
Identification of Insect Pollinator Species using
Bioacoustics and Artificial Intelligence

Hafed Khalil

Doctor of Philosophy

University of York

Electronic Engineering

June 18, 2021

Abstract

Reliable identification of pollinator species is vital to monitor these species and

reduce their decline. Pollinator species reduction occurs due to several factors,

such as a change in land use, agriculture intensification, and climate change.

Nowadays, methods used to monitor pollinators cause additional deaths of the

specimen as they are required to be examined under a microscope or the pres-

ence of human activity such as using mobile applications. This thesis presents

the development of an automated bio-acoustics identification system of polli-

nator species. This is achieved through an embedded system consisting of a

microphone and a Raspberry Pi. The latter uses a novel Time Domain Signal

Coding (TDSC) based technique called Statistical Time Domain Signal Coding

(S-TDSC) and the application of artificial neural networks are implemented.

Statistical Time Domain Signal Coding is compared to other time-domain based

feature extraction techniques in principle, and the produced features are com-

pared to features resulting from another frequency-domain based feature ex-

traction technique. Statistical Time Domain Signal Coding is shown to be more

efficient than other techniques. These features are then processed by four dif-

ferent classifiers. The classifier that provided the best accuracy was found to be

ELM, where the best accuracy achieved was 82.14% in an experiment to identify

bumblebees against three other species. This combination of bio-acoustics tech-

nique, enhanced TDSC and ELM is used to identify pollinator species. Finally,

the previously mentioned embedded system is implemented and evaluated.

1

Dedication

To my parents and my grandfather......

2

Declaration

This thesis is submitted for the degree of Doctor of Philosophy at the University

of York. The research described herein was conducted under the supervision of

Dr David Chesmore, and Dr. Martin Trefzer in the Department of Electronic

Engineering, University of York between November 2015 and June 2019. This

work is to the best of my knowledge original, except where acknowledgment and

references are made to previous work. Neither this, nor any substantially similar

dissertations has been or is being submitted for any other degree, diploma or

other qualification at any other university.

This thesis contains 37677 words.

Hafed Khalil

Augest 2020

3

Acknowledgements

I would like to thank my supervisors Dr David Chesmore, who I wish a full re-

covery from his medical condition, and Dr Gianluca Tempesti for their excellent

supervision, continued support throughout my PhD programme. A big thanks

to Dr Martin Trefzer for his excellent supervision and believing at a very crucial

time in my PhD. Many thanks to all of my friends here in England, who I had

the pleasure to meet after I came and started my academic journey 9 years ago

for the support on the personal and academic levels . Jorge, Elizavetta, Tamer,

Lloyed, Amara, Ameera, Abhilasha, Shefali, Kaboos, Alia, Safwan, Jose, Raffael

– god I’m goanna be in trouble if I miss somebody – Yaya, Ibrahim, Osama and

everyone in Leeds, thank you all. Many thanks to my number one role model

in life as well inspiration to get business done, my grandfather who showed a

great example of hard work and dedication towards his goals, I love you and I

pray that you rest in peace. I wold like to also thank all of the students and

researchers who I shared the office with, you guys have made it always fun !

Last but not least I would like to thank my parents, brothers and sister who

have supported me, and showed nothing but unconditional love. I love you all.

4

Contents

1 Introduction 17

1.1 Humanity’s current knowledge on pollinator decline 19

1.1.1 Changes in land-use and agriculture intensification 19

1.1.2 Climate change . 20

1.1.3 Invasive species . 20

1.1.4 Pests and pathogens . 21

1.2 The economic and ecological importance of insect pollinators . . 21

1.3 History of pollinator decline . 22

1.4 Pollinator monitoring . 26

1.5 Project aims and hypothesis . 27

2 Background 29

2.1 National pollinator monitoring in the UK 29

2.2 Common monitoring methods . 30

5

2.2.1 Trapping and transect surveys 30

2.2.2 Bio-acoustics . 34

2.3 Observation of the used species 37

2.4 Summary . 40

3 Feature extraction 41

3.1 Data collection . 42

3.2 Time domain signal coding (TDSC) 43

3.2.1 The mathematical basis of TES, TESPAR, and TDSC . . 48

3.2.2 TDSC for insect recognition 50

3.2.3 D-matrix . 50

3.3 Observation of statistical time-domain signal coding (S-TDSC) . 52

3.4 Frequency domain . 58

3.4.1 Fast fourier transform (FFT) 59

3.4.2 Fast wavelet transform (FWT) 60

3.4.3 Mel-frequency spectrum coefficients (MFCC) 61

3.4.4 Frequency domain method implemented for this project . 63

3.5 Observation on the advantages of time-domain over the frequency

domain . 69

4 Classification 72

6

4.1 Support vector machine (SVM) 73

4.1.1 Derivation of binary support vector machine (SVM) . . . 73

4.1.2 Non-linearly separable data 77

4.1.3 Experimental results of SVM 79

4.2 Random forests (RFs) . 85

4.2.1 Earlier development of random forests (RFs) 85

4.2.2 Random forests (RF) . 86

4.2.3 Gini impurity . 90

4.2.4 Experimental results of random forests 100

4.3 Artificial neural networks (ANN) 103

4.3.1 Observation on the operation of perceptron 103

4.3.2 Observation of deep learning neural networks 108

4.4 Training single hidden layer feed-forward artificial neural net-

works (ANN) . 112

4.4.1 Supervised learning . 113

4.4.2 Unsupervised learning . 113

4.5 Extreme learning machines (ELM) 114

4.5.1 Implementing the extreme learning machines (ELM) al-

gorithm . 116

4.5.2 Experimenting with ELM 122

7

4.6 Back-propagation . 139

4.7 Observation of the computational complexity analysis of each al-

gorithm . 148

5 Implementation of the Embedded System 157

5.1 Summery . 163

6 Conclusion and future work 165

6.1 Future work . 168

A Confusion matrices developed from SVM for the 4 species clas-

sifier 173

B Confusion matrices developed from Random forests for the 4

species classifier 178

C Confusion matrices developed from ELM when both of the

training and testing data are unshuffled for the 4 species 184

D Confusion matrices developed from ELM when only the train-

ing data are is being shuffled for the 4 species 192

E Confusion matrices developed from ELM when both the train-

ing and testing data for the bumblebee classifier 200

F Publications 215

8

List of Figures

2.1 Common sampling methods: (a) Pan traps (b) Blue vane traps

(c) Malaise traps (d) Sweep nets [64] 32

2.2 Transact survey . 33

2.3 Honey bee [79]. 37

2.4 Common wasp [82] . 39

2.5 Hover fly [83]. 40

3.1 Acoustic recording of flying insects taking place in the field by

Thomas Dally. 43

3.2 shape, duration and zero crossing on a waveform 45

3.3 Example of codebook . 46

3.4 Waveform, A matrix and S-matrix of Grey Bush Cricket [69] . . 48

3.5 Positive minimas, negative maximas and zero crossing on a wave-

form . 53

3.6 The S-TDSC algorithm . 55

9

3.7 first 23 elements of the feature vector, where feature 23 consists

of 40 elements. 57

3.8 Obtaining the elements of feature 23. 57

3.9 Final feature vector . 58

3.10 Mel-scale waveform [101] . 63

3.11 Frequency based feature extraction algorithm 64

3.12 Audio signal of a bumblebee in the time domain 65

3.13 First slice of the audio signal . 66

3.14 converting the audio signal to the frequency domain using FFT1. 67

3.15 Power spectrum of the first slice of the audio signal 68

4.1 Space with positive and negative samples separated by the widest

area. 73

4.2 Obtaining the width of the separating space using the support

vectors . 75

4.3 Non-linearly separable data . 77

4.4 Establishment of another axis with which to project the data . . 78

4.5 Hyperplane separating the different samples [107]. 79

4.6 The accuracy of each of the 7 runs for each proportion of training

files using S-TDSC . 81

4.7 Comparing the performances of S-TDSC and the frequency do-

main method as feature extraction techniques 82

10

4.8 Samples of the hand-written digits dataset 84

4.9 Samples of dataset [113] . 86

4.10 Decision tree with two branches [113] 87

4.11 Plot of the decision boundary in the dataset [113] 87

4.12 Dataset of three different classes [113] 88

4.13 Decision tree with two cascaded splits each of value 2 [113] . . . 88

4.14 Plot of the decision boundaries in the dataset [113] 89

4.15 A decision tree with a root decision node of 2 [113] 89

4.16 A dataset with a perfect split [113] 90

4.17 A dataset with an imperfect split [113] 90

4.18 Data set of two classes [113] . 92

4.19 Dataset with a decision boundary of 2 [113] 94

4.20 Dataset with a decision boundary of 1.5 [113] 95

4.21 Dataset where each of the smaples is saperated based on different

values of x and y [113] . 96

4.22 RF14 [113] . 96

4.23 Decesion tree with a decesion bountry at a value of x = 2 [113] . 97

4.24 A perfect split decision tree that has a decision boundaries of x

= 2 and y = 2 [113] . 97

4.25 Illustration of the bagging approach [113] 99

11

4.26 Comparison between the performances of random forests using

S-TDSC and the frequency domain method 100

4.27 The accuracy of each of the 7 runs for each proportion of training

files using S-TDSC . 101

4.28 Structure of the perceptron with a single input 103

4.29 Structure of perceptron with multi-inputs 105

4.30 Connection of the weights between an input and an output . . . 106

4.31 Single hidden layer feed-forward neural network (FNN) 107

4.32 2 hidden layer feed forward deep neural network 108

4.33 Representation of neuron H1
1 from figure 4.32 109

4.34 Representation of a node in the recurrent neural network [116] . 109

4.35 Convolutional neural network [116] 111

4.36 Single hidden layer neural network for extreme learning machine

(ELM) . 116

4.37 Connection of the weights to the function with the bias. 117

4.38 Connections between the function and the output i.e targets . . . 119

4.39 Training and testing accuracies, when 50% of the data are used

for training and the number of epochs is 100 124

4.40 Training and testing accuracies, when 50% of the data are used

for training and the number of epochs is 100 128

12

4.41 Training and testing accuracies when 70% of the data are used for

training and the number of epochs is 100, when only the training

data are shuffled . 130

4.42 Training and testing accuracies when 70% of the data are used for

training and the number of epochs is 100, when only the training

data are shuffled . 133

4.43 Training and testing accuracies when 70% of the data are used

for training and the number of epochs is 100, when the training

and data are shuffled . 136

4.44 Structure of neural network trained using backpropagation 139

4.45 Neural network trained with backpropagation, with initial ran-

dom values for weights . 140

4.46 Time taken to execute SVM code Vs. The proportion of the

training files to the testing files 150

4.47 Resident Set Size equal Vs. The proportion of the training files

to the testing files . 151

4.48 Virtual memory size Vs. The proportion of the training files to

the testing files . 152

4.49 Time taken to execute the random forest code Vs. The proportion

of the training files to the testing files 153

4.50 Resident Set Size equal Vs. The proportion of the training files

to the testing files . 154

4.51 Virtual memory size Vs. The proportion of the training files to

the testing files . 155

13

5.1 Classifier of extreme learning machines (ELM) and multilayer

perceptron (MLP) using Matlab where if the result is class 1

then the audio is a bumblebees and if the result is class 2 then

the pollinator is either hoverfly, common wasp or a solitary . . . 159

5.2 Classifier of extreme learning machines (ELM) and multilayer

perceptron (MLP) using Matlab where if the result is class 1

then the audio is a bumblebees and if the result is class 2 then

the pollinator is either hoverfly, common wasp or a solitary . . . 159

5.3 Raspberry Pi . 160

5.4 TASCAM audio recorder . 162

5.5 USB Microphone connected to Raspberry Pi 163

6.1 Sub-species of bumblebees [139] 169

6.2 Amount of data available for training Vs. Accuracy [142] 170

14

List of abbreviations

Abbreviation Explanation

TES Time encoded speech

TESPAR Time encoded signal processing

and recognition

TDSC Time domain signal coding

S-TDSC Statistical time domain signal

coding

CBD Convention on Biological Diver-

sity

FAO Food and Agriculture Organisa-

tion

PoMS Pollinator Monitoring Scheme

DEFRA Department of Environment,

Food, and Rural Affairs

NPPMF National Pollinator and Pollina-

tion Monitoring Framework

kNN k-th Nearest Neighbour

GMM Gaussian mixture model

MFCCs Mel- Frequency Cepstrum Coef-

ficients

D Duration

S Shape

SVM Support vector machines

RF Random forests

IW Input weights

LW Output weights

ANN Artificial neural networks

ELM Extreme learning machines

15

SLFN Single layered feed forward neu-

ral networks

RNNs recurrent neural networks

CNNs Convolutional neural networks

MLP Multi-layer perceptron

RBF Radial basis function network

LS-SVM Least square support vector ma-

chines

FFT Fast Fourier Transform

DFT discrete Fourier transform

STFT short-time Fourier transform

FWT Fast Wavelet transform

CWT Continuous wavelet transforms

DWT discrete wavelet transform

FSA Frequency stability assessment

LPC linear predictive coding

GUI Graphical user interface

16

Chapter 1

Introduction

Every day, there has been a global decline in insect pollinators, and this issue

has been overly evident worldwide [1]. This decline has increased concerns over

the effects of the continued loss of the benefits provided by pollination on agri-

culture and ecosystems. Therefore, the international recognition of the decline

of pollinators has increased through the Convention on Biological Diversity [2].

Additionally, more research was done to discover more causes and impacts. Fur-

thermore, 78% of the species living on our planet depend on services provided

by animals and mainly insects, such as pollen transfer and reproduction, as well

as maintaining genetic diversity within populations [3]. Additionally, various

crops worldwide utilize pollinators for increasing the yield, for example, Apis

mellifera, which is a honey bee [4, 5]. However, recent studies suggest that

bumblebees and solitary bee species also significantly contribute more to crop

pollination in the UK than Apis mellifera [6, 7]. Hence, pollinators play a vi-

tal role in natural and semi-natural habitats [8], and native wildflowers [9,10].

Furthermore, insects-mediated pollination provides an ecosystem service to agri-

culture that is estimated to be 215 billion dollars in 2005 [5], which represents

about 9.5% of the global food production economy.

17

Uniform standards for pollination in ordinary ecosystems are not avail-

able but would likely exceed these considering the significant number of ecosys-

tem processes depend on a sufficient and healthy flora and insect environments

[5]. Correspondingly, there is an extension of efforts to protect the pollinators

from the dangers of further potential decline [1].

18

1.1 Humanity’s current knowledge on pollina-

tor decline

The importance of insect pollinators, both from an ecological and economic

standpoint, has been highlighted by a growing body of evidence concerning

population declines within many insect pollinator taxa [1, 11–14]. This issue

is prominent within the international research community, and has captured

the public consciousness, having been addressed by the United Nations under

both the Convention on Biological Diversity (CBD) [15] and the Food and

Agriculture Organisation (FAO) [16], as well as by several individual national

governments [17, 18]. There are various known causes of pollinator decline,

including changes in how agriculture operates in utilizing land, the application

of chemicals, and climate change. A brief discussion is given in the following

sections.

1.1.1 Changes in land-use and agriculture intensification

Decreased floral resources and nesting sites for wild pollinators caused by the

degradation and fragmentation of natural habitats, resulted in the fall of pol-

linator diversity [1, 9]. According to a report by Nature Today, there were

considerable losses to nectar resources in the United Kingdom, particularly in

England and Wales, starting from the 1930s until the 1970s, a period signifi-

cantly linked to agricultural intensification. Furthermore, according to Professor

Bill Kunin: ”wild bees and other insect pollinators are vital to the success of

many important food crops and wild plants. Therefore, the relationships be-

tween floral resources and pollinating insect populations must be understood.

Despite the stabilization seen recently, our research shows significant long-term

declines in the diversity of nectar sources mirrored in a fall in the diversity of

pollinator species. We are at a point where only four plant species account

for more than half the nectar in Britain.” [19]. The loss of field margins and

19

hedgerow habitats associated with the more use of monoculture has caused a

loss of spatially and temporally diverse floral resources used by insect pollina-

tors [1, 20, 21]. Also, pollinator health is directly affected by the increased use

of pesticides, and the increased use of fertilizer that has been linked with the

decrease of natural wildflower communities, which is a source of forage for wild

bees [5].

1.1.2 Climate change

Natural ranges of pollinator species are affected by the change in regional tem-

peratures [1]. The latter can lead to increased invasions of non native species

[21]. Additionally, change in regional temperatures can also lead to a mismatch

in the spatiotemporal links between pollinators and the plants pollinated, re-

sulting in a potential lack of both forage and pollination service. In addition,

Intergovernmental Panel on Climate Change stated that pollinator species in-

cluding bees, and butterflies are under an increasing rate of extinction due to

global warming which has caused alterations in the seasonal behavior of species.

In other words, bees emerging in different periods of the year when flowering

plants were not available [22].

1.1.3 Invasive species

The invasion of none native pollinators, which naturally occurs, is a cause of the

decreases in native pollinator fitness and fecundity [1], leading to the alteration

of community dynamics and increasing inter-specific competition for floral re-

sources, at a place that has not existed previously [1, 5]. Additionally, plants

that are none native cause a decrease in local wildflowers through competition

for resources; this can have a knock-on effect on specialist pollinator taxa [1].

20

1.1.4 Pests and pathogens

Parasitism by the Varroa Mite, also known as Varroa Destructor, has caused a

significant decrease in European honey bee colonies. Diseases such as deformed

wing disease, which severely affects the bee fitness, are caused by parasites as

it is considered a viral vector [1]. Viruses of this kind may endanger the Apis

colonies as they are highly infectious due to the proximity, which also may be

detrimental to the health of surrounding wild bee communities [1].

1.2 The economic and ecological importance of

insect pollinators

The importance of insect pollinators is often quantified in terms of their value

as ecosystem service providers, specifically, their contributions to global agri-

culture and food production. In 2009, Gallai, Salles, Settele, & Vaissiee [4]

estimated that global pollination services were worth 153 billion. A more re-

cent estimate by the Food and Agriculture Organisation placed between 5% and

8% of global agricultural production by volume, worth an estimated 235-577$

billion, as directly attributable to animal-mediated pollination; while around

75% of our most important food crops, accounting for a 35% of global agri-

cultural production, are at least partially dependant on pollinators to increase

yield [23,24]. The majority of the world’s staple crops may be wind-pollinated

(anemophilous), i.e., wheat, maize, barley, oats, and rice, but there is also ev-

idence to suggest that insect pollinators are common visitors to many species

presumed to be entirely anemophilous and that their visits may enhance crop

yield [25]. Aside from crop production, domesticated pollinator species like the

Western honeybee (Apis mellifera) provide additional sources of income to the

people and communities that keep them [24]. Honey is a valuable commer-

cial product [26], and the income gained from hiring out honeybee hives for

21

agricultural pollination services can be considerable. A classic example of this

is the hire and transportation of over two million honeybee hives from across

the United States for almond crop pollination in California [27]; beekeeping is

also an important poverty-alleviation tool in rural and developing communities

[24]. Hence, the economic value provided by animal-mediated pollination in

terms of employment within the agricultural sector [24]. Insect pollinators also

contribute to human wellbeing in a more qualitative sense. Current research

shows that human wellbeing, including our mental health, can be positively in-

fluenced by contact with nature and green spaces [28]. Since nearly 90% of all

flowering plant species rely on pollination that is animal mediated in order to

reproduce, maintaining diverse insect pollinator communities, especially within

urban centers, is only likely to enhance these benefits.

1.3 History of pollinator decline

Since the 1950s European honey bees have faced documented regional declines

[29], this is believed to have occurred due to the causes mentioned sub-chapter

1.1 and a fall in beekeeping in recent years [29]. Besides, honey bee colonies

have been monitored by organizations such as BeeBase [30] and the British Bee-

keepers Association [31]. One of the most challenging aspects of measuring pol-

linators is the scope of their wild communities. However, in the UK, 13 species

of bee have gone extinct since 1890, 8 of which are believed to have gone extinct

between 1930 and 1950. The latter is a time associated with changes in land

use, which was resulted by the outbreak of World War 2 [32]. This spread of

agriculture caused the decline of several natural meadows, areas of unimproved

grassland and hedgerows [9]. Consequently, fall in ranges of some bumblebee

species over Europe and the USA [9,20,33], similarily, the extinction of bumble-

bee species, for instance Bombus cullumanus and Bombus subterraneus in the

UK since 1940 [32]. The richness in native bee species declined in Britain and

the Netherlands by comparing values in 1980 and post 1980. In comparison,

22

hoverflies richness had an increasing trend in the UK and the Netherlands dur-

ing the same period [34]. Also, there is evidence of a degree of homogenization

in pollinator communities with 30% fewer species accounting for 50% of all the

records post 1980 [34]. A more in-depth study utilizing similar data through-

out more specific time frames agrees that after 1970 significant decrease in bee

species richness happened in the Netherland. In comparison, bumblebee species

richness falls in the UK. This increased spatial homogeneity of bee communities

that occurred in the UK and the Netherland. On the other hand, after 1990,

decreases in the richness in species began to lessen, as an increase in bumblebee

richness at a national scale in the UK and the rate of homogenization within

pollinator communities both the UK and the Netherlands slowed [35]. There is

a significant issue with the data used to generate results in pollinator decline,

which is that most of the past data compared to the modern approaches, which

was collected in an unstandardized manner that has no application of system-

atic methods [36]. This data can still result in beneficial outcomes. However,

the ability to obtain interpretable results from such data depends on consistent

sampling efforts over time, space, and change [37] in motivation for making the

recording might have also been biased results. Also, biological monitoring in

the past was mainly done for the interest of a local scale [36], and it is viable

to assume that the surveyors were targeting rare species. Therefore, the ratio

of rare to common species might have high value throughout their records [38].

On the other hand, modern systematic monitoring is possibly less focused on

recording full species inventories than on representative sampling, and so maybe

recording a lower ratio of rare to common species [38]. This change in emphasis

might be the reason behind results illustrating increased biotic homogenization

over time. For instance, in case fewer species are being recorded because of

difference in historical recorder motivations as opposed to actual decreases in

rare species [38].

In addition, there are substantial problems associated with the evi-

dence supporting insect pollinator declines [39]. Primarily, the lack of data

23

concerning the abundance of individual insect pollinator populations [39]. The

vast majority of studies exploring pollinator decline do so in terms of species

occurrence, species richness, and range sizes [7, 11, 14, 40, 41], but none of these

measures, although valid, allows scientists to make any judgments regarding how

much an individual species has declined by over a given period of time within a

given area. The main reason for this absence of abundant data is a global lack of

centralized, systematic insect pollinator monitoring schemes [42]. Monitoring

schemes exist in several countries, such as the Great Sunflower Project in the

United States and the Wild Pollinator Count in Australia. Nevertheless, the

aforementioned schemes are not aimed at the collection of species-level data,

which are critical to the investigation of population trends. The UK’s national

Pollinator Monitoring Scheme (PoMS) is the only example of a nationwide, sys-

tematic pollinator monitoring project collecting species-level data in the world

and they state that ”whilst the distribution of some species of pollinator has

become more restricted the extent of the declines in overall pollinator abun-

dance are largely unquantified. The UK PoMS (Pollinator Monitoring Scheme)

aims to better understand how insect pollinator populations are changing across

Great Britain.”. Hence comes the need to provide a method that can solve the

problem of monitoring bees by quantifying them over a period of time over an

area to collect data on their redundancy to help reduce the decline of pollinators.

Finally, the link between identifying species and reducing their decline

can be found through the Prestonian shortfall [43]. The latter means that

there is not enough information available regarding the abundance of most in-

vertebrate species that include pollinators such as bees, wasps, and hoverflies.

Additionally, this shortfall is the main reason behind the academic and indus-

trial efforts toward insect pollinator conservation, which have resulted in an

increased need to monitor insect pollinator populations. In other words, it is

essential to observe how pollinator species populations are changing with space

and time to target our conservation efforts. As a result, when it is found that

the population of a particular species has decreased in abundance over time,

24

it is then possible to start assessing why that has occurred. For example, was

there an increase in pesticide use in nearby farmland, or has the habitat that

a species relies upon becoming significantly fragmented in a specific part of a

country?

25

1.4 Pollinator monitoring

Current methods of monitoring such as pan traps and which are described in

detail in section (2.2.1) rely on visible morphological characteristics. Addition-

ally, such methods require the killing of the species in order for it to be identified

under the microscope, which is considered an inhumane method of monitoring

and defies the purpose of monitoring pollinators, which is protecting them from

decline. Several smartphone applications already exist to provide a method of

visual identification [44]. However, such classification methods need human

presence at the time of identification to carry out the decision process. Hence,

these methods consume a considerable amount of time and require skilled indi-

viduals who obtain visual integrity since several bumblebee species seem similar

to the untrained eye. Furthermore, classification techniques that are based on

visual features (image recognition) are an option that would be beneficial. How-

ever, it is challenging to implement due to many factors, such as the movement

of the pollinator, image resolution, and light. On the other hand, the buzzing

sound of pollinators is relatively not as challenging to obtain as sound can

be recorded remotely and continuously. Hence sound-based classification tech-

niques are more practical than traditional surveying methods. Furthermore,

Sound-based classification techniques are easy for the public to use and do not

require a trained eye like image recognition techniques in the process of identi-

fication. Finally, the most important advantage is that bees are kept alive and

are not required to be killed in order for them to be identified.

26

1.5 Project aims and hypothesis

The need for pollinator monitoring is getting more crucial every day, and widely-

used techniques for species identification to date are still microscopy-based and

require the manual collection of individuals, resulting in the individuals’ deaths.

There still has not been devised as a method of identifying pollinators automat-

ically using bioacoustics and machine learning. Therefore, this project aims to

develop an embedded system capable of acquiring the sound of pollinators from

a field, then a novel technique for extracting the features from the acquired

audio signals is implemented and compared with an existing feature extraction

method. The features are then fed to four different classification algorithms,

and an analysis as to which algorithm performed better is shown.

Hence the following hypothesis can be formulated:

”Bio-acoustics combined with machine learning techniques can remove the need

for human intervention in species identification and avoid sacrificing insect

species.”

Having proposed this, will this technique help improve monitor pollinators and

hence lead to the reduction in pollinator decline. Lastly and most importantly,

will the help of machine learning and algorithms perform better than existing

pollinator monitoring methods and provide better results in terms of quality

and overcome the disadvantages of typical pollinator monitoring techniques?

Contribution 1: statistical time-domain signal coding

In this research, a novel technique called statistical time-domain signal cod-

ing (S- TDSC) is developed to extract the features from audio signals. This

technique is entirely based on the time domain. Therefore it is not computa-

27

tionally expensive when compared to frequency domain-based feature extrac-

tion techniques. Additionally, S-TDSC does not require looking up tables as in

previously designed time-domain feature extraction methods, and what makes

S-TDSC unique and powerful in terms of audio feature extraction is the fact

that it codes any audio signal fed to it to 122 features only regardless of the

length of the audio file.

Contribution 2: Comparison between STDSC and a frequency domain-based

feature extraction.

In chapter 3, a comparison between STDSC and a frequency domain-based

feature extraction technique is shown as well as an in-depth discussion of why

statistical time-domain signal coding has been chosen as the primary feature

extraction method for this project.

Contribution 3: Classification methods for species identification

Moreover, in chapter 4, an example of 4 species classification is shown using

the features extracted from the audio recording of the species using S-TDSC.

The features are fed to four different classification models, which are support

vector machines (SVM), Random Forests (RF), Extreme Learning Machines

(ELM), and a Back Propagation. Finally, all of the classification models are ex-

plained in detail, and the performances of the four classifiers are discussed and

compared. The classifier with the highest accuracy is set to be implemented in

the embedded system shown in chapter 5.

28

Chapter 2

Background

2.1 National pollinator monitoring in the UK

Currently, the pollinator monitoring scheme in the UK is essential [17], and

due to the recent concern over pollinator decline in the UK, (DEFRA) The De-

partment of Environment, Food, and Rural Affairs has authorised the creation

of a National Pollinator and Pollination Monitoring Framework (NPPMF). The

latter sets out the design for a standardised monitoring programme that aims to

gather long term data on the national pollinator populations in the UK [18,45].

This plan is to test the efficiency of monitoring methods nowadays and how they

are applied to different types of participants, so they can enhance the under-

standing of the current trends of pollinator taxa in the UK and the place as to

where they occurred. Therefore, allowing more targeted solutions to the causes

of the decline in the future.

29

2.2 Common monitoring methods

There are many methods used to survey and monitor insect pollinator popu-

lations. These can be separated into two categories: active methods, where

surveyors are involved in the capture of data or samples, and passive methods,

where a range of traps are employed to collect data without the involvement of

the surveyor [45]. Examples of both methods, as well as advantages and disad-

vantages, are illustrated in table 2.1. In recent years, there have been numerous

studies that have explored the sampling biases of different insect pollinator sur-

vey methods, as well as their performance in relation to other methods. How-

ever, there is still no consensus as to which method or combination of methods

constitutes the most effective approach to pollinator monitoring. In addition,

the two most commonly used survey methods for insect pollinator communi-

ties are pan trapping and transect surveys [46–49]; they are also the two most

commonly compared survey methods, in terms of their performance.

2.2.1 Trapping and transect surveys

Pan trapping, also called Moericke traps [50], is a passive sampling method that

uses brightly-coloured bowls, filled with water, as surrogate flowers to attract

foraging pollinator species, which then drown in the water [46,47]; different in-

sect groups have evolved specific colour preferences in relation to their preferred

source of forage [51]. Research suggests that oligolectic bee species, which are

defined as bees that exhibit a narrow, specialized preference for pollen sources

are captured more often in pan traps whose colours are similar to these of their

preferred forage [52]. While Saunders and Luck indicate that colour prefer-

ences are context-driven, and may change depending on habitat or background

floral colour [53, 54]. Research suggest that pan traps may catch fewer insects

in florally-rich habitats due to competition between flowers and the bowls for

insects [55–57]. Pan trapping is often considered to be more cost-effective than

30

more active survey methods since it requires less in-person time within the field

[47]. However, time is still required to sort through samples and maintain the

equipment [49].

There are also other types of trappings such as malaise trapping, vane

trapping, and nesting trapping. Malaise traps consist of an open-sided tent-like

structure and function by intercepting flying insects using a central fabric wall.

Insects are funnelled up towards the upper-front corner of the tent, where they

are captured within a plastic bottle that is sometimes filled with water, in a

manner similar to pan trapping. Malaise traps have been compared with pan

trapping, in terms of their performance, with Bartholomew showing that pan

trapping and Malaise trapping catch approximately similar species, even though

pan traps caught a higher overall abundance [58]. Campbell and Hanula found

that pan traps performed better than Malaise traps in terms of both species

richness and abundance while showing that the addition of coloured panels to

Malaise traps also increases the abundance of insects captured [59]. The advan-

tage of these traps lies in the fact that surveyors can leave them unattended for

long periods with little reduction in efficacy [58]; however, regular trips must be

made to empty the traps to the plastic bottle in which the insects are captured

[58,59]

On the other hand, vane traps are becoming more prevalent within the

literature concerning insect pollinator survey methods. Vane traps consist of a

plain plastic bottle, filled with water, to which two brightly-coloured, vertical

“vanes” are attached above [60]. Multiple colours could be used, although,

so far, only yellow and blue have been tested [60–62]. Vane traps function

in a similar way to pan traps, using bright colours to attract foraging insects.

On their own, they have been shown capable of catching a diverse selection

of bee species in a range of habitats [60, 61], with blue vane traps being the

most effective [62, 63]. In comparison to other methods, namely pan trapping,

blue vane traps have been shown to catch significantly more insects in terms of

31

abundance, than pan trapping [63]. In fact, Kimoto et al. suggest that, due

to their effectiveness in initial studies, fewer vane traps may be needed to carry

out a monitoring survey than other passive methods like pan traps [61]

Finally, trap nests are a much more specialist survey tool than other

trapping methods. This is becuase they are only useful for monitoring the

diversity of cavity-nesting bee species such as the Megachilidae in the UK [46–

48]. However, this method may also provide data on other cavity-nesting insect

species and their parasites. These sampling abilities for these traps are reliant

upon their design. Specifically, the type of materials used to construct the

nesting tubes, the size of the tubes themselves, and only collects data on a

subset of the overall insect pollinator community [46,47]. However, they are a

useful survey tool when used in conjunction with other methods [47,64].

Figure 2.1: Common sampling methods: (a) Pan traps (b) Blue vane traps (c)

Malaise traps (d) Sweep nets [64]

Transect surveys are an active sampling method that involves walking

32

along pre-set routes at a slow pace and recording the number of insects observed.

If the study aims to record species-level data, it is also common for individuals

to be captured using nets. As with all active methods, transect surveys are

open to collector bias and may have additional biases relating to the size and

flight speed of individual taxa. For example, Potts, Evan, Boone (2005) list

transect surveys as less likely to sample smaller, faster-flying insect pollinator

taxa. Unlike passive methods such as pan trapping, transect surveys do allow

observations to be made regarding insect pollinator behaviour [49]. This method

is quite labour-intensive, requiring extensive periods to be spent in the field,

together with taxonomic skills and high levels of concentration. However, little

equipment is needed beyond a net, also since the captured samples are not

drowned, they can be easier to identify [46,49].

Direct comparisons between pan trapping and transect surveys, in

terms of their performance, are common within the literature [47–50,55,56,65].

Most of the studies encourage using pan trapping over net sampling in terms

of better monitoring results. however Westphal found that pan traps better

represented bee species richness than either variable or standardised transect

surveys [47].

Figure 2.2: Transact survey

33

Criteria Passive

methods

Active methods

Example Trap nests, pan

traps and vane

traps

Hand netting

along a set

distance over a

set amount of

time.

Advantages Does not require

experience in

collecting samples

Measures

population per

density unit area

Disadvantages Does not allow

observation of

pollinator-flower

interaction or

measure

population

density

More experienced

collectors will get

more collections

than those with

less experience

Table 2.1: Examples of passive and active methods as well as advantages and

disadvantages

2.2.2 Bio-acoustics

Since pan traps and net sampling both depend on visible characteristics as

species have different appearances in terms of their body size, hair colour and

pattern. Within the same species, workers are smaller than queens. While males

are typically different from females in colour scale as well as physical character-

istics as males have different length of antenna compared to females, and they

also lack pollen baskets in their legs [66]. Furthermore, there are many web

and smartphone applications that can be used for image identification [44, 67].

34

However, as mentioned in the introduction, such classification techniques have

several drawbacks such as requiring humans to carry them out in the decision

process, and technical issues arising from the movement of the species and res-

olution of the image. On the other hand, the sound of the flight of pollinators

is relatively easy to acquire remotely and continuously; hence, pollinator mon-

itoring is conducted easier when compared to the old scientific surveys that

collect species individually. Moreover, sound-based animal identifications have

been made previously; these animals included frogs and birds. For instance k-th

nearest neighbours and support vector machines have been implemented as an

audio feature extraction method to classify frog species. The result of this clas-

sification method reached 90% accuracy for six species [68]. Additionally, audio

features extracted from four types of passerine birds using the Gaussian mixture

model (GMM), and Mel- Frequency Cepstrum Coefficients (MFCCs), which is

observed in section 3.4.3 resulted in 90% identification accuracy [69]. In terms

of bird species, there was another approach used to classify 28 bird species using

probabilistic models, which has resulted in around 84% classification accuracy

[70]. While the latter experiment reached 100% in some instances, it also de-

creased to under 10% as well, which was justified in the research paper with

the shortage of data available. Furthermore, different groups compared accu-

racies of other machine learning algorithms for the dataset of birds and frogs

[71] and bird species [72]. SVM performed well when implemented on both

datasets to reach more than 90% identification accuracy. Furthermore, there

have not previously been substantial insect sound identification applications,

especially for monitoring pollinators. Nevertheless, the minor amount of work

that has been done in this field was either to monitor biodiversity or to reveal

pests, such as larvae [33]. Additionally, several artificial neural network struc-

tures have been designed for sound-based classification of insects such as beetle

species when they bite on fibre. These studies included multilayer perceptron

(MLP), self-organising map, and learning vector quantisation implemented on

3 to 4 audio files of each beetle species. The resulted classification accuracy

reached 80%. Similarly, using the same neural network structures, 25 British

35

Orthoptera species were classified with an accuracy of 99%. However, the au-

thors have justified such high accuracy with the high-quality audio recordings

that included minor noise interference [73]. Furthermore, a technique close to

the human recognition system was implemented on a sample of 313 species of

crickets, katydids, and cicadas [74]. The scientists achieved the feature vectors

through a cascaded linear frequency cepstral coefficients, probabilistic neural

networks and generalised method of moment (GMM). As a result, the achieved

classification accuracy reached 86%. The scientists stated that the classification

accuracy would increase if these experiments were applied on the subfamily level

[74].

Various websites and mobile applications for identifying animal species

from sounds exist. Generally, animal sound identification depends on detecting

structured sounds like a dog barking or a horse neighing. However, insects that

fly make sounds that are biologically defined as monotonic buzzing, which is

very different in nature than other animals as it is unstructured. Hence insect

classification could easily be mistaken because of the nature of the input au-

dio signal. Moreover, sounds produced by pollinator species such as bumblebees

can also vary depending on different circumstances, for instance, buzzing during

flight, hissing, and sonication. Additionally, sonication is the sound produced

when bees extract pollen from anthers. These different sounds occur as a result

of oscillations of the flight muscles inside the metathorax. In case the pollinator

species are flying the frequency at which an undamped system will vibrate is

called the natural frequency [75]. Furthermore, in order to get the pollen out of

individual flowers, bumblebees make sonication sound, which occurs at signif-

icantly high frequencies [75]. Furthermore, through placing their thorax near

anthers, bumblebees make a sound at a noticeably high frequency of around 400

Hz [9,76]. Furthermore, when disturbed, bumblebees hiss [77], the hissing was

discovered to happen at the presence of potential intruders. It was evident that

hissing can occur by simulating an intruder though vibrating the nest or raising

the density of CO2 in air [77]. Higher hissing and sonication frequencies have

36

been noticed to be made when the species move their flight muscles without

moving its wings [75, 77–79]. Finally, researches have proven that when bum-

blebees are placed in a large space or when the temperature goes down, they

make audibly distinctive sounds [78].

2.3 Observation of the used species

The audio recordings to be classified in this project are produced from bumble-

bees, honey bees, common wasps, and hoverflies. Also, bumblebees and honey-

bees are both under the bees family, in which there are around 20,000 species

that have almost identical body shapes, which can only be distinguished by a

trained eye [80]. Most of the flying insect pollinators including bees have five

shared physical characteristics, which are two sets of wings, the outer shell, also

known as the exoskeleton, abdomen, thorax and head as shown in figure 2.3 [80].

Figure 2.3: Honey bee [79].

37

When bees fly, their wings make a 230 beats per seconds flap which

results in an air vibration and therefore sound is generated. The faster the wings

beat, the higher the pitch of the sound [81].

Bees make buzzing sounds for several reasons such as communications

and pollination; the frequency seems to vary based on the reason for flight.

According to laboratory experiments done by Hassall, the buzzing frequency

bumblebees produce when roam flying for no purpose varies between 140.7 Hz

to 218.7 Hz, Whereas under the same circumstances honeybees produce around

171.2 Hz [82].

Furthermore, when pollination occurs, bees create sound by vibrating

their bodies, and for that, they use the same muscles used to fly but do not

fly. The resultant rapid vibrations can reach 440 beats per second; therefore,

pollen gets extracted from flowers [81]. However, some flowers are harder to

extract pollen from than others, so pollinators require extra work. For instance,

tomatoes and blueberries have their pollen trapped inside the pore. Therefore,

bees hold on into the flower, bite inside any small hole they find and vibrate

quickly until the pollen is unlocked [81].

Common wasps, though, have some standard features similar to bees,

such as their slender, segmented bodies, their stings, and living habitat. How-

ever, what sets them apart from bees are their pointed lower abdomen, slender

waists, and legs with fewer hairs [83]. There is a significant number of around

thirty thousand wasp species today which all vary in terms of the colour scale

and dimensions. In terms of habits, wasps are considerably different, and their

connection to other creatures can significantly vary [83]. Based on a study,

the frequency of the flight of wasps varies between 157.5Hz and 175.4Hz; how-

ever, the frequency of the post-attack buzzing sound of a common wasp varies

between 159.8Hz and 171.6Hz. Besides, no studies show the frequency of polli-

nation buzzing frequency of common wasps [82].

38

Figure 2.4: Common wasp [82]

Furthermore, There are about 6000 species of hoverflies which often

referred to as flower fly from their behaviour of hovering around flowers [84].

Hoverflies morphological appearance has black and yellow stripes, like bees and

wasps, which act as a form of protection. Due to their appearance, they can

often be confused for a bee or a wasp. These stripes act as a form of camouflage

to help the hoverfly avoid potential predators who think they can sting [84].

They do, however, only have two wings, while bees and wasps have four. They

are also crucial in pollinating flowers and are natural enemies of pests. Because

of this, farmers have been using them for biological control, a form of pest

management [84]. Based on a study, the frequency of the sound of the flight

of flies varies between 159.4Hz and 171.3 Hz. However, the frequency of the

post-attack buzzing sound of a common wasp varies between 152.2Hz and 177.1

Hz [82]. Finally, there are no studies found to show the pollination buzzing

frequency of hoverflies.

39

Figure 2.5: Hover fly [83].

2.4 Summary

This chapter reviews three related areas to this project, the national pollina-

tor monitoring in the UK, the common monitoring methods, and bioacoustics

combined with a brief overview of machine learning techniques for wildlife clas-

sification. In particular, the advantages and disadvantages of common methods

used for pollinator monitoring are discussed. Similarly, the benefit of using the

combination of bioacoustics and machine learning technique is illustrated.

40

Chapter 3

Feature extraction

Feature extraction has posed a challenge to scientists for many years, due to the

need to isolate the optimum set of features for the best solutions to recognition

problems. The features of the audio files of the bee species are extracted using

time-domain signal coding (TDSC). Thus, this chapter begins with a description

of the audio files dataset that feature extraction will be performed on, which

will be fed to the classification stage. Then the chapter provides an in-depth

observation of TDSC as a feature extraction method, then covers the principles,

history, and development of TDSC since the 1970s, when it was first developed

as time-encoded speech (TES) [85], up until its current format. Additionally,

a novel approach based on TDSC and statistical time-domain signal coding

(S-TDSC) is introduced and discussed. This is followed by an illustration of

its classification parameters. Moreover, a frequency domain-based algorithm

implemented in smartphone applications used to identify songs is produced to

extract features from the audio file sets. Finally, a comparison between the

time domain and frequency domain-based techniques is made, and the use of

S-TDSC to extract the features is justified.

41

3.1 Data collection

The acoustic data were collected by Thomas Dally as a part of his PhD re-

search at the environmental science school at the University of Leeds. These

acoustic recordings of the species occurred between June-September 2016 and

June-August 2018 in multiple sites around Leeds, West Yorkshire, Wimborne

Minster, and Dorset. Sites varied in terms of the diversity of insect and plant

species present, including wildflower meadows, brownfield sites, and urban parks

and gardens. Acoustic data were collected using an omnidirectional Sony micro-

phone attached to a Sony ICD- PX312 Dictaphone. The microphone was placed

near flower-visiting insects, no-more than 5cm away, while they were foraging

from or visiting flowers, as illustrated in figure 3.1. Once airborne, at least ten

seconds of flight sounds from each individual was recorded. Each individual was

identified by eye during this recording period. Once flight sounds from an indi-

vidual had been recorded, Tom has immediately moved to another individual,

preferably from a different pollinator species, in an attempt to reduce the likeli-

hood of recording the same individual multiple times. Audio files were recorded

at 32 kbps/44.1 kHz in the MP3 format.

42

Figure 3.1: Acoustic recording of flying insects taking place in the field by

Thomas Dally.

Finally, the data set consists of audio files that correspond to 4 different

species: bumblebees, common wasps, hoverflies, and solitary bees, the number

of audio file recording for the species is 69, 21, 42 and 39 respectively.

3.2 Time domain signal coding (TDSC)

Time encoded speech (TES) consists of novel signal processing and pattern

recognition techniques that were developed to represent and classify band-

limited signals. TES relies on the delivery of codes that describe successive

segments of speech waveforms. In other words, the speech waveform is divided

into segments between the sequential real zeros of the function. For every seg-

ment a code of 1 word is derived from two parameters of the segment, which are

the time duration and its shape, but quantised. Duration indicates the number

of elements between two successive zeros, and shape is in principle the number

43

of negative maxima and positive minima during the same period. King and

Gosling used TES to encode speech signal waveforms for a small bit rate over

poor quality channels. This method has subsequently been used in several ap-

plications, including acoustic condition monitoring of machinery [86] and heart

sound analysis and defect identification [87].

In 1995, King developed time-encoded signal processing and recog-

nition (TESPAR) [85], although this technique is based on TES schemes, it

incorporates signal recognition and classification as matrix data structures are

developed. The basis of TESPAR was developed according to a specific math-

ematical description of waveforms that involves polynomial theory. The latter

exhibits how a band-limited signal can be expressed entirely through the loca-

tions of the real and complex zeros. Using these locations, a vector quantisation

process was implemented to code these data into a vector that consists of about

30 discrete numerical descriptors [87]. The TESPAR coder outputs a simple

numerical symbol stream that could be transformed into a numerous progres-

sively informative structure of matrices. For instance, the S- matrix, which is

a single-dimension vector, that represents a histogram which shows how many

times each TESPAR coded symbol occurred in the data flow. Another distinc-

tive data set is the two-dimensional histogram or A-matrix, produced from the

frequency of symbol pairs, which do not have to adjacent. These developed

matrices are fed into an artificial neural network (ANN) for classification, and

pattern recognition are performed on the signal. This technique was used in

the verification of the identity of individuals, through them speaking a simple

common phrase [85].

Similarly, the TES technique that the novelty of this thesis is based

on is called Time-domain signal coding (TDSC). this technique was developed

through further development in a time encoded signal processing and recognition

(TESPAR) [85]. TDSC is used to observe the audio signal in the time domain,

where the signal is divided into epochs between each successive zero crossings.

44

Each segment is then analysed alone, and the number of positive minima and

negative maxima for each of the epochs are determined and referred to as the

shape (S). Moreover, the number of samples within each segment of the signal

is determined and referred to as duration (D).

Figure 3.2: shape, duration and zero crossing on a waveform

These results are then given a code obtained from a lookup table (code-

book). The above figure presents a graph on which an epoch is indicated between

the two zero crossings shown by the red points. Between these zero crossings,

there is a shape of 2 and a duration of 7. Therefore, based on the following

codebook, the D-S pair give a code of 12.

45

Figure 3.3: Example of codebook

When all of the waveform is encoded using this method, the result is

a unique representation of the signal, through a series of codes. However, when

TDSC is used as a feature extraction technique, the codebook has to be defined

first. The other features outside the scope of the codebook will lead to errors in

the representation of the derived waveform. For instance, suppose there is an

epoch that has a shape of 5 and a duration of 6. Therefore, there will be no code

associated with it based on this pair of duration and shape, according to the

codebook illustrated in figure 3.3. Therefore the code that would be assigned to

it is the maximum duration and the maximum shape in the codebook, which is

13. Hence an error has occurred. At this point, the codes are obtained and are

available for manipulation to make the feature vector, which is then fed to the

ANN for the classification stage. One of the pre-existing manipulations is the

production of a histogram of the frequency of occurrence of codes. Therefore,

the S-matrix (1-dimensional) shown in the subfigure(b) of figure 3.4 is produced.

46

Furthermore, another technique is to examine the occurrence of pairs of symbols

over time to produce a histogram, which illustrates the quantity of symbols i

and j of the codes that have occurred after each other. In other words, how

many times i is followed by j by a lag L [69]. A 2-dimensional histogram, the A-

matrix, can be formed, and illustrated in subfigure C of figure 3.4 and expressed

mathematically as:

aij =
1

(N − L)

m=N∑
n=L+1

Xij(n) [79] (3.1)

Where:

• aij=element (i, j) of matrix A.

• L = lag.

• xij(n) = 1, if t(n)=i and t(n-l)=j (0 otherwise) and t(n) = nth symbol

47

Figure 3.4: Waveform, A matrix and S-matrix of Grey Bush Cricket [69]

3.2.1 The mathematical basis of TES, TESPAR, and TDSC

In 1948, Licklider and Pollock proved that a decreased speech wave to a square

wave with a variable period through infinite peak clipping, while still being

intelligible is possible [88]. This proof led to a square wave that is distorted but

90% intelligible. The resulting wave was found to have only one common feature

with the original un-clipped wave, the location of the zero-crossing points. Bond

and Cahn then improved Licklider and Pollock’s work by showing how a band-

limited signal is fully described by the locations of its complex and real zero

[89, 90]. This is as follows: Assuming f(t) is a band-limited signal in (o,w),

and V(f) is its double-ended Fourier transform, the function f(z) is described as

48

follows:

f(z) =

∫ +w

−w
V (f).ejwπfzdf (3.2)

z = t + ju is a complex variable whose real axis coincides with the

real time axis, whereas f(t) is a real entire function described by the location

of zeros that may occur in real or complex conjugate pairs. Moreover, f(z) is

also expressed by the infinite product:

f(z) = f(o)

∞∏
n=1

(1− z

zn
) (3.3)

Voelcker then proved the TES theory, which has led to the mathe-

matical descriptions of the locations of all zeros in the complex signal. These

locations are mapped to a sequence of discrete locations in a vector.

As mentioned earlier, TES analyses an input signal by dividing it into

segments between successive real zeros. Each of these segments are called an

epoch, and these epochs are allocated a code in the form of a single digital word.

This code is given by the two parameters of each epoch, which are the quantised

time duration (D) given by the number of samples and the shape (S), given by

the number of positive minima and negative maxima between zero crossings.

As a result, an accurate approximation of the complex zeros within the epoch

is obtained.

Gosling developed TES further with the addition of signal recognition

and classification to the set of codes initially obtained by TES, naming this

new technique TESPAR. The latter was then expanded to TDSC by applying

matrix scaling, matrix normalisation, and other methods to automatically select

code books [91]. TESPAR and TDSC allow the development of matrix data

49

structures by manipulating TES codes in the form of either A-matrix or S-

matrix. These matrix data structures characterise the signal, given that it is

stationary over time intervals. Moreover, A-matrix and S-matrix can be used

as inputs for ANNs, allowing for recognition and classification techniques to be

implemented.

3.2.2 TDSC for insect recognition

Swarbrick raised the question of whether TDSC could be applied in other areas,

after using it in his work on acoustic diagnoses of heart defects [87,91]. Chesmore

then used this technique to classify different species of Orthoptera (grasshoppers,

crickets, and bush crickets) [92]. Chesmore was able to classify 13 species of

Orthoptera with 100% accuracy under low noise conditions [33].

3.2.3 D-matrix

D-matrix is another feature extraction technique based on TDSC. This method

was developed to replace the code book [93]. Therefore, rather than mapping

the D-S pair combination onto a codebook, the code consists of the shape and

duration. For instance, using the codebook in figure (3.3), if an epoch has D=7

and S=2, it will be given the code 9. However, using the D-matrix method, the

assigned code will be calculated using the following equation:

Code = ((S × Sf) +D) (3.4)

Therefore, if the scaling factor SF = 100, which is an experimental

value that produced the best coding result, which led to an improvement in

classification accuracy when compared to other scaling factors. The result of

the equation will be a code of 209 for a duration of 7 and a shape of 2. Sim-

50

ilarly, when an epoch has D=5 and S=2, the code will be 205. As a result,

the D-matrix gives a solution for the pre-generated codebooks and the related

issues of optimisation and determination. However, the main disadvantage of

this technique is that it is not suitable for an audio signal such as pollinator

species recordings with a considerable amount of zero crossings and a large num-

ber of duration and shape values and hence, a significant feature vector length.

As a result, this technique does not fit the aim of this project, which is imple-

menting an embedded system that can be deployed in a field, whilst keeping the

computational complexity such as memory and processing power to a minimum.

51

3.3 Observation of statistical time-domain sig-

nal coding (S-TDSC)

A common issue with these TDSC methods in the feature extraction stage of

this project was the length of the feature vector. When the feature space vector

is passed to any classification algorithm (discussed in the following chapter), it

uses a vast amount of memory and computational resources. The result is that

either the compiler of the software (Matlab and Python) takes a long time to

manage all matrix manipulations or the consumption of considerable memory

space. Hence, the software crashes. S-TDSC solves this problem by applying

statistical manipulations to the duration and shape values so that every audio

file signal is coded in a feature vector that consists of just 25 samples.

Firstly, in S-TDSC, the duration of each epoch indicating the number

of samples between zero crossings is extracted and arranged in the order of

occurrence into a vector labelled ‘D’. Similarly, the number of positive minima

and negative maxima in each epoch is determined and stored in a vector labelled

‘S’. Other vectors are also initialised and labelled ‘maxima’ and ‘minima’, where

the amplitude values of the negative maxima and positive minima are stored,

respectively. For instance, figure 3.5 illustrates the plot of an array x where x

= [2,1,4,2.5,6,4,8,-6,-4,-5,-4,-5,-2,-5,-4,-5,2,1,4,2.5,6,4,8,0].

52

Figure 3.5: Positive minimas, negative maximas and zero crossing on a waveform

Therefore, the vectors D, S, maxima, and minima are as follows:

• D = [7., 9., 8.]

• S = [3., 4., 3.].

• Maxima = [-4.0, -4.0, -2.0, -4.0].

• Minima = [[1.0, 2.5, 4.0], [1.0, 2.5, 4.0]].

The reason for choosing D and S is because it has been shown by the

work implemented by Chesmore [92], that these two parameters best describe

the signal. Also, experiments showed that when the vectors maxima and minima

were chosen as parameters for the feature extraction technique to be applied,

the result increased the classification accuracy. The latter resulted from passing

the feature vector to the classification algorithms described in chapter 4.

53

Additionally, more parameters were initially taken into account for the

feature extraction stage. However, after experimenting with these parameters,

the result was a decrease in classification accuracy. Hence these parameters were

removed. Additionally, the removed parameters included the number of negative

minimas and positive maximas stored in a vectore named L, the magnitude of

samples in vector L, the number of the zero crossings along the signal, the

skewness, and the signal variance.

Furthermore, the conducted experiments included using these removed

parameters independently and combined with the other removed or chosen pa-

rameters for the feature extraction technique to be implemented, then using the

result for the classification stage.

The following flowchart illustrates the S-TDSC feature extraction al-

gorithm:

54

Figure 3.6: The S-TDSC algorithm

55

The feature vector consists of 25 elements. Firstly, the mean, maxi-

mum, variance, and skewness operations are applied to the vector D to deter-

mine features 1-4. Features 5-8 depend on the sign of the first sample in the

audio signal; for example, suppose the signal is X, shown in the above graph,

the first value of x is a positive number, which indicates that the first epoch

is above the horizontal axis. Hence, elements 5-8 in the feature vector are the

mean, maximum, variance, and skewness of the positive minimas, which are

placed in the even number positions in the vector S. Similarly, features 9-12 are

the mean, maximum, variance, and skewness of the positive maximas located

in the odd number positions in the vector S. In contrast, if the first element of

the signal is a negative number, then elements 5-8 of the feature vector are the

mean, maximum, variance, and skewness of the negative maximas, followed by

the features 9-12, which are the same statistical operations but for the positive

minimas.

Additionally, features 13-17 and 18-22 are the mean, minimum, maxi-

mum, variance, and skewness of the vectors maxima and minima. There is an

additional statistical operation applied to maximas and minimas, which is the

minimum operation. The latter is added because when the minimum opera-

tion is applied to the D and S vectors, it results in zero improvements in the

classification accuracy, as shown in the following chapter.

Feature 23 consists of 40 samples. In other words, feature 23 is a vector

on its own that consists of 40 samples added to the original features vector.

Figure 3.7 illustrates the original vector added to it feature 23 highlighted in

red as follows:

56

Figure 3.7: first 23 elements of the feature vector, where feature 23 consists of

40 elements.

The flowchart below illustrates how the elements comprising Feature

23 are obtained:

Figure 3.8: Obtaining the elements of feature 23.

57

According to figure 3.8, a new vector labelled features 23 consisting of

40 elements of values zero is created. Moreover, through vector summation, D

and S are summed, which results in a new vector called summation. The reason

for selecting the distribution of the summed values of vectors D and S for feature

number 23 is because after intensive experimental work of choosing the most

optimal feature, this feature specifically was found to increase the accuracy

of the classification in the next stage. The elements values of summation are

quantised as shown in the above figure. Each of the quantised values are counted,

and the result is positioned at each element in Feature 23. As mentioned earlier,

the elements of Feature 23 are added to the vector of features. Feature 24

consists of the same number of elements as Feature 23, with these feature vectors

nearly identical in element acquisition. The only difference is that, rather than

quantising the summation of D and S, only the D vector is quantised in Feature

24. Furthermore, the 40 new elements of Feature 24 are added to the features

vector, which is, at this point, comprises 102 elements. Lastly, Feature 25

consists of just 25 elements, where the maximum value of the elements is 100,

and the rest are identical to Features 23 and 24. Figure 3.9 illustrates the whole

feature vector in its final form:

Figure 3.9: Final feature vector

3.4 Frequency domain

The frequency domain is used as a feature extraction method in the field of

acoustic identification of species. For instance, Cheng et al. were able to iden-

tify a diverse dataset that consist of four species of passerine birds using prob-

58

abilistic models, notably Mel-Frequency Cepstrum Coefficients (MFCCs) and

the Gaussian mixture model (GMM) as audio features [68]. They achieved

approximately 90% accuracy in classification. Similarly, Lee et al. implemented

a technique on a broader dataset of birds, reaching an overall 84% classification

accuracy on a 28 bird species [69]. The classification achieved 100% accuracy for

several species, while it was significantly lower (less than 10%) in some cases.

Such low accuracies were due to the similar frequency range of certain birds

within the experimented data set. The following are a variety of the most com-

monly implemented techniques for extracting features based on the frequency

domain.

3.4.1 Fast fourier transform (FFT)

The discrete Fourier transform (DFT) is applied to calculate the frequency

component of a signal with a computational complexity of O(N2).

FFT is used to calculate DFT for a discrete signal, which has a com-

plexity of O(N logN) [94]. Computing the FFT for a long signal is computa-

tionally expensive, and FFT assumes that a signal is stationary. Hence it should

not be used for non-stationary signals. In order to solve this issue, an adjust-

ment was made in FFT to produce a short-time Fourier transform (STFT). The

latter is obtained by splitting the signal into small chunks, with each chunk as-

sumed to be stationary. Additionally, a smoothing window, such as Hamming

or Hanning, is applied to smooth out the signal near the end of each chunk

and avoid a high-frequency response when FFT is implemented. The frequency

components obtained using FFT are widely used as features in the classification

of signals, not only in bioacoustics classification but also in the classification of

signals in general [95].

59

3.4.2 Fast wavelet transform (FWT)

Wavelet is similar to FFT in transforming the signal into several sinusoids with

different frequencies. However, it is implemented in terms of wavelet transforms.

Moreover, wavelet transformation has a clear advantage over FFT in terms of

conversion from time to frequency domain. For instance, the specific points in

the time domain where it is not possible to obtain the exact frequency. There-

fore, when transforming the signal from the time domain to the signal domain

using FFT, temporal properties are eliminated due to the assumption that the

signal is stationary. Therefore, STFT is used to solve this problem. However,

when processing the signals in small windows, the window remains fixed regard-

less of any change in the geometry of the signal, which causes a loss of resolution.

This disadvantage of Fourier transforms is related to the uncertainty principle

detailed by Heisenberg in 1927, which states that either the direction or the

speed of a particle can be determined, but not both. Wavelets solve this issue

using dynamic resolution, depending on the frequency range upon which the

signal is analysed [96]. In other words, this means having a dynamic window

size for FFT; but with wavelets, the term scale is used rather than frequency.

Although standard wavelets give an excellent resolution, there are still some

data in the signal not being captured. Therefore, a complex wavelet transform

was created to solve this disadvantage, taking into account the signal phase.

Morlet wavelet is commonly used and based on Gaussian modulated with a sin

wave carrier. Continuous wavelet transforms (CWT) is the method of scanning

the signal with various scales of the mother wavelet [97]. Additionally, discrete

wavelet transform (DWT) directly corresponds to CWT, as it mainly depends

on the sampling of it. FWT is an efficient method of obtaining the DWT. As a

result of the above, Wavelets have been used for audio classification [98].

60

3.4.3 Mel-frequency spectrum coefficients (MFCC)

Stevens, Volkman, and Newman (1937) refer to the relationship between the

frequencies transmitted and the pitches perceived by the human ear as the Mel-

scale [99]. The dimension of the vocal tract acts as a filter of the sounds

produced by humans. If this dimension is calculated precisely, it would reflect

on the accuracy of the phoneme being created. Moreover, a mathematical rep-

resentation of the dimension of the vocal tract is the envelope of the short-time

power spectrum, which is calculated by MFCC [100, 101]. The steps taken to

compute the Mel-frequency coefficients are as follows:

• Frame the signal into short frames: An audio signal is in a con-

stant state of change; presumably, the audio signal is low in magnitude

under short time scale conditions, in other words, statistically stationary.

Evidently, the elements are continuously varying on short time scales,

therefore, the frame of the signal is altered to 20-40ms frames. Because of

the short time frame, there are not any sufficient samples to extract ro-

bust spectral estimate, as when the signal is longer it constantly fluctuates

along the frame [102].

• For each frame calculate the periodogram estimate of the power

spectrum: Cochlea, which is a small organ in the human ear, inspired

the power spectrum that is used to calculate each frame. Cochlea is vi-

brated at many positions depending on the incoming sound frequencies.

Based on the frequency of vibration, several nerves are activated giving

signs to the brain that specific frequencies are occurring. Furthermore,

the periodogram estimates simulation is similar in order to classify the

frequencies occurring in the frame [103]. There is valuable information

delivered by the periodogram spectral estimate, as it can distinguish be-

tween two closely spaced frequencies. The effect gets more noticeable with

any rise in frequencies [103].

61

• Apply the Mel-filterbank to the power spectra, and sum the en-

ergy in each filter: In order to compute energy at different frequencies,

the bins of the periodogram are summed by the Mel-filterbank. The ini-

tial filter is narrower than the others so it provides an estimation of how

much energy exists near the 0 Hz region. Then, the higher the frequencies

get, the wider the filter becomes. The Mel scale calculates the width of

the filterbanks and by how much they should be spaced from each other

[100,101].

• Take the logarithm of all filterbank energies: When the filterbank

energies are obtained, the logarithms of each of their corresponding values

are computed. This is inspired by human hearing due to humans not being

able to hear loud sounds on a linear scale [103].

• Take the DCT of the log filterbank energies: DCT decorrelates the

overlapping output of the log filterbank energies, hence diagonal covari-

ance matrices can be used as features [102].

Finally, The Mel scale relates the perceived pitch or tune to its specific

computed frequency. Moreover, the human ear is more sufficient at differentiat-

ing small changes in pitch at low frequencies than they are at high frequencies.

Proposing this scale makes the features simulate better what humans hear. The

relationship between the frequencies transmitted and the pitches perceived by

the human ear [100,101].

62

Figure 3.10: Mel-scale waveform [101]

The formula for converting from frequency to Mel scale is as follows:

M(f) = 1125ln(1 +
f

(700)
) (3.5)

and from Mel scale to frequency is as follows:

M−1(m) = 700(exp
m

1125
− 1) (3.6)

3.4.4 Frequency domain method implemented for this project

The frequency domain-based technique to extract the features from the audio

files in this project was implemented by Jaap Hatisma and Ton Kalker in 2010.

The study sought to identify songs using the fingerprint of an unknown audio

clip as a query on a fingerprint database. The latter contained the fingerprints

of a vast library of songs, from which the audio clip was identified [104].

The following figure represents the code implemented by Jaap Hatisma

and Ton Kalker to extract the features of the songs. However, it is applied here

to the three-second clips of bee recordings.

63

Figure 3.11: Frequency based feature extraction algorithm

In the above flowchart, the first stage is to read the audio signal. Thus,

the sample signals are obtained. Figure 3.12 illustrates an audio signal from the

bumblebee species Bombus hortorum.

64

Figure 3.12: Audio signal of a bumblebee in the time domain

When the samples are obtained from the audio recording, it is sliced

to a window size of 500 samples, as the figure 3.13 represents.

65

Figure 3.13: First slice of the audio signal

The FFT function is then applied to the slice to give the following

graph. However, according to Jaap Hatisma and Ton Kalker, FFT is imple-

mented on a window size of 3ms of the whole song. In this project, this is

considered a significantly long window size because most of the species record-

ings are less than 371ms.

66

Figure 3.14: converting the audio signal to the frequency domain using FFT1.

The next stage is applying the absolute function on each of the samples

obtained after applying FFT to get the power spectrum as shown in the next

graph.

67

Figure 3.15: Power spectrum of the first slice of the audio signal

The samples used to represent the mirrored half of the power spec-

trum are deleted, and the power spectrum is binned. It is important to note

that multiple power values that are closer to each other are binned together,

thus obtaining some robustness to small changes (noise). Jaap Hatisma and

Ton Kalker logarithmically compressed the power spectrum of their audio files

between 318Hz and 2KHz to save space [104]. Because the audio files of the

species are small in size, if they were to be compressed any further, this would

lead to a loss of information within the files. Finally, the whole technique is re-

peated and applied to the next slice of the audio signal with an overlap of 50%

with the previous one. This process continues until the audio signal reaches an

end, and the result is 250 bins (features) for every audio recording.

68

3.5 Observation on the advantages of time-domain

over the frequency domain

This project aims to implement a real-time embedded system to extract the

features from the audio samples recorded and classifying each record. Therefore

the less computational power used for the stage of feature extraction the better,

as the matrices that will be developed in the classification stage are massive.

Moreover, extraction methods based on the frequency domain are gen-

erally established using fast Fourier transforms (FFT), wavelet transforms, and

linear predictive coding (LPC) [33,105–107]. However, such methods are com-

putationally expensive. Therefore such analyses take a long time to perform,

leading to high-cost system implementation [106]. However, the main advantage

of frequency domain analysis, such as Fourier analysis, is that little information

is lost from the signal during the transformation. Furthermore using Fourier

transforms the information on amplitude, harmonics, and phase is all main-

tained, and it uses each part of the waveform to translate the signal into the

frequency domain.

On the other hand, although time-domain signal coding uses only three

parameters to describe the signal, which makes it less useful in applications,

where the signal needs to be compressed while keeping as much of the infor-

mation within it preserved as possible. The low computational complexity of

TDSC has a significant advantage, as it is implementable on low power micro-

controllers. Hence the possibility of hand-held recognizers and remotely sited

long term bioacoustics monitoring. Therefore, TDSC based techniques fit the

purpose of this project, as the main aim is to develop an embedded system capa-

ble of carrying out the complex calculations of the classification stage observed

in the following chapter. Additionally, issues regarding the storage and battery

life arising from the computational complexity of frequency domain-based tech-

niques can be avoided using TDSC based techniques, which fits the aim of this

69

project.

Furthermore, frequency domain methods are computationally expen-

sive and challenging to implement on low-cost microcontroller-based systems.

Indeed, in the remotely-sited PC-based system, which can be any 486 computer

or better with a minimum of 4 Mbytes of RAM and a hard disc could only

record for 75% of the time, the rest devoted to signal to process even though

the FFT size was limited to 32 points [108]. The use of dedicated digital sig-

nal processors is also prohibitive in cost and power consumption (crucial for

remotely sited systems).

Also, fast fourier transforms face issues with phase, where two different

signals X1 and X2, are analysed in frequency and time domains [93]. The latter

analysis illustrated that the frequency domain analysis was performed using the

power spectrum of 512 points FFT, and the time domain analysis used the

WASP program to encode the signal by TDSC. The power spectrum result

showed that the signals had identical frequency components (50Hz, 120Hz, and

375Hz). Thus FFT analysis is incapable of identifying X1 and X2. TDSC

appears to be more conclusive, as different distributions of the codes were given

for the signals [93].

Furthermore, the novel approach for extracting the features from audio

signals S-TDSC, which, compared to other time-domain based techniques, does

not require looking up codebooks or providing a constant code for any D-S pairs

when exceeding a particular value. Furthermore, statistical time-domain signal

coding time takes less time to be implemented than the frequency domain-based

techniques. However, what made S-TDSC the most suitable feature extrac-

tion technique for this project is that it is computationally less expensive than

frequency-domain techniques. The latter is due to the simple statistical opera-

tions used in S-TDSC compared to the implementation of FFT and the binning

of the power spectrum samples.

70

Finally, the computational complexity analysis is carried out using

MacBook Pro, which has a processor of 2.6 GHz Intel Core i5, a memory of

8GB 1600 MHz DDR3 and the graphic card of Intel Iris 1536 MB. The compu-

tational complexity analysis is conducted through the Python functions of time()

to carry out the time taken to execute the codes of S-TDSC and the frequency

domain-based method. Additionally, the Python function memorymeasure() is

used to compute the memory consumption. Furthermore, all of the subsequent

computational complexity analyses in this thesis are carried out using the same

computer and Python functions. Based on a computational complexity analysis

for the frequency domain-based method and S-TDSC, it is concluded that the

time taken to execute S-TDSC code for all the audio files in the dataset is 2

minutes and 30 seconds. On the other hand, the time taken to implement the

frequency domain-based method to extract the features from the audio files in

the dataset is 4 minutes and 3 seconds. Hence, there is an increase in the time

taken to execute the frequency domain based method by 87% compared to the

time taken to execute the S-TDSC code. Additionally, in terms of memory con-

sumption, the resident set size memory consumed to perform S-TDSC, which

is the non-swapped physical memory a process has used, is 111.84128MB com-

pared to 114.08MB of the resident set size memory consumed to perform the

frequency domain based method. Moreover, when implementing S-TDSC, the

amount of virtual memory size consumed, which is space on the hard drive that

is allocated by the operating system (ios) to be used as a supplemental reserve

of memory when the RAM of the software has reached its maximum capacity

is 419.84MB. Whereas, the amount of virtual memory size consumed by the

frequency domain method is 423.02MB. As a result, for the feature extraction

stage in this project, S-TDSC has proven to be less computationally expensive

especially in terms of the time taken to execute the codes, than the frequency

domain based method. However in terms of memory consumption both meth-

ods are roughly the same. Therefore S-TDSC is chosen as the feature extraction

method used for both chapters 4 and 5.

71

Chapter 4

Classification

The classification problem of data has been widely investigated, and several

algorithms have been devised that are mainly categorized, based on the learning

method they use, into unsupervised, semi-supervised, and supervised methods.

Unsupervised methods try to cluster the data into clusters without any

prior information about the data. A crucial input for some algorithms though, is

the number of clusters that the data need to be split among. In supervised meth-

ods, data used for the training phase are labelled, and the training algorithms

try to decrease iteratively the error between the ground truth and the output

of the network until convergence. Semi-supervised methods grab the learning

characteristics of both unsupervised and supervised algorithms. They are gen-

erative methods that learn the structure of the features without supervision,

and then, they can use further supervised training to operate discriminatively.

Support vector machines (SVM), random forests, which are widely

used classification methods for sound, in addition to recently adopted methods,

such as back-propagation and extreme learning machines (ELM), are investi-

gated in this chapter aiming for finding the optimum method for the classifica-

72

tion problem in this research.

4.1 Support vector machine (SVM)

In the early 1960s, Vladimer Vapnik introduced support vector machines to

solve binary classification problems [109]. Vapnik’s approach begins with the

assumption that there is a space with negative and positive samples, as shown

in figure (4.1). Vapnik then poses the question of how to divide these samples

by a straight line (indicated here in red), with the widest distance between the

samples representing the decision boundaries. This distnace is indicated in the

following figure by the space between the yellow lines, which are the ‘support

vectors’.

4.1.1 Derivation of binary support vector machine (SVM)

Figure 4.1: Space with positive and negative samples separated by the widest

area.

73

Vapnik then introduced an unidentified length vector ω that is perpendicular to

the median of the decision boundaries and another unknown point denoted by

u, with a vector pointing to it. Here, the main concern is whether this unknown

point is on the positive side of the boundaries or the left side, so vector u is

projected to the vector, perpendicular to the decision boundaries ω; hence, the

distance from the same direction as the latter. It is therefore represented by the

vector ω, dotted with the vector u, to measure whether the result is equal to or

greater than a constant C. This is represented by the following equation:

~w.~u ≥ c (4.1)

Alternatively, it is better represented by the decision rule:

~w.~u+ b ≥ c (4.2)

Where:

c = −b (4.3)

If the decision rule equation is true, then the sample is positive. Until

this moment, the values of constant b and the vector ω remain undetermined;

therefore, more constraints must be provided for ω and b to be calculated by

applying the decision rule to positive and negative samples, as follows:

~w. ~X+ + b ≥ 1 (4.4)

~w. ~X− + b ≤ −1 (4.5)

For mathematical convenience, the variable yi , equals +1 for positive

samples and -1 for negative samples. Therefore, when this variable is multiplied

74

using the above two equations, the results are represented by the following

equation:

yi(~w. ~X+)− 1 ≥ 0 (4.6)

If the sample is within the yellow lines (in Figure 4.1), then the equation is

illustrated as follows:

yi(~w. ~X+)− 1 = 0 (4.7)

The main aim of the SVM is to establish the longest distance between

the different samples in the space, this being the width between the yellow lines.

Figure (4.2) illustrates a vector X+, a vector X-, and a vector that represents

the subtraction of X+ and X-.

Figure 4.2: Obtaining the width of the separating space using the support

vectors

To obtain the width between the yellow lines, the subtraction of vectors

X+ and X- is dotted by the unit vector, which is represented as follows:

Width = (X+ −X−).
~w

|w|
(4.8)

75

~w
|w| is the unit vector as ~w is a normal vector.

From equation (4.7), assuming that the sample is positive, then yi = 1

and X+ = 1 − b; and if the sample is negative, then X− = 1 + b. Therefore,

when X+ and X− are both substituted in the width equation, the result is as

follows:

Width =
2

|w|
(4.9)

Since the objective is to maximise 2
|w| , this allows the maximisation of either 1

|w|

by dropping the constant, or the minimisation of |w| or 1
2 |w|

2 The problem now

is thus maximising the width, which has a constraint represented by equation

(4.7). The Lagrange multipliers are used to achieve this, as follows:

L =
1

2
|~w|2 −

∑
ai[yi(~w.~x+ b)− 1] (4.10)

Where:

• ai is the Lagrange multiplier.

To find the extremum of the above equation, the derivative with respect to the

variables is obtained and then set to 0. Firstly, derivation with respect to ~w is

expressed as follows:

2L

∂ ~w
= ~w −

∑
aiyixi = 0 (4.11)

Therefore:

~w =
∑

aiyi ~xi (4.12)

This means that the vector w is a linear sum of the samples ai, yi and ~xi.

2L

∂b
= −

∑
aiyi = 0 (4.13)

76

Substituting the value of ~w into equation (4.10), the result is:

L =
1

2
((
∑

aiyi ~xi)(
∑

aiyi ~xj)− ((
∑

aiyi ~xi)(
∑

aiyi ~xj)− b(
∑

aiyi) + (
∑

αi)

(4.14)

Since:

−
∑

aiyi = 0 (4.15)

Therefore:

L =
∑

ai −
1

2

∑
i

∑
j

aiajyiyjxi.xj (4.16)

Finally, substituting ~w into the decision rule gives the following for a positive

sample: ∑
aiyi ~xi.~u+ b ≥ 0 (4.17)

4.1.2 Non-linearly separable data

However, up to this point, SVM can separate the linearly separable data. How-

ever, the data are not necessarily linearly separable, as the following graph

illustrates.

Figure 4.3: Non-linearly separable data

77

This is easy to resolve another axis is added in a different space, as

shown in figure (4.4)

Figure 4.4: Establishment of another axis with which to project the data

Therefore, a transformation in space is required, where the points are

taken from the original space to a new space, as shown in the above figure.

This transformation is referred to as φ(~X). Since the maximization depends

solely on the dot products, all that is needed is the transformation of one vector

dotted with the transformation of another. Therefore, the following must be

maximised:

φ(~xi).φ(~xj) (4.18)

To recognise the group a sample belongs to, the transformation of the dot prod-

uct is needed:

φ(~xi).φ(~u) (4.19)

This is achieved through the Kernel function, which provides the dot product

of these vectors in another space, without needing to know the transformation

in the other space. Furthermore, the principle of the Kernel function is to map

the samples into a new space, then to find the hyperplane that best separates

the data, and finally to map the hyperplane back to the original space. This is

78

represented by the following graph.

Figure 4.5: Hyperplane separating the different samples [107].

SVM has been used for sound signal classification. Low power con-

sumption by SVM and Kernels in sound detection event monitoring is observed

[110, 111]. Furthermore, SVM is a classification technique used for this project

to identify four types of bees based on their flight sounds.

4.1.3 Experimental results of SVM

. Table (4.1) shows the classification accuracy of four species, as obtained us-

ing SVM. The species are bumblebees, common wasps, hoverflies, and solitary

bees, with every species stored in a separate file and having 69, 21, 42, and 39

recordings, respectively. However, the following is taken into account:

Firstly the features are extracted from the audio files and stored, and

then cross-validation is performed on the features dataset. Typically cross-

validation is done through randomly shuffling the features dataset, and then

the data is split into k groups. The overall process is as follows:

79

1. the dataset randomly must be shuffled randomly then split into k clusters.

2. Then for each unique cluster:

• assign a certain cluster as testing dataset.

• assign the cluster that are left as training dataset.

• Implement a model on the training dataset and evaluate it based on

the the testing dataset.

• Keep the testing score.

3. Summarize the how model performed using the sample of model evaluation

scores. However, k is equal to 2 in the case of the experiments carried out

in this project due to the limit of the recordings available to train the

models. Furthermore, one of these groups is used as training, and the

other used as testing. Finally, the size of the group chosen to train the

model out of the whole dataset is increased in steps of 10% to show how

can more data available for training can affect the classification accuracy.

The following table shows how the proportion of the files used for training begins

at 50% and increases in steps of 10 and illustrates the accuracy of the testing

results at each step is an average of seven runs.

Proportion of files used for training S-TDSC accuracy Frequency domain method accuracy

50% 46.14% 33.5%

60% 44.7% 35.5%

70% 45.28% 34.4%

80% 50.28% 36.7%

90% 51.1% 32.42%

Table 4.1: Performance of the support vector machine (SVM) classifier after

extracting the features using S-TDSC and the frequency domain methods

80

Figure 4.6: The accuracy of each of the 7 runs for each proportion of training

files using S-TDSC

The following chart illustrates the dominance in terms of accuracy of

S-TDSC as a feature extraction technique, compared to the frequency domain

method. It is noted that accuracy sometimes decreases, even as the amount of

training data increases.

81

Figure 4.7: Comparing the performances of S-TDSC and the frequency domain

method as feature extraction techniques

Confusion matrices are obtained using S-TDSC as a feature extrac-

tion technique. Confusion matrices describe the performance of a classification

model on a set of test data for which the correct values are established and

known. For instance, When 50% of the files are used for training, the run that

gave the maximum accuracy out of the seven runs was 52%, and when the

accuracies of the seven runs were averaged the accuracy was 46.14%, as table

4.1 illustrates. The following confusion matrix shows that common wasp was

predicted correctly by the classifier two times and has been mispredicted by the

classifier two times as bumblebee, seven times as a hoverfly, and three times

as solitary bee. Whereas, solitary bees were predicted correctly 26 times and

mispredicted five times as common wasps, four times as bumblebees, and seven

times as hoverflies. It can also be noticed that the most crucial set of numbers

in any confusion matrix is the set the runs diagonally through it as it is the set

that represents where the classifier got all the classes correctly.

82

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 2 5 1 1

Solitary bees 3 26 4 2

Bumblebees 2 4 10 20

Hover flies 7 7 2 7

Table 4.2: Table 4.2

More confusion matrices of when 60%, 70%, 80%, and 90% of the

audio files are used to train the support vector machine (SVM) model using

both S-TDSC and the frequency domain methods are shown in Appendix A.

In order to validate the performance of SVM a dummy dataset is used

for the algorithm to be implemented on. This dataset is imported from a Python

library called SciketLearn, and this dataset consists of 1797 images, and the size

of all the images is 8×8 pixel . Each image, as the following figure illustrates, is

of a hand-written digit, the digits are from 0 to 9 and each digits is written by

180 people. This dataset is highly used within the machine learning community

as a method to validate the result of self coded algorithm.

83

Figure 4.8: Samples of the hand-written digits dataset

Since each digit consists of 8× 8 pixels, the grey scale of each pixel is

considered as a feature of its own, then all of these features are put together

in one feature vector that is 64 samples long. Furthermore, each vector is then

fed to the SVM algorithm and the average accuracy, when 70% of this data is

used for training and 30% is used for testing is 97.96% accurate. The confusion

matrix of the run that gave the best accuracy is as follows:

84

Target

Predicted 0 1 2 3 4 5 6 7 8 9

0 50 0 0 0 0 0 0 0 0 0

1 0 54 0 0 0 0 0 0 1 0

2 0 1 54 0 0 0 0 0 0 0

3 0 0 0 56 0 0 0 0 0 0

4 0 1 0 0 43 0 0 0 0 0

5 0 0 0 0 0 51 0 0 0 0

6 0 0 0 0 0 0 62 0 0 0

7 0 0 0 0 0 0 0 58 0 0

8 0 2 1 2 1 0 0 0 54 0

9 0 0 1 0 1 0 0 0 0 47

Table 4.3: Confusion matrix of the hand-written digits dataset resulting from

SVM algorithm

4.2 Random forests (RFs)

4.2.1 Earlier development of random forests (RFs)

In 1995, a method was proposed to resolve the complexity of decision tree classi-

fication using basic methods [112]. The proposed method uses the convenience

of the oblique decision trees to optimise the training set accuracy. It builds

several trees in randomly shuffled subsets of the feature space. The classifica-

tion of each tree is generalised in a complementary manner, and the combined

classification can be monotonically enhanced.

85

In 1998, Ho made another proposition to resolve the conflict between

overfitting, which is the case where the overall cost is significantly tiny, but the

generalization of the model is insufficient. This is because the model has learnt

“too much” from the training data set [113]. This involved constructing a clas-

sifier using decision trees that maintained the highest accuracy in the training

data while improving generalisation as the accuracy increases. This classifier is

made up of many trees, established systematically by pseudo-randomly choos-

ing subsets of components of the feature vector space; that is, several trees

constructed in randomly chosen subsets. The next section presents random

forests (RFs) as a classification technique.

4.2.2 Random forests (RF)

Random forests is an ensemble method used for classification and regression. In

1996, Breiman combined his bagging sampling approach with a random selection

of features introduced by Ho [112,113] and Amit and Geman [114] to construct

decision trees. In order to understand random forests, it is crucial to observe

the concept of a decision tree first as random forest is number of decision trees

added together. Using the observation of Zhou V. [115, 116], random forests

are observed as shown in the dataset of the fallowing example.

Figure 4.9: Samples of dataset [113]

86

Suppose testing the decision tree at a value of 2, thus the resultant

tree would be as illustrated in figure 4.10.

Figure 4.10: Decision tree with two branches [113]

This is a simple decision tree with one decision node that tests x < 2,

if the test passes (x < 2), the decision would go down the left branch of the tree

and the colour picked is blue. However, If the test fails x ≥ 2, the decision would

go down the right branch of the tree and the colour picked is green. Hence the

dataset with decision split is shown as follows:

Figure 4.11: Plot of the decision boundary in the dataset [113]

87

On the other hand, considering another example of a dataset with

three different classes as the following graph illustrates:

Figure 4.12: Dataset of three different classes [113]

The decision tree in figure (4.10) can not be used as the only classifica-

tion option when a new point (x,y) is introduced to be classified. So if x ≥ 2, the

point is classified as green, on the other hand if x < 2 the data point is classified

as red or blue. Therefore another decision node is added to the decision tree as

follows:

Figure 4.13: Decision tree with two cascaded splits each of value 2 [113]

88

Hence the dataset with the decision split is shown as follows:

Figure 4.14: Plot of the decision boundaries in the dataset [113]

When training a decision tree, the first task is to calculate the root

decision node in the tree. For instance, the root node in the following tree used

the x feature with a minimum threshold of 2.

Figure 4.15: A decision tree with a root decision node of 2 [113]

89

The decision node that computes the most optimum split is considered

a node that separates the classes as much as possible, as the graphs illustrate all

the green samples are on the right and no green samples on the left. Additionally,

a method called Gini Impurity is a technique that quantifies how good a split

is [115,116]. This method is observed in the following sub-section.

4.2.3 Gini impurity

Based on the dataset in figure (4.9) can be split at x = 2 and x=1.5 as figures

(4.16 and 4.17)

Figure 4.16: A dataset with a perfect split [113]

Figure 4.17: A dataset with an imperfect split [113]

90

The perfect split breaks the dataset into two branches, where the left

branch consists of 5 blue samples and the right branch consists of 5 green sam-

ples. On the other hand, if a split is made at x = 1.5, the left branch would

consist of 4 blue samples and the right branch would consist of 1 blue and 5

green samples. Therefore, it is clear that the split at x = 1.5 is worse than the

split at x = 2. Furthermore, measuring the quality of the split becomes more

important if a third class, which is red sample is added to the dataset. Suppose

the following split:

• Branch 1, with 3 blues, 1 green, and 1 red

• Branch 2, with 3 greens and 1 red

Now compare the previous split with the next split:

• Branch 1, with 3 blues, 1 green, and 2 red

• Branch 2, with 3 greens ...

It’s difficult to determine if these splits give the best split. Therefore,

the Gini Impurity provides a qualitative approach of how good any split is and

the following are examples of the Gini Impurities for the whole data set, the

perfect split and the imperfect split.

91

• Whole data set:

Figure 4.18: Data set of two classes [113]

According to the dataset in figure (4.18) if a random data point is picked, its

either 50% blue or 50% green, now the data point is randomly classified accord-

ing to the class distribution and since there is 5 data point of each colour, its

classified as green 50% of the time and clue 50% of the time. Additionally, the

next table shows probabilities of incorrectly classifying a data point.

Event Probability

Pick Blue, Classify Blue (correctly) 25%

Pick Blue, Classify Green (incorrectly) 25%

Pick Green, Classify Blue (incorrectly) 25%

Pick Green, Classify Green (incorrectly) 25%

Table 4.4: The probability of incorrectly classifying a datapoint [113]

Thus, in a couple of events the data point was incorrectly classified.

Therefore the total probability is 25% + 25% = 50%, so the Gini Impurity is

92

0.5. The formula to calculate the Gini Impurity is as follows:

G =

C∑
i=1

p(i)× (1− p(i)) (4.20)

Where:

• C is the total number of the classes.

• p(i) is the probability of picking a data point with class.

Therefore based on the above example, where C = 2 and p(1) = p(2) = 0.5,

Therefore:

G = p(1)× (1− p(1)) + p(2)× (1− p(2)) (4.21)

G = 0.5× (1− 0.5) + 0.5× (1− 0.5)

Hence, the value of the Gini Impurity from the formula and the Gini Impurity

based on the result obtained from the table (4.4) match.

93

• Perfect data set:

Figure 4.19: Dataset with a decision boundary of 2 [113]

Since the left branch consists of only blue samples, Gini Impurity is calculated

as follows:

Gleft = 1× (1− 1) + 0× (1− 0)

The right branch consists of green samples, therefore the Gini Impurity = 0

also. Therefore the perfect data split turned a dataset with a 0.5 impurity into

2 branches with 0 impurity.

94

• Imperfect data set:

Figure 4.20: Dataset with a decision boundary of 1.5 [113]

Since the left branch of the split consists of only blue samples, the

impurity value = 0. However, the right branch has five green samples and one

blue. Therefore the impurity value is calculated as follows:

Gright =
1

6
× (1− 1

6
) +

5

6
× (1− 5

6
)) = 0.278

So in order to quantitatively quantify how optimum the split is based on the

Gini Impurity values of before the split, the left branch and the right branch,

which were equal to 0.5, 0, and 0.278 respectively. Furthermore, the quality of

the split is measured by weighing the impurity of each branch by how many

elements it consists of. Therefore, since the left branch consists of 4 samples

and the right branch consists of 6, the result is:

(0.4× 6) + (0.6× 0.278) = 0.167

Therefore the amount of impurity removed from the split is calculated through

the following equation and called the Gini gain:

0.5− 0.167 = 0.33

As a result, when training a decision tree, the best split is chosen by maximizing

the Gini Gain, which is calculated by subtracting the weighted impurities of the

95

branches from the original impurity. At this point the Gini gain is observed,

back to this example illustrated in the following graph.

Figure 4.21: Dataset where each of the smaples is saperated based on different

values of x and y [113]

And through calculating the Gini gain for every possible split as fol-

lows:

Figure 4.22: RF14 [113]

It is clear that the highest Gini Gain values is obtained when x = 2,

therefore the decision node is chosen accordingly.

96

Figure 4.23: Decesion tree with a decesion bountry at a value of x = 2 [113]

However, in order for the decision tree to be completely trained, there

needs to be a second node created for the left branch of the tree. Therefore,

when every possible split for the 6 data points its realized that y=2 is the best

split.

Figure 4.24: A perfect split decision tree that has a decision boundaries of x =

2 and y = 2 [113]

At this point, the decision tree can’t be improved any further, therefore

97

each final node is called a leaf node and labelled green, red and blue. To conclude

random forest is a number of decision trees bundled together with the aid of

bagging approach.

Bagging

In order to observe bagging, the following algorithm needs observed to train a

bundle of decision trees given a data set of n points:

1. Sample, with replacement, n training examples from the dataset.

2. A decision tree needs to be trained on samples of number n .

3. loop for a number of τ .

To achieve a decision for a number of τ trees, the predictions are collected from

the decision trees individually, then either:

• In case the decision trees produce labels of classes, for example colours,

then the class with the majority of votes wins.

• In case the decision trees produce numerical values, for example product

prices, then take the average of the trees.

This technique is called bagging as the following figure illustrates:

98

Figure 4.25: Illustration of the bagging approach [113]

Suppose there is a data set with p features. Instead of trying all fea-

tures every time a new decision node is made, only try a subset of the features

is tried, usually of size square root of p or p
3 . This is primarily done to intro-

duce randomness making individual trees more unique and decrease correlation

between trees, which enhance the forest’s performance in genral. This method

is sometimes referred to in litreture as feature bagging [116].

The first paper on random forests [117] notes that the main factors

affecting the error rate of RF are correlation and strength. In other words, the

strength of individual trees is indirectly proportional to the error rate of random

forest, and the correlation is directly proportional to the error rate. These

findings seem to support the study that found the error rate is statistically

99

decreased by simultaneously maximising strength and minimising correlation

[116]

4.2.4 Experimental results of random forests

Taking the same example of the four species used in the SVM, RF is applied

as classification algorithm. The accuracy results using both feature extraction

techniques (S-TDSC and the frequency domain method) are illustrated in the

following table:

Proportion of files used for training S-TDSC accuracy Frequency domain method accuracy

50% 49.7% 43.7%

60% 51.8% 41.4%

70% 53.5% 41.0%

80% 56.8% 45.4%

90% 54.5% 52.5%

Table 4.5: The accuracy of random forests (RFs) using S-TDSC and the fre-

quency domain method as feature extraction techniques

Figure 4.26: Comparison between the performances of random forests using

S-TDSC and the frequency domain method

100

Figure 4.27: The accuracy of each of the 7 runs for each proportion of training

files using S-TDSC

The above chart shows that S-TDSC has greater accuracy than the

frequency domain method, and the difference is approximately 10%, which is

relatively large.

The following are confusion matrixes obtained when using S-TDSC as

a feature extraction technique. When 50% of the files are used for training, the

maximum accuracy of the specific run is 51%:

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 10 0 6 3

Solitary bees 3 0 5 4

Bumblebees 8 2 22 3

Hover flies 0 0 7 12

Table 4.6: Table 4.6

101

More confusion matrices of when 60%, 70%, 80% and 90% of the audio

files are used to train the random forest model using both S-TDSC and the

frequency domain methods are shown in Appendix B.

Similarly with SVM, due to the lack of audio files to train the algo-

rithms with, the code made for the classification stage using random forests

algorithm is verified using the hand-written digits dataset discussed in 4.1.3.

There when 70% of the data is used for training the average testing accuracy of

the 7 runs is 93.14% and the confusion matrix that gave the best accuracy out

of these 7 runs is illustrated by the following table

Target

Predicted 0 1 2 3 4 5 6 7 8 9

0 59 0 0 0 1 0 0 0 0 0

1 0 44 1 2 0 0 0 0 1 0

2 0 2 51 1 0 0 0 0 0 0

3 0 0 0 45 0 0 0 0 1 2

4 0 1 0 0 57 0 0 1 0 1

5 0 0 1 0 2 39 0 0 0 1

6 1 0 0 0 0 0 60 0 0 0

7 1 0 1 1 0 0 0 54 1 1

8 1 2 1 0 0 1 1 0 45 3

9 0 0 0 0 1 0 0 0 2 49

Table 4.7: Confusion matrix of the hand-written digits dataset resulting from

random forests algorithm

102

4.3 Artificial neural networks (ANN)

ANN are mathematical models that comprise the interconnections of simple

processing units (nodes), each of which respond to an input signal with prede-

fined responses. The basic principle of the ANN is that the nodes are designed

to simulate the biological neurons: in other words, when a certain input sig-

nal is applied to the neural network, a predictable output response is obtained.

Moreover, such nodes can learn from errors and alter the output of the net-

work to decrease errors through a process of ‘training’. When neurons are

interconnected, they acquire the processing power to solve linear and non-linear

problems with better accuracy than statistical methods [93].

4.3.1 Observation on the operation of perceptron

The following figure illustrates a perceptron, which is also known as a node.

The latter is considered the essential unit of the ANN and represents a model of

a biological neuron. The latter has a scaler input p, which has a scaler weight

w and a bias b. The bias is a scaler value in the node itself and not an extra

input, typically driven by a constant input value of 1 [118].

Figure 4.28: Structure of the perceptron with a single input

The following equation defines the output of the above neuron:

T1 = g(w1x1 + b) (4.22)

103

Where:

• T1 is the output of the neuron.

• w1 is the weighted input.

• b is the bias.

• g is the activation function.

• x1 is the input neuron.

This activation function of the node is usually a step function, linear function,

or sigmoid, and there are many others used. Furthermore, by altering the values

of the input weights and bias, this allows for the manipulation of the net input

n before it is applied to the transfer function. This process of manipulating the

weights and biases of the network resulted in the output being directed to the

desired output of T [118].

When the number of inputs into a node is increased, this yields more

complexity to the problem to be solved. The following figure shows a node with

a number of inputs.

104

Figure 4.29: Structure of perceptron with multi-inputs

The number of inputs can be considered one dimensional vectors, with

multiple elements representing the values of the inputs [x1, x2, x3, x4, x5......xn].

The weights can be similarly represented [w1,1, w1,2, w1,3, w1,4, w1,5,w1,n].

As a result, these input weight products are combined with the bias, as repre-

sented by the following equation:

v1 = w1,1x1 + w1,2x2 ++ w1,nxn + b (4.23)

This node does not have sufficient processing power to solve non-linear

problems; therefore, there is a need for multiple interconnected nodes to form a

network with high processing power, capable of solving complex problems. The

next figure illustrates a perceptron consisting of three inputs and three outputs,

where each of the inputs is connected in parallel to the output through a weight

factor.

105

Figure 4.30: Connection of the weights between an input and an output

The transfer function of the network illustrated above can be expressed

through the following equation:

ti = g(
∑
n

Winxn − θi) (4.24)

Where:

• ti is the output of node i.

• win is the weight for input n to node i.

• xn is the input value of input n.

• θ is the threshold, which is given by the transfer function of the network.

Even though perceptron networks are more superior in terms of processing power

to nodes, they are still only capable of solving linear problems only because per-

ceptron networks are not able to converge at the stage of training. On the other

106

hand, Non-linear problems are solved through networks with three layers or

more, with each layer a set of nodes. Multilayer networks consist of the typical

components of a perceptron but with an additional hidden layer of nodes M .

The latter also has weights and biases associated with their inputs and outputs.

Therefore, there is a distinctive difference between the input weights IW and

the output weights LW .

Figure 4.31: Single hidden layer feed-forward neural network (FNN)

The number of nodes in each layer need not match, and the structure of

multilayer networks varies depending on the problem to be solved. In addition,

the input does not necessarily need to pass through the layers of the structure

and may only affect the resultant outcome through the weight factor. On the

other hand, for all the networks, the direction of the prorogation of the data

will always be the same: going from the input to the output.

107

4.3.2 Observation of deep learning neural networks

According to figure 4.31, the illustrated neural network is a single hidden layer

feed-forward neural network. However, deep learning neural networks consist of

many hidden layers [119], as figure 4.32 represents:

Figure 4.32: 2 hidden layer feed forward deep neural network

In feed forward deep neural networks the weights from each of the

neurons in the first hidden layer to the neurons in next hidden layer follow

the same rules as in the the single hidden layer feed forward neural networks.

Moreover, the direction of the propagation in deep neural networks follows the

same pattern as in the single hidden layer neural networks. Similarly, as shown

in the following figure, the neuron in the hidden layers, for instance H1
1 , which

means that this neuron is the first neuron located in the first hidden layer. This

neuron as well as all the other neurons in the hidden layer consist of combinations

108

of biases and transfer function [120].

Figure 4.33: Representation of neuron H1
1 from figure 4.32

Furthermore, another form of deep neural networks is recurrent neural

networks (RNNs), which consist of multi-hidden layers, as in the feed-forward

deep neural networks [121]. However, RNNs attain the capability of storing

information in context nodes. Therefore the nodes can learn though feeding

them with data sequences and predict a number or variety of other sequences.

In other words, it is a form of deep neural networks with connections between

neurons in the form of loops, and RNNs are mostly used for processing sequences

of inputs [121], as figure 4.34 illustrates.

Figure 4.34: Representation of a node in the recurrent neural network [116]

For instance, if the challenge was to predict the next word in the sen-

tence, ”would you fancy a. ?”

109

• The RNN neurons will receive a signal that direct it to the start of the

sentence.

• The network receives the word ”would” as an input and computes a vector

of the number. This vector is re-input to the neuron in order to establish

a memory of the network. This is done to get the network to remember

it received ”would” in the first position.

• The network will similarly proceed to the next words. It takes the word

”you” and ”fancy”, then the neurons update as each word is received.

• Finally, when the word ”a” is received, the neural network computes op-

tions as to what English words can be used to finish the sentence. A

properly trained RNN probably assigns a high probability to ”sandwich”,

”apple” ,”trip” etc.

Furthermore, another form of deep learning neural networks is convo-

lutional neural networks (CNNs), which is also a multi-layered neural network

with an architecture designed that is not like any other deep neural network

[121]. This is because CNNs extract increasingly complex features of the data

at each layer to determine the output. CNN’s are well suited for perceptual

tasks [121].

110

Figure 4.35: Convolutional neural network [116]

CNN are typically implemented when there is an unstructured data

set that includes images, which the practitioners need to extract information

from. For example, if the task is to compute an image caption:

• The CNN receives an image of, for example, a cat. This image consists

of several pixels. Generally, one layer for the greyscale picture and three

layers for a color picture.

• As the network learns features, it will identify special features, such as the

tail of the cat.

• After the network finishes how to identify a picture, it can supply a prob-

ability for every image it recognises. This probability is in the form of

winner takes all, so that the label with the highest probability wins.

Furthermore, since deep neural networks consist of more hidden layers

than single hidden layer neural networks, this results in a considerably higher

111

number of neurons. Hence more computational power is needed. The classi-

fication results obtained using training algorithms implemented on the single

hidden layer neural networks explained in detail in sub-chapter 4.5.1 resulted in

satisfactory results. Therefore, although using deep neural network structures

can achieve higher results than a single neural network structure, the time scope

of this project has not allowed further exploration of this structure. There are

many training methods used for deep training methods used methods.

4.4 Training single hidden layer feed-forward ar-

tificial neural networks (ANN)

A network is only ready to be trained when it is completely structured. In order

to start training neural networks, the initial weights are chosen randomly. Then,

the training, or learning, begins. ANNs are based on perceptron networks and

used to achieve a specific aim. In this project, the aim is to classify pollinators

from features extracted from the audio signals of the species, using statistical

time domain signal coding. However, for the network to work efficiently, it must

be trained. Training neural networks can be categorised into two categories,

which are supervised and unsupervised. Supervised training includes providing

the networks with labelled data as a desired output through grading, which is

the manual approach or through providing the desired outputs with an input.

Example of the supervised learning algorithms are these used in this project in

section (4.6). Whereas, in unsupervised learning, the network is given inputs

and the desired outputs, which are the labels of the data [122]. Since the data

set used in this project is all labelled then no unsupervised learning methods

are used to train the neural network used in this chapter.

112

4.4.1 Supervised learning

In supervised learning, the technique is to use data templates as examples, with

each example showing the desired output required at the output node tl, of

the network when an input pattern is given,Xn as shown in figure 4.31. This

method compares the actual and desired outputs, then adjusts the network

weights based on the result of the comparison. The training data are then

reapplied to the input, and the process repeats until the actual output pat-

tern is the same as the desired output pattern. This is accomplished through

the application of a training rule that sets how the weights are altered. The

method applied to train the feed-forward MLP network, as shown in figure

4.31, is typically the back-propagation algorithm. This is designed through the

generalisation of the Widrow-Hoff learning rule to multiple-layer networks and

non-linear differentiable transfer functions [93]. In terms of insect species clas-

sification, back-propagation is proven to be a valuable training method when

applied to insect acoustic signals [122].

4.4.2 Unsupervised learning

In unsupervised learning, the output of the MLP is not given any predefined

patterns but rather left unsupervised to obtain patterns from within the dataset.

The network categorises the data into different groups based on similarities in

their features. In other words, the data with common features are clustered

together in networks, in a process known as ‘self-organising’. For network train-

ing using an unsupervised method, datasets are presented at the input without

any knowledge of the classes that these datasets are expected to fall into. As

a result, the nodes in the network ‘compete’ in the form of ‘winner takes all’.

The weights of the winning node and its neighbouring nodes, as defined by some

function, are then adjusted such that they begin to cluster groups of data with

similar features. An example of the self-organising neural network is Kohonen’s

113

self-organising map [123].

4.5 Extreme learning machines (ELM)

The extreme learning machine (ELM) is a relatively modern training algorithm

for single-layer feed-forward neural networks (SLFNs). In ELM, the nodes in

the hidden layer are randomly initialised and remain constant exclusive of the

need for iterative tuning, while the only parameters that need to be learnt

are the weights connecting the hidden layer to the output layer. Furthermore,

compared to traditional FNN learning techniques, such as back-propagation,

which is discussed in the next chapter, ELM is markedly efficient. Additionally,

studies have shown that although the hidden nodes are randomly generated,

ELM maintains the universal approximation capabilities of SLFNs [124–126].

With the typically used activation functions, such as the sigmoid, ELM can

almost reach the optimal generalisation bound of common FNN, where all of

the parameters are learnt [127]. Moreover, the advantages of ELM over the tra-

ditional training algorithms of SLFNs are shown in a variety of problems from

a range of fields [128, 129]. ELM is generally more efficient than SVM [130].

In addition, ELM has a generalisation ability comparable to (or better than)

SVM in empirical studies [128, 129, 131, 132]. In depth comparisons of ELM

and SVM can be found in [128, 133]. ELM has been used for system modelling

and prediction systems, with an ELM-based predictor for real-time frequency

stability assessments (FSA) of power systems [134]. The input of the predic-

tor power system operational parameters, whilst the output is the frequency

stability margin, which computes the stability degree of the power system sub-

ject to contingency. Through a frequency stability database, offline training

is performed and the predictor can be applied online for real-time FSA. This

predictor was implemented on New England, with a 10-generator 39-bus test

system, and the simulation results show that it can accurately predict frequency

stability. Furthermore, ELM has been used for other prediction systems, such as

114

electricity price forecasting [135], temperature prediction of molten steel [136],

and sales forecasting [137,138].

115

4.5.1 Implementing the extreme learning machines (ELM)

algorithm

As mentioned earlier, the structure of the network must be of a single hidden

layer for the ELM algorithm to be performed.

Figure 4.36: Single hidden layer neural network for extreme learning machine

(ELM)

Figure(4.15) shows the input weight vector of the ith hidden neuron

(1 × n)); for instance, Wi is the input weight vector of the first hidden neuron

W1 = [w1,1, w1,2, w1,3, w1,4, w1,5,w1,n]. On the other hand, the bias of the

ith hidden neuron is in the shape of (1 × 1); for example, b1 is the bias of the

116

hidden neuron.

Figure 4.37: Connection of the weights to the function with the bias.

The output of the hidden neuron i for the input sample j is given by

the following:

ti = g(Wi.Xj + bi), Forj = 1, 2.......N (4.25)

Where:

• ti is the output of the neuron i (1× 1).

• Wi is the input of the weight row vector of the neuron I(1× n).

• bi is the bias of the neuron i (1× 1).

• Xj is the j input sample. n× 1.

• g(.) is the activation function of the hidden neuron.

For instance, the output of the neuron 1 for the input sample 1 is given by the

following:

t1 = g(W1.X1 + b1) = g(v1) (4.26)

117

v1 = [w11w12w13....w1n].

x11

x12

x13

.

.

.

.

.

x1n

+ b (4.27)

t1 = g(v1) (4.28)

Also, the output weight vector of the ith hidden neuron(l × 1), βi =

βi1

βi2

βi3

.

.

.

.

βil

118

Figure 4.38: Connections between the function and the output i.e targets

Therefore, and as already mentioned, the output of the neural network

structure is simply given by the following:

M∑
i=1

βig(Wi.Xj + bi) = Oj (4.29)

Forj = 1, 2,N

where:

• βi is of length l × 1

• g(Wi.Xj + bi) is of length 1× 1.

• Oj is of length l × 1

The input weight matrix Win for n input neurons and M hidden neurons, and

119

the matrix Win, is created with the size of M × n.

Win =

W1

W2

.

.

.

.

WM

=

W11.......W1n

..

..

..

WM1........WMn

(4.30)

The input matrix of the network (X) for n input neurons and N stochastic

sample, and the matrix X, is created with the size of n×N .

X =
[
X1.....XN

]
=

X1
1X

N
1

..

..

..

X1
n........X

N
n

(4.31)

The bias matrix of the hidden layer (b) for N stochastic sample and M hidden

neurons, and the matrix b, is created, with the size of M ×N .

b =

b1.......b1

..

..

..

bMbM

(4.32)

The reason for the repetition of the bias column is to calculate the H matrix,

which is the hidden layer output matrix with the size of (M ×N).

120

H = g(Win.X + b) = g(

W11.......W1n

..

..

..

WM1........WMn

.

X1
1X

N
1

..

..

..

X1
n........X

N
n

+

b1.......b1

..

..

..

bMbM

)

(4.33)

Where g(.) is the activation function for each element in H, this can be written

in the following form:

H =

g(W1.X1 + b1).......g(W1.XN + b1)

..

..

..

g(WM .X1 + bM)........g(WM .XN + b1)

(4.34)

The output matrix b for M hidden neurons and l output neurons and b has the

size of (l timesM).

β =

β11.......βM1

..

..

..

β1l........β1l

(4.35)

Therefore, the output matrix of the network for l output neurons and N stochas-

tic sample, and the matrix T , with the size of (l ×N), is calculated as follows:

T = βH =

β11.......βM1

..

..

..

β1l........β1l

g(W1.X1 + b1).......g(W1.XN + b1)

..

..

..

g(WM .X1 + bM)........g(WM .XN + b1)

(4.36)

121

T =

t11.......t
N
1

..

..

..

t1lt
N
l

(4.37)

The ELM technique is performed in the following three steps:

• Defining the hidden nodes, activation function, and the number of hidden

neurons.

• Randomly assigning the input weights Win (M × n) and bias b(M × 1).

• Calculating the output weights β(l ×M) using the pseudo inverse as fol-

lows:

T = βH or Hβ = T

βHHT = THT

β = THT (HHT)−1

4.5.2 Experimenting with ELM

The following table presents the results of the four species classifications by

SVM and RF. In order to apply ELM to classify the four species as in SVM

and RF, other parameters must be adjusted and the proportion of data used for

training and testing. In ELM, there is also the number of epochs, which is the

number of times the training vectors are used to update the weights, as well as

the number of hidden neurons. Firstly, the number of hidden neurons ranges

from 50-1500, while keeping the epochs fixed at 100 and using 50% of the data

as training files. Furthermore, based on the SVM and RF experiments, S-TDSC

is proven to provide greater accuracy than the frequency domain method; there-

fore, the features used for the ELM classifier experiments are extracted using

122

S-TDSC. In this example, the training files are shuffled, while the testing files

remain unshuffled.

Performing the four species classification, with 50% of the data used

for training and epochs=100. (unshuffled training and testing data).

Number of hidden neurons Training accuracy Testing accuracy

50 73% 65.42%

60 75.42% 66.57%

70 78.57% 71.71%

80 81% 72.71%

90 84.28% 73.16%

100 88.42% 73.85%

110 89.42% 72.28%

120 89% 74.57%

130 90% 72.71%

140 92.28% 72.71%

150 94.28% 76.85%

160 95.57% 75.14%

170 95.42% 75.85%

180 96% 76.14%

190 95.14% 75.14%

200 95.57% 76.57%

Table 4.8: Training and testing accuracies, when 50% of the data are used for

training and the number of epochs is 100

123

Figure 4.39: Training and testing accuracies, when 50% of the data are used for

training and the number of epochs is 100

The following are confusion matrixes of the run that gives the maximum accu-

racy, of the seven runs averaged from a number of hidden neurons of 50 and

200. The confusion matrices corresponding to the number of hidden neurons

between 60 to 190 in steps of ten are shown in appendix C.

Number of hidden neurons = 50:

• Training accuracy 68.23%

• Testing accuracy 67.85%

124

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 26 4 1 0

Solitary bees 6 29 1 0

Bumblebees 0 1 2 0

Hover flies 7 6 1 0

Table 4.9: Confusion matrix when the number of hidden neurons is 50 and the

number of epochs is 100

Number of hidden neurons = 200:

• Training accuracy 75.81%

• Testing accuracy 93.75%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 15 0 0 0

Solitary bees 0 0 0 0

Bumblebees 1 0 0 0

Hover flies 0 0 0 0

Table 4.10: Confusion matrix when the number of hidden neurons is 200 and

the number of epochs is 100

It is noticed from table 4.8 that as the number of hidden neurons

increases, the training and testing accuracies increase, with the testing accuracy

ranging from 65.42% at 50 neurons to 76.75% at 200 neurons. Additionally, the

reason why the number of neurons stopped at 200 is that more neurons would

not be computationally treatable in the target system, which is mentioned in

125

chapter 5. Also figure 4.39 shows that the average testing accuracy is slightly

increasing from 50 to 200 neurons. On the other hand, it is noticed that when

200 neurons were used, few of the testing accuracies that make up the average

were significantly above and below the average with 93.75% and below 40%

respectively. However, in most of the other cases, the testing accuracies are

always either equal to the average or above by a small margin.

Performing the four species classification, with 50% of the data used

for training and epochs=100. (shuffled training and testing data)

when both training and testing data are shuffled at each run of the code, training

accuracy increases – reaching 100% at 350 neurons, while the testing accuracy

remains almost constant between 45% and 50%, regardless of the increase in

hidden neurons. The next table illustrates the training and testing accuracies

for 50 to 1500 hidden neurons.

Number of hidden neurons Training accuracy Testing accuracy

50 68.7% 47%

100 81.5% 47.7%

150 93.5% 46.5%

200 95.2% 45.2%

250 98.1% 47.1%

300 97.4% 47.7%

350 100% 48.2%

400 100% 48.6%

450 100% 49.6%

500 100% 50%

550 100% 48.2%

600 100% 50%

126

650 100% 48.6%

700 100% 50%

750 100% 50%

800 100% 48.6%

850 100% 51.8%

900 100% 50.1%

950 100% 51.8%

1000 100% 47.7%

1050 100% 49.3%

1100 100% 49.8%

1150 100% 50.17%

1200 100% 50.36%

1250 100% 51%

1300 100% 49.6%

1350 100% 49.6%

1400 100% 49.5%

1450 100% 50%

1500 100% 49.8%

Table 4.11: Training and testing accuracies, when 50% of the data are used for

training and the number of epochs is 100

127

Figure 4.40: Training and testing accuracies, when 50% of the data are used for

training and the number of epochs is 100

It is noticed from table 4.11 that as the number of hidden neurons

increases, the training accuracy increases. The training accuracy starts with

68.7% at 50 neurons then increases to 81.5% when 100 neurons. After that,

the accuracy goes up to range from 93.5% to 97.4% from 150 neurons to 300

neurons. Moreover, the training accuracy reaches 100% and remains fixed from

350 neurons to 1500 neurons. On the other hand, the testing accuracy ranges

from 47% at 50 neurons to 49.8% when 1500 neurons were used. Additionally,

figure 4.40 illustrates that all the average testing accuracy, as well as the trials

that make it up, remain almost fixed as they range from 45.2% to 55.8%. There-

fore, when shuffling both the training and testing data, the training accuracy

significantly increases as the hidden neurons increases. In contrast, the testing

accuracy remains fixed.

128

Performing the four species classification, with 70% of the data used

for training, keeping the number of epochs fixed at 100. (shuffling

the training data only)

Number of hidden neurons Training accuracy Testing accuracy

50 63.28% 73.25%

60 68.85% 79.14%

70 72.28% 74.28%

80 71% 78.57%

90 79.85% 82.28%

100 84.71% 82.57%

110 81.28% 86.28%

120 84.42% 84%

130 84.42% 86.28%

140 86.71% 86.57%

150 90.28% 85.71%

160 91.57% 89.71%

170 93.14% 89.42%

180 95% 88%

190 94.57% 90.57%

200 94.57% 90.57%

Table 4.12: Training and testing accuracies when 70% of the data are used

for training and the number of epochs is 100, when only the training data are

shuffled

129

Figure 4.41: Training and testing accuracies when 70% of the data are used

for training and the number of epochs is 100, when only the training data are

shuffled

It can be seen from table 4.12 that when only the training data is being shuffled,

the accuracy increases from 73.25% at 50 neurons to 90.57% at 200 neurons. It

is also noticed from graph 4.41 that the trails that make up the averages are not

significantly higher or below it. Moreover, from the resulting confusion matrices,

it is noticed that this high accuracy is because the decision of the classifier is

biased towards commons wasps and solitary bees as they contribute to the

majority of the recording in the database. The issue of the biasing algorithm

can be tackled by more data available to train the classification model. The

following are the confusion matrices of the run that gives the maximum accuracy,

of the seven runs averaged from the number of hidden neurons of 50 and 200.

Additionally, confusion matrices developed as a result of using the numbers of

hidden neurons from 60 to 190 are shown in Appendix D.

130

Number of hidden neurons = 50:

• Training accuracy 70.58%

• Testing accuracy 84.0

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 32 0 0 0

Solitary bees 0 10 0 0

Bumblebees 1 0 0 0

Hover flies 6 1 0 0

Table 4.13: Confusion matrix when the number of hidden neurons is 50 and the

number of epochs is 100

Number of hidden neurons = 200

• Training accuracy 96.63%

• Testing accuracy 94.0%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 37 0 0 0

Solitary bees 0 10 0 0

Bumblebees 1 0 0 0

Hover flies 2 1 0 0

Table 4.14: Confusion matrix when the number of hidden neurons is 200 and

the number of epochs is 100

131

Performing the four species classification, with 70% of the data used

for training and epoch=100. (shuffled training and testing data

Number of hidden neurons Training accuracy Testing accuracy

50 63% 56%

100 78% 56%

150 86% 55.7%

200 94.5% 52.8%

250 96.78% 54%

300 96.9% 55.14%

350 98.4% 52.8%

400 97.1% 54%

450 100% 55.7%

550 100% 54.5%

600 100% 55.4%

650 100% 56%

700 100% 58.5%

750 100% 58.2%

800 100% 57.7%

850 100% 58%

900 10% 56.5%

950 100% 54.5%

1000 100% 56.8%

1050 100% 52.8%

1100 100% 55.7%

1150 100% 55.7%

1200 100% 57.7%

1250 100% 57.7%

1300 100% 58.2%

1350 100% 56.5%

132

1400 100% 55.4%

1450 100% 57.1%

1500 100% 54.2%

Table 4.15: Training and testing accuracies when 70% of the data are used for

training and the number of epochs is 100, while the training and testing data

are shuffled

Figure 4.42: Training and testing accuracies when 70% of the data are used

for training and the number of epochs is 100, when only the training data are

shuffled

The testing accuracy of this network structure does not increase fur-

ther, regardless of the increase in hidden neurons and epochs, as accuracy is

capped between 54% and 58%.However, the training accuracy significantly goes

up from 63% when 50 neurons were used to 100% when 400 neurons were used

133

and remained fixed there until the end. On the other hand, it is noticed the ac-

curacies of all the trials that make up the average either increase or decrease as

the average rises or decline. The only factor associated with increased accuracy

is the use of more data for training and the next experiment proves this.

Performing a binary classification (bumblebee classifier), with 50% of

the data used for training and the number of epochs, is 100. (shuffled

training and testing data)

To prove that the main factor in increasing the accuracy further is for more

recordings to be available for training, this experiment was conducted. This

experiment is a bumblebee classifier, with the recordings of bumblebees grouped

in class1 and the audio recordings from the other three species grouped in class

2. Table 4.16 shows that the testing accuracy ranges from 67% to 69%, with

the training data and testing data shuffled at each run.

Number of hidden neurons Training accuracy Testing accuracy

50 73% 70%

100 88% 67%

150 93% 66%

200 97% 67%

250 98% 68%

300 98% 68%

350 99% 66%

400 98% 67%

450 99% 66%

500 99% 68%

550 99% 67%

600 100% 69%

650 100% 69%

134

700 99% 69%

800 100% 66%

850 100% 69%

900 100% 68%

950 100% 67%

1000 100% 66%

1050 100% 68%

1100 100% 70%

1150 100% 69%

1200 100% 69%

1250 100% 69%

1300 100% 68%

1350 100% 67%

1400 100% 68%

1450 100% 66%

1500 100% 69%

Table 4.16: Training and testing accuracies when 50% of the data are used for

training and the number of epochs is 100, whilst the training and testing data

are shuffled

135

Figure 4.43: Training and testing accuracies when 70% of the data are used

for training and the number of epochs is 100, when the training and data are

shuffled

Figure 4.43 illustrates that trials that make up the averages are within

+1 or -1 range from the average and only when 100 neurons were used the

minimum accuracy falls to beyond -1 with 65% when the actual average was

67%. The following are confusion matrices of the run that gives the maximum

accuracy, of the seven runs averaged from a number of hidden neurons of 50

and 1500. In addition confusion matrices developed in the same manner for a

number of hidden neurons ranging from 100 to 100 to 1450 in steps of 50s are

shown in appendix E.

Number of hidden neurons = 50:

• Training accuracy 67.22%

• Testing accuracy 74.0%

136

Target

Predicted Bumblebees Another species

Bumblebees 25 7

Another species 6 12

Table 4.17: Confusion matrix when the number of hidden neurons is 50 and the

number of epochs is 100

Number of hidden neurons = 1500:

• Training accuracy 100.0%

• Testing accuracy 73.80%

Target

Predicted Bumblebees Another species

Bumblebees 45 16

Another species 6 17

Table 4.18: Confusion matrix when the number of hidden neurons is 50 and the

number of epochs is 100

Although ELM has shown a noticeable increase in terms of the testing accuracy

compared to the testing accuracy resulting from SVM and random forests, it is

still essential to use the hand-written digits dataset to verify the performance

of ELM. Therefore, when 70% of the hand-written digits dataset was used for

training, the testing result after an average of 7 runs is 98% and the confusion

matrix that resulted in the maximum accuracy out of the 7 runs is as follows:

137

Target

Predicted 0 1 2 3 4 5 6 7 8 9

0 58 0 0 0 0 0 0 0 0 0

1 0 65 1 2 0 0 0 0 1 0

2 1 0 50 1 0 0 0 0 1 0

3 0 0 0 59 0 0 0 0 0 1

4 0 0 0 0 43 0 0 0 0 0

5 0 0 0 0 0 48 0 0 0 0

6 0 0 0 1 0 0 48 0 0 0

7 0 0 0 1 0 0 0 57 0 0

8 0 1 0 0 0 0 0 0 44 1

9 0 0 0 0 0 1 0 0 0 59

Table 4.19: Confusion matrix of the hand-written digits dataset resulting from

ELM algorithm

138

4.6 Back-propagation

This algorithm was developed in the 1970s, but its importance was not fully

understood until 1986 when it was proven to function faster than all other

approaches when applied to several neural networks [139]. Thus, allowing neural

networks to solve problems that had previously been insoluble. Furthermore,

the back-propagation algorithm is one of the most investigated and frequently

used techniques for neural networks training [140].

The following is a simple neural network with a single hidden layer.

Figure 4.44: Structure of neural network trained using backpropagation

Where:

H1 = (X1 × ω1 +X2 × ω2 + b1) (4.38)

H1 = (X1 × ω4 +X2 × ω4 + b1) (4.39)

A non-linear activation function is applied to the output of every hidden layer

because non-linear functions have more than one degree and a curved shape

139

when plotted. This allows the network to be more powerful and better able

to perform complex learning from data, representing non-linear complex arbi-

trary functional mapping from inputs to outputs. Additionally, one of the most

popular activation functions is the sigmoid function [99]. Therefore, when the

latter is applied to H1 and H2, the output of the hidden layer is represented as

follows:

H1 =
1

1 + exp−H1
(4.40)

H2 =
1

1 + exp−H2
(4.41)

To investigate the backpropagation algorithm, we assume that the input fea-

ture vectors X1 and X2 are 0.05 and 0.10, respectively, and the target values

for T1 and T2 are 0.01 and 0.99, respectively. Firstly, in backpropagation, all

the weights and biases are given random values, as represented in figure 4.40.

Figure 4.45: Neural network trained with backpropagation, with initial random

values for weights

The next step is to perform what is commonly known as the ‘forward

press’, which is done by first calculating H1 and H2, then obtaining the outputs

140

t1 and t2.

H1 = (X1 × ω1 +X2 × ω2 + b1) (4.42)

H1 = (0.05× 0.15 + 0.10× 0.20 + 0.35) (4.43)

H1 = 0.3775 (4.44)

Therefore, the output at H1 is as follows:

H1 =
1

1 + exp−H1
(4.45)

H1 =
1

1 + exp−0.3775
= 0.593269992 (4.46)

Similarly, H2 = 0.596884378. The next step is to calculate y1 and y2:

t1 = ((
1

1 + exp−H1
)× ω5 + ((

1

1 + exp−H2
)× ω6 + b2 (4.47)

t1 = (0.4× 0.593269992) + (0.596884378× 0.45 + 0.6) (4.48)

t1 = 1.105905967 (4.49)

The output of t1 is calculated as follows:

Outt1 =
1

1 + exp−t1
(4.50)

Outt1 =
1

1 + exp−1.105905967
(4.51)

Outt1 = 0.75136507 (4.52)

Similarly, Outt2 = 0.772928465. As a result, the output values of t1 and t2 do

not match the target values of T1 and T2 and an error occurs. Furthermore,

141

the final step of the forward press is calculating the total error, using the loss

function, which is defined by the following equation:

Etotal =
∑ 1

2
(Target− t)2 (4.53)

Etotal =
1

2
(T1 −Out(t1))2 +

1

2
(T2 −Out(t2))2 (4.54)

Etotal =
1

2
(0.01− 0.75136507)2 +

1

2
(0.99− 0.772)2 (4.55)

Etotal = 0.274811083 + 0.023560026 (4.56)

Etotal = 0.298371109 (4.57)

At this point, the error rate is obtained and needs to be back propa-

gated through the backward press to update the weights and minimise the error,

starting by updating the error at w5.

Error at w5 = σEtotal

w5

σEtotal
σw5

=
σEtotal
σOut(t1)

× σOut(t1)

σt1
× σt1
σw5

(4.58)

Etotal =
1

2
(T1 −Out(t1)2) +

1

2
(T2 −Out(t2))2 (4.59)

σEtotal
σout(t1)

= 2× 1

2
× (T1 − out(t1))2−1 ×−1 + 0 (4.60)

142

σEtotal
σout(t1)

= −(T1 −Out(t1)) (4.61)

σEtotal
σout(t1)

= −(0.01− 0.75136507) (4.62)

σEtotal
σout(t1)

= 0.74136507 (4.63)

Out(t1) =
1

1 + e−t1
(4.64)

σOut(t1)

σt1
= Out(t1)(1− out(t1) (4.65)

σOut(t1)

σt1
= 0.75136507× (1− 0.75136507) (4.66)

σOut(t1)

σt1
= 0.186815602 (4.67)

similarly,

σ(t1)

ω5
= 1× out(H1)× ω(1−1)

5 + 0 + 0 (4.68)

σ(t1)

ω5
= out(H1) (4.69)

143

σ(t1)

ω5
= 0.593269992 (4.70)

σEtotal
σw5

=
σEtotal
σOut(t1)

× σOut(t1)

σt1
× σt1
σw5

(4.71)

σEtotal
σw5

= 0.74136507× 0.186815602× 0.593269992 (4.72)

σEtotal
σw5

= 0.082167041 (4.73)

Where is the learning rate used to scale the magnitude of the weight

update, therefore minimising the neural network’s loss function, the learning

rate used for this example is 0.5. Similarly, the output weightsω6,ω7, and ω8

are calculated. At this point, the back-propagation algorithm has reached the

hidden layer, and the next step is to update the input weightsω1 ,ω2,ω3 and w4.

First, the error is calculated at ω1.

σEtotal
σw1

=
σEtotal

σOut(H1)
× σOut(H1)

σH1
× σH1

σw1
(4.74)

The first fraction of equation 4.73 is σEtotal

σw1

σEtotal
σOut(H1

) =
σE1

σOut(H1)
+

σE2

σOut(H1)
(4.75)

To solve σE1

σOut(H1)
:

σE1

σOut(H1)
=
σE1

σt1
× σt1
σOut(H1)

(4.76)

144

To solve: σE1

σt1
:

σE1

σt1
= 0.74136507× 0.186815602 (4.77)

σE1

σt1
= 0.138498562 (4.78)

Since,

σy1
σOut(H1)

= ω5 = 40 (4.79)

Therefor,

σE1

σOut(H1)
= 0.138498562× 0.40 (4.80)

σE1

σOut(H1)
= 0.055399425 (4.81)

By repeating the same approach, σE2

σOutH2
is found to be −0.019049119. There-

fore,

σEtotal

σOut(H1)
= 0.055399425 + (−0.019049119) (4.82)

To solve the second fraction of (4.73), this is (Out H1)/H1 σOut(H1)
σ(H1)

fracσEtotalσOut(H1) = Out(H1)× (1−Out(H1) = 0.5932(1− 0.593) (4.83)

fracσEtotalσOut(H1) = 0.5932(1− 0.593) (4.84)

where,

Out(H1) =
1

1 + e−H1
(4.85)

and,

H1 = ω1 × x1 + ω2 × x2 + b1 (4.86)

145

The final function in equation (4.73) is σH1

σω1

σH1

σω1
= 0.05 (4.87)

Now, substituting all the fractions obtained in (4.73):

σEtotal
σω1

= 0.03635× 0.241300× 0.05 (4.88)

σEtotal
σω1

= 0.000438568 (4.89)

As a result, the change in ω1 is 0.000438568, and the next step is to updateω1based

on the change value, using the following equation:

ω1 = ω1 − µ×
σEtotal
σω1

(4.90)

ω1 = 0.15×−0.5× 0.000438 (4.91)

ω1 = 0.149780716 (4.92)

Similarly, continuing the backward press to update the rest of the in-

put weights, the updated values are as follows:

• w2 = 0.19956143

• w3 = 0.24975114

• w4 = 0.29950229

Finally, the forward press is reapplied to identify whether the obtained values at

the output layer are closer to the target. The error of the network is calculated

to be 0.291027924, compared to the original error of 0.298371109. The reduction

is not significant, but when this process is repeated 10,000 times, the error is

146

substantially reduced to 0.0000351085. As a result, when the two inputs are fed

forward, the output neuron computes T1 and T2 to be 0.05 and 0.1, respectively.

The number at which the forward press and the backward press are repeated is

commonly known as the number of epochs.

Furthermore, up until this point, ELM achieved the best result of

classification in the example of the four species classification. Therefore, in

order to compare ELM and back-propagation, the parameters of the neural

network trained with back-propagation are kept the same as in ELM when the

latter has achieved its best classification accuracy. Furthermore, the following

experimental results were achieved by setting the number of hidden layers kept

to 1, the number of hidden neurons to 1500, and a learning rate varying from

0.001 to 0.1. However, the function is sigmoid instead of hardlim because while

experimenting, sigmoid gave a better classification.

Learning rate Training accuracy Testing accuracy

0.0001 60% 45.2%

0.001 60.5% 46.1%

0.01 64% 45%

0.1 62% 42.2%

Table 4.20: Results of a binary classification (bumblebee classifier), with 50%

of the data used for training and the number of epochs is 100. (shuffled training

and testing data)

To conclude, it is clear that the accuracy obtained using a neural net-

work trained with back-propagation is not as high as the neural network trained

with ELM. While using 1500 hidden neurons in ELM, the testing accuracy

reached 70%. However, when the same number of hidden neurons was used for

back-propagation, the accuracy varied between 42.2% to 45.5% depending on

the learning rate. Finally, when using the hand-written digits example to ver-

147

ify the code made for the back-propagation algorithm, when using 1500 hidden

neurons with a learning rate of 0.001, the resultant average accuracy of 7 runs

of the code is 91%.

Target

Predicted 0 1 2 3 4 5 6 7 8 9

0 87 0 0 0 1 0 0 0 0 0

1 0 79 2 0 0 2 0 0 1 4

2 0 0 80 3 0 0 0 0 1 0

3 1 0 0 85 0 1 1 2 0 1

4 0 1 0 0 90 1 0 0 0 0

5 0 2 0 2 1 89 1 0 1 2

6 2 1 0 0 0 1 79 0 0 0

7 1 1 0 0 0 0 0 81 0 2

8 0 7 1 1 2 0 0 1 85 1

9 1 0 0 9 0 7 0 2 2 71

Table 4.21: Confusion matrix of the hand-written digits dataset resulting from

back-propagation algorithm

4.7 Observation of the computational complex-

ity analysis of each algorithm

This project aims to implement a real-time embedded system capable of carry-

ing out complex mathematical operations on large matrices developed by the

feature extraction methods in chapter 3 and the classification algorithms ob-

served in chapter 4. Moreover, as in chapter 3, the main parameters taken into

148

consideration in the following computational complexity analysis are the time

taken, and the memory consumed for each code of the algorithms to be exe-

cuted. These results were obtained using the same Python functions mentioned

in chapter 3 through the same computer.

In addition, the length of the input vector to the classification stage

is fixed at 122 samples, so no more additions are added to it or subtracted

from it. Also, several experiments have been carried out for SVM and random

forests, and it was found that the type of kernel used for SVM and the Gini

impurity value for random forest had to be kept fixed at Laplace RBF and 0.25

respectively. These two values were chosen to achieve an accuracy high enough

to be valid to use in this thesis. As a result, the only parameter that was

found to be valid for the computational complexity analysis is the proportion of

the training files to the testing files. Moreover, the computational complexity

analysis was carried out using the same methods used for the analysis used in

section 3.5.

Based on figure 4.46, the time taken to execute the code is linearly

proportional to the proportion of the training files to the testing files. Addi-

tionally, the time taken to execute the code when 90% of the data was used for

training had increased by 38.47% compared to when 50% of the data was used

for training. Also the the maximum accuracy obtained was as mentioned earlier

51.1% when 90% of the files used for training.

149

Figure 4.46: Time taken to execute SVM code Vs. The proportion of the

training files to the testing files

On the other hand, the following graphs illustrates that Resident Set

Size when 50% of the data used for training 100MB then increases gradually

to reach equal to 108.781MB when the training files used reached 90%. There-

fore, the amount of memory consumed had increased by 8.781%, when 90% of

the data was used for training compared to when 50% was used for training;

however, this increase is not considered substantial.

150

Figure 4.47: Resident Set Size equal Vs. The proportion of the training files to

the testing files

Additionally, according to figure (4.48), the virtual memory size had

also shown an increase from 408MB when 50% of the audio files were used

for training until they reached 410.44MB when 70% of the files were used for

training to remaining fixed at this amount when 80% of the files were used for

training also. Finally, the amount of virtual memory size increased again to

413 MB when 90% of the files used for training. Therefore, there had been an

increase of 0.62% of memory consumption when 90% of the data was used for

training, which is not substantial.

151

Figure 4.48: Virtual memory size Vs. The proportion of the training files to the

testing files

Based on the following figure, executing the random forest code also

shows a linear relationship between the number of files used for training and

the time taken the code to be executed. Furthermore, the time of execution

had increased by 27.43%, when 90% of the data was used for training compared

to when 50% of the data used for training. Whereas in SVM, the time has

increased by 38.47% under the same file proportions.

152

Figure 4.49: Time taken to execute the random forest code Vs. The proportion

of the training files to the testing files

Furthermore, the resident set size memory consumed to execute the

code had shown an increase from 108.2MB when 50% of the data was used for

training to 110.22MB when 90% of the data was used for training. However, it is

noted that the amount of resident size memory almost remained fixed when the

number of training files was 70% and 80%. Therefore, the increase in memory

consumption is around 2%, which is not substantial increase.

153

Figure 4.50: Resident Set Size equal Vs. The proportion of the training files to

the testing files

It is also noted that the amount of virtual memory size has shown an

overall increase as the amount of data used for training gets higher. It is also

illustrated in figure 4.51 that the consumption of memory remains almost fixed

at around 416MB when 50% and 60% of the data was used for training, then

the amount of memory required increases rapidly to around 4.18MB. Then the

amount of memory required remains almost fixed again at around 418.16MB.

The latter shows an increase of 0.50% in memory consumption, which is not a

significant increase.

154

Figure 4.51: Virtual memory size Vs. The proportion of the training files to the

testing files

On the other hand, when using neural networks based classification

techniques, ELM was found to give the best accuracy, with parameters of 70%

of the data used for training, 993 hidden neurons, and 100 experiments. As a

result, these parameters were fixed for both ELM and back-propagation when

the computational complexity analysis was carried out.

In terms of the time taken for the ELM code to be executed was 2.82s,

whereas, for back-propagation, it was around 2 minutes. Therefore in back-

propagation the time taken to execute the code had increased by 4155.32%.

On the other hand, when the ELM code was executed, the amount of resi-

dent memory size, as well as virtual memory size consumed, was 105.22MB

and 200.18MB, respectively. However, the back-propagation consumed around

500.43MB of resident memory size and 632MB of virtual memory size. There-

fore, when the back-propagation algorithm was used, the memory consumed had

increased by 375.603% and 215.716% for the resident memory size and virtual

memory size respectively.

155

As a result, it is evident that ELM has a significant advantage over

the other algorithms, as it has not only provided the best testing accuracy but

is less computationally expensive. Therefore it is decided to use ELM for the

implementation of the embedded system in chapter 5.

156

Chapter 5

Implementation of the

Embedded System

This project aims to implement a real-time embedded system capable of carrying

out the complex mathematical operations resulting from the feature extraction

and classification stages. Computational power and battery life are the most

critical aspects of the embedded system. As a result, it is vital that the number

of neurons be low to keep the computational power of the system as less ex-

pansive as possible. As a result, S-TDSC and ELM have proven to be the least

computationally expensive in the feature extraction and classification stages in

section 3.5 and section 4.7 respectively.

Due to the computational complexity resulting from executing the code

of S-TDSC and the ELM classification algorithm, constrictions were raised in

terms of choosing an appropriate micro-controller. The latter has to record

audio and implement a real-time embedded system that can carry out com-

plex mathematical operations on the large matrices developed from the feature

extraction and classification stages with the highest accuracy.

157

For example, when considering Arduino Uno and Mbed to execute S-

TDSC and ELM codes, both micro-controllers crash within seconds of executing

the code at the feature extraction technique without even going to the classifi-

cation stage. This crash is because, as shown in section 3.5, S-TDSC requires

111.84128MB of resident memory size and 4199.84MB of virtual memory size.

Therefore, it is not possible to use either Arduino Uno with specifications of

32KB of Flash memory and 2KB of SRAM or Mbed with specifications of 8kB

RAM and 32KB.

Additionally, before building the embedded system, an experiment was

conducted to simulate the embedded system through a Matlab code with a

graphical user interface tool (GUI). The latter is created to perform a binary

classification (bumblebee classifier), with 50% of the data used for training, and

the number of epochs is 100 without shuffling the training and testing data as

shown in the last experiment in section (4.5.2). The graphical user interface tool

(GUI) in Matlab allows any user from any intellectual background to upload an

audio recording made in the field, and the number of the class will be shown.

For instance, the following graph shows that when a recording of a bumblebee is

selected, and the ELM method chosen as a classifier, S- TDSC is used to extract

the features from the selected audio recording, the result is 1, referring to the

class to which bumblebees belong.

158

Figure 5.1: Classifier of extreme learning machines (ELM) and multilayer per-

ceptron (MLP) using Matlab where if the result is class 1 then the audio is

a bumblebees and if the result is class 2 then the pollinator is either hoverfly,

common wasp or a solitary

However, if an audio recording of a hoverfly, common wasp or a solitary

bee is selected, the class number appears as 2.

Figure 5.2: Classifier of extreme learning machines (ELM) and multilayer per-

ceptron (MLP) using Matlab where if the result is class 1 then the audio is

a bumblebees and if the result is class 2 then the pollinator is either hoverfly,

common wasp or a solitary

At this point, the simulation of the embedded system was conducted by

159

Matlab. Therefore the only challenge left is to find the most appropriate micro-

controller that is capable of handling the 111.84128MB of resident memory size

and 4199.84MB of virtual memory size to perform S-TDSC as well as resident

memory of 105.22MB and virtual memory size of 200.18MB to perform ELM.

As a result, Raspberry Pi was found to be the most suitable board to carry out

all the tasks required for this project for several reasons. Firstly, Raspberry Pi

has a quad-core processor, a more powerful processor than the ATmega328P

of Arduino and the ARM Cortex-M3 of Mbed. Secondly, Raspberry Pi has a

1 GB RAM, which is significantly larger than the 32KB RAM of Arduino and

Mbed. Hence, Raspberry Pi is perfect for implementing the feature extraction

and the classification algorithm, as the large matrices multiplication required by

S-TDSC and ELM are not computationally expensive to perform. Thirdly, the

small size of the board makes it very easy to embed it into any embedded system.

Fourthly, Raspberry Pi has 40 GPIO pins; therefore, it is easily connected to

various sensors, and it has an audio-in port for a microphone to carry out

the audio recordings. Finally, this board can be connected to other hardware

devices using many protocols such as serial, spi, and i2c, which is very important

as it makes Raspberry Pi compatible with most devices connected to it. Lastly,

Raspberry Pi is a cheap board as its only around 30£.

Figure 5.3: Raspberry Pi

160

When the embedded system was implemented for this project, the

sounds of the species were simulated using a speaker and rerecorded using the

TASCAM microphone, which is the same device used for recording the sounds

from the field in the first place. Then when all the audio recordings for the

bee classifier were rerecorded, the audio recordings saved in the SD card of

the TACAM microphone were inputted into the Raspberry Pi to carry out the

feature extraction and the classification. Furthermore, after the features were

extracted from the rerecorded audio signals using S-TDSC, ELM was imple-

mented with 1500 hidden layer neurons, while 50% of the data was used for

training the algorithm. The result was found to be almost 70% accuracy, which

is almost the same result obtained when training and testing ELM using the

original recordings. The following confusion matrix is developed after classifi-

cation is carried out using the rerecorded audio signals.

Target

Predicted Bumblebees Another species

Bumblebees 39 10

Another species 13 22

Table 5.1: Confusion matrix when the number of hidden neurons is 1500 and

the number of epochs is 100

161

Figure 5.4: TASCAM audio recorder

The reason for using TASCAM as an audio recording device is because

the quality of the sound captures using it is very good and almost the same to

the original audio file in terms of the characteristics of both signals. However,

when feeding in the audio signal directly to the Raspberry Pi using a cheap

USB microphone, there was a considerable amount of noise included with the

rerecorded audio signal.

162

Figure 5.5: USB Microphone connected to Raspberry Pi

Finally, this embedded system has been deployed under laboratory

conditions; however, in terms of field deployment, there are other alternatives in

hardware components that could be less expensive with just the computational

power needed to carry out the testing processes. For example, instead of using

the Raspberry pi Three, as shown in figure 5.5, the Raspberry Pi Zero could be

used, which has a 1GHz single-core CPU and 512MB RAM. The results were

not compared with benchmarks such as existing systems to quantify the relative

performance, due to the time limitation of this thesis.

5.1 Summery

This chapter illustrated an embedded system consisting of a microphone and

Raspberry PI model 3. The sound of flight is simulated using a speaker and

captured using two different microphones to evaluate which microphone captures

a better quality of sound. The sound is then fed to the Raspberry Pi in order to

163

implement the feature extraction using the S-TDSC technique and classification

using the ELM algorithm. The experiment carried out in this chapter is the

bumblebee classifier using the same data set used in chapter 4, and the result

achieved is 70% accuracy. It is also found that for applications that require

the combination of hardware and artificial intelligence algorithms to perform

classification, Raspberry PI is the more applicable than most typical micro-

controllers such as Arduino and Mbed. This is due to the processing power that

Raspberry PI acquires, as it can manipulate matrices of significant size and as

well as interface sensors simultaneously.

164

Chapter 6

Conclusion and future work

There are several benefits that are provided by pollination on agriculture and

ecosystem, and as pollinators are declining every year, this has caused concern

worldwide. The work that has already been done in pollinator species identi-

fication requires a professional with a trained eye to determine the type of the

species. These typical methods also require the pollinator species to be killed

in order to be identified. Hence, this project aims to establish if an embedded

system could be implemented to identify pollinator species using the combina-

tion of bio-acoustics and machine learning. This thesis demonstrates that when

the sound of the flight of pollinators is captured, an enhanced TDSC technique

and the application of ANNs can indeed accomplish identifying four different

pollinator species with an accuracy reaching 58%.

More specifically, in chapter 1, this thesis reviews the current knowl-

edge on pollinator decline and provides an in-depth analysis of the various causes

of pollinator decline. Moreover, this chapter also describes the economic and

ecological importance of insect pollinators in detail, providing several examples

as to how pollinator species enhance the world economically and biologically.

After discussing the economic importance of pollinator species, chapter 1 pro-

165

vides a history of pollinator decline in many countries such as the UK and the

Netherlands. Finally, this chapter introduces pollinator monitoring, which in-

cludes the typical pollinator monitoring methods, such as pan traps and net

sampling, indicating the significant disadvantages of these two methods. Hence,

the need for monitoring and identifying pollinator species based on bio-acoustics.

Chapter 2 starts with an in-depth background on national pollinator

monitoring in the UK, which is followed by a more detailed observation on

the common monitoring methods that were previously introduced in chapter

1, as well as the advantages and disadvantages of these methods. This is then

immediately followed by one of the core principles of this project, which is bio-

acoustics, where a more detailed background on it than in chapter 1 is provided.

Many examples from other projects follow this background were bio-acoustics

and machine learning are combined to identify various species such as bats, frogs,

and birds. In addition, this chapter provides a detailed biological discussion

of the four pollinator species used in this project: honey bees, bumblebees,

common wasps, and hoverflies. This observation includes information such as an

approximation of how many sub-species are found under each of these species,

the anatomy of each species and data on their recorded frequency of sounds

under different situations such as when flying staying still.

Chapter 3 starts with the description of the raw data, which was col-

lected by Thomas Dally, who was a PhD student at the University of Leeds.

This description included where and when the audio files were collected and

the quality of the collected data. Then this chapter introduces TDSC and its

applications to identify insects in the past, then showes the D-matrix technique,

which is a method that is based on TDSC. This led to the development of

the novel technique S-TDSC, which eliminates the need of codebooks and al-

lows any audio signal to only be codded to 122 samples. In addition, various

frequency-domain methods were observed, and one of them was chosen to be

implemented to extract the features from the audio files for the sake of com-

166

parison between it and S-TDSC. The latter has shown a clear advantage over

the frequency domain-based method, hence a section of why choosing time do-

main over frequency domain in this project was provided. This analysis finishes

with a computational complexity analysis of S-TDSC and the frequency domain

based method.

Chapter 4 provides an observation of 4 different machine learning tech-

niques, which are SVM, random forests, ELM, and back-propagation. Each of

these algorithms was observed and implemented as a classification technique on

the 122 features extracted from S-TDSC. The audio recording used to train and

test each algorithm was the same, containing audio files from the four different

pollinators specie, which are bumblebees, hoverflies, common wasps, and soli-

tary bees. ELM proved to give maximum accuracy to about 76.57%. Therefore

in the ELM section, more experiments were carried out, where various param-

eters were altered to increase the accuracy of this algorithm. Furthermore, due

to the lack of data to train the algorithms, which has resulted in each of these

algorithms being insufficiently tested, dummy data was used to verify the perfor-

mance of the algorithms. This dummy data consists of samples of hand-written

digits that include 1797 images. As a result, the performances of the algorithms

were verified and the testing accuracy of every algorithm was above 90%. Addi-

tionally, as ELM showed the highest accuracy when it was implemented on the

pollinator specie audio files, ELM has also has provided the highest accuracy

in the hand-written digits data. Additionally, in the ELM section, a bumblebee

classifier using ELM was implemented, where the audio files from hoverflies,

common wasps, and solitary bees against the bumblebees audio files and the

accuracy reached 70%. an in-depth computational complexity analysis of each

algorithm is provided in the sub-chapter (4.7). Since one of the main arguments

of this thesis is the low computational complexity required to implement the

embedded system, this section has shown that ELM is the most valid choice

of classification. This is because apart from the fact that ELM provides the

best testing accuracy, it is also the least computationally complex out the 4

167

algorithms observed in this thesis.

Finally, chapter 5 illustrated the implementation of the embedded sys-

tem that captures the audio files using a microphone and a Raspberry Pi 3 to

perform S-TDSC to extract the features from the captured audio signals and

performs ELM for the classification and the result in the form of a confusion

matrix was provided. In conclusion, the research presented in this thesis has

constructed the tools, both in software and hardware. This allows the identifi-

cation of pollinator species to occur in a desktop computer after the sound has

been collected in a field or placing the embedded system in a field to detect the

presence of pollinator species as classify it in real-time.

6.1 Future work

This thesis has already proven that the more data available for training, the

better the classification accuracy of the algorithm. Therefore, the most critical

work that should be done to enhance this project is to increase the accuracy of

the algorithm by collecting more data to train the system. Furthermore, this

data can include different genus recording so the classification can go beyond

the species level and to the genus level within the same species, for instance,

there are several bumblebee species, such as buff-tailed bumblebee (bombus ter-

restris), southern cuckoo bumblebee (bombus vestalis), white-tailed bumblebee

(bombus lucorum) and gypsy cuckoo bumblebee (bombus bohemicus). The fol-

lowing figure illustrates the male, worker, and queen species of each sub-species

as well as the UK’s location of where they are abundant [141]. Another al-

ternative of classification is to identify species based on gender by training the

algorithm with audio files of male and female species.

Audio recordings could also be recorded in laboratory conditions to

examine if the sound of flight would change depending on some conditions. For

168

example, exposing species to simulated pollution such as CO2 emission to check

if species would react differently in terms of sound signals when exposed. The

latter approach could give an insight into how to improve the testing accuracy

further.

Figure 6.1: Sub-species of bumblebees [139]

Moreover, another significant improvement would be implementing

deep learning neural networks in the training phase to observe if there would be

any improvement in the testing accuracy. Some deep learning neural network

structures are observed in sub-section 4.3.2. Additionally, RNN and CNN are

both deep learning techniques that can be implemented as a classification meth-

ods for this project. As with all other deep learning algorithms, their accuracy

would increase when more data is provided for training as the following figure

illustrates.

169

Figure 6.2: Amount of data available for training Vs. Accuracy [142]

Research has shown that RNN is ideal for text and speech analysis,

whilst CNN is ideal for images and video processing [142]. However, unless

RNN and CNN are built, trained and tested with the dataset of this thesis, it

is not possible to provide a computational complexity analysis.

Furthermore, one of the project’s motives is to implement an embed-

ded system that is entirely independent of human intervention. However, this

embedded system still requires someone to take it to a field and collect it af-

terward. Therefore, the embedded system to be enhanced further is to create a

GPS guided robot such as a four-wheeled robot or a drone. This robot should be

designed to be able to carry an embedded system from point A to point B based

on the GPS coordinates and back to point B when the data has been collected

and analysed. Finally, for such robots to be capable of taking measurements is

considerably large fields, there could be fixed stations along the route to provide

larger batteries.

170

Since the collection method of the audio files was made through follow-

ing bees around, whilst placing the microphone reasonably close to the species.

The sound quality is considerably high. However, after the algorithms were

trained using the collected high-quality audio files, the trained embedded sys-

tem is placed in a field to classify pollinator species. When the embedded system

is in a field, several issues may arise in many scenarios. For instance, wind noise

can significantly impact the classification accuracy; noises can be in the form of

a flying plane, a car passing by or wind. Therefore, filters must be observed for

the pre-processing stage.

Additionally, more audio recordings should be made with noise em-

bedded in the audio files and train the classification algorithm to inspect if the

noise source would be classified independently by the algorithm.

For instance, inspecting whether the wind would be identified as a class

of its own or not. Also, analysing how the testing accuracy is changed in case

wind was classified as an independent class.

Another challenge with placing the embedded system in a field would

be the same bee passing continuously, and the embedded system keeps on count-

ing it more than one time. Moreover, an issue can also arise if more than just

one bee of the same species would pass by the microphone range, resulting in

an overlap of the classification. On the other hand, these challenges are easily

avoided with the destructive method of classifying bees, as the bee is already

dead under a microscope when it is identified and will not be identified twice.

Furthermore, As shown in this thesis, pollinator species are essential for

our ecosystem, and as these species are declining, more monitoring is required.

Hence, using the work implemented in this project should not be restricted to

scientists only. However, the involvement of citizen scientists is also a viable

option. Further research may also performed on an incentive mechanism, which

can make people participate. The participation can be through the involvement

171

of local schools, tourist information centres and park authorities interested in

attracting customers while raising public awareness of biodiversity monitoring

issues. Gamification that is the engagement of users through a game in a none-

game context is also a route that can be followed because hundreds of millions

of people globally play electronic games [142]; hence it is a large community to

attract. Additionally, the computational sustainability scenario attracts much

public attention when more importance is shown in safeguarding the ecosystem.

Moreover, the feature extraction and classification techniques imple-

mented for this project can provide an excellent starting point for a mobile

application project. This is because the weights of the neural network and the

feature extraction technique have already been computed. Therefore, a mobile

phone that the public can easily carry to fields can help gather more audio data,

which has been a hurdle for this project and help monitor pollinator species.

Modern mobile phones would be sensitive enough to capture bee sound as there

are already existing mobile applications to identify cicada species.

Finally, the same techniques and algorithm used in this research may

be applied outside the biodiversity monitoring domain by using citizen science

and smartphones to monitor other environmental factors using sound. An exam-

ple application would be monitoring soundscape and tranquillity around urban

parks or detecting faults in electrical equipment, such as alternators, that emit

distinctive noise when close to failure.

172

Appendix A

Confusion matrices

developed from SVM for

the 4 species classifier

When 60% of the files used for training, the maximum accuracy of the run is

52%:

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 18 5 0 1

Solitary bees 2 7 3 1

Bumblebees 5 6 1 0

Hover flies 7 2 0 10

Table A.1: Confusion matrix when the number of hidden neurons is 200 and

the number of epochs is 100

173

When 70% of the files used for training, the maximum accuracy of the

run is 57%:

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 7 1 0 0

Solitary bees 2 8 2 0

Bumblebees 3 3 13 1

Hover flies 0 5 5 1

Table A.2: Confusion matrix when the number of hidden neurons is 200 and

the number of epochs is 100

When 80% of the files used for training, the maximum accuracy of the

run is 58.8%:

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 9 0 2 0

Solitary bees 0 3 3 1

Bumblebees 1 2 7 0

Hover flies 3 0 2 1

Table A.3: Confusion matrix when the number of hidden neurons is 200 and

the number of epochs is 100

When 90% of the files used for training, the maximum accuracy of the

run is 58.9%:

174

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 5 0 0 0

Solitary bees 0 0 0 0

Bumblebees 0 1 4 0

Hover flies 3 0 3 1

Table A.4: Confusion matrix when the number of hidden neurons is 200 and

the number of epochs is 100

Confusion matrices are obtained using the frequency domain method

as a feature extraction technique. When 50% of the files are used for training,

the maximum accuracy of the specific run is 39.8%:

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 17 7 2 1

Solitary bees 14 21 6 5

Bumblebees 4 4 2 4

Hover flies 11 6 1 3

Table A.5: Confusion matrix when the number of hidden neurons is 200 and

the number of epochs is 100

When 60% of the files are used for training, the maximum accuracy of

the specific run is 40%:

175

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 2 2 2 4

Solitary bees 1 5 4 11

Bumblebees 2 5 11 3

Hover flies 4 6 8 17

Table A.6: Confusion matrix when the number of hidden neurons is 200 and

the number of epochs is 100

When 70% of the files are used for training, the maximum accuracy of

the specific run is 45%:

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 18 7 4 0

Solitary bees 8 2 4 2

Bumblebees 6 1 9 0

Hover flies 1 1 2 0

Table A.7: Confusion matrix when the number of hidden neurons is 200 and

the number of epochs is 100

When 80% of the files are used for training, the maximum accuracy of

the specific run is 43%:

176

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 18 7 4 0

Solitary bees 8 2 4 2

Bumblebees 6 1 9 0

Hover flies 1 1 2 0

Table A.8: Confusion matrix when the number of hidden neurons is 200 and

the number of epochs is 100

When 90% of the files are used for training, the maximum accuracy of

the specific run is 54%:

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 1 2 1 1

Solitary bees 0 5 0 0

Bumblebees 0 0 0 1

Hover flies 5 0 0 6

Table A.9: Confusion matrix when the number of hidden neurons is 200 and

the number of epochs is 100

177

Appendix B

Confusion matrices

developed from Random

forests for the 4 species

classifier

When 60% of the files used for training, the maximum accuracy of the run is

57%:

178

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 12 1 5 1

Solitary bees 2 0 6 0

Bumblebees 1 1 21 2

Hover flies 4 0 6 6

Table B.1: Confusion matrix when 60% of the data used for training

When 70% of the files used for training, the maximum accuracy of the

run is 65%:

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 1 3 0 2

Solitary bees 1 22 1 1

Bumblebees 0 4 6 2

Hover flies 1 2 1 4

Table B.2: Confusion matrix when 70% of the data used for training

When 80% of the files used for training, the maximum accuracy of the

run is 68%:

179

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 0 0 2 1

Solitary bees 1 8 0 1

Bumblebees 1 2 9 0

Hover flies 0 1 3 6

Table B.3: Confusion matrix when 80% of the data used for training

When 90% of the files used for training, the maximum accuracy of the

run is 70%:

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 7 0 1 0

Solitary bees 1 0 1 0

Bumblebees 1 0 4 0

Hover flies 1 0 0 1

Table B.4: Confusion matrix when 90% of the data used for training

The following are the confusion matrices obtained using the frequency

domain method as a feature extraction technique. When 50% of the files are

used for training, the maximum accuracy of the specific run is 48%:

180

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 5 0 13 2

Solitary bees 4 2 4 5

Bumblebees 7 1 32 7

Hover flies 4 0 9 13

Table B.5: Confusion matrix when 60% of the data used for training

When 60% of the files are used for training, the maximum accuracy of

the specific run is 46%:

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 27 9 2 4

Solitary bees 5 11 0 4

Bumblebees 7 2 1 1

Hover flies 5 5 3 1

Table B.6: Confusion matrix when 60% of the data used for training

When 70% of the files are used for training, the maximum accuracy of

the specific run is 46%:

181

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 9 4 1 2

Solitary bees 2 3 0 3

Bumblebees 2 5 1 4

Hover flies 5 5 2 17

Table B.7: Confusion matrix when 70% of the data used for training

When 80% of the files are used for training, the maximum accuracy of

the specific run is 50%:

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 15 1 0 0

Solitary bees 4 5 0 1

Bumblebees 6 1 2 0

Hover flies 8 1 0 0

Table B.8: Confusion matrix when 80% of the data used for training

When 90% of the files are used for training, the maximum accuracy of

the specific run is 68%:

182

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 9 0 0 1

Solitary bees 3 4 0 0

Bumblebees 1 0 1 0

Hover flies 2 0 0 1

Table B.9: Confusion matrix when 90% of the data used for training

183

Appendix C

Confusion matrices

developed from ELM when

both of the training and

testing data are unshuffled

for the 4 species

Number of neurons = 60

• Training accuracy 80.0%

• Testing accuracy 69.04%

184

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 25 4 1 0

Solitary bees 4 30 0 0

Bumblebees 4 2 3 0

Hover flies 6 4 1 0

Table C.1: Confusion matrix when when the number of the hidden neurons is

60 and the number of epochs is a 100

Number of neurons = 70

• Training accuracy 80.52%

• Testing accuracy 73.80%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 30 5 2 0

Solitary bees 1 30 0 0

Bumblebees 2 1 2 0

Hover flies 6 4 1 0

Table C.2: Confusion matrix when when the number of the hidden neurons is

70 and the number of epochs is a 100

Number of neurons = 80

• Training accuracy 74.11%

• Testing accuracy 76.19%

185

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 31 5 1 0

Solitary bees 0 30 0 0

Bumblebees 1 1 3 0

Hover flies 7 4 1 0

Table C.3: Confusion matrix when when the number of the hidden neurons is

80 and the number of epochs is a 100

Number of neurons = 90

• Training accuracy 87.05%

• Testing accuracy 78.57%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 33 5 2 0

Solitary bees 4 31 1 0

Bumblebees 0 0 2 0

Hover flies 2 4 0 0

Table C.4: Confusion matrix when when the number of the hidden neurons is

90 and the number of epochs is a 100

Number of neurons = 100

• Training accuracy 90.05%

• Testing accuracy 93.75%

186

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 15 0 0 0

Solitary bees 0 0 0 0

Bumblebees 1 0 0 0

Hover flies 0 0 0 0

Table C.5: Confusion matrix when when the number of the hidden neurons is

100 and the number of epochs is a 100

Number of neurons = 110

• Training accuracy 92.94%

• Testing accuracy 82.14%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 32 0 2 0

Solitary bees 3 35 0 0

Bumblebees 0 1 2 0

Hover flies 4 4 1 0

Table C.6: Confusion matrix when when the number of the hidden neurons is

110 and the number of epochs is a 100

Number of neurons = 120

• Training accuracy 90.58%

• Testing accuracy 82.14%

187

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 31 1 3 0

Solitary bees 4 36 0 0

Bumblebees 0 0 2 0

Hover flies 4 3 0 0

Table C.7: Confusion matrix when when the number of the hidden neurons is

120 and the number of epochs is a 100

Number of neurons = 130

• Training accuracy 88.23%

• Testing accuracy 77.38%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 30 4 1 0

Solitary bees 4 32 0 0

Bumblebees 1 2 3 0

Hover flies 4 2 1 0

Table C.8: Confusion matrix when when the number of the hidden neurons is

130 and the number of epochs is a 100

Number of neurons = 140

• Training accuracy 91.76%

• Testing accuracy 77.38%

188

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 29 2 1 0

Solitary bees 3 34 1 0

Bumblebees 4 3 2 0

Hover flies 3 1 1 0

Table C.9: Confusion matrix when when the number of the hidden neurons is

140 and the number of epochs is a 100

Number of neurons = 150

• Training accuracy 96.47%

• Testing accuracy 82.14%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 34 4 1 0

Solitary bees 0 31 0 0

Bumblebees 1 2 4 0

Hover flies 4 3 0 0

Table C.10: Confusion matrix when when the number of the hidden neurons is

150 and the number of epochs is a 100

Number of neurons = 160

• Training accuracy 96.47%

• Testing accuracy 80.95%

189

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 34 3 0 0

Solitary bees 0 30 1 0

Bumblebees 1 2 4 0

Hover flies 4 5 0 0

Table C.11: Confusion matrix when when the number of the hidden neurons is

160 and the number of epochs is a 100

Number of neurons = 170

• Training accuracy 95.29%

• Testing accuracy 79.76%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 31 5 1 0

Solitary bees 5 33 0 0

Bumblebees 2 0 3 0

Hover flies 1 2 1 0

Table C.12: Confusion matrix when when the number of the hidden neurons is

170 and the number of epochs is a 100

Number of neurons = 180

• Training accuracy 97.64%

• Testing accuracy 83.33%

190

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 33 3 0 0

Solitary bees 3 33 1 0

Bumblebees 0 0 4 0

Hover flies 3 4 0 0

Table C.13: Confusion matrix when when the number of the hidden neurons is

180 and the number of epochs is a 100

Number of neurons = 190

• Training accuracy 92.94%

• Testing accuracy 80.95%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 33 0 2 0

Solitary bees 1 33 0 0

Bumblebees 0 2 2 0

Hover flies 5 5 1 0

Table C.14: Confusion matrix when when the number of the hidden neurons is

190 and the number of epochs is a 100

191

Appendix D

Confusion matrices

developed from ELM when

only the training data are is

being shuffled for the 4

species

Number of neurons = 60

• Training accuracy 68.06%

• Testing accuracy 86.0%

192

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 33 1 0 0

Solitary bees 3 10 0 0

Bumblebees 0 0 0 0

Hover flies 3 0 0 0

Table D.1: Confusion matrix when when the number of the hidden neurons is

60 and the number of epochs is a 100

Number of neurons = 70

• Training accuracy 73.10%

• Testing accuracy 88.0%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 34 0 0 0

Solitary bees 2 10 0 0

Bumblebees 0 0 0 0

Hover flies 3 1 0 0

Table D.2: Confusion matrix when when the number of the hidden neurons is

70 and the number of epochs is a 100

Number of neurons = 80

• Training accuracy 72.26%

• Testing accuracy 84.0%

193

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 32 1 0 0

Solitary bees 1 10 0 0

Bumblebees 2 0 0 0

Hover flies 4 0 0 0

Table D.3: Confusion matrix when when the number of the hidden neurons is

80 and the number of epochs is a 100

Number of neurons = 90

• Training accuracy 79.83%

• Testing accuracy 90.0%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 34 0 0 0

Solitary bees 1 11 0 0

Bumblebees 2 0 0 0

Hover flies 2 0 0 0

Table D.4: Confusion matrix when when the number of the hidden neurons is

90 and the number of epochs is a 100

Number of neurons = 100

• Training accuracy 84.87%

• Testing accuracy 88.0%

194

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 34 0 0 0

Solitary bees 2 10 0 0

Bumblebees 0 0 0 0

Hover flies 3 1 0 0

Table D.5: Confusion matrix when when the number of the hidden neurons is

100 and the number of epochs is a 100

Number of neurons = 110

• Training accuracy 83.19%

• Testing accuracy 90.0%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 37 2 0 0

Solitary bees 0 8 0 0

Bumblebees 1 0 0 0

Hover flies 1 1 0 0

Table D.6: Confusion matrix when when the number of the hidden neurons is

110 and the number of epochs is a 100

Number of neurons = 120

• Training accuracy 90.58%

• Testing accuracy 82.14%

195

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 31 1 3 0

Solitary bees 4 36 0 0

Bumblebees 0 0 2 0

Hover flies 4 3 0 0

Table D.7: Confusion matrix when when the number of the hidden neurons is

120 and the number of epochs is a 100

Number of neurons = 130

• Training accuracy 88.23%

• Testing accuracy 77.38%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 30 4 1 0

Solitary bees 4 32 0 0

Bumblebees 1 2 3 0

Hover flies 4 2 1 0

Table D.8: Confusion matrix when when the number of the hidden neurons is

130 and the number of epochs is a 100

Number of neurons = 140

• Training accuracy 87.39%

• Testing accuracy 92.0%

196

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 37 1 0 0

Solitary bees 0 9 0 0

Bumblebees 2 0 0 0

Hover flies 0 1 0 0

Table D.9: Confusion matrix when when the number of the hidden neurons is

140 and the number of epochs is a 100

Number of neurons = 150

• Training accuracy 94.95%

• Testing accuracy 88.0%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 34 0 0 0

Solitary bees 2 10 0 0

Bumblebees 0 1 0 0

Hover flies 3 0 0 0

Table D.10: Confusion matrix when when the number of the hidden neurons is

150 and the number of epochs is a 100

Number of neurons = 160

• Training accuracy 93.27%

• Testing accuracy 94.0%

197

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 38 1 0 0

Solitary bees 0 9 0 0

Bumblebees 0 0 0 0

Hover flies 1 1 0 0

Table D.11: Confusion matrix when when the number of the hidden neurons is

160 and the number of epochs is a 100

Number of neurons = 170

• Training accuracy 89.07%

• Testing accuracy 94.0%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 36 0 0 0

Solitary bees 1 11 0 0

Bumblebees 1 0 0 0

Hover flies 1 0 0 0

Table D.12: Confusion matrix when when the number of the hidden neurons is

170 and the number of epochs is a 100

Number of neurons = 180

• Training accuracy 94.95%

• Testing accuracy 94.0%

198

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 36 0 0 0

Solitary bees 1 11 0 0

Bumblebees 1 0 0 0

Hover flies 1 0 0 0

Table D.13: Confusion matrix when when the number of the hidden neurons is

180 and the number of epochs is a 100

Number of neurons = 190

• Training accuracy 98.31%

• Testing accuracy 96.0%

Target

Predicted Common wasps Solitary bees Bumblebees Hover flies

Common wasps 38 0 0 0

Solitary bees 0 10 0 0

Bumblebees 1 0 0 0

Hover flies 0 1 0 0

Table D.14: Confusion matrix when when the number of the hidden neurons is

190 and the number of epochs is a 100

199

Appendix E

Confusion matrices

developed from ELM when

both the training and

testing data for the

bumblebee classifier

Number of neurons = 100

• Training accuracy 90.58%

• Testing accuracy 66.66%

200

Target

Predicted Bumblebees Another species

Bumblebees 41 18

Another species 9 16

Table E.1: Confusion matrix when the number of hidden neurons is 100 and the

number of epochs is 100

Number of neurons = 150

• Training accuracy 94.11%

• Testing accuracy 67.85%

Target

Predicted Bumblebees Another species

Bumblebees 42 20

Another species 7 15

Table E.2: Confusion matrix when the number of hidden neurons is 150 and the

number of epochs is 100

Number of neurons = 200

• Training accuracy 96.47%

• Testing accuracy 69.04%

201

Target

Predicted Bumblebees Another species

Bumblebees 34 12

Another species 14 24

Table E.3: Confusion matrix when the number of hidden neurons is 200 and the

number of epochs is 100

Number of neurons = 250

• Training accuracy 96.47%

• Testing accuracy 71.42%

Target

Predicted Bumblebees Another species

Bumblebees 42 18

Another species 6 18

Table E.4: Confusion matrix when the number of hidden neurons is 250 and the

number of epochs is 100

Number of neurons = 300

• Training accuracy 98.82%

• Testing accuracy 71.42%

202

Target

Predicted Bumblebees Another species

Bumblebees 36 10

Another species 14 24

Table E.5: Confusion matrix when the number of hidden neurons is 300 and the

number of epochs is 100

Number of neurons = 350

• Training accuracy 98.82%

• Testing accuracy 69.04%

Target

Predicted Bumblebees Another species

Bumblebees 43 20

Another species 6 15

Table E.6: Confusion matrix when the number of hidden neurons is 350 and the

number of epochs is 100

Number of neurons = 400

• Training accuracy 97.64%

• Testing accuracy 70.23%

203

Target

Predicted Bumblebees Another species

Bumblebees 42 13

Another species 12 17

Table E.7: Confusion matrix when the number of hidden neurons is 400 and the

number of epochs is 100

Number of neurons = 450

• Training accuracy 98.82%

• Testing accuracy 67.85%

Target

Predicted Bumblebees Another species

Bumblebees 35 16

Another species 11 22

Table E.8: Confusion matrix when the number of hidden neurons is 450 and the

number of epochs is 100

Number of neurons = 500

• Training accuracy 100.00%

• Testing accuracy 71.42%

204

Target

Predicted Bumblebees Another species

Bumblebees 37 15

Another species 9 23

Table E.9: Confusion matrix when the number of hidden neurons is 500 and the

number of epochs is 100

Number of neurons = 550

• Training accuracy 100.00%

• Testing accuracy 71.42%

Target

Predicted Bumblebees Another species

Bumblebees 41 12

Another species 12 19

Table E.10: Confusion matrix when the number of hidden neurons is 550 and

the number of epochs is 100

Number of neurons = 600

• Training accuracy 98.82%

• Testing accuracy 73.80%

205

Target

Predicted Bumblebees Another species

Bumblebees 40 11

Another species 11 22

Table E.11: Confusion matrix when the number of hidden neurons is 600 and

the number of epochs is 100

Number of neurons = 650

• Training accuracy 100.00%

• Testing accuracy 75.0%

Target

Predicted Bumblebees Another species

Bumblebees 38 9

Another species 12 25

Table E.12: Confusion matrix when the number of hidden neurons is 650 and

the number of epochs is 100

Number of neurons = 700

• Training accuracy 100.00%

• Testing accuracy 73.80%

206

Target

Predicted Bumblebees Another species

Bumblebees 42 9

Another species 13 20

Table E.13: Confusion matrix when the number of hidden neurons is 700 and

the number of epochs is 100

Number of neurons = 750

• Training accuracy 100.0%

• Testing accuracy 69.04%

Target

Predicted Bumblebees Another species

Bumblebees 39 16

Another species 10 19

Table E.14: Confusion matrix when the number of hidden neurons is 750 and

the number of epochs is 100

Number of neurons = 800

• Training accuracy 100.0%

• Testing accuracy 69.04%

207

Target

Predicted Bumblebees Another species

Bumblebees 38 17

Another species 9 20

Table E.15: Confusion matrix when the number of hidden neurons is 800 and

the number of epochs is 100

Number of neurons = 850

• Training accuracy 98.82%

• Testing accuracy 72.61%

Target

Predicted Bumblebees Another species

Bumblebees 37 13

Another species 10 24

Table E.16: Confusion matrix when the number of hidden neurons is 850 and

the number of epochs is 100

Number of neurons = 900

• Training accuracy 100.0%

• Testing accuracy 75.0%

208

Target

Predicted Bumblebees Another species

Bumblebees 43 17

Another species 4 20

Table E.17: Confusion matrix when the number of hidden neurons is 900 and

the number of epochs is 100

Number of neurons = 950

• Training accuracy 100.0%

• Testing accuracy 69.04%

Target

Predicted Bumblebees Another species

Bumblebees 35 10

Another species 16 23

Table E.18: Confusion matrix when the number of hidden neurons is 950 and

the number of epochs is 100

Number of neurons = 1000

• Training accuracy 100.0%

• Testing accuracy 76.19%

209

Target

Predicted Bumblebees Another species

Bumblebees 44 15

Another species 5 20

Table E.19: Confusion matrix when the number of hidden neurons is 1000 and

the number of epochs is 100

Number of neurons = 1050

• Training accuracy 100.0%

• Testing accuracy 76.19%

Target

Predicted Bumblebees Another species

Bumblebees 44 15

Another species 5 20

Table E.20: Confusion matrix when the number of hidden neurons is 1050 and

the number of epochs is 100

Number of neurons = 1100

• Training accuracy 100.0%

• Testing accuracy 72.61%

210

Target

Predicted Bumblebees Another species

Bumblebees 39 10

Another species 13 22

Table E.21: Confusion matrix when the number of hidden neurons is 1100 and

the number of epochs is 100

Number of neurons = 1150

• Training accuracy 98.82%

• Testing accuracy 75.0%

Target

Predicted Bumblebees Another species

Bumblebees 40 8

Another species 13 23

Table E.22: Confusion matrix when the number of hidden neurons is 1150 and

the number of epochs is 100

Number of neurons = 1200

• Training accuracy 100.0%

• Testing accuracy 72.61%

211

Target

Predicted Bumblebees Another species

Bumblebees 40 13

Another species 10 21

Table E.23: Confusion matrix when the number of hidden neurons is 1200 and

the number of epochs is 100

Number of neurons = 1250

• Training accuracy 100.0%

• Testing accuracy 73.80%

Target

Predicted Bumblebees Another species

Bumblebees 42 6

Another species 16 20

Table E.24: Confusion matrix when the number of hidden neurons is 1250 and

the number of epochs is 100

Number of neurons = 1300

• Training accuracy 100.0%

• Testing accuracy 76.19%

212

Target

Predicted Bumblebees Another species

Bumblebees 41 10

Another species 10 23

Table E.25: Confusion matrix when the number of hidden neurons is 1300 and

the number of epochs is 100

Number of neurons = 1350

• Training accuracy 100.0%

• Testing accuracy 70.23%

Target

Predicted Bumblebees Another species

Bumblebees 39 14

Another species 11 20

Table E.26: Confusion matrix when the number of hidden neurons is 1350 and

the number of epochs is 100

Number of neurons = 1400

• Training accuracy 100.0%

• Testing accuracy 69.04%

213

Target

Predicted Bumblebees Another species

Bumblebees 38 13

Another species 13 20

Table E.27: Confusion matrix when the number of hidden neurons is 1400 and

the number of epochs is 100

Number of neurons = 1450

• Training accuracy 100.0%

• Testing accuracy 69.04%

Target

Predicted Bumblebees Another species

Bumblebees 42 14

Another species 12 16

Table E.28: Confusion matrix when the number of hidden neurons is 1450 and

the number of epochs is 100

214

Appendix F

Publications

• Khalil, H. M (2018) Identification of Pollinator Species using Bio-

acoustics and Artificial Intelligence.

Royal Entomological Society. Annual Conference (Edge HILL University).

Presentation, including questions and answers session.

• Khalil, H. M (2018) Robotics and Neural Networks.

Neural Networks Society (Leeds University).

Presentation, including questions and answers session.

• Khalil, H. M (2018) Automated Classification of Insect Pollinator Species

using Bio-acoustics.

The adaptive Many-Core architecture and systems. Workshop.

Poster, including questions and answers session.

215

Bibliography

[1] S. G. Potts, J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and

W. E. Kunin, “Global pollinator declines: trends, impacts and drivers,”

Trends in ecology & evolution, vol. 25, no. 6, pp. 345–353, 2010.

[2] C. on Biological Diversity, “Pollinators - introduction,” 6.8.2012”.

[3] J. Ollerton, R. Winfree, and S. Tarrant, “How many flowering plants are

pollinated by animals?,” Oikos, vol. 120, no. 3, pp. 321–326, 2011.

[4] N. Gallai, J.-M. Salles, J. Settele, and B. E. Vaissière, “Economic valu-

ation of the vulnerability of world agriculture confronted with pollinator

decline,” Ecological economics, vol. 68, no. 3, pp. 810–821, 2009.

[5] A. J. Vanbergen and t. I. P. Initiative, “Threats to an ecosystem ser-

vice: pressures on pollinators,” Frontiers in Ecology and the Environment,

vol. 11, no. 5, pp. 251–259, 2013.

[6] T. D. Breeze, A. P. Bailey, K. G. Balcombe, and S. G. Potts, “Pollination

services in the uk: How important are honeybees?,” Agriculture, Ecosys-

tems & Environment, vol. 142, no. 3-4, pp. 137–143, 2011.

[7] L. A. Garibaldi, I. Steffan-Dewenter, R. Winfree, M. A. Aizen, R. Bom-

marco, S. A. Cunningham, C. Kremen, L. G. Carvalheiro, L. D. Harder,

O. Afik, et al., “Wild pollinators enhance fruit set of crops regardless of

honey bee abundance,” science, vol. 339, no. 6127, pp. 1608–1611, 2013.

216

[8] O. Rollin, V. Bretagnolle, L. Fortel, L. Guilbaud, and M. Henry, “Habi-

tat, spatial and temporal drivers of diversity patterns in a wild bee as-

semblage,” Biodiversity and Conservation, vol. 24, no. 5, pp. 1195–1214,

2015.

[9] D. Goulson, Bumblebees: behaviour, ecology, and conservation. Oxford

University Press on Demand, 2010.

[10] J. Ollerton, V. Price, W. S. Armbruster, J. Memmott, S. Watts, N. M.

Waser, Ø. Totland, D. Goulson, R. Alarcón, J. C. Stout, et al., “Overplay-

ing the role of honey bees as pollinators: a comment on aebi and neumann

(2011),” Trends in Ecology and Evolution, vol. 27, no. 3, p. 141, 2012.

[11] J. C. Biesmeijer, S. P. Roberts, M. Reemer, R. Ohlemüller, M. Edwards,

T. Peeters, A. Schaffers, S. G. Potts, R. Kleukers, C. Thomas, et al.,

“Parallel declines in pollinators and insect-pollinated plants in britain and

the netherlands,” Science, vol. 313, no. 5785, pp. 351–354, 2006.

[12] L. G. Carvalheiro, W. E. Kunin, P. Keil, J. Aguirre-Gutiérrez, W. N.

Ellis, R. Fox, Q. Groom, S. Hennekens, W. Van Landuyt, D. Maes, et al.,

“Species richness declines and biotic homogenisation have slowed down

for nw-european pollinators and plants,” Ecology letters, vol. 16, no. 7,

pp. 870–878, 2013.

[13] D. Goulson, E. Nicholls, C. Bot́ıas, and E. L. Rotheray, “Bee declines

driven by combined stress from parasites, pesticides, and lack of flowers,”

Science, vol. 347, no. 6229, p. 1255957, 2015.

[14] G. Powney, C. Carvell, M. Edwards, R. Morris, H. Roy, B. Woodcock,

and N. Isaac, “Widespread losses of pollinating insects in britain. nat.

commun. 10, 1018,” 2019.

[15] CBD, “Convention on biological diversity: Pollinators - introduction.,”

2014. Last accessed 16 September 2016.

217

[16] FAO, “Protocol to detect and monitor pollinator communities: Guidance

for practitioners,” 2016. Last accessed 16 September 2017.

[17] DEFRA, “The national pollinator strategy: for bees and other pollinators

in england.,” 2014. Last accessed 16 September 2016.

[18] DEFRA, “The national pollinator strategy 2014 to 2024: implementation

plan (defra, ed.,” 2015. Last accessed 16 December 2016.

[19] M. Baude, W. E. Kunin, N. D. Boatman, S. Conyers, N. Davies, M. A.

Gillespie, R. D. Morton, S. M. Smart, and J. Memmott, “Historical nectar

assessment reveals the fall and rise of floral resources in britain,” Nature,

vol. 530, no. 7588, pp. 85–88, 2016.

[20] J. P. González-Varo, J. C. Biesmeijer, R. Bommarco, S. G. Potts,

O. Schweiger, H. G. Smith, I. Steffan-Dewenter, H. Szentgyörgyi, M. Woy-

ciechowski, and M. Vilà, “Combined effects of global change pressures on

animal-mediated pollination,” Trends in ecology & evolution, vol. 28, no. 9,

pp. 524–530, 2013.

[21] N. R. Council et al., Status of pollinators in North America. National

Academies Press, 2007.

[22] G. Emily, “Bees and the crops they pollinate are at risk from climate

change, ipcc report to warn,” 2014. Last accessed 16 December 2017.

[23] A.-M. Klein, B. E. Vaissiere, J. H. Cane, I. Steffan-Dewenter, S. A. Cun-

ningham, C. Kremen, and T. Tscharntke, “Importance of pollinators in

changing landscapes for world crops,” Proceedings of the royal society B:

biological sciences, vol. 274, no. 1608, pp. 303–313, 2007.

[24] S. G. Potts, H. T. Ngo, J. C. Biesmeijer, T. D. Breeze, L. V. Dicks,

L. A. Garibaldi, R. Hill, J. Settele, and A. Vanbergen, “The assessment

report of the intergovernmental science-policy platform on biodiversity

and ecosystem services on pollinators, pollination and food production,”

2016.

218

[25] M. E. Saunders, “Insect pollinators collect pollen from wind-pollinated

plants: implications for pollination ecology and sustainable agriculture,”

Insect conservation and diversity, vol. 11, no. 1, pp. 13–31, 2018.

[26] N. L. Garćıa, “The current situation on the international honey market,”

Bee World, vol. 95, no. 3, pp. 89–94, 2018.

[27] H. Lee, D. A. Sumner, and A. Champetier, “Pollination markets and the

coupled futures of almonds and honey bees: simulating impacts of shifts

in demands and costs,” American Journal of Agricultural Economics,

vol. 101, no. 1, pp. 230–249, 2019.

[28] W. V. Reid, H. A. Mooney, A. Cropper, D. Capistrano, S. R. Carpenter,

K. Chopra, P. Dasgupta, T. Dietz, A. K. Duraiappah, R. Hassan, et al.,

Ecosystems and human well-being-Synthesis: A report of the Millennium

Ecosystem Assessment. Island Press, 2005.

[29] S. G. Potts, S. P. Roberts, R. Dean, G. Marris, M. A. Brown, R. Jones,

P. Neumann, and J. Settele, “Declines of managed honey bees and bee-

keepers in europe,” Journal of apicultural research, vol. 49, no. 1, pp. 15–

22, 2010.

[30] BeeBase, “Beebase: Hive count,” 2014. cited 2018 28 January.

[31] B. B. Association, “British beekeepers association: Honey survey,” 2015.

cited 2016 28 January.

[32] J. Ollerton, H. Erenler, M. Edwards, and R. Crockett, “Extinctions of

aculeate pollinators in britain and the role of large-scale agricultural

changes,” Science, vol. 346, no. 6215, pp. 1360–1362, 2014.

[33] E. Chesmore and C. Nellenbach, “Acoustic methods for the automated

detection and identification of insects,” in III International Symposium

on Sensors in Horticulture 562, pp. 223–231, 1997.

219

[34] J. Biesmeijer, S. Roberts, M. Reemer, R. Ohlemüller, M. Edwards,

T. Peeters, A. Schaffers, S. Potts, R. Kleukers, C. Thomas, J. Settele, and

W. Kunin, “Parallel declines in pollinators and insect-pollinated plants in

britain and the netherlands,” Science (New York, N.Y.), vol. 313, pp. 351–

4, 08 2006.

[35] A. J. Vanbergen, M. S. Heard, T. Breeze, S. G. Potts, and N. Hanley,

“Status and value of pollinators and pollination services,” 2014.

[36] M. J. Pocock, H. E. Roy, C. D. Preston, and D. B. Roy, “The biological

records centre: a pioneer of citizen science,” Biological Journal of the

Linnean Society, vol. 115, no. 3, pp. 475–493, 2015.

[37] A. Miller-Rushing, R. Primack, and R. Bonney, “The history of public

participation in ecological research,” Frontiers in Ecology and the Envi-

ronment, vol. 10, no. 6, pp. 285–290, 2012.

[38] T. T, “Kljuc za dolocanje pogostih vrst cmrljev [a key for determination

of common bumblebee species],” 2014. cited 2016 28 January.

[39] J. Ghazoul, “Pollen and seed dispersal among dispersed plants,” Biological

Reviews, vol. 80, no. 3, pp. 413–443, 2005.

[40] J. C. Grixti, L. T. Wong, S. A. Cameron, and C. Favret, “Decline of

bumble bees (bombus) in the north american midwest,” Biological con-

servation, vol. 142, no. 1, pp. 75–84, 2009.

[41] S. A. Cameron, J. D. Lozier, J. P. Strange, J. B. Koch, N. Cordes, L. F.

Solter, and T. L. Griswold, “Patterns of widespread decline in north

american bumble bees,” Proceedings of the National Academy of Sciences,

vol. 108, no. 2, pp. 662–667, 2011.

[42] C. Carvell, N. Isaac, M. Jitlal, J. Peyton, G. Powney, D. Roy, A. Vanber-

gen, R. O’Connor, C. Jones, B. Kunin, et al., “Design and testing of a

national pollinator and pollination monitoring framework,” 2017.

220

[43] P. Cardoso, T. L. Erwin, P. A. Borges, and T. R. New, “The seven impedi-

ments in invertebrate conservation and how to overcome them,” Biological

Conservation, vol. 144, no. 11, pp. 2647–2655, 2011.

[44] D. Chesmore, “Automated bioacoustic identification of insects for phy-

tosanitary and ecological applications,” Computational bioacoustics for

assessing biodiversity, p. 59, 2008.

[45] A. Dafni, P. G. Kevan, B. C. Husband, et al., “Practical pollination biol-

ogy.,” Practical pollination biology., 2005.

[46] S. Potts, P. Kevan, and J. Boone, “Conservation in pollination: Collecting,

surveying and monitoring,” Pollination Ecology: A Practical Approach,

pp. 401–434, 01 2005.

[47] C. Westphal, R. Bommarco, G. Carré, E. Lamborn, N. Morison,

T. Petanidou, S. G. Potts, S. P. Roberts, H. Szentgyörgyi, T. Tscheulin,

et al., “Measuring bee diversity in different european habitats and bio-

geographical regions,” Ecological monographs, vol. 78, no. 4, pp. 653–671,

2008.

[48] A. Nielsen, I. Steffan-Dewenter, C. Westphal, O. Messinger, S. G. Potts,

S. P. Roberts, J. Settele, H. Szentgyörgyi, B. E. Vaissière, M. Vaitis,

et al., “Assessing bee species richness in two mediterranean communities:

importance of habitat type and sampling techniques,” Ecological Research,

vol. 26, no. 5, pp. 969–983, 2011.

[49] T. J. Popic, Y. C. Davila, and G. M. Wardle, “Evaluation of common

methods for sampling invertebrate pollinator assemblages: net sampling

out-perform pan traps,” PloS one, vol. 8, no. 6, 2013.

[50] J. H. Cane, R. L. Minckley, and L. J. Kervin, “Sampling bees (hy-

menoptera: Apiformes) for pollinator community studies: pitfalls of pan-

trapping,” Journal of the Kansas Entomological Society, pp. 225–231,

2000.

221

[51] W. D. KIRK, “Ecologically seiective coioured traps,” Ecological Entomol-

ogy, vol. 9, no. 1, pp. 35–41, 1984.

[52] J. M. Leong and R. W. Thorp, “Colour-coded sampling: the pan trap

colour preferences of oligolectic and nonoligolectic bees associated with

a vernal pool plant,” Ecological Entomology, vol. 24, no. 3, pp. 329–335,

1999.

[53] M. E. Saunders and G. W. Luck, “Pan trap catches of pollinator insects

vary with habitat,” Australian Journal of Entomology, vol. 52, no. 2,

pp. 106–113, 2013.

[54] T. R. ToLER, E. W. EvANs, and V. J. Tepedino, “Pan-trapping for bees

(hymenoptera: Apiformes) in utah’s west desert: the importance of color

diversity,” Pan Pacific Entomologist, vol. 81, no. 3-4, pp. 103–113, 2005.

[55] T. H. Roulston, S. A. Smith, and A. L. Brewster, “A comparison of pan

trap and intensive net sampling techniques for documenting a bee (hy-

menoptera: Apiformes) fauna,” Journal of the Kansas Entomological So-

ciety, vol. 80, no. 2, pp. 179–181, 2007.

[56] J. S. Wilson, T. Griswold, and O. J. Messinger, “Sampling bee commu-

nities (hymenoptera: Apiformes) in a desert landscape: are pan traps

sufficient?,” Journal of the Kansas Entomological Society, vol. 81, no. 3,

pp. 288–300, 2008.

[57] K. A. Baum and K. E. Wallen, “Potential bias in pan trapping as a func-

tion of floral abundance,” Journal of the Kansas entomological society,

vol. 84, no. 2, pp. 155–159, 2011.

[58] C. S. Bartholomew and D. Prowell, “Pan compared to malaise trapping

for bees (hymenoptera: Apoidea) in a longleaf pine savanna,” Journal of

the Kansas Entomological Society, vol. 78, no. 4, pp. 390–392, 2005.

222

[59] J. W. Campbell and J. Hanula, “Efficiency of malaise traps and colored

pan traps for collecting flower visiting insects from three forested ecosys-

tems,” Journal of Insect Conservation, vol. 11, no. 4, pp. 399–408, 2007.

[60] W. P. Stephen and S. Rao, “Unscented color traps for non-apis bees (hy-

menoptera: Apiformes),” Journal of the Kansas Entomological Society,

pp. 373–380, 2005.

[61] C. Kimoto, S. J. DeBano, R. W. Thorp, S. Rao, and W. P. Stephen,

“Investigating temporal patterns of a native bee community in a rem-

nant north american bunchgrass prairie using blue vane traps,” Journal

of Insect Science, vol. 12, no. 1, p. 108, 2012.

[62] M. A. Hall and E. L. Reboud, “High sampling effectiveness for non-bee

flower visitors using vane traps in both open and wooded habitats,” Aus-

tral Entomology, vol. 58, no. 4, pp. 836–847, 2019.

[63] N. K. Joshi, T. Leslie, E. G. Rajotte, M. A. Kammerer, M. Otieno, and

D. J. Biddinger, “Comparative trapping efficiency to characterize bee

abundance, diversity, and community composition in apple orchards,” An-

nals of the Entomological Society of America, vol. 108, no. 5, pp. 785–799,

2015.

[64] K. W. McCravy, “A review of sampling and monitoring methods for ben-

eficial arthropods in agroecosystems,” Insects, vol. 9, no. 4, p. 170, 2018.

[65] R. Grundel, K. J. Frohnapple, R. P. Jean, and N. B. Pavlovic, “Effec-

tiveness of bowl trapping and netting for inventory of a bee community,”

Environmental Entomology, vol. 40, no. 2, pp. 374–380, 2011.

[66] A. Gradǐsek, G. Slapničar, J. Šorn, M. Luštrek, M. Gams, and J. Grad,

“Predicting species identity of bumblebees through analysis of flight

buzzing sounds,” Bioacoustics, vol. 26, no. 1, pp. 63–76, 2017.

223

[67] C.-J. Huang, Y.-J. Yang, D.-X. Yang, and Y.-J. Chen, “Frog classification

using machine learning techniques,” Expert Systems with Applications,

vol. 36, no. 2, pp. 3737–3743, 2009.

[68] J. Cheng, Y. Sun, and L. Ji, “A call-independent and automatic acoustic

system for the individual recognition of animals: A novel model using four

passerines,” Pattern Recognition, vol. 43, no. 11, pp. 3846–3852, 2010.

[69] C.-H. Lee, C.-C. Han, and C.-C. Chuang, “Automatic classification of

bird species from their sounds using two-dimensional cepstral coefficients,”

IEEE Transactions on Audio, Speech, and Language Processing, vol. 16,

no. 8, pp. 1541–1550, 2008.

[70] M. A. Acevedo, C. J. Corrada-Bravo, H. Corrada-Bravo, L. J. Villanueva-

Rivera, and T. M. Aide, “Automated classification of bird and amphibian

calls using machine learning: A comparison of methods,” Ecological In-

formatics, vol. 4, no. 4, pp. 206–214, 2009.

[71] M. J. King, S. L. Buchmann, and H. Spangler, “Activity of asynchronous

flight muscle from two bee families during sonication (buzzing).,” Journal

of Experimental Biology, vol. 199, no. 10, pp. 2317–2321, 1996.

[72] M. T. Lopes, L. L. Gioppo, T. T. Higushi, C. A. Kaestner, C. N. Silla Jr,

and A. L. Koerich, “Automatic bird species identification for large num-

ber of species,” in 2011 IEEE International Symposium on Multimedia,

pp. 117–122, IEEE, 2011.

[73] T. Ganchev, I. Potamitis, and N. Fakotakis, “Acoustic monitoring of

singing insects,” in 2007 IEEE International Conference on Acoustics,

Speech and Signal Processing-ICASSP’07, vol. 4, pp. IV–721, IEEE, 2007.

[74] W. J. Sutherland, D. B. Roy, and T. Amano, “An agenda for the fu-

ture of biological recording for ecological monitoring and citizen science,”

Biological Journal of the Linnean Society, vol. 115, no. 3, pp. 779–784,

2015.

224

[75] M. J. King, “Buzz foraging mechanism of bumble bees,” Journal of Api-

cultural Research, vol. 32, no. 1, pp. 41–49, 1993.

[76] W. Kirchner and J. Röschard, “Hissing in bumblebees: an interspecific

defence signal,” Insectes sociaux, vol. 46, no. 3, pp. 239–243, 1999.

[77] P. A. De Luca and M. Vallejo-Marin, “What’s the ‘buzz’about? the ecol-

ogy and evolutionary significance of buzz-pollination,” Current opinion in

plant biology, vol. 16, no. 4, pp. 429–435, 2013.

[78] P. A. De Luca, D. A. Cox, and M. Vallejo-Maŕın, “Comparison of pol-

lination and defensive buzzes in bumblebees indicates species-specific

and context-dependent vibrations,” Naturwissenschaften, vol. 101, no. 4,

pp. 331–338, 2014.

[79] G. W. King RA, “Time-encoded speech,” Electronics Letters, 1978.

[80] C. M. Jernigan, “Bee anatomy,” 2017. cited 2018 28 January.

[81] J. Miley, “The buzz of bees explained,” 2019. cited 2019 28 March.

[82] A. Rashed, M. Khan, J. Dawson, J. Yack, and T. Sherratt, “Do hoverflies

(Diptera: Syrphidae) sound like the Hymenoptera they morphologically

resemble?,” Behavioral Ecology, vol. 20, pp. 396–402, 11 2008.

[83] H. Stratosphere, “9 different types of wasps (plus how they’re different

than bees),” Not known. cited 2019 28 March.

[84] E. Britannica, “Hover fly),” January 11, 2018. cited 2019 28 November.

[85] R. King, “TESPAR/FANN – An Effective New Capability for Voice Ver-

ification in the Defence Environment. Proceeding of the,” Proceeding of

the Royal, 1995.

[86] W. Lucking, G. Darnell, and E. Chesmore, “Acoustical condition moni-

toring of a mechanical gearbox using artificial neural networks,” in Pro-

ceedings of 1994 IEEE International Conference on Neural Networks

(ICNN’94), vol. 5, pp. 3307–3311, IEEE, 1994.

225

[87] S. MD and E. Chesmore, “Automatic classification of heart sounds and

murmurs using time domain signal coding (tdsc), artificial neural networks

and expert systems.,” p. 37–46., In: Conference on Recent Advances in

Soft Computing’98 1998; DeMontfort University, 1998.

[88] J. C. R. Licklider and I. Pollack, “Effects of differentiation, integration,

and infinite peak clipping upon the intelligibility of speech,” The Journal

of the Acoustical Society of America, vol. 20, no. 1, pp. 42–51, 1948.

[89] F. Bond and C. Cahn, “On the sampling the zeros of bandwidth limited

signals,” IRE transactions on information theory, vol. 4, no. 3, pp. 110–

113, 1958.

[90] . C. C. . H. J. Bond, F.E., “A relation between zero crossings and fourier

coefficients for bandwidth limited functions,” Transactions on Information

Theory, vol. 6, no. 1, pp. 51–52, 1960.

[91] M. Swarbrick, Acoustic Diagnosis of Heart Defects using Time Domain

Signal Processing and Artificial Neural Networks.PhD These. PhD thesis,

niversity of Hull, 2001.

[92] S. M. . F. O. Chesmore, E.D., “Automated analysis of insect sounds using

tespar and expert systems – a new method for species identification,”

nformation Technology, Plant Pathology and Biodiversity, pp. 273–287,

1998.

[93] J. Farr, Automated Bioacoustic Identification of Statutory Quarantined

Insect Pests. PhD Thesis. PhD thesis, University of Hull, 2007.

[94] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation

of complex fourier series,” Mathematics of computation, vol. 19, no. 90,

pp. 297–301, 1965.

[95] W. Chu and B. Champagne, “A noise-robust fft-based auditory spectrum

with application in audio classification,” IEEE Transactions on audio,

speech, and language processing, vol. 16, no. 1, pp. 137–150, 2007.

226

[96] S. G. Brush, “Irreversibility and indeterminism: Fourier to heisenberg,”

Journal of the History of Ideas, vol. 37, no. 4, pp. 603–630, 1976.

[97] R. Yan, Base wavelet selection criteria for non-stationary vibration anal-

ysis in bearing health diagnosis. University of Massachusetts Amherst,

2007.

[98] C.-H. Chuan, S. Vasana, and A. Asaithambi, “Using wavelets and gaus-

sian mixture models for audio classification,” in 2012 IEEE International

Symposium on Multimedia, pp. 421–426, IEEE, 2012.

[99] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measure-

ment of the psychological magnitude pitch,” The Journal of the Acoustical

Society of America, vol. 8, no. 3, pp. 185–190, 1937.

[100] S. Davis and P. Mermelstein, “Comparison of parametric representa-

tions for monosyllabic word recognition in continuously spoken sentences,”

IEEE transactions on acoustics, speech, and signal processing, vol. 28,

no. 4, pp. 357–366, 1980.

[101] X. Huang, A. Acero, H.-W. Hon, and R. Reddy, Spoken language process-

ing: A guide to theory, algorithm, and system development. Prentice hall

PTR, 2001.

[102] T. Singh, “Mfcc’s made easy.,” 15.7.2019”.

[103] H. Fayek, “Speech processing for machine learning: Filter banks, mel-

frequency cepstral coefficients (mfccs) and what’s in-between,” 21. 4. 2016.

[104] J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system

with an efficient search strategy,” Journal of New Music Research, vol. 32,

no. 2, pp. 211–221, 2003.

[105] A. L. Mcllraith and H. Card, “Birdsong recognition with dsp and neural

network,” IEEE Wescanex Proceeding, 1995.

227

[106] G. Grigg, A. Taylor, H. Mc Callum, and G. Watson, “Monitoring frog

communities: an application of machine learning,” in Proceedings of eighth

innovative applications of artificial intelligence conference, Portland Ore-

gon, pp. 1564–1569, 1996.

[107] N. VAUGHAN, G. JONES, and S. HARRIS, “Identification of british bat

species by multivariate analysis of echolocation call parameters,” Bioa-

coustics, vol. 7, no. 3, pp. 189–207, 1997.

[108] E. D. Chesmore, “Application of time domain signal coding and artificial

neural networks to passive acoustical identification of animals,” Applied

Acoustics, vol. 62, no. 12, pp. 1359–1374, 2001.

[109] V. Vapnik and A. Lerner, “”pattern recognition using generalized portrait

method,” Automation and Remote Control, vol. 24, pp. 774—-780, 1963.

[110] E. Kim, “Everything you wanted to know about the kernel trick,”

12.20.2017”.

[111] M.-W. Mak and S.-Y. Kung, “Low-power svm classifiers for sound event

classification on mobile devices,” in 2012 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pp. 1985–1988,

IEEE, 2012.

[112] T. K. Ho, “Random decision forests,” in Proceedings of the Third Inter-

national Conference on Document Analysis and Recognition (Volume 1) -

Volume 1, ICDAR ’95, (USA), p. 278, IEEE Computer Society, 1995.

[113] T. K. Ho, “The random subspace method for constructing decision

forests,” IEEE transactions on pattern analysis and machine intelligence,

vol. 20, no. 8, pp. 832–844, 1998.

[114] Y. Amit and D. Geman, “Shape quantization and recognition with ran-

domized trees,” Neural computation, vol. 9, no. 7, pp. 1545–1588, 1997.

228

[115] V. Zhou, “A simple explanation of gini impurity what gini impurity is

(with examples) and how it’s used to train decision trees.,” 29.03.2019”.

[116] J. Rocca, “Ensemble methods: bagging, boosting and stacking,” 2Apr 23,

2019.

[117] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,

2001.

[118] R. Leandro, C. Silva, and M. Santos, “Feeding neural network models with

gps observations: a challenging task,” in Dynamic Planet, pp. 186–193,

Springer, 2007.

[119] H. Research, “The number of hidden layers,” 7.05.2020”.

[120] vikashraj luhaniwal, “Analyzing different types of activation functions in

neural networks — which one to prefer?,” 7.05.2019”.

[121] Guru99, “Deep learning tutorial for beginners: Neural network classifica-

tion,” 7.05.2018”.

[122] O. E. Chesmore ED, “Automated identification of field-recorded songs

of four british grasshoppers using bioacoustic signal recognition,” Bull

Entomol Res, 2004.

[123] T. Kohonen, Self-Organization and Associative Memory. Springer-Verlag

Berlin Heidelberg, 1987.

[124] G.-B. Huang and L. Chen, “Convex incremental extreme learning ma-

chine,” Neurocomputing, vol. 70, no. 16-18, pp. 3056–3062, 2007.

[125] G.-B. Huang and L. Chen, “Enhanced random search based incremental

extreme learning machine,” Neurocomputing, vol. 71, no. 16-18, pp. 3460–

3468, 2008.

[126] G.-B. Huang, L. Chen, C. K. Siew, et al., “Universal approximation us-

ing incremental constructive feedforward networks with random hidden

nodes,” IEEE Trans. Neural Networks, vol. 17, no. 4, pp. 879–892, 2006.

229

[127] S. Lin, X. Liu, J. Fang, and Z. Xu, “Is extreme learning machine feasible?

a theoretical assessment (part ii),” IEEE Transactions on Neural Networks

and Learning Systems, vol. 26, no. 1, pp. 21–34, 2014.

[128] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning ma-

chine for regression and multiclass classification,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2,

pp. 513–529, 2011.

[129] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:

theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501,

2006.

[130] C. Cortes and V. Vapnik, “Support vector machine,” Machine learning,

vol. 20, no. 3, pp. 273–297, 1995.

[131] M. Fernández-Delgado, E. Cernadas, S. Barro, J. Ribeiro, and J. Neves,

“Direct kernel perceptron (dkp): Ultra-fast kernel elm-based classifica-

tion with non-iterative closed-form weight calculation,” Neural Networks,

vol. 50, pp. 60–71, 2014.

[132] G. Huang, S. Song, J. N. Gupta, and C. Wu, “Semi-supervised and unsu-

pervised extreme learning machines,” IEEE transactions on cybernetics,

vol. 44, no. 12, pp. 2405–2417, 2014.

[133] G.-B. Huang, “An insight into extreme learning machines: random neu-

rons, random features and kernels,” Cognitive Computation, vol. 6, no. 3,

pp. 376–390, 2014.

[134] Y. Xu, Y. Dai, Z. Y. Dong, R. Zhang, and K. Meng, “Extreme learn-

ing machine-based predictor for real-time frequency stability assessment

of electric power systems,” Neural Computing and Applications, vol. 22,

no. 3-4, pp. 501–508, 2013.

[135] Y. Tan, R. Dong, H. Chen, and H. He, “Neural network based identifi-

cation of hysteresis in human meridian systems,” International journal of

230

applied mathematics and computer science, vol. 22, no. 3, pp. 685–694,

2012.

[136] H.-X. Tian and Z.-Z. Mao, “An ensemble elm based on modified adaboost.

rt algorithm for predicting the temperature of molten steel in ladle fur-

nace,” IEEE Transactions on Automation Science and Engineering, vol. 7,

no. 1, pp. 73–80, 2009.

[137] F. Chen and T. Ou, “Sales forecasting system based on gray extreme

learning machine with taguchi method in retail industry,” Expert Systems

with Applications, vol. 38, no. 3, pp. 1336–1345, 2011.

[138] W. Wong and Z. Guo, “A hybrid intelligent model for medium-term sales

forecasting in fashion retail supply chains using extreme learning machine

and harmony search algorithm,” International Journal of Production Eco-

nomics, vol. 128, no. 2, pp. 614–624, 2010.

[139] D. Ruhmelhart, G. Hinton, and R. Wiliams, “Learning representations by

back-propagation errors,” Nature, vol. 323, no. 533-536, p. 10, 1986.

[140] R. Rojas, “The backpropagation algorithm,” in Neural networks, pp. 149–

182, Springer, 1996.

[141] A. N. N. T. association, “Bumblebee id guide,” 7.05.2020”.

[142] T. points, “Tensorflow - cnn and rnn difference) and what’s in-between,”

21. 4. 2016.

231

