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Abstract 

Recent advances in automation in the field of computational structural biology have created a 

void to be filled by novel validation software. In this project, the problems and inadequacies of 

currently available validation tools are identified, and the requirements of a novel validation tool 

are both ascertained and addressed. The development of a new validation software package is 

described in detail, starting with the development of the front-end interface and the back-end 

calculations, followed by the integration of these two components to produce an all-in-one 

validation package, which can calculate its own comprehensive per-residue validation metrics 

and present them in a compact, interactive, graphical interface, so as to allow the intuitive and 

thorough analysis of a protein model’s quality that is understandable at a glance. This interface 

features a novel graphical representation of validation, which plots multiple validation metrics 

along concentric axes such that correlations between those metrics are immediately apparent, 

and poorly-modelled regions are emphasised to the user. The software can be run standalone, 

or plugged into new or existing validation pipelines, and can incorporate calculated metrics from 

other validation services such as MolProbity (1). It supports multi-model comparison in its single 

view, and runs with negligible time penalty, making it especially suitable for evaluating 

incremental changes that result from automated or manual iterative model building. To 

showcase its extensibility and pluggable design, the integration of this package into the existing 

CCP4i2 (2) software suite is described. Finally, the package is analysed both quantitatively and 

qualitatively, and potential avenues for future work are outlined.  
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1 Introduction 

1.1 Proteins 

Proteins are macromolecular biomolecules composed of polymers of amino acids (polypeptide 

chains) which are ubiquitous in all domains of life. They are crucial to virtually all biological 

processes, performing functions such as reaction catalysis, cell signalling, and providing 

structural support. Individual proteins’ constituent amino acid sequences are encoded in genetic 

material, to be translated by the cell into a polypeptide chain. Despite the one -dimensional 

nature of this information, protein synthesis leads to the production of incredibly consistent, 

complex three-dimensional structures, which arise due to intramolecular interactions between 

the side-chains of amino acid residues in a chain during the process of ‘folding’. The median 

length of a protein in a eukaryotic organism is 472 amino acid residues (3), which corresponds 

to a molecular mass of roughly 52 kilodaltons. 

 

1.1.1 Protein structure 

Protein structure is often broken down into the four-tiered hierarchy described in the following 

subsections. 

 

1.1.1.1 Primary structure 

The primary structure is the one-dimensional sequence of amino acids in each chain in the 

protein, joined by covalent peptide (amide) bonds. There are twenty different proteinogenic 

amino acids encoded by the standard genetic code, with many other modified  amino acids 

produced by certain modified translation mechanisms (4). 

 

1.1.1.2 Secondary structure 

The secondary structure consists of the local three-dimensional conformations of regular motifs 

caused by intramolecular hydrogen bonding between the amino hydrogen and carboxyl oxygen 
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atoms in the main-chain of amino acid residues. By far the most common types of secondary 

structure are α-helices and β-sheets (composed of β-strands), but there are many other (albeit 

rarer) types, including turns and bends. On average, 60% of the residues in any given folded 

protein are found in regular α-helices or β-sheets (5). Areas of a chain that do not form a 

recognised motif are termed ‘random coils’. 

 

1.1.1.3 Tertiary structure 

The tertiary structure is the overall three-dimensional conformation of a single polypeptide 

chain, held together by a number of intramolecular interactions. The four principal interactions 

involved in tertiary structure formation are: hydrophobic and hydrophilic interactions, disulfide 

bridges, hydrogen bonds, and ionic bonds. In some cases, coordination of metal ions can be 

critical to the tertiary structure. 

 

1.1.1.4 Quaternary structure 

The quaternary structure is the arrangement and interactions between the component subunits 

(individual chains) within a multi-subunit complex. The quaternary structure of some complexes 

will also include cofactors or other biomolecules, such as nucleic acids. 

 

1.1.1.5 Dynamics 

Even once fully folded, a protein’s structure is not necessarily fixed; protein structures can be 

dynamic. A change in structure can be triggered by a number of events, including a change in 

the electrochemical environment, allosteric regulation by an effector molecule, or simply occur 

as a function of a particular structure’s inherent flexibility.  
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1.1.2 Protein function 

A protein’s aptitude for its function is dictated by its structure. There are many different classes 

of proteins, and the scale at which structure impacts function is different for each.  

At the most intricate level, a protein’s function may depend on the atomic-level position and 

conformation of individual amino acids. This is especially true in the case of specific binding, a 

process ubiquitous throughout the protein classes. Examples include signalling proteins and 

receptors (protein-protein specificity), ribosomes (protein-nucleic acid specificity), and 

transport proteins (protein-ligand specificity). Specific binding is particularly important for 

enzymes, which are proteins that catalyse biochemical reactions by converting one or more 

substrate molecules into different product molecules in a small pocket of the protein termed 

the active site. Like the other classes of proteins mentioned, some residues of the active site are 

involved in the specific binding and orientation of substrate molecules. However, enzymes take 

the atomic-level function a step further, in that some individual amino acid residues actively 

participate in the chemical reaction during catalysis. The position and orientation of these 

residues is therefore especially critical to the enzyme’s functionality.  

On a slightly broader scale are functions that occur over an area of many amino acid residues, 

typically as a result of those residues sharing some general property. For example, areas of 

hydrophobic residues can be used as a surface for hydrophobic interactions, either with a 

hydrophobic face on another protein, or, for instance, for positioning and orienting itself within 

a membrane (6). Additionally, pockets of residues with a shared property can be used to alter 

the chemical properties of the side-chains within it. For example, by surrounding a residue with 

a number of non-polar side-chains, its uncharged state becomes more thermodynamically 

favoured, affecting its pKa. This is termed the microenvironment effect, and is instrumental in 

creating active sites that have the required chemical properties in many enzymes (7). 

Over the very widest scale are functions that depend on the physical properties of the entire 

molecule as a whole. Such is the case with many structural proteins, which are used to provide 

structural support to certain structures, through imposing rigidity. One of the best examples of 

such proteins is collagen, the most abundant mammalian protein. Collagen is a fibrous structural 

protein found in connective tissue. It has high tensile strength, meaning it can withstand great 

stretching or pulling forces without breaking. Each collagen molecule is formed of three 

polypeptide chains, which are wrapped around each other to form a triple helix structure, held 
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together by interstrand hydrogen bonds. To enable this conformation, every third amino acid in 

each chain must be a glycine residue, which is the most conformationally flexible amino acid (8). 

The full range of protein functions is far greater than this overview might imply; each class of 

proteins comprises a diverse set of functions and modes of action, and each depends on the 

arrangement of amino acids in the protein’s three-dimensional structure. To summarise: the 

structure of a protein is critical to its function because it determines the mechanisms by which 

it can interact with other molecules, whether they be ligands, cofactors, or other proteins.  

 

1.2 Protein structure determination 

1.2.1 Background 

Since proteins are so ubiquitously involved in biological processes, an intricate level of 

understanding about their individual structures, and therefore functions, is immensely valuable. 

Such a level of understanding lays the foundation for the creation of new hypotheses about how 

proteins can be affected, modified, or controlled. As such, protein structure determination is 

critical to so many aspects of computational biology, either as individual structures of target 

proteins, or as entire databases of proteins, such as the Protein Data Bank (PDB)  (9). 

The field in which an understanding of protein structures has proven especially useful is drug 

design. Historically, drug development has been performed by trial and error, by screening 

random compounds. However, the advent of protein structure determination brought about 

systematic structure-based drug design, in which the structure of a target protein can be 

analysed to calculate the binding modes and affinities of a huge database of different ligands 

(prospective drug molecules) using high-throughput approaches. Another example is the field 

of protein engineering: the process of developing artificial proteins, which can be used to 

develop custom enzymes to biologically catalyse reactions (10,11), to develop proteins for use 

as drugs, such as rilonacept (12), or even to develop artificial molecular machines (13). 

Protein structure determination primarily involves building an atomic model to fit some 

experimentally observed data. In the following subsection, the most common experimental 

methods are outlined. 
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1.2.2 Experimental methods 

1.2.2.1 X-ray crystallography 

X-ray crystallography is an experimental technique used to determine the arrangements of 

atoms within a crystal, developed after the discovery of X-rays (14) and their diffractive 

interactions with crystals (15) in 1895 and 1912 respectively. X-ray crystallography is performed 

by firing a beam of electrons through a crystal and recording the diffracted radiation to yield a 

diffraction pattern: a cross-sectional image of the reciprocal space which contains information 

about the atomic arrangement within the crystal (Figure 1). If many such images are taken with 

the sample placed at various orientations, the diffraction patterns can be decoded to a real 

space electron density map by applying a Fourier transform, and the atomic structure of the 

crystal can be inferred. X-ray crystallography on proteins is commonly referred to as protein 

crystallography, or macromolecular crystallography (MX). 

 

Figure 1: Simplified diagram of an X-ray diffraction experiment. 

In 1934, John Desmond Bernal and Dorothy Crowfoot Hodgkin discovered that consistent and 

reliable diffraction patterns of protein crystals could be obtained if they are X-rayed in their 

mother liquor (the solution that remains after crystallisation). Until that time, X -ray 

crystallography of proteins had only been attempted on dry protein crystals, which had given 

only poor results. With their discovery, Bernal and Hodgkin took the first X-ray photographs of 

protein crystals, in the form of crystalline pepsin, thereby yielding the first protein diffraction 

pattern (16). After a couple of decades, the structures of larger proteins started to be solved, 

the first of which was the structure of sperm whale myoglobin by Sir John Cowdery Kendrew in 

1958 (17). Once the potential applications of this technique were realised, the field of structural 

molecular biology was born. 



 

13 
 

In the early days of MX, X-rays were produced by in-lab X-ray sources, and diffraction patterns 

had to be interpreted manually, by performing Fourier transform analysis by laborious manual 

calculation. Francis Crick, for example, was an experienced crystallographer (18), and MX was 

famously used by Rosalind Franklin, James Watson, and Francis Crick to solve the structure of 

DNA in 1953 (19). 

MX remains by far the most common method for protein structure determination. In recent 

years, the process has become substantially more automated, and computational techniques 

have become integral to the solution process. Although in-lab X-ray sources are still widely 

available, most modern-day MX is performed using synchrotron radiation, at a beamline facility 

such as the Diamond Light Source (20). 

 

1.2.2.2 Cryogenic electron microscopy 

The basic principle of electron microscopy (EM) involves using an accelerated beam of electrons 

to illuminate a sample, exploiting the wave-like characteristics of electrons. An electron beam 

can have a wavelength many orders of magnitude shorter than that of a photon beam, and as a 

consequence, can capture images at substantially higher resolutions.  

Since its advent, the potential for the application of EM in molecular structural biology was well 

appreciated. However, its practical application was limited, due to the radiation damage caused 

to samples by the high energy electrons, and the fact that the microscopy had to be performed 

under vacuum, leading to evaporation of water in the samples. In the early 1980s, it was 

discovered that by performing EM under cryogenic conditions (temperatures approaching 

absolute zero) these damaging effects could be lessened (21,22). This is known as cryogenic 

electron microscopy (cryo-EM). In 1984, a seminal paper from a group at the European 

Molecular Biology Laboratory featured images of adenovirus embedded in a vitrified layer of 

water (23). This paper is widely considered to mark the beginning of modern cryo-EM (24–26). 

Since then, cryo-EM has continued to become more prevalent in the field (Figure 2). 

Cryo-EM on proteins is most often conducted as a single-particle technique, whereby the imaged 

sample contains a dispersion of many instances of the molecules of interest, all at different 

orientations. Therefore, the result of the experiment is a number of images of the target 

molecule, which can be processed to produce a three-dimensional map of the molecule. 
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Unlike MX, cryo-EM does not require that samples be crystalised, and also requires a much 

smaller amount of sample. Historically, one of the main disadvantages of cryo-EM compared to 

other techniques has been its comparatively low resolution. However, substantial recent 

advances in image-processing algorithms and detector hardware, such as the advent of direct 

electron detectors, have led to the so-called ‘resolution revolution’, yielding data at much higher 

resolutions (27,28). 

 

1.2.2.3 Nuclear magnetic resonance 

After cryo-EM, the next most common method is nuclear magnetic resonance (NMR) 

spectroscopy (Figure 2), a technique that involves recording a spectrum of excitation 

frequencies emitted by atomic nuclei in the presence of a strong constant magnetic field when 

perturbed by a weak oscillating magnetic field. The precise frequency of excitation given off by 

a particular nucleus is dependent on its chemical environment; hence, a frequency spectrum 

can be used to identify particular chemical environments within a sample compound and build 

up a picture of the compound’s overall structure. 

NMR is performed on highly pure aqueous solutions of sample, and hence is only suited to 

water-soluble proteins. Proteins that have majoritarily hydrophobic externals, such as 

membrane proteins, are not suited to regular NMR analysis. However, there is a variant of NMR, 

known as solid-state NMR (ssNMR) which is specifically suited to such cases (29–31). 

Since proteins can be such large molecules, a single NMR spectrum will inevitably contain 

overlaps, within which multiple individual nuclei emit the same excitation frequency, making the 

spectrum impossible to decipher. Hence, protein NMR normally consists of a multi-dimensional 

approach, in which peaks from NMR spectra of different nuclei are correlated to produce more 

informative data. 

In protein NMR, structure calculations are performed by applying restraints to the output of 

multidimensional NMR experiments, in order to obtain a model. In contrast to MX and cryo-EM, 

protein NMR does not generate an electron density map. Nowadays, protein NMR is more 

commonly used to investigate protein interactions (32–35). 
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1.2.2.4 Other methods 

There are other, less common, methods applied in macromolecular structure determination. For 

example, there are purely computational methods such as protein structure prediction, in which 

a protein’s secondary or tertiary structure can be predicted from its amino acid sequence if it is 

known. Such methods were first introduced in the 1960s (36,37), and recent developments in 

the applications of deep learning have led to impressive breakthroughs in the field, resulting in 

systems that can predict the full three-dimensional structures of proteins with accuracy 

approaching that of experimental methods, such as DeepMind’s AlphaFold (38,39). 

 

1.2.2.5 Summary 

Even today, MX is still by far the most popular technique, with over 140,000 macromolecular 

structures having been solved by MX and made publicly available (40) (Figure 2). 

 

Figure 2: Number of structures deposited in the PDB between 1990 and 2020, by experimental 

method. Data from wwPDB, accurate as of December 2020 (41). 
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1.2.2 Protein structure solution pipeline 

Collecting experimental data is merely the first step in a multi-step process of protein structure 

determination. Because of its prominence, this subsection discusses the structure solution 

pipeline for MX (Figure 3). Once data has been collected, in the form of diffraction patterns, also 

known as reflection data, there are several essential processing steps to be performed before a 

finished atomic model can be produced. Each of these steps is performed with the help of 

specialist software, many of which are bundled with model building suites such as CCP4 (42) or 

PHENIX (43). 

 

Figure 3: X-ray structure solution pipeline. Adapted from Kevin Cowtan, 2012 (44). 

Every step of the structure solution pipeline involves unavoidable uncertainties, from the 

experimental errors introduced in the early stages, to the subjective decisions made during 

model building. Once a preliminary model has been created, it needs to be refined in an iterative 

cycle of refinement and validation, which mitigates against such uncertainties. 

 

1.2.3 Protein structure validation 

Validation of protein structure is performed using validation metrics, which provide information 

about various aspects of the atomic model. These can pertain either to individual parts of the 

model (local criteria) or to the model as a whole (global criteria). 

Some validation metrics can be calculated from just an atomic model, using a model file: these 

are text files, primarily containing a list of atoms and their associated coordinates. The most 

ubiquitous format of model file is the Protein Data Bank format (*.pdb), the column order for 

which is shown in Table 1. Other types of model file include the newer PDBx/mmCIF format 

(*.cif) which is more extensible, but contains essentially the same data. Other validation metrics 

can only be calculated with access to the experimental data, in addition to the model file. 

Experimental-data files are specific to the experimental method. In the case of MX, experimental 
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data comes in the form of reflection data, a collection of X-ray diffraction observations. These 

data are most commonly stored in the MTZ format (*.mtz). From these data, an electron density 

map can be calculated, which can in turn be used to calculate density fit validation metrics.  

Columns Field Name Data Type Definition 

1-6 record String e.g., "ATOM  " for an atom 

7-11 serial Integer Atom serial number 

13-16 name String Atom name 

17 altLoc Character 
Alternate location indicator, to indicate alternate 

conformation 

18-20 resName String Residue name 

22 chainID Character Chain identifier 

23-26 resSeq Integer Residue sequence number 

27 iCode Character 
Residue insertion code, used to differentiate 

between two residues with the same numbering 

31-38 x Float Orthogonal coordinates for X (Å) 

39-46 y Float Orthogonal coordinates for Y (Å) 

47-54 z Float Orthogonal coordinates for Z (Å) 

55-60 occupancy Float Occupancy 

61-66 tempFactor Float Temperature factor (B-factor) 

77-78 element String Element symbol 

79-80 charge String Atomic charge 

Table 1: Column order of the coordinate section of the PDB file format.  From these data, 

model-only metrics including geometric analyses can be calculated. As shown in the third-to-

last column, the model file also contains atomic B-factors. Hence, B-factor is also a model-only 

metric, despite the fact that B-factor values are originally determined using the experimental 

data. Data from wwPDB (45). 

Model-only metrics inform about properties of an atomic model as a standalone entity, such as 

the bond geometry. This covers attributes such as deviations from ideal bond lengths, angles, 
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planes, and dihedrals. The result of these analyses is the detection of outliers: rare atomic 

arrangements, deemed unlikely to occur. Each outlier is either the result of an improbable but 

real feature of the protein structure (meaning the model is correct, and should be respected) or 

an error in the protein model (in which case the model should be corrected). In order to establish 

which of these two possibilities is the case for each outlier, the model must be compared to the 

electron density map derived from the experimental data, to assess the probability that the 

atoms in question were modelled correctly. This is frequently done manually, by visually 

comparing the model and electron density map in molecular modelling packages such as Coot 

(46) or CCP4MG (47), but can also be performed by applying local reflections-based validation 

metrics, including measures of electron density fit quality and B-factor. The real space 

correlation coefficient (RSCC) and real space R (RSR) are the most commonly applied metrics of 

local fit quality, and analysis has revealed that both show individual biases in their assessments 

of model accuracy (48). 

Today, validation metrics can be produced in several different ways, the most prevalent of which 

being software suites such as CCP4 (42) and PHENIX (43), options and plugins in molecular 

modelling packages such as Coot and CCP4MG, and independent web services ( vide infra). In 

recent years, the number of potential routes for model validation procedures has increased 

substantially, having developed from the smallest beginnings just decades ago. The demand for 

new validation metrics and more accurate refinement procedures is ever-increasing (49), and is 

sustained by periodic realisations that previously-deposited models are often imperfect (50–55). 

The development of the structure validation process started following the inception of the field 

of macromolecular crystallography. In the beginning, there was no model refinement, since 

computational power was not widely available, especially not to the required extent. It was only 

in 1971 that the first automated least-squares refinement algorithm was published by Robert 

Diamond (56), which marked the start of computational protein structure refinement. The only 

available ‘validation metrics’ at this stage were the global indicators of R-factor and resolution. 

Refinement remained a highly computationally intensive procedure. To tackle this problem, 

geometric restraints and constraints on atomic geometry were introduced to the refinement 

process. These served to reduce the dimensions of the least-squares matrix used in minimisation 

calculations by most refinement programs, which in turn reduced the computational intensity 

of model refinement, and were used in both small molecule (57,58) and macromolecular (59,60) 
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crystallography. These restraints and constraints would go on to themselves become useful 

metrics to highlight geometric irregularities in models: the birth of geometric model validation.  

Over the following years, the exponential increase in available computational resources was 

paralleled by a growth in the number of macromolecular structure determination programs. The 

first validation software package, PROCHECK (61), was developed in the 1990s, and provided a 

variety of summary outputs, including a page of per-residue stereochemical analysis plots. These 

local analyses, although simplistic, proved to be extremely helpful for users, immediately guiding 

them towards areas of the model that may require further improvement or analysis. 

Comparably, the WHAT_IF (62) validation report, WHAT_CHECK (54), conducted various 

geometric validation analyses, as well as some analyses that were not present in PROCHECK, 

such as suggested side-chain flips and unsatisfied donors and acceptors (63). 

The 1990s also saw the development of tools such as ProSA (66), which produced a single 

summary line graph of local model quality against residue number, as well as ERRAT (67), which 

plotted a nine-residue moving-window bar chart of a summary error value, and VERIFY3D 

(64,65), which produced a twenty-residue moving-window scatter plot of a protein’s 3D profile 

score. In a similar vein to PROCHECK, these local summary plots were especially helpful in 

highlighting poor-quality areas of a structure. 

Coot (46) transformed the field with its interactive output, by building upon interactivity 

introduced by software such as O (68). Coot featured scrollable self-updating charts to display 

the results of its diverse selection of integrated validation tools, many of which were built on 

the Clipper C++ libraries (69). These charts were presented in pop-up interfaces, and featured 

residue-by-residue charts for both reflections-based and geometric metrics. 

In 2007, MolProbity rapidly became one of the most ubiquitous pieces of modern validation 

software, and still is today. MolProbity produces reports that feature high-quality geometric 

analyses, produced using proprietary methods of hydrogen-placement and all-atom contact 

analysis. Self-described as a “structure-validation web service”, MolProbity geometry-based 

validation reports can be generated either using one of a few web-based MolProbity servers, or 

via the MolProbity libraries bundled in suites such as CCP4 and PHENIX. In the latter 

implementations, a local MolProbity server is initialised, which can be called upon by validation 

tools of the suite to perform back-end metrics calculations. The outputs can then be processed 

or presented by the validation tool as required. 
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PHENIX’s Polygon (70) brought a one-shot graphical representation of overall model quality in 

the form of its radar chart, which could illustrate the values of several different quality indicators 

in a single view by plotting them along coloured bar charts emanating from a shared origin. This 

software was highly successful, and provided the basis for similar features in other multi-metric 

reports. 

Along similar lines are the well-known Worldwide Protein Data Bank (wwPDB) summary quality 

sliders, which are featured on the summary page for every structure in the PDB. The sliders 

present a range of model-wide validation metrics in the form of percentile rankings, providing a 

single-view representation of how a model compares to similar models in the PDB on several 

different scales. These sliders were incorporated into the OneDep system, which was introduced 

by the wwPDB in 2014 (71). The full OneDep report features residue sequence plots which flag 

geometry outliers. 

Today, computational structure validation is rich with a diverse array of software tools, including 

those mentioned here. Each brings valuable functionality to the table; however, because these 

features are scattered amongst so many different programs and suites, typical workflows 

involve running several different programs in series to obtain the required array of metrics, and 

obtain a comprehensive picture of the outcome of a refinement procedure. For example, one 

might start in molecular modelling software such as Coot, then apply a geometric validation 

suite such as MolProbity, and finally deposit to the PDB via the OneDep service. 

The logical evolution from this manual refinement process, and towards a fully -automated 

iterative process, has been a long-time goal in the field. A large portion of the model building 

process has been automatable since even the 1990s, with the release of O and the programs 

that worked in concert with it, like OOPS (72), which featured automated procedures that 

greatly reduced the need for user input. The road to fully automated model building was paved 

by the ARP/wARP suite (73), which was able to produce essentially complete models from just 

the experimental data alone, thus pairing the model building and refinement processes. 

More recently, software such as PHENIX's AutoBuild (74) has brought the field significantly 

closer to realising this goal. AutoBuild applies a repeated cycle of rebuilding and refinement to 

result in a largely complete model. Fully automated systems like these often enable the user to 

export the latest model file at each iteration of refinement, so that they can compare data from 

various steps along the overall process to follow the actions and progress of the automated 

procedure. 
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In summary, many of the most successful features in computational structure validation are 

spread across several validation tools, with no one program ticking all of the boxes. In order to 

remedy this, novel validation software should incorporate as many of those features as possible. 

In addition, they should not only perform both model-only and reflections-based analyses on a 

per-residue basis, but to be consistent with recent developments in automation, they should 

support integration within both new and existing model-building pipelines as an automatable 

task with low run time. 

 

1.3 Project goals 

The overarching goal of this project was to design and create a pluggable standalone validation 

software package to address the specific needs described in the previous subsection. It sho uld 

be an all-in-one validation package that can calculate its own per-residue validation metrics, and 

also permit the incorporation of metrics from other validation services such as MolProbity. It 

should display all these metrics in a compact, interactive graphical interface that enables at-a-

glance comparison between stages of automated model building. Finally, it should run quickly 

enough to be used either interactively or at the end of a new or existing validation pipeline with 

a negligible time penalty. 

In this work, the development of such software is described and discussed, starting with the 

graphical interface, then the development of the integral metrics module, and the integration 

of these two parts to produce a complete all-in-one package. As an example of its integrability, 

the implementation of this package within the CCP4i2 graphical user interface is explained. 

Finally, the software is tested and analysed both quantitatively and qualitatively.  
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Software 
Geometric 

analysis 

Density fit 

analysis 

Per-residue 

analysis 

Supports 

integration 

All-in-one 

graphics 
Interactive 

Coot 

(Validation 

menus) 

Yes Yes Yes Yes No Yes 

MolProbity 

(Web server 

report) 

Yes No Yes Yes No No 

Polygon 

(Comprehensive 

validation) 

Yes Yes No No Yes No 

wwPDB 

(Validation 

sliders) 

Yes Yes No No Yes No 

This Project Yes Yes Yes Yes Yes Yes 

Table 2: Overview of some of the validation tools mentioned.  All the programs identified have 

long run times, which are exacerbated in some cases by simple, but mandated, manual input. 

Coot performs all the desired analyses, but provides them in individual horizontally -scrolled 

bar charts, rather than in an all-in-one graphic. Similarly, MolProbity, which performs excellent 

per-residue geometric (but not reflections-based) analyses, provides its output as a vertically-

scrolled table. Polygon and wwPDB both provide an all-in-one overview of a model, but not 

one with residue-by-residue analyses. From Rochira and Agirre, 2020 (75). 
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2 Methods 

Before designing the validation package, a few key aspects of its format had to be decided: the 

most important of which being which language to use – a traditional programming language or 

a scripting language. The most relevant examples of each in this context are C++ and Python, 

respectively. The primary difference between the two types of language is how they are run, 

with C++ code being compiled to machine code when it is first built, and Python code being read 

on-the-fly by an interpreter each time it is run. Compiled programs are inherently more efficient 

than interpreted programs, making them faster. They are also freestanding, in that they do not 

need an interpreter to be installed to run. However, scripted programs have their own 

advantages: their code is often more compact and easily readable (which is especially true in the 

case of Python vs C++), and they can be modified and re-run without waiting for a compiler every 

time, making them a good fit for quick prototyping and end-user customisability. 

In the end, Python was chosen for the back-end of the package. Increasingly prevalent in the 

field, the Python interpreter is a component of all the major crystallographic software packages, 

ensuring compatibility for the package as a freestanding program or a plugin. In addition, 

language binding can be applied to include C++ code within a Python script to achieve the best 

of both worlds. 

 

2.1 Interface 

2.1.1 The interface format 

Once Python had been decided as the back-end language, the first stage of package design was 

to decide the format of the front-end interface and to prototype a dummy user interface. The 

function of the interface would be to render the validation graphics, present them to the user, 

and then handle user interaction, updating the graphics in real-time. In performing these 

functions, the interface should also comply with the overarching project goals of fast execution, 

and maintaining compatibility with existing software packages. 

Having Python as the back-end language meant the options for interface design were narrowed 

down to two broad possibilities: it could either be written as a Python-based graphical user 
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interface (GUI) or as a freestanding report exported by the Python script. Each method has its 

own advantages and disadvantages. 

A Python-based GUI could be written using one of many available frameworks, including: PyQt, 

the Python binding to the Qt GUI toolkit; tkinter, the Python binding to the Tcl/Tk GUI toolkit; or 

wxPython, the Python wrapper for the GUI API wxWidgets. Launching a window directly from 

the script would enable a completely self-contained package; with the interface interactions 

being handled by Python code too, both the front and back ends would be written in the same 

language, and packaged alongside one another. This would make for a neat and extensible 

overall design, making customisation by the end user all the more intuitive. Indeed, many of the 

available Python-based crystallographic packages use this format for their own GUIs. For 

example, the CCP4i2 interface is based on PyQt, and the PHENIX interface on wxPython.  

Alternatively, a freestanding report could take the form of a Portable Document Format (PDF) 

file, or a Hypertext Markup Language (HTML) document, with the latter being more suitable for 

the user interaction requirements of this project. However, the disadvantage of this format is 

that in contrast to the Python-based GUI solution, the code that handles interface interactions 

would have to be written in another language, with the most practical choice being JavaScript 

(JS). The only way around this would be so contrived as to defeat the purpose of an all-Python 

solution (such as requiring each user to run a local web server written in Python using the Django 

framework). However, there are a number of significant advantages to this format. For example, 

the HTML/JS format is well supported: every modern device has a built-in browser that can 

render HTML pages and parse JS, and the Python-based GUI options all support some sort of 

webviews that could render the HTML within a Python-based GUI. In addition, once a report has 

been produced and saved, it can be reloaded at a later date without having to be regenerated 

by the Python script. Finally, an HTML/JS solution, written properly, would be robust and stable. 

With these considerations in mind, the HTML/JS report format was selected for the project 

interface. The next stage of interface design was deciding a method for graphic generation. 

Graphics could either be generated by the Python script and exported as part of the HTML 

report; or be generated by the JS code upon the loading of the HTML file by the user. In either 

case, pre-existing graphing packages such as Matplotlib (76) (for Python) or Chart.JS (77) (for JS) 

were ruled out. Despite the high level of customisability offered by such packages, the extent to 

which they would have to be customised to fit the exact requirements of this project would be 
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so great as to make their application counterproductive. The graphics would have to be bespoke, 

and custom-built from the ground up. 

Knowing that the graphics would have to be drawn from scratch, there were two main routes to 

investigate. The first was to use the HTML5 canvas: a JS-controlled HTML5 element for drawing 

bitmaps in immediate mode, in which the image is drawn and retained in the client’s memory 

when the page is loaded. This method was dismissed almost immediately, as its disadvantages 

were so numerous. Firstly, the fact that the image would have to be redrawn each time the page 

is loaded would lead to unnecessarily high loading times. Secondly, because the resulting image 

would be a single, flat bitmap, there would be no scope for interaction with individual ‘elements’ 

of the image, as they would be a purely visual construct. Lastly, the HTML5 canvas element may 

not even be supported by some of the integrated web-browsers in existing packages, as those 

browsers are often somewhat outdated. 

The more favourable option was to generate graphics in the Scalable Vector Graphics (SVG) 

image format from the Python back-end. SVG images are text files, based on the Extensible 

Markup Language (XML) which can be rendered by all major modern web browsers, as well as 

most image viewers. The widely-supported nature of the format made it a good candidate for 

this project. The SVG images could either be saved as individual files, and then referenced within 

the report using one of a few compatible HTML elements (e.g. , img, svg, object), or more 

appropriately, they could be embedded directly within the HTML file. Because both HTML and 

SVG files are XML documents, the SVG markup could be directly included within the HTML 

document in an inline implementation, such that child elements of the SVG file become a part 

of the overarching Document Object Model, and therefore children of the HTML document. 

Consequently, all elements of the SVG image would become accessible by any JS code that loads 

with the HTML document, enabling the desired JS-based interaction. 

 

2.1.2 The graphics 

With the HTML/SVG/JS format settled upon, the next stage of design was to prototype the 

graphics. The centrepiece of the package was to be a single chart that would represent the 

metric values for every residue in a chain in a single view. The basic idea behind this was a 

circular chart in which each residue of the chain is represented as a sector of the circle, and all 

of a residue’s validation metrics are represented together within that residue’s sector.  
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To quickly prototype chart designs, as well as the algorithms for their generation, ideas would 

be designed programmatically using a Python script. Before designing the actual graphics, a 

custom class was written to generate synthetic data, mimicking the metrics that could be 

extracted from a model. The flow of this class is shown in Figure 4. 

  

Figure 4: Flowchart outlining the synthetic data-generation class. For each residue, the custom 

class generated a synthetic metric value for each of five imaginary metrics; these values were 

generated by sampling from one of two normal distributions: either 𝑁(60 ∼ 152) or 𝑁(15 ∼

52), with the latter distribution applied to a ‘patch’ of poor-quality residues somewhere within 

the chain. 

Once the data generation was taken care of, design prototyping was started.  In order to combat 

the subjectivity intrinsic to the graphic design process, a group of non-experts was assembled to 

periodically provide unbiased feedback. Throughout the design process, the group would be 

sent a design and a brief summary of the information that the graphic was intended to convey, 

and be asked for their individual opinions. 
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A Python module named charts was created to house the graphics-generation code. The initial 

designs were generated in the SVG format, using the open-source Python library svgwrite (78). 

The first idea trialled was a stacked radial bar chart, in which each residue was represented by a 

bar around the circle, containing each of the residue’s validation metrics stacked on top of one 

another (Figure 5). 
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Figure 5: First designs of the chain-view chart. In these charts, each sector contains all the 

residue’s validation metrics stacked on top of one another. The axis gradations for all metrics 
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are illustrated by the concentric black circles. In the first version (A), each residue was drawn 

as a rectangular bar extending out from the edge of the inner circle in the centre of the chart. 

The purpose of the inner circle was to prevent the overlap that would otherwise appear 

between bars at the dead centre of the circle, and to provide a clear separation between bars 

at lower values. In the next version (B), residues were drawn as sectors, forming a contiguous 

drawn area, and maximising the available space. To ensure that the divide between residues 

was still clear, a white border was added to each sector. In contrast to the stacked bars seen in 

the first version, sectors in this chart comprise a number of overlapping, opaque components, 

which each represent an individual metric value. Because each of these components has its 

own white border, it is possible to identify each individual metric value for a residue from this 

chart alone. In the final version (C), a number of minor changes were made. Firstly, the inner 

circle was expanded, further compressing the axis, and making it easier to read. The fill of the 

inner circle was changed from solid grey to alternating shades, as an additional measure of 

delineation between residues. The extra space within the inner circle was utilised to label 

residues with their respective sequence number and one-letter amino acid code. Finally, 

numerical axis labels were added. 

Although this design made it very easy to spot residues with poor metrics across the board, it 

had a few flaws: 

1) It was very difficult to precisely read metric values off the chart, a limitation of the axis 

style chosen. 

2) It was not possible to identify which of a residue’s metrics score well or poorly for an 

individual residue, and consequently, it is impossible to track the trend in any particular 

metric across a sequence of residues. 

3) A residue scoring very well in one or two metrics would often disguise the fact that it 

scored very poorly in others, because the large green bars are much more visually 

striking than the small red bars beneath it, despite the fact that the small red bars are 

of greater significance, given that the primary goal of this graphic is to emphasise the 

areas of worst quality in a chain. 

4) When generated for synthetic chains of higher residue counts, the chart would become 

increasingly difficult to interpret, and the labels would become unreadable ( Figure 6). 
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Figure 6: Chain-view charts illustrating the effect resulting from increasing the length of the 

synthetic chain to 200 residues (A) and 1,000 residues (B). Given that the median length of a 

protein in eukaryotic organisms is 472 amino acid residues, neither of these would be an 

unusually high number of residues. 

In an effort to tackle the first two of these limitations, it was decided that a residue-view chart 

should be shown alongside the chain-view, which would show the details of an individual residue 

selected by the user via interaction with the chain-view chart. In this way, an individual residue’s 

metric breakdown could be shown in detail, allowing the user to track the trend of an individual 

metric through the chain. The residue-view was designed as a form of radar chart, shown in 

Figure 7. 

 

Figure 7: Radar chart residue-view, with five (A) or ten (B) different metrics. The shape of the 

radar chart is automatically updated based on the length of the metric-names array passed as 
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the only argument for the radar chart-generating function, an example of the procedural 

design made possible with this method of graphics generation. Like the chain-view chart, the 

radar chart axes were labelled on a scale from 0 to 100 (corresponding to the output value 

range of the synthetic data class) but with the axis length equal to the full radius of the chart, 

making it much easier to read off a precise value. 

Although the residue-view chart was ideal for clarification of individual metric values for each 

residue, it could only be applied to one residue at a time, so did not entirely alleviate the second 

of the two problems it targeted. Ideally, the chain-view chart alone should illustrate the trend 

in a metric across the chain, without requiring an arduous process of manual checking from the 

user. Therefore, to solve this, and the rest of the limitations outlined, the chain-view chart would 

have to be redesigned. 

The next conception of the chain-view chart was a series of radial line graphs plotted on 

concentric circular axes, where each axis would represent a different validation metric, and 

clockwise progression around the axes would correspond to the progression through the amino 

acid sequence of a protein chain. The hope for this design was that areas of poorer model quality 

would correlate with worse validation metric scores in several different metrics, making them 

easier to spot (Figure 8A). Initial ideas for this design were trialled using the same synthetic data 

generation mechanism as was used with the previous design. Each axis plotted the absolute 

metric value, with the axis limits set to [0, 100] and the origin therefore equal to 50. The results 

of these tests were disappointing (Figure 8B); the oscillations from the residues within the ‘high-

quality’ normal distribution were so erratic that it was very difficult to identify the patch of low-

quality residues, making it essentially useless. In an effort to reduce the noise produced by the 

uninteresting residues, an axis transformation was applied, whereby the square deviation from 

the mean was plotted instead (Figure 8C). This almost entirely alleviated the problem. 
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Figure 8: Originally-illustrated example for the idea behind chain-view chart (A), the result of 

the first test with synthetic data (B), and the result of the same test with the axis 
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transformation applied (C). The patch of poor residues is found between the eleven and twelve 

o’clock positions in all three charts. In the final chart, metric values are plotted as squared 

deviations from the mean metric values for the chain, so only the most extreme values are 

noticeable. 

Satisfied with the axis transformation for the time being, it was decided that this design would 

be developed further. Firstly, a gap was added at the 12 o’clock position for axis labels. Then, 

each metric axis was designated an individual colour, to make each metric immediately 

identifiable from the chain view alone. Next, the area between each axis and its line p lot was 

shaded in the same colour, to make an area’s distance from the axis more immediately apparent. 

Finally, a sector residue-divider was added around the outside of the chart to introduce a sense 

of the size of the protein chain being viewed, as well as to provide some direction to the user to 

ease the selection of an individual residue for display on the residue -view chart once user 

interaction had been implemented. The result of these changes is shown in Figure 9. 
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Figure 9: Updated chain-view chart. Produced from synthetic chains with 200 residues (A), 500 

residues (B), and 1,000 residues (C). This design solved all of the problems arising from the 
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previous design: it is immediately apparent which residues score well or poorly in any given 

metric, the areas of worst quality are clearly emphasised, and the chart is equally readable 

with both low or high residue counts. 

One of the most-desired features of the validation report was that it should be able to compare 

different iterations of a model within the same chart. To accomplish this, the synthetic data class 

was restructured to produce two different SyntheticProtein objects with similar metrics values, 

to represent the iterations of a protein model both before and after some hypothetical 

refinement process. Different ‘ghosting’ methods were trialled, to show the values 

corresponding to the ‘previous’ iteration of the protein alongside those of the ‘current’ iteration. 

The results of these tests are shown in Figure 10. 
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Figure 10: Selection of different chain-view ghosting designs. All charts were generated from 

the same synthetic chain, of length 200 residues. Charts A, B, and C are all based on the same 
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idea: for each metric axis, the previous model data is drawn as a grey shaded area behind the 

latest model data’s individually coloured shaded area. The only difference  between these 

three charts lies in the opacities of the various layers. Of the three, Chart C was preferred by 

the majority of testers. Chart D is based on a slightly different idea. Again, the previous model 

data is drawn behind the latest model data, but the latest model data is all shaded in cyan, and 

the previous model data is shaded a different colour for each residue: green if the metric value 

for that residue improved across the iteration, or red otherwise. Charts E and F are based on a 

different idea, a hybrid of the principles of the other charts. Rather than drawing separate 

areas for both the latest and previous model data, only one area is drawn for each metric, with 

the shape representing the metric values of the latest mode, and the individual segments that 

comprise the area individually filled and outlined with a colour that represents the residue’s 

metric value improvement over the iteration, as in chart D. User feedback indicated that the 

charts featuring per-residue colouration were too ‘busy’ to be easily interpreted, ruling out 

charts D, E, and F. Of the first three charts, Chart C was widely selected as the most readable 

combination of opacities, and so it was selected as the working design with which to proceed.  

 

2.1.3 The report 

As both charts had arrived at a suitable stage of development, the next task was to design the 

HTML interface that would display them. A submodule named report was created as a part of 

the interface model, alongside the charts submodule. 

It was decided that the most effective way to design the layout of the HTML report would be to 

use the open-source package Bootstrap (79). A template was adapted from open-source code 

available on the Bootstrap website (80) which provided suitable view compartmentalisation. The 

adapted template is shown in Figure 11. 
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Figure 11: First HTML template designed for the report. The report is divided vertically into 

sections, which are either scrolled between manually or jumped to by using the buttons on the 
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left side of the navigation bar, which is frozen in place. The topmost section of the report is to 

contain the chain-view and residue-view charts, presented side-by side. The rest of the 

template constitutes placeholders for intended additions, including a section for verbose 

tabulated data. Likewise, the Configure button on the right-hand side of the navigation bar was 

designed to trigger a dropdown menu containing options for on-the-fly configuration, to be 

designed at a later date. The injection point strings are used as flags for the Python script to 

insert the HTML code specific to each report. Injection points 2 and 3 are the flags for the 

chain- and residue-view charts respectively. Injection point one is the flag for the chain-

selector bar, shown above the chain-view chart. Because the chain- and residue-view charts 

have similar aspect ratios (roughly 1:1) their respective columns must be equally sized for 

them to line up vertically. However, the chain-view chart is much more information-dense 

than the radar chart, and the user is likely to favour a larger chain view. Hence, the resize 

arrow in the upper-right corner of the chain-view chart was added, which can be used to 

expand the chain-view column and contract the residue-view column. 

Once the HTML template had been designed, the next step was to write the JS code that would 

enable user interaction by tying the SVG elements together. The basic premise behind this was 

that there would be two JS files associated with each report. One file would contain the code 

common to every report; for example, the functions hooking the methods of the embedded SVG 

images. This file would be hardcoded and packaged with the template. The other file would 

contain the metrics data specific to that model, and would be individually generated by the 

Python script for each report. In this way, the groundwork for the JS was laid; its layout is shown 

in Figure 12. 
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Figure 12: Functions and variables of the primitive report JS. 

With the basic JS written and the report functional, some areas for potential improvement 

became apparent. For example, it was difficult to know if the correct residue had been selected, 

since there was no indication as to which sector was last clicked, or indeed which residue this 

corresponded to. To rectify this, two steps were taken: a sector selector was added to the chain-

view chart (Figure 13A), and a residue info text line was added to the HTML template, above the 

radar chart, to be updated by the JS with a description of the selected residue.  

Another area for improvement was that the radar chart was not as informative as it had the 

potential to be; for example, it made no use of user interactivity, or of colour. It was felt that 

these design elements could be usefully applied. To address the former, hooks were added for 

the OnMouseOver and OnMouseOut events of the radar plot-point circles, which are triggered 

when the user’s cursor enters and exits each circle, respectively. A function was then added such 

that hovering over any circle would trigger the appearance of a bubble directly above it, 

containing the numerical percentile value represented by that point, which would disappear 

once the cursor was moved away. To address the latter, inspiration was taken from POLYGON 

(70), and coloured bar chart-like distribution representations were added to each of the radar 

chart axes, to provide the user with an indication of the chain’s distribution for each metric, and 

where the selected residue point falls within that distribution (Figure 13B). User feedback on the 

along-axis distribution representations was generally unfavourable. Although the information 

conveyed was appreciated, it was generally felt that the implementation made the chart too 

cluttered, and so it was removed. In place of these, the radar-setting JS code was modified such 
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that it would fill the plot-point circles with a colour corresponding to the position of that 

particular value within the chain’s distribution of values for that metric (Figure 13C). 
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Figure 13: Updated chain-view chart (A) and radar charts (B, C). Note that while charts B and C 

represent the same synthetic residue, this residue does not correspond to that selected in 
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chart A. Chart A shows the selector added to indicate the position of the currently-selected 

residue. In charts B and C, the user’s cursor is hovering over the plot-point circle for the metric 

M2. 

The whole report generation procedure was tested thoroughly and repeatedly using synthetic 

data. After the necessary updates to the JS code (Figure 14), the report was fully functional. An 

example report is shown in Figure 15, and the final structure of the interface module is shown 

in Figure 16. 

 

Figure 14: Updated functions and variables of the report JS. 
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Figure 15: Example validation report generated using the initial design of the interface module.  

 

Figure 16: Structure of the interface module at this stage of the project. The build_report 

function of the interface module constructor calls the build_report function of the report 

submodule, which uses (synthetic) model data to call functions of the charts submodule to 

generate the chart SVGs, and then builds the HTML report around those SVGs.  
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With this, the preliminary version of the report was complete, and the project progressed to the 

next stage: generating real-world metrics data. 

 

2.2 Metrics 

2.2.1 Preparation 

Before development of the metrics module was started, a library of model data was assembled 

to enable testing of the module both during and following its development. To do this, the entire 

PDB-REDO database was downloaded. PDB-REDO is an automated re-refinement and rebuilding 

procedure that has been performed on every model in the PDB that has experimental data 

associated with it (81–83). The result is a database containing the pre- and post-refinement 

model and experimental data for every structure, of which there were over 135,000 at the time 

of writing. 

In addition to the PDB-REDO database, a selection of unrefined models was precured; these 

models were outputs of the Buccaneer (84) software for automated model building. These 

would be used to test the software on incomplete models, as examples of models from e arly 

stages in the refinement-validation cycle, to more closely emulate real use-cases. 

 

2.2.2 Outline 

The plan for the metrics module was to create as comprehensive an array of per-residue metrics 

as could realistically be done in the timeframe of the project. These metrics would comprise 

both model-only and reflections-based metrics. 

With Python already established as the language for the module, it was immediately decided 

that the built-in metrics calculations would be based on the highly efficient Clipper and MiniMol 

libraries (69). Though originally written in C++, the Clipper-Python C++ bindings make it possible 

to use the library from a Python interface (85). The framework of the library was to be based on 

the MiniMol objects, a hierarchical system of classes that encapsulate model data. Reflection 

data is handled by separate Clipper classes (see Section 2.2.5). The basic idea was to create a 

custom class hierarchy that would take objects from each level of the MiniMol cascade as 
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arguments, inheriting their attributes and performing metrics calculations alongside iteration 

through the MiniMol cascade (Figure 17). 

 

Figure 17: MiniMol cascade (left), and its intended implementation within the metrics module 

(right). The MModel class corresponds to a protein model, the MPolymer class to a chain in 

that model, the MMonomer class to a residue in that chain, and the MAtom class to a 

constituent atom of that residue. Looping through the model file in this way would enable 

access to the base attributes of objects on each level, which could then be used to calculate 

metrics based on the relevant values stored in the model files. 

 

2.2.3 Initial framework 

The first stages of development were to construct the foundations of the module: some class 

that could open and read a model file, then iterate through the MiniMol cascade to inherit 

various properties at each level. Reflection data would be handled later (Section 2.2.5). Of 

course, a prerequisite for this was to install the Clipper-Python package. Unfortunately, there 

was no available distribution of the Clipper-Python package for the chosen operating system and 

Python environment under the Python package manager (pip), only empty placeholder 

packages. To circumvent this, the CCP4 suite was installed, which comes with an ad-hoc version 

of the module as part of its own CCP4-Python environment. 

Once Clipper-Python was installed, the basic framework of the module was developed; a class 

was written that could load an MModel object from a model file, and iterate through the 

MiniMol cascade, printing out various attributes of the MiniMol object corresponding to the 
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level of iteration; for example, each MPolymer’s chain letter code, and each MMonomer’s amino 

acid type. 

The script was tested on a few models from the PDB-REDO database mirror, and the output was 

judged to be satisfactory. However, this exercise revealed an unforeseen obstacle: MMonomer 

objects were not necessarily valid amino acid residues: they could be incomplete residues, or 

other molecules altogether, such as water. Therefore, a function was written that would, for a 

given MMonomer, determine whether or not it was an amino acid residue, by checking if its 

code corresponds to a valid amino acid. Because the development of the metrics module would 

involve the creation of a number of other functions similar to this one, to execute various 

calculations and algorithms (and many of these functions would be generally useful utilities) a 

separate utils module was created specifically to house them, rather than including them as 

methods of the MetricsResidue class (Figure 18). This was done so that other scripts would be 

able to call these functions as standalone entities, rather than having to initiate an entire 

MetricsModel object. 

 

 

Figure 18: Structure of the metrics module at this point. 

 

2.2.4 Model-only metrics 

With the basic framework of the module established, the project progressed to calculating 

metrics from the now-accessible MiniMol attributes. 
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2.2.4.1 B-factors 

The first metrics developed were the B-factor analyses, which were straightforward to 

implement. Each Clipper MAtom object has a method to get its orthogonal isotropic 

displacement value (U value) which is related to B-factor by a constant (Equation 1). Therefore, 

a function was written to enumerate the MAtom objects of a given MMonomer object, convert 

each U value to a B-factor, and append that B-factor to an array, from which values including 

the minimum, maximum, mean, and standard deviation could be calculated and returned. This 

function was added to the utils module, to be called by the MetricsResidue constructor upon 

initialisation, which would set the returned values as attributes of each MetricsResidue instance. 

𝐵 = 8𝜋2𝑈 

Equation 1: Formula for calculating B-factor (𝐵) from isotropic displacement value (𝑈). 

 

2.2.4.2 Bond geometry 

The next task was to utilise the coordinates data to calculate bond geometries. Before this could 

be done, a function was written to classify the atoms of an MMonomer object as belonging to 

either the main-chain or side-chain, so that operations unique to either of those groups could 

be performed more readily. This function was added to the utils module, also to be called by the 

MetricsResidue constructor. 

Next, the bond geometry calculation functions were written, the first of which was a function to 

calculate bond lengths, both along the main-chain and side-chain of each residue. While this 

would not lead to the calculation of a validation metric, it was a useful check function; it had 

been noted that some of the unrefined test models would elicit MMonomer objects that had 

missing atoms or chemically unfeasible bond lengths, as a result of some imperfect ref inement 

step. Scoring such residues on validation metrics designed for chemically feasible residues would 

be misleading and unreliable, so they should not be treated as real amino acids, and should 

instead be considered unscorable. For this reason, a function to check atomic composition and 

bond lengths was written for the utils module, to be called by the pre-existing is_amino_acid 

function, to more thoroughly discriminate between MMonomer objects that represented real 

amino acid residues and those that did not. 
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The next values to calculate were the bond torsion angles, which would be used to determine 

the energetic favourability of the various elements of an individual residue’s geometric 

conformation, shown in Figure 19. These could be calculated with some simple matrix 

operations, the general formula for which is Equation 2. A function was written to do this, and 

again incorporated in the utils module to be called by the MetricsResidue constructor. 

 

Figure 19: The various amino acid bond torsion angles.  The atoms and bonds in black represent 

a hypothetical amino acid residue in some polypeptide chain. The main-chain torsion angles 

are phi (φ), psi (ψ), and omega (ω), with the former two used to characterise main-chain 

(Ramachandran) conformation. Omega values tend to be very close to 180 degrees, as a result 

of the bond’s significant pi character; consequently, omega deviation can be a useful validation 

metric in itself. The chi (χ) angles are found along an amino acid’s R-group; the number of 

them is dependent on the amino acid type. These angles are used to categorise side -chain 

(rotamer) conformation. 
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𝜑 = atan2(𝑢2 ∙ [(𝑢1 × 𝑢2) × (𝑢2 × 𝑢3)], |𝑢2|(𝑢1 × 𝑢2) ∙ (𝑢2 × 𝑢3)) 

𝑊ℎ𝑒𝑟𝑒 𝑢𝑛 = 𝑟𝑛 +1 − 𝑟𝑛 

Equation 2: Formula for calculating dihedral angles from three-dimensional coordinates; where 

𝑢𝑛 is the 𝑛𝑡ℎ bond vector, and 𝑟𝑛 is the 𝑛𝑡ℎ bond coordinates vector. 

For an array of torsion angles to become a meaningful validation metric, it needs to be compared 

to a probability distribution to ascertain a likelihood score for that conformation. These 

probability distributions are calculated from reference data: a selection of data curated from 

known high-confidence structures. The Richardson lab has published a public repository of 

reference data for different types of residue geometry, based on thousands of high-resolution, 

quality-filtered protein chains, called Top8000 (86). The Top8000 data has reference data for 

three categories of geometry: main-chain torsion, side-chain torsion, and torsion about the Cα 

atom, known as CaBLAM (87). For each of these three categories, the dataset contains a set of 

contour-grids: regularly spaced, multidimensional probability distributions. A rendering of one 

such example of these grids is shown in Figure 20. 

 

Figure 20: Top8000 contour grid probability distribution for chi angles of the methionine side-

chain. The methionine side-chain has three chi angles, so the probability distribution can be 

plotted as contours in three-dimensional space, where each spatial dimension represents one 

side-chain torsion angle. This image was taken with the KiNG software (88) by loading the 

Kinemage file included with the reference data. 
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Therefore, the next stage of the project was to implement these data in order to convert the 

now-calculable dihedral angles into a significant likelihood score. This was no small task, as it 

needed to be done while bearing the overarching goals of the project in mind; specifically, 

keeping the run time low and the overall size of the package small. With a program like this, the 

tolerance for time spent loading data on execution is very low. This is because, in contrast to a 

program such as Coot, which is expected to spend some time loading resources to memory on 

initialisation, which then remain in memory to then be called upon for a number of analyses, 

this program would have to load up and shut down every single time it performs an individual 

analysis. Because of this, an increase in load-up or shut-down time would have a direct impact 

upon the run time for each individual analysis. This concept is illustrated in Figure 21. 

 

Figure 21: Time allocation in a single-run script compared to a persistent program. Before an 

increase in load-up and shut-down times (A), and after an identical increase in both load-up 

and shut-down times for both classes of program (B). As the load-up or shut-down times 

increase, the length of the single analysis is directly affected in the case of a single -run 

program, which is not so for persistent programs. As a consequence, this overhead needs to be 

kept to a minimum. 

 

2.2.4.3 Ramachandran conformation 

Looking first at the main-chain bond torsions: the Clipper libraries already include the Top8000 

data for Ramachandran configurations, which is implemented in a calculator class that has a 

high-accuracy interpolation method built in. This class is hooked in the Clipper-Python bindings, 

which made this the obvious choice for calculating Ramachandran conformation quality in the 
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metrics module, especially because this route would comply with both the aforementioned 

goals: the size of the package would not increase (as the Clipper library would already be 

installed as a dependency) and the run time taken both to initialise the calculator on start-up 

and to make individual queries would be low, thanks to the low-overhead C++ calculations 

utilised by the class. Once again, a utils function was written to decide and execute the suitable 

Clipper Ramachandran calculator method. 

 

2.2.4.4 Rotamer conformation 

In the case of side-chain torsion angles, there was no Clipper class to do the work. Instead, the 

data had to be implemented manually. The first tests investigated the best way to load all the 

data to memory on start-up. The contour grid data in the Top8000 repository are provided as 

plaintext files specific to each amino acid type, totalling 37.4 megabytes in size. Each of these 

files was loaded to a dictionary, with the keys being arrays of chi angles, and the values being 

the associated probabilities. This process took 2080±80 milliseconds (n=100), which was a high 

– but acceptable – figure, and required roughly 200 megabytes of memory, which was also 

acceptable. 

Although the contour grids were regularly spaced, the files encoding them had a number of 

missing data points. This meant that for a given array of calculated chi angles, it would not be 

possible to simply calculate the coordinates of the closest points on the contour grid, because 

those points could be missing. This problem could be tackled a few different ways. The first 

would be to repackage the data in a structure more conducive to fast lookups, reducing the time 

taken to find the closest points with an associated probability value. This method was tested by 

loading the data into a k-d tree: a binary search tree that places each data point as a node in k-

dimensional space. This was accomplished by using the KDTree class of the SciPy library (89), the 

query method of which will find the nearest neighbours for any given coordinates. A search 

operation on a binary search tree runs in logarithmic time (O(log n)) in the worst case, and one 

operation can return the set of all nearest neighbours. This is significantly faster than looking up 

the coordinates as keys in a dictionary, for which the worst-case performance is linear time 

(O(n)), and may need to be repeated multiple times. Unsurprisingly, this approach proved to be 

significantly faster than dictionary lookup, but in practice remains slow and memory intensive.  
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Dissatisfied with the k-d tree approach, the next method tried was to preprocess the data by re-

interpolating it, with the goal of producing a new regular dataset with no missing data points. 

Theoretically, the result would be regular arrays with almost instantaneous lookups. The first 

interpolation tests were performed again using the SciPy library, specifically its interpolate 

module. Interpolation was performed at each integer degree in the feasible range of each chi 

dimension. This was a time consuming and computationally intensive process. Interpolating the 

seven two-dimensional side-chains took 1.40±0.07 seconds altogether (n=100 repeats), and 

interpolating the three three-dimensional side-chains took 43320±30 seconds altogether (n=5 

repeats), or roughly twelve hours. Interpolating any of the four-dimensional side-chains to this 

level would have required more memory than was available, so could not be attempted. In any 

case, the result of such interpolation, even for the three-dimensional side-chains, were data 

structures that were gigabytes in size. Clearly, interpolation was not a viable option, at least to 

such a high level of precision. Some of these difficulties could be overcome by instead writing a 

C++ program to perform the interpolation. But even then, preprocessing in this way would result 

in huge libraries that would have to have been packaged with the module. These would then 

take a very long time and a lot of memory to load on start-up, if sufficient free memory were 

even available. 

Since every one of these methods was found to be unsatisfactory in some way, a completely 

different method was conceived. The Top8000 rotamer data is also provided for each of the 

rotameric canonical amino acids in another form: a set of central values, which lists the mean 

and standard deviation of the bond torsions for each recognised rotamer. These files are much 

smaller than the contour grids, totalling 36.7 kilobytes in size. As a result, these lists could be 

loaded to memory almost instantly on run time. To take advantage of these data, a new score 

was devised: a given array of calculated chi angles would be compared to the array of means 

and standard deviations of each recognised rotamer for that amino acid, so as to calculate a 

score. The overall score for that array of chi angles would therefore be the best of all the 

calculated scores. The formula applied for the score (E3 3) was similar to a multidimensional z-

score, such that the lower the score, the more likely it is that the array of chi angles fits the 

distributions of chi angles of a recognised rotamer. 



 

54 
 

𝑆𝑐𝑜𝑟𝑒 =  min
𝑖

√
1

𝑁
∑ (

𝜒𝑛 − 𝜇𝜒𝑖𝑛

𝜎𝜒𝑖𝑛

)

2𝑁

𝑛=1

 

Equation 3: Formula used to calculate a continuous rotamer score from the central values lists; 

where 𝑖 is the index that enumerates the recognised rotamers for a residue, 𝑁 is the number 

of chi dimensions applicable to a particular residue, 𝜒𝑛is the 𝑛𝑡ℎ chi angle of the residue, and 

𝜇𝜒𝑖 𝑛
, 𝜎𝜒𝑖 𝑛

 are the mean and standard deviation of chi angles of the indexed rotamer, 

respectively. 

By applying this method, the load time on start-up was negligible (on the order of milliseconds) 

as was the memory usage (on the order of kilobytes). Lookup times were also extremely short, 

averaging 0.0203±0.0002 milliseconds per residue in testing. Consequently, this method was 

chosen for implementation in the metrics module. The central values data were repackaged and 

wrapped with their corresponding functions in a dedicated submodule, named rotamer. 

 

2.2.4.5 Others 

The last two coordinates-based metrics of interest were atomic clash score and hydrogen 

bonding satisfaction. 

The atomic clash score is a measure of the number of pairs of unbonded atoms in the model 

that are infeasibly close to one another; in other words, pairs of atoms that could not in reality 

physically be so close to one another without some electrochemical repulsion driving them 

apart. This is an inherently sound metric for model quality, and has long been implemented in 

the MolProbity validation software (1). 

Hydrogen bonding satisfaction is a metric that attempts to measure the number of hydrogen 

bond-conducive geometries in a model; that is, the number of pairs of residues that are aligned 

in such a way that a hydrogen bond would theoretically form between them. In proteins, a 

hydrogen bond most commonly occurs when a carbonyl-oxygen atom shares electron density 

from a lone pair of electrons to the σ* antibonding orbital of a nearby NH group (often described 

as the NH group donating a proton to the oxygen acceptor atom). Intrapeptide hydrogen bonds 

play a crucial role in conferring structural stability in proteins (90), and both theory and 
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experiment suggest that the likelihood of finding an unsatisfied intrapeptide hydrogen bond in 

a protein is very low (91). Hence, it can reasonably be assumed that a model with a higher 

frequency of hydrogen bond satisfaction is more likely to be accurate than one with a lower 

frequency. 

There was a common obstacle with implementing either of these two metrics: both of them 

require the coordinate data of all the hydrogen atoms in the structure to be present in the model 

data. Most structure determination methods are not sensitive enough to be able to detect 

hydrogen atoms, because of their small size. Consequently, most atomic models do not include 

the coordinates of hydrogen atoms. Thus, a prerequisite to calculating either of the 

aforementioned metrics is to first calculate the positions of all the structure’s hydrogen atoms, 

and add them to the model. This would have been such a time -consuming task that it was 

decided that these metrics would not be implemented in the metrics module at this stage of the 

project. 

 

2.2.5 Density fit analyses 

2.2.5.1 Background 

With the model-only analyses essentially complete for the time being, the project progressed to 

density fit analyses. The goal of such analyses is to determine the extent to which a model agrees 

with the electron density map calculated from the experimental data. The first step in applying 

some measure of density agreement was to decide what metric should be applied, with the 

requirements again being: 1) low initial overhead time at start-up, and calculation time per-

residue; 2) to be non computational-resource intensive; 3) to be accurate to a satisfactory level. 

Broadly speaking, there are two ways to calculate a density fit metric. The first way involves 

calculating an observed electron density map from the reflection-data file, and a calculated 

electron density map for the model file, then applying these maps to calculate metrics. The most 

common metrics calculated from these two maps are the metrics of RSCC (Equation 4) and RSR 

(Equation 5), both of which are determined by comparing the differences in electron densities 

at a number of discrete points within a local area of the model, a fairly computationally 

expensive process. Both of these metrics have been demonstrated to express individual biases 

(48). These maps can also be used to calculate a difference density map (Equation 6), which is 

used in molecular modelling software to visualise areas where the modelled electron density is 
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incompatible with the experimental data. Typically, these areas are rendered as coloured 

isosurfaces, with green denoting positive density (where some experimentally evident electron 

density corresponds to empty space in the model) and red denoting negative density (where 

some modelled electron density corresponds to empty space in the experimentally -derived 

map). 

𝑅𝑆𝐶𝐶 =  
∑[(𝜌𝑜𝑏𝑠 − 〈𝜌𝑜𝑏𝑠〉) ∙ (𝜌𝑐𝑎𝑙𝑐 − 〈𝜌𝑐𝑎𝑙𝑐 〉)]

√∑(𝜌𝑜𝑏𝑠 − 〈𝜌𝑜𝑏𝑠〉)2 − ∑(𝜌𝑐𝑎𝑙𝑐 − 〈𝜌𝑐𝑎𝑙𝑐〉)2
  

Equation 4: RSCC; where 𝜌𝑜𝑏𝑠 is the density of the observed map, and 𝜌𝑐𝑎𝑙𝑐 is the density of 

the calculated map. 

𝑅𝑆𝑅 =  
∑|𝜌𝑜𝑏𝑠 − 𝜌𝑐𝑎𝑙𝑐|

∑|𝜌𝑜𝑏𝑠 + 𝜌𝑐𝑎𝑙𝑐|
 

Equation 5: RSR; where 𝜌𝑜𝑏𝑠 is the density of the observed map, and 𝜌𝑐𝑎𝑙𝑐 is the density of the 

calculated map. 

𝑑𝑖𝑓𝑓 = (𝑚|𝐹𝑜𝑏𝑠| − 𝐷|𝐹𝑐𝑎𝑙𝑐 |) ∙ 𝑒2𝜋𝑖𝜙𝑐𝑎𝑙𝑐  

Equation 6: Difference density calculation; where 𝑚 is an estimate of the cosine of the error in 

the phase, 𝐹 represents the amplitudes, 𝜙𝑐𝑎𝑙𝑐 represents the calculated phases, and 𝐷 is a 

scale factor used to account for the arbitrary difference in the scale of the amplitudes between 

the observed and calculated data. 

The other broad way to calculate a density fit metric completely eliminates the need to calculate 

an electron density map for the model. A fit score can be calculated based solely on the electron 

density values extracted from the observed electron density map, by extracting the electron 

density values at the coordinates corresponding to the atoms in the model file. This method is 

extremely fast; not only is there no need to generate an electron density map for the model, but 

there are fewer queries made as to the electron density of the observed electron density map 

(one query per atom) than there would be if accurately calculating RSCC or RSR.  
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2.2.5.2 Existing implementations 

Of the two aforementioned broad scoring methods, the latter was decidedly more suitable for 

implementation in this project. Research into the source code of other validation software 

revealed examples of where this approach is taken. The first software investigated was Coot, 

which was chosen because it too uses the Clipper library for many of its underlying calculations. 

The Coot source code (92) revealed that the density fit score given for each residue is just the 

average of the atomic density scores (the density in the observed map at the atom’s coordinates) 

weighted by atom occupancy. 

To uncover more source code implementing similar density-scoring methods, public repositories 

were searched for keywords of the Clipper library. Of particular interest was a density -scoring 

class written for the program SLOOP, which was eventually incorporated into Coot. As written 

in the comments, the class scores protein fragments “based on the position of the [densities] in 

a cumulative density distribution based on a Gaussian distribution derived from [the] mean and 

variance of the map”. The process by which this is performed is as follows:  

1. Query the map for density values at the coordinates of the fragment’s main-chain atoms 

(N, Cα, C) 

2. Convert the density values into z-scores, by subtracting the mean map density value, 

and dividing by the standard deviation of map density values 

3. Convert the z-scores into probability values, by applying the Gaussian distribution 

cumulative distribution function 

4. Take the natural logarithm of these density z-scores 

5. Return the sum of the resulting log values 

Because the individual point probabilities are converted to log probabilities, their sum is a log-

likelihood value for the fit of the fragment as a whole (to some portion of the electron density 

of a map). This, of course, differs to the Coot density fit score in that the map densities at each 

atom are converted to log probabilities before being summed. 

The finally-investigated source code was a Python script written by Paul Bond (93), which 

implemented a slightly different mechanism to calculate a density fit score. The script was 

written as a plug-in for Coot, to automatically ‘prune’ away the side-chain atoms of residues that 

were deemed poorly modelled by a machine learning algorithm, by removing them from the 

model. In this script, each Atom object has a property density, to which is assigned the map’s 
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density at the coordinates of the atom, but also the property density_norm, which takes the 

values of the density value, and divides it by the atom’s proton number. This was done to enable 

the comparison of the electron densities of atoms with differing proton numbers. The script 

calculates a few different measures of residue density fit, and in all of them, the normalised 

value is used, as opposed to that of density. For each set of atoms, a special z-score was 

calculated, where in place of the mean and standard deviation, the median and median absolute 

deviation are used, respectively. This method was employed because, the oretically, it should be 

more statistically robust to the range of various distributions of electron densities that might be 

found in an electron density map, and empirically, it was found to yield better results in training 

the machine learning model than using a standard z-score. 

 

2.2.5.3 Building a scoring method 

To decide a suitable scoring method for this project, the variable elements discovered in the 

existing scoring implementations would be systematically addressed one by one.  

The first variable to address was which specific atoms of each residue would be scored; for 

example, just the main-chain atoms, just the side-chain atoms, or every atom in the residue. 

After seeking advice from experienced crystallographers, it was decided that the most useful 

way to present the scores would be to score the main-chain and side-chain separately. 

The next point to address was the method of electron density grid point recall to be adopted: 

specifically, whether to use interpolation (either linear or cubic) or the simpler and more 

efficient, but less accurate, solution of closest-point approximation. Given the overarching goal 

of the project, this was a variable for which the best choice was almost certainly the most 

efficient one, so the method of closest-point approximation was selected. 

Another factor to decide on was whether or not to apply atom density score normalisation like 

that applied in the Coot side-chain pruning script, the point of which is to make density scores 

comparable across atoms of various sizes. The only situation in which it makes sense not to apply 

such normalisation is one in which all of the atoms being assessed are always going to be of 

similar sizes, as in the case of the fragment scoring function from the SLOOP source code, where 

only nitrogen and carbon atom densities are being queried. In this case, atoms of various sizes 

would be involved. Hence, it would make sense to apply a normalisation technique.  
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Next to decide was how to process the normalised density scores, if at all. In other w ords, 

whether to treat each atom’s score as, for example, its normalised density score, a normalised 

density z-score, a probability, or a log-likelihood score. The log-likelihood score was the most 

mathematically sound choice, so that was selected. 

Along the same lines: given that the objective of the software is to determine a density score for 

each residue in a model, a decision needed to be made as to how to process the array of 

individual atom scores into a residue score. For example, the residue score could be the sum, 

the arithmetic mean, or the geometric mean of the array of atom scores, either weighted in 

some way, or not. Because log-likelihood scores were being used to score each atom, it would 

make most sense mathematically to use the sum of those values as the residue score, since in 

probability theory, the overall log-likelihood of intersection equals the sum of the log-likelihoods 

of the individual events (given independence). 

Therefore, these choices were combined to create a suitable fit score  equation. 

𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑠𝑖𝑑𝑢𝑒 =  ∑ −log [𝑁𝑜𝑟𝑚𝐶𝐷𝐹 (
𝜌𝑎𝑡𝑜𝑚 − 𝜇𝜌𝑚𝑎𝑝

𝜎𝜌𝑚𝑎𝑝

)]

𝑁

𝑛=1

 

Equation 7: Formula used to calculate density fit score for an individual residue;  where 𝑁 is the 

number of atoms in the residue, 𝑁𝑜𝑟𝑚𝐶𝐷𝐹is the cumulative density function of the standard 

Gaussian distribution, 𝜌𝑎𝑡𝑜𝑚 is the electron density at the coordinate of a particular atom, 

normalised by its proton number, and 𝜇𝜌𝑚𝑎𝑝
, 𝜎𝜌𝑚𝑎𝑝

 are the mean and standard deviation of 

the map electron density respectively. 

 

2.2.5.4 Implementation 

The actual implementation of the density fit score was packaged in a dedicated submodule of 

the metrics module, called reflections, named as such because at this point, only crystallography 

data was to be supported. This submodule introduced the ReflectionsHandler class, an instance 

of which would be initialised with the program and perform all the pre -processing on the 

reflection data to allow the main thread to query it for electron density data, as part of the flow 

of the metrics calculations. The flow of this class is outlined in Figure 22. 
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Figure 22: Flow of the constructor of the ReflectionsHandler object. 

 

2.2.5.5 Complications 

A few difficulties were encountered when actually writing the code for this class. All were a 

result of missing or broken bindings in the Clipper-Python package. It should be noted that at 

this stage of the project, there were a number of available versions of the Clipper-Python 

package. A few aspects differed between these versions, including: 

1. Operating system or Python version compatibility (Python 2.7 vs. Python 3.x) 

2. Missing or additional functions and methods 

3. Some object properties being implemented as methods, rather than as variables, or vice 

versa 

4. Inclusion and functionality of the Intel Math Kernel Library (MKL)  

The first difference is only significant in that this necessitated development using different 

versions of the Clipper-Python library under different environments, subjecting development to 

different combinations of the latter three differences. The fourth is especially significant: use of 

the Intel MKL is a requirement of some variants of the Clipper C++ library to perform the fast 
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Fourier transform (FFT), which is used to calculate electron density maps from reflection data. 

This library would throw hardware incompatibility errors under a number of environments, 

making it impossible to calculate any density fit-based metrics. Fortunately, most versions of the 

Clipper-Python package use the free FFTW library (94) rather than the Intel MKL, which was 

never problematic. 

These problems were resolved by writing a submodule containing a long conditional import 

statement with nested try-catch statements, to be imported by those files that needed access 

to Clipper-Python. In this way, the metrics module could automatically determine the most 

suitable import method, and then assign a global variable with a value signifying which version 

of the Clipper-Python library had been imported; then, each time Clipper is called in the code, a 

conditional statement was used to ensure the call is suitable for the version that had been 

imported. 

In addition to the surmountable problems posed by these differences, some Clipper methods 

were completely inaccessible in any usable version of the Clipper-Python bindings, including 

both the linear and cubic interpolation methods of the Xmap class. As such, point queries from 

the map were restricted to returning the density at the closest point in the grid, resulting in less 

accurate results, but with the upside of slightly faster queries. Fortunately, as mentioned earlier, 

closest-point approximation had been selected as the most suitable method for this project.  

Another important decision when designing the class was the method used to extract data from 

the MTZ reflection-data files. A diffraction experiment produces a list of reflections; each 

reflection is indexed by its Miller indices (H, K, L), and has some number of associated columns 

of data, which come in pairs. All MTZ files will include at least the reflection intensities and their 

standard deviations (I, SigI). From the intensities, the native amplitudes and their standard 

deviations can be calculated (F, SigF); every MTZ file will also have these columns. The other 

column pair of interest is the structure factors, which comprise the calculated amplitudes and 

the calculated phases (F, Phi). These are calculated using the amplitudes and the model file, and 

are required to produce an electron density map. The structure factors may or may not be 

present in any given MTZ file; in the PDB-REDO MTZ files, for example, the structure factors have 

already been calculated, and those columns are included. Therefore, when presented with an 

MTZ file that includes structure factors, the metrics module could either choose to recalculate 

them itself, or use those from the file (since the two may differ). In the end, it was decided to 

recalculate the structure factors for every file, regardless of available columns. This ensures 
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comparability between results generated from MTZ files from various sources, at the cost of 

very slightly increased initialisation time for the ReflectionsHandler object. 

 

2.2.6 Percentiles library 

Since the purpose of the interface was to show multiple different validation metrics 

concurrently, being able to express metric values on a normalised scale was critical. If this were 

not done, and the metric values were left as absolute values, with arbitrary, incomparable units, 

it would be misleading to present them alongside one another and attempt to infer correlations 

between them. The distribution of values for each metric cannot be assumed to be identical, 

either across a single structure or a population of structures. Hence, with the metrics module 

suitably complete, the next task was to produce a percentiles library to accompany it. 

Originally, the percentiles library was to be generated by calculating validation metrics for every 

residue of every structure in the PDB-REDO database. In order to do this, a script was written 

that imported the metrics module, applied it to each set of files in the local PDB-REDO directory, 

and stored the generated metrics values to one large variable, which would then be serialised 

for later analysis. 

A significant problem was encountered in testing this script. For a variety of reasons, a small 

number of PDB model files could not be loaded by the MiniMol class. Because of the error 

handling applied in the Clipper-Python module, this error was uncatchable, and would halt the 

execution of the entire Python script. Two easy fixes were tested. The first was to add a routine 

to read through every PDB file and predict whether or not it would be read successfully; 

however, that ended up being unreliable; the second was to have a shell script launch and 

supervise the metrics generation script, waiting for it to crash and restarting it after appending 

the ID of the offending model file to a list of incompatible model IDs to be ignored. This ended 

up being too slow. 

To speed up the process, the analysis program was parallelised using Python’s multiprocessing 

library, which enables multithreading across individual child processes, as opposed to just 

multiple threads on the same physical core. With the 8-thread, 16-core processor being used for 

the analyses, 16 worker threads were spawned, with one worker thread sharing a logical core 

with the mostly-dormant main (controller) thread. The script was structured in this way so that 

the main thread could monitor the status of all the worker threads. Thus, if an uncatchable 
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Clipper error caused any of the workers to crash, the main thread could remove the halted 

thread from the worker pool and spawn a new thread to replace it.  

The resulting array of metrics values contained between 14-17 million entries. Arrays different 

in length due to the fact that some metrics return null values for some residues; for example, 

residues at the start and end of a chain do not have Ramachandran conformations, and glycine 

and alanine residues do not have rotamer conformations. The distributions of metric values 

were visualised in histograms (Figure 23). 

 

Figure 23: Distributions of metrics values. The average B-factor and density fit score 

distributions are smooth and unimodal. The spikes in average B-factor at 0 and 50 are likely a 

result of default values in modelling or refinement software. Conversely, the Ramachandran 

score and rotamer score distributions are not unimodal or smoothly distributed. In the case of 

Ramachandran score, this was attributed to the effects of constraints and restraints applied 

manually or by refinement software and, in the case of rotamer score, to a mathematical side -

effect of oversimplification in treating all chi dimensions as perfectly Gaussian distributions.  
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Following in the footsteps of other programs that compare a model’s metric values to wider 

distributions of values from other structures (1,70), it was decided that to produce percentile 

data from a more representative sample, the percentile values presented to the user should be 

based on distributions of metric values from a sample of structures of similar quality. This could 

be done by binning the calculated metrics values via some global quality indicator, the most 

commonly used of which being resolution and average B-factor. 

The first thought was to bin metric values by both resolution and B-factor, to produce the most 

precise binning possible. Before this was attempted, the correlation between resolution and B-

factor was assessed, to ensure that binning in both dimensions was warranted ( Figure 24). 

Unsurprisingly, there was some correlation between the two metrics. However, with a low R2 

value of 0.51, it was decided that the two-dimensional binning might still be worthwhile, so it 

was implemented. 

 

Figure 24: Correlation between resolution and average B-factor for all models in the PDB-REDO 

database. The orange line is the line of best fit. 
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To implement the two-dimensional binning, the metrics generation script was modified such 

that prior to analysis, every model’s resolution and mean B-factor were ascertained, and stored 

in a dictionary. The 10th, 20th, ... 80th, 90th percentile values were determined for both 

resolution and mean B-factor, which were used as threshold values to produce two sets of ten 

bins (<10th, 10-20th, ... 80-90th, >90th). Then, metrics values were calculated for each model. 

Rather than storing the values for each metric in a one-dimensional array, as before, they were 

instead stored in a three-dimensional array, where the first two dimensions were both of length 

ten, and corresponded to the resolution and B-factor bin indices. Each model’s metric values 

were placed in the corresponding bin. 

The first analysis to be performed on the binned metric data was to see how the distribution of 

each metric varied with each of the two bins. This was done by flattening each metric’s three-

dimensional array into two two-dimensional arrays, and plotting the distribution for each metric 

against the bin index for each of the two bin dimensions (Figure 25). 
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Figure 25: Graphs illustrating how metric value distributions vary across bins divided by 

resolution (left) and mean B-factor (right). 
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Since the trends were so similar across both bin dimensions, it was decided to collapse the 

binning down to just one of the two dimensions. Of the two, it made the most sense to use 

resolution, given that it was the only one technically independent of all the individual residue 

metrics being assessed. 

Some of the structures in the PDB-REDO database were deposited many decades ago, before 

the establishment of modern model-building processes such as the application of constraints 

and restraints (Figure 26).  

 

Figure 26: Number of structures deposited in the PDB over time. Data from wwPDB, accurate 

as of December 2020. 

To refine the sample pool and make it more representative of the standard of quality that is 

expected of new structures, the sample pool was restricted only to structures deposited after 

the year 2010. The changes resulting from this restriction were surprisingly minimal. The overall 

metric value distributions were almost identical, and the resolution bin thresholds only changed 

slightly, as illustrated in Figure 27. Despite the triviality of these changes, the year restriction 

was kept, since the sample size was still very large. 
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Figure 27: Analyses of the change in resolution bin thresholds after sample pool refinement by 

year of deposition. 

Satisfied with the obtained distributions of the metrics values, the percentile function of the 

NumPy library (95) was used to calculate percentile values for each resolution bin of each metric. 

These were to be included with the library as comma-separated values (CSV), since it was 

decided that data that had to be included with the final package should be included in a human-

readable format where viable, to maximise interpretability by the end user. Values were 

calculated at each integer percentile in the range [1-99]. This way, a given calculated metric 

value could be assigned a percentile number in the range [1-100]. 

These data were implemented in a submodule named percentiles, which implemented functions 

to: 1) load the percentiles data CSV file; 2) determine a model’s resolution bin; and 3) return a 

percentile for a given metric value and resolution bin. The submodule was tested thoroughly 

with calculated and synthetic data. 
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Figure 28: Structure of the metrics module following its initial development. 

 

2.3 Combining the two modules 

2.3.1 Initial adjustments 

At this stage in the project, there were two independent Python modules: the interface module, 

and the metrics module. The next task was to combine these as two submodules in a single 

package, whereby they could be co-utilised by a single call to the parent package. 

In principle, this was straightforward. The only job involved was to change the input datatype of 

the interface module from the SyntheticProtein class created before, to some sort of primitive 

type that the metrics module could be modified to produce. The data required for the interface 

module was: 1) the names of the metrics to be plotted; 2) the metric and percentile values for 

each residue; and 3) the shape of the data, i.e. the number of models, the number of chains per 

model, and number residues per chain. It was decided that the simplest way to package these 

data would be that the metric names be included as part of a package-wide definitions file, and 

for the metric values to be packaged in a multidimensional array of length-2 tuples (metric value 

and percentile value). This way, the length of the arrays would intrinsically imply the shape of 

the data. In addition to simplicity, the reason this format was chosen over some custom class 
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was so that the metrics and interface submodules could be used independently by the end user, 

without much difficulty. i.e., the resulting package could be used just to generate metrics values 

for the user to use in custom code, or, the charts and HTML report could be produced using data 

from a different source. 

Some differences between the synthetic and real-world data still needed to be accounted for. 

For example, the synthetic data class always elicited data in the range [1-100]. Even on a 

percentile scale, the distribution of values in real-world data could be very different. Very good 

or very poor-quality structures may elicit, for example, distributions of percentile values in the 

range [5-30] or [70-95], respectively. Given that the purpose of the chain-view chart was to draw 

the modeller’s attention to the worst parts of each individual chain, the range of each axis should 

correspond to the individual chain’s distribution of the metric values represented by that axis. 

Otherwise, the residue metric values for a poor-quality model would appear to be poor across 

the board, making it difficult to ascertain the areas of particularly low quality within that chain, 

and vice versa for a high-quality model. Thus, the chain view chart generation function was 

adapted to calculate the baseline value (from which deltas would be calculated) as the mean 

metric value across all residues of a pair of corresponding chains across both model iterations, 

with the resulting squared-difference values normalised accordingly. 

Another difference to be accounted for was that, as noted in Section 2.2.6, real-world metric 

values could be null in some cases, which was not so for the synthetic data. To cope with this in 

the short-term, the chain-view generation function was modified to plot small circular null-point 

markers at points where the line-graph could not be plotted. This would theoretically leave a 

break in the line graph. The most accurate way to resolve this would be to leave it broken, and 

then start a new plot after the null point. This meant the structure of the chart would have to 

be modified to potentially allow numerous line elements per axis. However, since this was only 

to be a temporary measure, a simpler route was taken: at each null point, the line graph would 

be plotted at the axis, and carry on as one continuous line e lement. 

 

2.3.2 Testing with real-world data 

With the differences accounted for, test validation reports could be produced from real-world 

metric data, to assess the efficacy of the validation package as a whole. A selection of test 

structures was made, to cover a variety of attributes, as shown in Table 3. For each of these 
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structures, data was obtained for both before and after a refinement step (or re -refinement, in 

the case of the PDB-REDO structures). 

Structure 

Code 
Protein Name Source Model Properties Citation 

1vme Flavoprotein Buccaneer 
2 medium length chains; 

incompletely refined 
(96) 

2ask Artemin PDB-REDO 2 small chains; re-refined (97) 

2a0z Toll-like receptor 3 PDB-REDO 1 large chain; re-refined (98) 

Table 3: Structures used to perform the first tests of the fully assembled package.  

 

2.3.3 Chain view changes 

The first tests were performed, and the resulting chain-view charts (Figure 29) were reviewed. 
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Figure 29: First chain-view charts produced by the fully assembled package.  These charts were 

generated using chain A of each of the three models. 
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2.3.3.1 Metric polarity synchronisation 

There was a clear inverse correlation between B-factor and electron density fit quality, due to 

the fact that B-factor values are better when low, and density fit scores are better when high. 

Therefore, with metrics plotted in their native polarities, it is not immediately apparent if a given 

peak or a trough represents a good or bad value. It was decided that the only logical way to 

mitigate against this would be to ensure that every axis of the chain-view chart followed the 

same ‘goodness polarity’, the most sensible direction being for bad values to be represented by 

troughs, pointing inwards, and good values represented by peaks, pointing outwards. To 

implement this, the package needed to have some definition of the polarity of each metric. This 

was added to the package-wide definitions file, alongside the metric names. Once this was done, 

there were two potential routes for actually applying the polarities: the first was to let the chain-

view chart function just flip an axis’ values where necessary, and the second was to implement 

the polarities in the percentile determination function itself, such that the 100th percentile 

would correspond to a smaller value, in the case of metrics such as B-factor. Ultimately, the 

latter option was chosen, if not just for the fact that it was the more logical choice, but because 

it would also solve the problem of incompatible percentile polarities for the residue-view chart, 

which would otherwise suffer in a similar way to the chain-view chart. The chain-view charts 

were regenerated, and the results are shown in Figure 30. 
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Figure 30: Chain-view charts after polarity-correction measures were added. These charts were 

generated using chain A of each of the three models.  
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2.3.3.2 Sequence alignment 

Another problem, only apparent in the chart of the Buccaneer model, was that the data from 

the previous model iteration (represented by the grey shaded area)  appeared to be misaligned 

with the data from the latest model iteration. In addition, the final few residues of the previous 

iteration appeared to have null-point markers in every single metric. Unsurprisingly, manual 

review of the model files revealed that between these two iterations of the model, the number 

of residues differed. The refinement procedure had removed some amino acids from the model 

file for the latest iteration, from the very start of the chain. Because, at this stage, all provided 

iterations of a model had been assumed to have the same configuration of chains and residues, 

they were automatically aligned by their index. As a result, the chain in question had been 

misaligned. To prevent this from happening, the residue sequences for each chain would have 

to be aligned before generation of the chain-view chart. This could be done in one of two ways: 

either based on residues’ amino acid type types, or their sequence number. The former was 

chosen for the reason that a refinement program may decide to renumber residues accordingly 

after it deletes some of them, whereas an amino acid code is far less likely to change, and 

sequence-alignment algorithms are mostly robust to a few such changes occurring, providing 

the number of unchanged residues is high enough. For the sake of simplicity and robustness, 

pairwise sequence alignment (PSA) was chosen over multiple sequence alignment (MSA). The 

downside of this decision was that it would eliminate the possibility of comparing more than 

two model iterations in one graphic, but it was decided that if this ended up being a desirable 

feature, MSA could be added in later. A Python implementation of the Needleman-Wunsch PSA 

algorithm was written and added to the utils module. Then, the build_report function of the 

interface submodule was modified to call, for each chain, a residue-alignment function, which 

would perform PSA, and then for any gaps found, insert a null (NoneType) residue into the data 

array passed to the chart-generation functions. These null residues would then be handled by 

the chain view chart-generating function in the same way as a null metric value: by adding a set 

of null-point markers across every axis for that residue’s sector.  

For the sake of thoroughness, a procedure was also added to align the chains of each model 

iteration, in case entire chains become deleted from the model file. Unfortunately, the 

procedure for chain-matching is less robust than for residue sequences, because pair-alignment 

cannot be performed in the same way; the sequence of chains is much shorter, and in the same 

way that individual residues might not retain the same sequence number, an individual chain 

might not retain the same ID code following the removal of another chain.  
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After implementing these changes, the chain-view chart for the Buccaneer model was 

regenerated and the two iterations appeared properly aligned (Figure 31). 

 

Figure 31: Chain-view chart for chain A of the Buccaneer model (1vme) before (A) and after (B) 

after alignment measures were introduced. 

 

2.3.3.3 Discrete metric implementation 

The rotamer and Ramachandran scores appeared to be very erratic and confusing. This was 

thought to be because the distribution of likelihood scores that result in energetically favourable 

conformations is quite wide, so comparing the exact scores of these metrics is often 

meaningless. For example, a Ramachandran likelihood score of 0.5 indicates an almost equally 

favourable conformation to a score of 0.9, despite the large delta. But in contrast, a 

Ramachandran likelihood score of 0.1 indicates a much less favourable conformation than a 

score of 0.5, despite the same delta. Because of this, these two metrics are typically presented 

by other validation tools as discrete classifications (normally: outlier, allowed, or favoured) 

based on likelihood thresholds. It was decided that it would be more effective to apply the same 

approach in this validation tool, by implementing a new type of axis to the chain view chart that 

could represent discrete classifications, rather than a continuous line score.  

However, before this could be done, the metrics submodule had to be modified to determine a 

classification for those metrics. In the case of main-chain conformation, this was simple; all that 

needed to be done was to apply thresholds to the likelihood score that was already being 
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generated and presented as the continuous Ramachandran score. The thresholds applied to 

Ramachandran likelihood scores differ between validation tools; the default thresholds applied 

by the Clipper library are 0.0005 and 0.01, but the thresholds applied by Coot are 0.02 and 0.002. 

To maintain concordance with Coot’s classifications (for reasons explained later, see Section 

3.4), the latter thresholds were applied to the metrics submodule. 

The case of side-chain conformation was more complicated. Because the score being calculated 

was non-standard, based on the central values lists, exact probabilities were not directly 

calculable. It was possible to estimate probabilities by approximating each chi dimension as a 

Gaussian distribution, but testing revealed poor correlation between the estimated probabilities 

and reliable probabilities calculated by MolProbity, and this route was ultimately abandoned. 

Therefore, a different approach had to be taken. The only reliable way to obtain a likelihood 

score for rotamer conformation was to use the contour grid reference data. As described in 

Section 2.2.4.4, many efforts had already been made to obtain a meaningful likelihood score 

from these data in a suitable way, none of which had been effective. Essentially, the reason 

these data had previously been troublesome was that they were too large, meaning that  to 

implement them in a suitable way would require too many system resources, and take too long 

to load. However, given that now the only desired output was discrete classification, and high 

precision was no longer required, a whole new avenue opened up for investigation. 

If implemented for discrete classifications, the data could be greatly compressed in several ways. 

By default, the value provided at each point on the contour grids were floating point numbers, 

technically requiring a double-precision floating point data type (64 bits, 8 bytes) to be precisely 

represented, or at the very least, a single-precision floating point data type (32 bits, 4 bytes) to 

be stored precisely enough. Instead, each of the values provided in the contour grid data could 

now instead be represented by an integer value corresponding to the classification they 

represent (1: outlier, 2: allowed, 3: favoured). This would reduce the size of the required data 

type to two bits (one quarter of a byte). 

Doing this reduced the size of the data quite substantially, but still the most significant factor in 

the size of the data persisted, which was storing the coordinates of each value. To eliminate the 

need to do this, the data for each contour grid could be flattened to a one-dimensional array of 

values, where the index of each value corresponds to the calculable index of its coordinates in a 

theoretical ordered array of n-dimensional coordinates (Equation 8). The only way this would be 

possible is if the data consisted of points that were equidistant from one another in every 
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dimension, and a value were present for every possible point. In the original data, the latter 

criterion was not met; many of the data points were not included in the contour grid files. If 

these missing points were also represented by a fourth classification (0: unknown), the data 

would become both complete and regular, and the need for storing the coordinates of each 

point would disappear. The addition of this new classification was still compatible with the two-

bit integer type chosen previously, which can represent up to four classifications.  

𝑖𝑛𝑑𝑒𝑥 =  ∑ [𝑛𝑖𝑛𝑡 (
𝜒𝑛 − 𝚾𝑛0

𝚾𝑛1
− 𝚾𝑛0

) ∙ ∏ dim (𝚾𝑚)

𝑁

𝑚=𝑛+1

]

𝑁

𝑛=1

 

Equation 8: Formula used to calculate the relevant index in the compressed rotamer library for 

a given array of chi angles; where 𝑁 is the number of chi dimensions applicable to a particular 

residue, 𝜒𝑛 is the nth chi angle of the residue, 𝛸𝑛 is the regularly spaced array of chi values 

known in the nth chi dimension for that residue type, thus (𝛸𝑛1 − 𝛸𝑛0) represents the width of 

the spacing in that dimension, and 𝑑𝑖𝑚(𝛸𝑚) is the number of known points in the 𝑚𝑡ℎ 

dimension for that residue type. 𝑛𝑖𝑛𝑡 is the nearest-integer rounding function. 

Therefore, for each contour grid, the missing data points were added, and the points were 

converted to an array of integer values. The NumPy library (95) was used to compress the 

Python-default 64-bit integers into 8-bit integers, and then a custom routine was used to 

compress each sequential set of four 8-bit integers into a single ‘compressed’ 8-bit integer (as 

2-bit integers are not a natively supported data type). The arrays of compressed 8-bit integers 

were then added to a dictionary keyed by amino acid type. The dictionary was then serialised 

using Python’s pickle module, and compressed using gzip. The result is a single file with a size of 

147 kilobytes, a 265x reduction from the original data. A library loading function was written 

which applied a NumPy-based bitmasking routine to decompress the data and load it to memory 

on the millisecond scale. 
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Figure 32: Visualisation of the rotamer library compression. The topmost figure shows a 

contour grid for a hypothetical amino acid with two side-chain torsion angles. Grid points are 

coloured red for outlier values, yellow for allowed values, green for favoured values, and grey 

for unknown - where a coordinate is not listed in the original contour grid file. The bottom 

figure illustrates the compression process: starting with the conversion from floating point to 

integer data points, followed by the type conversion from dictionary to integer array, which 

includes the addition of zeros to represent null data points, and finally the compression of 

Python integers to two-bit binary values. It should be noted that the original contour grid 

values are given to a much higher precision than is shown here. From Rochira and Agirre, 2020 

(75). 

Satisfied with the discrete metrics calculations implemented, the next task was to adapt the 

chain-view chart to be able to plot them. A new definition was added to the package definitions 

file alongside the metric names and polarities, containing each metric’s type (continuous or 

discrete). Then, when called, the chain view chart-generating function would use this definition 
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to decide the arrangement of continuous or discrete axes. The discrete axis was to be composed 

of a sequence of solid traffic-light colours, with red representing outlier or unknown values, 

amber representing allowed values, and green representing favoured values. Grey would be 

used to represent missing (null) discrete metric values. These colours were implemented as 

segments that would join to form a contiguous band of colour around the axis (Figure 33). 
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Figure 33: First tests of the discrete axes. These charts were generated using chain A of each of 

the three models. 
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2.3.3.4 Missing-residue shading 

This discrete classification system had the added benefit of eliminating the need for the null-

data point markers which, except for in the case of entirely missing residues, only applied to the 

rotamer and Ramachandran metrics. The null-data points made the chart cluttered, and could 

often be quite misleading. Hence, the null-data points were removed, and a new style was added 

to indicate missing residues: shading. For completely missing residues, the entire sector would 

be shaded in, to much more clearly indicate the fact that the residue is not present in the 

iteration being viewed. The shading would be grey for missing residues in the previous iteration, 

or pink for missing residues in the latest iteration. Additionally, it was felt that the grey colouring 

for segments that represented null data points was counter-intuitive. Because the discrete axes 

are mostly composed of green segments, any differently-coloured segments immediately stand 

out as exceptions. This is perfect for emphasising the location of outlier values, because they are 

areas that should draw the modeller’s attention, but counterproductive if it also draws attention 

to null data points, which are irrelevant to the modeller. To fix this, null data points on the 

discrete axes would be coloured green, identically to the favoured values. The result of both 

these changes is shown in Figure 34. 

 

Figure 34: Chain-view chart for chain A of the Buccaneer model, before (A) and after (B) 

missing-residue shading was introduced and the null data point colouring was corrected to 

match that of favoured data points. 
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2.3.3.5 Animation 

A major side effect of the addition of discrete axes was that there was now no ghosting for the 

discrete metrics. The current ghosting implementation was beginning to seem unsatisfactory in 

general. For example, there were frequently areas of the structure where the difference 

between the two models was masked, as a consequence of the latest iteration always being 

plotted over the top of the previous iteration. Because of this, and the fact that many other 

similar types of ghosting shading had already been tried and rejected, it was decided that in such 

an information-dense graphic, it would not always be possible to suitably showcase both 

iterations simultaneously, at least not in a way conducive to achieving the goal of making the 

graphics instantly comprehensible. Hence, the idea of showing two model iterations 

concurrently would be abandoned, and the ghosting mechanism be replaced by taking a 

completely different approach. 

Instead, the iterations would be toggled between with a switch, positioned above the chain 

view. The chain view chart-generating function was modified, such that each axis had two 

groups of plots (one for each iteration) the first of which (previous iteration) would be hidden 

by default. Then, a function was written for the template interaction JS which would toggle the 

visibility of both groups for each axis, such that when the switch was pressed, the plots on all 

axes, both discrete and continuous, would jump between each of the two available iterations. 

To make the transition smoother and less jarring for the continuous axes, SVG’s native animation 

support was utilised. SVG animation includes a mechanism by which all points on a polygon can 

be linearly translated to new coordinates, which was entirely suitable for transforming each axis’ 

line graph plot, which were implemented as polygons. The svgwrite library has an Animation 

module for this purpose, which was trivial to implement, creating an animation element for each 

continuous axis. Each SVG animation element has a beginElement method, the call to which was 

inserted into the function called by the toggle switch. This worked perfectly without any 

additional changes. Different transition animations were also trialled for the discrete axes, but 

ultimately, all seemed to be distracting or confusing, rather than useful. Therefore, when the 

switch is clicked, the line graph morphs over a period of a few hundred milliseconds, and the 

discrete axes change instantaneously. 
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Figure 35: Both iteration chain-view charts for chain A of the Buccaneer model (1vme). 

 

2.3.3.6 Plot formula revision 

Since switching to real-world data chart generation, there had been a long-running and 

significant problem with the chain-view chart: it was not emphasising the worst areas of each 

chain. While most of each chain was appearing on the positive side of the axis, as intended, the 

poor areas were often being shown as minor dips, often not even crossing the axis line. Clearly, 

the square-difference formula, while suitable for the synthetic data, was not working for real-

world data. Therefore, a new formula had to be developed. 

It appeared that the main reason for the failure of the square-difference formula was that there 

would often be one or two very low values for a chain’s set of values of a metric. These low 

values, when converted to square differences from the mean, would have magnitudes far 

greater than any other values of that metric, and thus, the normalisation process would skew 

the plot such that almost all of the values would fall on the positive side of the axis, even other 

low scores. One option to overcome this would be to apply some outlier detection before 

normalisation, to limit the axis bounds at, for example, the mean plus-or-minus two standard 

deviations. However, this would not be suitable for all metric value samples; for example, 

samples of especially high variance. So instead, a new plotting formula was devised. Rather than 

plotting the square difference from the mean, the absolute difference from the mean would be 

plotted, and axis transformations would be used to produce a useful plot. A Python script was  

written with a command-line interface that would show the result of different axis-scaling 
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methods on an example chain-view chart as they were input by the user. Testing with this 

program led to the development of a two-step axis transformation that produced excellent 

results. This transformation is illustrated in Figure 36. 

 

Figure 36: Step-by-step representation of the new axis scaling method. Graph A represents the 

raw metrics data, where each point is plotted as its distance from the mean value. Graph B 

represents these same points after the average negative value has been added to every point. 

Graph C represents the points after the positive values are divided, and the negative values are 

multiplied, by some constant. 
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Figure 37: Chain-view chart for the latest dataset of each of the three test models after all the 

aforementioned changes had been made. These charts were generated using chain A of each 

of the three models. 
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2.3.4 Residue view changes 

2.3.4.1 New design 

Although satisfied with the adaptation of the chain view to the new discrete metrics, the 

accompanying radar chart now seemed mismatched; it was still showing the percentiles-based 

scores for every metric, including those that were now represented discretely on the chain view. 

Due to the non-standard scoring technique used for the rotamers, the score on the radar chart 

would often not correspond to the discrete classification shown for the same residue on the 

chain-view chart. In addition, even if the score were to reliably correspond to the classification, 

as would be the case for Ramachandran likelihood, showing the Ramachandran continuous 

score on the residue view would misleadingly imply that the difference in Ramachandran 

percentile score for two residues with identical Ramachandran classification is as significant as 

the difference in, for example, their density fit quality percentile score, which is not the case. 

It was decided that a new residue-view graphic should be designed, with the ability to show the 

discrete metrics as classifications in a clear way. The first design for this graphic was constructed 

around a grid-based layout that would have a section for continuous metrics, shown on bar 

charts, and a section for discrete metrics, with large checkboxes containing the traffic-light 

colours shown on the chain-view chart. The design was trialled using the synthetic data class 

that had been used to prototype the other charts, and is shown in Figure 38. 
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Figure 38: Initial design of the new residue-view graphic. 

Though satisfied with the basis of the design, user feedback suggested some modifications that 

needed to be made. Many felt that the discrete classification boxes needed more detail than 

just the colour to adequately explain the value they indicated. In response to this, text labels 

were added to the boxes, explaining the classification value they represented. Feedback from 

non-experts revealed a common assumption that the value on each bar chart was linked in some 

way to the checkbox above it. While this may not confuse an expert, it certainly detracted from 

the intuitiveness of the graphic. Therefore, a divider line was added to clarify the delineation 

between the discrete and continuous sections of the graphic. Comments from many suggested 

that they felt the graphic seemed unfinished, or otherwise in its early stages of development. 

Although that was indeed the case, and such feedback may in part have been prompted by the 

way the graphic was introduced to the reviewers, further enquiry revealed that the reasoning 

behind such comments was that the bar charts appeared skeletal and empty. In response to this, 

traffic-light colouring was also added to the bar charts, with values less than or equal to 33 
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coloured red, values between 34 and 66 (inclusive) coloured amber, and values more than or 

equal to 67 coloured green. With these changes made, a new example was generated (Figure 39) 

and feedback was much more positive, with all reviewers stating that their reservations had 

been addressed. 

 

Figure 39: First revision of the grid-based residue-view graphic, with a divider bar and colour 

added. 

It was then suggested that a more useful way to utilise the space allocated to the continuous 

metrics would be to collate the B-factor bars together, and the density fit bars together, leaving 

just two bars. This advice was heeded, because it allowed the entire graphic to be compressed 

horizontally. This was desirable, because it had always been intended that the chain view be the 

more prominent feature of the graphical panel of the report, and until this point, the chain view 

and residue view graphics both had a similar aspect ratio: roughly 1:1, meaning they both took 

up a similar amount of space. With the residue-view graphic compressed horizontally, the layout 
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would permit a larger chain-view by default, eliminating the need for the enlarge button in the 

current report template. This change was implemented, with the mean and maximum B-factor 

percentiles plotted in one bar, and the main- and side-chain density fit percentiles in another 

(Figure 40). 

 

Figure 40: Second revision of the grid-based residue-view graphic, with continuous metrics 

collated. In (A), the left-hand bar shows both the mean and maximum B-factor percentile for 

the selected residue, and the right-hand bar shows both main- and side-chain density fit 

percentiles. In (B), only the average B-factor and side-chain fit percentiles are shown. 

Of the two proposed designs, design B was more popular, and was selected as the working 

design. 
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2.3.4.2 Distribution indicators 

In place of the largely superficial traffic-light colours behind the bar charts, it was decided that 

this space might be better utilised by introducing box plots to illustrate the distribution of metric 

values across the model. A few rough designs were made for this (Figure 41), and the favoured 

design was then implemented in the residue view graphic-drawing function. The distributions 

values displayed in the bars were based on chain-wide distributions, rather than model-wide 

distributions, because this felt more intuitive. To do this, the interaction JS had to be modified 

so that the residue-view distributions were updated each time a new chain was selected. 

Because the calculation time was negligible, the distribution threshold calculations were 

implemented in the JS code to be calculated each time a chain was selected, rather than in the 

Python code to be passed to the JS as variables, keeping the code tidy.  

 

Figure 41: Different designs for bar distribution backgrounds.  Chart A features classic box plots, 

where the boxes represent the values of the three quartiles (Q1, Q2, Q3) and the tails of each 

represent the minimum and maximum values. These were often quite difficult to read; the line 

and text label indicating the selected residue’s value would often overlap with some aspect of 
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the box plot and, like the original designs for the graphic, they did not make any use of colour. 

Charts B and C use coloured areas across the whole bar to represent the chain’s metric value 

distributions. In both of these charts, the thick dashed line represents the mean of the 

distribution, the thin dashed lines represent one standard deviation from the mean in each 

direction, and the bounds of the coloured shading represent the minimum and maximum 

values of the distribution. The only difference between charts B and C is that chart B colours 

these areas discretely, in an effort to more clearly delineate them, whereas chart C colours 

them on a continuous gradient, to better represent the continuous nature of the distribution 

being illustrated. Of these designs, design C was the most popular, so this was selected for 

implementation. 

 

2.3.5 Report changes 

The HTML report template was updated with a few minor updates to accommodate the updated 

chain- and residue-view designs. These updates included: resizing the chain view to a wider 

default size, and removing the accompanying resize button; adding a model iteration toggle 

switch above the chain view; and a number of changes to the JS code (Figure 42). A test report 

was generated for each of the test models (Figure 43). 
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Figure 42: Finalised functions and variables of the report JS.  
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Figure 43: Regenerated test reports, featuring the updated designs of both graphics. 1vme (A), 

2ask (B), 2a0z (C). 
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Figure 44: Overview of the structure of the entire validation package.  The generate_report 

function at the top of the package first calls the generate_metrics_model function from the 

metrics module. This function instantiates a ReflectionsHandler object from the reflections 

submodule, firstly to calculate a map from the reflection data file, and then to initialise the 

metrics calculation cascade using the coordinates file. Each MetricsResidue object then 

performs analyses on itself using functions from the utils module, rotamer submodule, and 

ReflectionsHandler object, then runs the calculated metrics through the percentiles 

submodule. Once the metrics calculations are finished, the generate_report function calls the 

build_report function of the interface module, which generates the graphics and produces the 

finished report. 

 

2.4 Optimisations 

Because the codebase was written entirely in scripting languages (Python and JS), it was 

originally developed with readability in mind, as a higher priority than computational efficiency. 

Consequently, there was some scope for computational efficiency optimisation.  

The first optimisation related to the chart-generation process. The charts submodule had a 

private function that would calculate the coordinates for a point at a given angle and distance 

from some centrepoint. This function would be called repeatedly during the chain-view chart 

generation function, and would often repeat the exact same calculations a number of times for 

any given chart or set of charts. To prevent this, a cache object was added such that any t ime 

the function was called, it would first check the cache to see if that calculation had already been 
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performed, and if it had, recall the previous result. The performance difference resulting from 

this change was small but significant. 

Next, all matrices and matrix calculations in the library were rewritten as calls to the NumPy 

library (95), which both increased calculation speed and decreased memory usage.  

Beyond a certain point, further computational optimisation would have to come at the cost of 

readability, which would not be a worthwhile compromise in the context of this project. 

However, there were other areas to optimise in addition to computational efficiency. For 

example, it was noticed that the coordinate values calculated by the chart generation function 

were given to a very high precision, and were being stored in the SVG files to as many as 10 

decimal places. This level of precision was many orders of magnitude higher than was required, 

and because of the high number of elements contained within each SVG, it had a substantial 

effect on file size. To counteract this, the coordinate values of all SVG elements were rounded 

to just two decimal places before export, leading to a significant reduction in overall validation 

report file size. 

 

2.5 Implementation in CCP4i2 

2.5.1 Introduction 

The final section of the project was to implement the now-complete validation tool within an 

existing validation package. CCP4i2 is the graphical, Python-based (PyQt) interface of the CCP4 

suite, which “provides a framework for writing structure -solution scripts that can be built up 

incrementally to create increasingly automatic procedures” (2). 

The CCP4i2 interface comprises sections that display links to various tasks that provide interfaces 

to (mostly CCP4) programs. The format of the CCP4i2 task system is straightforward. Each task 

essentially consists of an input frame and an output (‘report’) frame. The files that constitute 

each task are one XML properties file and three Python scripts: one to define a subclass of the 

CCP4TaskWidget.CTaskWidget class to script the task’s input frame; another to define a subclass 

of the CCP4PluginScript.CPluginScript class to script the task’s backend processing; and the last 

to define a subclass of the CCP4ReportParser.Report class to script the task’s output report. 
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2.5.2 Existing validation task 

The primary validation task of the interface was named Multimetric model geometry validation, 

under the Validation and analysis category. 

The essential input fields for the task were the file paths for a model file and reflections file 

(Figure 45). Like the validation tool written in this project, the CCP4i2 validation task would use 

the Clipper-Python library to generate various validation metrics, which it would present to the 

user in the form of an HTML report (Figure 46). The task would also launch MolProbity analyses, 

via packages available in the CCP4-Python environment, and incorporate some of the results in 

the report. Although the task would accept reflection data as input, it would not pe rform any 

reflection-based analyses. Neither the flow of the metrics generation nor the presentation of 

the metrics (Figure 47) were as efficient as in the validation package written in this project. 

 

Figure 45: Input pane of the original CCP4i2 task. The input fields for the pane include file 

paths for a model and reflection data file, as well as for asymmetric unit descriptions. There 

are also three tick-box inputs to customise the contents of the output report.  
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Figure 46: Example output pane of the original CCP4i2 task. In this image, only the summary 

section is fully expanded, which shows some summary text, a single -chain chart of residue-by-

residue B-factors, some summary MolProbity analysis data, and some summary B-factor data. 

The three contracted sections contain more detailed B-factor analyses, Ramachandran plots, 

and more detailed MolProbity analyses. 
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Figure 47: Summary of the flow (left) and full report format (right) of the original CCP4i2 

validation task. Of note is the fact that the task would perform two MiniMol cascade loops, 

one for B-factor analyses and one for Ramachandran analyses. In Python, loops are unusually 

slow, so this two-loop system was quite inefficient. 

The goal of this subsection of the project was to overhaul this task and replace it with one that 

would implement both the back-end (metrics calculation) and front-end (graphics generation) 

components of the validation tool created in this project. 

 

2.5.3 Task redesign plan 

Both the metrics generation script and output report were redesigned. The main goal for the 

back-end was to restructure the flow of the task to be more efficient, and for the front-end, to 

feature the information-dense graphical panel of the new validation package. As a consequence, 

this would also involve implementation of multi-model support. The redesigned flow and report 

format of the package are shown in Figure 48. 



 

100 
 

 

Figure 48: Summary of the redesigned flow (left) and full report format (right) of the CCP4i2 

validation task. The redesigned validation task was expected to provide a few valuable speed 

increases. Significantly, where the original task would perform two (slow) MiniMol cascade 

loops, the redesigned task only needed to perform one, to generate the MetricsModel object 

(or objects, if two model iterations were provided). In addition to the changes to the flow, the 

output report was to follow a different structure, such that the graphical panel would be 

presented first and foremost, with the detailed MolProbity, B-factor, and Ramachandran 

analyses still available, each in their own contractible section. 

 

2.5.4 Initial development 

Once the task had been redesigned, its development could begin. Before assembling the 

redesigned task, the new validation package was added to the CCP4 Python site -packages 

directory, to emulate the package having been installed as part of the CCP4 suite.  
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The first goal was to create a test validation task that could import the new validation package 

and run it to create a validation report. At this stage, the objective was just to confirm that the 

validation report would be generated, not that it be rendered by the CCP4i2 interface output 

pane. This would verify compatibility of the package with the Python environment interfaced-

with by CCP4i2. 

To accomplish this, the task GUI input was modified to accept two sets of model inputs, rather 

than just one, to allow the user to provide model and reflection data from two iterations of 

model refinement (Figure 49). The XML properties file was updated accordingly so that the 

specified file paths would be assigned as globally-scoped attributes, to be accessed by the other 

components of the task. Finally, the main plugin script was edited to import the new validation 

package, and call its generate_report function with the file paths passed from the task GUI, to 

create a validation report in the default output directory of the task. Tests were successful; 

running the tasks would yield a blank output pane, and the production of a new subdirectory, 

containing the HTML validation report and accompanying scripts and stylesheets. 

 

Figure 49: Input pane of the new CCP4i2 task. The input fields for the pane now include file 

paths for two sets of model and reflection data files. There is also a new tick-box input for 

users to specify whether or not they would like to produce the interactive graphical panel.  

The next step was to get the HTML report integrated within the task’s output pane. The first 

plan to accomplish this was to modify the package to introduce an option to produce a stripped-

down version of the validation report, containing only the graphical panel, which could be 

implemented in the CCP4i2 report and other software alike, by application of an iframe element. 
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Modifications were made to the package to do exactly this, by including a version of the 

template that attached the requisite CSS and JS files, but stripped out the entirety of the rest of 

the template other than the div element housing the two graphics. A string argument was added 

to the build_report function of the interface submodule to accept the user’s choice of report 

mode; the options being full for the full report (default), or panel for the new mode. 

To implement the panel mode in the CCP4i2 task, rather than calling the module’s 

generate_report function directly, the individual components of the metrics and interface 

submodules were called individually. This had the benefit of providing the task with direct access 

to the MetricsModel objects produced by the metrics module, which would be required for the 

more detailed analyses. The initialiser function at the start of the main plugin script would call 

the generate_metrics_model function of the metrics submodule, to generate a MetricsModel 

object for each of the two provided iterations, followed by the build_report function of the 

interface submodule, with the mode set to panel, and the output directory again set to a 

subdirectory within the task’s output directory. Then, the report script was modified such that 

an iframe element was introduced at the top of the output HTML, with the source set to the 

nascent subdirectory containing the graphical panel. Unfortunately, when the task concluded 

and the output panel was shown, the in-app browser would consistently crash. It appeared that 

the CCP4i2 integrated browser did not support iframe elements within the report HTML. This 

process was repeated a number of times, each time with different iframe source files, all to the 

same effect: the browser would throw an exception and crash. It seemed that using an iframe 

element was not viable in the case of the CCP4i2 suite. 

Therefore, a new route was taken. Rather than outputting a whole report directory, the module 

could be engineered to produce just the bare minimum HTML code required to contain the SVG 

graphics, which could then be inserted inline within the HTML of the task output pane. The 

difficulty here was that because the CSS and JS of the package would therefore have to be 

included inline with the output pane, there was potential for overlap in terms of HTML element 

names, CSS class names, or JS function names. Testing this method revealed that there were 

indeed some clashes that had to be overcome. 

The first problem was that some of the generic CSS style names used by the Bootstrap template 

had been utilised within the default CCP4i2 report template CSS, causing overlap which led to 

improper styling of many elements of the report. This was simply resolved by changing CSS style 

names in the report template of the interface submodule to less common ones. 
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Another difficulty encountered was that none of the interaction was functioning correctly. 

Debugging using the JS developer console revealed that there were parse errors where the 

browser was not able to resolve some keywords; specifically, the let and const keywords. These 

were introduced to the ECMAScript standard in 2015, to provide JS with block scope capability 

(where previously the only possible scopes were global scope and local scope) with the const 

keyword providing the additional functionality that variables defined using this keyword cannot 

be reassigned to, behaviour that was not previously achievable. Since it is good practice to 

adhere to the latest edition of the ECMAScript standard when writing JS code, the JS in the 

interface module used these keywords throughout. However, although the keywords had been 

supported by all major web browsers for years, the integrated browser of the CCP4i2 suite did 

not recognise them, and so could not execute any of the included JS functions. To circumvent 

this, another mode was added to the report, which produced the same output as the panel 

mode, but replaced all instances of the let and const keywords with the older var keyword, which 

would define all values as global variables. This had the potential to introduce a number of 

problems: aside from the usual potential for namespace overlap that can arise from globally 

scoping all values, in JS, variables defined with var become attributes of the shared window 

object, which adds a whole other dimension for potential namespace overlap. Fortunately, the 

code was robust to this change without needing any major modifications to its overall structure. 

 

2.5.5 Multithreading 

The MolProbity analyses were by far the most time-consuming part of the validation task. In the 

original task, every stage of the task was performed serially, on the main thread, with the 

MolProbity analyses performed following the native metrics calculations. To increase the 

efficiency of the task, a multithreading approach was conceived. The redesigned task would use 

the Python multiprocessing library to start a separate process (or two processes in the case of 

provision of two iterations) for the MolProbity analyses, which would be initiated at the very 

start of the task. The MolProbity analyses would then run in the background while the main 

thread generated the MetricsModel object. Once the main thread had completed this job, it 

could wait for the MolProbity process(es) to conclude, and process the results. 

Unfortunately, due to some idiosyncrasies of the Python 2 multiprocessing module, spawning a 

process from within the CCP4i2 plugin subclass was not supported under Windows. Therefore, 
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an operating system check had to be incorporated such that the analyses could still be run from 

a Windows environment, just without parallelisation (as in the original task).  

 

2.5.6 MolProbity integration 

As described in Section 2.2.4.5, one of the originally desired metrics module calculations was an 

atomic clash score, the implementation of which was previously postponed due to time -span 

concerns. With the availability of MolProbity analyses from the CCP4i2 Python environment, the 

results of a comprehensive MolProbity analysis were now available without any extra 

modifications to the metrics module, making the MolProbity all-atom clash results available for 

implementation within the graphical panel. Rather than integrate this alongside the other 

discrete metrics, it was decided that this metric should be presented separately, in a manner 

that portrays its exogeneity from the metrics module. To do this, an argument was added to the 

chain-view chart generation function to allow the addition of a new axis around the edge of the 

chart, whereby a marker could be placed at the edge of any residue’s sector (Figure 50). The 

task’s main plugin script was modified to supply this argument with an array of clash markers 

from the MolProbity analyses. 

 

Figure 50: Appearance of the new outer markers. 

In addition to the clash score, the MolProbity analyses would produce a number of other useful 

geometric analyses, including some of those that were also implemented within the metrics 

module; for example, the main-chain and side-chain favourability scores. In the case of side-

chain conformation, the MolProbity results would be much more precise than those of the 

metrics module, thanks to the inclusion of the uncompressed reference data. Hence, it was 
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realised that the user may well wish to feature MolProbity analyses within the chain-view if and 

when they were available. Therefore, the interface module was modified to allow for this, and 

it was enabled by default within the CCP4i2 interface. When MolProbity data were being 

incorporated within the chart, a ‘MolProbity Enabled’ watermark would be shown in the centre 

(Figure 51). 

 

Figure 51: Watermark shown if MolProbity data has been incorporated into the chart.  

Generated using synthetic data. 

 

With this, the CCP4i2 implementation was complete. See Section 3.4 for a screenshot of an 

example output pane of the finished task. 
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3 Results and discussion 

3.1 Metric accuracy 

Metric values produced by the metrics module were tested against results from other reputable 

validation software packages. 

 

3.1.1 Ramachandran likelihood score 

Ramachandran scores were tested against those from MolProbity.  

 

Figure 52: Confusion matrix showing Ramachandran classification agreement between the 

metrics module and MolProbity. Percentages are of column sums. Figures in brackets are 

numbers of residues. Discrepancies arise as a result of the different formats of the reference 

data; MolProbity has access to the entire original dataset, allowing for very accurate 

interpolation for each case, whereas the compression used by the metrics module to store the 

reference data yields less precise classifications, especially at the interfaces between 

classifications (borderline cases). 
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3.1.2 Rotamer likelihood score 

Rotamer classifications were tested against those from MolProbity. 

 

Figure 53: Confusion matrix showing rotamer classification agreement between the metrics 

module and MolProbity. Percentages are of column sums. Figures in brackets are numbers of 

residues. Discrepancies are partly due to the differing interpolation methods applied by 

MolProbity and Clipper, but more significantly to the fact that the thresholds are arbitrary; and 

those selected for the metrics module are the ones that are used in Coot, to facilitate the 

transition between a CCP4i2 report and the Coot validation tools (see Section 3.4). These are 

not the same as those used by MolProbity. 
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3.1.3 Density fit score 

The custom density fit score was tested against RSCC, calculated using EDSTATS (48). 

 

Figure 54: Line graph illustrating correlation between the reflection submodule per-residue fit 

scores and per-residue RSCC scores. Scores are plotted as z-scores, calculated for each residue 

from the population of all residue scores of the relevant structure.  

Clearly, the correlation between the two metrics was quite poor. However, that was to be 

expected; this project’s electron density fit score was not designed to correlate with RSCC, but 

to be an easily calculable indicator of poor fit quality. To assess the ability of the metric to 

identify areas of especially poor quality, a classification-based test was devised, similar to that 

used for Ramachandran classification. Residues with fit scores less than one standard deviation 

below the model mean were classified as outliers, and the rest were classified as allowed. The 

same classification method was applied based on RSCC, and the results were compared via a 

confusion matrix. This revealed a satisfactory outcome. 
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Figure 55: Confusion matrix showing density fit classification agreement between the 

reflections submodule and RSCC. Percentages are of column sums. Figures in brackets are 

numbers of residues. F1 score is 0.767, and Matthews correlation coefficient (MCC) is 0.654. 

Discrepancies are simply a result of the fact that the two scoring methods are mathematically 

very different. 

 

3.2 Timing 

To perform timing analyses, a random selection of 20,000 models from the PDB-REDO database 

was made. Timing analyses were performed on multiple aspects of the software, through a high-

throughput approach that best utilised the available hardware. The computer allocated for 

testing had an Intel i9-9900k processor, with 8 physical cores and 16 threads, running at stock 

frequency. To maximise the processing power available, timings would be run in parallel such 

that all 16 threads of the processor would be occupied concurrently. Potential avenues for 

bottlenecks were investigated and eliminated: the processor was liquid cooled, and maximum 

temperatures were around 70 degrees Celsius, so thermal throttling would not be a concern; 

there was a large amount of available high-frequency memory; and the storage device’s read 

and write speeds on the order of gigabytes per second, so file input/output would not be a 

bottleneck. 

The first timing analysed was the time taken for the entire process, i.e., the time taken to analyse 

the metric values of, and produce a full standalone validation report for, a given dataset (two 

pairs of model and reflection data). In an effort to split these time values into their respective 
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components, more in-depth analyses were performed. Firstly, the time taken just to calculate 

metrics was measured; that is, the time taken to initialise a pair of MetricsModel objects for a 

given dataset to produce metrics data. Secondly, the time taken to produce a validation report 

from a given pair of MetricsModel objects. The results of all these analyses are shown in 

Figure 56. 

 

Figure 56: Box plots illustrating the distribution of results of timing analyses.  On the left are the 

run times per model (in seconds), and on the right are the run times normalised by residue 

count (in milliseconds). The median value of each distribution is labelled. The breakdown 

reveals that metric analyses account for roughly 73% of the entire run time, on average.  

Next, the implementation within the i2 interface was timed, and compared to the previously 

implemented task. Because of the MolProbity multithreading introduced in the new CCP4i2 

validation task, each instance of CCP4i2 could have up to three intensive processes running at 

once (one main thread plus two MolProbity threads). Therefore, to reduce the likelihood of 

processor thread saturation, the number of simultaneously-timed instances was reduced from 

16 (as in previous tests) to 8. The results of these tests are shown in Figure 57. Of course, these 

timings would differ significantly under a Windows environment as a result of the multithreading 

constraints outlined in Section 2.5.5. If two models are provided, and MolProbity is enabled, 
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validation may take significantly longer than it otherwise would on a unix -based operating 

system such as Linux or MacOS. 

 

Figure 57: Box plots illustrating the distribution of average (n=5 repeats) times taken to run 

models (both coordinates and reflection data) through both versions of the CCP4i2 Multimetric 

Validation task. On the left are the run times per model (in seconds), and on the right are the 

run times normalised by residue count (in milliseconds). The median value of each distribution 

is labelled. The breakdown reveals that the new task is significantly faster than the original, 

both with or without MolProbity analyses enabled, despite performing twice as many analyses 

(two iterations). 

 

 

 

 

 



 

112 
 

3.3 Interface 

Some test reports were generated for structures with known defects. 

 

Figure 58: Example validation report for structure 3vd3 (top) and accompanying model 

visualisation (bottom). The screenshot shows a validation report for 3vd3, with chain B, 
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residue 684 selected. The iteration slider in the previous position, corresponding in this case to 

the originally-deposited model, before refinement by PDB-REDO. The selected chain comprises 

more than a thousand residues, demonstrating the robustness of the design to high residue -

counts. For the bottom panel, the corresponding model has been coloured by B-factor (blue 

for low values, red and then white for high relative values) to highlight the mobility of this 

region. The map shows 2mFo-DFc density contoured at 1σ; the fact that the map does not 

cover all the residues at this level hints at the region's mobility and/or disorder. From Rochira 

and Agirre, 2020 (75). 

 

3.4 CCP4i2 implementation 

 

Figure 59: Example validation report from the new CCP4i2 task with MolProbity all-atom clash 

markers enabled. The screenshot shows the CCP4i2 interface, with the output pane of a 

validation task selected. This particular task validated the model 1vme. Chain A, residue 331 is 

selected. The iteration slider is in the previous position, corresponding again to the originally-

deposited model, before refinement by PDB-REDO. In this screenshot, all the mentioned 

features of the interface are visible together, including the MolProbity integration. 
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At the very bottom of the task window is a button that opens the model file in Coot. This button 

was present in the original validation task, and was left unchanged. It was because of this 

integration that the Coot Ramachandran thresholds were selected for this package, so that the 

Ramachandran classifications shown in the graphical panel would correspond to those shown in 

Coot. This proved to be successful in testing. 
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Figure 60: Design (top) and flow (bottom) of the CCP4i2 validation report before and after 

integration of the new validation package. The most noticeable difference in the design is that 

the graphical panel is now the first view presented to the user when the page is loaded, and 

fills the viewport to maximize the size of the chain‐view display. The flow of the task has 

changed more significantly; where the old task performed simple B‐factor and Ramachandran 
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analyses, then executed MolProbity analyses and compiled the results all on the same thread, 

the new version of the task uses Python's multiprocessing library to run concurrent MolProbity 

analyses on separate threads while the metrics module calculations are performed on the 

main thread. This significantly reduces the run time, despite doubling the number of analyses 

being performed. Because the metrics are all calculated within the same cascade, the task only 

has to perform one set of (slow) Python loops, as opposed to the serial repeats of loops in the 

original report; hence the newly‐structured report has shorter run times both with and 

without MolProbity enabled. Timings are not to exact scale. From Rochira and Agirre, 2020 

(75). 
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4 Conclusions and future work 

The aim of this project was to produce a tool to enable interactive all-in-one graphical validation 

of 3D protein model iterations, meeting the specific criteria described in Section 1.3. Although 

all the overall goals were achieved, there are a number of avenues for potential improvement 

and expansion. 

At the most basic level, further optimisations could be made. One that stands out is 

multithreading: the iteration through the Clipper MiniMol cascade, and the identical operations 

performed repeatedly at each level are perfect candidates for multithreading. That could be 

implemented in several different ways, and at several different levels. For example, at a high 

level, each chain of a model could be iterated-through by individual worker threads in parallel 

with one another. Or at a lower level, a pool of worker threads could be spawned before 

analysis, to have individual residues divided up amongst them as the main thread iterates 

through the cascade. Both of these methods would be viable in theory; however, due to 

limitations of the Python 2 multiprocessing library, it would not have been a simple undertaking 

within this project. Similarly, efficiency would be improved substantially if some of the core 

analyses were repackaged as a C++ library to be wrapped for Python. However, considering the 

difficulties posed by the wrapped Clipper library, this would probably be a step in the wrong 

direction. Indeed, one of the overarching goals of the project was that the code be easy to read 

and modify to make it extensible, which would have to be sacrificed entirely if it were 

repackaged in a compiled language. 

Aside from optimisations, there are a number of routes for expanding the functionality of the 

software, such as adding support for cryo-EM. As discussed in Section 1.2.2, cryo-EM models are 

becoming increasingly prevalent in the field, and experimental data obtained from cryo-EM has 

unique requirements that differ to those of MX data. The tools to implement cryo-EM data are 

already available; the Clipper NXmap (non-crystallographic map) class provides suitable 

encapsulation for finite electron density map data, and the methods to deal with it. This could 

be implemented with a future update to the package. 

Perhaps the most pressing improvement to implement is expansion of the range of available 

metrics; for example, alpha-carbon torsion via the CaBLAM dataset. Since it would only be useful 

in the case of very low-resolution structures, such as those generated by cryo-EM, the Cα torsion 

reference data were not implemented in this project. However, if cryo-EM compatibility were 
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implemented, this metric would certainly have to be revisited. Likewise, other electron density 

fit scoring methods could be implemented, to expand the range of available metrics. Although 

the fit score invented for use in this project was demonstrably suitable, it is non-standard, and 

its values are not comparable to those from other validation software  packages. To counteract 

this, traditional fit scores such as RSCC and RSR could be implemented, either calculated directly 

by the metrics module or by hooking some external program, such as EDSTATS (48). In addition, 

MolProbity analyses could be implemented directly within the metrics module, via the CCTBX 

Python package. In this way, the user would be able to choose either built-in or MolProbity 

analyses when using the package in any context, including as a standalone solution, rather than 

having to choose an implementation of the package that makes MolProbity analyses available, 

such as CCP4i2. 

An intrinsic problem with representing a three-dimensional structure with a two-dimensional 

graphic is that some in-space interactions become very difficult to represent meaningfully and 

intuitively. There are often important interactions involving residues that are close in tertiary or 

quaternary structure, but far apart in primary structure, and thus are difficult to illustrate on a 

flat, sequential chart. Such interactions include residue-residue interactions, such as hydrogen 

bonds and disulfide bridges, and also residue-molecule interactions, where many residues may 

interact with the same ligand or cofactor. Further developments to the graphic would lead to 

the development of a satisfactory way of displaying such information, perhaps with the 

application of a customisable layered system. In a similar vein, representation of post-

translational modifications, such as glycosylation, could be added. For example, via 

implementation of the two-dimensional glycan notation generated by Privateer (99). 

Although the integration within the CCP4i2 suite provided an apt demonstration of the 

pluggable nature of the code, this has ignored the majority of validation pipelines. In time, the 

software could be integrated in a number of other validation programs. Likely candidates include 

CCP4mg (47), Coot (46), and ChimeraX (100). Additionally, modifications could be made to the 

standalone report to allow users to tie the standalone validation reports into their existing 

validation pipelines; for instance, by adding dynamically-updated hyperlinks to the report which 

open the model already centred on a selected residue in model-viewing software such as Coot. 

This could also be used to prompt users with suggestions for a number of automatically -detected 

actions, such as peptide flips. 
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Finally, the most important and longest-term goal is the inception of new validation metrics that 

are entirely separate from the refinement process, such that they cannot be targeted by 

automated refinement procedures. This would open the door to truly independent model 

evaluation, and is an avenue that should be explored. 
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