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Abstract

In this thesis a coupled model of cardiac electromechanical activity is presented, us-

ing the finite element method to model both electrophysiology and mechanics within a

deforming domain. The efficiency of the electrical model was improved using adaptive

mesh refinement and the mechanical system performance was improved with the addition

of preconditioning. Unstructured triangular meshes were used throughout.

The electrophysiology model uses the ten Tusscher-Panfilov 2006 detailed cellular

model, and includes anisotropic diffusion, uses a semi-implicit time stepping scheme,

stores data in an efficient sparse storage format and applies a Reverse Cuthill-McKee

ordering algorithm to reduce the matrices’ bandwidths. Linear elements were used to

approximate the transmembrane voltage and spatial and temporal convergence tests were

undertaken. Local mesh adaptivity is added to the electrical component of the model

and improvements to the performance and efficiency gained by this technique were in-

vestigated. Two different monitor functions were utilised and these demonstrated that by

targeting adaptive mesh refinement at the front of the electrical wave significant efficiency

and performance benefits could be achieved.

The cardiac mechanical model is based on finite deformation elasticity theory, en-

forces the incompressibility of the tissue and incorporates anisotropic tension to simulate

fibre orientation. This uses isoparametric quadratic elements for deformation, linear ele-

ments for pressure, was integrated with numerical quadrature and the resulting non-linear

system solved with the iterative Newton method. Preconditioning was added to the me-

chanical component of the model and improvements in the performance of the solver

due to this were investigated. An ILUT (Incomplete Lower Upper factorisation with drop

Tolerance) preconditioner was implemented and this demonstrated performance improve-

ments of up to 27 times on the meshes tested.

The resulting cardiac electromechanical solver was then used to consider how known

changes in cardiac electrophysiology, which are manifest in end-stage heart disease, affect

the stability of the electrical wave. Specifically, investigations were undertaken into the

introduction of fibrotic regions (with different sizes and concentrations) and electrical

remodelling caused by end-stage cardiac disease. These were modelled on both static

and deforming domains to consider whether deformation can alter the stability of a spiral

wave. These simulations demonstrated that fibrotic regions and tissue deformation can

have significant disruptive effects on the stability of a re-entrant spiral wave and that

remodelling the electrophysiology stabilises the wave.
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Chapter 1

Introduction and thesis overview

1.1 Introduction

1.1.1 Cardiac function

The heart is essentially an electromechanical pump that has a repeating rhythmic action.

It is the rapid propagation of electrical activation through cardiac tissue that initiates its

contraction, and its electrical behaviour is influenced by the resulting mechanical activity.

The heart is comprised of four chambers (see Figure 1.1), and these chambers work as two

pairs, with the function of the left atrium and ventricle being to pump oxygenated blood

around the body, and the function of the right atrium and ventricle to pump de-oxygenated

blood to the lungs.

In a healthy heart operating normally, the electrical activity is governed by a ‘pace-

maker’ node, called the sino-atrial node. This node starts an electrical wave which excites

the surrounding cells and generates an action potential. An action potential is a self-

regenerating wave of electrochemical activity that allows excitable cells to carry a signal

over a distance, these are pulse-like waves of voltage that travel along several types of cell

membranes such as cardiac muscle cells. The electrical wave travels from the sino-atrial

node, in parallel around both atria, to the atrioventricular node, and then via the bundle of

His and Purkinje fibres to excite the left and right ventricles.

As the electrical wave propagates through the atrial and ventricular muscle it causes it

to contract, and it is this synchronised contraction that causes the pumping action of the

1



Chapter 1 2 Introduction and thesis overview

Figure 1.1: Simplified diagram of the heart [128]

heart. The atrioventricular node delays the electrical impulses (by having a slower con-

duction velocity) to ensure the atria have ejected their blood into the ventricles first before

the ventricles contract. The electrical activity is caused by the movement of numerous

ions from inside the cells to outside the cells and also between them. This movement of

ions also causes the cells to contract.

The left ventricle pumps oxygenated blood around the body and is typically the main

focus of simulation and modelling work. The left and right ventricles are not the same

shape, the left ventricle is quite conical and its transverse cross-section is oval or nearly

circular. The right ventricle wraps around the left ventricle and its transverse cross-section

is more crescent shaped.

1.1.2 Motivation of research area

Cardiac and circulatory disease are the largest cause of death in the UK. In 2008, over

191,000 [97] died from heart and circulatory disease including 88,000 deaths from Coro-

nary Heart Disease and a further 43,000 [97] from strokes. More than one in four deaths

in men before the age of 75 and one in five deaths in women before the age of 75 are from
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cardio-vascular disease. There are around 124,000 heart attacks in the United Kingdom

every year.

The aim of computational simulations of the heart is to better understand how it func-

tions, and provide the ability to model specific pathological conditions or medical in-

tervention techniques. Computer models provide an efficient, and cost effective way of

undertaking such research prior to clinical trials which are expensive and potentially a

risk to the patients.

1.2 Introduction to cardiac modelling

1.2.1 Brief historical background

From the late nineteenth century it has been known that electrical excitation of muscle

tissue causes it to contract. In terms of the mathematical and computational modelling

of such activity the ground-breaking work was undertaken by Hodgkin and Huxley in

1952 [45]. The Hodgkin-Huxleymodel is a mathematical model that describes how action

potentials are propagated in the squid giant axon, and for this work they were awarded the

Nobel Prize in Physiology or Medicine in 1963.

Noble adapted the work of Hodgkin and Huxley to apply it to the Purkinje fibres of

the heart [74]. Over the next 60 years the field of cardiac modelling has developed, with

researchers across the world developing models for cardiac electrophysiology, cardiac

mechanics, blood flow and also generating better representations of the cardiac muscle.

The objective of this section is to provide a brief introduction to the various areas of math-

ematical and computational modelling of cardiac electro-mechanical activity. However,

for a more comprehensive introduction to the modelling of cardiac functions please refer

to [53, 81, 127].

1.2.2 Electrophysiology modelling overview

Figure 1.2 shows an example cardiac action potential and this involves a number of

phases, numbered 1 to 5, as follows:

1. This is the resting potential and is the ‘default’ status of the cell, where the sodium

ions, Na+, are concentrated on the outside of the cell and the potassium ions K+

are concentrated on the inside. The resting potential of a cell is negative, between

-85mV to -95 mV.
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Figure 1.2: An example plot of cardiac transmembrane voltage.

2. The rapid depolarization phase is due to the opening of the fast Na+ channels caus-

ing a rapid increase in the membrane conductance to Na+ and thus a rapid influx of

Na+ ions into the cell. In Figure 1.2 this is the steep slope upwards.

3. Following the rapid depolarisation there is a small dip in net current caused by the

inactivation of the fast Na+ channels.

4. The plateau phase of the cardiac action potential is sustained by a balance between

inward movement of calcium ions through calcium channels and outward move-

ment of K+ through rectifier potassium channels.

5. During the rapid repolarisation phase the Ca2+ channels close, while the slow de-

layed rectifier K+ channels are still open. This ensures a net outward current, cor-

responding to negative change in membrane potential, thus allowing more types

of K+ channel to open. This net outward, positive current (equal to loss of pos-

itive charge from the cell) causes the cell to repolarize. In Figure 1.2 this is the

downward slope back to the resting potential.

It should be noted that the above action potential has the ‘spike and dome’ profile, and

this is seen in the epicardial (the outer layer of heart tissue) and the M cell types, but not

in the endocardial cells (the innermost cells). This is due to sensitivity of the transient

outward current (Ito) [43]. M cells, which are also known midmyocardial or Moe cells

(named in memory of Gordon K. Moe [101]), are between the surface epicardial and

endocardial layers.
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As can be seen in the steps above, to fully model the cardiac action potential it is nec-

essary to model the movement of various ions through the cell wall and the state of various

ion pumps and exchangers. In [30] the transmembrane currents and other cellular ionic

processes of 45 different electrophysiology models are compared. Clearly there many

approaches used to accomplish electrophysiological modelling, and in [21], four groups

of models are discussed, namely simplified two variable models, bio-physically detailed

models (first and second generation) and reduced cardiac models. These techniques are

discussed below.

1.2.3 Types of electrophysiology model

Simplified cell models do not seek to model all the ion currents within the cell, rather they

use two variables to model the cell excitation and then subsequent recovery. These are

derived from the Fitzhugh Nagumo model (FHN) [33] and take the form:

∂V

∂ t
= f (V,r),

∂ r

∂ t
= g(V,r), (1.1)

where V is the activation variable and r is the recovery variable.

Many variants of the FHN model have been produced and one example is the Aliev

and Panfilov model [2]. This was developed to model the transmembrane voltage within

cardiac tissue and is a reaction-diffusion partial differential equation that takes the form:

∂V

∂ t
= ∇ · (D∇V)− kV (V −a)(V −1)− rV + Is, (1.2)

∂ r

∂ t
= (ε

µ1r

µ2 +V
)(−r− kV (V −b−1)), (1.3)

where V is the transmembrane potential, r is the re-polarising current, and Is is the current

due to external stimulus. µ1, µ2, a, b, ε and k are parameters used to modify the behaviour

of the wave, based on observation.

The two-variable models have a number of advantages, discussed in Clayton et al.

[21], particularly the speed at which they can be solved and that the parameters are di-

rectly set to mimic a cardiac action potential. These types of models seek to provide a

representation of transmembrane voltage, but do not attempt to accurately model activity

within the cells. This means that “the behaviour and influence of specific ion channels

and other intracellular processes on propagation” [21] cannot be modelled as they are not

included. It is further stated in [21] that these models should be used to study the general

effects of wave propagation or when results are needed in the shortest possible time.
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Physically detailed cell models incorporate the movement of calcium, sodium and

potassium ions, the functions of the sodium/potassium pumps and a number of ion “gates”

that open at a particular time in the cycle. There are also different types of channels

(long-lasting and transient) that respond differently to voltage changes across the cell

membrane. These models provide a more accurate model of the electrophysiology.

The Beeler and Reuter model [8] includes descriptions of four currents and a simpli-

fied model of intracellularCa2+. The Luo Rudy 1 (LR1) [63] model additionally includes

a voltage dependent background current and a time-dependent K+ current and this is then

developed further in [62]. These kinds of model are far more involved that the simpli-

fied models of action potential and at each time-step require a large number of ordinary

differential equations to be solved. These equations are generally non-linear and stiff (a

stiff equation is one where numerical methods for solving the equation may be unstable,

unless the step size is taken to be extremely small). The changes occurring within a cell

(for example the opening of Na+ channels) occur very rapidly and therefore need very

small time steps [21].

The second generation of physically detailed models have additional equations that

balance the intracellular and extracellular ion concentrations [21]. The first of these mod-

els was the DiFrancesco-Noble model [26] of Purkinje cells and a number of other second

generation models have been produced, based on various animal hearts including guinea

pig, dog, rabbit and human. The ten Tusscher and Panfilov model is a second generation

model of human tissue [108, 110] and is used within this thesis.

These models provide the necessary detail to simulate changes in individual ion cur-

rents that may be caused by cardiac disease. The second generation models are more

computationally expensive to solve as they include more equations, which are needed to

model ion channels, pumps, exchangers and intracellular ion concentrations [21].

Reduced cardiac models simplify the underlying cellular activity, and model the elec-

trophysiology by modelling the ion currents through the cell membrane. The Fenton and

Karma model [29] puts forward a three-variable model that tracks the total current through

the cell membrane as the sum of a fast inward current, analogous to the sodium current,

a slow outward current, analogous to the time-dependent potassium current, and a slow

inward current, analogous to the calcium current. There are a number of extensions to

this model, for example Cherry and Fenton in 2004 [17] added an extra variable to enable

a “spike and dome action potential morphology to be reproduced” [21].

Fenton and Karma proposed their model because, even though the ionic models have

become more complex, they do not assist in the resolution of all issues with the electro-

physiological modelling, specifically extensive 3D simulations are difficult to carry out
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and their inherent complexities make it difficult to isolate a subset of essential parame-

ters.

1.2.4 Monodomain and bidomain models of electrophysiology

The monodomain approach assumes that cardiac tissue behaves as an excitable medium,

with diffusion and local excitation of membrane voltage. It provides the simplest descrip-

tion of action potential propagation. In contrast to the monodomain model, the bidomain

approach considers cardiac tissue as a two phase medium comprising intracellular and

extracellular spaces. The earliest version of this was proposed in 1978 [115]. The trans-

membrane potential in the bidomain model is the difference between the intracellular Φi

and extracellular Φe potentials:

Vm = Φi−Φe, (1.4)

where Vm is the membrane voltage. The overall system of bidomain equations is given by

the following [21, 42, 93]:

∇ · (Gi+Ge)Φe = −∇ · (Gi∇Vm), (1.5)

∇ · (Gi∇Vm)+∇ · (Gi∇Φe) = −SvIm, (1.6)

Im = Cm
dVm

dt
+ Iion, (1.7)

where Im is the current flow through the membrane, G are the conductivity tensors (the

subscripts i and e relating to the intracellular and extracellular spaces), Sv is the surface

to volume ratio of the cells, Im is the membrane current, and Cm is the membrane capaci-

tance.

Studies have been done to consider the differences between the two methods (mon-

odomain and bidomain), for example [85]. In this paper the differences between the two

models are investigated and it is demonstrated that for modelling propagating currents the

monodomain model produces similar results to the bidomain model. The monodomain

models cannot model realistic extracellular potentials by themselves, however additional

calculations can be performed to model extracellular potentials from membrane currents.

This method only works where there are no applied currents [85], and this paper concludes

that the monodomain model is sufficient for propagation studies.

The bidomain is more computationally expensive, as the matrix of membrane capaci-

tance, Cm, plays a more significant role in the computation. Cm is not invertible [122] and

this means that simpler explicit schemes cannot be used for integrating in time. This has
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typically meant that simulations with bidomain models have been undertaken on smaller

domains.

1.2.5 Introduction to cardiac mechanics

Within cardiac tissue, a cardiac myocyte is a specialized muscle cell that is composed of

bundles of myofibrils. The myofibrils have distinct, repeating units, termed sarcomeres,

which represent the basic contractile units of the myocyte. As the electrical wave passes

through the cardiac tissue, the normal sarcomere length can change significantly (from a

starting length of approximately 2.0 µm), with [65] noting this can be up to 13.9% (in

canine epicardial cells). This contraction is typically modelled with finite deformation

elasticity theory [47, 54, 69]. These models are based on general conservation principles

of space, mass and momentum and these are explained further in Chapter 3.

Compared to the electrical modelling, which has been studied extensively, there is

less published work in the area of cardiac contraction, and it is commented on in Fink et

al. [31] that these models have generally been of a lower complexity. However, over recent

years, detailed biophysical models of the inner workings of the sarcomere have emerged

[14, 73] and more complex coupled electro-mechanical models have been developed [20,

54, 58].

In [69] it was demonstrated that the properties of re-entrant waves (see Section 1.3) are

significantly altered by movement of the muscle cells, for example period of excitation

and stability of rotation [69]. Their recommendation is that any model using a static

undeforming geometry should be interpreted with caution.

In Section 1.2.2 the movement of ions within and between cells was discussed, and

for the contraction of tissue calcium is considered to be the most important [9]. Cardiac

excitation-contraction coupling is the process from electrical excitation of the myocyte to

contraction of the tissue. The movement of Ca2+ is an essential part of cardiac electro-

physiology and the myofilaments (a myofibril is the basic unit of a muscle) are directly

affected by its behaviour to cause contraction.

Aspects of the cardiac modelling which make it difficult are the fact that the electrical

propagation is affected by the size and location of the tissue, that the deformation of

the cells affects cellular electrophysiology, and that the size and shape of the muscle

is affected by the contractile forces generated by the electrical activity. This sets up a

complex feedback system (known as mechano-electrical feedback) whereby each system

is dependent on the other.

Stretch-activated channels (SACs) are ion channels which open in response to me-
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chanical deformation of the cell. This process means the electrophysiological behaviour

is altered as the cells deform, with the calcium transient being sensitive to the sarcom-

ere length [55]. When SACs are being modelled it is necessary to use strong coupling

of the mechanical and electrical systems. With strong coupling both the electrical and

mechanical systems are solved together as one system of equations. Strongly coupled

systems make it possible to incorporate specific biological effects of electromechanical

coupling. For example, length-dependent calcium bindings or stretch-activated conduc-

tance channels. These features are present in some cellular and tissue models (for exam-

ple [59,75,104]). The other approach used (for example in [69]) is ‘weak coupling’. With

weak coupling the electrical and mechanical systems are solved independently, and typi-

cally at different time intervals. An active tension [69,82] is generated from the electrical

system and this is used to provide a tensile force to the mechanical system.

Cardiac tissue is composed of fibres and sheets and the contraction is predominantly

along the length of the fibres. In [71], Nickerson et al. developed a model of cardiac

electromechanics and used it to investigate fibre length effects. This demonstrated that

mechanical contraction produces a longitudinal and twisting deformation.

It is also now typically assumed that cardiac tissue is incompressible [54, 68, 82]. An

incompressible material does not change volume (or area in two dimensions) when pres-

sure is applied to it. Modelling cardiac tissue as incompressible can add complexity to the

model as extra terms need to be included to enforce the incompressibility constraint, and

it may be necessary to use higher order approximations for the deformation unknowns.

1.2.6 Recent cardiac mechanical models

In Section 1.2.5 the complexities of modelling cardiac contraction are briefly highlighted,

with the need to consider the fibre anisotropy, mechanical-electric feedback, stretch acti-

vated channels and incompressibility amongst other things. Recent published research

has attempted to overcome these obstacles and model specific electro-mechanical ef-

fects. In [20] mechanical deformation is used to induce electrical activity via the stretch-

activated channels. It then considers how deformation can cause refractory areas that

change the stability of the spiral wave.

In [54] a three-dimensional electro-mechanical model of the left ventricle of the hu-

man heart is presented. This uses a second generation detailed electrophysiology model

[110] to model human cardiac cells and the mechanical activity is represented by the

Niederer-Hunter-Smith [73] active tension model. These are modelled in a geometry that

contains a detailed description of fibre orientation. Their findings were then compared
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to experimental recordings, and the model used to study the effect of mechano-electrical

feedback via the stretch-activated channels on the stability of re-entrant cardiac spiral

waves. Their conclusions being that mechanically induced spiral wave break-up is closely

associated with the deformation of the cardiac tissue and the presence of stretch activated

channels. In [76] a coupled cardiac electro-mechanical model is produced and discusses

the potential clinical application of such models.

1.3 Cardiac arrhythmias

Cardiac arrhythmia is the term used for a group of conditions in which there is abnormal

electrical activity in the heart. Cardiac arrhythmias can form re-entrant waves, which can

spiral within an entire chamber. These cause conditions known as atrial and ventricular

tachycardia, which cause the chambers to contract out of sequence and the pumping action

of the heart to be reduced. The chamber in which the tachycardia occurs beats too quickly

and, in the case of ventricular tachycardia, has not been properly filled with blood before

it expels it. Typical arrhythmias include:

• Bradycardias - a slow rhythm, less than 60 beats/minute.

• Tachycardias - any heart rate faster than 100 beats/minute.

• Re-entry - these arrhythmias occur when an electrical impulse recurrently travels in

a tight circle within the heart, rather than moving from one end of the heart to the

other and then stopping.

• Fibrillation - the electrical activity within an entire chamber becomes chaotic and

the muscle twitches randomly rather than contracting in a coordinated fashion.

The key area for modelling is the analysis of the development of re-entrant electrical

impulses and how these then break-up into chaotic patterns. It is this break-up that causes

ventricular fibrillation and this is imminently life-threatening.

It is worth noting that every cardiac cell is able to transmit impulses in every direction,

but will only do so once within a short period of time. Normally, the action potential

impulse will spread through the heart quickly enough that each cell will only respond

once. However, if conduction is abnormally slow in some areas, part of the impulse will

arrive late and potentially be treated as a new impulse. Depending on the timing, this can

produce a sustained arrhythmia.
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1.3.1 Modelling arrhythmias

Computational models of cardiac electrophysiology are used to simulate the effects of

known biological problems with the cardiac wave. Studying cardiac arrythmias numeri-

cally removes the inherent difficulties in undertaking physical experiments and provides

useful tools for the biological and medical communities to consider intervention tech-

niques.

Figure 1.3 illustrates how the two-dimensional representation of cardiac electrophys-

iology produced by computational models relates to biological conditions. The first row

of images shows example electrocardiogram (ECG) output for three cardiac rhythms,

namely normal sinus rhythm, tachycardia and fibrillation. The second row gives exam-

ples of how these are simulated in two dimensions and the third row shows examples of

the action potential wave form caused by these rhythms.

In cardiac simulation re-entrant waves are self-sustaining waves which form a spi-

ralling pattern within the domain. These are artificially instigated within the computa-

tional model. However due to their self-sustaining nature it is possible to create a stable

spiral wave and then investigate its properties.

Ventricular fibrillation is a cardiac arrhythmia, whereby the re-entrant spiral waves

seen in a tachycardia break-up to form a chaotic pattern. This arrhythmia has fatal con-

sequences as the heart stops contracting rhythmically and quivers in a chaotic state. The

break up of previously stable spiral waves has been considered in cardiac simulations

(see [20,110]), where amendments to the electrophysiology or mechanics are considered.

1.4 Cardiac geometry considerations

The heart is a complex organ in which the muscle tissue is composed of billions of indi-

vidual cardiac myocytes (muscle cells), and these are structured in fibres and then fibres

structured into sheets. The chambers of the heart are often simplified to smooth geo-

metric shapes, however in reality there are various fibres, veins and other tissue within

the chambers that makes their interior structure very complex. The images within [38]

clearly illustrate the level of complexity present in a real heart.

In Kerckhoffs et al. [55], a number of anatomically detailed three-dimensional models

of geometry and fibre orientation are discussed. For example, they reference Vetter and

McCulloch [117] and their description of a rabbit heart. Similar work has been done for

mouse, dog, pig, sheep and human hearts. These have been obtained from histological

(under microscope) measurements or magnetic resonance imaging (MRI) scans [55]. The
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Figure 1.3: Representation of cardiac arrhythmias. The first row of images shows example

electrocardiogram (ECG) output for three cardiac rhythms, namely normal sinus rhythm,

tachycardia and fibrillation. The second row gives examples of how these are simulated

in two dimensions and the third row shows examples of the action potential wave form

caused by these rhythms. ECG and APD wave images courtesy of Alan Benson.



Chapter 1 13 Introduction and thesis overview

creation of accurate three-dimensional models and their conversion to meshes used in

mathematical models is an area of research in its own right.

The challenge for modelling is that to accurately represent all the individual features

of the heart requires computational grids/meshes with a very fine resolution. The finer

the resolution the larger the system size and the more computing resources are required to

solve the problem. There is inevitably a trade-off between these. When simulating cardiac

activity it is also important to consider the particular effect being modelled or investigated.

Simplified geometries and lower dimensions can be used to model specific effects, pro-

viding illustrative results, without the need to undertake prohibitively time-consuming

simulations on an accurate three-dimensional geometry. Simplification of the geometry

also makes the visualisation of results easier and this can assist in the identification of

patterns within the results.

1.5 Numerical modelling

Early investigation into cardiac electrophysiology [74] considered the action potential

and ionic currents on a single cell and over time more advanced single cell models were

developed, for example [8, 26, 63]. These produce more detailed representations of the

activity within a single cell with regard to the movement of ions, and their associated

pumps and exchangers.

These single cell models allow variation in time and require a set of stiff ordinary

differential equations to be solved. The numerical schemes used to approximate these

models include explicit Euler, Runge-Kutta and implicit techniques [86]. A commonly-

used approach was proposed by Rush and Larsen [94] which simplifies the system to one

differential equation and uses a time-step adjustment strategy to increase efficiency.

Models to simulate the propagation of the electrical wave around the cardiac muscle,

for example an entire ventricle, were developed in parallel with the single cell models.

These simulations require the stiff ordinary differential equations that are required for

the solution of the cellular activity to be embedded within a monodomain or bidomain

representation of cardiac tissue.

These models vary in space as well as time, and the most common numerical method

used to approximate these systems is the finite difference method. Finite difference meth-

ods have been widely used to simulate the propagation of the electrical wave over a do-

main and examples of these can be found in [18, 29, 81].

Modelling in both space and time is inherently more complex and the diffusion term

that is present in both themonodomain and bidomain equations make these either parabolic
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partial differential equations (monodomain) or a combination of elliptic and parabolic

partial differential equations (bidomain). It is also important that the space step used for

these methods is small enough to produce smoothly curved wavefronts. These wavefronts

should not be not distorted by the modelling mesh. For example, Cherry and Fenton [17]

use a space step of 0.25mm, and this produces smooth spiral waves.

A technique for improving the performance of computations is operator splitting,

where computation of the diffusion term and cellular models are separated [88]. Vig-

mond et al. [118] comment that operator splitting is often performed to separate the large

non-linear system of ordinary differential equations. This then enables semi-implicit or

fully implicit methods to be used for the remaining system of partial differential equa-

tions. The time-step for solving the cell model can also be made adaptive, with a shorter

time step at the steep up-slope of the action potential, and this can result in improved

performance of the solver.

In later work the finite element method (FEM) has been used to model the electrophys-

iology over a three-dimensional domain. Franzone et al. [34] use a parallel FEM solver

with isoparametric trilinear finite elements in space and a semi-implicit adaptive method

in time. Ying et al. [124] discretise the domain spatially with the continuous piecewise

linear FEM and use an adaptive time-stepping strategy. The FEM techniques have the

advantage that complex geometries are easier to represent (than with finite differences),

however the FEM is more difficult to implement.

As described in Section 1.2.5, cardiac mechanics are modelled using finite defor-

mation elasticity theory. This is typically modelled using the FEM as can be seen in

[48,54,58,82,121]. This has been done on simplified two-dimensional tissue ‘sheets’ [69]

and on more complex three-dimensional ventricular representations [54].

In recent years adaptive methods have been applied to the field of cardiac modelling,

with methods for adapting both temporally and spatially being developed, using both finite

differences and finite elements. An adaptive scheme for the bidomain model is proposed

in [83], and this uses the finite element method and decomposes the domain, with each

sub-domain then being independently refined. Further spatial adaptivity schemes have

been developed for modelling cardiac electrophysiology [18, 19, 58, 122, 123], each of

which aim to improve the efficiency of the solver whilst maintaining the solution accuracy.

In [114] both spatial and time adaptivity is applied, with an operator splitting tech-

nique used to decouple the diffusion and reaction terms. In [58] a strongly coupled

electro-mechanical model is presented that includes techniques to efficiently approximate

the electrical system over a larger time step and has features to speed up the mechanical

aspects by modifying the Newton method.
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1.5.1 Typical modelling limitations

The ultimate aim of cardiac modelling and simulation is to develop an accurate three-

dimensional moving model of the human heart. Modelling cardiac behaviour completely

requires the accurate representation of many physical attributes, for example a three-

dimensional geometry with appropriate anisotropic tissue structure, a detailed electro-

physiological model, an anisotropic tissue mechanics model incorporating fibre structure

and mechano-electrical feedback. To date a complete coupled model of deforming tissue

has not been produced as the computational complexity is too high.

The typical approach by computational modellers is to simplify certain aspects of the

model and seek to produce results focused at one particular area of behaviour. Typical

constraints and limitations applied to the models include:

• The geometry of the heart is modelled in two-dimensions.

• Three-dimensional models use simplified representations of the cardiac geometry,

for example smooth truncated ellipsoids.

• The electrical diffusion is assumed to be isotropic rather than anisotropic.

• The monodomain model rather than the bidomain model are used.

• Certain aspects of mechano-electric feedback (e.g. stretch-activated channels) are

ignored.

• Modelling one chamber (typically the left ventricle).

• Ignoring the effects of the fibre and sheet structure in the models.

• Various combinations of the above.

These techniques seek to make the problem being modelled tractable on available com-

puting equipment.

Another issue with the building of a complete model is that as the complexity of the

models increase so do the numbers of parameters. When combining multiple methods

there may be parameter sensitivities that reduce the overall confidence in the results [55].

There are also many issues with the mathematical modelling of cardiac tissues and

these are summarised in [122]. Firstly, certain modelling techniques, for example the fi-

nite difference method, struggle to model the complex cardiac geometry accurately. Sec-

ondly, to simulate the steep up-slope of the action potential the computational mesh needs

to be very fine, if a fine mesh is used throughout the domain then this results in a very
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large system size which is time consuming to solve and requires large amounts of mem-

ory to store. Numerical methods often have a time-step requirement that is tied to the

spatial resolution, that is having a fine spatial resolution will often then mandate a small

time-step. This increases the computational time required to model a period of real time.

1.6 Standardisation and re-usability

1.6.1 CellML

CellML is an XML standard that has been developed in the Bioengineering Institute at

the University of Auckland [70]. It was designed as a means of storing and exchanging

biological models. The mathematical equations in CellML are encoded using MathML

(see http://www.w3.org/Math), which is a markup language designed to facilitate the use

and presentation of mathematical content on the Web.

The interesting aspect of CellML is that a number of researchers in the field of cardiac

simulation are publishing CellML versions of the their work. This may make it easier to

reproduce their findings and then progress the research from there. One of the challenges

of cardiac modelling is the ability for different research teams to use models developed by

other teams, especially with regard to understanding the parameters and set-up require-

ments of a model and under what situations it is applicable [31].

It also provides a vehicle for corrections, for example the Nash and Panfilov paper [69]

has an updated version at the CellML website (see

http://www.cellml.org/models/nash panfilov 2004 version01 as of June 2009).

1.6.2 Pre-developed software packages

There are a number of pre-developed modules or packages made available by the aca-

demic community or commercial developers to assist in aspects of cardiac modelling.

Examples of these include:

• The Continuity project from UCSD (http://www.continuity.ucsd.edu). This is “a

problem-solving environment for multi-scale modelling and data analysis in bio-

engineering and physiology, especially finite element modelling in cardiac biome-

chanics, biotransport and electrophysiology”.

• Chaste (Cancer, Heart and Soft Tissue Environment). This is a general purpose sim-

ulation package aimed at multi-scale, computationally demanding problems arising

in biology and physiology. See http://www.cs.ox.ac.uk/chaste/ for more details.
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• COMSOL Multiphysics. This is more generalised engineering software and facili-

tates mathematical modelling of physical events. The software includes the ability

to define a geometry, produce a mesh, define the problem mathematically and then

solve and visualize the results. See http://www.uk.comsol.com/ for more details.

These packages aim to speed up the solution of various biological problems by provid-

ing a pre-built framework/toolkit to be developed on, for example in [20] the COMSOL

package is used. These pre-developed packages are not used in this thesis, however are

mentioned to illustrate the sophisticated tools available for biological modelling. For

certain problems these packages may provide the functions necessary to complete the

mathematical and computational modelling, thus enabling biologists to quickly simulate

such problems without the need to develop their own modelling software.

1.7 Summary and thesis overview

1.7.1 Summary

This chapter has highlighted some of the complexity involved in modelling cardiac electro-

mechanical activity. This is a vibrant research area and is one of the pioneers of the

systems biology approach, whereby computational and mathematical models are used to

better understand complex biological problems. This is illustrated by the cardiac phys-

iome project [7,31] which is providing a means for disparate research teams to collaborate

and share progress.

Modelling cardiac electrophysiology is a well studied area of research and there are

many published mathematical models. Choosing the best model depends on the specific

issues the research is looking to investigate and the computational resources available.

Each of the published models has strengths and weaknesses and these are generally ex-

plained by the authors. There do, however, remain significant differences between certain

models which were developed to explain similar phenomena [31] and so care needs to be

taken when considering each model. It is also possible to utilise different electrical mod-

els once an overall framework is built. For example, in the electrophysiology modelling

work undertaken in this thesis, the Barkley [6] model of a general excitable media was

used initially, this was then replaced with the Aliev-Panfliov model [2] and then the ten

Tusscher-Panfilov model [110] used.

The modelling of coupled deforming electro-mechanical models has progressed more

slowly than the electrophysiological models. However over the last 4-5 years a number

of complex coupled models [54,58,69] have been published and these seek to investigate
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the effects that the movement of the domain (and the associated feedback processes) have

on the electrical wave.

1.7.2 Overview of thesis

The objective of this thesis was twofold, first to build an efficient coupled electromechan-

ical model with a deforming domain, and then to use this to model specific conditions

prevalent in end-stage cardiac disease.

To undertake detailed simulations of cardiac activity requires the modelling of com-

plex partial differential equations over a complex geometry. These computations can be

very time-consuming, even in simplified geometries, and this thesis will consider ways

to improve the speed of such simulations with an understanding of how this affects the

accuracy of the solution. Efficiency improvements have been considered by the addition

of preconditioning and locally adaptive mesh refinement.

End-stage disease conditions have been applied by changing the electrophysiological

properties and by amending the underlying modelling domain (this is covered in detail in

Chapter 7). To this end, techniques were used to provide the required complexity where

needed (for example by using the ten Tusscher-Panfilov electrophysiological model) and

simplifications elsewhere, for example using a two-dimensional domain. Emphasis will

be placed on modelling the formation and dissipation of rotating spiral waves, that have

been shown to be a key factor in many dangerous cardiac arrhythmias [84].

The techniques used and their outcomes are presented in detail in the following chap-

ters.



Chapter 2

Cardiac electrophysiology

2.1 Introduction

The objective of this chapter is to describe the techniques used in this thesis to model

the cardiac electrophysiology. The chosen mathematical models are described and then

their approximation using the finite element method (FEM) is discussed. Practical issues

such as, solving the resulting system of equations, how the progression of time is dealt

with and how the modelling domain is discretised, are then discussed. Finally, the chapter

presents results to demonstrate the convergence of the approximation and validate the

model against other published work.

2.2 Governing equations

There are many published representations of cardiac electrophysiology, e.g. [2, 26, 33,

53, 62, 75, 108] and the review paper [21] has an excellent summary of the various tech-

niques available. In this thesis the monodomain model is used, which is described by the

following parabolic partial differential equation [53]:

∂V

∂ t
= −(Iion + Istim)+∇ · (D∇V), (2.1)

19
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Figure 2.1: An example plot of cardiac transmembrane voltage produced by the TP06

model

where D is the diffusion tensor, V is the transmembrane potential, Iion is the sum of all

ionic currents, and Istim is the externally applied transmembrane current.

2.2.1 Ionic current model

In this work Iion is given by the ten Tusscher and Panfilov 2006 model [110] (referred to

hereafter as TP06), which provides a detailed description of individual ionic currents and

intracellular ion concentrations. This is a cellular model of the electrical wave propaga-

tion in human ventricular tissue based on experimental data. The TP06 model calculates

most of the major ionic currents, and this enables the simulation of certain pathological

conditions, for example end stage heart failure (as is modelled in Chapter 7). The model

also includes calcium dynamics, which allow the realistic modelling of calcium transients

and calcium current inactivation (also utilised further in Chapter 7).

The TP06 model provides a detailed approximation of the cardiac action potential

wave form, as can be seen in Figure 2.1, and for reference purposes the TP06 model is

included in the appendices (see Section C).
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2.3 Modelling with the Finite Element Method

2.3.1 Weak form of governing equation

The electrophysiology is modelled with the parabolic reaction diffusion equation de-

scribed in Equation (2.1). To model the unknown variables (in this case the transmem-

brane voltageV ) over the domain the finite element method (FEM) is used. With the FEM,

the domain is discretised into smaller ‘elements’ and the unknown variables approximated

within these elements. The typical domain used in this thesis is a two-dimensional rect-

angle (with axes of X1 and X2) and this is divided into a mesh of unstructured triangles.

The meshes used in this project are generated by the ‘Triangle’ [99,100] mesh generation

tool (see Section 4.1.1 for more details).

The FEM requires the governing equations to be in the ‘weak’ form (otherwise known

as ‘variational’ form). The weak form of Equation (2.1) is obtained by first multiplying

by a weight function (Ψ) and then integrating over the domain Ω, to give:

∫

Ω
Ψ

∂V

∂ t
+Ψ(Iion + Istim)+Ψ∇ · (D∇V)dΩ = 0. (2.2)

For the purposes of deriving the FEMmodel, the reaction term (Iion+Istim) will be referred

to as f . If the diffusion is set to be isotropic thenD=DI and, by applying Green’s identity,

Equation (2.2) gives the weak form:

−
∫

Ω
Ψ

∂V

∂ t
dΩ+D

∫

Ω
∇Ψ ·∇VdΩ−D

∫

∂Ω
Ψ

∂V

∂n
dS =

∫

Ω
Ψ f dΩ, (2.3)

where ∂Ω is the boundary of the domain, ∂V
∂n is the derivative of V in the direction normal

to the boundary. In this thesis no-flux Neumann boundary conditions are applied, in

which the boundary term ∂V
∂n is a given function. With the no-flux condition ∂V

∂n = 0, so

no voltage is entering or leaving the domain.

By using

D

∫

Ω
∇Ψ · (∇V )dΩ =

∫

Ω
D

(

∂Ψ

∂X1

∂V

∂X1
+

∂Ψ

∂X2

∂V

∂X2

)

dΩ, (2.4)

and collecting the diffusion and time derivative terms on the same side, the reaction term

on the other side and applying the no flux boundary condition, Equation (2.3) can be

re-arranged to give:

∫

Ω
D

(

∂Ψ

∂X1

∂V

∂X1
+

∂Ψ

∂X2

∂V

∂X2

)

dΩ−

∫

Ω
Ψ

∂V

∂ t
dΩ =

∫

Ω
Ψ f dΩ. (2.5)
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This makes it simpler to see the stiffness matrix and mass matrix terms which will be

needed later in this chapter.

2.3.2 Discretising the solution

When using the FEM, the domain is discretised into elements (in this thesis these are

triangles) and the unknown variable (V ) is approximated by piecewise polynomial func-

tions within each element. To approximate the unknown values within an element, linear

Lagrange basis functions, Ψ, are introduced as follows:

Ψl = αl +βlX1 + γlX2 (2.6)

where l = 1,2,3 for a triangular element. The variable V is replaced with a piecewise

approximation over each element as follows:

V (X1,X2) ≈ V̂ (X1,X2) =
3

∑
l=1

VlΨl(X1,X2), (2.7)

For a triangle with vertices l = 1,2,3 the partial derivatives of Ψl with respect to X1 and

X2 are:
∂Ψl

∂X1
= βl, (2.8)

and
∂Ψl

∂X2
= γl. (2.9)

The derivatives of the piecewise approximation to V become:

∂V̂

∂X1
=

3

∑
l=1

Vl
∂Ψl

∂X1
=

3

∑
l=1

βlVl, (2.10)

and
∂V̂

∂X2
=

3

∑
l=1

Vl
∂Ψl

∂X2
==

3

∑
l=1

γlVl. (2.11)

For a triangle with successive vertices of i, j,k, the values of α , β and γ [125, page 127]

are given by:

αi =
X

j
1X

k
2 −X k

1X
j
2

2△e
, (2.12)

βi =
X

j
2 −X k

2

2△e
, (2.13)



Chapter 2 23 Cardiac electrophysiology

γei =
X k
1 −X

j
1

2△e
, (2.14)

where△e is the area of the triangular element.

In this thesis the Galerkin method [89] is implemented, which uses the same basis

functions as the weight functions used in the weak form of the governing equation (see

Equation (2.2)).

2.3.3 Stiffness and mass matrices

The weak formulation of the governing Equation (2.5), can be arranged as follows:

KV−M
∂V

∂ t
= f, (2.15)

where

Ke
lm =

∫

Ωe
D

(

∂Ψl

∂X1

∂Ψm

∂X1
+

∂Ψl

∂X2

∂Ψm

∂X2

)

dΩ, (2.16)

and

Me
lm =

∫

Ωe
ΨlΨmdΩ, (2.17)

and

f el =
∫

Ωe
Ψl f dΩ, (2.18)

and where V is a vector of the unknown voltage variable and Ωe is an element in the FEM

discretisation. In this notation the matrixK is known as the stiffness matrix and the matrix

M is known as the mass matrix. As Neumann ‘no flux’ boundary conditions are used in

this work, the boundary terms equate to zero and are excluded from these equations.

The FEM method approximates the unknown variable within an element, by first cal-

culating Ke
lm, M

e
lm and f el using Equations (2.16), (2.17) and (2.18). Equations (2.16),

(2.17) produce temporary matrices which are known as the local matrices, with l,m =

1,2,3. The local stiffness matrix components are given by Equation (2.16) and for a three

node triangular element with vertices i, j,k this becomes the following 3 x 3 matrix:

∫

Ωe
D

















[

(

∂Ψi

∂X1

)2

+
(

∂Ψi

∂X2

)2
]

[(

∂Ψi

∂X1

∂Ψ j

∂X1

)

+
(

∂Ψi

∂X2

∂Ψ j

∂X2

)] [

∂Ψi

∂X1

∂Ψk

∂X1
+ ∂Ψi

∂X2

∂Ψk

∂X2

]

[(

∂Ψi

∂X1

∂Ψ j

∂X1

)

+
(

∂Ψi

∂X2

∂Ψ j

∂X2

)]

[

(

∂Ψ j

∂X1

)2

+
(

∂Ψ j

∂X2

)2
]

[

∂Ψ j

∂X1

∂Ψk

∂X1
+

∂Ψ j

∂X2

∂Ψk

∂X2

]

[(

∂Ψi

∂X1

∂Ψk

∂X1

)

+
(

∂Ψi

∂X2

∂Ψk

∂X2

)] [

∂Ψ j

∂X1

∂Ψk

∂X1
+

∂Ψ j

∂X2

∂Ψk

∂X2

]

[

(

∂Ψk

∂X1

)2

+
(

∂Ψk

∂X2

)2
]

















dΩ,

(2.19)
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and when the individual derivatives of Ψi, Ψ j and Ψk are calculated this becomes:

Ke =
∫

Ωe
D







(βi)
2 +(γi)

2 βiβ j + γiγ j βiβk + γiγk

βiβ j + γiγ j (β j)
2 +(γ j)

2 β jβk + γ jγk

βiβk + γiγk β jβk + γ jγk (βk)
2 +(γk)

2






dΩ. (2.20)

Equation (2.20) gives the nine values for the local stiffness matrix and each of these

need integrating over the element. As the weight and basis functions are linear, the integral

simply becomes a matter of multiplying each of these nine calculations by the area of the

element triangle. As the values of α , β and γ can be calculated using Equations (2.12),

(2.13), and (2.14), the nine values of the local stiffness matrix can be directly calculated.

The FEM uses the values from temporary local stiffness matrices to build a global

stiffness matrix. The global stiffness matrix is an n x n matrix, where n is the number of

unknowns in the system and stores the combined values from all the local matrices. For

a problem with one unknown variable (in this case voltage) the number of unknowns is

equal to the number of nodes in the mesh, and the global matrix has one row for each

unknown. Each node in the mesh is given a ‘node index’, which is then used to position

the corresponding row in the global matrix .

The global stiffness matrix is built by processing each element and calculating a lo-

cal stiffness matrix comprised of 3 x 3 entries, and these are distributed to the row and

column within the global matrix that correspond to the ‘node index’ of the nodes within

the element. The ‘node index’ can be an arbitrary value, for example the order created by

the mesh generator, however it is more efficient to use a node ordering algorithm such as

Reverse Cuthill McKee (see Section 2.5.5 for more details).

The global mass matrix M is built in a similar fashion, with a local matrix being

generated and the contributions being distributed to the global mass matrix. The local

mass matrix components are given by Equation (2.17) and for a three node triangular

element with vertices i, j,k this becomes the following 3 x 3 matrix:

∫

Ωe
D







(Ψi)
2 (ΨiΨ j) (ΨiΨk)

(Ψ jΨi) (Ψ j)
2 (Ψ jΨk)

(ΨkΨi) (ΨkΨ j) (Ψk)
2






dΩ, (2.21)

The integrals for the local mass matrices could be calculated by substituting Equations

(2.6), (2.12), (2.13) and (2.14) into (2.21) and then using quadrature. Alternatively, using

induction it is possible to show the following for linear (hat) functions, over a triangle
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(Ωe) with nodes i, j,k:

∫

Ωe
Ψm

i Ψn
jΨ

p
kdΩ =

2m!n!p!

(m+n+ p+2)!
△e, (2.22)

where△e is the area of the triangle and m,n, and p are positive integers. This then gives:

∫

Ωe
ΨiΨ jdΩ =

{

1
12
△e when i 6= j

1
6
△e when i = j

, (2.23)

where i, j = 1,2,3, and local mass matrix can be written in full as:

△e

12







2 1 1

1 2 1

1 1 2






. (2.24)

Equation (2.24) provides the 9 values for the local mass matrix of a linear triangular

element. A global mass matrix can then be produced by processing each element in turn,

building a local matrix and then distributing the values of the local matrix to the correct

row and column in the global mass matrix. This utilises the node order property of the

node in the same way as the global stiffness matrix.

2.4 Modelling fibre orientation

2.4.1 Anisotropic diffusion

To simplify the the electrophysiological model the diffusion term from Equation (2.1) is

often set as isotropic [69], however cardiac tissue is anisotropic. To model this anisotropy,

by setting diffusion at different rates in different directions, a diffusion tensor is used in

Equation (2.1). The diffusion term in Equation (2.1) is represented by ∇ · (D∇V ). For

anisotropic diffusion in two dimensions,D is a 2 x 2 matrix with the cross terms included,

so:

D∇V =

(

D11 D12

D21 D22

)(

∂V
∂X1
∂V
∂X2

)

=

(

D11
∂V
∂X1

+D12
∂V
∂X2

D12
∂V
∂X1

+D22
∂V
∂X2

)

. (2.25)

For isotropic diffusion the entries for the local stiffness matrix are given in Equation

(2.16). However for the anisotropic case the diffusion coefficient D is replaced with a
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diffusion tensor D and this expands as follows:

∇ · (D∇V ) =

(

∂V
∂X1
∂V
∂X2

)

·

(

D11
∂V
∂X1

+D12
∂V
∂X2

D21
∂V
∂X1

+D22
∂V
∂X2

)

= D11
∂V

∂X1

∂V

∂X1
+

∂V

∂X1

∂V

∂X2
(D12 +D21)+D22

∂V

∂X2

∂V

∂X2
. (2.26)

This has two extra terms for each entry in the stiffness matrix (as compared to the isotropic

case). The local stiffness matrix, Ke
lm, with l,m= 1,2,3, will have the following additional

terms:
∂Ψl

∂X1

∂Ψm

∂X2
(D12 +D21) = βlγm (D21 +D12) (2.27)

Using Equation (2.27), the local stiffness matrix equation for anisotropic diffusion is

given by:

Ke
lm =

∫

Ωe

(

D11
∂Ψl

∂X1

∂Ψm

∂X1
+D22

∂Ψl

∂X2

∂Ψm

∂X2
+

∂Ψl

∂X1

∂Ψm

∂X2
(D12 +D21)

)

, (2.28)

and it is straightforward to calculate all nine terms for the local stiffness matrix. This also

means that if D = DI then this will model the isotropic case as previously defined.

2.5 Solving the system

2.5.1 Spatial discretisation

The simulations were undertaken on two-dimensional rectangular domains. These do-

mains were discretised into genuinely unstructured triangular elements using the ‘Trian-

gle’ mesh generation package [99, 100]. An example mesh is show in Figure 2.2.

2.5.2 Time discretisation

When the governing equation for the cardiac electrophysiology (as given by Equation

(2.1)) is approximated using the FEM, a system of equations with the following form is

produced:

M
dV

dt
+KV = (f+Q), (2.29)

whereM is a mass matrix,K is the stiffness matrix, V is the vector of unknown voltages,

f is the reaction term (caused by the ionic current model) and Q is the boundary term.

This equation can be solved using an explicit forward Euler method, where the deriva-
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Figure 2.2: An example unstructured mesh

tive of V is approximated by:

dV

dt
≈

(Vn+1−Vn)

dt
, (2.30)

where dt is the time step and Vn+1 is the unknown set of values of Vn at the the next time

level n+1. With this technique Equation (2.29) can be re-arranged as follows:

MVn+1 = MVn +(f+Q−KVn)dt. (2.31)

Equation (2.31) is of the general form Ax = b, where:

A = M

x = Vn+1

b = MVn +(f+Q−KVn)dt.

(2.32)

and can be solved using a linear solver (in this thesis, the solver employed is GMRES as

described in Section 2.5.4).

The stability of forward Euler places a constraint on dt. Specifically, for the diffusion

part of the equation, the stability is governed by the ratio r = D dt
(dx)2

, where dx is the size
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of the spatial discretisation. For the system to be stable this ratio must stay within the

range of 0< r≤ 0.5 [103, Chapter 2]. This requirement means that each time the value of

dx is halved, the value of dt needs to be quartered. To lift this restriction the theta method

was implemented for the diffusion terms and this is discussed in Section 2.5.3 below.

2.5.3 Theta method

The forward Euler method described in Section 2.5.2 is an explicit method where Vn+1 is

calculated directly using known terms. The backward Euler method is an implicit method

in whichVn+1 is calculated by solving a system of equations. The theta method combines

both implicit and explicit schemes and uses a constant, θ , to determine the contribution of

the implicit and explicit techniques. Equation (2.15) has the right hand side term, f, which

relates to the reaction term caused by the ionic current model. In this thesis the reaction

term (f) is solved with an explicit forward Euler method, however the diffusion term is

solved with the theta method. This technique is known as operator splitting. Equation

(2.29) can then be reformatted with the theta method to give:

M
(Vn+1−Vn)

dt
+K(θVn+1 +(1−θ)Vn) = (f(Vn)+Q), (2.33)

which can be re-arranged to:

(M+Kdtθ)Vn+1 = (M−Kdt(1−θ))Vn+dt(f(Vn)+Q). (2.34)

If the value of θ is set to 0.5 this produces the Crank Nicolson method (which is

unconditionally stable [111] for heat-diffusion equations and second order accurate in

time), and Equation (2.34) becomes:

(M+
1

2
Kdt)Vn+1 = (M−

1

2
Kdt)Vn+dt(f(Vn)+Q). (2.35)

This provides an unconditionally stable scheme for time discretisation of the diffusion

term which is utilised for the simulations undertaken in this thesis. In can be noted that,

if Equation (2.35) is compared to the standard system of equations of the form Ax = b,

then:

A = (M+
1

2
Kdt)

x = Vn+1

b = (M−
1

2
Kdt)Vn+dt(f(Vn)+Q). (2.36)
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2.5.4 Solving with SPARSKIT GMRES solver

The governing Equation (2.1) is approximated using the FEM, resulting in the system of

equations defined in Equation (2.15). The theta method is applied to form the system

given in Equation (2.35). This is a linear system for the unknowns Vn+1 and is of the

general form Ax= b. As linear Lagrangian basis and weight functions are used, the FEM

creates matrix rows where each row contains entries for the current node itself (on the

diagonal) and then an entry for the other nodes this node is connected to. By the nature

of the FEM discretisation this means that the matrix is very sparse, as a row will typically

have fewer than ten entries (for a two-dimensional problem), however the number of

columns in the matrix is equal to the number of unknowns. In the heart failure simulations

undertaken in this thesis (see Chapter 7) the number of unknowns for the electrical system

can be in excess of 300000. In such simulations only 0.0033% (approximately) of the

matrix entries will be non-zero.

To efficiently store the matrix entries generated by the governing equations a sparse

matrix storage format is employed. The format employed is the Compressed Sparse Row

(CSR) format, whereby each matrix is represented by three vectors, namely a vector to

store the non-zero values, a vector to store the column positions of the non-zero values

and a vector to store the start positions of each row within the other two vectors.

SPARSKIT is a suite of software tools developed by Yousef Saad of University of

Minnesota (see http://www-users.cs.umn.edu/ saad/software/SPARSKIT/) for the han-

dling of sparse matrices. Included in SPARSKIT is an ILUT preconditioned GMRES

linear solver (see Chapter 5 for more on preconditioning). The GMRES (Generalized

minimal residual method [96]) is an iterative method for the solution of a system of linear

equations.

The software developed in this thesis builds the required matrices (stored in the CSR

sparse format) and vectors and then passes them over to SPARSKIT. In effect, the steps

undertaken by SPARSKIT and its GMRES solver, for solving the electrical system, are

treated as a “black box”.

2.5.5 Node reordering

The theta method described in Section 2.5.3 produces a system of equations of the general

form Ax = b. The bandwidth of matrix A can have an effect on the performance when

solving this system, with a lower bandwidth improving the performance. The bandwidth

of a matrix is the maximum distance between diagonal entries and the column entries on

the same row.
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Cuthill and McKee [24] proposed a method for lowering the bandwidth of a matrix

and this was refined by George and Liu in [35] by the reversal of the final order, thus

creating the Reverse Cuthill McKee (RCM) method. The RCM method aims to reduce

the bandwidth of the matrix by re-ordering the rows and columns of matrix A. This is

done by ‘walking’ through the connections each node has to each other node and then

ordering the nodes according to how they are connected to each other. An overview of the

RCM method is given in Process 2.1.

Process 2.1 Overview of RCM Method
1: Firstly, it is necessary to store a set of node connectivities in the data structure. That

is, each node in the mesh must have access to a list of the other nodes it is directly

connected to. This is easily recorded when the edges of the elements are determined.

2: Prepare an empty queue Q and an empty result array R.

3: Select a node, N, from the mesh and place it in the first entry of Q

4: repeat

5: Take the first node (C) from Q and examine it.

6: If C hasn’t previously been inserted in R, add C in the first free position of R.

7: Add to Q all the nodes connected to C that are not already in Q.

8: until Q is empty

9: Reverse the order of the entries in R.

10: Set the order (node index) of the node rows in the matrix to the order defined in R

Note: This algorithm slightly simplifies the classic RCM method, as it does not sort

(by degree) the nodes connected to C, before they are added to the Q.

In this work, the RCM method is undertaken following each global mesh refinement

or local adaptivity (see Section 4.1.1 and Chapter 6 for more information). This is because

when new nodes are added or removed from a mesh the node connectivities change, and

hence the node ordering produced by the RCM method needs re-calculating.

Table 2.1 illustrates the performance improvements achieved from using the RCM

method for the electrical system solve. These tests undertaken on a 120mm x 120mm

domain with varyingmesh refinement and a time-step of dt = 0.08ms. Figures 2.3 and 2.4

show the sparsity pattern for the matrix A, from Equation (2.36), with the RCM method

disabled and enabled.

2.6 Electrical system results and validation

2.6.1 Stimulating the system

In this section the results of the electrical system will be considered and tests undertaken

to investigate the convergence of the developed solver. However, firstly it is necessary to
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Number Nodes RCM On/Off Ave. solve time Percentage Saving

7927 Off 0.0478 -

7927 On 0.0375 27%

31453 Off 0.1967 -

31453 On 0.1588 24%

125305 Off 0.6741 -

125305 On 0.5043 34%

Table 2.1: Performance improvement with RCM method. Tests undertaken on a 120mm

x 120mm domain, with time-step dt = 0.08ms.
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Figure 2.3: Sparsity pattern for matrix A from Equation (2.36) with RCM Method dis-

abled, with 7927 nodes.
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Figure 2.4: Sparsity pattern for matrix A from Equation (2.36) with RCM Method en-

abled, with 7927 nodes

understand how the electrical wave is instigated.

Equation (2.1) has a term for the stimulation of the system, Istim. To start an electrical

wave it is necessary to provide a stimulus to an area of the domain for a given period of

time. In this thesis this is typically undertaken by adding a stimulus voltage of 52mV

to the value calculated within the TP06 ionic model for the transmembrane voltage, to

an area at the left edge of the domain. For example, the stimulus may be applied where

X1 < 5mm and t < 1ms. Once the electrical wave has been formed it will progress across

the domain without any further external stimulation.

The initial excitation of an area of elements in the domain means that if different mesh

refinements are used, there will be slight variances in the starting area of the wave, due to

the different triangle sizes and positions. These small changes in the starting conditions

introduce errors when comparing the solution from different levels of mesh refinements.

To remove the variation in the element size (and hence the initial excitation area), it is

possible to only stimulate the nodes on the left edge of the domain. However this results

in the wave dying out for the higher levels of global mesh refinement. To prevent the wave

dying out, the period of time the initial stimulus is applied can be increased, however this

distorts the wave form, and so this technique was rejected.
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To create a spiral wave in the domain, a plane wave is formed by stimulating the

left edge of the domain (X1 = 0) for t < 1ms. The wave is allowed to progress across

the domain and then after a given period, the transmembrane voltage for this wave is

then split and ‘clamped’ for a further period of time. For example, between t = 115ms

and t = 150ms, the voltage in the top half of the domain (where X2 > 60mm in a 120

× 120mm domain) is artificially fixed to -86.2mV. After t = 150ms the ‘clamping’ is

removed and the wave is allowed to progress as normal. This technique causes the wave

to collapse back onto itself and form a self sustaining spiral.

2.6.2 Solution convergence with varying time steps

To consider the convergence of the electrical solver, tests were undertaken with the time-

step varied. These tests were undertaken on a 1.8mm x 30mm domain, with 5113 nodes

and 9728 elements, giving an average element area of 0.0056 mm2 (with an approximate

edge length of 0.1mm). The diffusion was set to be isotropic with D=0.154. The left

edge (X1 < 1) of the domain was stimulated for t < 2.56ms. The time step (dt) was

progressively reduced from dt = 0.64ms to dt = 0.0025ms, and the time discretisation

scheme described in Section 2.5.3 was undertaken. The solutions were compared to the

result using the dt = 0.0025ms solution to give an estimate of the error. The results

from these tests can be seen in Table 2.2, Figure 2.5 and Figure 2.6. The wave speed

was measured by recording the time that two nodes in the interior of the domain became

excited. The distance between these nodes, in the X1 direction, was calculated and this

enabled wave speed in the X1 direction to be determined.

These tests demonstrate that as the time step is reduced the measured wave speed

converges linearly. The Crank Nicolson method is second order and this is used for the

diffusion term, however the reaction term is solved with a first order explicit forward Euler

method. The reaction term is non-linear and the value being measured is the speed of the

wave, which is a derived term. Therefore a linear convergence rate is not unexpected.

Also, as can be seen in Figure 2.5 the speed of the wave initially overshoots the correct

value (for example at t=0.04 m/s) and then converges back to the correct solution. This

explains why the t=0.08 m/s gives a very low error.

It can be seen that as the time step is reduced the wave speed increases and this is the

opposite effect to that seen in the spatial convergence in the next section.
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Time step(ms) Speed (m/s) Error

0.6400 0.5551 0.2890

0.3200 0.7174 0.1267

0.1600 0.8040 0.0401

0.0800 0.8440 0.0001

0.0400 0.8498 0.0056

0.0200 0.8469 0.0028

0.0100 0.8455 0.0013

0.0050 0.8447 0.0006

0.0025 0.8441 -

Table 2.2: Electrical wave speed with varying time steps. Tests were undertaken on a

1.8mm x 30mm domain, with 5113 nodes and 9728 elements. The diffusion coefficient

was set to be isotropic with D=0.154 and the left edge (X1 < 1) of the domain was stimu-

lated for t < 2.56ms. The error is compared to the solution with time-step of 0.0025ms
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Figure 2.5: Speed of electrical wave with varying time steps. Tests were undertaken on

a 1.8mm x 30mm domain, with 5113 nodes and 9728 elements. The diffusion coeffi-

cient was set to be isotropic with D=0.154 and the left edge (X1 < 1) of the domain was

stimulated for t < 2.56ms.
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Figure 2.6: Error in electrical wave speed with varying time steps. Tests were undertaken

on a 1.8mm x 30mm domain, with 5113 nodes and 9728 elements. The diffusion co-

efficient was set to be isotropic with D=0.154 and the left edge (X1 < 1) of the domain

was stimulated for t < 2.56ms. The error is compared to the solution with time-step of

0.0025ms

2.6.3 Solution convergence with varying spatial terms

In order to demonstrate the spatial convergence, tests were undertaken on a 1.8mm x

30mm domain, with a varying number of nodes and elements. The diffusion was set to

be isotropic and the diffusion coefficient set to 0.154. In these tests the time step was fixed

at dt = 0.08ms in all simulations. The mesh data and results of the tests can be seen in

Table 2.3, and these meshes were produced by progressively refining the coarsest mesh.

The coarsest mesh has an average element area of 0.0888 mm2, and an approximate edge

length of 0.42mm (and the subsequent meshes halve this length). A graph of the number

of nodes against the wave speed can be seen in Figure 2.7. To consider the convergence

of these results a test was undertaken on a mesh with 311337 nodes and 622598 elements.

This gave an average element area of 0.0000867mm2 (with an approximate edge length

of 0.013mm). These were run with a time step of dt = 0.005ms and used as a comparison

to estimate errors. It generated a wave speed of 0.816m/s. When considering these it is

important to consider the average element mesh size. For the comparative solution the

average element area is 0.000347 mm2, which if used on a mesh of 120x120 mm (as for

the heart failure simulations in Chapter 7) there would require 41498559 elements.

Similar tests were undertaken in which the time step and spatial step were varied
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Nodes Elements Average Element Time step (ms) Speed (m/s) Error

Area (mm2)

367 608 8.88×10−2 0.080 1.0363 0.220177

1341 2432 2.22×10−2 0.080 0.9055 0.089385

5113 9728 5.55×10−3 0.080 0.8440 0.027927

19953 38912 1.39×10−3 0.080 0.8217 0.005617

78817 155648 3.47×10−4 0.080 0.8145 0.001559

311337 622592 8.67×10−5 0.005 0.8161 -

Table 2.3: Electrical wave speed with increasing mesh refinement, with error compared

to solution with dt = 0.005ms and 622592 elements. Tests were undertaken on a 1.8mm

x 30mm domain, the diffusion was isotropic and D set to 0.154.

Nodes Elements Average Element Time step (ms) Speed (m/s) Error

Area (mm2)

367 608 8.88×10−2 0.160 1.0138 0.197649

1341 2432 2.22×10−2 0.080 0.9055 0.089385

5113 9728 5.55×10−3 0.040 0.8479 0.031763

19953 38912 1.39×10−3 0.020 0.8263 0.010167

78817 155648 3.47×10−4 0.010 0.8145 0.001559

311337 622592 8.67×10−5 0.005 0.8161 -

Table 2.4: Electrical wave speed with increasing mesh refinement and halving time steps.

Error compared to solution to with dt = 0.005ms and 622592 elements. Tests were un-

dertaken on a 1.8mm × 30mm domain, the diffusion was isotropic and D set to 0.154.

together. In these tests as the number of elements was refined one level (hence creating 4

times as many elements), the time step was halved. As with the previous tests these were

undertaken on a 1.8mm x 30mm domain, with a varying number of nodes and elements.

The diffusion was set to isotropic and the diffusion coefficient set to 0.154. The data for

the tests can be seen in Table 2.4.

Figure 2.7 shows the converging wave speed for the both the fixed time step tests

and the varying time step tests, and these show the solution converging to a speed of

0.816m/s. Figure 2.7 shows how the error reduces with the two sets of tests. These tables

demonstrate that, with a fixed time step, as the spatial step is halved the error reduces by

between 2.4 and 4.9 times, showing a convergence approaching quadratic.
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Figure 2.7: Comparison of electrical wave speed across the domain with increasing mesh

refinement and either fixed (dt = 0.08ms) or halving time steps. Tests were undertaken

on a 1.8mm x 30mm domain, the diffusion was isotropic and set to 0.154.

2.6.4 Wave considerations

The profile of the cardiac action potential has a rapid change in voltage when the cell

depolarizes. This causes a very steep (almost vertical) wave front as can be seen in Figure

2.8, where the wave is moving from left to right. The FEM (and other methods that

involve discretising a continuum) approximates the wave across the domain, however to

accurately model a rapid change in a variable you need to have a finely discretised domain.

This can also be illustrated by considering the ability of a coarse mesh to properly resolve

the features of the wave front. Figure 2.9 shows the wave front within a 30mm × 30mm

domain, with 22016 elements (coarse) and 352256 elements (fine). As can be seen in this

figure the coarse mesh cannot fully resolve the curve of the wave ‘spike’.

It has been noted in previously published work (see [108, Table 2]) that the size of the

spatial and temporal discretisation has an effect on the speed of the electrical wave across

the domain and this has been further verified here.

2.7 Spiral wave comparison

In this section the electrical model is compared the results seen in [110]. The simulations

are run on a square domain which occupies the region of 0 < X1,X2 < 120mm, divided
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Figure 2.8: Cardiac transmembrane voltage simulated with TP06 ionic current model

into an unstructured mesh of 634368 triangles, using 318065 nodes. This gives an ap-

proximate element edge length of 0.21mm. The boundaries of the domain were set with

Neumann no-flux boundary conditions. The electrical solve uses semi-implicit time dis-

cretisation (as described in Section 2.5.2 above), with a fixed time step (dt) of 0.08ms.

The diffusion tensor, D, was set to

D =

[

0.1540 0.01711

0.01711 0.1540

]

, (2.37)

which gave conduction velocity of 0.68m/s. As an anisotropic diffusion tensor D is used,

the spiral wave formed should be elongated in the direction of the greater conduction

speed, forming spirals which could be described as elliptical.

Simulations were undertaken using dynamic restitution slopes of 1.1, 1.4 and 1.8 (as

defined in Table 2 of [110]). By changing the restitution slope the action potential profile

is altered, with the higher valued slopes having a higher plateau and a longer wave length.

The results of these tests can be seen in Figure 2.10, which displays the expected action

potential profile for each of the three restitution curves for a given node in the mesh. That

is, the transmembrane voltage for the restitution slopes of 1.4 and 1.8 have a higher value

during the plateau phase and stay excited for longer than the 1.1 slope.

Tests were undertaken to produce a stable spiral wave with a restitution slope of 1.1.

This was achieved by stimulating the left edge of the domain (X1 = 0) for t < 1ms, to form
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(a) Coarse - 14952 elements

(b) Fine - 233472 elements

Figure 2.9: Comparison of electrical wave front modelled on a coarse mesh and fine mesh,

with average element areas of 0.0616mm2 (14592 elements, approximate edge length

0.35mm) and 0.00385mm2 (233472 elements, approximate edge length 0.088mm) re-

spectively. Undertaken on 30mm x 30mm domain, at t=16ms, with dt = 0.08. The

colour scale for these images is given in Figure 2.11(c).
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Figure 2.10: Transmembrane voltage for a single node with restitution slopes of 1.1, 1.4

and 1.8.

a plane wave and then splitting this wave at t = 115ms. In the wave splitting technique

the voltage in the lower half of the domain (perpendicular to the wave direction) is fixed

at the resting potential for a period of time (in this case 35ms). This resulted in a stable

spiral wave over time and this can be seen in Figure 2.11. The colour scale for the output

in this section is given in Figure 2.11(c).

The next set of validation tests were undertaken to consider the spiral wave stability

for the three restitution slopes. The simulations were run for 5000ms with the restitution

slope set to 1.1, to ensure a stable spiral wave was formed, and then a new restitution

slope of 1.4 or 1.8 introduced for a further 5000ms. Figure 2.12 shows the results when

the restitution slope was changed to 1.4. Figure 2.13 shows the results when the resti-

tution slope was changed to 1.8. These results were then compared to the bottom three

rows of the first column of Figure 7 of [110] and found to produce the same behaviour.

Specifically, for restitution slopes of 1.1 and 1.4 a stable spiral wave is maintained over

time, however for a restitution slope of 1.8 the spiral wave breaks up into a chaotic state.

2.8 Conclusion

This chapter has explained the process of taking a mathematical model of the cardiac elec-

trophysiology and approximating it with the FEM. A number of topics have been covered

in this process, including adding anisotropic diffusion, using a semi-implicit time step-

ping scheme, storing in an efficient sparse storage format, ordering the nodes to reduce
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(a) t=6000ms (b) t=8000ms (c) Scale

Figure 2.11: Stable spiral wave for TP06 model and restitution slope of 1.1. In a domain

where 0 < X1,X2 < 120mm, divided into 634,368 elements and using 318,065 nodes. A

fixed time step (dt) of 0.08ms and the diffusion tensor, D, set as per Equation (2.37).

(a) t=6000ms (b) t=8000ms

Figure 2.12: Stable spiral wave for TP06 model and restitution slope of 1.4. In a domain

where 0 < X1,X2 < 120mm, divided into 634,368 elements and using 318,065 nodes. A

fixed time step (dt) of 0.08ms and the diffusion tensor, D, set as per Equation (2.37).
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(a) t=6000ms (b) t=8000ms

Figure 2.13: Break-up of spiral wave for TP06 model and restitution slope of 1.8. In a

domain where 0 < X1,X2 < 120mm, divided into 634,368 elements and using 318,065

nodes. A fixed time step (dt) of 0.08ms and the diffusion tensor, D, set as per Equation

(2.37).

the matrices’ bandwidths, and solving with an external sparse solver.

Spatial and temporal convergence tests have been undertaken to demonstrate the con-

vergence of the solution. Simulations have been undertaken to validate the qualitative

behaviour of the solver again other published work [110], specifically the stability of the

spiral waves under varying restitution slopes. Figure 2.14 shows a spiral wave formed

using the solver and this figure has the transmembrane voltage plotted on the z-axis to

illustrate the features of the wave as it spirals.

The electrophysiological solver forms a basis for the production of a coupled electro-

mechanical solver when combined with the cardiac mechanical system discussed in Chap-

ter 3 and the coupling techniques described in Chapter 4. Anisotropic diffusion has been

implemented and this enables the simulation of fibre orientation within the domain.

The convergence testing undertaken in this chapter highlights the need to model the

electrophysiology on a finite element mesh with a fine resolution. As the element sizes

decrease the speed of the electrical wave converges, however convergence is not reached

until the average element areas are beneath 0.0014mm2 (approximate edge length of

0.05mm). The qualitative behaviour of the electrical wave can produce the expected

results with a coarser mesh than this, however the wave speed may not be close to the

converged value. Due to the requirements for a very refined mesh, the electrical system
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Figure 2.14: An example 3D spiral wave with the voltage plotted on the z-axis. In a

domain where 0 < X1,X2 < 120mm, divided into 634,368 elements and using 318,065

nodes. A fixed time step (dt) of 0.08ms and the diffusion tensor, D, set as per Equation

(2.37).

may benefit from an adaptive mesh refinement strategy (AMR) and this is discussed in

detail in Chapter 6.

Finally, the TP06 ionic current model is sufficiently complex to allow changes in

biological features to be modelled and this enables the heart failure simulations covered

in Chapter 7.



Chapter 3

Cardiac mechanics

3.1 Introduction

This chapter describes the mathematical and computational models of cardiac mechanical

activity employed in this thesis. Specifically, the chapter describes a mathematical model

of cardiac tissue deformation, how this is approximated by the finite element method, the

details of formulating a model with incompressible tissue, and how the resulting complex

non-linear system of equations is solved.

For the mechanical model to deform it requires an electrical wave to stimulate the

contraction. This electrical model is described in Chapter 2, and the coupling of the

electrical activity to the mechanical deformation is covered in Chapter 4.

To model the contraction, deformation and accompanying forces it is necessary to

understand stress mechanics and finite deformation elasticity theory. This is covered in

detail in Chapter 12 of Computational Biology of the Heart [81]. The sections below

summarise how to develop a mathematical model of cardiac deformation and the compu-

tational methods used to solve this.

44
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3.2 Cardiac modelling concepts

3.2.1 Kinematics

In the mechanical model it is important to understand the relationship between points in

the undeformed reference state and their deformed state (during contraction). To this end,

the deformed coordinates (xi) are written as functions of the reference coordinates, i.e. in

three space dimensions:

x1 = f1(X1,X2,X3)

x2 = f2(X1,X2,X3)

x3 = f3(X1,X2,X3).

(3.1)

Equation (3.1) is defined in [47], which further states that the kinematics of the deform-

ing body are defined by the relationship between the reference coordinates (XM) and the

deformed coordinates (xi), by a deformation gradient tensor F. The components of F are

defined by

F i
M =

∂xi
∂XM

, (3.2)

for i,M = 1,2,3.

3.2.2 Strain and stress

Strain is defined as the measure of deformation of a body and, in continuum mechanics,

stress is a measure of the internal forces acting within a deformable body. To relate stress

and strain to each other a constitutive law is needed and Section 3.2.3 describes a cardiac

tissue constitutive model. The forces created by the changing ion concentrations caused

by the electrical activity are modelled as a stress and the constitutive law for that material

then relates this to the strain in the material. The strain is then used to calculate the

deformations within the body.

The deformation gradient tensor F for two dimensions is:

F =







∂x1
∂X1

∂x1
∂X2

0
∂x2
∂X1

∂x2
∂X2

0

0 0 1






. (3.3)

F is also used to calculate the Cauchy-Green right deformation tensor C. Cauchy-Green

deformation tensors are used in continuum mechanics, and if the material is thought to
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be composed of infinitesimally thin fibres then this tensor quantifies the squared length

of these fibres in the deformed configuration. The invariants of C are often used in the

calculation of strain energy density functions, and this is covered further in Section 3.2.3.

The Cauchy-Green right deformation tensor is defined asC= FTF, and in the two dimen-

sional case this becomes:

C =







∂x1
∂X1

∂x2
∂X1

0
∂x1
∂X2

∂x2
∂X2

0

0 0 1













∂x1
∂X1

∂x1
∂X2

0
∂x2
∂X1

∂x2
∂X2

0

0 0 1







=







∂x1
∂X1

∂x1
∂X1

+ ∂x2
∂X1

∂x2
∂X1

, ∂x1
∂X1

∂x1
∂X2

+ ∂x2
∂X1

∂x2
∂X2

0
∂x1
∂X1

∂x1
∂X2

+ ∂x2
∂X1

∂x2
∂X2

, ∂x1
∂X2

∂x1
∂X2

+ ∂x2
∂X2

∂x2
∂X2

0

0 0 1






. (3.4)

The Lagrangian Green strain tensor is given by:

E =
1

2
(C− I), (3.5)

and this is a measure of how much the Cauchy-Green tensor differs from the identity

matrix. It is used in the derivation of the Second Piola Kirchhoff tensor described in

Section 3.2.4.

3.2.3 Constitutive equations and strain energy function

Constitutive equations provide a means of relating stress and strain, so that the contractile

forces instigated by the electrical activity can be converted into a measure of deformation

of the muscle, that is, the strain of the muscle. Typically, constitutive equations are derived

from experimental observation.

In describing their constitutive law, which is used in this thesis, Hunter, Nash and

Sands in [81], define two rules governing non-linear elastic materials. These relate to

rigid motion and material invariance. By postulating these two governing rules and in-

troducing a scalar strain energy functionW , this is dependent only on the Cauchy-Green

deformation tensor C, or Lagrangian Green strain tensor E [39].

In common with [69], a strain energy function (W ) which describes certain types of

rubbers and silicone gels, known as Mooney-Rivlin materials, is used in this thesis. A

Mooney-Rivlin solid is a hyper-elastic material model where the strain energy density

function,W , is a linear combination of two invariants of the Cauchy-Green deformation

tensor. The model was proposed by Melvin Mooney and Ronald Rivlin [66, 91]. The
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expansion of the function W is covered in detail in Section 3.2.7 below. It is noted in

[81], that “myocardial tissue has several features which make the task of constitutive law

formulation difficult. First, in common with all soft biological tissues, the stress-strain

behaviour is highly non-linear and quite anisotropic”. Also in [69] they comment that

“experimental evidence has shown that cardiac tissue exhibits different response along

various material axes”. This is referenced from Smaill and Hunter [36]. Using an isotropic

strain energy function (W ) simplifies the model.

Other approaches to defining the strain energy function are used, by others. Notably

the “pole zero” strain energy function is commonly used [68, 71] in modelling cardiac

mechanics. The pole zero strain energy function is derived from the observation that the

stress-strain behaviour along one axis is very nearly independent of the degree of lateral

stretch [102]. The strain energy function can then be expressed in terms of the stretch

along each of the material axes. Another approach, as used in [54], is to assume that

the passive myocardium can be modelled as an incompressible hyperelastic material, as

described in [41], with a transversely isotropic mechanical response. This technique uses

strains in the fibre, transverse (within the wall-plane perpendicular to the fibre direction)

and radial (perpendicular to the wall-plane) directions.

To simulate fibre orientation it was required to be able to model tension acting anisotrop-

ically. Rather than introducing a fully anisotropic strain energy function it was decided

to use the isotropic Mooney-Rivlin strain-energy function defined in Equation (3.14), but

set the resultant force to act parallel to the theoretical fibre direction (this is covered in

Section 3.2.5).

3.2.4 Second Piola-Kirchhoff tensor

For cardiac tissue, the Second Piola-Kirchhoff stress tensor, which expresses the stress

relative to the reference configuration, is comprised of an elastic component and a bio-

chemically generated component [82]. The elastic component is analogous to the passive

stress that the tissue is under when no external forces are applied. The biochemically gen-

erated component is caused by the tension induced by the electrical wave passing through

the tissue. The generation of this tension is described in more detail in Section 4.2.

The Piola-Kirchhoff stress tensors are used for finite deformations and they express

the stress relative to the reference coordinates Xm. This is in contrast to the Cauchy stress

tensor which expresses the stress relative to the present configuration. The Second Piola

Kirchhoff stress tensor is given by:

TMN = T elast
MN +T bioch

MN , (3.6)
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where N,M = 1,2 (for two dimensions) and the elastic components of TMN are given by:

T elast
MN =

1

2

(

∂W

∂EMN
+

∂W

∂ENM

)

− pC−1
MN , (3.7)

whereW is a suitable strain energy function, E the Lagrangian Green’s strain tensor (given

in Equation (3.5)), C is the Cauchy-Green deformation tensor (given in Equation (3.4))

and p (which is referred to as the pressure) is a Lagrange multiplier used to enforce in-

compressibility. In common with other authors [47,68] the tissue is set as incompressible.

Incompressibility is enforced by setting the determinant of the deformation gradient ten-

sor to be equal to 1 (as per [82]):

det(F) = 1. (3.8)

The T bioch
MN components of TMN are given by:

T bioch
MN = TaC

−1
MN, (3.9)

where Ta is the active tension generated from the electrical system. This is explained

further in Equations (4.2) and (4.3) in Chapter 4.

3.2.5 Modelling fibre orientation

Cardiac tissue is composed of fibres and sheets and the electrical wave travels faster in

parallel to the sheets than transversely. It has also been shown experimentally [102] that

the tensile force generated along the cardiac fibres is much greater than the tension across

them.

In Section 2.4 the ability to model anisotropic diffusion in the electrical model was

introduced to simulate the faster wave speed along the fibres. Although the strain energy

function used is isotropic, the active tension component can be set to act in only one

direction, as described in [82], and this ensures the force acts along the direction of fibre

orientation [68, 120].

The active tension component is set using the technique described in [82] and results

in:

T bioch
MN =

Ta

C11
δM1δN1, (3.10)

where δM1δN1 are Kronecker delta terms, which ensure the force acts in parallel to the X1

axis. The generation of the active tension, Ta, is described in more detail in Section 4.2.

To simulate a fibre orientation at an angle θ to the domain, the domain was rotated



Chapter 3 49 Cardiac mechanics

by this angle. This provides an anisotropic tension diagonal to the domain, and the

anisotropic diffusion in the electrical system can be set to act in the same direction, hence

providing a means of simulating the fibre orientation.

3.2.6 Stress Equilibrium

Finite deformation elasticity is a subject within the theory of continuum mechanics, and

the equations that govern finite deformations are derived from the conservation of linear

momentum following Newton’s laws of motion [64]. The stress-equilibrium equation

used is defined in terms of the Second Piola-Kirchhoff tensor, TMN , and this models the

material independently of rigid-body motion [64,69]. In [69] it is stated that the governing

equations expressed in terms of Second Piola-Kirchhoff stress components can be reduced

to:

∂

∂XM
(TMNF

j
N) = 0, (3.11)

where there is static equilibrium in the absence of other forces and M,N, j = 1,2,3 in

three-dimensions. The tensor notation in Equation (3.11) (and used throughout the thesis)

is the summation notation, where the subscript MN indicates the summation of the indi-

vidual terms. So in two-dimensions, for example,M,N, j = 1,2 and Equation (3.11) will

expand to the summation of four terms when j = 1 and four terms when j = 2. When

j = 1 this would be:

∂

∂XM
(TMNF

1
N) =

∂

∂X1
(T11F

1
1 )+

∂

∂X1
(T12F

1
2 )+

∂

∂X2
(T21F

1
1 )+

∂

∂X2
(T22F

1
2 ). (3.12)

Equation (3.11) enables the calculation of the current position of an arbitrary point

within the tissue, based on the stress applied to the system via the Second Piola-Kirchhoff

tensor. This provides a means of calculating the deformation of the cardiac tissue depend-

ing on the current tension generated from the electrical system (see Section 4.2 for more

details).

The following sections describe the expansion of the terms of the stress equilibrium

equation into a format that can be solved using a numerical technique.

3.2.7 Expanding the strain energy function

To solve the system given by Equations (3.11) and (3.8) it is necessary to calculate the

Second Piola-Kirchhoff tensor. Firstly this needs to be transformed into the X1, X2 coor-
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dinate system. The Second Piola-Kirchhoff tensor is given as:

TMN =
1

2

(

∂W

∂EMN
+

∂W

∂ENM

)

− pC−1
MN +TaC

−1
MN , (3.13)

where EMN are the components of the Lagrangian Green’s strain tensor. The strain energy

function,W , for an incompressible Mooney-Rivlin material is given by:

W (I1, I2) = c1(I1−3)+ c2(I2−3), (3.14)

where I1 and I2 are the first and the second invariants of the Cauchy-Green deformation

tensor and c1 and c2 are material constants determined from experimentation.

There are three important invariants of C which remain unchanged under coordinate

rotation at a given deformation and these are given by:

I1 = trC (3.15)

where tr is the notation for the ‘trace’ (the sum of the diagonal elements) of the tensor C,

I2 =
1

2

[

(trC)2− trC2
]

, (3.16)

I3 = det(C), (3.17)

and for an incompressible material I3 = 1. In the calculation of C the three-dimensional

form is used as this ensures the correct version of I1 and I2 are calculated.

Equation (3.5) can be re-arranged to put C in terms of E, i.e.,

C = 2E+ I. (3.18)

This enablesW to be expressed in terms of E, and the partial derivatives ofW stated with

respect to E. First the trace of C is:

I1 = tr(C) =C11 +C22 +1, (3.19)

and given that

C2 =







C2
11 +C12C21 C11C12 +C12C22 0

C11C21 +C21C22 C12C21 +C2
22 0

0 0 1






, (3.20)
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it follows that:

I2 =
1

2

[

(trC)2− tr(C2)
]

=C11C22−C12C21 +C11 +C22. (3.21)

Hence:

W = c1(C11 +C22 +1−3)+ c2(C11C22−C12C21 +C11 +C22−3). (3.22)

W needs to be expressed in terms of E, to enable it to be differentiated with respect to E,

i.e.

W = 2c1(E11 +E22)+4c2[E11E22−E12E21 +E11 +E22] (3.23)

This gives:
∂W

∂E11
= 2c1 +4c2E22 +4c2, (3.24)

∂W

∂E22
= 2c1 +4c2E11 +4c2, (3.25)

∂W

∂E12
= −4c2E21, (3.26)

and
∂W

∂E21
= −4c2E12. (3.27)

Using the partial derivatives ofW from Equations (3.24), (3.25), (3.26) and (3.27) and

then substituting the components of C into E, it is possible to express the values of TMN

in terms of derivatives of the form ∂xi
∂XM

:

T11 = 2c1 +2c2

(

(

∂x1
∂X2

)2

+

(

∂x2
∂X2

)2
)

+2c2, (3.28)

T22 = 2c1 +2c2

(

(

∂x1
∂X1

)2

+

(

∂x2
∂X1

)2
)

+2c2, (3.29)

and the cross terms are:

T12 = T21 = −2c2

(

∂x1
∂X1

∂x1
∂X2

+
∂x2
∂X1

∂x2
∂X2

)

. (3.30)

Equations (3.28), (3.29) and (3.30) provide the four terms of the Second Piola-Kirchhoff

tensor in two-dimensions in terms of the reference (XM) and deformed (xi) coordinates.
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3.2.8 Stress equilibrium equation in weak form

To solve with the finite element method, the governing equation (see Equation (3.11))

needs to be put into its weak form, giving:

∫

∂Ω

(

TMNF
j
NΨn j

)

dS−

∫

Ω

(

TMNF
j
N

∂Ψ

∂XM

)

dΩ = 0, (3.31)

where j = 1,2 (for two-dimensional problems), Ψ is the weight function, Ω is the domain

being modelled, n j is a normal (in the X j direction) to the domain with a boundary S. The

first term on the left hand side of Equation (3.31) relates to the boundary term and as no

forces are applied to the boundary this is set to zero. In this thesis the simulations are

undertaken in two-dimensions, and this means that T3N = TM3 = 0.

Including both the biochemical and elastic components (from Equations (3.6) and

(3.7)), and setting the tension to act parallel to the X1 direction (from Equation (3.10)),

the Second Piola-Kirchhoff tensor (TMN) is:

TMN =
1

2

(

∂W

∂EMN

+
∂W

∂ENM

)

− pC−1
MN +

Ta

C11
δM1δN1. (3.32)

Equation (3.32) can be expanded using Equations (3.28), (3.29) and (3.30) and then Equa-

tion (3.31) becomes:

∫

Ω

(

2c1 +2c2

(

∂x1
∂X2

∂x1
∂X2

+
∂x2
∂X2

∂x2
∂X2

)

+2c2− pC−1
11 +

Ta

C11

)(

∂x j
∂X1

)(

∂Ψn

∂X1

)

+

(

−2c2

(

∂x1
∂X1

∂x1
∂X2

+
∂x2
∂X1

∂x2
∂X2

)

− pC−1
12

)(

∂x j
∂X1

)(

∂Ψn

∂X2

)

+

(

−2c2

(

∂x1
∂X1

∂x1
∂X2

+
∂x2
∂X1

∂x2
∂X2

)

− pC−1
21

)(

∂x j
∂X2

)(

∂Ψn

∂X1

)

+

(

2c1 +2c2

(

∂x1
∂X1

∂x1
∂X1

+
∂x2
∂X1

∂x2
∂X1

)

+2c2− pC−1
22

)(

∂x j
∂X2

)(

∂Ψn

∂X2

)

dΩ

= 0,

(3.33)

where j = 1,2 and this relates to building the terms that are used to solve in the X1 and X2

directions respectively and n = 1,2,3 for a linear triangular element, and

C11 =

(

∂x1
∂X1

)2

+

(

∂x2
∂X1

)2

, (3.34)
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and where

C−1 =
1

det(C)







∂x1
∂X2

∂x1
∂X2

+ ∂x2
∂X2

∂x2
∂X2

−( ∂x1
∂X1

∂x1
∂X2

+ ∂x2
∂X1

∂x2
∂X2

) 0

−( ∂x1
∂X1

∂x1
∂X2

+ ∂x2
∂X1

∂x2
∂X2

) ∂x1
∂X1

∂x1
∂X1

+ ∂x2
∂X1

∂x2
∂X1

0

0 0 1






. (3.35)

3.2.9 Determinant of deformation gradient tensor

By including a pressure term (p) in the Second Piola-Kirchhoff tensor there is an extra

unknown variable in the system. The additional equation, Equation (3.8), added to enforce

incompressibility, provides the extra constraint needed to solve this pressure. This extra

equation does not have a pressure term in it, but is defined by the deformation gradient.

The deformation gradient tensor F is:

F =







∂x1
∂X1

∂x1
∂X2

0
∂x2
∂X1

∂x2
∂X2

0

0 0 1






, (3.36)

and for an incompressible material det(F) = 1

det(F) =
∂x1
∂X1

∂x2
∂X2

−
∂x1
∂X2

∂x2
∂X1

= 1 (3.37)

To approximate this with the finite element method the weak form of Equation (3.37)

is needed. This is produced by taking everything to one side, multiplying by a weight

function (Ψ) and integrating, thereby giving:

∫

Ω

(

∂x1
∂X1

∂x2
∂X2

−
∂x1
∂X2

∂x2
∂X1

−1

)

ΨdΩ = 0, (3.38)

where Ω is the domain and Ψ is a weight function. Equation (3.38) provides the remaining

equation needed to be able to solve for the pressure unknown.

3.3 Approximating with the Finite Element Method

3.3.1 Discretising the domain

To approximate the unknown values, in this case the deformed coordinates x1,x2 and the

pressure (p) over the domain, the FEM is used. With the FEM, the domain is discretised

into smaller ‘elements’ and the unknown variables approximated within these elements.
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The domain used in this thesis is a two-dimensional rectangle and this is divided into a

mesh of unstructured triangles. This has been covered in more detail in Section 2.3.

Equations (3.33) and (3.38) are the weak form of the governing equations which are

needed by the finite element method. It is necessary to approximate the unknowns within

each element using a basis function. It has been highlighted in [40, page 535], that there

are stability issues when using the same basis functions for pressure as deformation. This

is covered in detail in Section 3.13 of [40]. To resolve this, a scheme consisting of a

combination of quadratic basis functions for deformations and linear basis functions for

pressures [40] has been used in this thesis.

As with the electrical system, the Galerkin method [89] is implemented. In this

method the same functions are used for the weight functions, introduced in the weak form

of the governing equations, and the basis functions, needed for discretising the unknown

values within an element. The basis and weight functions for the mechanical system are

discussed in more detail below.

3.3.2 Quadratic deformation and linear pressure elements

The objective of this section is to document how to implement quadratic basis functions

into the finite element approximations for the mechanical solve. The use of triangular

elements with quadratic basis functions is further explained in Zienkiewicz and Taylor

[126], page 179 onwards. When using quadratic elements, each triangle has 6 nodes, the

three corner nodes and the three mid-points on each edge, see image (b) of Figure 3.1.

For the mechanical system the deformations (in two dimensions) have two unknowns at

each node, for the deformation in the X1 and X2 directions.

Quadratic elements are a higher order approximation to the unknown values over the

element, and use a quadratic function to undertake the approximation. As with linear

elements, the solution to the function is approximated at each of the element nodes, so

in quadratic elements this means there are 6 points of approximation. There is a de-

formation equation for the unknowns in each direction at each node, so in a quadratic

triangular element there are twelve deformation unknowns (and twelve associated equa-

tions in the system). The pressure unknowns are solved with linear elements, so there

are three pressure unknowns for each triangular element also. This gives 15 unknowns

for each element, with 15 associated equations in the system. It can be noted that in a

mesh of elements, a node is typically present in more than one element and so the overall

system size is considerably smaller than 15 times the number of elements. For a given set

of basis function Ψi, the piecewise approximations to the unknowns for each element are
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(a) Linear (b) Quadratic

Figure 3.1: Triangular elements. Image (a) showing a three-node triangle used for linear

approximation and Image (b) showing a six-node triangle used for quadratic approxima-

tion.

given by:

x1 =
6

∑
i=1

Ψix
i
1, (3.39)

x2 =
6

∑
i=1

Ψix
i
2, (3.40)

p =
3

∑
i=1

Ψip
i. (3.41)

3.3.3 Isoparametric elements

As described in Section 3.3.2, to maintain the stability of the mechanical solve, one tech-

nique is to use quadratic basis functions for the FEM approximations of the deformation

and linear basis functions to model the pressures [40]. This requires the development of

quadratic elements within the finite element software developed for this thesis.

To improve the flexibility of the software it was decided to implement isoparametric

elements. Isoparametric elements use a local reference coordinate system and implement

a mapping process to specify the relationship to the original undeformed coordinate sys-

tem. The local coordinate system can be a simple element, for example a right angled

triangle. This simplifies the implementation of the quadratic functions and also provides

a more modular approach, whereby it is easier to substitute other higher order functions
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Figure 3.2: Reference (local) triangular element

if required later. Using quadratic isoparametric elements also makes it possible to model

elements with curved boundaries [32].

In isoparametric elements, shape functions are used to specify the relation between the

global (X1,X2) and local (ξ ,η) coordinate systems. Shape functions are defined for an

idealized mapped element, as per Figure 3.2. The coordinate transformation is therefore:

X1 =
6

∑
i=1

Ψiξi, (3.42)

X2 =
6

∑
i=1

Ψiηi, (3.43)

where Ψi are the shape functions (given in Equations (3.44) to (3.49)) for the six-node

triangular element.

3.3.4 Functions for mapping local coordinates

For quadratic elements, 6 node triangles are needed (as shown in Figure 3.2) and shape

functions are required for each node. The functions used for the triangle in Figure 3.2 are



Chapter 3 57 Cardiac mechanics

the Lagrange basis functions:

Ψi = 2(1−ξ −η)(
1

2
−ξ −η) (3.44)

Ψi j = 4ξ (1−ξ −η), (3.45)

Ψ j = 2ξ (ξ −
1

2
), (3.46)

Ψki = 4η(1−ξ −η), (3.47)

Ψ jk = 4ξ η, (3.48)

Ψk = 2η(η −
1

2
). (3.49)

The derivatives of these with respect to ξ are:

∂Ψi

∂ξ
= −3+4ξ +4η, (3.50)

∂Ψi j

∂ξ
= 4−8ξ −4η, (3.51)

∂Ψ j

∂ξ
= −1+4ξ , (3.52)

∂Ψki

∂ξ
= −4η, (3.53)

∂Ψ jk

∂ξ
= 4η, (3.54)

∂Ψk

∂ξ
= 0, (3.55)

and with respect to η these are:

∂Ψi

∂η
= −3+4ξ +4η, (3.56)

∂Ψi j

∂η
= −4ξ , (3.57)

∂Ψ j

∂η
= 0, (3.58)

∂Ψki

∂η
= 4−4ξ −8η, (3.59)
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∂Ψ jk

∂η
= 4ξ , (3.60)

∂Ψk

∂η
= −1+4η. (3.61)

Since the coordinates are now functions of η and ξ , the deformation must be deter-

mined by differentiation using the chain rule. To obtain the derivatives of shape functions

expressed in local element coordinates with respect to the global physical coordinates

(X1,X2), first the chain rule is used:

(

∂Ψi

∂ξ
∂Ψi

∂η

)

=

(

∂Ψi

∂X1

∂X1
∂ξ

+ ∂Ψi

∂X2

∂X2
∂ξ

∂Ψi

∂X1

∂X1
∂η + ∂Ψi

∂X2

∂X2
∂η

)

. (3.62)

This can be rearranged into the Jacobian (Je) multiplied by a vector of derivatives as

follows:
(

∂Ψi

∂ξ
∂Ψi

∂η

)

=

(

∂X1
∂ξ

∂X2
∂ξ

∂X1
∂η

∂X2
∂η

)(

∂Ψi

∂X1
∂Ψi

∂X2

)

, (3.63)

where the Jacobian, Je, is the 2x2 matrix on the right hand side of Equation (3.63). The

required derivatives can then be obtained by rearranging Equation (3.63), to give:

(

∂Ψi

∂X1
∂Ψi

∂X2

)

= (Je)−1

(

∂Ψi

∂ξ
∂Ψi

∂η

)

(3.64)

From Equations (3.42) and (3.43), the derivative of the global coordinates, with respect

to the local coordinates, can be calculated, giving

Je =

(

∑6
i=1

∂Ψi

∂ξ
X i
1 ∑6

i=1
∂Ψi

∂ξ
X i
2

∑6
i=1

∂Ψi

∂η X i
1 ∑6

i=1
∂Ψi

∂η X i
2

)

. (3.65)

By utilising Equations (3.44) to (3.65) it is possible to map the global coordinate

system (X1,X2) to the local coordinate system (ξ ,η).

3.3.5 Quadrature and integration

The use of quadratic elements means that the integrals in Equations (3.33) and (3.38)

cannot be simply calculated by multiplying by the area of the element, rather these are

calculated with numerical quadrature. In this section the left hand sides of Equations

(3.33) and (3.38) equations will be referred to as f (X1,X2).

Quadrature calculates a numerical estimate of an integral by selecting a number of
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n Wi Coord ξi Coord ηi

3 0.333333333333333 0.666666666666667 0.166666666666667

0.166666666666667 0.166666666666667

0.166666666666667 0.666666666666667

Table 3.1: A 3-Point quadrature rule for a triangle

abscissae at which to evaluate the function being integrated, these function evaluations

are then each multiplied by a weight value and summed together. The quadrature approx-

imation for a triangle is:

∫ ∫

Ωe
f (X1,X2)dxdy≈△e

n

∑
i=1

Wi f (X
i
1,X

i
2), (3.66)

where X i
1 and X i

2 are the evaluation points for the function, n is the number of points

evaluated over, Ωe is the triangular element, △e is the area of the triangular element

and Wi are the weighting values. This is an approximation to the exact integral, and by

using the correct number and position of evaluation points the approximation error can be

controlled.

As described in Section 3.3.3, an isoparametric mapping is used, which involves us-

ing a reference (local coordinates) triangle and then mapping this to the real coordinates

(global coordinates) using a Jacobian transformation.

∫ ∫

Ωe
f (ξ ,η)dξdη ≈△e

n

∑
i=1

Wi f (ξi,ηi)det(J
e), (3.67)

where ξ ,η are the local coordinates, △e is the area of the reference triangle (△e = 0.5

for the reference triangle used) and det(Je) is the transformation Jacobian as defined in

Equation (3.65).

The quadrature rule used is defined in Table 3.1 [23], and this has a degree of precision

of 2 which produces exact results for quadratic polynomials.

3.4 Solving the mechanical system of equations

3.4.1 Newton method for a system of equations

Due to the highly non-linear nature of Equations (3.33) and (3.38) it was decided to use

the Newton iterative method to solve them. The Newton method determines the solutions
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of a system of n non-linear equations which are given by:

f1(x1,x2, · · · ,xn) = 0,

f2(x1,x2, · · · ,xn) = 0,

...
...

fn(x1,x2, · · · ,xn) = 0.

(3.68)

This is seeking to solve n non-linear equations in n unknowns. The notation can be sim-

plified by defining a vector valued function f(x) as follows:

f(x) =

















f1(x)

f2(x)

...

fn(x)

















=

















f1(x1,x2, · · · ,xn)

f2(x1,x2, · · · ,xn)

...
...

fn(x1,x2, · · · ,xn)

















, (3.69)

so the system of Equations (3.68) can be written as:

f(x) = 0, (3.70)

where 0 denotes the zero vector, 0 = [0,0,0 · · · ,0]T . Assuming that a solution (x =

[x1,x2, · · · ,xn]
T ) exists for the system then the method iteratively finds a set of vectors

xm, such that

lim
m→∞

xm = x (3.71)

The Newton method for a system of equations is given by [80]:

J f (x)(xm)δm = −f(xm), (3.72)

where δm = (xm+1−xm) and the Jacobian of f(x) is defined as:

J f (x) =













∂ f1
∂x1

(x) ∂ f1
∂x2

(x) · · · ∂ f1
∂xn

(x)
∂ f2
∂x1

(x) ∂ f2
∂x2

(x) · · · ∂ f2
∂xn

(x)
...

...
. . .

...
∂ fn
∂x1

(x) ∂ fn
∂x2

(x) · · · ∂ fn
∂xn

(x)













. (3.73)

The linear system (3.72) is known as the inner solve and has the unknowns δm. The

solution of this linear equation system is then used to calculate the next value of xm,
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where:

xm+1 = xm +δm, (3.74)

and this is known as the outer iteration. The process starts with an initial value x0, and

progresses until a given convergence tolerance is reached, i.e. |f(x)| < tol.

Process 3.1 Newton Method
1: Set initial estimate x0.

2: Set a convergence tolerance, i.e. |f(x)| < tol

3: Repeat until the convergence tolerance is met:

4: Compute the Jacobian J f (x)

5: Solve the linear system J f (x)δm = −f(x) for the unknown vector δm
6: Set xm+1 = xm+δm

In Equation (3.72) the solution is expected to provide a small change of xm and there-

fore an initial guess of zero is used for the vector δ . To improve the performance of the

iteration given in Equation (3.72), the linear system can be preconditioned, as discussed

further in Chapter 5.

The outer Newton iteration, given in Equation (3.74), needs to be provided with an

initial estimate for the xm vector. This vector is a combination of the deformation and

pressure unknowns. For the deformation unknowns, the first time the system is solved the

initial estimate is the undeformed coordinate positions. For the second solve, the first so-

lution of deformed coordinates is used, and from then on a linear extrapolation of the last

two solutions for deformed coordinates are used. For the pressure unknowns, the first time

the system is solved the initial estimate is a given constant, for the second solve, the first

solution of the pressures is used, and from then on a linear extrapolation of the last two

solutions for the pressures are used. The mechanical system is not time dependent, if the

active tension changes rapidly, the mechanical solver needs to be undertaken frequently to

ensure the initial estimate does not become too inaccurate. If the initial estimate becomes

too inaccurate the method may fail to converge.

3.4.2 Building the function vector

The Newton method seeks to solve an equation of the form f(x) = 0, and Equations (3.33)

and (3.38) provide a set of n equations for the n unknowns of the system. The central

process in building the function vector, f (X1,X2), is the quadrature loop, described by

Equation (D.34). By undertaking the quadrature loop for each element in the mesh, the

contributions to the f vector are calculated. Each row of the function vector corresponds

to an unknown in the system, and as described previously, each corner node of a triangular
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element has two deformation unknowns and one pressure unknown. Each mid-point node

has two deformation unknowns. As each element is processed in the quadrature loop,

the values calculated are added to the row of the vector that corresponds to that nodal

unknown.

Within f, the first set of entries contain the deformations in the X1 and X2 directions,

these relate to the unknowns x1 and x2. The bottom entries of the function vector are

used for the pressure unknowns. The node numbering for the mechanical nodes (and

hence the order of the function vector) is determined by the RCM method as described in

Section 2.5.5. Once the quadratic nodes have been built from the original linear triangles

(described in Section 4.1.1 and Process 4.1), the RCM method is undertaken to re-order

the nodes.

With an incompressible material the deformations are zero with no external force

applied and so there are no boundary contributions from Equation (3.33). However to

prevent spurious rotation and translation, and preserve uniqueness of the solution, it is

necessary to fix a number of nodal coordinates within the system. The technique used

typically is to fix the node closest to the centre of the domain in both directions and fix

a neighbouring node (with a similar X2 position) in the X1 direction. This removes three

unknowns from the system. It is possible to remove these unknowns from the system

and restructure the vector of unknowns, however this is a complex process that is time

consuming. To resolve this, the solution adopted is to include the fixed nodes in the

solution, but set their values to the known undeformed locations.

3.4.3 Solving with KINSOL

To solve the non-linear mechanical system the third party tool, KINSOL is employed.

This is part of the SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equation

Solvers) suite of programs managed by the Lawrence Livermore National Laboratory

(see https://computation.llnl.gov/casc/sundials/main.html) and provides a suite of iterative

solvers.

KINSOL requires an equation of the form:

f(x) = 0, (3.75)

and that a user defined software procedure is provided that calculates f. The function vec-

tor f(xm), built as described in Section 3.4.2, is used to generate this software procedure.

At the basic level, it is only necessary to provide KINSOL with a function to calculate the

function vector f(x) and an initial estimate vector. KINSOL then undertakes all the actions
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to perform the Newton iterations. Using this technique provides a matrix-free approach

to solving the mechanical system.

In the non-preconditioned (see Chapter 5) simulations, the sparse GMRES [96] solver

function (KINSPGMR) was used. When right preconditioning is required it is also nec-

essary to provide KINSOL with a preconditioning set-up function and an inner solve

function. The set-up function calculates the numerical Jacobian and then passes it to the

ILUT preconditioner in SPARSKIT. The solve function then utilises the GMRES solver

provided by SPARSKIT. So when the preconditioned solve is undertaken only the outer

Newton iterations are undertaken by KINSOL, the preconditioning and inner solve are un-

dertaken by SPARSKIT and the numerical Jacobian is built within the software developed

for this thesis. By the end of the thesis KINSOL was only used as a skeleton framework

and the majority of its functions had been replaced.

The generalized minimal residual method (GMRES [96]) is an Krylov subspace it-

erative method for the solution of a system of linear equations. The combination of the

Newton iteration for the outer solve and the GMRES solver for the inner solve results in

these solvers being referred to as ‘Newton-Krylov’.

3.5 Conclusions

In this chapter a number of concepts have been covered, including modelling the cardiac

tissuemathematically, approximating this with the FEM, using isoparametric quadratic el-

ements, integrating with quadrature and solving with the Newton method. By combining

these techniques mathematical equations of cardiac tissue deformation can be built and

numerical techniques used to approximate these equations, thereby providing a means of

simulating the deformation of cardiac tissue.

The governing equations for the mechanical system are given in Equations (3.33) and

(3.38). These are approximated using the FEM, over an unstructured mesh of triangular

elements, and this process results in a system of n equations for the n unknowns in the

system. The unknowns relating to the deformations in the X1 and X2 directions and the

pressure p at each node in the mesh. A matrix-free solver has been implemented that

removes the need to algebraically build the FEM stiffness matrix, rather a function vector

is calculated. This function vector is then used within an iterative Newton technique to

solve the system.

The cardiac tissue is assumed to be incompressible, and forces are applied to the

system via the active tension variable (Ta), present in the Second Piola-Kirchhoff tensor,

and generated from the electrical system. Therefore for deformations to be produced in
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the mechanical model it needs to be coupled with the electrical system. This is covered

in detail in Chapter 4, which also shows the tests undertaken to consider the convergence

and validation of the mechanical deformation. The mechanical system is solved using

the FEM over unstructured triangular elements and this facilitates its coupling with the

electrical system.

By setting the tissue as incompressible, an extra unknown variable (for pressure) was

added and this resulted in the combination of linear and quadratic elements used in the

FEM. This adds complexity to the model, however in the cardiac modelling literature

incompressibility is now widely enforced.

The use of quadratic elements with isoparametric mappings enables the production

of curved boundary edges, which are more biologically realistic. Isoparametric elements

also allow easier implementation of higher order basis functions if required in the future.

The Mooney-Rivlin strain energy function, used in this thesis, is isotropic, however

by applying the tensile forces in one direction, fibre orientation can be simulated, and this

technique is used in the heart failure simulations in Chapter 7.



Chapter 4

Coupled electromechanical model

4.1 Introduction

To simulate cardiac activity it is necessary to model the electrical wave as it passes through

the tissue and the resulting deformation from the contraction caused by changes in the

cellular ion concentrations. The objective of this chapter is to describe how the model of

electrophysiology described in Chapter 2 and the model of cardiac mechanics described

in Chapter 3 are coupled together. This produces a model in which the domain deforms

as the electrical wave passes through it.

As discussed previously in this thesis, the electrophysiology and mechanics are ap-

proximated using the finite element method, using two-dimensional meshes. The electri-

cal system varies in time and space and hence each mesh node in the electrical system

needs to store its position in the coordinate space. The mechanical system and electrical

system share common mesh nodes and this allows changes to the mechanical system (i.e.

the deformation of the domain) to be passed back easily to the electrical system.

4.1.1 Mesh generation

In this work, it is a requirement that the mesh supports both the electrical and mechanical

systems. The mechanical system (see Chapter 3) is highly non-linear and the time to

solve this is much greater than the electrical system (see Section 5.1) on the same mesh.

The electrical system needs a fine mesh to properly resolve the electrical wave front, and

65
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due to the performance of the mechanical system it is impractical to use the same level

of refinement for both systems. However the electrical and mechanical meshes need to

operate together so that information can be passed easily between the two systems in the

coupling process (see Section 4.2). The mechanical system uses quadratic basis/weight

functions and this requires each triangle to have six nodes (see Section 3.3.2), with an

extra node being added at the mid-point of each of the triangle’s edges. To facilitate these

objectives an embedded hierarchy of meshes is implemented using the strategy described

in Process 4.1.

Process 4.1 Overview of mesh refinement technique

1: An initial mesh (Mesh0), created using the ‘Triangle’ [99,100] mesh generation soft-

ware, is loaded.

2: A procedure runs to find the mid-point of the edges of all the triangles of Mesh0

3: New nodes are created at these midpoints

4: The three new nodes are added to Mesh0 to create the extra nodes for the quadratic

elements

5: A new mesh is created, MeshE, with four new elements created from every triangle

in Mesh0 using the midpoint nodes as the new vertices.

6: The set of edges for the elements MeshE are determined.

7: A max refinement (MR) parameter is specified

8: while NumRefines ≤MR do

9: Find midpoint of edges in elements in MeshE

10: Create new nodes at these midpoints (unless previously created)

11: Divide each element into four new elements using the new midpoint nodes

12: Add the new elements to MeshE

13: Re-calculate the edges of the elements of MeshE

14: NumRefines = NumRefines + 1

15: end while

The technique described in Process 4.1 provides a flexible solution whereby the re-

finement of the mechanical mesh can be easily altered, whilst maintaining the required

level of fine refinement for the electrical system. Figure 4.1 includes examples of the first

and third levels of refinement. The first refinement produces both the extra nodes needed

for the quadratic elements in the mechanical system and a new, more refined mesh, for the

electrical system. The second and subsequent refinements then further refine the electrical

mesh only.

By using Process 4.1 it ensures that all nodes in the mechanical system are present

in the electrical system and the mid-point nodes also become the vertices of a more re-

fined triangle in the electrical mesh. Figure 4.2 shows a very simple mesh that contains

9 nodes. With this mesh the mechanical system would have two 6-node elements, the
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(a) First refinement (b) Third refinement

Figure 4.1: Refinement of triangular elements in a subsection of a mesh

first element is comprised of nodes {1,5,2,6,4,7} and the second element is comprised of

nodes {2,9,3,8,4,6}. The electrical system would have eight 3-node elements comprised

of nodes {1,5,7}, {5,2,6}, {5,6,7}, {6,4,7}, {2,9,6}, {9,3,8}, {9,8,6} and {8,4,6}.

By defining a mesh that has common nodes in both the electrical and mechanical

system it is straightforward to update both the mechanical system with changes to the

transmembrane voltage and the electrical system with changes to the coordinate locations

of the nodes.

4.2 Coupling the electrical and mechanical systems

As described in Chapter 3, the mechanical system being solved is derived from Equations

(3.7) and (3.8). Equation (3.7) is repeated here again for convenience:

TMN =
1

2

(

∂W

∂EMN

+
∂W

∂ENM

)

− pC−1
MN +TaC

−1
MN , (4.1)

where TMN is the Second Piola Kirchhoff tensor,W is the scalar strain energy function,

E the Lagrangian Green strain tensor, p is a Lagrange multiplier, Ta is the active tension

generated by the electrical system, and C is Green’s strain tensor.

The active tension component (Ta) of Equation (4.1) is determined using the voltage

generated by the electrical system and it is this variable that is used to couple the electrical
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Figure 4.2: Example simple mesh with 9 nodes, which can be used to form 2 quadratic

elements and/or 8 linear elements.

and mechanical models. An active tension is generated for each node in the electrical

mesh (see Section 4.2.2) and as the electrical and mechanical nodes are common to both

meshes, there is a tension value at each node in the mechanical mesh. After a given

number of time steps of the electrical system, the mechanical solve is undertaken and

a new tissue deformation is produced. The coordinates of the deformed tissue are then

passed back to the common nodes in the electrical model.

The electrical system requires a fine resolution to properly represent the steep wave

front of a cardiac action potential. The mechanical system is highly non-linear and hence

takes a relatively long time to solve (see Chapter 5), and so the electrical mesh is refined

further than the mechanical mesh. That is, there are more elements (and nodes) in the

electrical system than in the mechanical system. This means that when deformation is

calculated in the mechanical system and passed back to the electrical system there will be

nodes in the electrical system that do not have a corresponding entry in the mechanical

system. The deformations for these nodes are interpolated from the nodes that are in

common.

4.2.1 Weak and strong coupling

Themethod described in Section 4.2 above is known as ‘weak coupling’ since the two sys-

tems are solved independently. Another method used in this research area is to ‘strongly

couple’ the electromechanical models (for example [58,71,72]), in which both the electri-

cal and mechanical models are solved simultaneously. Strongly coupled systems make it
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possible to incorporate other biological effects of electromechanical coupling. For exam-

ple, length dependent calcium binding or stretch activated conductance channels. These

features are present in some cellular and tissue models (for example [59, 75, 104]), how-

ever for the simulations undertaken in this thesis these deformation dependent features

are not utilised and so a strongly coupled model is not mandated.

4.2.2 Modelling active tension

The biochemical component of the Second Piola-Kirchhoff tensor (Equation (4.1)) con-

tains the active tension variable (Ta). Equations (22c) and (23) from [69] (subsequently

updated at www.cellml.org website) provide a phenomenological description of the ten-

sion within cardiac tissue and these are reproduced here, with the rate of change of the

active tension given by:
∂Ta
∂ t

= ε(V )(KTaV −Ta), (4.2)

where KTa controls the amplitude of the active tension (Ta), V is the transmembrane volt-

age, and the function ε(V ) is defined by:

ε(V ) = 10ε0 forV < 0.005, ε(V ) = ε0 forV ≥ 0.005, (4.3)

and where the initial value for the active tension is 0 at all nodes.

In [69] the electrical model used is the Aliev and Panfilov model [2]. This electrical

model produces a normalised transmembrane voltage which ranges from 0≤V ≤ 1. The

ten Tusscher–Panfilov electrical model [110] used in this thesis, produces transmembrane

voltage in a biologically realistic range of −86.2mV ≤ V ≤ 30mV . To account for this,

the transmembrane voltage calculated from the electrical model is scaled to 0 ≤ V ≤ 1

before it is used as an input to Equations (4.2) and (4.3).

4.2.3 Transient modelling considerations

In this thesis weak coupling is implemented and hence the electrical and mechanical sys-

tems need to feedback to each other after a certain period of time.

In [82] the mechanical time-step is considered and tests were undertaken on range of

values from 0.01 to 1.28ms, with the conclusion being that a ‘sensible’ choice of time step

for the mechanical component is 1 ms. In the simulations in Chapter 7 the mechanical

time step employed was typically 0.8ms, and this was undertaken after ten time steps of

the electrical solver running at a time step of 0.08ms.
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It is noted in [82] that large time steps do not necessarily lead to a faster overall solve

time. As the time-step of the mechanical solver is increased the initial estimate used in

the Newton iterative solver (see Section 3.4.1) becomes progressively more inaccurate.

This leads to more Newton iterations which are time consuming. In this thesis it was

also noticed that if the initial estimate becomes too inaccurate the Newton solver can

fail to converge. To enable large tensions early on in simulations, a technique has been

developed that progressively increases the tension with the electrical system disabled.

This enables the production of a good initial estimate for larger deformations.

4.3 Validation and convergence

4.3.1 Convergence of mechanical solver

To consider the convergence of the mechanical system a number of tests were undertaken

with varying levels of mesh refinement. A mesh with a coarse level of refinement with

96 mechanical nodes (these are the quadratic nodes from 6 node triangles) was created

and this was refined to form 5 subsequent embedded meshes. These meshes were each

120mm × 120mm and were fixed along their left edge (where X1 = 0). Providing a

consistent, repeatable test for the mechanical deformation requires that the variability

of the electrical wave speed (see Chapter 2) be removed. This was achieved by setting

an extremely high value the active tension maximum parameter (KTa = 4000)KPa and

running the mechanical solve for only one time step. This ensures that electrical wave has

not moved and that the active tension force is in the same place (along the left edge) in all

tests.

Figure 4.3 shows the deformed boundary of the domain for three of the meshes tested

and, as can be seen from this figure, the results are all similar (at this scale). The main

variation occurs close to the left edge corners, where the coarse meshes cannot reproduce

the curve of the boundary. This can be seen clearly in Figure 4.4. These results also show

that in the top right hand corner (see Figure 4.5), the difference between the meshes is

very small. There is less of a curve to the domain in this area and hence a coarse mesh

with fewer triangles can still approximate this quite well. The coarse meshes become less

accurate in areas where a finer curve needs to be reproduced.

To consider the convergence of the solution as the meshes were refined a further re-

fined embedded mesh was created with with 84385 nodes. The mechanical solve was

undertaken and the solution to this used as a benchmark to compare the convergence of

the other meshes. As the meshes are all embedded within the original 41 element mesh,
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Figure 4.3: Mechanical deformation convergence of domain edge. Tests undertaken on

a 120mm × 120mm domain with varying mesh refinement. Meshes fixed along edge

where X1 = 0, and the active tension maximum parameter (KTa) set to 4000KPa and one

mechanical solve undertaken.
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Figure 4.4: Mechanical deformation convergence–domain edge zoom top left. Tests

undertaken on a 120mm × 120mm domain with varying mesh refinement. Meshes

fixed along edge where X1 = 0, and the active tension maximum parameter (KTa) set

to 4000KPa and one mechanical solve undertaken.
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Figure 4.5: Mechanical deformation convergence–domain edge zoom top right. Tests

undertaken on a 120mm × 120mm domain with varying mesh refinement. Meshes

fixed along edge where X1 = 0, and the active tension maximum parameter (KTa) set

to 4000KPa and one mechanical solve undertaken.
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Quadratic Elements RMS Error RMS Error Ratio of

Nodes Norm X1 Norm X2 X1 convergence

96 41 0.013080 0.010603 -

355 164 0.004959 0.002804 2.64

1365 656 0.001501 0.000235 3.30

5353 2624 0.000436 0.000045 3.44

21201 10496 0.000147 0.000031 2.96

84385 41984 - - -

Table 4.1: Mechanical convergence in X1 and X2 directions, RMS error compared to

solution with 84385 nodes.

they all share 96 nodes (the original quadratic nodes). These nodes were used to take

a root mean squared (RMS) error norm of the permutations in the X1 and X2 directions.

The results can be seen in Table 4.1, and these are individually plotted using log scales in

Figure 4.6.

The error convergence in Table 4.1 considers the position of the 96 common nodes

between the meshes and these are both internal and on the domain boundary. This table

shows that as the spatial step is halved, the error in the X1 direction reduces by up to 3.44

times, hence giving a convergence that is approaching quadratic.

Figures 4.7 and 4.8 illustrate the displacement of the elements in the top left hand

corner of the domain as the mesh is refined. These images show that as the number of

nodes in the mesh increases, a smoother curve can be represented on the domain edge.

4.3.2 Validating the mechanical model

In order to validate the mechanical model, the results from the coupled solver were com-

pared to the results in [82]. The left edge (where X1 = 0) of the domain was fixed in space

and stimulated to form a plane wave. The results from this are displayed in Figure 4.9.

These results provide deformations quantitatively similar to Figure 1 of [82] and with

a similar deformation profile. Specifically in both simulations, as the electrical wave

moves from left to right across the domain, the top and bottom edges of the domain

extend outwards and the right edge of the domain is moved to the left. The right edge of

the domain forms a slight arc from top to bottom in both simulations. It should be noted

that [82] uses the pole-zero strain energy function, rather than the Mooney-Rivlin strain

energy function used in this thesis.

The simulations in Figure 4.9 were undertaken on a coarse mechanical mesh with

3198 degrees of freedom in the mechanical system and 28609 nodes in the electrical
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varying mesh refinement. Meshes fixed along edge where X1 = 0, and KTa= 4000KPa.

One mechanical solve undertaken.
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Figure 4.8: Mechanical deformation showing element deformation, with initial number

of nodes in mesh increasing from 1365 to 21201. Tests undertaken on a 120mm ×
120mm domain with varying mesh refinement. Meshes fixed along edge where X1 = 0,

and KTa=4000KPa. One mechanical solve undertaken.
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Figure 4.9: Mechanical deformation caused by an electrical wave, with left edge X1 = 0

fixed and stimulated to form a plane wave. This is for comparison with Figure 1 of [82].
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system. In these simulations the electrical wave speed was 0.92m/s. It has been observed

previously (see Chapter 2) that the electrical wave is not fully resolved on coarse meshes

and these results further demonstrated a correlation between electrical wave speed and

mesh resolution. The increased wave speed is present in Figure 4.9.

4.4 Deformation and spiral wave stability

Tests were undertaken to determine the effects that a coupled deforming domain would

have on the stability of the electrical spiral wave. This work is also presented in [57].

The simulations were run on a 120mm × 120mm domain. For the electrical simulations

the domain is divided into 634368 unstructured triangular elements using 318065 nodes.

This gives an approximate element edge of 0.21mm. For the mechanical simulations a

mesh of 2478 unstructured triangular elements and 5067 nodes is used. These nodes are

common to the electrical mesh. To prevent spurious rotation and translation, and hence

preserve uniqueness of the solution, the node closest to the centre of the domain is fixed

in both directions and a neighbouring node at the same vertical height is fixed in the X2

direction.

In [110] the stability of the electrical spiral wave is investigated with varying restitu-

tion slopes and sodium dynamics. The objective in this section was to consider the results

presented in Figure 7 of [110] and determine whether a coupled systemwould behave sim-

ilarly. In these tests the sodium dynamics (INA) were set to the ‘standard’ value [110] and

all simulations were initialised by running the simulations until t = 5000ms with a resti-

tution slope of 1.1. This is to ensure a stable spiral wave has formed. After t = 5000ms

the simulation settings were amended to introduce the conditions being tested.

Figure 4.10 shows the results of the solver with electromechanical coupling disabled

and enabled. Both these simulations were undertaken for 10000ms (from t=0ms) with

a restitution slope of 1.1. In the deforming domain for this restitution slope the spiral

wave is similar to that formed in the static domain, and both spiral waves remain stable

over the time period. The anisotropic diffusion set diagonally across the domain (from

the origin to X1 = 120mm, X2 = 120mm) can be seen and the active tension is also set

to act in this direction. This causes the tissue to contract along this direction and, as

incompressibility is enforced, this causes the domain to expand in the direction of the

diagonal perpendicular to this.

Once the spiral wave is established the deformation within the system forms a regular

pattern, resulting in a ‘kite-shaped’ shaped domain. However, as the spiral wave rotates,

the domain also moves around the central fixed point. Figure 4.11 illustrates this at three
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(a) Static Domain (b) Deforming Domain

Figure 4.10: Static and coupled electromechanical simulation of spiral wave with resti-

tution slope of 1.1, at time t=10000ms. In a 120mm × 120mm domain, divided into

634368 elements and using 318065 nodes. A fixed time step (dt) of 0.08ms was taken

and the diffusion tensor, D, set as per Equation (2.37).

different points in time (6000ms, 8000ms and 10000ms). Figure 4.12 illustrates a spiral

cardiac wave with a restitution slope of 1.8, for both a static and a deforming domain. In

these simulations the restitution slope was set to 1.1 initially and then, after t=5000ms,

changed to 1.8. In both the static and deforming domains the introduction of the 1.8

restitution slope caused the spiral wave to break up very quickly. The images in Figure

4.12 are at t=6000ms.

Figure 4.13 illustrates the effects the deforming tissue has on a spiral wave with a

restitution slope of 1.4. It can be clearly seen that the deforming domain contributes the

the spiral wave break-up. On the static domain the spiral wave is stable, however on the

deforming domain the wave has started to become chaotic.

4.5 Conclusions

The electrical and mechanical systems were coupled together using the active tension

variable (Ta), the evolution of which is governed by Equations (4.2) and (4.3), which use

a phenomenological approach taken from [69].

The approach was validated qualitatively against the results of [82] and demonstrates

that comparable deformations can be produced. Convergence tests were undertaken to

consider mesh size and this demonstrated that node displacements converge, at a rate that

is approaching quadratic, as the element size decreases.
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(a) Time = 6000ms (b) Time = 8000ms (c) Time = 10000ms

Figure 4.11: Coupled electromechanical simulation of spiral wave with restitution slope

of 1.1, at times t=6000ms, t=8000ms t=10000ms. In a 120mm × 120mm domain,

divided into 634368 elements and using 318065 nodes. A fixed time step (dt) of 0.08ms

was taken and the diffusion tensor, D, set as per Equation (2.37).

(a) Static Domain (b) Deforming Domain

Figure 4.12: Static and coupled electromechanical simulation of spiral wave with restitu-

tion slope of 1.8, at time t=6000ms. In a 120mm× 120mm domain, divided into 634368

elements and using 318065 nodes. A fixed time step (dt) of 0.08ms was taken and the

diffusion tensor, D, set as per Equation (2.37).
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(a) Static Domain (b) Deforming Domain

Figure 4.13: Static and coupled electromechanical simulation of spiral wave with resti-

tution slope of 1.4, at time t=8000ms. In a 120mm × 120mm domain, divided into

634368 elements and using 318065 nodes. A fixed time-step of 0.08ms was taken and

the diffusion tensor, D, set as per Equation (2.37).

The coupled solver was used to simulate changes in an electrical wave with varying

restitution slopes of 1.1, 1.4 and 1.8 (as per [110]). These tests show that the deformation

of the domain can affect the stability of an electrical spiral wave, with a previously stable

wave breaking up into chaotic patterns. This illustrates that the modelling of cardiac

electrophysiology on a static domain may not accurately represent the wave form as the

deformation can contribute to spiral wave break-up.



Chapter 5

Preconditioning the mechanical system

5.1 Introduction

In Chapter 4 the electrical and mechanical systems were coupled together to produce a

deforming model of cardiac tissue. The electrical system is presented in Chapter 2 and

the mechanical system is presented in Chapter 3. When running the coupled solver the

time to solve the mechanical system was far greater than the time to solve the electrical

system. The objective of this chapter is to present the relative performance of the two

components and to consider how preconditioning the mechanical solve can improve the

overall solution time. The chapter puts forward results from preconditioning the system,

with an initial set of preconditioning parameters and then investigates if these can be

improved further.

Also it should be noted that throughout this chapter the performance comparisons

were undertaken from the start of a simulation (where t = 0ms) onwards. In the ordinary

differential equation (see Equation (4.2)), that is solved for the active tension variable (Ta),

the initial value of Ta is zero and then it builds up over each time step (and is bounded

by the maximum active tension parameter (KTa)). This means that at the start of the

simulations there is a relatively low amount of tension in the system, which results in

smaller deformations, which in turn are easier for the Newton iteration to solve. The

simulations in Chapter 7 are run for long time period to remove this issue.

81
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Test no. Mechanical Mechanical Electrical Performance

Unknowns Solve Time (s) Solve Time (s) Ratio

N1 1573 7.09 0.0064 111

N2 2355 15.74 0.0091 1739

N3 3652 34.29 0.0139 2461

N4 11429 279.27 0.0431 6480

Table 5.1: Relative performance of mechanical and electrical solvers. Tests undertaken

on a 120mm × 120mm domain, with the central point fixed in both directions and an

adjoining point fixed in one direction. The left edge of the domain was stimulated for

t < 1ms and the active tension maximum (KTa) set to 4.79 kPa.

5.1.1 Comparison of electrical and mechanical solvers

On average a non-preconditioned mechanical solve was taking up to 6400 times longer

than a single electrical solve (see Table 5.1), on the same mesh. These tests were run

on basic computing equipment (see B.1), and so the actual performance times are not of

interest here, however the way in which the performance of the overall coupled solver is

dominated by the mechanical solver component was an issue.

Another concern was that the mechanical solver does not scale linearly. In Table

5.1 the change from 3652 mechanical unknowns, in test N3, to 11429, in test N4, is an

increase of 3.1. However the corresponding increase in mechanical solve time is 8.1. This

would be problematic in using the solver for mechanical meshes of a finer resolution. The

electrical system does, however scale linearly, with the time to solve the N4 test with

11429 nodes being approximately 7 times longer than the N1 case with 1573 nodes.

The performance of the mechanical solve at these levels prohibits running simulations

on workstation level computing equipment. To undertake the heart failure simulations (see

Chapter 7) there were in excess of 30000 mechanical solves undertaken (there was one

mechanical solve undertaken for 10 electrical solves). For a mesh with 11429 unknowns

this would take in excess of 96 days with the CPU time required in Table 5.1. Therefore

a means of improving the performance of the mechanical solver was required.

It should be noted that this was not the main focus of the research, and so a simple

solution was sought to enable simulations to be undertaken utilising days of workstation

computing resource (rather than weeks or months).
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Figure 5.1: Scaling of non-preconditioned mechanical solver. Tests undertaken on a

120mm × 120mm domain, with the central point fixed in both directions and an adjoin-

ing point fixed in one direction. The left edge of the domain was stimulated for t < 1ms

and the active tension maximum (KTa) set to 4.79 kPa.

5.1.2 Recap of Newton method

The FEM approximation of the equations governing the mechanical system (as described

in Chapter 3), results in a system of non-linear equations of the form:

f(x) = 0, (5.1)

where f is a system of n non-linear equations, x is a vector of the n unknowns and 0 is a

vector of zeros of length n. The system of equations generated by the cardiac mechanics

are highly non-linear and for this reason an iterative Newton-Krylov method is employed

to solve them (as described in Chapter 3, Section 3.4.1).

Applying the Newton method for a system of equations (as described in Section 3.4.1)

results in an equation for the vector of iterative updates, δ , given by:

Jf(xm)δ = −f(xm), (5.2)

where δ = (xm+1 − xm) and is a vector of n unknowns, Jf(xm) is the Jacobian matrix

calculated from the function vector f(xm) and m is the current iteration number.
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An overview of the Newton Method is described in Process 3.1, with the solution of

Equation (5.2) being used to calculate the next value of xm (that is, xm+1 = xm +δ ) used

in the main ‘outer’ Newton iteration. Equation (5.2) is known as the ‘inner solve’, and

we solve this linear system using the GMRES method [96] provided within SPARSKIT.

To improve the performance of the GMRES solver we can apply a preconditioner [95,

Chapter 10].

5.2 Preconditioning

The objective of preconditioning is to transform a system of equations into one with the

same solution but which is easier to solve with an iterative technique [95]. The inner solve

as described in Equation (5.2) contains the matrix Jf(xm) and the format of this matrix has

an effect on the performance of the solver. Preconditioning techniques modify the system

prior to attempting the solve.

The system being solved is described in Equation (5.2). With right preconditioning

this is rewritten as:

Jf(xm)P
−1Pδ = −f(xm), (5.3)

where P is an n x n preconditioner matrix and P−1 is its inverse. Equation (5.3) is divided

into two component parts and these are solved as two different systems, namely:

Jf(xm)P
−1y = −f(xm) (5.4)

and

δ = P−1y (5.5)

where y is a temporary vector of length n.

It was decided to firstly consider an ILUT preconditioner [95] and determine whether

this could provide the required performance improvements.

5.2.1 ILUT preconditioning

LU factorization is a technique in which a matrix is factorized into a product of a lower

triangular matrix and an upper triangular matrix. Incomplete LU factorisation uses an

approximation to the full LU factorisation. ILUT factorisation is a version of ILU factori-

sation in which only non-diagonal matrix entries above a tolerance (hence the T) are kept.

The abbreviation ILUT is derived from an Incomplete Lower Upper factorisation with a

drop Tolerance. The method also includes a further parameter representing the number
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of extra ‘fill-in’ (subsequently referred to as ‘nfil’ in this thesis) entries on a row of the

matrix. Following the factorisation and application of the drop tolerance, only the largest

nfil non-diagonal values in a row are kept. For example, if you have set nfil to 20, the

20 largest entries on each row of the factorised LU matrices (after the drop tolerance has

been applied) will be kept and the remaining entries set to zero.

One of the advantages of ILUT preconditioning is that the overhead of building the

L and U matrices can be controlled. By adjusting the drop tolerance and nfil parameters

the number of row entries within the L and U matrices can be altered and hence the effort

required to build them is reduced. The computational penalty of reducing the number of

row entries in the L and U matrices, is that it lowers the accuracy of the approximation

that the LU factorisation has to Jf(xm). This may require the Newton solver to undertake

more inner iterations to reach a solution within the required tolerance. Therefore setting

these parameters is a balance between memory, LU build time and solve performance,

and this is discussed further in Section 5.3.1.

5.2.2 Building the Jacobian and solving the system

To undertake the preconditioning it is necessary to calculate an n x n Jacobian matrix of

the function vector f(xm). The numerical Jacobian is calculated using the finite difference

method with the process described in Process 5.1.

Process 5.1 Jacobian Build

1: Calculate the values of the function vector f(xm) for each value of xm.

2: Define a vector ε of length n (where n is the number of unknowns), where the ith

entry has a small value (ε0 = 1.0×10−11) and all other entries are zero.

3: For i = 0 to n

4: Calculate the finite difference approximation for the ith column of the Jacobian

f(xm + εi)− f(xm)

ε0
(5.6)

Note: When xi is perturbed (which corresponds to an unknown relating to a node in the

mesh), it is only necessary to recalculate the function vector, fi, for the elements of the

mesh that node xi is a member of. The values of fi will not change for nodes not connected

to the node being perturbed. This also means that when undertaking the finite difference

calculation it is only necessary to process the rows of fi that have been changed on the ith

step.

To solve the non-linear mechanical system KINSOL is used, as described in Sec-

tion 3.1. When right preconditioning is required it is necessary to provide KINSOL with
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a preconditioning ‘set-up’ function and a ‘solve’ function. The set-up function calcu-

lates the numerical Jacobian and then passes it to the ILUT preconditioner in SPARSKIT.

The solve function then utilises the ILUT preconditioned GMRES solver provided by

SPARSKIT. To interact with SPARSKIT it is necessary to store the Jacobian in a sparse

matrix format (see Section 2.5.4). Following the addition of preconditioning most of the

functions provided by KINSOL have been replaced, however the KINSOL code was kept

as a skeleton and still provided the outer Newton iteration.

KINSOL is relatively complex to interact with so, for this reason, the steps necessary

to undertake a solve with right preconditioning in KINSOL are described in Process A.1

in Appendix A.

5.3 Testing preconditioned performance

To test the performance of the mechanical solver with the preconditioner enabled, a set of

tests were undertaken as described in Table 5.2. The tests in Table 5.2 were all carried out

Test Preconditioner Number Mechanical Electrical Performance

No. (on/off) unknowns Solve Time (s) Solve Time (s) Improvement

Ratio

N1 off 1573 7.09 0.0064

P1 on 1573 0.75 0.0061 9.436

N2 off 2355 15.74 0.0091

P2 on 2355 1.67 0.0091 9.442

N3 off 3652 34.29 0.0139

P3 on 3652 2.95 0.0138 11.616

N4 off 11429 279.27 0.0432

P4 on 11429 14.43 0.0435 19.353

Table 5.2: Testing the preconditioned system. Tests undertaken on a 120mm × 120mm

domain, with the central point fixed in both directions and an adjoining point fixed in one

direction. The left edge of the domain was stimulated for t < 1ms and the active tension

maximum (KTa) set to 4.79 kPa. Drop tolerance was 0.0001, maximum row fill-in 296

and Jacobian re-use 5.

on the same computer (see Section B.1). The electrical solve times are shown as a means

of verifying the reliability of the tests. As no changes were made to the electrical solver

these times should remain constant even though the tests were carried out at different

times. The preconditioned solver has three parameters, namely the drop tolerance, the

maximum fill-in parameter (nfil) and the Jacobian re-use parameter. These parameters are
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Figure 5.2: Mechanical solve performance with and without preconditioning. Tests un-

dertaken on a 120mm × 120mm domain, with the central point fixed in both directions

and an adjoining point fixed in one direction. The left edge of the domain was stimulated

for t < 1ms and the active tension maximum (KTa) set to 4.79 kTa. For preconditioned

solve the drop tolerance was 0.0001, maximum row fill-in 296 and Jacobian re-use 5.

discussed in detail below and further tests were undertaken to consider the best values

for these parameters. However, for the initial tests described in Table 5.2, these were

set to general values which, from experience, would provide reasonably good results.

Specifically for all the preconditioned solves, the drop tolerance was 0.0001, the fill-in

parameter (nfil) was set to 296 and the Jacobian re-use parameter was set to 5.

The mechanical solve times from Table 5.2 are plotted in Figure 5.2 on a log scale. As

can be seen from Table 5.2, the implementation of an ILUT preconditioner has significant

performance improvements over a non-preconditioned system. For a system with 11429

mechanical unknowns the preconditioned solver outperforms the non-preconditioned solver

by over 19 times. The results also show that the benefits of preconditioning increase with

the system size, for a system with 1573 mechanical unknowns the performance improve-

ment is 9.436 times. For the preconditioned solve, the change in system size from 3652 to

11429 is an increase of 3.1, and the increase mechanical solve time increasing by a factor

4.9, however the non-preconditioned solve increases by approximately 8.1 times. Fig-

ure 5.2 illustrates that, although the preconditioned solver is significantly faster for these

meshes, the scaling of both solvers is between O(n) and O(n2), with the preconditioned

solver scaling slightly better.
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Test Preconditioner Unknowns Average Average Inner Total

No. (on/off) Outer Iterations Inner

Iterations per outer solve Iterations

NI1 off 1573 7.55 300.29 70268

PI1 on 1573 9.1 8.07 2276

NI2 off 2355 9.16 385.94 109606

PI2 on 2355 10.29 10.92 3485

NI3 off 3652 11.58 435.65 156399

PI3 on 3652 9.61 13.35 3977

NI4 off 5889 16.97 490.10 257791

PI4 on 5889 11.55 17.54 6281

NI5 off 11429 29.19 535.16 484318

PI5 on 11429 10.94 24.02 8143

Table 5.3: Testing the preconditioned system. Number of iterations for 31 mechanical

solves. Tests undertaken on a 120mm × 120mm domain, with the central point fixed in

both directions and an adjoining point fixed in one direction. The left edge of the domain

was stimulated for t < 1ms and the active tension maximum (KTa) set to 4.79 kPa.

Table 5.3 shows the average number of outer solves for each mechanical solve and

the average number of inner solvers for each of these outer solves. The performance

improvements by the preconditioner can be seen by the large reduction in the average

number of inner solves per outer solve, with the total number of inner iterations reducing

from 484318 (in test NI4) to 8143 (in test PI4). Also as the mesh refines and there are

more unknowns the number of outer solves required increases significantly for the non-

preconditioned solve.

Within the solver that has been have developed, there are three parameters which

modify the behaviour of the ILUT precondioner, namely the drop tolerance, the row fill-

in (nfil) and the Jacobian/Preconditioner re-use. Altering these parameters can affect the

preconditioned system performance and further investigation was undertaken to quantify

the improvements possible.

5.3.1 Varying preconditioner drop tolerance

During the ILUT process row entries that are smaller than a pre-defined tolerance are

removed (‘dropped’) from the resulting matrix by setting them to zero. Changing the

drop tolerance setting therefore changes the number of non-zero entries within the LU

approximation. The smaller the value of the drop tolerance the more row entries are kept

and hence the more accurately the LU factorisation approximates the original matrix (in
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Test No. Number Drop Mechanical Average Average

unknowns Tolerance solve inner outer

time (s) iterations iterations

P-D1 11429 0.00005 21.62 20.40000 5.83

P-D2 11429 0.00010 14.43 24.12684 5.65

P-D3 11429 0.00050 11.72 42.00299 5.57

P-D4 11429 0.00100 12.18 54.31322 5.80

P-D5 11429 0.00500 34.31 178.16519 5.65

Table 5.4: Performance with varying drop tolerances. Tests undertaken on a 120mm ×
120mm domain, with the central point fixed in both directions and an adjoining point

fixed in one direction. The left edge of the domain was stimulated for t < 1ms and the

active tension maximum (KTa) set to 4.79 kPa. The maximum row fill-in was 296 and

Jacobian re-use 5.

this case Jf(xm)). A smaller drop tolerance produces a progressively more accurate LU

factorisation, however it requires more time and memory to build.

To consider the effect that amending the drop tolerance had on the overall perfor-

mance the tests in Table 5.4 were undertaken. In these tests the Jacobian/Preconditioner

re-use parameter was set to 5 and nfil was set to 296 (both of these parameters are dis-

cussed further below). For the given problem, Table 5.4 shows that setting a drop toler-

ance of 0.0005 produced the best performance in terms of solve time. It also illustrates

that an incorrectly set drop tolerance can have a significant effect on the performance,

with a drop tolerance of 0.00005 performing almost twice as slowly, and a tolerance of

0.005 performing nearly three times as slowly.

The best performing drop tolerance is neither the smallest nor largest, and this is

due to the time required to undertake the ILUT factorisation. Figure 5.3 shows how

varying the drop tolerance affects the number of iterations required for each inner solve.

If we set a very small drop tolerance the inner solves require fewer iterations to converge,

however this has the cost of a much longer build time for the preconditioner. Building the

preconditioner is a time consuming exercise and the time this takes is directly controlled

by the size of the drop tolerance. The smaller the drop tolerance the longer it takes to build

the preconditioner (see Figure 5.5). To maximise performance, the best result is achieved

by not setting the drop tolerance too low, as the performance benefits of fewer inner solve

iterations (each of which takes a relatively small amount of computational time) are far

outweighed by the CPU time required to build the preconditioner.

Figure 5.5 also shows the time to build the Jacobian and this remains constant through-

out these tests, as the Jacobian build time relates to the size of the system, not the drop
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Figure 5.3: Average inner iterations with varying drop tolerance. Tests undertaken on a

120mm × 120mm domain, with the central point fixed in both directions and an adjoin-

ing point fixed in one direction. The left edge of the domain was stimulated for t < 1ms

and the active tension maximum (KTa) set to 4.79 kPa. The maximum row fill-in was 296

and Jacobian re-use 5.

tolerance. However it does illustrate that as the drop tolerance becomes larger the time

to build the Jacobian becomes progressively more significant, and hence an efficient Ja-

cobian build algorithm is essential.

The objective of the preconditioner is to improve the performance of the inner solve

(see Equation (5.2)), however we also measured the number of outer solves required by

the Newton solver. Figure 5.4 shows that the number of outer solves remains approxi-

mately constant with a varying drop tolerance.
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Figure 5.4: Outer iterations with varied drop tolerance. Tests undertaken on a 120mm

× 120mm domain, with the central point fixed in both directions and an adjoining point

fixed in one direction. The left edge of the domain was stimulated for t < 1ms and the

active tension maximum (KTa) set to 4.79 kPa. The maximum row fill-in was 296 and

Jacobian re-use 5.
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Figure 5.5: CPU time to build Jacobian and preconditioner. Tests undertaken on a 120mm

× 120mm domain, with the central point fixed in both directions and an adjoining point

fixed in one direction. The left edge of the domain was stimulated for t < 1ms and the

active tension maximum (KTa) set to 4.79 kPa. The maximum row fill-in was 296 and

Jacobian re-use 5.
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5.3.2 Modifying the maximum row fill-in

The next parameter to consider was the ILU matrix row fill-in (nfil) parameter. This sets

the maximum number of entries on any row in the LU factorisation and is applied after the

drop tolerance parameter. That is, any values lower than the drop tolerance are removed

(set to zero) and then the largest nfil of these are kept. The remaining entries are then set

to zero (and effectively discarded as they are not held in the sparse structure). To consider

this variable the tests in Table 5.5 were undertaken. In these tests the Jacobian re-use

parameter was set to 5 and the drop tolerance was set to 0.0005.

These results show that varying the nfil parameter can alter the performance of the

solver. If nfil is too low, the performance of the solver degrades. If you consider the ILUT

process, the drop tolerance takes precedence over the row fill-in and so there will come a

point where no further row fill-ins are required. That is, once the value of nfil is sufficient

for the entries that the drop tolerance determines, having a larger nfil has no further effect,

and this is demonstrated in Figure 5.6 and Figure 5.7.

Test Number Row fill-in Mechanical

No. unknowns Solve Time (s)

P-F1 11429 20 18.60

P-F2 11429 40 12.22

P-F3 11429 80 11.82

P-F4 11429 160 11.60

P-F5 11429 240 11.47

P-F6 11429 400 11.38

P-F7 11429 592 11.51

Table 5.5: Modifying matrix row fill-in maximum parameter. Tests undertaken on a

120mm × 120mm domain, with the central point fixed in both directions and an adjoin-

ing point fixed in one direction. The left edge of the domain was stimulated for t < 1ms

and the active tension maximum (KTa) set to 4.79 kPa. The drop tolerance was 0.0005 and

Jacobian re-use 5.

Figure 5.7 shows the effect varying nfil has on the number of inner solve iterations. We

can see that using a larger nfil initially provides benefits in lowering the number of inner

solve iterations, however beyond a point this provides no further benefit, again showing

that beyond a point further increases to n f il have no effect as extra entries are not needed

for the specific drop tolerance applied.

Further tests were undertaken with 11429 unknowns, including testing with a low

drop tolerance (0.0001) and a high nfil parameter of 1200. With these parameters the

average inner iterations drops to 11.95 per outer solve. Although this did not improve the
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Figure 5.6: Solver performance with varying row fill-in maximum. Tests undertaken

on a 120mm × 120mm domain, with the central point fixed in both directions and an

adjoining point fixed in one direction. The left edge of the domain was stimulated for

t < 1ms and the active tension maximum (KTa) set to 4.79 kPa. The drop tolerance was

0.0005 and Jacobian re-use 5

performance of the solver, it demonstrated that with an accurate ILUT preconditioner the

number of inner iterations for a system with a higher number of unknowns is comparable

to that from a smaller system (for example test PI2 in Table 5.3).

5.3.3 Re-use of numerical Jacobian

The inner system (see Equation (5.2)) uses the numerical Jacobian that is generated as per

Process 5.1. As this is, by definition, an approximation to the true system Jacobian, this

approximation can be used more than once. By re-using the Jacobian the solve technique

being undertaken is the Modified Newton method. Each time it is re-used the approxima-

tion becomes less accurate and so the solver will take more iterations to solve, however

this might be outweighed by the performance savings gained by not recalculating the Ja-

cobian. If the Jacobian is not re-calculated there is no point in building the ILUT factori-

sation either, as the lower and upper triangular matrices are factorised from the Jacobian.

Figure 5.5 illustrates the CPU time involved in these two tasks and so it was felt further

benefits could be obtained by not rebuilding these for every outer iteration.

Within the software a parameter has been added that controls how frequently the Jaco-

bian is recalculated and the ILUT factorisation is then only undertaken when the Jacobian
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Figure 5.7: Average iterations per inner solve with varying row fill-in. Tests undertaken

on a 120mm × 120mm domain, with the central point fixed in both directions and an

adjoining point fixed in one direction. The left edge of the domain was stimulated for

t < 1ms and the active tension maximum (KTa) set to 4.79 kPa. The drop tolerance was

0.0005 and Jacobian re-use 5

is re-built.

The tests in Table 5.6 were undertaken to see how re-using the Jacobian would affect

the overall mechanical solve performance. In these tests the nfil parameter was set to 296

and the drop tolerance was set to 0.0001. In Table 5.6 we can see that modifying the

Jacobian re-use parameter can have a significant effect on solve performance time. By

re-using the Jacobian we can improve the performance by a factor of almost 2.

By not re-building the Jacobian on every outer iteration it would be expected that

the number of outer iterations required would increase. This can be seen in Table 5.6,

which shows that the average outer iterations increases as we increase the Jacobian re-

use. There comes a point when the number of outer solves is less than the Jacobian re-use

parameter and any extra increases in the Jacobain re-use have no further effect. It should

be noted that the preconditioning work was undertaken mid-way through the thesis and

recent publications (for example [58], which uses a technique from [60]) utilise a more

sophisticated algorithm for Jacobian re-use based on monitoring the number of iterations

taken.
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Test Number Jacobian Mechanical

No. unknowns Re-Use solve time (s)

P-J1 11429 1 24.81

P-J2 11429 2 18.92

P-J3 11429 5 14.43

P-J4 11429 10 13.13

P-J5 11429 15 13.31

P-J6 11429 20 13.20

Table 5.6: Re-using the numerical Jacobian. Tests undertaken on a 120mm × 120mm

domain, with the central point fixed in both directions and an adjoining point fixed in one

direction. The left edge of the domain was stimulated for t < 1ms and the active tension

maximum (KTa) set to 4.79 kPa. The drop tolerance of 0.0001, row n f il set to 296 and

Jacobian re-use 5
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Figure 5.8: Solve performance with varying Jacobian/Preconditioning re-use. Tests un-

dertaken on a 120mm × 120mm domain, with the central point fixed in both directions

and an adjoining point fixed in one direction. The left edge of the domain was stimulated

for t < 1ms and the active tension maximum (KTa) set to 4.79 kPa. The drop tolerance

was 0.0001, row n f il set to 296 and Jacobian re-use 5
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Test Number Jacobian Drop Row Mechanical

No. unknowns Re-Use Tolerance Fill-in Solve Time (s)

P-C1 11429 5 0.0005 400 10.003

Table 5.7: Combining preconditioning parameter changes. Tests undertaken on a 120mm

× 120mm domain, with the central point fixed in both directions and an adjoining point

fixed in one direction. The left edge of the domain was stimulated for t < 1ms and the

active tension maximum (KTa) set to 4.79 kPa.

5.3.4 Combining parameter changes

In the above tests only one parameter was modified at a time, and by combining changes

further improvements in performance can be achieved. Table 5.7 has the results from

combining the best features of the previous tests.

In Figure 5.9 a selection of the above tests results are displayed, showing that even

the poorly performing tests with preconditioning (e.g. P-D5 uses a higher than optimal

drop tolerance) still outperforms the non-preconditioned test (N4) by over ten times. If

we refine the parameters for the preconditioner we can improve performance further and

the best performing test in the examples (P-C1) outperforms the non-preconditioned solve

by 27 times. This also shows that by optimising the preconditioning parameters, in this

instance, the mechanical solve scaled linearly. The mechanical solve time for the change

in number of unknowns from 3652 to 11429 increased by 3.39.

5.4 Conclusions

The tests in Section 5.3 demonstrate that implementing an ILUT preconditioner within the

mechanical solver has significant performance benefits. In the best performing example

the preconditioned system outperformed the non-preconditioned system by over 27 times.

To model cardiac tissue (especially the electrophysiology) it is necessary to use meshes

with small element sizes and this in turn puts a constraint on the time step that you can

use to move forward in time. In the simulations of end-stage heart failure in Chapter 7 we

have undertaken in excess of 30000 mechanical solves (and ten times as many electrical

solves), and the versions of these simulations with tissue deformation enabled took over

7 days to undertake on ARC1 (see Appendix B.3) with preconditioning enabled. It would

be impractical to leave these tests running for over 180 days using a non-preconditioned

solver.

Similarly the demands on the iterative solver vary with the tension in the system, and
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Figure 5.9: Mechanical solve times, comparing non-preconditioned results to various

preconditioned results taken from the tables in this section.

the deformation in the system varies over time. Whilst running the heart failure simu-

lations there were instances where the mechanical solver failed to converge. A ‘check-

pointing’ mechanism was added to the software to periodically store the values of all the

system variables. This meant that the situations where the system failed to converge, the

preconditioning parameters could be amended (for example lowering the drop tolerance)

and then the solver restarted from the last saved checkpoint. This enables an aggressive

set of parameters to be used to maximise initial solver performance which can then be

refined if required, without the need to restart the simulations from the beginning.

There is a significant computational resource required to undertake the ILUT factori-

sation and this increases as the drop tolerance is reduced and the row fill-in maximum

is increased. The lower the drop tolerance and the higher the fill-in the more memory is

needed to hold the ILUT matrices and the longer it takes to build them. However the more

accurate the ILUT matrices the fewer iterations are required to undertake the inner solve.

Also, if these become too inaccurate the system will fail to converge. Each inner solve

does not take a relatively long time and so it is more efficient (in general) to have more

inner solves and less time building the ILUT preconditioner.

Building the numerical Jacobian and undertaking ILUT factorisation is computation-

ally costly and it was found that by re-using this Jacobian the overall solve performance

could be improved.
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All the tests in Table 5.3 were undertaken on a lightly stressed system, whilst the

active tension is still building early in the simulations. It should be noted that as the active

tension builds over time (up to the maximum set by the KTa parameter in the active tension

equation (see Equation (4.2) or (7.2)), the stress also builds over time and this puts more

load on the iterative solver and requires further iterations to solve. In the simulations

undertaken in this thesis, a greater relative improvement by using the preconditioner was

noticed as the simulations progressed.

Similar tests to the ones in Tables 5.4, 5.5 and 5.6 were undertaken with 3652 mechan-

ical unknowns. For this system size the optimal drop tolerancewas 0.001 and the optimal

nfil was 40. This shows that there is no ‘one’ optimal value for these parameters, rather

they vary with the size of the system being solved, however the optimal drop tolerance

reduces as the system size increases.

At the completion of this section of the project it was felt that ILUT preconditioning

provided significant performance benefits to the solver that enabled the heart failure simu-

lations to be undertaken in several days, rather than months. It has been demonstrated that

ILUT preconditioning provides significant performance improvements to the non-linear

system of equations generated by the cardiac mechanical system.
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Mesh adaptivity

6.1 Introduction

In Chapter 2 the need for the electrophysiology to be simulated on a fine finite element

mesh was discussed in detail. The steepness of the cardiac wave front (see Figure 2.10)

requires small mesh elements to properly resolve the wave front. However using smaller

elements increases the computational time and resources required. In Pathmanathan and

Whiteley [82] they comment that for coupled mechano-electric simulations to be under-

taken on realistic geometry then adaptive techniques will need to be employed.

Adaptive mesh refinement strategies seek to minimise the number of nodes (and el-

ements) in a mesh, whilst still providing an accurate solution to the given problem. It

has been discussed in Chapter 2 that the electrical wave requires a fine mesh to properly

resolve it, however the gradient of the transmembrane voltage at the front of the wave

(during de-polarisation) is much steeper than during the wave plateau and re-polarisation

phases.

This chapter seeks to investigate whether an adaptive mesh refinement (AMR) strat-

egy can be implemented that provides the refinement needed to model the wave front with

a lower refinement elsewhere in the mesh. The objective will be to determine whether the

whole wave needs to be finely adapted or whether refinement around the front of the

wave is sufficient to maintain an acceptable level of accuracy, and then assess the poten-

tial efficiency benefits of this approach. It should be noted that in certain pathological

99
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conditions, e.g. tachycardia, spirals waves are formed and this causes more of the domain

to be excited. How this impacts on the efficiency of an adaptive solution this will also be

considered.

Furthermore, in this chapter we will present results of the adaptivity on a deform-

ing domain, where the adapted electrical system is coupled to the deforming mechanical

system.

6.2 Local mesh adaptivity introduction

In Section 4.1.1 and in the previous chapters of this thesis, mesh refinement has been

discussed, and the term ‘mesh refinement’ has been used to describe the global refinement

of all the elements in a given mesh. Local adaptive mesh refinement (AMR) seeks to have

varying levels of mesh refinement in different places within the mesh, to provide a more

accurate approximation in areas where it is needed.

Adaptive methods have been widely used in engineering problems since their intro-

duction in the 1970s [4, 12], and these are generally grouped into three strategies, de-

scribed below:

• h-refinement is the addition/removal of extra elements where they are needed by

sub-dividing or merging existing elements [22]. In the case of subdivision, an ele-

ment is divided into a number of child elements. In the case of merging an element,

existing child elements are merged back into their parent element.

• p-refinement is where the improvement in accuracy is achieved by increasing the or-

der of the approximation functions used by the method, for example the weight/basis

functions used by the finite element method [78, 119]. With p-refinement the num-

ber of degrees of freedom in an element increases and hence when this is under-

taken the system size increases. Local p-refinement only increases the order of the

approximation functions on certain elements [16].

• r-refinement is the movement of mesh nodes to areas of the domain where they are

needed, without adding extra nodes to the mesh [5, 46]. With this technique the

system size remains constant, however by moving nodes to areas of highest error

the aim is to minimise the global error.

For the adaptivity undertaken in this thesis h-refinement is utilised. This method was

chosen as it provides the flexibility of adding extra refinement where it is needed in the

mesh, and because the number of refined elements to properly capture an electrical wave
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is difficult to pre-determine. For example, the amount of the domain excited can vary

greatly between line wave and spiral wave simulations. This would make r-refinement

difficult to implement efficiently.

Modelling cardiac electrophysiology is a time dependent problem and this means that

the mesh needs to be adapted multiple times as the electrical wave moves within the

domain. Undertaking local adaptivity on time dependent problems is more complex than

for a steady state problem and requires techniques to build the mesh repeatedly and also

to re-calculate the finite element matrices.

6.2.1 Monitor functions

In this thesis h-refinement is used and the concept of adding extra elements ‘where they

are needed’ needs to be clearly defined. This phrase is used to describe the areas of the

mesh where local adaptivity can improve the accuracy of the solution. In an AMR system

these areas are targeted to increase the refinement in areas which need more resolution or

to decrease the refinement in areas which do not need extra resolution. The aim is that a

specified level of accuracy can be achieved with lower resources.

With AMR, the selection of elements to be refined is made by finding the regions

where there is the most activity or where the largest errors are incurred. In the case of

modelling cardiac electrophysiology this is at the front of the wave, where there is a very

steep slope from the resting to excited state. As the electrical system is time dependent

it is necessary to have a flexible AMR process that will continually refine and de-refine

the mesh as the wave moves across the domain. Another challenge for a time dependent

problem with a moving wave is to ensure the mesh is refined ‘in front’ of the wave. The

mesh needs to be refined before the wave crosses it, otherwise the wave front will be

modelled initially on a coarse mesh.

Adaptivity has been widely employed in the field of engineering and there are several

techniques for designing a function to select the elements to refine and these are discussed

in [15]. One approach is to consider the activity of the variables within the domain and

refine elements based on changes to these variables. For example Oden et al. [79] use

the gradient of the density (for incompressible flow problems) to determine adaptivity.

In [13], the local Mach number is used when considering results corresponding to flows

around aerofoils.

A more sophisticated approach than relying on the change in solution variables is to

develop a posteriori error estimates. A posteriori error estimation is a technique often used

to determine areas to refine and a discussion of this is in [77, 116]. This requires error
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estimates to be calculated across the mesh before the adaptivity can be undertaken. To

calculate the error estimates a set of equations will need to be solved and this incurs extra

work. Also in [123] they comment that calculating a posteriori error estimates requires

problem dependent analysis and this may be difficult for monodomain equations with

complex membrane dynamics.

The monitor functions used in this thesis are defined in Process 6.1 and Process 6.2

and are discussed later. These functions monitor the voltage changes in the domain to

determine where to adapt the mesh. By utilising this approach it is relatively straightfor-

ward to add techniques to consider different adaptivity for the front and back of the wave

and also whether the entire excited region needs adapting. Also, there is minimal com-

putational cost of calculating these functions, as compared to more sophisticated error

estimates.

6.3 Methods used

6.3.1 Data structure considerations

Developing algorithms tomanage a locally adaptingmesh, especially with a time-dependent

problem, has a number of challenges not encountered in fixed meshes, or where the refine-

ment is global and known in advance. In systems with a known size the data structures

can be built at the commencement of the software and memory allocated accordingly.

Programming languages may provide facilities to re-allocate memory or re-size arrays

and these tools can be used for data structures that need to increase in size. These facili-

ties will typically assist in the addition of entries at the end of the existing data structure.

However, with a locally adapting mesh it is necessary to be able to remove data from any

point in the existing data set and/or add new data to the end of the data set. The removal

of arbitrary (that is, not predetermined) data from a large set of data causes problems

for traditional array data structures, in that it is inefficient to leave gaps in the data and

re-ordering a huge data set because a few items have been removed is inefficient.

A number of techniques are typically used to solve this problem including linked lists,

tree structures (for example quad-trees [56]) and block structures (for example [107]). In

this thesis, the solution used is a ‘linked-list’ methodology. In a FEM system the main

data structures represent the nodes, elements, mesh and edges. By using linked-lists for

these it is easy to remove individual items of data (for example one node), without having

to re-order the remaining data set. With a linked-list each item of the data structure is

declared individually and hence can be destroyed (and memory released) individually.
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Each item in the data structure holds a link to the previous item and the next item (or null

pointers for the first and last items). The disadvantage of a linked list data structure is that

you cannot directly access a specific data item, rather you need to parse the data set from

the beginning until the item is found. For systems using the FEM this disadvantage is

reduced by the fact that most operations are required on all elements or all nodes. It is not

necessary to locate an individual node and process it outside of one of the main system

functions which loop all entries.

To mitigate the effort required in parsing through a linked-list it is recommended to

hold pointers to any associated data for that item. For example an element would hold a

pointer to the nodes it is constituted from. In an array-based system such associations can

be achieved by holding the appropriate array index numbers (rather than a pointer). By

using such pointers it is efficient to access the data associated with any linked list item

directly (by following the pointer), rather than having to loop through a list to retrieve it.

The effort required to re-develop the required data structures from an array-based system

is not trivial.

6.3.2 Determining elements to refine and de-refine

In this thesis locally targeted h-refinement is used and with this it is necessary to target

elements to refine. It is also essential to ensure that the wave front stays within the refined

area of the mesh. If the wave front is simulated in a coarse area of the mesh then it will

not be properly resolved and the wave speed will alter. This means that in determining

the elements to be refined two processes need to be undertaken, one to select elements for

refinement and one to project this refinement to the surrounding area to ensure the wave

front stays within the adapted region.

Prior to starting a simulation it is necessary to ensure the initial stimulated area of

the wave is within the refined region. Therefore a portion of the domain needs to be

adapted prior to the commencement of the electrical solve. It should be noted that the

initial refinement needs to be repeated for the maximum number of refinements allowed,

and this ensures the initial wave is contained by elements at the finest resolution.

Once the initial adaptivity is completed, and the system starts to solve, further ele-

ments need to be targeted for refinement or de-refinement as the wave progresses. Two

different techniques were implemented and these are summarised in Process 6.1 and Pro-

cess 6.2. These algorithms are controlled by a number of thresholds and parameters and

these are stated in Table 6.1. Figure 6.1 illustrates a single element, with voltages (V1, V2,

V3) that is referenced in these algorithms.
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Figure 6.1: Example triangle with voltages at the three corner nodes

The mesh needs to be refined in front of the wave and to achieve this a secondary

process is run that considers the neighbouring elements of the ones that have been flagged

for refinement. A process is undertaken which determines which other elements are near

the elements to be refined in the primary process and flags these for refinement. This

process is included in Process 6.1 and Process 6.2. The distance of projection is controlled

by a system parameter (Pdist) and the smaller this is made the fewer elements are refined

on each refinement cycle. However if this distance is made too small the wave may ‘break

out’ of the refined region, before the mesh is adapted again, and therefore it is essential

that the distance parameter is related to the speed of the wave and the size of the elements.

Finally, there is also a parameter (AminE), to determine whether elements within the

excited region of the domain (i.e. elements where the voltage is greater than the resting

potential), should be allowed to de-refine to the coarsest level. This parameter enables the

entire excited area of the domain to be kept at a given minimum level of refinement.

Process 6.1 was implemented initially, and has a simple refinement test that compares

voltage within an element. The same test is used throughout the mesh. The de-refinement

process simply de-refines elements after a period of time. This monitor function provided

a good technique to test the AMR software and also provided useful insight into the areas

of the mesh that require most refinement. This is discussed in more detail below.

Process 6.2 applies a more sophisticated monitor function that allows distinction be-

tween rising and falling voltages. This effectively allows the front and back of the wave

to be treated differently. The de-refinement process is also more robust and compares the

voltages within an element. Using the time to control de-refinement, as in Process 6.1 is

a crude technique that also needs optimising for different problems.
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Name Description Units Where used

Amax Maximum number of levels of refine-

ment

None All

VtolR0 Threshold for determining when to re-

fine elements

mV Refinement, Process 6.1

VtolR1 Threshold for determining when to re-

fine elements when voltage is rising

mV Refinement, Process 6.2

VtolR2 Threshold for determining when to re-

fine elements when voltage is falling

mV Refinement, Process 6.2

Pdist Projection buffer distance to determine

which additional elements to refine

mm Refinement, Algorithms

6.1 and 6.2

AminE Minimum level of refinement for ex-

cited region

None De-Refinement

VtolE Voltage threshold above which an ele-

ment is deemed to be excited

mV De-Refinement

TtolD Time threshold for determining when

to de-refine elements

ms De-Refinement

- Process 6.1

VtolD Voltage threshold for determining

when to de-refine elements

mV De-Refinement

- Process 6.2

Table 6.1: Parameters and tolerances used in monitor functions for refinement and de-

refinement

Process 6.1Monitor Function - simple

1: Loop over all elements in the mesh (Ei)

2: Refinement level of Ei is referred to as ER
i

3: If ER
i = Amax then ignore this element

4: Else if |V1−V2| >VtolR0 OR |V2−V3| >VtolR0 OR |V3−V1| >VtolR0 then

5: Mark the element for refinement

6: Flag the refinement as ‘primary’

7: Record the time refined in ERTime
i

8: Loop over all active elements in the mesh (Ei)

9: Get the centre point of Ei, referred to as EiC

10: Loop over the elements marked for primary refinement (Ep).

11: Get the centre point of Ep, referred to as EpC

12: Calculate the distance between EpC and EiC, referred to as Dist

13: If |Dist|< Pdist then flag Ei for refinement

14: Loop over all active elements in the mesh (Ei)

15: If Ei is flagged for refinement then ignore this element

16: Else if ER
i = 0 then ignore this element

17: Else if the voltage at Ei >VTolE AND Ei refinement level equals AminE then ignore

18: Else if (ERTime
i −TtolD) > Current time, then flag for de-refinement
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Process 6.2Monitor Function - second
1: Loop over all elements in the mesh (Ei)

2: Refinement level of Ei is referred to as ER
i

3: If ER
i = Amax then ignore this element

4: Compare voltage in Ei with voltage at last time step

5: If voltage is rising then

6: If |V1−V2| >VtolR1 OR |V2−V3| >VtolR1 OR |V3−V1| >VtolR1 then

7: Mark the element for refinement

8: Flag the refinement as ‘primary’

9: Else if voltage is falling then

10: If |V1−V2| >VtolR2 OR |V2−V3| >VtolR2 OR |V3−V1| >VtolR2 then

11: Mark the element for refinement

12: Flag the refinement as ‘primary’

13: Loop over all active elements in the mesh (Ei)

14: Get the centre point of Ei, referred to as EiC

15: Loop over the elements marked for primary refinement (Ep).

16: Get the centre point of Ep, referred to as EpC

17: Calculate the distance between EpC and EiC, referred to as Dist

18: If |Dist|< Pdist then flag Ei for refinement

19: Loop over all active elements in the mesh (Ei)

20: If Ei is flagged for refinement then ignore this element

21: Else if ER
i = 0 then ignore this element

22: Else if the voltage at Ei >VTolE AND ER
i = AminE then ignore this element

23: Else if |V1−V2| <VtolD AND |V2−V3| <VtolD AND |V3−V1| <VtolD, then

24: Flag for de-refinement
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The results from these techniques are discussed in Sections 6.4.4, 6.4.5 and 6.4.6.

6.3.3 Checking the validity of the mesh

The processes described in Section 6.3.2 ‘flag’ elements to be refined or de-refined. The

refinement is not actually undertaken during that process, as there may be refinements that

are flagged that cause issues with the validity of the mesh. A number of rules are applied

to the refinement process as follows:

• No element can be de-refined further than its original starting level. This means that

the original mesh provides the set of coarsest mesh elements.

• Maximum refinement (Amax). A maximum refinement threshold is set (for example

5 refinements) and elements cannot be refined further than this.

• Neighbour refinement. Two neighbouring elements can only differ in one level of

refinement. For example, a level 5 element cannot be next to a level 3 element.

• Island refinement. An element should not be left as an island, whereby all its neigh-

bouring elements are refined to a higher level than it is.

• De-refine together. When an element is marked for de-refinement, all its ‘sibling’

elements need to be de-refined with it.

The process of ‘flagging’ elements creates a proposed new mesh. The proposed new

mesh is checked against the rules defined above and extra elements flagged for refinement

or elements are blocked from de-refinement. This results in another new proposed mesh

and the process starts again. This process continues until there are no elements flagged

for refinement or de-refinement, and hence all the rules have been met.

6.3.4 Refining and de-refining the mesh

With h-refinement, selected elements are divided into new smaller elements. The ap-

proach used in this thesis is to divide each element into four new elements [61]. This is

described further in this section.

Following the selection of elements to be refined and the mesh validation, the pro-

posed new mesh is then actually refined into a new working mesh. Elements flagged for

refinement are split into 4 child elements. The process of adapting the element illustrated

in image (a) of Figure 6.2, is achieved as follows:
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(a) Before refinement (b) After refinement

Figure 6.2: Adapting a trianglular element in four new (child) elements

• Three new nodes are created (N4,N5,N6) at the mid-points of the element’s edges.

For example, N4 is created at the mid-point between N1 and N2.

• At N4,N5,N6, the values of the TP06 state variables, voltage and active tension, are

set to the averages of the two nodes they are bisecting.

• Four new elements (E2, E3, E4, E5) are created by joining the new nodes together.

• The new elements and nodes can be seen in (b) of Figure 6.2.

• The original element, E1, is marked as “in-active” and excluded from the FEM

processes, until it is marked as “active” again during a de-refinement.

The de-refinement process takes four sibling elements (e.g. E2, E3, E4, E5) and re-

moves them from the mesh. The process of de-refining the element illustrated in image

(b) of Figure 6.2, is achieved as follows:

• Loop around the elements marked for de-refinement

• If E2 is flagged for de-refinement, ensure that the three sibling elements, where E3,

E4, E5 are the siblings of E2, are ALL flagged for de-refinement during the same

adaptivity process.

• If not then do not proceed with the de-refinement.

• Remove the elements E2, E3, E4, E5 and nodes N4,N5,N6 from the data structures

and free the memory used.
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Figure 6.3: Example AMR mesh with four levels of refinement

• Flag the original parent element, E1, as active again.

• This will result in returning to the element in image (a) of Figure 6.2.

An example of an adaptively refined mesh is given in Figure 6.3. This illustrates a

mesh with four different levels of refinement in different areas of the mesh, and shows the

mesh refining in a band to coincide with the electrical wave front.

6.3.5 Finite element method implications

The FEM operates on a given mesh and the key matrices (the global stiffness and global

mass matrix - see Section 2.3.3) are spatially dependent. This means that when the mesh

is refined they need to be rebuilt.

Following a refinement process the system size may have changed, which means that

the data structures may need more memory allocating. To do this efficiently requires the
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data structures to be easily increased or decreased in size and this has been discussed in

Section 6.3.1. It also means that the sparsity pattern of the system will have changed and

will need rebuilding.

In a globally refined mesh all interior nodes are common to a number of elements.

However, following the refinement process in an AMR system, some triangle vertices

will not be shared with other neighbouring elements, as certain elements will be more

refined than their neighbours.

6.3.6 Hanging nodes

When a mesh is locally adapted it is an inevitable consequence that there will be re-

gions of finer resolution next to regions of coarser resolution. Along this internal area of

transition some nodes will only be in elements on one side of the threshold (the refined

elements), and not be part of elements on the other side (see Figures 6.4 and 6.5). These

nodes are known as hanging nodes. There are a number of techniques for dealing with

Figure 6.4: An example of a section of a mesh with hanging nodes marked with black

circles.

hanging nodes, the most common being to add extra ‘green’ elements. These new ele-

ments are formed by the bisection of an element from the hanging node to the opposite

vertex. For example, in Figure 6.5, two new triangles would be created by joining node

7 and node 4. There are a number of management issues with green elements, including

their removal before the next adaptivity process [106, Section 3.3]. In this thesis it was

decided to use a technique where the hanging nodes are dealt with algebraically. In [90],
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Figure 6.5: Simple mesh with a hanging node

a method is described whereby the solution at the hanging node is interpolated from the

two neighbouring nodes. This is also used in [50, Chapter 4].

For the FEM to remain consistent the stiffness and mass matrices need to be built

for all nodes (including hanging ones). The system is then re-arranged as per the theta

method (see Section 2.5.3) to provide the system that requires solving. It is at this point

that the hanging nodes are removed from the solve, and their values interpolated. However

as these rows will have contributions from their neighbouring nodes, these contributions

need to be distributed before they are removed from the solve, and this is described in

Equation (6.1) and Equation (6.2). The hanging node rows are not actually removed from

the system, rather their rows are set so that the value of the solution will equal the average

value of the two adjacent nodes on its ‘hanging edge’, where a hanging edge is an edge

on the transition between a two areas of different levels of refinement.

Figure 6.5 shows a simple example mesh with a hanging node. The FEM builds

contributions to the global matrices and right hand side based on the connectivities of the

nodes. The FEM global matrix and right hand side that would be built for such a mesh

are given by:
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whereUi j, for i, j = 1, ..7, are the entries of the global FEM matrices (these are the terms

from the A matrix of Equation (2.36)) and Ri are the right hand side entries (these are the

terms from b vector of Equation (2.36)). The technique applied in this thesis is to build the

matrix as per Equation (6.1), however prior to solving the system interpolate the values of

the hanging node, by setting the hanging node to equal the average of the solution value

at the two adjacent nodes of the hanging edge. The other entries on the hanging node row

of the matrix are distributed equally to the connected end node rows (of the hanging node

edge). With this modification Equation 6.1 becomes:
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The AMR process with FEM is complex, with many steps, and these are described in

Process 6.3.
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Process 6.3 Overview of refinement process with hanging nodes

1: Find elements that meet the criteria for refinement or de-refinement

2: repeat

3: Check the validity of the proposed mesh

4: Mark any extra elements for refinement or de-refinement

5: until No changes in this loop or maximum counter reached

6: Undertake the mesh refinement

7: Create required new nodes and elements

8: Set new node variables to the average of the two nodes they bisect

9: Remove elements marked for de-refinement and free their memory

10: Find all edges for the new mesh, recalculate areas and run RCM method

11: Determine hanging nodes by:

12: Looping through each edge

13: Find non-boundary edges that only appear in one element

14: Mark the central node on such an edge as a hanging node, Nh.

15: Store link to the the other two nodes on that edge within Nh.

16: Free all existing matrices and rhs vectors and create new memory allocations

17: Create a sparsity pattern and copy as needed

18: Build stiffness matrix, mass matrix and right hand side vector

19: Adjust the system and RHS as per the Theta method, to create a system of the form

Ax=b as per Equation (2.36)

20: Process the hanging rows in the A matrix and vector b as per Equation (6.2) and

Equation (6.3)

21: Note that if the appropriate columns do not exist in the sparse representation of A,

they must be added to the sparsity pattern

22: The resulting Ax=b system can now be solved
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6.4 Testing the locally adaptive system

The tests were undertaken using the electrical system as described in Chapter 2. This uses

the TP06 ionic current model and is solved with the FEM. To test the locally adaptive

system a 360mm×3.75mm domain was used and a stimulus applied to a region near the

left edge (where X1 < 1) of the domain. The domain is sufficiently long to contain a full

wave and the values of the transmembrane voltage at various nodes in the mesh were

recorded at given times.

It should be noted that for the tests in this chapter the restitution slope of the electrical

wave was set to 1.4. This was not chosen to demonstrate any electrophysiology property,

but it does have an effect on the wave profiles seen in this chapter.

6.4.1 Errors from changing the refinement level

Ideally the voltage produced using an adapted mesh would be compared to a globally

refined mesh with a very fine refinement and a convergence study undertaken. However

comparing solutions from higher and lower refinement levels has the issue of the speed

of the wave to contend with. The wave speed changes with the mesh refinement and a

small change in wave speed changes the location of the wave front. This causes a large

difference in the voltage at a given node. This can be see in Table 6.2. These results

were produced on a 360mm×3.75mm domain, with the time step halving with each

refinement. The original coarse mesh had 130 nodes and 128 elements, and a single global

refinement undertaken in all cases to produce the quadratic nodes for the mechanical

system, giving a mesh with 387 nodes and 512 elements (this has an average element

area of 0.165mm2 and an approximate edge length of 0.57mm). Diffusion was set to be

isotropic with a coefficient of D = 0.154. The area defined by X1 < 1mm was stimulated

for t < 1ms. The global refinement level then varied for a further 1 to 5 refinements.

The solution for the voltage at the original 130 nodes was compared to the 5th refinement

level, and the results are presented in Table 6.2. The RMS errors displayed in Table 6.2

are relatively large, considering that the voltage range for the system is from -86.2mV to

approximately 30mV. Figure 6.6 demonstrates this graphically, with the wave position in

each of the five examples being at a different position.

Furthermore, and as previously discussed in Section 2.6.1, the initial excitation of the

left edge elements of the domain mean that there are slight variances in the starting point

of the wave, due to the different triangle sizes and positions. These small changes in the

starting conditions and the differences in wave speed mean RMS errors when comparing

solutions of different refinement levels are large. However it is clear that as the mesh
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Refinements Nodes Elements Ave. Element Area Time step RMS Error

1 1285 2048 0.65918 0.32 55.3

2 4617 8192 0.16479 0.16 50.45

3 17425 32768 0.04120 0.08 44.45

4 67617 131072 0.01030 0.04 23.84

5 266305 524288 0.00257 0.02 -

Table 6.2: RMS Error comparing the voltage at 130 common nodes, to the solution with

5 refinements. Tests undertaken on a 360mm×3.75mm domain, Diffusion was set to

isotropic with a coefficient of D = 0.154 and X1 < 1mm was stimulated for t < 1ms.
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Figure 6.6: Voltage at X2=0, for 360mm×3.75mm domain with 5 different global refine-

ment levels
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refinement increases the solution is converging and hence the RMS errors are seeming to

drop linearly between refinements 3,4 and 5.

6.4.2 Validating the AMR software

To determine whether the AMR system could produce a close match to the globally re-

fined system, tests were undertaken with the “buffer projection” (Pdist) of the local refine-

ment set to be larger than the domain size. This means that as soon as local refinement

is instigated, the entire mesh is “locally” adapted. This provides a simple means of pro-

ducing a global refinement using the local adaptive mechanisms. This was tested on a

30mm×30mm domain, with 1 level of adaptivity and Pdist =50mm, hence all the AMR

mesh is refined from the outset. Tests were undertaken with a level 1 global refinement

and compared to an AMR mesh with a maximum of 1 level of adaptivity. The voltages

were compared for the common nodes in both meshes (i.e. the nodes before the local

adaptivity) and the results were the same (to machine precision).

The AMR system has a feature to pre-adapt the stimulated area before the simulation

starts. This feature ensures that where AMR is set to several levels, the area of initial ex-

citation can be pre-adapted to the maximum level before the simulation starts. With this

feature enabled the above tests were also undertaken with 2 and 3 levels of refinement.

The AMR and globally refined solutions again produced results with no measurable dif-

ferences (to machine precision).

6.4.3 Testing the wave front

Further tests were undertaken using AMR, with the monitor described in Process 6.1,

to determine a projection parameter, Pdist , that could produce a good comparison to the

globally refined system. The globally refined solution was found for refinements of 2

and 3 levels and the solution at the common nodes (i.e. coarse mesh) was compared to

the local adapted solution with varying Pdist . The RMS error was calculated between the

solution on the AMR mesh and on the globally refined mesh. The maximum adaptivity

level, Amax, of the AMRmesh was set to the number of refinements in the globally refined

mesh. The results of these tests can be seen in Table 6.3 and illustrate that if the Pdist

used by the AMR system is large enough then the AMR solution is identical (to machine

precision) to the globally refined solution. The average element area of the two meshes

in the Table 6.3 were 0.0475mm2 and 0.0119mm2, with approximate edge lengths of

0.31mm and 0.15mm respectively. It should be noted that these measurements were
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Amax Average Pdist = Pdist = Pdist = Pdist = Global

Refined 10mm, 5mm, 2.5mm, 1.125mm, RMS

Element RMS RMS RMS RMS Error

Area Error Error Error Error

2 0.0475 0.00 ×10−16 0.00 ×10−16 7.02 ×10−6 2.79×10−4 50.45

3 0.0119 0.00 ×10−16 0.00 ×10−16 0.00 ×10−16 4.56×10−5 44.45

Table 6.3: RMS error for voltage compared to globally refined mesh of same maximum

level with a varying adaptivity projection parameter, Pdist . Tests undertaken on a 30mm

× 30mm mesh, diffusion set to isotropic with D = 0.154, time-step dt = 0.078ms and

measurements taken at t = 5.52ms. The global RMS error is in comparision to a level 5

global system as per Table 6.2.

taken early in the simulation, when t=5.52ms, before the back of the wave could de-

refine.

6.4.4 Testing whole wave

The tests in Section 6.4.3 demonstrate that a locally adaptive mesh can produce results

that are the same (to machine precision) as a globally refined mesh at the front of the

wave. The next set of tests investigate the accuracy of the solution that can be produced

when considering the whole wave.

To investigate the differences between the locally adapted mesh and a globally refined

mesh the tests were carried out on a long thin domain. This domainwas 360mm×3.75mm

and this ensured that an entire wave profile could fit within the domain. The AMR maxi-

mum level was set to 4 and the time step parameter was dt=0.08ms. The initial mesh had

130 nodes and 128 elements and a single initial global refinement was undertaken in all

cases to produce the quadratic nodes for the mechanical system.

For the first set of tests the simple monitor function were used, as described in Process

6.1. In these tests the voltage difference threshold, Vtol0, was set to 5mV and the projec-

tion buffer, Pdist , was set to 5mm. The de-refinement strategy is as described in Process

6.1, and the parameter for this time to de-refine (TtolD) was varied throughout the tests.

The higher the value the longer an element stays refined, and so this can also be set to

an artificially high value to ensure an element never de-refines. The results in Table 6.4

show the RMS error calculated by comparing the AMR solution at the original 130 nodes

common to all of the meshes with a 4 level globally refined solution.

Table 6.4 shows that if the monitor function is set to never de-refine an element then a

solution which is exact to 6 decimal places can be produced. It also shows that by setting
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Time TtolD = 4ms TtolD = 8ms TtolD = 32ms No de-refinement Global

(ms) RMS Error RMS Error RMS Error RMS Error RMS Error

384 6.460×10−2 5.092×10−2 4.477×10−2 4.472×10−6 23.84

Table 6.4: RMS error for voltage compared to globally refined mesh of same maximum

level, with varying TtolD parameter. The domain was 360mm×3.75mm, Amax = 4,Vtol0 =
5mV and Pdist = 5mm, time-step dt=0.08ms and diffusion set to isotropipc with D =
0.154. Global RMS error shows RMS error between level 4 and level 5 globally refined

meshes.

de-refine times of 4ms, 8ms and 32ms a very good approximation to the globally refined

solution can be produced.

Figures 6.7 and 6.8 illustrate the area of the domain which was refined during the tests

for 8ms and 32ms. These figures have a line where each node is located and hence the

density of these lines increases where the mesh is refined. The mesh using a 32ms time

de-refinement parameter has much more of the domain refined, including more of the

back of the domain. In these two tests the number of nodes used by the meshes were 4902

for the 8ms de-refinement case and 10466 for the 32ms de-refinement case, and so the

cost of this extra accuracy is the need to use twice as many nodes. This result indicates

that the front of the wave is the primary cause of potential errors and the back of the wave

contributes less to the overall error. Therefore a more sophisticated monitor function, that

would be able to treat the front and back of the waves differently, may improve efficiency.

6.4.5 Testing with an improved monitor function

The tests in Section 6.4.4 demonstrate that a locally adaptive mesh can produce results

that are comparable to a fully refined mesh. However using the same refinement strategy

for the front and back of the wave may be inefficient. Also the use of parameters for time

de-refinement is not ideal, as this depends on the model being used, and the refinement

level. Therefore a more sophisticated monitor function was developed as described in

Process 6.2, and tests using this are presented below.

As previously, the differences between the locally adapted and globally refined solu-

tion for the full wave tests were considered and the tests carried out on a long thin domain.

This domain was 360mm×3.75mm to ensure an entire wave profile could fit within the

domain and the whole profile of the wave compared. The projection buffer, Pdist , was

set to 5mm and the AMR maximum level, Amax, set to 4. The time step parameter was
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Figure 6.7: Voltage at X2 = 0, with TtolD = 8ms at t=384ms. Adapted areas shown

by denser shading, using monitor function defined in Process 6.1. The domain was

360mm×3.75mm, Amax = 4, Vtol0 = 5mV and Pdist = 5mm, time-step dt=0.08ms and

diffusion set to isotropic with D = 0.154.
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Figure 6.8: Voltage at X2 = 0, with TtolD = 32ms at t=384ms. Adapted areas shown

by denser shading, using monitor function defined in Process 6.1. The domain was

360mm×3.75mm, Amax = 4, Vtol0 = 5mV and Pdist = 5mm, time-step dt=0.08ms and

diffusion set to isotropic with D = 0.154.
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Test VtolR1 VtolR2 RMS Global

No Error RMS Error

TR1 2mV 2mV 0.0246 23.84

TR2 2mV 4mV 0.0374 23.84

TR3 2mV 1000mV 0.0483 23.84

(No refinement when voltage falling)

Table 6.5: RMS error for voltage at coincident points at t=384ms, with various AMR

parameters. The domain was 360mm×3.75mm , VtolD = 1mV, Pdist = 5mm, Amax = 4,

the time-step was dt=0.08ms and diffusion set to isotropic with D = 0.154. Global RMS

error is RMS error between the level 4 and level 5 globally refined solutions.

dt=0.08ms. The initial mesh had 130 nodes and 128 elements and a global refinement

was undertaken in all cases to produce the quadratic nodes for the mechanical system.

Table 6.5 shows the results from these tests. These show a very good level of RMS er-

ror using voltage thresholds of VtolR1 = 2mV and VtolR2 = 2mV for the refining when

the voltage is rising and falling. Also if VtolR2 is set to an unachievable value (e.g.

VtolR22 = 1000mV) then the mesh will not refine when the voltage is falling, this means

that there is no refinement at the back of the wave. This technique still provides an RMS

error beneath 0.05, which compares very well to the inter-grid error of the order of 20.

Figure 6.9 shows that only the area around the wave front has been adapted.

6.4.6 Adaptivity level for excited region

Further tests were then undertaken to investigate if the RMS error could be reduced further

by keeping the adaptivity level above zero where the wave is excited. That is, set a

parameter, AminE , which ensures that if the voltage for an element is higher than the

resting state (VtolE), then the element cannot de-refine beneath level AminE . Tests were

undertaken with Amax = 4, and AminE set to 0, 1, 2 or 3. The results from these tests can

be seen in Table 6.6. These were undertaken with a projection buffer, Pdist , of 5mm and

with the refinement thresholds (VtolR1,VtolR1 ) at 2mV and de-refinement threshold VtolD

at 1mV.

Table 6.6 demonstrates that by keeping the mesh adapted where the wave is excited

the RMS error can be further reduced. If the mesh is allowed to fully de-refine then the

RMS error is 0.0246 at t=384ms, however by setting the excited area of the mesh to stay

refined to 3 levels reduces this error to 0.0007. This RMS error is relative to the globally

refined solution at four levels.

The above tests demonstrate that a solution with an RMS error of 0.0007, compared
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Figure 6.9: Second monitor function (Process 6.2), withVtolR2 = 1000mV (no refinement

when voltage falling). Plot is Voltage at X2 = 0 and t=384ms. Adapted areas shown with

dark shading. The domain was 360mm×3.75mm , Pdist = 5mm, Amax = 4, the time-step

was dt=0.08ms and diffusion set to isotropic with D = 0.154.

Test AminE Nodes RMS Global

Error RMS Error

TL0 0 3685 0.0246 23.84

TL1 1 5468 0.0217 23.84

TL2 2 7265 0.0093 23.84

TL3 3 16532 0.0007 23.84

Table 6.6: RMS error for voltage at t=384ms, with elements set to stay refined to varying

levels when still excited. The domain was 360mm×3.75mm , Pdist = 5mm, Amax = 4,

VtolR1 =VtolR2 = 2mV, VtolD = 1mV, VtolE = −84mV, the time-step was dt=0.08ms and

diffusion set to isotropic with D = 0.154. Global RMS error is RMS error between level

4 and level 5 globally refined solutions.
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Figure 6.10: Tests showing the RMS error produced by varying monitor function pa-

rameters. The RMS error compared to the results of the globally refined 5 level test. The

domain was 360mm×3.75mm and t=384ms, the time-step was dt=0.08ms and diffusion

set to isotropic with D = 0.154.

to the fully refined mesh with 4 levels of refinement, can be produced with an AMR

strategy. Tables 6.5 and 6.6 show the quantitative differences between an AMR solution

and a globally refined solution (both with level 4 refinement).

6.4.7 Parameter permutations

The AMR software has parameters for refinement and de-refinement that are covered in

Table 6.1. Table 6.7 shows the RMS errors, compared to a globally refined 5 level case,

for various permutations of these parameters. The RMS errors can be also seen in Figure

6.10. This table groups tests together into similar sets of tests at different levels of Amax.

These are labelled as TA1, TA2, TA3, TA4 for the AMR tests and TGR for the global

refinement results. This table illustrates that the most important two factors for accuracy

are the AMR refinement level (Amax) and then the projection buffer (Pdist). For the tests

where Amax=4, if the projection buffer is large enough (2mm or greater), the error of

the AMR solutions, compared to the globally refined solution at the same level, has a

maximum of 0.01.
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Nodes RMS Amax AminE VtolR1 VtolR2 VtolD Pdist

266305 - 5 NA NA NA NA NA

TGR

387 72.19 0 N/A N/A N/A N/A N/A

2048 55.30 1 N/A N/A N/A N/A N/A

4617 50.45 2 N/A N/A N/A N/A N/A

17425 44.45 3 N/A N/A N/A N/A N/A

67617 23.68 4 N/A N/A N/A N/A N/A

TA1

387 51.18 2 0 2 Disabled 1 0.1

387 48.74 3 0 2 Disabled 1 0.1

697 40.42 4 0 2 Disabled 1 0.1

TA2

1440 50.56 2 1 2 2 1 5

2229 44.44 3 1 2 2 1 5

5468 23.68 4 1 2 2 1 5

TA3

387 50.56 2 0 2 Disabled 1 5

837 44.45 3 0 2 Disabled 1 5

3128 23.69 4 0 2 Disabled 1 5

TA4

387 50.56 2 0 2 Disabled 1 2

689 44.44 3 0 2 Disabled 1 2

1798 23.67 4 0 2 Disabled 1 2

TA5

5211 0.03 5 0 2 Disabled 1 2

Table 6.7: Tests showing the RMS error produced by varying monitor function parame-

ters. The RMS error as compared to the results of the globally refined 5 level test. The do-

main was 360mm×3.75mm and t=384ms, the time-step was dt=0.02ms where Amax = 5

and dt=0.08ms in all other cases. The diffusion was set to isotropic with D = 0.154.
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6.5 Benefits of AMR

6.5.1 Efficiency benefits

Sections 6.4.3 - 6.4.6 illustrate that the AMR solution can provide accurate approxima-

tions to the electrical system. The aim of an AMR solution is to produce results of a

specified accuracy, however using less computing resources. This section considers the

performance improvements that can be achieved when using AMR and also the reduction

in memory usage.

In the simulations in this thesis, the main data structures used store the nodes, elements

and edges of the computational mesh. By reducing the number of elements and nodes

there is a direct memory saving, enabling simulations with a finer mesh resolution to

be undertaken on the same equipment. During the production of the results above the

globally refined system would frequently run out of memory (using a workstation as per

Section B.2), whereas the AMR solution at the same level of refinement would complete

successfully. Another benefit with smaller numbers of nodes and elements is the disk

storage needed for results and check-point files. These can be quite significant, with

each time-step of the heart failure simulation (see Chapter 7) producing output files in the

region of 60 megabytes. Files of this size take a long time to write to disk and then occupy

a costly amount of space. The full cost of storage also needs to include the backup and

management of files, and so large amounts of files incur ongoing management costs. To

simplify this, this section will consider the number of nodes used in each AMR simulation

and compare this with a globally refined solution. The number of nodes used is directly

proportional to the memory needed to run the software.

Secondly this section will consider the time to undertake the simulations. As discussed

in Section 5, the time to undertake cardiac simulations can run into months of elapsed

time. Improving the speed of the production of these results has a number of obvious

benefits, especially where researchers are running many simulations and then using the

output from them to further refine parameters and amend test plans.

Therefore the objective is to determine whether the AMR solution can both improve

the speed and lower the resources used to undertake the simulations, whilst maintaining

an acceptable level of accuracy.

6.5.2 Improvements provided by AMR

Table 6.8 shows the average and peak number of nodes used over the tests previously

described in Table 6.6. The table shows the average and peak number of nodes used in the
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Test Average number of nodes Peak number of nodes RMS Error

Global 4 67617 67617 -

TL3 10452 16918 0.0007

TL2 4642 8340 0.0093

TL1 3214 6051 0.0217

TL0 2891 6133 0.0246

Table 6.8: Average and peak number of nodes over AMR simulations. The domain was

360mm×3.75mm , Pdist = 5mm, Amax = 4,VtolR1 =VtolR2 = 2mV,VtolD = 1mV,VtolE =
−84mV, the time-step was dt=0.08ms and diffusion set to isotropic with D = 0.154.
RMS error as compared to globally refined level 4 solution.

Test VtolR2 Average number Peak number RMS

of nodes of nodes Error

Global R4 N/A 67617 67617 -

AMR4-MR0B2 2mV 2891 6133 0.0246

AMR4-MR0B4 4mV 2453 3573 0.0374

AMR4-MR0NB No refine 2352 2692 0.0483

Table 6.9: Average and peak number of nodes over simulation with varying VtolR2. The

domain was 360mm×3.75mm , Pdist = 5mm, Amax = 4, VtolR1 = 2mV, VtolD = 1mV,

VtolE = −84mV, the time-step was dt=0.08ms and diffusion set to isotropic with D =
0.154. The RMS error is compared to the globally refined level 4 solution.

simulations, which were run until t=500ms. The long-thin domain was used and in this

time the wave moves from the left edge and passes the right edge boundary. The globally

refined level 4 system uses 67617 nodes.

The test ‘TL0’ demonstrates that the AMR solution uses less than 5% of the nodes of

the globally refined solution, however it has been previously shown that this method of

refinement produces an RMS error of only 0.0246 across the domain.

By adjusting the monitor function parameters further efficiencies can be made. In

Table 6.9 the threshold for refining elements when the voltage is falling is adjusted. Test

‘AMR4-MR0NB’ is the most aggressive of these, with no elements refined when the

voltage is falling, and this has an RMS error of 0.0483, however only uses at its peak 4%

of the nodes. These tests illustrate that far fewer nodes are used with an AMR simulation.

Table 6.10 displays the CPU time used in tests where the refinement level under the

wave was kept refined at 1, 2, or 3 levels. These are compared to the CPU time to under-

take a simulation with a globally refined mesh. The simulations were run until t=500ms,

on a 360mm×3.75mm domain, with 130 nodes initially (with one level of refinement un-
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Test AminE CPU Time Improvement RMS

(s) Ratio Error

Global R4 4 2969.26 - -

AMR4-MR3 3 598.96 4.96 0.0007

AMR4-MR2 2 251.39 11.81 0.0093

AMR4-MR1 1 166.26 17.86 0.0217

AMR4-MR0 0 147.47 20.13 0.0246

Table 6.10: CPU time to complete 500 ms of a plane wave simulation with varying AminE .

The domain was 360mm×3.75mm , Pdist = 5mm, Amax = 4, VtolR1 = 2mV, VtolR2 =
2mV, VtolD = 1mV, VtolE = −84mV, the time step was dt=0.08ms and diffusion set to

isotropic with D = 0.154. The RMS error is compared to the globally refined level 4

solution.

dertaken to determine the quadratic nodes for the mechanical mesh). These results show

that the reduction in node numbers translate to an improvement in performance of up to

20 times. The ratio of improvement in performance is not as high as the reduction in

node numbers, however, as the AMR system has the overhead of building the new mesh,

rebuilding the global matrices for the FEM method and processing the hanging nodes.

A further test was undertaken, with the threshold for refinement when the voltage was

decreasing set to not refine (i.e. VtolR2 = 9999mV), withVtolR1 = 8mV, and using a buffer

projection region (Pdist) of 4mm. The CPU time for this run was 97.22 s, with peak nodes

of 2692 and has an RMS error of 0.0354. Thus only using 4% of the CPU time, and giving

a speed up of over 30 times.

The tests undertaken so far in this section were all with a plane wave travelling from

the left edge of the domain to the right edge. To investigate the AMR process when a spiral

wave forms, a test was undertaken with a spiralling electrical wave. This was undertaken

on a 120mm×120mm domain, with 183 nodes and 330 elements on the initial mesh.

This was refined once to produce the quadratic nodes for the mechanical system and then

a further 4 levels of global refinement were undertaken and this results in a mesh with

169505 nodes and 337920 elements. This was compared to a four level AMR mesh and

the results of this can be seen in Figure 6.11. On the AMR mesh the coarsest electrical

elements have an approximate edge length of 4.67mm and the finest elements have an

approximate edge length of 0.29mm. The number of nodes increases as the spiral builds,

but then stabilises, varying between 50000 and 60000 nodes. This simulation is of a spiral

wave and the figure shows the periodic nature of the refinement as the wave spirals around

the mesh. Figures 6.14 and 6.15 show the distribution of the elements in a spiral wave

and the increased density of refined elements (compared to a line wave).
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Figure 6.11: Number of nodes used during a spiral wave spiral wave simulation on a

120mm×120mm domain, with 183 nodes initially. Comparing 4 levels of global refine-

ment with 4 AMR levels.

In the line wave examples previously discussed the excited region is a band across a

narrow domain, with the length of the excited wave front being the X2 dimension (typi-

cally 3.75mm in the line wave tests). If the projection buffer was 5mm in all directions

and the wave back not refined that would mean that approximately 3% of the domain is

refined to contain the wave. For a spiral wave on a square domain the length of the excited

wave front is relatively longer. In Figure 6.13 the domain is 120mm×120mm and the

wave front is approximately 265mm in length. Again, if we assume a 5mm buffer in all

directions this would give an excited area within the domain of 18% of the domain. This

needs to be considered when comparing the likely effectiveness of an AMR solution, as

the more of the domain is excited the more elements will be refined (and hence there will

be more nodes used).
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Figure 6.12: Qualitative comparison of globally refined and AMR solutions. Voltage

of solutions at X2 = 0, with domain of 360mm×3.75mm. Globally refined solution

had 4 levels of refinement and AMR solution had the following parameters: AminE = 0,

Pdist = 5mm, Amax = 4, VtolR1 = 2mV, VtolD = 1mV, VtolE = −84mV, the time-step was

dt=0.08ms and diffusion set to isotropic with D = 0.154.

6.5.3 Wave profile for a line wave

The results so far in this chapter have shown that the AMR system can produce results

which compare closely to the fully refined solution at the same refinement level. The

range of values for the voltage is typically between -86.2mV and 30mV and RMS errors

when using the AMR solution were typically lower than 0.05.

Figure 6.12 illustrates how the waves are modelled across the domain, with the results

from the test ‘AMR4-MR0NB’ compared to the globally refined solution. This test is

defined in Table 6.9, where the mesh is not refined when voltage is falling. This illustrates

the similarity in cardiac electrical wave that can be reproduced with significantly fewer

nodes. The plots on this graph are almost exactly on top of each other and it is difficult

to see any qualitative difference, however the peak number of nodes in the AMR solution

was approximately 4% of the globally refined solution.
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(a) AMR (b) Globally Refined

Figure 6.13: Spiral wave at t=2240ms using an AMR mesh and a globally refined mesh,

with 3 levels of refinement. This was on a 120mm×120mm domain with 1295 initial

nodes, with dt=0.08ms. The setting used for globally refined test are from row 1 of Table

7.1.

6.5.4 Testing with a spiralling wave

Figure 6.13 compares the results of running the AMR and globally refined solutions on a

120mm×120mm domain (with 1295 nodes initially) and a spiral wave formed by plane

wave splitting. The results look almost identical.

Figure 6.14 shows the adapted mesh when a spiral wave has formed. This is with 3

levels of AMR refinement on a 120mm×120mm domain with 1295 initial nodes, after

1920ms with dt=0.08ms. Figure 6.15 shows the adapted mesh when a spiral wave has

formed and the electrical system is coupled to the mechanical system to make a deforming

domain. This is also on a 120mm×120mm domain with 1295 initial nodes, after 1920ms

with dt=0.08ms. In these tests the number of nodes used grows over time (as per Figure

6.11) and then oscillates between 80000 and 90000 nodes as the wave spirals within the

domain. A globally refined mesh for this domain has 318065 nodes and so the adaptive

system uses up to (approximately) four times fewer nodes.

Figures 6.14 and 6.15 illustrate that even with a spiralling wave, in which a much

greater proportion of the domain is excited, an AMR strategy utilises far fewer nodes

than a globally refined solution. Figure 6.15 was produced with the mechanical coupling

enabled and demonstrates the capability of the system to produce results for an adaptive

mesh that is deforming due to the forces exerted by the mechanical system.
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Figure 6.14: Spiral wave at t=1920ms using a AMR mesh with 3 levels of refinement.

This was on a 120mm×120mm domain with 1295 initial nodes and with dt=0.08ms.
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Figure 6.15: Spiral wave on a deforming domain, at t=1920ms using a AMR mesh with

3 levels of refinement. This was on a 120mm×120mm domain with 1295 initial nodes

and with dt=0.08ms.
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6.6 Conclusions

The objective of this chapter was to investigate whether applying a local adaptive mesh

refinement strategy to the coupled solver could improve the efficiency of the system and

produce results with an acceptable level of accuracy.

This chapter has shown that the implemented AMR technique can produce results that

are quantitatively very close to a fully refined solution and compare qualitatively very

well. The RMS errors produced in the tests were typically under 0.05 (when compared

to the global solution at the same level of refinement). The fact that the transmembrane

voltage ranges from -86.2mV to +30mV is also important as this error is very small

compared to the solution range.

Two monitor algorithms were developed and implemented and both of these are driven

by changes in the voltage variables through the domain. This enabled the control of the

refinement at the front and back of the wave and also underneath the wave. By amending

the monitor function parameters a trade off can be found between a very high level of

accuracy and the number of nodes used. Test TL3 in Table 6.6 produces an RMS error

of 0.0007, and only uses 16532 nodes compared to 67617 nodes for the globally refined

solution, and test ‘AMR4-MR0NB’ in Table 6.9 only uses a peak of 2692 nodes, however

has an RMS error of 0.0483.

The AMR solution was then tested with a spiralling electrical wave on both static and

deforming domains. This produced good results also, with the number of nodes used

in spiral wave simulations increasing over time as the spiral wave builds, however then

settling down into a periodic oscillation between 25% to 33% of the nodes required in the

globally refined system.

The AMR solution can also provide significant performance improvements, with line

wave simulations performing up to 30 times faster when AMR was used. However with

the current implementation and monitor function, the spiral wave has too great a propor-

tion of the domain for the adaptive meshes to show performance benefits.

The direct benefits from AMR were noticed when undertaking this thesis, for exam-

ple solutions could be calculated to a higher level of mesh refinement using the same

computing equipment. The computing equipment specified in Appendix B.2, was able

to undertake simulations on a 120mm×120mm domain starting with a coarse mesh of

1295 nodes and then having 5 levels of refinement (plus one refinement for the quadratic

mechanical nodes), when AMR was enabled. Without AMR, only 4 levels were achiev-

able. This had ancillary benefits in that the output files were smaller and it was less time

consuming producing visualisation images.
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Finally, in other published work (for example [114]), both spatial and time adaptivity

are applied, with an operator splitting technique used to split the diffusion and reaction

terms. It should also be noted in this thesis no temporal adaptivity is undertaken, how-

ever an operator splitting method is used for the time terms, and this would facilitate the

development of temporal adaptivity in the future.



Chapter 7

Modelling heart failure

7.1 Introduction

The previous chapters of this thesis describe the development of an efficient, flexible tool

to simulate deforming cardiac tissue. This utilises the TP06 model of cardiac electrophys-

iology [110], which is coupled to an incompressible tissue model, enabling the simulation

of cardiac activity on a deforming domain.

The objective of this chapter is to use the developed model to simulate the conditions

present in tissue with end-stage cardiac disease. The flexibility of the software developed

allows various properties to be altered to model specific changes in pathology found in

end-stage heart failure. The chapter will present the techniques used to model cardiac

disease, introduce an alternative method for calculating the tension in the mechanical

system and then present the results from the simulations undertaken.

7.2 Simulating heart failure

7.2.1 Electrophysiological mechanisms

The objective of this section is introduce amendments to the TP06 model of electrophys-

iology to reproduce changes seen in cardiac tissue in end-stage heart failure conditions.

How underlying cardiac disease contributes to electrophysiological arrhythmia mecha-

nisms is a well studied area [113], and the common findings from this include altered

134
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calcium handling [10] and prolongation of the action potential duration [37].

To simulate this, components of the ionic currents Iion (described by [110]) in Equation

(2.1) were amended. In Priebe and Beuckelmann [87] a study of the electric properties of

cells in heart failure is undertaken, however in this thesis, more recent data obtained from

human cardiac cells, rather than from animal cells, was used where possible. The changes

made to the TP06 model are listed below:

• the transient outward current maximal conductance (Ito - see Equation (C.18)) was

reduced by 48% [52],

• the inward rectifier potassium current (IK1 - see Equation (C.25)) was reduced by

44% [11],

• the sodium-potassium pump current (INaK - see Equation (C.30)) was reduced by

40% [98],

• the sodium-calcium exchanger current (INaCa - see Equation (C.29)) was increased

by 80% [44]

• the sarcoplasmic reticulum uptake current (Iup - see Equation (C.67)) was reduced

by 30% [25, 49].

These changes are referred to as the ‘remodelled electrophysiology’ in the remainder of

this chapter.

The remodelled electrophysiologywas implemented in the Iion component of Equation

(2.1) [110] and tests undertaken on a 360mm× 3.75mm domain with the transmembrane

voltage recorded for a single interior node at each time-step. The results from these

simulations can be seen in Figure 7.1. These produce the expected changes in the cell

action potential, that is, an increased resting membrane potential and prolonged duration.

When the electrical wave depolarizes the cell membrane, it results in an increase in

cytosolic (within the cell membrane) calcium and this is called the calcium transient.

Tests were undertaken to see how the remodelled electrophysiology affected the calcium

transient. The tests for the changes in the calcium transient were undertaken on a square

120mm ×120mm domain and a spiral wave was set to form using the plane wave split-

ting technique (see Section 2.6.1). Initially the simulation was undertaken for the first

5000ms with the normal electrophysiology and then after 5000ms the remodelled elec-

trophysiology was introduced. The tests were undertaken in this way to enable a stable

spiral wave to form. The results of these tests can be seen in Figure 7.2 and show that

when the electrophysiology is remodelled the calcium transient has a decreased diastolic

(resting) level and a decreased peak of the calcium transient.
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Figure 7.1: Transmembrane voltage for a node with normal and remodelled electrophysi-

ology. Modelled on a 360mm × 3.75mm domain and time-step=0.08ms. The voltage is

recorded for a single node at each time step, (a) with a restitution slope of 1.1, (b) with a

restitution slope of 1.4 and (c) with a restitution slope of 1.8.
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Figure 7.2: Calcium remodelling for end-stage disease. Normal electrophysiology for

t < 5000ms. The remodelled (as per Section 7.2.1) electrophysiology introduced from

t=5000ms. Tests undertaken on a domain as per row 1 of Table 7.1. The electrical wave

was spiralling within the domain causing the periodic output.

7.2.2 Gap junction remodelling

In heart failure, gap junctions (that allow current flow between cells) are re-organised, and

instead of being principally located at the ends of the cells, they become “lateralised” so

that there is an increase in transverse gap junction numbers and a decrease in longitudinal

gap junction numbers within a single cell. However, because of the changes in cell size

with the hypertrophy (an increase in the size of muscle tissue due to an increase in the

size, rather than the number, of muscle cells) that accompanies heart failure, there is no

net change in gap junction numbers in the transverse direction, but still a net decrease

(of between 28% [1] and 40% [27]) in longitudinal gap junction numbers [51]. These

changes can be modelled by reducing diffusion only.

Gap junction changes will affect cell resistivity but, because the electrical model,

Equation (2.1), treats the tissue as a continuum, this resistivity is made up of a “my-

oplasmic resistivity” (caused by the structures inside the cell) and a “junctional resistiv-

ity” (caused by the gap junctions between cells). It is assumed that junctional resistivity
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accounts for 22% of total resistivity [112] and that a reduced gap junction expression

(33% for our simulations) is followed by a corresponding increase in junctional resistiv-

ity [112]. To simulate this the diffusion rate is reduced in the fibre direction (as compared

to Equation 2.37), but remains the same in the cross fibre direction, as follows:

D =

[

0.1390 0.01711

0.01711 0.1390

]

. (7.1)

7.2.3 Tissue fibrosis

Cardiac tissue is composed of muscle cells and a network of fibrous non-conductive tissue

which anchors the muscle cells and determines the muscle structure. This fibrous structure

is known as the fibrotic tissue. The amount of fibrotic tissue within the cardiac muscle

contributes to an increase in the incidence of atrial and ventricular arrhythmias [3, 28].

Exactly how the fibrosis contributes to the generation of arrhythmias is unknown, but

impaired electrical conduction is a significant contributory factor [105,109]. In the normal

healthy heart, approximately 6% of cardiac muscle is made from extra-cellular connective

tissue [92,109]. However in a diseased heart, there is increased formation of fibrotic cells

which increases the percentage of connective tissue to between 10% and 35% [92, 109].

To simulate the effects of diffuse fibrosis a large number of small areas within the do-

main were set as in-excitable. This is comparable to the technique used in [109], however

as the simulations are undertaken on an unstructured mesh these fibrotic areas are not uni-

form. The technique used within this thesis is to select a proportion of the nodes within

the mesh and mark these as fibrotic. The elements connected to these marked nodes are

then flagged as fibrotic, creating small regions (typically of 6 individual elements) in the

FEM mesh. These areas become “islands” within the electrical mesh, whereby the nodes

bordering the island region become boundary nodes, with no-flux Neumann boundary

conditions. The central node is removed from the electrical system altogether. For exam-

ple, in Figure 7.3 image (a) has a node circled that is to be marked as fibrotic. The right

hand mesh (b), illustrates the mesh resulting from this process, where 6 elements have

been removed from the electrical mesh.

The fibrotic regions remain in the mechanical mesh and maintain their passive defor-

mation properties, however their active tension is set to zero. As the mesh is made of

unstructured triangles these fibrotic regions are irregularly shaped. The only constraint

applied in the creation of these regions was to mandate that no two regions could be

touching.

In the initial simulations, approximately 26% of the tissue was set as inexcitable,
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(a) Mesh before fibrosis (b) Mesh after fibrosis

Figure 7.3: Building a mesh for fibrosis modelling

as this is well within the range seen experimentally in [92, 109]. In Section 7.4.5 the

percentage of the tissue marked as fibrotic is varied.

7.3 Calcium transient and tension

In the original coupled model presented in Chapter 4 the active tension is calculated from

the transmembrane voltage using Equations (4.2) and (4.3). However in cardiac tissue the

tension generated by the cells is determined by the calcium transient [47]. The calcium

transient has a much steeper wave descent than the transmembrane voltage (see Figure

7.4). Additionally, the heart failure changes introduced in this chapter have an effect on

the calcium transient, and a voltage-derived active tension variable would not be affected

by this.

To consider the coupling effects of the difference in voltage and calcium wave profile,

and to enable the electrophysiological remodelling changes to make a difference to the

coupled model, the equations from [69] were amended to use the calcium transient as

their input variable. The evolution of the active tension is now governed by:

dTa

dt
= ε(Cas)(KTaCas−Ta), (7.2)

whereCas is the calcium transient scaled between 0≤Cas ≤ 1, KTa controls the amplitude

of the active tension (Ta), the scaling of Cas was achieved by running simulations and

capturing the minimum and maximum values, Ta is initially set to zero and the function
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Figure 7.4: Calcium transient compared to transmembrane voltage

ε(Cas) is defined by:

ε(Cas) = 10ε0 forCas < 0.005, ε(Cas) = ε0 forCas ≥ 0.005. (7.3)

In common with the voltage based equations (see Equations (4.2) and (4.3)), Equation

(7.2) is approximated using an explicit Euler method, and the upper bound of the active

tension (Ta) is still governed by the constant KTa . The use of Equations (7.2) and (7.3)

means that the active tension still has the same range of values, between zero and the

KTa parameter. The profile of the tension changes however, and this can be seen when

comparing Figure 7.5 and Figure 7.6. Figure 7.5 shows the active tension generated with

the calcium-based equations, with the normal and remodelled electrophysiology. Figure

7.6 shows the active tension generated using the voltage based equations. With a voltage

input for active tension the tension remains higher for longer, however with a calcium

input the tension reduces more quickly.

7.3.1 Comparison of active tension from calcium and voltage

Tests were also undertaken to consider the effects of using a calcium-based or voltage-

based equation (see Equations (4.2), (4.3) and (7.2), (7.3)) for the generation of active

tension. The results can be seen in Figure 7.7 and show that the voltage-based active ten-

sion generates slightly more deformation in the domain than the calcium-based equation.

Figures 7.8 and 7.9 illustrate the effects that the two different approaches to calculating

the active tension have on the location of the top left hand node of the domain. These

images show that by changing to a calcium-based active tension generation method, the

maximum deformation of the domain is slightly smaller when the electrophysiology is
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Figure 7.5: Active tension using remodelled electrophysiology. Comparison of active ten-

sion generated using Equations (7.2) and (7.3), with normal and remodelled electrophys-

iology. Tests undertaken on a domain as per row 1 of Table 7.1. The electrophysiology

remodelling introduced from t=5000ms. The electrical wave was spiralling and hence the

tension oscillates as the wave spirals.
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Figure 7.6: Active tension at a single interior node using voltage-based equations (see

Equations (4.2) and (4.3)). Tests undertaken on a domain as per row 1 of Table 7.1. The

electrical wave was spiralling and hence the tension oscillates as the wave spirals.
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Figure 7.7: Deformation effects of voltage-based and calcium-based active tension. Left

edge X1 = 0 fixed and stimulated to form a plane wave. Using both the calcium and

voltage based equations for active tension generation, at t=136ms, on a mesh with 2309

initial nodes and 20781 degrees of freedom. Original domain edge is also displayed as a

reference.

remodelled. As can be seen in Figure 7.5, when the electrophysiology is remodelled the

maximum tension is reduced and so the behaviour seen in Figure 7.8 is expected. It is

also noteworthy that although the maximum tension in the remodelled electrophsyiology

drops by approximately a third, the deformation is only slightly decreased.

It should be noted that in this chapter the domain is rotated 45 degrees as described

in Section 3.2.5, which provides the means of modelling fibre orientation parallel to the

X1 axis, and this should be considered when viewing the displacements in Figure 7.8 and

Figure 7.9.

7.4 Simulations and Results

7.4.1 Simulation settings

The results in this section were obtained by running simulations on the domains as spec-

ified in Table 7.1. The initial starting values for the TP06 state variables were as per Ap-

pendix C.2, the parameters for KTa , c1, c2 and the INa dynamics were the same throughout

the tests (see Table 7.2).

The tests were designed to determine the stability of the electrical spiral wave under
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Figure 7.8: Corner node displacement using voltage and calcium based active tension.

Range of positions of top left hand corner node. For voltage runs samples were taken

from t= 4000ms to t=6120ms, with samples every 40ms. For calcium runs time period

was from was t=4800ms to t=12800ms with samples every 200ms.
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Figure 7.9: Corner node displacement using voltage and calcium based active tension.

Range of positions of top left hand corner node. For voltage runs samples were taken

from t= 4000ms to t=6120ms, with samples every 40ms. For calcium runs time period

was from was t=4800ms to t=12800ms with samples every 200ms.
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Num Domain Size Nodes Elements Time-step Diffusion Fibrosis

1 120 × 120mm 318065 634368 0.08ms Anisotropic -

Equation (2.37)

No

2 120 × 120mm 243739 465856 0.08ms Anisotropic -

Equation (7.1)

Yes

Table 7.1: General domain settings for heart failure tests.

Parameter Description Value

KTa Active tension maximum 9.58 kPa

c1 Strain energy function parameter 2 kPa

c2 Strain energy function parameter 6 kPa

INa dynamics INa dynamics Standard INa dynamics [110]

Table 7.2: Unchanging parameters for heart failure tests.

different conditions and so all the simulations were run until t = 5000ms with a restitution

slope of 1.1 and the normal electrophysiology. This was to ensure a stable spiral wave

had formed. After t = 5000ms the simulation settings were amended to introduce the

conditions being tested. In all cases tests were carried out with restitution slopes of 1.1,

1.4 and 1.8. For the simulations with fibrotic regions the simulations were run from the

outset on the fibrotic domain (see row 2 of Table 7.1). For the simulations with normal

(no fibrotic regions) tissue they were run from the outset on a normal domain.

7.4.2 Deforming domain

In Section 4.4 and in [57], it was demonstrated that spiral wave stability can be affected

by the deformation of the domain. The active tension model in [57] was taken from [69]

and uses transmembrane voltage to determine the active tension generated at each node

over time. However, as discussed in Section 7.3, the active tension is determined by the

transient calcium and therefore, in the simulations in this chapter, Equations (7.2) and

(7.3) are used to calculate the active tension.

When the calcium-based active tension equations were implemented it was noticed

that the calcium transient takes a long time to build to the range of values seen in Figure

7.2, therefore to enable the calcium transient to be within the normal range immediately,

the initial values of the TP06 state variables within the Iion component of the electrical

model (see Equation (2.1)) were changed. The new values were obtained by simulating a

single cell repeatedly at a 1 Hz frequency until the stable range of values was produced,
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(a) Static (b) Deforming

Figure 7.10: Static and deforming domain with restitution slope of 1.4 (t=22,800ms).

Tests undertaken on a domain as per row 1 of Table 7.1. The restitution slope of 1.4 was

set from t=5000ms and the stable initial values for the TP06 model were used (see C.1

were used).

the initial values were then set to the resting value of this range. This was undertaken

to ensure the calcium transient varied within the expected range from the outset of the

simulations.

The first sets of simulations considered the effects of using active tension derived from

the calcium transient (as opposed to voltage-based active tension), with the stable initial

values, within a deforming domain (see Table C.1 for stable and original initial values). In

Figure 7.10 the left panel shows the spiral wave in a static domain after t = 22,800ms and

the right panel shows the spiral wave in a deforming domain at the same time. It is noted

that the simulations need to run for a longer time period than in [57] for the deformation to

break up in the deforming tissue. Tests were undertaken with the original starting values

for Iion and it was determined that using the stable variable settings causes the spiral to

maintain its stability for longer.

7.4.3 Electrical Remodelling

In these simulations the electrical remodelling changes described in Section 7.2.1 were

introduced at t = 5000ms. The simulations were undertaken on a deforming domain

and undertaken for restitution slopes of 1.1, 1.4 and 1.8. The results of the simulation at

t = 12000ms can be seen in Figure 7.11.
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(a) Normal (b) Remodelled

Figure 7.11: Normal electrophysiology with restitution slope of 1.8 and corresponding

remodelled electrophysiology. Tests undertaken on a domain as per row 1 of Table 7.1.

The restitution slope parameter was set to 1.8 from t=5000ms.

Figure 7.11 demonstrates that the electrophysiology remodelling has a stabilising ef-

fect on the wave. With normal electrophysiology the spiral wave has become chaotic (as

is seen in other published work [110]), however the remodelled electrophysiology simu-

lation has a steady spiral wave.

When the electrical remodelling is introduced (at t = 5000ms), the speed of the elec-

trical spiral wave decreases from a 5.0 Hz rotation frequency to 3.2 Hz. The transmem-

brane voltage of a single node in the domain was recorded and Figure 7.2 shows the

increased wave length, higher resting potential and higher plateau than with the normal

electrophysiological parameters.

The introduction of the remodelled electrophysiology for heart failure also impacts

upon the restitution slope of the system. Figure 7.12, which is unpublished data courtesy

of Alan Benson and Victoria Peacock, University of Leeds, shows the restitution slope

for normal and remodelled electrophysiology. In these Figures, APD is the action poten-

tial duration and diastolic interval is the time between the end of one action potential to

the initiation of the next. This illustrates that for the remodelled electrophysiology the

restitution slope is less steep and this may explain why the spiral waves do not break up.

The steepness of the restitution slope and how this affects the stability of a spiral wave is

discussed in [17, 67, 110] with a less steep slope providing a more stable spiral wave.
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Figure 7.12: Restitution slopes of normal and remodelled electrophysiology with restitu-

tion slope settings of 1.1 (a) and 1.8 (b). APD is the action potential duration and diastolic

interval is the time between the end of one action potential to the initiation of the next.

This is unpublished data courtesy of Alan Benson and Victoria Peacock, University of

Leeds.

7.4.4 Fibrotic Regions

In these simulations, regions of non-conducting tissue and gap junction remodelling are

introduced as described in Section 7.2. From t = 5000ms the dynamic restitution slope

was then kept at 1.1 or changed to either 1.4 or 1.8, and the simulations undertaken until

t = 15000ms.

Figure 7.13 shows the results of the simulations at t = 15000ms with the restitution

slope set to 1.4. The left panel shows the spiral wave without the fibrotic regions and the

right panel shows the results with fibrotic panels enabled. It can be seen that the electrical

wave in the simulation with the fibrotic regions has started to break-up into a chaotic state.

The results show that the fibrotic regions have an effect on the spiral wave break up. In

the simulations with a restitution slope of 1.1 the spiral wave was maintained over time

and did not become chaotic. The results in Figure 7.13 are from simulations on a static

domain to demonstrate that the fibrotic regions on their own can contribute to spiral wave

break-up.

In the deforming domain simulations the break-up of the spiral wave with fibrotic

regions occurred at a similar time to a domain without the fibrotic regions. The deforming

domain did not noticeably change the time for the break-up to begin. In both the static and

deforming domain with fibrotic regions, small wave anomalies appear after t = 11000ms

(see Figure 7.14) and then progressively become more chaotic.

In ten Tusscher and Panfilov [109], the introduction of diffuse fibrosis stabilizes the
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(a) 1.4 Restitution slope (b) 1.4 Restitution slope (c) 1.1 Restitution slope

Figure 7.13: Effect of introducing fibrotic regions, with results shown t=15000 ms. Test

(a) undertaken on a domain as per row 1 of Table 7.1. Tests (b) and (c) undertaken on a

domain as per row 2 of Table 7.1. The restitution slope of 1.4 was set from t=5000ms.

(a) Static (b) Deforming

Figure 7.14: Fibrotic regions after t=11000ms on static and deforming domains. Tests

undertaken on a domain as per row 2 of Table 7.1. The restitution slope of 1.4 was set

from t=5000ms.
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Mesh Approx. area Percentage Nodes Elements

of each of domain

fibrotic region area

Mesh F0 8.72mm2 0.0605% 243739 465856

Mesh F1 1.93mm2 0.0134% 284782 523632

Mesh F2 0.53mm2 0.0037% 275121 476212

Mesh F3 0.27mm2 0.0019% 539848 934984

Mesh F4 1.11 mm2 0.0077% 495219 912448

Table 7.3: Fibrotic region sizes and percentage of overall areas. In all instances the do-

main size was 120mm×120mm, and the diffusion set to anisotropic as per Equation

(7.1).

spiral wave, however the simulations shown here do not show this effect. For these sim-

ulations, a single in-excitable region has an area of 0.06% of the whole domain and the

fibrotic regions are non-uniform in shape. For the spiral wave break-up tests in [109] an

800x800 uniform mesh is used, with a total of 640000 finite difference ‘elements’. Each

fibrotic region is a uniform 1x1 square and so as a percentage of the overall domain is

0.00016 %. In the simulations in this section the fibrotic regions are approximately 380

times larger. The increased size of the fibrotic regions and their irregularity may be the

cause of this opposite effect. This is investigated further in Section 7.4.5.

7.4.5 Varying fibrotic element size and concentration

To investigate the role of the size of the fibrotic area, further tests were undertaken with

smaller fibrotic regions. These tests were over the same domain size (120mm× 120mm)

and with the same overall area of tissue marked as in-excitable, however each individual

fibrotic area was smaller in area (and hence there were more of them). The approxi-

mate area of each of the individual fibrotic elements was progressively reduced, as can

be seen in Table 7.3, and tests undertaken with a restitution slope of 1.4 implemented at

t=5000ms. For the Mesh F3 in Table 7.3, the number of elements and nodes approxi-

mately doubles from the previous meshes. This is because the fibrotic elements are built

from the coarsest mesh (before refinement), and so to make the fibrotic areas smaller

requires a finer initial mesh. The other parameters were set as per row 2 of Table 7.1.

The results presented in Figures 7.15, 7.16 and 7.17 show that the size of the individual

fibrotic regions has an impact on the spiral wave stability. In Figures 7.15 and 7.16 the

spiral wave breaks up into a chaotic state, but in Figure 7.17, which uses the smallest

individual fibrotic regions, the spiral wave is maintained over time. This provides a closer
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(a) t=1040ms (b) t=1360ms

Figure 7.15: Simulation of fibrotic regions on Mesh F1 (see Table 7.3 for settings).

(a) t=12000ms (b) t=17360ms

Figure 7.16: Simulation of fibrotic regions on Mesh F2 (see Table 7.3 for settings).
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Figure 7.17: Simulation of fibrotic regions on Mesh F3 (see Table 7.3 for settings), at

t=22400ms.
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Mesh Area of excitable elements Percent domain excitable Stable wave?

Mesh F5 10539mm2 of 14400mm2 73.19% No

Mesh F6 10827mm2 of 14400mm2 75.19% No

Mesh F7 11496mm2 of 14400mm2 79.83% No

Mesh F8 12184mm2 of 14400mm2 84.61% No

Mesh F9 13667mm2 of 14400mm2 94.91% No

Table 7.4: Fibrotic region sizes and different percentages of overall areas

comparison to [109], where the fibrotic regions were at a smaller level still. As Mesh

F3 is a finer mesh than the previous results in this thesis, further tests were undertaken

using Mesh F4 from Table 7.3. This mesh has a similar number of elements, however the

fibrotic regions were larger. The tests undertaken on Mesh F4 also caused the spiral wave

to break-up and confirmed that it was not the mesh resolution that caused the spiral wave

to be stable.

Further tests were then undertaken that varied the quantity of fibrotic elements in the

domain, and hence the overall percentage of the domain that is in-excitable. Table 7.4

shows the different scenarios that were tested. The original meshes for these were based

on Mesh F1 in Table 7.3, which has an approximate fibrotic region area of 1.93mm2, and

each is approximately 0.0134% of the domain area. The results for these tests can be

seen in Figure 7.18 and these show that with a smaller percentage of the domain set as

in-excitable the spiral wave still becomes unstable.

Further simulations were undertaken with reduced fibrotic area, in which only 5%

of the domain was marked as in-excitable (this is Mesh F9 in Table 7.4). The results

from these tests can be see in Figure 7.19 and these are compared to the same resolution

domain with no fibrotic areas. Both these tests were undertaken with a restitution slope

of 1.4. These results show that a small number of fibrotic elements can have a significant

impact on the spiral wave. In images (c) and (d) of Figure 7.19 a smaller spiral wave

has split from the main wave and formed in the top left hand corner of the domain. This

does not happen in the normal domain (images (a) and (b)) at the same time step. This

would suggest that the size and location of fibrotic regions can play an important role in

destabilising a spiral wave. If this is compared with the results presented in Figure 7.17 it

would further suggest that the overall area of in-excitable tissue is less important than the

size of the fibrotic regions and their distribution in the domain.
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(a) Mesh F7, t=13,600ms (b) Mesh F8, t=13,200ms

Figure 7.18: Varying area of total fibrotic regions (see Table 7.3 for domain settings)

7.4.6 Electrical remodelling and fibrotic regions

In these simulations the in-excitable fibrotic regions are present and the remodelled elec-

trophysiology was introduced at t = 5000ms and run until t = 12000ms (as described in

Section 7.2). This was repeated for dynamic restitution curves of 1.1 (no change), 1.4 and

1.8. These simulations were undertaken on both a static and a deforming domain. The

deforming domain results at t = 12000ms can be seen in Figure 7.20. Panel (b) of Figure

7.20 shows the spiral wave is stable over time. These simulations have a restitution slope

of 1.8, have fibrotic regions and are in a deforming tissue. These three parameters have

caused the spiral wave to become chaotic in the previous simulations, however with the

remodelled electrophysiology the spiral wave remains stable.

7.5 Conclusions

This chapter has demonstrated that by changing the active tension equations to be based

on the calcium transient the amount of deformation in the system will change as the

calcium transient changes. The two models of active tension used in this thesis produce

similar deformations and the change to calcium-based active tension (with the normal

electrophsyiology) did not have a qualitative effect on the spiral wave stability.

The chapter has further demonstrated (along with Section 4.4) that a spiral wave that

is on the edge of stability (e.g. with a restitution slope of 1.4) can be made chaotic within

a coupled deforming domain. This suggests that electrophysiology modelling should be
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(a) Normal t=15520ms (b) Normal t=15720ms

(c) Mesh F9 t=15520ms (d) Mesh F9 t=15720ms

Figure 7.19: Fibrotic regions of 5% the domain area (Mesh F9 from Table 7.4). Compar-

ison of results with a 5% of domain set as fibrotic with normal domain. The normal mesh

is 120mm×120mm with 359401 nodes and 716928 elements.
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(a) Normal (b) Fibrotic with remodelled electrophysiology

Figure 7.20: Normal domain with restitution slope of 1.8 and corresponding fibrotic do-

main with remodelled electrophysiology. Test (a) undertaken on a domain as per row 1 of

Table 7.1. Test (b) was undertaken on a domain as per row 2 of Table 7.1.

carried out on a moving domain if stability of the wave is being considered. Also it was

noticed that the initial values of the TP06 state variables need to be carefully considered.

If these are not set correctly, then early in the simulations, the voltage may be within the

expected range, however other variables (e.g. calcium transient) may not be.

By remodelling the electrophysiology (as in Section 7.2.1) the cardiac wave becomes

longer, with a higher plateau and higher resting state (see Figure 7.1). When this elec-

trophysiology is introduced the spiral waves in the system become much more stable and

introducing a higher restitution slope (1.8), fibrotic areas and deforming the domain still

does not cause the wave to break-up. The remodelled electrophysiology has the effect of

making the restitution slope less steep (see Figure 7.12), and this may explain stabilisa-

tion.

The introduction of in-excitable regions of fibrotic tissue can cause a stable spiral

wave to break-up into a chaotic state. This effect can be removed if the individual fibrotic

regions are very small (see Figure 7.17), for example using Mesh F3 of Table 7.3 where

an individual fibrotic element is approximately 0.27mm2.

By varying the amount of the tissue marked as in-excitable it was possible to demon-

strate that the size of the individual fibrotic areas, rather than the total area of them, plays

a role in the stability of the spiral wave. In Figure 7.19 a micro-spiral wave is formed in

the top left hand corner of the domain, and only 5% of this domain is marked as fibrotic.
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Further work could be carried out here to consider a more realistic fibrotic region size and

shape, and to consider whether the distributions of these areas is also a contributory factor

to wave break-up.



Chapter 8

Conclusions and further work

8.1 Conclusions and discussion

This thesis has presented a coupled model of cardiac electromechanical activity, using

the finite element method to model both electrophysiology and mechanics. The perfor-

mance and efficiency of the electrical component of the model were improved with the

addition of local mesh adaptivity and the performance of the mechanical component was

improved by the addition of preconditioning. The resulting solver was then used to con-

sider how known changes in cardiac electrophysiology, which are manifest in end-stage

heart disease, affect the stability of the electrical wave when spiralling.

The electrophysiology model uses the ten Tusscher-Panfilov (TP06) second gener-

ation detailed cellular model [110], which includes anisotropic diffusion, uses a semi-

implicit time stepping scheme, stores data in an efficient sparse storage format and uses

a Reverse Cuthill-McKee ordering algorithm to reduce the matrices’ bandwidths. Spatial

and temporal convergence tests were undertaken and, in common with other authors, it

was demonstrated that the steep up-slope of the electrical wave front requires a fine mesh

to be properly resolved.

The cardiac mechanical model is based on finite deformation elasticity theory, en-

forces the incompressibility of the tissue and uses a technique (from [82]) to provide

anisotropic tension to simulate fibre orientation. This uses isoparametric quadratic ele-

ments for deformation, linear elements for pressure, was integrated with numerical quadra-

ture and the resulting non-linear system solved with the iterative Newton method.

The electrical and mechanical systems were coupled together using the active tension

variable (Ta), with a phenomenological approach taken from [69]. Convergence tests were

undertaken on the coupled system and the results were compared to other published work

[82]. The convergence tests undertaken demonstrated that node displacements converge

158
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at a rate that is approaching quadratic, as the element size decreases.

The coupled solver was used to simulate changes in an electrical wave with varying

restitution slopes of 1.1, 1.4 and 1.8 (as per [110]). These tests show that the deformation

of the domain can affect the stability of an electrical spiral wave, with a previously stable

wave (with a restitution slope of 1.4), breaking up into chaotic patterns. This illustrates

that the modelling of cardiac electrophysiology on a static domain may not accurately

represent the wave form as the deformation can contribute to spiral wave break-up.

The mechanical component of the coupled solver required significantly more CPU

time to solve than the electrical component, and ILUT preconditioning was added to the

mechanical solve to improve this. In the best-performing example the preconditioned sys-

tem used 27 times less CPU time than the non-preconditioned system. This is the result

of a large drop in the required number of inner iterations for the Newton method. Further-

more, the ILUT preconditioner provides parameters which can be altered to optimise the

solver as the system size increases. By introducing preconditioning, coupled simulations

could be undertaken in a number of days (rather than weeks).

A local adaptive mesh refinement strategy was applied to the electrical component of

the coupled solver. This demonstrated that an AMR strategy can improve efficiency, lower

the system resources required and produce results with a level of accuracy that preserves

the qualitative behaviour of the system. This also means that with given computer re-

sources, the AMR-based solution can provide finer resolution around the wave front than

a globally refined system would be able to. The AMR technique introduced in this thesis

enabled the investigation of how targeting the extra mesh refinement at the front and/or

back of the wave front affects the overall accuracy. The conclusion was that it is critical to

ensure the front of the wave is approximated within a fine mesh, however the remainder

of the wave can be approximated on a less refined mesh and still produce quantitatively

accurate results. The technique employed does not require a posteriori error estimates,

rather the monitor functions employed consider changes in the transmembrane voltage,

and so the overhead of calculating the error estimates is removed.

The AMR technique was tested on static and deforming domains with both line waves

and spiral waves. In both instances significant improvements were seen in computer re-

source usage, and the line wave simulations performed up to 30 times faster when AMR

was used. The improvement achieved is proportional to the amount of the domain that

has excited tissue, with a spiral wave having a higher percentage of the domain excited.

The author is not aware of other published work in which an AMR technique within the

electrical system is undertaken on a deforming domain.

In Chapter 7, changes were made to the TP06 electrical model to represent tissue
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in end-stage disease. These changes affected both the action potential wave profile and

the calcium transient. To take advantage of the remodelling of the calcium transient, a

new method for calculating the active tension was proposed. This was based on the phe-

nomenological approach of [69], but used the calcium transient as the means of varying

the tension within the domain. The two models of active tension used in this thesis pro-

duce similar deformations and the switch to calcium-based active tension (with the normal

electrophsyiology) did not have a qualitative effect on the spiral wave stability.

It was further demonstrated (along with Section 4.4) that a spiral wave that is on the

edge of stability (e.g. with a restitution slope of 1.4) can be made chaotic within a coupled

deforming domain. This suggests that electrophysiology modelling should be carried out

on a moving domain if stability of the wave is being considered. Also it was noticed that

the initial values of the TP06 state variables need to be carefully considered. If these are

not set correctly, then early in the simulations, the voltage may be within the expected

range, however other variables (e.g. calcium transient) may not be.

When the electrophysiology is remodelled to simulate end-stage heart failure condi-

tions, the spiral waves in the system become much more stable and introducing a higher

restitution slope, fibrotic areas and deforming the domain still does not cause the wave to

break up. The remodelled electrophysiology has the effect of making the restitution slope

less steep (see Figure 7.12), and this may explain the stabilisation.

The introduction of in-excitable regions of fibrotic tissue can cause a stable spiral

wave to break up into a chaotic state. This effect can be removed if the individual fibrotic

regions are very small. By varying the amount of the tissue marked as in-excitable it was

possible to illustrate that, with these parameters, the size of the individual fibrotic areas,

rather than the total area of them, plays a role in the stability of the spiral wave.

8.2 Further work

During the course of the thesis a number of areas in which the research could be devel-

oped were noted. These are in relation to improving the functionality of the developed

solver, progressing the numerical techniques used and introducing more realistic biologi-

cal simulations. In relation to the biological simulations, areas for further work include:

• Investigation into the size, shape and distribution of the fibrotic regions. In this

thesis the fibrotic regions are two-dimensional irregular polygons constructed from

a set of triangular mesh elements. Introducing realistic fibrotic region geometries

could further highlight their role in the disruption of stable spiral waves.
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• The simulations undertaken in this thesis were on two-dimensional domains and

this provided a clear way of considering spiral wave stability, however it would

be interesting to use three dimensions, especially in the development of accurate

fibrotic regions.

• The introduction of more realistic calcium-based active tension generation tech-

niques would provide the ability to better consider the effect that remodelling the

electrophysiology has on the deformation of the tissue, and what effect this has on

the formation and dissipation of arrhythmias.

• In the process of developing the mechanical solver used in this thesis, a compress-

ible model was initially produced. It would be interesting to undertake a comparison

exercise using both compressible and incompressible models. Also the effects of

introducing an anisotropic strain energy function would be of interest.

• The electrophysiology and mechanics are coupled with weak coupling, in that they

are each solved independently. By adding strong coupling, other biological effects,

for example stretch activated channels, could be considered.

In relation to the numerical techniques used in this thesis, potential areas for further work

are described below:

• The AMR solution involves the calculation of a projection buffer and the method

used for this was to project the buffer a given distance from the wave front. This

technique could be improved by using an element connectivity based algorithm,

where elements were ‘walked-between’ to set the projection region. This would

involve the determination and storage of linked sets of ‘neighbour-elements’, how-

ever once built, these should provide speed reductions in the mesh refinement and

mesh validity check processes.

• The preconditioning technique in this thesis uses a parameter for the re-use of the

numerical Jacobian, however in [58], the convergence of the solve is monitored and

the output of this used to amend the re-use parameter. Although in this work the re-

use of the Jacobian was not the most significant contributor to the preconditioning

improvements, extra efficiency may be introduced with this technique.

• The monitor functions implemented provide a simple and efficient means of de-

termining elements for refinement and de-refinement, however these could be de-

veloped further, or other monitor functions introduced, to see if this provides extra
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increases in efficiency. Similarly the use of other adaptive techniques, for example

p-refinement, may increase the performance and efficiency gains.

• Adding adaptivity to the mechanical solver could provide large benefits, as the me-

chanical solver still dominates the overall solution time.

• Temporal adaptivity has been undertaken by several other research teams, and this

would provide further improvement.

Finally, due to the increasing complexity of the available modelling geometries, there

is still a need for further improvement in simulation solve time and the use of paralleli-

sation within the solver may be a route to enabling the modelling of accurate geometries

with coupling enabled.
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Appendix A

Preconditioning within Kinsol

Undertaking preconditioning with KINSOL is a complex process and an overview of the

process is provided in A.1.

Process A.1 Preconditioning within Kinsol

1: Call a KINSOL controlling function and pass the initial guess for the outer solve

(from the extrapolation of the previous two solves).

2: Undertake memory setup with definitions now including sparse format structure

needed for SPARSKIT

3: Inform KINSOL of the function being used to build the function vector F(xn)
4: Define the parameters of the solver

5: Define the KINSOL solve component required, in our case KINSpgmr

6: Inform KINSOL of the two functions being used for preconditioning. One is the

setup function and the other is the inner solve function.

7: The setup function builds a numerical Jacobian from F(xn).
8: The solve function calls SPARKSIT to setup the ILUT preconditioning and then

SPARSKIT GMRES solve the inner system

9: Finally the outer solve takes place with KINSOL
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Appendix B

Computer Equipment

During the course of the thesis various computing equipment was used and the specifica-

tion of these is described below. Please note that ARC1 is a high performance computer

with the ability to undertake either serial or parallel processes.

Item Specification

Processor Intel Core 2 CPU 4300

Clock Speed / Memory 1.8GHz / 2.0 Gigabytes

Operating System Fedora Release 11 (Leonidas 64 bit)

Table B.1: Basic PC Specification

Item Specification

Processor Intel Quad-core Xeon E5420

Clock Speed / Memory 2.5GHz / 4 Gigabytes

Operating System Fedora Release 11 (Leonidas 64 bit)

Table B.2: Workstation PC specification

Item Specification

Processor Intel Quad-core X5560

Clock Speed / Memory 2.8GHz / 12.0 Gigabytes of DDR3 1333MHz

memory

Operating System CentOS (5.4) 64-bit

Table B.3: Arc1 Specification: Serial jobs
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Appendix C

Ten Tusscher-Panfilov model

C.1 Ten Tusscher-Panfilov human ventricular cell model

For completeness, the TP06 model [110] of cardiac electrophysiology is reproduced be-

low. The equations below include the TP06 model [110] equations where mandated and

include the remaining equations from the 2004 model [108].

Reversal Potentials

EX =
RT

zF
log

Xo

Xi
f or X = Na+,K+,Ca2+ (C.1)

EKs =
RT

F
log

Ko + pKNaNao

Ki + pKNaNai
(C.2)

Membrane Currents

INa = GNam
3h j(V −ENa) (C.3)

m∞ =
1

[1+ e(−56.86−V )/9.03]2
(C.4)

αm =
1

1+ e(−60−V )/5
(C.5)

βm =
0.1

1+ e(V+35)/5
+

0.1

1+ e(V−50)/200
(C.6)
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τm = αmβm (C.7)

h∞ =
1

[1+ e(V+71.55)/7.43]2
(C.8)

αh = 0 i f V ≥−40 (C.9)

αh = 0.057e−(V+80)/6.8 otherwise (C.10)

βh =
0.77

0.13[1+ e−(V+10.66)/11.1]
i f V ≥−40 (C.11)

βh = 2.7e0.079V +3.1×105e0.3485V otherwise (C.12)

τh =
1

αh +βh

(C.13)

j∞ =
1

[1+ e(V+71.55)/7.43]2
(C.14)

α j = 0 i f V ≥−40 (C.15)

α j =
(−2.5428×104e0.2444V −6.948×10−6e−0.04391V )(V +37.78)

1+ e0.311(V+79.23)
otherwise

β j =
0.6e0.057V

1+ e−0.1(V+32)
i f V ≥−40 (C.16)

β j =
0.02424e−0.01052V

1+ e−0.1378(V+40.14)
otherwise

τ j =
1

α j +β j

(C.17)

Transient Outward Current

Ito = Gtors(V −Ek) (C.18)
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For all cell types

r∞ =
1

1+ e(20−V )/6
(C.19)

τr = 9.5e−(V+40)2/1800 +0.8 (C.20)

For epicardial and M cells

s∞ =
1

1+ e(V+20)/5
(C.21)

τs = 85e−(V+45)2/320 +
5

1+ e(V−20)/5
+3 (C.22)

For endocardial cells

s∞ =
1

1+ e(V+28)/5
(C.23)

τs = 1,000e−(V+67)2/1,000 +8 (C.24)

Inward Rectifier K+ Current

IK1 = GK1

√

Ko

5.4
xK1∞(V −Ek) (C.25)

αK1 =
0.1

1+ e0.06(V−EK−200)
(C.26)

βK1 =
3e0.0002(V−EK+100) + e0.1(V−EK−10)

1+ e−0.5(V−EK)
(C.27)

xK1∞ =
αK1

αK1 +βK1
(C.28)

Na+ / Ca2+ Exchanger Current

INaCa = kNaCa
eγVF/RTNa3iCao− e(γ−1)VF/RTNa3oCaiα

(K3
mNai +Na3o)(KmCa+Cao)(1+ ksate(γ−1)VF/RT )

(C.29)

Na+ / K+ Pump Current
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INaK = PNaK
KoNai

(Ko +KmK)(Nai+KmNa)(1+0.1245e−0.1VF/RT +0.0353e−VF/RT )
(C.30)

IpCa = GpCa
Cai

KpCa +Cai
(C.31)

IpK = GpK
V −EK

1+ e(25−V )/5.98
(C.32)

Background Currents

IbNa = GbNa(V −ENa) (C.33)

IbCa = GbCa(V −ECa) (C.34)

L-Type Ca2+ Current

ICaL = GCaLd f f2 fcass4
(V −15)F2

RT

0.25CaSSe
2(V−15)F/RT −Cao

e2(V−15)F/RT −1
(C.35)

d∞ =
1

1+ e(−8−V )/7.5
(C.36)

αd =
1.4

1+ e(−35−V )/13
+0.25 (C.37)

βd =
1.4

1+ e(V+5)/5
(C.38)

γd =
1

1+ e(50−V )/20
(C.39)

τd = αdβd + γd (C.40)

f∞ =
1

1+ e(V+20)/7
(C.41)

τ f = 1125e−(V+27)2/240 +
165

1+ e(25−V )/10
+80 (C.42)
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α f ca =
1

1+(Cai/0.000325)8
(C.43)

β f ca =
0.1

1+ e(Cai−0.0005)/0.0001
(C.44)

γ f ca =
0.2

1+ e(Cai−0.00075)/0.0008
(C.45)

fca∞ =
α f ca +β f ca + γ f ca +0.23

1.46
(C.46)

τ f ca = 2ms (C.47)

d fca

dt
= k

fca∞ − fca

τ f ca

(C.48)

k = 0 i f fca∞ > fca and V > −60mV (C.49)

k = 1 otherwise

α f = 1102.5e−(V+27
15 )

2

(C.50)

β f =
200

1+ e(13−V )/10
(C.51)

γ f =
180

1+ e(V+30)/10
+20 (C.52)

τ f = α f +β f + γ f (C.53)

f2∞ =
0.67

1+ e(V+35)/7
+0.33 (C.54)

α f 2 = 600e−
(V+25)2

170 (C.55)

β f 2 =
31

1+ e(25−V )/10
(C.56)
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γ f 2 =
16

1+ e(V+30)/10
(C.57)

τ f 2 = α f 2 +β f 2 + γ f 2 (C.58)

fcass∞ =
0.6

1+
(

Cass
0.05

)2
+0.4 (C.59)

τ f cass =
80

1+
(

Cass
0.05

)2
+2 (C.60)

Slow Delayed Rectifier Current

IKs = GKsx
2
s (V −EKs) (C.61)

xs∞ =
1

1+ e(−5−V )/14
(C.62)

αxs =
1400

√

1+ e(5−V )/6
(C.63)

βxs =
1

1+ e(V−35)/15
(C.64)

τxs = αxsβxs +80 (C.65)

Calcium Dynamics

Ileak =Vleak(CaSR−Cai) (C.66)

Iup =
Vmaxup

1+K2
up/Ca

2
i

(C.67)

Ire1 =Vre1O(CaSR−CaSS) (C.68)

Irel =

(

arel
Ca2sr

b2rel+Ca2sr
+ crel

)

dg (C.69)
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g∞ =
1

1+Ca6i /0.00035
6

i f Cai ≤ 0.00035 (C.70)

g∞ =
1

1+Ca16i /0.0003516
otherwise

τg = 2ms (C.71)

dg

dt
= k

g∞ −g

τg
(C.72)

k = 0 i f g∞ > g and V > −60mV (C.73)

k = 1 otherwise

Ix f er =Vx f er(CaSS−Cai) (C.74)

O =
k1Ca

2
SSR̄

k3 + k1Ca
2
SS

(C.75)

dR̄

dt
= −k2CaSSR̄+ k4(1− R̄) (C.76)

k1 =
k1′

kcasr
(C.77)

k2 = k2′kcasr (C.78)

kcasr = maxsr−
maxsr−minsr

1+(EC/CaSR)2
(C.79)

Caibu f c =
Cai×Bu fc

Cai+Kbu f c

(C.80)

dCaitotal/dt = −
IbCa + IpCa−2INaCa

2VcF
+
Vsr

Vc
(I1eak− Iup)+ Ix f er (C.81)
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Casrbu f sr =
Casr×Bu fsr

Casr +Kbu f sr

(C.82)

dCaSRtotal/dt = (Iup− I1eak− Ire1) (C.83)

Cassbu f ss =
Cass×Bu fss

Cass+Kbu f ss

(C.84)

dCaSStotal/dt = −
ICaL

2VSSF
+
Vsr

Vss
Ire1−

Vc

Vss
Ix f er (C.85)

Rapid Delayed Rectifier Current

IKr = GKr

√

Ko

5.4
xr1xr2(V −Ek) (C.86)

xr1∞ =
1

1+ e(−26−V )/7
(C.87)

αxr1 =
450

1+ e(−45−V )/10
(C.88)

βxr1 =
6

1+ e(V+30)/11.5
(C.89)

τxr1 = αxr1βxr1 (C.90)

xr2∞ =
1

1+ e(V+88)/24
(C.91)

αxr2 =
3

1+ e(−60−V )/20
(C.92)

βxr2 =
1.12

1+ e(V−60)/20
(C.93)

τxr2 = αxr2βxr2 (C.94)

Sodium and Potassium Dynamics

dNai

dt
= −

INa + IbNa +3INaK +3INaCa

VcF
(C.95)
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dKi

dt
= −

IK1 + Ito + IKr + IKs−2INak + IpK + Istim− Iax

VcF
(C.96)

C.2 TP06 Inital Parameters

Table C.1 contains the initial values of the state variables in the TP06 model. During the

thesis two sets of initial values were used.

Variable Stable range value Original value Description

cai 0.000104 0.00007 Initial intracellular calicum (mM)

casr 3.500442 1.3 Initial SR calcium (mM)

cass 0.000213 0.00007 Initial subspace calcium (mM)

nai 9.768751 7.67 Initial intracellular sodium (mM)

ki 135.750655 138.3 Initial intracellular potassium (mM)

m 0.001647 0.0 Initial m gate

h 0.750091 0.75 Initial h gate

j 0.749714 0.75 Initial j gate

d 0.000033 0.0 Initial d gate

f 0.977278 1.0 Initial f gate

f2 0.999502 1.0 Initial f2 gate

fca 0.999973 1.0 Initial fca gate

r 0.000000 0.0 Initial r gate

s 0.999998 1.0 Initial s gate

xr1 0.000206 0.0 Initial xr1 gate

xr2 0.473155 1.0 Initial xr2 gate

xs 0.003221 0.0 Initial xs gate

rbar 0.989218 1.0 rbar

Table C.1: TP06 initial state variable values - original and steady state values
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Solving the cardiac mechanics

D.1 Introduction

Solving the cardiac mechanical system determines the deformed coordinate positions

(x1,x2) of nodes within the mesh and the pressures (p) at these nodes. This involves a

number of processes, including formulating the system of equations, approximating with

the FEM and solving with the Newton iterative method.

The objective of this appendix is to provide a step-by-step walk-through of the pro-

cesses involved in this and also further explain the use of isoparametric elements, within

the FEM, to build the function vector needed for the Newton method.

D.2 Process walk-through

1. The governing equations for the deformed coordinates (x1,x2) and the pressures (p)

are the stress equilibrium equation (see Equation (3.11)) and the incompressibility

constraint (see Equation (3.37)).

2. For the FEM, the governing equations need converting into their weak forms. These

are Equations (3.33) and (3.38).

3. The domain being modelled needs discretising into triangular elements. Each node

(for example node i) of a triangular element has undeformed coordinates repre-

sented by (X i
1,X

i
2).

4. The continuous variables for the deformed coordinates (x1,x2) are replaced with

discrete approximations within the elements using basis functions. Quadratic La-

grange interpolation polynomials are used to approximate the deformed coordinates
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(xi1,x
i
2) and these are given in Equations (D.4) to (D.9). Linear Lagrange basis func-

tions are used to approximate the pressures (pi), and these are given in Equation

(D.31).

5. To provide flexibility in the solver, isoparametric elements are used. These map a

given element (in the global coordinates) onto a local reference element where the

FEM calculations are then undertaken. More information is given in Appendix D.3.

6. Because quadratic functions are used for the deformations, numerical integration

is needed over the elements. This is undertaken using a 3-point quadrature rule,

defined in Table 3.1.

7. The system is solved using the Newton iterative method (as described in Process

3.1), and for this a system in the form f(x) = 0, needs to be formulated, where

f(x) is a system of n non-linear equations (these are described further in Equation

(3.68)). This is calculated numerically using the FEM assembly loop.

8. For each iteration of the Newton method it is necessary to assemble f(x j), where j

is the index of the Newton iterate. At the start of the method an initial estimate of x j

is provided (see Section 3.4.1 for more details), and the assembly will be repeated

(within the Newton method process), until convergence is reached.

D.3 Isoparametric elements

D.3.1 Introduction to isoparametric elements

To solve the cardiac mechanics, it was necessary to use quadratic basis functions for the

deformation unknowns. Isoparametric elements use a local reference coordinate system

and implement a mapping process to specify the relationship to the original undeformed

coordinate system. The local coordinate system is a simple element, for example a right

angled triangle. This simplifies the implementation of the quadratic functions and also

provides a more modular approach, whereby it is easier to substitute other higher order

basis functions.

For isoparametric elements, shape functions are used to specify the relation between

the global (X1,X2) and local (ξ ,η) coordinate systems. Shape functions are defined for an

idealized mapped element, as per Figure 3.2. The coordinate transformation is therefore:

X1 =
6

∑
i=1

Ψiξi, (D.1)
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Figure D.1: Reference (local) triangular element

X2 =
6

∑
i=1

Ψiηi, (D.2)

where Ψi are the shape functions (given in Equations (D.4) to (D.9)) for the six-node

triangular element.

For the FEM, the governing equations need converting into their weak form. These

are Equations (3.33) and (3.38) and are a combination of a number of partial derivatives

of the form:
∂x j
∂XM

,
∂Ψn

∂XM
, (D.3)

where n = 1,2,3 for linear approximations (and n = 1..6 for quadratic approximations),

M = 1,2, j = 1,2. To solve the cardiac mechanical system using isoparametric elements,

the partial derivatives in Equation (D.3) need to be represented in terms of the isopara-

metric coordinate system.

D.3.2 Functions for mapping local coordinates

For quadratic elements, a 6 node right-angled triangle is used for the local reference ele-

ment (as shown in Figure D.1) and shape functions are required to map each node to the

global coordinates. The functions used for the triangle in Figure D.1 are the Lagrange

basis functions:

Ψi = 2(1−ξ −η)(
1

2
−ξ −η) (D.4)
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Ψi j = 4ξ (1−ξ −η), (D.5)

Ψ j = 2ξ (ξ −
1

2
), (D.6)

Ψki = 4η(1−ξ −η), (D.7)

Ψ jk = 4ξ η, (D.8)

Ψk = 2η(η −
1

2
). (D.9)

The derivatives of these with respect to ξ are:

∂Ψi

∂ξ
= −3+4ξ +4η, (D.10)

∂Ψi j

∂ξ
= 4−8ξ −4η, (D.11)

∂Ψ j

∂ξ
= −1+4ξ , (D.12)

∂Ψki

∂ξ
= −4η, (D.13)

∂Ψ jk

∂ξ
= 4η, (D.14)

∂Ψk

∂ξ
= 0, (D.15)

and with respect to η these are:

∂Ψi

∂η
= −3+4ξ +4η, (D.16)

∂Ψi j

∂η
= −4ξ , (D.17)

∂Ψ j

∂η
= 0, (D.18)

∂Ψki

∂η
= 4−4ξ −8η, (D.19)

∂Ψ jk

∂η
= 4ξ , (D.20)

∂Ψk

∂η
= −1+4η. (D.21)
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D.3.3 Building the transformation Jacobian

To obtain the derivatives of shape functions expressed in local element coordinates (η and

ξ ) with respect to the global physical coordinates (X1,X2), first the chain rule is used:

(

∂Ψi

∂ξ
∂Ψi

∂η

)

=

(

∂Ψi

∂X1

∂X1
∂ξ

+ ∂Ψi

∂X2

∂X2
∂ξ

∂Ψi

∂X1

∂X1
∂η + ∂Ψi

∂X2

∂X2
∂η

)

. (D.22)

This can be rearranged into the Jacobian (Je) multiplied by a vector of derivatives as

follows:
(

∂Ψi

∂ξ
∂Ψi

∂η

)

=

(

∂X1
∂ξ

∂X2
∂ξ

∂X1
∂η

∂X2
∂η

)(

∂Ψi

∂X1
∂Ψi

∂X2

)

, (D.23)

where the Jacobian, Je, is the 2x2 matrix on the right hand side of Equation (D.23). The

required derivatives can then be obtained by rearranging Equation (D.23), to give

(

∂Ψi

∂X1
∂Ψi

∂X2

)

= (Je)−1

(

∂Ψi

∂ξ
∂Ψi

∂η

)

. (D.24)

From Equations (D.1) and (D.2), the derivative of the global coordinates, with respect to

the local coordinates, can be calculated, giving

Je =

(

∑6
i=1

∂Ψi

∂ξ
X i
1 ∑6

i=1
∂Ψi

∂ξ
X i
2

∑6
i=1

∂Ψi

∂η X i
1 ∑6

i=1
∂Ψi

∂η X i
2

)

. (D.25)

The determinant of the Jacobian (det(Je)) can be calculated directly and the inverse of

the Jacobian ((Je)−1) can also be calculated directly by the standard method of inverting

a 2x2 matrix:

(Je)−1 =
1

det(Je)

(

∂X2
∂η −∂X2

∂ξ

−∂X1
∂η

∂X1
∂ξ

)

. (D.26)

D.3.4 Calculating the derivatives

It is now possible to calculate the twelve derivatives of the nodal shape functions Ψi with

respect to X1 and X2. If the inverse of the Jacobian ((Je)−1) is defined as a 2 × 2 matrix

JE, these are as follows:
∂Ψi

∂X1
= JE11

∂Ψi

∂ξ
+ JE12

∂Ψi

∂η
(D.27)

and
∂Ψi

∂X2
= JE21

∂Ψi

∂ξ
+ JE22

∂Ψi

∂η
. (D.28)
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where i= 1...6. The next step is to calculate the derivatives of the deformation unknowns

(x1,x2) with respect to X1 and X2. For the x1 unknowns these are:

∂x1
∂X1

=
6

∑
i=1

∂Ψi

∂X1
xi1 (D.29)

and
∂x1
∂X2

=
6

∑
i=1

∂Ψi

∂X2
xi1. (D.30)

Using the derivatives defined above it is now possible to formulate the governing equa-

tions (as defined in Equation (3.33) and Equation (3.38)), in terms of the local coordinate

system.

It should be noted that the pressure terms use linear elements and so the linear version

of the basis functions are used to calculate these terms, and these only use the nodes at

the vertices of the triangle. These linear functions are:

Ψlin
j = ξ , (D.31)

Ψlin
k = η, (D.32)

Ψlin
i = (1−ξ −η). (D.33)

D.3.5 Calculating the numerical integral

Quadrature is used to calculate the integral over each element and this is defined in more

detail in Section 3.3.5. When using isoparametric elements over a local reference coordi-

nate system, it has the benefit that the quadrature loop uses the same triangle each time,

and so the quadrature points are always the same. The quadrature equation used is as

follows:
∫ ∫

Ωe
f (ξ ,η)dξdη ≈△e

n

∑
q=1

Wq f (ξq,ηq)det(J
e(ξq,ηq)), (D.34)

where ξq and ηq are the evaluation points for the function, n is the number of points

evaluated over, Ωe is the triangular element,△e is the area of the triangular isoparametric

element and Wq are the weighting values. As the coordinate system has changed the

resulting values in the quadrature loop are multiplied by det(Je(ξq,ηq)).

The function f is calculated using the derivatives defined in Section D.3.4 to build the

weak form of the two governing equations for the deformation and pressure unknowns

(see Equations (3.33) and (3.38)). For each element of the domain the quadrature loop is



Appendix D 192 Solving the cardiac mechanics

undertaken and this calculates the values which are distributed to the rows of the f(x) = 0

system.


