> ProofLayout [[Event]]
23 proofTrans p 0 =
24 traces_tockCSP 0 p
25 :=: --{traces_tockCSP.0, l˜>r, _0<˜p}
26 [[]]
27 :=: --{traces_TA.0, r˜>l, _0<˜transTA p}
28 traces_TA 0 (transTA p "" 0 0 0 [])
29 :=: QED
30 {- Because we have used no properties of P, other than P::CSPproc, we

may
31 conclude, by the rule of generalisation:
32 forall P::Proc, traces_tockCSP 0 P = traces_TA 0 (transTA P)
33 -}
34

35

36 {- INDUCTION STEP for n>0
---------------------------------------------

37 for n>0: forall P::Proc,
38 (traces_TA n (transTA P) = traces_tockCSP n P)
39 => (traces_TA (n+1) (transTA P) = traces_tockCSP (n+1) P)
40 -}
41

42

43

44
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45 -- Base case: STOP
46 -- (traces_tockCSP n STOP = traces_TA n (transTA STOP))
47 -- => (traces_tockCSP (n+1) STOP = traces_TA (n+1) (transTA STOP))
48 proofTrans STOP n =
49 traces_tockCSP (n+1) STOP
50 :=: --{traces_tockCSP.stop, n<˜n+1}
51 [(replicate l "tock") | l <- [0..n+1]]
52 :=: --{List comprehensions }
53 [(replicate l "tock") | l <- [0..n]] ++ [replicate (n+1) "tock"]
54 :=: --{traces_tockCSP.stop}
55 (traces_tockCSP n STOP) ++ [replicate (n+1) "tock"]
56 :=: --{Induction hypothesis}
57 nub ((traces_TA n (transTA STOP "ta" 0 0 0 [])) ++ [replicate (n

+1) "tock"])
58 :=: --{transTA.stop, l˜>r}
59 nub (traces_TA n taSTOP
60 ++ [replicate (n+1) "tock"])
61 :=: --{tracesTA.n, l˜>r, tas<˜STOP}
62 nub ([t \\ ["startID0_0"] |
63 t <- (traces'TA n taSTOP ) ]
64 ++ [replicate (n+1) "tock"] )
65 :=: --{traces'TA.stop, l˜>r}
66 [t \\ flowActions taSTOP |t <- ([("startID0_0"):s
67 |s <- [(replicate l "tock")|l <- [0..n

] ] ] ) ]
68 ++ [replicate (n+1) "tock"]
69 :=: --{Introducing the connection action}
70 [t \\ flowActions taSTOP | t <- ([("startID0_0"):s
71 |s <- [(replicate l "tock")|l <- [0..

n] ] ]) ]
72 ++ [ t \\ ["startID0_0"] | t <- [["startID0_0"] ++ (replicate (n

+1) "tock")] ]
73 :=: --{List comprehensions}
74 [t \\ flowActions taSTOP | t <- ([("startID0_0"):s
75 |s <- [(replicate l "tock")|l <-

[0..n+1] ] ] ) ]
76 :=: --{traces'TA.stop, r˜>l}
77 nub ([t \\ flowActions taSTOP
78 | t <- (traces'TA (n+1) taSTOP ) ] )
79 :=: --{tracesTA.n, r˜>l, n<˜n+1, tas<˜taSTOP}
80 nub (traces_TA (n+1) taSTOP )
81 :=: --{trans.stop, r->l}
82 nub (traces_TA (n+1) (transTA STOP "ta" 0 0 0 []))
83 :=: QED
84 where
85 taSTOP = [([ "s0", "s1"], "s0", ["ck"], ["startID0_0"], [

"tock"],
86 [("s0", "startID0_0", [], [], "s1"), ("s1", "

tock", "ck<=1", "ck", "s1")], [] )]
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87

88 -- Therefore, traces_tockCSP (n+1) STOP = traces_TA (n+1) (transTA
STOP)

89

90

91

92

93 -- Base case: SKIP
94 -- (traces_tockCSP n SKIP = traces_TA n (transTA SKIP))
95 -- => (traces_tockCSP (n+1) SKIP = traces_TA (n+1) (transTA SKIP))
96 proofTrans SKIP n =
97 sort (traces_tockCSP (n+1) SKIP)
98 :=: --{traces_tockCSP.skip, n<˜n+1}
99 sort ([(replicate l "tock") | l <- [0..n+1] ] ++

100 [(replicate l "tock")++["tick"] | l <- [0..n] ] )
101 :=: --{List comprehensions }
102 sort ([(replicate l "tock") | l <- [0..n] ]
103 ++ [(replicate l "tock")++["tick"] | l <- [0..(n-1)]]
104 ++ [replicate (n+1) "tock"] ++ [(replicate n "tock")++["

tick"]] )
105 :=: --{traces_tockCSP.skip}
106 sort (traces_tockCSP n SKIP
107 ++ [ replicate (n+1) "tock"]
108 ++ [(replicate n "tock")++["tick"]] )
109 :=: --{Induction hypothesis}
110 sort (nub (traces_TA n (transTA SKIP "ta" 0 0 0 [])
111 ++ [ replicate (n+1) "tock"]
112 ++ [(replicate n "tock")++["tick"]] ) )
113 :=: --{transTA.skip, l˜>r}
114 sort (nub (traces_TA n taSKIP
115 ++ [ replicate (n+1) "tock"]
116 ++ [(replicate n "tock")++["tick"]] ) )
117 :=: --{tracesTA.n, l˜>r, tas<˜SKIP}
118 sort (nub ([t \\ ["startID0_0"] | t <- (traces'TA n taSKIP ) ]
119 ++ [ replicate (n+1) "tock"]
120 ++ [(replicate n "tock")++["tick"]] ) )
121 :=: --{traces'TA.skip, l˜>r}
122 sort ([t \\ flowActions taSKIP |t <- ([("startID0_0"):s | s <-

([(replicate l "tock")|l <- [0..n] ]
123 ++ [(replicate l "tock") ++ ["tick"]|l <- [0..(n-1)

] ] ) ] ) ]
124 ++ [replicate (n+1) "tock"] ++ [(replicate n "tock") ++ ["

tick"]] )
125 :=: --{Introducing the connection action }
126 sort ([t \\ flowActions taSKIP
127 |t <- ([("startID0_0"):s
128 |s <- ([(replicate l "tock")|l <- [0..n] ]
129 ++ [(replicate l "tock") ++ ["tick"]|l <- [0..(n-1)]

] ) ] ) ]
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130 ++ [ t \\ ["startID0_0"]
131 | t <- ([["startID0_0"] ++ (replicate (n+1) "tock

")] ++
132 [["startID0_0"] ++ (replicate n "

tock") ++ ["tick"]]) ] )
133 :=: --{List comprehensions}
134 sort [t \\ flowActions taSKIP
135 |t <- ([("startID0_0"):s
136 |s <- ([(replicate l "tock")|l <- [0..n

+1] ] ++
137 [(replicate l "tock") ++ ["tick"]|

l <- [0..n] ] ) ] ) ]
138 :=: --{traces'TA.skip, r˜>l}
139 sort (nub ([t \\ flowActions taSKIP
140 | t <- (traces'TA (n+1) taSKIP ) ]))
141 :=: --{tracesTA.n, r˜>l, n<˜n+1, tas<˜taSKIP}
142 sort (nub (traces_TA (n+1) taSKIP ))
143 :=: --{trans.skip, r->l}
144 sort (nub (traces_TA (n+1) (transTA SKIP "ta" 0 0 0 [])))
145 :=: QED
146 where taSKIP = [(["s0", "s1", "s2"], "s0", ["ck"], ["

startID0_0"], ["tock", "tick"],
147 [("s0", "startID0_0", [], [], "s1"),
148 ("s1", "tock", "ck<=1", "ck", "s1"),
149 ("s1", "tick", [], [], "s2")], [] ) ]
150 -- Therefore, traces_tockCSP (n+1) SKIP = traces_TA (n+1) (transTA

SKIP)
151

152

153

154

155 {-- Internal choice ------------------------------------------------
156 Induction steps, proof for internal choice is as follows:
157 traces_tockCSP (n+1) (P |˜| Q) == traces_TA (n+1) (trans (P |˜|Q)

)
158 assuming
159 traces_tockCSP n (P |˜| Q) == traces_TA n (trans (P |˜|Q))
160 traces_tockCSP (n+1) P == traces_TA (n+1) (trans P)
161 and traces_tockCSP (n+1) Q == traces_TA (n+1) (trans Q)
162 -}
163

164 proofTrans (IntChoice p1 p2) n =
165 nub (traces_tockCSP (n+1) (IntChoice p1 p2) )
166 :=: --{traces_tockCSP.internalChoice, n<˜n+1}
167 nub ((traces_tockCSP (n+1) p1) ++ (traces_tockCSP (n+1) p2))
168 :=: --{Induction hypothesis }
169 nub ((traces_TA (n+1) (transTA p1 "ta1" 0 0 0 [])) ++
170 (traces_TA (n+1) (transTA p2 "ta2" 0 0 0 [])))
171 :=: -- {tracesTA.n, l˜>r}
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172 nub ([t \\ (flowActions (transTA p1 "ta1" 0 0 0 []))
173 |t <- (traces'TA (n+1) (transTA p1 "ta1" 0 0 0 []))] ++
174 [t \\ (flowActions (transTA p2 "ta2" 0 0 0 []))
175 |t <- (traces'TA (n+1) (transTA p2 "ta2" 0 0 0 []))] )
176 :=: -- {lemma1, l˜>r}
177 nub ([t \\ (flowActions (transTA p1 "ta1" 0 0 0 []))
178 |t <- (traces'TA (n+1) (transTA p1 "ta1" 0 0 0 []))] ++
179 [t \\ (flowActions (transTA p2 "ta2" 0 0 0 []))
180 |t <- (traces'TA (n+1) (transTA p2 "ta2" 0 0 0 []))] ++
181 [t \\ (flowActions taIntChoice )
182 |t <- (traces'TA (n+1) taIntChoice ) ])
183 :=: --{List comprehension}
184 nub [t \\ (flowActions ((transTA p1 "ta1" 0 0 0 []) ++
185 (transTA p2 "ta2" 0 0 0 []) ++
186 taIntChoice ) )
187 |t <- (traces'TA (n+1)
188 ((transTA p1 "ta1" 0 0 0 []) ++
189 ( transTA p2 "ta2" 0 0 0 []) ++
190 taIntChoice ) )
191 ]
192 :=: --{tracesTA.n, r˜>l}
193 nub (traces_TA (n+1)
194 ((transTA p1 "ta1" 0 0 0 []) ++
195 (transTA p2 "ta2" 0 0 0 []) ++
196 taIntChoice ))
197 :=: --{transTA.internalChoice, r˜>l}
198 nub ( traces_TA (n+1) (transTA (IntChoice p1 p2) "ta" 0 0 0 [] )

)
199 :=: QED
200 where
201 taIntChoice = [(["s0", "s1", "s2", "s3"], "s0", [],
202 ["startID0_0", "startID0_1", "startID1_1"], [],
203 [("s0", "startID0_0", [], [], "s1"),
204 ("s1", "startID0_1", [], [], "s2"),
205 ("s1", "startID1_1", [], [], "s3"),
206 ("s2", [], [], [], "s0"),
207 ("s3", [], [], [], "s0") ], [] ) ]
208 -- Therefore, traces_tockCSP n+1 (IntChoice p1 p2) = traces_TA n+1 (

IntChoice p1 p2)
209

210

211

212

213

214

215

216

217

218
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219 {-- External choice -----------------------------------------------
220 Induction steps, proof for internal choice is as follows:
221 traces_tockCSP (n+1) (P [] Q) == traces_TA (n+1) (trans (P [] Q))
222 assuming
223 traces_tockCSP n (P [] Q) == traces_TA n (trans (P [] Q))
224 traces_tockCSP (n+1) P == traces_TA (n+1) (trans P)
225 and traces_tockCSP (n+1) Q == traces_TA (n+1) (trans Q)
226 -}
227

228

229 proofTrans (ExtChoice p1 p2) n =
230 nub (traces_tockCSP (n+1) (ExtChoice p1 p2) )
231 :=: --{traces_tockCSP.externalChoice, n<˜n+1}
232 nub ((traces_tockCSP (n+1) p1) ++ (traces_tockCSP (n+1) p2))
233 :=: --{Induction hypothesis }
234 nub ((traces_TA (n+1) (transTA p1 "ta1" 0 0 0 [])) ++ (

traces_TA (n+1) (transTA p2 "ta2" 0 0 0 [])))
235 :=: --{tracesTA.n, l˜>r}
236 nub ([t \\ (flowActions (transTA p1 "ta1" 0 0 0 []))
237 | t <- (traces'TA (n+1) (transTA p1 "ta1" 0 0 0 []))] ++
238 [t \\ (flowActions (transTA p2 "ta2" 0 0 0 []))
239 | t <- (traces'TA (n+1) (transTA p2 "ta2" 0 0 0 []))] )
240 :=: --{Adding empty list}
241 nub ([t \\ (flowActions (transTA p1 "ta1" 0 0 0 []))
242 | t <- (traces'TA (n+1) (transTA p1 "ta1" 0 0 0 []))] ++
243 [t \\ (flowActions (transTA p2 "ta2" 0 0 0 []))
244 | t <- (traces'TA (n+1) (transTA p2 "ta2" 0 0 0 []))] ++ [] )
245 :=: --{lemma2, l˜>r}
246 nub ([t \\ (flowActions (transTA p1 "ta1" 0 0 0 []))
247 | t <- (traces'TA (n+1) (transTA p1 "ta1" 0 0 0 []))] ++
248 [t \\ (flowActions (transTA p2 "ta2" 0 0 0 []))
249 | t <- (traces'TA (n+1) (transTA p2 "ta2" 0 0 0 []))] ++
250 [t \\ (flowActions taExtChoice )
251 |t <- (traces'TA (n+1) taExtChoice ) ])
252 :=: --{List comprehension}
253 nub [t \\ (flowActions ((transTA p1 "ta1" 0 0 0 []) ++
254 (transTA p2 "ta2" 0 0 0 []) ++
255 taExtChoice ) )
256 |t <- (traces'TA (n+1)
257 ((transTA p1 "ta1" 0 0 0 []) ++
258 (transTA p2 "ta2" 0 0 0 []) ++
259 taExtChoice ) ) ]
260 :=: --{tracesTA.n, r˜>l}
261 nub (traces_TA (n+1)
262 (taExtChoice ++ (transTA p1 "ta1" 0 0 0 []) ++
263 (transTA p2 "ta2" 0 0 0 []) ))
264 :=: --{transTA.externalChoice, r˜>l}
265 nub ( traces_TA (n+1)
266 (transTA (ExtChoice p1 p2) "ta3" 0 0 0 [] ) )
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267 :=: QED
268 where
269 taExtChoice =
270 [([ "s0", "s1", "s2", "s3"], "s0", [],
271 ["startID0_0", "startID0_1", "startID1_1"], [],
272 [("s0", "startID0_0", [], [], "s1"),
273 ("s1", "startID0_1", [], [], "s2"),
274 ("s2", "startID1_1", [], [], "s3"),
275 ("s3", [], [], [], "s0") ], [] ) ]
276 -- Thus, traces_tockCSP n+1 (ExtChoice p1 p2) = traces_TA n+1 (

ExtChoice p1 p2)
277

278

279

280

281 {-- Sequential composition -----------------------------------
282 Induction steps, proof for sequential composition is as follows:
283 traces_tockCSP (n+1) (P ; Q) == traces_TA (n+1) (trans (P ; Q))
284 assuming
285 traces_tockCSP n (P ; Q) == traces_TA n (trans (P ; Q))
286 traces_tockCSP (n+1) P == traces_TA (n+1) (trans P)
287 and traces_tockCSP (n+1) Q == traces_TA (n+1) (trans Q)
288 -}
289

290 proofTrans (Seq p1 p2) n =
291 traces_tockCSP (n+1) (Seq p1 p2)
292 :=: --{traces_tockCSP.seq, n<˜n+1}
293 (traces_tockCSP (n+1) p1)
294 ++ [(iinit s) ++ t
295 | s <- (traces_tockCSP (n+1) p1), (ilast s) == "tick",
296 t <- (traces_tockCSP (n - size_p1) p2) ]
297 :=: --{Induction hypothesis }
298 nub ( (traces_TA (n+1) (transTA p1 "ta1" 0 0 0 []) )
299 ++ [(iinit t1) ++ t2
300 | t1 <- (traces_TA
301 (n+1)
302 (transTA p1 "ta1" 0 0 0 []) ),
303 t2 <- (traces_TA
304 (n - size_p1)
305 (transTA p2 "ta2" 0 0 0 []) ) ] )
306 :=: --{tracesTA.n, l˜>r}
307 nub ( [t \\ (flowActions (transTA p1 "ta1" 0 0 0 []))
308 | t <- (traces'TA (n+1) (transTA p1 "ta1" 0 0 0 []))]
309 ++ [t \\ (flowActions ((transTA p1 "ta1" 0 0 0 [])
310 ++ (transTA p2 "ta2" 0 0 0 []) ))
311 |t <- [(iinit t1) ++ t2
312 | t1 <- traces'TA
313 (n+1)
314 (transTA p1 "ta1" 0 0 0 [] ),
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315 (ilast t1) == "tick",
316 t2 <- traces'TA
317 (n - size_p1)
318 (transTA p2 "ta2" 0 0 0 [] ) ] ] )
319 :=: --{lemma3, l˜>r}
320 nub ( [t \\ (flowActions ( transTA p1 "ta1" 0 0 0 []))
321 | t <- (traces'TA (n+1) (transTA p1 "ta1" 0 0 0 []))]
322 ++ [t \\ (flowActions ((transTA p1 "ta1" 0 0 0 [])
323 ++ (transTA p2 "ta2" 0 0 0 [])) )
324 |t <- [(iinit t1) ++ t2
325 | t1 <- (traces'TA (n+1)
326 (transTA p1 "ta1" 0 0 0 [] )),
327 (ilast t1) == "tick",
328 t2 <- (traces'TA (n - size_p1)
329 (transTA p2 "ta1" 0 0 0 [] ) ) ] ]
330 ++ [t \\ (flowActions taSeq ) |t <- (traces'TA (n+1) taSeq) ])
331 :=: --{List comprehension}
332 nub [t \\ (flowActions ((transTA p1 [] 0 0 0 []) ++
333 (transTA p2 [] 0 0 0 []) ++
334 taSeq ) )
335 |t <- (traces'TA (n+1)
336 ((transTA p1 [] 0 0 0 []) ++
337 (transTA p2 [] 0 0 0 []) ++
338 taSeq
339 )
340 )
341 ]
342 :=: --{tracesTA.n, r˜>l}
343 nub (traces_TA (n+1)
344 ((transTA p1 [] 0 0 0 []) ++
345 (transTA p2 [] 0 0 0 []) ++
346 taSeq ))
347 :=: --{transTA.seq, r˜>l}
348 nub ( traces_TA (n+1) (transTA (Seq p1 p2) "ta" 0 0 0 [] ) )
349 :=: QED
350 where
351 taSeq = [(["s0", "s1", "s2", "s3"], "s0", [],
352 ["startID0_0", "startID0_1", "startID0_2", "

FinishID0", "FinishID1"], [],
353 [("s0", "startID0_0", [], [], "s1"), ("s1", "

startID0_1", [], [], "s2"),
354 ("s2", "FinishID1", [], [], "s3"), ("s3", "

startID0_2", [], [], "s0") ], [] ) ]
355 size_p1 = length ( maximum (traces_tockCSP (n+1) p1) )
356 {- Therefore,
357 traces_tockCSP n+1 (Seq p1 p2) = traces_TA n+1 (Seq p1 p2)
358 -}
359

360
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361

362

363 -- ERROR handling -------------------------------
364 proofTrans _ _ = error "to be completed..."
365

366

367

368 ------ We use the following definitions in the proof -----------
369 --1. Definition of transTA
370 transTA :: CSPproc -> ProcName -> BranchID -> StartID -> FinishID ->

UsedNames -> [TA] -- (node, branch, branch)
371 --transTA :: CSPproc -> [TA]
372 transTA STOP procName bid sid fid usedNames
373 = [([ "s0", "s1"], "s0", ["ck"], [coodAction], ["tock"],

[("s0", coodAction, [], [], "s1"), ("s1", "tock", "ck
<=1", "ck", "s1")], [] )] --trans.stop

374 where
375 coodAction = concat ["startID", show bid, "_", show sid]
376

377 transTA SKIP procName bid sid fid usedNames
378 = [([ "s0", "s1", "s2"], "s0", ["ck"], [coodAction], ["

tock", "tick"],
379 [("s0", coodAction, [], [], "s1"),
380 ("s1", "tock", "ck<=1", "ck", "s1"),
381 ("s1", "tick", [], [], "s2")], [] ) ] s--trans.skip
382 where
383 coodAction = concat ["startID", show bid, "_", show sid]
384

385 transTA (IntChoice p1 p2) procName bid sid fid usedNames
386 = [(["s0", "s1", "s2", "s3"], "s0", [],
387 ["startID0_0", "startID0_1", "startID1_1", "FinishID0

", "FinishID1"], [],
388 [("s0", "startID0_0", [], [], "s1"), ("s1", "

startID0_1", [], [], "s2"),
389 ("s2", "FinishID_1", [], [], "s3"), ("s3", "

startID1_3", [], [], "s0") ], [] ) ]
390 ++ (transTA p1 procName bid (sid+1) fid

usedNames )
391 ++ (transTA p2 procName (bid+1) (sid+1) fid

usedNames )
392 where
393 coodAction1 = concat ["startID", show bid, "_", show

sid]
394 coodAction2 = concat ["startID", show bid, "_", show (

sid+1)]
395 coodAction3 = concat ["startID", show (bid+1), "_",

show (sid+1)] --trans.intChoice
396

397
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398 transTA (ExtChoice p1 p2) procName bid sid fid usedNames
399 = [([ "s0", "s1", "s2", "s3"], "s0", [],
400 [ coodAction1, coodAction2, coodAction3], [],
401 [("s0", coodAction1, [], [], "s1"),
402 ("s1", coodAction2, [], [], "s2"),
403 ("s2", coodAction3, [], [], "s3"),
404 ("s3", [], [], [], "s0") ], [] ) ]
405 ++ (transTA p1 procName bid (sid+1) fid usedNames )
406 ++ (transTA p2 procName (bid+1) (sid+1) fid usedNames )
407 where
408 coodAction1 = concat ["startID", show bid, "_", show sid]
409 coodAction2 = concat ["startID", show bid, "_", show (sid+1)]
410 coodAction3 = concat ["startID", show (bid+1), "_", show (sid+1)]
411 --trans.extChoice
412

413 transTA (Seq p1 p2) procName bid sid fid usedNames
414 = [(["s0", "s1", "s2", "s3"], "s0", [],
415 [coodAction0, coodAction1, coodAction2, coodAction3], [],
416 [("s0", coodAction0, [], [], "s1"),
417 ("s1", coodAction1, [], [], "s2"),
418 ("s2", coodAction2, [], [], "s3"),
419 ("s3", coodAction3, [], [], "s0") ], [] ) ]
420 ++ (transTA p1 procName bid (sid+1) (fid+1) usedNames )
421 ++ (transTA p2 procName bid (sid+2) fid usedNames )
422 where
423 coodAction0 = concat ["startID", show bid, "_", show sid]
424 coodAction1 = concat ["startID", show bid, "_", show (sid+1)]
425 coodAction2 = concat ["finishID", show (fid+1)]
426 coodAction3 = concat ["startID", show bid, "_", show (sid+2)]

--trans.seq
427

428

429 --2. Definition of traces_TA
430 traces_TA :: Int -> [TA] -> [[Event]]
431 traces_TA 0 _ = [[]] -- tracesTA.0
432 traces_TA n tas =
433 [t \\ (flowActions tas) | t <- (traces'TA n tas)]

-- tracesTA.n
434

435

436 --3. Definition of traces'TA
437 traces'TA :: Int -> [TA] -> [[Event]]
438 traces'TA 0 _ = [[]]
439 traces'TA n [] = [[]]
440 traces'TA n ((["s0", "s1"], "s0", ["ck"], [ coodAction ],
441 ["tock"], [("s0", st, [], [], "s1"),
442 ("s1", "tock", "ck<=1", "ck", "s1")], []):tas)
443 = [coodAction:s|s<-[(replicate l "tock")|l <- [0..n] ] ]
444 ++ (traces'TA n tas) -- traces'TA.stop
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445

446 traces'TA n ((["s0", "s1", "s2"], "s0", ["ck"], _,
447 ["tock", "tick"],
448 [("s0", st, [], [], "s1"),
449 ("s1", "tock", "ck<=1", "ck", "s1"),
450 ("s1", "tick", [], [], "s2")], []):tas)
451 = [(replicate l "tock")|l <- [0..n] ] ++
452 [(st:s ++ ["tick"])|s<-[(replicate l "tock")
453 |l <- [0..(n-1)] ] ]
454 ++ (traces'TA n tas) --traces'TA.skip
455

456 traces'TA n ( (["s0", "s1", "s2", "s3"], "s0", [], _, [],
457 [("s0", coodAction1, [], [], "s1"),
458 ("s1", coodAction2, [], [], "s2"),
459 ("s1", coodAction3, [], [], "s3"),
460 ("s2", [], [], [], "s0"),
461 ("s3", [], [], [], "s0") ], [] ):tas)
462 = [[coodAction1, coodAction2, coodAction3]]
463 ++ (traces'TA n tas) -- traces'TA.internalChoice
464

465 traces'TA n ( ([ "s0", "s1", "s2", "s3"], "s0", [], _, [],
466 [("s0", coodAction1, [], [], "s1"),
467 ("s1", coodAction2, [], [], "s2"),
468 ("s2", coodAction3, [], [], "s3"),
469 ("s3", [], [], [], "s0") ], [] ):tas)
470 = [[coodAction1, coodAction2, coodAction3]]
471 ++ (traces'TA n tas)
472 --traces'TA.externalChoice
473

474 traces'TA n ( (["s0", "s1", "s2", "s3"], "s0", [], _, [],
475 [("s0", coodAction0, [], [], "s1"),
476 ("s1", coodAction1, [], [], "s2"),
477 ("s2", coodAction2, [], [], "s3"),
478 ("s3", coodAction3, [], [], "s0") ], []):tas)
479 = ([coodAction1, coodAction2, coodAction3])
480 :(traces'TA n tas) -- traces'TA.seq
481

482

483

484 -- A structure for extending the proof to cover the remaining
constructs

485 traces'TA _ _ = [["˜˜Error˜˜"]] -- error "pending proof"
486

487 --4. Definition of traces_tockCSP
488 traces_tockCSP :: Int -> CSPproc -> [[Event]]
489 traces_tockCSP 0 _ = [[]] -- traces_tockCSP.0
490 traces_tockCSP n STOP
491 = [(replicate l "tock") | l <- [0..n] ]
492 -- traces_tockCSP.stop
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493

494 traces_tockCSP n SKIP
495 = [(replicate l "tock") | l <- [0..n] ] ++
496 [(replicate l "tock") ++ ["tick"]
497 | l <- [0..(n-1)] ] --traces_tockCSP.skip
498

499 traces_tockCSP n (IntChoice p1 p2 )
500 = (traces_tockCSP n p1) ++
501 (traces_tockCSP n p2)
502 -- traces_tockCSP.internalChoice
503

504 traces_tockCSP n (ExtChoice p1 p2 )
505 = (traces_tockCSP n p1) ++ (traces_tockCSP n p2)
506 -- traces_tockCSP.externalChoice
507

508 traces_tockCSP n (Seq p1 p2 )
509 = if (n > size_p1)
510 then (traces_tockCSP n p1) ++
511 [(iinit t1) ++ t2
512 | t1 <- (traces_tockCSP n p1),
513 (ilast t1) == "tick",
514 t2 <- (traces_tockCSP (n - size_p1) p2) ]
515 else (traces_tockCSP n p1)
516 where
517 size_p1 = length (maximum (traces_tockCSP (n+1) p1) )
518 -- traces_tockCSP.seq
519

520

521 --5. Definition of flowActions
522 flowActions :: [TA] -> [String]
523 flowActions [] = []

-- flowActions.0
524 flowActions [(_, _, _, x, _, _, _)] = x -- flowActions.1
525 flowActions ((_, _, _, x, _, _, _):ts)
526 = concat [x, (flowActions ts)] -- flowActions.n
527

528

529 {- A lemma for the binary constructors to show that the traces of the
connecting TA are empty after removing the connections actions.
the lemma established that if the traces ts contains a trace (like
ts is empty in this case), so adding the same trace will not
change the value of the traces -}

530

531 -- A lemma for the connection TA of the internal choice
532 lemma1 n = nub ts -- lemma1
533 :=:
534 nub (ts ++ [t \\ (flowActions [(["s0", "s1", "s2", "s3"],
535 "s0", [], ["startID0_0", "startID0_1", "startID1_1"],

[], [("s0", "startID0_0", [], [], "s1"),
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536 ("s1", "startID0_1", [], [], "s2"),
537 ("s1", "startID1_1", [], [], "s3"),
538 ("s2", [], [], [], "s0"),
539 ("s3", [], [], [], "s0") ], [] ) ] )
540 |t <- (traces'TA n
541 [(["s0", "s1", "s2", "s3"], "s0", [],
542 ["startID0_0", "startID0_1", "startID1_1"], [],
543 [("s0", "startID0_0", [], [], "s1"),
544 ("s1", "startID0_1", [], [], "s2"),
545 ("s1", "startID1_1", [], [], "s3"),
546 ("s2", [], [], [], "s0"),
547 ("s3", [], [], [], "s0") ], [] ) ]
548 ) ]
549 )
550 :=:
551 [[]]
552 :=:
553 QED
554 where
555 ts = [[]]
556

557

558

559 -- A lemma for the connection TA of the external choice
560 lemma2 n = nub ts -- lemma2
561 :=:
562 nub (ts ++
563 [t \\ (flowActions
564 [([ "s0", "s1", "s2", "s3"], "s0", [],
565 ["startID0_0", "startID0_1", "startID1_1"], [],
566 [("s0", "startID0_0", [], [], "s1"),
567 ("s1", "startID0_1", [], [], "s2"),
568 ("s2", "startID1_1", [], [], "s3"),
569 ("s3", [], [], [], "s0") ], [] ) ] )
570 |t <- (traces'TA n [([ "s0", "s1", "s2", "s3"],"s0", [],
571 ["startID0_0", "startID0_1", "startID1_1"], [],
572 [("s0", "startID0_0", [], [], "s1"),
573 ("s1", "startID0_1", [], [], "s2"),
574 ("s2", "startID1_1", [], [], "s3"),
575 ("s3", [], [], [], "s0") ], []) ]
576 ) ]
577 )
578 :=:
579 [[]]
580 :=:
581 QED
582 where
583 ts = [[]]
584
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585

586 -- A lemma for the connection TA of the sequential composition
587 lemma3 n = nub ts -- lemma3
588 :=:
589 nub (ts ++
590 [t \\ (flowActions
591 [(["s0", "s1", "s2", "s3"], "s0", [],
592 ["startID0_0", "startID0_1", "startID0_2", "

FinishID0", "FinishID1"], [],
593 [("s0", "startID0_0", [], [], "s1"),
594 ("s1", "startID0_1", [], [], "s2"),
595 ("s2", "FinishID1", [], [], "s3"),
596 ("s3", "startID0_2", [], [], "s0") ], [] )])
597 |t <- (traces'TA n
598 [(["s0", "s1", "s2", "s3"], "s0", [],
599 ["startID0_0", "startID0_1",
600 "startID0_2", "FinishID0",
601 "FinishID1"], [],
602 [("s0", "startID0_0", [], [], "s1"),
603 ("s1", "startID0_1", [], [], "s2"),
604 ("s2", "FinishID1", [], [], "s3"),
605 ("s3", "startID0_2", [], [], "s0")],
606 [] ) ] ) ] )
607 :=:
608 [[]]
609 :=:
610 QED
611 where
612 ts = [[]]
613

614

615 -- ilast is similar to the function last with the capability of
handling empty trace

616 ilast :: [Event] -> Event
617 ilast [] = [] -- ilast.0
618 ilast xs = last xs -- ilast.1
619

620

621 -- iinit is similar to the function init with the capability of
handling empty trace

622 iinit :: [Event] -> [Event]
623 iinit [] = [] -- iinit.0
624 iinit xs = init xs -- iinit.1
625

626

627 -- list_interleave
628 list_interleave :: [Event] -> [Event] -> [Event]
629 list_interleave [] ys = ys -- interleave.0
630 list_interleave (x:xs) ys = (x:(list_interleave ys xs))
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-- interleave.1
631

632 tracesInterleave t1 t2
633 = nub (concat [[x++y, (list_interleave x y)] | x <- t1, y <- t2 ] )

-- traceInterleave.1
634

635 -- Example
636 traceInterleave_eg
637 = tracesInterleave [[], ["a"], ["a", "b"]] [[], ["x"], ["x", "y"]]
638

639

640 -- Data type for the CSP process -----------------------------------
641 data CSPproc = STOP
642 | SKIP
643 | WAIT Int
644 | Prefix Event CSPproc
645 | IntChoice CSPproc CSPproc
646 | ExtChoice CSPproc CSPproc
647 | Seq CSPproc CSPproc
648 | Interleave CSPproc CSPproc
649 | GenPar CSPproc CSPproc [Event]
650 | Interrupt CSPproc CSPproc
651 | Exception CSPproc CSPproc [Event]
652 | Timeout CSPproc CSPproc Int
653 | Hiding CSPproc [Event]
654 | Rename CSPproc [(Event, Event)]
655 | EDeadline Event Int
656 | ProcID String
657

658

659 type TA = ([State], State, [Clock], [Action], [Action] , [(State,
Action, Clock, Invariant, State)], [Invariant] )

660

661 type ProcName = String -- An identifier for each TA
662 type BranchID = Int -- An index for the braches
663 type StartID = Int -- An index for the start

event
664 type FinishID = Int -- An index for the finish

event
665 type SyncPoint = (Event, String) -- Assign an identifier for

a sync point
666 type UsedNames = [String] -- List of the names used in

developing the translation rules.
667 type State = String
668 type Clock = String
669 type Action = String
670 type Invariant = String
671 type Event = String
672 type NamedProc = String
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S Balakirsky, ME Barreto, JL Carbonera, A Chibani, S Rama Fiorini, et al. Ieee
standard ontologies for robotics and automation. 2015.

[126] AW Roscoe, CAR Hoare, and R Bird. The theory and practice of concurrency.
2005. Revised edition. Only available online.

[127] Ana Cavalcanti, Augusto Sampaio, Alvaro Miyazawa, Pedro Ribeiro, Madiel
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