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Abstract

Abstract

Nuclear magnetic resonance spectroscopy (NMR) and Magnetic Resonancey (M) play

a vital role in sciencandmedicine. Hyperpolarisation technologies, which amplify achievable
signal,canunlocknewMR applicationsHere, a group of thienopyridazines were synthesisdd
hyperpolarised via Signal Amplification by Reversible Exchange (SABRE). Thienopyridazines

are of medical interest due to their acdincer properties

H-NMR signal enhancements of 10,180d + 230at 9.4T (~33% polarisation) were achieved,
under optimal conditions and novel-labelling used to identify eight SABRE active complexes.
Alongside high polarisation levels, long signal lifetimes are desired to warrant a longer window
for MR observation *H T; lifetimes for the thienopyridazines were found to be-408. Long

lived state (LLS) approaches extended the magiifetime of the shortel; values to 40 s in the

T[2,3-d]P regioisomer.

Following successful hyperpolarisation, the imagingteptial of thienopyridazines was
demonstratedln vivo detection of a 2nL bolus of hyperpolarised thienopyridazine (in organic
solvent) injected into the subcutaneous space was accomplished. Although hyperpolarised signal
in a nontoxic aqueous solutiowas proven feasible (through biphasic extraction), polarisation
levels were lower (3%); thua vivo detection following intravenous injection was not possible.
Although SABRE excels iftH polarisation, imaging is confounded by the vast background

signalsfrom the water/fat pool.

Successful Xhuclei imaging utilised hyperpolarisétC-nicotinamide (via SABRE & dissolution
Dynamic Nuclear Polarisation;[@NP). dDNP achieved3C polarisation levels of 13% (with
apparentl5s Ti) permitting easy detection in an vivo cancer model. Equivalent SABRE

polarisation was inferior (~0.17%) and oiityvitro imaging was possible.

A final study developed next generation SABRE methods cascading polarisatiop-Figmnia
anN-heterocytic substrate, to platinurphosphine complexes. Substrates with high polarisation
and long lifetimes €.g, methyt4,6-d>-nicotinate) proved to be effective for such polarisation

relay and resulted iimproved®!P signal detection.
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Introduction

Chapter 1: Introduction

Magnetic resonance (MRs aspectroscopi@haging technique at the forefront nfolecular

profiling researctused for the diagnosis of disease by trachgrrantellular function*2 MR

can provide both fundamentalmolecular data (spectra), alongsideacroscopicstructural
information (images), i nhoninvasive and nomlestructive manneilthough MR can detect

and daracterise molecular structure ahdunct i on, the tediVtnisqueds
somewhat limited by low therrhpolarisation between quantisedergy states of the nuciehen

exposed to a magnetic figldection 1.2). In order to overcome this limitation, it is typical to use
strong magnetic fields (>¥), high concentratins and signal averaging, all of which can be

impractical to implement fan-vivo measurements.

An alternative approach, to increase the sensitivity of MR, involves physical manipulation of the
magnetic state populations, so called hyperpolarisétiodeed, it is now possible to track
metabolic flux of specific molecules in the body using hyperpolarisation techrfitjirexent
research uses hyperpolarisation for tetedtion and conversion 5 labelled pyruvate to lactate

as a means to image tumour metabolisrioreast cancerExample hyperpolarised MR imaging

data adaptedfrom Gallagheret.al (2020) a shown inFigure 1.1. Such data will facilitate
improved diagnostics and treatment response tracking, with substantial benefits to patients. MR
enhanced with hyperpolarisation, is therefore emerging as a minimailgive alternative to

nuclear medicine for molecular imaging. It is nawnajor research ar@aimagingbiosciencé.

pyruvate lactate Lac/Pyr

pyruvate

lactate

Figure 1.1:3C-pyruvate and 3C-lactate images acquired from a breast cancer patient
following i.v. injection of hyperpolarised [1-*3*C]- pyruvate. (A) Standard structural MR. (B)
Hyperpolarised 3C-pyruvate and (C) *C-lactate images. (D) LAC/PYR map showing tumour
heterogeneity represents decreased delivery of hyperpolarised substrate at the tumour
centre. (E and F) Dynamic (temporal resolution = 4 s) hyperpolarised **C-pyruvate and 3C-
lactate images.” Data adapted from Gallagher et al. (2020).
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1.1 A Brief History of Molecular Imaging

Over 100 years ago the discovery ofrags revolutionised diagnostic medicine by enabling
physicians to see, for the first time, structural images of the internal living body. Imaging of gross
anatomical structure was further augmented through the innesft@omputerised Tomography
(CT) in 1967 bySir Godfrey Hounsfieltd*° and Magnetic Resonance Imaging (MRI) in 1973 by
the American chemist Paul LauterBtVhile CT finds wide usadéin modern medicine, Xay
exposure ihigh'® andit does not deliver the required functional molecular information (beyond
perfusionof iodine-based contrast agentshich have known side effeéts for more subtle

disease staging.

It was initially the evolution of complementary cuttieglge nuclear medicine which permitted
deeper probing into the body on a molecular level. The combination of structural and functional
information within the body is critically important to medicine for several g0 it helps to

gain a better understanding of the biological pathways leading to disease; (ii) it helps with early
diagnosis; (iii) it allows a quick assessment of the efficacy of drugs; and (iv) aids the selection of

therapy chosen and effective pmralised medical treatment.

In 1963,Kuhl and Edwardslemonstrated that single photon emission computed tomography
(SPECT) was a promising technique for tracking molecular funttiiSPECTusesinjectable
radionuclides (moleculescontainingisotopes such &™ ¢, 1*4n or 123) which emit gamma rays

for subsequent detection outside the body. Localised function can be probeeabiyng
radidabelled ligands the properties of which are designed tdind to certain types of
healthy/diseasetissues Modern gammaameraswhichrotate around the subjegrroduce3D
tomographic imagethat aid disease diagnosis. Today SPECT finds particular application in
probing neurondl ® and cardiat® molecular function; albeit with relatively low spatial &

temporal resolutior?

In 197, Hoffman and Phelps developBdsitron Emission TomographRET)?* 22, which uses
radionuclides incorporated into biologically active molecules e.g. sugars, proteins or hoffones.
2-deoxy-2(*¥F)fluoro-D-glucose (FDG¥a glucose analoguén whicha positrm emitting radie
nucleotide 18F) is introducedr place of the hydroxyl group at the 2 position of the glucose
molecule Figurel.2), is one of the most widely used radioactive tracers. Followingtioje the

tracer collects in areas of the body where there are abnormal levels of chemical activity associated
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with disease. As the radiwucleotidedecays (FDG .= 109.7 min), it emits@ positronwhich

upon annihilation witran electrorproduces a paiof high energy (511 keV) photons orientated

at ~180° with respect to one another. Detection of near simultaneous multiple annihilation events
by an array of photon scintillatiotetectors, arounthe subject, is used to produce 2D images.

Resultant images are of higher spatial resolution than SPEECT.

OH

0
HO

18F
OH

Figure 1.2: Chemical structure of 2-deoxy-2(**F)fluoro-D-glucose.

In the specific case of FDG, after emitting a positféia,decays td®0 whichbinds toa labile
proton. It issubsequentlymetabolised to glucosgphosphate labelled with a harmless hon
radi oact i ve .GthereommngnPE isgtapes mAud®O (Tiz= 2.03min), 13N (T2
=9.96min), *'C (T12= 20.4min) which are used tmonitor heart condition¥,neurodegenerative
diseased and cancef. Isotopes with much longer hdifes (e.g. ®“Cu; T12= 12.7 h), are also
used For example®“Cu-CuCB-bicyclamhas been developed as a REGeptor imaginggent to
target thechemokine €X-C motif receptor 4 (CXCR4Wwhich is important in cancer metastasis,
in autoimmune diseases, and stemidelbed repair processes after stroke and myocardial

infarction?®

PET has also developed into a vital molecular imaging tool for the early staging of metastases
31 assessing therapy pemsé? and monitoring disease reoccurreft#. Cancerous cells have a
higher metabolic rate of glucose than normal dellewvn as th&Varburg Effect®. Thus, tumour

cellsshow up ahotspots ont®FDG-PET scans.

It should be noted, however, that caution should be taken when intergfBX&ET images.
Non-cancerous conditions such as lymph node response to inflammation/saréddasis be
mistaken for cancét Treatment assessment ustfigDG-PET is difficult in some organs (e,g.
prostate and brain) due to both poor tumour and increased background uptake, resgectively.
addition, although the amount imjectable/ingestible tracer is on the pico to nanomolar scale it

is radioactive and therefore PET is classed as invasive. A further disadvantage is the need for

specialised equipment, in the form of a cyclotfpfor synthesis of the biologically active ragdio
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nucleotide. Due to the radimucleotidehalf-life and the logistics of producing the ageirhing
is crucial and there is little room for erroAn advantag®f PET is the higlsensitivity,but this
is coupled with the disadvantage titds theincorporatedadioisotopaevhichis being recorded
and so the molecule should not be metabolised rapidly (or should be metabolically aspjtbd

FDG).

Since 2001 combined PET and computerised tomography (CT) has replacealstenBET*?
CT adds detailed structural anatomy to the relativelyresolutionfunctional PET image.** 42
In the clinic thecombination of Xray CT and PET images has led to improvements in tumour
detectiort’® Recent researchxploits *¥F FDGPET/CT to assess pneumonia/acute respiratory

diseases in COVIEL9 patients* 4°

Magnetic resonance imaging (MRijoduces anatomic images from thousands of voxels whose
signals arise from bulk magnetic properties of tissue. The signal is based predominantly on the
protons found in fat and water withthe body MRI has the advantage of offering higher spatial

and temporal resolution over PET/SPECT and it does not expespatient to any ionizing
radiation.Combined PET/MRI modalities were developed in 1997 by Shao*®e8akcifically

for neuroimaging, a combination deetroencephalograpiEEG), PET and MRI has also been
developed (Shah et al. 201Zhe thregechniquesomplement each other wethe strength of

MR is in structural functionalimaging,PET providesnolecular imaging and EEG provides a

temporal dimension where the other two modalities are Weék.

Magnetic Resonance Spectroscopy (MRS an MRI technique wherespatial resolution is

sacrficed to produce spectra fromsaalker number of voxels identifying metabolite molecules

di fferentiated by ItHaethereforddcamaia paverful debhnifue for ( U0) .
studying metabolisnin vivo. 'H MRS may be used to measure the levels of various abundant
metabolites, includig lactate, neutral lipids, choline and phospholipid metabolites, such as
phosphocholine in oncolo8y or neurochemicals such a&ABA and glutathione in

neurodegenerative diseas&¥

Several metabolically relevant nuclei in addition to hydrodeihdre MR active/visible allowing

a range of metabolites & variety of tissues to be detected includi@and®'P which havdong
been used in the investigation of metabolic processaso.>® P can be used to observe energy
metabolism by monitoring ATP, inorganic phospRagad intracellular pH! Measurement of

ZNa tissue concentration can be used to monitor tumorous tissue elimination after chent8therapy
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and even whole body imagitfgrhe noninvasive nature of MRS allows repeated experiments
with no harm to the patient so that response to-teng treatment (drug therapy) and rapid

intervention (e.g. exercise, insulin stimulation) can be assessed.

Due to its relative insesitivity, thermal MRS is often limited to regions where metabolites are in

a high enough concentration to be detected, for example in the brain or tumours. However, even
then the spatial and temporal resolution is limited and increasing the magnetitréalgth can

only help to a certain extent. Therefore, the need for hyperpolarisation techniques, such as
dissolutiondynamic nuclear polarisatiom-ONP) which can increas€C MRS sensitivity by
10,000fold, is clear. This sensitivity increase has nolyasllowed detection of*C labelled

metabolites but also their metabolism and tissue distribéition.

MRS combined with hyperpolarisation techniques provides a way to obtaihigbttefinition
structural information and fast dynamic functional information to aid diagnagiszero risk

even with repeated measurements to the patients. At the moment these techniques are still in their
infancy and therefore at present combinations with other imaging modalities can be

complementary.

To understand how hyperpolarisation techniques cimtbevercome the insensitivity in NMR

and MRS a more hdepth examination is required of the underlying principles.

1.2 Nuclear Magnetic Resonance

The field of Nuclear Magnetic Resonance NIR) spectroscopy exploits MR phenomenon to
study chemical, physical and biological properffSince its introduction in 1946 by Bld¢tand
Purcelf? NMR has become one of the leading analytical methods in chenidstty NMR and

MRI play uniqueroles,the former as an analytical spectroscopic tool across the sciences, the latter
primarily for clinical diagnostics across the medical specialities. However, the scientific basis
underpinning both technologies is the sammethis section the physical basis of the nuclear
magnetic resonance signal is descrilf&oine of the basic imaging techniques employed in this
thesis are outlinedA full understanding is based in quantum theory but by using some classical
descriptions, it is meh easier to grasp the complex scientific principles of NIVis sectionis

only intended as an overview and the author direcisRor i nci pl es of Nucl ear
Mi c r o £cNugeprdMagetic Resonanc and Spin DynamicsBasic of Nuclear Magnetic

Resonanc® if a full understanding is required.
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1.2.1 Physical basis
Some nuclei havan intrinsic angular momentum known gsn and consequently possess a
magnetic dipole momerthatcan be exploited in NMR and MRHydrogen tH) provides the
simplest nuclei to explain the NMR phenomenon. A positively charged proton, has thermal energy
resulting in classical rotation/spin witlmngular momentum In this classical modehe rotating
charge induces a small magnetic field and the nucleus possesses a magnetroatiperge

(Figurel.3a).

On amore realistiqquantum levethe system is described thyetspin quantum numbkror ary

nuclei the spinquantum number is determined by the number of unpaired protons and neutrons
(each having spin Y%2)For nuclewith | = 0 there is no angular momentum, no magnetic moment
and therefore the nucleus is NMR silefshy nucleus with > 0 possesses spin andhsrefore
ONMR activebo. S pi, his a vegtar lquamtity where batht itsi direction and
magnitude are quasid A spinl nucleus hasl2+ 1 projections onto an axis e.the z axis. The

z component of, i.e,, I, is quantisediccording to equation [1.1].
0 qa. [1.1]

The magnetic quantum numbenhas 2+1 values betweed and + in integral steps therefore

for a proton m = %2 and-%.

Spinangular momenturandthe magnetic momenif a nucleusre related by the gyromagnetic

ratio, g (equation [12]).

H rk pg

where o2 is a fundament al property of the specific

nuclear isotopeYhereby acting as a unique fingerprint for identification
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(a) (b) (c)

Figure 1.3: (a) Classical model of a spin system. Thermal energy results in spinning charge
with angular momentum (I), generating a small magnetic dipole moment (u). (b) Random
orientation of spins in bulk matter in the absence of an external magnetic field resulting in
a net magnetic moment of zero. (c) Spins in the presence of an external magnetic field
aligned with and against magnetic field.

Any nucleus with an odd number of protons and/or neutegs ¢C, °F, 3'P,1’0) exhibits these
essential spin properties. Howevéi is often the target nuale due to 99.985%isotopic
abundancehigh natural abundance (especially fiorvivo imagingf® and high gyromagnetic

ratio.

In the absence of an external static magnetid,fiee magnetic moments of bulk matter will be
randomly orientatedRigure 1.3 b). Thus, there is no net nuclear magnetizaWghen placed in
a staticmagnetic field (B), the individualmagnetic momentalign either parallel or anparallel

to the field®” with a slight excess of spins in the parallel orieotatFigure1.3 c).

Classical torque induces precession arou(drigurel.3 ¢) with an angular frequenty known
as the Larmor frequency, which can be calculated using equatBnviere6 is the static

magnetic field strength.
T [0 P&

The Lamor frequency therefore is a characteristic property for a particular nucleus (defined by

g and for the chemical environment of that nucleus (which changeglocal
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Figure 1.4: a) Magnetic field Bo with spins precessing at the Larmor frequency aligned
parallel or anti parallel (Classical view). b) Energy level diagram of a nucleus with | = 1/2
resulting in two energy levels m =-%2 and m = +¥2 when placed in amagnetic field (Quantum
view).

On a quanim leve| spins have;"O p possible energy level3he existence of these classical

spin states i s a consequ ehRgarel4doFor!H witespifQu ant um 6 Zeem
there are therefore two possible energy levels (defined by magnetic quantum niumberand

a -termed U and bThesdett e vmtwgedwoispin Ydevedsr gy, ©@E,

is given in equation [#].%*

YO 16 p&

where. " ¢“. Thermal energetics are such that there is a slight excegsnsfin the lower
energy stateResultant state populations follow Boltzmann statistics at thermal equilibrium and

the number of excess spins is given by equatidj.[1.

é — o
‘ QY )
£ P
where¢  ande¢ _ are tle lower and upper energy state populations respectielig

A~

Bol t zmann o6 s "Yis tempsrataen As tharmal enerd® (Y is much greater than the
energy state differenc&Q , the exponent in equation 1.4 can be expanted ( p ¢ and

the normalised population difference calculated as per equatigjn [1.
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- - YO
¢ & QY

P&

ForH (g=4238 MHz/T)ina94T st atic magnet i €J(Edgndql3l. AtpE =
300K the population difference can be calculated with equatiGh4$.3.2 x 13; or 1in ~2,000
extra nuclei in the low energy staldus, a net magnetization exists in the direction of the applied

magnetic field Figure1.3c) defined as theaxis.

Although this population difference is extremely small, when imaging the human bodjHwith

at standard clinical field strengths of T.50ne can calculate that in a single voxel (imaging
volume element) of 0.02 mL the number of excess protons woul@®®e 63° (6 million billion)

and, therefore, represents a significant signal for subsequent excitation and detection (section
1.2.2). The linear dependence of population difference (~ net magnetisation) on the gyromagnetic
ratio (throughYO) is noted. Ths, NMR signal is inherently smaller for the other applicable nuclei
(e.g.r*C) even before considering differences in natural abundance. Nevertheless, this small low
energy level population excess can be manipul&tggerpolarisationgchniques for dointhis

will be explored in sections 1.3 & 1.4 and are the basis of this thesis.

The resultant net magnetization cannot be detected in the z axis (as it is dwarfed by the huge static
magnetic field in the same direction). To detect this net magnetisationsitbe perturbed, by

an oscillating magnetic field, B(petpendicular to the static fieldo, and rotating at the same
Larmor frequency),into the transverse {x) plane. This is done through a process of

electromagnetic excitation.

1.2.2 Excitation and Detection
Net magnetization is perturbed into thg plane by a short Radio Frequency (RF) pulse emitted
from a surrounding antenna. The frequency of
frequency defining the energy difference between the spiesstahus, only nuclei that precess
with the same frequency as the RF pulse will be excited. In a rotating frame of reféinence
effect is a rotation of the net magnetizatamound B (the R- field) onto thetransverse ()
plane Eigure 1.5); perpendicular to Band Bo. The angle of net magnetization rotation
(determined by the pulse power and duratisrgalled the nutation or flip angle (FA). Following
cessation of the RF pulse the precessing magnetisation vector will induce a time varying AC

current in a receiving antenna/coil. The magnitude of this time oscillating current will reduce as
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the system fexes back to equilibriumi-ourier transformation of this time oscillating signal

delivers the component Larmor frequencies (if multiple are preasmt)spectrum.

Transmitter coil

Bl
RF pulse at
Larmor Frequency

Figure 1.5: Excitation step where an RF pulse (of variable power and duration) can be
applied at the Larmor frequency to tip the net magnetisation through an angle towards the
transverse (XY) plane.

1.2.3 Relaxation
The relaxation of spins back to thermal equilibrium occurs via two rkeghanisms; i)
longitudinal (1) (Figure 1.6); and ii) transverseTg) relaxation Figure 1.8). T: describes
magnetisation evolution in the z direction whiledescribes the-y plane evolutiond.g.,T» is
not simply the loss of -y magnetisation into the longitudinal, z plane). Note at thermal

equilibrium the magnitude of the net magnetisation is definedgas M
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i) Longitudinal T, (spirlattice) Relaxation

z z Z

Immediately after X

X X
90 degree pulse
P
Y Y Y
Z rd Z
X
X X
Y
Y Y

Figure 1.6: Tirelaxation showing spins returning to the z direction immediately after a 90°
pulse.

As soon as the excitation RF pulse stops (at t ®@jted spins will return to the low energy
state. The net magnetization relaxes back to align with the static magnetic field (z axis).
Longitudinal magnetisation (M reflects the Zomponent ofthe net magnetisation vector.
Therefore, at t = 0, following a 90° excitation pulse, there is no longitudinal magnetization (high
and low energy states are equally populatéd).s t he ti me constant of

magnetisation returns 'omagnitude M(Figurel.7a); as described by equation [1.6]

0 0 p Q o)

In MRI, T relaxation is very important. Not all protons are bound in the same way within the
body. In fat tissue, for examplenagnetically shieldedH atoms are foundwithin large
triglyceride molecules which rotagg an optimumrate efficientfor T.. Fat therefore has a short

T: value. Converselymagnetically deshieldetH atoms insmall water molecules, spimore
rapidly at a rate which is inefficient for, relaxation. Water therefore has a lon@evalue By
exploiting these differences 1, image contrast between different tissues results when imaging
at short repetition timgd'R), as can be seenligurel.7. For clarity epetition time is the amount

of time between successiggcitationpulsesi.e.,repeated measuresquiredfor spatial encoding

(see section.2.4). At short TRtissues with lond@: will not have relaxed to thermal equilibrium
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Therefore subsequent extgitions will resultin signal attenuation for that tissue paolcontrast

to those with shorT:. The subsequent image is said toThe/eighted.

1 T 1
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& 3
=04 S04
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C { —
8 g

0 g 0
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(a)

T1-weighted

(b)

Figure 1.7: (a) T1 relaxation curve. (b) T1 weighted image.® (c) T, relaxation curve. (d) T2
weighted image.®®

Note that full relaxation of the longitudinal magnetisation is on the order of seGuaisiing at
long TRs(5 x longestT,) ensuregxcitaion from thermal equilibriundor all tissues and therefore
avoidsTiweighting Image contrast isow determined byl; relaxation, which occurs on a much
faster (ms) time scal&infortunately scans can take tens of minutes to complete (depending on

the required resolution).

i) Transverse T (spin-spin) Relaxation
Following excitation with a 90° RF pulg8.), the magnetizatiorvector rotates aroul B; into
the xy plane tobe perpendicularotB:. At this time point (t = 0) the nuclei are all in phase
(individual magnetic moments, be them in the high or low energy state, are all pointing in the
same transverse direction). Immediately after the 90° pulse, the net magnetization continues to
precess around theaxis in the transversexplane; but spins do not remain in phase for long.

The magnetic moments of the individual spins influence each otherggipininteraction)
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generating random local increases/decreases in field and thus shigfekent precession
frequencies (equation 1.2). The moments (precessing at different rates) begphtsegethus
reducing the transverse magnetisation vector. Eventually thesitlilie completely dephased
and there will be no transverse magnetsatnd thus no current induced in the detedtgure

1.8). In most biological tissuesits process occurs on the order of milliseconds (much faster than

spirtlattice relaxation).

Immediately after
90 degree pulse

Figure 1.8: Torelaxation showing spins dephasing across the XY plane after a 90° pulse.

Following a 90° excitation pulse £t0) the net magnetization, dMis flipped fdly into the

transverse pland; is the time constant éfansverséV,y signal decay described by:

0 O Q7 [18]

Once again, when thinking in terms of MRL depends on how the hydrogen proton is bound
within its molecule and that again is different for each tis$uis. therefore another parameter,

which is used in MRI to obtain coast.

As it is the precession of the transverse magnetisation that induces the AC current in the nearby
detector; when dephasing occurs the magnitude of the current will decrease. This time decaying
signal iscalled a Free Induction DecdylD). It is notedthat due to the presence of magnetic field
inhomogeneies and chemical shiftNMR signal actually decays faster thaif, times would

predict. Extra dephasing, and thus signal decay caused by such effects is given a time constant

To .
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1.2.4 Spatial Encoding
Fourier transformation unravels the different oscillating components of the FID to obtain a
spectrum as a function of frequsn The target nuclei in differing chemical environments
resonate at slightly differing frequencies depending on the relative shielding/deshielding
experienced and gives rise to chemical shift which is the basis of NMR. At thisip@mot
possible ® know where the different signals originated from, in a spatial sense. Spatial
localisationin MRI is achieved through the introduction of varying magnetic field gradiéfits.
0 Resonant frequelds a linear function of the applied magnetic field (Larmor equatid)) 1.
thereforeif a linear magnetic field gradient is applied across the sample, the resonant frequency
of the nucleus becomes a function of its spatial position within the applidéngeSpatial
encoding in standard MRI uses a single nuclear chemical environmepth@apundant water
pool within the body). Modern MRI systems employ three gradient coils to encode slice,
frequency and p hsapsaec e 6n f (Bouadrdoansfrmantd am imagde). A full
description of spatial encoding is beyond the scope of this thesis and the reader is teferred

APrinciples of MRIO by Friedman et al

1.2.5 Spectroscopic Imaging
As mentioned above MRI is employed in the medical specialities for diagnostic purposes, utilising
the water protonstl) as a marker of gross changes in soft tissue anatomy (based on changes in
T./T, relaxation). Today MRI remains unrivalled in the clinic for such purposes. However, as
detailed in section 1.1, imaging structure alone limits application when considering relevant

biochemistry.

Observing the body at a molecular level, with MR, is much more eoogd cell metabolites are
present at 10 000 times lower concentration than tissue wWat€he imaging gradient coils can

be pulsed in such a way, and the water pool signal supressed with RF, to provide spectroscopic
information from localised voxels within the bodSpatial resolutionis lost butthe gain in
chemical shift resolution enables protonagnetic resonance spectroscofpy ¥IRS) to be used

to assess localised metabolic propettieslithough there are advantages over anatomic imaging
alone on a typical clinical samerdetection requirel®w spatial (1 crf) and temporal resolutions

(5-10 min)that mitigate for the low metabolite concentratiét®n these time scales MRS can

relay more important dynamic information about metabolic flux. Without a method to increase

thesensitivity of MR to the metabolites of imést it is a difficult technique to implement for real
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time metabolic imagingMR signal enhancement by hyperpatation can temporarily help to

overcome these limits by providing transient signal enhancements of several orders of magnitude.

1.3 Hyperpolarisation

NMR/MRI insensitivity is driven by low natural abundance (nano to micro molar concentrations)
confounded by the low Boltzmann nuclear polarisation (equation 1.5). To overcome the low
thermal polarisation of spin states, on a theoret®ad|| one needs to force more spins into the
low energy state, thus increasing the net magnetisation and available signal for subsequent
detection. On a simple level this can be done by cooling samples (to ddgf@asel/or by using
stronger magnetic dids (to increas®E). However, such solutions are either very expensive
(stronger superconducting magnets) and/or impractisample cooling) particularly when
consideringn-vivo MRI applications. One must therefore consider a more fundamental quantum
manipulation to hyperpolarise the sample. Again the purpose being to produce a significant
deviation away from the Boltzmann distribution, leading to a larger proportion of the nuclear

spins in the low energy state to generate a larger net magnetiagjore(.9) andthussignal’*

Figure 1.9: a) Boltzmann distribution at thermal equilibrium of nuclear spins across the
hi gher energy | evel (b) and tdérpolalisednealearspiresr gy | e v e

The term 6Hy HPYyipolidnaised day to deacdbe a collection of techniques
manipulating spin populations including, spin exchange optical pumping (S&<e# for nuclei

in the gas phase); Dynamic Nuclear Pigkion (DNPi1 for the solid/liquid phase) and Para
Hydrogen Induced Polarisation (PHIPfor the gas/liquid phase)his thesis focuseen the

application of the latter two techniques in the liquid phase.
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