
Unblinded Sample Size Re-estimation in
Randomised Controlled Trials

By:
Julia M. Edwards

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy

School of Health and Related Research
Faculty of Medicine, Dentistry and Health

The University of Sheffield

November 2020



Abstract

Introduction: Sample size calculations require assumptions regarding treatment response
and variability. However, there is often limited information prior to the trial and essentially
a “best guess” is used. Incorrect assumptions can lead to either under or over powered trials,
which poses an ethical concern. Unblinded sample size re-estimation (uSSR) designs allow
treatment effect assumptions to be re-assessed at an interim analysis, and can modify the
sample size if necessary. Those based on conditional power (CP) calculations rely on an
assumption of the future treatment effect of the second stage sample size. Guidance for as-
sociated design features is unclear, and it is unknown which CP assumption should be used.
Therefore this thesis aims to compare existing uSSR methodologies, to consider the associ-
ated design features, and make clear recommendations for future uSSR implementation.

Methods: The thesis is split into four main sections; a comprehensive review of the lit-
erature, retrospective data analysis applied to real world trial datasets, simulations, and a
discussion on logistical implementation and future trial planning using uSSR. Promising
Zone (PZ) and Combination Test (CT) designs are explored in detail. Four possible future
treatment effect assumptions are investigated in the CP calculation. Maximum restrictions
on sample size, timings of interim analyses and proportions of pipeline patients are also
explored, as well as the incorporation of a futility boundary.

Results: The observed treatment effect was calculated for 21 retrospective case studies
and found to be within ±1∗SE of the end treatment effect from 57% through trial duration.
The current trend assumption was best when a smaller than anticipated or no effect was
observed. The hypothesised assumption was best when the observed effect was close to that
planned. An 80% optimistic confidence limit of the observed current trend was shown to
work well in either scenario: close to that planned, or smaller/zero and is a considered a
good “middle-ground” between the two. The PZ design is the easiest design to implement,
with an incorporated futility boundary potentially offering a funder to cut some of the losses
if the effect is much smaller than planned. The CT design also offers a decrease in sample
size, but should consider a minimum restriction on sample size in small trials, to avoid the
inflation of Type I error.

Conclusions: This thesis has explored uSSR designs, associated logistical features, and
the assumptions of the CP calculation used in these designs. This thesis explores a 10% fu-
tility threshold and recommends an interim timing between 60-70%, with between 50-100%
maximum increases in sample size, and the use of the 80% optimistic confidence limit as-
sumption for the CP calculation in this scenario. Further recommendations are found in
Chapter 10.
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1 | Introduction

1.1 Background

Clinical trials aim to evaluate healthcare interventions and the effect of health related out-

comes in human participants (WHO 2018). Randomised Controlled Trials (RCTs) are con-

sidered to be the “gold standard” design in evidence-based evaluation of interventions (Sack-

ett 1996) as patient characteristics should be equally distributed between the groups due to

the randomisation process (Roberts 1999). However, the cost of clinical trials is increas-

ing in both publicly funded and industry settings (Shore 2012; Collier 2009). A number

of reasons have been attributed to this growing cost, including longer and more complex

trials, challenges in recruiting and retaining participants, and an increased regulatory burden

(Lindsey 2009). Therefore, there is a need to improve the efficiency and reduce costs in

clinical trial settings.

A sample size calculation is performed prior to the start of the trial and makes assump-

tions regarding the hypothesised treatment response and the statistical variability as the true

values are unknown (Noordzij 2011). These can be estimated using similar studies, or any

prior knowledge of the treatment. However, information is often limited, causing the quan-

tification of these parameters to be very difficult and could lead to a questionable sample

size calculation. Inaccurate sample size estimates can result in an under or over powered

study and potentially waste valuable resources (Chen 2004). Although some historical data

may be available to guide this estimate, this parameter is still essentially a “best guess” at

the planning stage (Herbert 2000).

Adaptive Designs (ADs) have become increasingly popular in recent years due to their

flexibility and improved efficiency of conventional clinical trials (Chow 2011). Researchers

implementing adaptive clinical trials are able to make use of accumulating data at pre-

specified points in the trial, and make decisions affecting the remainder of the trial based

on data observed at the interim analysis. Methodology has been developed for a number of
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types of adaptation. Some key adaptation strategies include adaptive dose finding, seamless

designs incorporating two phases into one trial, stopping rules for early termination of the

trial, and a modification of the required sample size (Bhatt 2016).

ADs can increase the efficiency of a clinical trial, benefit both trial participants and future

patients, and improve the allocation of available resources (Gallo 2006). However, they

also present their own challenges, including complex designs, logistical problems, and the

need to maintain statistical rigour (Gallo 2006). Whilst potentially advantageous in terms

of maintaining power, using an AD can greatly increase the complexity of the study, and

therefore researchers should weigh up the potential advantages and disadvantages before

committing to an AD.

An AD using Sample Size Re-estimation (SSR) methods could offer researchers the op-

portunity to re-evaluate sample size estimates during the trial progression to obtain the nec-

essary power at the final analysis, either by looking at treatment effect (unblinded) or without

revealing treatment allocation (blinded) (Chow 2011). As an indication of the growing in-

terest and general upward trend of SSR in the last 30 years, a graph to show the number of

publications involving SSR or related terminology was plotted using number of publications

included in Web of Science since 1992. Note that the final column is only an indication of

work published so far this year, and is not yet complete.

Figure 1.1: Number of publications on sample size re-estimation by year according to web of
science
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In 2011, Mehta and Pocock published the “Promising zone” methodology for Unblinded

Sample Size Re-estimation (uSSR) (Mehta 2011). At an interim analysis, Conditional Power

(CP) is calculated, representing the projected power at the end of the study having observed

the data so far and assuming a future treatment effect to be observed in the remainder of

the trial (Lachin 2005). If CP lies in a pre-determined “promising zone”, sample size is in-

creased according to a sample size rule; otherwise sample size remains the same as originally

planned. Whilst the ultimate aim was to propose a ‘simple’ design for easy implementation

for trialists, the methodology has been a source of controversy over the years for a number of

reasons. Firstly, the use of an unadjusted critical value at the final analysis is straightforward

for researchers and well understood, but many have criticised the efficiency of the design

due to its conservatism (Glimm 2012). Additionally, the treatment effect can be highly vari-

able at the interim stage, which can have a substantial impact on the sample size increase

(Jennison 2015). Full details of the promising zone methodology and its strengths and lim-

itations are described in Section 3. Jennison and Turnbull describe an alternative sample

size rule in their 2015 publication (Jennison 2015). By using inverse normal combination

tests, the sample size may be increased at any value of the interim observed test statistic,

z1, without inflating the Type I error, and results in a smoother sample size increase rule.

Comparisons between the two designs are limited within the literature, and often impose

different optimality criterion that may not necessarily be universal (Pilz 2019).

The knowledge of the new sample size following an interim analysis means that trialists

may be able to back-calculate the treatment effect, and this knowledge may influence the

remainder of the trial and therefore the validity of trial results. In 2016, Liu and Hu presented

a stepwise function for SSR. Their rule for SSR increases in steps to a maximum point, and

then decreases back to the original sample size in similar steps. Now, knowledge that the

sample size has increased by 10% for example may indicate a particularly low CP value

(say 15-20%), or a particularly high CP value (say 70-80%), which may be a useful design

consideration if investigators have particular concerns about operational bias following the

interim analysis. Full details of their methodology are provided in Chapter 3.
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1.2 Publicly funded vs industry trials

Whilst publicly funded and industry trials both aim to improve medical treatments and pa-

tient care, there are some key differences where trials in the two settings can differ. Gen-

erally, the main focus in most industry trials is for the approval of an unlicensed treatment,

with the ultimate aim of generating profits from the drug (Laterre 2015). A ‘negative’ trial

in these settings means that the treatment under investigation is no longer developed in this

setting, and is either scrapped completely or used in an alternative setting. Furthermore,

there is an advantage of showing efficacy for industrial trials, as a non-inferior or equivalent

drug will not be cost effective to develop in a saturated market. The ultimate aim is to show

some benefit to the patient in terms of efficacy, decreased side effects or improved dosing

schedule for example, in order for the patient to choose their product over an alternative

(Mossialos 2005).

On the other hand, publicly funded trials largely investigate already licensed interven-

tions and compare these to current standard care, which may have been placed in the care

pathway with little or no evidence. In this setting, a ‘negative’ trial is still considered benefi-

cial to researchers and to future patients as an ineffective treatment may be withdrawn from

the standard care pathway. Although industry and publicly funded trials are not limited only

to the cases in the above description, for the purpose of this thesis industry trials will refer to

the approval of unlicensed treatments, and publicly funded trials will refer to comparisons

of licensed trials to current standard practice.

1.3 Research Question

uSSR is a potentially valuable tool in trial design, with the ability to reduce the risk of

an underpowered study and its capability in handling uncertainty in planning assumptions.

With so much debate over uSSR methodology, it is important to gain a better understanding

of both statistical and operational factors involved in designing and implementing a SSR.

Specifically:
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What sample size rule framework and associated design features need to be

considered when using an uSSR in clinical trials with either a continuous or

binary primary endpoint?

The ultimate aim of the thesis is to make recommendations for uSSR implementation, which

will assist the planning of future trials wishing to implement an uSSR trial design. Specific

objectives include:

1. Compare existing methodologies for uSSR using CP calculations, with a focus on

promising zone and combination test designs

2. Incorporate stopping boundaries in each methodological framework and compare in-

terim decision making

3. Investigate the future treatment effect assumption used in the CP equation

4. Explore CP values when observed effect sizes are equal to, or different by some

amount to the target effect size

5. Make recommendations for the planning of a future trial using SSR including opera-

tional considerations such as when an interim analysis should be carried out, and the

maximum sample size increase to consider

To carry out the thesis aims described above, the thesis will employ a variety of methods,

including a comprehensive systematic review of uSSR literature, retrospective data analysis

to real clinical trial data, simulation work, and the application of designing a prospective

clinical trial.

This thesis is limited to continuous and binary endpoints only- survival endpoints are

not considered here. Both small and large sample size studies will be compared, as well as

short, medium and long times to primary outcome data becoming available (e.g. 1-2 weeks,

3-6 months, and ≥ 1 year respectively). Whilst the priorities on the outcome of industry

and publicly funded trials may differ, neither have an infinite source of funding, and so it

is expected that both could have similar priorities regarding interim decision making. For

completeness, both funding types are being considered within the thesis.
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1.4 Overview of Thesis

Chapter 2 presents background statistical methodology that is relevant to the remainder of

the thesis. This includes ‘fixed sample size’ calculations for superiority and non-inferiority

trials with continuous and binary endpoints, CP calculations, and methods for SSR and Type

I error control. Chapter 3 provides an in-depth review of the current literature on promising

zone methodology, addresses limitations of the methodology, and presents the rationale for

the specific research question for the thesis. A systematic review presents all trials that have

reported using, or planning to use promising zone methodology. Trial characteristics are

summarised, and issues surrounding the reporting of the methodology is discussed.

Chapter 4 contains a detailed retrospective data re-analysis plan for implementing a com-

parison of the three SSR methodologies. A summary of the data to be used for re-analysis

is provided, including background information, a summary of original trial analysis and re-

sults, and information relating to patient and site recruitment. Some case studies will be

presented within this chapter, and full details of remaining trials can be found in Appendix

B.

Chapter 5 presents the results of the retrospective data analysis using the original ob-

served treatment effect within each trial, and original sequential order of patients. Case

studies of conditional power, new required sample size (n∗) in each design, and observed

treatment effect results will be presented, with further details provided in Appendix C. Chap-

ter 6 extends on the work of Chapter 5, using methods to adjust the observed treatment effect

relative to the planned treatment effect. The level of misspecification of the treatment effect

in the planning stage compared to observed will be compared, including zero and negative

treatment effects.

Chapters 7 and 8 include details of the simulation protocol, and presents simulation

results continuous and binary endpoints respectively. Chapter 9 provides an example of

implementing SSR design in the design of a real study. Chapters 10 and 11 provide a

discussion and conclusion, and detailed recommendations that have come from the results

of the thesis.
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1.5 Summary

RCTs require a pre-determined sample size using a “best-guess” of the treatment effect, of

which the true effect is unknown. Using an AD with a uSSR looks at the accumulating

data and can modify the sample size at the interim analysis if necessary, based on CP cal-

culations. However, there is some debate over which uSSR design to use, and the future

treatment effect assumption of the observed CP calculation. This thesis aims to compare

existing methodologies, investigate CP assumptions, incorporate a futility analysis in the

uSSR designs, and explore logistical factors that may impact the choice of SSR design such

as timing of the interim analysis or maximum allowed sample size.



2 | Statistical methods

2.1 Introduction

Chapter 1 gave a brief introduction of ADs, the motivation behind SSR and an outline of the

aims of this thesis. This chapter introduces key statistical concepts relevant to sample sizes,

and SSR. The aim of this chapter is not to provide a detailed review of the current literature

(which is presented in Chapter 3), but to provide the background statistical methods that have

been used in the development of uSSR designs. Firstly, sample size calculations for fixed

sample size trials are presented for superiority and non-inferiority trials with continuous

and binary outcomes. Practical and ethical issues surrounding sample size estimates are

discussed, and ADs and standard Group Sequential Designs (GSDs) are described. The

motivation behind both Blinded Sample Size Re-estimation (bSSR) and uSSR is discussed

and a brief introduction on methodology is presented, including CP calculations. Finally,

methods for controlling Type I error are introduced, with strengths and limitations discussed.

2.2 Aims for the Section

This chapter ultimately aims to provide the background and motivation behind SSR meth-

ods. Specific objectives for this section include:

1. Introduce sample size calculations for fixed designs

2. Discuss ADs and their potential benefits and limitations in the future of clinical trials,

with a focus on SSR methodology.

3. Present CP calculations more formally, and methods for controlling Type I error in-

flation in flexible sample size designs.
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2.3 Sample size calculations

The choice of sample size in an RCT must be ethically balanced. Too many subjects could

result in patients unnecessarily receiving an inferior treatment when there is already enough

evidence to answer the research question available, as well as resulting in a waste of re-

sources and additional costs incurred. On the other hand, too few subjects could mean that

patients may be subjected to an experimental treatment in a study that is unable to detect

any clinically important effect (Altman 1980).

For this reason, a sample size calculation should be carried out, to calculate the mini-

mum number of subjects required to test a hypothesis with respect to a “control treatment"

and an “experimental treatment". An experimental treatment may be, for example, a new

drug, combination of treatments, or intervention of interest. A control treatment may be a

placebo drug, a current standard practice on the care pathway, or even an effective treatment

already available. There are certain ethical considerations concerning the appropriate choice

of the control treatment. In cases where a treatment exists that has already been shown to be

effective compared to placebo, this effective treatment should be chosen as the comparator.

In this scenario, a placebo controlled trial provides no information regarding the effective-

ness of the experimental treatment compared to the existing treatment (Streiner 2007). It has

been argued that placebo controlled studies can be financially attractive to pharmaceutical

companies as an active treatment is more likely to show a significant treatment effect when

compared to a placebo, as opposed to a comparator treatment (Togo 2016).

In conventional RCTs, a sample size calculation takes place prior to the start of the trial,

and will be referred to in this thesis as a conventional or ‘fixed sample size’ design. The trial

then aims to recruit subjects until it reaches this target sample size, and does not take into

account any accumulating data from the ongoing trial (Chen 2012). There are a number of

different formulae widely available in literature, depending on study designs and outcome

types. These calculations are described in more detail in Sections 2.3.3 - 2.3.4.
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2.3.1 Choice of key design parameters

Assumptions of treatment difference and nuisance parameters must be made for sample size

calculations, which can be highly subjective (Schulz 2005). Unfortunately, these estimates

also play a vital role in the sample size estimate and can greatly influence the number of sub-

jects required and the power of a study. Prior information may come from similar smaller

trials or meta-analyses to assist in choosing parameters (Teare 2014), but often information

is limited. Furthermore, even when similar studies have been carried out, it can still be chal-

lenging to use historical data for a number of reasons. These include, but are not limited to:

small sample sizes, single centre studies, location of sites, a difference in patient populations

due to varying inclusion/exclusion criteria, different length of follow up time, difference in

monitoring procedures, varying diagnosis criteria, and healthcare improvements or change

in practice over time (Viele 2013; Shih 1998) .

2.3.1.1 Statistical Significance and Power

In the true population of interest, a hypothesis may be true or false (i.e. there is a true differ-

ence in some hypothesised outcome or there is not). When testing this hypothesis based on

a sample of the true population, the researcher may conclude one of two possibilities: to ac-

cept the null hypothesis (H0), or reject the null hypothesis and instead accept the alternative

hypothesis (H1) (Biau 2010). One hopes that the trial correctly concludes whether there is a

true difference or not; however this is not always the case. The Type I error (α) is the error

associated with the outcome of incorrectly rejecting the null (i.e. concluding there is a true

difference when in fact there is none, or, a “false positive result”). On the other hand, the

Type II error (β ) is the error associated with incorrectly accepting the null hypothesis (i.e.

there is a true difference in the population but the test fails to conclude any difference, or, a

“false negative result”) (Akobeng 2016). Table 2.1 summarises the four possible outcomes:
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Decision
Accept H0 Reject H0

R
ea

lit
y H0 False β 3

Type II error Correct Decision

H0 True 3 α

Correct Decision Type I error

Table 2.1: A summary of the four possible decisions in a trial

The statistical significance threshold (α) is a key component of the sample size calcu-

lation and must be decided in advance of the trial, set at the desired level of Type I error

rate. Typically, a two sided α of 0.05 is used (Fisher 1932; Sterne 2001), implying there is

5% chance that the observed difference has been seen by chance under the null hypothesis.

Despite this typical value often being used in practice, the choice lies with the researcher,

and certain scenarios could warrant a different level of statistical significance.

Type II error rate (β ) is commonly expressed in terms of power (1−β ); the probability

of detecting a significant result, given that there is indeed a true difference in the population

of at least a given magnitude (Noordzij 2011). Power is also a key component in sample

size calculations and needs to be decided on in advance, and is typically chosen between 80

and 90% (Julious 2004; Noordzij 2011).

Whilst it is not possible to completely eliminate Type I or Type II errors, they can be

minimised by increasing the sample size. The larger the sample size, the closer the sample

estimates of the treatment effect will be to the true population values and therefore less likely

for either error to occur (Sedgwick 2014; Akobeng 2016). A trade-off between minimising

error and a realistic sample size should be considered when planning a trial. Julious (2004)

notes that decreasing the power from 90 to 80% only decreases the sample size by 25%, but

doubles the Type II error (Julious 2004). A Type II error rate of 10% is strongly advocated

in this tutorial paper.

2.3.1.2 Treatment effect

Prior to the start of the study, researchers may set up a trial with the aim to show an in-

tervention is a quantifiable amount different to the comparator/placebo (Cook 2014). This

difference is often referred to as the target difference, or the effect size, and is used as the
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anticipated treatment effect in sample size calculations (δplan).

Current evidence and retrospective data can inform the choice of δplan, to ensure that the

planned treatment difference is ‘realistic’ (Cook 2015). Choosing a larger target difference

will require fewer subjects. When planning a trial, a small sample size is attractive due to

decreased recruitment time and required budget. However, being too optimistic can mean

that the planned treatment effect is much higher than the true difference, and the study

may fail to achieve statistical significance, because the true treatment effect is much smaller

than the one in which the planned sample size can reliably detect (Biau 2008). Similarly,

choosing too small an effect size could result in a very large sample size, and even if a

statistically significant result is obtained at the end of the study, the effect may be too small

to be clinically meaningful and therefore not provide sufficient evidence to change clinical

practice.

The CONSORT Statement (2010) states that small effect sizes are more likely to exist

in reality than large differences (Schulz 2010; Yusuf 1984). However, a trial should aim to

detect not only a ‘realistic’ difference, but also an ‘important’ difference too (Cook 2015).

Obtaining a clinically important difference is essential in order to implement the inves-

tigational intervention into standard care, or for approval of a new drug. Enrolling subjects

into a trial that has no hope of improving care by detecting a clinically important difference

poses an ethical concern. Therefore a researcher should choose a target difference that is

also clinically meaningful. The minimum value that is still regarded as clinically relevant is

known as the Minimum Clinically Important Difference (MCID) (Noordzij 2011).

The target difference should aim to be both important, and realistic, and is therefore

greater than or equal to the MCID (Cook 2015). In order to change standard practice how-

ever, researchers may need to show a larger treatment effect than MCID, to counteract as-

sociated development or implementation costs, or to beat market competition (Fukunaga

2014). Implications of misspecifying δ in the trial sample size calculation may lead to

an over or under powered trial, and the trial may no longer be able to reliably answer the

research question of interest.



2.3. Sample size calculations 13

2.3.1.3 Variance

In 1940, Dantzig showed that there exists no power function that is entirely independent of

variance (σ2) for a fixed sample size single sample t-test (Dantzig 1940). Five years later,

Stein extended this to two sample t-tests, and to linear hypotheses (Stein 1945). Therefore

variance plays a big role in the determination of sample size and needs to be reliably esti-

mated to obtain accurate sample size estimations. Variance can be estimated using historical

data, or pilot studies in the population of interest.

2.3.2 Practical considerations

2.3.2.1 Choice of study design

The choice of study design varies on a case by case basis. To simultaneously recruit patients

to two or more treatment groups and observe outcomes in parallel are called parallel group

trials. The sample size is dependent on the allocation ratio, r. There may be reasons to

recruit more patients in a particular group, and allocation ratio can be adjusted. Total sample

size (n) is the sum of the the sample size in each group (n = nA +nB) and nB = rnA, where

r is the randomisation allocation ratio. This sample size is usually minimised when r=1, i.e.

equal randomisation (Julious 2004).

The simplest and most efficient design is a 1:1 parallel group trial comparing two treat-

ments with equal number of subjects in each group. Crossover designs have the added ben-

efit, where all patients receive all treatments, resulting in patients being their own control

(Mills 2009). The ability to incorporate within-subject differences in the analysis decreases

the required sample size while achieving the same precision compared to a corresponding

parallel-group trial (Li 2015). These designs are particularly useful for trials for chronic

conditions, where the condition returns once the treatment has worn off (Mills 2009). For

example, treatments for asthma can alleviate symptoms, but the condition itself is not cured.

Therefore, once the effect of one treatment has worn off, another can be tested on the same

patient.

Factorial designs can be used to compare two treatments simultaneously, and patients
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are assigned to a combination of treatments. Both main treatment effects of every treatment

under investigation, and their interactions can be analysed. The effect of receiving both

treatments may not equal the effect of the two treatment effects added together (Moser

2015). For instance, an outcome may increase by “a" on Drug X, and increase by “b" on

Drug Y, but the effect of receiving both Drug X and Drug Y is not equal to “a+b". This

implies an interaction exists, and can be measured using this type of design. Treatments

with multiple levels are considered, denoted by “n x m". A factorial design investigating

Drug X and Drug Y, each against a placebo, will result in a 2x2 design, as each treatment

has two levels (receive Drug X: yes/no; receive Drug Y: yes/no). This results in patients

being assigned to one of the following combinations: Placebo X and Placebo Y, Drug X and

Placebo Y, Placebo X and Drug Y, Drug X and Drug Y (Table 2.2).

Drug Y?

No Yes

D
ru

g
X

? No
Group 1 Group 2

Placebo X & Placebo Y Placebo X & Drug Y

Yes
Group 3 Group 4

Drug X & Placebo Y Drug X & Drug Y

Table 2.2: A summary of the four possible group allocation in a 2x2 Factorial Design clinical trial
investigating Drug X and Drug Y

Other designs include cluster trials (where groups (e.g. GP surgeries) are randomised

rather than individuals), standard GSDs (allowing for stopping early for efficacy or futility)

and ADs (discussed in Section 2.4).

2.3.2.2 Type of hypothesis test

A superiority trial tests the hypothesis that one treatment is superior to another. This usually

aims to show that an experimental treatment is superior to a control treatment, such as a

placebo, the current standard practice, or an alternative treatment (Lesaffre 2008) as opposed

to the null hypothesis, that the treatments are assumed to be the same.

Non-inferiority trials test the hypothesis that one treatment is not inferior to, or not ‘sub-
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stantially worse than’ another. These trials are often used to test an investigational treatment

with an already active treatment (i.e., not placebo). It may be useful for showing a treatment

is not inferior to a treatment, but can offer some advantage such as fewer side effects, fewer

doses or cheaper (Hahn 2012).

Equivalence trials test the hypothesis that two treatments are ‘clinically equivalent’

against the null hypothesis, that population means are different between treatment groups.

These trials are similar to non-inferiority trials in that they aim to show a treatment is not

substantially worse than another. However, they also aim to show that the treatment is not

substantially better either (Greene 2008).

Figure 2.1 illustrates the difference between superiority, non-inferiority and equivalence

trials in terms of some difference: dEq representing the equivalences limit, and dNI the non-

inferiority limit (Julious 2004).

Figure 2.1: An illustration of the difference between superiority, equivalence and non-inferiority.
(Julious 2004. Used with permission from John Wiley and Sons)

This thesis will focus only on superiority and non-inferiority hypotheses.

2.3.2.3 Type of data

In order to choose the correct sample size formula, the type of data collected in order to

answer the primary outcome hypothesis needs to be chosen. For instance, the outcome may

be collected on a continuous scale, such as blood pressure at 12 weeks, a rate or proportion,

such as readmittance to hospital (yes vs no), or a survival outcome, such as time to disease

progression.
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2.3.3 Trials with Normal Data

2.3.3.1 Superiority Trials

For continuous data, a superiority trial tests if the means across the treatment groups are

‘equal’, against a hypothesis that the means differ by amount ‘d’ (Julious 2004), chosen as

the effect size the trial will detect (Section 2.3.1.2).

The null hypothesis (H0) and the alternative hypothesis (H1) for a two-sided superiority

trial with means µA and µB in the control and intervention groups respectively can be written

as:

H0 : µA = µB

H1 : µA 6= µB

The minimum sample size required for Group A, with known variance, can then be calcu-

lated using Equation (2.1) (Flight 2016a):

nA =
(r+1)(Z1−β +Z1−α

2
)2

rδ 2
plan

(2.1)

where δplan =
dplan
σplan

is the target effect size chosen for the superiority trial and Z1−x represents

the (1-x) percentage point of a standard Normal distribution.

2.3.3.2 Non-Inferiority Trials

Hypotheses for non-inferiority trials test that two treatments are within the non-inferiority

limit dNI , defined as the ‘largest difference that is clinically acceptable, so that a difference

bigger than this would matter in practice’ (Julious 2004). The null and alternative hypothe-

ses for a non-inferiority study can be written as follows:

H0 : µA−µB ≤−dNI

H1 : µA−µB >−dNI
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and the corresponding sample size for Group A can be calculated using Equation (2.2)

(Flight 2016b):

nA =
(r+1)(Z1−β +Z1−α

2
)2σ2

plan

r(dplan−dNI)2 . (2.2)

2.3.4 Trials with Binary Data

2.3.4.1 Superiority Trials

For a superiority trial with binary data to detect a difference in absolute risk dsup, the hy-

pothesis can be written as:

H0 : πA = πB

H1 : πA 6= πB

and the corresponding sample size can be calculated using:

nA =

{
Z1−α

2

√
[(1+ r)π(1−π)]+Z1−β

√
[rπA(1−πA)+πB(1−πB)]

}2

rd2
plan

(2.3)

where

π =
(πA + rπB)

(1+ r)
. (2.4)

The hypothesis and sample size calculation for instead detecting a difference in Odds

Ratio (OR) can be written as follows:

H0 : OR = 1

H1 : OR 6= 1

and

nA =
6
[
Z1−β +Z1−α/2

]2
/(logOR)2[

1−Σ2
i=1π

3
i
] (2.5)

where π̄1 =
π1A+π2B

2 and π̄2 = 1− π̄1. Note, Equations 2.3 and 2.5 are equivalent (Julious

2009).
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2.3.4.2 Non-Inferiority Trials

For a non-inferiority trial with non-inferiority limit dNI , the hypothesis can be written as

(Julious 2009):

H0 : πA−πB ≥ dNI

H1 : πA−πB < dNI.

When testing the absolute risk difference, the sample size calculation can be expressed as

follows (Julious 2009):

nA =

(
Z1−α

√
π̃A (1− π̃A)+ π̃B (1− π̃B)+Z1−β

√
πA (1−πA)+πB (1−πB)

)2

((πA−πB)−dNI)
2 . (2.6)

Using Dunnett and Gent’s method to estimate the variance under the null hypothesis, π̃A(1−π̃A)
nA

+

π̃B(1−π̃B)
nB

, π̃A and π̃B can be expressed as follows:

π̃A =
πA +πB +dNI

2

π̃B =
πA +πB−dNI

2

(2.7)

When testing the difference in ORs, the hypothesis is written as follows:

H0 : OR≤ dNI

H1 : OR > dNI.

and the required sample size can be estimated using the following:

nA =
6
[
Z1−β +Z1−α

]2[
1−∑

2
i=1 π

3
i
]
(log(OR)−dNI)2

. (2.8)

2.3.5 Implications of underpowered trials

If prior information is limited in the planning stage, the resulting sample size may not be

sufficient to answer the hypothesis in question. The CONSORT Statement (2010) states
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“Reviews of published trials have consistently found that a high proportion of trials have

low power to detect clinically meaningful treatment effects" (Schulz 2010)

Underpowered studies have sparked much debate in the trial community regarding the

potential implications involved. A trial may not recruit enough subjects to fully answer

the research question, and are susceptible to making false negative conclusions due to their

low statistical power as a single study (Halpern 2005). Edwards et al. reason that some

information is better than none at all (Edwards 1997) and these studies may still be ethical,

as multiple underpowered studies may be combined in meta-analyses to improve power

and estimate treatment effects (Halpern 2002). It should be noted however, that the trials

included in the meta-analysis should have comparable research methods in order for the

combined analysis to be useful (Halpern 2002).

In 2013, a large number of Cochrane reviews were examined and power per individ-

ual study was evaluated (Turner 2013). Their findings showed that underpowered studies

contributed very little information at all to the meta-analysis when there were at least two

sufficiently powered studies available (defined as ≥50% power to detect a 30% risk reduc-

tion). However, they also noted that in most Cochrane reviews, underpowered studies were

the only studies available, highlighting the prevalence of underpowered studies. Despite so

many underpowered studies available in literature, it is thought that this does not capture the

full picture. Underpowered studies may not always be reported in the public domain and

so will not be incorporated for later meta-analyses Griffiths 1997. Therefore, methods have

been developed whereby the original sample size estimate may be modified during the study

progression through incorporation of an interim analysis, taking into account accumulating

data from the trial (Christy 2006). ADs using SSR methods could offer a potential solution

for a trial to obtain the necessary power at the final analysis (see Section 2.4)(Chow 2011).

2.4 Adaptive Designs

ADs have gained much interest in the last 30 years (Bauer 2016a) due to their flexible nature

and their potential for improved allocation of time and resources (Pallmann 2018).

ADs use the accumulated interim data at a pre-specified time-point in order to make
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a decision for the remainder of the trial (FDA 2010; FDA 2016). Decision rules for trial

modifications should be pre-specified and adaptations should not be made on an ‘ad hoc

basis’ to overcome poor planning at the design stage (Gallo 2006).

The term ‘Adaptive Design’ can cover a large number of trial designs. As this thesis

focuses only on SSR, other individual designs will not be reported on in detail here. How-

ever, they can be broadly classified by four main rules; ‘allocation rules’ including adaptive

randomisation designs, ‘sampling rules’ including SSR or drop the loser designs, ‘stopping

rules’ including GSDs or adaptive treatment switching, and lastly ‘decision rules’ where

changes can be made to the trial such as the primary endpoint, hypothesis, patient popula-

tion or statistical methods (Mahajan 2010).

Despite much research on ADs in recent years, many researchers are still cautious in

using these designs in practice (Pallmann 2018). Lack of experience is one major barrier

in their implementation, and in some cases there is concern regarding bias and the inter-

pretability of study results following adaptation (FDA 2010; Lin 2016).

In 2006, the Pharmaceutical Research and Manufacturers of America (PhRMA) working

group recommended the use of a number of adaptive clinical trial designs, and advocate their

implementation in industry, regulatory authorities and academia (Gallo 2006). There has

been an increase in the use of ADs in recent years (Hatfield 2016). However, ADs are still

not commonly used in clinical research (Hatfield 2016), and a number of logistical barriers

must be overcome to fully achieve the benefits ADs have to offer (Coffey 2012). Kairalla

et al. (2012) recommend developing “better methodology, infrastructure and software" in

order to address the barriers opposing ADs currently (Kairalla 2012).

When reviewing ADs, Vandemeulebroecke (2008) recommends five key discussion points

to consider; feasibility, validity, integrity, efficiency and flexibility (Vandemeulebroecke

2008). Any new methodology or design changes should consider these five points. This PhD

focuses on enhancing methodology for just one type of adaptive design; SSR, described in

Section 2.5.
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2.4.1 The Cost of an Adaptive Design

With ever-increasing expenses associated with running a clinical trial (Shore 2012; Collier

2009), there is considerable interest to ensure trials are run cost-effectively. Adaptive de-

signs can offer methods to allocate resources and time to trials in a cost-effective manner

(Lin 2016; Chang 2016; Bauer 2016a). In the industry setting, ADs can speed up the time

before product registration or marketing approval (Maca 2014).

Interim analyses can result in sample size savings if stopping boundaries are incorpo-

rated and the trial is allowed to terminate early. However, there is also a financial cost with

carrying out interim analyses, additional Data Monitoring and Safety Committee (DMSC)

meetings, and time allowed for the interim analysis to be carried out (Wassmer 2016; Chang

2016; Bauer 2016a; Mauer 2012). Furthermore, the number of subjects and recruitment

time are directly linked to the cost of the trial and any sample size increase decided at the

interim stage of an AD could incur huge costs for the trial team (Levin 2014; Koh 2017).

However, it has also been shown that incorporating more interim analyses can yield a lower

expected sample size (Koh 2017) and costs of recruiting additional patients should be care-

fully weighed against costs of interim analyses. Restricting the maximum possible number

of patients ensures the trial is kept to a reasonable maximum cost set by the investigators

(Bowden 2014). When sample size has been driven by logistical or budgetary issues as op-

posed to following a formula, these considerations may have already been taken into account

(Wang 2012).

Complex designs may not be the most cost-effective solution (Lin 2016) and realisti-

cally, costs resulting from ADs can be extremely difficult to estimate in advance (Huskins

2018). The European Organisation for Research and Treatment of Cancer (EORTC) notes

that neither an AD nor a standard GSD are useful when accrual is very quick and the time

to the primary outcome is quick (Mauer 2012).

One additional logistical impact on the financial costs of an AD is the supply of the

investigational product (Maca 2014). An increase in sample size requires an increase in

resources and an added cost in distributing more product to sites after the interim analysis

results. Any time delay between manufacturing additional products and their distribution
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should be carefully considered. Furthermore, capping the sample size can prevent highly

significant findings that are clinically irrelevant. On the other hand, a trial that could result

in early termination could mean a waste of resources if already manufactured and distributed

to sites.

2.5 Sample size re-estimation

SSR is a form of AD whereby sample size can be recalculated during the study progres-

sion. Accumulating data can provide information about key parameters estimated prior to

the start of the trial in the SSR. This design is attractive to researchers, especially when prior

information is limited as it can avoid either an underpowered study, or an excessively large

study due to over-optimistic or conservative prior estimates in the planning stage respec-

tively (FDA 2010).

SSR can be carried out in either a blinded or an unblinded fashion. bSSR is when

treatment group allocation is not revealed at the interim analysis and re-estimates nui-

sance parameters such as variance for a continuous outcome, or the probability of an event

for a dichotomous outcome (Proschan 2005). Pooled variance can be used to highlight

any significant difference in planning assumptions for variance, without unblinding the re-

searcher to group allocation, and used to update the sample size in the second stage. For

example, a superiority trial with a continuous endpoint is designed with a two-sided sig-

nificance level α = 0.05, 90% power and an assumed effect size of 0.3. There is un-

certainty around the variance estimate, and is initially set as σ2
plan = 0.4, but a bSSR in-

corporated to re-estimate this, using the methodology proposed by Wittes and Brittain in

1990 (Wittes 1990). The initial sample size is n = 2(1.960+1.282)20.4
0.32 = 93.4 ≈ 94 per arm.

An interim analysis is conducted after 50 patients per arm have been observed, and the

pooled variance estimate across treatment arms is σ̂2
1 = 0.58. The new sample size becomes

n∗ = 2(1.960+1.282)20.58
0.32 = 135.5≈ 136 per arm. Had the bSSR not taken place, too few sub-

jects would have been recruited as the estimate of variance was too low, and the study would

have been underpowered.

Re-estimation using just nuisance parameters can be performed in either a blinded, or
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unblinded manner. However re-estimating sample size using the treatment effect will al-

ways be performed using unblinded methods (Mütze 2018). A third approach, spanning

the two key methods for SSR, can be considered. “Partially blinded SSR" updates nuisance

parameters at the interim stage, but algorithms to calculate the new sample size required is

not solely driven by the unblinded treatment effect (Pritchett 2015). “Partially unblinded

SSR" refers to uSSR where group allocation is revealed as Treatment A or B only, and the

researcher is unable to identify which specific treatment each refers to (Gould 2001).

Kairalla et al. (2012) note that researchers must exercise extreme caution when using

treatment arm specific data, but these methods may be appropriate when access is fully

restricted to very few people, and access only granted is absolutely essential (Kairalla 2012).

Stein (1945 & 1950) introduced a two-stage procedure for re-estimating sample size

calculations, using stage one to provide the nuisance parameter information to update the

sample size for stage two (Stein 1945; Stein 1950). A number of extensions to this method-

ology have been developed in both blinded and unblinded approaches (Wittes 1990; Birkett

1994).

Stein’s method however requires at least the statistician carrying out the interim analysis

to be unblinded, as the pooled variance calculation (σ2
pooled) depends on the sample mean of

each treatment arm. Gould and Shih (1992) showed that a “lumped" variance estimator can

be calculated using Equation (2.9) (Gould 1992), which does not require specific treatment

group information:

σ̂
2
L =

1
n1−1

n1

∑
i=1

(Xi− X̄1)
2 (2.9)

where n1 is the number of patients at the interim analysis, Xi are the individual responses,

and X̄1 is the mean of all n1 patients. However, it has been shown that this overestimates

the true pooled variance (Proschan 2006). Additionally, if both σ̂2 and σ̂2
L are known, the

treatment effect at stage 1 (δ̂1) can also be estimated by partitioning the sum of squares

and therefore unblind any researchers with this knowledge (Proschan 2005). Gould and

Shih overcome this with a method based on the EM (Expectation Maximisation) Algorithm,

which has been seen as controversial in more recent research. The EM-approach is an iter-

ative procedure, calculating conditional expectations of the unknown treatment allocations,
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computing maximum likelihood estimates (MLEs), updating conditional expectations and

repeating (Friede 2002). Once the estimated within-group variance has stabilized, the pro-

cedure stops, as it is said to have converged. It was reported that this procedure estimates

the true within group variance well, and was not influenced by the choice of initial values.

However, Friede and Kieser (2002) showed that this is not the case: that the variance mono-

tonically decreased when the initialisation parameter increased. Furthermore, Friede and

Kieser also reported an inadequate convergence criterion, and uses simple randomisation

- and so should be modified when the more commonly used block-randomisation is used

(Friede 2002). Gould and Shih disputed these findings and presented further simulation

work to support their work (Gould 2005). This procedure remains controversial (Waksman

2007).

Using total variance estimates for bSSR affects Type I error by only a negligible amount

for parallel group superiority trials with continuous outcomes, and these methods are often

able to maintain target power (Kieser 2003). This is also true for binary data (Friede 2004),

longitudinal data (Wachtlin 2013) and count data (Friede 2010).

The International Council for Harmonisation of Technical Requirements for Pharmaceu-

ticals for Human Use (ICH) E9 Statement considers bSSR methods to be generally well ac-

cepted by regulatory authorities (Lewis 1999). This corresponds with the initial 2010 Food

and Drug Administration (FDA) draft guidance for industry, considering bSSR approaches

as “well understood", as methods are able to control Type I error well (FDA 2010).

While blinded approaches not making any treatment effect comparisons are generally

well accepted, there may be considerable uncertainty regarding the predicted treatment ef-

fect at the planning stage. Therefore, unblinded methods can be used in order to re-estimate

the sample size based on the treatment effect at interim. These approaches are a lot more

controversial due to requirement for knowledge of treatment allocation at the interim analy-

sis (FDA 2010). Methods for uSSR will be discussed in more detail in Section 3.

uSSR methods were first classed as “less well-understood" according to the initial 2010

FDA guidelines, as these methods look at treatment group specific data. This gives the

researcher the potential to increase the sample size if the treatment estimate was initially
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over-optimistic but still of clinical importance (Pritchett 2015). Knowing the specific group

assignment of subjects at the interim analysis can introduce bias and can cause inflation of

Type I error (false positive rate) (FDA 2010), making the methodology open to controversy.

While there are statistical methods to control Type I error to adjust for decision making

based on multiple looks at the data (Bauer 1994; Lehmacher 1999), operational bias, where

unblinded results may cause analysts or investigators to conduct the trial differently, is a non-

statistical source of bias with no statistical method of adjustment would be able to account

for this FDA 2010. More recently however, the FDA have been generally more accepting of

unblinded methods due to the increase in relevant research FDA 2016.

The PhRMA working group recommends routinely considering a bSSR in trials. They

also state that unblinded methods exist and “can" be used (Gallo 2006). The European

Medicines Agency (EMA) Committee for Medicinal Products for Human Use (CHMP) re-

flect this opinion, stating: “Whenever possible, methods for blinded sample size reassess-

ment that properly control the Type I error should be used, especially if the sole aim of

the interim analysis is the re-calculation of sample size. In cases where sample size needs

to be reassessed based on unblinded data, sufficient justification should be made", for ex-

ample when there is specific uncertainty regarding the true treatment effect, δ (European

Medicines Agency 2007).

By unblinding at the interim analysis, bias is introduced and Type I error may be inflated.

Therefore methods using uSSR tend to focus on methods for controlling for Type I error.

This shall be discussed in more detail in Section 2.8.

The magnitude of the sample size re-estimation can be determined by a number of ap-

proaches. A calculation called CP, described in further detail in Section 2.6 can inform

the researcher how many more patients would be needed to recover the planned power if

the trial continues under the current trend observed so far (Gaffney 2017). One application

using this method determines a range of CP values in which increasing the sample size is

necessary, and applies a function to determine the new increased value of sample size at the

interim time-point (Chen 2004; Mehta 2011; Jennison 2015). Regulatory agencies such as

the FDA did not recommend a sample size reduction, and SSR rules are often constrained
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to an increase in sample size for this reason (Mehta 2011; FDA 2010). However, the FDA

have been more accepting in recent years provided sufficient justification of the approach

being used is also provided (US Food and Drug Administration (FDA) 2019). Knowledge

of the sample size rule used and the final sample size can provide information regarding the

observed interim treatment effect, and trialists may behave differently depending whether

the treatment is “unfavourable” compared to “promising”, whether knowingly or otherwise.

A stepwise approach has been suggested to overcome this potential source of bias. Sample

size can be increased in a step-wise manner to one of J discrete values, should a sample

size increase be suggested (Wan 2015). For example, consider a trial that aims to recruit

200 patients. An interim analysis at 100 patients may suggest continuing to the originally

planned 200 patients, or an increase to either 300, 400 or 500 patients, dependent on the

interim results (J=3 discrete possible increased values). Now investigators who know the

sample size rule used and the final planned sample size after the interim results may be able

to work out a range (or ranges) in which the treatment effect lies, but is surrounded with

more uncertainty.

2.6 Conditional Power

CP is the probability of rejecting the null hypothesis, H0 at the final analysis, given the

data observed at the interim analysis, and a future treatment effect for remaining patients d̃

(Mehta 2011). CP can be computed using the following formula (Denne 2001):

CP(d̃)(n|z1) = 1−Φ


c
√

n− z1
√

n1− n−n1√
2σ̂2

obs
d̃√

(n−n1)

 (2.10)

where z1 is the observed test statistic at the interim analysis, σ̂2
obs is the observed variance

at the interim analysis, d̃ is the assumed future treatment difference, c is the final analysis

critical value, n1 represents the first stage sample size and n denotes the total sample size at

the time of planning. For an unadjusted final analysis, the critical value c can be replaced

with z1−α

2
. Since the true effect δ is unknown, it is denoted in the CP equation by the
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assumption of the future treatment effect (d̃). Some common choices include assuming the

the alternative hypothesis at the planning stage (δplan), or the current trend observed so far

prior to the interim analysis (δ̂obs) (Sully 2014).

If using the observed treatment effect as the future assumption, Equation 2.10 becomes:

CP
δ̂obs

(n|z1) = 1−Φ

{
z1−α

2

√
n− z1

√
n1√

(n−n1)
− z1
√

n−n1

n1

}
, (2.11)

which is the same as the equation suggested by Mehta and Pocock (2011).

Denne (2001) suggests using the lower confidence limit of the observed treatment differ-

ence (dL(α∗) = d̂− zα∗

√
(2σ̂2

obs/n1)), the lower α∗ confidence limit for d (Denne 2001).

Building from this, Herson et al. (2012) advocate the optimistic end of an 80% confidence

limit of the observed treatment effect when a decision regarding futility is to be made at the

interim time point (Herson 2012).

Some SSR designs use CP to aid decision rules, such as equating CP to planned power

(Promising Zone deign), partitioning CP into discrete rules (Stepwise design), or as part of

a combined objective function (Combination test design) (Mehta 2001; Liu 2016; Jennison

2015). These designs shall be discussed in detail in Chapter 3.

2.7 Sequential Designs

In 1943, Wald developed methods to analyse data sequentially for determining the outcome

of an experiment sooner and with fewer observations (Wald 1947), known as the sequential

probability ratio test. Due to its use in wartime logistics, the research wasn’t available to the

public until 1947. Using the same principles, a similar method known as the triangular test

was developed in the late 1950s (Anderson 1960). Essentially, data is analysed sequentially

to determine whether there is enough evidence for the acceptance of H0, for H1, or insuffi-

cient evidence to accept either. In the clinical trial setting, patients are enrolled until one of

the hypotheses are accepted.

In the late 1970s, the methodology was extended to allow for grouped analysis of pa-

tients (Whitehead 1979). The number of interim analyses allowed is determined prior to
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the start of the trial. At each interim analysis, the hypothesis is tested and the outcome will

terminate early due to either efficacy (the treatment has already been shown to be better than

the comparison and recruitment can be stopped before the end of the trial) or futility (the

treatment is very unlikely to be shown as effective and recruiting further patients is futile)

(Bassler 2008), or neither hypothesis is accepted and recruitment continues until the next

interim analysis, where the decision procedure is repeated.

Stopping boundaries are calculated according to the ‘alpha-spending function’ used

(Section (2.7.1)) and the number of interim analyses planned.

While GSDs are considered as ADs themselves due to their use of interim analyses and

decision rules for the continuation or early termination of the trial, for the purpose of this

thesis, they will be considered as a separate design (standard GSD). This will better enable

the distinction in comparisons between standard GSDs, Adaptive Group Sequential Designs

(AdGSDs) and ADs.

AdGSDs incorporate a SSR in the final interim analysis of a standard GSD, provided the

trial is not stopped at a previous interim time-point. Further applications of this method are

known as Delayed Response Group Sequential Design (DRGSD), which include incorpo-

rating uncertainty about patients already enrolled at the interim analysis time-point, but who

do not yet have outcome data available for analysis, known as pipeline patients (Hampson

2012).

2.7.1 Alpha Spending Functions

Due to the multiple testing nature of the hypothesis under investigation at each interim

analysis, α will be inflated and so must be adjusted. To maintain α at the nominal level

in a standard GSD, a number of different alpha spending functions have been suggested,

and the choice lies with the investigator for each trial. Essentially, α is shared between

all interim analyses in different weights, offering flexibility particularly when unforseen

changes to the number or timing of interim analyses happens. When there is no wish to stop

early unless there is overwhelming evidence, very small amounts of α may be spent in the

interim analyses, and saved mostly for the final analysis. On the other hand, spending more
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α earlier on may be advantageous if a treatment is expected to be beneficial and this effect

can be shown earlier on. Critical values at each interim analysis depends on the method

used, the overall significance level, power and number of interim analyses, K.

2.7.1.1 Pocock Method

In 1977, Pocock presented an alpha spending approach (Pocock 1977) of the form

α∗(τ) = αln(1+(e−1)τ) (2.12)

where τ = n1
n represents the information fraction of patients at each interim analysis for

continuous and binary endpoints, or the information fraction in terms of events for time-

to-event endpoints (Proschan 1999). Alpha is ‘spent’ roughly equally, meaning that each

interim analysis has roughly the same p-value cut-off point, where the trial would stop for

efficacy.

The general procedure for the Pocock methodology is as follows (Chow 2008)

1. At interim analysis k = 1, ...,K−1,

• if |Zk|>CPocock(K,α) the trial stops and H0 is rejected;

• otherwise, continue to group k+1

2. After stage K,

• if |Zk|>CPocock(K,α) then H0 is rejected;

• otherwise accept H0

where CPocock(K,α) is the critical value using Pocock’s Method for K planned interim anal-

yses and significance level α . Zk is the observed test statistic at the kth interim analysis. The

constants CPocock(K,α) can be found in tables available in the literature (Chow 2008).

This methodology can be extended to a futility boundary by using beta-spending func-

tions, where the trial is stopped and H0 is accepted, and are provided for illustrative purposes

only (Pampallona 1994). Figure 2.2 illustrates both one-sided and two-sided efficacy and

futility boundaries using the Pocock alpha spending function (Chow 2008).
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(a) (b)

Figure 2.2: Pocock stopping boundaries for 10 planned interim analyses with 1−β=0.9 and
α=0.05. Figures (a) and (b) show one-sided and two-sided stopping boundaries respectively. If the
black (solid) line is crossed, the trial stops for efficacy. If the blue (dashed) line is crossed, the trial
stops for futility.

2.7.1.2 O’Brien Fleming Method

While Pocock’s method gives each interim analysis roughly the same weighting, O’Brien

and Fleming designed stopping boundaries that give very small weighting to early interim

stages, and larger weighting to later analyses. This means a very small p-value would need

to be seen at an early stage in order to stop early. Therefore, less alpha is ‘used up’ in these

early analyses, and there is more to use in later stages. This is particularly useful when there

is no real wish to stop a trial early (O’Brien 1979).
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(a) (b)

Figure 2.3: O’Brien Fleming stopping boundaries for 10 planned interim analyses with 1−β=0.9
and α=0.05. Figures (a) and (b) show one-sided and two-sided stopping boundaries respectively. If
the black (solid) line is crossed, the trial stops for efficacy. If the blue (dashed) line is crossed, the
trial stops for futility.

The alpha spending function takes the form (Proschan 1999)

α∗(τ) = 2(1−Φ(τ−
1
2 z α

2
)). (2.13)

The general procedure for the O’Brien Fleming method is summarised below (Chow

2008),

1. At interim analysis k = 1, ...,K−1,

• if |Zk|>COBF(K,α)
√

K/k the trial stops and H0 is rejected;

• otherwise, continue to group k+1

2. After stage K,

• if |Zk|>COBF(K,α) then H0 is rejected;

• otherwise accept H0

Similarly to the Pocock method, COBF(K,α) are critical values from the O’Brien Fleming

method and are found in tables in the literature (Chow 2008).
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Again, Pampaloon et al. extend this work to beta spending functions to allow the early

termination of the trial for futility (Pampallona 1994). Figure 2.3 illustrates one and two

sided efficacy and futility boundaries using the O’Brien Fleming method for 10 interim

analyses.

2.7.1.3 Wang Tsiatis Method

(a) (b)

Figure 2.4: Wang Tsiatis stopping boundaries for 10 planned interim analyses with, ∆=0.25,
1−β=0.9 and α=0.05. Figures (a) and (b) show one-sided and two-sided stopping boundaries
respectively. If the black (solid) line is crossed, the trial stops for efficacy. If the blue (dashed) line
is crossed, the trial stops for futility.

In 1987, Wang and Tsiatis a family of tests, depending on a new parameter ∆. The general

procedure is as follows:

1. At interim analysis k = 1, ...,K−1,

• if |Zk|>CWT (K,α,∆)(k/K)∆− 1
2 the trial stops and H0 is rejected;

• otherwise, continue to group k+1

2. After stage K,

• if |Zk|>CWT (K,α,∆) then H0 is rejected;

• otherwise accept H0
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This method is the same as the Pocock method when ∆=0.5, and the O’Brien Fleming

method when ∆=0. Therefore a ‘middle-ground’ between the two methods discussed pre-

viously can be reached. Figure 2.4 illustrates efficacy and futility boundary for 10 interim

analyses, α=0.05 and ∆ = 0.25.

2.8 Controlling Type I error

Chen et al. states “If the sample size recalculation is based on estimates of nuisance param-

eters such as within-group variance for Normal response or pooled event rate for a binary

outcome, the Type I error rate will not be materially inflated. However, if the sample size

recalculation is based on the observed treatment difference, the Type I error rate could be

substantially inflated and an appropriate statistical adjustment may be needed to control it."

(Chen 2004)

Therefore, a key focus in uSSR methodology has been around the preservation of Type

I error at the point of the final analysis. Making a decision based on the accumulating

data at the point of an interim analysis can inflate Type I error and a number of approaches

have been developed in order to overcome this. These methods can be categorised into two

broader frameworks: conditional error functions, and combination tests, both of which are

described in this section.

2.8.1 Conditional error functions

2.8.1.1 Proschan & Hunsberger

As mentioned in Section 2.6, some SSR rules use CP to determine rules for SSR. Proschan

& Hunsberger (1995) equate CP to a conditional error function A(z1) to determine the final

critical value, based on observing interim results (Proschan 1995). Their approach allows

flexible sample size and an adjusted final analysis, determining a critical value (c) and num-

ber of stage 2 observations required (n2) using

CPδ (n2,c|z1) = 1−Φ

(
c
√

2(n1 +n2)− z1
√

2n1−n2δ√
2n2

)
= A(z1) (2.14)
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where A(z1) is an increasing function in the range [0,1] that determines how much Type I

error to allow at the end of the study, given that Z1 = z1, and satisfies

∫
∞

−∞

A(z1)φ(z1)dz1 = α (2.15)

where φ(z1) is a standard normal density function. Equations 2.10 and 2.14 for CP are

equivalent to each other, using d̃ = δ . Solving Equation (2.14) for c yields Equation (2.16):

c =
√

n1z1 +
√

n2zA(z1)√
n1 +n2

(2.16)

, where zA(z1) is the test statistic for the function A(z1) defined previously. An arbitrary

choice of n2 is allowed, provided this criteria is met (Posch 1999). When n2 is close to 0

(i.e. almost no additional observations are required), the critical value, c, is close to z1. For

larger n2, c approaches zA(z1). Therefore, Type I error is controlled by only extending the

trial if the interim p-value is sufficiently small. Furthermore, conditional error functions can

adjust for the level of uncertainty on a case by case basis (Proschan 1995).

A(z1) can take on a number of classes of functions (Li 2002). Proschan and Hunsberger

introduce the “circular conditional error function” of the form

Acirc(z) =


0; if z1 < c f ut

1−Φ

(√
c2

1− z2
)

; if c f ut ≤ z1 < c1

1; if z≥ c1

(2.17)

where c f ut is the critical value chosen in which the trial would stop for futility (i.e. H0 is

accepted).

2.8.1.2 Linear conditional error functions

In 2001, Denne presented an alternative family of conditional error functions to the circular

functions by Proschan & Hunsberger. The functions proposed by Denne are not required to

be determined prior to the study start, as they depend on the sample variance (σ̂2) calculated

at the interim analysis (Denne 2001). This improves unconditional power for cases where
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planned variance is smaller than the true variance (Denne 2001).

The “linear conditional error function” takes the form

Al(z) =


0; if z1 < c f ut

1−Φ((a+bz1)) ; if c f ut ≤ z1 < c1

1; if z1 ≥ c1

(2.18)

Again, c f ut is the critical value that would stop the trial for futility and c1 is the first stage

critical value, determined at the interim analysis. Values a and b are determined by

a =
c̃2√

1− τ1
(2.19)

b =−
√

τ1

1− τ1
(2.20)

where τ1 is the information fraction n1
n and c̃2 is the required critical value in order to ‘spend’

the remaining α in the second stage given no sample size increase takes place (i.e. based on

n2 patients only).

2.8.1.3 Li, Shih & Wang

In 2002, Li, Shih et al. presented a modification to the work of Proschan & Hunsberger,

with the purpose of relaxing the specific form of the circular or linear functions, A(z1). This

results in a final critical value that is dependent only on the chosen design parameters, as

opposed to the random first stage outcome (Li 2002).

The aim of the procedure is to determine the number of additional observations required

(n2) and a corresponding critical value (c) in order to maintain the overall Type I error rate

at level α and conditional power at the final stage given the interim result at level 1− β ,

where α and β are pre-specified constants. Li et al. choose to select the first stage critical

value, based on α1, creating an ‘alpha-spending’ approach.

The overall Type I error can be expressed as:

α = α1 +
∫ klsw

hlsw

A(z1)φ (z1)dz1 (2.21)
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where ‘hlsw’ should be chosen such that 1−Φ(hlsw)> α . Specifically, the circular function

becomes

α = α1 +
∫ klsw

hlsw

[1−Φ{
√

k2
lsw + z2

1}]φ(z1)dz1 (2.22)

and the linear function becomes

α = α1 +
∫ k

h
Φ(a+bz1)φ(z1)dz1 (2.23)

where klsw is a design constant dependent on α .

At the interim analysis, the final maximum critical value, Cmax, can be determined from

Equation (2.24):

1−Φ(hlsw)−α =
∫ klsw1

hlsw

Φ

Cmax(Cmax +Zβ1(u))−u2)√
(Cmax +Zβ1(u))

2−u2

φ(u)du (2.24)

where klsw1 = min(klsw,C+Zβ1). The number of additional observations can be calculated

from Equation (2.25):

n2 = min

[
nmax,

((
Cmax + zβ1√

z1

)2

−1

)
n1

]
, for z1 ∈ (hlsw,klsw) (2.25)

2.8.1.4 Bowden & Mander

Using the new sample size suggested by Li et al. can result in a large increase in sample size

between stage 1 and stage 2. In 2014, Bowden and Mander suggested a slight adaptation

to the LSW design, and go on to incorporate a maximum feasible sample size constraint

(Bowden 2014).

Instead of choosing hlsw, klsw, α and Zβ1 as with the standard LSW approach, a number

of designs are now identified through the following algorithm:

1. Identify the fixed sample design with significance level α , power 1−β and hypothe-

sised treatment effect δplan

2. Find all joint values (hlsw,klsw,Zβ1) consistent with α and C = Zα from Equation
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(2.25)

3. For each set of (hlsw,klsw,Zβ1) identified, find the minimum value of n1 such that the

unconditional power equals 1−β .

Figure 2.5 illustrates this algorithm, identifying hlsw, klsw and Zβ1 . The optimal first stage

sample size, n1, is determined by identifying the required power (e.g. 84% in this illustra-

tion, yielding an expected sample size E(N) of 124, and corresponding design parameters

klsw and llsw).

Figure 2.5: Illustration of the Reverse LSW algorithm for determining design parameters (Bowden
and Mander 2014. Used with permission from John Wiley and Sons) (Bowden 2014)

This approach is also described when an additional restraint on the maximum sample

size, nmax is to be specified.

The algorithm now becomes:

1. Identify the fixed sample size design with significance level α , power 1−β , hypothe-

sised treatment effect δplan and maximum value of n1+n2(z1) = nTmax say. Set C = Zα

2. Given nmax = nTmax−n1, find the set of values (hlsw,klsw,Zβ1,nmax) such that:

(a) (hlsw,klsw,Zβ1,nmax) are consistent with α and C = Zα

(b) n1 is minimised, and
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(c) unconditional power equals 1−β

No illustration can be drawn for this reverse modified LSW approach, as not all parameters

increase and decrease consistently.

2.8.2 Weighted combination tests

2.8.2.1 Fishers product combination test

In 1932, Fisher introduced a method of controlling Type I error based on the product of K

independent p-values (Fisher 1932). H0 is rejected if

K

∏
i=1

(pi)≤ cK (2.26)

where cK is a constant. As each p-value is uniformly distributed on (0,1),

−2
K

∑
i=1

ln(pi)∼ χ
2 (2.27)

with 2K degrees of freedom (Westberg 1985). Therefore it is possible to calculate cK exactly,

using:

cK = e−
1
2 χ2

2K,1−α (2.28)

where e is the exponential function, and χ2
2K,1−α

is the (1−α) quantile of the Chi-Squared

distribution with 2K degrees of freedom, and α is the significance level (Bauer 1994).

2.8.2.2 Modified combination test

In 1994, Bauer & Kohne extended the work of Fisher, specifically for testing an adaptive

interim analysis such as incorporation of stopping boundaries. The general procedure for a

two stage design using the modified combination test is described below (Wassmer 1998):

1. If p1 ≤ α1 (where α1 > cα ), the trial stops for efficacy (H0 if rejected).

2. If p1 ≥ α f ut , the trial stops for futility (H0 is accepted)

3. If α1 < p1 < α f ut , the trial continues to the second stage.
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where α f ut is the futility boundary chosen by the investigator.

If the trial continues to the second stage, the value of p1 may be used to redesign the

study, such as modifying the number of subjects to recruit in the second stage (n2). After

stage 2, H0 is rejected if p1 p2 ≤ cα While cα can be computed directly using cα = e−
1
2 χ2

4,α ,

α1 is determined iteratively, given an overall α level test, and using

α1 +
∫

α f ut

α1

cα

p1
d p1 = α1 + cα(lnα f ut− lnα1) = α (2.29)

Bauer & Kohne also investigate the power loss of the combination test compared to

the pooled sample test (both stage 1 and 2), as well as the additional power loss resulting

from stopping the trial early. Compared to the pooled sample test, the largest loss of power

resulting from the modified combination test occurred when the first stage sample size was

20% of the total sample size and a smaller overall significance level (0.01 compared to 0.05).

Even so, this decrease was small (4.6% for 1−β = 0.5, 4% for 1−β = 0.8, and 2.7% for

1−β = 0.9). These values were calculated using numerical integration. The loss in power

due to early stopping compared to the classical test on the pooled samples is given as

P[{p1 p2 ≤ cα}∩{p1 ≥ α f ut}]−P[{p1 p2 ≥ cα}∩{cα ≤ p1 ≤ α1}]. (2.30)

It can then be shown that an upper boundary for power loss from early termination is given

by (Bauer 1994)

P[p2 ≤
cα

α f ut
]P[p1 ≥ α f ut ]−P[p2 ≥ α f ut ]P[

cα

α f ut
≤ p1 ≤ α1] (2.31)

Again, exact power loss can be calculated through numerical integration, and the power loss

is relatively small compared to the pooled sample.

The main advantage of the modified combination test is that adaptations to the design can

now be incorporated, such as early stopping for efficacy and futility, SSR, and even a change

in hypothesis (Bauer 1994). However, Wassmer points out in 1998 that the “lack of concrete

rules for calculating the sample size for the second part of the study” is a huge drawback
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of this method. However, he also states that by using CP procedures, this limitation can be

overcome.

Wassmer compares the modified combination test to the work of Proschan and Huns-

berger, described in Section 2.8.1.1, which also allows for a design modification at the in-

terim stage but uses conditional error functions for Type I error control. While both methods

are similar in terms of decision rules, power loss and expected sample size (Wassmer 1998),

the modified combination test can handle more adaptation types than just SSR, such as a

change in hypothesis at the interim stage (e.g. a dose response design, where only a subset

of doses are explored in the second stage) (Bauer 1995). Furthermore, the methodology pro-

posed by Proschan & Hunsberger is specifically for normal responses, with known variance

and one interim analysis (Lehmacher 1999).

2.8.2.3 Fisher variance spending

In 1998, Fisher proposed a method of controlling Type I error, even when the interim anal-

ysis is unplanned by ‘spending’ a total variance of 1 between the two stages (Fisher 1998).

Denote the total sample size n = n1 + n2 in terms of the information fraction τ , so that

n = τn1+(1−τ)n2, and let XAi and XBi denote the responses in two treatment groups A and

B respectively. At the interim stage, the test statistic, Z1 is defined as follows

Z1 =
∑

τn
i=1(XAi−XBi)√

n
∼ N(τ

√
nd,τ). (2.32)

Suppose the sample size is increased in the second stage by some inflation factor 0 < f < 1,

such that n∗ = τn+ f (1− τ)n, where f is stage 1 data driven (Jennison 2003),

f =
(
√
(1− τ)z1−β + z1−α

2
− τ
√

nδ̂1)
2

(1− τ)2nδ̂ 2
1

. (2.33)

The second stage test statistic is defined as

Z2 =
f−

1
2 ∑

n∗
i=τn+1(XAi−XBi)√

n
∼ N(

√
f (1− τ)nδ ,1− τ). (2.34)
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However, no matter the value of f , Z2 is independent of Z1 and stage 1 data (Jennison

2003). The variance of Z2 (1-τ) is the remainder of the variance to ‘spend’ in the second

stage. Therefore the variance spending test statistic is

Z = Z1 +Z2 =
∑

τn
i=1(XAi−XBi)+ f−

1
2 ∑

n∗
i=τn+1(XAi−XBi)√

n
(2.35)

Therefore, if H0 is rejected if Z > zα , Type I error is maintained at level α .

2.8.2.4 Inverse normal combination tests

In 1999, Lehmacher and Wassmer introduce a method that combines standard GSDs with

an adaptive sample size, even in the case of unknown variance and unequal sample sizes

(Lehmacher 1999). Hedges and Olkin proposed the inverse normal method for combining

p-values in 1985, where the test statistic is given by (Hedges 1985)

1√
k

K

∑
k=1

Φ
−1(1− pk) (2.36)

Lehmacher and Wassmer combine this test statistic, and classical group sequential bound-

aries in their proposed method, and show that Type I error is controlled at level α even for

unequal sample sizes, nk in each of the K stages. This is because the Φ−1(1− pk)’s are in-

dependent and standard normally distributed. While an unweighted procedure can be used

when each stage sample sizes are equal, it is recommended that a weighted procedure is

used when sample sizes vary from stage to stage (Lehmacher 1999). However, the number

of stages, K, must be specified in advance in order to use these methods.

2.8.2.5 Cui, Hung & Wang

In 1999, Cui, Hung and Wang proposed a weighted combination of test statistics (Cui 1999),

since described in literature as the “CHW" method. Consider a trial with two stages (one

interim analysis), with mean µ̂k, number of observations nk, k=1,2. Now consider scenario

1, where no sample size increase takes place at the interim stage. Conventional test statistics
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for each stage (1,2) and combined (C) are defined as follows:

X1 =
µ̂1
√

n1

σ̂

X2 =
µ̂2
√

n2

σ̂

XC =
µ̂C
√

n
σ̂

=

√
n1

n
X1 +

√
n2

n
X2

(2.37)

Now, consider scenario 2, where total sample size is increased from nC = n1 + n2 to n∗C =

n1 +n∗2. In this scenario, conventional test statistics become:

X1 =
µ̂1
√

n1

σ̂

X∗2 =
µ̂∗2
√

n∗2
σ̂

X∗C =
µ̂∗C
√

n∗

σ̂
=

√
n1

n∗
X1 +

√
n∗2
n∗

X∗2

(2.38)

The CHW method uses the weights as though no sample size modification has taken place

(i.e. Scenario 1), and the test statistic X∗2 relating to a sample size increase in scenario 2. It

is however worth noting that X2=X∗2 if no sample size increase occurs, and the final CHW

test statistic will equal the conventional test statistic in this scenario. The CHW test statistic

is (Mehta 2011; Cui 1999):

X∗CHW =

√
n1

n
X1 +

√
n2

n
X∗2 6=

µ̂∗C
√

n∗

σ̂
(2.39)

The trial is considered statistically significant if the CHW weighted test statistic exceeds

the α level critical value, i.e. if X∗CHW > zα .

The CHW statistic essentially downweights the second stage test statistic following the

interim analysis. This has the added benefit that a SSR would not have to be specified in

advance of the trial start and Type I error could still be controlled by using this method (Chen

2004). However, by assigning unequal weights to the two stages, the ‘sufficiency principle’

is violated. In a trial, every observation is equally informative. By unequally weighting

the observations, this principle is infringed, and could lead to unreasonable results (Burman

2006; Basu 1969). In time-to-event trials, this situation is undesirable when the hypothesis
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is such that survival curves separate at first, and join together later on (Elsäßer 2014).

2.8.2.6 Dual test/Modified weighted method

Chen, DeMets and Lan (2004) suggest a modification to the weighted method described

previously in Section 2.8.2.5. For the modified weighted test statistic approach having re-

cruited n1 patients, both the weighted statistic (XW ) and the unweighted statistic (X) must be

greater than the critical value (zα ) for the final test to be considered statistically significant

(Chen 2004). The Type I error for this method is actually less than the nominal α level.

It has also been shown that the loss of power through using this method as opposed to the

weighted approach is between 0 and 2% for up to a 100% increase in sample size increment.

This method has also been termed as the ‘dual test’ in the literature (Shih 2016).

2.8.3 Unadjusted critical values

In 2004, Chen, DeMets and Lan (“CDL”) showed that if sample size is only increased if CP

is greater than 50%, then no adjustment needs to be made for the final analysis, and Type I

error is still controlled at the nominal level, α (Chen 2004). Gao et al. (2008) and Mehta

& Pocock (2011) further extended this range where Type I error is protected following SSR

(Gao 2008; Mehta 2011). Researchers implementing this method must strictly adhere to

these rules as any deviance may inflate Type I error. All rules must be pre-specified in

advance. There is some concern from regulatory authorities in particular regarding compli-

ance (Hung 2016a). This method is advantageous to researchers due to its comparatively

straightforward statistical approach, and the added benefit that every observation is treated

as equally informative to the final analysis (Mehta 2016a). This is also referred to as the

‘one person, one vote’ property in the literature. This method of Type I control, and the SSR

rule used in the promising zone framework is discussed in more detail in Section 3.5.1.

2.8.4 Comparison

There have been a number of comparisons of the various methods to control Type I error in

the literature. In 1999, Posch & Bauer performed a direct comparison between two com-
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bination test designs and showed that, in terms of CP, the modified approach performed

better than the inverse normal approach for small values of z1, and less well for large values

of z1 (Posch 1999). The inverse normal approach has the added benefit of using an unad-

justed critical value for the final analysis over the two stages, and allows for uncertainty in

variability. The modified weighted combination test and the circular conditional error func-

tion perform almost identically to each other in terms of power and expected sample size,

but the modified approach also allows for additional adaptations (Wassmer 1998). In 2004,

a method to find optimal conditional error functions was presented, which minimised ex-

pected sample size, and showed they obtained greater sample sizes for moderate treatment

effects, and smaller sample sizes for small and large effect sizes (Brannath 2004).

Shi, Li & Wang compared four methods in 2016; CHW, Dual test, LSW and Promising

zone. They note that the CHW method does not constrain a particular SSR rule, as it is

not based on z1 and therefore the choice of n2 remains flexible. However, the choice of n

needs to be planned carefully as it plays a vital role in the weighted test (Shih 2016). The

Dual test was found to be less powerful than CHW, unless the SSR method was chosen

specifically to match power, such as the methods of Burman and Sonesson (Burman 2006).

The methods of Burman and of Mehta are opposing rules, with Burman’s method losing

power at the points in which Mehta’s method would choose to increase sample size. Finally,

the LSW method allows for a non-binding futility boundary, which could be advantageous

particularly in industry settings (Shih 2016).

Whilst the thesis does not extend the work of these methods, they provide the under-

standing of the frameworks of the uSSR designs that are reviewed in detail in the next chap-

ter, and the benefits and limitations provided by viewpoints in the literature. The promising

zone design is able to control Type I error by only increasing sample size if z1 falls between

the lower and upper boundaries. An alternative approach however, has been presented using

inverse normal combination tests, and is able to increase at any value of z1, but use an inverse

normal combination test approach to control Type I error. These designs will be discussed

in more detail in Chapter 3.
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2.9 Summary

This chapter presents the key statistical concepts that form the basis for the work of this the-

sis. Formulae for fixed sample size calculations have been presented for normal and binary

data and superiority and non-inferiority hypotheses. Adaptive designs and the motivation

behind blinded and unblinded SSR methods have been introduced. CP calculations can be

used to inform a SSR according to some pre-specified rule, and the underlying assumptions

for the future treatment effect have been discussed.

Adaptive designs can be beneficial to the future of clinical trials due to their flexible

nature and ability to decrease time and resources. However, if multiple looks at the data

occur, α inflation must be considered and adjusted for as appropriate. Methods to control

Type I error have been presented and discussed, and this will aid the understanding of the

frameworks discussed later in the thesis.

Chapter 3 presents a systematic review of the methodology of the ‘Promising Zone’

design and trials that have implemented this design. Alternatives to the ‘Promising Zone’

design for uSSR that are also based on CP calculations are discussed and areas of research

deficit are summarised, which will be used to justify the aims of this thesis and the research

question.



3 | Literature review

3.1 Introduction

Section 2.5 introduced the concept of uSSR, and background information on sample size

calculations and control of Type I error. The promising zone design has been identified as

a relatively straightforward approach to uSSR. A key motivation behind the PhD thesis is

to ensure AD simplicity to promote the uptake of these designs where appropriate. This

chapter systematically reviews the literature, focusing on the promising zone approach for

this reason.

The aim of this chapter is to evaluate the current knowledge and usage of promising

zone methodology in current trials, and aims to comprehensively synthesise and summarise

the current literature available on promising zone methodology used in uSSR. More recent

alternatives to this design will also be discussed. The review is split up into two sections;

the first to capture research into the promising zone design, and the second to capture trials

using this methodology in practice. Benefits and limitations of this design will be discussed,

and the development of alternative uSSR designs in the literature will also be presented. The

ultimate aim of this chapter is to inform the PhD research to be carried out in the remainder

of the thesis.

3.2 Aims

The aim of this chapter is to systematically review the literature regarding methods of im-

plementing a promising zone design in a clinical trial, as well as the current usage of the

promising zone design in practice. Specific aims of the literature review include:

1. Review the methodology of the promising zone design, and highlight any advances in

methodology since the original publication in 2011
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2. Highlight both benefits and limitations of this design, and address responses from

other statisticians/trialists to comparable designs

3. Summarise current uptake of promising zone implementation in recent trials

4. Identify related areas that would benefit from further research

The literature was systematically reviewed in order to find the current knowledge base on

the following topics:

1. What is currently known about promising zone methodology?

2. When is this methodology appropriate to use?

3. What alternatives to promising zone design exist, and what advantages do they offer

over the promising zone design?

4. Where has the promising zone design been implemented in practice?

3.3 Search strategy

3.3.1 Inclusion/Exclusion Criteria

Methodology Specific Criteria:

Inclusion Criteria:

• Literature including or mentioning promising zone methodology as a method for SSR,

with or without case studies.

Exclusion Criteria:

• Insufficient mention of promising zone methodology (e.g. promising zone only men-

tioned in reference list, or mentioned once with no further details)

Trial specific Criteria:

Inclusion Criteria:
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• Randomised controlled trial

• Use or plan to use promising zone methodology during the progress of the trial

Exclusion Criteria:

• Alternative SSR methodology used (i.e. no Promising Zone methodology)

• No details found of the SSR methodology used

3.3.2 Restrictions

The database search did not include any time restrictions, and includes all publications avail-

able up to 31st December 2018.

This review limited the search to publications or translations of publications available in the

English Language.

3.3.3 Search strategy terms

3.3.3.1 Database search

A preliminary search was conducted in order to find out what terminology was used in the

literature. A large number of variations were found for “sample size re-estimation", and

“promising zone" methodology was sometimes described but not captured using standard-

ised terminology. In light of this preliminary search, the following three search strategies

were implemented individually and then combined, in order to find all relevant records.

1. “sample size re-estimation" OR “sample size reestimation" OR “sample size adjust-

ment" OR “sample size readjustment" OR “sample size modification" OR “sample

size recalculation" OR “sample size reassessment" OR “*creased sample size" OR

“*crease in sample size" OR “adaptive sample size"

2. “promising zone" OR “promising region"

3. “promising" AND “results" AND “conditional power"
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Final search: (1) AND (2 OR 3)

Online databases searched included Pubmed, Web of Science, Cochrane Database, CINAHL,

OVID (including MEDLINE and PsychINFO) and clincaltrials.gov. Details of adaptations

to the search strategy for each database are listed in Appendix A. Due to the structured

reporting of clinical trials using online databases, SSR methods were rarely described in

the short summary. For this reason, the clinicaltrials.gov database was searched only for

strategy 1. Once a trial was identified as using SSR, further trial literature (e.g. full pro-

tocol, Statistical Analysis Plan (SAP), conference presentations or final publications) were

sought and included only if promising zone methodology was implemented/planned to be

implemented, and trial co-ordinators were contacted if necessary.

3.3.3.2 Pearl growing

Citation pearl growing, introduced by Hawkins and Wagers in 1982 (Hawkins 1982), is

a method of searching backwards, starting with a relevant publication and finding other

articles that have cited the publication (Schlosser 2005). Due to the lack of standardised

terminology for promising zone methodology, even a comprehensive database search would

not be able to identify all records. Therefore, a pearl growing technique was implemented

in addition to the database search, using Mehta and Pocock’s key paper as a starting point

(Mehta 2011). Web of Science and google scholar were used to identify records that had

cited their work.

3.3.3.3 Grey literature

In order to fully answer the primary objectives and fully understand when and how this

methodology is used, a search for grey literature was also undertaken. FDA, EMA, The

National Institute for Health and Care Excellence (NICE), PSI and Cytel websites were all

searched for any documentation or other resources related to promising zone. Grey literature

will inform both methodological records, or trials, as appropriate.
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3.4 Search results

3.4.1 Database Search

A flowchart to describe the information found using the methods described above to search

for literature is shown in Figure 3.1. Six databases were searched according to the search

strategy described in Section 3.3.3.1, identifying a total 75 records. The key promising zone

paper by Mehta and Pocock (Mehta 2011) had been cited by 215 papers, found through Web

of Science and Google Scholar. No further records were identified through EMA or NICE

websites. However, 4 records were discovered via FDA website, 9 through Cytel and finally

an additional 15 through PSI. In total 324 records were identified, of which 133 were found

to be duplicates. Of the 191 unique records, 63 were excluded for the following reasons:

Insufficient mention of promising zone (n=32), Access issues (n=9), Trials where promising

zone was not the SSR method used (n=17), Not an RCT (n=2) and no English translation

available (n=3). The remaining 122 records were divided into either the methodology review

(n=101) or the trials review (n=21). The two reviews are presented in detail in Sections 3.5-

3.17.1 (methodological review) and 3.17 (trials review).

3.5 Promising Zone

3.5.1 Development of the ‘Promising Zone’ Framework

As discussed in Section 2.8, there has been much discussion on methods for controlling

Type I error in ADs. However, Chen et al. (Chen 2004) showed in 2004 that conventional

hypothesis tests could be carried out without inflating Type I error as long as an increase in

sample size only occurs if the results at the interim analysis can be shown to be ‘promis-

ing’. Chen et al. deemed the treatment effect to be promising if the CP assuming a future

treatment effect based on the current trend was greater than 50%.

In 2008, Gao et al. extended the work of Chen et al. to expand the range of CP values

within a K-stage group sequential design in which a researcher would be able to increase
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Figure 3.1: Flowchart of Promising Zone literature search, detailing numbers included in each
review and reasons for exclusion
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the sample size, and still use a conventional final analysis without inflating Type I error

(Gao 2008). Mehta and Pocock (2011) (Mehta 2011) further built on this work and made

this design more accessible to researchers wishing to implement this in a two-stage design.

Specific lower boundary CP values for the promising zone under a number of conditions

such as maximum increase allowed, and the timing of the interim look were tabulated. The

methodology of this paper is now described (Mehta 2011).

For a two stage design testing superiority of a continuous outcome in two groups, with

significance level α and power 1− β , the initial sample size (n) can be calculated using

methods described in Section 2.3.3. After n1 patients have been recruited, a decision is

made to either keep going as planned and stop the trial after the original n patients have

been recruited, or to increase the sample size according to the SSR rule, described later in

this section. If the decision is to increase the sample size, a further n∗2 patients are recruited,

such that

Original sample size : n = n1 +n2

Increased sample size : n∗ = n1 +n∗2

(3.1)

At the interim analysis, CP assuming that the future treatment difference (d̃) is indeed

the one estimated at the interim analysis (d̂obs) (i.e. under the current trend) is calculated

according to Equation (2.11). This is equivalent to the conditional probability that the null

hypothesis H0 is rejected at the end of the trial, given that Z1 = z1 (Bauer 2006).

CP values may lie in one of the three pre-specified zones: unfavourable, promising, and

favourable.

A result in the unfavourable zone indicates that the treatment effect is deemed ‘disap-

pointing’, and it is simply not worth the increase in sample size to try and recover CP.

Therefore, the sample size continues to the originally planned sample size (n). A result in

the favourable zone indicates that the treatment difference is deemed ‘sufficiently favorable’

(i.e., d̂obs is either greater than, equal to, or slightly smaller than the initial estimate of dplan

at the planning stage). No sample size increase is required, and the sample size therefore

continues to the originally planned sample size (n). A result in the so-called promising zone
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indicates the treatment is neither disappointing, nor sufficiently favourable. The treatment

effect is lower than expected, but not so low that CP cannot be recovered by a reasonable

sample size increase. Therefore, the total sample size increases to n∗, having observed in-

terim data. The increase in sample size is evaluated by the number required to ensure CP

(given z1 and d̂obs) equals 1− β . In practice, logistical issues such as limited budgets or

feasibility may mean that a maximum cap must be placed on the total sample size in the

trial. For instance, increasing the sample size ten-fold may not be feasible in many cases,

particularly if the increase in power in doing so may be small. Additionally, a cap in maxi-

mum sample size could prevent a statistically significant yet clinically irrelevant result. For

this reason, researchers may place an upper limit constraint on the total sample size, nmax.

Denoting the sample size required to maintain CP at the interim analysis as nreq, the new

total sample size with a maximum sample size constraint can be described as

n∗ = min(nreq,nmax)

where

nreq = n1 +

[
n1

z2
1

][z1−α

2

√
n− z1

√
n1

√
n−n1

+ z1−β

]2

(3.2)

So far, the three zones have only been described in terms of CP. These zones can also be

converted to the z1 scale, or indeed the scale d̂obs
dplan

, due to the following relationship (Mehta

2011):
d̂obs

dplan
=

[
z1

z1−α

2
+ z1−β

]√
n
n1

(3.3)

Figures 3.2 and 3.3 illustrate the key differences between the methodology of Chen et

al. (2004) (Chen 2004) and Mehta and Pocock (2011) (Mehta 2011) in the development of

the Promising Zone design.

3.5.2 Assumption of Future Treatment Effect

The choice of future treatment effect is a controversial subject, but an important decision for

the CP calculations. In the literature, three main assumptions have been proposed; assuming

the alternative hypothesis (H1), the null hypothesis (H0), or the current trend of data observed
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Figure 3.2: Methodology for SSR proposed by Chen et al. (2004)

Figure 3.3: Mehta and Pocock’s general method
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so far. While these have been used in practice to estimate the true value of CP, not all

possible trajectories of the future data are described by just these three options (Herson

2012).

Glimm (2011) states that using the current trend assumption in the CP calculation yields

an unstable estimate of the true CP value and argues that it is therefore unwise to base a SSR

on this estimate.

As previously described, the cumulative Wald statistics are defined as:

Z j =
d̂obs j

se
(
d̂obs j

) , j = 1,2 (3.4)

where se
(
d̂obs j

)
= 2σ̂obs j/

√n j. Now, at the interim analysis, the CP is calculated given

the data observed so far (i.e. given that Z1 = z1). Now CP based on a future treatment

effect under the current trend, given in Equation (2.11), is a function of z1. Therefore, the

estimated treatment difference, d̂obs is effectively used twice. Any random deviation of d̂obs

from its true value d could consequently affect the value of CP (Glimm 2012; Bauer 2006).

Mehta and Pocock argue that the point of the CP calculation is merely to indicate

whether results are ‘promising’ or not, and not to estimate d with precision (Mehta 2011).

Pepe and Anderson (1992) (Pepe 1992) and Herson et al. (2012) (Herson 2012) rec-

ommend considering the optimistic end of a confidence interval for the future trend for the

purposes of stopping a trial for futility, provided the drift parameter throughout the life of

the trial is believed to be constant. It has also been suggested for a DMSC to look at mul-

tiple future treatment effect assumptions, or to use a combination of the current trend and

the planned treatment effect (Herson 2012; Bauer 2006). The current literature suggests that

more research into this concept would be beneficial and the effect of various future treatment

assumptions for the purposes of a SSR is needed to understand this in more depth.

3.6 Incorporating stopping boundaries

Chen et al. (2004) discuss the incorporation of stopping boundaries with their design; in-

creasing the sample size if CP ≥ 50%, using the modified weighted statistic at the final
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analysis (Section 2.8.2.6). They state that Type I error is decreased when the addition of a

futility stopping boundary is incorporated; stopping the trial if CP falls below a pre-specified

lower limit, c f ut . They suggest three approaches in which this decrease in Type I error rate

can be used. The first approach is to decrease the final critical value in the analysis such

that Type I error is controlled at level α . For a stopping boundary of CP≤ 10%, or equiva-

lently Z(n1) < 0.61, the critical value to be used in the final analysis is calculated using the

following:

Pr
(

Z(n1) > 0.61,Z > c f inal|d̂obs = 0
)
= α. (3.5)

The second approach is to also incorporate an efficacy boundary at the interim analysis, in

which the trial is stopped at the interim analysis if the pre-specified upper boundary, ce f f , is

crossed. ce f f is calculated using the following formula:

Pr
(
Z1 > ce f f |d̂obs = 0

)
+Pr

(
0.61 6 Z1 6 ce f f ,Z > Z1−α |d̂obs = 0

)
= α. (3.6)

Finally, the third approach is to use an unadjusted final analysis at the end of the trial. The

weighted statistic no longer has to be significant in addition to the unweighted, and Type

I error is still controlled at the nominal level. Figure 3.4 illustrates the three approaches

proposed by Chen et al. (Chen 2004).

Similarly to the third approach, Lan and Trost (Lan 1997) propose the following rules,

incorporating a futility boundary and an unadjusted final analysis:

1. If CP≤ c f ut , stop the trial for futility and accept H0

2. If CP≥ ce f f , continue to the originally planned number of patients. H1 is accepted at

the end of the trial if Z > z1−α

2

3. If c f ut <CP< ce f f , increase the sample size to n∗, such that CP under the current trend

is maintained at level ce f f . n∗ is calculated using Pr
(

Z∗ > z1−α

2
|z1,d = d̂obs

)
= ceff.

H0 is rejected at the final analysis if Z∗ > z1−α

2

However, the above rules must be followed exactly in order to preserve Type I error still,

and the literature suggests that there is much concern about researchers strictly following
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these rules (Hung 2016a).

(a) Chen et al.’s general approach,
incorporating a futility boundary (b) Approach 1 - Decrease the critical value at the

final analysis

(c) Approach 2 - Incorporate an efficacy
boundary (d) Approach 3 - Use an unadjusted conventional final

analysis

Figure 3.4: Chen et al.’s method incorporating a futility boundary and three approaches of
‘spending’ the α reduction caused by the incorporation of a futility bound. Futility boundary
stopping is shown in purple (dotted lines). Red highlights the differences between the three
approaches.

The FDA did not recommend decreasing the sample size when uSSR is used, and sug-

gested that a more conventional and “well understood” design should be used instead in their

initial draft guidance (FDA 2010). However, in more recent guidance, they are no longer so

prescriptive (US Food and Drug Administration (FDA) 2019). It can be argued that by car-

rying out an unblinded analysis and continuing to recruit to the trial can be unethical when

there is already evidence to suggest that the trial can stop either for efficacy or for futility.

AdGSDs offer a combination of the standard GSD and adaptive SSR methods; allowing for
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early stopping, and a SSR in the final stage if the trial has not stopped beforehand (Section

3.14).

Bowden and Mander (2014) implement the modified and reverse LSW method (Section

2.8.1.4) and incorporate stopping boundaries within their methodology. They note that it is

very similar to a GSD; pre-specifying stopping boundaries and controlling for Type I error

well, which is one of the key strengths of this design.

3.7 Timing Considerations

3.7.1 Time to Primary Outcome

When planning to use interim analyses in a trial, researchers must consider the time until

the primary outcome can be recorded. If a large number of patients do not yet have primary

outcome data at this time point, known as pipeline patients (Sully 2014), they will not be able

to be included in the interim analysis. This could influence the outcome of this analysis, and

a different decisions may be made, had these pipeline patients been included. The magnitude

of pipeline patients depends on both the rate of the enrolment process and the length until

primary outcome data is collected (Liu 2017a).

A primary outcome is defined as happening some time after the treatment is given (Com-

mittee on National Statistics 2010). GSDs are often used in situations where the length of

time expected to observe the response is very short with respect to the length of the trial

(Hampson 2012). In reality, some outcomes take a long time to occur and are generally not

observed immediately. Therefore, GSDs may not be the appropriate design in these sce-

narios. In Mehta and Pocock’s paper comparing the adaptive promising zone strategy with

a standard GSD, Example 1 shows a trial with a 26 week primary endpoint, enrolling at 8

subjects per week. At the planned interim analysis (Week 52), there are 208 completers, but

416 patients have been enrolled. Therefore any decision to terminate early will hugely affect

the savings in sample size expected, as the trial will terminate at 416 patients, rather than

the 208 included in the analysis. This differs to the promising zone design as the decision

to continue to the originally planned sample size or increase the sample size is not affected
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until the full originally planned sample size has been recruited (Mehta 2011). Furthermore,

SSR based in censored patients at the interim analysis may inflate Type I error (Elsäßer

2014). Jennison and Turnbull (Jennison 2015) highlight the benefit of the Promising Zone

design compared to a GSD for pipeline patients and agree that methodology incorporating

information from these patients is needed and should be pursued.

Hampson and Jennison have since developed new methodology following the GSD

framework, to be able to better deal with pipeline patients, known as DRGSDs. Full de-

tails of this methodology are given in Section 3.15.

3.7.2 Accrual Periods

The length of accrual time and rate of accrual also impact on the utility of an interim analysis

and the type of design being used for the adaptation. Interim analyses have been said to be

useful for trials that do not have a short accrual time (Deley 2012). One reason for this is

the length of time required for an interim analysis. If it is expected that a large number of

patients, or indeed all, are to be recruited whilst the interim analysis is in progress, then the

impact of any decision is minimal. Whilst a sample size increase can still take place after

recruitment has finished, resources still need to be found to be able to continue recruitment,

which may be logistically very difficult.

However, it should be noted that in some situations, neither ADs and GSD methods

necessarily offer the best solution and a search for alternative designs may be required.

For instance, with a short accrual rate, and a lengthy primary outcome measure, neither

Promising zone nor GSD offer any benefit (Kairalla 2012).

3.7.3 Timing of Interim Analysis

The timing of the interim analysis is important as it can have an impact on the amount of data

the decision is based upon. For GSDs, the optimal timing in order to minimise the expected

sample size can be derived (Togo 2013). However, there can be considerably more interim

analyses in a GSD than in the promising zone design (Mehta 2016a). Within the promising

zone literature, there is a general consensus that the interim analysis should not take place
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very early on in the trial. Liu & Lim (Liu 2017b) advise against carrying out the interim

analysis too early, as the treatment effect is unstable early on in the trial. This lowers the

ability to rescue an underpowered trial and thus retracts any benefits of using the Promising

Zone design. In terms of efficiency, both Levin et al. (Levin 2013) and Gaffney et al.

(Gaffney 2017) agree that the later the interim analysis, or closer to the minimal sample size,

the more efficient the design becomes. However, logistical considerations should also be

considered, as deciding close to the minimal required sample size may delay the continued

recruitment while the adaptations are being implemented (Maca 2014).

3.8 Restricted Sample Size Increase

The extension of the promising zone range described in the methodology of Mehta and

Pocock (Mehta 2011) compared to Chen et al. (2004) (Chen 2004) leads to a larger range

where sample size should be increased. In this extended range, a larger increase in sample

size is required to retrieve CP due to the decreasing function used to calculate the required

number of subjects (Mehta 2011). When doubling or tripling of the original sample size is

feasible, Chen et al. (2018) have said that this extension of the promising range can be useful

in trials (Chen 2018a). However, there may be instances where promising zone methodology

may suggest even more than 3 times the original sample size, and even doubling the sample

size can be considered infeasible in many scenarios. When the sample size required in order

to retrieve CP is very high, it may become infeasible either financially or logistically and it

may become impossible to recruit the necessary number of patients (Bowden 2014).

One solution is to incorporate a maximum cap, nmax, that the sample size increase cannot

go beyond. If the CP falls in the range where the sample size is required exceeds this value,

the value of the maximum cap is instead taken. The flexibility in the design in allowing

a maximum cap is appealing for researchers. For example, when looking at a portfolio of

studies, it is inefficient to extend past a certain number of subjects as only small increases

in power can be seen past this point (Antonijevic 2016). Similarly, Gaffney et al. found that

introducing a maximum sample size restriction can restrict the increase in power, stating

that the smaller the maximum cap of n, the smaller the expected increase in power (Gaffney
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2017). Gaffney et al. also show the intuitive result whereby the larger the cap, the larger the

expected gains in expected power increase, and the expected sample size. However, increas-

ing the maximum cap from 1.5 times to 2.5 times the original planned sample size reduced

the efficiency of SSR (defined as the expected power of the AD minus the power of the fixed

sample size design) unless the true effect size is small (Gaffney 2017). Liu et al. (2016)

found that if a conservative promising zone range was used, and sample size is restricted to

no more than a 50% increase, then there is no loss in efficiency (Liu 2017a). Furthermore,

any loss in power is counteracted by the substantial gain in CP when the treatment effect is

found to be promising (Liu 2017a).

The value of nmax must be pre-specified and kept constant throughout the trial, as Type

I error can be inflated if this value is lowered at any point after the start of the trial (Wang

2013).

3.9 Benefits of Promising Zone

The key benefit of using a promising zone is that it reduces the risk of an underpowered trial

(Mehta 2012). Section 2.8.1 highlights the prevalence of underpowered studies and their

underlying issues for research. Mehta also advocates the use of an unadjusted critical value

at the final analysis, making the methodology approachable to researchers and allows for

easy implementation and interpretation.

Type I error is well controlled, even when the algorithm triggers an increase in sample

size (Brannath 2012). This corresponds with the research of Broberg et al. (2013), who de-

rive Type I error inflation using the promising zone methodology and show that any inflation

is very low/nominal (Broberg 2013).

In the original Mehta & Pocock paper (Mehta 2011), there is a large emphasis on the

CP gain from using a promising zone design as opposed to a GSD or a fixed sample size

design, particularly when the treatment effect is found to be promising. This is particularly

advantageous to time-to-event trials when there is a delayed treatment effect (Freidlin 2017).

However, this has no utility in reality unless this also corresponds to a gain in unconditional

power (Freidlin 2017).
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Promising zone designs are also useful for small biotech companies or medical device

firms who may not be able to invest large amount funds for large trials (Mehta 2013). In-

stead, they can commit resources in stages, rather than having a large upfront cost for an

unknown treatment effect (Pritchett 2015). If the treatment effect is promising, they are

more likely to obtain the funding required for the necessary increase in sample size, as the

effect has been shown to be promising (Posch 2013).

One team did a simulation study incorporating promising zone methodology in the de-

velopment of biosimilars. Their idea was to apply the methodology within a seamless phase

II/III trial and results suggested some appealing advantages, including time, cost and sample

size savings, which could speed up the development of biosimilars (Uozumi 2017).

It has been indicated that Promising Zone designs could be particularly useful in early

stage exploratory studies, where very little is known about the treatment effect (Wang 2012),

and in clinical trials of rare diseases (Bayar 2016). However, more research is needed to fully

investigate the benefits the Promising Zone design has in both areas.

3.10 Limitations of Promising Zone

Promising zone methodology has had a number of criticisms reported in the literature. This

section summarises the main concerns.

3.10.1 Only Increases in Sample Size Allowed

The methodology of Mehta and Pocock (Mehta 2011) adds a constraint on the algorithm

that the sample size must never decrease below the originally planned sample size. In 2014,

Hung et al. pointed out that results falling in the favourable zone will have much higher

CP than required, and suggested a decrease in sample size to maintain the minimal required

CP would be advantageous to Promising Zone methodology (Hung 2014; Hung 2016b).

However, further steps to control Type I error would need to be taken.

However, Mehta has since pointed out that the FDA guidelines clearly indicate that an

adaptive SSR should only be used for an increase in sample size (FDA 2010), and therefore
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the constraint in their original methodology is to enable these guidelines to be followed

(Mehta 2013). The FDA instead recommend well understood methodology of GSDs to be

used if any decrease in sample size is to be considered, instead of a SSR design with scope

for a decrease.

3.10.2 Using the Conventional Test Statistic

Glimm responded to the publication by Mehta and Pocock with two main criticisms (Glimm

2012); the conservative level of α using a conventional final analysis and the high variability

in the estimate of the first stage treatment effect (Turnbull 2017). The conservative α level

is described here (Glimm 2012; Turnbull 2017).

The conditional error function introduced by Proschan & Hunsberger (Proschan 1995)

(discussed in Section 2.8.1.1) presents a function A(z1) ∈ [0,1] such that:

∫
∞

−∞

A(z1)φ(z1)dz1 = α (3.7)

If this condition is satisfied, then any test at level A(z1) using the second stage data is able

to maintain an acceptable overall significance level at α .

Müller and Schäfer (Müller 2001) suggest using A(z1) such that:

A(z1) = P(Z2 > zα |z1) = 1−Φ

zα −
√

n1
n z1√

n2
n

 (3.8)

Thus H0 is rejected if the second stage p-value is below the A(z1) level. i.e:

1−Φ(z∗2)≤ A(z1) (3.9)

which can be written as:

z∗2 ≥
√

n∗2Φ−1 (1−A(z1))+
√

n1z1√
n∗

(3.10)
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due to

z∗2 =

√
n∗2z∗2 +

√
n1z1√

n∗
(3.11)

Using Lemma 1 proposed by Mehta and Pocock (Mehta 2011), then regardless of the

SSR rule used, the following holds:

P0 (Z∗2 > b(z1,n∗2)) = α (3.12)

where

b(z1,n∗2) = (n∗)−0.5

[√
n∗2
n2

(
zα

√
n− z1

√
n1
)
+ z1
√

n1

]
(3.13)

Plugging (3.8) into (3.10), the right hand side is the same as b(z1,n∗2). Using the con-

ventional test statistic zα instead of b(z1,n∗2) is therefore conservative and inefficient.

The issue with using an over conservative test statistic has been a key concern in recent

literature (Bowden 2014; Chen 2018b; Tamhane 2012; Bauer 2016b; Bauer 2016a). The

CHW statistic (discussed in Section 2.8.2.5) can be used as an alternative final analysis

(Mehta 2016b; Hung 2014), but has shown to still be less efficient than deriving a critical

value from sufficient statistics (Tamhane 2012).

The main argument by Mehta for using the unadjusted critical value in the final analysis

stems from the ease of understanding and easy implementation in clinical trials (Mehta

2016b). However, it has been highlighted that there are a number of other studies with

non-standard final analyses that are widely accepted and understood, such as in GSDs (Shih

2016).

Mehta and Liu indicated later that the use of either conditional error functions, or com-

bination functions could be used with promising zone methodology in order to preserve

Type I error (Mehta 2016a). Bauer et al. responded to this commentary publication with the

following quote (Bauer 2016b):

“We appreciate that Mehta and Liu are now proposing the combination test ap-

proach instead of using the conventional test statistic. This opens the possibility

to use more efficient and flexible SSR rules and so, indeed, the broad framework

proposed by Mehta & Pocock is valuable for clinical trial design".
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Furthermore, it has the attractive quality that all patients are equally weighted, whether

they were recruited before or after the interim analysis, unlike the CHW or other weighted

test statistics. This has been referred to as the ‘one patient-one vote’ principle (Mehta

2016b).

3.10.3 Pre-specification of Design Parameters

The promising zone boundary must be pre-specified in advance of the trial, in order to

ensure control of Type I error, and for regulatory purposes (Mehta 2011; Zhang 2016). This

includes calculation of CPmin, which is determined by the maximum allowed sample size

increase, timing of the interim analysis, and the targeted CP to be maintained. Table 1 of

Mehta and Pocock’s paper gives CPmin values for several scenarios. Mehta and Pocock

also advise that these are the smallest values CPmin can be, and the researcher may choose

a smaller interval in which to define the promising zone. However, decreasing this zone

can decrease the trials overall power (Mehta 2011). One such scenario where changing this

lower boundary for the promising zone may be to restrict increases in sample size to only

happen where the treatment effect is above the MCID (Hsiao 2018). The calculation of

the minimum allowed boundary, CPmin does not necessarily take this into consideration and

should be considered by the researcher designing the trial on a case-by-case basis.

Glimm suggests that the rule for determining (n∗2) does not need to be pre-specified as

Mehta and Pocock state, but may be advisable for regulatory reasons (Glimm 2012).

3.10.4 Other limitations

Although this methodology could be beneficial for small biotech companies, there is also

the opportunity for this methodology to be misused. Turnbull suggests that a small company

that cannot afford a full trial may plan a trial with an overly optimistic treatment effect, with

a SSR design built in, luring investors into funding the increased trial when the treatment

effect is unsurprisingly found to be smaller than anticipated (Turnbull 2017). The risk how-

ever is that the treatment effect could fall into the unfavorable zone if they are too optimistic,

leading to an underpowered trial.
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Bioequivalence trials have found Promising Zone designs to have similar power when

compared to fixed sample size designs, and GSDs. However, this design also has a higher

expected sample size due to only being able to increase in sample size rather than decrease,

which is a limitation to using this design in this scenario.

Finally, Jennison and Turnbull (2015) have presented findings that the greatest gain in

power per patient lie outside the Promising Zone (Jennison 2015). They recommend an

alternative sample size increase formula over a different qualifying boundary instead. Their

methodology is discussed further in Section 3.11.1.

3.11 Increasing the efficiency of Promising Zone

3.11.1 Jennison and Turnbull Methodology

Promising Zone methodology has been under much criticism by many statisticians. The

zones and the function for an increase in sample size is very sensitive to the estimated

treatment difference (d̂obs), due to its high variability at the interim stage (Jennison 2015).

Jennison and Turnbull describe a method using inverse normal combination test in-

stead of the conventional analysis, that moderates the increase in sample size, resulting

in a smoother function of increased sample size, n∗ over a broader ‘promising’ range.

Inverse normal combination tests are described in Section 2.8.2.4 and control Type I

error if used in conjunction with a trial which has flexible rules on whether to adapt or

not, provided the conditional Type I error is protected (Jennison 2003). The methodology

described by Jennison and Turnbull (2015) is described below (Jennison 2015).

Using the inverse normal combination approach, the sample size may be increased at

any value of z1, or equivalently, d̂obs, without inflation of the Type I error. This avoids

the conservatism employed in the Mehta and Pocock methodology, and extends the range

in which sample size may be increased. Furthermore, a reduction of sample size is also

considered for some values of d̂obs, but constrains this to a minimum sample size level,

influenced by pipeline patients at the interim analysis.
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To optimise the sample size increase, n∗ is chosen to maximise

CPd̃ (z1,n∗)− γ (n∗−n) , (3.14)

where d̃ is the assumed future treatment difference used to estimate the true treatment dif-

ference, d. The choice of γ needs to be pre-determined, and can be chosen in conjunction

with a treatment difference that might be considered lower than expected, but still relevant

(such as the MCID if the sample size is based on a larger target effect size. It represents the

“cost” of adding an additional patient to the trial, so that sample size is increased only up to

the point where CP improvement is greater than γ (Jennison 2015).

Figure 3.5: Illustration of the Jennison and Turnbull methodology compared to fixed sample size
design and Mehta and Pocock methodology. Sample size rules are shown on the left, and expected
sample size is shown on the right (Jennison and Turnbull 2015. Used with permission from John
Wiley and Sons) (Jennison 2015)

The methodology of Jennison and Turnbull has the greatest increase in sample size at

lower values of d̂obs than in Mehta and Pocock’s design, avoids the conservatism from the

use of the conventional test statistic, avoids the sharp increase in sample size at CPmin,

and allows for a slight reduction in sample size. This methodology opens up the broad

framework of Mehta and Pocock for use in future clinical trials. An illustration of the

sample size increase rule, and the expected sample size is shown in Figure 3.5.
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Furthermore, using Bayesian methods, a sample size increase rule to optimise the weighted

average of expected sample size, Edi(n), as opposed to the expected sample size Ed(n) at a

single value θ = d̃ can be found.

3.11.2 Bowden and Mander Methodology

Bowden and Mander implemented a ‘reverse LSW approach’ (described in detail in Section

2.8.1.4) and obtain a broadly similar result to the methodology of Mehta and Pocock.

The standard implementation of the LSW method has a lower expected sample size

compared to the fixed sample design, but also has a lower overall power, and a lower non-

standard critical threshold for the final analysis, which may cause some concern with many

trialists (Bowden 2014). The reverse LSW approach allows implementation a SSR rule

without being overly conservative; one big criticism of the work of Mehta and Pocock. This

is due to allowing for early stopping at the interim stage and therefore decreases the expected

sample size, without loss of power (Bowden 2014).

Due to the iterative procedure for identifying sets of hlsw, klsw and Zβ1 required for the

methodology of Bowden and Mander, and the number of corresponding design parameters

required, the thesis will not investigate this design in any further detail. As mentioned

previously, the main motivation for the thesis is to increase uptake of uSSR designs, in

which design simplicity is thought to be a key driving factor.

3.12 Extensions to the Promising Zone Framework

Other methods for increasing the sample size at the interim analyses also exist. While the

scope of the literature review is mainly on Promising Zone methodology, the following

principles may be useful applications and may be considered when investigating methods of

improving efficiency or logistical aspects within the promising zone framework.
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3.12.1 Stepwise Increases in Sample Size

The increase in sample size following an interim analysis can inform investigators of the

interim result. For instance, Liu and Hu provide an example whereby the investigators

are told there is a 20% increase in sample size to be implemented following the interim

results, and the investigators then know that CP is around 75% (Liu 2016), which can be

used to back-calculate information about the treatment effect. This can cause operational

bias, which could affect the running of the trial and the validity of the trial results. They

then go on to recommend a stepwise function of sample size increase, where sample size is

increased in steps up to a point, and then decreased in steps, which is based off the work in

2015 by Wan et al. (Wan 2015).

Figure 3.6: Illustration of the Promising Zone increase in sample size (Rule 1; Left) compared to
the stepwise increase in sample size (Rule 2; right) (Liu & Hu 2016. Used with permission from
John Wiley and Sons) (Liu 2016)

A 20% sample size increase is then less informative to the investigators, as now CP may

be ‘unfavorable’ (20-30%), or ‘promising’ (60-70%). Figure 3.6 illustrates the difference

in sample size increase rules using the promising zone design and the stepwise function for

SSR.

Their methodology is briefly described below (Liu 2016).
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The ratio of sample size increase, n∗/n, can be expressed in a stepwise form with J steps

as follows:

n∗/n =
J

∑
j=1

v jI(z1 ∈ l j) (3.15)

where v j ≥ 1 is the step value, chosen by the investigator in advance, z1 is the test statistic

at stage 1, l j is the interval l j = (l(L)j , l(U)
j ), and I is the indicator function. It can be shown

that the Type I error is controlled provided the following condition holds for all j ∈ M =

j : r j > 1, j = 1, ...,J:

lL
j ≥

(√
1− n1/n

v j
−
√

1−n1/n
)

zα√
n1/n

(√
1− n1/n

v j
−
√

1−n1/n
v j

) (3.16)

The step value, v j, can be chosen depending on logistical or budgetary aspects (similar

to the restriction of sample size in the promising zone framework). For example, if the

maximum number of events is 1.45 times the original sample size, Liu and Hu suggest the

following values may be appropriate: v j = 1.2, 1.3, 1.45, 1.3, 1.2. With an interim analysis

completed at n1/n = 0.5, the corresponding lower boundary corresponds to a CP value of

0.45. Provided the first sample size increase step happens no lower than CP=0.45, there is

no further constraint on CP values for the other steps.

However, if step rules are fully pre-specified in advance of the trial, there is scope to

decrease the CP value of the first step, say to CP=0.3, and still control Type I error. One

possibility, given in the paper by Liu and Hu is (Liu 2016):
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(n∗/n) = I(CP(z1)≤ 0.3)

+1.2∗ I(CP(z1) ∈ (0.3,0.35])

+1.3∗ I(CP(z1) ∈ (0.35,0.4])

+1.45∗ I(CP(z1) ∈ (0.4,0.6])

+1.3∗ I(CP(z1) ∈ (0.6,0.75])

+1.2∗ I(CP(z1) ∈ (0.75,0.85])

+ I(CP(z1)> 0.85)

Wan et al. also provide alternative methodology for increasing sample size in a stepwise

manner and controlling Type I error (Wan 2015), similar to GSD methodology. Furthermore,

Levin et al. (2013) developed alternative methods in order to choose optimal second stage

sample size in a symmetrical stepwise manner. Their methodology investigates CP and

predictive power ranges under both the alternative hypothesis at the planning stage (d̃ =

dplan), and a Maximum Likelihood Estimate (MLE) (d̃ = d̂obs) as future treatment effect

assumptions (Levin 2013).

3.12.2 Surrogate Endpoints for Long Term Outcomes

When lengthy primary outcome measures such as overall survival are required for full reg-

ulatory approval, pharmaceutical companies often look at ways to speed up the approval

process, in order to get the treatment to patients sooner. Liu and Hu (2016) have suggested

an approach whereby a ‘surrogate’, shorter term, endpoint can be investigated in parallel to

the long term required outcome (Liu 2016). This is more informative than the longer term

outcome at this stage as more patients will have reached this endpoint and will be included

in the interim analysis. If the surrogate endpoint, such as overall response rate, or progres-

sion free survival, shows to be effective at the interim analysis, accelerated approval may be

recommended. The final analysis still looks at and tests the primary outcome required for

full approval, but the shorter term co-primary endpoint may be able to provide evidence for
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conditional approval before the overall survival data is ready to be analysed.

Promising zone methodology may be used in conjunction with the surrogate endpoint

methodology. At the interim analysis, the surrogate endpoint is tested for efficacy. If sig-

nificant, the treatment is recommended for accelerated approval. Whether significant or

non-significant, a SSR procedure is carried out based on the long term outcome. The SSR

procedure can either be carried out to retrieve CP (such as in the promising zone methodol-

ogy), or in a stepwise manner (discussed in Section 3.12.1). Either approach leads to sample

size either remaining at the planned level, or increasing to some value. At the final analysis,

both endpoints are tested for efficacy, applying methods to control Type I error for multiple

comparisons as appropriate. Filing for full approval is only carried out if the longer term

outcome, such as overall survival, is found to be significant (Liu 2016).

3.12.3 Adaptive Switch Designs

At a Drug Information Association (DIA) meeting in 2015, Cyrus Mehta discussed two

very large cardiovascular trials that both failed to show superiority, but managed to show

non-inferiority. As non-inferiority trials generally require fewer subjects and less time, he

suggested that had these trials been designed as a non-inferiority, both trials could have sub-

stantial time and cost savings. However, it is easy to see this in hindsight, but this is difficult

to know at the planning stage. Furthermore, this design may not benefit every scenario,

for instance those that require superiority only for changing standard practice and where

demonstration of non-inferiority is not appropriate for the context. He presents a design he

co-authored in 2013 (Gao 2013a) whereby a test for non-inferiority may be followed by a

test for superiority. There is also scope in this design to switch to the adaptive sample size

design, if allowed by pre-determined rules illustrated in Figure 3.7, where promising zone

methodology may be incorporated to increase the sample size to that required by the design

switch to a superiority trial.
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Figure 3.7: Flowchart to illustrate the decisions made for changing a non-inferiority to a
superiority trial - known as the ‘Adaptive Switch’ Design (Senchaudhuri 2015)

3.13 Promising Zone vs Group Sequential Designs

There has been much discussion in the literature about the use of Adaptive SSR and standard

GSDs, and mixed views on the advantages of each.

Wan et al. state that using promising zone methodology reveals more information about

the interim data and trial progress compared to a standard GSD (Wan 2015). This comes

from the potential back-calculation of the treatment effect from knowledge of the sample

size increase after the interim analysis (Maca 2014; Kairalla 2012). Some literature suggest

logistical solutions such as restricting access to ‘closed’ documents only available to the

DMSC and recording who accesses the information and reasons (Huskins 2018). If back-

calculation is expected to be a big issue, the study team could consider one of the stepwise

sample size increase rules discussed in Section 3.12.1 (Liu 2016; Wan 2015; Levin 2013).

Mehta argues that GSDs require more interim looks and therefore also could give away in-

formation at various stages throughout the trial (Mehta 2016a). To fairly compare the two

designs, the GSD should be chosen to have comparable number of interim looks. Alterna-

tively, if the trial team can find a way around this issue, such as only revealing the maximum

sample size and telling sites to recruit until told to stop, such methods may not be required.
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Another argument is the way each design is used, and their comparisons. In 2013 Mehta

responded to one particular critical paper to adaptive SSR (Levin 2013) with the following

quote (Mehta 2013):

“Group sequential designs and adaptive SSR designs play different roles in clin-

ical drug development. Attempts to compare them based on traditional metrics

such as power and expected sample size are fruitless and often misleading"

Sample size can never decrease in the standard promising zone framework (i.e. not incorpo-

rating a stopping boundary) and will always be at least the sample size of the fixed sample

size design. Their use however, is to retrieve CP and so will be increased if necessary.

Therefore, if the aim is to minimise expected sample size, the adaptive SSR would never be

implemented as it will always give a higher expected sample size. Mehta recommends the

use of adaptive SSR as an insurance policy for seeing lower than expected treatment differ-

ence that is still considered as clinically meaningful (Mehta 2013). A similar viewpoint to

that of Mehta, is the work published by Chen et al. (2015). They agree that adaptive SSR

and GSDs aim to address different issues in large Phase III trials (Joshua Chen 2015). They

also advocate the use of an AdGSD, stating that well planned GSDs can benefit from the

data dependent SSR (Joshua Chen 2015).

Many publications have aimed to compare GSDs and adaptive SSR as pointed out by

Mehta (Mehta 2013), and some agree that it is often very difficult to compare these designs

due to their different efficiency goals (Mehta 2013; Gao 2013a; Zhang 2016; Menon 2013).

Zhang et al. (2016) point out that some literature compares one specific GSD, and then

generalises to all (Zhang 2016). Menon et al. suggest more research is required in order to

better critically evaluate the promising zone methodology (Menon 2013).

3.14 Extension to >2 stages

ADs offer flexibility in a trial and can modify a trial in progress based on the accumulating

data (Müller 2001). Standard GSDs do not offer such flexibility in ranges of sample size

increase, but do offer well established methods for the control of Type I error and efficient
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designs (FDA 2010). AdGSDs, a combination of the two methods, have been developed

(Bauer 1994; Müller 2001). The promising zone design can be thought of as a simple two-

stage AdGSD. However, other AdGSDs can incorporate multiple interim looks, and stop-

ping boundaries (Liu 2017a). The key change is that at one or more of these interim analysis,

a SSR method may be incorporated, and instead of terminating the trial or continuing on to

a pre-specified number of patients, the trial either terminates, or continues to the required

number of patients (n) or (n∗), based upon the interim results. Müller and Schäfer (2001)

presented methodology where alpha-spending functions could be modified adaptively at any

interim analysis, as well as the number and timing of future interim analyses (Müller 2001).

Gao et al. (2008) also present AdGSD methodology, incorporating a SSR only at the

penultimate analysis of a standard GSD. Similarly, they determine the timing of the penul-

timate look stochastically (Gao 2008).

More recently, Cui et al. (2017) present an AdGSD based on the CHW statistic, and

methodology for optimizing the AdGSD.

Consider a two-arm GSD with K-1 interim analyses, and 1 final analysis. The informa-

tion fraction at each analysis 0 < τ1 < τ2 < ... < τK−1 < τK < 1 is pre-specified. The critical

value, Ck, corresponding to each information fraction τk can be calculated depending on the

alpha spending function to be used. The total sample size per group is not pre-specified and

is denoted M, determined at interim analysis g, with 0 < g < K and ng subjects per treat-

ment arm. Before the sample size is determined (i.e. k≤ g), each interim analysis is carried

out with nk =
(

τk
τg

)
ng patients. After the sample size determination, (i.e. g < k ≤ K, each

interim analysis is carried out with mk = (M−ng)
τk−τg
1−τg

+ng patients.

Let

S(q) =
1
√

q

q

∑
i=1

(XAi−XBi) (3.17)

denote the Z-statistic based on the data with q patients per group and U (g)
k denote the test

statistic at the kth interim analysis, with the sample size determination at the gth interim

analysis. Before sample size determination, the test statistic can be defined as:

U (g)
k = S (nk) ,k ≤ g (3.18)
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and after the sample size determination, as:

U (g)
k = S (ng)

√
τg

τk
+

∑
mk
i=ng+1 (XAi−XBi)
√

mk−ng

√
τk− τg

τk
,g < k ≤ K (3.19)

U (g)
k is repeatedly tested against Ck to test the hypothesis. If H0 is not rejected prior

to the gth interim analysis, the sample size determination procedure goes ahead, and it is

projected that M subjects will be recruited per group, unless the trial terminates before the

final analysis (Cui 2017). M can be calculated using the following equation:

M = ng +


√

τK
τK−τg

(
CK−S (ng)

√
τg
τK

)
+ z1−β

d̂obs


2

(3.20)

Alternative methods are also presented where sample size is to be determined in advance

if required (Cui 2017).

Pocock et al. (2015) recommend the use of an AdGSD, provided realistic assumptions

about the design parameters are used (Pocock 2015). However, they also advise that a

simple approach may be advantageous, particularly when the trial team lacks an experienced

statistician (Pocock 2015).

For the purposes of this thesis, the term AdGSD will refer to a design with 3 or more

stages, and only a SSR in the penultimate analysis (i.e. final interim analysis planned) will

be considered.

3.15 Delayed Response Group Sequential Designs

As described in Section 3.7.1, pipeline patients can be very problematic for standard GSDs

and therefore often cannot be used when the time to the primary outcome measure is long

(Hampson 2012). In 2012, Hampson and Jennison presented new methodology that can be

used in order to overcome this (Hampson 2012). Their methodology for a two-arm clinical

trial with normal data is presented below (Hampson 2012).

Consider a K stage GSD with K-1 interim analyses. Suppose that primary outcome

responses are available after some time, λ post-randomisation. The DRGSD can halt re-



3.15. Delayed Response Group Sequential Designs 77

cruitment at an interim analysis, but waits λ time before the analysis is carried out, to allow

pipeline patients to have available data. After this time, a ‘decision analysis’ to accept or

reject H0 is conducted. For k = 1, ...,K− 1, denote the number of responses at interim k

by nk. If recruitment stops, the number of subjects at the subsequent decision analysis is

denoted by ñk. If recruitment continues beyond interim K− 1, the final decision analysis

is only conducted once all responses from the total sample, ñk, have bee collected. Once

stopped, recruitment is no longer allowed to be restarted.

Let d̂k denote the MLE of d based on nk responses at interim k, Ik = var
(
d̂k
)−1

as the

Fisher information for d, and Sk = Ikd̂k as the score statistic. Similarly, Let d̃k denote the

MLE of d based on ñk responses at decision analysis k, Ĩk = var
(
d̃k
)−1, and S̃k = Ĩkd̃k.

The following algorithm is then followed:

At interim analysis k = 1, ...,K−2:

• If Sk ≤ c f utk or Sk ≥ ce f fk : Stop recruitment and proceed to decision analysis k

• Otherwise: Continue recruitment and proceed to interim analysis k+1

At interim analysis K−1:

• If SK−1 ≤ c f utK−1 or SK−1 ≥ ce f fK−1 : Stop accrual and proceed to decision analysis

K−1

• Otherwise: Complete recruitment and proceed to decision analysis K

At decision analysis k = 1, ...,K:

• If S̃k ≥ ck: reject H0

• If S̃k < ck: accept H0

DRGSDs offer one solution to the criticism standard GSDs have faced when dealing

with long term primary outcome measures and methods have been developed to optimise

DRGSDs for either expected sample size alone, or a combination of objectives (Hampson

2012). While some literature makes the comparison between AdGSDs and promising zone

methodology, there is very little with respect to incorporating DRGSDs into the compar-

isons.
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3.16 Analysis considerations

Following an adaptation to a trial, there is a risk of introducing bias to the estimated treat-

ment effect. The EMA require trialists to stratify their final analysis to take into account

the trial before and after the interim analysis (Magirr 2016), as before and after are ‘inher-

ently different cohorts’ (Liu 2017b). This is in line with the most recent guidance from the

Adaptive Designs CONSORT Extension (ACE) statement, which recommends presenting

the treatment effect by recruitment stage separately (Dimairo 2020).

Bowden and Mander (2014) state that the MLE of d will generally be biased, as the trial’s

sequential nature is ignored following the LSW method (Bowden 2014). To overcome this,

Wang et al. (2010) introduce a median unbiased estimator, shown to reduce the bias and

mean squared error, but only when d is small and positive (Wang 2010).

Repeated Confidence Intervals (RCIs) methodology has been developed for GSDs, for

repeated looks at the data during the trial progression. The probability of all intervals con-

taining the true parameter of interest, d is maintained at level α . The methodology is de-

scribed below.

3.16.1 Repeated confidence intervals with no adaptation

In 1984, Jennison and Turnbull proposed RCIs following GSDs, for normally distributed

outcomes (Jennison 1984). As stopping a trial early depends on many factors, including

practical aspects such as side effects, finance, quality of life etc., they state that there is no

guarantee a stopping rule will be strictly adhered to. This means that the correct decision is

therefore not guaranteed. In 1989, they extended this methodology to binary and time-to-

event outcomes.

Suppose a trial has up to K analyses, and let ρk form a sequence of RCIs with two-sided

level 1-2α for treatment difference d̂obs.

Pd(d ∈ ρk ∀ 1≤ k ≤ K) = 1−2α (3.21)



3.16. Analysis considerations 79

At the kth analysis, interval ρk is the set of all values d0 which would be accepted by group

sequential test H0 : d = d0 such that

Pd(d ∈ ρk ∀ 1≤ k ≤ K) = Pd(d accepted at all 1≤ k ≤ K) = 1−2α (3.22)

The group sequential test at stage k is written as reject H0 at stage k if |zk| ≥ ck, where

zk is the standardised test statistic, and ck are critical values constructed to ensure the test

has size 2α . So the intervals ρk can be written as ρk = {θ : |zk| < ck}, or ρk = (dL,dU),

(lower, upper), so that Pd(dL < d < dU ∀ 1≤ k≤K) = 1−2α . Finally, intervals are roughly

symmetric, and so

Pd(dL < d ∀ 1≤ k ≤ K)≈ Pd(dU > θ ∀ 1≤ k ≤ K)≈ 1−α (3.23)

It is worth noting, that if the trial is stopped prior to the Kth analysis, the RCIs are

conservative, as not all RCIs have been seen yet.

3.16.2 Repeated confidence intervals with at least one adaptation

Müller and Schäfer (2001), and Mehta et al. (2007) extend the framework of RCIs to a

GSD where one or more adaptive changes are made to the trial during the trials progression

by constructing one sided confidence limits to a sequence of dual tests, derived from RCIs

(Müller 2001; Mehta 2007; Jennison 1984; Jennison 1989; Gao 2013b). This again pre-

serves the desired coverage probability at a pre-specified level, even if a stopping rule were

to be ignored. Their methodology for a normally distributed outcome is described below.

Consider a two-arm trial for a treatment (t) group and control (c) group, with means

µA, µB, treatment difference d = µA−µB, and one-sided hypothesis H0 : d ≤ 0, H1 : d > 0.

Similarly to above, the data is monitored up to K times, after observing n1 + n2 + ...+ nK

subjects.

At interim analysis k, Zk =
d̂obs√
Ik

, where d̂k is the MLE of d and Ik is the Fisher Informa-

tion Ik ≈ [se(d̂ j]
−2 = nk/4σ2. Then Z1, ...,ZK are multivariate normal with E(Zk) = d

√
Ik

and Cov(Z j,Zk) =
√

I j/Ik ∀ j ≤ k = 1,2, ...,K.
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Suppose Lan DeMets stopping boundaries are used, with spending function ζα(τ) which

is monotone increasing with ζα(0) = 0 and ζα(1) = α . Then value ζα(τ j) represents the

cumulative Type I error used up to and including look j, where τ j is the information fraction.

The corresponding stopping boundaries b1,b2, ...,bK are found by

ζα(τ j−1)+P0(Z1 < b1, ...,Z j−1 < b j−1,Z j ≥ b j) = ζα(τ j) (3.24)

In order to preserve Type I error level α when one or more modifications are made

to a trial, Müller and Schäfer introduced a principle to preserve the conditional rejection

probability each time an adaptation is made. Suppose the first adaptation occurs at look

L < K. The conditional rejection probability is defined as

ε = P
(
∪K

j=L+1{Z j ≥ b j}|ZL = zL
)
. (3.25)

Provided this condition holds, Type I error will be preserved at level α no matter the adapta-

tion type (e.g. SSRs, additional interim analyses, changing the timing of the interim analysis

etc.). One can think of the remainder of the trial following the adaptation as a separate “sec-

ondary” trial with Type I error ε , with the previous trial up to L looks as the primary trial.

The secondary trial is then monitored at information fraction τ
(2)
j = n(2)j /n(2)

k(2)
and terminated

at look L(2) ≤ K(2) where j = 1,2, ...k(2). The observed test statistic at time of termination

is therefore Z(2)
L(2) = z(2)

L(2) .

H0 (d ≤ 0) is rejected if and only if z(2)
L(2) ≥ b(2)

L(2) where the boundaries b(2)j are deter-

mined from the error spending function, ζ
(2)
ε

(
τ
(2)
j

)
where j = 1,2, ...k(2), ζ

(2)
ε (0) = 0 and

ζ
(2)
ε (1) = ε such that

P(z(2)1 ≥ b(2)1 ) = ζ
(2)
ε

(
τ

2)
j

)
, (3.26)

and for j = 2,3, ...,K(2):

ζ
(2)
ε

(
τ
(2)
j−1

)
+P

(
z2

1 < b2
1, ...,z

(2)
j−1 < b j−1,z

(2)
j ≥ b(2)j

)
= ζ

(2)
ε

(
τ
(2)
j

)
(3.27)

For the combined trial (primary and secondary, consisting of up to L+K(2) analyses, the
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value of the test statistic at look L+ j is

zc
L+ j =

(
ZL
√

nL + z(2)j

)√
n2

j/

√
nL +n(2)j (3.28)

and the corresponding stopping boundary at look L+ j is

bc
L+ j =

(
ZL
√

nL +b(2)j

)√
n2

j/

√
nL +n(2)j (3.29)

This can be extended to have an additional modification further on in the trial (Müller 2001;

Mehta 2007). This can also be extended to binary and time-to-event responses (Müller 2001;

Jennison 1989).

To construct an RCI for d at look L(z), it is necessary to first construct the overall level

α test of Hypothesis Hη . This is done by shifting observed test statistics from the primary

and secondary trials, to become z j (η) = z j −η
√

I j, j = 1,2, ...,L and z(2)j (η) = z(2)j −

η

√
I

(2)
j , j = 1,2, ...,L respectively.

Under d =η , the primary trial is multivariate distributed with E[Z j(η)]= 0 and Cov
(
Z j1(η),Z j2(η)

)
=√

I j1/I j2, and the secondary trial is multivariate distributed with E[Z(2)
j (η)] = 0 and

Cov
(

Z(2)
j1 (η),Z(2)

j2 (η)
)
=
√

I
(2)
j1 /I

(2)
j2 .

The conditional probability of rejecting Hη given Zl(η)

ε(η) = Pη

(
∪k

j=L+1{Z j(η)≥ b j}|ZL(η) = zL(η)
)

= P
(
∪k

j=L+1{Z j(η)≥ b j}|ZL(η) = zL(η)
) (3.30)

ε(η) decreases as h increases since conditional probability of crossing boundaries de-

creases with decreasing ZL(η). To apply the principle proposed by Müller and Schäfer to

test Hη , the secondary trial must preserve level of ε(η) instead of ε .

ζ
(2)
ε(η)

(
τ
(2)
j−1

)
+P

(
z(2)1 (η)< b(2)1 (η), ...,z(2)j−1(η)< b(2)j−1(η),z(2)j (η)≥ b(2)j (η)

)
= ζ

(2)
ε(η)

(
τ
(2)
j

) (3.31)
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Then Hη is rejected at look L2 if and only if

z(2)
2(2)

(η)≥ b(2)
2(2)

(η). (3.32)

Since the secondary trial preserves conditional rejection probability, ε(η), the test for Hη

remains an α level test. To construct 100(1−α)% CI for d̂obs, identify all values of η at

which corresponding level α dual tests Hη cannot be rejected. By Equation 3.32, values of

η must satisfy z(2)
L(2)(η)< b(2)

L(2)(η)

Provided z(2)
L(2)(η)− b(2)

L(2)(η) decreases monotonically with increasing η , then interval

(d̂(2)
L ,∞) is a 100(1−α)% RCI for d̂obs where dL(2) is the unique value η = dL(2) at which

z(2)
L(2)(dL(2)) = b(2)

L(2)(dL(2)).

3.17 Trials Review

A table of characteristics of the 21 trials included in the systematic review are summarised

in Tables 3.1-3.2, in order to assess how promising zone methodology is currently be-

ing used (NCT03243422, NCT02401412, NCT02915744, NCT01156571, NCT01513369,

NCT00968708, NCT00887328, NCT01492725, NCT02388061, NCT01485185, NCT01482962,

NCT02376985,NCT01816776, NCT02733991, NCT01556490, NCT01702636, NCT02979899,

NCT03287076, NCT02692482, NCT01191801, UMIN000021431) (Deal 2018; Colwell

2018; Tripathy 2018; Miller 2017; Schindler 2018; Hirakawa 2018; White 2013; Churilov

2018; Campbell 2014; Campbell 2018; Boyle 2014; O’Connor 2015; Niikura 2016; Costanzo

2015; De Valk 2018; Chauhan 2018; Meretoja 2014; Mehta 2019; Muller 2018; Forni 2018;

Ravandi 2015). Eight trials (38.1%) were still in progress, but included enough details to

still be included in this review. Almost all trials only included/plan to include one interim

analysis (19/21; 90.5%). No trial planned to use more than two interim looks. The median

initially planned sample size was 156 patients (IQR (126,419)), which ranged from 100 to

10,900 patients for binary outcomes, and 24 to 850 for continuous outcomes. Time to event

outcomes ranged from 120 to 417 initially planned events (median=273).

The median timing of the first interim analysis was over halfway through the originally
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sized study (median=62.2%, IQR(48.1%,73.8%)), calculated by dividing the sample size

at the interim analysis by the initial sample size and multiplying by 100. One study was

excluded due to insufficient information being reported for this calculation. All 21 trials

(100.0%) planned for an interim analysis in the planning stage prior to the start of the trial.

Of the 11 trials that have been completed, 10 have reported their interim decisions:

two trials continued with the original sample size, two trials terminated early, and 6 trials

increased their sample size according to CP calculations and the appropriate increase as

indicated by promising zone methodology. Twelve trials (70.6%) used stopping boundaries

in addition to the SSR; four used efficacy only, three used futility only, three used both

futility and efficacy, and the final two did not report any further details.

Similarly to the timing of the interim analysis calculation described above, both the

maximum sample size and the actual sample size reported at the end of the trial (if ap-

plicable) were converted into a percentage of the initial sample size calculation. Only 14

of the 21 studies (66.7%) reported the maximum sample size they would be willing to in-

crease to if the CP calculation fell in the promising zone. The median increase was by

63.1% IQR (42.6,100.0%) for sample sizes involving patients. Of the six studies who car-

ried out a SSR at the interim analysis, the median actual increase in sample size was 42.3%,

IQR(25.0%,68.3%)

Three trials had more than one primary outcome (details in the footnote of Table 3.2).

Half of the outcomes (12/24, 50.0%) were binary, 6/24 (25.0%) were continuous, and 6/24

(25.0%) were time-to-event outcomes. Data for four primary outcomes (19.0%) could be

collected in less than 3 days, five outcomes (23.8%) took 1-6 weeks, five outcomes (23.8%)

took 8-12 weeks, two outcomes (9.5%) took 5-6 months and five outcomes (23.8%) followed

patients up for >3 years.

One study had a crossover design with four treatment options. This study incorporated a

group sequential approach, recruiting the initial sample size as cohort 1 and only recruiting

a second cohort based on the findings at the interim analysis.

Six studies did not specify a phase. Of the studies that did, only one trial was Phase I,

four studies reported as Phase II, and ten studies reported as Phase III.
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Interim Analysis Details: Trials included in the review (N=21)
Number of interim analyses planned: n/N %

1 19/21 90.5%
2 2/21 9.5%
Timing of first interim analysis (% of initially planned sample size)

Median (IQR) 57.3 (48.1, 72.5)
Status of information at first interim analysis

Completed data collection (primary outcome) 11/20 55.0%
Recruited 5/20 25.0%
Events occurred 4/20 20.0%
Result at first interim analysis

Continue 2/10 20.0%
Stop 2/10 20.0%
SSR 6/10 60.0%
Maximum sample size/initial sample size (%)

Median (IQR) 63.1 (42.6, 100.0)
Actual sample size/initial sample size (%)

Median (IQR) 42.3 (25.0, 68.3)
Stopping boundaries used?*

Yes 12/17 70.6%
If Yes, Boundary type used

Efficacy Only 4/12 33.3%
Futility only 3/12 25.0%
Efficacy and Futility 3/12 25.0%
Not specified 2/12 16.7%
Notes:*No information on useage of stopping boundaries for 4 trials

Table 3.1: A table of interim analysis characteristics of twenty-one trials included in the systematic
review.

There were a range of disease areas investigated in the trials, including neurology (n=6),

oncology (n=5), cardiovascular (n=3), diabetes (n=3), dental care (n=1), orthopaedic (n=1),

ostomy (n=1) and pain(n=1). Over half of the trials were funded by Industry (12/21, 57.1%).

The EXAMINE Trial is the only study of the thirteen that uses an adaptive switch design

(described in Section 3.12.3). This trial planned for a potential switch to a promising zone

design, but terminated early as non-inferiority could be shown.

Specific CP values used to identify the promising zone used were reported for 15 trials

and are reported in Table 3.3. Five trials were designed by the same institution and have

used the same conditional power range for each trial (0.385 - 0.8).

Five trials also reported a “four-zone” trial based on observed conditional power values;

one trial stopped and claimed non-inferiority if CP<0.2, three trials stopped for futility for

values CP<0.03, CP<0.1 and CP<0.2, and one trial included an enrichment design based on

a subgroup of patients. Primary reasons for using sample size re-estimation methodology

are presented in Table 3.4. Specific design features were not well reported, and simplic-
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General Trial Details:
Primary outcome type**

Binary 12/24 50.0%
Continuous 6/24 25.0%
Time-to-event 6/24 25.0%
Time to primary outcome

0-3 days 4/21 19.0%
1-6 weeks 5/21 23.8%
8-12 weeks 5/21 23.8%
5-6 months 2/21 9.5%
3-5 years 5/21 23.8%
Number of groups

2 20/21 95.2%
4 1/21 4.8%
Study design

Cluster 1/21 4.8%
Crossover 1/21 4.8%
Parallel Group 19/21 90.5%
Phase†

I 1/15 6.7%
II 4/15 26.7%
III 10/15 66.7%
Disease area

Cardiovascular 3/21 14.3%
Diabetes 2/21 9.5%
Neurology 6/21 28.6%
Oncology 5/21 23.8%
Other†† 5/21 23.8%
Progress

In progress 8/21 38.1%
In analysis 2/21 9.5%
Completed 11/21 52.4%
Funder type

Industry 12/21 57.1%
Non-Industry 9/21 42.9%
Notes:**Three trials had > 1
primary outcome: continuous and binary (n=1), binary and time-to-event (n=1), two
time-to-event outcomes (n=1); †No information on phase for 3 trials ††Other disease areas
include dental care (n=1), Orthopaedic (n=1), Ostomy (n=1) and pain (n=1)

Table 3.2: A table of general trial characteristics of twenty-one trials included in the systematic
review.
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CP lower boundary CP upper boundary
0.3 0.95
0.3 0.9
0.3 0.8
0.36 0.8
0.385 0.8
0.385 0.8
0.385 0.8
0.385 0.8
0.385 0.8
0.41 0.8
0.43 0.85
0.5 0.9
0.5 0.8
0.708 0.8
(Missing) 0.8

Table 3.3: Conditional power lower and upper boundaries of the promising zone for the 15 trials
that provided conditional power ranges.

Reason n
Uncertainty in treatment estimates 7
“Simplicity”/“convenience” 4
Efficiency 3
Ensure power is maintained 4
Unspecified 3

Table 3.4: Reasons for using sample size re-estimation methodology

ity/convenience was reported for 4 trials with no further explanation. It is assumed that this

was a reason for choosing promising zone over an alternative uSSR design for these trials.

One limitation of the trials systematic review is that analysis methods used for the treat-

ment estimate and related quantities estimated at the end of the trial were not captured in

the review and summarised, as identified in Section 3.16. Additionally, the review could not

capture the future treatment effect assumption used in the CP calculation as specific design

details were rarely reported.

3.17.1 Case study

One additional case study was found through pearl growing, but did not meet the require-

ments for inclusion in the trials review, as a SSR was implemented after the trial had fin-

ished, and an investigative exercise. The CAPRISA study team considered implementing

a promising zone design with stopping boundaries for their time-to event trial, before de-

ciding to opt for the fixed sample size design with 92 events due to the high likelihood that
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the interim result would suggest an increase in sample size, and the logistical implications

meaning that a larger study was not feasible (Taylor 2012).

Retrospective analysis of the CAPRISA study however revealed that an interim analysis

after 66 events yielded similar efficacy results to those in the final analysis of the 92 event

trial, and the increase in sample size would not have been triggered after all. Nevertheless,

this result is highly speculative (Taylor 2012) and finding comparable evidence at 66 events

as to at 92 events may have been due to chance. Further retrospective case studies and

simulations may be able to validate these findings.

3.18 Areas of Research Deficit

This comprehensive literature review on Promising Zone and related methodology has high-

lighted key areas in which research is already well established, limitations to the methodol-

ogy that should be addressed in order to more widely using Promising Zone methodology

in the literature, and areas that are under researched and need more work. Assumptions of

the future treatment effect is one key grey area in the literature. Despite some potential so-

lutions, further research is required to fully understand the true effect this assumption plays

on CP and the scenarios in which a different assumption should be made.

The work by Jennison and Turnbull (Jennison 2015) opens up the full range of CP values

in which a sample size increase can be considered and introduces the possibility of a small

sample size reduction. Alternative rules using the inverse normal approach could be consid-

ered for a number of scenarios including pharmaceutical vs publicly funded trials, different

types of data and timings of interim analyses.

The effect of the magnitude of which the treatment effect is misspecified in the plan-

ning stage is not yet fully understood, and the implications of deliberately misspecifying

the treatment effect to lure in funders with promising results should be investigated. Opti-

mality criterion for Promising Zone designs should be established, with the ultimate aim of

comparable criteria to compare GSDs, AdGSDs, DRGSDs and adaptive SSR. The restricted

sample size level, nmax and the effect on power at different time points of interim analyses

could be researched further, and simulations run on real life clinical data could be beneficial
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to the critique of promising zone (Menon 2013).

The research question of this thesis has been designed to answer as much of the research

deficit as possible in this area, but also considers time constraints. The thesis therefore only

focuses on uSSR designs using CP to determine the second stage sample size required; in-

cluding promising zone design, the inverse normal combination test design, and the stepwise

design methodologies.

The thesis asks “What sample size rule framework and associated design features need

to be considered when using an uSSR in clinical trials with either a continuous or binary

primary endpoint?", which will be specifically answered by investigating the following four

key aspects:

• Compare existing methodologies for uSSR using CP calculations, with a focus on

promising zone and combination test designs

• Incorporate stopping boundaries in each methodological framework and compare in-

terim decision making

• Investigate the future treatment effect assumption used in the CP equation

• Explore CP values when observed effect sizes are equal to, or different by some

amount to the target effect size

• Make recommendations for the planning of a future trial using SSR including opera-

tional considerations such as when an interim analysis should be carried out, and the

maximum sample size increase to consider

The existing methodology comparison will predominantly focus on the promising zone de-

sign, and the combination test framework. The stepwise design will also be used to illustrate

this SSR rule compared to the other two frameworks. However, as this design loses power

compared to the other two, the fundamental reason for choosing this design is the inability

to back-calculate the treatment effect. If this is however not an issue in the trial, then an

alternative approach would be made, unless some fully optimised design for some prior δ ,

such as in the work of Wan (Wan 2013).
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3.19 Update since December 2018

Since the full systematic review was completed in early January 2019, there have been

further advancements in the field of promising zone and uSSR. The search was carried

out using the same methods as in the original search, including databases, pearl growing

techniques and grey literature for both methodological publications and real-world clinical

trials reported by August 2020 inclusive. The updated systematic review was published in

Trials in December 2020 (Edwards 2020). The findings and the implications for the thesis

work carried out in later chapters is discussed.

Pilz et al. commented on both promising zone and combination test designs, before

introducing a new optimal two-stage design approach (Pilz 2019). They state that even the

designs optimised for some value of δ (such as the MCID) considered to be optimal by

Jennison and Turnbull (2015) are not in fact necessarily optimal. As most trials analysed in

this thesis have the MCID as the effect size in the sample size calculation, or do not state a

value of δ which would be smaller than the target size but still clinically relevant, the designs

in this thesis have not been optimised. Instead, a value of γ is chosen as an appropriate

“trade-off” between additional sample size and conditional power gain, and therefore this

would not impact the research carried out in this thesis (Jennison 2015). Next, Pilz et al.

introduce Lagrangian multipliers to use in an optimisation procedure to find the optimal two

stage design, which have been said to be “more transparent” than the γ parameter in the

combination test design (Pilz 2020a; Pilz 2020b).

Additionally, promising zone has been extended to the case where data has a correlation

structure such as Multi-reader multi-case (MRMC) studies (Huang 2020)), and when the

design also incorporates a response adaptive randomisation aspect in the trial (Wang 2019;

Gao 2020). An even more simplified approach to promising zone has been introduced,

where CP only depends on z1 and therefore the addition for more complicated endpoint

such as recurrent hospitalisation data, and claims to simplify the design for even “non-

sophisticated practitioners” (Wang 2020). None of these designs have any impact on the

research of this PhD.
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Niewcas et al. present a design for a binary trial where a shorter endpoint could be used

in the interim analysis stage if it is not possible to base a SSR on a long term outcome, which

could be useful in reducing the number of pipeline patients at an interim analysis (Niewczas

2019).

Additional comparsions between types of design have also been completed in recent

years. Cytel provide slides from a presentation by Mehta which includes a comparison of

a “constrained combination test design”, which builds on the work of Hsiao et al. (Hsiao

2018). Another AD vs GSD comparison has been published, with the conclusion that GSDs

are more efficient than SSR methods (Casula 2020). As discussed previously, SSR designs

do have their place in trial design and therefore this does not change the benefits of carrying

out this PhD research. Additionally a thesis has been recently published that has compared

promising zone and combination tests in an AdGSD setting (i.e. ≥ 2 stages). Results are

similar to this thesis and will be discussed in Chapter 10 following presentation of thesis

results (Jimenez 2020).

Asakura et al. have shown a contour plot of CP to investigate more than one primary

endpoint (Asakura 2020). They also consider stopping a trial for futility, discussing poten-

tially conservative stopping boundaries using O’Brien Fleming method (e.g.) in GSDs, and

the dependency of requiring a future treatment effect assumption for CP or predictive power.

An alternative performance measure in the comparison of multiple ADs has been sug-

gested (Herrmann 2020). Current performance measurements may compare the Average

Sample Number (ASN), but may not be comparable when designs can stop for futility/efficacy,

whereas others may not. Instead, it is recommended to only average sample size in the al-

lowed SSR range (e.g. the “promising” zone in Mehta and Pocock’s design). This would

lead to a more comparable estimate between designs. Due to time restraints, it may not

be possible to incorporate this performance measure into the thesis, and will therefore be

discussed in Chapter 10, or suggested for further work.

Guidance on the reporting of ADs has been issued, including a section on uSSR, with

an example of the promising zone design (Dimairo 2020). A repeated search in clinicaltri-

als.gov yielded more results than the initial search (an additional 15 trials) which suggests
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researchers are becoming more aware of SSR and reporting as part of the basic study design.

However, still no methods were shared except in two cases (one promising zone, one CHW),

and so could be using any method, and may be blinded or unblinded.

An additional eight trials have been identified that have published that they have speci-

fied that they used promising zone design (n=4), or are currently implementing this design

(n=4) (NCT03360396, NCT03088033, NCT03645603, NCT02562443, NCT02497469, NCT03340493,

NCT03388762, UMIN000031136). Four report CP boundaries, of which two use 0.5≤CP<1−

β . One trial actually use stepwise methodology with a futility boundary incorporated. One

further study reports a futility boundary, and one trial reports both efficacy and futility

boundaries are to be used. There is a roughly even split between data types, times to out-

come range from 0 days to 30 months, and equal numbers of trials funded by industry and

non-industry sources. Therefore, there are similarities to results found in the initial system-

atic review, and no implications for the thesis have been identified.

3.20 Summary

Chapters 2 and 3 have provided an in detail background and review of uSSR methodology,

with a focus on those designs using CP for decision rules. Promising Zone methodology has

faced much criticism in recent years, with many statisticians and researchers highlighting

various shortcomings of the design such as its inefficiency. However, some more positive

publications have come forward, with the ultimate aim of improving the methodology for

more general use. Both benefits and limitations of the promising zone design have been

presented, as well as further extensions of the broad framework such as the combination test

design and stepwise methodology. GSDs, AdGSDs and DRGSDs have been introduced,

and some comparisons exist in the literature between standard GSDs and ADs. The cur-

rent uptake of the promising zone design has also been presented, with 21 trials having

planned to use or having already used promising zone in a trial (29 trials with the updated

search). Characteristics have been summarised to see scenarios where this methodology

is currently used, which will be used when requesting data for the PhD research to ensure

similar trial/outcome characteristics.
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This literature review has highlighted the areas that require more research, and the im-

portance of the research questions investigated in this thesis in order to further understand

the practical implementation for future trialists, and how promising zone compares to alter-

native designs.

Chapter 4 provides details of the data request process for the re-analysis of real-world

trial data with continuous or binary endpoints, an analysis plan, and a summary of trial

characteristics, and recruitment details.



4 | Data description

4.1 Introduction

Chapter 3 gave a comprehensive review of the current knowledge and research of uSSR

designs. Results have been presented for the systematic review of clinical trials that have

used, or have planned to use, the promising zone design for uSSR. Using the information

obtained from the review, the next section of the thesis aims to obtain real trial datasets, and

re-analyse them as ADs to compare three uSSR designs.

This chapter presents a background description of the 21 outcomes from 14 trials across

industry and publicly funded sectors that have been obtained for data re-analysis. Methods

for requesting the data, reasons for the choices of trials, and a comprehensive analysis plan

are provided. Some notable examples are given for a discussion of key trial features such

as patient and site recruitment, missing data, and details of original sample size calculations

and results. A summary of trial characteristics follows, offering an complete overview of

the data obtained for data re-analysis in this thesis.

4.2 Aims and objectives

The key aims of this chapter include:

• Describe how data was obtained

• Present the plan for analyses to be carried out

• Introduce examples of trials analysed in this thesis

• Summarise recruitment for both patients and sites for all trials
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4.3 Obtaining the data

4.3.1 Industry trials

Suitable industry trials were identified through the Clinical Study Data Request (CSDR) sys-

tem (https://www.clinicalstudydatarequest.com), a data sharing platform for data

from a number of companies. A researcher may browse through basic details of all avail-

able studies, and add relevant required studies to a research proposal. This means multiple

datasets can be requested through just one research proposal, even if they come from a num-

ber of different companies. The research proposal consists of a summary of the research

in plain English, background information as to why this research is necessary, and details

of key objectives and outcomes. This then goes through an independent review panel, who

either approve or reject the application, or request further details.

For all available trials on the system, CSDR provided the sponsor name, study title,

and a link to more study information, either through the sponsor website, clinicaltrials.gov,

or EudraCT. A large proportion of these studies were reviewed for data request, as many

were missing key information such as sample size or type of outcome data (i.e. binary,

continuous, or time-to-event), or were not relevant, due to a time to event primary outcome.

A total of 12 studies were chosen for data request. Two studies were removed before the

data request was fully submitted, and so a further two studies were chosen in replacement.

The full data request was submitted in May 2019. Two companies withdrew their datasets

and moved data sharing platform in June/July 2019. This meant four studies were no longer

available, and only eight studies were able to be requested. The application was approved

in September 2019. Due to the multi-sponsor nature of the application, it took a number

of weeks to create a data sharing agreement, which was signed by all relevant parties in

December 2019. A further company moved data sharing platform following the signing of

the agreement, resulting in one further study no longer being available. Whilst the company

offered to transfer all documents to the new system, a further data sharing agreement would

have been required. It was decided that the seven datasets still on the CSDR platform were

sufficient, as time frames could be extended, or subsets of the data could be analysed in

https://www.clinicalstudydatarequest.com
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order to replace the missing trials. More details are shown in Table 4.1 and Figure 4.1.

Access to the CSDR system was provided in January 2020, with limited data being ready at

this time. A cut-off date of 20th April 2020 was chosen and only data that had been added

to the system by this date would be used for the data re-analysis in this thesis.

Figure 4.1: Flowchart of the data request process for industry data through the CSDR system.

4.3.2 Publicly funded trials

The National Institute for Health Research (NIHR) strongly encourage making data from

trials available, in order to make maximum use of publicly funded data (National Institure

for Health Research 2019). Suitable publicly funded trials were identified from two NIHR

journals: Health Technology Assessment (HTA) and Efficacy and Mechanism Evaluation

(EME). The corresponding author and statistician were contacted for each trial to request

an anonymised dataset. A brief outline of the project was provided, with more detailed

information being provided if necessary. Initially, 13 datasets were requested in August

2019. Due to the time constraint of completing data analysis, a cut-off of March 2020

for receiving data and signing relevant data sharing agreements was applied. Five datasets

were successfully obtained following an application approval and/or data sharing agreement

being signed. Four further studies agreed in principle but then had issues obtaining the data:

two applications did not get approved in time, one data sharing agreement was unable to

be signed, and one further study was not received in time. The other studies did not reply

despite follow up emails. In December 2019, 5 further datasets were requested from the
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University of Sheffield due to the lengthy process of obtaining data. All five requests were

approved and datasets were provided shortly after. Figure 4.2 and Table 4.1 give further

details.

Figure 4.2: Flowchart of the data request process for publicly funded data.

4.3.3 Overview of data obtained

Across publicly funded and industry sectors, a total of 14 trials were obtained for data re-

analysis. Due to the slow process of obtaining data, co-primary outcomes and/or secondary

outcome data were used where available, resulting in 21 distinct outcomes. Additionally,

two primary outcomes were ‘reframed’ at an additional time point. Table 4.1 provides basic

trial details, highlighting the reframed trials, either by using an additional outcome, or re-

imagining a time point. All trials randomised patients to two treatment arms except for one

(Trial 11 - the 3MG study), which randomised to three.

Ethics approval from the University of Sheffield for the secondary use of patient data

was obtained on 16th August 2019, specifying that only anonymised data was involved, and

was obtained from already existing research (reference number 030485).
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Data summary

Continuous outcomes; publicly funded

Short Medium Long

Small

Trial 1

FAST INdiCATE

n=288; 6 weeks

Trial 2

SELF

n=86; 3 months

Trial 3

Acupuncture

n=241; 12 months

Large

Trial 4B

CASPER (Minus)

n=705; 4 weeks

Trial 5

CASPER Plus

n=485; 4 months

Trial 4A

CASPER

n=705; 12 months

Continuous outcomes; industry

Small

Trial 6B

(Epilepsy)

n=133; 1 day

Trial 6A

Epilepsy

n=133; 19 weeks

Trial 6C

(Epilepsy)

n=133; 1 year

Large

Trial 7A

Flu Vaccine (A/H1N1)

n=2249; 28 days

Trial 7B

Flu Vaccine (A/H3N2)

n=2249; 3 months

Trial 7C

Flu Vaccine (B1)

n=2249; 1 year

Binary outcomes; publicly funded

Small

Trial 8

IMPROVE

n=613; 30 days

Trial 9

Corn plasters

n=202; 3 months

Trial 10

AMAZE

n=352; 2 years

Large

Trial 11A

3MG

n=1109 ; 7 days

Trial 12

RATPAC

n=2243; 3 months

Trial 11B

(3MG)

n=1109; 12 months

Binary outcomes; industry

Small

Trial 13

Nasal sprays

n=300; <1 hour

Trial 14A

Mencevax (A) vaccine

n=296; 1 month

Trial 14B

Mencevax (C) vaccine

n=296; 1 year

Large

Trial 7D

Flu Vaccine (A/H1N1)

n=2249; 28 days

Trial 7E

Flu Vaccine (A/H3N2)

n=2249; 3 months

Trial 7F

Flu Vaccine (B1)

n=2249; 1 year

Table 4.1: A summary of the twenty four trials that data has been obtained for with sample size and
time to primary outcome data becoming available.
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4.4 Plan for analysis

4.4.1 Introduction

This analysis plan outlines the details of the proposed analyses to be undertaken on each

trial that data is obtained for.

4.4.2 Objectives and endpoints

The aims of the data re-analysis for this thesis are as follows:

1. Consider key logistical factors including timing of the interim analysis and maximum

increase of sample size

2. Investigate future treatment effect assumptions used in the CP equation

3. Compare SSR designs based on CP and their impact on n∗

4. Assess the addition of a futility bound at the interim analysis

5. Evaluate stability of the estimate and factors that could influence instability

6. Inform the further work within this thesis

Each objective is explained in more detail in Sections 4.4.2.2 - 4.4.2.7.

4.4.2.1 Logistical features

Whilst CP and new sample size n∗ were calculated after every patient, three interim analysis

time points were chosen to look at in further detail. Following the systematic review of trials

implementing promising zone carried out, and reported in Section 3.17, specific interim

analyses at 25, 50 and 75% of patients with data available seemed appropriate points to

investigate. CP plots show the lines that correspond to these three analyses: solid lines for

number with data available, and dashed for the number recruited at this time point. This

is to show the difference between the CP that decisions are based on, and the CP if all

currently recruited patients had data available. CPmin values are reported for promising zone
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and stepwise designs, n∗ for all trials, and actual CP value are reported for each interim time

point and for each future treatment effect assumption (Section 4.4.2.2).

Two maximum sample size increases were considered in the data re-analysis. Again,

using the information available from the completed systematic review, 50% and 100% in-

creases seemed the most feasible for a trial to consider, with higher increases often not being

financially or logistically viable.

For the purposes of the data re-analysis, the treatment effect and variance from the orig-

inal trial analysis are assumed to be the true population parameters. This is discussed in

more detail in Section 5.5.

4.4.2.2 Conditional power assumptions

Conditional power has been previously described in Section 2.6, and the future treatment

effect assumption discussed in Section 3.5.2. Herson et al. have previously recommended

the use of an 80% optimistic confidence limit in conjunction with a futility boundary, which

will be one of the investigated assumptions of this analysis. A 90% optimistic confidence

limit has also been chosen to consider as a more conservative assumption (Pepe 1992).

CP will be calculated using

CPθ (n,zα |z1) = 1−Φ

zα

√
n− z1

√
n1√

(n−n1)
− d̃
√

n−n1√
2σ̂2

obs

 , (4.1)

where θ represents one of the four treatment effect assumptions for ‘future’ patients:

• Current trend, d̃ = d̂obs (assuming the data observed so far is likely to continue for the

duration of the trial)

• Hypothesised treatment effect, d̃ = dplan (assuming the hypothesised treatment effect

used in the original sample size calculation will be seen for the remainder of the trial)

• 80% optimistic limit, d̃ = d̂obs± Z1− 0.2
2

√
2σ̂2

obs
n1

(where ± depends on the direction

considered optimistic)
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• 90% optimistic limit, d̃ = d̂obs± Z1− 0.1
2

√
2σ̂2

obs
n1

(where ± depends on the direction

considered optimistic)

Using the current trend (d̃ = d̂obs), Equation 4.1 equates to Equation 2.10.

Conditional power using the four future treatment effect assumptions will be calculated

after every patient and plotted. These same values will then be used to evaluate all three

SSR designs and the impact of the four assumptions on interim decisions will be assessed.

4.4.2.3 Promising zone

The promising zone design is described in detail in Section 3.5. CPmin values will be calcu-

lated for every possible n1 value (from 1 to n). If CP values lie between CPmin and 1−β ,

the trial is said to be in the promising zone and sample size is re-estimated according to

Equation 3.2, up to a maximum value of nmax. If CP values are greater than 1−β , the trial

lies in the favourable zone and no increase in sample size is considered. Similarly, if CP

values fall below CPmin, no SSR occurs as the trial lies in the unfavourable zone.

In reality, only one time point would be chosen for the SSR to take place, and therefore

only one value of CPmin would be calculated. This re-analysis calculates after every patient

in order to illustrate CP stability throughout the trial and the impact of interim decisions.

CPmin values, corresponding zone, and new total sample size n∗ will be reported for three

interim analyses (see Section 4.4.2.1) for all trials, and n∗ will be presented graphically after

every patient.

4.4.2.4 Combination test design

The combination test design is reported in detail in Section 3.11.1. The design requires

prior specification of the parameter γ , which can be thought of as a “tuning parameter”.

The sample size is increased only up to the point where CP is increased by < γ by adding

one more observation (Jennison 2015). The objective function CPd̃(z1,n∗)− γ(n∗− n) is

then maximised, where the new sample size n∗ can take any value between nrec (the number

recruited at the point of the interim analysis), and the maximum sample size nmax. The new

total sample size will then be compared graphically with the other two SSR designs. Due to
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the in-built “stopping boundaries” in the design (where the trial stops at nrec patients as CP

is not increased by at least γ by recruiting one additional patient), no further boundaries are

explored in combination with this design.

4.4.2.5 Stepwise design

The stepwise design methodology is described in detail in Section 3.12.1. The stepwise

design considered is based on Rule 2 from Liu 2016. Three ‘step’ values r j have been chosen

and will use a symmetrical design, where sample size will be increased and decreased using

the same r j values. Provided the lower limit of the interval provided in Equation 3.16 is

satisfied for the smallest r j, all other interval values are free to be chosen by the user. The

same values of nmax will be considered for all designs (1.5 and 2 times the original sample

size). Stepped increments of sample size increase will be spread equally between 1 and

nmax such that values of r j = 1.16,1.33,1.5; and r j = 1.33,1.67,2 for the two values of nmax

investigated respectively.

CPmin values will again be calculated after every possible n1 value, using a maximum

increase of r1 for each design (i.e. 1.16, or 1.33 times the original sample size for the two

nmax values). Intervals for sample size increases have been standardised as much as possible

across designs, and therefore only differ in terms of CPmin. The stepwise design is fully

defined as:

(n∗/n) = I(CP(z1)≤CPmin)

+ r1 ∗ I(CP(z1) ∈ (CPmin,
1
2
(CPmin +0.6)])

+ r2 ∗ I(CP(z1) ∈ (
1
2
(CPmin +0.6),0.6])

+ r3 ∗ I(CP(z1) ∈ (0.6,0.7])

+ r2 ∗ I(CP(z1) ∈ (0.7,0.75])

+ r1 ∗ I(CP(z1) ∈ (0.75,0.8])

+ I(CP(z1)> 0.8)

Similarly to the promising zone design, CPmin values and corresponding new total sam-
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ple size n∗ will be reported for the three interim analyses, and n∗ will be presented graphi-

cally after every patient.

4.4.2.6 Futility bounds

Whilst the literature surrounding stopping boundaries based on CP values have suggested

futility boundaries between 20-40%CP, using these definitions of futility would cause the

trial to stop in some cases even at the lower end of the promising zone (Sully 2014). As

these designs also incorporate a method to maintain power by increasing the samples size,

the futility boundary may only be beneficial when researchers when there is overwhelming

evidence that the trial is futile to continue. Whilst alternative futility boundaries may be

considered, time constraints mean that only one boundary will be investigated, and a 10%

boundary has been chosen for this reason.

For all designs, a 10% futility bound will be considered. If the CP value at the interim

analysis falls below this limit, the trial would be stopped for futility and would not continue,

even to the original sample size. Again, due to time constraints, no efficacy boundaries are

considered for any design for the analyses in this thesis.

4.4.2.7 Stability of the estimate

The stability of the estimate was investigated in order to understand when might be the

earliest time that an interim analysis could take place. For this, the end result of the original

trial analysis was taken as the “true” treatment effect. First, patients were assumed to be

recruited in the same order as the original trial, and the treatment effect estimated after every

10 patients. This is hereafter referred to the ‘original sequential order’. Additionally, the

treatment effect calculated after every 10 patients recruited in reverse order was investigated.

In this scenario the last patient is now first, and first patient now last. Finally, the trial

was randomly re-ordered 1000 different times, and again estimates were calculated after

every 10 patients. The median estimate was taken and plotted with the original sequential

order for comparison. Additionally, the 97.25/2.5 and 75/25% quantiles of the 1000 random

orders were plotted. The original, reverse and the median of the random order estimates
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were compared graphically. The aim of this investigation was to see any bias in the order of

patient recruitment, particularly if the “best” site opens first, or there is a rush for recruitment

to finish on time at the end of the trial.

4.4.3 Methods

4.4.3.1 Data

Data has been specifically chosen to cover a range of scenarios in trial design: continu-

ous and binary endpoints, publicly funded and industry settings, size of study (‘small’ and

‘large’) and time to primary outcome data availability (‘short’, ‘medium’ and ‘long’). No

strict definitions have been used for classifying size of study or time to primary outcome,

but are meant to be comparative to each other. With the exception of one study, all ‘small’

studies are≤ 400 patients in total. ‘Short’ studies have outcome data available by 6 weeks at

the latest, ‘medium’ outcomes range between 3-4 months (with one exception), and ‘long’

studies all have outcomes at ≥ 12 months.

Details of each individual trial are provided in Appendix B and Appendix C for back-

ground details and results respectively. Only the primary outcome will be used in the data

re-analysis and no secondary outcomes will be assessed. Analyses are based on an Intention

to treat (ITT) principle, as randomised group was more readily available than information

on treatment received.

4.4.3.2 Reusing data

Due to the lengthy data collection process, not all data was able to be obtained in both

publicly funded and industry settings (details in Sections 4.3.2 and 4.3.1). In order to still

cover the original scenarios (data type, time to endpoint and size of trial), some data was

used more than once. If data for another outcome was also provided (e.g. a co-primary

outcome), then this data was used, with the time point being reframed (e.g. co-primary

outcome 1 being used at the original time point, and co-primary outcome 2 imagined at

a later date). However, this was not always possible, and some trials use the same data,

imagined at a different time point. For full details of how datasets were used and re-used,
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see Table 4.1.

4.4.3.3 Modelling randomisation dates

Some studies were not willing to provide a randomisation date with the data. In order

to work out pipeline patients (particularly affecting the combination design), dates were

assigned a date within the recruitment period, while maintaining the same sequential order

of patients provided. The number of months of the trial was first calculated, and month

number was randomly generated n times. For instance, if a study started in September 2018

(month 1), and ended in January 2020 (month 17), then a random number between 1 and

17 would be generated n times (i.e. one for each patient in the trial). The day was then

randomly generated based on the month - e.g. between 1 and 31 if the month was March,

but only between 1 and 30 for April. Together these made a full date, which were ordered

and then merged with the trial data set. There was one exception to this method, due to all

recruitment taking place over a 12 day period. For this trial, a number between 1 and 12 was

randomly generated n times, and this was converted to the corresponding date.

If a “day of primary outcome collected” was available, the primary data available date

was based from that information. For instance, if “Day 28”, 28 days were added to their

modelled randomisation date. Otherwise, the same number was added to all randomisation

dates (e.g. randomisation date + 365 days for a 1 year outcome).

4.4.3.4 Missing data

Where the derived primary outcome variable is not provided, this have been derived as

closely as possible to the original analysis. However if only limited information on rules

(e.g. for varying levels of missing data) then some small discrepancies may occur between

the original analysis and the re-analysis in this thesis.

Some trials have had a problem with missing data, and may have used methods to over-

come this such as multiple imputation in the original analysis. However, this will not be

taken into account for the purposes of the data re-analysis. Missing data is reported for each

trial in Appendix B.



4.5. Case study: The IMPROVE trial 105

If numbers available are substantially different to the planned sample size, (for exam-

ple, if the trial terminated early), power has been adjusted to account for this discrepancy.

Treatment estimates have been kept consistent with the original analysis in these cases.

4.4.3.5 Analysis models

For better comparisons between trials, the models were the same for each data type - AN-

COVA for all continuous end points, and logistic regression for all binary endpoints. If initial

treatment effect estimates were reported as an absolute difference in proportions, these were

converted to the odds ratio scale using 2x2 tables, and the Standard Error (SE) calculated

as SE[log(OR)] ≈
√

(1
a +

1
b +

1
c +

1
d ). If applicable, non-inferiority limits were also con-

verted to the log scale. All models were adjusted for any covariates specified in the original

analysis if data was available.

4.5 Case study: The IMPROVE trial

Due to the large number of datasets obtained, the IMPROVE trial is presented here as an

example of the background information obtained, details of recruitment and original analysis

and results, and missing data. Appendix B gives all trials summarised in the same manner.

4.5.1 Background

The aorta is the main blood vessel carrying oxygenated blood to the rest of the body. An

Abdominal Aortic Aneurysm (AAA) is a swelling of the aorta in the abdomen, and, left

untreated, can enlarge and eventually rupture (Ulug 2018). A ruptured AAA is a common

cause of death, with many not reaching hospital in time, and even with surgery, only about

half make it out of hospital alive. Surgical intervention is typically an open repair, and

those that survive have a lengthy recuperation time. It is thought that a keyhole surgery

intervention, endovascular repair, may shorten recovery time and result in a lower 30 day

mortality rate compared to open repair.
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4.5.2 Trial details

The IMPROVE trial (The Immediate Management of the Patient with Rupture: Open Versus

Endovascular repair trial) aimed to compare these two surgical techniques. The primary

outcome was mortality at 30 days. To detect a risk difference of 14.3%, assuming a mortality

rate of 44.7% in the open repair group, and 30.4% in the endovascular repair group, with

two sided 5% significance, 94% power, and 5% loss to follow up, required a total of 600

participants. The treatment effect was converted to an OR for data re-analysis, resulting in

an odds ratio of mortality in the intervention group compared to the control group of 0.539,

and SE of 0.171.

4.5.3 Results

A total of 613 patients (open repair: n=297, endovascular repair: n=316) were randomised to

the IMPROVE study from 31 centres in the UK and Canada. Figure 4.3a shows recruitment

rate, and number of patients with data available, or unavailable (pipeline patients). Figure

4.3b shows when sites were opened, and the total number recruited to each. Table 4.2 shows

the time to 50% and 100% recruitment of both patients and sites.

(a)

(b)

Figure 4.3: Recruitment to the IMPROVE trial. (a) shows rate of recruitment and time to data
availability. (b) shows site recruitment (day opened, and total patients recruited)

Figure 4.4 shows the missing data for the 30 day outcome and flow of participants
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Total days of study 1410
Days to last patient recruited 1380
Days to 50% patient recruitment 811
Number of sites 31
Days to last site recruited 1266
Days to 50% site recruitment 381

Table 4.2: Recruitment summary for the IMPROVE study

through the study. No patients were missing outcome data, age or sex (baseline covariates).

Missing baseline data came from the Hardman index covariate data.

Figure 4.4: Flowchart of participants in the IMPROVE trial

Primary analysis used a Pearson Chi-squared test to asses proportions of patients sur-

viving to 30 days in each group. A logistic regression was also used to provide an adjusted

odds ratio, adjusting for baseline covariates age, sex and Hardman Index. The endovascular

repair group resulted in slightly lower odds of death compared to the open repair group, but

this was not statistically significant (OR=0.92, 95% CI (0.66, 1.28), p=0.62).

4.6 Additional case studies: Pipeline patients and site

recruitment

The IMPROVE trial showed the pipeline patients in a trial with 30 days to outcome data

availability. Figure 4.5 shows two further trials: 3MG and the Acupuncture trial. The

3MG trial recruited 1109 patients in 1427 days from 25 sites. The primary outcome was

admission to hospital within 1 week of presentation at the emergency department. Due to
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(a) (b)

Figure 4.5: Recruitment and time to data availability to the (a) 3MG trial and (b) Acupuncture trial.
Green (dotted) lines show pipeline patients who have been randomised, but have no data available
yet.

the short time to data becoming available, the recruited (black solid) and data availability

(red dashed) lines are very similar to each other, and the pipeline patients (green dotted line)

remains very low throughout the study.

The Acupuncture trial recruited 241 patients in 549 days across 16 sites. The primary

outcome involved pain scores collected at 12 months post-randomisation. Due to the length

of time between randomisation and data availability, the number of pipeline patients (green

dotted line) is quite high until approximately day 500, from which point it steadily decreases.

Therefore almost all patients have been randomised by the time any data has become avail-

able. Trials in this situation may not benefit from any design which allows a decrease in

sample size, such as the combination test or any design with a stopping boundary. Addition-

ally, if a sample size increase is found to be necessary through any of the designs, the trial

would be facing a lengthy time delay, as patient recruitment would need to be restarted, and

the full follow up time added to the total duration of the study. Another interesting trial in

terms of recruitment is the Flu vaccine trial, shown in Figure 4.6, which recruited all 2249

patients over just a 12 day period across 38 sites. Even with a 28 day timeframe to outcome

data availability, all patients have been recruited before any data becomes available, and this

trial would be in a similar situation to the Acupuncture study mentioned above, had a SSR

been involved in the original trial.

The IMPROVE trial showed an example of many sites being recruited throughout the
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Figure 4.6: Time between patient recruitment and primary outcome data became available in the flu
vaccine trial (all strains).

study duration and, with the exception of a few lower recruiting sites, recruited similar

number of patients regardless of when they started recruiting (e.g. 2 sites that first started

recruiting after day 1000, and yet were still two of the top recruiting sites). Figure 4.7

provides two additional examples of site recruitment. The RATPAC study (4.7a) recruited

all their sites early on in the trial, and all sites recruited at least 320 patients (maximum=464).

On the other hand, the CASPER trial had one predominant recruiting site that was the first

to open and recruited 65% of the total patients. Three additional sites that started recruiting

later into the trial recruited the remaining patients.

(a) (b)

Figure 4.7: Site recruitment to the (a) RATPAC trial and (b) CASPER trial. The x-axis shows time
to first patient recruited in each site, and y-axis represents the total number recruited in each site.
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4.7 Overview of all trials

This section provides a summary of the 21 unique outcomes from 14 trial datasets re-

analysed. Trials may be summarised at the trial, outcome, or recruitment level populations:

• Population 1: All original trials only. No reframed time points or additional outcomes

analysed.

• Population 2: All trials (original or reframed) with distinct outcome data (e.g. CASPER

MINUS uses the 4 month data from CASPER and so is included, but 3MG (1 year)

uses exactly the same data as 3MG (1 week) and so is not included)

• Population 3: Trials that have distinct time to primary outcomes from recruitment

data. The binary outcomes from the Flu vaccine trial have been excluded as these

sub-trials all have the same recruitment date and time to primary outcome as their

corresponding continuous sub-trials (i.e. one per strain)

This is further illustrated by Table 4.3.
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Population 1 Population 2 Population 3

Original trial
Distinct

outcome data

Distinct

pipeline data

C
on

tin
uo

us Pu
bl

ic
ly

Fu
nd

ed

FAST INdiCATE 3 3 3

SELF 3 3 3

Acupuncture 3 3 3

Casper MINUS 7 3 3

Casper PLUS 3 3 3

Casper Minus 3 3 3

In
du

st
ry

Epilepsy (1 day) 7 7 3

Epilepsy (19 weeks) 3 3 3

Epilepsy (1 year) 7 7 3

Flu A/H1N1 3 3 3

Flu A/H3N2 7 3 3

Flu B1 7 3 3

B
in

ar
y Pu

bl
ic

ly
Fu

nd
ed

IMPROVE 3 3 3

Corn plasters 3 3 3

AMAZE 3 3 3

3MG (1 week) 3 3 3

RATPAC 3 3 3

3MG (1 year) 7 7 3

In
du

st
ry

Nasal sprays 3 3 3

Mencevax A 3 3 3

Mencevax C 7 3 3

Flu A/H1N1 7 3 7

Flu A/H3N2 7 3 7

Flu B1 7 3 7

(TOTAL=24) (TOTAL=14) (TOTAL=21) (TOTAL=21)

Table 4.3: A summary of information available for each of the 14 trials obtained for data
re-analysis, reframed in 24 ways.
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Short (N=7) Medium (N=8) Long (N=6) All (N=21)
Median (LQ, UQ) Median (LQ, UQ) Median (LQ, UQ) Median (LQ, UQ)

Observed loss
to follow up (%)

8.0 (3.1, 16.7) 9.0 (3.1, 16.0) 8.8 (2.7, 18.8) 8.0 (3.1, 16.7)

Effect size planned 0.29 (0.14, 0.40) 0.37 (0.23, 0.47) 0.31 (0.30, 0.40) 0.31 (0.23, 0.40)
Effect size observed 0.15 (0.07, 0.20) 0.24 (0.17, 0.39) 0.29 (0.26, 0.35) 0.22 (0.15, 0.32)
Reached statistical
significance?

4/7 (57%) 6/8 (75%) 5/6 (83%) 15/21 (71%)

Table 4.5: Effect sizes, observed loss to follow up and statistical significance of the original trial
from the 21 unique outcomes from the 14 trial datasets (Population 2)

Table 4.4 summarises characteristics of the 14 original trials, split by length to primary

outcome data availability (“short”/“medium”/“long”). Most trials recruit to target, with a

few exceeding their goals but only by a few patients. Three trials stopped recruiting early

due to slow recruitment (one trial also showed efficacy). Short outcome trials had the highest

median planned and recruited sample size figures, which explains why the longest median

study duration in days is actually in the short outcome group. The median planned power

was 80%, although of the 5 short outcome trials, the median was 90%. As time to outcome

increased, the median planned and observed loss to follow up also increased, with one long

outcome trial seeing 27.4% loss to follow up. All trials had at least 2 sites, and the maximum

was 38. No original industry trials were in the long outcome category.

Almost all studies were superiority studies, with only the Flu and Mencevax studies

having a non-inferiority endpoint.

At the outcome level (Population 2), observed loss to follow up was broadly similar

across the three outcome length categories. Standardised observed effect sizes were calcu-

lated according to Table 1 in Rothwell et al., which is able to summarise continuous and

binary effect sizes in a comparable manner (Rothwell 2018), and are presented in Table 4.5.

Whilst all outcome categories saw a decrease in median between planned and observed ef-

fect sizes, six trials actually saw a bigger effect than originally planned. Rothwell et al. also

saw a decrease between target and effect sizes from an audit of 102 RCT reports.
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Table 4.6 gives details about the recruitment original trials and reframed timepoints

(Population 3). As discussed previously from Population 1, the short trial outcome time

category has the longest median recruitment time duration (945 vs 490 vs 761 days), al-

though no longer has the longest median total study duration (946 vs 567 vs 1126 days).

Unsurprisingly, short outcomes have much smaller percentages of pipeline patients, and

larger percentages of patients still left to recruit. At the 75% interim analysis, medium and

long outcomes both see very smaller pipeline patient percentages, which is explained by the

next section of the table; having seen very small percentages of patients still left to recruit.

Overall, the selection of trials seem representative of trials in the general population.

Despite being chosen specifically for length to data availability, sample size and outcome

type, these trials will be also be able to provide information about SSR implementation with

varying recruitment rates (recruitment periods ranging from 12 days (Flu vaccine trial) to

2016 days (AMAZE)), and trial outcomes (having seen decreased, approximately equal and

increased effect sizes to that originally planned). Pipeline patients and percentage left to

recruit at interim analyses will help provide information about SSR design impact, such as

few/no decreases being seen in trials with a longer time to primary outcome.

4.8 Summary

This chapter has presented the full analysis plan for the retrospective data re-analysis, pro-

vided case studies of patient recruitment rates and site recruitment, and summarised all

trials that will be used in the thesis. Chapter 5 presents the results from the data re-analysis,

including CP plots, the impact of new sample size n∗ for three SSR designs, and an investi-

gation of estimate stability.



5 | Retrospective data analysis

5.1 Introduction

Chapter 4 describes in detail 21 distinct outcomes from 14 different trial datasets that have

been obtained for re-analysis in this thesis. This chapter presents the results from the ret-

rospective data re-analysis through case studies, and an overall summary of results. The

re-analysis is split into two main sections. First, case studies will be presented to illustrate

CP calculations, n∗ comparisons from three designs, an in depth look at three chosen interim

time points (25, 50 and 75% data available), with 2 values of nmax (1.5*n and 2*n), and the

stability of the treatment estimate, which could help to inform the timing of an interim anal-

ysis. The second part of this chapter provides an overall summary of all trials re-analysed.

Similarly to Chapter 4, all trial results are included in Appendix C, with only a few examples

discussed in this chapter.

5.2 Aims and objectives

Specific aims of this chapter include:

• Present case studies to illustrate the choice of future treatment effect in CP calculations

• Compare three SSR designs and the impact on n∗ values for each

• Investigate three interim time points and two values of nmax, and the decisions that

would have been made in each trial

• Evaluate four boundaries for estimating stability and observe where these are met for

each trial
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5.3 Case studies

This section provides case studies of CP values plotted after every patient from patient 10

onwards (unless otherwise stated) using four treatment effect assumptions: current trend

(black), 80% optimistic limit (blue), 90% optimistic limit (green) and the original hypoth-

esised treatment effect (H1) (red). Grey vertical lines represent the three interim analyses

investigated: solid lines show the number of patients with data available, and dashed lines

show the number recruited at each interim time point. The shaded areas represent the zones

if a promising zone design were being considered, using CPmin calculated with 2 values

of nmax. The upper grey block represents the favourable zone (any value above 1-β ), and

the two lower grey blocks represent the unfavourable zone for the two values of nmax: an

increase of 50% and 100% respectively. The white horizontal line represents the futility

boundary at 10% (if using).

New total sample size n∗ plots compare the three SSR designs investigated: promising

zone (pink), combination test (green), and stepwise (blue). If the same data is used at more

than one time point (e.g. the Epilepsy trial), the combination test design yields different

results for each as it depends on the number of patients recruited, and is also plotted (in

orange and/or purple).

For all trials, the treatment estimate calculated after every 10 patients is plotted: pink

for the original sequential order of patients, purple for the median estimate of 1000 random

orders of trial patients, and blue for the reverse order of the original sequential order (see

Section 4.4.2.7 for full details). Confidence intervals are provided for original order and

reverse order, slightly offset to better distinguish between the two. Dashed purple lines

represent 2.5, 25, 75 and 97.5 percentiles. The estimate at the end of the original trial,

assumed to be the “true” estimate, is shown as a black dotted line. A black dashed line

represents the hypothesised treatment effect prior to the start of the trial. Four boundaries

are investigated for describing the estimate as stable in terms of ±Standard Deviation (SD):

if it lies within ±0.05*SD (green) ,±0.1*SD (pale green), ±0.2*SD (yellow) or ±0.3*SD

(pale pink) from the original trial estimate. Both the first time the estimate enters each
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boundary, and the instance where the estimate enters the boundary and remains there for the

rest of the trial are reported in Section 5.4 for all trials combined.

5.3.1 Case study: The CASPER PLUS trial

The original CASPER PLUS trial the study showed a mean difference of 1.92 points (95%

CI 0.85-2.99, p<0.001) in favour of the collaborative care group (Bosanquet 2017). Figure

5.1 shows CP values for the CASPER PLUS trial, re-imagined with an adaptive uSSR de-

sign. The hypothesised effect line remains consistently high (≈1) throughout the trial. The

other three lines start at zero, and gradually increase to 1, fluctuating between zones be-

fore this point (∼430 patients). The current trend line remains below the futility boundary

(0.1) until patient 125, unfavourable until 176, varying between all three zones until patient

350, where it remains in the favourable zone. The optimistic limits rapidly alter between

all zones for the first 120 patients. After this point, the 90% limit remains in the favourable

zone, and the 80% limit dips twice into the promising zone. Table 5.1 summarises the num-

ber of times each line falls into each zone, when CP is calculated after every patient’s data

becomes available.

Figure 5.1: Conditional power calculated after every patient in the CASPER PLUS trial

Table 5.2 presents decisions for the three specified interim analyses. Promising zone and

stepwise designs only increase sample size at 50% data available, using the current trend

assumption. With nmax=1.5, both designs reach the maximum increase of 50%, and with
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Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 155 476 334 425

Promising 119 0 97 34
Unfavourable 86 0 25 4
(Futility) 116 0 20 13

nmax=2 Favourable 155 476 334 425
Promising 132 0 104 34
Unfavourable 73 0 18 4
(Futility) 116 0 20 13

Table 5.1: Number of times CP values fall in each zone for the promising zone design for the
CASPER PLUS trial. For a design where no futility boundary is considered, these values become
unfavourable instead.

Promising zone
Combination
test Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 121 nmax=728 0.093 0.419 Unfavourable 485 227 0.466 485

Recruited:227 nmax=970 0.093 0.374 Unfavourable 485 227 0.44 485
50% Available: 243 nmax=728 0.602 0.406 Promising 728 485 0.46 728

Recruited: 371 nmax=970 0.602 0.357 Promising 763 485 0.43 970
75% Available: 364 nmax=728 0.938 0.382 Favourable 485 480 0.447 485

Recruited: 480 nmax=970 0.938 0.328 Favourable 485 480 0.41 485
HYPOTHESISED EFFECT
25% Available: 121 nmax=728 0.997 0.419 Favourable 485 326 0.466 485

Recruited:227 nmax=970 0.997 0.374 Favourable 485 326 0.44 485
50% Available: 243 nmax=728 0.998 0.406 Favourable 485 371 0.46 485

Recruited: 371 nmax=970 0.998 0.357 Favourable 485 371 0.43 485
75% Available: 364 nmax=728 0.999 0.382 Favourable 485 480 0.447 485

Recruited: 480 nmax=970 0.999 0.328 Favourable 485 480 0.41 485
80% OPTIMISTIC LIMIT
25% Available: 121 nmax=728 0.812 0.419 Favourable 485 496 0.466 485

Recruited:227 nmax=970 0.812 0.374 Favourable 485 496 0.44 485
50% Available: 243 nmax=728 0.938 0.406 Favourable 485 441 0.46 485

Recruited: 371 nmax=970 0.938 0.357 Favourable 485 441 0.43 485
75% Available: 364 nmax=728 0.989 0.382 Favourable 485 480 0.447 485

Recruited: 480 nmax=970 0.989 0.328 Favourable 485 480 0.41 485
90% OPTIMISTIC LIMIT
25% Available: 121 nmax=728 0.935 0.419 Favourable 485 425 0.466 485

Recruited:227 nmax=970 0.935 0.374 Favourable 485 425 0.44 485
50% Available: 243 nmax=728 0.971 0.406 Favourable 485 415 0.46 485

Recruited: 371 nmax=970 0.971 0.357 Favourable 485 415 0.43 485
75% Available: 364 nmax=728 0.994 0.382 Favourable 485 480 0.447 485

Recruited: 480 nmax=970 0.994 0.328 Favourable 485 480 0.41 485

Table 5.2: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.
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nmax=2, promising zone increases by 78%, compared to the maximum of 100% increase for

the stepwise design. The combination test would have increased in just one scenario (80%

optimistic limit, 25% data available) by just 11 patients (2%). The largest decrease occurs

at 25% data available under the current trend, to 47% of the original sample size planned.

Figure 5.2 compares n∗ under each assumption after each patient has data available (i.e.

Figure 5.2: Comparison of three SSR designs for the CASPER PLUS trial data

after every value of n1 from patient 12 onwards). No increase is seen at any point using the

hypothesised effect assumption. The combination test design would decrease sample size

at any interim point before 370 patients, after which the sample size would remain at the

originally planned sample size. Large fluctuations in sample size can be seen in the other

three assumptions in all three designs: predominantly early on in the trial for the optimistic

limits, and mainly in the middle part of the trial for the current trend. This is likely due to

the fluctuations in observed CP early on in the trial. An additional spike in sample size can

be seen using the 80% limit between 250 and 300 patients, with the largest rise in sample

size being seen for the stepwise design (blue).

Figure 5.3 shows the sequential and reverse order estimates calculated from patient 20

onwards, after every 10 patients. The original order estimate here starts far below the origi-

nal analysis treatment effect. with even the upper boundary of the 95% Confidence Interval
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Figure 5.3: A comparison of sequential order, reverse order and the median of 1000 random orders
in terms of stability of the estimate for the CASPER PLUS study

(CI) not reaching the largest boundary investigated, ±4*SE. However, from this point for-

ward it increases, reaching the ±4*SE, ±3*SE ,±2*SE, and ±1*SE boundaries by 110,

120, 130 and 180 patients respectively. From 300 patients onwards (62% through the trial),

the estimate is within ±1*SE of the end estimate, and remains there. The reverse order

however, takes longer to first reach the ±1*SE boundary (240 patients), and to remain in

this boundary (410 patients onwards, 85% through the trial).

5.3.2 Case study: The IMPROVE trial

Figure 5.4 shows CP calculated after every patient assuming four different treatment ef-

fects. The hypothesised treatment effect assumption line starts at 1 and gradually decreases,

leaving the favourable zone by patient 167, the promising zone by 257 (nmax=1.5*n) or 269

(nmax=2*n). This line (red) has the highest CP values at any value of n1 (x-axis). The current

trend line starts very low, and remains always below the 10% futility bound, except for one

instance at 20 patients, which reaches the promising zone if nmax=2 (otherwise is classed as

the unfavourable zone). The optimistic limit assumptions result in large fluctuations early

in the trial, but settles to almost zero by the second interim time point (50% data available).

Both limits have a spike around 110-200 patients, but the 80% line stays within the un-

favourable zone for wither value of nmax. The 90% optimistic limit line lies in the promising

zone a total of 35 times between patient 125 and 177 for nmax=1.5, and 45 times in the same

interval for nmax=2. Table 5.3 summarises the number of times each line falls into the four
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zones (with futility zone being included with unfavourable if no stopping boundary is being

used).

Figure 5.4: Conditional power calculated after every patient in the IMPROVE trial

Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 0 159 18 40

Promising 0 97 32 65
Unfavourable 1 63 79 85
(Futility) 603 285 475 414

nmax=2 Favourable 0 159 18 40
Promising 1 100 35 74
Unfavourable 0 60 76 76
(Futility) 603 285 475 414

Table 5.3: Number of times CP values fall in each zone for the promising zone design for the
IMPROVE trial. For a design where no futility boundary is considered, these values become
unfavourable instead.

Table 5.4 presents three specified interim analysis time points (25, 50 and 75% patients

with data available), comparing decisions made and new total sample size from the three

SSR designs. No sample size increase would have been seen for any time point using the

stepwise design, and all values of n∗ = n = 613, the original planned sample size. One

increase (n∗=1226) can be seen using the promising zone design, assuming a 90% optimistic

limit and maximum increase of twice the original sample size and 25% data available interim

time point. The new sample size from the combination test ranges from a decrease in sample
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size of 74% of the originally planned sample size, n, (seen at 25% data available assuming

current trend or either optimistic limit), to an increase in sample size of 62%, seen at 50%

data available under the hypothesised effect assumption and a nmax=2, following a CP value

of 21%.

Figure 5.5 compares n∗ values for all n1 values, for three SSR designs. Other than one

sharp peak of n∗ for the promising zone at the 20 patient point discussed previously, no

increase in sample size can be seen under the current trend assumption. The combination

test would have decreased the sample size for every n1 value using the current trend or opti-

mistic 80% interval, and almost every n1 value under the other two assumptions. The largest

increase in sample size from the combination test design is from the hypothesised treatment

effect assumption, from ≈ 200-320 patients. The promising zone and stepwise designs also

see an increase in this range under the same assumption, but return to no increase in sample

size sooner.

Figure 5.5: Comparison of three SSR designs for the IMPROVE trial data

Figure 5.6 shows the estimate calculated after every 10 patients in the original sequential

order and reverse order of the trial dataset from patient 40 onwards, with 4 investigated
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Promising zone
Combination
test Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 154 nmax=920 0.001 0.419 Unfavourable 613 162 0.466 613

Recruited:162 nmax=1226 0.001 0.374 Unfavourable 613 162 0.44 613
50% Available: 307 nmax=920 0 0.406 Unfavourable 613 320 0.46 613

Recruited: 320 nmax=1226 0 0.357 Unfavourable 613 320 0.43 613
75% Available: 460 nmax=920 0 0.382 Unfavourable 613 479 0.446 613

Recruited: 479 nmax=1226 0 0.328 Unfavourable 613 479 0.41 613
HYPOTHESISED EFFECT
25% Available: 154 nmax=920 0.97 0.419 Favourable 613 494 0.466 613

Recruited:162 nmax=1226 0.97 0.374 Favourable 613 494 0.44 613
50% Available: 307 nmax=920 0.211 0.406 Unfavourable 613 320 0.46 613

Recruited: 320 nmax=1226 0.211 0.357 Unfavourable 613 991 0.43 613
75% Available: 460 nmax=920 0 0.382 Unfavourable 613 479 0.446 613

Recruited: 479 nmax=1226 0 0.328 Unfavourable 613 479 0.41 613
80% OPTIMISTIC LIMIT
25% Available: 154 nmax=920 0.195 0.419 Unfavourable 613 162 0.466 613

Recruited:162 nmax=1226 0.195 0.374 Unfavourable 613 162 0.44 613
50% Available: 307 nmax=920 0.007 0.406 Unfavourable 613 320 0.46 613

Recruited: 320 nmax=1226 0.007 0.357 Unfavourable 613 320 0.43 613
75% Available: 460 nmax=920 0 0.382 Unfavourable 613 479 0.446 613

Recruited: 479 nmax=1226 0 0.328 Unfavourable 613 479 0.41 613
90% OPTIMISTIC LIMIT
25% Available: 154 nmax=920 0.409 0.419 Unfavourable 613 162 0.466 613

Recruited:162 nmax=1226 0.409 0.374 Promising 1226 162 0.44 613
50% Available: 307 nmax=920 0.017 0.406 Unfavourable 613 320 0.46 613

Recruited: 320 nmax=1226 0.017 0.357 Unfavourable 613 320 0.43 613
75% Available: 460 nmax=920 0 0.382 Unfavourable 613 479 0.446 613

Recruited: 479 nmax=1226 0 0.328 Unfavourable 613 479 0.41 613

Table 5.4: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.

Figure 5.6: A comparison of sequential order, reverse order and the median of 1000 random orders
in terms of stability of the estimate for the IMPROVE trial
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boundaries for stability definition. The reverse order estimate always lies within the±4*SEs

of the assumed true treatment effect (black dotted line). However, the original order estimate

does not, until 110 patients (18% through the trial). The original order estimate first reaches

the ±1*SE boundaries later than the reverse order (160, 26% through the trial compared

to 40, 7%). However, both then subsequently leave this boundary, and do not remain there

until patient 350 (57%) for the reverse order estimate, compared with 460 (75%) for the

original order estimate. Note that while the estimate remains above the hypothesised effect

line, the model coefficients are on a log scale, and therefore a coefficient of 0 implies a OR

of 1, meaning no treatment difference.

5.3.3 Additional case studies

CASPER PLUS presents an example where the original analysis was statistically significant

in favour of the intervention (collaborative care) group. However, because the treatment

effect was much lower at the start of the trial than at the end, the CP value using the current

trend starts near 0, and only rises to 1 nearer the end of the trial. Conversely however,

the hypothesised effect line (red) stays almost consistently at 1 throughout the duration of

the trial. The IMPROVE trial however was not found to be statistically significant, with a

slight over estimation of the treatment effect early on, corresponding to an early spike in

CP under the current trend. The hypothesised line also reaches zero, and is much slower

to decrease, but reaches the futility boundary by patient 350. There is some fluctuation

using either optimistic limit, but both lines reach the futility bound before the hypothesised

CP line. Figure 5.7a shows one more CP example using the data from the RATPAC trial.

Despite under-estimating the final observed treatment effect during the study, the effect

was still much higher than planned throughout the trial duration. Other than one small dip

in CP in the very early stages under current trend, CP otherwise remains at 1 at all time

points, for all four treatment effect assumptions. This trial was terminated early, with one

of the reasons being due to a CP calculation by the DMSC showing efficacy for the primary

outcome (>99.9%). It should be noted that as this trials was terminated early, power has

been recalculated using the number of available patients for re-analysis.
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(a) (b)

Figure 5.7: (a) Conditional power calculated after every patient in the RATPAC trial (b) A
comparison of sequential order, reverse order and the median of 1000 random orders in terms of
stability of the estimate for the RATPAC trial

One further example of n∗ required for three designs is provided in Figure 5.8 (Epilepsy

study). Due to the multiple time points of the reframed epilepsy trials and therefore a differ-

ence in pipeline patients, the combination test yields different n∗ decisions for the three time

points. Therefore, orange represents the 1 day time point, green for the 19 weeks (original

trial analysis) and purple for the 12 month outcome. For this trial, the current trend assump-

tion does not result in an increase at all, with a decrease being seen in all three combination

test designs prior to around 80 patients (2/3 through the trial). More increases in sample size

can be seen in the hypothesised effect assumption, predominantly in the combination test

design case, before establishing a decrease instead later on in the trial. Optimistic values

show a similar situation, but increases occur in a much smaller percentage of values of n1

than in the hypothesised effect.

Figure 5.9 provides two further examples of estimate stability in the FAST INdiCATE

and 3MG trials.

The FAST INdiCATE original sequential order starts by under-estimating the treatment

effect, but lies within the ± 1*SE boundary by patient 50 (17% through the trial), and re-

mains there for the remainder of the trial. The sequential estimate briefly falls into the

±3*SE boundary at 30 patients, but remains within the ±2*SE limit at all other values of

n. Comparatively, the reverse order estimate spends a little longer in the ±3*SE bound-

ary, over-estimating the treatment effect to start. However, it slowly decreases, entering
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Figure 5.8: Comparison of three SSR designs for the Epilepsy trial data

(a) (b)

Figure 5.9: A comparison of sequential order, reverse order and the median of 1000 random orders
in terms of stability of the estimate for two trials: (a) FAST INdiCATE and (b) 3MG
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the ±1*SE boundary at 120 patients, and remaining there from that point forwards. Note

that two hypothosised lines appear on this graph, as both groups combine an interventional

and control group together (Functional Strength Training (FST) vs Movement Performance

Therapy (MPT)).

The original estimate of the 3MG trial is highly variable at the start, and does not keep

within even the ±4*SE boundaries until 80 patients onwards. After this point, it quickly

reaches the ±2*SE boundaries, and other than straying into the next boundary at 190 pa-

tients, stays within these limits. The estimate lies entirely within ±1*SE boundary only

from patient 660 onwards (61% through the trial). Whilst also starting outside any investi-

gated boundary, the reverse order estimate is quicker to reach each boundary compared to

the original order estimate. The reverse estimate reaches the inner±1*SE boundaries at 540

patients and remains there from that point forward.

5.4 Overview of trials

This section provides an overall summary of all the trials re-analysed. Table 5.5 provides the

median, lower and upper quartiles of conditional power at three interim time points under

four future treatment effects. As expected, the median CP is higher for significant trials than

non-significant trials. However, current trend assumption has smaller values at the 25%

time point (median=73.1%, LQ=9.3%). Had an interim time point been carried out at 25%

data available, sample size would have increased in some cases, or even stopped for futility

(having dropped below the 10% limit), despite having a significant finding with the original

n patients. For non-significant trials however, the current trend appears to have a very low

median CP at all investigated time points. The hypothesised effect however seems slow to

drop CP, with a median CP at the 50% time point being 63.8%. Arguably in this situation, a

SSR may have been effective in this scenario, and trials may have had a significant result had

sample size been increased. However, taking the original treatment effect as the assumed

true effect, this would have lead to additional patients being recruited, when there is no

true treatment effect in the population. Optimistic limits appear to have high CP at all time

points for significant trials, as well as low CP values for non-significant trials from 50%
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onwards. Table 5.6 shows n∗ as a percentage of original n for a maximum increase of 1.5*n

Conditional Power Not significant (N=6) Significant (N=15) All (N=21)
Median (LQ,UQ)
Current trend 25% 0.4 (0.1, 5.0) 73.1 (9.3, 100.0) 45.4 (1.4, 98.0)

50% 1.4 (0.0, 12.8) 99.9 (60.2, 100.0) 84.5 (14.2, 100.0)
75% 5.9 (0.0, 20.8) 100.0 (95.3, 100.0) 99.0 (22.4, 100.0)

Hyp. 25% 98.2 (84.0, 99.5) 99.7 (95.4, 100.0) 99.5 (95.4, 100.0)
50% 63.8 (21.1, 95.6) 100.0 (96.5, 100.0) 99.0 (77.2, 100.0)
75% 21.1 (0.0, 87.7) 100.0 (99.9, 100.0) 100.0 (87.7, 100.0)

80% limit 25% 32.5 (19.5, 71.8) 100.0 (81.2, 100.0) 98.2 (61.0, 100.0)
50% 14.8 (0.7, 55.8) 100.0 (98.9, 100.0) 100.0 (58.3, 100.0)
75% 16.4 (0.0, 46.9) 100.0 (99.9, 100.0) 100.0 (49.3, 100.0)

90% limit 25% 56.5 (40.9, 88.6) 100.0 (93.5, 100.0) 99.7 (81.8, 100.0)
50% 23.5 (1.7, 69.5) 100.0 (99.6, 100.0) 100.0 (71.7, 100.0)
75% 20.4 (0.0, 55.2) 100.0 (99.9, 100.0) 100.0 (57.6, 100.0)

Table 5.5: Summary of median, lower quartile and upper quartile conditional power values from all
trials at three interim time points for four treatment effect assumptions, for statistically significant
and non significant trials

(corresponding to 150% in the table). A value of 100% indicates no sample size increase,

and n=n∗. For non-significant trials under the current trend assumption, all median n∗ values

using the combination test design are lower than the original n, with the lower quartile at

25% time point as low as 26.4% of the original trial size. At the 75% time point, the median

is 94%, and even see some increases in sample size (upper quartile 131.9%), which is also

the only increase seen across all time points and all designs using the trend assumption. The

maximum value of 150% can be seen in the upper quartile of all combination test designs

for non-significant trials at all time points using either optimistic limit, with promising zone

only seeing this level of increase using the 90% limit. As expected, higher increases are

indicated for the non-significant trials, where all but two upper quartiles are larger than

100% - promising zone at 25% with the trend assumption (118%), and a very small increase

(102%) using the combination test at 25% with the 80% limit assumption. Additionally,

some decreases can be seen in the lower quartile values for the combination test (with lower

quartile values of 49% for trend, 67% with hypothesised, and 62/52% with the 80/90%

limits respectively, which all happen at the earliest time point, 25%). It should be noted

however that a different result may or may not have been found had only half the patients

been recruited to the trial. However, this design could be beneficial if the same result can be

found with only half the patients.
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(n∗/n)∗100 Not significant (N=6) Significant (N=15) All (N=21)
Median (LQ, UQ) Median (LQ, UQ) Median (LQ, UQ)

nmax=1.5*n
Trend 25% PZ 100.0 (100.0, 100.0) 100.0 (100.0, 118.4) 100.0 (100.0, 100.0)

CT 44.9 (26.4, 100.0) 83.3 (49.4, 100.0) 62.5 (46.8, 100.0)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% PZ 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 59.1 (52.2, 69.8) 100.0 (71.8, 100.0) 90.0 (63.4, 100.0)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

75% PZ 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 94.0 (78.1, 131.9) 100.0 (96.6, 100.0) 100.0 (95.2, 100.0)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Hyp. 25% PZ 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 90.3 (72.9, 142.3) 100.0 (67.2, 100.0) 100.0 (67.3, 100.0)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% PZ 100.0 (100.0, 107.4) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 103.1 (85.4, 150.0) 100.0 (76.5, 100.0) 100.0 (85.4, 100.7)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

75% PZ 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 101.8 (90.2, 112.1) 100.0 (96.6, 100.0) 100.0 (96.6, 100.0)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

80% limit 25% PZ 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 65.9 (27.9, 150.0) 100.0 (62.4, 102.3) 100.0 (43.6, 102.3)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% PZ 100.0 (100.0, 142.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 113.9 (63.4, 150.0) 100.0 (90.0, 100.0) 100.0 (77.9, 100.0)
SW 100.0 (100.0, 133.3) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

75% PZ 100.0 (100.0, 142.4) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 94.0 (83.1, 150.0) 100.0 (96.5, 100.0) 99.0 (95.2, 100.0)
SW 100.0 (100.0, 116.7) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

90% limit 25% PZ 100.0 (100.0, 150.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 114.1 (66.9, 150.0) 100.0 (52.0, 100.0) 100.0 (66.9, 109.2)
SW 100.0 (100.0, 117.4) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% PZ 100.0 (100.0, 115.6) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 113.1 (63.4, 150.0) 100.0 (85.6, 100.0) 100.0 (85.1, 100.0)
SW 100.0 (100.0, 116.7) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

75% PZ 112.7 (100.0, 150.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 100.8 (90.2, 150.0) 100.0 (96.5, 100.0) 100.0 (96.5, 100.0)
SW 100.0 (100.0, 133.3) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Table 5.6: Percentage of n required for the new sample size at three interim time points,
implementing three SSR designs using four future treatment effect assumptions. 100% indicates no
change in sample size, greater than 100% indicates an increase, up to 150% of the original sample
size
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Table 5.7 shows the percentage of times the CP value under four assumptions would fall

in each of the four zones used in the promising zone design (or three if not incorporating

futility, as this line would be added to the unfavourable zone). For non-significant trials, the

largest median percentage in futility (or futility and unfavourable combined), is seen using

the current trend. Here, the median percentage in the favourable zone was 0.3%, with an

upper quartile of 5%. Both optimistic limits also see the largest percentage in futility/(futility

+ unfavourable) zones for non-significant trials, whilst largely staying in the favourable

zone for significant trials (median=98.3% and 98.4% respectively). The hypothesised effect

sees similar median percentages to the optimistic limits, but has a slightly larger percentage

in the favourable zone for non-significant trials. The current trend assumption has a median

of 11.9% in the promising zone, indicating an increase in sample size, despite having a

significant result with the original n patients.

Promising zone Not significant (N=6) Significant (N=15) All (N=21)
nmax=1.5*n Median (LQ, UQ) Median (LQ, UQ) Median (LQ, UQ)
Current trend Futility 74.9 (40, 100) 4.0 (1, 21) 15.6 (2, 38)

Unfavourable 9.9 (0, 55) 4.0 (0, 18) 4.0 (0, 20)
Promising 2.3 (0, 5) 11.9 (0, 26) 9.6 (0, 20)
Favourable 0.3 (0, 5) 70.6 (33, 97) 55.2 (10, 82)

Hypothesised Futility 26.3 (9, 47) 0.0 (0, 0) 0.0 (0, 4)
Unfavourable 6.7 (4, 10) 0.0 (0, 0) 0.0 (0, 1)
Promising 17.9 (12, 30) 0.0 (0, 26) 7.9 (0, 26)
Favourable 36.7 (22, 77) 100.0 (74, 100) 91.7 (54, 100)

80% limit Futility 40.0 (12, 79) 0.0 (0, 2) 0.2 (0, 7)
Unfavourable 11.3 (7, 30) 0.0 (0, 1) 0.4 (0, 5)
Promising 22.4 (5, 50) 0.1 (0, 16) 4.0 (0, 20)
Favourable 13.8 (3, 22) 98.3 (84, 100) 89.2 (32, 100)

90% limit Futility 37.3 (12, 69) 0.0 (0, 2) 0.0 (0, 5)
Unfavourable 12.3 (7, 16) 0.0 (0, 1) 0.1 (0, 5)
Promising 28.3 (11, 44) 0.1 (0, 4) 2.1 (0, 19)
Favourable 16.8 (7, 35) 98.4 (91, 100) 91.5 (44, 100)

Table 5.7: Percentage of trial duration spent in each zone at three interim time points and four
treatment effect assumptions for the promising zone design

Similarly to Table 5.7, Table 5.8 shows the percentage in each sample size state (i.e.

decrease, remain the same or increase in sample size) for the combination test design. The

trend assumption largely stops the non-significant trials early, which could be similar to a

futility rule. However, the trend assumption would also decrease sample size on average

14.8% of the time for the significant trials, which may not have necessarily resulted in a

significant end result. The hypothesised assumption behaves in a similar manner, but with



5.4. Overview of trials 132

less decreases in sample size for non-significant trials. The confidence limit assumptions are

very similar to the hypothesised assumption, but have slightly larger proportion of time spent

decreasing sample size in non-significant cases and slightly less decreases in significant

trials in the 80% assumption.

Combination test Not significant (N=6) Significant (N=15) All (N=21)
nmax=1.5*n Median (LQ, UQ) Median (LQ, UQ) Median (LQ, UQ)
Current trend Decreased 87.8 (67, 98) 14.8 (0, 81) 37.4 (0, 83)

Remained 8.1 (4, 21) 66.2 (9, 100) 20.7 (5, 100)
Increased 0.0 (0, 28) 0.0 (0, 7) 0.0 (0, 7)

Hypothesised Decreased 44.0 (14, 78) 26.1 (0, 81) 33.3 (0, 78)
Remained 7.6 (4, 21) 66.2 (9, 100) 20.7 (4, 100)
Increased 52.0 (18, 56) 0.0 (0, 5) 0.0 (0, 51)

80% limit Decreased 56.6 (19, 96) 17.0 (0, 79) 30.5 (0, 81)
Remained 5.9 (4, 12) 66.2 (9, 100) 19.3 (6, 100)
Increased 32.1 (4, 76) 0.0 (0, 20) 0.0 (0, 26)

90% limit Decreased 52.0 (26, 89) 26.1 (0, 81) 29.0 (0, 81)
Remained 6.3 (4, 12) 66.2 (9, 100) 19.3 (6, 100)
Increased 38.4 (10, 66) 0.0 (0, 12) 2.9 (0, 23)

Table 5.8: Percentage of trial duration spent in sample size state at three interim time points and
four treatment effect assumptions for the combination test design

Table 5.9 shows the same percentage in each sample size state split between significant

or not trials, with states shown as step values (i.e. r0 implies no increase, r3 implies the

greatest increase allowed). Similarly, almost no increases take place in significant trials,

with very slightly higher amount of time increasing under the current trend. Some increases

occur for non-significant trials, with the most amount of time increasing at any step value

occurring in the 90% limit assumption, closely followed by th 80% assumption.

The current trend has the lowest CP of the assumptions, for both significant and non-

significant trials, and is slow to reach the favourable zone, or close to one for significant

trials. Whilst the IMPROVE and SELF trials may have benefited from a futility boundary

at any time point due to almost zero CP under the current trend, almost all significant trials

would have stopped early with any interim analysis prior to around 30% through the trial.

Even at ≈ 60% through the trial, AMAZE (orange) would have stopped for futility had an

interim analysis been done at that point, despite finding a significant result at n patients. The

graphs suggest that the current trend may not be a useful assumption to use if wanting to

incorporate a futility boundary. The hypothesised effect starts high and is slow to decrease

for non-significant trials, with only one reaching CP<0.1 (or 10%) by the halfway mark,
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(a) Trend; Not significant (b) Trend; Significant

(c) Hyp.; Not significant (d) Hyp.; Significant

(e) 80%; Not significant (f) 80%; Significant

(g) 90%; Not significant (h) 90%; Significant

Figure 5.10: Conditional power values during the study progression for all trials for four treatment
effect assumptions, split by not significant (left) and significant (right)
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Stepwise Not significant (N=6) Significant (N=15) All (N=21)
nmax=1.5*n Median (LQ, UQ) Median (LQ, UQ) Median (LQ, UQ)
Current trend r0 98.6 (97, 100) 93.1 (81, 100) 96.8 (87, 100)

r1 0.6 (0, 2) 2.8 (0, 6) 1.7 (0, 5)
r2 0.3 (0, 1) 2.1 (0, 5) 1.4 (0, 4)
r3 0.3 (0, 1) 0.9 (0, 4) 0.7 (0, 3)

Hypothesised r0 89.9 (79, 92) 100.0 (93, 100) 98.5 (89, 100)
r1 3.5 (2, 6) 0.0 (0, 4) 0.4 (0, 4)
r2 2.5 (2, 4) 0.0 (0, 2) 0.4 (0, 3)
r3 4.1 (4, 4) 0.0 (0, 1) 0.1 (0, 4)

80% limit r0 81.5 (59, 96) 99.8 (89, 100) 97.5 (84, 100)
r1 5.2 (1, 15) 0.1 (0, 4) 0.8 (0, 5)
r2 5.8 (1, 14) 0.1 (0, 3) 0.9 (0, 5)
r3 7.6 (1, 13) 0.1 (0, 3) 0.7 (0, 4)

90% limit r0 75.9 (62, 94) 99.9 (98, 100) 98.4 (93, 100)
r1 9.3 (3, 12) 0.0 (0, 1) 0.9 (0, 3)
r2 8.6 (2, 15) 0.0 (0, 1) 0.4 (0, 3)
r3 6.2 (1, 11) 0.0 (0, 1) 0.6 (0, 2)

Table 5.9: Percentage of trial duration spent in step at three interim time points and four treatment
effect assumptions for the stepwise design

(a) Non-significant trials (b) Significant trials

Figure 5.11: Legend for Figure 5.10
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and three of the six trials above this boundary until at least 85% through. Incorporation of

a futility bound would be unlikely to “save” any additional patients as they will likely have

been recruited by this point in the trial. Therefore a futility boundary may not be useful

in this scenario. The hypothesised effect however, is the highest of all CP values for the

significant trials, with most trials having very high CP, with a few exceptions, but none

reach the futility boundary, and only one trial gets close to the unfavourable zone (if using),

depending on the logistical factors that influence the CPmin value.

The 80 and 90% optimistic confidence limit assumptions see very large fluctuations of

CP at the very start of the trial, particularly in the significant trials. This rapidly changing CP

largely stops by 15% through the trial, with the exception of one trial (Flu vaccine strain A2,

both continuous and binary endpoints). After the 25% time point, no significant trial would

have been stopped early for futility, had a boundary been included. By 30%, most trials have

very high CP values, with AMAZE again having a low peak, but not as severe as under the

current trend. Additionally, the nasal spray trial has a low peak around 95%-100% through

the trial. CP is still somewhat slow to reach low values for the non-significant values, but

Epilepsy and IMPROVE fall relatively quickly, with SELF following shortly behind. The

remaining three trials fall largely in the promising zone, and may or may not have benefited

from a SSR and additional patients.

One limitation however, is that there are only six non-significant trials and fifteen sig-

nificant trials. With such a small sample size, it is difficult to make convincing decisions

based on the results so far. It would be more informative to see how each trials fairs, when

observing exactly the planned effect, a smaller than planned effect, no effect at all, or even

an opposite effect to that predicted (i.e. control/placebo group is performing better than

the intervention group). Therefore, a method to transform the data observed in the trial

to match each of these discussed scenarios will be presented in the next chapter, to more

comprehensively investigate CP assumptions and their impact on interim decision making.

Table 5.10 gives details of when the treatment estimate first enters, and remains within,

7 boundaries of ±0.25 - 4 standard errors of the end treatment effect of the original trial. As

expected, the first instance entering each boundary is much earlier than the ‘remains within’
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time frame. For the original order, the median time to remaining within ±1*SE is not until

57% of the way through the trial (LQ=25%, UQ=64%), and even later for smaller boundaries

(68%, 78% and 92% for 0.75, 0.5 and 0.25 respectively). The median time to remaining

within 3*SE is 11%, and 21% for 2*SE. This means an early interim analysis may be based

on a less stable estimate, and decisions based on this value may lead to variable results (i.e.

between 24% and 26% of data available, decisions may be very different). This ties in with

the plots of n∗ of each trial, having most of the fluctuation in sample sizes occurring within

the first half of the trial. The reverse order yields similar findings, indicating that patients

are not necessarily inherently different whether they are recruited near the start or the end,

but that the estimate is just less stable with fewer patients.
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Therefore, the later an interim analysis can be done, the more stable the estimate, and

therefore the more reliable the decision of the SSR can be, regardless of the rule used. This

will be further discussed in Chapter 6.

5.5 Summary

This chapter has presented the results from the data re-analysis section, through case stud-

ies demonstrating CP calculations, SSR design implementation and an investigation of the

stability of the estimate.

The current trend and hypothesised assumptions have been shown to have little benefit

from a futility boundary. Optimistic limits have similar sample size increases/decreases and

time in zones/sample size states to the hypothesised effect at three investigated time points,

yet could benefit from a futility boundary incorporation. Figure 5.10 has illustrated a faster

decrease in CP than the hypothesised effect in non-significant trials, and faster CP increase

than the current trend assumption in significant trials, possibly indicating a ‘middle-ground’

between the two. Stability of the estimate has also been summarised, concluding that ob-

served estimates on average only remain within±1 standard error of the end treatment effect

by ≈ 57% through the trial on average, and an early interim analysis may base decisions on

a less stable estimate. More investigation would be required to draw any firm conclusions

however, from either the SSR investigation or stability of the estimate.

The next chapter will again re-analyse the data retrospectively, but will transform the

treatment response of each trial to look at an observed effect size in relation to its planned

effect size. This will allow a more comprehensive investigation of CP assumptions and their

impact on interim decisions. CP characteristics can be directly compared between all trials,

as the effect at the originally planned n patients is known (i.e. set to be exactly as planned,

smaller than planned, zero or negative). CP, n∗, and zones/sample size states will again be

compared when the observed effect is exactly as planned, a fraction of that planned, zero,

and even negative.



6 | Investigation of planned versus

observed effect sizes

6.1 Introduction

Chapter 5 presented results using data from 21 trial outcomes and the original sequential or-

der, unchanged observed treatment effect. However, some trials observed effect was nearer

the effect planned than others, leading to the variation in CP values. This chapter introduces

a method of data transformation, such that trials can be directly compared in relation to their

planned effect, whilst keeping the same pattern of accruing data (estimate stability graphs).

CP lines using four assumptions will be compared for all trials when the observed effect is

exactly as planned (δ̂obs=δplan), a fraction of that planned (δ̂obs=υδplan) where 0 < υ < 1,

zero (δ̂obs=0), or even negative (δ̂obs=−υδplan).

This chapter starts by presenting methods to transform the data for either continuous

or binary outcomes and chooses values of υ to investigate and design frameworks to carry

forward based on the previous chapter. Finally, results will be reported in the form of per-

centage of time in sample size states, new sample size as a percentage of original sample

size, and plots of conditional power lines.

6.2 Aims

This chapter aims to extend on the work of Chapter 5, again using retrospective trial data.

The specific aims in this chapter is to:

1. Describe methods of data transformation such that the observed end result of each

trial is comparable in terms of their originally planned effect size

2. Investigate conditional power assumptions at accruing time points when observed ef-

fect size is exactly as planned, a fraction of that planned, zero, or negative
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3. Explore impacts on decision making (sample size modification/futility boundary) at

interim time points for each situation of δ̂plan

4. Inform simulation work to be carried out

6.3 Methods

In the previous chapter, trials were somewhat varying in terms of difference between ob-

served and planned effect sizes. This was a great illustration of real-world trials, but led

to very small sample sizes when trying to compare trials that were significant or not. This

chapter aims to have a greater comparison between the trials, and to see what happens when

the end observed effect at n patients is exactly as planned, smaller than planned by some

margin, zero or even the opposite direction to that planned (negative trial), by transforming

the data.

This section describes the trials to be used for this investigation, design frameworks to

carry forward, and methods for transforming both continuous and binary endpoints to the

desired observed effect at n patients.

6.3.1 Funding type

This section of the research has arisen as a direct result of the work done in Chapter 5, and

was therefore not on the original plan of investigation when applying for data. Due to the

strict nature of the data sharing agreement with industry and their lengthy amendment proce-

dure to the initial contract, it was decided that the publicly funded trials would give enough

case studies to sufficiently demonstrate the aims of this chapter. Therefore, 11 outcomes

from 10 original trials are re-analysed in this chapter.

6.3.2 Study design

As mentioned in Section 3.18, the stepwise design was to be used as an illustration of how

the framework compares to other designs, and the main comparison of the thesis is be-

tween promising zone and the combination test designs. The decision to use stepwise de-
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sign largely stems from the concern of back-calculation of treatment effect at the interim

analysis, but loses power in doing so. Where the back-calculation is not an issue, such as

revealing only the maximum sample size and recruiting until told otherwise, this design

would not offer any advantage over the other two. Therefore, from this point forward, only

the two designs are to be compared.

6.3.3 Effect size values for investigation

Values of δ̂obs will be based in relative terms of δplan. Choices include:

δ̂obs =

{
1,

2
3
,
1
2
,
1
3
,
1
4
,0,−1

2

}
∗δplan

where a negative value indicates the control/placebo arm is better than the chosen interven-

tion arm. Results for 1
2 , 1

3 , and 1
4*δplan can be found in Appendix D.

6.3.4 Methods for adjusting the observed effect

This section describes the data transformation methods for continuous and binary endpoints,

to obtain the chosen values of δ̂obs to be compared.

For continuous data, all observations were multiplied by some constant, chosen for each

trial to obtain the planned SD for an analysis with the original n patients. Once the SD

matched that planned, another constant value chosen for each trial was added to the inter-

vention arm only. This ensured that both the SD and treatment difference were exactly as

planned in the original trial. Different constants were added to see the effect of a smaller

treatment difference, in terms of a fraction of the planned treatment effect, but standard

deviation was kept as that planned in the original trial.

A similar method was implemented for binary data, but used the model coefficient, or

log(OR) calculated after every patient. All individual coefficients were multiplied by some

constant such that the standard error at the end of the trial matched that planned. Another

constant was then added to all transformed coefficients, to ensure that the log(OR) was the

same of the planned log(OR). Again, different constants were added to observe a fraction of



6.4. Criteria for evaluating methodologies 142

the planned effect size, but standard error was kept the same as that planned in the original

trial.

6.4 Criteria for evaluating methodologies

In order to assess the chosen methodologies and their performance, criteria relating to op-

erating characteristics such as required sample size and power are specified. Criteria have

been chosen and have been informed by the current literature (Chapter 3) and have been

refined following the work of the previous chapter (Chapter 5). Criteria have been split by

observed treatment effect at the end of the trial as desired characteristics will be different

across possible observed effect scenarios. In my opinion, these are the criteria that make the

most logical sense, both statistically and logistically speaking.

As planned:

Does not increase sample size

If sample size is increased, the increase is minimal

Does not stop early for futility (if applicable)

Does not excessively increase power beyond the pre-specified level

Does not reduce power below the pre-specified level

Smaller than planned, but potentially clinically relevant:

Increases in sample size that also correspond to a higher probability of significance

Does not stop for futility (if applicable)

Very small or no effect:

Does not increase sample size

If sample size is increased, the increase is minimal

Stops early for futility (if applicable)

Does not inflate Type I error

Table 6.1: Criteria for the evaluation of the three methodology frameworks explored in terms of
required sample size and power

The perfect method would be able to increase sample size only where necessary (when

smaller than planned but not too small). It would have a high stopping for futility rate (if
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applicable) when there is no treatment effect, a very small effect, or even a negative effect.

When the treatment effect is exactly as planned, the power would not fall below the pre-

specified level, but would also not excessively increase power.

In reality however, no method is perfect, and the closest method to the desired charac-

teristics in each scenario will be the method recommended at the end of the thesis. Criteria

starting with “Does not ...” will not be regarded as absolute, and a “low number” of instances

will still be considered as acceptable for these situations. In these cases, the fewest num-

ber of instances will be the most favourable. More than one method may be recommended

should a similar level of criteria be met.

6.5 Results

6.5.1 Observed effect = planned

Similarly to Chapter 5, Tables 6.2 and 6.3 show the median new sample size relative to

the original n patients, and the proportion of times CP fall in each zone (corresponding to

sample size decrease, increase or remain the same n) respectively. When δ̂obs is exactly

as planned for the original n patients, promising zone is largely in the favourable zone,

implying no sample size increase. Under the current trend assumption however, CP falls

into the promising zone a median of 2.2% of the time (LQ,UQ)=(0,8), and even falls into

the unfavourable zone 0.5% of the time (LQ,UQ)=(0,1). However this does not correspond

to a change in median sample size increase, with promising zone yielding LQ and UQ’s of

100% at all three interim analyses.

For binary data however, CP is much less stable (Figure 6.2) for all assumptions, but par-

ticularly current trend. Whilst the hypothesised, 80% and 90% limits do not seem to fall into

the unfavourable or futility zones, there is between 5.6 and 16.4% (on average) falling into

the promising zone, indicating a sample size increase. At the three specific interim analyses,

this only results in very small sample size increase (UQ=100.2% for hypothesised, 100.5%

for 80% limit and 100.0% for 90% assumptions). Current trend however only spends around

1/4 of its time in the favourable zone, and even sees a median of 14.1% time in the futility
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(n∗/n)∗100 Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising Zone 25% 100.0 (100.0, 100.0) 131.7 (100.0, 150.0) 100.0 (100.0, 131.7)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 107.9) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination Test 25% 77.5 (46.9, 100.0) 43.6 (34.9, 49.4) 49.4 (35.6, 100.0)
50% 73.1 (54.9, 100.0) 71.8 (71.6, 83.5) 71.8 (61.4, 100.0)
75% 98.3 (83.3, 100.0) 95.2 (91.8, 96.5) 96.5 (83.3, 100.0)

Hyp.
Promising Zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.2) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination Test 25% 66.7 (45.8, 100.0) 60.2 (48.6, 63.9) 60.2 (45.8, 89.9)
50% 73.1 (54.9, 100.0) 85.8 (71.6, 99.5) 76.5 (61.1, 100.0)
75% 98.3 (83.3, 100.0) 95.2 (91.4, 96.5) 96.5 (83.3, 100.0)

80%
Promising Zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.5) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination Test 25% 64.7 (37.2, 83.3) 52.5 (51.0, 68.5) 52.5 (43.6, 83.3)
50% 73.1 (54.9, 100.0) 77.7 (71.6, 85.8) 76.5 (59.9, 100.0)
75% 98.3 (83.3, 100.0) 95.2 (90.0, 96.5) 96.5 (83.3, 99.7)

90%
Promising Zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination Test 25% 58.3 (35.8, 83.3) 47.7 (45.5, 61.3) 47.7 (43.6, 83.3)
50% 73.1 (54.9, 100.0) 71.6 (71.3, 81.7) 71.6 (59.1, 100.0)
75% 98.3 (83.3, 100.0) 95.2 (88.9, 96.5) 96.5 (83.3, 99.0)

Table 6.2: New total sample size (n∗) as a percentage of original planned sample size (n)
comparison at three interim time points and four treatment effect assumptions when the observed
treatment effect equals the planned effect
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zone. At the 25% interim analysis, the median increase in sample size is 131.7%, with the

UQ reaching the maximum allowed sample size of 150%. Even at the 50% interim analysis,

the UQ is 107.9%, despite seeing the planned effect size at the original n patients.

Time spent in zone (%) Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising zone Futility 0.0 (0, 1) 14.1 (9, 22) 5.0 (0, 14)

Unfav. 0.5 (0, 1) 12.8 (9, 15) 1.3 (0, 13)
Prom. 2.2 (0, 8) 19.4 (12, 37) 8.4 (1, 19)
Fav. 96.8 (95, 100) 27.7 (24, 45) 78.8 (28, 98)

Combination test Decrease 67.3 (33, 82) 80.1 (66, 95) 73.5 (33, 92)
Remain 23.3 (17, 65) 9.1 (4, 18) 17.6 (5, 24)
Increase 0.0 (0, 0) 0.0 (0, 22) 0.0 (0, 22)

Hyp.
Promising zone Futility 0.0 (0, 0) 0.0 (0, 0) 0.0 (0, 0)

Unfav. 0.0 (0, 0) 0.0 (0, 0) 0.0 (0, 0)
Prom. 0.0 (0, 0) 12.0 (0, 17) 0.0 (0, 12)
Fav. 100.0 (100, 100) 80.5 (77, 100) 100.0 (81, 100)

Combination test Decrease 69.2 (33, 82) 80.1 (58, 95) 73.5 (38, 92)
Remain 24.5 (17, 65) 9.4 (4, 18) 17.6 (5, 25)
Increase 0.0 (0, 0) 0.0 (0, 19) 0.0 (0, 17)

80%
Promising zone Futility 0.0 (0, 0) 0.0 (0, 0) 0.0 (0, 0)

Unfav. 0.0 (0, 0) 0.0 (0, 0) 0.0 (0, 0)
Prom. 0.0 (0, 0) 16.4 (1, 25) 1.0 (0, 16)
Fav. 99.8 (100, 100) 71.7 (68, 99) 99.0 (72, 100)

Combination test Decrease 77.4 (33, 84) 80.1 (75, 94) 80.1 (33, 92)
Remain 23.3 (17, 65) 8.8 (4, 18) 18.1 (5, 24)
Increase 0.0 (0, 0) 0.3 (0, 2) 0.0 (0, 1)

90%
Promising zone Futility 0.0 (0, 0) 0.0 (0, 0) 0.0 (0, 0)

Unfav. 0.0 (0, 0) 0.0 (0, 0) 0.0 (0, 0)
Prom. 0.0 (0, 0) 5.6 (0, 11) 0.0 (0, 6)
Fav. 99.8 (100, 100) 91.4 (89, 100) 99.7 (91, 100)

Combination test Decrease 77.7 (33, 84) 80.1 (77, 95) 80.1 (40, 92)
Remain 23.3 (17, 65) 10.0 (4, 18) 17.6 (5, 24)
Increase 0.0 (0, 0) 0.0 (0, 0) 0.0 (0, 0)

Table 6.3: Percentage of trial duration spent in each zone at three interim time points and four
treatment effect assumptions when the observed treatment effect is equal to the planned effect in
terms

Figure 6.2 shows CP for continuous and binary trials separately. CP is almost 1 for all

values of n1 using the hypothesised effect, and all values past 10% of patients for either limit

for continuous trials. Current trend is slower to reach 1 for most continuous trials, but does

get there by around 40% through the trial. Binary trials however show much more variation,

and four trials fall below 1 around 20-80% through the trial for hypothesised and optimistic

limit assumptions. It should be noted that RATPAC (pink dashed line) actually showed a far

greater effect than planned in the original trial, and also underestimated the observed effect

throughout the trial (albeit still greater than planned) (Figure 5.7b). Because of this, shifting

the observed data so that the end result matched that planned, moved the treatment effect for
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Figure 6.1: Legend for Figures 6.2 - 6.5

a large portion of this trial to below that planned, which is why the CP looks so low, despite

seeing δ̂obs = δplan at the end of the trial. The current trend assumption does not reach a CP

of 1 until 45% through at the earliest for binary trials.

Combination test design mostly decreases sample size, with median sample size <100%

in all cases. Again, the biggest decreases are seen earlier in the trial, which could be due

to the lower number of patients recruited so far. A higher proportion of the trial is spent

decreasing sample size using optimistic limits for continuous trials, and is the same across

all assumptions for binary (median of 80.1% of the trial results in a decrease in sample size).

No increases are seen using this design for continuous trials, but for binary outcomes the

current trend assumption sees (LQ,UQ)=(0,22), hypothesised assumption sees (0,19), the

80% limit assumption sees (0,2) and the 90% limit assumption sees (0,0).

6.6 Observed effect = Two thirds planned

This section presents results when the treatment effect is not as high as was hoped, but still

positive. Other proportions of δplan observed are presented in Appendix D.

Tables 6.4 and 6.5 show new sample size (n∗) and proportion in zones respectively. It

should be noted that an observed effect size of two thirds of the planned size may not be

clinically relevant in each trial, particularly if δplan for the original sample size has been
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(a)

(b)

Figure 6.2: Conditional power when δ̂obs = δplan for (a) Continuous trials (b) Binary trials
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n* Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination test 25% 79.1 (51.2, 145.6) 43.6 (26.4, 49.4) 51.2 (43.6, 145.6)
50% 89.3 (69.4, 100.0) 71.6 (63.2, 71.8) 71.8 (63.2, 100.0)
75% 99.5 (83.3, 100.0) 93.1 (82.2, 95.2) 95.2 (82.2, 100.0)

Hypothesised
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 112.4 (100.0, 138.8) 100.0 (100.0, 112.4)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 145.1) 100.0 (100.0, 100.0)

Combination test 25% 72.1 (55.6, 100.0) 67.5 (53.2, 68.3) 67.5 (53.2, 99.1)
50% 82.4 (62.2, 100.0) 110.8 (71.6, 120.8) 88.4 (70.8, 110.8)
75% 99.5 (83.3, 100.0) 105.4 (95.2, 139.3) 100.0 (83.6, 109.3)

80% limit
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 134.9) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination test 25% 80.3 (49.0, 100.0) 65.3 (60.0, 90.9) 77.3 (49.0, 100.0)
50% 79.5 (62.2, 100.0) 107.4 (71.6, 118.8) 82.6 (70.6, 107.4)
75% 99.5 (83.3, 100.0) 96.5 (95.2, 138.0) 99.0 (83.5, 116.3)

90% limit
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 109.8) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination test 25% 75.5 (45.1, 90.7) 56.4 (54.5, 80.3) 67.8 (45.1, 90.7)
50% 77.2 (60.8, 100.0) 94.1 (71.6, 116.3) 77.9 (69.1, 100.0)
75% 99.5 (83.3, 100.0) 96.5 (95.2, 139.5) 99.0 (83.3, 110.5)

Table 6.4: New total sample size (n∗) as a percentage of original planned sample size (n)
comparison at three interim time points and four treatment effect assumptions when the observed
treatment effect equals two thirds of the planned effect
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Zones Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising zone Futility 2.3 (0, 5) 51.5 (14, 65) 5.3 (1, 52)

Unfav. 3.5 (0, 4) 20.4 (11, 30) 4.0 (3, 20)
Prom. 6.9 (5, 11) 15.1 (8, 32) 8.2 (5, 17)
Fav. 87.3 (78, 94) 4.1 (4, 15) 64.5 (4, 90)

Combination test Decrease 53.4 (16, 82) 80.1 (72, 84) 73.5 (16, 84)
Remain 20.5 (16, 65) 2.0 (1, 2) 15.6 (2, 24)
Increase 3.0 (0, 7) 12.1 (1, 22) 6.1 (0, 22)

Hypothesised
Promising zone Futility 0.0 (0, 0) 0.0 (0, 1) 0.0 (0, 0)

Unfav. 0.0 (0, 0) 4.0 (2, 18) 0.0 (0, 4)
Prom. 0.0 (0, 0) 42.5 (5, 43) 0.0 (0, 43)
Fav. 100.0 (100, 100) 38.2 (36, 55) 99.7 (38, 100)

Combination test Decrease 59.5 (33, 82) 43.4 (29, 80) 45.5 (29, 82)
Remain 20.6 (17, 65) 1.7 (1, 2) 16.5 (2, 24)
Increase 0.0 (0, 0) 53.3 (2, 66) 0.0 (0, 53)

80% limit
Promising zone Futility 0.0 (0, 0) 0.5 (0, 2) 0.0 (0, 2)

Unfav. 0.0 (0, 0) 23.5 (2, 25) 0.0 (0, 24)
Prom. 0.0 (0, 0) 35.4 (7, 44) 2.9 (0, 35)
Fav. 99.8 (100, 100) 16.5 (13, 54) 97.1 (17, 100)

Combination test Decrease 62.7 (33, 82) 39.4 (36, 80) 58.4 (33, 82)
Remain 20.6 (17, 65) 1.8 (1, 2) 16.5 (2, 24)
Increase 0.0 (0, 7) 54.4 (0, 61) 0.0 (0, 54)

90% limit
Promising zone Futility 0.0 (0, 0) 0.5 (0, 1) 0.0 (0, 1)

Unfav. 0.0 (0, 0) 6.6 (2, 10) 0.0 (0, 7)
Prom. 0.0 (0, 0) 16.1 (13, 49) 0.0 (0, 16)
Fav. 99.8 (100, 100) 24.5 (23, 85) 99.7 (25, 100)

Combination test Decrease 71.2 (33, 82) 58.0 (33, 80) 70.1 (33, 82)
Remain 20.6 (17, 65) 2.2 (2, 3) 16.5 (2, 24)
Increase 0.0 (0, 1) 34.2 (0, 63) 0.0 (0, 34)

Table 6.5: Percentage of trial duration spent in each zone at three interim time points and four
treatment effect assumptions when the observed treatment effect is equal to two thirds of the planned
effect
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chosen as the MCID. However, for the purposes of the comparisons of this thesis, it will be

considered as clinically relevant, but any smaller will not be.

Continuous outcomes only see one increase in UQ (145.6% at 25% through the trial

under the current trend assumption for the combination test design). Some increases can

be seen for binary outcomes however for three assumptions (all except the current trend).

The largest increase is seen under the hypothesised effect (UQ=145.1% at 75% through the

trial using the promising zone design). For either optimistic limit, promising zone sees an

increase at 25% through the trial in the upper quartile, whereas the combination test sees

the largest increases later through the trial. Whilst the combination test still largely sees a

decrease in sample size, now that the effect size is smaller than planned, the decrease is not

as great as the previous example, particularly in continuous trials.

The median proportion in each zone is still predominantly in the favourable zone for

all assumptions for continuous outcomes. The current trend assumption spends on average

6.9% of time increasing sample size using the promising zone design, with 3.5% and 2.3%

in the unfavourable and futility zones respectively for continuous trials. The current trend

assumption still sees the largest proportion of time in the futility zone of the four assump-

tions, particularly for binary trials, which spends a median time of 51.5% in the futility zone,

compared to the lowest median value of 0% under the hypothesised effect.

This is further illustrated by Figure 6.3, which shows CP lines throughout the trial du-

ration for continuous and binary endpoints. The current trend assumption fluctuates for the

first half of the trial for almost all continuous trials, compared to high CP values for almost

all continuous trials under the other three assumptions. Again, binary outcomes show much

variation in CP throughout the trial duration. Even at 95% through the trial, there is some

variation, and not all trials have reached their final decision of CP≈0 or 1. This highlights

the amount of noise in binary data compared to continuous, and it may not always be ap-

propriate to carry out a SSR for binary outcomes. This will be further investigated through

simulation work before any firm recommendation can be made.
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(a)

(b)

Figure 6.3: Conditional power when δ̂obs =
2
3 δplan for (a) Continuous trials (b) Binary trials

6.7 Observed effect = zero

Tables 6.6 and 6.7 again show sample size (n∗) and proportion in zones, but now showing

when the end treatment effect at n patients is in fact 0 (i.e. no difference between treatments).
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n* Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination test 25% 65.0 (28.1, 100.0) 36.6 (26.4, 43.6) 43.6 (27.8, 83.3)
50% 73.1 (54.9, 100.0) 55.4 (52.2, 71.6) 69.8 (54.3, 76.5)
75% 98.3 (83.3, 100.0) 93.1 (78.1, 95.2) 95.2 (78.8, 99.0)

Hypothesised
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 106.1 (100.0, 118.6) 100.0 (100.0, 100.0) 100.0 (100.0, 118.6)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination test 25% 86.5 (81.3, 100.0) 77.7 (64.9, 82.7) 82.7 (64.9, 100.0)
50% 114.5 (88.5, 128.0) 71.8 (71.6, 96.4) 96.4 (71.6, 128.0)
75% 150.1 (150.0, 150.1) 93.1 (78.1, 95.2) 150.0 (93.1, 150.1)

80% limit
Promising zone 25% 104.0 (100.0, 130.8) 100.0 (100.0, 100.0) 100.0 (100.0, 124.3)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination test 25% 86.4 (80.2, 100.0) 43.6 (26.4, 49.4) 80.2 (43.6, 100.0)
50% 73.1 (54.9, 100.0) 71.6 (52.2, 71.8) 71.6 (54.3, 100.0)
75% 98.3 (83.3, 100.0) 93.1 (78.1, 95.2) 95.2 (78.8, 100.0)

90% limit
Promising zone 25% 100.0 (100.0, 120.9) 100.0 (100.0, 100.0) 100.0 (100.0, 120.9)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination test 25% 91.8 (69.8, 106.6) 43.6 (26.4, 49.4) 69.8 (43.6, 96.3)
50% 100.0 (76.5, 115.5) 71.6 (52.2, 71.8) 76.5 (69.8, 115.5)
75% 98.3 (83.3, 100.0) 93.1 (78.1, 95.2) 95.2 (78.8, 100.0)

Table 6.6: New total sample size (n∗) as a percentage of original planned sample size (n)
comparison at three interim time points and four treatment effect assumptions when the observed
treatment effect is zero
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Zones Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising zone Futility 98.5 (90, 100) 97.1 (94, 99) 98.1 (93, 100)

Unfav. 0.9 (0, 5) 0.2 (0, 5) 0.9 (0, 5)
Prom. 0.1 (0, 1) 0.0 (0, 0) 0.0 (0, 1)
Fav. 0.3 (0, 3) 0.0 (0, 0) 0.0 (0, 1)

Combination test Decrease 67.3 (33, 82) 88.2 (80, 95) 80.1 (61, 89)
Remain 23.3 (17, 65) 8.8 (4, 18) 17.6 (5, 24)
Increase 1.3 (0, 9) 0.0 (0, 0) 0.0 (0, 7)

Hypothesised
Promising zone Futility 24.5 (22, 34) 49.5 (39, 56) 34.2 (24, 50)

Unfav. 10.7 (8, 14) 11.2 (10, 12) 11.1 (8, 14)
Prom. 16.5 (11, 20) 14.9 (9, 16) 14.9 (10, 20)
Fav. 46.7 (42, 53) 25.7 (25, 26) 37.4 (26, 49)

Combination test Decrease 35.3 (29, 53) 79.3 (59, 80) 52.9 (29, 79)
Remain 23.4 (15, 28) 8.3 (4, 9) 14.9 (5, 25)
Increase 39.9 (31, 55) 15.4 (0, 29) 30.7 (15, 55)

80% limit
Promising zone Futility 57.1 (51, 75) 81.0 (54, 86) 61.9 (51, 86)

Unfav. 18.6 (6, 20) 11.4 (7, 27) 17.6 (6, 23)
Prom. 14.1 (3, 24) 5.1 (3, 8) 8.3 (3, 15)
Fav. 6.2 (3, 15) 2.5 (2, 9) 5.3 (2, 15)

Combination test Decrease 63.8 (33, 80) 83.2 (80, 95) 79.9 (33, 84)
Remain 23.3 (17, 65) 8.8 (4, 15) 16.7 (5, 24)
Increase 1.0 (0, 8) 0.0 (0, 5) 0.0 (0, 8)

90% limit
Promising zone Futility 47.9 (41, 67) 74.3 (42, 81) 50.3 (41, 81)

Unfav. 18.0 (12, 22) 13.1 (7, 27) 17.0 (10, 22)
Prom. 13.5 (3, 23) 6.3 (4, 10) 9.8 (4, 16)
Fav. 17.0 (10, 21) 6.6 (6, 16) 15.2 (6, 21)

Combination test Decrease 56.2 (33, 73) 80.1 (78, 95) 73.1 (33, 84)
Remain 23.3 (17, 65) 8.8 (4, 14) 16.5 (5, 24)
Increase 7.2 (0, 16) 0.0 (0, 10) 0.4 (0, 16)

Table 6.7: Percentage of trial duration spent in each zone at three interim time points and four
treatment effect assumptions when the observed treatment effect is zero
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Again, the promising zone design sees some increases in sample size early on for con-

tinuous trials (UQ=130.8 and 120.9% for optimistic limits at 25% through the trial). Com-

bination tests also see decreases again for continuous trials, but again the decreases are not

as great as when the treatment effect is higher than zero. Some increases can be seen too,

seeing the maximum increase allowed in the upper quartile of the hypothesised assumption

at 75% interim look. Some increases are also seen using the 90% optimisitic limit. For

binary, there appears no increase in sample size in the majority of studies, with the largest

UQ equalling 100%. A large decrease in median sample size is seen using the current trend

for binary data (median=36.6%) at 25% through the trial, corresponding to a median time of

97.1% of the trial in the futility boundary (98.5% for continuous trials). Despite no treatment

difference at n patients, the hypothesised assumption still sees a median of 46.7% of the time

in the favourable zone, and increases a median of 39.9% of the time with combination test

design (continuous trials).

Looking at Figure 6.4, the current trend assumption is quick to fall below 10% CP, and

remains there throughout. Here a futility boundary may have been able to decrease sample

size had a boundary been implemented. Additionally, the hypothesised assumption takes

longer to fall below this same boundary, and falls quickest for binary trials compared to

continuous.

6.8 Observed effect = negative

An investigation of negative treatment effect sees similar results to an observed effect size of

zero, but has less fluctuation in CP (Figure 6.5). The trend assumption is again very quick to

drop to zero CP for both binary and continuous endpoints. All trials have dropped below the

10% boundary by around 30% through the trial using either optimisitic limit, with the 80%

falling very slightly faster. The hypothesised assumption is again much slower, dropping to

zero between 40 and 60% through the trial for all endpoints.
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(a)

(b)

Figure 6.4: Conditional power when δ̂obs = 0 for (a) Continuous trials (b) Binary trials
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(a)

(b)

Figure 6.5: Conditional power when δ̂obs =−1
2 δplan for (a) Continuous trials (b) Binary trials
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6.9 Discussion

The transformation of the data is able to give a better understanding of how future treatment

effect assumptions impact CP curves during the trial progression using real-world trial data,

which we have seen is somewhat variable in the first half of the trial. Now, knowing what

the trial will show at the end (whether as planned, or smaller), it can be seen where correct,

or incorrect decisions would be made, and how quickly the CP reaches approximately zero

or one for the remainder of the trial.

The current trend assumption was the quickest to go to zero when the observed effect was

zero or negative, but was slower to get to one when the observed effect size was as planned,

or smaller than planned but still positive. The hypothesised effect on the other hand was

much slower to get to zero for no treatment difference or a negative effect. Additionally it

was very variable throughout the trial duration for a positive effect, and was very slow to

reach one for binary trials at the observed effect equal to that planned. Binary trials saw

much more fluctuation in CP and this has been explained for the situation of the RATPAC

trial, which saw a much larger observed effect than planned in the original trial.

The optimistic limit assumptions appear to be a good “middle ground” between the two

recommended assumptions, reaching either close to zero or one at some time between the

trend and hypothesised assumptions. In the negative treatment effect case, they reach zero

by around 30% in the majority of trials, whether continuous or binary. Additionally, it

appears as though the incorporation of a futility bound could be beneficial to this design and

could help save sample size even when a promising zone design is used.

In terms of the criteria set out in Table 6.1 for evaluating the methodologies, the cur-

rent trend assumption appears to be the least successful performing assumption. When the

observed effect equals that planned, the promising zone design for binary outcomes sees a

median increase of 32%, with an upper quartile of 50% increase in sample size, when the

criteria indicates no increase should be seen. This does decrease over time however, and

remains at the originally planned n patients by 75% through the trial. The 80% limit sees

an upper quartile=0.5% increase at 50% through the trial in binary outcomes, which is min-
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imal. For continuous outcomes, very few, if any, increases are seen. In terms of futility, no

trial stops for futility for the hypothesised or either confidence limit assumption, but current

trend stops for a median of 14.1% of trial duration in binary trials. Power is not able to be

assessed through these investigations, and will be looked at in detail in the simulation work

in Chapter 7.

For a smaller than planned effect (2
3 of the planned effect) that may still be clinically

relevant, only the futility criteria from Table 6.1 can be assessed without simulations. The

hypothesised effect has a median of 0% of trial duration in the futility zone (if using) for both

binary and continuous outcomes. Both 80 and 90% limits see a median of 0.5% trial duration

for binary outcomes, and 0% for continuous. The current trend assumption however sees a

median of 2.3% and 51.5% of trial duration for continuous and binary outcomes respectively,

indicating it is again the worst performing assumption of the four in terms of the criteria set

out in this thesis.

Finally, when a zero treatment effect is observed, some sample size increases are ob-

served for continuous outcomes for the hypothesised, 80% and 90% limit assumptions. The

current trend assumption however, sees no increases in sample size, and additionally sees

the highest percentage of trial duration spent in the futility boundary of the four assump-

tions. Therefore, when no treatment effect is observed, the current trend assumption is the

best performing assumption in terms of the criteria in Table 6.1. The 80% limit has the next

highest proportion of time in the futility zone (median=61.9% for any outcome).

Both 80 and 90% limits behave similarly and are comparable at any value of observed

effect, and so only one of these limits will be taken forward to investigate in the simulation

work. The 80% limit performs almost identically to the 90% limit assumption when δ̂obs =

δplan and δ̂obs =
2
3δplan, but performs slightly better in terms of number of times an increase

in sample size is observed, and more time in the futility zone when δ̂obs is zero or negative.

For this reason, the 80% limit will be carried forward to the simulation work for further

investigation.

Whilst there could be sufficient evidence to drop the current trend assumption for fur-

ther investigation through simulations, it will be left in as it is the currently recommended
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assumption by Mehta and Pocock in order to show the difference of other assumptions com-

paratively (Mehta 2011). A futility bound could be useful in the case of the 80% limit

assumption, which reaches zero by around the halfway mark when the end observed effect

is zero or negative, but would stop less often when the observed effect is as planned or half

that planned, than the current trend assumption currently recommended.

Understandably, the combination test results in lower sample sizes (n∗) than in the

promising zone design, due to the ability to decrease, using the number recruited as the

minimum sample size allowed. The later the interim analysis, the higher the sample size, as

almost all patients have been recruited by this point (particularly with long outcomes). For

the promising zone design however, most increases can be seen at the 25% interim analysis

using current trend when the end effect is exactly as planned, showing it is too early to make

a decision as it has an unnecessary sample size increase. When the observed effect is two

thirds of that planned, some moderate increases are seen where a sample size increase may

be appropriate, as it is still “promising” but not as high as was hoped in the planning stage.

Ultimately, the biggest impact on sample size decisions is the CP assumption, and needs to

be carefully considered together with the timing of the interim analysis.

This work has also showed the effect of the time to a stable estimate, particularly high-

lighting the underestimate of the RATPAC trial throughout the trial compared to the end

result. Therefore, even when the end result was exactly as was planned in the sample size,

the trial could have been stopped early for futility, had the same pattern of observed data

been seen as in the original trial.

In light of these results, the simulation work will investigate promising zone and combi-

nation tests for current trend, hypothesised effect, and the 80% optimistic confidence limit.

In addition, a promising zone design with the incorporation of a futility stopping boundary

will be investigated more formally than in this chapter. Interim timings will only be investi-

gated from the 50% data available point onwards, as any earlier could be making decisions

on an unstable estimate. This time point has been chosen due to the work on the stability

of the estimate in Chapter 5. Only a 50% increase in sample size has been considered so

far, and it would be interesting to see the effect on a maximum cap in sample size would
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affect decisions. A small 10% maximum increase may behave very differently to a trial that

is allowed to double its sample size and so the focus for the simulations will be nmax=1.1

and 2 times the original sample size n. Finally, only one value of γ has been evaluated for

the combination test design, and simulation work will be able to evaluate multiple values of

this tuning parameter, and its effect on power and ASN.

6.10 Summary

This chapter has presented methods used to transform data to obtain the end treatment effect

to be as planned, a fraction of that planned, zero, or negative, for continuous and binary

endpoints. This has increased the number of trials to compare at each scenario, while main-

taining the pattern of the original data, rather than just observing the original trial. Two

designs and four assumptions have been compared, with the combination test design requir-

ing fewer patients than originally planned most of the time.

The current trend assumption appears to decrease to zero the earliest of the four assump-

tions when there is no treatment effect, or it is opposite to that originally planned. However,

it is highly variable when the treatment effect is equal to that planned, or a fraction of the

planned effect, where larger sample size increases can be seen compared to the other three

assumptions. Optimistic confidence limits have been shown to perhaps be a good compro-

mise between the two currently debated assumptions in the CP calculation and may benefit

from a futility boundary as they are able to perform well both when the treatment effect is

close to that planned, or when no treatment effect is observed.

A particular strength of this chapter, together with Chapter 5, is that real-world data has

been used in a design comparison, with observed bias that may not be incorporated in any

simulated data comparisons. As far as I am aware, this is the largest investigation of uSSR

designs applied to real-world data. Other comparisons typically use one or two examples

and look at the observed effect at one time point only, rather than seeing how this effect

varies throughout the trial (Mehta 2011; Jennison 2015). A limitation of the work in this

chapter is that power and Type I error cannot be observed due to the small number of trials.

The simulation work in the next chapter will be able to provide this information, which is
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missing from the real-world trial investigations, and will be able to provide answers for the

remaining criteria to evaluate the methodology from Table 6.1. Chapter 7 contains a more

in-depth simulation protocol, and presents results from the simulation work for continuous

outcomes.



7 | Simulations for continuous outcomes

7.1 Introduction

Chapter 5 used real trial data, assuming that the treatment effect observed in the original

analysis was the true treatment effect and compared three designs and four treatment effect

assumptions in the CP calculation. Chapter 6 extended this work to investigate the extent of

misspecification of the target effect size in the planning stage. The implications for CP and

corresponding sample sizes for two designs were compared when observing the planned

effect, a smaller effect than planned, no difference in treatments, or a negative effect, fo-

cusing only on promising zone and combination test designs. The data re-analysis section

however was not able to compare the power of the designs or Type I error, which is what

the simulation work will largely focus on. This chapter extends the data re-analysis work,

using simulations so that the true treatment effect is known, not assumed. Additionally, a

much larger number of trials can be compared through simulations. Expected sample size

and power will be investigated for three designs:

• Promising zone

• Combination test

• Promising zone with futility.

Logistical features will also be investigated, such as pipeline patients, timing of interim

analysis, and maximum allowed sample size.

7.2 Aims

This chapter aims to introduce a detailed simulation plan, explaining how data will be sim-

ulated, designs implemented, and objectives will be assessed. The simulation plan in this
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chapter will only look at continuous outcomes, with binary data being approximately nor-

mal if the sample size is large enough, or expected event rates close to 50%. An additional

example of binary simulations where event rates are low, and n is relatively small is provided

in the following chapter.

Following the simulation plan, the results for the continuous simulations will be pre-

sented, split by observed treatment effect vs planned for 1, 2
3 , 1

3 and 0 times the planned

effect size. The results will be discussed in terms of the evaluation criteria seen previously

in Table 6.1. Specific comparisons and objectives will be described in the simulation proto-

col in Section 7.3.1, and have been informed by previous results in Chapters 5 and 6.

7.3 Simulation plan

This section provides details on aims for the simulation study, focusing particularly on con-

tinuous outcomes. Simulation objectives and comparisons will be the same for binary out-

comes, and so will not be repeated in Chapter 8. Methods for generating data, choices of

logistical parameters, and details on how objectives will be evaluated and compared are

presented in this simulation plan.

7.3.1 Specific aims

Specific aims of the simulation study for both continuous and binary outcomes include:

• Simulate data for two treatment groups

• Calculate CP values using three future assumptions: Current trend, hypothesised ef-

fect and 80% optimistic confidence limit of the current trend

• Compare ASN and power using SSR rules from three designs: Promising zone with/without

futility bound, and combination test design

• Investigate interim analysis timing every 5% through the trial from 50% onwards

• Explore combination test specific details, including four values of the γ parameter
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used in the objective function, and consider two recruitment rates in line with that

observed in the data re-analysis section

• Consider four values of nmax: 1.1, 1.5, 2 and 3 times the original sample size.

• Modify the true effect, to investigate CP, ASN and power when the observed effect is

as planned, smaller than planned, or no difference in treatment groups.

7.3.2 Simulation methods

7.3.2.1 Data generation

For continuous outcomes, data will be sampled from two normal distributions; one for each

treatment group. Two values of δ will be explored δ=0.2 and 0.4, giving both a “small”

and “large” trial for consideration in line with the choices made in obtaining data for retro-

spective data reanalysis. The specific values of the mean difference and standard deviations

are not important, only the ratio between the two (i.e. the treatment effect δ ). SD has been

arbitrarily chosen as 20, with a corresponding mean difference of 4 and 8 for δ=0.2 and 0.4

respectively. The control group will be sampled from a normal distribution with a mean of

zero, and SD of 20. The treatment group will be sampled from a normal distribution with

a mean of either 4 or 8, and a SD of 20. Trials will have a planned 90% power and two-

sided significance level of 5%, and the number of patients will be calculated based on this

information and the planned effect size, resulting in initially planned target sample sizes of

n=1052 and 264 respectively.

A true effect smaller than planned is also investigated, using δ̂obs =
2
3δplan, δ̂obs =

1
3δplan

and δ̂obs = 0. Again, SD will be kept consistent, but the treatment group will be sampled

from a normal distribution with the mean value now multiplied by 2
3 , 1

3 , or 0 accordingly.

The planned effect size will be maintained at either 0.2 and 0.4 and so original sample size

n will not be affected.

To investigate the treatment effect at a larger than planned n∗ patients, the number

of random numbers generated for each simulated trial group will be 3 times the original

ngroup(=1
2n), corresponding to the maximum allowed sample size investigated. Random
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numbers 1 to ngroup from each normal distribution will correspond to the original planned

fixed sample size trial.

To maintain reproducibility, the seed number will be pre-specified and kept consistent

throughout trials. Seed numbers used are 123 for the control group, and 1234 for the inter-

vention group.

The number of repetitions to conduct will be based on a performance measurement. The

treatment estimate from the originally planned n patients was calculated using three different

seed numbers for a number of values of repetitions, and when the three observed treatment

estimates to two decimal places were equal, the number of repetitions was considered to be

sufficient. This resulted in 50,000 repetitions to be carried out.

7.3.2.2 Pipeline patients

The number of pipeline patients at the interim analysis particularly affects the combination

test design, and therefore rate of recruitment needs to be taken into account. Two rates are

considered in this investigation, and have been informed by percentages of pipeline patients

in the data re-analysis section (Table 4.6). A long time to endpoint is unlikely to provide any

saving in sample size and it needs to be carefully considered whether a SSR is appropriate

to use in these situations. Therefore, this investigation focuses on a “short” or “medium”

time to primary outcome only. A short outcome is considered to have approximately 1-3%

additional recruited patients, and a medium outcome is considered to have an additional 20-

22% recruited patients to those that have data available (i.e. those included in the calculation

of CP). These values have been informed from Table 4.6, summarising the percentage of

pipeline patients for short and medium outcomes from the data obtained for re-analysis.

7.3.2.3 Parameter choices

Interim analyses are considered from 50% onwards only, due to the findings of estimate

stability in Chapter 5. To assess the uncertainty of when the interim analysis should take

place beyond this point, values of n1 are explored every 5% of the original sample size, from

50% to 95%.
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Four values of nmax are considered; 1.1, 1.5, 2 and 3 times the original sample size

estimate, n. Two values will be explored in the main part of the thesis, 1.1 and 2, while

additional results can be found in Appendix E. Whilst 1.5 and 2 were investigated in previous

chapters, it is thought that a small increase such as 10% would be interesting to investigate.

Furthermore, the systematic review in Chapter 3 showed the most frequently used maximum

cap was double the original sample size. Therefore 1.1. and 2 times the original sample size

will be the focus of the simulation work in the main chapters.

Finally, the γ parameter required in the combination test design will be explored, and

the impact on sample size and power will be discussed. Specific values of 0.0001, 0.0002,

0.0005 and 0.001 will be investigated. These values represent a range of feasible values of

the acceptable gain in CP per one additional patient.

7.3.3 Outcomes

CP values using the current trend, hypothesised effect and an 80% optimistic confidence

limit will be calculated, and will be used to inform the new sample size required, accord-

ing to three designs: promising zone, combination test, and promising zone with a futility

boundary. Designs and conditional power assumptions will be compared using ASN and

power. ASN will be the mean new sample size (n∗) across 50000 repetitions. Power is

calculated as the number of simulated trials that are significant given n∗ has been recruited,

whether decreased, remained the same, or increased as directed by the SSR rule used. Futil-

ity rules will be considered ‘binding’ (i.e. the trial stops immediately should CP fall below

the 10% boundary considered, with no exceptions). ASN and power will compare CP as-

sumption, SSR design, value of the γ parameter for combination test design, and values of

nmax.

7.4 Simulation results

This section presents the results for the simulation work of the thesis, carried out according

to the simulation plan in Section 7.3. Results for δ=0.2 or δ=0.4 were found to be very
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similar, and therefore only results for δ=0.4 are presented in the main thesis. Results for

δ=0.2 are also provided in Appendix E for completeness.

7.4.1 True effect = 0.4

Table 7.1 shows the mean treatment difference, SD, effect size and a difference between the

true difference and estimated mean difference, calculated after every 5% of patients from

50% through the trial onwards. In line with the simulation plan, the true mean difference is

8, SD=20, and corresponding effect size δplan=0.4, and therefore values should be as close

to these as possible.

Information fraction

δ̂obs = δplan = 0.4 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Mean d̂ 7.9974 7.9984 8.0013 7.9996 8.0014 7.9986 8.0033 8.0029 8.0022 8.0037 8.0009

Mean SD 19.9583 19.9618 19.9615 19.9624 19.9646 19.9668 19.9707 19.9726 19.973 19.9751 19.977

Mean δ̂obs 0.4023 0.4021 0.4022 0.4019 0.4019 0.4017 0.4017 0.4016 0.4015 0.4015 0.4013

Mean (d− d̂) -0.0026 -0.0016 0.0013 -0.0004 0.0014 -0.0014 0.0033 0.0029 0.0022 0.0037 0.0009

δ̂obs =
2
3δplan

Mean d̂ 5.3307 5.3317 5.3347 5.3330 5.3347 5.3320 5.3367 5.3362 5.3355 5.3370 5.3343

Mean SD 19.9583 19.9618 19.9615 19.9624 19.9646 19.9668 19.9707 19.9726 19.973 19.9751 19.977

Mean δ̂obs 0.2681 0.2680 0.2681 0.2680 0.2680 0.2678 0.2679 0.2678 0.2677 0.2677 0.2676

Mean (d− d̂) -2.6693 -2.6683 -2.6653 -2.667 -2.6653 -2.668 -2.6633 -2.6638 -2.6645 -2.663 -2.6657

δ̂obs =
1
3δplan

Mean d̂ 2.6640 2.6650 2.6680 2.6663 2.6680 2.6653 2.6700 2.6696 2.6688 2.6703 2.6676

Mean SD 19.9583 19.9618 19.9615 19.9624 19.9646 19.9668 19.9707 19.9726 19.973 19.9751 19.977

Mean δ̂obs 0.1340 0.1340 0.1341 0.1340 0.1340 0.1339 0.1341 0.1340 0.1339 0.1340 0.1338

Mean (d− d̂) -5.3360 -5.3350 -5.3320 -5.3337 -5.3320 -5.3347 -5.3300 -5.3304 -5.3312 -5.3297 -5.3324

δ̂obs = 0

Mean d̂ -0.0026 -0.0016 0.0013 -0.0004 0.0014 -0.0014 0.0033 0.0029 0.0022 0.0037 0.0009

Mean SD 19.9583 19.9618 19.9615 19.9624 19.9646 19.9668 19.9707 19.9726 19.973 19.9751 19.977

Mean δ̂obs -0.0001 -0.0001 0.0001 0.0000 0.0001 0.0000 0.0002 0.0002 0.0001 0.0002 0.0001

Mean (d− d̂) -8.0026 -8.0016 -7.9987 -8.0004 -7.9986 -8.0014 -7.9967 -7.9971 -7.9978 -7.9963 -7.9991

Table 7.1: Mean difference, SD, treatment effect and difference from the true population value for
values between 50% and 100% of the originally planned n=264 when δ = 0.4

The mean difference is always within 0.0026 of the true difference, and by 100% orig-

inal planned sample size (n=264) is within 0.0009 of the true value. SD is very slightly

underestimated at all time points, but this does not impact the mean treatment effect, which

is correct to 2 decimal places (0.40). This same pattern follows when the true effect is ad-

justed to 2
3 , 1

3 or 0 times the original 0.4 value. Therefore, the simulations are estimating



7.4. Simulation results 168

these values well, and have sufficient repetitions. As stated in the simulation plan, the num-

ber of repetitions were chosen by calculating the mean difference at 264 patients using three

different seed numbers for generating random numbers, but this table also confirms that this

value is sensible.

Mean conditional power from 50000 simulations have been calculated using three future

treatment effect assumptions at interim time points between 50 and 90% of the original

study duration, and are shown in Table 7.2. At all interim time points, and values of δ values

investigated, the current trend assumption has the lowest CP values of the three assumptions,

and the hypothesised assumption the highest. As the true value of δ decreases compared to

that planned, all CP values decrease. CP values are >92% when δ equals δplan, decreasing

to values >17% only, when there is actually no difference between the two groups.

Information fraction
Conditional power 50% 55% 60% 65% 70% 75% 80% 85% 90%
δ=δplan=0.4 Trend 0.923 0.935 0.946 0.953 0.962 0.968 0.974 0.979 0.982

Hypothesised 0.988 0.988 0.989 0.988 0.988 0.988 0.988 0.988 0.988
80% limit 0.963 0.967 0.970 0.973 0.976 0.978 0.981 0.983 0.985

δ=2
3δplan Trend 0.756 0.771 0.786 0.799 0.813 0.824 0.839 0.853 0.863

Hypothesised 0.944 0.936 0.929 0.923 0.918 0.912 0.906 0.900 0.895
80% limit 0.854 0.855 0.857 0.859 0.863 0.864 0.869 0.873 0.877

δ=1
3δplan Trend 0.482 0.488 0.494 0.498 0.504 0.510 0.516 0.522 0.526

Hypothesised 0.816 0.786 0.756 0.730 0.700 0.673 0.645 0.616 0.590
80% limit 0.624 0.613 0.603 0.593 0.583 0.576 0.568 0.559 0.552

δ=0 Trend 0.218 0.210 0.203 0.198 0.192 0.187 0.182 0.177 0.173
Hypothesised 0.584 0.523 0.465 0.418 0.367 0.327 0.285 0.247 0.217
80% limit 0.337 0.312 0.289 0.271 0.251 0.236 0.219 0.202 0.189

Table 7.2: Mean conditional power values from 50000 repetitions for three treatment effect
assumptions when δ=0.4 and n=264

All graphs of the combination test in the results section use a short outcome, with

γ=0.0002. Alternative outcome timings and values of γ are compared in tables.

7.4.1.1 True effect = planned effect

Figure 7.1 shows the frequency of sample size states (i.e. decrease, remain, or increase) for

three SSR designs: promising zone (green), combination test (pink), and promising zone



7.4. Simulation results 169

with futility (blue). Darker shades indicate that the trial went on to be significant at the new

recruited sample size n∗ indicated by the SSR rule. A large number of trials were significant

for all designs. It should be noted that when the observed effect is as planned, the proportion

of significant trials should correspond to the pre-specified chosen power, 90%. This is also

presented in a table later in this section.

(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 7.1: Sample size zones from 50000 simulations when δ = δplan and n=264, for two values of
nmax: comparing three designs and four observed treatment effects
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The combination test design (pink) with γ=0.0002 and a short outcome shows more

increases in sample size than either promising zone design, but also sees a large proportion

of trials with n∗ < n. Despite decreasing in sample size compared to the original n patients,

trials are still predominantly found to be significant, at any interim timing. The 80% limit

assumption (column 3) sees the highest proportion of increases in sample size for all designs,

which decreases with a larger information fraction. A small number of trials stopped for

futility for the final design (blue), of which were non-significant. This pattern is the same

for nmax=1.1 and 2 times the original sample size.

Again comparing the three designs and three assumptions (using γ2=0.0002 and a short

outcome where appropriate), original sample size n1 is plotted against new sample size n∗

in Figure 7.2. Larger dots indicate a greater frequency of repetitions resulting at the n1 and

n∗ combination. Colours have been kept consistent with designs (promising zone in green,

combination test in pink, and promising zone with futility in blue), and the mean sample

size from all 50000 repetitions is plotted with a black line.

Promising zone design remains fairly consistent at n∗ = n patients, with some increases

up to nmax. Because of the higher nmax value, and therefore higher increases, mean sample

size is slightly higher for nmax=2∗n than 1.1∗n in both promising zone designs. Mean sample

size lines take the same shape between promising zone with and without a futility boundary.

With a slight exception at nmax = 2∗n using the 80% limit, required sample size increases

with increasing n1 for the combination test due to increasing nrec values which this design

depends on. Promising design with futility sees both increases and decreases (seen more

clearly when nmax = 2∗n). The trend assumption has slightly more decreases earlier in the

trial compared to hypothesised and 80% limit assumptions, which reverses as n1 increases.

Table 7.3 shows ASN and power values for two primary outcome timings (short and

medium) and four values of γ (γ1=0.0001, γ2=0.0002, γ3=0.0005, γ4=0.001). In general, the

smaller the value of γ , the larger the ASN. This is particularly seen earlier in the trial (50%

information fraction e.g.), meeting at around 269-301 patients by 90% through the trial with

a short outcome. The smallest value of γ has the highest power for all assumptions and both
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 7.2: Sample size from 50000 simulations when δ = δplan and n=264, for two values of nmax:
comparing three designs and three treatment effect assumptions
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δ=0.4 SHORT MEDIUM
δ=δplan Information fraction Information fraction
TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 305 305 303 299 297 311 316 320 322 308

Power 95.14 96.81 97.50 97.75 97.42 95.69 97.18 97.78 97.92 97.51
γ2 ASN 288 290 290 290 291 296 303 309 314 303

Power 93.82 95.83 96.70 97.33 97.16 94.58 96.38 97.26 97.62 97.31
γ3 ASN 261 267 271 275 281 272 283 294 302 294

Power 91.15 93.71 95.28 96.35 96.50 92.50 94.87 96.28 96.89 96.75
γ4 ASN 232 243 252 262 273 246 263 278 291 287

Power 87.43 90.79 93.14 94.87 95.70 87.43 90.79 93.14 94.87 95.7
HYPOTHESISED
γ1 ASN 276 276 276 278 285 278 282 290 300 296

Power 95.85 96.71 97.15 97.49 97.28 95.88 96.81 97.34 97.66 97.4
γ2 ASN 257 260 264 270 280 260 269 281 294 292

Power 94.27 95.44 96.23 96.92 96.95 94.36 95.66 96.55 97.18 97.11
γ3 ASN 233 240 248 259 274 238 253 269 286 287

Power 91.09 93.17 94.46 95.67 96.23 91.44 93.68 95.21 96.21 96.46
γ4 ASN 215 225 237 251 269 223 241 261 280 282

Power 87.63 90.06 92.34 94.13 95.30 88.37 91.19 93.65 95.01 95.63
80% Limit
γ1 ASN 323 322 317 309 301 326 330 331 329 313

Power 97.80 98.43 98.39 98.31 97.68 97.95 98.56 98.59 98.43 97.78
γ2 ASN 304 305 302 298 295 308 314 318 320 306

Power 96.98 97.87 98.12 98.07 97.48 97.17 98.11 98.36 98.27 97.62
γ3 ASN 274 279 280 281 285 281 291 300 307 297

Power 94.92 96.48 96.98 97.34 97.01 95.46 96.99 97.61 97.71 97.23
γ4 ASN 246 254 260 267 276 256 270 284 295 289

Power 91.91 94.14 95.09 96.08 96.3 92.93 95.17 96.31 96.78 96.59

Table 7.3: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ=δplan, n=264,
nmax=2*n
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endpoints, with values ranging between 95.14 (current trend, short outcome) and 98.59 (80%

limit, medium outcome), which is well above the pre-specified power of 90%. Increasing

the value of γ decreases the power, and γ4=0.001 has power that has dropped below the

nominal rate for the 50% time point under the current trend or hypothesised assumptions,

but increases with increasing information fraction. A 60% interim time point using γ4 would

be acceptable to use with the current trend or hypothesised assumption (power = 90.79 and

90.06% respectively). Choice of γ would depend on the assumption used, and the timing of

the interim analysis, but could be chosen such that power equals the specified level through

simulations, for instance.

The hypothesised assumption results in the lowest ASN and 80% limit the highest, while

the current trend assumption lies somewhere between the two, although by 90% there is at

most 1 patient difference between the three assumptions. This pattern however does not

always hold for power. Some slight sample size savings can be seen at one or more interim

time points for γ3 and γ4 for all assumptions. A sample size saving, whilst maintaining

power at 90% would be the ideal balance, also corresponding with Table 6.1 for evaluating

methodology. The closest example to this is γ4 using the hypothesised assumption at 60%

data available of the original n=264 patients and a short outcome.

δ=δplan=0.4 Information fraction
Promising Zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 310 309 308 306 306 304 300 296 292 284

Power 93.05 93.24 93.41 93.44 93.56 93.55 93.46 93.37 93.12 92.44
Hypothesised ASN 282 286 289 292 293 294 294 292 289 283

Power 93.32 94.04 94.70 95.11 95.39 95.6 95.40 95.08 94.51 93.23
80% limit ASN 317 317 316 315 313 310 305 300 294 285

Power 94.45 94.49 94.59 94.49 94.42 94.25 94.01 93.64 93.29 92.49
Promising zone with Futility
Trend ASN 304 304 304 303 303 301 298 294 290 283

Power 91.20 91.73 92.27 92.52 92.88 93.04 93.07 93.1 92.91 92.31
Hypothesised ASN 282 286 289 292 293 294 293 292 289 283

Power 93.32 94.04 94.70 95.11 95.38 95.59 95.39 95.07 94.48 93.20
80% limit ASN 315 315 314 313 311 308 304 298 293 284

Power 94.09 94.19 94.28 94.20 94.16 94.01 93.79 93.45 93.11 92.37

Table 7.4: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions when δ=0.4, n=264 and and nmax = 2∗n for promising zone with and without a
futility boundary
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Table 7.4 shows a comparison of ASN and power across the promising zone designs

considered designs for three CP assumptions, with and without a futility boundary. Both

designs have power > 90%, and so power is greater than originally specified and maintained

regardless of interim timing. However, it is also one of the criteria that a design should not

have too high power, especially with an increase in the number of patients recruited, for

both ethical and logistical reasons of recruiting more patients than necessary to a trial. The

addition of a futility bound brings down the expected sample size, but only by 1-6 patients

between 50 and 90% data available.

Depending on the choice of γ parameter and timing of the interim analysis, the combi-

nation test design can be chosen to have the desired power, whilst even seeing decreases in

expected sample size, when the observed effect is exactly as planned. On the other hand,

if a trial is expecting to see exactly as planned, a SSR may not be necessary at all, and

an alternative fixed sample size would likely be considered in this scenario. Therefore the

comparisons of alternative observed differences will be useful in evaluating the methodolo-

gies. Promising zone designs do increase ASN and power, but increases are small, and the

addition of a futility boundary reduces this increase slightly.

Therefore, these simulations conclude that when the observed effect is as planned, the

combination test design would be able to maintain power at the desired level and decrease

expected sample size compared to a promising zone design. Therefore, in terms of the

methodology criteria table (Table 6.1), this design is the best performing in this scenario.

Whilst the incorporation of a futility boundary decreases ASN and power (whilst always

remaining above the specified level) compared to the promising zone design, a small number

of trials stop for futility, which is an undesirable characteristic when δ = δplan. However,

this number is very small, particularly for the 80% limit and hypothesised assumptions. The

risk of incorrectly stopping for futility should be taken into consideration when designing a

trial, and weighed up against the smaller ASN and power.
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7.4.1.2 True effect = 2
3 planned effect

A value of 2
3 may be considered smaller than hoped, but perhaps still clinically relevant, or

of interest. Corresponding with Table 6.1, increases in sample size are fine, but need to also

coincide with higher power. Additionally, if 2
3 is to be considered clinically meaningful,

there is no wish to stop the trial early for futility if applicable. This section presents the

results for the comparison of the designs and CP assumptions in this scenario.

Figure 7.3 shows significance of trials that decreased, remained or increased for two

values of nmax (again, 1.1 and 2 times the original n patients). As the timing of the interim

analysis increases, the number of trials being increased in promising zone with/without futil-

ity are decreasing, with the exception of the hypothesised assumption. The largest frequency

of increases occurs at 50% for the current trend and 80% limit assumptions, and at 70% of

data available using the hypothesised assumption.

Incorporating a futility bound has decreased the proportion of non-significant trials when

sample size remains the same, and all trials that are stopped early go on to be non-significant.

The combination test design using γ2 now has a larger proportion of increases compared to

decreases, most prominent in the 80% limit and hypothesised assumptions. However, an

increase in sample size does not always correspond with a significant result. As the interim

timing increases from 50 to 80%, slightly more trials are found to be significant under the

current trend or hypothesised assumptions, whereas the opposite effect is seen in the 80%

limit assumption (albeit small).

Figure 7.4 shows the new required sample size at 10 interim timings between 50 and

95% data available, for three SSR designs, three CP assumptions and two values of nmax.

The promising zone design (green) again sees very little change in expected sample size,

with a maximum increase of 10% being too small to see much of a change in the ASN line.

However, this line has increased in the nmax = 2∗n patients compared to when δ = δplan, due

to more increases being observed.

Both values of nmax see the combination test design (pink) see more instances of n∗ =

nmax, with some decreases also being observed. This results in higher expected sample size
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 7.3: Sample size zones from 50000 simulations when δ = 2
3 δplan and n=264, for two values

of nmax: comparing three designs and four observed treatment effects
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 7.4: Sample size from 50000 simulations when δ = 2
3 δplan and n=264, for two values of

nmax: comparing three designs and three treatment effect assumptions
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lines than in the previous example. The current trend and 80% limit assumptions see a small

increase in ASN to start, before decreasing as n1 increases. The hypothesised effect however

steadily increases in ASN between 50 and 90% data availability, before a small drop at 95%

through.

Due to more trials stopping for futility (blue) under the current trend and 80% limit,

nmax = 1.1∗n sees a slight decrease in ASN compared to when the planned effect is observed.

However, when nmax = 2∗n, the line has increased compared to when δ = δplan. Whilst

the line takes the same shape as the promising zone design without futility for all three

assumptions, but slightly lower in terms of n∗.

Table 7.5 investigates ASN and power between two lengths of primary outcome avail-

ability and the same four values of (γ=0.0.0001, 0.0002, 0.0005, 0.001).

Similarly to when observed δ is as planned, the larger values of γ decrease both ASN and

power for all assumptions and percentage of pipeline patients (linked to timing of endpoint).

In the scenario where δ is smaller than planned, power is a less important consideration,

in the sense that it is not necessary for power to have reached a pre-specified limit. For

comparative purposes however, both ASN and power are presented.

Again, the smallest values of ASN and power occur with the larger values of γ , with a

short endpoint, a 50% data available interim analysis, using the hypothesised effect assump-

tion. With the same values of γ , the trend assumption has comparatively higher values of

ASN and power than hypothesised, and again the 80% limit assumptions sees the highest

values for the three assumptions. However, if it’s the case that an alternative value of γ

would be chosen for each assumption, alternative rows could be compared. For instance, for

hypothesised and trend assumptions, γ3 saw values >90% for all time points, whereas this

was seen for γ4 for the 80% limit assumption. Thus, comparing 50% interim timing values

of 67.77% power and 305 patients (80% limit) with 68.0% power with 311 patients (current

trend) may be more appropriate. Additionally, the only instance that ASN is smaller than

the original planned sample size is under the hypothesised effect assumption with γ4=0.001

value.
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δ=0.4 SHORT MEDIUM
δ=2

3δplan Information fraction Information fraction
TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 369 377 381 378 366 375 385 390 390 373

Power 75.27 77.2 78.06 77.61 75.04 75.20 77.29 78.13 77.69 75.04
γ2 ASN 348 358 364 363 354 356 367 375 377 362

Power 72.93 75.25 76.59 76.70 74.49 72.96 75.50 76.77 76.85 74.50
γ3 ASN 311 324 333 337 334 322 336 348 354 343

Power 68.00 71.15 73.27 74.34 72.99 68.34 71.61 73.73 74.73 73.08
γ4 ASN 266 285 299 308 313 280 301 317 329 323

Power 61.55 65.85 68.59 70.66 70.73 61.55 65.85 68.59 70.66 70.73
HYPOTHESISED
γ1 ASN 337 349 358 365 367 337 350 362 372 372

Power 70.57 72.55 73.78 74.19 72.70 70.58 72.58 73.86 74.3 72.77
γ2 ASN 315 329 341 351 357 315 331 346 360 363

Power 67.33 69.53 71.26 72.25 71.44 67.37 69.63 71.45 72.45 71.53
γ3 ASN 284 301 317 332 342 285 305 324 343 349

Power 61.95 65.04 67.31 69.02 69.31 62.05 65.30 67.76 69.48 69.50
γ4 ASN 259 278 297 315 328 261 284 306 328 335

Power 57.30 60.74 63.78 66.13 67.12 57.65 61.28 64.65 66.98 67.43
80% Limit
γ1 ASN 408 413 410 400 380 410 416 416 409 386

Power 79.65 80.28 80.08 78.78 75.41 79.63 80.30 80.10 78.84 75.42
γ2 ASN 387 393 392 384 367 390 397 399 395 374

Power 77.76 78.82 79.07 78.08 75.02 77.75 78.94 79.11 78.19 75.07
γ3 ASN 349 357 360 356 345 354 364 370 370 354

Power 73.74 75.47 76.43 76.19 73.79 73.86 75.74 76.72 76.47 73.87
γ4 ASN 305 317 324 326 323 313 328 339 344 333

Power 67.77 70.54 72.27 73.11 71.83 68.09 71.06 72.91 73.71 72.02

Table 7.5: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ= 2

3 δplan,
n=264, nmax = 2∗n
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Table 7.6 shows ASN and power for the promising zone design with or without a futility

boundary. Using the hypothesised assumption, there is almost no difference between the

two versions of the design. However, for the current trend and 80% limit assumptions, the

futility design decreases both sample size and power. The greatest differences between the

two designs is at 50% data availability, with smaller differences observed at the 95% point.

Whilst the 80% limit assumption sees the highest power at the 50% data available time

point, this value decreases with increasing values of n1. However, both the current trend and

hypothesised assumptions see an increase in power with increasing n1, before decreasing

beyond 65% and 70% through respectively. The same pattern can be observed for ASN as

for power.

δ=2
3δplan Information fraction

Promising zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 334 335 335 336 334 333 330 325 318 304

Power 66.47 66.87 67.07 67.23 66.98 66.79 66.49 65.82 64.86 63.03
Hypothesised ASN 324 333 340 344 346 345 341 334 324 307

Power 69.45 71.38 73.05 73.94 74.62 74.50 73.63 71.69 69.12 65.21
80% limit ASN 355 355 354 353 349 345 339 331 322 305

Power 70.76 70.68 70.48 70.12 69.43 68.66 67.75 66.69 65.25 63.10
Promising zone with Futility
Trend ASN 310 313 316 319 320 319 318 316 312 300

Power 64.04 64.83 65.43 65.80 65.86 65.82 65.72 65.26 64.44 62.77
Hypothesised ASN 324 333 340 343 343 342 337 329 319 303

Power 69.47 71.4 73.06 73.94 74.63 74.49 73.61 71.67 69.08 65.14
80% limit ASN 345 345 343 342 338 334 329 323 316 302

Power 70.31 70.2 69.96 69.58 68.92 68.19 67.29 66.25 64.92 62.85

Table 7.6: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions and three designs when δ= 2

3 δplan, n=264 and and nmax = 2∗n

If a value of δ = 2
3δplan is still considered clinically meaningful, all three scenarios have

increased in sample size, in order to try and increase power. Whilst nominal levels are no

longer obtained, more trials have been able to achieve a significant result despite seeing a

smaller effect size than that planned. If this magnitude of effect is however not considered to

be clinically relevant, it would be better to stop recruiting and use resources for an alterna-

tive trial. The hypothesised assumption would give the lowest expected sample size whilst

maintaining high power in this scenario. Alternatively, the promising zone with futility de-
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sign could be beneficial at any time point, as power is similar to the regular promising zone

design for all three assumptions, but with a lower ASN.

The criteria for evaluating the methodology in Table 6.1 condones sample size increases,

but only with a subsequent increases in power. It may vary on a cases by case basis between

a trade-off for higher power but lower ASN, and each trial may have a different idea on

which is the more favourable objective. The hypothesised assumption may see the highest

power, but the current trend assumption sees the lowest ASN.

7.4.1.3 True effect = 1
3 planned effect

A scenario considering δ = 1
3δplan represents an observed effect that is smaller than planned

but too small to be clinically relevant. A sample size increase therefore is less constructive

- even if able to push the trial to achieve statistical significance. Therefore, stopping earlier

than the original n patients may be desirable, alongside fewer sample size increases. Re-

searchers in this situation may wish only to focus on the lower ASN criteria identified in

Table 6.1 to choose a design, as criteria based on power may not be relevant here.

Figure 7.5 shows significance of trials in the three possible decisions in terms of sample

size for δ = 1
3δplan, again for three designs, three assumptions and two values of nmax.

The promising zone design largely stays at the original n patients, which is the small-

est value of n∗ that this design allows. For all three assumptions, the number of trials that

increase in sample size decreases with increasing values of n1. The current trend assump-

tions sees the largest number of trials remaining at n patients, followed closely by the 80%

limit. The hypothesised assumption however, has a much larger number of increases in

sample size at 50-60% data availability. By 90% through the trial, similar proportions of

remain/increases can be seen as the other two designs.

The addition of a futility boundary (blue) sees the same proportion of increases across

the three investigated assumptions. However, a large proportion of those that previously

remained at n patients in the regular promising zone design have now stopped early, at

the corresponding value of n1 patients with data available. At 50% through, a very small

number of the trials that have stopped for futility actually have a significant result with
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 7.5: Sample size zones from 50000 simulations when δ = 1
3 δplan and n=264, for two values

of nmax: comparing three designs and four observed treatment effects
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nrec patients. The current trend assumption sees the largest proportion stopping for futility,

again followed by 80% limit assumption. However, the hypothesised have very few trials

stopping early for this design with the hypothesised assumption at 50% data availability,

which greatly increases with increasing n1 values.

Finally, the combination test (pink) sees a much larger proportion of increases in sample

size, although the magnitude of such an increase cannot be seen with this graph (see Figure

7.6). Whilst all assumptions see a decrease in proportion of trials increasing sample size

at the interim analysis with increasing data availability, the three assumptions start off at

very different heights at the 50% time point. The hypothesised assumptions sees the highest

proportion increasing at 50%, followed by the 80% limit. Additionally, the magnitude of

the decrease in proportion increasing between 50% and 90% depends on the value of nmax.

By 90% through the trial, the number of trials increasing is higher for nmax = 2∗n than for

1.1∗n.

Figure 7.6 now looks at the magnitude of this sample size increase/decrease, and the

impact on ASN with increasing information fractions.

When nmax = 1.1∗n, the promising zone sees very little difference in terms of the ex-

pected sample size line. The combination test design sees slightly more decreases using the

current trend or 80% limit assumptions and correspond to a slight decreased expected line.

The hypothesised effect assumption however is very slightly raised between 50 and 70%

through the trial. This pattern is also observed in the promising zone design with futility:

a decrease in the expected line for the trend and 80% limit assumptions due to increased

stopping for futility, and a slightly raised line early in the hypothesised effect assumption

graph.

Whilst the differences between δ = 2
3δplan and 1

3δplan ASN lines are fairly subtle when

nmax = 1.1∗n, differences are more visible when nmax = 2∗n, particularly in the case of

the hypothesised assumption. In all three designs, the expected sample size has greatly

increased. For either promising zone design, this increase is most prominent between 50

and 70% through the trial, and very few differences are observed by 90% through the trial.
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 7.6: Sample size from 50000 simulations when δ = 1
3 δplan and n=264, for two values of

nmax: comparing three designs and three treatment effect assumptions
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However, increases are observed at all interim time points for the combination test design,

with many more instances of n∗= nmax having been observed. For the current trend and 80%

limit assumptions, both combination test and promising zone with futility see more cases of

n∗ = nrec and therefore have a smaller expected sample size compared to δ = 2
3δplan.

δ=0.4 SHORT MEDIUM
δ=1

3δplan Information fraction Information fraction
TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 356 370 375 374 359 372 386 393 393 369

Power 28.98 29.54 29.43 28.32 26.56 27.72 28.49 28.52 28.03 26.39
γ2 ASN 335 350 357 358 347 353 369 377 379 358

Power 28.22 28.79 28.82 27.90 26.30 26.82 27.64 27.87 27.61 26.1
γ3 ASN 297 315 325 331 327 318 337 349 355 339

Power 26.33 27.14 27.62 26.81 25.56 24.77 25.92 26.54 26.55 25.35
γ4 ASN 251 274 290 303 307 276 300 317 330 319

Power 23.87 24.68 25.59 25.19 24.68 23.87 24.68 25.59 25.19 24.68
HYPOTHESISED
γ1 ASN 404 428 445 455 436 404 428 446 457 440

Power 24.01 24.87 25.22 25.38 24.61 24.01 24.87 25.23 25.35 24.56
γ2 ASN 381 408 430 442 424 381 408 430 445 428

Power 22.74 23.48 24.19 24.58 24.10 22.73 23.49 24.19 24.56 24.07
γ3 ASN 345 377 404 418 401 345 378 405 423 407

Power 20.89 21.75 22.71 23.32 23.13 20.89 21.79 22.71 23.34 23.14
γ4 ASN 314 349 378 393 377 315 350 381 401 384

Power 19.39 20.31 21.55 22.17 22.30 19.40 20.46 21.64 22.31 22.34
80% Limit
γ1 ASN 447 443 433 415 382 452 451 444 429 390

Power 29.71 29.85 29.66 28.63 26.62 29.18 29.28 29.11 28.43 26.51
γ2 ASN 425 422 413 397 368 432 432 427 413 377

Power 28.72 29.32 29.19 28.25 26.34 28.10 28.65 28.57 28.04 26.19
γ3 ASN 381 381 376 365 344 392 396 394 386 355

Power 27.29 27.94 28.09 27.25 25.70 26.49 27.15 27.36 27.04 25.55
γ4 ASN 325 331 332 330 320 341 350 355 354 332

Power 24.98 25.91 26.36 25.70 24.83 23.97 24.97 25.52 25.50 24.63

Table 7.7: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ= 1

3 δplan,
n=264, nmax = 2∗n

Table 7.7 shows ASN and power for four values of γ used in the combination test de-
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sign for δ = 1
3δplan. The current trend design sees the lowest value of ASN out of the three

considered assumptions for all values of γ . However this is not the case for power, which

is sometimes smaller and sometimes larger, depending on information fraction and compar-

ative assumption. For instance, whilst the hypothesised effect sees the largest ASN values

from 70% data availability point onwards, it is also associated with lower power values.

This indicates that the design is increasing sample size where an increase has not perhaps

been appropriate. For instance, using γ4 with a short endpoint and 50% interim timing, the

current trend assumption requires 251 patients to obtains 23.9% power, despite a decrease

in sample size. The hypothesised effect however requires 314 patients, an increase of 50

patients, yet obtains 19.4% power; more patients for a lower power.

Looking at a trade-off between more patients and resulting power, the current trend

assumption appears to be the most suitably behaved assumption, having similar but slightly

less power than with the 80% limit assumption, but also with a lower ASN. This pattern

applies regardless of being a short or medium end point. The hypothesised assumption

however has not dealt with the situation of seeing a much smaller effect than planned well;

resulting in high ASN and low power comparatively.

For all assumptions, increasing values of γ result in lower ASN, and lower power. A

medium endpoint sees a higher ASN than a short endpoint, but largely sees lower power

(albeit this difference is small).

Table 7.8 shows power and ASN for both versions of the promising zone design for the

three assumptions. The current trend assumption again sees the lowest value of ASN in

either design, whilst the hypothesised assumption consistently sees the greatest ASN value.

The same pattern for ASN can also be seen for power values.

The design that allows for futility has lower values of ASN for all three assumptions,

but power is not always lower when using the hypothesised assumption. In terms of Table

6.1 for evaluating the methodologies,the best design when observing a small (and therefore

not clinically relevant) effect would have very few increases in sample size. If sample size

increases do occur, the smaller the magnitude of increase, the better. In these terms, the
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δ=1
3δplan Information fraction

Promising zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 324 324 324 322 319 317 313 308 302 292

Power 23.31 23.46 23.25 23.31 23.06 22.97 22.67 22.13 21.56 20.63
Hypothesised ASN 386 392 391 386 375 362 346 329 315 295

Power 26.48 27.62 28.5 28.93 28.93 28.41 27.4 26.03 24.45 22.04
80% limit ASN 356 351 346 340 334 328 321 313 304 293

Power 25.85 25.61 25.2 24.86 24.35 23.87 23.24 22.41 21.71 20.62
Promising zone with Futility
Trend ASN 266 271 275 277 279 281 284 285 285 283

Power 22.34 22.64 22.51 22.67 22.56 22.51 22.32 21.84 21.34 20.48
Hypothesised ASN 385 390 386 378 363 347 329 312 300 287

Power 26.8 27.81 28.61 29.02 29.00 28.45 27.44 26.05 24.43 22
80% limit ASN 321 316 310 304 300 296 293 291 288 284

Power 25.83 25.5 25.05 24.68 24.17 23.68 23.05 22.23 21.53 20.47

Table 7.8: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions and three designs when δ= 1

3 δplan, n=264 and and nmax = 2∗n

best design to deal with this scenario would be the promising zone deisgn with a futility

boundary, due to the lowest values of ASN. The design would also benefit from an earlier

interim analysis, as ASN increases with increasing information fraction. Additionally, the

combination test with γ4=0.001 using the current trend assumption could be considered to

behave well in the scenario of δ = 1
3δplan, seeing low values of ASN, and even decreasing

in sample size at the 50% information fraction point.

7.4.1.4 True effect = zero

There is always the possibility, even for a superiority trial, that the intervention under inves-

tigation may truly be no different to the control group, and a zero effect (or even negative)

may be observed. If this is the case, it would be ideal to be able to stop the trial as early

as possible, and certainly not to increase in sample size, corresponding with Table 6.1. Ad-

ditionally, it should be noted that when the true effect is zero, power is to be thought of as

Type I error, and should be no more than the pre-determined value (here, 5%).

Figure 7.8 shows the decision of sample size state (decrease, remain or increase) and the

significance of trials at the new required n∗ value.

For all designs, the total number of significant trials are again much lower than in pre-

vious scenarios. Again, the largest numbers stopping for futility (blue), or decreasing in
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 7.7: Sample size zones from 50000 simulations when δ = 0 and n=264, for two values of
nmax: comparing three designs and four observed treatment effects
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sample size (pink) is observed under the current trend assumption, followed by the 80%

limit assumption, which catches up in terms of proportion by 90% information fraction.

However, for the hypothesised assumption, a greater proportion of increases can be seen, at

the 50 and 60% time points for both values of nmax. Again, very few decreases can be seen

when using the hypothesised assumption at 50% interim timing.

The promising zone sees equal proportions of remaining and increasing using the hy-

pothesised effect for nmax = 1.1∗n at 50% interim timing, but more increases can be seen at

the same time point for nmax = 2∗n. The design with the most increases is the combination

test design, for all time points, and both values of nmax. Again, this figure does not show the

magnitude of this increase.

Figure 7.8 shows expected sample size for two values of nmax, three designs and three

assumptions. Again, the promising zone design for nmax = 1.1∗n remains quite flat, and does

not really shift much above the original n patients. A slightly raised line can be seen however

for nmax = 2∗n under the current trend and 80% limit assumptions, but more pronounced in

the earlier time points with the 80% limit. A much increased expected sample size line is

seen for the hypothesised effect, with a steady decrease up to around 80% through the trial.

Again, ASN is increased for nmax = 2∗n than 1.1∗n for the combination test design,but

to a much greater extent than in the promising zone design. Whilst few maximum increases

are observed using the current trend assumption, the expected sample size line is greater

than the nrec line, particularly at earlier time points. The hypothesised effect has greatly

increased ASN, which increases up until around the 75% mark, before decreasing to 90%

through the trial. Finally, the 80% limit assumption sees a similar pattern to the promising

zone design, with a more pronounced slope particularly at 50% data availability.

Promising zone design with an incorporated futility boundary sees the lowest expected

sample size lines of the three designs, which is lowest using the current trend assumption.

Similarly to the other two designs, the hypothesised assumption sees a large ASN value

between 50 and 80% trial duration, but flattens out after this point.
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 7.8: Sample size from 50000 simulations when δ = 0 and n=264, for two values of nmax:
comparing three designs and three treatment effect assumptions
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Table 7.9 presents ASN and power values for the four investigated values of γ for short

and medium endpoints. When investigated, it was found to be due to small numbers of

pipeline patients, often leading to very small sample sizes for the second stage test statistic

and therefore a very unstable value. It is for this reason that Type I error is inflated in this

table, but comparatively, smaller values will indicate a better design.

δ=0.4 SHORT MEDIUM
δ=0 Information fraction Information fraction
TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 273 282 287 291 291 303 315 322 325 306

Power 7.69 7.38 6.88 5.76 5.43 5.13 5.11 5.05 5.09 5.15
γ2 ASN 256 267 275 281 285 289 302 312 317 300

Power 7.91 7.55 6.99 5.82 5.42 5.21 5.14 5.08 5.13 5.14
γ3 ASN 229 243 255 267 276 265 281 295 304 292

Power 8.23 7.76 7.16 5.84 5.46 5.26 5.15 5.12 5.10 5.15
γ4 ASN 199 219 236 253 268 237 259 277 292 284

Power 8.42 7.95 7.25 5.91 5.54 5.24 5.12 5.10 5.14 5.20
HYPOTHESISED
γ1 ASN 465 488 499 478 394 465 488 500 485 403

Power 5.08 5.06 5.17 5.21 5.35 5.08 5.06 5.18 5.11 5.15
γ2 ASN 445 475 488 464 380 445 475 490 472 390

Power 5.05 5.11 5.14 5.26 5.36 5.05 5.13 5.11 5.11 5.16
γ3 ASN 411 450 464 435 357 411 451 468 448 369

Power 5.18 5.05 5.15 5.45 5.36 5.18 5.09 5.07 5.18 5.14
γ4 ASN 377 420 432 400 336 378 423 441 419 348

Power 5.08 5.11 5.41 5.56 5.40 5.08 5.14 5.18 5.22 5.17
80% Limit
γ1 ASN 401 378 353 329 305 418 400 380 359 319

Power 6.28 6.48 6.49 5.70 5.41 5.04 5.09 5.05 5.12 5.17
γ2 ASN 376 355 334 314 297 396 380 364 347 312

Power 6.54 6.70 6.59 5.68 5.41 5.09 5.09 5.05 5.08 5.15
γ3 ASN 329 315 301 292 285 354 345 336 327 301

Power 7.11 7.04 6.85 5.70 5.40 5.20 5.08 5.13 5.06 5.13
γ4 ASN 274 271 269 271 275 305 306 308 309 291

Power 7.62 7.41 6.98 5.80 5.47 5.23 5.13 5.11 5.11 5.16

Table 7.9: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ=0, n=264,
nmax=2*n
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Short endpoints with current trend or 80% limits should be avoided, as the inflation in

Type I error is considered too high. The hypothesised limit also sees an inflation, but is

much lower than the other two assumptions. For medium endpoints, all assumptions see a

small inflation in sample size, but are comparatively minimal. The lowest values of Type

I error occur for medium endpoints, γ1=0.0001 using the 80% limit assumption, with the

smallest values happening earlier in study duration.

Under the circumstances, it would not be recommended to use the combination test

design for a short endpoint as the level of inflation of the Type I error is too high when

there are too few patients in stage 2 to be able to split the test statistics according to the pre-

specified weights of the combination test design. However, if one were able to incorporate

a value of nmin > nrec, such that the second stage sample size has at least X patients, Type

I error may be able to be controlled. This would increase ASN, but without this restriction,

the design is not feasible to be practically implemented.

With medium endpoints, the Type I inflation is smaller. This shows the plausibility of

the nmin > nrec restriction suggestion, as medium endpoints have been designed to have a

greater number of pipeline, and therefore nrec patients.

Whilst the smaller values of γ largely correspond to smaller power, they also correspond

to greater values of ASN which may be undesirable when δ = 0. Additionally, looking back

at Table 7.3, it also corresponds to power values much larger than 90% when δ = δplan. This

will be discussed further in Section 7.5.

Table 7.10 shows ASN and power for the promising zone design, with and without

futility boundaries.

The promising zone design controls Type I error for the current trend assumption at all

time points, for hypothesised effect assumption at 90-95%, and for the 80% limit assumption

from 55% onwards . Type I error has decreased with the incorporation of a futility boundary

and is below the nominal 5% rate at all time points for the current trend and 80% limit

assumptions. However, the hypothesised limit has now increased power between 50 and

60% data availability for the hypothesised assumption, before decreasing from this point
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δ=0 Information fraction
Promising zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 294 292 289 287 285 282 279 276 274 271

Power 4.96 4.90 4.82 4.83 4.74 4.74 4.72 4.65 4.63 4.62
Hypothesised ASN 420 403 380 359 335 318 301 288 280 272

Power 6.06 5.93 5.78 5.66 5.51 5.42 5.24 5.10 4.94 4.82
80% limit ASN 318 309 302 297 291 286 282 278 275 271

Power 5.14 4.98 4.89 4.85 4.73 4.72 4.67 4.63 4.59 4.60
Promising zone with Futility
Trend ASN 198 202 208 213 220 226 234 242 250 260

Power 4.60 4.66 4.57 4.62 4.54 4.56 4.57 4.52 4.55 4.57
Hypothesised ASN 415 391 359 330 299 280 264 257 257 261

Power 7.40 6.52 5.85 5.61 5.44 5.35 5.18 5.03 4.91 4.80
80% limit ASN 245 237 232 231 231 233 238 244 251 260

Power 4.98 4.87 4.74 4.73 4.60 4.59 4.57 4.51 4.52 4.55

Table 7.10: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions and three designs when δ=0, n=264 and and nmax = 2∗n

onwards. However, it still only falls below the 5% rate from 90% onwards.

From power alone, the hypothesised assumption is not appropriate to use as it has in-

flated Type I error. A modification perhaps to the promising zone region may be able to

reduce this level to fall below 5%. However, the design as it currently stands does not work

well for the hypothesised assumption.

ASN has been reduced for current trend and 80% limit assumptions by the addition of

a futility boundary, as well as decrease power. Looking back to Table 6.1 for evaluating

the methodologies, the most fitting design would be promising zone with futility using the

current trend assumption, due to the lowest values of ASN, and no inflation of Type I error.

However, it has also been shown that 80% limit works well when δ = 0, with no inflation

of Type I error (with one exception at 50% information fraction with no futility boundary).

7.5 Discussion

The results of the three designs and three assumptions under four potential trial outcomes

(δ = δplan, 2
3δplan, 1

3δplan and 0) have been presented in this chapter, and can be used to

answer the specific aims specified at the beginning of this chapter.

The first aim was to appropriately simulate data to be able to suitably generate 50000
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trials worth of data. Characteristics from the sampling at every 5% through the trial can be

seen in 7.1. For an effect size of 0.4, a mean difference and SD were chosen as 8 and 20

respectively. Therefore, when as planned, the mean d̂ should be as close as 8, and σ̂ as close

to 20 as possible. By 100% through the trial, d− d̂ is 0.0009, and so can be considered

close enough to the true value 8. Similarly, d is multiplied by 2
3 , 1

3 and 0 respectively. SD

is slightly underestimated at all time points, but this does not seem to impact the treatment

effect, which is correct to 2 decimal places even at 50% through the trial.

One limitation in the simulations is the lack of bias incorporated to the simulated data,

which we have seen in the real-world trial data. Any differences in data re-analysis and

simulation results could be down to this. However, trial data was found to be within 1*SE

by 57% through the trial, and only interim analyses past 50% are looked at for this reason.

On the other hand, the simulations have an advantage over the data re-analysis, in that the

true effect is known, not assumed to be the originally observed effect, which could also

explain any discrepancies in results.

Conditional power values were calculated using three treatment effect assumptions:

trend, hypothesised and 80% limit, seen in Table 7.2. For all true treatment effect sce-

narios considered, trend sees the lowest mean CP values, hypothesised sees the highest, and

the 80% limit is always between these two values. It should be noted that a higher CP are

desired when the effect is as planned or high, and lower values when there is little or no

treatment effect. When the observed effect is as planned, mean CP>92%, >75% for 2
3δplan,

>48% for 1
3δplan, and >17% for zero effect. Even when no effect is seen, the mean CP is

above the 10% considered futility boundary for all assumptions.

Four values of γ , the pre-specified parameter required for the combination test design,

were considered, and short and medium endpoints were assessed, differing in increasing lev-

els of pipeline patients. Using information from the recruitment table (Table 4.6), pipeline

patients were approximately 1-3% for the short endpoint, and 20-22% for the medium out-

come. The medium endpoint had higher values of ASN, but did not always correspond to

higher values of power.

Additionally, the smaller the value of γ , the higher the ASN and power. This corresponds
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to the current literature, stating higher values of γ penalise higher sample sizes (Pilz 2019).

For direct comparisons between designs, γ2=0.0002 with a short endpoint was compared for

graphical comparisons, chosen prior to seeing the results. However, for different assump-

tions, alternative values of γ may be of more value to compare. The results have however

been presented in tables, and so direct comparisons can still be drawn.

When the observed effect is as planned, both promising zone designs work well in that

they maintain power at any interim time point. The trend assumption stops a few more

trials early for futility, but results in a lower ASN whilst still maintaining power at the pre-

specified limit of 90%. The hypothesised assumption sees the lowest ASN, having seen

fewer increases in sample size, but maintains power. The trend assumption with a promis-

ing zone design with futility boundary is the best design here in terms of not excessively

increasing power, or alternatively the hypothesised assumption with or without futility in

terms of lowest ASN. If the value of γ was chosen purely based on power values for de-

signs, γ3 = 0.0005 would be most appropriate for the trend and hypothesised assumptions,

and γ4 for the 80% limit assumption. With these values, the combination test design would

be able to decrease sample size, whilst maintaining power above the nominal level, without

excessively raising power.

Seeing a lower effect than planned but not as high as would have liked (δ = 2
3δplan), the

promising zone designs behave similarly at all time points, but more increases in sample

size can be seen. Of the increases, more go on to be significant when nmax = 2∗n compared

to 1.1∗n, which is seen in all assumptions. This indicates such a small allowed sample

size increase is too small to fully benefit from the increase. More trials are stopping for

futility when allowed, with the most happening at 90% under current trend and 80% limit

assumptions. Depending on the value of γ considered for the combination test design, some

lower ASN values can be observed, but can also drop in power. As power isn’t overly

important here, this design may still be of interest looking at this scenario only.

When a much smaller effect is seen (δ = 1
3δplan), the promising zone design does not

work so well. Being unable to decrease in sample size, a large number of studies remain

at the original planned n, and few are significant. The addition of a futility boundary how-
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ever is able to reduce the ASN, whilst showing similar power values to promising zone.

It is worthwhile to mention that the 10% boundary used in this thesis can be considered

a conservative boundary, and alternative boundaries such as 20% may further reduce the

ASN. However, further research would be needed to see the full extent of design operating

characteristics and therefore recommend the use, which is one limitation. The combination

test using the current trend assumption sees the lowest values of ASN and may also be an

appropriate design for consideration looking at this scenario only.

Finally, when the observed effect is zero, the combination test with a short outcome has

been shown to inflate Type I error due to the small numbers involved in the calculation of the

second stage statistic and therefore high variability. This is an important finding however, as

it highlights a flaw in design when sample size is small, or recruitment is particularly slow,

resulting in few pipeline patients. With the addition of a minimum pipeline patient number,

this may be able to stabilise the second stage test statistic more and therefore not lead to

an increase in Type I error. Investigation is beyond the scope of this thesis. However, the

minimum number of pipeline principle has inadvertently been shown by the investigation of

a medium endpoint, which has been designed to have a higher number of pipeline patients.

As Type I error is still above the 5% level, it has much decreased from its short endpoint

counterpart, and shows the direction it could go with even more pipeline patients (>25% of

the original n patients), or setting a minimum number to still be recruited, if the required

level of pipeline patients has not yet been met.

The promising zone design with the current trend, and the 80% limit (but only beyond

55% through) have been shown to not inflate Type I error. The addition of a futility bound-

ary further decreases Type I error, and either assumption can be used at any time point.

Furthermore, a futility boundary incorporation reduces the level of ASN, which would be

beneficial in the scenario of δ = 0.

Taking all investigated scenarios into account, the simulations suggest that the promising

zone with futility boundary, using the current trend assumption is a good design to use.

When the observed effect is as planned, it has a relatively low ASN than the corresponding

promising zone design, whilst also not excessively increasing power. Additionally, Type
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I error is well controlled in the case of δ = 0, and sees the greatest proportion of trials

stopping for futility, even at 50% through the trial.

Whilst the hypothesised effect assumption was seen to be better in terms of a lower ASN

when δ = δplan, or δ = 2
3δplan, the inflation of Type I error at δ = 0 was too high before 90%

through the trial, and would need modification to the design to get this level under control.

This again is beyond the scope of the thesis, and could be recommended for further work.

It should be noted that where Type I error is inflated, it is possible to adjust the critical

value at the end of the study in order to decrease this value to the nominal rate, if a researcher

wished to keep the designs as they are but ensure Type I error is no more than the nominal

rate.

7.6 Summary

This chapter has provided the simulation plan and the results from the continuous simulation

study of this thesis. Results have been discussed in depth and some recommendations made

looking across all four scenarios of investigated δ compared to δplan. The promising zone

with futility has been shown to work well across the scenarios in terms of power and ASN,

and can be used at any interim time point, from the 50% investigated from.

An important finding relating to the combination test design has been identified, where

the second stage is too small and therefore suffers from huge variability when splitting the

stages up. A suggestion of a minimum sample size greater than the recruited number of

patients may overcome this problem and has been recommended for further work. As far as

I am aware, there is no other research published that indicates that this has been considered

previously, and perhaps focus on much larger studies, or longer time points.

The hypothesised effect has also been shown to inflate Type I error and, in my opin-

ion, should not be used in conjunction with the promising zone in its current state. Whilst

scenarios may exist where the hypothesised effect may be beneficial, such as confirmatory

settings where one may be confident in getting the planned effect, the design choice may be

contraindicated in these settings. This is further discussed in Section 9.6. As discussed in

the literature review in Chapter 3, there has previously been debate over the choice of future
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treatment effect, particularly between current trend and the hypothesised effect assumption.

This chapter has hopefully provided some evidence to support the argument for the current

trend assumption. However, it should be noted that this has only been investigated where

no bias has been implemented, and further simulation work should be implemented before

making a concrete recommendation.

The next chapter presents a simulation method using binary data rather than continuous,

and presents results in terms of ASN and power for the same three designs, three assump-

tions, and two values of nmax.



8 | Simulations for binary outcomes

8.1 Introduction

Chapter 7 presented the simulation plan focussing on continuous outcomes only, and pre-

sented results for the continuous outcome simulations. Whilst promising zone with futility

was shown to reduce ASN, maintain power and not inflate Type I error rate for the current

trend and 80% limit assumptions, this may not be true for binary outcomes. Additionally,

the combination test was shown to inflate Type I error when the second stage sample size

was very small, and this will again be investigated for a slightly larger sample size. This

chapter will present methods for data generating mechanisms for binary outcomes, and pro-

vide results for this simulated data. Results will be discussed, and compared to the data

re-analysis results in Chapter 6 for binary outcomes.

8.2 Data generating mechanisms

As discussed in Chapter 7, binary data is approximately normal if sample size is large

enough, or expected event rates close to 50%. For this reason, event rates have been chosen

below this rate, whilst aiming to keep a realistic treatment difference, and still keep the sam-

ple size relatively small. Therefore a control group event rate of 20%, and an intervention

group of 10% have been chosen, corresponding to a sample size of 556 patients, from an

odds ratio of 2.25, two-sided significance level of 5%, and power of 90%.

For binary outcomes, data will be sampled from two uniform distributions. The random

number generated between 0 and 1 was then categorised as either a 0 or a 1 depending

whether it was less than or equal to the specific event rate (0.1 or 0.2 accordingly), or greater

than this value.

Similarly to the simulation plan for continuous outcomes, seed numbers were again

chosen as 123 and 1234, and three times the required number of random numbers were
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generated, corresponding to the maximum allowed sample size investigated. Outcomes

from 1 to ngroup in each sampled distribution correspond to the original planned fixed sample

size trial. Repetitions were again set at 50,000, which is sufficient in terms of precision of

conditional power values and therefore interim decision making.

All outcomes investigated will be the same as the continuous simulations: focusing on

power and ASN for three designs, three assumptions, two endpoints, four values of γ , four

values of nmax (two in the appendix) and interim time points between 50 and 95% through

the original trial duration in terms of data availability.

8.3 Simulation results: Binary outcomes

8.3.1 True odds ratio = 2.25

Information fraction

δ̂obs = δplan7 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

eMean(log(ÔR)) 2.3036 2.2972 2.2920 2.2882 2.2844 2.2818 2.2804 2.2788 2.2780 2.2776

Mean SE 0.3615 0.3438 0.3283 0.3149 0.3030 0.2923 0.2828 0.2741 0.2661 0.2589

Mean δ̂obs 0.2730 0.2731 0.2732 0.2733 0.2734 0.2735 0.2737 0.2738 0.2740 0.2743

Mean (log(OR)− log(ÔR)) 0.0236 0.0207 0.0185 0.0168 0.0152 0.0140 0.0134 0.0127 0.0124 0.0122

δ̂obs =
2
3δplan

eMean(log(ÔR)) 1.6175 1.6172 1.6167 1.6164 1.6192 1.6212 1.6236 1.6274 1.6322 1.6377

Mean SE 0.3332 0.3170 0.3030 0.2907 0.2798 0.2700 0.2612 0.2533 0.246 0.2393

Mean δ̂obs 0.1784 0.1783 0.1783 0.1783 0.1783 0.1782 0.1783 0.1784 0.1786 0.1787

Mean (log(OR)− log(ÔR)) -0.3091 -0.3109 -0.3121 -0.313 -0.3141 -0.3148 -0.3151 -0.3155 -0.3154 -0.3155

δ̂obs =
1
3δplan

eMean(log(ÔR)) 1.2286 1.2332 1.2345 1.2368 1.2389 1.2398 1.2389 1.2398 1.2395 1.2408

Mean SE 0.3151 0.2999 0.2868 0.2752 0.2649 0.2557 0.2474 0.2399 0.2330 0.2267

Mean δ̂obs 0.0856 0.0854 0.0854 0.0854 0.0852 0.0852 0.0852 0.0852 0.0853 0.0855

Mean (log(OR)− log(ÔR)) -0.5837 -0.5848 -0.5851 -0.5855 -0.5864 -0.5867 -0.5867 -0.5869 -0.5868 -0.5865

δ̂obs = 0

eMean(log(ÔR)) 0.9268 0.9356 0.9465 0.9554 0.9635 0.9719 0.9790 0.9850 0.9905 0.9952

Mean SE 0.3033 0.2888 0.2761 0.2651 0.2552 0.2464 0.2384 0.2312 0.2245 0.2184

Mean δ̂obs 0.0008 0.0006 0.0006 0.0005 0.0003 0.0003 0.0003 0.0003 0.0004 0.0005

Mean (log(OR)− log(ÔR)) -0.8089 -0.8096 -0.8095 -0.8097 -0.8103 -0.8103 -0.8101 -0.8102 -0.8099 -0.8097

Table 8.1: Mean OR, SE, observed treatment effect and difference from the true population value for
values between 50% and 95% of the originally planned n=556 when δ = δplan

Table 8.1 shows the mean δ̂obs, SE, coefficient transformed onto the exponential scale,
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and difference between coefficients log(OR) and log(ÔR) calculated after every 5% of data

available from 50% to 95% through the trial duration (data available from the original n

patients). According to the simulation plan, the planned odds ratio is 2.25, with SE=0.25,

resulting in a standardised treatment effect δ=0.276.

By 95% through the trial, the odds ratio is 2.28, with SE of 0.259. Repeating the sam-

pling three times with different seed numbers, the mean coefficient (i.e. log(OR)) was the

same to one decimal place. Whilst more repetitions may increase this accuracy, due to lim-

itations in access to higher computational power, this will be considered sufficient for the

purposes of an illustrative binary outcome example.

The corresponding summary values are also presented when the observed value of δ is

2
3 , 1

3 , and 0 times the planned value of δ in terms of absolute risk difference.

Information fraction
Conditional power 50% 55% 60% 65% 70% 75% 80% 85% 90%
δ=δplan Trend 0.733 0.752 0.772 0.791 0.810 0.829 0.848 0.866 0.885

Hypothesised 0.908 0.897 0.889 0.885 0.884 0.885 0.889 0.894 0.901
80% limit 0.902 0.899 0.898 0.897 0.897 0.899 0.901 0.904 0.908

δ=2
3δplan Trend 0.458 0.464 0.473 0.481 0.491 0.501 0.512 0.524 0.537

Hypothesised 0.768 0.727 0.692 0.662 0.637 0.615 0.599 0.586 0.576
80% limit 0.710 0.691 0.673 0.657 0.641 0.626 0.612 0.599 0.587

δ=1
3δplan Trend 0.215 0.209 0.205 0.200 0.194 0.190 0.186 0.182 0.178

Hypothesised 0.568 0.495 0.433 0.378 0.331 0.292 0.259 0.230 0.207
80% limit 0.448 0.411 0.378 0.346 0.315 0.287 0.261 0.236 0.213

δ=0 Trend 0.080 0.072 0.066 0.059 0.053 0.047 0.042 0.037 0.032
Hypothesised 0.370 0.286 0.219 0.167 0.126 0.096 0.073 0.055 0.041
80% limit 0.228 0.191 0.160 0.132 0.108 0.088 0.071 0.055 0.043

Table 8.2: Mean conditional power values from 50000 repetitions for three treatment effect
assumptions when δ = δplan and n=556

Mean CP values from 50,000 simulations have been calculated using the current trend,

hypothesised and 80% optimistic confidence limit from 50% through the trial (i.e. 50% of

the originally planned patients with data available), and are presented in Table 8.2.

The hypothesised assumption has the highest observed CP values at the 50% data avail-

able time point. However, the 80% limit overtakes the hypothesised assumption in terms of

CP; by 55% through when δ = δplan, and by 85% through when δ = 0.
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The current trend assumption has consistently lower values of CP. In the case of δ = 0,

mean CP never goes above 0.08, compared to values of 0.37 and 0.23 for the hypothesised

and 80% limit assumptions respectively, which decrease with increasing information frac-

tion. Comparatively, both hypothesised and 80% limit assumptions remain above 0.88 when

δ = δplan at all time points. However, CP using the current trend assumption starts at 0.733,

and does not reach above 0.88 until 90% trial duration.

8.3.1.1 True effect = planned effect

Figure 8.1 shows the sample size states: decrease, remain or increase the sample size in

relation to the original n patients required from 50000 repetitions. Additionally, it shows

whether or not the trial goes on to be significant, having data available from the new sample

size n∗ patients, with darker shades representing statistical significance, and lighter shades

representing no statistical significance.

The current trend assumption sees the greatest proportion of increases in sample size

across all three designs. Additionally, it also sees the greatest proportion of stopping for

futility, which decreases with increasing n1. The proportion of increasing sample size is

greatest in the combination test design when γ2=0.0002. Additionally this design also sees

the greatest number of decreases in sample size, which also increases with increasing infor-

mation fraction. The same pattern for nmax = 1.1∗n is observed as for nmax = 2∗n.

There is a greater difference between 50% and 90% in terms of remaining at the same

level of n patients in the current trend assumption for both promising zone designs. This

level is much more even between 50% and 90% for the hypothesised and 80% limit as-

sumptions, seeing very small increases, as well as a small increase in the number of trials

stopping for futility with increasing values of n1.

Figure 8.2 shows n∗ plotted against n1 values every 5% of data availability from 50% on-

wards. Again, colours have been kept consistent: green for promising zone design, pink for

the combination test design, and blue for the promising zone design with a futility boundary.

When nmax = 1.1∗n, there is very little difference in expected sample size for either
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 8.1: Sample size zones from 50000 simulations when δ = δplan and n=556, for two values of
nmax: comparing three designs and four observed treatment effects



8.3. Simulation results: Binary outcomes 204

(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 8.2: Sample size from 50000 simulations when δ = δplan and n=556, for two values of nmax:
comparing three designs and three treatment effect assumptions
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promising zone design. Very few decreases are observed in the design with futility, and for

both designs, increases are so small that the expected sample size line appears virtually flat

across values of n1. Increasing the allowed maximum to twice the original sample size sees

an increase in ASN for both designs; more so at the 50% interim timing, before steadily

decreasing with increasing n1 for all three designs.

The expected sample size line for the combination test design for γ2=0.0002 is slightly

below the original n patients when nmax = 1.1∗n, marginally increasing with increasing n1.

This is not the case however when nmax = 2∗n - similarly to the promising zone designs, the

expected sample size line is above the original n patients. The current trend sees the highest

of these lines, and the 80% limit the lowest ASN for all three designs, and both values of

nmax.

Table 8.7 provides ASN and power for the four investigated values of γ used in the

combination test design. The same values of 0.0001, 0.0002, 0.0005 and 0.001 have been

used, as in the simulations for continuous outcomes seen previously in Chapter 7.

Power values are above 90% for all values of γ for the hypothesised and 80% limit

assumptions. However, with the current trend assumption, γ3 sees a drop in power at 50%

information fraction, and γ4 at 50-80% trial duration - observed at both short and medium

endpoints. Whilst power has dropped, so has the ASN, seeing as low as 394 patients at the

50% time point with a short endpoint and γ4 = 0.001.

Similarly to the continuous simulations, medium endpoints see a larger expected sample

size, and almost always larger power (but not always). Additionally, smaller values of γ

again increases the ASN and the corresponding power.

The hypothesised assumption sees the largest values of power, despite lower ASN than

the current trend assumption comparatively. The maximum observed power is 99.46% with

683 patients, which is much higher than the nominal 90% rate specified. At the largest value

of γ investigated, this drops to as low as 93.16%, which is still above the required value of

power. The 80% limit assumption sees the closest power to the original 90%, with a value of

90.13% and 90.23% at 50% interim timing and γ4 = 0.001 for short and medium endpoints

respectively. Additionally, at this value of γ , a sample size saving is observed, with an ASN
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SHORT MEDIUM
δ=δplan Information fraction Information fraction
TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 809 771 722 669 625 813 781 747 704 656

Power 95.27 96.29 96.98 97.26 97.13 95.37 96.41 97.17 97.37 97.16
γ2 ASN 730 700 663 627 601 736 715 696 668 635

Power 93.03 94.66 95.76 96.31 96.41 93.31 94.97 96.14 96.51 96.47
γ3 ASN 536 537 537 540 553 549 563 583 590 590

Power 87.21 90.10 92.17 93.73 94.52 88.21 91.21 93.38 94.32 94.77
γ4 ASN 394 423 452 484 523 417 463 514 543 562

Power 78.18 83.07 86.64 89.89 91.91 78.18 83.07 86.64 89.89 91.91
HYPOTHESISED
γ1 ASN 709 708 683 648 618 709 714 705 682 650

Power 99.06 99.36 99.46 99.38 98.89 99.06 99.35 99.46 99.38 98.91
γ2 ASN 638 645 632 613 600 639 654 661 652 633

Power 98.44 99.00 99.20 99.11 98.56 98.44 99.00 99.22 99.10 98.58
γ3 ASN 538 554 559 562 572 542 572 601 610 608

Power 96.54 97.74 98.22 98.17 97.60 96.54 97.76 98.32 98.25 97.64
γ4 ASN 458 476 492 513 541 467 507 548 568 579

Power 93.16 94.55 95.31 95.66 95.61 93.23 94.80 95.55 95.79 95.68
80% Limit
γ1 ASN 633 634 626 614 604 636 646 657 652 636

Power 98.24 98.60 98.81 98.84 98.52 98.25 98.60 98.91 98.84 98.54
γ2 ASN 585 591 590 588 589 591 608 628 630 623

Power 97.52 98.08 98.29 98.44 98.16 97.57 98.07 98.38 98.45 98.17
γ3 ASN 510 523 535 548 566 520 550 584 598 602

Power 95.45 96.23 96.89 97.3 97.18 95.47 96.22 97.04 97.34 97.22
γ4 ASN 426 452 478 506 540 443 490 538 562 578

Power 90.13 92.39 93.96 94.86 95.51 90.23 92.48 94.18 94.98 95.51

Table 8.3: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ=δplan, n=556,
nmax = 2∗n
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of 426 and 443 patients for short and medium endpoints respectively.

δ=δplan Information fraction
Promising zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 756 746 733 720 705 686 667 646 623 600

Power 94.09 94.08 94.00 94.07 94.11 94.03 93.93 93.86 93.75 93.44
Hypothesised ASN 703 709 707 699 691 676 662 643 620 599

Power 97.59 97.44 97.12 96.64 96.30 95.76 95.47 94.97 94.47 93.85
80% limit ASN 662 661 659 657 651 645 638 628 614 596

Power 95.75 95.66 95.63 95.6 95.49 95.24 95.16 94.86 94.42 93.89
Promising zone with Futility
Trend ASN 737 731 720 710 697 680 662 642 621 598

Power 90.71 91.45 91.77 92.29 92.65 92.93 93.17 93.26 93.33 93.19
Hypothesised ASN 703 709 706 698 690 674 660 641 618 598

Power 97.59 97.42 97.07 96.57 96.21 95.63 95.31 94.82 94.33 93.69
80% limit ASN 659 658 656 654 648 642 635 625 612 595

Power 95.45 95.36 95.32 95.33 95.22 95.00 94.96 94.68 94.28 93.73

Table 8.4: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions and three designs when δ̂obs = δplan, n=556 and and nmax = 2∗n

Table 8.4 similarly shows ASN and power for the promising zone designs: with and

without a 10% futility bound. All values of power are above the pre-determined 90% value,

ranging from 90.71% (futility design, 50% information fraction and current trend assump-

tion), to 97.59% (both designs, 50% information fraction and the hypothesised assumption).

Despite allowing for a futility boundary, ASN always remains above the original planned

n patients. This is a desirable characteristic however, as there is no wish to stop early for

futility when δ = δplan. The later the interim analysis timing, the smaller the value of ASN,

which is preferable.

Whilst the current trend assumption, 50% information fraction and futility design has the

least excessive increase in power, either of the other designs offer a lower expected sample

size, with greater power. In my opinion, the lower ASN criteria would be more favourable

than not to excessively increase power, and therefore should be prioritised over the latter

criteria where there is a clash in criteria according to Table 6.1. The 80% limit assumption

would therefore be most preferable in either design due to the lowest ASN.
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 8.3: Sample size zones from 50000 simulations when δ = 2
3 δplan and n=556, for two values

of nmax: comparing three designs and four observed treatment effects
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8.3.1.2 True effect = 2
3 planned effect

Figure 8.3 shows the proportion of repetitions that decreased, remained at or increased the

originally planned sample size n, split by statistical significance at n∗ patients with data

available when δ = 2
3δplan. Similarly to the continuous case, for the purposes of this thesis

this could be thought of as a smaller than planned effect, but still potentially clinically sig-

nificant. Therefore, there would be no wish to stop early, and an increase in power would be

desirable. Whilst a smaller ASN is always preferable, the increase in power is the criteria to

be prioritised in terms of Table 6.1.

The combination test design still has the most number of increases in sample size. How-

ever, these do not always result in a significant result, seeing the level of light shading in the

bars of any design in the increase sample size stage. Both promising zone designs largely

see a significant result for the trial that have increased in sample size. However, large pro-

portions of non-significant trials can be seen when sample size remains using the promising

zone design. The addition of a futility boundary is able to move some of these trials to the

“decrease sample size” zone, but also moves some of the trials that turn out to be significant

without a futility boundary.

The current trend assumption sees the largest proportion of trials with n∗ < n for the

two designs that allow a decrease in sample size, at all interim timings. Whilst the hypoth-

esised and 80% limit assumptions see nearly the same proportion of trials stopping early

by 90% through, at 50% data available this number is much lower than their current trend

counterparts.

Whilst there are a similar proportion of increases between the two values of nmax, when

nmax = 1.1∗n many of these increased trials do not become statistically significant at n∗

recruited patients. This shows that while an increase in sample size is indicated, such a

small sample size increase is insufficient to bring about the benefit from increasing sample

size.

Figure 8.4 shows n∗ vs n1 and expected sample size lines for the three designs and three

assumptions. Again, the promising zone design sees a flat line when nmax = 1.1∗n, very
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 8.4: Sample size from 50000 simulations when δ = 2
3 δplan and n=556, for two values of

nmax: comparing three designs and three treatment effect assumptions
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slightly above the original n patients across all three assumptions. However, for nmax = 2∗n,

this line is understandably higher, with a number of increases up to the maximum allowed.

For all three assumptions the expected sample size line decreases with increasing n1 patients.

The promising zone design with futility takes a similar shape as the expected sample

size line for the regular promising zone design, but decreased values due to the ability to

stop early for futility. When nmax = 1.1∗n, this line even falls below the original n patients.

The combination test design sees a much broader range of sample size between nrec

and nmax. For the smallest value of nmax, the majority of trials have n∗ = nmax, with the

next greatest proportion being at n∗ = nrec, increasing as the number of recruited patients

also increases. This pattern is seen across all three assumptions. For the larger value of nmax

however is able to have a wider range of possible n∗ values and therefore see slightly smaller

proportions reaching the maximum allowed value, although this is still high.

In all three designs, the hypothesised effect assumption sees the greatest value of ex-

pected sample size at all time points. The current trend and 80% limit assumptions have

similar values of expected sample sizes, and each take on the lowest value at some time

point. This is shown in more detail later in Table 8.6.

Table 8.5 shows ASN and power values for short and medium endpoints for 4 values of

γ . Expected sample size values range from 372 (current trend assumption, short endpoint,

γ4=0.001, 50% information fraction) to 917 (hypothesised assumption, medium endpoint,

γ1=0.0001, 70% information fraction). These values of ASN also give the lowest and highest

values of power respectively: 40.5% and 84.1%.

Comparing the same γ values across the three assumptions, the hypothesised effect as-

sumption consistently sees the highest values of both ASN and power for both endpoint

timings. However, whilst the 80% limit assumption sees the lowest values of ASN, it is the

current trend assumption that sees the lowest value of power.

Referring to the criteria for evaluating methodology in Table 6.1, the hypothesised as-

sumption would be the least appropriate assumption to use. However, as power was higher

than the planned 90% when δ = 2
3δplan even at the largest value of γ , realistically an alter-
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δ=0.27 SHORT MEDIUM
δ=δplan Information fraction Information fraction
TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 846 853 846 816 762 861 872 868 839 782

Power 71.14 72.92 74.00 74.01 72.59 71.22 73.12 74.27 74.21 72.67
γ2 ASN 764 776 773 754 716 784 800 802 782 739

Power 66.56 68.79 70.03 70.64 69.70 66.79 69.26 70.58 71.05 69.86
γ3 ASN 526 555 578 595 606 555 590 621 634 633

Power 52.99 56.03 58.97 61.54 63.03 53.95 57.49 60.72 62.72 63.53
γ4 ASN 372 415 458 497 536 412 465 517 547 569

Power 40.53 44.73 48.99 53.11 56.45 40.53 44.73 48.99 53.11 56.45
HYPOTHESISED
γ1 ASN 884 914 911 878 809 884 915 917 889 826

Power 81.53 83.39 84.05 83.62 80.82 81.53 83.38 84.07 83.62 81.05
γ2 ASN 812 852 856 831 769 812 854 866 846 789

Power 78.65 81.5 82.64 82.37 78.83 78.65 81.5 82.77 82.37 79.12
γ3 ASN 691 735 747 731 697 692 743 769 755 721

Power 72.25 76.47 78.39 77.74 74.60 72.26 76.65 78.83 77.83 74.87
γ4 ASN 555 574 584 590 594 565 599 619 627 623

Power 62.16 65.13 66.70 67.16 65.94 62.54 65.99 66.97 67.39 66.14
80% Limit
γ1 ASN 823 833 831 817 772 825 840 850 833 790

Power 79.64 80.53 81.02 81.03 78.57 79.63 80.54 81.57 81.01 78.70
γ2 ASN 765 778 780 773 738 770 787 798 793 758

Power 77.01 78.27 79.10 79.19 76.90 77.03 78.26 79.15 79.19 77.05
γ3 ASN 642 666 679 686 676 658 682 708 715 700

Power 69.89 72.22 73.45 74.13 72.84 70.40 72.19 73.63 74.13 72.95
γ4 ASN 474 508 542 568 590 493 539 583 607 618

Power 56.66 59.81 62.48 64.77 65.45 56.70 60.01 62.62 64.96 65.41

Table 8.5: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ= 2

3 δplan,
n=556, nmax=2*n
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native value would have been sought, which would likely have reduced these values.

In terms of power from Table 8.7 above, γ2 or γ3 may have been appropriate choices

when using the current trend, whereas γ4 may have been more appropriate for the 80% limit

assumption. Whilst this means a more comparable value of ASN and power between the

assumptions compared to direct values of γ , the 80% limit assumption still sees the lowest

ASN, as well as having similar power, and therefore is the most preferable assumption when

δ = 2
3δplan.

δ=2
3δplan Information fraction

Promising zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 761 757 750 747 743 733 720 705 679 650

Power 64.03 63.76 63.34 63.1 62.99 62.73 62.42 62.04 61.58 60.60
Hypothesised ASN 849 849 834 815 797 771 751 723 692 651

Power 77.55 76.76 74.89 72.79 71.29 69.21 67.6 65.66 64.09 61.63
80% limit ASN 747 753 750 749 741 732 719 702 683 648

Power 69.57 69.68 69.45 69.17 68.67 67.89 66.84 65.61 64.19 61.9
Promising zone with Futility
Trend ASN 688 693 694 697 699 696 690 681 663 641

Power 59.31 59.86 59.94 60.31 60.5 60.74 60.82 60.78 60.75 60.15
Hypothesised ASN 846 843 825 802 781 753 731 705 677 643

Power 77.57 76.74 74.83 72.7 71.13 69.01 67.29 65.33 63.79 61.36
80% limit ASN 726 731 727 724 717 709 698 684 669 639

Power 69.15 69.25 68.99 68.61 68.21 67.47 66.39 65.20 63.89 61.63

Table 8.6: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions and three designs when δ̂obs =

2
3 δplan, n=556 and nmax = 2∗n

Table 8.6 shows ASN and power for the promising zone designs. The addition of a

futility boundary has again decreased ASN. This effect is greatest under the current trend,

seeing a decrease of 73 patients at the 50% interim time point, but is very small under the

hypothesised effect, ranging between 3 and 8 patients between 50 and 90% data availability.

By 95% through the trial, both designs and all three assumptions reach power levels of

around 60-62%. The hypothesised assumption sees the highest power, almost reaching 78%

at the 50% information fraction. However, the increase in power compared to the other two

assumptions also has an associated higher ASN of 846 or 849 patients with and without

a futility boundary respectively. The 80% limit assumption appears to be a good middle

ground - not overly increasing ASN, but manages to increase power. The earlier the interim
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timing, the greater the power, but also the greater the ASN and so a trial may wish to weigh

up these two aspects on a case-by-case basis.

8.3.1.3 True effect = 1
3 planned effect

(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 8.5: Sample size zones from 50000 simulations when δ = 1
3 δplan and n=556, for two values

of nmax: comparing three designs and four observed treatment effects

Figure 8.5 shows the sample size states (decrease/remain/increase) when δ = 1
3δplan.
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This scenario is considered both smaller than planned, and too small to have any potential

to be clinically relevant. Therefore, a low ASN would be most desirable, whether below

the original sample size (combination test or promising zone with futility) or as minimal

as allowed (promising zone). Additionally, a comparatively high power is no longer of

high importance when evaluating the methodologies, as the effect size is too small to be

considered clinically meaningful. Therefore the prioritised measure for evaluation is the

expected sample size.

Comparatively to when δ = δplan or δ = 2
3δplan, all graphs are now predominantly lightly

shaded, indicating far more trials go on to be non-statistically significant, which is as ex-

pected. The current trend assumption sees a large number of decreases in sample size at all

time points for the combination test and promising zone with futility designs, for both val-

ues of nmax. The hypothesised assumption actually sees very few decreases in sample size

earlier in the trial, but does greatly increase by 90% through the trial, particularly around

70/80% data availability. The 80% limit assumption also sees a steep increase in sample

size decrease, but takes on a higher proportion than the hypothesised effect even at 50%

information fraction.

For the promising zone design, the current trend sees a huge proportion of trials remain-

ing at n∗ = n patients, and very few increases at any time point investigated. On the other

hand, the hypothesised assumption sees almost equal proportions of sample size remaining

versus increasing when nmax = 1.1∗n at the 50% time point. When nmax = 2∗n, the pro-

portion of increases is even higher. Also for the hypothesised effect, the combination test

sees almost all trials increase in sample size at 50/60% trial duration, but does decrease with

increasing values of n1.

Figure 8.6 shows n∗ with progressing n1, and plots the ASN line from 50000 repetitions.

For all three designs, the current trend assumption sees the lowest ASN line; although all

three assumptions have very similar values of ASN by 95% data availability. The 80% limit

assumption sees relatively flat ASN lines when nmax = 1.1∗n for all three designs but sees

a slight downwards slope for the promising zone designs when nmax = 2∗n. A downwards
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 8.6: Sample size from 50000 simulations when δ = 1
3 δplan and n=556, for two values of

nmax: comparing three designs and three treatment effect assumptions
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slope is also seen in this case for the combination test design, but is a little steeper.

The hypothesised assumption consistently sees the highest ASN: marginal in the case of

nmax = 1.1∗n, but much more so when nmax = 2∗n. Whilst still seeing some trials decrease in

sample size, the majority of repetitions are seeing the maximum allowed sample size which,

in the case of nmax = 2∗n, drastically brings up the expected sample size line. Between 65%

and 95% data availability, this line starts decreasing as more values of n∗ = nrec are seen.

The promising zone designs see very few trials with n∗ = nmax for the current trend and

80% limit assumptions. The hypothesised assumption however sees much larger proportions

reaching this value between 50-60% trial duration.

Table 8.7 investigates the value of γ for the combination test design for the different

assumptions when nmax = 2∗n. Sample size decreases can be seen for γ4 for the 80% limit

assumption, and γ3 and γ4 for the current trend assumption. No decreases in sample size are

observed for any value of γ under the hypothesised effect assumption.

The greatest magnitude of expected sample size increase is seen for γ1 under the hy-

pothesised assumption, seeing as many as 1041 patients; an increase of 87% compared to

the original n value. At this value of γ , almost 30% power is observed, which is similar to

the power values using the 80% limit assumptions but with a lower ASN (by around 100

patients).

The lowest ASN is 326 patients (just 59% of the original planned sample size), observed

at γ4 using the current trend assumption, with an associated power drop to 11.71%. This drop

in power is not a concern as δ = 1
3δplan and there is no real wish to find a significant result

as this is not a clinically relevant difference. Increasing the sample size is not a desirable

characteristic for a design at this level of observed treatment effect.

Table 8.8 similarly gives ASN and power values for the promising zone designs from

50% data availability onwards. Only the current trend assumption in the design allowing for

a trial to stop for futility at the 10% CP cut-off point sees a decrease in sample size, which is

lowest at the 50% interim time point (516 patients, 93% of the originally planned n patients.
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SHORT MEDIUM
δ=1

3δplan Information fraction Information fraction
TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 689 706 714 712 692 728 755 768 758 723

Power 22.60 23.08 23.29 23.11 22.38 22.59 23.11 23.40 23.19 22.43
γ2 ASN 615 634 652 661 655 661 689 713 712 687

Power 20.68 20.96 21.39 21.76 21.16 20.74 21.09 21.69 21.95 21.29
γ3 ASN 426 466 506 542 573 482 532 579 600 608

Power 14.97 16.06 16.80 17.94 18.38 15.41 16.68 17.65 18.57 18.66
γ4 ASN 326 376 428 477 525 391 454 512 543 564

Power 11.71 12.97 14.12 15.39 16.79 11.71 12.97 14.12 15.39 16.79
HYPOTHESISED
γ1 ASN 1015 1039 1011 928 802 1015 1041 1024 945 826

Power 28.45 29.60 29.85 29.61 27.45 28.44 29.49 29.84 29.54 27.53
γ2 ASN 963 993 956 878 760 963 998 977 907 787

Power 27.50 29.03 29.40 28.98 26.57 27.39 28.96 29.41 29.04 26.65
γ3 ASN 843 862 821 758 683 847 882 868 793 716

Power 25.29 26.99 27.54 26.90 24.60 25.17 27.02 27.82 26.83 24.72
γ4 ASN 612 595 580 574 578 641 648 639 628 614

Power 20.80 21.96 22.03 21.62 20.82 20.92 22.31 22.18 21.73 20.89
80% Limit
γ1 ASN 895 876 856 832 760 906 901 896 862 786

Power 28.18 28.45 28.29 28.09 26.51 28.11 28.45 28.46 28.08 26.52
γ2 ASN 834 819 803 779 723 849 843 838 818 751

Power 27.25 27.35 27.40 27.15 25.68 27.18 27.28 27.34 27.22 25.69
γ3 ASN 663 688 689 681 662 714 723 736 729 694

Power 23.99 24.83 25.10 24.87 23.94 24.45 24.75 24.99 24.89 23.97
γ4 ASN 454 482 517 547 574 493 535 580 601 609

Power 18.42 19.14 19.99 20.49 20.62 18.34 19.10 19.90 20.43 20.61

Table 8.7: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ= 1

3 δplan,
n=556, nmax=2*n
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δ=1
3δplan Information fraction

Promising zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 669 664 661 658 653 650 646 639 628 612

Power 19.09 18.97 18.86 18.62 18.57 18.35 18.10 17.85 17.76 17.40
Hypothesised ASN 887 850 805 769 735 708 685 663 641 616

Power 26.92 26.00 24.84 23.64 22.42 21.47 20.68 19.53 18.81 17.93
80% limit ASN 744 738 727 716 701 684 670 656 638 615

Power 22.91 22.76 22.57 22.23 21.73 21.09 20.65 19.81 19.07 18.21
Promising zone with Futility
Trend ASN 516 520 530 541 550 562 573 583 589 593

Power 17.25 17.31 17.37 17.30 17.38 17.31 17.25 17.15 17.27 17.10
Hypothesised ASN 870 817 762 715 673 644 626 614 605 597

Power 27.13 26.14 24.96 23.73 22.41 21.39 20.53 19.35 18.57 17.73
80% limit ASN 671 663 647 636 627 613 608 605 602 596

Power 22.87 22.73 22.47 22.05 21.55 20.91 20.43 19.60 18.84 18.01

Table 8.8: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions and three designs when δ̂obs =

1
3 δplan, n=556 and nmax = 2∗n

With this design and assumption, power does not see any values above 17.4% power. With

no futility boundary however, power ranges between 17.4 (95% through) to 19.1% (50%

through), under the current trend assumption.

Both ASN and power are greater in the 80% limit and hypothesised assumptions. The

hypothesised assumption sees the greatest values of ASN up until 85% through the trial,

where the 80% limit assumption sees greater power with a smaller ASN.

As seen in the previous examples, the addition of a futility boundary has decreased

both ASN and power. The 80% limit assumption sees only the smallest of power decreases

when incorporating a futility boundary, but sees a much lower ASN. For example, at the

60% information fraction, the 80% limit assumption sees a 16% inflation of sample size

compared to 37% for the hypothesised assumption, and a 5% deflation using the current

trend assumption.

Due to the decrease in sample size, the promising zone design with a futility bound-

ary using the current trend could be considered as a preferable design when δ̂obs =
1
3δplan.

Additionally, the combination test design with γ4 = 0.001 could also be considered, using

either the current trend or 80% limit assumptions.
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8.3.1.4 True effect = zero

(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 8.7: Sample size zones from 50000 simulations when δ = 0 and n=556, for two values of
nmax: comparing three designs and four observed treatment effects

Figure 8.7 shows the sample size state (increase/decrease/remain) when δ = 0 and addi-

tionally shows statistical significance of trials at n∗ patients with data available. As expected

now that δ = 0, almost all trials are not statistically significant regardless of sample size
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state.

For the promising zone design under the current trend, there are almost no increases

in sample size whatsoever. The hypothesised assumption has more increases particularly

at the 50% interim time point. By 90% data available, the proportion of increases for the

hypothesised has dropped, and almost no increases are seen at this time point. The 80%

limit sees some increases early in the trial duration, lying somewhere between the other two

assumptions.

The same pattern of increases are observed in the promising zone with futility as the

design without, across all three assumptions. However, instead of the remaining trials falling

in the remain zone, the trial is able to decrease in sample size if CP falls below the 10%

mark. The current trend sees the largest proportion stopping early for futility, even at 50%

trial duration. The hypothesised assumption on the other hand, sees the fewest trials stopping

early for futility, which increases with increasing n1. As for the proportion of increases seen,

the proportion stopping for futility under the 80% limit assumption is somewhere between

the other two assumptions, increasing with increasing n1 values.

The combination test design sees the greatest proportion of increases in sample size,

which does decrease with increasing n1. The current trend assumption sees the fewest in-

creases, with the majority of trials actually decreasing in sample size even at 50% available

data. The hypothesised effect assumption sees very few decreases in sample size at 50% trial

duration, which gradually increases, overtaking the proportion of increases by 80% through.

Again the 80% limit assumption sees somewhere in between the states observed under the

current trend and hypothesised effect assumptions, but overtakes the proportion of increases

by 60% duration.

Figure 8.8 shows the magnitude of the new required total sample size n∗ and the mean

sample size from 50000 simulations. There is very little change in sample size when nmax =

1.1∗n for the promising zone design under all any of the three assumptions.

The shapes of the expected sample size lines are very similar between the combination

test and promising zone design with futility for this same value of nmax. The current trend
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure 8.8: Sample size from 50000 simulations when δ = 0 and n=556, for two values of nmax:
comparing three designs and three treatment effect assumptions
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sees mainly n∗ = nrec patients and very few increases, which means the expected line is

steadily increasing as more data is available in the first stage of the design. The hypothesised

assumption starts off seeing large proportions of sample size increase, and far fewer values

of n∗ = nrec, which reverses with increasing n1 values. This leads to a curve starting at

its highest point, dropping somewhat in ASN until around 75% through, before a gradual

increase to the largest investigated n1. Finally, the 80% limit assumption sees an almost flat

line somewhere between nrec and n patients until around 70% through trial duration, before

gradually increasing for the remaining values of n1, up until around n patients.

For nmax = 2∗n, the current trend assumption sees the same expected sample size lines

for the three designs as when nmax = 1.1∗, but shifted marginally higher due to the larger

increases allowed in this design. The 80% limit assumption sees a small downwards slope

for the promising zone design, starting just greater than n patients. A more pronounced slope

is seen for the combination test design due to its slightly larger proportion of increases. The

promising zone design with futility sees almost equal expected sample size at 50% and 90%

data availability, but dips slightly in between these two time points. The hypothesised effect

sees similar curves for the two promising zone designs; more pronounced in the futility

design. The combination test however starts almost at nmax = 2∗n at 50-55% information

fraction, before a steep downwards slope to n patients at 95% through the trial.

Table 8.9 show ASN and power for four values of γ used in the combination test design.

In the case of δ = 0, power is the Type I error rate and should not be inflated past the nominal

rate of 5%. A smaller ASN is desirable, but must not coincide with an increase in power.

The current trend assumption sees no increases in Type I error rate at any value of γ .

Additionally, it sees the lowest value of ASN, with decreases in sample size seen for γ2-γ4,

and between 50-80% trial duration for γ1 for a short endpoint. The smallest ASN is 297

patients, just 53% of the original sample size.

Comparatively, Type I error is slightly inflated at early time points when using the 80%

limit assumption. For γ4 however, this is only an inflation of 0.07 and 0.09% for short and

medium endpoints respectively. Later through the trial, Type I error is reduced, and even
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SHORT MEDIUM
δ=0 Information fraction Information fraction
TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 490 506 526 547 566 554 584 612 618 609

Power 4.12 4.15 4.15 4.32 4.29 4.17 4.25 4.15 4.32 4.38
γ2 ASN 437 462 495 524 552 505 546 586 597 596

Power 4.01 4.01 4.13 4.28 4.28 4.08 4.13 4.16 4.30 4.40
γ3 ASN 339 385 433 479 526 415 474 530 556 571

Power 4.01 3.99 4.15 4.34 4.37 4.17 4.23 4.29 4.44 4.50
γ4 ASN 297 351 407 459 513 378 446 508 538 558

Power 4.09 4.20 4.25 4.44 4.54 4.09 4.20 4.25 4.44 4.54
HYPOTHESISED
γ1 ASN 1077 1046 923 759 643 1078 1058 956 803 680

Power 5.52 6.51 5.47 5.08 4.93 5.43 6.18 5.44 5.05 5.00
γ2 ASN 1044 990 855 705 619 1047 1013 898 773 659

Power 6.34 6.25 5.41 5.14 4.97 5.84 6.27 5.4 5.15 5.05
γ3 ASN 919 829 702 618 578 937 874 789 685 621

Power 6.93 5.75 5.28 5.17 4.97 6.57 5.9 5.32 5.14 5.05
γ4 ASN 577 518 493 505 533 639 606 587 578 577

Power 5.55 5.26 5.15 5.02 4.84 5.71 5.40 5.12 4.98 4.92
80% Limit
γ1 ASN 790 729 689 658 617 821 796 756 721 657

Power 5.58 5.14 5.04 5.01 4.91 5.61 5.26 5.02 5.00 4.99
γ2 ASN 729 679 647 618 598 766 733 714 687 639

Power 5.50 5.20 5.01 5.04 4.94 5.53 5.28 4.98 5.03 5.02
γ3 ASN 553 569 563 559 567 642 634 642 631 610

Power 5.31 5.18 5.03 5.11 4.91 5.45 5.26 4.96 5.10 4.98
γ4 ASN 386 413 452 490 531 448 493 542 564 575

Power 5.07 5.02 4.91 4.92 4.85 5.09 5.07 4.84 4.88 4.91

Table 8.9: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ=0, n=556,
nmax = 2∗n
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sees a decrease in sample size for short endpoints. This reduction is not as great as under the

current trend, seeing a minimum sample size of 386 patients, 69% of the original n patients.

Fewer decreases are seen for medium endpoints however.

The hypothesised effect assumption sees the greatest inflation of Type I error rate and

the highest ASN values. Whilst Type I error rate decreases with increasing information

fraction, it still is largely greater than 5% until 90% trial duration. For medium endpoints,

this inflation varies between smaller and greater than Type I error rates seen in the short

endpoint case with the same values of γ .

δ=0 Information fraction
Promising zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 596 591 589 586 583 581 579 575 572 568

Power 4.35 4.33 4.31 4.26 4.23 4.20 4.18 4.17 4.15 4.22
Hypothesised ASN 800 732 683 652 627 610 597 586 577 570

Power 5.14 4.88 4.68 4.60 4.51 4.40 4.38 4.30 4.26 4.29
80% limit ASN 670 656 640 625 613 603 593 585 577 570

Power 4.79 4.76 4.62 4.62 4.58 4.54 4.49 4.39 4.36 4.33
Promising zone with Futility
Trend ASN 373 385 402 419 438 458 479 499 521 543

Power 3.89 3.90 3.92 3.95 3.93 4.07 3.98 3.99 3.97 4.18
Hypothesised ASN 743 643 578 536 510 502 505 513 528 545

Power 5.34 4.83 4.60 4.54 4.4 4.42 4.31 4.20 4.14 4.28
80% limit ASN 524 508 491 485 487 491 500 512 528 545

Power 4.67 4.62 4.49 4.52 4.44 4.54 4.41 4.29 4.24 4.32

Table 8.10: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions and three designs when δ̂obs = 0, n=556 and nmax = 2∗n

Table 8.10 similarly shows ASN and power for the promising zone designs with and

without a futility boundary. Only two instances of an inflation of Type I error are observed

across both designs: both of which happen using the hypothesised effect assumption at the

50% time point. Whilst previously, the addition of a futility boundary has decreased power,

in these two cases where an inflation occurs, the opposite pattern is seen. From 55% onwards

however, all power is below the nominal 5% rate, and is greatly reduced under the current

trend assumption with a futility boundary.

ASN again decreases with the incorporation of a futility boundary. Under the current

trend assumption at 50%, 373 patients are required, which is 67% of the originally planned
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sample size. ASN is below the original n patients for the futility boundary design at all

time points for the current trend and 80% limit assumptions, and from 65% onwards for the

hypothesised effect assumption. The greatest increase in sample size is observed using the

hypothesised treatment effect, with a ASN of 800 patients; an increase of 44%.

It may appear that earlier interim analyses may be acceptable as the Type I error, espe-

cially for the current trend assumption is much lower than the nominal level of 5%. However,

interim analyses were chosen only from the 50% time point earlier as it was shown that the

treatment effect was not very stable before this time point when real data was re-analysed.

Researchers wishing to implement an earlier interim timing should proceed with caution,

and consider adding some level of noise within simulation work.

From the simulations in the case where δ = 0, the current trend and 80% limit assump-

tions are fine to use at any time point from 50% onwards. Additionally, the hypothesised

time point may also be used from 55% onwards due to no further inflation of Type I error

from this point onwards. In terms of ASN design, the current trend assumption sees the low-

est values and is therefore the most preferable assumption. Also, the addition of a futility

boundary sees the lowest values of ASN and would therefore be preferential compared to no

boundary. If one wishes to use the 80% limit or hypothesised assumption with the futility

design, it is recommended to conduct an interim analysis as 65 and 75% data availability for

the two assumptions respectively. This is because no Type I error inflation, and the lowest

values of ASN are observed.

8.4 Discussion

The results from 50000 simulations of a binary outcome with event rates planned at 10%

and 20% have been reported in this chapter, also considering different values of the true

effect δ compared to that planned δplan.

The first aim of this chapter was to appropriately simulate binary outcome data with two

event rates: 0.1 and 0.2 when δ=δplan resulting in a planned odds ratio of 2.25, SE=0.25 and

δ=0.276. Table 8.1 summarises characteristics of the simulated data from 50000 repetitions.



8.4. Discussion 227

Whilst there are slight variations to that planned in the second decimal place, increasing the

number of simulations was not possible due to the lack of high computational power. As

simulations were repeated with three seed numbers and were still within a decimal place of

each other, it was considered that this was sufficient.

The same four values of γ were investigated for the combination test design as seen in

the continuous simulations. Results were broadly similar in that higher values of ASN and

power were seen with smaller values of γ . Additional larger values of γ may have been

appropriate here for the hypothesised assumption as power was higher than the 90% pre-

specified limit when δ = δplan, and also slightly inflated when δ = 0.

In Chapter 7 a highly inflated Type I error rate for the short term endpoint when n=264

was observed, and therefore seeing between 1-3% pipeline patients as minimum restriction

on sample size lead to a very unstable second stage test statistic. However, Type I error rate

for short term endpoints has been decreased in Table 8.9, even for a short-term endpoint. It

is likely to be due to the increased sample size (n=556) and therefore more pipeline patients

for the minimum restricted sample size. On the other hand, another contributing factor may

be the difference in behaviour between binary and continuous data, particularly as event

rates as deliberately been chosen to be far from 0.5. More work is required to investigate

both binary and continuous outcomes and the effect of a minimum sample size restriction

on Type I error rate.

When δ = δplan, the promising zone design with futility with the current trend assump-

tion at a 50% information fraction saw the closest power to 90%. However, the 80% limit

assumption saw a lower ASN with the same design, with higher power, and is therefore the

most favourable design to use in this instance. Additionally, the combination test design

at 60% information fraction using the current trend and γ3, or at 50% information fraction

using the 80% limit assumption and γ4 have power close to 90%, whilst actually decreasing

ASN compared to the original n patients.

When δ = 2
3δplan, all designs see the hypothesised effect assumption with the greatest

power, but this does come with an associated higher ASN. This problem does not have a

single solution and each trial should decide the price of power increase versus expected
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sample size in order to determine which assumption to use in their scenario. However this

investigation has provided the evidence for researchers to make a more informed choice

around the design and assumption that is most appropriate.

When δ = 1
3δplan, the promising zone design with futility design using the current trend

assumption sees the lowest power and lowest ASN, which are good design characteristics

when the treatment effect observed is too small to be of any value. Additionally, the com-

bination test using γ4 behaves well here for the current trend and 80% limit assumptions.

However it should be noted that when γ4 is used when planned effect = observed with the

current trend, that power falls below the 90% level.

When δ = 0, the promising zone design with futility boundary is again to be recom-

mended with either the current trend at 50% information fraction, or 80% limit assumption

at 65%, due to where the lowest ASN is observed. The combination test design with the

current trend does not inflate Type I error rate at any time, or additionally with the 80% limit

assumption using γ4 from 70% onwards.

Collating the results of the binary simulations at each scenario, I would recommend the

use of a promising zone design with futility boundary using the current trend assumption,

or using the 80% limit assumption at around 65% through the trial duration (or as close as

possible to this point), under the constraints imposed by this research (10% futility boundary,

equal randomisation etc). Whilst power is increased beyond 90% when the planned effect

is observed with the 80% limit, it has the lowest ASN here. Additionally, when δ = 0, Type

I error is not inflated and whilst the current trend assumption sees the lowest ASN here,

it is still low, and behaves as a good middle-ground between the trend and hypothesised

assumptions.

Additionally, a combination test design using the current trend assumption could be

recommended. The specific value of γ should be based on a case-by-case basis, and I would

recommend simulations as a way to investigate the magnitude required to have reasonable

power, not inflate Type I error, and give a reasonable ASN.
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8.5 Continuous vs Binary simulations

There are some differences in the results between the continuous and binary simulation

work. However, it should be noted that this could be due to the difference in sample size

considered (n=264 for continuous, and n=556 for binary).

When the result is as planned, trials with binary outcomes see a higher proportion of

sample size increases and therefore higher relative ASN. However, power is also much

higher in all designs except promising zone with futility using the current trend assump-

tion, and some values of γ for the combination test design using the current trend assump-

tion. This increased power is most pronounced under the hypothesised assumption at a 50%

interim time point (93.32% vs 97.59%).

The same pattern is observed for δ = 2
3δ , mainly under the hypothesised assumption

again. Whilst higher power is observed here for all designs, a greater ASN is also ob-

served. As power when δ = δplan is much higher than the nominal level of 90% power, the

increased ASN may not be considered worthwhile and an alternative assumption may be

more favourable.

Simulations of continuous endpoints do not recommend a combination test design when

the sample size is small due to the observed increase in Type I error when δ = 0. This

level of inflation is not observed for the combination test design using simulations of binary

endpoints. Whilst some small inflation is observed typically with an earlier interim timing,

some values of γ are able to control Type I error level from a 70% interim time point for the

80% limit assumption, 80% interim timing for the hypothesised assumption, and any time

point under the current trend.

Both chapters of simulation results are able to recommend the use of a promising zone

design with a 10% futility boundary using either the current trend or 80% limit assumption.

However, a later interim timing is also recommended when using the 80% confidence limit

assumption (from 65% interim timing onwards). For binary trials, the combination test

design can also be recommended, but further research is needed for continuous trials with

small sample sizes.
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8.6 Summary

This chapter has expanded on the work of Chapter 7 to extend to simulations of binary

outcomes where event rates are not close to 0.5. Data generating mechanisms have been

presented, and a summary of the characteristics such as the odds ratio and standard error

observed in 50000 simulations have been reported.

Investigating different event rates in the intervention group to that hypothesised has en-

abled the comparison at various possible outcomes of a trial, and therefore better evaluate

the methodology. Whilst some designs work well when the effect observed is equal to that

planned, and other designs may perform better for a zero effect, it is of interest to find a

well-rounded design. A researcher may have the aim of showing an effect, it may be the

case that there is no effect, or even the opposite, and a good design should be able to cope

with observing something other than that planned.

The combination test with either the current trend or 80% limit assumptions have been

seen to perform well in the four scenarios, but the timing of the interim analysis and the

choice of γ parameter will impact ASN. If using this design, I would recommend a later

interim timing of around 70-80% where possible, and suggest simulations as a good way to

choose the γ parameter in order to ensure that power and ASN are appropriate.

The promising zone design with a futility boundary using either the current trend or the

80% limit assumptions has also been shown to not reduce power below the pre-specified

rate, not inflate Type I error, and have lower ASN than the corresponding regular promising

zone designs. The recommended interim analysis timings are 50 and 65% patients with data

available for the current trend and 80% limit assumptions respectively.

The next chapter provides a case study of designing a prospective clinical trial with a

binary outcome.



9 | Prospective case study: The

RIPOSTE trial

9.1 Introduction

This thesis has so far reviewed the current literature and background to SSR designs in

great detail, provided results from 21 retrospective case studies implementing uSSR designs,

and presented results from 50000 simulations for both continuous and binary outcomes.

Logistical features such as the timing of the interim analysis and the maximum value allowed

have been explored, as well as delving into the CP calculation and investigating alternative

future treatment effects. The 80% limit assumption has been shown to work well in both

the retrospective case studies and simulations, and provides a good middle-ground between

the current trend and hypothesised assumption when the effect is smaller than planned. The

addition of a futility boundary gives the additional advantage of being able to decrease the

sample size, as well as the combination test design provided a sufficient second stage sample

size is recruited.

Within the clinical trials research unit at the University of Sheffield, a grant application

was being developed which allowed for the possible application of the methods described

in this thesis to a prospectively planned research study. This chapter provides details of the

RIPOSTE study, specific simulation results, and comments from experienced trialists and

clinicians on the logistical features of an uSSR design.

9.2 Aims

This chapter aims to show the planning stage of a prospective study if implementing a uSSR.

Whilst statistical features of the designs have been explored in depth, alternative opinions

of study team members would help to point out any logistical issues that may prevent these
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designs being used in practice.

9.3 Trial background

Emergency laparotomy procedures are associated with 90 day mortality rates of around

14%. It is thought that by using remote ischaemic preconditioning during the emergency la-

parotomy could protect vital organs after surgery. If used during the emergency laparotomy,

it is thought that 90 day mortality could be as low as 9.1%.

The RIPOSTE study aims to test this hypothesis, and will be putting in a grant applica-

tion to the NIHR in the near future. The study team were interested in an AD, and whilst

also planning a fixed sample size design, agreed to consider a uSSR design. The details of

the fixed sample size calculation are below:

Event rates are assumed to be 14% and 9.1% for the control and intervention groups respec-

tively, resulting in an absolute risk reduction of 4.9%, or a relative risk reduction of 35%.

With planned power set to 90%, a 2-sided significance level of 5% and 1:1 randomisation

ratio, 1786 patients with data available will be required in total (893 per group)

The trial will also allow for a 5% loss to follow up rate, resulting in an actual total

planned sample size of 1880. As the simulated data will be based on data available only, the

comparable fixed sample size of 1786 patients will be used. When implementing the design

in practice, the sample size for recruitment targets will need to be inflated to allow for the

5% loss to follow up.

An initial discussion regarding the use of an AD was carried out, where the original

fixed sample size calculation, target differences and recruitment details were shared. The

meeting began with an overview of the promising zone design and conditional power, and

a brief summary of the systematic review carried out in Chapter 3. A list of questions

were prepared in advance, which provided the structure of the discussion following the

introduction. Specific questions included:
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1. What are your target recruitment rates for sites and patients?

2. What event rates would still be considered clinically meaningful?

3. Would an interim analysis timing of 60/70% data availability be an appropriate time

point?

4. What would be the maximum constraint considered for a sample size increase?

5. Would you consider a futility boundary included in the design?

6. Would you still put in an application for less established methodology to what is

currently used (e.g. an 80% optimistic confidence limit in the CP calculation)?

7. What would convince you to put in an application with a SSR?

9.4 Meeting with the trial team

9.4.1 Study design

Prior to the initial discussion, a clinician from the study team commented on the prospect of

using an AD, saying:

“I would like to keep the design as simple as possible. Particularly as NHS cost-

ings [...] are difficult to sort for even a simple trial. My peers would probably be

less interested in delivering a complex design as unfamiliarity and complexity

breeds contempt amongst surgeons”

It was decided to concentrate on getting the principles of uSSR across and therefore a

method that was easy to communicate was chosen in the first instance. Due to the com-

plexity of the combination test design and the decision surrounding the parameter of γ , this

design was excluded from initial discussion, but could be revisited in later discussions if

relevant. Therefore, only the promising zone designs with/without a futility boundary were

taken forward for discussion with the clinicians.
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9.4.2 Recruitment and pipeline patients

It is hoped that recruitment will take place across 25-30 sites, with approximately 2 patients

per site per month. Assuming target recruitment is met for the maximum of 30 sites, it is es-

timated that there will be approximately 180 pipeline patients (recruited but not yet reached

the 90 day outcome time point). This is roughly 10% of the original n patients, which

falls somewhere in between the “short” and “medium” endpoints investigated in previous

chapters.

9.4.3 Clinically important differences

Whilst the target difference is set at 4.9%, following expected event rates of 14% and 9.1%

in the control and intervention arms respectively, values of clinical relevance and the MCID

were also discussed. A clinician stated

“We’d want to be hitting at least 10% in the intervention arm. [...] This is not a

big study compared to say drug trials, but for a surgical study, this is quite a big

trial, and 2% [absolute reduction] just wouldn’t cut it”.

Therefore a simulation will be run at the initial estimate of 9.1%, the MCID of 10%, a non-

clinically relevant difference of 12% and no difference of 14% will be investigated for the

intervention arm, whilst keeping the control arm consistently at 14% event rate. Restricting

the control event rate is a limitation of this investigation, as there is also uncertainty sur-

rounding this control group event rate. For initial investigations however, this was thought

to be sufficient.

9.4.4 Timing of the interim analysis

Following the results of the simulation work presented in Chapter 8, it was recommended

that an interim analysis take place between 60-70% through the trial. This suggestion was

met very positively with the study team.

“Certainly for a study this size, that feels absolutely reasonable. If you see

futility with around 1200 people, you can stop [the trial] and no-one is going to
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argue with you. I can’t see a surgeon arguing over a negative result when it’s

based on over 1000 patients”

They went on to comment on a recently published study that stopped early:

“I’ve recently seen a study that stopped for efficacy after around 140 patients,

which dealt with the primary but which wasn’t necessarily the most interesting

of the outcomes. [...] With 1000 patients, we’re going to get some value from

the secondary outcomes which we’re also interested in. I know it’s not what

we’re powering for, but if you’re putting this much money into something and

calling it early, actually 1000 patients will still give you that detail that you’d

want to see.”

The general consensus from everyone was that another small equivocal study is of no use to

anyone as it would be too small to offer any evidence on decisions for policy making. On

the other hand, if no effect is seen with a sufficient sample size, it is likely to be accepted

that there is no true effect. Because of this positive feedback, an interim analysis between

60-70% through the trial will be considered. This would result in between 1072 to 1251

patients with data available, and between 1252 to 1431 patients recruited at the point of the

interim analysis, assuming the target recruitment rates are met.

9.4.5 Maximum constraint on sample size

Following from the simulation work that had a particular emphasis on nmax = 1.1∗n and

nmax = 2∗n, it was recommended that a sample size increase of twice the original sample

size would be appropriate from a statistical point of view. This recommendation however

was met with some concern.

“I’m thinking about the pragmatic things [...], which is keeping my colleagues

on side for a bit longer. We’re starting off with 1800 patients, and to say to them

that we need to double the sample size because we think we’ve seen something,

but need to double to get there, I would really struggle to carry people with me.

I do not think it would be about funding.”
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“If we were talking about a study starting with 600/700 patients and I turn

around and said we need to double it, then that’s a different conversation. I

think if you’re looking at big numbers such as over 1000, then a 50% increase

is probably the limit you can get people to. Under 1000, I think you could make

a case for doubling it, as a gut feeling.”

The clinician then went on to describe two current studies and reactions to a doubling

of sample size. The first aims to recruit 5000 patients, and is already 2 years over their

recruitment target time frame, having only recruited 3000. The other is a very large 12000

patient study.

“The reason I say that is there are far bigger studies running that have really

struggled [...]. It’s not that the condition is uncommon - it’s the same we’re

looking at here. If we went from 5000 to 10000, I think we’d be laughed out of

the building”

“Then again, there’s another study recruiting around 12000 patients. I think

with this study, people may sigh but would probably accept it. So much has

been invested in it and it’s an important current problem and so they would

probably have the justification if they said that was what was needed.”

In light of this, only a 50% increase in sample size will be considered for the simulations

for the RIPOSTE study. It was mentioned that when only a 10% increase was seen, the study

dropped in power. Whilst an increase was indicated, not as many of the studies went on to

see a significant result as when nmax = 2∗n as the increase was too low to see any benefit. A

maximum increase of 50% has been considered, but provided in the appendix.

9.4.6 Funding considerations

The future treatment effect assumption was raised, and that the current version of promising

zone design used the observed current trend so far assumption. The hypothesised assump-

tion was briefly mentioned, but due to the simulation work of Chapter 8 and data re-analysis

results from Chapter 6 was not suggested for implementation. Finally it was highlighted
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that the 80% optimistic confidence limit was not a currently used assumption for this de-

sign. Whilst it exists in the current literature, to my knowledge it has not been implemented

in conjunction with a SSR outside of this thesis. When asked if this would be a deterrent

from applying for funding using this assumption, the team replied

“From the perspective of a researcher: As you know, doing things that do not fit

the established pattern can be risky. So if I were putting in [a funding applica-

tion], I would want to know that it was going to a panel that was open-minded

enough to accept something different to what they normally do”

“On the other side: If I were reviewing a grant that had this in, I’d actually

look quite favourably on it. One of the questions is about value for money

for the funder, and I feel there’s a very strong argument for this when you put

an emphasis on early termination. If you put the emphasis on “I may need to

ask you for a lot more money”, that then changes the tone of your contract

negotiation.”

An opposing view commented

“The concern is that with an emphasis on futility, it can be seen as a sign of your

lack of confidence in the proposed study”

“[From a clinical perspective] I do like the idea. I can see where you’re coming

from. I can see the value for money. There are just a few little bits of information

that we’d need to be bold enough to put in a grant application”

A question was raised as to whether a reviewer either from a panel member or academic

journal side had been asked for opinions.

“I can imagine that if we did a sample size re-estimation partway through, no

matter how well justified, you might get a bit of a hard time, and I just wonder if

it’s worth understanding some of the challenges that could be a barrier to this”
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The team requested that this design be raised with a funding body panel member before final

consideration of the study design. It was agreed that this would be a really useful next step

to understand the inside perspective of the funding body, their understanding, and what they

may value in an application.

9.4.7 Additional comments

When asked “What would convince you to put in an application with SSR?”, the response

from a clinician was

“It would be really interesting to see about half a dozen or so surgical trial

specific case studies, apply the methods, and see the outcome. That would give

me a bit of security, particularly as [surgical trials] often look at things that are

this lower end of event rates, and we don’t want to be in this position where

every surgical study needs its sample size inflated partway through, or every

surgical trial being stopped partway through.”

9.5 Simulation results

Following the meeting with the trial team, simulations were run to ensure that no Type I

error, or reduction in power is observed. The results are based on 25,000 simulations using

the promising zone with or without a futility boundary, with nmax = 1.5∗n, and investigates

three interim timings between 60 and 70% data availability. The corresponding CPmin values

are 0.399,0.394 and 0.389 for 60,65 and 70% interim timing respectively. The upper bound-

ary of the promising zone is kept consistent at 1−β (90%). Event rates in the intervention

group (πB) are chosen as the original estimate (9.1%), the MCID (10%), a non-clinically

relevant value (12%) and no effect (14%), whilst keeping the event rate in the control group

(πA) constant at 14%. The current trend assumption with the futility boundary drops power

below the pre-planned 90% value at the 60% data available interim timing. Additionally, the

largest expected sample size is largest when the treatment effect is exactly as planned (14%

vs 9.1%), rather than increasing the sample size when smaller than planned but still promis-
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πB=9.1% πB=10% πB=12% πB=14%
60% 65% 70% 60% 65% 70% 60% 65% 70% 60% 65% 70%

No Futility
Current trend ASN 2058 2037 2016 2093 2078 2061 1970 1962 1955 1829 1825 1823

Power 91.99 92.05 92.06 77.28 77.26 77.26 24.94 24.84 24.71 4.70 4.66 4.63
80% limit ASN 1962 1952 1947 2043 2035 2029 2057 2041 2023 1898 1879 1862

Power 93.70 93.51 93.36 80.63 80.32 80.26 27.74 27.45 27.05 4.99 4.96 4.89
Futility
Current trend ASN 2012 1999 1985 1981 1982 1978 1601 1630 1665 1223 1285 1353

Power 89.42 90.02 90.47 73.94 74.40 74.74 22.93 23.08 23.28 4.26 4.25 4.25
80% limit ASN 1949 1938 1934 2004 1995 1989 1851 1833 1823 1424 1428 1449

Power 93.20 93.20 93.02 80.19 79.81 79.78 27.62 27.32 26.89 4.81 4.76 4.70

Table 9.1: Simulation results in terms of ASN and power for the RIPOSTE study using the
promising zone design with and without a futility boundary, with nmax = 1.5∗n, πA=14%, and
πB=9.1, 10, 12 and 14% respectively.

ing. Furthermore, the 80% limit assumption sees smaller ASN compared to the current trend

assumption when observed effect is exactly as planned, and has higher power at all three in-

vestigated interim timings. For these reasons, the 80% limit assumption is recommended

over the current trend assumption when a futility boundary is incorporated.

From the conversation with the study design, it seemed that the futility boundary and

therefore allowing a decrease in patients should the data suggest this at the interim stage,

seemed to be the real attraction to the design. Seeing a CP value of <10% at the interim

analysis and yet continuing to the pre-planned sample size does not sound reasonable, nor

provide the value for money that was discussed. Whilst clinicians would be blinded to the

exact CP calculation (particularly the chief investigator), and would only know "remain as

planned" or "increase to n∗ patients", knowing that you may be continuing a trial that is able

to show futility does not seem logical.

Figure 9.1 shows the results from 25,000 simulations at four scenarios: as planned

(9.1%), the MCID (10%), too small an effect to be clinically relevant (12%) and no ef-

fect (14%). Similarly to the simulation results, the darker blue shades in the zone plots

represent a significant result with n∗ patients with data available.

Whilst the expected sample size lines are greater than the the originally planned n pa-

tients for πB = 9.1 and 10%, so is the power. Even at 10% (the MCID, an increase in sample

size is largely found to be a significant result at n∗ patients, despite being smaller than that
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Figure 9.1: Sample size zones and expected sample size when the intervention group is (Row 1)
9.1%, (Row 2) 10%, (Row 3) 12% and (Row 4) 14%
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planned. At 12%, the expected sample size line is still slightly above the original n patients,

but a large number are stopping for futility at this point. By 14% (i.e. no difference between

the control and intervention arms), there are very few increases, and the trial largely stops

for futility. This brings the expected sample size line down below the original n patients.

The RIPOSTE study aims to detect an absolute risk reduction of up to 4.9% (14% vs 9.1%)

with 90% power and a 5% two-sided significance level requires 1786 patients. Using a

promising zone design with a futility boundary, with a 70% interim time point (data avail-

able), nmax = 1.5∗n is expected to have between 1449 and 1989 patients . The maximum

possible sample size is 2679 patients, and a minimum of 1430 patients. This design has

been shown through simulation to reduce Type I error rate (to around 4.7%), and has power

of 93% for detecting the anticipated 4.9% difference, and 80% power for detecting a 4%

MCID.

9.6 Meeting with a HTA panel member

At the request of the trial team in the initial discussion, a meeting was set up with a HTA

panel member, one of the NIHR funding streams in the UK. Again, a set of questions were

prepared prior to the meeting, including:

1. Have you seen any study proposals implementing a uSSR?

2. What would be your opinion of a study including a futility boundary within a uSSR

design?

3. Would you want to see the costings set out for possible sample sizes (e.g. a mini-

mum/maximum value)?

4. Would you want to see simulation results in the grant application?

5. Would you currently consider funding a study using uSSR

A sample size re-estimation was not a new concept to the panel member, who had seen

such designs previously. He went on to explain that the HTA generally require an internal
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pilot stage, and at this point (usually about 1/3 through the trial), that any uncertainty in

initial estimates used in the sample size calculation would be addressed by the DMSC.

“If there is uncertainty about baseline event rates, the HTA may check they

are in accordance with the initial estimates at [the end of the internal pilot].

There would be a SSR carried out by the DMEC. [...] The HTA are particularly

worried about needing a much larger sample size than stated at this point. They

would have already sunk a lot of the costs into the trial, and so it puts the HTA

in a difficult position.”

The discussion continued, and when asked when a panel may consider a SSR more or less

favourably than a fixed sample size design, the response was

“If it’s a well established research area, with a good registry process, you should

know the baseline event rates and so we would certainly question why you don’t

have a fixed sample size and therefore cost.”

“The HTA are particularly interested in new research areas, and so if this is

the case and initial estimates are uncertain, we would certainly welcome such a

design. It shows you are aware of this and have come up with a way to mitigate

the risk.”

The two opposing views on how a futility boundary would look to a panel; value for

money, or showing a lack of confidence in the study were discussed.

“I wouldn’t be worried about it showing a lack of confidence in the study. HTA

are generally favourable and I certainly encourage the use of a futility analysis.”

“The main point however, is who does the futility analysis? The trial team are

likely to be aware that a futility analysis is taking place and would know it

hasn’t met the criteria if they do not hear anything. We’re likely to put this into

the DMECs hands, who mostly want overwhelming evidence to stop. Whereas,

the HTA would generally be fine with less strict criteria.”
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The discussion moved on to costings, and whether a range of costs would be looked on

more or less favourably by a panel, than say one fixed “expected” cost.

“We would want to see a properly thought out trial in terms of costings. We

would want to see the worst case scenario. You do need clarity, otherwise it

undermines your application. A lot of it is about having confidence in your

design. We need to believe that the team know what they’re doing.”

When asked about providing simulation results in the application itself, the panel mem-

ber responded

“There is a limit on the number of pages, so being succinct would be a strength.

[The simulation work] shouldn’t take space away from important clinical infor-

mation.”

“Applications would undergo strong statistical scrutiny. There are lots of statis-

ticians who sit on the panel, who are very keen to replicate [the statistical aspects

of the design]. You need to be transparent, and if it has been carefully thought

through, [the design] would be well received.”

9.7 Final comments

The comments from the HTA panel member were taken back to the study team. After much

discussion, the trial team decided to change the primary outcome, with existing literature

being used to inform the baseline event rate in the sample size calculation. As it was felt

that at least the minimum clinically important difference could be met, the study would not

be using a SSR approach in the trial design. However, they quite liked the idea of a SSR

approach, and some final comments from the trial team included:

[Clinician] “I would probably consider it [for future trials], particularly in those

situations where baseline rates might not be quite tacked down, which can hap-

pen in emergency surgery where the cohort literature is poor”
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[Statistician] “If we had continued with the initial choice of primary we could

well have used the uSSR approach developed. I will consider this approach in

similar situations in future.”

Overall, the discussions were hugely positive towards SSR designs, particularly when in-

corporating a futility boundary. Whilst already having been shown to be statistically sound

in previous chapters, this chapter has highlighted that the logistical hurdles associated with

this design are no huge barrier to the implementation of a trial, or indeed potential acquisi-

tion of funding. It was a good exercise to work with an ongoing study team, to communicate

the concepts and get insights from different perspectives.

The suggested interim analysis timing of 60-70% informed by previous work matched

the clinical opinion. However, initial opinions did not match for the maximum restriction

of sample size. From previous chapters, a 100% increase was recommended, but when put

in logistical terms, it was decided a 50% increase would be better. Looking at the results,

there is no statistical issue from using a 50% restriction. Whilst power is slightly reduced,

it is still above 90% when δobs = δplan. Therefore the discussion has been really useful

for making future recommendations, discussed in Chapter 10, making allowances for the

logistical implications too.

Whilst not all trials may be suitable for a uSSR design, this chapter has certainly high-

lighted that this design could offer a great advantage in new and emerging research areas. It

is hoped that the work in this chapter will help researchers wishing to apply a uSSR design

in the future.
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10.1 Introduction

Chapters 5, 6 have presented results from data re-analysis using real clinical trial data, and

Chapters 7 and 8 from the simulation studies for continuous and binary outcomes. This

chapter brings together the results and uses them to make recommendations for trialists

looking to implement an uSSR in a future study. The work will be discussed in relation to

current literature, particularly that published since the start of the thesis. Any limitations

will also be considered, before recommending areas for future research.

10.2 Summary of results

Chapter 5 reported the data re-analysis for 21 outcomes from 14 real-world clinical trial

datasets across both publicly funded and industry settings. The observed effect at the orig-

inal n patients was taken as the assumed true value of the population, as this is otherwise

unknown. The treatment effect was calculated after every 10 patients, observed in the same

order as patients entered the trial, and the reverse order, to see estimate stability of the

observed treatment effect. Additionally, the treatment effect from 1000 random orders of

patients were calculated, and the median plotted and compared to the original order. From

an average of 57% of the original sample size with data available, the observed treatment ef-

fect remained within±1*SE from the original observed effect. For this reason, only interim

analyses after 50% were considered for the simulation study, as this did not add in any bias

in the data generating mechanisms. Beyond this point, it is assumed the effect is sufficiently

stable, but it should be noted that this improves even further with more data.

Chapter 5 saw little reason to believe that a futility boundary used in conjunction with

the current trend or hypothesised effects would have much value, if any. The trend assump-

tion appeared noisy, even around halfway through the trial, and a boundary would have
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incorrectly stopped a significant trial where the assumed true treatment effect was non-zero.

On the other hand, the hypothesised limit was slow to decrease CP values, and a very late

interim analysis would be needed to be of any benefit. However, this would decrease the

potential saving of sample size, as more patients will have been recruited by this point. Fi-

nally, the optimistic limits were shown to get to one or zero faster and could offer a good

middle ground between trend and hypothesised assumptions.

A limitation of Chapter 5 was the limited trial data, with only 6 non-statistically signif-

icant trials. In order to assess all trials at a user specified level, Chapter 6 transformed the

data to see how CP differed, and therefore the impact on SSR decisions. Trials with binary

outcomes were found to be very noisy in terms of CP values, and therefore continuous and

binary outcomes were split up. Trials with continuous outcomes were quick to reach one

when observed and planned effects were equal, and to reach zero when no effect or a zero

effect was observed. Trials with binary outcomes were noisy for observed equalling planned

and half planned, but behaved similarly to the trials with continuous outcomes for zero and

negative effects. Chapter 6 confirmed the results of Chapter 5 in terms of the addition of a

futility bound for trend and hypothesised, and that 80/90% limits could be a good compro-

mise between the two. Again, the trend assumption behaved well when a very small effect

was observed, and hypothesised when as planned or smaller than planned but not zero or

negative. However, 80/90% limits were able to quickly reach the final value of CP earlier in

all four investigated scenarios.

In light of the data re-analysis chapters, the assumption that the future treatment effect

follows the observed current trend is not a good one to use in the CP calculation. It could

result in unnecessarily high sample size increase when the treatment effect is close to that

planned, but not when a very small effect is observed. As it is the current recommended

assumption to use, it has been left in for the simulation investigation. The hypothesised

effect could be used, but would result in high expected sample size, as a futility analysis is

unlikely to benefit the design. Finally, 80 and 90% limits behave similarly, with 90% limit

behaving more closely to the hypothesised assumption. Therefore the 80% limit was chosen

to take forward in the investigation, and would likely benefit from a futility boundary.
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The simulation study reported in Chapters 7 and 8 concluded that a promising zone de-

sign with a futility boundary is the most recommended design in terms of ASN and power

across the four investigated scenarios. It also concluded however, that the current trend as-

sumption would also be fine to use, and in many cases the best in terms of ASN and power.

It is likely that this is due to the lack of bias introduced into the simulated data. The sim-

ulations are not affected by the noisy real-world data and therefore a discrepancy in results

has come up between the retrospective data analysis and simulated data. In both however,

the 80% limit assumption was seen to be a good “middle-ground” across the four values of

observed effect compared to that planned, and appear to be a more realistic assumption to

use regardless of observed bias in real-world trial data. Simulations incorporating high lev-

els of noise could be investigated for further work to confirm this finding but is considered

beyond the scope of this thesis.

An issue was found for continuous outcomes, with the hypothesised effect assumption

inflating Type I error rate for either promising zone design, which was not seen in the binary

outcomes beyond the 55% interim timing. For 264 patients and a continuous outcome, Type

I error was inflated for all assumptions using the combination test design. This inflation

was smaller for a medium endpoint, where more pipeline patients were observed. When

investigated, this was due to the unstable second stage test statistic when very few pipeline

patients were observed. This has not been reported in the literature as far as I can find, with

much larger numbers of pipeline patients having been explored (i.e. with longer outcomes),

and is an important finding of this thesis. A minimum restriction of the second stage sample

size would likely resolve this problem, and further work into this is encouraged.

A thesis published earlier this year that also compared combination test and promising

zone in the case of an AdGSD (i.e. ≥2 interim analyses) reported the combination test

design being most efficient in terms of ASN, which is also what is seen in the research of

this thesis (Jimenez 2020). However, the choice of γ and the impact on power and Type I

error when δ = δplan and δ = 0 needs to be carefully considered when designing this kind

of trial.

In light of the findings from the previously discussed data re-analysis and simulation



10.3. Recommendations 248

work, the next section presents recommendations in terms of the initially set out aims and

objectives of the thesis, with the reasoning of each recommendation briefly described.

10.3 Recommendations

It should be noted that the recommendations outlined below follow on from the work of this

thesis, and apply to the setting outlined previously only; for continuous or binary endpoints

with 90% nominal power, two groups and a 1:1 randomisation allocation, considering a 10%

futility boundary. Researchers wishing to implement uSSR designs outside of this scenario

should take into consideration the differences in settings before using any of the following

recommendations, or adapt the following as appropriate.

Recommendation 1: When should a uSSR design be considered

• Limited prior information: When there is a rich source of data in which to estimate

a treatment effect for a sample size calculation, the designs considered here may not

be appropriate to use. It is recommended that researchers assess the uncertainty sur-

rounding each of the design parameters, as this will be required in order to justify

design choice. If there is only uncertainty around a nuisance parameter, blinded meth-

ods would be recommended over unblinded due to the increased risk of bias being

introduced.

Recommendation 2: Timing of interim analysis

• No interim analysis before 50% through: Before halfway through the trial, the esti-

mate has been seen to be biased, and may not be stable enough for appropriate interim

decision making. Therefore, post 50% is highly recommended.

• The later the interim analysis the better: When the observed effect is close to planned,

a later interim analysis is best in terms of a low ASN; however the opposite is seen

when a very small effect is observed. A recommended timing therefore would be

approximately 60-70% where possible, based from the simulation work.
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Recommendation 3: Maximum allowed sample size

• A 10% maximum increase is too small: When only a small increase of 10% is al-

lowed, the number of trials that go on to be significant with n∗ patients is small.

Despite indicating an increase is necessary, the allowed sample size increase is insuf-

ficient to maintain the power. If only a small increase is able to be considered, these

designs would not be appropriate to use and an alternative should be sought.

• Larger values of nmax: The larger the allowed increase in nmax, the larger the ASN. A

value of twice the original n is seen to be sufficient, and most trials that do increase

in sample size, do go on to be significant after n∗ recruited patients. A moderate

increase of 50% is the smallest increase that should realistically be considered given

the results of this thesis. Other values have not been investigated and further research

is recommended.

Recommendation 4: CP future treatment effect assumption

• Trend assumption should be used with caution: This assumption saw conflicting re-

sults between the data re-analysis and simulation work. The data re-analysis sug-

gested the trend assumption was too noisy, even around the 50% mark, and was slow

to increase to CP≈1 even when the observed effect was exactly as planned. However,

the simulations did not account for bias, and showed this would be a good assumption

to use in a design. Therefore, it should only be used with extreme caution, and as late

an interim time point as possible.

• Hypothesised assumption can be used in a trial with a binary endpoint: Type I error

rate is inflated in the continuous case, but is controlled for binary outcomes past 55%

through the trial. This assumption consistently sees the highest ASN however, and

rarely stops early when the observed effect is small. This assumption should only be

considered if there is no real wish to stop a trial early, and the later the interim analysis

the better.
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• The 80% limit poses a good compromise between trend and hypothesised assumptions:

Whilst the current trend assumption is best to use when for a zero or small effect, and

the hypothesised assumption for a close to planned effect, the 80 and 90% limits have

been seen to offer a good compromise between the two, whether the observed effect

is close to that planned, a small effect, or a zero effect. This result was confirmed in

the simulation work for the 80% limit, and in light of this would be the most recom-

mended assumption of the three.

• Get input from DMSC/TSC: Researchers could pre-assess their level of uncertainty

at the planning stage to aid the choice of assumption to use and get input from the

DMSC/TSC for the ultimate decision. With very limited certainty surrounding δ , the

decision may lean in favour of the current trend or 80% confidence limit; however

with slightly less uncertainty, it could be thought that the planned effect from the

protocol would be most favourable to the committees.

Recommendation 5: SSR design

• The promising zone design with futility boundary is the most practical design: Whilst

the promising zone design is also fine to use, the allowance for early stopping reduces

ASN without any big compromise in power. It is easy to implement for researchers,

in terms of design and analysis, and offers a “safety net” for when the trial is nowhere

near what is hoped.

• Combination test design can reduce expected sample size: The combination test has

also been seen to be advantageous, with later interim timing of around 70-80% and

either trend or 80% limit. Again, this was discovered in the situation where no bias

was considered, and the trend assumption should be used with caution. If low numbers

of pipeline patients are expected, a minimum second stage sample size should be

implemented in order to preserve Type I error.
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Recommendation 6: Values of γ

• Larger γ values penalize large sample size increases: In line with the current litera-

ture, larger values of γ correspond to smaller ASN values and also power. If a value

of a smaller than hoped but still clinically meaningful effect is known, the design can

be optimised in terms of γ for ASN and power. However, one limitation of this thesis

is that these values are unknown. A number of values have been investigated by simu-

lation, and this method would be recommended when designing this kind of trial. The

combination test design is more complicated, but not unmanageable, to implement

this design practically.

Recommendation 7: Pipeline patients

• Shorter outcomes have lower ASN: Shorter outcomes have less pipeline patients and

therefore lower minimum sample size values for the combination test design. When

the recommendation is to stop recruitment immediately, the minimum sample size

of nrec patients is chosen, and therefore compared to a medium outcome with more

pipeline patients, has a lower ASN.

• Small trials and the combination test design: Small trials that are unlikely to see many

pipeline patients, or trials with slow recruitment should consider a minimum sample

size to use instead of the nrec design. A small second stage sample size may lead to

an unstable test statistic and therefore has been shown to increase Type I error in the

continuous case.

• Longer outcomes are less likely to have a sample size saving: Unless a surrogate end-

point can be used for interim decision purposes, a long time to primary outcome data

would usually result in too many patients in the pipeline, and therefore no sample size

saving for the case of a futility boundary, or the combination test design. However,

if recruitment is extremely slow, this may not be such an issue, but a sample size

increase could heavily prolong the recruitment time for this scenario.
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10.4 Suggestions for future work

Whilst the thesis has made clear recommendations in one setting (e.g. 10% futility boundary,

continuous/binary endpoints, 80% nominal power etc.), there are other scenarios where this

thesis is not able to necessarily recommend specific trial details, and more work is needed.

Specific suggestions for future work include:

• Stopping boundaries: The use of additional levels of futility boundary beyond only

the 10% boundary considered here. The addition of an efficacy boundary should also

be considered, such as a 99% CP boundary for overwhelming evidence.

• Only 90% nominal power has been considered here and so a lower level of 80%

should be investigated. Additionally, a trial with 90% nominal power but using an

80% acceptable level for no further sample size increase (i.e. a lower favourable zone

boundary in the promising zone design) could be investigated

• Allocation ratios that differ from 1:1 equal randomisation could be considered, as well

as adding in additional treatment arms (i.e. more than 2 groups)

• Whilst survival endpoints have been used in the literature, it would be useful to have

some clear recommendations such as those given in this thesis specifically for survival

endpoints

• More guidance would be welcomed around pipeline patients, such as an acceptable

ratio of accrual time compared to time to primary outcome data collection

• It would be useful to research further the estimation of the treatment effect and corre-

sponding confidence intervals in the final analysis, regardless of the design used and

corresponding design features

10.5 Summary

This chapter has summarised the results from the three main studies in this thesis. Com-

bining the findings from data re-analysis and simulation work, recommendations have been
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made in an easy to follow way. The aims of the thesis have been used as recommenda-

tion headings, and therefore it is clear to see that the thesis objectives have been achieved.

The thesis provides illustrative examples of several SSR methods using real-world data, and

should hopefully provide thought-provoking considerations for trialists looking to imple-

ment a uSSR in their studies going forward. Future work has been suggested in Section

10.4 and it is hoped that the thesis sparks additional research in this field. The next, and

final, chapter summarises the aims, methods, and results of the work achieved in this thesis.
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This thesis has compared a number of factors in relation to uSSR design implementation,

and considerations for the practical application of these designs. The promising zone design

was first introduced in 2011, and has been utilised by at least 29 trials, as found in the trial

systematic review from 2018, and an updated search more recently (Chapter 3). The current

literature around promising zone design has been comprehensively reviewed, and strengths

and limitations discussed in detail. Having seen alternative designs to the promising zone

for uSSR during the literature review in Chapter 3, the combination test was chosen as a

comparative design. Following the literature review, specific thesis aims were to:

• Compare existing methodologies for uSSR using CP calculations, with a focus on

promising zone and combination test designs

• Incorporate stopping boundaries in each methodological framework and compare in-

terim decision making

• Investigate the future treatment effect assumption used in the CP equation

• Explore CP values when observed effect sizes are equal to, or different by some

amount to the target effect size

• Make recommendations for the planning of a future trial using SSR including opera-

tional considerations such as when an interim analysis should be carried out, and the

maximum sample size increase to consider

Chapter 4 describes methods for obtaining the real-world trial data from publicly funded

and industry settings, as well as a detailed analysis plan for the data re-analysis. Finally, it

summarised trial characteristics, such as recruitment rates and observed vs planned effect

sizes. The original data re-analysis results are seen in Chapter 5. CP values are observed

graphically, split between a significant or non-significant final result from the original anal-

ysis of n patients. Finally stability of the estimate was investigated, and led to only in-
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vestigating interim analyses of post 50% through the trial. An additional framework (the

stepwise methodology) was used as an illustrative example in Chapter 5. As this design is

less powerful, and used predominantly when there is an issue with the potential for the back

calculation of the treatment effect following knowledge of the interim decision of n∗, it was

not taken forward in Chapters 6 and 7.

Due to the varying observed vs planned effect sizes seen in Chapter 5, original trial

data were transformed a number of times, to specify an end result of that planned, half that

planned, zero effect, and a negative effect (Chapter 6). Therefore, CP curves could be further

investigated, knowing the decision at the end of the trial. Together with Chapters 4 and 5,

this chapter informed the simulation plan seen in Chapter 7.

It was thought from the data re-analysis results, that an optimistic 80 or 90% confidence

limit would provide a good compromise between trend and hypothesised assumptions, and

able to work well whether the observed effect was close to that planned, or much smaller.

Additionally, this assumption would likely benefit from a futility boundary, able to correctly

stop when the observed effect was low.

This was confirmed in the simulation work, with results from continuous and binary

outcomes reported in Chapter 7 and Chapter 8 respectively. Recommendations made in

Chapter 10 are summarised, combining results from Chapters 4 - 8 to provide insight to

trialists looking to implement an uSSR in future trials. An interim timing of around 60-70%

is recommended where logistically possible. A maximum increase of around 1.5 or 2 times

the original sample size is recommended, and a maximum increase of 10% has been found

to be too low to have a benefit.

The trend assumption should be used with caution, and has been seen to be influenced

heavily on the estimate stability, which could impact interim decisions. Additionally, the

hypothesised effect could be used in the CP calculation for binary trials, but only if there is

no wish to stop early. The promising zone design with a futility boundary is recommended,

and suitable regardless of the observed effect size (between as planned and zero). The

combination test design can also be considered when designing the trial, which requires a

pre-specified constant of γ . If a value of the MCID is known, the design can be optimised,
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according to the current literature (Jennison 2015; Pilz 2019) for power. This has not been

investigated here, which is one limitation of the work of the thesis. However, this could be

recommended for future research.

A long time to primary outcome is unlikely to be beneficial in terms of sample size

saving, as most patients will likely have been recruited. However, if a surrogate endpoint

could be used instead for interim decision making, this could be implemented. Shorter

outcomes also result in a lower ASN value, due to the lower number of pipeline patients

at the interim time point, and therefore the lower the minimum allowed sample size, which

this design allows. As discussed, pipeline patients can impact Type I error for small studies,

and a restriction imposed on this minimum value is required.

Finally, the comments from clinicians and other study team members were very positive

about the statistical aspects of the design, and the prospect of implementing such a design

in practice.; the main drawback in publicly funded trials is the funding. With limited expe-

rience of the promising zone design in the UK, and not being the “normal” application they

may receive, it is unknown how a panel might react to seeing a design where the final sample

size (and therefore cost) is not known at the start of the trial. However, the incorporation of

a futility boundary may offer the value for money design that may sway a panel in favour of

the SSR design.

Overall, the research in this thesis has achieved what was set out in the original aims of

the thesis, and provides practical recommendations to be considered when planning a future

trial with uSSR. The promising zone design with a futility analysis, using a CP calculation

with an 80% optimistic limit is suitable, even when the observed effect is much smaller

than planned. Therefore this design is strongly recommended, with an interim analysis of

approximately 60% through the trial duration.
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A | Search strategy

A.1 Search Strategies

A.1.1 Web of Science:

TS=(((((((((("sample size reestimation") OR "sample size re-estimation") OR "sample size

adjustment") OR "sample size readjustment") OR "sample size modification") OR "sam-

ple size recalculation") OR "sample size reassessment") OR "adaptive sample size") OR

"*crease in sample size") OR "*creased sample size") AND TS=((("promising zone") OR

(“promising region”) OR (((("promising") AND "results") AND "interim") AND "condi-

tional power")))

A.1.2 Pubmed:

(((((((((((("sample size reestimation") OR "sample size re-estimation") OR "sample size ad-

justment") OR "sample size readjustment") OR "sample size modification") OR "sample

size recalculation") OR "sample size reassessment") OR "adaptive sample size") OR "in-

crease in sample size") OR "increased sample size" OR "decrease in sample size") OR "de-

creased sample size")) AND ((("promising zone") OR (“promising region”) OR (((("promis-

ing") AND "results") AND "interim") AND "conditional power")))



B | Detailed data decription

B.1 FAST INdiCATE RCT

Stroke rehabilitation is vital in order to recover mobility, with almost two thirds of stroke

survivors leaving hospital with a disability according to the Stroke Association (State of the

nation: Stroke statistics 2018). Upper limb recovery is particularly important for performing

everyday activities and the ability for living independently (Pomeroy 2018). While it is

known that physical therapy aids mobility recovery, not everyone responds in the same way

to task specific training, which could be a result of a difference in neural deficits following

stroke. FST is a form of physical therapy that is particularly focused on the ability to perform

everyday tasks. Alternatively, MPT focuses on the quality of movement when performing

these everyday tasks.

The FAST INdiCATE RCT (Functional strength training versus movement performance

therapy for upper limb motor recovery early after stroke) was designed to gain a greater

understanding of different neural deficits following stroke, and how a patient may respond

to different physical therapies in addition to standard care (Conventional Physical Therapy

(CPT)) (CPT + FST vs CPT + MPT). The primary outcome was upper limb functionality at

6 weeks, assessed using the Action Research Arm Test (ARAT) score. The ARAT score is

a continuous measure, ranging from 0-57, where a higher score indicates a higher level of

performance (Koh 2006).

Data from a previous early phase study was used to inform the sample size calculation

(Donaldson 2009). To detect a mean difference of 6.2 points in ARAT score with 80%

power and 5% two-sided significance level, and allowing for differentSDs (CPT + FST;

SD=19.3, CPT + MPT; SD=7.9), 99 patients would be required in each arm. However,

due to the expected clustering of patients within a therapist within a treatment arm within

site (Intraclass Correlation (ICC)=0.01), and allowing for a 10% loss to follow up rate, 144

patients would be required in each treatment arm.
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(a)

(b)

Figure B.1: Recruitment to the FAST INdiCATE trial. (a) shows rate of recruitment and time to data
availability. (b) shows site recruitment (day opened, and total patients recruited)

A total of 288 patients were randomised from three UK stroke services between October

2012 and January 2016. Figure B.1a shows the recruitment rate to the FAST INdiCATE

study (black line), and when primary outcome data becomes available (pink dashed line).

Those who have been recruited to the study, but do not yet have data available are referred

to as pipeline patients (green dotted line).

Figure B.1b describes the site recruitment, where each bar represent when a site was

opened (x-axis), and total recruitment to that site (y-axis).

Total days of study 1241
Days to last patient recruited 1199
Days to 50% patient recruitment 708
Number of sites 3
Days to last site recruited 204
Days to 50% site recruitment 220

Table B.1: Recruitment summary for the FAST INdiCATE study

Primary analysis used ANCOVA to model ARAT score, adjusted for baseline score,

centre and time after stroke. All patients had stratification variables available (centre and

time after stroke). At 6 weeks, 114/143 (79%) of CPT + MPT patients, and 126/145 (87%)

of CPT + FST patients had both baseline and primary outcome measurements available.

Both treatment groups improved in terms of mean ARAT score between baseline and 6
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weeks (CPT + FST = 9.70 (SD = 11.72); CPT + MPT = 7.90 (SD = 9.18)). However there

was no statistically significant difference between the two treatment groups (Least squares

difference = 1.35, 95% CI (-1.20, 3.90), p=0.298). Figure B.2 shows a summary of patient

Figure B.2: Flowchart of participants in the FAST INdiCATE trial

flow through the trial and details of missing data.

B.2 SELF

Rotator cuff tendinopathy, a condition where pain comes from at least one of the four ten-

dons that make up the rotator cuff, is one of the most commmon causes of shoulder pain

(Littlewood 2013). Treatments include conservative methods (such as physiotherapy or

medication/injections), or surgical procedures (Lewis 2009). Loaded exercise (against grav-

ity, or with resistance) may have some potential benefits over conventional physiotherapy,

but the effects are unknown.

The SELF study aimed to investigate a self managed loaded single exercise program vs

usual physiotherapy treatment (Littlewood 2016). The primary outcome was Shoulder Pain

and Disability Index (SPADI), a continuous measure consisting of 13 questions (5 to assess

pain, and 8 to assess disability), each based on a 0-10 Visual Analogue Scale (VAS) score

(Breckenridge 2011). The subscales are converted to a total score of 0-100, where a higher

score indicates greater pain or disability. SPADI scores were collected at baseline and at 3

months post-randomisation.

An external pilot study was used to inform the sample size calculation (Littlewood 2014).
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To detect a MCID of 10 points in SPADI, with SD=16.8, 80% power and 5% two-sided

significance, a correlation of 0.5 between baseline and 3 month SPADI scores and a 15%

loss to follow up rate, meant that a total of 78 participants were required (Littlewood 2016).

Between April 2012 and July 2013, a total of 86 patients were randomised to the SELF

study (intervention group: n=42, control group: n=44) across three sites. Site data and

randomisation dates were not available in the dataset provided for analysis in this thesis.

Randomisation dates were modelled according to the Section 4.4.3.3 in the analysis plan.

Figure B.1a shows patient recruitment (black line) using these modelled dates, and when

primary outcome data becomes available (pink dashed line). Those who have been recruited

to the study, but do not yet have data available are referred to as pipeline patients (green

dotted line).

Figure B.3: Time between patients recruitment and primary outcome data became available. Green
(dotted) line show pipeline patients who have been randomised, but have no data available yet.

Total days of study 567
Days to last patient recruited 477
Days to 50% patient recruitment 238
Number of sites 3

Table B.2: Recruitment summary for the SELF study

Primary analysis used ANCOVA to model SPADI, adjusted for baseline score. At 3

months, 27/42 (64%) had primary outcome data available intervention group, and 33/44

(75%) had data available in the control group. One patient in the control group had missing

baseline data.
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Both treatment groups improved in terms of SPADI between baseline and 3 months (self

managed exercise by 12.4 points (95% CI 5.4 - 19.5, p<0.01), and physiotherapy group by

16.7 points (95% CI 9.6 - 23.7, p<0.01). However, there was no statistically significant

difference between the groups (Adjusted MD=3.2 points (95% CI -6.0 - 12.4, p=0.49).

Figure B.4: Flowchart of participants in the SELF trial

Figure B.4 shows a summary of patient flow through the trial and details of missing data

(adapted from Littlewood 2016).

B.3 CASPER

Older adults are at a higher risk of depression, particularly those who are isolated or lonely

(Lewis 2017). However, this condition often goes untreated, particularly in mild cases,

despite being at risk for progression to more severe depression. It is also thought in milder

cases, treatment needs to be psychological and/or social based interventions.

The CASPER (collaborative care and active surveillance for screen-positive elders) trial

aimed to assess usual GP care vs collaborative care, where a case manager working with the

primary care team delivers low-intensity psychological treatments by telephone, alongside

usual GP care.

The primary outcome was depression severity at 4 months, using the Patient Health

Questionnaire-9 items (PHQ-9) score, a continuous measure ranging from 0-27, where a

higher score indicates a greater level of depression (Volker 2016).

To detect an effect size of 0.3 with 80% power, 5% two-sided significance and allowing
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for a 26% loss to follow up, a total of 704 patients would be required.

Between June 2011 and July 2013, 705 participants were randomised into the study.

Figure B.5a shows recruitment, data availability and pipeline patients during the progression

of the CASPER trial. Figure B.5b describes the site recruitment, where each bar represent

(a)

(b)

Figure B.5: Recruitment to the CASPER trial. (a) shows rate of recruitment and time to data
availability. (b) shows site recruitment (day opened, and total patients recruited)

when a site was opened (x-axis), and total recruitment to that site (y-axis).

Total days of study 1126
Days to last patient recruited 761
Days to 50% patient recruitment 482
Number of sites 4
Days to last site recruited 732
Days to 50% site recruitment 222

Table B.3: Recruitment summary for the CASPER study

Primary analysis in the original trial used a linear mixed model, using baseline, 4 month

and 12 months (outcome) PHQ-9 scores, and adjusted for baseline 12 item Short Form (SF-

12) scores. The original analysis found a statistically significant difference in PHQ-9 scores

between the two groups at 12 months in favour of the collaborative care intervention arm

(MD=1.33, 95% CI 0.55 - 2.1, p=0.001).

The data re-analysis in this thesis will use data from the CASPER trial to investigate

two different outcome time points. Original 12 month outcome data will be modelled with



B.4. CASPER Plus 292

ANCOVA, adjusting for baseline PHQ-9 and SF-12 scores. Data collected at 4 months will

be re-imagined as a 4-week time point, and will also use ANCOVA adjusted for baseline

PHQ-9 and SF-12 scores. To distinguish between the two, analyses using the 12 month

outcome data will be referred to as CASPER, and analyses using the 4 month data (re-

imagined at 4 weeks) will be referred to as the CASPER MINUS study (see Section B.3.1).

The flow of patients using only 12 month data only is shown in Figure B.6. All patients

had baseline PHQ-9 scores, but 12 patients were missing SF-12 scores (7 in the collaborative

care group, and 5 in the usual GP care group).

Figure B.6: Flowchart of participants in the CASPER trial (12 month data)

B.3.1 Re-imagined time point of CASPER

Figure B.7 shows the pipeline patients using 4 month data re-imagined at 4 weeks as the

primary outcome. The total number of study days now becomes 789, as opposed to 1126 in

the 12 month study, but all other recruitment metrics remain the same as the CASPER study.

Figure B.8 shows the missing data for the 4 month outcome. Again, no patients were

missing baseline PHQ-9 scores and missing baseline data refers to the SF-12 scores.

B.4 CASPER Plus

The CASPER PLUS study aimed to assess collaborative care vs usual GP care in elderly pa-

tients with major depression (as opposed to low-level depression investigated in the CASPER
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Figure B.7: Time between patients recruitment and primary outcome data became available. Green
(dotted) line show pipeline patients who have been randomised, but have no data available yet.

Figure B.8: Flowchart of participants in the CASPER MINUS trial
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study). The CASPER PLUS study started recruiting 15 months after the start of the CASPER

trial, but before the trial had finished recruiting.

The primary outcome of the CASPER PLUS study was also depression severity using

the PHQ-9 score, but the primary endpoint time was measured at 4 months. It was thought

that in the major depression population, it was thought an effect size of 0.35 would be

clinically important, in line with the estimate used to inform the CASPER trial sample size.

Allowing for a 20% loss to follow up rate, 5% two-sided significance and 80% power and

an effect size of 0.35 would require 484 patients, or 284 per group.

Between September 2012 and August 2014, 485 patients were randomised into the

CASPER PLUS trial (249 to collaborative care, and 236 to usual GP care). Figure B.9a

shows the time between recruitment and primary outcome data becoming available. Fig-

(a)

(b)

Figure B.9: Recruitment to the CASPER PLUS trial. (a) shows rate of recruitment and time to data
availability. (b) shows site recruitment (day opened, and total patients recruited)

ure B.9b describes the site recruitment, where each bar represent when a site was opened

(x-axis), and total recruitment to that site (y-axis).

Figure B.10 shows the missing data for the 4 month outcome and flow of participants

through the study.

In the original analysis of CASPER PLUS, a linear mixed model was used for PHQ-9

scores at 4 ,12 and 18 months and adjusting for baseline PHQ-9 and SF-12 scores. At 4

months (primary outcome time point), the study showed a mean difference of 1.92 points
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Total days of study 825
Days to last patient recruited 705
Days to 50% patient recruitment 465
Number of sites 4
Days to last site recruited 281
Days to 50% site recruitment 37

Table B.4: Recruitment summary for the CASPER PLUS study

Figure B.10: Flowchart of participants in the CASPER PLUS trial

(95% CI 0.85-2.99, p<0.001) in favour of the collaborative care group.

B.5 Acupuncture Study

Low back pain is common in the adult population, with around 16% of adults in the UK

visiting their GP each year for treatment (Thomas 2006). Whilst some evidence suggests

acupuncture can provide short term pain relief, the long term effects are unknown, and

is not commonly used in the NHS setting (Thomas 2006). The Acupuncture trial aimed

to investigate the effect acupuncture provided in a non-NHS setting vs usual primary care

treatment in patients with persistent non-specific low back pain.

The primary outcome was pain score, assessed using the 36 item Short Form (SF-36)

form. The form consists of 8 subscales, which can be converted to obtain two overall sum-

mary measures; one of which is the pain functioning score which was used in this study

as the primary outcome. The score ranges from 0 to 100, with a higher score indicating a

better health state, i.e. less pain (Ware 1993). Pain scores were collected at baseline and at
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12 months post-randomisation.

The sample size calculation was informed by a pilot study. To detect a mean difference

of 10 points with a SD of 19.3, with 90% power, 2-sided significance of 5% and a loss to

follow up rate of 10-15%, 100 patients would be needed per arm. It was then decided to

use a 2:1 randomisation ratio for the intervention arm in order to tests the effects between

acupuncturists. Keeping all other parameters the same, the sample size was increased to 240

patients in total.

Between August 1999 and January 2001, 241 patients were recruited to the trial (161

to the acupuncture treatment arm, and 81 to usual care group). Figure B.11 shows patient

recruitment and information on when data would become available in the Acupuncture trial.

Figure B.11: Time between patients recruitment and primary outcome data became available.
Green (dotted) line show pipeline patients who have been randomised, but have no data available
yet.

The trial involved 39 practitioners from 16 centres, but no site information was available

for the data re-analysis. A summary of patient recruitment is shown in Table B.5

Total days of study 914
Days to last patient recruited 549
Days to 50% patient recruitment 295
Number of sites 16

Table B.5: Recruitment summary for the Acupuncture study

Figure B.12 shows the missing data for the 12 month outcome and flow of participants

through the study, adapted from Thomas 2006.



B.6. Flu Vaccine - SANOFI 297

Figure B.12: Flowchart of participants in the Acupuncture trial

Primary analysis used ANCOVA, adjusting for baseline pain scores. The original anal-

ysis found a mean difference of 5.6 points in favour of the acupuncture group, but this was

not statistically significant (95% CI (-0.2, 11.4) p=0.06).

B.6 Flu Vaccine - SANOFI

Flu is a common respiratory illness, and can affect people of all ages (Fleming 2008). Whilst

symptoms are often managed through self-care, more severe cases require hospital admis-

sion and can be fatal. A UK study (SANOFI-QID01) looking at data between 1997 and

2009 estimated that in an average season, 28,517 hospital admissions and 7163 deaths could

be attributable to influenza (Matias 2016). Two trivalent (TIV) flu vaccines have been avail-

able previously, containing three inactivated strains of the flu virus: A/H1N1, A/H3N2, and

one of the primary B lineages (Yamagata (TIV-1) or Victoria strains(TIV-2)), referred to in

this thesis as strains B1 and B2 respectively. However, it is often difficult to predict what

the dominating B-strain will be in each season and therefore which vaccine should be given

(Matias 2016). Alternatively, a quadrivalent (QIV) containing A/H1N1, A/H3N2, and both

B lineage strains vaccination has been developed. Sanofi Pasteur conducted a RCT in the

2012-2013 flu season, to consider the non-inferiority of the QIV vaccine, to the two TIV

vaccines in terms of the immunogenicity of the four flu strains mentioned above.

Patients were randomised in a 2:1:1 ratio to QIV, TIV-1 and TIV-2 vaccines respectively.

For comparisons of both A strains (H1N1 and H3N2), QIV was compared to the pooled TIV

groups. For B strain comparisons, the QIV group was compared with the corresponding
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TIV group. The trial had two primary outcomes: geometric mean titer ratio (continuous)

and seroconversion rates (binary). Both outcomes are used in this thesis due to the limited

industry data available.

Only very limited sample size information was available due to a redacted protocol and

analysis plan. With at least 1119 patients in the QIV and pooled TIV groups, 92% power,

5% significance level and a non-inferiority limit of 2/3 for the geometric mean titer ratio

between QIV and TIV groups, resulted in a hypothesised effect size of 0.142. Keeping the

effect size the same, power was adjusted for the smaller sample size in B strain comparisons

(QIV compared to only one TIV group), and resulted in 77% power. Individual serocon-

version rates were not available. Given a non-inferiority limit of 0.1, 92% power, and 5%

significance, sample size was calculated for varying combinations of piA and piB between 0

and 1. Event rates of 0.55 in each arm would require at least 1115 per arm, the closest to the

1119 patients with data available. Again, adjusting the power for the B strain comparisons

gave 77% power.

Recruitment began in October 2012 and 2249 patients were randomised in 38 sites over

a 12 day period (QIV n=1119, TIV-1 n=560, TIV-2 n=570). No randomisation dates were

available and were therefore modelled according to Section 4.4.3.3. However, the number

of days between randomisation and primary outcome data collection was given for each

patient, and this has been used for working out when data became available. The planned

outcome measure was at 28 days, but it should be noted that some patients exceeded this

time point. Figure B.13 shows patient and accrual by site. Due to the short time frame

of recruitment, and large number of recruiting centres, the recruitment phase (12 days) is

presented with a line for each site recruitment.

A summary of patient recruitment is shown in Table B.6

In the original analysis, the geometric mean titer ratio between QIV and TIV groups

and the corresponding 95% CI was calculated using the normal approximation of log-

transformed titers. This resulted in a ratio of 589/680 = 0.866, 95% CI (0.777, 0.966) in

strain A/H1N1; 368/430=0.857, 95% CI (0.770, 0.955) in strain A1/H3N2; 105/93.5=1.13,

95% CI (1.02, 1.25) in strain B1; and 136/130=1.05, 95% CI (0.939, 1.16) in strain B2.
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(a)

(b)

Figure B.13: Recruitment to the Flu vaccine trial. (a) shows rate of recruitment and time to data
availability. (b) shows recruitment by site

Total days of study 83
Days to last patient recruited 12
Days to 50% patient recruitment 6
Number of sites 38
Days to last site recruited 1
Days to 50% site recruitment 1

Table B.6: Recruitment summary for the Flu vaccine study
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Therefore, the non-inferiority limits were met for all four strains for the continuous out-

come. The difference between proportions of patients reaching seroconversion (QIV - TIV)

and 95% CIs were calculated using the Wilson score method. This results in a difference

of -2.72 (-6.90, 1.47) for strain A1/H1N1; -1.30 (-5.48, 2.89) for strain A1/H3N2; 8.78

(2.58, 13.9) for strain B1, and 6.34 (1.13, 11.5) for strain B2. Again, all four strains met the

non-inferiority limits in the binary outcome.

B.6.1 Re-imagined time points of the Flu vaccine trial

The flu vaccine trial will be re-imagined at two further time points for both continuous and

binary endpoints. Because of this, each imagined time point will use data from a different

strain, instead of repeating each strain 3 times. The original trial, with a 28 day outcome

will be classed as the “short-term” time point, and will use data from the A/H1N1 strain

only. An additional 61 days (∼2 months) will be added to the time to primary outcome to

form the “medium” time point, which will use data from the A/H3N2 strain only. Finally,

the “long-term” endpoint will be 1 year from randomisation, and will use data from the B1

strain only.

Figure B.14 shows the pipeline patients for the 3-month (a) and 1-year (b) outcomes.

The total study time increases to 144 and 420 days respectively.

(a)

(b)

Figure B.14: Recruitment to the Flu vaccine trial re-imagined at 3 months (a) and 1 year (b)

The overall number of patients screened for eligibility was not available. Both groups
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had 97% of data available for strains A/H1N1 and A/H3N2 (QIV: 1085/1119, TIV:1095/1130).

For strain B1, data availability was 96% (1086/1119) and 98% (547/560) for QIV and TIV-1

groups respectively. Data availability was the same in the binary endpoints as it was in the

continuous endpoints.

B.7 Epilepsy in adolescents - EISAI

Epilepsy is a chronic condition involving a sudden burst of electrical activity in the brain,

and affects 50 million people worldwide (Dalbem 2015). Partial-onset seizures (or focal

seizures) start off in just one side of the brain (Epilepsy Action:Epileptic seizures explained

2020). A common treatment in epileptic patients are the use of one or more Anti-Epileptic

Drugs (AEDs). However, some are thought to impair cognitive function and have be-

havioural side effects (Meador 2016). Perampanel is a type of AED, but no previous trials

have assessed its cognitive effects (Meador 2016). Therefore, Eisai Inc. conducted a phase

II RCT (EISAI-E2007-G000-235) in 2015 to assess cognitive function in adolescents aged

12-17 taking between 1-3 AEDs, randomised to an adjunctive therapy of either perampanel

or placebo for the purposes of the study.

Cognitive function (the primary outcome) was assessed using the Cognitive Drug Re-

search (CDR) system, consisting of 5 core sub-scales assessing various aspects of attention

and memory. Each of the 5 sub-scores are compared to the normative population mean,

and then standardised to create a score between 0-100. Each score was added together to

create a global score, with a greater score indicates a greater level of cognitive function.

The change in global CDR score between baseline and 19 weeks was used as the primary

outcome measure.

To detect a clinically meaningful difference in global CDR score of 5 points, with two-

sided significance of 5%, 80% power, SD=9.10, and a randomisation ratio of 2:1, 117 evalu-

able patients would be required (nA=39, nB=78). To allow for a drop-out rate of 10%, the

trial aimed to recruit at least 130 patients in total.

Recruitment took place between September 2010 and January 2013, randomising 133

patients in total (48 to placebo and 85 to Parampanel). Specific randomisation dates were
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not available for the study, and so dates have been modelled according to Section 4.4.3.3.

Figure B.15b shows approximate patient and site recruitment. "Site" here is actually Region,

as individual site details were not available.

(a)

(b)

Figure B.15: Recruitment to the Epilepsy trial. (a) shows rate of recruitment and time to data
availability. (b) shows site recruitment (day opened, and total patients recruited)

Figure B.15b describes the site recruitment, where each bar represent when a site was

opened (x-axis), and total recruitment to that site (y-axis).

Total days of study 1078
Days to last patient recruited 945
Days to 50% patient recruitment 419
Number of sites 3
Days to last site recruited 212
Days to 50% site recruitment 7

Table B.7: Recruitment summary for the Epilepsy study

The primary analysis was ANCOVA, modelling change in global CDR score, adjusted

for baseline score, gender, age, region and treatment group. In the placebo group, pa-

tients had on average higher scores at 19 weeks than at baseline (Baseline score 41.2 points

(SD=10.7), 19 weeks 42.2 points (SD=11.8), overall change +1.6 points (SD=1.3)). Con-

versely, the Parampanel group actually decreased on global CDR score (Baseline score 40.8

points (SD=13.0), 19 weeks 39.7 points (SD=13.5), overall change -0.6 points (SD=1.0)).

However, this difference was not statistically significant (mean difference -2.2 points, 95%
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CI (-5.2, 0.8), p=0.145). Figure B.16 shows patient flow through the trial.

Figure B.16: Flowchart of participants in the Epilepsy trial

B.7.1 Re-imagined time points of the Epilepsy trial

Due to a lack of datasets being available, the Epilepsy trial is also imagined with a much

shorter time to primary outcome (1 day), and a much longer time to primary outcome (1

year).

Figure B.17 shows the pipeline patients using 19 weeks data re-imagined at 1 day (Figure

(a)), and at 1 year (Figure (b)). The total number of study days now becomes 946 for the

1 day time point, and 1310 for the 1 year time point, as opposed to 1078 in the 12 month

study, but all other recruitment metrics remain the same as the original Epilepsy study.

(a) (b)

Figure B.17: Recruitment to the re-imagined time points of the Epilepsy trial. (a) shows data
availability for the 1 day outcome. (b) shows data availability for the 1 year outcome
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B.8 IMPROVE

The aorta is the main blood vessel carrying oxygenated blood to the rest of the body. An

AAA is a swelling of the aorta in the abdomen, and, left untreated, can enlarge and even-

tually rupture (Ulug 2018). A ruptured AAA is a common cause of death, with many not

reaching hospital in time, and even with surgery, only about half make it out of hospital

alive. Surgical intervention is typically an open repair, and those that survive have a lengthy

recuperation time. It is thought that a keyhole surgery intervention, endovascular repair,

may shorten recovery time and result in a lower 30 day mortality rate compared to open

repair.

The IMPROVE trial (The Immediate Management of the Patient with Rupture: Open

Versus Endovascular repair trial) aimed to compare these two surgical techniques. The

primary outcome was mortality at 30 days. To detect a risk difference of 14%, assuming

a mortality rate of 44.7% in the open repair group, and 30.4% in the endovascular repair

group, with two sided 5% significance, 94% power, and 5% loss to follow up, required a

total of 600 participants. The treatment effect was converted to an OR for data re-analysis,

resulting in an odds ratio of mortality in the intervention group compared to the control

group of 0.539, and SE of 0.171.

A total of 613 patients (open repair: n=297, endovascular repair: n=316) were ran-

domised to the IMPROVE study from 31 centres in the UK and Canada. Figure B.18a

shows recruitment rate, and number of patients with data available, or unavailable (pipeline

patients). Figure B.18b shows when sites were opened, and the total number recruited to

each. Table B.8 shows the time to 50% and 100% recruitment of both patients and sites.

Total days of study 1410
Days to last patient recruited 1380
Days to 50% patient recruitment 811
Number of sites 31
Days to last site recruited 1266
Days to 50% site recruitment 381

Table B.8: Recruitment summary for the IMPROVE study
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(a)

(b)

Figure B.18: Recruitment to the IMPROVE trial. (a) shows rate of recruitment and time to data
availability. (b) shows site recruitment (day opened, and total patients recruited)

Figure B.19 shows the missing data for the 30 day outcome and flow of participants

through the study. No patients were missing outcome data, age or sex (baseline covariates).

Missing baseline data came from the Hardman index covariate data.

Figure B.19: Flowchart of participants in the IMPROVE trial

Primary analysis used a Pearson Chi squared test to asses proportions of patients sur-

viving to 30 days in each group. A logistic regression was also used to provide an adjusted

odds ratio, adjusting for baseline covariates age, sex and Hardman Index. The endovascular

repair group resulted in slightly lower odds of death compared to the open repair group, but

this was not statistically significant (OR=0.92, 95% CI (0.66, 1.28), p=0.62).
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B.9 RATPAC

National guidelines recommend that anyone experiencing chest pain seek emergency medi-

cal help rather than contacting a GP. Therefore chest pain results a common cause of patient

attendances in emergency departments in England and Wales, and appoximately 25% of

hospital admissions (Goodacre 2005). Acute Myocardial Infarction (AMI) is typically di-

agnosed with troponin measurements in the blood. Patients with suspected but not proven

AMI are recommened to have a troponin measurement taken 12 hours after onset of chest

pain, due to the delay in troponin levels reaching optimal levels. However, this results in

potentially unnecessary hospital admission, with most patients presenting with suspected

AMI not actually having AMI (Goodacre 2011). Point-of-care testing is a quicker alterna-

tive approach, assessing additional markers including creatinine kinase MB and myoglobin

at baseline and again at 90 minutes, as a potential alternative indication of AMI to troponin.

The RATPAC (Randomised Assessment of Treatment using Panel Assay of Cardiac

markers) study aimed to assess the two diagnostic strategies. The primary outcome was

successful discharge from hospital, defined as both (i) a decision to be discharged made

within 4 hours from initial presentation, and (ii) no major adverse event within 3 months.

To detect an absolute risk difference of 5% of successful discharge between the two groups,

(a)

(b)

Figure B.20: Recruitment to the RATPAC trial. (a) shows rate of recruitment and time to data
availability. (b) shows site recruitment (day opened, and total patients recruited)
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assuming a successful discharge rate of 55% in the point-of-care group, and 50% in the

usual care group, with 80% power and two sided 5% significance, a total of 3130 patients

would be required. The RATPAC terminated early, due to slow recruitment, and the results

of a CP analysis to determine a funding extension showing clear efficacy for the successful

discharge primary outcome. In light of this, the power has been adjusted for the re-analysis.

With at least 1118 evaluable patients per arm, the RATPAC study had 66% power to deter-

mine the same absolute risk difference. This is equivalent to an OR of 1.22 of successful

discharge in the intervention group compared to the control group, with SE of 0.072

Between January 2008 and August 2009, 2263 patients were randomised to the RAT-

PAC trial from 6 UK NHS centres (intervention group n=1132, control group n=1131). All

6 sites had been recruited by day 78 of a total of 490 days (all patients having primary out-

come data). Figures B.20a and B.20b show patient recruitment and site recruitment to the

RATPAC study.

Total days of study 490
Days to last patient recruited 490
Days to 50% patient recruitment 264
Number of sites 6
Days to last site recruited 78
Days to 50% site recruitment 56

Table B.9: Recruitment summary for the RATPAC study

Those that did not complete initial follow up were excluded from the analysis (interven-

tion group n=7, control group n=13). Figure B.21 shows flow of participants and missing

data for the RATPAC trial.

The primary analysis used logistic regression, adjusting for site, age, gender and past

history of CHD. The original analysis showed patients in the point-of-care group were more

likely to be successfully discharged home (OR=3.81, 95% CI (3.01,4.82, p<0.001). Age,

gender and history of CHD data was unavailable for data re-analysis and was therefore

excluded from the model.
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Figure B.21: Flowchart of participants in the RATPAC trial

B.10 Corn plasters

Pain arising from foot problems is one of the main reasons for visiting a podiatrist. A large

proportion of these patients complaints is due to corns. Even though a podiatrists workload

is largely made up of treating corns, there is some uncertainty as to the best treatment to use.

Typically, corns are removed with a scalpel, which needs to be repeated as the corn returns.

However, plasters containing salicylic acid have been found to be effective at removing

corns. Despite the evidence, podiatrists believe they could lead to complications.

The corn plaster study aimed to investigate usual care and salicylic plasters for corn

removal. The primary outcome was the proportion of patients with a resolved corn at 3

months post randomisation. If more than one corn was present, patients were asked at

baseline to choose one corn to be the ‘index’ corn to be monitored.

Assuming a recurrence rate of 40% in the plaster group and 60% in the scalpel group,

with 80% power and two-sided 5% significance, 100 patients per arm would be required to

detect an absolute risk reduction of 20%, or corresponding OR of 2.25. Between September

2009 and October 2011, 202 patients were randomised to the trial (n=101 in each arm).

Figure B.22 shows patient and site recruitment to the Corn plasters trial.

The primary analysis was logistic regression, adjusted for site and size of corn at base-

line. In the intervention group, 34% of corns had resolved, compared to 21% in the usual

care group. The analysis found a statistically significant difference in favour of the treatment

group (OR=2.00, 95% CI (1.02, 3.93), p=0.044). Figure B.23 shows the flow of patients in
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(a)

(b)

Figure B.22: Recruitment to the Corn plasters trial. (a) shows rate of recruitment and time to data
availability. (b) shows site recruitment (day opened, and total patients recruited)

Total days of study 869
Days to last patient recruited 779
Days to 50% patient recruitment 416
Number of sites 7
Days to last site recruited 588
Days to 50% site recruitment 134

Table B.10: Recruitment summary for the Corn plasters study
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the corn plaster trial.

Figure B.23: Flowchart of participants in the Corn plasters trial

B.11 3MG

Acute asthma exacerbations, or asthma attacks, causes breathlessness,wheezing and chest

tightness. Whilst largely managed in the primary care settings, more severe asthma attacks

could require emergency treatment, and potential subsequent hospital admission (Fleetcroft

2016). Treatment prior to hospital, or within the emergency department may include steroids

and/or bronchodilators. If a patient has a life threatening episode, or if symptoms persist, the

patient is admitted to hospital. It is thought that the use of magnesium sulphate, given either

intravenously or inhaled (nebuliser route) may benefit patients due to the anti-inflammatory

action and muscle relaxation. However the true effect, and the optimal dose is unknown.

The 3MG trial was set up to investigate the effect of either intravenous or nebulised

magnesium sulphate compared to a placebo group in adults with severe asthma. Two co-

primary outcomes included the proportion of patients admitted to hospital within 1 week of

presentation at the emergency department, and a VAS score for breathlessness assessed at 2

hours following initial treatment. Only the hospital admission outcome will be analysed in

this re-analysis.

In order to detect a absolute risk reduction of 10% of hospital admissions, assuming

80% rate in the placebo group, 70% rate in treatment group, 90% power and 5% two-sided

significance, 400 patients would be required in each group, or 1200 in total. The two treat-
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ment groups (nebulised and IV routes) were combined for a comparison of active vs placebo

as a primary analysis. For pairwise comparisons between the three groups, Simes method

was used to adjust for multiplicity. The trial was terminated early due to slow recruitment,

and only 1109 patients were randomised between July 2008 and June 2012 from 25 sites

(nebulised route n=339, IV route n=406, placebo n=364). In light of this, the trial had 87%

power to detect the same absolute difference. Figure B.24 shows patient and site recruitment

during the 3MG trial.

(a)

(b)

Figure B.24: Recruitment to the 3MG trial. (a) shows rate of recruitment and time to data
availability. (b) shows site recruitment (day opened, and total patients recruited)

Total days of study 1434
Days to last patient recruited 1427
Days to 50% patient recruitment 847
Number of sites 25
Days to last site recruited 1262
Days to 50% site recruitment 467

Table B.11: Recruitment summary for the 3MG study

The primary outcome was analysed using logistic regression adjusted for centre. In total,

25 patients were excluded from the analysis (22 did not receive treatment and 3 for protocol

violations discovered after receiving treatment). Figure B.25 shows patient flow through the

3MG trial. Similar admission rates were found between the placebo and nebulised magne-

sium sulfate group (78% and 79% respectively), but a lower rate (72%) in the IV group. The
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active group slightly decreased odds of a hospital admission compared to placebo but this

was not statistically significant (OR=0.85, 95% CI (0.61,1.19, p=0.348).

Figure B.25: Flowchart of participants in the 3MG trial

B.11.1 Re-imagined time point of 3MG

The 3MG trial data will be used twice in the re-analysis in this thesis. The same primary

outcome data will be used, but imagined at a 12 month time point, instead of the original

7 days. Figure B.26 shows the data availability and pipeline patients using this time point.

Recruitment rate remains the same as the original trial, but now has a total trial duration of

1792 days.

Figure B.26: Time between patients recruitment and primary outcome data became available.
Green (dotted) line show pipeline patients who have been randomised, but have no data available
yet.
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B.12 AMAZE

Arrhythmia, or irregular heartbeat, affects approximately 2 million people in the UK per

year (NHS 2018); the most common of which is Atrial Fibrillation (AF). As well as causing

chest pain, dizziness and other side effects, AF can also increase the risk of clot formation

which, if dislodged, can result in stroke. Anticoagulants can be given to reduce the risk,

but these drugs can increase the risk of bleeding. During cardiac surgery, a maze procedure

can be performed to help the heart beat regularly again. The procedure involves complex

techniques to remove the heart tissue that is causing the irregular heart beats (American

Heart Association 2016), using devices such as radiofrequency, microwave energy or ‘cut

and sew’ methods (Sharples 2018).

The AMAZE RCT was a NIHR funded Phase III, parallel arm RCT that recruited 352 pa-

tients undergoing cardiac surgery across 11 NHS specialist cardiac centres between Febru-

ary 2009 and March 2014 (Sharples 2018). Patients were randomised in a 1:1 ratio to either

receive (i) planned cardiac surgery alone (control arm); or (ii) maze procedure and planned

cardiac surgery (intervention arm).

Joint primary outcomes included return to sinus rhythm at 12 months after surgery, and

quality-adjusted survival over two years. Only one primary outcome had to be significant

for the maze procedure to be considered effective. Only the return to sinus rhythm outcome

is considered for re-analysis in this thesis.

The recruitment target was set as 200 patients per arm to detect a target difference of 15%

in the return to sinus rhythm between the two groups with 80% power and two-sided 5%

significance level, assuming a 30% rate in the control group, and 45% rate in the intervention

group. This allowed for up to 15% loss to follow up or death. Due to slow recruitment

however, the trial was terminated early, after recruiting only 352 randomised patients (176

patients per treatment arm) between February 2009 and March 2014 from 11 UK NHS

centres.

Figure B.27b describes the site recruitment, where each bar represent when a site was

opened (x-axis), and total recruitment to that site (y-axis).
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(a)

(b)

Figure B.27: Recruitment to the AMAZE trial. Figure B.27a shows rate of recruitment and time to
data availability. Figure B.27b shows site recruitment (day opened, and total patients recruited)

Total days of study 2381
Days to last patient recruited 2016
Days to 50% patient recruitment 887
Number of sites 311
Days to last site recruited 1006
Days to 50% site recruitment 349

Table B.12: Recruitment summary for the AMAZE study

Figure B.28: Flowchart of participants in the AMAZE trial
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Figure B.28 shows a summary of patient flow through the trial and details of missing

data. Outcome data was available for 286 patients (intervention group n=141, control group,

n=145).

Return to sinus rhythm was analysed using binary logistic regression, adjusted for base-

line heart rhythm and planned surgical procedure (fixed effects), and surgeon (random ef-

fect). The OR for return to sinus rhythm in the maze group compared to the control group

was 2.06 (95% CI (1.20, 3.54); p=0.0091) in the ITT analysis.

B.13 Nasal sprays - GSK

Allergic Rhinitis is an inflammatory disorder affecting the nose following exposure to an al-

lergen such as pollen, dust or mould, affecting approximately 400 million people worldwide

(Greiner 2011). Even though many may only suffer seasonally, symptoms can be persistent,

and have a negative impact on quality of life. Current treatments can include intranasal cor-

ticosteroids, administered through a nasal spray. However, some patients have reported that

the odour or after taste of some nasal sprays can decrease compliance to treatments (Yanez

2016).

A crossover trial (GSK-201474) was set up to determine patient preference between two

types of nasal sprays: Fluticasone Furoate Nasal Spray (FFNS) vs Mometasone Furoate

Nasal Spray (MFNS). Patients received both treatments, with a washout period of 30 min-

utes, but were randomly allocated which treatment they received first. The primary outcome

was the overall preference of nasal spray. After receiving both treatments, patients were

asked their overall preference, in which they could answer treatment 1, treatment 2, or no

preference.

A previous study (GSK FFU108556), investigating FFNS and FP nasal sprays, was used

to estimate the preference rate of the FFNS nasal spray (Meltzer 2008). Sample size calcula-

tions based on a one-sample chi square test, two-sided significance level of 5%, 90% power

and a 60% preference rate for FFNS nasal spray (vs. 40% preferring MFNS or stating no

preference), a total of 263 patients would be required. To ensure 263 evaluable subjects, the

study aimed to recruit 300 patients.
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The study met their target, recruiting 300 patients between April 2014 and May 2016

from 12 sites in 4 countries. Out of these 300, 276 were included in the primary outcome

analysis. Figure B.29a shows the recruitment rate and data availability. Patient randomi-

sation, treatment and primary outcome questionnaire all happened in the same day, and

therefore this study had no pipeline patients.

(a)

(b)

Figure B.29: Recruitment to the nasal spray trial. (a) shows rate of recruitment and time to data
availability. (b) shows site recruitment (day opened, and total patients recruited)

Figure B.29b describes the site recruitment, where each bar represents when a site was

opened (x-axis), and total recruitment to that site (y-axis).

Total days of study 765
Days to last patient recruited 765
Days to 50% patient recruitment 387
Number of sites 12
Days to last site recruited 176
Days to 50% site recruitment 54

Table B.13: Recruitment summary for the nasal spray study

Primary analysis used a Cochran-Mantel-Haenszel test. The study found a statistically

significant result (p<0.001), favouring the FFNS (56%), compared to MFNS (32%) or no

preference between the two treatments (12%).
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B.14 Meningitis vaccine - GSK

Meningococcal bacteria, found in the nose and throat, is generally harmless, with approx-

imately 10% of the global population carrying the disease without any symptoms (Van

Deuren 2000). However, the bacteria could enter the bloodstream (septicaemia), move to

the meninges or outer lining of the brain/spinal chord (meningitis), or both (meningococcal

disease) (Peate 2011). There are a number of strains of meningococcal bacteria, namely A,

B, C, W, X and Y (Foundation 2020). Mencevax ACWY is a vaccine for meningococcal

bacteria strains A and C developed by GlaxoSmithKline (GSK), who conducted a phase III

booster vaccination study in 2006 (GSK-105239). This study followed on from a previous

trial, where babies were randomised to receive in a 2:1 ratio either DTPw-HBV/Hib-MenAC

vaccine (“AC primed” group), or DTPw-HBV/Hib vaccine (“AC unprimed” group) at 6, 10

and 14 weeks of age. Between 24 and 30 months of age, the child was asked to participate

in the booster trial, where all patients received a full dose of Mencevax ACWY. One month

following this vaccination, blood samples were taken, and Serum Bactericidal Antibody

(SBA)s were compared between the primed and unprimed groups in the original study. A

titer cut-off value of ≥1:128 meant a positive outcome.

A total of 517 patients were included in the primary study. Assuming 50% of patients

would continue to the booster study, approximately 255 patients would be evaluable (∼ 170

in the primed group, and ∼ 85 in the unprimed group). With an anticipated reference rate

of 98%, a non-inferiority limit of 0.1 and 2.5% significance, the study had 99% power for

each primary outcome (SBA-MenA and SBA-MenC).

Between May and November 2006, 261 patients were enrolled from 2 sites to the booster

stage of the study and were included in the immunogenicity analysis. The time to primary

outcome was approximately 1 month. Figure B.30 shows patients and site recruitment and

time to data availability, and Table B.14 summarises key recruitment milestones.

All patients had a SBA titers ≥128 at one month following the full dose of Mencevax,

in both the primed and unprimed groups. Because of this, data from one month earlier (at

the time of full dose vaccination visit) will be used as though it is the primary outcome data.
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(a)

(b)

Figure B.30: Recruitment to the Mencevax trial. (a) shows rate of recruitment and time to data
availability. (b) shows site recruitment (day opened, and total patients recruited)

Total days of study 234
Days to last patient recruited 199
Days to 50% patient recruitment 79
Number of sites 2
Days to last site recruited 15
Days to 50% site recruitment 1

Table B.14: Recruitment summary for the Mencevax study

Figure B.31: Flowchart of participants in the Mencevax trial
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Only the A strain data will be re-analysed at the 1 month analysis. SBA-Men C data will

be used for a re-imagined time point at 1 year instead of the original 1 month. Figure B.32

shows the data availability for the re-imagined time point.

Figure B.32: Time between patients recruitment and primary outcome data became available.
Green (dotted) line show pipeline patients who have been randomised, but have no data available
yet.

Original analysis calculated asymptotic 95% CI for the difference in proportions. For the

SBA-Men A outcome, the primed group had 157/168 (92.9%) with a titer ≥ 128 (95% CI

[87.9, 96.3]) and compared to 55/60 (91.7%) in the unprimed group (95% CI [81.6, 97.2]).

For the SBA-Men C outcome, the primed group had 98/180 (54.4%) with a titer≥128 (95%

CI [46.9,61.9]) compared to 16/63 (25.4%) 95% CI in the unprimed group. Figure B.31

shows patient flow through the booster trial and details of missing data.



C | Data re-analysis results

This appendix includes the SSR design comparison and CP plots from the results of the

retrospective data analysis section (Chapter 5) for all trials including design comparisons

and estimate stability results.

In the cases where trial data is used at one or more time points, CP values remain the

same, and therefore promising zone and stepwise designs yield the same graphs. Therefore,

only one n∗ graph is presented, with any differences in combination test design plotted in

purple and/or orange (see figure legends for details).

C.1 FAST INdiCATE

Figure C.1 shows CP calculated after every patient from patient 10 onwards assuming the

four different treatment effects. All four lines have very high CP values in the very early

stages of the trial. The current trend decreases very early, remaining in the unfavourable

zone from patient 34 onwards, with the exception of one small peak in the promising

zone at patient 119. Conversely, the hypothesised effect assumption means CP stays in

the favourable zone until patient 235 (with a small exception for patient 228 and 229). By

280 patients, all four lines have decreased to 0% CP. The current trend and optimistic con-

fidence limits fluctuate substantially throughout the trial, indicating random highs and lows

of the treatment estimate. The alternative hypothesis assumption consistently yields higher

CP values throughout the trial, while the current trend assumption is consistently lower.
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Figure C.1: Conditional power calculated after every patient in the FAST INdiCATE trial

Table C.2 presents results for three designs (promising zone, combination test and step-

wise) for the FAST INdiCATE trial, based on CP values at three time points (25, 50 and

75% of data becoming available). Alternatively, results for the same time points but for per-

centage of patients recruited as opposed to data being available are presented in Table C.2.

The table presents the new sample size required for each design, the zone the CP value falls

in for the promising zone design, and the minimum CP value for a sample size increase for

the promising zone and stepwise designs.

The promising zone and stepwise designs remain at 288 patients using the current trend

and hypothesised treatment effect. An increase in sample size in both designs occur at the

50 and 75% time point using either optimistic limit. The largest increase in promising zone

design happens at 50% available and the 80% limit, with an increase of 42%, and in the

stepwise design, a 2-fold increase is seen with 75% data available using the 90% limit. The

combination test design new sample size ranges from 158, a reduction of 130 patients (45%

of the original sample size), observed using the current trend, to increasing to 471 patients

(a 64% increase in sample size), observed using the 80% optimistic limit.

Whilst no time point would have reached the 10% futility bound investigated and there-

fore would not have stopped early for futility, the current trend line does have three main dips

below this value (total of 33 times) between patient 35 and 160. All treatment assumptions

drop below this futility boundary by patient 265. Table C.1 summarises the total number of

times CP values fall in each zone.
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Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 13 223 88 124

Promising 10 22 139 104
Unfavourable 182 10 18 19
Futility 74 24 34 32

nmax=2 Favourable 13 223 88 124
Promising 13 23 140 112
Unfavourable 179 9 17 11
Futility 74 24 34 32

Table C.1: Number of times CP values fall in each zone for the promising zone design for the FAST
INdiCATE trial. For a design where no futility boundary is considered, these values become
unfavourable instead.

A graphical representation of the new sample size calculated after every patient is seen

in Figure C.2. n∗ reaches nmax=2 for the combination test in all assumptions except current

trend, where only nmax=1.5 is reached. The stepwise and promising zone designs increase

sample size very early on in the trial using current trend, and again at around 120 patients,

with CP briefly falling into the promising zone at this point. Conversely, sample size in-

creases later on through the trial (from around patient 100) for either optimistic limit, and

again much later (from around patient 220) using the hypothesised treatment effect.
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Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 72 nmax=432 0.318 0.419 Unfavourable 288 293 0.466 288

Recruited:80 nmax=576 0.318 0.374 Unfavourable 288 293 0.440 288
50% Available: 144 nmax=432 0.128 0.406 Unfavourable 288 158 0.460 288

Recruited: 158 nmax=576 0.128 0.357 Unfavourable 288 158 0.430 288
75% Available: 216 nmax=432 0.224 0.382 Unfavourable 288 380 0.447 288

Recruited: 227 nmax=576 0.224 0.328 Unfavourable 288 380 0.410 288
HYPOTHESISED EFFECT
25% Available: 72 nmax=432 0.996 0.419 Favourable 288 210 0.466 288

Recruited:80 nmax=576 0.996 0.374 Favourable 288 210 0.440 288
50% Available: 144 nmax=432 0.960 0.406 Favourable 288 290 0.460 288

Recruited: 158 nmax=576 0.960 0.357 Favourable 288 290 0.430 288
75% Available: 216 nmax=432 0.877 0.382 Favourable 288 332 0.447 288

Recruited: 227 nmax=576 0.877 0.328 Favourable 288 332 0.410 288
80% OPTIMISTIC LIMIT
25% Available: 72 nmax=432 0.960 0.419 Favourable 288 265 0.466 288

Recruited:80 nmax=576 0.960 0.374 Favourable 288 265 0.440 288
50% Available: 144 nmax=432 0.558 0.406 Promising 409 432 0.460 384

Recruited: 158 nmax=576 0.558 0.357 Promising 409 462 0.430 480
75% Available: 216 nmax=432 0.493 0.382 Promising 410 432 0.447 336

Recruited: 227 nmax=576 0.493 0.328 Promising 410 471 0.410 384
90% OPTIMISTIC LIMIT
25% Available: 72 nmax=432 0.991 0.419 Favourable 288 225 0.466 288

Recruited:80 nmax=576 0.991 0.374 Favourable 288 225 0.440 288
50% Available: 144 nmax=432 0.695 0.406 Promising 333 406 0.460 432

Recruited: 158 nmax=576 0.695 0.357 Promising 333 406 0.430 576
75% Available: 216 nmax=432 0.576 0.382 Promising 361 432 0.447 384

Recruited: 227 nmax=576 0.576 0.328 Promising 361 435 0.410 480

Table C.2: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.
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Figure C.2: Comparison of three SSR designs for the FAST INdiCATE trial data

Figure C.3 shows the treatment effect (mean difference) in both original sequential order

(a) and reverse order (b). As neither treatment arm is a control group, there are two lines to

represent the hypothesised treatment effect, ±6.2.

The original sequential order starts by under-estimating the treatment effect, but lies

within the ± 1*SE boundary by patient 50 (17% through the trial), and remains there for

the remainder of the trial. The sequential estimate briefly falls into the ±3*SE boundary

at 30 patients, but remains within the ±2*SE limit at all other values of n. Comparatively,

the reverse order estimate spends a little longer in the ±3*SE boundary, over-estimating the

treatment effect to start. However, it slowly decreases, entering the ±1*SE boundary at 120

patients, and remaining there from that point forwards.
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(a) (b)

Figure C.3: Stability of the estimate in the FAST INdiCATE trial. A comparison of sequential order,
reverse order, and the median of 1000 random orders

C.2 Acupuncture trial

Figure C.4 shows CP calculated after every patient from patient 10 onwards assuming the

four different treatment effects. The current trend line is most frequently below CPmin values,

consistently below this line between patients 53 and 181/189 for nmax=1.5/2 respectively. CP

largely becomes promising after this point, but falls back into the unfavourable zone twice

more. The hypothesised effect line (red) mainly stays in the favourable zone (> 1−β ), but

intermittently dropping below the favourable line 30 times between patient 132-178. All

four lines drop to zero by the very end of the trial. Current trend and optimistic limit lines

fluctuate throughout the duration of the study, indicating random highs and lows. Table C.3

summarises the number of times each line falls into the four zones (with futility zone being

included with unfavourable if no stopping boundary is being used).
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Figure C.4: Conditional power calculated after every patient in the Acupuncture trial

Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 24 176 45 51

Promising 46 45 89 127
Unfavourable 45 1 87 43
(Futility) 115 8 9 9

nmax=2 Favourable 24 176 45 51
Promising 59 45 105 140
Unfavourable 32 1 71 30
(Futility) 115 8 9 9

Table C.3: Number of times CP values fall in each zone for the promising zone design for the
Acupuncture trial. For a design where no futility boundary is considered, these values become
unfavourable instead.

Table C.4 summarises the decisions for all three designs at the three specified interim

analysis time points. Under the current trend assumption, the decision at either interim

analysis 1 or 2 would be to stop the trial for futility. By interim analysis 3 (75% data

available) the CP is now above the futility bound, but still lies in the unfavourable zone.

Using either optimistic limit, there would be some increases in sample size in all three

designs. The largest increase would have been the maximum of 478, twice the original

sample size. This can be seen in the promising zone and combination test designs at 25%

(80% limit), and 50% with the 90% limit (477 patients for the combination test (99.6%

increase)); and at 25% for the 90% limit using the stepwise design. The combination test

has no decreases in patients at any of the interim time points
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Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 60 nmax=359 0.006 0.419 Unfavourable 239 239 0.466 239

Recruited: 239 nmax=478 0.006 0.374 Unfavourable 239 239 0.440 239
50% Available: 120 nmax=359 0.026 0.406 Unfavourable 239 239 0.460 239

Recruited: 239 nmax=478 0.026 0.357 Unfavourable 239 239 0.430 239
75% Available: 180 nmax=359 0.208 0.382 Unfavourable 239 359 0.446 239

Recruited: 239 nmax=478 0.208 0.327 Unfavourable 239 398 0.409 239
HYPOTHESISED EFFECT
25% Available: 60 nmax=359 0.995 0.419 Favourable 239 239 0.466 239

Recruited:239 nmax=478 0.995 0.374 Favourable 239 239 0.440 239
50% Available: 120 nmax=359 0.956 0.406 Favourable 239 252 0.460 239

Recruited: 239 nmax=478 0.956 0.357 Favourable 239 252 0.430 239
75% Available: 180 nmax=359 0.921 0.382 Favourable 239 268 0.446 239

Recruited: 239 nmax=478 0.921 0.327 Favourable 239 268 0.409 239
80% OPTIMISTIC LIMIT
25% Available: 60 nmax=359 0.376 0.419 Unfavourable 239 359 0.466 239

Recruited:239 nmax=478 0.376 0.374 Promising 478 478 0.440 239
50% Available: 120 nmax=359 0.250 0.406 Unfavourable 239 359 0.460 239

Recruited: 239 nmax=478 0.250 0.357 Unfavourable 239 478 0.430 239
75% Available: 180 nmax=359 0.469 0.382 Promising 359 359 0.446 279

Recruited: 239 nmax=478 0.469 0.327 Promising 423 419 0.409 319
90% OPTIMISTIC LIMIT
25% Available: 60 nmax=359 0.622 0.419 Promising 359 359 0.466 359

Recruited:239 nmax=478 0.622 0.374 Promising 394 388 0.440 478
50% Available: 120 nmax=359 0.378 0.406 Unfavourable 239 359 0.460 239

Recruited: 239 nmax=478 0.378 0.357 Promising 478 477 0.430 239
75% Available: 180 nmax=359 0.552 0.382 Promising 359 359 0.446 319

Recruited: 239 nmax=478 0.552 0.327 Promising 362 382 0.409 399

Table C.4: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.
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Figure C.5 shows the new total sample size required calculated after every patient. A

small decrease in sample size using the combination test can be seen very early on using any

treatment effect assumption. Current trend requires an increase if looking at the beginning

or end of the trial, but remains at the original sample size between ≈ 60 - 160 patients. The

hypothesised effect sees much smaller increases in sample size, until near the end of the

trial. Sample size n∗ fluctuates much more using either of the optimistic confidence limits.

Figure C.5: Comparison of three SSR designs for the Acupuncture trial data

Figure C.6 shows the mean difference from the Acupuncture trial, calculated after every

10 patients from patient 20, in original (a) and reversed order (b). The original order starts

by over-estimating the treatment effect seen at the end of the trial, falling just outside the

largest boundary investigated (±4*SE). The estimate decreases, reaching the lower −2*SE

boundary by patient 60. The estimate first enters the ±1*SE boundary at 50 patients (21%

through the trial). By 110 patients (46% through the trial) the estimate re-enters this bound-

ary, and remains there until the end of the trial. The reverse order starts by under-estimating

the treatment effect, but always remains within the ±3*SE (yellow) boundary. Again, the
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estimate first reaches the±1*SE boundary by patient 50 (21%), but only remains within this

boundary from patient 120 onwards (50%).

(a) (b)

Figure C.6: Stability of the estimate in the Acupuncture trial. A comparison of sequential order,
reverse order, and the median of 1000 random orders

C.3 SELF trial

Figure C.7 shows CP for the SELF trial. The current trend assumption remains consis-

tently low throughout the trial duration, which coincides with no sample size increase for

promising zone or stepwise designs (Figure C.8), and a decrease in sample size with the

combination test design. The decision at any interim analysis would have been to stop the

trial for futility, if this bound was used. Using the hypothesised effect assumption, CP starts

in the favourable zone and gradually drops to zero by patient 65. The optimisitc 80% limit

line fluctuates between unfavourable and promising up until patient 29, falling to zero by

patient 66. The 90% limit sees a similar pattern, but reaches the favourable zone twice be-

fore gradually falling to zero by patient 66 also. For both limits, no increase in sample size

is seen above patient 40 with the promising zone design, and only reaches the maximum

of twice the sample size using the 80% limit using the promising zone design. Combina-

tion test design sees the biggest number of times increasing the trial for both limits, and for
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the hypothesised effect. Stepwise and promising zone designs are broadly similar for the

optimistic limit plots.

Figure C.7: Conditional power calculated after every patient in the SELF trial

Figure C.8: Comparison of three SSR designs for the SELF trial data
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Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 0 18 0 5

Promising 0 25 5 16
Unfavourable 0 9 25 13
(Futility) 83 31 53 49

nmax=2 Favourable 0 18 0 5
Promising 0 26 7 19
Unfavourable 0 8 23 10
(Futility) 83 31 53 49

Table C.5: Number of times CP values fall in each zone for the promising zone design for the SELF
trial. For a design where no futility boundary is considered, these values become unfavourable
instead.

Table C.5 summarises the number of times each line falls into each of the four zones, and

Table C.6 summarises the decisions for the three designs at the three specified interim anal-

yses. The stepwise design increases the sample size by a maximum of 34% (25% time point

using hypothesised effect, and 25% time point using 90% optimistic limit). At the same

time points, promising zone also increases, with the maximum being 59% increase. The

combination test ranges from a maximum decrease in sample size of 50% using the current

trend assumption, to an increase of twice the sample size using either optimisitc limit or

hypothesised effect assumptions.
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Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 22 nmax=129 0.003 0.419 Unfavourable 86 43 0.465 86

Recruited: 43 nmax=172 0.003 0.374 Unfavourable 86 43 0.440 86
50% Available: 43 nmax=129 0.001 0.406 Unfavourable 86 60 0.458 86

Recruited: 60 nmax=172 0.001 0.357 Unfavourable 86 60 0.429 86
75% Available: 65 nmax=129 0.000 0.382 Unfavourable 86 84 0.444 86

Recruited: 84 nmax=172 0.000 0.327 Unfavourable 86 84 0.409 86
HYPOTHESISED EFFECT
25% Available: 22 nmax=129 0.823 0.419 Favourable 86 129 0.465 86

Recruited: 43 nmax=172 0.823 0.374 Favourable 86 135 0.440 86
50% Available: 43 nmax=129 0.449 0.406 Promising 122 129 0.458 86

Recruited: 60 nmax=172 0.449 0.357 Promising 122 172 0.429 115
75% Available: 65 nmax=129 0.000 0.382 Unfavourable 86 84 0.444 86

Recruited: 84 nmax=172 0.000 0.327 Unfavourable 86 172 0.409 86
80% OPTIMISTIC LIMIT
25% Available: 22 nmax=129 0.273 0.419 Unfavourable 86 129 0.465 86

Recruited: 43 nmax=172 0.273 0.374 Unfavourable 86 172 0.440 86
50% Available: 43 nmax=129 0.045 0.406 Unfavourable 86 129 0.458 86

Recruited: 60 nmax=172 0.045 0.357 Unfavourable 86 172 0.429 86
75% Available: 65 nmax=129 0.000 0.382 Unfavourable 86 84 0.444 86

Recruited: 84 nmax=172 0.000 0.327 Unfavourable 86 84 0.409 86
90% OPTIMISTIC LIMIT
25% Available: 22 nmax=129 0.507 0.419 Promising 129 129 0.465 101

Recruited: 43 nmax=172 0.507 0.374 Promising 137 172 0.440 115
50% Available: 43 nmax=129 0.092 0.406 Unfavourable 86 129 0.458 86

Recruited: 60 nmax=172 0.092 0.357 Unfavourable 86 172 0.429 86
75% Available: 65 nmax=129 0.000 0.382 Unfavourable 86 84 0.444 86

Recruited: 84 nmax=172 0.000 0.327 Unfavourable 86 84 0.409 86

Table C.6: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.

The SELF trial sampling estimate from patient 20 onwards is shown in Figure C.9. The

estimate remains inside the ±1*SE boundary throughout the trial duration, starting almost

exactly at the end treatment effect. The reverse order also remains within ±1*SE of the

assumed true treatment effect, starting off with a slight overestimate. All estimates are well

below the originally assumed mean difference of +10.



C.4. CASPER MINUS trial 333

(a) (b)

Figure C.9: Stability of the estimate in the SELF trial. A comparison of sequential order, reverse
order, and the median of 1000 random orders

C.4 CASPER MINUS trial

Figure C.10 shows CP after every patient in the CASPER MINUS trial (re-imagined time

point of the CASPER trial). Both optimistic confidence limits and hypothesised treatment

effect assumption lines are (≈) 1 throughout the trial duration. Under the current trend,

the CP line starts low (zero) and gradually increases to 1 by patient 301, fluctuating first

between unfavourable and promising zones before patient 121, and between promising and

favourable zones until patient 300. Table C.7 summarises the number of times CP falls into

each zone between patient 12 and 705.
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Figure C.10: Conditional power calculated after every patient in the CASPER MINUS trial

Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 572 694 694 694

Promising 74 0 0 0
Unfavourable 31 0 0 0
(Futility) 17 0 0 0

nmax=2 Favourable 572 694 694 694
Promising 76 0 0 0
Unfavourable 29 0 0 0
(Futility) 17 0 0 0

Table C.7: Number of times CP values fall in each zone for the promising zone design for the
CASPER MINUS trial. For a design where no futility boundary is considered, these values become
unfavourable instead.
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Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 177 nmax=1058 0.98 0.419 Favourable 705 400 0.466 705

Recruited:198 nmax=1410 0.98 0.374 Favourable 705 400 0.440 705
50% Available: 353 nmax=1058 1 0.406 Favourable 705 395 0.460 705

Recruited: 383 nmax=1410 1 0.357 Favourable 705 395 0.430 705
75% Available: 529 nmax=1058 1 0.382 Favourable 705 587 0.447 705

Recruited: 587 nmax=1410 1 0.328 Favourable 705 587 0.410 705
HYPOTHESISED EFFECT
25% Available: 177 nmax=1058 1 0.419 Favourable 705 314 0.466 705

Recruited:198 nmax=1410 1 0.374 Favourable 705 314 0.440 705
50% Available: 353 nmax=1058 1 0.406 Favourable 705 385 0.460 705

Recruited: 383 nmax=1410 1 0.357 Favourable 705 385 0.430 705
75% Available: 529 nmax=1058 1 0.382 Favourable 705 587 0.447 705

Recruited: 587 nmax=1410 1 0.328 Favourable 705 587 0.410 705
80% OPTIMISTIC LIMIT
25% Available: 177 nmax=1058 1 0.419 Favourable 705 305 0.466 705

Recruited:198 nmax=1410 1 0.374 Favourable 705 305 0.440 705
50% Available: 353 nmax=1058 1 0.406 Favourable 705 386 0.460 705

Recruited: 383 nmax=1410 1 0.357 Favourable 705 386 0.430 705
75% Available: 529 nmax=1058 1 0.382 Favourable 705 587 0.447 705

Recruited: 587 nmax=1410 1 0.328 Favourable 705 587 0.410 705
90% OPTIMISTIC LIMIT
25% Available: 177 nmax=1058 1 0.419 Favourable 705 288 0.466 705

Recruited:198 nmax=1410 1 0.374 Favourable 705 288 0.440 705
50% Available: 353 nmax=1058 1 0.406 Favourable 705 384 0.460 705

Recruited: 383 nmax=1410 1 0.357 Favourable 705 384 0.430 705
75% Available: 529 nmax=1058 1 0.382 Favourable 705 587 0.447 705

Recruited: 587 nmax=1410 1 0.328 Favourable 705 587 0.410 705

Table C.8: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.

Table C.8 reports interim decisions under each assumption. By the time 25% of the data

is available, CP has reached ≈ 1 for all assumptions. Therefore, even under the current

trend, the promising zone and stepwise designs would continue to the original sample size

planned (705). In all cases, the combination test would have decreased the sample size, from

41% (90% limit assumption) to 83% (all assumptions) of the original sample size. Figure

C.11 expands on this, calculating a new n∗ after every patient with data available. The

combination test design (green) is always ≤705, generally consistently increasing using

all assumptions, with some larger fluctuations towards the beginning of the trial using the
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current trend assumption. Only the current trend plot increases sample size for promising

zone and stepwise designs, but no increase is seen past the first 250 patients.

Figure C.11: Comparison of three SSR designs for the CASPER MINUS trial data

The CASPER MINUS trial starts with an under-estimate of the treatment effect for both

the original and reverse order (Figure C.12), particularly emphasised in the reverse order

estimate. The original order stays within the ±4*SE boundary, as opposed to the reverse

order which starts outside the largest boundary considered. The original sequential estimate

first enters the ±1*SE boundary at patient 50, just 7% through the trial duration. However,

it does not remain there until patient 360 (51% through the trial). Despite a similar first

instance in the ±0.05*SD boundary for the reverse order (70 patient, 9% through the trial),

the reverse order estimate remains in this boundary sooner than the original order; from

patient 280 onwards (40% through the trial).
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(a) (b)

Figure C.12: Stability of the estimate in the CASPER MINUS trial. A comparison of sequential
order, reverse order, and the median of 1000 random orders

C.5 CASPER trial

Figure C.13 is similar to the CASPER MINUS trial, but takes longer for the current trend

line to reach 1 (∼600 patients). The hypothesised effect and 90% optimistic limit lines again

are consistently ≈1 throughout the trial duration. The 80% limit assumption is predomi-

nantly>0.98, with a small dip between patients 57-79, which still remains in the promising

zone. The current trend line is highly variable at first, and then gradually increases from 0

to 1, being in the favourable zone consistently from patient 341 onwards. Table C.9 sum-

marises the number of times the CP falls in each zone.
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Figure C.13: Conditional power calculated after every patient in the CASPER trial

Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 435 694 694 694

Promising 177 0 0 0
Unfavourable 48 0 0 0
(Futility) 34 0 0 0

nmax=2 Favourable 435 694 694 694
Promising 182 0 0 0
Unfavourable 43 0 0 0
(Futility) 34 0 0 0

Table C.9: Number of times CP values fall in each zone for the promising zone design for the
CASPER trial. For a design where no futility boundary is considered, these values become
unfavourable instead.

Table C.10 presents interim analysis decisions for the chosen time points. Promising

zone and stepwise designs would only increase if the current trend assumption were used,

and a 25% data available interim analysis (18% increase for either nmax value with the

promising zone design, and 33% and 66% for nmax values of 1.5 and 2 respectively with

the stepwise design. The combination test design would have decreased to 83% of the orig-

inal sample size for any assumption at the 25% interim time point, and remained at the

original 705 patients for the other time points.
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Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 177 nmax=1058 0.731 0.419 Promising 835 587 0.466 940

Recruited:587 nmax=1410 0.731 0.374 Promising 835 587 0.440 1175
50% Available: 353 nmax=1058 0.845 0.406 Favourable 705 705 0.460 705

Recruited: 705 nmax=1410 0.845 0.357 Favourable 705 705 0.430 705
75% Available: 529 nmax=1058 0.990 0.382 Favourable 705 705 0.447 705

Recruited: 705 nmax=1410 0.990 0.328 Favourable 705 705 0.410 705
HYPOTHESISED EFFECT
25% Available: 177 nmax=1058 1.000 0.419 Favourable 705 587 0.466 705

Recruited:587 nmax=1410 1.000 0.374 Favourable 705 587 0.440 705
50% Available: 353 nmax=1058 1.000 0.406 Favourable 705 705 0.460 705

Recruited: 705 nmax=1410 1.000 0.357 Favourable 705 705 0.430 705
75% Available: 529 nmax=1058 1.000 0.382 Favourable 705 705 0.447 705

Recruited: 705 nmax=1410 1.000 0.328 Favourable 705 705 0.410 705
80% OPTIMISTIC LIMIT
25% Available: 177 nmax=1058 0.998 0.419 Favourable 705 587 0.466 705

Recruited:587 nmax=1410 0.998 0.374 Favourable 705 587 0.440 705
50% Available: 353 nmax=1058 0.989 0.406 Favourable 705 705 0.460 705

Recruited: 705 nmax=1410 0.989 0.357 Favourable 705 705 0.430 705
75% Available: 529 nmax=1058 0.999 0.382 Favourable 705 705 0.447 705

Recruited: 705 nmax=1410 0.999 0.328 Favourable 705 705 0.410 705
90% OPTIMISTIC LIMIT
25% Available: 177 nmax=1058 1.000 0.419 Favourable 705 587 0.466 705

Recruited:587 nmax=1410 1.000 0.374 Favourable 705 587 0.440 705
50% Available: 353 nmax=1058 0.996 0.406 Favourable 705 705 0.460 705

Recruited: 705 nmax=1410 0.996 0.357 Favourable 705 705 0.430 705
75% Available: 529 nmax=1058 0.999 0.382 Favourable 705 705 0.447 705

Recruited: 705 nmax=1410 0.999 0.328 Favourable 705 705 0.410 705

Table C.10: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.

Figure C.14 shows n∗ calculated after every patient. In all cases, the combination test

design would be ≤705. Due to the longer time until primary outcome data is available,

the combination test (green) reaches the original planned sample size much quicker than

CASPER MINUS (by about patient 250 onwards). For either optimistic limit or hypothe-

sised effect, no increase in sample size is seen. Both promising zone and stepwise designs

see a large fluctuation of sample size if an interim analysis were to be carried out before 350

patients had data available, using the current trend assumption, with both designs reaching

the maximum value of 2 times the original sample size n.
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Figure C.14: Comparison of three SSR designs for the CASPER trial data

The sequential order estimate (calculated from patient 30 onwards) from the CASPER

trial (Figure C.15)starts in the±2*SE boundary at 30 patients but drops through two bound-

aries shortly after. However, at 120 patients the estimate is back in the 1*SE boundary, and

remains there until the end, just 17% through the trial. Whilst the estimate fluctuates slightly

between over and under estimating the true effect going forward, it remains stable from this

point. A similar pattern is observed in the reverse order, starting with an over-estimate, but

dropping to within ±1*SE by 170 patients (24% through the trial), where it then remains.
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(a) (b)

Figure C.15: Stability of the estimate in the CASPER trial. A comparison of sequential order,
reverse order, and the median of 1000 random orders

C.6 CASPER PLUS trial

Figure C.16 shows CP values for the CASPER PLUS trial. The hypothesised effect line

remains consistently high (≈1) throughout the trial. The other three lines start at zero,

and gradually increase to 1, fluctuating between zones before this point (∼430 patients).

The current trend line remains below the futility boundary (0.1) until patient 125, un-

favourable until 176, varying between all three zones until patient 350, where it remains

in the favourable zone. The optimistic limits rapidly alter between all zones for the first 120

patients. After this point, the 90% limit remains in the favourable zone, and the 80% limit

dips twice into the promising zone. Table C.16 summarises the number of times each line

falls into each zone.
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Figure C.16: Conditional power calculated after every patient in the CASPER PLUS trial

Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 155 476 334 425

Promising 119 0 97 34
Unfavourable 86 0 25 4
(Futility) 116 0 20 13

nmax=2 Favourable 155 476 334 425
Promising 132 0 104 34
Unfavourable 73 0 18 4
(Futility) 116 0 20 13

Table C.11: Number of times CP values fall in each zone for the promising zone design for the
CASPER PLUS trial. For a design where no futility boundary is considered, these values become
unfavourable instead.
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Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 121 nmax=728 0.093 0.419 Unfavourable 485 227 0.466 485

Recruited:227 nmax=970 0.093 0.374 Unfavourable 485 227 0.440 485
50% Available: 243 nmax=728 0.602 0.406 Promising 728 485 0.460 728

Recruited: 371 nmax=970 0.602 0.357 Promising 763 485 0.430 970
75% Available: 364 nmax=728 0.938 0.382 Favourable 485 480 0.447 485

Recruited: 480 nmax=970 0.938 0.328 Favourable 485 480 0.410 485
HYPOTHESISED EFFECT
25% Available: 121 nmax=728 0.997 0.419 Favourable 485 326 0.466 485

Recruited:227 nmax=970 0.997 0.374 Favourable 485 326 0.440 485
50% Available: 243 nmax=728 0.998 0.406 Favourable 485 371 0.460 485

Recruited: 371 nmax=970 0.998 0.357 Favourable 485 371 0.430 485
75% Available: 364 nmax=728 0.999 0.382 Favourable 485 480 0.447 485

Recruited: 480 nmax=970 0.999 0.328 Favourable 485 480 0.410 485
80% OPTIMISTIC LIMIT
25% Available: 121 nmax=728 0.812 0.419 Favourable 485 496 0.466 485

Recruited:227 nmax=970 0.812 0.374 Favourable 485 496 0.440 485
50% Available: 243 nmax=728 0.938 0.406 Favourable 485 441 0.460 485

Recruited: 371 nmax=970 0.938 0.357 Favourable 485 441 0.430 485
75% Available: 364 nmax=728 0.989 0.382 Favourable 485 480 0.447 485

Recruited: 480 nmax=970 0.989 0.328 Favourable 485 480 0.410 485
90% OPTIMISTIC LIMIT
25% Available: 121 nmax=728 0.935 0.419 Favourable 485 425 0.466 485

Recruited:227 nmax=970 0.935 0.374 Favourable 485 425 0.440 485
50% Available: 243 nmax=728 0.971 0.406 Favourable 485 415 0.460 485

Recruited: 371 nmax=970 0.971 0.357 Favourable 485 415 0.430 485
75% Available: 364 nmax=728 0.994 0.382 Favourable 485 480 0.447 485

Recruited: 480 nmax=970 0.994 0.328 Favourable 485 480 0.410 485

Table C.12: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.

Table C.12 presents decisions for the three specified interim analyses. Promising zone and

stepwise designs only increase sample size at 50% data available, using the current trend

assumption. With nmax=1.5, both designs reach the maximum increase of 50%, and with

nmax=2, promising zone increases by 78%, compared to the maximum of 100% increase for

the stepwise design. The combination test would have increased in just one scenario (80%

optimistic limit, 25% data available) by just 11 patients (2%). The largest decrease occurs

at 25% data available under the current trend, to 47% of the original sample size planned.
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Figure C.17: Comparison of three SSR designs for the CASPER PLUS trial data

Figure C.17 compares n∗ under each assumption. No increase is seen at any point using the

hypothesised effect assumption. The combination test design would decrease sample size

at any interim point before 370 patients, after which the sample size would remain at the

originally planned sample size. Large fluctuations in sample size can be seen in the other

three assumptions: predominantly early on in the trial for the optimistic limits, and mainly

in the middle part of the trial for the current trend. An additional spike in sample size can

be seen using the 80% limit between 250 and 300 patients, with the largest rise in sample

size being seen for the stepwise design (blue). Figure C.18 shows the sequential and reverse

order estimates calculated from patient 20 onwards, after every 10 patients. The original

order estimate here starts far below the original analysis treatment effect. with even the upper

boundary of the 95% CI not reaching the largest boundary investigated, ±4*SE. However,

from this point forward it increases, reaching the ±4*SE, ±3*SE ,±2*SE, and ±1*SE

boundaries by 110, 120, 130 and 180 patients respectively. From 300 patients onwards (62%

through the trial), the estimate is within ±1*SE of the end estimate, and remains there. The

reverse order however, takes longer to first reach the ±1*SE boundary (240 patients), and
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to remain in this boundary (410 patients onwards, 85% through the trial).

(a) (b)

Figure C.18: Stability of the estimate in the CASPER PLUS trial. A comparison of sequential order,
reverse order, and the median of 1000 random orders

C.7 Epilepsy trial

Figure C.19 shows CP lines for the four treatment effect assumptions in the Epilepsy trial.

Whilst the trial data is re-imagined at two additional time points (1 day and 1 year), as well

as the original 19 weeks, CP values are the same for all time points, as there is no change

in sequential order. However, the combination test design takes into account the number of

patients already recruited, and therefore Figure C.20 showing n∗ also includes two additional

lines: one for 1 day data (orange) and 1 year (purple).

CP starts very low low (close to zero) and remains low throughout the trial duration.

Optimistic limit and hypothesised effect lines start close to 1 and gradually decrease to zero;

the optimistic limits having a sharper decrease (reaching zero by 50 patients), compared

to a more gradual decline (by patient 75). This corresponds to the n∗ plot (Figure C.20),

with the promising zone only increasing using the optimistic limits or hypothesised effect

cases, matching up with the time spent in the promising zone for each. The current trend

assumption does not result in an increase at all, with a decrease being seen in all three
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combination test designs prior to around 80 patients (2/3 through the trial). More increases

in sample size can be seen in the hypothesised effect assumption, predominantly in the

combination test design case, before establishing a decrease instead later on in the trial.

Optimistic values show a similar situation, but increases occur in a much smaller percentage

of values of n1 than in the hypothesised effect.

Figure C.19: Conditional power calculated after every patient in the Epilepsy trial
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Figure C.20: Comparison of three SSR designs for the Epilepsy trial data

In all cases, promising zone and stepwise designs remain at the originally planned 123 pa-

tients, with CP values <0.2 for all cases except at 25% data available using the hypothesised

effect, with a CP value of 0.84. All three combination test designs see a maximum increase

of doubling the sample size to 246 patients. One year results sees the most number of in-

creases in sample size, which corresponds to having a higher number recruited at the time

of the interim analysis. The largest sample size increase here is 32%, compared to 60%

decrease for the 19 week endpoint, or 75% decrease in the 1 day endpoint.

The original order estimate first reaches the±1*SE boundary at 30 patients (24% through

the trial) (Figure C.21). However, the estimate then drops to the ±2*SD, and even ±3*SD

boundary, until returning to within 1*SE from 100 patients (81% through the trial) onwards.

Similarly, the reverse order always falls within the±3*SE boundaries, remaining within the

±1*SE boundary slightly earlier (80 patient, 65% through the trial). This suggests that later

patients have outcomes closer to the hypothesised value of a 5 unit increase.
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(a) (b)

Figure C.21: Stability of the estimate in the Epilepsy trial. A comparison of sequential order,
reverse order, and the median of 1000 random orders

C.8 FLU A/H1N1 trial

CP (Figure C.22) under either optimistic limit or the hypothesised treatment effect remain

at 1 throughout the duration of the trial. On the other hand, the current trend assumption re-

sults in a highly fluctuating CP line for the first 25% data available, reaching both very high

(close to 1) and very low (close to zero) values, before eventually reaching the favourable

zone (>0.92) and mostly remaining there from patient 602 onwards. These rapid changes

in CP can also be seen on the corresponding n∗ graphs (Figure C.23) for the stepwise and

promising zone designs under the current trend assumption, also varying between the orig-

inal sample size and nmax. No sample size can be seen beyond n1=400 for the stepwise

design, and n1=700 for the promising zone design. The combination test design remains

consistent at the original sample size for all four assumptions. Promising zone and stepwise

design also see no increases in sample size using the optimistic limits or the hypothesised

effect assumptions. It should be noted for all three Flu vaccine trials, that all patients have

been recruited by the time any endpoint is collected due to the 12 day recruitment phase

(shortest outcome is 28 days). For this reason, the smallest n∗ can be using the combined

objective function, is the number recruited, which is the full original sample size n.
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Figure C.22: Conditional power calculated after every patient in the Flu A/H1N1 trial

Figure C.23: Comparison of three SSR designs for the Flu A/H1N1 trial data

The stepwise and combination test designs would have remained constant at the original

2182 patients at any interim point investigated here. The promising zone only sees one
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increase (by 15%), observed at 25% data available using the assumption of the current trend.

Figure C.24 shows the sequential and reverse order estimates through the trial duration for

the first strain in the flu vaccine trial (A/H1N1). Other than one brief drop beyond the±4*SE

zone at 110 patients, the estimate mainly stays within ±3*SE, and always within ±4*SE of

the actual treatment effect from the original analysis. The estimate lies in the darker green

boundary from 340 patients (16% through the trial). The estimate from the reverse order

also varies greatest near the beginning of the trial, but remains within the ±4*SE boundary

by patient 110 (5% through the trial). The reverse order estimate remains within the ±1SE

boundary from patient 690 (32%).

(a) (b)

Figure C.24: Stability of the estimate in the Flu A/H1N1 vaccine trial. A comparison of sequential
order, reverse order, and the median of 1000 random orders

C.9 FLU A/H3N2 trial

Figure C.25 shows CP calculated after every patient in the Flu vaccine A/H3N2 trial. The

hypothesised effect line remains at 1 at all n1 values. Current trend starts at zero, and gradu-

ally increases despite a couple of spikes in CP, reaching the favourable zone by patient 654,

before increasing to 1. Both optimistic limits have very rapid fluctuations in CP, changing

from ≈1 to ≈0 within <100 patients. Both lines settle at 1 by patient 400, and no more CP



C.9. FLU A/H3N2 trial 351

spikes can be seen after this point. Looking at the corresponding n∗ plots (Figure C.26), no

increase can be seen in any design using the hypothesised effect. Some early spikes occur

in the other three lines, but settle down before patient 400 (80% limit), 300 (90% limit) or

700 (current trend) for promising zone and stepwise designs. Again, no decrease is seen in

the combination test due to the short recruitment phase.

Figure C.25: Conditional power calculated after every patient in the Flu A/H3N2 trial
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Figure C.26: Comparison of three SSR designs for the Flu A/H3N2 trial data

Similarly to the Flu A/H1N1 trial, only one instance of sample size increase is observed

when limited to only the three specified interim analyses. Again, this is seen for the promis-

ing zone design at 25% data available, reaching the full maximum all owed sample size

(50% increase for nmax=1.5, and 100% for nmax=2).

Strain A/H3N2 has the lowest treatment estimate out of the three flu vaccine trial con-

tinuous outcomes, falling below even the non-inferiority limit before 270 patients (except

on brief spike at patient 40). From 330 patients, the estimate lies within 4*SEs, and from

560 patients (26%), lies within 2*SEs of the final treatment estimate. The inner boundary of

±1*SE is not maintained until 1350 patients onwards (62% through the trial). The reverse

order first enters the±1*SE boundary much earlier than the original order (90 patients com-

pared to 600). Additionally, the reverse order estimate remains in this boundary from 910

patients (42% through the trial, compared to 62% in the original sequential order).



C.10. FLU B1 trial 353

(a) (b)

Figure C.27: Stability of the estimate in the Flu A/H3N2 vaccine trial. A comparison of sequential
order, reverse order, and the median of 1000 random orders

C.10 FLU B1 trial

CP is much quicker to converge to 1 for the strain B1 in the flu vaccine trial, with lines

reaching 1 by patient 162 for the current trend, 38 for the 80% interval, and 16 for the 90%

interval. The hypothesised effect again remains at 1 for the entirety of the trial. Unsurpris-

ingly, this corresponds to a very early peak in new total sample size n∗ (Figure C.29) for the

trend and optimistic limit assumptions, but flatten out to maintain the original sample size at

all other values of n1. Additionally, no sample size increase is observed at any of the three

interim time points, for any design, under any assumption.
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Figure C.28: Conditional power calculated after every patient in the Flu B1 trial

Figure C.29: Comparison of three SSR designs for the Flu BN1 trial data

Whilst the estimate starts below the lower ±4*SE boundary, (and below the non-inferiority

limit), it quickly increases, and lies within ±3*SE boundary from patient 140 (150 for the
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±2*SD bound). However, the reverse order estimate starts well above the highest boundary

(+4*SE) and is slower to reach the ±1*SE limits. Both limits are slow to reach the inner

limits of±1*SE and remain there; 1000 patients (61%) for the original order, and 860 (53%)

for the reverse order.

(a) (b)

Figure C.30: Stability of the estimate in the Flu B1 vaccine trial. A comparison of sequential order,
reverse order, and the median of 1000 random orders

C.11 IMPROVE trial

Figure C.31 shows CP calculated after every patient assuming four different treatment ef-

fects. The hypothesised treatment effect assumption line starts at 1 and gradually decreases,

leaving the favourable zone by patient 167, the promising zone by 257 (nmax=1.5*n) or 269

(nmax=2*n). This line (red) has the highest CP values at any value of n1 (x-axis). The current

trend line starts very low, and remains always below the 10% futility bound, except for one

instance at 20 patients, which reaches the promising zone if nmax=2 (otherwise is classed as

the unfavourable zone). The optimistic limit assumptions result in large fluctuations early

in the trial, but settles to almost zero by the second interim time point (50% data available).

Both limits have a spike around 110-200 patients, but the 80% line stays within the un-

favourable zone for wither value of nmax. The 90% optimistic limit line lies in the promising
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zone a total of 35 times between patient 125 and 177 for nmax=1.5, and 45 times in the same

interval for nmax=2. Table C.3 summarises the number of times each line falls into the four

zones (with futility zone being included with unfavourable if no stopping boundary is being

used).

Figure C.31: Conditional power calculated after every patient in the IMPROVE trial

Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 0 159 18 40

Promising 0 97 32 65
Unfavourable 1 63 79 85
(Futility) 603 285 475 414

nmax=2 Favourable 0 159 18 40
Promising 1 100 35 74
Unfavourable 0 60 76 76
(Futility) 603 285 475 414

Table C.13: Number of times CP values fall in each zone for the promising zone design for the
IMPROVE trial. For a design where no futility boundary is considered, these values become
unfavourable instead.

Table C.14 presents three specified interim analysis time points (25, 50 and 75% patients

with data available), comparing decisions made and new total sample size from the three

SSR designs. No sample size increase would have been seen for any time point using the

stepwise design, and all values of n∗ = n = 613, the original planned sample size. One
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increase (n∗=1226) can be seen using the promising zone design, assuming a 90% optimistic

limit and maximum increase of twice the original sample size and 25% data available interim

time point. The new sample size from the combination test ranges from a decrease in sample

size of 74% (seen at 25% data available assuming current trend or either optimistic limit), to

an increase in sample size of 62%, seen at 50% data available under the hypothesised effect

assumption and a nmax=2, following a CP value of 21%.

Figure C.32 compares n∗ values for all n1 values, for three SSR designs. Other than

one sharp peak of n∗ for the promising zone at the 20 patient point discussed previously, no

increase in sample size can be seen under the current trend assumption. The combination

test would have decreased the sample size for every n1 value using the current trend or opti-

mistic 80% interval, and almost every n1 value under the other two assumptions. The largest

increase in sample size from the combination test design is from the hypothesised treatment

effect assumption, from ≈ 200-320 patients. The promising zone and stepwise designs also

see an increase in this range under the same assumption, but return to no increase in sample

size sooner.
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Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 154 nmax=920 0.001 0.419 Unfavourable 613 162 0.466 613

Recruited:162 nmax=1226 0.001 0.374 Unfavourable 613 162 0.440 613
50% Available: 307 nmax=920 0.000 0.406 Unfavourable 613 320 0.460 613

Recruited: 320 nmax=1226 0.000 0.357 Unfavourable 613 320 0.430 613
75% Available: 460 nmax=920 0.000 0.382 Unfavourable 613 479 0.446 613

Recruited: 479 nmax=1226 0.000 0.328 Unfavourable 613 479 0.410 613
HYPOTHESISED EFFECT
25% Available: 154 nmax=920 0.970 0.419 Favourable 613 494 0.466 613

Recruited:162 nmax=1226 0.970 0.374 Favourable 613 494 0.440 613
50% Available: 307 nmax=920 0.211 0.406 Unfavourable 613 320 0.460 613

Recruited: 320 nmax=1226 0.211 0.357 Unfavourable 613 991 0.430 613
75% Available: 460 nmax=920 0.000 0.382 Unfavourable 613 479 0.446 613

Recruited: 479 nmax=1226 0.000 0.328 Unfavourable 613 479 0.410 613
80% OPTIMISTIC LIMIT
25% Available: 154 nmax=920 0.195 0.419 Unfavourable 613 162 0.466 613

Recruited:162 nmax=1226 0.195 0.374 Unfavourable 613 162 0.440 613
50% Available: 307 nmax=920 0.007 0.406 Unfavourable 613 320 0.460 613

Recruited: 320 nmax=1226 0.007 0.357 Unfavourable 613 320 0.430 613
75% Available: 460 nmax=920 0.000 0.382 Unfavourable 613 479 0.446 613

Recruited: 479 nmax=1226 0.000 0.328 Unfavourable 613 479 0.410 613
90% OPTIMISTIC LIMIT
25% Available: 154 nmax=920 0.409 0.419 Unfavourable 613 162 0.466 613

Recruited:162 nmax=1226 0.409 0.374 Promising 1226 162 0.440 613
50% Available: 307 nmax=920 0.017 0.406 Unfavourable 613 320 0.460 613

Recruited: 320 nmax=1226 0.017 0.357 Unfavourable 613 320 0.430 613
75% Available: 460 nmax=920 0.000 0.382 Unfavourable 613 479 0.446 613

Recruited: 479 nmax=1226 0.000 0.328 Unfavourable 613 479 0.410 613

Table C.14: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.
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Figure C.32: Comparison of three SSR designs for the IMPROVE trial data

Figure C.33 shows the estimate calculated after every 10 patients in the original sequential

order and reverse order of the trial dataset from patient 40 onwards, with 4 investigated

boundaries for stability definition. The reverse order estimate always lies within the±4*SEs

of the assumed true treatment effect (black dotted line). However, the original order estimate

does not, until 110 patients (18% through the trial). The original order estimate first reaches

the ±1*SE boundaries later than the reverse order (160, 26% through the trial compared

to 40, 7%). However, both then subsequently leave this boundary, and do not remain there

until patient 350 (57%) for the reverse order estimate, compared with 460 (75%) for the

original order estimate. Note that while the estimate remains above the hypothesised effect

line, the model coefficients are on a log scale, and therefore a coefficient of 0 implies a OR

of 1, meaning no treatment difference.
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(a) (b)

Figure C.33: Stability of the estimate in the IMPROVE trial. A comparison of sequential order (a),
reverse order (b), and the median of 1000 random orders (a) and (b)

C.12 Corn plasters trial

Figure C.34 shows CP for the four future treatment effect assumptions, and Table C.15

summarises the time each CP line spends in each zone. The hypothesised treatment effect,

and both optimistic limit lines start and end at 1, varying between favourable and promising

zones in between. The hypothesised effect line starts smoother than the confidence limit

assumption lines, but eventually follows the same pattern of spikes by 80 patients. On the

other hand, the current trend line starts low (close to zero) and ends close to 1. However, the

line fluctuates greatly in CP values, shifting between zones multiple times throughout the

trial duration. This corresponds to the plot of n∗ values under the current trend (Figure C.35,

where n∗ fluctuates a great deal in all three designs, throughout the trial. The combination

test results in a decrease in sample size early on in the trial under any of the four assumptions,

and continues this pattern in the optimstic limit and hypothesised effect assumptions. The

stepwise design sees the highest n∗ values, reaching nmax=1.5 in all cases, and nmax=2 in all

but the 90% limit assumption. It should be noted that under the current assumption, the trial

would have stopped for futility 22 times before patient 40, regardless of SSR design used,

as CP values fall below the 10% boundary (if using).
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Figure C.34: Conditional power calculated after every patient in the Corn plasters trial

Figure C.35: Comparison of three SSR designs for the Corn plasters trial data
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Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 58 143 162 190

Promising 54 50 31 3
Unfavourable 59 0 0 0
(Futility) 22 0 0 0

nmax=2 Favourable 58 143 162 190
Promising 67 50 31 3
Unfavourable 46 0 0 0
(Futility) 22 0 0 0

Table C.15: Number of times CP values fall in each zone for the promising zone design for the Corn
plasters trial. For a design where no futility boundary is considered, these values become
unfavourable instead.

Table C.16 gives full details of the three interim time points investigated, for the three de-

signs under comparison. Under the current trend, the promising zone would have increased

to the full nmax value for both 25% and 50% data available time points. Additionally, a small

increase of 5% can be seen under the hypothesised effect assumption at the 50% time point

for the promising zone design. The stepwise design sees three increases in sample size,

all at the 50% data available time point: once under the current trend with nmax=2 (34%

increase), and both values of nmax under the hypothesised effect (17% and 34% increases

respectively). The combination test only sees increases under the current trend, from just 1

patient (at 75% data available), to an increase of 84%. The smallest observed decrease in

sample size is 52% of the original n.
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Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 51 nmax=303 0.454 0.419 Promising 303 303 0.466 202

Recruited:74 nmax=404 0.454 0.374 Promising 404 344 0.440 202
50% Available: 101 nmax=303 0.436 0.406 Promising 303 303 0.460 202

Recruited: 112 nmax=404 0.436 0.357 Promising 404 372 0.429 270
75% Available: 152 nmax=303 0.953 0.382 Favourable 202 203 0.447 202

Recruited: 195 nmax=404 0.953 0.327 Favourable 202 203 0.410 202
HYPOTHESISED EFFECT
25% Available: 51 nmax=303 0.968 0.419 Favourable 202 136 0.466 202

Recruited:74 nmax=404 0.968 0.374 Favourable 202 136 0.440 202
50% Available: 101 nmax=303 0.772 0.406 Promising 213 235 0.460 236

Recruited: 112 nmax=404 0.772 0.357 Promising 213 235 0.429 270
75% Available: 152 nmax=303 0.960 0.382 Favourable 202 198 0.447 202

Recruited: 195 nmax=404 0.960 0.327 Favourable 202 198 0.410 202
80% OPTIMISTIC LIMIT
25% Available: 51 nmax=303 0.982 0.419 Favourable 202 126 0.466 202

Recruited:74 nmax=404 0.982 0.374 Favourable 202 126 0.440 202
50% Available: 101 nmax=303 0.869 0.406 Favourable 202 202 0.460 202

Recruited: 112 nmax=404 0.869 0.357 Favourable 202 202 0.429 202
75% Available: 152 nmax=303 0.992 0.382 Favourable 202 195 0.447 202

Recruited: 195 nmax=404 0.992 0.327 Favourable 202 195 0.410 202
90% OPTIMISTIC LIMIT
25% Available: 51 nmax=303 0.997 0.419 Favourable 202 105 0.466 202

Recruited:74 nmax=404 0.997 0.374 Favourable 202 105 0.440 202
50% Available: 101 nmax=303 0.931 0.406 Favourable 202 179 0.460 202

Recruited: 112 nmax=404 0.931 0.357 Favourable 202 179 0.429 202
75% Available: 152 nmax=303 0.996 0.382 Favourable 202 195 0.447 202

Recruited: 195 nmax=404 0.996 0.327 Favourable 202 195 0.410 202

Table C.16: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.

The original order treatment estimate (Figure C.36) starts by moving from the upper to

lower 3*SE boundaries, before entering the ±1*SE boundary, where it stays until straying

just outside at 140 patients. Therefore, the estimate does not strictly remain in this boundary

until 150 patients, 74% through the trial duration. The reverse estimate however (Figure

C.36b), does not provide a valid estimate until 30 patients in, where it lies in the red lower

boundary (-4*SE). From patient 70 onwards, 35% through the trial, the estimate remains

within the ±1*SE boundaries.



C.13. AMAZE trial 364

(a) (b)

Figure C.36: Stability of the estimate in the Corn plasters trial. A comparison of sequential order
(a), reverse order (b), and the median of 1000 random orders (a) and (b)

C.13 AMAZE trial

Figure C.37 shows CP values using the AMAZE trial data under four treatment effect as-

sumptions. A similar pattern to that observed in the Corn plasters trial can be seen here, with

the current trend gradually increasing from 0 to 1, with some small fluctuations in between,

and the remaining three lines starting and ending at 1, dropping in CP in the middle portion

of the trial. However, here peaks from the optimistic limits momentarily reach even the

unfavourable zone (only in nmax =1.5 for the 90% limit). The current trend assumption falls

below the futility bound 126 times (Table C.17), and therefore would have stopped the trial

if an interim analysis had taken place at any of these points. After patient 270, CP values lie

in the favourable zone for all assumptions of future treatment effect.



C.13. AMAZE trial 365

Figure C.37: Conditional power calculated after every patient in the AMAZE trial

Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 76 217 175 251

Promising 39 108 145 74
Unfavourable 88 4 9 4
(Futility) 126 0 0 0

nmax=2 Favourable 76 217 175 251
Promising 42 112 147 77
Unfavourable 85 0 7 1
(Futility) 126 0 0 0

Table C.17: Number of times CP values fall in each zone for the promising zone design for the
AMAZE trial. For a design where no futility boundary is considered, these values become
unfavourable instead.

Table C.18 describes the three chosen interim time points using each SSR design, and deci-

sions on new total sample size n∗. The promising zone design n∗ increases range from just

3% increase (90% limit, 50% data available), to 24% (80% limit, 50% data available). The

combination test only sees decreases in sample size under the current trend (25 and 50% data

available) and the hypothesised effect (25% data available), with decreases ranging from

49% to 93% of the original planned sample size. The maximum increase observed is 47%,

under the 80% limit at 50% data available. The stepwise design sees the greatest increase

in sample size, reaching the maximum sample size allowed at 75% data available under the

current trend, 50% under the hypothesised effect, and 25% under the 80% limit. Extending
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the investigation of n∗ for every n1 patients (Figure C.38) sees the largest region of increases

under the optimistic limits, and a small region of moderate increase under the current trend

for the combination test design. Despite a small region of sample size increase under the

current trend for promising zone and stepwise designs, the increases are much sharper than

the combination test, even reaching nmax=2. Promising zone sees smaller increases in sam-

ple size than both stepwise and combination test designs under the hypothesised treatment

effect.

Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 88 nmax=525 0.040 0.419 Unfavourable 348 172 0.466 348

Recruited: 172 nmax=700 0.040 0.374 Unfavourable 348 172 0.44 348
50% Available: 175 nmax=525 0.142 0.406 Unfavourable 348 250 0.46 348

Recruited: 250 nmax=700 0.142 0.357 Unfavourable 348 250 0.43 348
75% Available: 263 nmax=525 0.641 0.382 Promising 419 442 0.447 522

Recruited: 325 nmax=700 0.641 0.328 Promising 419 442 0.41 696
HYPOTHESISED EFFECT
25% Available: 88 nmax=525 0.954 0.419 Favourable 348 323 0.466 348

Recruited: 172 nmax=700 0.954 0.374 Favourable 348 323 0.440 348
50% Available: 175 nmax=525 0.657 0.406 Promising 389 482 0.460 522

Recruited: 250 nmax=700 0.657 0.357 Promising 389 482 0.430 696
75% Available: 263 nmax=525 0.789 0.382 Favourable 348 418 0.447 406

Recruited: 325 nmax=700 0.789 0.328 Favourable 348 418 0.410 464
80% OPTIMISTIC LIMIT
25% Available: 88 nmax=525 0.682 0.419 Promising 384 464 0.466 522

Recruited: 172 nmax=700 0.682 0.374 Promising 384 464 0.440 696
50% Available: 175 nmax=525 0.583 0.406 Promising 433 512 0.460 464

Recruited: 250 nmax=700 0.583 0.357 Promising 433 512 0.430 580
75% Available: 263 nmax=525 0.864 0.382 Favourable 348 393 0.447 348

Recruited: 325 nmax=700 0.864 0.328 Favourable 348 393 0.410 348
90% OPTIMISTIC LIMIT
25% Available: 88 nmax=525 0.865 0.419 Favourable 348 380 0.466 348

Recruited: 172 nmax=700 0.865 0.374 Favourable 348 380 0.440 348
50% Available: 175 nmax=525 0.717 0.406 Promising 359 457 0.460 464

Recruited: 250 nmax=700 0.717 0.357 Promising 359 457 0.430 580
75% Available: 263 nmax=525 0.905 0.382 Favourable 348 377 0.447 348

Recruited: 325 nmax=700 0.905 0.328 Favourable 348 377 0.410 348

Table C.18: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.
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Figure C.38: Comparison of three SSR designs for the AMAZE trial data

Figure C.39 shows the estimate calculated every 10 patients using data from the AMAZE

trial, for the original sequential and reverse orders. The original order estimate always lies

within ±3*SEs from the assumed true treatment effect, but does not first reach the ±1*SE

boundary until 180 patients (52% through the trial). From 230 patients, the estimate remains

within the green boundary (66% through). At 140 patients, the reverse estimate goes beyond

the yellow (±3*SE) boundary maintained by the original order. It also reaches the green

(±1*SE) at a later stage than the original order (270 patients, 78% through the trial). The

original order estimate mostly lies below that hypothesised, although hypothesised and that

seen in the original analysis are actually very close together.



C.14. 3MG trial 368

(a) (b)

Figure C.39: Stability of the estimate in the AMAZE trial. A comparison of sequential order (a),
reverse order (b), and the median of 1000 random orders (a) and (b)

C.14 3MG trial

Similarly to the Epilepsy trial presented in Section C.7, 3MG reuses the same outcome data

more than once, which affects the number recruited at the time of the three % available

interim time points chosen. As CP remains the same, one further vertical line can be seen

in Figure C.40; the dashed grey line representing the numbers recruited if a 7 day outcome

were used (original analysis), or a dotted line for the one year (re-imagined time point)

outcome. Additionally, a column has been added to Table C.20, as patients recruited so far

affects the combination test design.

CP, calculated from patient 8 onwards, using the current trend largely stays <0.5, with

1020/1076 instances in the unfavourable/(futility) zones using nmax=1.5, and 974 for nmax=2

(Table C.19). The trial would have stopped for futility at the 25% data available time point,

whereas CP values lie just above this boundary at the 75% time point (CP=0.118). The

hypothesised effect, however, starts at 1, and does not really start decreasing before this first

interim time point. Other than three main peaks of CP, this line gradually decreases, falling

below the futility line by patient 917, and again from 926 onwards. The optimistic limit

lines generally follow the same pattern as the hypothesised effect, but are more susceptible
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to fluctuations in treatment estimate; the 80% limit especially. This is particularly prominent

in patients 46 to 80, with CP dropping from 0.997, to 0.342, and back up to 0.995 within the

space of 35 patients.

Figure C.40: Conditional power calculated after every patient in the 3MG trial

Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 6 505 231 377

Promising 50 349 572 473
Unfavourable 595 58 101 57
(Futility) 425 164 172 169

nmax=2 Favourable 6 505 231 377
Promising 96 376 599 490
Unfavourable 549 31 74 40
(Futility) 425 164 172 169

Table C.19: Number of times CP values fall in each zone for the promising zone design for the 3MG
trial. For a design where no futility boundary is considered, these values become unfavourable
instead.

Table C.20 gives more details on the three chosen interim analyses, comparing three

SSR designs. The promising zone design sees no increases under the current trend, and

increases ranging from 7% (50% data available, hypothesised treatment effect), to 68%

(75% available, 90% limit, nmax=2). The stepwise design sees no increase under the current

trend and only one increase (75% through, nmax=2) under the hypothesised effect (33%).
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Using the optimistic limit, n∗ ranges from staying at the originally planned sample size, to

increaseing to the full nmax=2 (50% through, 80% limit).

Figure C.41 shows n∗ calculated after every n1. Combination test design sees only de-

creases or the original sample size under the current trend, and small regions of a minor

increase under the remaining three assumptions.Promising zone sample size rapidly fluctu-

ates between n and nmax using the current trend assumption, and large regions of increasing

sample size using the optimistic limits. The stepwise design has very few ares of sample

size increase using the current trend, compared to a large number of times increasing to the

full nmax using the 80% optimistic limit.

Promising zone
Combination
test (1 week)

Combination
test (1 year)

Stepwise design

Max increase CP CPmin Zone n∗ n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 271 nmax=1626 0.050 0.419 Unfavourable 1084 277 604 0.466 1084

Recruited: 277/604 nmax=2168 0.050 0.374 Unfavourable 1084 277 604 0.440 1084
50% Available: 542 nmax=1626 0.181 0.406 Unfavourable 1084 551 901 0.460 1084

Recruited: 551/901 nmax=2168 0.181 0.357 Unfavourable 1084 551 901 0.430 1084
75% Available: 813 nmax=1626 0.118 0.382 Unfavourable 1084 820 1084 0.447 1084

Recruited: 820/1084 nmax=2168 0.118 0.328 Unfavourable 1084 820 1084 0.410 1084
HYPOTHESISED EFFECT
25% Available: 271 nmax=1626 0.993 0.419 Favourable 1084 641 641 0.466 1084

Recruited: 277/604 nmax=2168 0.993 0.374 Favourable 1084 641 641 0.440 1084
50% Available: 542 nmax=1626 0.826 0.406 Promising 1164 926 926 0.460 1084

Recruited: 551/901 nmax=2168 0.826 0.357 Promising 1164 926 926 0.430 1084
75% Available: 813 nmax=1626 0.423 0.382 Promising 1626 1149 1149 0.447 1084

Recruited: 820/1084 nmax=2168 0.423 0.328 Promising 1763 1149 1149 0.410 1446
80% OPTIMISTIC LIMIT
25% Available: 271 nmax=1626 0.718 0.419 Promising 1459 302 604 0.466 1446

Recruited: 277/604 nmax=2168 0.718 0.374 Promising 1459 302 604 0.440 1807
50% Available: 542 nmax=1626 0.644 0.406 Promising 1558 844 901 0.460 1626

Recruited: 551/901 nmax=2168 0.644 0.357 Promising 1558 844 901 0.430 2168
75% Available: 813 nmax=1626 0.328 0.382 Unfavourable 1084 901 1084 0.447 1084

Recruited: 820/1084 nmax=2168 0.328 0.328 Unfavourable 1084 901 1084 0.410 1084
90% OPTIMISTIC LIMIT
25% Available: 271 nmax=1626 0.886 0.419 Favourable 1084 725 725 0.466 1084

Recruited: 277/604 nmax=2168 0.886 0.374 Favourable 1084 725 725 0.440 1084
50% Available: 542 nmax=1626 0.768 0.406 Promising 1275 923 923 0.460 1265

Recruited: 551/901 nmax=2168 0.768 0.357 Promising 1275 923 923 0.430 1446
75% Available: 813 nmax=1626 0.407 0.382 Promising 1626 1126 1126 0.447 1084

Recruited: 820/1084 nmax=2168 0.407 0.328 Promising 1819 1126 1126 0.410 1084

Table C.20: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.
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Figure C.41: Comparison of three SSR designs for the 3MG trial data

The original order and reverse estimates calculated after every 10 patients can be seen in

Figure C.42. The original estimate is highly variable at the start, and does not keep within

even the ±4*SE boundaries until 80 patients onwards. After this point, it quickly reaches

the ±2*SE boundaries, and other than straying into the next boundary at 190 patients, stays

within these limits. The estimate lies entirely within±1*SE boundary only from patient 660

onwards (61% through the trial). Whilst also starting outside any investigated boundary, the

reverse order estimate is quicker to reach each boundary compared to the original order

estimate. The reverse estimate reaches the inner ±1*SE boundaries at 540 patients and

remains there from that point forward.
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(a) (b)

Figure C.42: Stability of the estimate in the 3MG trial. A comparison of sequential order (a),
reverse order (b), and the median of 1000 random orders (a) and (b)

C.15 RATPAC trial

Figure C.43 shows CP values calculates after every patient in the RATPAC trial. Both op-

timistic limits and the hypothesised effect remain consistently at 1 throughout the trial du-

ration. The current trend assumption has one small peak between patients 53 and 188, but

remains in the favourable zone. It should be noted that the RATPAC trial terminated early

due to slow recruitment and a CP calculation, and so power has been adjusted from the

original 80%. Because CP remains consistently high, no sample size increase can be seen

for promising zone or stepwise designs at the 3 interim timepoint (Table C.21). Sample size

decreases from the combination test range from 44% to 95% of the original 2243 patients.

Extending the n∗ calculations to every n1 (Figure C.44), the stepwise design using the cur-

rent trend has one peak early on in the trial duration, but otherwise remains at 2243 patints.

Promising zone design would have always remained at 2243 patients under any assump-

tion, and the combination test would have decreased the sample size anywhere before 1800

patients, or remained at the 2243 at any point after this.
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Figure C.43: Conditional power calculated after every patient in the RATPAC trial
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Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 561 nmax=3365 1.000 0.419 Favourable 2243 978 0.466 2243

Recruited: 978 nmax=4486 1.000 0.382 Favourable 2243 978 0.440 2243
50% Available: 1122 nmax=3365 1.000 0.406 Favourable 2243 1606 0.460 2243

Recruited: 1606 nmax=4486 1.000 0.377 Favourable 2243 1606 0.430 2243
75% Available: 1683 nmax=3365 1.000 0.382 Favourable 2243 2136 0.447 2243

Recruited: 2136 nmax=4486 1.000 0.371 Favourable 2243 2136 0.410 2243
HYPOTHESISED EFFECT
25% Available: 561 nmax=3365 1.000 0.419 Favourable 2243 978 0.466 2243

Recruited: 978 nmax=4486 1.000 0.382 Favourable 2243 978 0.440 2243
50% Available: 1122 nmax=3365 1.000 0.406 Favourable 2243 1606 0.460 2243

Recruited: 1606 nmax=4486 1.000 0.377 Favourable 2243 1606 0.430 2243
75% Available: 1683 nmax=3365 1.000 0.382 Favourable 2243 2136 0.447 2243

Recruited: 2136 nmax=4486 1.000 0.371 Favourable 2243 2136 0.410 2243
80% OPTIMISTIC LIMIT
25% Available: 561 nmax=3365 1.000 0.419 Favourable 2243 978 0.466 2243

Recruited: 978 nmax=4486 1.000 0.382 Favourable 2243 978 0.440 2243
50% Available: 1122 nmax=3365 1.000 0.406 Favourable 2243 1606 0.460 2243

Recruited: 1606 nmax=4486 1.000 0.377 Favourable 2243 1606 0.430 2243
75% Available: 1683 nmax=3365 1.000 0.382 Favourable 2243 2136 0.447 2243

Recruited: 2136 nmax=4486 1.000 0.371 Favourable 2243 2136 0.410 2243
90% OPTIMISTIC LIMIT
25% Available: 561 nmax=3365 1.000 0.419 Favourable 2243 978 0.466 2243

Recruited: 978 nmax=4486 1.000 0.382 Favourable 2243 978 0.440 2243
50% Available: 1122 nmax=3365 1.000 0.406 Favourable 2243 1606 0.460 2243

Recruited: 1606 nmax=4486 1.000 0.377 Favourable 2243 1606 0.430 2243
75% Available: 1683 nmax=3365 1.000 0.382 Favourable 2243 2136 0.447 2243

Recruited: 2136 nmax=4486 1.000 0.371 Favourable 2243 2136 0.410 2243

Table C.21: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.



C.15. RATPAC trial 375

Figure C.44: Comparison of three SSR designs for the RATPAC trial data

Figure C.45 shows original sequential and reverse order estimates from the RATPAC

trial. Both original order and reverse order estimates are highly variable towards the begin-

ning of the study. The original order starts high but quickly drops below the -4*SE boundary

within 40 patients. From 200 patients onwards, the estimate is contained within the outer

boundary investigated (±4*SE). It does not reach the inner (±1*SE) boundary (green) until

1910 patients, 85% through the trial duration (other than briefly at 40 patients). In terms of

the ±1*SE boundary, the reverse order is similar to the original sequential order, in that it

briefly reaches this limit at 60 patients, but does not remain there until 1840 patients (82%

through). However, the reverse order is much higher than the assumed true treatment effect,

and does not remain even within the ±4*SE boundaries until patient 930 (41%). This high-

lights how different patients are at the start than at the end of the trial. Additionally, had an

interim analysis stopped the trial earlier than it did, some CIs do not contain the assumed

“true” treatment effect, and would therefore have under-estimated the treatment effect with

the original order in mind.
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(a) (b)

Figure C.45: Stability of the estimate in the RATPAC trial. A comparison of sequential order (a),
reverse order (b), and the median of 1000 random orders (a) and (b)

C.16 Nasal sprays trial

Figure C.46 shows CP values for the four future treatment effect assumptions using the data

from the nasal sprays trials. All four lines start and end at 1, despite a late dip in CP from

260 patients, resulting in 7 instances in the promising zone under the current trend, or 5 for

the other three assumptions. This peak corresponds with Figure C.47, showing new total

sample size n∗ for every n1. A small increase can be seen under any assumption for the

combination test and promising zone designs, compared to a large peak of nmax using the

stepwise design.
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Figure C.46: Conditional power calculated after every patient in the Nasal sprays trial

Figure C.47: Comparison of three SSR designs for the Nasal spray trial data

The change in new total sample size further highlighted in Table C.22, looking at the three

chosen time points in more depth. No sample size increase is seen at any interim time point
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for promising zone or stepwise designs. Sample size decreases using the combination test

design range from just 32% of the original sample size, to 89%.

Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 69 nmax=414 1.000 0.419 Favourable 276 97 0.466 276

Recruited: 69 nmax=552 1.000 0.374 Favourable 276 97 0.440 276
50% Available: 138 nmax=414 1.000 0.406 Favourable 276 166 0.460 276

Recruited: 138 nmax=552 1.000 0.357 Favourable 276 166 0.430 276
75% Available: 207 nmax=414 1.000 0.382 Favourable 276 233 0.447 276

Recruited: 209 nmax=552 1.000 0.328 Favourable 276 233 0.410 276
HYPOTHESISED EFFECT
25% Available: 69 nmax=414 1.000 0.419 Favourable 276 94 0.466 276

Recruited: 69 nmax=552 1.000 0.374 Favourable 276 94 0.440 276
50% Available: 138 nmax=414 1.000 0.406 Favourable 276 162 0.460 276

Recruited: 138 nmax=552 1.000 0.357 Favourable 276 162 0.430 276
75% Available: 207 nmax=414 1.000 0.382 Favourable 276 229 0.447 276

Recruited: 209 nmax=552 1.000 0.328 Favourable 276 229 0.410 276
80% OPTIMISTIC LIMIT
25% Available: 69 nmax=414 1.000 0.419 Favourable 276 90 0.466 276

Recruited: 69 nmax=552 1.000 0.374 Favourable 276 90 0.440 276
50% Available: 138 nmax=414 1.000 0.406 Favourable 276 161 0.460 276

Recruited: 138 nmax=552 1.000 0.357 Favourable 276 161 0.430 276
75% Available: 207 nmax=414 1.000 0.382 Favourable 276 229 0.447 276

Recruited: 209 nmax=552 1.000 0.328 Favourable 276 229 0.410 276
90% OPTIMISTIC LIMIT
25% Available: 69 nmax=414 1.000 0.419 Favourable 276 88 0.466 276

Recruited: 69 nmax=552 1.000 0.374 Favourable 276 88 0.440 276
50% Available: 138 nmax=414 1.000 0.406 Favourable 276 160 0.460 276

Recruited: 138 nmax=552 1.000 0.357 Favourable 276 160 0.430 276
75% Available: 207 nmax=414 1.000 0.382 Favourable 276 228 0.447 276

Recruited: 209 nmax=552 1.000 0.328 Favourable 276 228 0.410 276

Table C.22: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.

The estimate for the nasal spray trial starts in the ±2*SE boundary at 10 patients using

the original sequential order (Figure C.48). However, it then ventures beyond the upper

4*SE limit shortly after, over-estimating the treatment effect assumed to be true. By 40

patients, the estimate has moved back within the ±3*SE boundary, and by 70 (25% through

the trial), to the ±1*SD boundary, where it remains. The reverse order estimate however,

starts just above the ±4*SE zone, but quickly falls below. From patient 130 onwards (47%
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through the trial) the reverse order estimate remains within the ±1*SE limit boundaries,

where it stays.

(a) (b)

Figure C.48: Stability of the estimate in the Nasal sprays trial. A comparison of sequential order
(a), reverse order (b), and the median of 1000 random orders (a) and (b)

C.17 Mencevax (Strain A) trial

Figure C.49 shows CP after every patient. The Mencevax outcome assumed rate was very

high (98% in both groups), and as no patient had a negative outcome in one group until

around patient 70, CP under the current trend starts very low, and suddenly spikes at the first

instance of a non-zero cell in the outcome and group 2x2 table. From this point forward,

the CP remains high for all four CP lines. Due to the 99% power of the trial, the favourable

zone is very small on the graph, but is reached in a large number of instances under all four

assumptions (Table C.23).
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Figure C.49: Conditional power calculated after every patient in the Mencevax (Strain A) trial

Current trend Hyp. effect 80% limit 90% limit
nmax=1.5 Favourable 139 137 194 205

Promising 44 115 57 47
Unfavourable 7 0 1 0
(Futility) 62 0 0 0

nmax=2 Favourable 139 137 194 205
Promising 44 115 58 47
Unfavourable 7 0 0 0
(Futility) 62 0 0 0

Table C.23: Number of times CP values fall in each zone for the promising zone design for the
Mencevax (Strain A) trial. For a design where no futility boundary is considered, these values
become unfavourable instead.

Table C.24 gives further details of the three interim time points for the three designs.

At the first interim time point using the current trend, all designs would have stopped for

futility, if the 10% boundary had been used. Otherwise, promising zone designs and step-

wise designs would have continued to 261 patients, compared to a decrease of 38% using

the combination test design. Using the other three assumptions, all three designs would only

see increases at the 25% point, ranging from 17% (stepwise design, 80% limit, nmax=1.5),

to 100% (promising zone design, nmax=2, optimistic limits and hypothesised effect).

Figure C.50 shows n∗ after every n1. The stepwise design has the smallest region of

sample size increase in all four assumptions, but still reaches nmax=2 in three of the four.
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The promising zone design has the largest region of increase, the largest being under the

hypothesised effect. All four instances see nmax being reached. The combination test sees

nmax=1.5 being reached in three cases, almost extending to the nmax=2 using the 80% opti-

mistic confidence limit.

Promising zone
Combination
test

Stepwise design

Max increase CP CPmin Zone n∗ n∗ CPmin n∗

CURRENT TREND
25% Available: 66 nmax=392 0.011 0.419 Unfavourable 261 163 0.466 261

Recruited: 163 nmax=522 0.011 0.374 Unfavourable 261 163 0.440 261
50% Available: 131 nmax=392 0.999 0.406 Favourable 261 235 0.459 261

Recruited: 235 nmax=522 0.999 0.357 Favourable 261 235 0.430 261
75% Available: 196 nmax=392 1.000 0.382 Favourable 261 252 0.446 261

Recruited: 252 nmax=522 1.000 0.328 Favourable 261 252 0.410 261
HYPOTHESISED EFFECT
25% Available: 66 nmax=392 0.718 0.419 Promising 392 372 0.466 348

Recruited: 163 nmax=522 0.718 0.374 Promising 522 372 0.440 435
50% Available: 131 nmax=392 0.990 0.406 Favourable 261 235 0.459 261

Recruited: 235 nmax=522 0.990 0.357 Favourable 261 235 0.430 261
75% Available: 196 nmax=392 1.000 0.382 Favourable 261 252 0.446 261

Recruited: 252 nmax=522 1.000 0.328 Favourable 261 252 0.410 261
80% OPTIMISTIC LIMIT
25% Available: 66 nmax=392 0.470 0.419 Promising 392 392 0.466 305

Recruited: 163 nmax=522 0.470 0.374 Promising 522 480 0.440 348
50% Available: 131 nmax=392 1.000 0.406 Favourable 261 235 0.459 261

Recruited: 235 nmax=522 1.000 0.357 Favourable 261 235 0.430 261
75% Available: 196 nmax=392 1.000 0.382 Favourable 261 252 0.446 261

Recruited: 252 nmax=522 1.000 0.328 Favourable 261 252 0.410 261
90% OPTIMISTIC LIMIT
25% Available: 66 nmax=392 0.709 0.419 Promising 392 376 0.466 348

Recruited: 163 nmax=522 0.709 0.374 Promising 522 376 0.440 435
50% Available: 131 nmax=392 1.000 0.406 Favourable 261 235 0.459 261

Recruited: 235 nmax=522 1.000 0.357 Favourable 261 235 0.430 261
75% Available: 196 nmax=392 1.000 0.382 Favourable 261 252 0.446 261

Recruited: 252 nmax=522 1.000 0.328 Favourable 261 252 0.410 261

Table C.24: New total sample size required for each of the three designs investigated at three time
points and two values of nmax. CPmin values are given for the promising zone and stepwise designs,
and zone is given for the promising zone design.
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Figure C.50: Comparison of three SSR designs for the Mencevax (Strain A) trial data

Figure C.51 shows the original and reverse ordered estimate calculated every 10 patients

from patient 40 onwards. Prior to patient 80, no valid estimate can be obtained due to the

rare nature of a negative outcome (2% assumed rate in each group). From this point forward

however, the original order estimate always lies within the smallest investigated boundaries,

±1*SE. The reverse order starts in the same way and has no valid estimate prior to patient

90. After this point, it reaches the±1*SE boundary. However, it also reaches the lower, and

later the upper, limit of the ±2*SE boundaries. From patient 200 (77% through) however,

the reverse order estimate remains inside the ±1*SE boundary.
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(a) (b)

Figure C.51: Stability of the estimate in the Mencevax A trial. A comparison of sequential order (a),
reverse order (b), and the median of 1000 random orders (a) and (b)

C.18 Mencevax (Strain C) trial

CP (shown in Figure C.52) is 1 throughout the trial under either optimistic limit of hypoth-

esised effect assumption. Under the current trend, CP starts at almost zero, rapidly peaking

to ≈1 at just 20 patients, where it remains for the remainder of the trial. Because of the

extended time frame for primary outcome data collection (1 year), All patients have been

recruited by the first interim time point (25% data available). Therefore no decreases in sam-

ple size can be seen using the combination test. Additionally, because of the very high CP

values seen almost everywhere, no increase in sample size can be seen using the promising

zone or stepwise designs either at any value of n1 (Figure C.53). Note that if a futility bound

had been used, and a very early interim analysis prior to 20 patients, using the current trend

would have resulted in the trial stopping for futility.
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Figure C.52: Conditional power calculated after every patient in the Mencevax (Strain C) trial

Figure C.53: Comparison of three SSR designs for the Mencevax (Strain C) trial data

Figure C.54 shows the original and reverse order estimates from the Mencevax trial,

looking at the strain C data only. In both cases, the estimate lies well above the non-

inferiority limit. The original order lies mainly underneath the actual treatment effect from
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the original analysis, under-estimating this value. The estimate always lies within ±3*SE

boundary, first reaching the ±1*SE limit at patient 40, but only remains there from patient

150 onwards. The reverse estimate however slightly over-estimates the treatment effect

early in the trial, and only remains within the ±4*SE boundaries throughout. It first reaches

the ±1*SE limit at 50 patients (19% through the trial), but remains there from this point

forward only from patient 130 (50%).

(a) (b)

Figure C.54: Stability of the estimate in the Mencevax C trial. A comparison of sequential order
(a), reverse order (b), and the median of 1000 random orders (a) and (b)

C.19 FLU A/H1N1 (Seroconversion) trial

CP values using the A/H1N1 strain data from the flu vaccine trial is shown in Figure C.55.

Optimistic confidence limit lines are remain≈1 throughout the trial. The hypothesised effect

assumption line (calculated from patient 10 onwards) begins just outside the favourable

zone, and remains intermittently between this boundary for the first 400 patients. After this

point, CP remains in the favourable zone, reaching ≈1 by 1600 patients. The current trend

line on the other hand, is highly variable, rapidly switching between zones, before steadily

increasing to 1 by 1600 patients.
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Figure C.55: Conditional power calculated after every patient in the Flu A/H1N1 (Seroconversion)
trial

Under the current trend, a sample size increase is seen to the full allowed maximum

at 25% data available with promising zone and stepwise designs, and an increase of 26%

at either maximum at the 50% data available time point using the promising zone design.

Combination test designs see no increase at any of the three interim time points investigated.

Figure C.56 shows new n∗ after every n1 patients. A few small increases can be seen in the

early stages of the trial (<400 patients) using the promising zone design and hypothesised

effect assumption. However, under the current trend assumption, both stepwise and promis-

ing zone designs see large increases in the first third of the trial, and more modest increases

in the second third for the promising zone design, and almost no increases in the same re-

gion for the stepwise design. Again, no decreases in sample size can be seen due to the rapid

recruitment rate of the trial, resulting in all patients being recruited before primary outcome

data becomes available.
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Figure C.56: Comparison of three SSR designs for the Flu A/H1N1 (Seroconversion) trial data

The estimate for the flu A/H1N1 vaccine using the seroconversion (binary) endpoint

remains above the non-inferiority limit at all times for both the original sequential order and

the reverse order, although it does get close in one instance for the reverse order estimate.

The original order estimate remains in the ±1*SE boundary from an earlier time point than

the reverse order (330 patients (15%), compared to 620 (28%)). The biggest differences

(furthest away) from the end estimate value (“true” treatment effect) are seen in the reverse

order, which starts well above the upper 4*SE limit, and does not stay within these bounds

until patient 110 (5% onwards).
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(a) (b)

Figure C.57: Stability of the estimate in the Flu A/H1N1 vaccine trial. A comparison of sequential
order, reverse order, and the median of 1000 random orders

C.20 FLU A/H3N2 (Seroconversion) trial

Figure C.58 shows CP values calculated after every patient. In the first 600 patients, the

optimistic limits vary considerably, ranging from zero to one. After this point however, both

lines setlle and remain ≈1 until the end of the trial. The current trend on the other hand,

whilst still inclined to variable peaks, have less rapid changes than seen in the optimistic

limits assumptions. The hypothesised treatment effect remains ≥0.7 at all times, but does

somewhat fluctuate, before steadily increasing to ≈1 with the other three lines (∼ patient

1800).
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Figure C.58: Conditional power calculated after every patient in the Flu A/H3N2 (Seroconversion)
trial

Again, no increase is seen for the combination test design. Promising zone design in-

creases range from 26% (25% data available, 90% limit), to 82% (25% time point, 80%

limit, nmax=2). Figure C.59 shows n∗ calculated after every n1 patients. Current trend and

hypothesised assumptions have a large region of increased sample sizes for the promising

zone and stepwise designs, with more moderate increases in the hypothesised effect, com-

pared to maximum increases being reached under the current trend. Both optimistic limits

have smaller regions of increase for both designs, but again, maximum values are reached,

leading to up to doubling of sample size.
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Figure C.59: Comparison of three SSR designs for the Flu A/H3N2 (Seroconversion) trial data

Figure C.60 shows the sample estimate through the trial for the A/H3N2 strain and the

flu vaccine trial in the original (a) and reverse (b) order. The original order estimate starts

by alternating above and below the non-inferiority limit, first reaching the ±1*SE boundary

at 40 patients, but not remaining there until after 1390 patients (64% through the trial). The

estimate largely stays within the±4*SE limits, except for a peak outside this boundary early

in the trial, resolving by 200 patients. The reverse order however, always remains above the

non-inferiority limit, even above the upper +4*SE boundary for the first 200 patients (i.e.

the last 200 patients recruited in the original order). The reverse order estimate is slower to

reach and remain in the ±1*SE boundary; from 1670 patients, 77% through the trial.
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(a) (b)

Figure C.60: Stability of the estimate in the Flu A/H3N2 vaccine trial. A comparison of sequential
order, reverse order, and the median of 1000 random orders

C.21 FLU B1 (Seroconversion) trial

Figure C.61 shows CP values for the B1 strain data in the flu vaccine trial. All four lines have

reached≈1 by 400 patients, and remain there throughout the trial duration. Optimistic limits

and current trend lines rapidly fluctuate between minimum and maximum values of CP very

early on in the trial, but settle by 100 patients, other than some small drops in CP under the

current trend assumption, which still remain in the favourable zone. Because of the relatively

quick convergence to 1 in CP values, only the current trend assumption yields any increase

in sample size in both promising zone and stepwise design (Figure C.62). However, the

trial would remain at the original sample size after this early peak. Specifically at the three

chosen interim time points, all designs would have remained at the original 1634 patients.
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Figure C.61: Conditional power calculated after every patient in the Flu B1 trial using the
Seroconversion endpoint

Figure C.62: Comparison of three SSR designs for the Flu BN1 trial data

The investigation of the estimate through the Flu vaccine trial for the B1 strain can

be seen in Figure C.63. Similarly to the other two strains, the original sequential order



C.22. Additional summary results 393

starts by under-estimating the treatment effect, whereas the reverse order starts with an over-

estimate. However, all estimates (both original order and reverse) are largely contained

within the ±4*SE limits from 50 patients onwards, with 2 small dips outside this boundary

in the reverse order estimate. The original order first reaches the inner ±1*SE boundaries

marginally earlier than the reverse order (60 compared to 80 patients), and maintains its

position earlier (from patient 770, 47% through the trial, compared to 1090 patients, 67%

through the trial).

(a) (b)

Figure C.63: Stability of the estimate in the Flu B1 vaccine trial. A comparison of sequential order,
reverse order, and the median of 1000 random orders

C.22 Additional summary results
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n* Not significant (N=6) Significant (N=15) All (N=21)
Median (LQ, UQ) Median (LQ, UQ) Median (LQ, UQ)

nmax=2*n
Trend 25% PZ 100.0 (100.0, 100.0) 100.0 (100.0, 118.4) 100.0 (100.0, 100.0)

CT 44.9 (26.4, 100.0) 83.3 (49.4, 100.0) 62.5 (46.8, 100.0)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% PZ 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 59.1 (52.2, 69.8) 100.0 (71.8, 100.0) 90.0 (63.4, 100.0)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

75% PZ 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 94.0 (78.1, 131.9) 100.0 (96.6, 100.0) 100.0 (95.2, 100.0)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Hypothesised 25% PZ 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 90.3 (72.9, 142.3) 100.0 (67.2, 100.0) 100.0 (67.3, 100.0)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% PZ 100.0 (100.0, 107.4) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 133.6 (100.7, 200.0) 100.0 (76.5, 100.0) 100.0 (90.0, 105.4)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

75% PZ 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 109.1 (90.2, 115.3) 100.0 (96.6, 100.0) 100.0 (96.6, 100.0)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

80% limit 25% PZ 100.0 (100.0, 134.6) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 65.9 (27.9, 200.0) 100.0 (62.4, 102.3) 100.0 (43.6, 102.3)
SW 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% PZ 100.0 (100.0, 142.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 119.1 (63.4, 200.0) 100.0 (90.0, 100.0) 100.0 (77.9, 100.0)
SW 100.0 (100.0, 166.7) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

75% PZ 100.0 (100.0, 142.4) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 94.0 (83.1, 163.5) 100.0 (96.5, 100.0) 99.0 (95.2, 100.0)
SW 100.0 (100.0, 133.3) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

90% limit 25% PZ 129.7 (100.0, 164.9) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 120.2 (66.9, 200.0) 100.0 (52.0, 100.0) 100.0 (66.9, 109.2)
SW 100.0 (100.0, 133.7) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% PZ 107.8 (100.0, 117.6) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 113.1 (63.4, 199.6) 100.0 (85.6, 100.0) 100.0 (85.1, 100.0)
SW 100.0 (100.0, 133.4) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

75% PZ 112.7 (100.0, 151.5) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
CT 100.8 (90.2, 151.0) 100.0 (96.5, 100.0) 100.0 (96.5, 100.0)
SW 100.0 (100.0, 166.7) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Table C.25: Percentage of n required for the new sample size at three interim time points,
implementing three SSR designs using four future treatment effect assumptions. 100% indicates no
change in sample size, >100% indicates an increase, up to 200% of the original sample size
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Original order ±1*SE ±2*SE ±3*SE ±4*SE
first (%) last (%) first (%) last (%) first (%) last (%) first (%) last (%)

FAST INdiCATE 50 (17%) 50 (17%) 20 (7%) 40 (14%) 20 (7%) 20 (7%) 20 (7%) 20 (7%)
Acupuncture 50 (21%) 110 (46%) 40 (17%) 40 (17%) 40 (17%) 40 (17%) 40 (17%) 40 (17%)
SELF 20 (23%) 20 (23%) 20 (23%) 20 (23%) 20 (23%) 20 (23%) 20 (23%) 20 (23%)
CASPER MINUS 50 (7%) 360 (51%) 30 (4%) 90 (13%) 30 (4%) 80 (11%) 30 (4%) 30 (4%)
CASPER 100 (14%) 120 (17%) 30 (4%) 80 (11%) 30 (4%) 80 (11%) 30 (4%) 80 (11%)
CASPER PLUS 180 (37%) 300 (62%) 130 (27%) 170 (35%) 120 (25%) 120 (25%) 110 (23%) 110 (23%)
IMPROVE 160 (26%) 460 (75%) 50 (8%) 130 (21%) 50 (8%) 130 (21%) 50 (8%) 110 (18%)
Corn plasters 40 (20%) 150 (74%) 40 (20%) 40 (20%) 20 (10%) 20 (10%) 20 (10%) 20 (10%)
AMAZE 180 (52%) 230 (66%) 40 (11%) 110 (32%) 40 (11%) 40 (11%) 40 (11%) 40 (11%)
3MG 90 (8%) 660 (61%) 80 (7%) 200 (18%) 80 (7%) 80 (7%) 40 (4%) 80 (7%)
RATPAC 40 (2%) 1910 (85%) 40 (2%) 1520 (68%) 40 (2%) 950 (42%) 40 (2%) 200 (9%)
Nasal sprays 70 (25%) 70 (25%) 10 (4%) 60 (22%) 10 (4%) 40 (14%) 10 (4%) 40 (14%)
Mencevax (A) 80 (31%) 80 (31%) 80 (31%) 80 (31%) 80 (31%) 80 (31%) 80 (31%) 80 (31%)
Mencevax (C) 40 (15%) 150 (57%) 30 (11%) 60 (23%) 30 (11%) 30 (11%) 30 (11%) 30 (11%)

Table C.26: Table to show the first time the original sequential order estimate enters each boundary
and the last time (i.e. the estimate remains within this boundary for the remainder of the trial) split
by outcomes type

Reverse order ±1*SE ±2*SE ±3*SE ±4*SE
first (%) last (%) first (%) last (%) first (%) last (%) first (%) last (%)

FAST INdiCATE 20 (7%) 120 (42%) 20 (7%) 50 (17%) 20 (7%) 20 (7%) 20 (7%) 20 (7%)
Acupuncture 50 (21%) 120 (50%) 40 (17%) 40 (17%) 20 (8%) 20 (8%) 20 (8%) 20 (8%)
SELF 20 (23%) 20 (23%) 20 (23%) 20 (23%) 20 (23%) 20 (23%) 20 (23%) 20 (23%)
CASPER MINUS 70 (10%) 280 (40%) 60 (9%) 60 (9%) 60 (9%) 60 (9%) 50 (7%) 50 (7%)
CASPER 30 (4%) 170 (24%) 30 (4%) 150 (21%) 30 (4%) 70 (10%) 30 (4%) 30 (4%)
CASPER PLUS 240 (49%) 410 (85%) 110 (23%) 110 (23%) 100 (21%) 100 (21%) 40 (8%) 90 (19%)
IMPROVE 40 (7%) 350 (57%) 40 (7%) 280 (46%) 40 (7%) 70 (11%) 40 (7%) 40 (7%)
Corn plasters 70 (35%) 70 (35%) 70 (35%) 70 (35%) 40 (20%) 60 (30%) 30 (15%) 30 (15%)
AMAZE 270 (78%) 270 (78%) 50 (14%) 200 (57%) 40 (11%) 150 (43%) 40 (11%) 40 (11%)
3MG 50 (5%) 580 (54%) 50 (5%) 330 (30%) 50 (5%) 50 (5%) 40 (4%) 40 (4%)
RATPAC 60 (3%) 1840 (82%) 60 (3%) 1380 (62%) 50 (2%) 1170 (52%) 50 (2%) 930 (41%)
Nasal sprays 20 (7%) 130 (47%) 20 (7%) 20 (7%) 20 (7%) 20 (7%) 20 (7%) 20 (7%)
Mencevax (A) 90 (34%) 200 (77%) 90 (34%) 90 (34%) 90 (34%) 90 (34%) 90 (34%) 90 (34%)
Mencevax (C) 50 (19%) 130 (50%) 50 (19%) 130 (50%) 30 (11%) 50 (19%) 30 (11%) 30 (11%)

Table C.27: Table to show the first time the reverse order estimate enters each boundary and the last
time (i.e. the estimate remains within this boundary for the remainder of the trial) split by outcome
type



D | δ investigation results

D.1 Observed effect = half planned

n* Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 102.3 (100.0, 137.7) 100.0 (100.0, 100.0) 100.0 (100.0, 137.7)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 124.3) 100.0 (100.0, 100.0)

Combination test 25% 92.8 (63.8, 118.4) 43.6 (26.4, 49.4) 63.8 (43.6, 118.4)
50% 99.9 (99.7, 128.0) 71.6 (54.0, 71.8) 99.7 (61.1, 128.0)
75% 99.5 (83.3, 100.0) 93.1 (82.9, 95.2) 95.2 (82.9, 100.0)

Hypothesised
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 131.7) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 102.0) 100.0 (100.0, 100.0)

Combination test 50% 75.3 (61.1, 100.0) 70.3 (55.8, 71.1) 70.3 (55.8, 100.0)
75% 88.2 (72.2, 100.0) 124.6 (76.9, 132.7) 100.0 (72.2, 124.6)
25% 99.5 (83.3, 100.0) 126.2 (95.2, 149.9) 100.0 (94.0, 143.0)

80% limit
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination test 25% 91.8 (59.0, 103.1) 73.3 (63.2, 100.7) 83.3 (59.0, 103.1)
50% 95.8 (78.1, 100.0) 71.8 (71.6, 77.5) 78.1 (71.6, 100.0)
75% 99.5 (83.3, 100.0) 95.2 (94.0, 105.9) 99.0 (83.3, 105.9)

90% limit
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 126.3) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination test 25% 85.8 (53.1, 100.0) 61.5 (59.9, 91.7) 83.3 (53.1, 100.0)
50% 91.3 (74.3, 100.0) 110.4 (76.4, 129.7) 96.5 (74.3, 110.4)
75% 99.5 (83.3, 100.0) 95.2 (93.7, 99.0) 99.0 (83.3, 100.0)

Table D.1: New total sample size (n∗) as a percentage of original planned sample size (n)
comparison at three interim time points and four treatment effect assumptions when the observed
treatment effect is half of the planned effect
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Zones Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising zone Futility 4.5 (0, 9) 87.9 (37, 95) 9.1 (4, 88)

Unfav. 7.3 (5, 19) 9.4 (2, 26) 8.5 (2, 25)
Prom. 26.0 (15, 36) 2.6 (0, 20) 19.7 (3, 36)
Fav. 59.6 (33, 76) 0.0 (0, 1) 30.9 (0, 60)

Combination test Decrease 46.2 (14, 64) 88.2 (80, 91) 64.3 (31, 88)
Remain 20.6 (5, 45) 3.6 (0, 7) 6.5 (3, 25)
Increase 20.5 (0, 42) 4.1 (2, 6) 6.3 (0, 42)

Hypothesised
Promising zone Futility 0.0 (0, 0) 6.2 (6, 13) 0.0 (0, 6)

Unfav. 0.0 (0, 0) 11.9 (10, 27) 0.0 (0, 12)
Prom. 0.0 (0, 0) 25.6 (13, 38) 3.9 (0, 26)
Fav. 100.0 (100, 100) 29.5 (29, 30) 99.7 (30, 100)

Combination test Decrease 53.4 (14, 82) 37.9 (21, 80) 37.9 (20, 82)
Remain 20.5 (10, 65) 2.4 (0, 4) 10.4 (2, 24)
Increase 0.0 (0, 0) 56.8 (16, 74) 0.0 (0, 74)

80% limit
Promising zone Futility 0.0 (0, 0) 16.9 (5, 33) 0.1 (0, 17)

Unfav. 0.0 (0, 0) 20.1 (13, 49) 1.1 (0, 20)
Prom. 0.0 (0, 21) 26.3 (9, 38) 8.6 (0, 26)
Fav. 99.7 (84, 100) 7.0 (7, 29) 69.1 (7, 100)

Combination test Decrease 40.2 (27, 82) 71.2 (40, 80) 47.1 (27, 82)
Remain 20.6 (5, 65) 2.1 (0, 4) 5.2 (2, 25)
Increase 1.8 (0, 26) 23.5 (16, 55) 16.3 (0, 55)

90% limit
Promising zone Futility 0.0 (0, 0) 11.9 (5, 16) 0.1 (0, 12)

Unfav. 0.0 (0, 0) 13.6 (8, 39) 0.4 (0, 14)
Prom. 0.0 (0, 8) 23.0 (10, 37) 9.0 (0, 23)
Fav. 99.7 (91, 100) 14.5 (14, 49) 88.9 (15, 100)

Combination test Decrease 54.4 (33, 82) 49.7 (29, 80) 50.6 (29, 82)
Remain 20.8 (5, 65) 1.5 (1, 4) 5.2 (2, 25)
Increase 0.0 (0, 15) 45.0 (16, 66) 14.7 (0, 51)

Table D.2: Percentage of trial duration spent in each zone at three interim time points and four
treatment effect assumptions when the observed treatment effect is half the effect planned
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(a)

(b)

Figure D.1: Conditional power when δ̂obs =
1
2 δplan for (a) Continuous trials (b) Binary trials
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D.2 Observed effect = one third planned

n* Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising zone 25% 100.0 (100.0, 146.1) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 150.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
75% 110.9 (100.0, 129.4) 100.0 (100.0, 100.0) 100.0 (100.0, 121.8)

Combination test 25% 70.1 (56.7, 100.0) 43.6 (26.4, 49.4) 56.7 (43.6, 100.0)
50% 100.0 (76.5, 150.0) 55.4 (52.2, 71.6) 75.9 (55.4, 100.0)
75% 99.5 (97.7, 117.0) 93.1 (78.1, 95.2) 97.7 (93.1, 117.0)

Hypothesised
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 104.0 (100.0, 150.0) 100.0 (100.0, 104.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 140.6) 100.0 (100.0, 133.7)

Combination test 50% 78.8 (67.4, 100.0) 72.8 (58.6, 74.9) 74.4 (58.6, 100.0)
75% 94.8 (86.1, 100.0) 139.2 (83.9, 145.5) 100.0 (83.9, 139.2)
25% 100.0 (92.4, 104.9) 95.2 (93.1, 105.4) 100.0 (92.4, 105.4)

80% limit
Promising zone 25% 100.0 (100.0, 150.1) 100.0 (100.0, 126.4) 100.0 (100.0, 150.0)

50% 100.0 (100.0, 145.2) 100.0 (100.0, 133.2) 100.0 (100.0, 145.2)
75% 100.0 (100.0, 103.5) 100.0 (100.0, 117.8) 100.0 (100.0, 117.8)

Combination test 50% 104.3 (73.6, 150.0) 49.4 (43.6, 55.4) 73.6 (49.4, 125.4)
75% 121.1 (100.0, 146.5) 71.8 (71.6, 80.2) 100.0 (71.6, 146.5)
25% 105.1 (102.8, 136.9) 95.2 (93.1, 95.6) 102.8 (95.2, 130.7)

90% limit
Promising zone 25% 100.0 (100.0, 108.8) 100.0 (100.0, 100.0) 100.0 (100.0, 108.8)

50% 100.0 (100.0, 117.5) 100.0 (100.0, 110.6) 100.0 (100.0, 117.5)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 107.4) 100.0 (100.0, 107.4)

Combination test 50% 100.8 (64.2, 120.5) 66.3 (66.2, 103.6) 83.3 (64.2, 120.5)
75% 111.7 (100.0, 127.9) 71.8 (71.6, 84.0) 100.0 (71.6, 127.9)
25% 102.3 (99.7, 130.7) 95.2 (93.1, 105.4) 100.8 (95.2, 119.3)

Table D.3: New total sample size (n∗) as a percentage of original planned sample size (n)
comparison at three interim time points and four treatment effect assumptions when the observed
treatment effect equals one third of the planned effect
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Zones Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising zone Futility 10.1 (5, 51) 97.1 (71, 99) 50.6 (9, 97)

Unfav. 29.3 (15, 38) 0.0 (0, 28) 24.7 (0, 38)
Prom. 32.7 (20, 40) 0.2 (0, 1) 10.6 (0, 33)
Fav. 17.8 (1, 37) 0.0 (0, 1) 0.6 (0, 28)

Combination test Decrease 27.0 (11, 74) 88.2 (80, 95) 73.5 (21, 88)
Remain 14.8 (11, 44) 8.8 (4, 14) 13.0 (4, 19)
Increase 29.9 (11, 73) 0.0 (0, 0) 10.5 (0, 47)

Hypothesised
Promising zone Futility 0.0 (0, 0) 30.8 (16, 44) 6.5 (0, 31)

Unfav. 0.0 (0, 0) 18.3 (6, 21) 3.7 (0, 18)
Prom. 0.0 (0, 14) 19.4 (10, 32) 9.7 (0, 19)
Fav. 99.7 (86, 100) 26.9 (26, 29) 68.8 (27, 100)

Combination test Decrease 42.0 (14, 82) 60.8 (42, 80) 50.6 (21, 82)
Remain 9.1 (1, 56) 3.6 (1, 9) 3.6 (1, 19)
Increase 9.9 (0, 46) 33.9 (12, 46) 12.1 (0, 46)

80% limit
Promising zone Futility 0.0 (0, 8) 61.3 (15, 72) 14.3 (0, 61)

Unfav. 0.0 (0, 21) 15.3 (13, 21) 13.3 (0, 21)
Prom. 23.5 (2, 45) 12.9 (4, 38) 15.6 (3, 45)
Fav. 61.7 (55, 98) 5.6 (5, 17) 22.8 (5, 68)

Combination test Decrease 27.0 (14, 47) 80.1 (77, 91) 47.3 (18, 81)
Remain 9.9 (3, 33) 3.8 (1, 9) 3.8 (1, 19)
Increase 49.6 (32, 76) 5.4 (3, 11) 32.3 (3, 76)

90% limit
Promising zone Futility 0.0 (0, 4) 49.5 (15, 60) 11.7 (0, 50)

Unfav. 0.0 (0, 21) 19.0 (15, 21) 15.0 (0, 21)
Prom. 10.8 (1, 36) 16.1 (6, 43) 12.5 (3, 43)
Fav. 76.1 (64, 99) 11.5 (10, 21) 39.2 (12, 87)

Combination test Decrease 23.8 (13, 60) 80.1 (61, 83) 59.9 (14, 81)
Remain 10.2 (2, 37) 3.6 (1, 9) 3.9 (2, 19)
Increase 41.5 (26, 84) 11.9 (12, 28) 27.7 (12, 74)

Table D.4: Percentage of trial duration spent in each zone at three interim time points and four
treatment effect assumptions when the observed treatment effect is one third of the planned effect
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(a)

(b)

Figure D.2: Conditional power when δ̂obs =
1
3 δplan for (a) Continuous trials (b) Binary trials
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D.3 Observed effect = one quarter planned

n* Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising zone 25% 100.0 (100.0, 150.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 150.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination test 25% 66.6 (46.8, 100.0) 36.6 (26.4, 43.6) 46.8 (29.5, 83.3)
50% 95.1 (78.3, 100.0) 55.4 (52.2, 71.6) 76.5 (55.4, 100.0)
75% 99.5 (97.7, 150.0) 93.1 (78.1, 95.2) 97.7 (83.3, 150.0)

Hypothesised
Promising zone 25% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

50% 100.0 (100.0, 100.0) 100.0 (100.0, 112.5) 100.0 (100.0, 100.0)
75% 100.0 (100.0, 100.0) 100.0 (100.0, 100.0) 100.0 (100.0, 100.0)

Combination test 50% 80.6 (70.5, 100.0) 74.3 (60.1, 76.8) 76.8 (60.1, 100.0)
75% 98.9 (94.4, 100.4) 146.8 (87.5, 150.0) 100.0 (87.5, 146.8)
25% 104.5 (103.8, 120.8) 95.2 (93.1, 100.1) 103.8 (95.2, 120.8)

80% limit
Promising zone 25% 100.0 (100.0, 111.6) 100.0 (100.0, 100.0) 100.0 (100.0, 111.6)

50% 105.8 (100.0, 111.8) 100.0 (100.0, 100.0) 100.0 (100.0, 111.8)
75% 103.5 (100.0, 134.3) 100.0 (100.0, 100.0) 100.0 (100.0, 134.3)

Combination test 50% 83.5 (66.7, 150.0) 43.6 (26.4, 49.4) 66.7 (43.6, 89.1)
75% 139.9 (106.1, 150.0) 71.6 (66.6, 71.8) 106.1 (71.6, 150.0)
25% 138.1 (125.4, 150.0) 93.1 (78.1, 95.2) 125.4 (93.1, 147.5)

90% limit
Promising zone 25% 100.0 (100.0, 141.8) 100.0 (100.0, 104.0) 100.0 (100.0, 141.8)

50% 105.1 (100.0, 150.1) 100.0 (100.0, 129.3) 100.0 (100.0, 150.0)
75% 110.0 (100.0, 120.4) 100.0 (100.0, 100.0) 100.0 (100.0, 120.4)

Combination test 50% 108.1 (71.9, 140.7) 67.3 (49.4, 70.3) 71.9 (60.1, 133.0)
75% 134.5 (104.3, 150.0) 71.8 (71.6, 85.7) 104.3 (71.8, 147.4)
25% 130.5 (124.3, 150.0) 93.1 (78.1, 95.2) 124.3 (93.1, 133.9)

Table D.5: New total sample size (n∗) as a percentage of original planned sample size (n)
comparison at three interim time points and four treatment effect assumptions when the observed
treatment effect equals one quarter of the planned effect
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Zones Continuous (N=6) Binary (N=5) All (N=11)
Trend
Promising zone Futility 38.3 (18, 58) 97.1 (76, 99) 58.4 (38, 99)

Unfav. 37.3 (19, 55) 0.0 (0, 23) 23.3 (0, 49)
Prom. 17.8 (2, 30) 0.2 (0, 1) 2.3 (0, 29)
Fav. 1.8 (0, 6) 0.0 (0, 1) 0.6 (0, 3)

Combination test Decrease 32.3 (30, 74) 88.2 (80, 95) 73.5 (31, 88)
Remain 23.3 (8, 48) 8.8 (4, 17) 16.6 (4, 24)
Increase 25.9 (1, 53) 0.0 (0, 0) 0.9 (0, 43)

Hypothesised
Promising zone Futility 3.3 (1, 7) 35.4 (19, 48) 16.0 (1, 35)

Unfav. 2.8 (1, 8) 15.6 (8, 20) 7.8 (2, 16)
Prom. 7.1 (2, 16) 16.4 (10, 24) 10.0 (5, 19)
Fav. 83.1 (68, 96) 26.5 (26, 28) 62.8 (27, 88)

Combination test Decrease 39.3 (14, 57) 73.2 (53, 80) 53.1 (21, 76)
Remain 4.6 (2, 37) 3.6 (1, 9) 4.0 (1, 19)
Increase 41.2 (28, 52) 21.5 (13, 35) 35.1 (19, 52)

80% limit
Promising zone Futility 5.1 (3, 31) 68.5 (20, 81) 19.7 (4, 69)

Unfav. 15.9 (4, 22) 15.3 (10, 19) 15.6 (8, 22)
Prom. 36.0 (31, 46) 7.9 (3, 20) 31.2 (6, 46)
Fav. 28.9 (23, 52) 4.6 (4, 17) 20.9 (4, 30)

Combination test Decrease 27.0 (14, 52) 81.1 (80, 95) 51.5 (15, 81)
Remain 8.1 (2, 13) 3.6 (2, 9) 5.7 (2, 13)
Increase 62.8 (31, 80) 2.0 (0, 7) 30.5 (2, 78)

90% limit
Promising zone Futility 4.5 (3, 26) 57.9 (17, 68) 17.1 (3, 58)

Unfav. 7.6 (3, 19) 17.9 (12, 20) 11.5 (5, 20)
Prom. 24.6 (23, 36) 14.4 (8, 38) 24.0 (9, 38)
Fav. 50.1 (33, 67) 10.3 (8, 20) 26.3 (8, 58)

Combination test Decrease 25.5 (14, 33) 80.1 (76, 85) 33.3 (20, 80)
Remain 7.2 (2, 14) 3.6 (1, 9) 6.5 (2, 14)
Increase 63.3 (51, 79) 9.4 (7, 12) 51.3 (9, 74)

Table D.6: Percentage of trial duration spent in each zone at three interim time points and four
treatment effect assumptions when the observed treatment effect is one quarter of the planned effect
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(a)

(b)

Figure D.3: Conditional power when δ̂obs =
1
4 δplan for (a) Continuous trials (b) Binary trials



E | Simulation results

E.1 Planned effect = 0.2

δ̂obs = δplan = 0.2 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
Mean d̂ 3.9978 3.9921 3.9897 3.9892 3.9879 3.9879 3.9896 3.9911 3.9900 3.9891 3.9891
Mean SD 19.9924 19.9938 19.9939 19.995 19.9955 19.9958 19.996 19.9967 19.9978 19.9978 19.9976
Mean δ 0.2002 0.1998 0.1997 0.1997 0.1996 0.1996 0.1996 0.1997 0.1996 0.1996 0.1996
Mean (d− d̂) -0.0022 -0.0079 -0.0103 -0.0108 -0.0121 -0.0121 -0.0104 -0.0089 -0.0100 -0.0109 -0.0109
δ̂obs =

2
3δplan

Mean d̂ 2.6645 2.6588 2.6563 2.6559 2.6546 2.6545 2.6563 2.6578 2.6566 2.6558 2.6557
Mean SD 19.9924 19.9938 19.9939 19.995 19.9955 19.9958 19.996 19.9967 19.9978 19.9978 19.9976
Mean δ 0.1334 0.1331 0.1330 0.1329 0.1328 0.1328 0.1329 0.1330 0.1329 0.1329 0.1329
Mean (d− d̂) -1.3355 -1.3412 -1.3437 -1.3441 -1.3454 -1.3455 -1.3437 -1.3422 -1.3434 -1.3442 -1.3443
δ̂obs =

1
3δplan

Mean d̂ 1.3311 1.3255 1.323 1.3226 1.3212 1.3212 1.3229 1.3244 1.3233 1.3225 1.3224
Mean SD 19.9924 19.9938 19.9939 19.995 19.9955 19.9958 19.996 19.9967 19.9978 19.9978 19.9976
Mean δ 0.0666 0.0663 0.0662 0.0662 0.0661 0.0661 0.0662 0.0663 0.0662 0.0662 0.0662
Mean (d− d̂) -2.6689 -2.6745 -2.6770 -2.6774 -2.6788 -2.6788 -2.6771 -2.6756 -2.6767 -2.6775 -2.6776
δ̂obs = 0
Mean d̂ -0.0022 -0.0079 -0.0103 -0.0108 -0.0121 -0.0121 -0.0104 -0.0089 -0.0100 -0.0109 -0.0109
Mean SD 19.9924 19.9938 19.9939 19.995 19.9955 19.9958 19.996 19.9967 19.9978 19.9978 19.9976
Mean δ -0.0001 -0.0004 -0.0005 -0.0005 -0.0006 -0.0006 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006
Mean (d− d̂) -4.0022 -4.0079 -4.0103 -4.0108 -4.0121 -4.0121 -4.0104 -4.0089 -4.0100 -4.0109 -4.0109

Table E.1: Mean difference, SD, treatment effect and difference from the true population value for
values between 50% and 100% of the originally planned n=1052 when δ = 0.2
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50% 55% 60% 65% 70% 75% 80% 85% 90%
δ=δplan Trend 0.853 0.860 0.866 0.871 0.876 0.88 0.884 0.887 0.89

Hypothesised 0.974 0.970 0.965 0.960 0.953 0.946 0.938 0.929 0.919
80% limit 0.889 0.885 0.883 0.882 0.882 0.883 0.884 0.887 0.889

δ=2
3δplan Trend 0.636 0.634 0.631 0.628 0.623 0.619 0.613 0.607 0.598

Hypothesised 0.921 0.900 0.878 0.851 0.821 0.787 0.751 0.711 0.668
80% limit 0.713 0.694 0.677 0.662 0.646 0.633 0.621 0.61 0.598

δ=1
3δplan Trend 0.362 0.347 0.331 0.317 0.301 0.285 0.268 0.25 0.231

Hypothesised 0.808 0.754 0.696 0.633 0.563 0.495 0.426 0.357 0.295
80% limit 0.462 0.426 0.393 0.363 0.333 0.306 0.281 0.256 0.233

δ=0 Trend 0.145 0.129 0.115 0.101 0.088 0.076 0.065 0.053 0.043
Hypothesised 0.630 0.537 0.446 0.359 0.275 0.205 0.148 0.100 0.066
80% limit 0.226 0.189 0.159 0.132 0.108 0.088 0.072 0.057 0.044

Table E.2: Mean conditional power values from 50000 repetitions for three treatment effect
assumptions when δ=0.2 and n=1052
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E.1.1 Observed effect=planned effect

(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure E.1: Sample size zones from 50000 simulations when δ = δplan and n=1052, for two values
of nmax: comparing three designs and four observed treatment effects
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure E.2: Sample size from 50000 simulations when δ = δplan and n=1052, for two values of
nmax: comparing three designs and three treatment effect assumptions
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(a) nmax = 1.5∗n

(b) nmax = 3∗n

Figure E.3: Sample size from 50000 simulations when δ = δplan and n=1052, for two values of
nmax: comparing three designs and three treatment effect assumptions
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δplan=0.2 SHORT MEDIUM
δ=δplan

TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 1071 1092 1105 1119 1140 1110 1150 1192 1220 1185

Power 91.37 94.24 95.59 96.63 96.68 92.63 95.12 96.27 96.96 96.73
γ2 ASN 969 1006 1035 1068 1108 1019 1076 1135 1179 1155

Power 88.13 91.73 93.89 95.47 95.83 90.08 93.30 94.98 96.06 95.95
γ3 ASN 766 833 899 967 1043 838 927 1020 1093 1094

Power 79.58 84.66 88.65 91.52 93.29 83.47 87.94 91.14 92.90 93.57
γ4 ASN 653 737 822 910 1006 753 859 969 1054 1061

Power 69.39 76.24 82.39 86.93 90.24 69.39 76.24 82.39 86.93 90.24
HYPOTHESISED
γ1 ASN 956 980 1009 1049 1106 972 1021 1088 1148 1150

Power 91.69 93.46 94.90 95.97 96.36 91.88 93.79 95.3 96.27 96.42
γ2 ASN 882 919 962 1016 1087 907 973 1054 1125 1133

Power 88.52 91.10 92.99 94.62 95.62 88.99 91.79 93.79 95.14 95.74
γ3 ASN 783 838 900 973 1058 828 917 1015 1096 1107

Power 82.16 85.83 89.29 92.09 94.05 83.77 87.88 91.26 93.41 94.29
γ4 ASN 706 775 851 933 1025 777 880 987 1071 1078

Power 75.13 80.09 85.12 89.06 92.00 79.20 84.61 88.88 91.47 92.46
80% Limit
γ1 ASN 1127 1143 1145 1145 1154 1150 1186 1220 1240 1198

Power 95.53 96.83 97.36 97.61 97.22 95.89 97.16 97.69 97.83 97.26
γ2 ASN 1023 1050 1069 1089 1120 1055 1105 1157 1194 1167

Power 92.92 94.91 95.95 96.61 96.56 93.68 95.63 96.62 97.01 96.66
γ3 ASN 820 873 926 983 1051 874 954 1038 1106 1102

Power 84.60 88.07 90.76 92.72 93.92 86.72 90.18 92.51 93.88 94.16
γ4 ASN 678 752 830 914 1007 762 864 972 1055 1062

Power 72.81 78.41 83.38 87.39 90.48 77.97 83.30 87.61 90.10 91.01

Table E.3: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ=δplan,
n=1052, nmax=2*n
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δ = δplan Information fraction
Promising zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 1236 1232 1228 1224 1219 1209 1196 1181 1163 1134

Power 93.01 93.10 93.17 93.25 93.28 93.35 93.20 93.06 92.79 92.18
Hypothesised ASN 1125 1140 1153 1163 1168 1173 1172 1167 1155 1131

Power 93.28 94.00 94.65 95.10 95.28 95.44 95.35 94.94 94.14 93.01
80% limit ASN 1265 1266 1263 1257 1249 1236 1217 1197 1172 1137

Power 94.40 94.55 94.45 94.32 94.16 94.08 93.70 93.39 92.95 92.21
Promising zone with Futility
Trend ASN 1210 1211 1211 1210 1207 1199 1188 1175 1158 1130

Power 91.11 91.59 92.03 92.35 92.55 92.80 92.76 92.75 92.54 92.02
Hypothesised ASN 1125 1140 1153 1162 1168 1172 1170 1164 1152 1128

Power 93.28 94.00 94.66 95.10 95.28 95.44 95.34 94.92 94.11 92.97
80% limit ASN 1257 1258 1255 1249 1242 1228 1210 1191 1167 1134

Power 94.04 94.21 94.15 94.00 93.85 93.80 93.41 93.16 92.74 92.07

Table E.4: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions for the promising zone design with and without a futility boundary when
δ=δplan, n=1052 and nmax = 2∗n
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E.1.2 Observed effect = two thirds planned

(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure E.4: Sample size zones from 50000 simulations when δ = 2
3 δplan and n=1052, for two values

of nmax: comparing three designs and four observed treatment effects
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure E.5: Sample size from 50000 simulations when δ = 2
3 δplan and n=1052, for two values of

nmax: comparing three designs and three treatment effect assumptions
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(a) nmax = 1.5∗n

(b) nmax = 3∗n

Figure E.6: Sample size from 50000 simulations when δ = 2
3 δplan and n=1052, for two values of

nmax: comparing three designs and three treatment effect assumptions
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δplan=0.2 SHORT MEDIUM
δ=2

3δplan

TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 1277 1330 1364 1375 1353 1316 1375 1420 1439 1383

Power 68.40 71.49 73.57 74.36 72.88 69.08 72.19 74.14 74.74 72.93
γ2 ASN 1129 1196 1245 1274 1281 1179 1253 1315 1350 1314

Power 63.05 66.8 69.63 71.31 71.07 64.24 68.06 70.63 72.02 71.24
γ3 ASN 804 893 972 1046 1113 877 973 1067 1143 1153

Power 48.79 53.73 57.82 61.52 64.29 51.27 56.30 60.18 63.36 64.68
γ4 ASN 654 749 841 932 1024 756 862 971 1056 1070

Power 38.39 43.94 49.27 54.13 58.60 38.39 43.94 49.27 54.13 58.60
HYPOTHESISED
γ1 ASN 1165 1230 1292 1348 1385 1168 1241 1318 1388 1407

Power 62.71 65.42 67.65 69.25 69.28 62.77 65.61 67.94 69.55 69.33
γ2 ASN 1067 1140 1213 1282 1331 1073 1158 1248 1331 1356

Power 57.94 61.30 63.87 66.19 67.16 58.15 61.74 64.48 66.77 67.31
γ3 ASN 929 1011 1094 1171 1231 945 1042 1147 1238 1263

Power 50.99 54.72 58.76 61.64 63.99 51.74 56.12 60.20 63.02 64.28
γ4 ASN 799 876 953 1027 1096 839 940 1044 1127 1139

Power 44.26 48.89 53.44 57.49 60.83 46.41 51.87 56.57 60.07 61.44
80% Limit
γ1 ASN 1435 1469 1474 1456 1400 1451 1493 1513 1508 1428

Power 74.29 76.17 76.63 76.14 73.64 74.47 76.42 76.92 76.35 73.67
γ2 ASN 1284 1326 1348 1347 1320 1309 1363 1401 1413 1352

Power 69.14 71.92 73.20 73.55 72.02 69.54 72.50 73.78 74.04 72.15
γ3 ASN 915 980 1040 1093 1140 964 1042 1121 1182 1179

Power 54.40 58.09 61.31 63.86 65.61 55.59 59.66 62.91 65.25 65.94
γ4 ASN 692 775 857 941 1028 771 871 975 1059 1073

Power 41.20 45.93 50.68 54.84 58.82 44.41 49.77 54.65 58.11 59.56

Table E.5: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ= 2

3 δplan,
n=1052, nmax = 2∗n
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δ = 2
3δplan Information fraction

Promising zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 1326 1334 1338 1337 1333 1327 1319 1297 1269 1217

Power 66.43 66.74 66.88 66.84 66.84 66.62 66.29 65.80 64.72 62.86
Hypothesised ASN 1294 1330 1357 1375 1383 1376 1361 1330 1291 1228

Power 69.29 71.24 72.81 73.96 74.42 74.08 73.15 71.27 68.97 65.24
80% limit ASN 1414 1415 1415 1406 1393 1375 1355 1322 1284 1223

Power 70.75 70.63 70.51 69.87 69.32 68.48 67.57 66.58 65.09 62.92
Promising zone with Futility
Trend ASN 1230 1247 1260 1268 1272 1273 1273 1260 1241 1201

Power 63.95 64.62 65.10 65.38 65.66 65.66 65.53 65.21 64.27 62.57
Hypothesised ASN 1294 1329 1355 1371 1374 1363 1344 1309 1271 1214

Power 69.32 71.26 72.83 73.97 74.43 74.07 73.14 71.23 68.91 65.17
80% limit ASN 1372 1371 1369 1360 1348 1332 1316 1288 1257 1207

Power 70.23 70.05 69.95 69.33 68.79 68.00 67.13 66.18 64.72 62.65

Table E.6: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions for the promising zone design with and without a futility boundary when
δ= 2

3 δplan, n=1052 and nmax = 2∗n
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E.1.3 Observed effect = one third planned

(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure E.7: Sample size zones from 50000 simulations when δ = 1
3 δplan and n=1052, for two values

of nmax: comparing three designs and four observed treatment effects
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure E.8: Sample size from 50000 simulations when δ = 1
3 δplan and n=1052, for two values of

nmax: comparing three designs and three treatment effect assumptions
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(a) nmax = 1.5∗n

(b) nmax = 3∗n

Figure E.9: Sample size from 50000 simulations when δ = 1
3 δplan and n=1052, for two values of

nmax: comparing three designs and three treatment effect assumptions
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δplan=0.2 SHORT MEDIUM
δ=1

3δplan

TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 1225 1285 1327 1348 1330 1304 1369 1420 1440 1368

Power 24.61 25.63 26.02 25.90 24.87 24.46 25.69 25.99 25.90 24.88
γ2 ASN 1072 1148 1204 1245 1257 1163 1244 1311 1347 1299

Power 22.54 23.63 24.24 24.68 24.16 22.50 23.83 24.38 24.75 24.18
γ3 ASN 743 836 927 1013 1091 855 954 1054 1132 1138

Power 16.99 18.13 19.63 20.81 21.67 17.26 18.70 20.13 21.25 21.75
γ4 ASN 616 716 817 915 1015 752 860 970 1055 1066

Power 13.78 15.09 16.68 18.09 19.54 13.78 15.09 16.68 18.09 19.54
HYPOTHESISED
γ1 ASN 1414 1535 1640 1697 1623 1415 1537 1646 1713 1641

Power 20.93 21.73 22.54 23.18 22.87 20.95 21.76 22.55 23.13 22.89
γ2 ASN 1296 1428 1545 1605 1540 1297 1431 1556 1631 1562

Power 19.24 20.38 21.38 22.13 22.21 19.30 20.46 21.37 22.13 22.25
γ3 ASN 1113 1238 1343 1395 1360 1119 1255 1381 1455 1395

Power 17.05 18.30 19.61 20.58 21.12 17.14 18.50 19.81 20.93 21.22
γ4 ASN 867 943 1012 1072 1117 922 1021 1116 1183 1166

Power 15.49 16.78 18.12 19.13 20.11 15.64 17.33 18.75 19.91 20.28
80% Limit
γ1 ASN 1563 1568 1542 1493 1403 1604 1619 1609 1569 1439

Power 26.36 27.06 26.87 26.36 25.10 26.09 26.91 26.82 26.31 25.11
γ2 ASN 1375 1396 1390 1369 1316 1431 1465 1475 1458 1356

Power 24.38 25.30 25.45 25.35 24.42 24.16 25.25 25.42 25.34 24.43
γ3 ASN 887 951 1011 1069 1122 972 1048 1123 1180 1168

Power 18.78 19.67 20.81 21.62 21.98 18.78 19.91 21.09 21.93 22.06
γ4 ASN 652 740 832 924 1018 767 868 974 1058 1069

Power 14.63 15.72 17.10 18.32 19.71 15.05 16.65 18.08 19.27 19.87

Table E.7: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ= 1

3 δplan,
n=1052, nmax = 2∗n
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δ = 1
3δplan Information fraction

Promising zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 1293 1291 1285 1280 1270 1261 1244 1223 1201 1162

Power 23.08 23.07 22.95 22.88 22.75 22.63 22.27 21.75 21.3 20.35
Hypothesised ASN 1539 1564 1563 1537 1493 1440 1379 1315 1247 1180

Power 26.28 27.32 28.19 28.66 28.54 28.01 27.11 25.77 23.94 21.76
80% limit ASN 1416 1400 1375 1354 1328 1303 1274 1242 1211 1165

Power 25.31 25.24 24.81 24.43 23.99 23.50 22.80 22.10 21.40 20.34
Promising zone with Futility
Trend ASN 1060 1076 1086 1098 1108 1119 1123 1128 1133 1125

Power 22.12 22.24 22.21 22.29 22.23 22.20 21.89 21.43 21.04 20.13
Hypothesised ASN 1536 1555 1545 1505 1445 1378 1309 1246 1189 1145

Power 26.56 27.5 28.33 28.77 28.61 28.05 27.14 25.77 23.94 21.71
80% limit ASN 1277 1257 1230 1211 1190 1176 1161 1150 1143 1129

Power 25.29 25.14 24.69 24.30 23.80 23.28 22.59 21.89 21.18 20.14

Table E.8: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions for the promising zone design with and without a futility boundary when
δ= 1

3 δplan, n=1052 and nmax = 2∗n
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E.1.4 Observed effect = zero

(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure E.10: Sample size zones from 50000 simulations when δ = 0 and n=1052, for two values of
nmax: comparing three designs and four observed treatment effects
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(a) nmax = 1.1∗n

(b) nmax = 2∗n

Figure E.11: Sample size from 50000 simulations when δ = 0 and n=1052, for two values of nmax:
comparing three designs and three treatment effect assumptions
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(a) nmax = 1.5∗n

(b) nmax = 3∗n

Figure E.12: Sample size from 50000 simulations when δ = 0 and n=1052, for two values of nmax:
comparing three designs and three treatment effect assumptions
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δplan=0.2 SHORT MEDIUM
δ=0
TREND 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
γ1 ASN 942 989 1038 1081 1115 1076 1133 1192 1225 1171

Power 5.53 5.47 5.25 5.22 5.16 5.10 5.24 5.09 5.04 5.07
γ2 ASN 841 906 969 1030 1085 984 1058 1131 1179 1142

Power 5.57 5.44 5.27 5.26 5.17 5.09 5.20 5.09 5.09 5.06
γ3 ASN 638 734 830 926 1022 796 898 1003 1083 1080

Power 5.60 5.47 5.28 5.32 5.17 5.08 5.20 5.06 5.12 5.10
γ4 ASN 575 679 785 890 996 745 856 968 1053 1056

Power 5.64 5.44 5.31 5.32 5.18 5.64 5.44 5.31 5.32 5.18
HYPOTHESISED
γ1 ASN 1676 1819 1879 1769 1451 1676 1820 1893 1815 1489

Power 5.01 5.07 5.09 5.20 5.22 5.01 5.08 5.05 5.08 5.15
γ2 ASN 1553 1716 1773 1650 1370 1553 1721 1800 1715 1413

Power 5.04 5.10 5.06 5.18 5.16 5.04 5.15 5.05 5.04 5.10
γ3 ASN 1312 1430 1446 1358 1216 1329 1483 1545 1480 1270

Power 5.09 5.13 5.15 5.23 5.14 5.01 5.12 5.05 5.06 5.09
γ4 ASN 851 899 944 993 1047 970 1044 1109 1149 1106

Power 5.36 5.32 5.24 5.26 5.13 5.09 5.18 5.07 5.10 5.09
80% Limit
γ1 ASN 1363 1296 1235 1190 1154 1454 1410 1370 1324 1209

Power 5.45 5.38 5.22 5.19 5.16 5.19 5.18 5.09 5.02 5.07
γ2 ASN 1176 1141 1119 1113 1115 1288 1271 1268 1255 1171

Power 5.43 5.42 5.25 5.28 5.16 5.08 5.2 5.13 5.11 5.07
γ3 ASN 748 808 879 955 1034 886 959 1043 1107 1092

Power 5.54 5.44 5.28 5.28 5.18 5.10 5.19 5.08 5.09 5.11
γ4 ASN 595 691 791 893 998 753 860 970 1054 1057

Power 5.61 5.49 5.30 5.31 5.18 5.09 5.24 5.07 5.10 5.10

Table E.9: Average sample number (ASN) and power for the combination test, comparing short and
medium times to primary outcome data becoming available and 4 values of γ when δ=0, n=1052,
nmax = 2∗n
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δ = 0 Information fraction
Promising zone 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Trend ASN 1170 1161 1152 1142 1131 1121 1112 1101 1090 1078

Power 4.98 4.89 4.93 4.88 4.85 4.80 4.75 4.66 4.65 4.62
Hypothesised ASN 1669 1609 1521 1426 1335 1260 1199 1151 1113 1086

Power 6.09 6.04 5.81 5.65 5.55 5.47 5.29 5.11 4.96 4.80
80% limit ASN 1265 1233 1205 1180 1158 1138 1123 1107 1092 1079

Power 5.12 5.00 4.98 4.88 4.83 4.76 4.72 4.62 4.61 4.60
Promising zone with Futility
Trend ASN 785 804 825 846 872 898 929 961 994 1029

Power 4.78 4.77 4.76 4.75 4.72 4.75 4.63 4.65 4.63 4.63
Hypothesised ASN 1647 1561 1439 1311 1193 1107 1052 1025 1022 1037

Power 7.49 6.78 5.97 5.71 5.54 5.53 5.26 5.17 4.99 4.84
80% limit ASN 977 944 924 914 915 924 944 968 997 1029

Power 5.06 5.01 4.91 4.85 4.78 4.76 4.63 4.62 4.60 4.61

Table E.10: Average sample number (ASN) and power from 50000 repetitions for three treatment
effect assumptions for the promising zone design with and without a futility boundary when δ=0,
n=1052 and nmax = 2∗n
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