

Validation of Correction of
Macromolecular Structural Models

William Rochira

MSc by Research

University of York

Chemistry

December 2020

2

Abstract

Recent advances in automation in the field of computational structural biology have created a

void to be filled by novel validation software. In this project, the problems and inadequacies of

currently available validation tools are identified, and the requirements of a novel validation tool

are both ascertained and addressed. The development of a new validation software package is

described in detail, starting with the development of the front-end interface and the back-end

calculations, followed by the integration of these two components to produce an all-in-one

validation package, which can calculate its own comprehensive per-residue validation metrics

and present them in a compact, interactive, graphical interface, so as to allow the intuitive and

thorough analysis of a protein model’s quality that is understandable at a glance. This interface

features a novel graphical representation of validation, which plots multiple validation metrics

along concentric axes such that correlations between those metrics are immediately apparent,

and poorly-modelled regions are emphasised to the user. The software can be run standalone,

or plugged into new or existing validation pipelines, and can incorporate calculated metrics from

other validation services such as MolProbity (1). It supports multi-model comparison in its single

view, and runs with negligible time penalty, making it especially suitable for evaluating

incremental changes that result from automated or manual iterative model building. To

showcase its extensibility and pluggable design, the integration of this package into the existing

CCP4i2 (2) software suite is described. Finally, the package is analysed both quantitatively and

qualitatively, and potential avenues for future work are outlined.

3

List of Contents

Abstract 2

List of Contents 3

Acknowledgements 6

Author’s Declaration 7

1 Introduction 8

1.1 Proteins 8

1.1.1 Protein structure 8

1.1.1.1 Primary structure 8

1.1.1.2 Secondary structure 8

1.1.1.3 Tertiary structure 9

1.1.1.4 Quaternary structure 9

1.1.1.5 Dynamics 9

1.1.2 Protein function 10

1.2 Protein structure determination 11

1.2.1 Background 11

1.2.2 Experimental methods 12

1.2.2.1 X-ray crystallography 12

1.2.2.2 Cryogenic electron microscopy 13

1.2.2.3 Nuclear magnetic resonance 14

1.2.2.4 Other methods 15

1.2.2.5 Summary 15

1.2.2 Protein structure solution pipeline 16

1.2.3 Protein structure validation 16

1.3 Project goals 21

2 Methods 23

2.1 Interface 23

2.1.1 The interface format 23

2.1.2 The graphics 25

2.1.3 The report 37

2.2 Metrics 45

2.2.1 Preparation 45

2.2.2 Outline 45

2.2.3 Initial framework 46

4

2.2.4 Model-only metrics 47

2.2.4.1 B-factors 48

2.2.4.2 Bond geometry 48

2.2.4.3 Ramachandran conformation 51

2.2.4.4 Rotamer conformation 52

2.2.4.5 Others 54

2.2.5 Density fit analyses 55

2.2.5.1 Background 55

2.2.5.2 Existing implementations 57

2.2.5.3 Building a scoring method 58

2.2.5.4 Implementation 59

2.2.5.5 Complications 60

2.2.6 Percentiles library 62

2.3 Combining the two modules 69

2.3.1 Initial adjustments 69

2.3.2 Testing with real-world data 70

2.3.3 Chain view changes 71

2.3.3.1 Metric polarity synchronisation 73

2.3.3.2 Sequence alignment 75

2.3.3.3 Discrete metric implementation 76

2.3.3.4 Missing-residue shading 82

2.3.3.5 Animation 83

2.3.3.6 Plot formula revision 84

2.3.4 Residue view changes 87

2.3.4.1 New design 87

2.3.4.2 Distribution indicators 91

2.3.5 Report changes 92

2.4 Optimisations 95

2.5 Implementation in CCP4i2 96

2.5.1 Introduction 96

2.5.2 Existing validation task 97

2.5.3 Task redesign plan 99

2.5.4 Initial development 100

2.5.5 Multithreading 103

5

2.5.6 MolProbity integration 104

3 Results and discussion 106

3.1 Metric accuracy 106

3.1.1 Ramachandran likelihood score 106

3.1.2 Rotamer likelihood score 107

3.1.3 Density fit score 108

3.2 Timing 109

3.3 Interface 112

3.4 CCP4i2 implementation 113

4 Conclusions and future work 117

5 Bibliography 120

6

Acknowledgements

Many thanks to my supervisors during this project. In particular to Dr. Jon Agirre, who always

made himself available, and helped me out throughout the entirety of the project, not just

concerning technical questions, to which he would consistently provide constructive insight, but

also with valuable personal direction in regards to my future career. Thanks to everyone at YSBL

for help whenever I asked for it, and for welcoming me into a lovely community and working

environment.

7

Author’s Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This work

has not previously been presented for an award at this, or any other, university. All sources are

acknowledged as references.

Parts of this thesis have been published by the author:

 Rochira W, Agirre J. Iris: Interactive all‐in‐one graphical validation of 3D protein model

 iterations. Protein Sci. 2020 Oct 19;67:386.

8

1 Introduction

1.1 Proteins

Proteins are macromolecular biomolecules composed of polymers of amino acids (polypeptide

chains) which are ubiquitous in all domains of life. They are crucial to virtually all biological

processes, performing functions such as reaction catalysis, cell signalling, and providing

structural support. Individual proteins’ constituent amino acid sequences are encoded in genetic

material, to be translated by the cell into a polypeptide chain. Despite the one -dimensional

nature of this information, protein synthesis leads to the production of incredibly consistent,

complex three-dimensional structures, which arise due to intramolecular interactions between

the side-chains of amino acid residues in a chain during the process of ‘folding’. The median

length of a protein in a eukaryotic organism is 472 amino acid residues (3), which corresponds

to a molecular mass of roughly 52 kilodaltons.

1.1.1 Protein structure

Protein structure is often broken down into the four-tiered hierarchy described in the following

subsections.

1.1.1.1 Primary structure

The primary structure is the one-dimensional sequence of amino acids in each chain in the

protein, joined by covalent peptide (amide) bonds. There are twenty different proteinogenic

amino acids encoded by the standard genetic code, with many other modified amino acids

produced by certain modified translation mechanisms (4).

1.1.1.2 Secondary structure

The secondary structure consists of the local three-dimensional conformations of regular motifs

caused by intramolecular hydrogen bonding between the amino hydrogen and carboxyl oxygen

9

atoms in the main-chain of amino acid residues. By far the most common types of secondary

structure are α-helices and β-sheets (composed of β-strands), but there are many other (albeit

rarer) types, including turns and bends. On average, 60% of the residues in any given folded

protein are found in regular α-helices or β-sheets (5). Areas of a chain that do not form a

recognised motif are termed ‘random coils’.

1.1.1.3 Tertiary structure

The tertiary structure is the overall three-dimensional conformation of a single polypeptide

chain, held together by a number of intramolecular interactions. The four principal interactions

involved in tertiary structure formation are: hydrophobic and hydrophilic interactions, disulfide

bridges, hydrogen bonds, and ionic bonds. In some cases, coordination of metal ions can be

critical to the tertiary structure.

1.1.1.4 Quaternary structure

The quaternary structure is the arrangement and interactions between the component subunits

(individual chains) within a multi-subunit complex. The quaternary structure of some complexes

will also include cofactors or other biomolecules, such as nucleic acids.

1.1.1.5 Dynamics

Even once fully folded, a protein’s structure is not necessarily fixed; protein structures can be

dynamic. A change in structure can be triggered by a number of events, including a change in

the electrochemical environment, allosteric regulation by an effector molecule, or simply occur

as a function of a particular structure’s inherent flexibility.

10

1.1.2 Protein function

A protein’s aptitude for its function is dictated by its structure. There are many different classes

of proteins, and the scale at which structure impacts function is different for each.

At the most intricate level, a protein’s function may depend on the atomic-level position and

conformation of individual amino acids. This is especially true in the case of specific binding, a

process ubiquitous throughout the protein classes. Examples include signalling proteins and

receptors (protein-protein specificity), ribosomes (protein-nucleic acid specificity), and

transport proteins (protein-ligand specificity). Specific binding is particularly important for

enzymes, which are proteins that catalyse biochemical reactions by converting one or more

substrate molecules into different product molecules in a small pocket of the protein termed

the active site. Like the other classes of proteins mentioned, some residues of the active site are

involved in the specific binding and orientation of substrate molecules. However, enzymes take

the atomic-level function a step further, in that some individual amino acid residues actively

participate in the chemical reaction during catalysis. The position and orientation of these

residues is therefore especially critical to the enzyme’s functionality.

On a slightly broader scale are functions that occur over an area of many amino acid residues,

typically as a result of those residues sharing some general property. For example, areas of

hydrophobic residues can be used as a surface for hydrophobic interactions, either with a

hydrophobic face on another protein, or, for instance, for positioning and orienting itself within

a membrane (6). Additionally, pockets of residues with a shared property can be used to alter

the chemical properties of the side-chains within it. For example, by surrounding a residue with

a number of non-polar side-chains, its uncharged state becomes more thermodynamically

favoured, affecting its pKa. This is termed the microenvironment effect, and is instrumental in

creating active sites that have the required chemical properties in many enzymes (7).

Over the very widest scale are functions that depend on the physical properties of the entire

molecule as a whole. Such is the case with many structural proteins, which are used to provide

structural support to certain structures, through imposing rigidity. One of the best examples of

such proteins is collagen, the most abundant mammalian protein. Collagen is a fibrous structural

protein found in connective tissue. It has high tensile strength, meaning it can withstand great

stretching or pulling forces without breaking. Each collagen molecule is formed of three

polypeptide chains, which are wrapped around each other to form a triple helix structure, held

11

together by interstrand hydrogen bonds. To enable this conformation, every third amino acid in

each chain must be a glycine residue, which is the most conformationally flexible amino acid (8).

The full range of protein functions is far greater than this overview might imply; each class of

proteins comprises a diverse set of functions and modes of action, and each depends on the

arrangement of amino acids in the protein’s three-dimensional structure. To summarise: the

structure of a protein is critical to its function because it determines the mechanisms by which

it can interact with other molecules, whether they be ligands, cofactors, or other proteins.

1.2 Protein structure determination

1.2.1 Background

Since proteins are so ubiquitously involved in biological processes, an intricate level of

understanding about their individual structures, and therefore functions, is immensely valuable.

Such a level of understanding lays the foundation for the creation of new hypotheses about how

proteins can be affected, modified, or controlled. As such, protein structure determination is

critical to so many aspects of computational biology, either as individual structures of target

proteins, or as entire databases of proteins, such as the Protein Data Bank (PDB) (9).

The field in which an understanding of protein structures has proven especially useful is drug

design. Historically, drug development has been performed by trial and error, by screening

random compounds. However, the advent of protein structure determination brought about

systematic structure-based drug design, in which the structure of a target protein can be

analysed to calculate the binding modes and affinities of a huge database of different ligands

(prospective drug molecules) using high-throughput approaches. Another example is the field

of protein engineering: the process of developing artificial proteins, which can be used to

develop custom enzymes to biologically catalyse reactions (10,11), to develop proteins for use

as drugs, such as rilonacept (12), or even to develop artificial molecular machines (13).

Protein structure determination primarily involves building an atomic model to fit some

experimentally observed data. In the following subsection, the most common experimental

methods are outlined.

12

1.2.2 Experimental methods

1.2.2.1 X-ray crystallography

X-ray crystallography is an experimental technique used to determine the arrangements of

atoms within a crystal, developed after the discovery of X-rays (14) and their diffractive

interactions with crystals (15) in 1895 and 1912 respectively. X-ray crystallography is performed

by firing a beam of electrons through a crystal and recording the diffracted radiation to yield a

diffraction pattern: a cross-sectional image of the reciprocal space which contains information

about the atomic arrangement within the crystal (Figure 1). If many such images are taken with

the sample placed at various orientations, the diffraction patterns can be decoded to a real

space electron density map by applying a Fourier transform, and the atomic structure of the

crystal can be inferred. X-ray crystallography on proteins is commonly referred to as protein

crystallography, or macromolecular crystallography (MX).

Figure 1: Simplified diagram of an X-ray diffraction experiment.

In 1934, John Desmond Bernal and Dorothy Crowfoot Hodgkin discovered that consistent and

reliable diffraction patterns of protein crystals could be obtained if they are X-rayed in their

mother liquor (the solution that remains after crystallisation). Until that time, X -ray

crystallography of proteins had only been attempted on dry protein crystals, which had given

only poor results. With their discovery, Bernal and Hodgkin took the first X-ray photographs of

protein crystals, in the form of crystalline pepsin, thereby yielding the first protein diffraction

pattern (16). After a couple of decades, the structures of larger proteins started to be solved,

the first of which was the structure of sperm whale myoglobin by Sir John Cowdery Kendrew in

1958 (17). Once the potential applications of this technique were realised, the field of structural

molecular biology was born.

13

In the early days of MX, X-rays were produced by in-lab X-ray sources, and diffraction patterns

had to be interpreted manually, by performing Fourier transform analysis by laborious manual

calculation. Francis Crick, for example, was an experienced crystallographer (18), and MX was

famously used by Rosalind Franklin, James Watson, and Francis Crick to solve the structure of

DNA in 1953 (19).

MX remains by far the most common method for protein structure determination. In recent

years, the process has become substantially more automated, and computational techniques

have become integral to the solution process. Although in-lab X-ray sources are still widely

available, most modern-day MX is performed using synchrotron radiation, at a beamline facility

such as the Diamond Light Source (20).

1.2.2.2 Cryogenic electron microscopy

The basic principle of electron microscopy (EM) involves using an accelerated beam of electrons

to illuminate a sample, exploiting the wave-like characteristics of electrons. An electron beam

can have a wavelength many orders of magnitude shorter than that of a photon beam, and as a

consequence, can capture images at substantially higher resolutions.

Since its advent, the potential for the application of EM in molecular structural biology was well

appreciated. However, its practical application was limited, due to the radiation damage caused

to samples by the high energy electrons, and the fact that the microscopy had to be performed

under vacuum, leading to evaporation of water in the samples. In the early 1980s, it was

discovered that by performing EM under cryogenic conditions (temperatures approaching

absolute zero) these damaging effects could be lessened (21,22). This is known as cryogenic

electron microscopy (cryo-EM). In 1984, a seminal paper from a group at the European

Molecular Biology Laboratory featured images of adenovirus embedded in a vitrified layer of

water (23). This paper is widely considered to mark the beginning of modern cryo-EM (24–26).

Since then, cryo-EM has continued to become more prevalent in the field (Figure 2).

Cryo-EM on proteins is most often conducted as a single-particle technique, whereby the imaged

sample contains a dispersion of many instances of the molecules of interest, all at different

orientations. Therefore, the result of the experiment is a number of images of the target

molecule, which can be processed to produce a three-dimensional map of the molecule.

14

Unlike MX, cryo-EM does not require that samples be crystalised, and also requires a much

smaller amount of sample. Historically, one of the main disadvantages of cryo-EM compared to

other techniques has been its comparatively low resolution. However, substantial recent

advances in image-processing algorithms and detector hardware, such as the advent of direct

electron detectors, have led to the so-called ‘resolution revolution’, yielding data at much higher

resolutions (27,28).

1.2.2.3 Nuclear magnetic resonance

After cryo-EM, the next most common method is nuclear magnetic resonance (NMR)

spectroscopy (Figure 2), a technique that involves recording a spectrum of excitation

frequencies emitted by atomic nuclei in the presence of a strong constant magnetic field when

perturbed by a weak oscillating magnetic field. The precise frequency of excitation given off by

a particular nucleus is dependent on its chemical environment; hence, a frequency spectrum

can be used to identify particular chemical environments within a sample compound and build

up a picture of the compound’s overall structure.

NMR is performed on highly pure aqueous solutions of sample, and hence is only suited to

water-soluble proteins. Proteins that have majoritarily hydrophobic externals, such as

membrane proteins, are not suited to regular NMR analysis. However, there is a variant of NMR,

known as solid-state NMR (ssNMR) which is specifically suited to such cases (29–31).

Since proteins can be such large molecules, a single NMR spectrum will inevitably contain

overlaps, within which multiple individual nuclei emit the same excitation frequency, making the

spectrum impossible to decipher. Hence, protein NMR normally consists of a multi-dimensional

approach, in which peaks from NMR spectra of different nuclei are correlated to produce more

informative data.

In protein NMR, structure calculations are performed by applying restraints to the output of

multidimensional NMR experiments, in order to obtain a model. In contrast to MX and cryo-EM,

protein NMR does not generate an electron density map. Nowadays, protein NMR is more

commonly used to investigate protein interactions (32–35).

15

1.2.2.4 Other methods

There are other, less common, methods applied in macromolecular structure determination. For

example, there are purely computational methods such as protein structure prediction, in which

a protein’s secondary or tertiary structure can be predicted from its amino acid sequence if it is

known. Such methods were first introduced in the 1960s (36,37), and recent developments in

the applications of deep learning have led to impressive breakthroughs in the field, resulting in

systems that can predict the full three-dimensional structures of proteins with accuracy

approaching that of experimental methods, such as DeepMind’s AlphaFold (38,39).

1.2.2.5 Summary

Even today, MX is still by far the most popular technique, with over 140,000 macromolecular

structures having been solved by MX and made publicly available (40) (Figure 2).

Figure 2: Number of structures deposited in the PDB between 1990 and 2020, by experimental

method. Data from wwPDB, accurate as of December 2020 (41).

16

1.2.2 Protein structure solution pipeline

Collecting experimental data is merely the first step in a multi-step process of protein structure

determination. Because of its prominence, this subsection discusses the structure solution

pipeline for MX (Figure 3). Once data has been collected, in the form of diffraction patterns, also

known as reflection data, there are several essential processing steps to be performed before a

finished atomic model can be produced. Each of these steps is performed with the help of

specialist software, many of which are bundled with model building suites such as CCP4 (42) or

PHENIX (43).

Figure 3: X-ray structure solution pipeline. Adapted from Kevin Cowtan, 2012 (44).

Every step of the structure solution pipeline involves unavoidable uncertainties, from the

experimental errors introduced in the early stages, to the subjective decisions made during

model building. Once a preliminary model has been created, it needs to be refined in an iterative

cycle of refinement and validation, which mitigates against such uncertainties.

1.2.3 Protein structure validation

Validation of protein structure is performed using validation metrics, which provide information

about various aspects of the atomic model. These can pertain either to individual parts of the

model (local criteria) or to the model as a whole (global criteria).

Some validation metrics can be calculated from just an atomic model, using a model file: these

are text files, primarily containing a list of atoms and their associated coordinates. The most

ubiquitous format of model file is the Protein Data Bank format (*.pdb), the column order for

which is shown in Table 1. Other types of model file include the newer PDBx/mmCIF format

(*.cif) which is more extensible, but contains essentially the same data. Other validation metrics

can only be calculated with access to the experimental data, in addition to the model file.

Experimental-data files are specific to the experimental method. In the case of MX, experimental

17

data comes in the form of reflection data, a collection of X-ray diffraction observations. These

data are most commonly stored in the MTZ format (*.mtz). From these data, an electron density

map can be calculated, which can in turn be used to calculate density fit validation metrics.

Columns Field Name Data Type Definition

1-6 record String e.g., "ATOM " for an atom

7-11 serial Integer Atom serial number

13-16 name String Atom name

17 altLoc Character
Alternate location indicator, to indicate alternate

conformation

18-20 resName String Residue name

22 chainID Character Chain identifier

23-26 resSeq Integer Residue sequence number

27 iCode Character
Residue insertion code, used to differentiate

between two residues with the same numbering

31-38 x Float Orthogonal coordinates for X (Å)

39-46 y Float Orthogonal coordinates for Y (Å)

47-54 z Float Orthogonal coordinates for Z (Å)

55-60 occupancy Float Occupancy

61-66 tempFactor Float Temperature factor (B-factor)

77-78 element String Element symbol

79-80 charge String Atomic charge

Table 1: Column order of the coordinate section of the PDB file format. From these data,

model-only metrics including geometric analyses can be calculated. As shown in the third-to-

last column, the model file also contains atomic B-factors. Hence, B-factor is also a model-only

metric, despite the fact that B-factor values are originally determined using the experimental

data. Data from wwPDB (45).

Model-only metrics inform about properties of an atomic model as a standalone entity, such as

the bond geometry. This covers attributes such as deviations from ideal bond lengths, angles,

18

planes, and dihedrals. The result of these analyses is the detection of outliers: rare atomic

arrangements, deemed unlikely to occur. Each outlier is either the result of an improbable but

real feature of the protein structure (meaning the model is correct, and should be respected) or

an error in the protein model (in which case the model should be corrected). In order to establish

which of these two possibilities is the case for each outlier, the model must be compared to the

electron density map derived from the experimental data, to assess the probability that the

atoms in question were modelled correctly. This is frequently done manually, by visually

comparing the model and electron density map in molecular modelling packages such as Coot

(46) or CCP4MG (47), but can also be performed by applying local reflections-based validation

metrics, including measures of electron density fit quality and B-factor. The real space

correlation coefficient (RSCC) and real space R (RSR) are the most commonly applied metrics of

local fit quality, and analysis has revealed that both show individual biases in their assessments

of model accuracy (48).

Today, validation metrics can be produced in several different ways, the most prevalent of which

being software suites such as CCP4 (42) and PHENIX (43), options and plugins in molecular

modelling packages such as Coot and CCP4MG, and independent web services (vide infra). In

recent years, the number of potential routes for model validation procedures has increased

substantially, having developed from the smallest beginnings just decades ago. The demand for

new validation metrics and more accurate refinement procedures is ever-increasing (49), and is

sustained by periodic realisations that previously-deposited models are often imperfect (50–55).

The development of the structure validation process started following the inception of the field

of macromolecular crystallography. In the beginning, there was no model refinement, since

computational power was not widely available, especially not to the required extent. It was only

in 1971 that the first automated least-squares refinement algorithm was published by Robert

Diamond (56), which marked the start of computational protein structure refinement. The only

available ‘validation metrics’ at this stage were the global indicators of R-factor and resolution.

Refinement remained a highly computationally intensive procedure. To tackle this problem,

geometric restraints and constraints on atomic geometry were introduced to the refinement

process. These served to reduce the dimensions of the least-squares matrix used in minimisation

calculations by most refinement programs, which in turn reduced the computational intensity

of model refinement, and were used in both small molecule (57,58) and macromolecular (59,60)

19

crystallography. These restraints and constraints would go on to themselves become useful

metrics to highlight geometric irregularities in models: the birth of geometric model validation.

Over the following years, the exponential increase in available computational resources was

paralleled by a growth in the number of macromolecular structure determination programs. The

first validation software package, PROCHECK (61), was developed in the 1990s, and provided a

variety of summary outputs, including a page of per-residue stereochemical analysis plots. These

local analyses, although simplistic, proved to be extremely helpful for users, immediately guiding

them towards areas of the model that may require further improvement or analysis.

Comparably, the WHAT_IF (62) validation report, WHAT_CHECK (54), conducted various

geometric validation analyses, as well as some analyses that were not present in PROCHECK,

such as suggested side-chain flips and unsatisfied donors and acceptors (63).

The 1990s also saw the development of tools such as ProSA (66), which produced a single

summary line graph of local model quality against residue number, as well as ERRAT (67), which

plotted a nine-residue moving-window bar chart of a summary error value, and VERIFY3D

(64,65), which produced a twenty-residue moving-window scatter plot of a protein’s 3D profile

score. In a similar vein to PROCHECK, these local summary plots were especially helpful in

highlighting poor-quality areas of a structure.

Coot (46) transformed the field with its interactive output, by building upon interactivity

introduced by software such as O (68). Coot featured scrollable self-updating charts to display

the results of its diverse selection of integrated validation tools, many of which were built on

the Clipper C++ libraries (69). These charts were presented in pop-up interfaces, and featured

residue-by-residue charts for both reflections-based and geometric metrics.

In 2007, MolProbity rapidly became one of the most ubiquitous pieces of modern validation

software, and still is today. MolProbity produces reports that feature high-quality geometric

analyses, produced using proprietary methods of hydrogen-placement and all-atom contact

analysis. Self-described as a “structure-validation web service”, MolProbity geometry-based

validation reports can be generated either using one of a few web-based MolProbity servers, or

via the MolProbity libraries bundled in suites such as CCP4 and PHENIX. In the latter

implementations, a local MolProbity server is initialised, which can be called upon by validation

tools of the suite to perform back-end metrics calculations. The outputs can then be processed

or presented by the validation tool as required.

20

PHENIX’s Polygon (70) brought a one-shot graphical representation of overall model quality in

the form of its radar chart, which could illustrate the values of several different quality indicators

in a single view by plotting them along coloured bar charts emanating from a shared origin. This

software was highly successful, and provided the basis for similar features in other multi-metric

reports.

Along similar lines are the well-known Worldwide Protein Data Bank (wwPDB) summary quality

sliders, which are featured on the summary page for every structure in the PDB. The sliders

present a range of model-wide validation metrics in the form of percentile rankings, providing a

single-view representation of how a model compares to similar models in the PDB on several

different scales. These sliders were incorporated into the OneDep system, which was introduced

by the wwPDB in 2014 (71). The full OneDep report features residue sequence plots which flag

geometry outliers.

Today, computational structure validation is rich with a diverse array of software tools, including

those mentioned here. Each brings valuable functionality to the table; however, because these

features are scattered amongst so many different programs and suites, typical workflows

involve running several different programs in series to obtain the required array of metrics, and

obtain a comprehensive picture of the outcome of a refinement procedure. For example, one

might start in molecular modelling software such as Coot, then apply a geometric validation

suite such as MolProbity, and finally deposit to the PDB via the OneDep service.

The logical evolution from this manual refinement process, and towards a fully -automated

iterative process, has been a long-time goal in the field. A large portion of the model building

process has been automatable since even the 1990s, with the release of O and the programs

that worked in concert with it, like OOPS (72), which featured automated procedures that

greatly reduced the need for user input. The road to fully automated model building was paved

by the ARP/wARP suite (73), which was able to produce essentially complete models from just

the experimental data alone, thus pairing the model building and refinement processes.

More recently, software such as PHENIX's AutoBuild (74) has brought the field significantly

closer to realising this goal. AutoBuild applies a repeated cycle of rebuilding and refinement to

result in a largely complete model. Fully automated systems like these often enable the user to

export the latest model file at each iteration of refinement, so that they can compare data from

various steps along the overall process to follow the actions and progress of the automated

procedure.

21

In summary, many of the most successful features in computational structure validation are

spread across several validation tools, with no one program ticking all of the boxes. In order to

remedy this, novel validation software should incorporate as many of those features as possible.

In addition, they should not only perform both model-only and reflections-based analyses on a

per-residue basis, but to be consistent with recent developments in automation, they should

support integration within both new and existing model-building pipelines as an automatable

task with low run time.

1.3 Project goals

The overarching goal of this project was to design and create a pluggable standalone validation

software package to address the specific needs described in the previous subsection. It sho uld

be an all-in-one validation package that can calculate its own per-residue validation metrics, and

also permit the incorporation of metrics from other validation services such as MolProbity. It

should display all these metrics in a compact, interactive graphical interface that enables at-a-

glance comparison between stages of automated model building. Finally, it should run quickly

enough to be used either interactively or at the end of a new or existing validation pipeline with

a negligible time penalty.

In this work, the development of such software is described and discussed, starting with the

graphical interface, then the development of the integral metrics module, and the integration

of these two parts to produce a complete all-in-one package. As an example of its integrability,

the implementation of this package within the CCP4i2 graphical user interface is explained.

Finally, the software is tested and analysed both quantitatively and qualitatively.

22

Software
Geometric

analysis

Density fit

analysis

Per-residue

analysis

Supports

integration

All-in-one

graphics
Interactive

Coot

(Validation

menus)

Yes Yes Yes Yes No Yes

MolProbity

(Web server

report)

Yes No Yes Yes No No

Polygon

(Comprehensive

validation)

Yes Yes No No Yes No

wwPDB

(Validation

sliders)

Yes Yes No No Yes No

This Project Yes Yes Yes Yes Yes Yes

Table 2: Overview of some of the validation tools mentioned. All the programs identified have

long run times, which are exacerbated in some cases by simple, but mandated, manual input.

Coot performs all the desired analyses, but provides them in individual horizontally -scrolled

bar charts, rather than in an all-in-one graphic. Similarly, MolProbity, which performs excellent

per-residue geometric (but not reflections-based) analyses, provides its output as a vertically-

scrolled table. Polygon and wwPDB both provide an all-in-one overview of a model, but not

one with residue-by-residue analyses. From Rochira and Agirre, 2020 (75).

23

2 Methods

Before designing the validation package, a few key aspects of its format had to be decided: the

most important of which being which language to use – a traditional programming language or

a scripting language. The most relevant examples of each in this context are C++ and Python,

respectively. The primary difference between the two types of language is how they are run,

with C++ code being compiled to machine code when it is first built, and Python code being read

on-the-fly by an interpreter each time it is run. Compiled programs are inherently more efficient

than interpreted programs, making them faster. They are also freestanding, in that they do not

need an interpreter to be installed to run. However, scripted programs have their own

advantages: their code is often more compact and easily readable (which is especially true in the

case of Python vs C++), and they can be modified and re-run without waiting for a compiler every

time, making them a good fit for quick prototyping and end-user customisability.

In the end, Python was chosen for the back-end of the package. Increasingly prevalent in the

field, the Python interpreter is a component of all the major crystallographic software packages,

ensuring compatibility for the package as a freestanding program or a plugin. In addition,

language binding can be applied to include C++ code within a Python script to achieve the best

of both worlds.

2.1 Interface

2.1.1 The interface format

Once Python had been decided as the back-end language, the first stage of package design was

to decide the format of the front-end interface and to prototype a dummy user interface. The

function of the interface would be to render the validation graphics, present them to the user,

and then handle user interaction, updating the graphics in real-time. In performing these

functions, the interface should also comply with the overarching project goals of fast execution,

and maintaining compatibility with existing software packages.

Having Python as the back-end language meant the options for interface design were narrowed

down to two broad possibilities: it could either be written as a Python-based graphical user

24

interface (GUI) or as a freestanding report exported by the Python script. Each method has its

own advantages and disadvantages.

A Python-based GUI could be written using one of many available frameworks, including: PyQt,

the Python binding to the Qt GUI toolkit; tkinter, the Python binding to the Tcl/Tk GUI toolkit; or

wxPython, the Python wrapper for the GUI API wxWidgets. Launching a window directly from

the script would enable a completely self-contained package; with the interface interactions

being handled by Python code too, both the front and back ends would be written in the same

language, and packaged alongside one another. This would make for a neat and extensible

overall design, making customisation by the end user all the more intuitive. Indeed, many of the

available Python-based crystallographic packages use this format for their own GUIs. For

example, the CCP4i2 interface is based on PyQt, and the PHENIX interface on wxPython.

Alternatively, a freestanding report could take the form of a Portable Document Format (PDF)

file, or a Hypertext Markup Language (HTML) document, with the latter being more suitable for

the user interaction requirements of this project. However, the disadvantage of this format is

that in contrast to the Python-based GUI solution, the code that handles interface interactions

would have to be written in another language, with the most practical choice being JavaScript

(JS). The only way around this would be so contrived as to defeat the purpose of an all-Python

solution (such as requiring each user to run a local web server written in Python using the Django

framework). However, there are a number of significant advantages to this format. For example,

the HTML/JS format is well supported: every modern device has a built-in browser that can

render HTML pages and parse JS, and the Python-based GUI options all support some sort of

webviews that could render the HTML within a Python-based GUI. In addition, once a report has

been produced and saved, it can be reloaded at a later date without having to be regenerated

by the Python script. Finally, an HTML/JS solution, written properly, would be robust and stable.

With these considerations in mind, the HTML/JS report format was selected for the project

interface. The next stage of interface design was deciding a method for graphic generation.

Graphics could either be generated by the Python script and exported as part of the HTML

report; or be generated by the JS code upon the loading of the HTML file by the user. In either

case, pre-existing graphing packages such as Matplotlib (76) (for Python) or Chart.JS (77) (for JS)

were ruled out. Despite the high level of customisability offered by such packages, the extent to

which they would have to be customised to fit the exact requirements of this project would be

25

so great as to make their application counterproductive. The graphics would have to be bespoke,

and custom-built from the ground up.

Knowing that the graphics would have to be drawn from scratch, there were two main routes to

investigate. The first was to use the HTML5 canvas: a JS-controlled HTML5 element for drawing

bitmaps in immediate mode, in which the image is drawn and retained in the client’s memory

when the page is loaded. This method was dismissed almost immediately, as its disadvantages

were so numerous. Firstly, the fact that the image would have to be redrawn each time the page

is loaded would lead to unnecessarily high loading times. Secondly, because the resulting image

would be a single, flat bitmap, there would be no scope for interaction with individual ‘elements’

of the image, as they would be a purely visual construct. Lastly, the HTML5 canvas element may

not even be supported by some of the integrated web-browsers in existing packages, as those

browsers are often somewhat outdated.

The more favourable option was to generate graphics in the Scalable Vector Graphics (SVG)

image format from the Python back-end. SVG images are text files, based on the Extensible

Markup Language (XML) which can be rendered by all major modern web browsers, as well as

most image viewers. The widely-supported nature of the format made it a good candidate for

this project. The SVG images could either be saved as individual files, and then referenced within

the report using one of a few compatible HTML elements (e.g. , img, svg, object), or more

appropriately, they could be embedded directly within the HTML file. Because both HTML and

SVG files are XML documents, the SVG markup could be directly included within the HTML

document in an inline implementation, such that child elements of the SVG file become a part

of the overarching Document Object Model, and therefore children of the HTML document.

Consequently, all elements of the SVG image would become accessible by any JS code that loads

with the HTML document, enabling the desired JS-based interaction.

2.1.2 The graphics

With the HTML/SVG/JS format settled upon, the next stage of design was to prototype the

graphics. The centrepiece of the package was to be a single chart that would represent the

metric values for every residue in a chain in a single view. The basic idea behind this was a

circular chart in which each residue of the chain is represented as a sector of the circle, and all

of a residue’s validation metrics are represented together within that residue’s sector.

26

To quickly prototype chart designs, as well as the algorithms for their generation, ideas would

be designed programmatically using a Python script. Before designing the actual graphics, a

custom class was written to generate synthetic data, mimicking the metrics that could be

extracted from a model. The flow of this class is shown in Figure 4.

Figure 4: Flowchart outlining the synthetic data-generation class. For each residue, the custom

class generated a synthetic metric value for each of five imaginary metrics; these values were

generated by sampling from one of two normal distributions: either 𝑁(60 ∼ 152) or 𝑁(15 ∼

52), with the latter distribution applied to a ‘patch’ of poor-quality residues somewhere within

the chain.

Once the data generation was taken care of, design prototyping was started. In order to combat

the subjectivity intrinsic to the graphic design process, a group of non-experts was assembled to

periodically provide unbiased feedback. Throughout the design process, the group would be

sent a design and a brief summary of the information that the graphic was intended to convey,

and be asked for their individual opinions.

27

A Python module named charts was created to house the graphics-generation code. The initial

designs were generated in the SVG format, using the open-source Python library svgwrite (78).

The first idea trialled was a stacked radial bar chart, in which each residue was represented by a

bar around the circle, containing each of the residue’s validation metrics stacked on top of one

another (Figure 5).

28

Figure 5: First designs of the chain-view chart. In these charts, each sector contains all the

residue’s validation metrics stacked on top of one another. The axis gradations for all metrics

29

are illustrated by the concentric black circles. In the first version (A), each residue was drawn

as a rectangular bar extending out from the edge of the inner circle in the centre of the chart.

The purpose of the inner circle was to prevent the overlap that would otherwise appear

between bars at the dead centre of the circle, and to provide a clear separation between bars

at lower values. In the next version (B), residues were drawn as sectors, forming a contiguous

drawn area, and maximising the available space. To ensure that the divide between residues

was still clear, a white border was added to each sector. In contrast to the stacked bars seen in

the first version, sectors in this chart comprise a number of overlapping, opaque components,

which each represent an individual metric value. Because each of these components has its

own white border, it is possible to identify each individual metric value for a residue from this

chart alone. In the final version (C), a number of minor changes were made. Firstly, the inner

circle was expanded, further compressing the axis, and making it easier to read. The fill of the

inner circle was changed from solid grey to alternating shades, as an additional measure of

delineation between residues. The extra space within the inner circle was utilised to label

residues with their respective sequence number and one-letter amino acid code. Finally,

numerical axis labels were added.

Although this design made it very easy to spot residues with poor metrics across the board, it

had a few flaws:

1) It was very difficult to precisely read metric values off the chart, a limitation of the axis

style chosen.

2) It was not possible to identify which of a residue’s metrics score well or poorly for an

individual residue, and consequently, it is impossible to track the trend in any particular

metric across a sequence of residues.

3) A residue scoring very well in one or two metrics would often disguise the fact that it

scored very poorly in others, because the large green bars are much more visually

striking than the small red bars beneath it, despite the fact that the small red bars are

of greater significance, given that the primary goal of this graphic is to emphasise the

areas of worst quality in a chain.

4) When generated for synthetic chains of higher residue counts, the chart would become

increasingly difficult to interpret, and the labels would become unreadable (Figure 6).

30

Figure 6: Chain-view charts illustrating the effect resulting from increasing the length of the

synthetic chain to 200 residues (A) and 1,000 residues (B). Given that the median length of a

protein in eukaryotic organisms is 472 amino acid residues, neither of these would be an

unusually high number of residues.

In an effort to tackle the first two of these limitations, it was decided that a residue-view chart

should be shown alongside the chain-view, which would show the details of an individual residue

selected by the user via interaction with the chain-view chart. In this way, an individual residue’s

metric breakdown could be shown in detail, allowing the user to track the trend of an individual

metric through the chain. The residue-view was designed as a form of radar chart, shown in

Figure 7.

Figure 7: Radar chart residue-view, with five (A) or ten (B) different metrics. The shape of the

radar chart is automatically updated based on the length of the metric-names array passed as

31

the only argument for the radar chart-generating function, an example of the procedural

design made possible with this method of graphics generation. Like the chain-view chart, the

radar chart axes were labelled on a scale from 0 to 100 (corresponding to the output value

range of the synthetic data class) but with the axis length equal to the full radius of the chart,

making it much easier to read off a precise value.

Although the residue-view chart was ideal for clarification of individual metric values for each

residue, it could only be applied to one residue at a time, so did not entirely alleviate the second

of the two problems it targeted. Ideally, the chain-view chart alone should illustrate the trend

in a metric across the chain, without requiring an arduous process of manual checking from the

user. Therefore, to solve this, and the rest of the limitations outlined, the chain-view chart would

have to be redesigned.

The next conception of the chain-view chart was a series of radial line graphs plotted on

concentric circular axes, where each axis would represent a different validation metric, and

clockwise progression around the axes would correspond to the progression through the amino

acid sequence of a protein chain. The hope for this design was that areas of poorer model quality

would correlate with worse validation metric scores in several different metrics, making them

easier to spot (Figure 8A). Initial ideas for this design were trialled using the same synthetic data

generation mechanism as was used with the previous design. Each axis plotted the absolute

metric value, with the axis limits set to [0, 100] and the origin therefore equal to 50. The results

of these tests were disappointing (Figure 8B); the oscillations from the residues within the ‘high-

quality’ normal distribution were so erratic that it was very difficult to identify the patch of low-

quality residues, making it essentially useless. In an effort to reduce the noise produced by the

uninteresting residues, an axis transformation was applied, whereby the square deviation from

the mean was plotted instead (Figure 8C). This almost entirely alleviated the problem.

32

Figure 8: Originally-illustrated example for the idea behind chain-view chart (A), the result of

the first test with synthetic data (B), and the result of the same test with the axis

33

transformation applied (C). The patch of poor residues is found between the eleven and twelve

o’clock positions in all three charts. In the final chart, metric values are plotted as squared

deviations from the mean metric values for the chain, so only the most extreme values are

noticeable.

Satisfied with the axis transformation for the time being, it was decided that this design would

be developed further. Firstly, a gap was added at the 12 o’clock position for axis labels. Then,

each metric axis was designated an individual colour, to make each metric immediately

identifiable from the chain view alone. Next, the area between each axis and its line p lot was

shaded in the same colour, to make an area’s distance from the axis more immediately apparent.

Finally, a sector residue-divider was added around the outside of the chart to introduce a sense

of the size of the protein chain being viewed, as well as to provide some direction to the user to

ease the selection of an individual residue for display on the residue -view chart once user

interaction had been implemented. The result of these changes is shown in Figure 9.

34

Figure 9: Updated chain-view chart. Produced from synthetic chains with 200 residues (A), 500

residues (B), and 1,000 residues (C). This design solved all of the problems arising from the

35

previous design: it is immediately apparent which residues score well or poorly in any given

metric, the areas of worst quality are clearly emphasised, and the chart is equally readable

with both low or high residue counts.

One of the most-desired features of the validation report was that it should be able to compare

different iterations of a model within the same chart. To accomplish this, the synthetic data class

was restructured to produce two different SyntheticProtein objects with similar metrics values,

to represent the iterations of a protein model both before and after some hypothetical

refinement process. Different ‘ghosting’ methods were trialled, to show the values

corresponding to the ‘previous’ iteration of the protein alongside those of the ‘current’ iteration.

The results of these tests are shown in Figure 10.

36

Figure 10: Selection of different chain-view ghosting designs. All charts were generated from

the same synthetic chain, of length 200 residues. Charts A, B, and C are all based on the same

37

idea: for each metric axis, the previous model data is drawn as a grey shaded area behind the

latest model data’s individually coloured shaded area. The only difference between these

three charts lies in the opacities of the various layers. Of the three, Chart C was preferred by

the majority of testers. Chart D is based on a slightly different idea. Again, the previous model

data is drawn behind the latest model data, but the latest model data is all shaded in cyan, and

the previous model data is shaded a different colour for each residue: green if the metric value

for that residue improved across the iteration, or red otherwise. Charts E and F are based on a

different idea, a hybrid of the principles of the other charts. Rather than drawing separate

areas for both the latest and previous model data, only one area is drawn for each metric, with

the shape representing the metric values of the latest mode, and the individual segments that

comprise the area individually filled and outlined with a colour that represents the residue’s

metric value improvement over the iteration, as in chart D. User feedback indicated that the

charts featuring per-residue colouration were too ‘busy’ to be easily interpreted, ruling out

charts D, E, and F. Of the first three charts, Chart C was widely selected as the most readable

combination of opacities, and so it was selected as the working design with which to proceed.

2.1.3 The report

As both charts had arrived at a suitable stage of development, the next task was to design the

HTML interface that would display them. A submodule named report was created as a part of

the interface model, alongside the charts submodule.

It was decided that the most effective way to design the layout of the HTML report would be to

use the open-source package Bootstrap (79). A template was adapted from open-source code

available on the Bootstrap website (80) which provided suitable view compartmentalisation. The

adapted template is shown in Figure 11.

38

Figure 11: First HTML template designed for the report. The report is divided vertically into

sections, which are either scrolled between manually or jumped to by using the buttons on the

39

left side of the navigation bar, which is frozen in place. The topmost section of the report is to

contain the chain-view and residue-view charts, presented side-by side. The rest of the

template constitutes placeholders for intended additions, including a section for verbose

tabulated data. Likewise, the Configure button on the right-hand side of the navigation bar was

designed to trigger a dropdown menu containing options for on-the-fly configuration, to be

designed at a later date. The injection point strings are used as flags for the Python script to

insert the HTML code specific to each report. Injection points 2 and 3 are the flags for the

chain- and residue-view charts respectively. Injection point one is the flag for the chain-

selector bar, shown above the chain-view chart. Because the chain- and residue-view charts

have similar aspect ratios (roughly 1:1) their respective columns must be equally sized for

them to line up vertically. However, the chain-view chart is much more information-dense

than the radar chart, and the user is likely to favour a larger chain view. Hence, the resize

arrow in the upper-right corner of the chain-view chart was added, which can be used to

expand the chain-view column and contract the residue-view column.

Once the HTML template had been designed, the next step was to write the JS code that would

enable user interaction by tying the SVG elements together. The basic premise behind this was

that there would be two JS files associated with each report. One file would contain the code

common to every report; for example, the functions hooking the methods of the embedded SVG

images. This file would be hardcoded and packaged with the template. The other file would

contain the metrics data specific to that model, and would be individually generated by the

Python script for each report. In this way, the groundwork for the JS was laid; its layout is shown

in Figure 12.

40

Figure 12: Functions and variables of the primitive report JS.

With the basic JS written and the report functional, some areas for potential improvement

became apparent. For example, it was difficult to know if the correct residue had been selected,

since there was no indication as to which sector was last clicked, or indeed which residue this

corresponded to. To rectify this, two steps were taken: a sector selector was added to the chain-

view chart (Figure 13A), and a residue info text line was added to the HTML template, above the

radar chart, to be updated by the JS with a description of the selected residue.

Another area for improvement was that the radar chart was not as informative as it had the

potential to be; for example, it made no use of user interactivity, or of colour. It was felt that

these design elements could be usefully applied. To address the former, hooks were added for

the OnMouseOver and OnMouseOut events of the radar plot-point circles, which are triggered

when the user’s cursor enters and exits each circle, respectively. A function was then added such

that hovering over any circle would trigger the appearance of a bubble directly above it,

containing the numerical percentile value represented by that point, which would disappear

once the cursor was moved away. To address the latter, inspiration was taken from POLYGON

(70), and coloured bar chart-like distribution representations were added to each of the radar

chart axes, to provide the user with an indication of the chain’s distribution for each metric, and

where the selected residue point falls within that distribution (Figure 13B). User feedback on the

along-axis distribution representations was generally unfavourable. Although the information

conveyed was appreciated, it was generally felt that the implementation made the chart too

cluttered, and so it was removed. In place of these, the radar-setting JS code was modified such

41

that it would fill the plot-point circles with a colour corresponding to the position of that

particular value within the chain’s distribution of values for that metric (Figure 13C).

42

Figure 13: Updated chain-view chart (A) and radar charts (B, C). Note that while charts B and C

represent the same synthetic residue, this residue does not correspond to that selected in

43

chart A. Chart A shows the selector added to indicate the position of the currently-selected

residue. In charts B and C, the user’s cursor is hovering over the plot-point circle for the metric

M2.

The whole report generation procedure was tested thoroughly and repeatedly using synthetic

data. After the necessary updates to the JS code (Figure 14), the report was fully functional. An

example report is shown in Figure 15, and the final structure of the interface module is shown

in Figure 16.

Figure 14: Updated functions and variables of the report JS.

44

Figure 15: Example validation report generated using the initial design of the interface module.

Figure 16: Structure of the interface module at this stage of the project. The build_report

function of the interface module constructor calls the build_report function of the report

submodule, which uses (synthetic) model data to call functions of the charts submodule to

generate the chart SVGs, and then builds the HTML report around those SVGs.

45

With this, the preliminary version of the report was complete, and the project progressed to the

next stage: generating real-world metrics data.

2.2 Metrics

2.2.1 Preparation

Before development of the metrics module was started, a library of model data was assembled

to enable testing of the module both during and following its development. To do this, the entire

PDB-REDO database was downloaded. PDB-REDO is an automated re-refinement and rebuilding

procedure that has been performed on every model in the PDB that has experimental data

associated with it (81–83). The result is a database containing the pre- and post-refinement

model and experimental data for every structure, of which there were over 135,000 at the time

of writing.

In addition to the PDB-REDO database, a selection of unrefined models was precured; these

models were outputs of the Buccaneer (84) software for automated model building. These

would be used to test the software on incomplete models, as examples of models from e arly

stages in the refinement-validation cycle, to more closely emulate real use-cases.

2.2.2 Outline

The plan for the metrics module was to create as comprehensive an array of per-residue metrics

as could realistically be done in the timeframe of the project. These metrics would comprise

both model-only and reflections-based metrics.

With Python already established as the language for the module, it was immediately decided

that the built-in metrics calculations would be based on the highly efficient Clipper and MiniMol

libraries (69). Though originally written in C++, the Clipper-Python C++ bindings make it possible

to use the library from a Python interface (85). The framework of the library was to be based on

the MiniMol objects, a hierarchical system of classes that encapsulate model data. Reflection

data is handled by separate Clipper classes (see Section 2.2.5). The basic idea was to create a

custom class hierarchy that would take objects from each level of the MiniMol cascade as

46

arguments, inheriting their attributes and performing metrics calculations alongside iteration

through the MiniMol cascade (Figure 17).

Figure 17: MiniMol cascade (left), and its intended implementation within the metrics module

(right). The MModel class corresponds to a protein model, the MPolymer class to a chain in

that model, the MMonomer class to a residue in that chain, and the MAtom class to a

constituent atom of that residue. Looping through the model file in this way would enable

access to the base attributes of objects on each level, which could then be used to calculate

metrics based on the relevant values stored in the model files.

2.2.3 Initial framework

The first stages of development were to construct the foundations of the module: some class

that could open and read a model file, then iterate through the MiniMol cascade to inherit

various properties at each level. Reflection data would be handled later (Section 2.2.5). Of

course, a prerequisite for this was to install the Clipper-Python package. Unfortunately, there

was no available distribution of the Clipper-Python package for the chosen operating system and

Python environment under the Python package manager (pip), only empty placeholder

packages. To circumvent this, the CCP4 suite was installed, which comes with an ad-hoc version

of the module as part of its own CCP4-Python environment.

Once Clipper-Python was installed, the basic framework of the module was developed; a class

was written that could load an MModel object from a model file, and iterate through the

MiniMol cascade, printing out various attributes of the MiniMol object corresponding to the

47

level of iteration; for example, each MPolymer’s chain letter code, and each MMonomer’s amino

acid type.

The script was tested on a few models from the PDB-REDO database mirror, and the output was

judged to be satisfactory. However, this exercise revealed an unforeseen obstacle: MMonomer

objects were not necessarily valid amino acid residues: they could be incomplete residues, or

other molecules altogether, such as water. Therefore, a function was written that would, for a

given MMonomer, determine whether or not it was an amino acid residue, by checking if its

code corresponds to a valid amino acid. Because the development of the metrics module would

involve the creation of a number of other functions similar to this one, to execute various

calculations and algorithms (and many of these functions would be generally useful utilities) a

separate utils module was created specifically to house them, rather than including them as

methods of the MetricsResidue class (Figure 18). This was done so that other scripts would be

able to call these functions as standalone entities, rather than having to initiate an entire

MetricsModel object.

Figure 18: Structure of the metrics module at this point.

2.2.4 Model-only metrics

With the basic framework of the module established, the project progressed to calculating

metrics from the now-accessible MiniMol attributes.

48

2.2.4.1 B-factors

The first metrics developed were the B-factor analyses, which were straightforward to

implement. Each Clipper MAtom object has a method to get its orthogonal isotropic

displacement value (U value) which is related to B-factor by a constant (Equation 1). Therefore,

a function was written to enumerate the MAtom objects of a given MMonomer object, convert

each U value to a B-factor, and append that B-factor to an array, from which values including

the minimum, maximum, mean, and standard deviation could be calculated and returned. This

function was added to the utils module, to be called by the MetricsResidue constructor upon

initialisation, which would set the returned values as attributes of each MetricsResidue instance.

𝐵 = 8𝜋2𝑈

Equation 1: Formula for calculating B-factor (𝐵) from isotropic displacement value (𝑈).

2.2.4.2 Bond geometry

The next task was to utilise the coordinates data to calculate bond geometries. Before this could

be done, a function was written to classify the atoms of an MMonomer object as belonging to

either the main-chain or side-chain, so that operations unique to either of those groups could

be performed more readily. This function was added to the utils module, also to be called by the

MetricsResidue constructor.

Next, the bond geometry calculation functions were written, the first of which was a function to

calculate bond lengths, both along the main-chain and side-chain of each residue. While this

would not lead to the calculation of a validation metric, it was a useful check function; it had

been noted that some of the unrefined test models would elicit MMonomer objects that had

missing atoms or chemically unfeasible bond lengths, as a result of some imperfect ref inement

step. Scoring such residues on validation metrics designed for chemically feasible residues would

be misleading and unreliable, so they should not be treated as real amino acids, and should

instead be considered unscorable. For this reason, a function to check atomic composition and

bond lengths was written for the utils module, to be called by the pre-existing is_amino_acid

function, to more thoroughly discriminate between MMonomer objects that represented real

amino acid residues and those that did not.

49

The next values to calculate were the bond torsion angles, which would be used to determine

the energetic favourability of the various elements of an individual residue’s geometric

conformation, shown in Figure 19. These could be calculated with some simple matrix

operations, the general formula for which is Equation 2. A function was written to do this, and

again incorporated in the utils module to be called by the MetricsResidue constructor.

Figure 19: The various amino acid bond torsion angles. The atoms and bonds in black represent

a hypothetical amino acid residue in some polypeptide chain. The main-chain torsion angles

are phi (φ), psi (ψ), and omega (ω), with the former two used to characterise main-chain

(Ramachandran) conformation. Omega values tend to be very close to 180 degrees, as a result

of the bond’s significant pi character; consequently, omega deviation can be a useful validation

metric in itself. The chi (χ) angles are found along an amino acid’s R-group; the number of

them is dependent on the amino acid type. These angles are used to categorise side -chain

(rotamer) conformation.

50

𝜑 = atan2(𝑢2 ∙ [(𝑢1 × 𝑢2) × (𝑢2 × 𝑢3)], |𝑢2|(𝑢1 × 𝑢2) ∙ (𝑢2 × 𝑢3))

𝑊ℎ𝑒𝑟𝑒 𝑢𝑛 = 𝑟𝑛 +1 − 𝑟𝑛

Equation 2: Formula for calculating dihedral angles from three-dimensional coordinates; where

𝑢𝑛 is the 𝑛𝑡ℎ bond vector, and 𝑟𝑛 is the 𝑛𝑡ℎ bond coordinates vector.

For an array of torsion angles to become a meaningful validation metric, it needs to be compared

to a probability distribution to ascertain a likelihood score for that conformation. These

probability distributions are calculated from reference data: a selection of data curated from

known high-confidence structures. The Richardson lab has published a public repository of

reference data for different types of residue geometry, based on thousands of high-resolution,

quality-filtered protein chains, called Top8000 (86). The Top8000 data has reference data for

three categories of geometry: main-chain torsion, side-chain torsion, and torsion about the Cα

atom, known as CaBLAM (87). For each of these three categories, the dataset contains a set of

contour-grids: regularly spaced, multidimensional probability distributions. A rendering of one

such example of these grids is shown in Figure 20.

Figure 20: Top8000 contour grid probability distribution for chi angles of the methionine side-

chain. The methionine side-chain has three chi angles, so the probability distribution can be

plotted as contours in three-dimensional space, where each spatial dimension represents one

side-chain torsion angle. This image was taken with the KiNG software (88) by loading the

Kinemage file included with the reference data.

51

Therefore, the next stage of the project was to implement these data in order to convert the

now-calculable dihedral angles into a significant likelihood score. This was no small task, as it

needed to be done while bearing the overarching goals of the project in mind; specifically,

keeping the run time low and the overall size of the package small. With a program like this, the

tolerance for time spent loading data on execution is very low. This is because, in contrast to a

program such as Coot, which is expected to spend some time loading resources to memory on

initialisation, which then remain in memory to then be called upon for a number of analyses,

this program would have to load up and shut down every single time it performs an individual

analysis. Because of this, an increase in load-up or shut-down time would have a direct impact

upon the run time for each individual analysis. This concept is illustrated in Figure 21.

Figure 21: Time allocation in a single-run script compared to a persistent program. Before an

increase in load-up and shut-down times (A), and after an identical increase in both load-up

and shut-down times for both classes of program (B). As the load-up or shut-down times

increase, the length of the single analysis is directly affected in the case of a single -run

program, which is not so for persistent programs. As a consequence, this overhead needs to be

kept to a minimum.

2.2.4.3 Ramachandran conformation

Looking first at the main-chain bond torsions: the Clipper libraries already include the Top8000

data for Ramachandran configurations, which is implemented in a calculator class that has a

high-accuracy interpolation method built in. This class is hooked in the Clipper-Python bindings,

which made this the obvious choice for calculating Ramachandran conformation quality in the

52

metrics module, especially because this route would comply with both the aforementioned

goals: the size of the package would not increase (as the Clipper library would already be

installed as a dependency) and the run time taken both to initialise the calculator on start-up

and to make individual queries would be low, thanks to the low-overhead C++ calculations

utilised by the class. Once again, a utils function was written to decide and execute the suitable

Clipper Ramachandran calculator method.

2.2.4.4 Rotamer conformation

In the case of side-chain torsion angles, there was no Clipper class to do the work. Instead, the

data had to be implemented manually. The first tests investigated the best way to load all the

data to memory on start-up. The contour grid data in the Top8000 repository are provided as

plaintext files specific to each amino acid type, totalling 37.4 megabytes in size. Each of these

files was loaded to a dictionary, with the keys being arrays of chi angles, and the values being

the associated probabilities. This process took 2080±80 milliseconds (n=100), which was a high

– but acceptable – figure, and required roughly 200 megabytes of memory, which was also

acceptable.

Although the contour grids were regularly spaced, the files encoding them had a number of

missing data points. This meant that for a given array of calculated chi angles, it would not be

possible to simply calculate the coordinates of the closest points on the contour grid, because

those points could be missing. This problem could be tackled a few different ways. The first

would be to repackage the data in a structure more conducive to fast lookups, reducing the time

taken to find the closest points with an associated probability value. This method was tested by

loading the data into a k-d tree: a binary search tree that places each data point as a node in k-

dimensional space. This was accomplished by using the KDTree class of the SciPy library (89), the

query method of which will find the nearest neighbours for any given coordinates. A search

operation on a binary search tree runs in logarithmic time (O(log n)) in the worst case, and one

operation can return the set of all nearest neighbours. This is significantly faster than looking up

the coordinates as keys in a dictionary, for which the worst-case performance is linear time

(O(n)), and may need to be repeated multiple times. Unsurprisingly, this approach proved to be

significantly faster than dictionary lookup, but in practice remains slow and memory intensive.

53

Dissatisfied with the k-d tree approach, the next method tried was to preprocess the data by re-

interpolating it, with the goal of producing a new regular dataset with no missing data points.

Theoretically, the result would be regular arrays with almost instantaneous lookups. The first

interpolation tests were performed again using the SciPy library, specifically its interpolate

module. Interpolation was performed at each integer degree in the feasible range of each chi

dimension. This was a time consuming and computationally intensive process. Interpolating the

seven two-dimensional side-chains took 1.40±0.07 seconds altogether (n=100 repeats), and

interpolating the three three-dimensional side-chains took 43320±30 seconds altogether (n=5

repeats), or roughly twelve hours. Interpolating any of the four-dimensional side-chains to this

level would have required more memory than was available, so could not be attempted. In any

case, the result of such interpolation, even for the three-dimensional side-chains, were data

structures that were gigabytes in size. Clearly, interpolation was not a viable option, at least to

such a high level of precision. Some of these difficulties could be overcome by instead writing a

C++ program to perform the interpolation. But even then, preprocessing in this way would result

in huge libraries that would have to have been packaged with the module. These would then

take a very long time and a lot of memory to load on start-up, if sufficient free memory were

even available.

Since every one of these methods was found to be unsatisfactory in some way, a completely

different method was conceived. The Top8000 rotamer data is also provided for each of the

rotameric canonical amino acids in another form: a set of central values, which lists the mean

and standard deviation of the bond torsions for each recognised rotamer. These files are much

smaller than the contour grids, totalling 36.7 kilobytes in size. As a result, these lists could be

loaded to memory almost instantly on run time. To take advantage of these data, a new score

was devised: a given array of calculated chi angles would be compared to the array of means

and standard deviations of each recognised rotamer for that amino acid, so as to calculate a

score. The overall score for that array of chi angles would therefore be the best of all the

calculated scores. The formula applied for the score (E3 3) was similar to a multidimensional z-

score, such that the lower the score, the more likely it is that the array of chi angles fits the

distributions of chi angles of a recognised rotamer.

54

𝑆𝑐𝑜𝑟𝑒 = min
𝑖

√
1

𝑁
∑ (

𝜒𝑛 − 𝜇𝜒𝑖𝑛

𝜎𝜒𝑖𝑛

)

2𝑁

𝑛=1

Equation 3: Formula used to calculate a continuous rotamer score from the central values lists;

where 𝑖 is the index that enumerates the recognised rotamers for a residue, 𝑁 is the number

of chi dimensions applicable to a particular residue, 𝜒𝑛is the 𝑛𝑡ℎ chi angle of the residue, and

𝜇𝜒𝑖 𝑛
, 𝜎𝜒𝑖 𝑛

 are the mean and standard deviation of chi angles of the indexed rotamer,

respectively.

By applying this method, the load time on start-up was negligible (on the order of milliseconds)

as was the memory usage (on the order of kilobytes). Lookup times were also extremely short,

averaging 0.0203±0.0002 milliseconds per residue in testing. Consequently, this method was

chosen for implementation in the metrics module. The central values data were repackaged and

wrapped with their corresponding functions in a dedicated submodule, named rotamer.

2.2.4.5 Others

The last two coordinates-based metrics of interest were atomic clash score and hydrogen

bonding satisfaction.

The atomic clash score is a measure of the number of pairs of unbonded atoms in the model

that are infeasibly close to one another; in other words, pairs of atoms that could not in reality

physically be so close to one another without some electrochemical repulsion driving them

apart. This is an inherently sound metric for model quality, and has long been implemented in

the MolProbity validation software (1).

Hydrogen bonding satisfaction is a metric that attempts to measure the number of hydrogen

bond-conducive geometries in a model; that is, the number of pairs of residues that are aligned

in such a way that a hydrogen bond would theoretically form between them. In proteins, a

hydrogen bond most commonly occurs when a carbonyl-oxygen atom shares electron density

from a lone pair of electrons to the σ* antibonding orbital of a nearby NH group (often described

as the NH group donating a proton to the oxygen acceptor atom). Intrapeptide hydrogen bonds

play a crucial role in conferring structural stability in proteins (90), and both theory and

55

experiment suggest that the likelihood of finding an unsatisfied intrapeptide hydrogen bond in

a protein is very low (91). Hence, it can reasonably be assumed that a model with a higher

frequency of hydrogen bond satisfaction is more likely to be accurate than one with a lower

frequency.

There was a common obstacle with implementing either of these two metrics: both of them

require the coordinate data of all the hydrogen atoms in the structure to be present in the model

data. Most structure determination methods are not sensitive enough to be able to detect

hydrogen atoms, because of their small size. Consequently, most atomic models do not include

the coordinates of hydrogen atoms. Thus, a prerequisite to calculating either of the

aforementioned metrics is to first calculate the positions of all the structure’s hydrogen atoms,

and add them to the model. This would have been such a time -consuming task that it was

decided that these metrics would not be implemented in the metrics module at this stage of the

project.

2.2.5 Density fit analyses

2.2.5.1 Background

With the model-only analyses essentially complete for the time being, the project progressed to

density fit analyses. The goal of such analyses is to determine the extent to which a model agrees

with the electron density map calculated from the experimental data. The first step in applying

some measure of density agreement was to decide what metric should be applied, with the

requirements again being: 1) low initial overhead time at start-up, and calculation time per-

residue; 2) to be non computational-resource intensive; 3) to be accurate to a satisfactory level.

Broadly speaking, there are two ways to calculate a density fit metric. The first way involves

calculating an observed electron density map from the reflection-data file, and a calculated

electron density map for the model file, then applying these maps to calculate metrics. The most

common metrics calculated from these two maps are the metrics of RSCC (Equation 4) and RSR

(Equation 5), both of which are determined by comparing the differences in electron densities

at a number of discrete points within a local area of the model, a fairly computationally

expensive process. Both of these metrics have been demonstrated to express individual biases

(48). These maps can also be used to calculate a difference density map (Equation 6), which is

used in molecular modelling software to visualise areas where the modelled electron density is

56

incompatible with the experimental data. Typically, these areas are rendered as coloured

isosurfaces, with green denoting positive density (where some experimentally evident electron

density corresponds to empty space in the model) and red denoting negative density (where

some modelled electron density corresponds to empty space in the experimentally -derived

map).

𝑅𝑆𝐶𝐶 =
∑[(𝜌𝑜𝑏𝑠 − 〈𝜌𝑜𝑏𝑠〉) ∙ (𝜌𝑐𝑎𝑙𝑐 − 〈𝜌𝑐𝑎𝑙𝑐 〉)]

√∑(𝜌𝑜𝑏𝑠 − 〈𝜌𝑜𝑏𝑠〉)2 − ∑(𝜌𝑐𝑎𝑙𝑐 − 〈𝜌𝑐𝑎𝑙𝑐〉)2

Equation 4: RSCC; where 𝜌𝑜𝑏𝑠 is the density of the observed map, and 𝜌𝑐𝑎𝑙𝑐 is the density of

the calculated map.

𝑅𝑆𝑅 =
∑|𝜌𝑜𝑏𝑠 − 𝜌𝑐𝑎𝑙𝑐|

∑|𝜌𝑜𝑏𝑠 + 𝜌𝑐𝑎𝑙𝑐|

Equation 5: RSR; where 𝜌𝑜𝑏𝑠 is the density of the observed map, and 𝜌𝑐𝑎𝑙𝑐 is the density of the

calculated map.

𝑑𝑖𝑓𝑓 = (𝑚|𝐹𝑜𝑏𝑠| − 𝐷|𝐹𝑐𝑎𝑙𝑐 |) ∙ 𝑒2𝜋𝑖𝜙𝑐𝑎𝑙𝑐

Equation 6: Difference density calculation; where 𝑚 is an estimate of the cosine of the error in

the phase, 𝐹 represents the amplitudes, 𝜙𝑐𝑎𝑙𝑐 represents the calculated phases, and 𝐷 is a

scale factor used to account for the arbitrary difference in the scale of the amplitudes between

the observed and calculated data.

The other broad way to calculate a density fit metric completely eliminates the need to calculate

an electron density map for the model. A fit score can be calculated based solely on the electron

density values extracted from the observed electron density map, by extracting the electron

density values at the coordinates corresponding to the atoms in the model file. This method is

extremely fast; not only is there no need to generate an electron density map for the model, but

there are fewer queries made as to the electron density of the observed electron density map

(one query per atom) than there would be if accurately calculating RSCC or RSR.

57

2.2.5.2 Existing implementations

Of the two aforementioned broad scoring methods, the latter was decidedly more suitable for

implementation in this project. Research into the source code of other validation software

revealed examples of where this approach is taken. The first software investigated was Coot,

which was chosen because it too uses the Clipper library for many of its underlying calculations.

The Coot source code (92) revealed that the density fit score given for each residue is just the

average of the atomic density scores (the density in the observed map at the atom’s coordinates)

weighted by atom occupancy.

To uncover more source code implementing similar density-scoring methods, public repositories

were searched for keywords of the Clipper library. Of particular interest was a density -scoring

class written for the program SLOOP, which was eventually incorporated into Coot. As written

in the comments, the class scores protein fragments “based on the position of the [densities] in

a cumulative density distribution based on a Gaussian distribution derived from [the] mean and

variance of the map”. The process by which this is performed is as follows:

1. Query the map for density values at the coordinates of the fragment’s main-chain atoms

(N, Cα, C)

2. Convert the density values into z-scores, by subtracting the mean map density value,

and dividing by the standard deviation of map density values

3. Convert the z-scores into probability values, by applying the Gaussian distribution

cumulative distribution function

4. Take the natural logarithm of these density z-scores

5. Return the sum of the resulting log values

Because the individual point probabilities are converted to log probabilities, their sum is a log-

likelihood value for the fit of the fragment as a whole (to some portion of the electron density

of a map). This, of course, differs to the Coot density fit score in that the map densities at each

atom are converted to log probabilities before being summed.

The finally-investigated source code was a Python script written by Paul Bond (93), which

implemented a slightly different mechanism to calculate a density fit score. The script was

written as a plug-in for Coot, to automatically ‘prune’ away the side-chain atoms of residues that

were deemed poorly modelled by a machine learning algorithm, by removing them from the

model. In this script, each Atom object has a property density, to which is assigned the map’s

58

density at the coordinates of the atom, but also the property density_norm, which takes the

values of the density value, and divides it by the atom’s proton number. This was done to enable

the comparison of the electron densities of atoms with differing proton numbers. The script

calculates a few different measures of residue density fit, and in all of them, the normalised

value is used, as opposed to that of density. For each set of atoms, a special z-score was

calculated, where in place of the mean and standard deviation, the median and median absolute

deviation are used, respectively. This method was employed because, the oretically, it should be

more statistically robust to the range of various distributions of electron densities that might be

found in an electron density map, and empirically, it was found to yield better results in training

the machine learning model than using a standard z-score.

2.2.5.3 Building a scoring method

To decide a suitable scoring method for this project, the variable elements discovered in the

existing scoring implementations would be systematically addressed one by one.

The first variable to address was which specific atoms of each residue would be scored; for

example, just the main-chain atoms, just the side-chain atoms, or every atom in the residue.

After seeking advice from experienced crystallographers, it was decided that the most useful

way to present the scores would be to score the main-chain and side-chain separately.

The next point to address was the method of electron density grid point recall to be adopted:

specifically, whether to use interpolation (either linear or cubic) or the simpler and more

efficient, but less accurate, solution of closest-point approximation. Given the overarching goal

of the project, this was a variable for which the best choice was almost certainly the most

efficient one, so the method of closest-point approximation was selected.

Another factor to decide on was whether or not to apply atom density score normalisation like

that applied in the Coot side-chain pruning script, the point of which is to make density scores

comparable across atoms of various sizes. The only situation in which it makes sense not to apply

such normalisation is one in which all of the atoms being assessed are always going to be of

similar sizes, as in the case of the fragment scoring function from the SLOOP source code, where

only nitrogen and carbon atom densities are being queried. In this case, atoms of various sizes

would be involved. Hence, it would make sense to apply a normalisation technique.

59

Next to decide was how to process the normalised density scores, if at all. In other w ords,

whether to treat each atom’s score as, for example, its normalised density score, a normalised

density z-score, a probability, or a log-likelihood score. The log-likelihood score was the most

mathematically sound choice, so that was selected.

Along the same lines: given that the objective of the software is to determine a density score for

each residue in a model, a decision needed to be made as to how to process the array of

individual atom scores into a residue score. For example, the residue score could be the sum,

the arithmetic mean, or the geometric mean of the array of atom scores, either weighted in

some way, or not. Because log-likelihood scores were being used to score each atom, it would

make most sense mathematically to use the sum of those values as the residue score, since in

probability theory, the overall log-likelihood of intersection equals the sum of the log-likelihoods

of the individual events (given independence).

Therefore, these choices were combined to create a suitable fit score equation.

𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑠𝑖𝑑𝑢𝑒 = ∑ −log [𝑁𝑜𝑟𝑚𝐶𝐷𝐹 (
𝜌𝑎𝑡𝑜𝑚 − 𝜇𝜌𝑚𝑎𝑝

𝜎𝜌𝑚𝑎𝑝

)]

𝑁

𝑛=1

Equation 7: Formula used to calculate density fit score for an individual residue; where 𝑁 is the

number of atoms in the residue, 𝑁𝑜𝑟𝑚𝐶𝐷𝐹is the cumulative density function of the standard

Gaussian distribution, 𝜌𝑎𝑡𝑜𝑚 is the electron density at the coordinate of a particular atom,

normalised by its proton number, and 𝜇𝜌𝑚𝑎𝑝
, 𝜎𝜌𝑚𝑎𝑝

 are the mean and standard deviation of

the map electron density respectively.

2.2.5.4 Implementation

The actual implementation of the density fit score was packaged in a dedicated submodule of

the metrics module, called reflections, named as such because at this point, only crystallography

data was to be supported. This submodule introduced the ReflectionsHandler class, an instance

of which would be initialised with the program and perform all the pre -processing on the

reflection data to allow the main thread to query it for electron density data, as part of the flow

of the metrics calculations. The flow of this class is outlined in Figure 22.

60

Figure 22: Flow of the constructor of the ReflectionsHandler object.

2.2.5.5 Complications

A few difficulties were encountered when actually writing the code for this class. All were a

result of missing or broken bindings in the Clipper-Python package. It should be noted that at

this stage of the project, there were a number of available versions of the Clipper-Python

package. A few aspects differed between these versions, including:

1. Operating system or Python version compatibility (Python 2.7 vs. Python 3.x)

2. Missing or additional functions and methods

3. Some object properties being implemented as methods, rather than as variables, or vice

versa

4. Inclusion and functionality of the Intel Math Kernel Library (MKL)

The first difference is only significant in that this necessitated development using different

versions of the Clipper-Python library under different environments, subjecting development to

different combinations of the latter three differences. The fourth is especially significant: use of

the Intel MKL is a requirement of some variants of the Clipper C++ library to perform the fast

61

Fourier transform (FFT), which is used to calculate electron density maps from reflection data.

This library would throw hardware incompatibility errors under a number of environments,

making it impossible to calculate any density fit-based metrics. Fortunately, most versions of the

Clipper-Python package use the free FFTW library (94) rather than the Intel MKL, which was

never problematic.

These problems were resolved by writing a submodule containing a long conditional import

statement with nested try-catch statements, to be imported by those files that needed access

to Clipper-Python. In this way, the metrics module could automatically determine the most

suitable import method, and then assign a global variable with a value signifying which version

of the Clipper-Python library had been imported; then, each time Clipper is called in the code, a

conditional statement was used to ensure the call is suitable for the version that had been

imported.

In addition to the surmountable problems posed by these differences, some Clipper methods

were completely inaccessible in any usable version of the Clipper-Python bindings, including

both the linear and cubic interpolation methods of the Xmap class. As such, point queries from

the map were restricted to returning the density at the closest point in the grid, resulting in less

accurate results, but with the upside of slightly faster queries. Fortunately, as mentioned earlier,

closest-point approximation had been selected as the most suitable method for this project.

Another important decision when designing the class was the method used to extract data from

the MTZ reflection-data files. A diffraction experiment produces a list of reflections; each

reflection is indexed by its Miller indices (H, K, L), and has some number of associated columns

of data, which come in pairs. All MTZ files will include at least the reflection intensities and their

standard deviations (I, SigI). From the intensities, the native amplitudes and their standard

deviations can be calculated (F, SigF); every MTZ file will also have these columns. The other

column pair of interest is the structure factors, which comprise the calculated amplitudes and

the calculated phases (F, Phi). These are calculated using the amplitudes and the model file, and

are required to produce an electron density map. The structure factors may or may not be

present in any given MTZ file; in the PDB-REDO MTZ files, for example, the structure factors have

already been calculated, and those columns are included. Therefore, when presented with an

MTZ file that includes structure factors, the metrics module could either choose to recalculate

them itself, or use those from the file (since the two may differ). In the end, it was decided to

recalculate the structure factors for every file, regardless of available columns. This ensures

62

comparability between results generated from MTZ files from various sources, at the cost of

very slightly increased initialisation time for the ReflectionsHandler object.

2.2.6 Percentiles library

Since the purpose of the interface was to show multiple different validation metrics

concurrently, being able to express metric values on a normalised scale was critical. If this were

not done, and the metric values were left as absolute values, with arbitrary, incomparable units,

it would be misleading to present them alongside one another and attempt to infer correlations

between them. The distribution of values for each metric cannot be assumed to be identical,

either across a single structure or a population of structures. Hence, with the metrics module

suitably complete, the next task was to produce a percentiles library to accompany it.

Originally, the percentiles library was to be generated by calculating validation metrics for every

residue of every structure in the PDB-REDO database. In order to do this, a script was written

that imported the metrics module, applied it to each set of files in the local PDB-REDO directory,

and stored the generated metrics values to one large variable, which would then be serialised

for later analysis.

A significant problem was encountered in testing this script. For a variety of reasons, a small

number of PDB model files could not be loaded by the MiniMol class. Because of the error

handling applied in the Clipper-Python module, this error was uncatchable, and would halt the

execution of the entire Python script. Two easy fixes were tested. The first was to add a routine

to read through every PDB file and predict whether or not it would be read successfully;

however, that ended up being unreliable; the second was to have a shell script launch and

supervise the metrics generation script, waiting for it to crash and restarting it after appending

the ID of the offending model file to a list of incompatible model IDs to be ignored. This ended

up being too slow.

To speed up the process, the analysis program was parallelised using Python’s multiprocessing

library, which enables multithreading across individual child processes, as opposed to just

multiple threads on the same physical core. With the 8-thread, 16-core processor being used for

the analyses, 16 worker threads were spawned, with one worker thread sharing a logical core

with the mostly-dormant main (controller) thread. The script was structured in this way so that

the main thread could monitor the status of all the worker threads. Thus, if an uncatchable

63

Clipper error caused any of the workers to crash, the main thread could remove the halted

thread from the worker pool and spawn a new thread to replace it.

The resulting array of metrics values contained between 14-17 million entries. Arrays different

in length due to the fact that some metrics return null values for some residues; for example,

residues at the start and end of a chain do not have Ramachandran conformations, and glycine

and alanine residues do not have rotamer conformations. The distributions of metric values

were visualised in histograms (Figure 23).

Figure 23: Distributions of metrics values. The average B-factor and density fit score

distributions are smooth and unimodal. The spikes in average B-factor at 0 and 50 are likely a

result of default values in modelling or refinement software. Conversely, the Ramachandran

score and rotamer score distributions are not unimodal or smoothly distributed. In the case of

Ramachandran score, this was attributed to the effects of constraints and restraints applied

manually or by refinement software and, in the case of rotamer score, to a mathematical side -

effect of oversimplification in treating all chi dimensions as perfectly Gaussian distributions.

64

Following in the footsteps of other programs that compare a model’s metric values to wider

distributions of values from other structures (1,70), it was decided that to produce percentile

data from a more representative sample, the percentile values presented to the user should be

based on distributions of metric values from a sample of structures of similar quality. This could

be done by binning the calculated metrics values via some global quality indicator, the most

commonly used of which being resolution and average B-factor.

The first thought was to bin metric values by both resolution and B-factor, to produce the most

precise binning possible. Before this was attempted, the correlation between resolution and B-

factor was assessed, to ensure that binning in both dimensions was warranted (Figure 24).

Unsurprisingly, there was some correlation between the two metrics. However, with a low R2

value of 0.51, it was decided that the two-dimensional binning might still be worthwhile, so it

was implemented.

Figure 24: Correlation between resolution and average B-factor for all models in the PDB-REDO

database. The orange line is the line of best fit.

65

To implement the two-dimensional binning, the metrics generation script was modified such

that prior to analysis, every model’s resolution and mean B-factor were ascertained, and stored

in a dictionary. The 10th, 20th, ... 80th, 90th percentile values were determined for both

resolution and mean B-factor, which were used as threshold values to produce two sets of ten

bins (<10th, 10-20th, ... 80-90th, >90th). Then, metrics values were calculated for each model.

Rather than storing the values for each metric in a one-dimensional array, as before, they were

instead stored in a three-dimensional array, where the first two dimensions were both of length

ten, and corresponded to the resolution and B-factor bin indices. Each model’s metric values

were placed in the corresponding bin.

The first analysis to be performed on the binned metric data was to see how the distribution of

each metric varied with each of the two bins. This was done by flattening each metric’s three-

dimensional array into two two-dimensional arrays, and plotting the distribution for each metric

against the bin index for each of the two bin dimensions (Figure 25).

66

Figure 25: Graphs illustrating how metric value distributions vary across bins divided by

resolution (left) and mean B-factor (right).

67

Since the trends were so similar across both bin dimensions, it was decided to collapse the

binning down to just one of the two dimensions. Of the two, it made the most sense to use

resolution, given that it was the only one technically independent of all the individual residue

metrics being assessed.

Some of the structures in the PDB-REDO database were deposited many decades ago, before

the establishment of modern model-building processes such as the application of constraints

and restraints (Figure 26).

Figure 26: Number of structures deposited in the PDB over time. Data from wwPDB, accurate

as of December 2020.

To refine the sample pool and make it more representative of the standard of quality that is

expected of new structures, the sample pool was restricted only to structures deposited after

the year 2010. The changes resulting from this restriction were surprisingly minimal. The overall

metric value distributions were almost identical, and the resolution bin thresholds only changed

slightly, as illustrated in Figure 27. Despite the triviality of these changes, the year restriction

was kept, since the sample size was still very large.

68

Figure 27: Analyses of the change in resolution bin thresholds after sample pool refinement by

year of deposition.

Satisfied with the obtained distributions of the metrics values, the percentile function of the

NumPy library (95) was used to calculate percentile values for each resolution bin of each metric.

These were to be included with the library as comma-separated values (CSV), since it was

decided that data that had to be included with the final package should be included in a human-

readable format where viable, to maximise interpretability by the end user. Values were

calculated at each integer percentile in the range [1-99]. This way, a given calculated metric

value could be assigned a percentile number in the range [1-100].

These data were implemented in a submodule named percentiles, which implemented functions

to: 1) load the percentiles data CSV file; 2) determine a model’s resolution bin; and 3) return a

percentile for a given metric value and resolution bin. The submodule was tested thoroughly

with calculated and synthetic data.

69

Figure 28: Structure of the metrics module following its initial development.

2.3 Combining the two modules

2.3.1 Initial adjustments

At this stage in the project, there were two independent Python modules: the interface module,

and the metrics module. The next task was to combine these as two submodules in a single

package, whereby they could be co-utilised by a single call to the parent package.

In principle, this was straightforward. The only job involved was to change the input datatype of

the interface module from the SyntheticProtein class created before, to some sort of primitive

type that the metrics module could be modified to produce. The data required for the interface

module was: 1) the names of the metrics to be plotted; 2) the metric and percentile values for

each residue; and 3) the shape of the data, i.e. the number of models, the number of chains per

model, and number residues per chain. It was decided that the simplest way to package these

data would be that the metric names be included as part of a package-wide definitions file, and

for the metric values to be packaged in a multidimensional array of length-2 tuples (metric value

and percentile value). This way, the length of the arrays would intrinsically imply the shape of

the data. In addition to simplicity, the reason this format was chosen over some custom class

70

was so that the metrics and interface submodules could be used independently by the end user,

without much difficulty. i.e., the resulting package could be used just to generate metrics values

for the user to use in custom code, or, the charts and HTML report could be produced using data

from a different source.

Some differences between the synthetic and real-world data still needed to be accounted for.

For example, the synthetic data class always elicited data in the range [1-100]. Even on a

percentile scale, the distribution of values in real-world data could be very different. Very good

or very poor-quality structures may elicit, for example, distributions of percentile values in the

range [5-30] or [70-95], respectively. Given that the purpose of the chain-view chart was to draw

the modeller’s attention to the worst parts of each individual chain, the range of each axis should

correspond to the individual chain’s distribution of the metric values represented by that axis.

Otherwise, the residue metric values for a poor-quality model would appear to be poor across

the board, making it difficult to ascertain the areas of particularly low quality within that chain,

and vice versa for a high-quality model. Thus, the chain view chart generation function was

adapted to calculate the baseline value (from which deltas would be calculated) as the mean

metric value across all residues of a pair of corresponding chains across both model iterations,

with the resulting squared-difference values normalised accordingly.

Another difference to be accounted for was that, as noted in Section 2.2.6, real-world metric

values could be null in some cases, which was not so for the synthetic data. To cope with this in

the short-term, the chain-view generation function was modified to plot small circular null-point

markers at points where the line-graph could not be plotted. This would theoretically leave a

break in the line graph. The most accurate way to resolve this would be to leave it broken, and

then start a new plot after the null point. This meant the structure of the chart would have to

be modified to potentially allow numerous line elements per axis. However, since this was only

to be a temporary measure, a simpler route was taken: at each null point, the line graph would

be plotted at the axis, and carry on as one continuous line e lement.

2.3.2 Testing with real-world data

With the differences accounted for, test validation reports could be produced from real-world

metric data, to assess the efficacy of the validation package as a whole. A selection of test

structures was made, to cover a variety of attributes, as shown in Table 3. For each of these

71

structures, data was obtained for both before and after a refinement step (or re -refinement, in

the case of the PDB-REDO structures).

Structure

Code
Protein Name Source Model Properties Citation

1vme Flavoprotein Buccaneer
2 medium length chains;

incompletely refined
(96)

2ask Artemin PDB-REDO 2 small chains; re-refined (97)

2a0z Toll-like receptor 3 PDB-REDO 1 large chain; re-refined (98)

Table 3: Structures used to perform the first tests of the fully assembled package.

2.3.3 Chain view changes

The first tests were performed, and the resulting chain-view charts (Figure 29) were reviewed.

72

Figure 29: First chain-view charts produced by the fully assembled package. These charts were

generated using chain A of each of the three models.

73

2.3.3.1 Metric polarity synchronisation

There was a clear inverse correlation between B-factor and electron density fit quality, due to

the fact that B-factor values are better when low, and density fit scores are better when high.

Therefore, with metrics plotted in their native polarities, it is not immediately apparent if a given

peak or a trough represents a good or bad value. It was decided that the only logical way to

mitigate against this would be to ensure that every axis of the chain-view chart followed the

same ‘goodness polarity’, the most sensible direction being for bad values to be represented by

troughs, pointing inwards, and good values represented by peaks, pointing outwards. To

implement this, the package needed to have some definition of the polarity of each metric. This

was added to the package-wide definitions file, alongside the metric names. Once this was done,

there were two potential routes for actually applying the polarities: the first was to let the chain-

view chart function just flip an axis’ values where necessary, and the second was to implement

the polarities in the percentile determination function itself, such that the 100th percentile

would correspond to a smaller value, in the case of metrics such as B-factor. Ultimately, the

latter option was chosen, if not just for the fact that it was the more logical choice, but because

it would also solve the problem of incompatible percentile polarities for the residue-view chart,

which would otherwise suffer in a similar way to the chain-view chart. The chain-view charts

were regenerated, and the results are shown in Figure 30.

74

Figure 30: Chain-view charts after polarity-correction measures were added. These charts were

generated using chain A of each of the three models.

75

2.3.3.2 Sequence alignment

Another problem, only apparent in the chart of the Buccaneer model, was that the data from

the previous model iteration (represented by the grey shaded area) appeared to be misaligned

with the data from the latest model iteration. In addition, the final few residues of the previous

iteration appeared to have null-point markers in every single metric. Unsurprisingly, manual

review of the model files revealed that between these two iterations of the model, the number

of residues differed. The refinement procedure had removed some amino acids from the model

file for the latest iteration, from the very start of the chain. Because, at this stage, all provided

iterations of a model had been assumed to have the same configuration of chains and residues,

they were automatically aligned by their index. As a result, the chain in question had been

misaligned. To prevent this from happening, the residue sequences for each chain would have

to be aligned before generation of the chain-view chart. This could be done in one of two ways:

either based on residues’ amino acid type types, or their sequence number. The former was

chosen for the reason that a refinement program may decide to renumber residues accordingly

after it deletes some of them, whereas an amino acid code is far less likely to change, and

sequence-alignment algorithms are mostly robust to a few such changes occurring, providing

the number of unchanged residues is high enough. For the sake of simplicity and robustness,

pairwise sequence alignment (PSA) was chosen over multiple sequence alignment (MSA). The

downside of this decision was that it would eliminate the possibility of comparing more than

two model iterations in one graphic, but it was decided that if this ended up being a desirable

feature, MSA could be added in later. A Python implementation of the Needleman-Wunsch PSA

algorithm was written and added to the utils module. Then, the build_report function of the

interface submodule was modified to call, for each chain, a residue-alignment function, which

would perform PSA, and then for any gaps found, insert a null (NoneType) residue into the data

array passed to the chart-generation functions. These null residues would then be handled by

the chain view chart-generating function in the same way as a null metric value: by adding a set

of null-point markers across every axis for that residue’s sector.

For the sake of thoroughness, a procedure was also added to align the chains of each model

iteration, in case entire chains become deleted from the model file. Unfortunately, the

procedure for chain-matching is less robust than for residue sequences, because pair-alignment

cannot be performed in the same way; the sequence of chains is much shorter, and in the same

way that individual residues might not retain the same sequence number, an individual chain

might not retain the same ID code following the removal of another chain.

76

After implementing these changes, the chain-view chart for the Buccaneer model was

regenerated and the two iterations appeared properly aligned (Figure 31).

Figure 31: Chain-view chart for chain A of the Buccaneer model (1vme) before (A) and after (B)

after alignment measures were introduced.

2.3.3.3 Discrete metric implementation

The rotamer and Ramachandran scores appeared to be very erratic and confusing. This was

thought to be because the distribution of likelihood scores that result in energetically favourable

conformations is quite wide, so comparing the exact scores of these metrics is often

meaningless. For example, a Ramachandran likelihood score of 0.5 indicates an almost equally

favourable conformation to a score of 0.9, despite the large delta. But in contrast, a

Ramachandran likelihood score of 0.1 indicates a much less favourable conformation than a

score of 0.5, despite the same delta. Because of this, these two metrics are typically presented

by other validation tools as discrete classifications (normally: outlier, allowed, or favoured)

based on likelihood thresholds. It was decided that it would be more effective to apply the same

approach in this validation tool, by implementing a new type of axis to the chain view chart that

could represent discrete classifications, rather than a continuous line score.

However, before this could be done, the metrics submodule had to be modified to determine a

classification for those metrics. In the case of main-chain conformation, this was simple; all that

needed to be done was to apply thresholds to the likelihood score that was already being

77

generated and presented as the continuous Ramachandran score. The thresholds applied to

Ramachandran likelihood scores differ between validation tools; the default thresholds applied

by the Clipper library are 0.0005 and 0.01, but the thresholds applied by Coot are 0.02 and 0.002.

To maintain concordance with Coot’s classifications (for reasons explained later, see Section

3.4), the latter thresholds were applied to the metrics submodule.

The case of side-chain conformation was more complicated. Because the score being calculated

was non-standard, based on the central values lists, exact probabilities were not directly

calculable. It was possible to estimate probabilities by approximating each chi dimension as a

Gaussian distribution, but testing revealed poor correlation between the estimated probabilities

and reliable probabilities calculated by MolProbity, and this route was ultimately abandoned.

Therefore, a different approach had to be taken. The only reliable way to obtain a likelihood

score for rotamer conformation was to use the contour grid reference data. As described in

Section 2.2.4.4, many efforts had already been made to obtain a meaningful likelihood score

from these data in a suitable way, none of which had been effective. Essentially, the reason

these data had previously been troublesome was that they were too large, meaning that to

implement them in a suitable way would require too many system resources, and take too long

to load. However, given that now the only desired output was discrete classification, and high

precision was no longer required, a whole new avenue opened up for investigation.

If implemented for discrete classifications, the data could be greatly compressed in several ways.

By default, the value provided at each point on the contour grids were floating point numbers,

technically requiring a double-precision floating point data type (64 bits, 8 bytes) to be precisely

represented, or at the very least, a single-precision floating point data type (32 bits, 4 bytes) to

be stored precisely enough. Instead, each of the values provided in the contour grid data could

now instead be represented by an integer value corresponding to the classification they

represent (1: outlier, 2: allowed, 3: favoured). This would reduce the size of the required data

type to two bits (one quarter of a byte).

Doing this reduced the size of the data quite substantially, but still the most significant factor in

the size of the data persisted, which was storing the coordinates of each value. To eliminate the

need to do this, the data for each contour grid could be flattened to a one-dimensional array of

values, where the index of each value corresponds to the calculable index of its coordinates in a

theoretical ordered array of n-dimensional coordinates (Equation 8). The only way this would be

possible is if the data consisted of points that were equidistant from one another in every

78

dimension, and a value were present for every possible point. In the original data, the latter

criterion was not met; many of the data points were not included in the contour grid files. If

these missing points were also represented by a fourth classification (0: unknown), the data

would become both complete and regular, and the need for storing the coordinates of each

point would disappear. The addition of this new classification was still compatible with the two-

bit integer type chosen previously, which can represent up to four classifications.

𝑖𝑛𝑑𝑒𝑥 = ∑ [𝑛𝑖𝑛𝑡 (
𝜒𝑛 − 𝚾𝑛0

𝚾𝑛1
− 𝚾𝑛0

) ∙ ∏ dim (𝚾𝑚)

𝑁

𝑚=𝑛+1

]

𝑁

𝑛=1

Equation 8: Formula used to calculate the relevant index in the compressed rotamer library for

a given array of chi angles; where 𝑁 is the number of chi dimensions applicable to a particular

residue, 𝜒𝑛 is the nth chi angle of the residue, 𝛸𝑛 is the regularly spaced array of chi values

known in the nth chi dimension for that residue type, thus (𝛸𝑛1 − 𝛸𝑛0) represents the width of

the spacing in that dimension, and 𝑑𝑖𝑚(𝛸𝑚) is the number of known points in the 𝑚𝑡ℎ

dimension for that residue type. 𝑛𝑖𝑛𝑡 is the nearest-integer rounding function.

Therefore, for each contour grid, the missing data points were added, and the points were

converted to an array of integer values. The NumPy library (95) was used to compress the

Python-default 64-bit integers into 8-bit integers, and then a custom routine was used to

compress each sequential set of four 8-bit integers into a single ‘compressed’ 8-bit integer (as

2-bit integers are not a natively supported data type). The arrays of compressed 8-bit integers

were then added to a dictionary keyed by amino acid type. The dictionary was then serialised

using Python’s pickle module, and compressed using gzip. The result is a single file with a size of

147 kilobytes, a 265x reduction from the original data. A library loading function was written

which applied a NumPy-based bitmasking routine to decompress the data and load it to memory

on the millisecond scale.

79

Figure 32: Visualisation of the rotamer library compression. The topmost figure shows a

contour grid for a hypothetical amino acid with two side-chain torsion angles. Grid points are

coloured red for outlier values, yellow for allowed values, green for favoured values, and grey

for unknown - where a coordinate is not listed in the original contour grid file. The bottom

figure illustrates the compression process: starting with the conversion from floating point to

integer data points, followed by the type conversion from dictionary to integer array, which

includes the addition of zeros to represent null data points, and finally the compression of

Python integers to two-bit binary values. It should be noted that the original contour grid

values are given to a much higher precision than is shown here. From Rochira and Agirre, 2020

(75).

Satisfied with the discrete metrics calculations implemented, the next task was to adapt the

chain-view chart to be able to plot them. A new definition was added to the package definitions

file alongside the metric names and polarities, containing each metric’s type (continuous or

discrete). Then, when called, the chain view chart-generating function would use this definition

80

to decide the arrangement of continuous or discrete axes. The discrete axis was to be composed

of a sequence of solid traffic-light colours, with red representing outlier or unknown values,

amber representing allowed values, and green representing favoured values. Grey would be

used to represent missing (null) discrete metric values. These colours were implemented as

segments that would join to form a contiguous band of colour around the axis (Figure 33).

81

Figure 33: First tests of the discrete axes. These charts were generated using chain A of each of

the three models.

82

2.3.3.4 Missing-residue shading

This discrete classification system had the added benefit of eliminating the need for the null-

data point markers which, except for in the case of entirely missing residues, only applied to the

rotamer and Ramachandran metrics. The null-data points made the chart cluttered, and could

often be quite misleading. Hence, the null-data points were removed, and a new style was added

to indicate missing residues: shading. For completely missing residues, the entire sector would

be shaded in, to much more clearly indicate the fact that the residue is not present in the

iteration being viewed. The shading would be grey for missing residues in the previous iteration,

or pink for missing residues in the latest iteration. Additionally, it was felt that the grey colouring

for segments that represented null data points was counter-intuitive. Because the discrete axes

are mostly composed of green segments, any differently-coloured segments immediately stand

out as exceptions. This is perfect for emphasising the location of outlier values, because they are

areas that should draw the modeller’s attention, but counterproductive if it also draws attention

to null data points, which are irrelevant to the modeller. To fix this, null data points on the

discrete axes would be coloured green, identically to the favoured values. The result of both

these changes is shown in Figure 34.

Figure 34: Chain-view chart for chain A of the Buccaneer model, before (A) and after (B)

missing-residue shading was introduced and the null data point colouring was corrected to

match that of favoured data points.

83

2.3.3.5 Animation

A major side effect of the addition of discrete axes was that there was now no ghosting for the

discrete metrics. The current ghosting implementation was beginning to seem unsatisfactory in

general. For example, there were frequently areas of the structure where the difference

between the two models was masked, as a consequence of the latest iteration always being

plotted over the top of the previous iteration. Because of this, and the fact that many other

similar types of ghosting shading had already been tried and rejected, it was decided that in such

an information-dense graphic, it would not always be possible to suitably showcase both

iterations simultaneously, at least not in a way conducive to achieving the goal of making the

graphics instantly comprehensible. Hence, the idea of showing two model iterations

concurrently would be abandoned, and the ghosting mechanism be replaced by taking a

completely different approach.

Instead, the iterations would be toggled between with a switch, positioned above the chain

view. The chain view chart-generating function was modified, such that each axis had two

groups of plots (one for each iteration) the first of which (previous iteration) would be hidden

by default. Then, a function was written for the template interaction JS which would toggle the

visibility of both groups for each axis, such that when the switch was pressed, the plots on all

axes, both discrete and continuous, would jump between each of the two available iterations.

To make the transition smoother and less jarring for the continuous axes, SVG’s native animation

support was utilised. SVG animation includes a mechanism by which all points on a polygon can

be linearly translated to new coordinates, which was entirely suitable for transforming each axis’

line graph plot, which were implemented as polygons. The svgwrite library has an Animation

module for this purpose, which was trivial to implement, creating an animation element for each

continuous axis. Each SVG animation element has a beginElement method, the call to which was

inserted into the function called by the toggle switch. This worked perfectly without any

additional changes. Different transition animations were also trialled for the discrete axes, but

ultimately, all seemed to be distracting or confusing, rather than useful. Therefore, when the

switch is clicked, the line graph morphs over a period of a few hundred milliseconds, and the

discrete axes change instantaneously.

84

Figure 35: Both iteration chain-view charts for chain A of the Buccaneer model (1vme).

2.3.3.6 Plot formula revision

Since switching to real-world data chart generation, there had been a long-running and

significant problem with the chain-view chart: it was not emphasising the worst areas of each

chain. While most of each chain was appearing on the positive side of the axis, as intended, the

poor areas were often being shown as minor dips, often not even crossing the axis line. Clearly,

the square-difference formula, while suitable for the synthetic data, was not working for real-

world data. Therefore, a new formula had to be developed.

It appeared that the main reason for the failure of the square-difference formula was that there

would often be one or two very low values for a chain’s set of values of a metric. These low

values, when converted to square differences from the mean, would have magnitudes far

greater than any other values of that metric, and thus, the normalisation process would skew

the plot such that almost all of the values would fall on the positive side of the axis, even other

low scores. One option to overcome this would be to apply some outlier detection before

normalisation, to limit the axis bounds at, for example, the mean plus-or-minus two standard

deviations. However, this would not be suitable for all metric value samples; for example,

samples of especially high variance. So instead, a new plotting formula was devised. Rather than

plotting the square difference from the mean, the absolute difference from the mean would be

plotted, and axis transformations would be used to produce a useful plot. A Python script was

written with a command-line interface that would show the result of different axis-scaling

85

methods on an example chain-view chart as they were input by the user. Testing with this

program led to the development of a two-step axis transformation that produced excellent

results. This transformation is illustrated in Figure 36.

Figure 36: Step-by-step representation of the new axis scaling method. Graph A represents the

raw metrics data, where each point is plotted as its distance from the mean value. Graph B

represents these same points after the average negative value has been added to every point.

Graph C represents the points after the positive values are divided, and the negative values are

multiplied, by some constant.

86

Figure 37: Chain-view chart for the latest dataset of each of the three test models after all the

aforementioned changes had been made. These charts were generated using chain A of each

of the three models.

87

2.3.4 Residue view changes

2.3.4.1 New design

Although satisfied with the adaptation of the chain view to the new discrete metrics, the

accompanying radar chart now seemed mismatched; it was still showing the percentiles-based

scores for every metric, including those that were now represented discretely on the chain view.

Due to the non-standard scoring technique used for the rotamers, the score on the radar chart

would often not correspond to the discrete classification shown for the same residue on the

chain-view chart. In addition, even if the score were to reliably correspond to the classification,

as would be the case for Ramachandran likelihood, showing the Ramachandran continuous

score on the residue view would misleadingly imply that the difference in Ramachandran

percentile score for two residues with identical Ramachandran classification is as significant as

the difference in, for example, their density fit quality percentile score, which is not the case.

It was decided that a new residue-view graphic should be designed, with the ability to show the

discrete metrics as classifications in a clear way. The first design for this graphic was constructed

around a grid-based layout that would have a section for continuous metrics, shown on bar

charts, and a section for discrete metrics, with large checkboxes containing the traffic-light

colours shown on the chain-view chart. The design was trialled using the synthetic data class

that had been used to prototype the other charts, and is shown in Figure 38.

88

Figure 38: Initial design of the new residue-view graphic.

Though satisfied with the basis of the design, user feedback suggested some modifications that

needed to be made. Many felt that the discrete classification boxes needed more detail than

just the colour to adequately explain the value they indicated. In response to this, text labels

were added to the boxes, explaining the classification value they represented. Feedback from

non-experts revealed a common assumption that the value on each bar chart was linked in some

way to the checkbox above it. While this may not confuse an expert, it certainly detracted from

the intuitiveness of the graphic. Therefore, a divider line was added to clarify the delineation

between the discrete and continuous sections of the graphic. Comments from many suggested

that they felt the graphic seemed unfinished, or otherwise in its early stages of development.

Although that was indeed the case, and such feedback may in part have been prompted by the

way the graphic was introduced to the reviewers, further enquiry revealed that the reasoning

behind such comments was that the bar charts appeared skeletal and empty. In response to this,

traffic-light colouring was also added to the bar charts, with values less than or equal to 33

89

coloured red, values between 34 and 66 (inclusive) coloured amber, and values more than or

equal to 67 coloured green. With these changes made, a new example was generated (Figure 39)

and feedback was much more positive, with all reviewers stating that their reservations had

been addressed.

Figure 39: First revision of the grid-based residue-view graphic, with a divider bar and colour

added.

It was then suggested that a more useful way to utilise the space allocated to the continuous

metrics would be to collate the B-factor bars together, and the density fit bars together, leaving

just two bars. This advice was heeded, because it allowed the entire graphic to be compressed

horizontally. This was desirable, because it had always been intended that the chain view be the

more prominent feature of the graphical panel of the report, and until this point, the chain view

and residue view graphics both had a similar aspect ratio: roughly 1:1, meaning they both took

up a similar amount of space. With the residue-view graphic compressed horizontally, the layout

90

would permit a larger chain-view by default, eliminating the need for the enlarge button in the

current report template. This change was implemented, with the mean and maximum B-factor

percentiles plotted in one bar, and the main- and side-chain density fit percentiles in another

(Figure 40).

Figure 40: Second revision of the grid-based residue-view graphic, with continuous metrics

collated. In (A), the left-hand bar shows both the mean and maximum B-factor percentile for

the selected residue, and the right-hand bar shows both main- and side-chain density fit

percentiles. In (B), only the average B-factor and side-chain fit percentiles are shown.

Of the two proposed designs, design B was more popular, and was selected as the working

design.

91

2.3.4.2 Distribution indicators

In place of the largely superficial traffic-light colours behind the bar charts, it was decided that

this space might be better utilised by introducing box plots to illustrate the distribution of metric

values across the model. A few rough designs were made for this (Figure 41), and the favoured

design was then implemented in the residue view graphic-drawing function. The distributions

values displayed in the bars were based on chain-wide distributions, rather than model-wide

distributions, because this felt more intuitive. To do this, the interaction JS had to be modified

so that the residue-view distributions were updated each time a new chain was selected.

Because the calculation time was negligible, the distribution threshold calculations were

implemented in the JS code to be calculated each time a chain was selected, rather than in the

Python code to be passed to the JS as variables, keeping the code tidy.

Figure 41: Different designs for bar distribution backgrounds. Chart A features classic box plots,

where the boxes represent the values of the three quartiles (Q1, Q2, Q3) and the tails of each

represent the minimum and maximum values. These were often quite difficult to read; the line

and text label indicating the selected residue’s value would often overlap with some aspect of

92

the box plot and, like the original designs for the graphic, they did not make any use of colour.

Charts B and C use coloured areas across the whole bar to represent the chain’s metric value

distributions. In both of these charts, the thick dashed line represents the mean of the

distribution, the thin dashed lines represent one standard deviation from the mean in each

direction, and the bounds of the coloured shading represent the minimum and maximum

values of the distribution. The only difference between charts B and C is that chart B colours

these areas discretely, in an effort to more clearly delineate them, whereas chart C colours

them on a continuous gradient, to better represent the continuous nature of the distribution

being illustrated. Of these designs, design C was the most popular, so this was selected for

implementation.

2.3.5 Report changes

The HTML report template was updated with a few minor updates to accommodate the updated

chain- and residue-view designs. These updates included: resizing the chain view to a wider

default size, and removing the accompanying resize button; adding a model iteration toggle

switch above the chain view; and a number of changes to the JS code (Figure 42). A test report

was generated for each of the test models (Figure 43).

93

Figure 42: Finalised functions and variables of the report JS.

94

Figure 43: Regenerated test reports, featuring the updated designs of both graphics. 1vme (A),

2ask (B), 2a0z (C).

95

Figure 44: Overview of the structure of the entire validation package. The generate_report

function at the top of the package first calls the generate_metrics_model function from the

metrics module. This function instantiates a ReflectionsHandler object from the reflections

submodule, firstly to calculate a map from the reflection data file, and then to initialise the

metrics calculation cascade using the coordinates file. Each MetricsResidue object then

performs analyses on itself using functions from the utils module, rotamer submodule, and

ReflectionsHandler object, then runs the calculated metrics through the percentiles

submodule. Once the metrics calculations are finished, the generate_report function calls the

build_report function of the interface module, which generates the graphics and produces the

finished report.

2.4 Optimisations

Because the codebase was written entirely in scripting languages (Python and JS), it was

originally developed with readability in mind, as a higher priority than computational efficiency.

Consequently, there was some scope for computational efficiency optimisation.

The first optimisation related to the chart-generation process. The charts submodule had a

private function that would calculate the coordinates for a point at a given angle and distance

from some centrepoint. This function would be called repeatedly during the chain-view chart

generation function, and would often repeat the exact same calculations a number of times for

any given chart or set of charts. To prevent this, a cache object was added such that any t ime

the function was called, it would first check the cache to see if that calculation had already been

96

performed, and if it had, recall the previous result. The performance difference resulting from

this change was small but significant.

Next, all matrices and matrix calculations in the library were rewritten as calls to the NumPy

library (95), which both increased calculation speed and decreased memory usage.

Beyond a certain point, further computational optimisation would have to come at the cost of

readability, which would not be a worthwhile compromise in the context of this project.

However, there were other areas to optimise in addition to computational efficiency. For

example, it was noticed that the coordinate values calculated by the chart generation function

were given to a very high precision, and were being stored in the SVG files to as many as 10

decimal places. This level of precision was many orders of magnitude higher than was required,

and because of the high number of elements contained within each SVG, it had a substantial

effect on file size. To counteract this, the coordinate values of all SVG elements were rounded

to just two decimal places before export, leading to a significant reduction in overall validation

report file size.

2.5 Implementation in CCP4i2

2.5.1 Introduction

The final section of the project was to implement the now-complete validation tool within an

existing validation package. CCP4i2 is the graphical, Python-based (PyQt) interface of the CCP4

suite, which “provides a framework for writing structure -solution scripts that can be built up

incrementally to create increasingly automatic procedures” (2).

The CCP4i2 interface comprises sections that display links to various tasks that provide interfaces

to (mostly CCP4) programs. The format of the CCP4i2 task system is straightforward. Each task

essentially consists of an input frame and an output (‘report’) frame. The files that constitute

each task are one XML properties file and three Python scripts: one to define a subclass of the

CCP4TaskWidget.CTaskWidget class to script the task’s input frame; another to define a subclass

of the CCP4PluginScript.CPluginScript class to script the task’s backend processing; and the last

to define a subclass of the CCP4ReportParser.Report class to script the task’s output report.

97

2.5.2 Existing validation task

The primary validation task of the interface was named Multimetric model geometry validation,

under the Validation and analysis category.

The essential input fields for the task were the file paths for a model file and reflections file

(Figure 45). Like the validation tool written in this project, the CCP4i2 validation task would use

the Clipper-Python library to generate various validation metrics, which it would present to the

user in the form of an HTML report (Figure 46). The task would also launch MolProbity analyses,

via packages available in the CCP4-Python environment, and incorporate some of the results in

the report. Although the task would accept reflection data as input, it would not pe rform any

reflection-based analyses. Neither the flow of the metrics generation nor the presentation of

the metrics (Figure 47) were as efficient as in the validation package written in this project.

Figure 45: Input pane of the original CCP4i2 task. The input fields for the pane include file

paths for a model and reflection data file, as well as for asymmetric unit descriptions. There

are also three tick-box inputs to customise the contents of the output report.

98

Figure 46: Example output pane of the original CCP4i2 task. In this image, only the summary

section is fully expanded, which shows some summary text, a single -chain chart of residue-by-

residue B-factors, some summary MolProbity analysis data, and some summary B-factor data.

The three contracted sections contain more detailed B-factor analyses, Ramachandran plots,

and more detailed MolProbity analyses.

99

Figure 47: Summary of the flow (left) and full report format (right) of the original CCP4i2

validation task. Of note is the fact that the task would perform two MiniMol cascade loops,

one for B-factor analyses and one for Ramachandran analyses. In Python, loops are unusually

slow, so this two-loop system was quite inefficient.

The goal of this subsection of the project was to overhaul this task and replace it with one that

would implement both the back-end (metrics calculation) and front-end (graphics generation)

components of the validation tool created in this project.

2.5.3 Task redesign plan

Both the metrics generation script and output report were redesigned. The main goal for the

back-end was to restructure the flow of the task to be more efficient, and for the front-end, to

feature the information-dense graphical panel of the new validation package. As a consequence,

this would also involve implementation of multi-model support. The redesigned flow and report

format of the package are shown in Figure 48.

100

Figure 48: Summary of the redesigned flow (left) and full report format (right) of the CCP4i2

validation task. The redesigned validation task was expected to provide a few valuable speed

increases. Significantly, where the original task would perform two (slow) MiniMol cascade

loops, the redesigned task only needed to perform one, to generate the MetricsModel object

(or objects, if two model iterations were provided). In addition to the changes to the flow, the

output report was to follow a different structure, such that the graphical panel would be

presented first and foremost, with the detailed MolProbity, B-factor, and Ramachandran

analyses still available, each in their own contractible section.

2.5.4 Initial development

Once the task had been redesigned, its development could begin. Before assembling the

redesigned task, the new validation package was added to the CCP4 Python site -packages

directory, to emulate the package having been installed as part of the CCP4 suite.

101

The first goal was to create a test validation task that could import the new validation package

and run it to create a validation report. At this stage, the objective was just to confirm that the

validation report would be generated, not that it be rendered by the CCP4i2 interface output

pane. This would verify compatibility of the package with the Python environment interfaced-

with by CCP4i2.

To accomplish this, the task GUI input was modified to accept two sets of model inputs, rather

than just one, to allow the user to provide model and reflection data from two iterations of

model refinement (Figure 49). The XML properties file was updated accordingly so that the

specified file paths would be assigned as globally-scoped attributes, to be accessed by the other

components of the task. Finally, the main plugin script was edited to import the new validation

package, and call its generate_report function with the file paths passed from the task GUI, to

create a validation report in the default output directory of the task. Tests were successful;

running the tasks would yield a blank output pane, and the production of a new subdirectory,

containing the HTML validation report and accompanying scripts and stylesheets.

Figure 49: Input pane of the new CCP4i2 task. The input fields for the pane now include file

paths for two sets of model and reflection data files. There is also a new tick-box input for

users to specify whether or not they would like to produce the interactive graphical panel.

The next step was to get the HTML report integrated within the task’s output pane. The first

plan to accomplish this was to modify the package to introduce an option to produce a stripped-

down version of the validation report, containing only the graphical panel, which could be

implemented in the CCP4i2 report and other software alike, by application of an iframe element.

102

Modifications were made to the package to do exactly this, by including a version of the

template that attached the requisite CSS and JS files, but stripped out the entirety of the rest of

the template other than the div element housing the two graphics. A string argument was added

to the build_report function of the interface submodule to accept the user’s choice of report

mode; the options being full for the full report (default), or panel for the new mode.

To implement the panel mode in the CCP4i2 task, rather than calling the module’s

generate_report function directly, the individual components of the metrics and interface

submodules were called individually. This had the benefit of providing the task with direct access

to the MetricsModel objects produced by the metrics module, which would be required for the

more detailed analyses. The initialiser function at the start of the main plugin script would call

the generate_metrics_model function of the metrics submodule, to generate a MetricsModel

object for each of the two provided iterations, followed by the build_report function of the

interface submodule, with the mode set to panel, and the output directory again set to a

subdirectory within the task’s output directory. Then, the report script was modified such that

an iframe element was introduced at the top of the output HTML, with the source set to the

nascent subdirectory containing the graphical panel. Unfortunately, when the task concluded

and the output panel was shown, the in-app browser would consistently crash. It appeared that

the CCP4i2 integrated browser did not support iframe elements within the report HTML. This

process was repeated a number of times, each time with different iframe source files, all to the

same effect: the browser would throw an exception and crash. It seemed that using an iframe

element was not viable in the case of the CCP4i2 suite.

Therefore, a new route was taken. Rather than outputting a whole report directory, the module

could be engineered to produce just the bare minimum HTML code required to contain the SVG

graphics, which could then be inserted inline within the HTML of the task output pane. The

difficulty here was that because the CSS and JS of the package would therefore have to be

included inline with the output pane, there was potential for overlap in terms of HTML element

names, CSS class names, or JS function names. Testing this method revealed that there were

indeed some clashes that had to be overcome.

The first problem was that some of the generic CSS style names used by the Bootstrap template

had been utilised within the default CCP4i2 report template CSS, causing overlap which led to

improper styling of many elements of the report. This was simply resolved by changing CSS style

names in the report template of the interface submodule to less common ones.

103

Another difficulty encountered was that none of the interaction was functioning correctly.

Debugging using the JS developer console revealed that there were parse errors where the

browser was not able to resolve some keywords; specifically, the let and const keywords. These

were introduced to the ECMAScript standard in 2015, to provide JS with block scope capability

(where previously the only possible scopes were global scope and local scope) with the const

keyword providing the additional functionality that variables defined using this keyword cannot

be reassigned to, behaviour that was not previously achievable. Since it is good practice to

adhere to the latest edition of the ECMAScript standard when writing JS code, the JS in the

interface module used these keywords throughout. However, although the keywords had been

supported by all major web browsers for years, the integrated browser of the CCP4i2 suite did

not recognise them, and so could not execute any of the included JS functions. To circumvent

this, another mode was added to the report, which produced the same output as the panel

mode, but replaced all instances of the let and const keywords with the older var keyword, which

would define all values as global variables. This had the potential to introduce a number of

problems: aside from the usual potential for namespace overlap that can arise from globally

scoping all values, in JS, variables defined with var become attributes of the shared window

object, which adds a whole other dimension for potential namespace overlap. Fortunately, the

code was robust to this change without needing any major modifications to its overall structure.

2.5.5 Multithreading

The MolProbity analyses were by far the most time-consuming part of the validation task. In the

original task, every stage of the task was performed serially, on the main thread, with the

MolProbity analyses performed following the native metrics calculations. To increase the

efficiency of the task, a multithreading approach was conceived. The redesigned task would use

the Python multiprocessing library to start a separate process (or two processes in the case of

provision of two iterations) for the MolProbity analyses, which would be initiated at the very

start of the task. The MolProbity analyses would then run in the background while the main

thread generated the MetricsModel object. Once the main thread had completed this job, it

could wait for the MolProbity process(es) to conclude, and process the results.

Unfortunately, due to some idiosyncrasies of the Python 2 multiprocessing module, spawning a

process from within the CCP4i2 plugin subclass was not supported under Windows. Therefore,

104

an operating system check had to be incorporated such that the analyses could still be run from

a Windows environment, just without parallelisation (as in the original task).

2.5.6 MolProbity integration

As described in Section 2.2.4.5, one of the originally desired metrics module calculations was an

atomic clash score, the implementation of which was previously postponed due to time -span

concerns. With the availability of MolProbity analyses from the CCP4i2 Python environment, the

results of a comprehensive MolProbity analysis were now available without any extra

modifications to the metrics module, making the MolProbity all-atom clash results available for

implementation within the graphical panel. Rather than integrate this alongside the other

discrete metrics, it was decided that this metric should be presented separately, in a manner

that portrays its exogeneity from the metrics module. To do this, an argument was added to the

chain-view chart generation function to allow the addition of a new axis around the edge of the

chart, whereby a marker could be placed at the edge of any residue’s sector (Figure 50). The

task’s main plugin script was modified to supply this argument with an array of clash markers

from the MolProbity analyses.

Figure 50: Appearance of the new outer markers.

In addition to the clash score, the MolProbity analyses would produce a number of other useful

geometric analyses, including some of those that were also implemented within the metrics

module; for example, the main-chain and side-chain favourability scores. In the case of side-

chain conformation, the MolProbity results would be much more precise than those of the

metrics module, thanks to the inclusion of the uncompressed reference data. Hence, it was

105

realised that the user may well wish to feature MolProbity analyses within the chain-view if and

when they were available. Therefore, the interface module was modified to allow for this, and

it was enabled by default within the CCP4i2 interface. When MolProbity data were being

incorporated within the chart, a ‘MolProbity Enabled’ watermark would be shown in the centre

(Figure 51).

Figure 51: Watermark shown if MolProbity data has been incorporated into the chart.

Generated using synthetic data.

With this, the CCP4i2 implementation was complete. See Section 3.4 for a screenshot of an

example output pane of the finished task.

106

3 Results and discussion

3.1 Metric accuracy

Metric values produced by the metrics module were tested against results from other reputable

validation software packages.

3.1.1 Ramachandran likelihood score

Ramachandran scores were tested against those from MolProbity.

Figure 52: Confusion matrix showing Ramachandran classification agreement between the

metrics module and MolProbity. Percentages are of column sums. Figures in brackets are

numbers of residues. Discrepancies arise as a result of the different formats of the reference

data; MolProbity has access to the entire original dataset, allowing for very accurate

interpolation for each case, whereas the compression used by the metrics module to store the

reference data yields less precise classifications, especially at the interfaces between

classifications (borderline cases).

107

3.1.2 Rotamer likelihood score

Rotamer classifications were tested against those from MolProbity.

Figure 53: Confusion matrix showing rotamer classification agreement between the metrics

module and MolProbity. Percentages are of column sums. Figures in brackets are numbers of

residues. Discrepancies are partly due to the differing interpolation methods applied by

MolProbity and Clipper, but more significantly to the fact that the thresholds are arbitrary; and

those selected for the metrics module are the ones that are used in Coot, to facilitate the

transition between a CCP4i2 report and the Coot validation tools (see Section 3.4). These are

not the same as those used by MolProbity.

108

3.1.3 Density fit score

The custom density fit score was tested against RSCC, calculated using EDSTATS (48).

Figure 54: Line graph illustrating correlation between the reflection submodule per-residue fit

scores and per-residue RSCC scores. Scores are plotted as z-scores, calculated for each residue

from the population of all residue scores of the relevant structure.

Clearly, the correlation between the two metrics was quite poor. However, that was to be

expected; this project’s electron density fit score was not designed to correlate with RSCC, but

to be an easily calculable indicator of poor fit quality. To assess the ability of the metric to

identify areas of especially poor quality, a classification-based test was devised, similar to that

used for Ramachandran classification. Residues with fit scores less than one standard deviation

below the model mean were classified as outliers, and the rest were classified as allowed. The

same classification method was applied based on RSCC, and the results were compared via a

confusion matrix. This revealed a satisfactory outcome.

109

Figure 55: Confusion matrix showing density fit classification agreement between the

reflections submodule and RSCC. Percentages are of column sums. Figures in brackets are

numbers of residues. F1 score is 0.767, and Matthews correlation coefficient (MCC) is 0.654.

Discrepancies are simply a result of the fact that the two scoring methods are mathematically

very different.

3.2 Timing

To perform timing analyses, a random selection of 20,000 models from the PDB-REDO database

was made. Timing analyses were performed on multiple aspects of the software, through a high-

throughput approach that best utilised the available hardware. The computer allocated for

testing had an Intel i9-9900k processor, with 8 physical cores and 16 threads, running at stock

frequency. To maximise the processing power available, timings would be run in parallel such

that all 16 threads of the processor would be occupied concurrently. Potential avenues for

bottlenecks were investigated and eliminated: the processor was liquid cooled, and maximum

temperatures were around 70 degrees Celsius, so thermal throttling would not be a concern;

there was a large amount of available high-frequency memory; and the storage device’s read

and write speeds on the order of gigabytes per second, so file input/output would not be a

bottleneck.

The first timing analysed was the time taken for the entire process, i.e., the time taken to analyse

the metric values of, and produce a full standalone validation report for, a given dataset (two

pairs of model and reflection data). In an effort to split these time values into their respective

110

components, more in-depth analyses were performed. Firstly, the time taken just to calculate

metrics was measured; that is, the time taken to initialise a pair of MetricsModel objects for a

given dataset to produce metrics data. Secondly, the time taken to produce a validation report

from a given pair of MetricsModel objects. The results of all these analyses are shown in

Figure 56.

Figure 56: Box plots illustrating the distribution of results of timing analyses. On the left are the

run times per model (in seconds), and on the right are the run times normalised by residue

count (in milliseconds). The median value of each distribution is labelled. The breakdown

reveals that metric analyses account for roughly 73% of the entire run time, on average.

Next, the implementation within the i2 interface was timed, and compared to the previously

implemented task. Because of the MolProbity multithreading introduced in the new CCP4i2

validation task, each instance of CCP4i2 could have up to three intensive processes running at

once (one main thread plus two MolProbity threads). Therefore, to reduce the likelihood of

processor thread saturation, the number of simultaneously-timed instances was reduced from

16 (as in previous tests) to 8. The results of these tests are shown in Figure 57. Of course, these

timings would differ significantly under a Windows environment as a result of the multithreading

constraints outlined in Section 2.5.5. If two models are provided, and MolProbity is enabled,

111

validation may take significantly longer than it otherwise would on a unix -based operating

system such as Linux or MacOS.

Figure 57: Box plots illustrating the distribution of average (n=5 repeats) times taken to run

models (both coordinates and reflection data) through both versions of the CCP4i2 Multimetric

Validation task. On the left are the run times per model (in seconds), and on the right are the

run times normalised by residue count (in milliseconds). The median value of each distribution

is labelled. The breakdown reveals that the new task is significantly faster than the original,

both with or without MolProbity analyses enabled, despite performing twice as many analyses

(two iterations).

112

3.3 Interface

Some test reports were generated for structures with known defects.

Figure 58: Example validation report for structure 3vd3 (top) and accompanying model

visualisation (bottom). The screenshot shows a validation report for 3vd3, with chain B,

113

residue 684 selected. The iteration slider in the previous position, corresponding in this case to

the originally-deposited model, before refinement by PDB-REDO. The selected chain comprises

more than a thousand residues, demonstrating the robustness of the design to high residue -

counts. For the bottom panel, the corresponding model has been coloured by B-factor (blue

for low values, red and then white for high relative values) to highlight the mobility of this

region. The map shows 2mFo-DFc density contoured at 1σ; the fact that the map does not

cover all the residues at this level hints at the region's mobility and/or disorder. From Rochira

and Agirre, 2020 (75).

3.4 CCP4i2 implementation

Figure 59: Example validation report from the new CCP4i2 task with MolProbity all-atom clash

markers enabled. The screenshot shows the CCP4i2 interface, with the output pane of a

validation task selected. This particular task validated the model 1vme. Chain A, residue 331 is

selected. The iteration slider is in the previous position, corresponding again to the originally-

deposited model, before refinement by PDB-REDO. In this screenshot, all the mentioned

features of the interface are visible together, including the MolProbity integration.

114

At the very bottom of the task window is a button that opens the model file in Coot. This button

was present in the original validation task, and was left unchanged. It was because of this

integration that the Coot Ramachandran thresholds were selected for this package, so that the

Ramachandran classifications shown in the graphical panel would correspond to those shown in

Coot. This proved to be successful in testing.

115

Figure 60: Design (top) and flow (bottom) of the CCP4i2 validation report before and after

integration of the new validation package. The most noticeable difference in the design is that

the graphical panel is now the first view presented to the user when the page is loaded, and

fills the viewport to maximize the size of the chain‐view display. The flow of the task has

changed more significantly; where the old task performed simple B‐factor and Ramachandran

116

analyses, then executed MolProbity analyses and compiled the results all on the same thread,

the new version of the task uses Python's multiprocessing library to run concurrent MolProbity

analyses on separate threads while the metrics module calculations are performed on the

main thread. This significantly reduces the run time, despite doubling the number of analyses

being performed. Because the metrics are all calculated within the same cascade, the task only

has to perform one set of (slow) Python loops, as opposed to the serial repeats of loops in the

original report; hence the newly‐structured report has shorter run times both with and

without MolProbity enabled. Timings are not to exact scale. From Rochira and Agirre, 2020

(75).

117

4 Conclusions and future work

The aim of this project was to produce a tool to enable interactive all-in-one graphical validation

of 3D protein model iterations, meeting the specific criteria described in Section 1.3. Although

all the overall goals were achieved, there are a number of avenues for potential improvement

and expansion.

At the most basic level, further optimisations could be made. One that stands out is

multithreading: the iteration through the Clipper MiniMol cascade, and the identical operations

performed repeatedly at each level are perfect candidates for multithreading. That could be

implemented in several different ways, and at several different levels. For example, at a high

level, each chain of a model could be iterated-through by individual worker threads in parallel

with one another. Or at a lower level, a pool of worker threads could be spawned before

analysis, to have individual residues divided up amongst them as the main thread iterates

through the cascade. Both of these methods would be viable in theory; however, due to

limitations of the Python 2 multiprocessing library, it would not have been a simple undertaking

within this project. Similarly, efficiency would be improved substantially if some of the core

analyses were repackaged as a C++ library to be wrapped for Python. However, considering the

difficulties posed by the wrapped Clipper library, this would probably be a step in the wrong

direction. Indeed, one of the overarching goals of the project was that the code be easy to read

and modify to make it extensible, which would have to be sacrificed entirely if it were

repackaged in a compiled language.

Aside from optimisations, there are a number of routes for expanding the functionality of the

software, such as adding support for cryo-EM. As discussed in Section 1.2.2, cryo-EM models are

becoming increasingly prevalent in the field, and experimental data obtained from cryo-EM has

unique requirements that differ to those of MX data. The tools to implement cryo-EM data are

already available; the Clipper NXmap (non-crystallographic map) class provides suitable

encapsulation for finite electron density map data, and the methods to deal with it. This could

be implemented with a future update to the package.

Perhaps the most pressing improvement to implement is expansion of the range of available

metrics; for example, alpha-carbon torsion via the CaBLAM dataset. Since it would only be useful

in the case of very low-resolution structures, such as those generated by cryo-EM, the Cα torsion

reference data were not implemented in this project. However, if cryo-EM compatibility were

118

implemented, this metric would certainly have to be revisited. Likewise, other electron density

fit scoring methods could be implemented, to expand the range of available metrics. Although

the fit score invented for use in this project was demonstrably suitable, it is non-standard, and

its values are not comparable to those from other validation software packages. To counteract

this, traditional fit scores such as RSCC and RSR could be implemented, either calculated directly

by the metrics module or by hooking some external program, such as EDSTATS (48). In addition,

MolProbity analyses could be implemented directly within the metrics module, via the CCTBX

Python package. In this way, the user would be able to choose either built-in or MolProbity

analyses when using the package in any context, including as a standalone solution, rather than

having to choose an implementation of the package that makes MolProbity analyses available,

such as CCP4i2.

An intrinsic problem with representing a three-dimensional structure with a two-dimensional

graphic is that some in-space interactions become very difficult to represent meaningfully and

intuitively. There are often important interactions involving residues that are close in tertiary or

quaternary structure, but far apart in primary structure, and thus are difficult to illustrate on a

flat, sequential chart. Such interactions include residue-residue interactions, such as hydrogen

bonds and disulfide bridges, and also residue-molecule interactions, where many residues may

interact with the same ligand or cofactor. Further developments to the graphic would lead to

the development of a satisfactory way of displaying such information, perhaps with the

application of a customisable layered system. In a similar vein, representation of post-

translational modifications, such as glycosylation, could be added. For example, via

implementation of the two-dimensional glycan notation generated by Privateer (99).

Although the integration within the CCP4i2 suite provided an apt demonstration of the

pluggable nature of the code, this has ignored the majority of validation pipelines. In time, the

software could be integrated in a number of other validation programs. Likely candidates include

CCP4mg (47), Coot (46), and ChimeraX (100). Additionally, modifications could be made to the

standalone report to allow users to tie the standalone validation reports into their existing

validation pipelines; for instance, by adding dynamically-updated hyperlinks to the report which

open the model already centred on a selected residue in model-viewing software such as Coot.

This could also be used to prompt users with suggestions for a number of automatically -detected

actions, such as peptide flips.

119

Finally, the most important and longest-term goal is the inception of new validation metrics that

are entirely separate from the refinement process, such that they cannot be targeted by

automated refinement procedures. This would open the door to truly independent model

evaluation, and is an avenue that should be explored.

120

5 Bibliography

1. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. MolProbity: all-atom
contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007
Jul;35(Web Server issue):W375-83.

2. Potterton L, Agirre J, Ballard C, Cowtan K, Dodson E, Evans PR, et al. CCP4i2: the new
graphical user interface to the CCP4 program suite. Acta Crystallogr D Struct Biol. 2018 Feb
1;74(Pt 2):68–84.

3. Tiessen A, Pérez-Rodríguez P, Delaye-Arredondo LJ. Mathematical modeling and
comparison of protein size distribution in different plant, animal, fungal and microbial
species reveals a negative correlation between protein size and protein number, thus
providing insight into the evolution of proteomes. BMC Res Notes. 2012 Feb 1;5:85.

4. Ambrogelly A, Palioura S, Söll D. Natural expansion of the genetic code. Nat Chem Biol. 2007
Jan;3(1):29–35.

5. Lodish H, Berk A, Lawrence Zipursky S, Matsudaira P, Baltimore D, Darnell J. Hierarchical
Structure of Proteins. W. H. Freeman; 2000.

6. Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. The role of hydrophobic interactions in
positioning of peripheral proteins in membranes. BMC Struct Biol. 2007 Jun 29;7:44.

7. Mehler EL, Fuxreiter M, Simon I, Garcia-Moreno EB. The role of hydrophobic
microenvironments in modulating pKa shifts in proteins. Proteins. 2002 Aug 1;48(2):283–
92.

8. Fratzl P. Collagen: Structure and Mechanics, an Introduction. In: Fratzl P, editor. Collagen:
Structure and Mechanics. Boston, MA: Springer US; 2008. p. 1–13.

9. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data
Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–42.

10. Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, et al. Kemp
elimination catalysts by computational enzyme design. Nature. 2008 May
8;453(7192):190–5.

11. World’s first artificial enzymes created using synthetic biology [Internet]. 2014 [cited 2020
Dec 4]. Available from: https://www.cam.ac.uk/research/news/worlds-first-artificial-
enzymes-created-using-synthetic-biology

12. Terkeltaub R, Sundy JS, Schumacher HR, Murphy F, Bookbinder S, Biedermann S, et al. The
interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a
placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study.
Ann Rheum Dis. 2009 Oct;68(10):1613–7.

13. Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Artificial Molecular Machines.
Chem Rev. 2015 Sep 23;115(18):10081–206.

14. On a New Kind of Rays. Nature. 1896 Jan 1;53(1369):274–6.

121

15. Friedrich W, Knipping P, Laue M. Interferenzerscheinungen bei Röntgenstrahlen. Ann Phys.
1913;346(10):971–88.

16. Bernal JD, Crowfoot D. X-Ray Photographs of Crystalline Pepsin. Nature. 1934 May
1;133(3369):794–5.

17. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC. A three -dimensional
model of the myoglobin molecule obtained by x-ray analysis. Nature. 1958 Mar
8;181(4610):662–6.

18. Cochran W, Crick FH, Vand V. The structure of synthetic polypeptides. I. The transform of
atoms on a helix. Acta Crystallogr. 1952 Sep 10;5(5):581–6.

19. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose
nucleic acid. Nature. 1953 Apr 25;171(4356):737–8.

20. Source DL. Diamond Light Source [Internet]. [cited 2020 Nov 5]. Available from:
https://www.diamond.ac.uk/

21. Knapek E, Dubochet J. Beam damage to organic material is considerably reduced in cryo-
electron microscopy. J Mol Biol. 1980 Aug 5;141(2):147–61.

22. Newmark P. Cryo-transmission microscopy: Fading hopes. Nature. 1982 Sep
1;299(5882):386–7.

23. Adrian M, Dubochet J, Lepault J, McDowall AW. Cryo-electron microscopy of viruses.
Nature. 1984;308(5954):32–6.

24. Murata K, Wolf M. Cryo-electron microscopy for structural analysis of dynamic biological
macromolecules. Biochim Biophys Acta Gen Subj. 2018 Feb;1862(2):324–34.

25. Frank J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies:
Visualization of Biological Molecules in Their Native State. Oxford University Press; 2006.
432 p.

26. van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R, Pape T, et al. Single -particle electron
cryo-microscopy: towards atomic resolution. Q Rev Biophys. 2000 Nov;33(4):307–69.

27. Kühlbrandt W. Biochemistry. The resolution revolution. Science. 2014 Mar
28;343(6178):1443–4.

28. Kühlbrandt W. Cryo-EM enters a new era. Elife. 2014 Aug 13;3:e03678.

29. Cross TA, Opella SJ. Solid-state NMR structural studies of peptides and proteins in
membranes. Curr Opin Struct Biol. 1994 Jan 1;4(4):574–81.

30. Marassi FM, Opella SJ. A solid-state NMR index of helical membrane protein structure and
topology. J Magn Reson. 2000 May;144(1):150–5.

31. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H. Structure of a
protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature. 2002
Nov 7;420(6911):98–102.

122

32. Zuiderweg ERP. Mapping protein-protein interactions in solution by NMR spectroscopy.
Biochemistry. 2002 Jan 8;41(1):1–7.

33. Takeuchi K, Wagner G. NMR studies of protein interactions. Curr Opin Struct Biol. 2006
Feb;16(1):109–17.

34. Bonvin AMJJ, Boelens R, Kaptein R. NMR analysis of protein interactions. Curr Opin Chem
Biol. 2005 Oct;9(5):501–8.

35. Vaynberg J, Qin J. Weak protein-protein interactions as probed by NMR spectroscopy.
Trends Biotechnol. 2006 Jan;24(1):22–7.

36. Guzzo AV. The influence of amino-acid sequence on protein structure. Biophys J. 1965
Nov;5(6):809–22.

37. Prothero JW. Correlation between the distribution of amino acids and alpha helices.
Biophys J. 1966 May;6(3):367–70.

38. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved protein
structure prediction using potentials from deep learning. Nature. 2020 Jan;577(7792):706–
10.

39. Callaway E. “It will change everything”: DeepMind’s AI makes gigantic leap in solving
protein structures. Nature [Internet]. 2020 Nov 30; Available from:
http://dx.doi.org/10.1038/d41586-020-03348-4

40. Bank RPD. RCSB PDB [Internet]. [cited 2020 Nov 4]. Available from:
https://www.rcsb.org/stats/summary

41. Bank RPD. RCSB PDB: Homepage. Rcsb Pdb [Internet]. 2019; Available from:
https://www.rcsb.org/stats/summary

42. Collaborative Computational Project, Number. The CCP4 suite: programs for protein
crystallography. Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(5):760–3.

43. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a
comprehensive Python-based system for macromolecular structure solution. Acta
Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213–21.

44. Cowtan K. Automated model building with Buccaneer [Internet]. CCP4 Crystallography
School and Workshop; 2017 Oct; The Guangzhou Institute of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou, China. Available from:
https://www.ccp4.ac.uk/schools/China-2017/lectures/buccaneer.pdf

45. Coordinate Section [Internet]. [cited 2020 Nov 22]. Available from:
https://www.wwpdb.org/documentation/file-format-content/format33/sect9.html

46. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D
Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126–32.

47. McNicholas S, Potterton E, Wilson KS, Noble MEM. Presenting your structures: the CCP4mg
molecular-graphics software. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):386–94.

123

48. Tickle IJ. Statistical quality indicators for electron-density maps. Acta Crystallogr D Biol
Crystallogr. 2012 Apr;68(Pt 4):454–67.

49. Read RJ, Adams PD, Arendall WB 3rd, Brunger AT, Emsley P, Joosten RP, et al. A new
generation of crystallographic validation tools for the protein data bank. Structure. 2011
Oct 12;19(10):1395–412.

50. Kleywegt GJ, Jones TA. Where freedom is given, liberties are taken. Structure. 1995 Jun
15;3(6):535–40.

51. Weichenberger CX, Pozharski E, Rupp B. Visualizing ligand molecules in Twilight electron
density. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Feb 1;69(Pt 2):195–200.

52. Crispin M, Stuart DI, Jones EY. Building meaningful models of glycoproteins. Nat Struct Mol
Biol. 2007 May;14(5):354; discussion 354-5.

53. Agirre J, Davies G, Wilson K, Cowtan K. Carbohydrate anomalies in the PDB. Nat Chem Biol.
2015 May;11(5):303.

54. Hooft RW, Vriend G, Sander C, Abola EE. Errors in protein structures. Nature. 1996 May
23;381(6580):272.

55. Joosten RP, Womack T, Vriend G, Bricogne G. Re-refinement from deposited X-ray data can
deliver improved models for most PDB entries. Acta Crystallogr D Biol Crystallogr. 2009
Feb;65(Pt 2):176–85.

56. Diamond R. A real-space refinement procedure for proteins. Acta Crystallogr A. 1971 Sep
1;27(5):436–52.

57. Sheldrick GM. SHELX-76, Program for Crystal Structure Determination, University of
Cambridge, Cambridge, UK, 1976. Search PubMed. 1986;

58. Sheldrick GM. A short history of SHELX. Acta Crystallogr A. 2008 Jan;64(Pt 1):112–22.

59. Sussman JL, Holbrook SR, Church GM, Kim S-H. A structure-factor least-squares refinement
procedure for macromolecular structures using constrained and restrained parameters.
Acta Crystallogr A. 1977 Sep 1;33(5):800–4.

60. Dodson EJ, Isaacs NW, Rollett JS. A method for fitting satisfactory models to sets of atomic
positions in protein structure refinements. Acta Crystallogr A. 1976 Mar 1;32(2):311–5.

61. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the
stereochemical quality of protein structures. J Appl Crystallogr. 1993 Apr 1;26(2):283–91.

62. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990
Mar;8(1):52–6, 29.

63. Wilson KS, Butterworth S, Dauter Z, Lamzin VS, Walsh M, Wodak S, et al. Who checks the
checkers? Four validation tools applied to eight atomic resolution structures. J Mol Biol.
1998;276(2):417.

64. Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a

124

known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–70.

65. Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with thre e-dimensional
profiles. Nature. 1992 Mar 5;356(6364):83–5.

66. Sippl MJ. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993
Dec;17(4):355–62.

67. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic
interactions. Protein Sci. 1993 Sep;2(9):1511–9.

68. Jones TA. Interactive electron-density map interpretation: from INTER to O. Acta Crystallogr
D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2115–25.

69. Cowtan K. The Clipper C++ libraries for X-ray crystallography. IUCr Computing Commission
Newsletter. 2003;2(4):9.

70. Urzhumtseva L, Afonine PV, Adams PD, Urzhumtsev A. Crystallographic model quality at a
glance. Acta Crystallogr D Biol Crystallogr. 2009 Mar;65(Pt 3):297–300.

71. Young JY, Westbrook JD, Feng Z, Sala R, Peisach E, Oldfield TJ, et al. OneDep: Unified wwPDB
System for Deposition, Biocuration, and Validation of Macromolecular Structures in the
PDB Archive. Structure. 2017 Mar 7;25(3):536–45.

72. Kleywegt GJ, Jones TA. OOPS-a-daisy. ESF/CCP4 Newsletter. 1994;30:20–4.

73. Lamzin VS, Perrakis A, Wilson KS. ARP/wARP – automated model building and refinement.
In Chester, England: International Union of Crystallography; p. 525–8.

74. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung LW, et al.
Iterative model building, structure refinement and density modification with the PHENIX
AutoBuild wizard. Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):61–9.

75. Rochira W, Agirre J. Iris: Interactive all‐in‐one graphical validation of 3D protein model
iterations. Protein Sci. 2020 Oct 19;67:386.

76. Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science Engineering. 2007
May;9(3):90–5.

77. Chart.js [Internet]. [cited 2020 Dec 10]. Available from: https://www.chartjs.org/

78. Moitzi M. svgwrite [Internet]. Github; [cited 2020 Sep 6]. Available from:
https://github.com/mozman/svgwrite

79. Otto M, Thornton J, Rebert C, Thilo J, XhmikosR FH, Others. Bootstrap. Retrieved May.
2011;15:2019.

80. Otto M, Thornton J, Bootstrap contributors. Examples [Internet]. [cited 2020 Nov 23].
Available from: https://getbootstrap.com/docs/4.0/examples/

81. Joosten RP, Salzemann J, Bloch V, Stockinger H, Berglund A-C, Blanchet C, et al. PDB_REDO:
automated re-refinement of X-ray structure models in the PDB. J Appl Crystallogr. 2009 Jun
1;42(Pt 3):376–84.

125

82. Joosten RP, Joosten K, Cohen SX, Vriend G, Perrakis A. Automatic rebuilding and
optimization of crystallographic structures in the Protein Data Bank. Bioinformatics. 2011
Dec 15;27(24):3392–8.

83. Joosten RP, Joosten K, Murshudov GN, Perrakis A. PDB_REDO: constructive validation,
more than just looking for errors. Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):484–
96.

84. Cowtan K. The Buccaneer software for automated model building. 1. Tracing protein chains.
Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1002–11.

85. McNicholas S, Croll T, Burnley T, Palmer CM, Hoh SW, Jenkins HT, et al. Automating tasks
in protein structure determination with the clipper python module. Protein Sci. 2018
Jan;27(1):207–16.

86. Hintze BJ, Lewis SM, Richardson JS, Richardson DC. Molprobity’s ultimate rotamer-library
distributions for model validation. Proteins. 2016 Sep;84(9):1177–89.

87. Prisant MG, Williams CJ, Chen VB, Richardson JS, Richardson DC. New tools in MolProbity
validation: CaBLAM for CryoEM backbone, UnDowser to rethink “waters,” and NGL Viewer
to recapture online 3D graphics. Protein Sci. 2020 Jan;29(1):315–29.

88. Chen VB, Davis IW, Richardson DC. KING (Kinemage, Next Generation): a versatile
interactive molecular and scientific visualization program. Protein Sci. 2009
Nov;18(11):2403–9.

89. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nat Methods. 2020
Mar;17(3):261–72.

90. Hubbard RE, Kamran Haider M. Hydrogen Bonds in Proteins: Role and Strength. Elsevier
Oceanogr Ser [Internet]. 2010 Feb 15; Available from:
https://doi.org/10.1002/9780470015902.a0003011.pub2

91. Fleming PJ, Rose GD. Do all backbone polar groups in proteins form hydrogen bonds?
Protein Sci. 2005 Jul;14(7):1911–7.

92. Emsley P. coot [Internet]. Github; [cited 2020 Oct 13]. Available from:
https://github.com/pemsley/coot

93. Bond P. coot_prune.py. University of York, Department of Chemistry; (Unpublished).

94. Padua D. FFTW. In: Padua D, editor. Encyclopedia of Parallel Computing. Boston, MA:
Springer US; 2011. p. 671–671.

95. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array
programming with NumPy. Nature. 2020 Sep;585(7825):357–62.

96. (jcsg) JCFSG, Joint Center for Structural Genomics (JCSG). Crystal structure of Flavoprotein
(TM0755) from Thermotoga maritima at 1.80 A resolution [Internet]. 2004. Available from:
http://dx.doi.org/10.2210/pdb1vme/pdb

126

97. Silvian L, Jin P, Carmillo P, Boriack-Sjodin PA, Pelletier C, Rushe M, et al. Artemin crystal
structure reveals insights into heparan sulfate binding. Biochemistry. 2006 Jun
6;45(22):6801–12.

98. Bell JK, Botos I, Hall PR, Askins J, Shiloach J, Segal DM, et al. The molecular structure of the
Toll-like receptor 3 ligand-binding domain. Proc Natl Acad Sci U S A. 2005 Aug
2;102(31):10976–80.

99. Agirre J, Iglesias-Fernández J, Rovira C, Davies GJ, Wilson KS, Cowtan KD. Privateer: software
for the conformational validation of carbohydrate structures. Nat Struct Mol Biol. 2015
Nov;22(11):833–4.

100. Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. UCSF ChimeraX:
Meeting modern challenges in visualization and analysis [Internet]. Vol. 27, Protein Science.
2018. p. 14–25. Available from: http://dx.doi.org/10.1002/pro.3235

