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Abstract 

Nuclear magnetic resonance spectroscopy (NMR) and Magnetic Resonance Imaging (MRI) play 

a vital role in science and medicine. Hyperpolarisation technologies, which amplify achievable 

signal, can unlock new MR applications. Here, a group of thienopyridazines were synthesised and 

hyperpolarised via Signal Amplification by Reversible Exchange (SABRE).  Thienopyridazines 

are of medical interest due to their anti-cancer properties.   

1H-NMR signal enhancements of 10,130-fold ± 230 at 9.4 T (~33% polarisation) were achieved, 

under optimal conditions and novel 15N-labelling used to identify eight SABRE active complexes. 

Alongside high polarisation levels, long signal lifetimes are desired to warrant a longer window 

for MR observation.  1H T1 lifetimes for the thienopyridazines were found to be ~18-40 s.  Long-

lived state (LLS) approaches extended the magnetic lifetime of the shorter T1 values to 40 s in the 

T[2,3-d]P regioisomer.  

Following successful hyperpolarisation, the imaging potential of thienopyridazines was 

demonstrated.  In vivo detection of a 2 mL bolus of hyperpolarised thienopyridazine (in organic 

solvent) injected into the subcutaneous space was accomplished.  Although hyperpolarised signal 

in a non-toxic aqueous solution was proven feasible (through biphasic extraction), polarisation 

levels were lower (3%); thus in vivo detection following intravenous injection was not possible. 

Although SABRE excels in 1H polarisation, imaging is confounded by the vast background 

signals from the water/fat pool.  

Successful X-nuclei imaging utilised hyperpolarised 13C-nicotinamide (via SABRE & dissolution 

Dynamic Nuclear Polarisation, d-DNP).  d-DNP achieved 13C polarisation levels of 13% (with 

apparent 15 s T1) permitting easy detection in an in vivo cancer model. Equivalent SABRE 

polarisation was inferior (~0.17%) and only in vitro imaging was possible.   

A final study developed next generation SABRE methods cascading polarisation from p-H2, via 

an N-heterocyclic substrate, to platinum-phosphine complexes. Substrates with high polarisation 

and long lifetimes (e.g., methyl-4,6-d2-nicotinate) proved to be effective for such polarisation 

relay and resulted in improved 31P signal detection. 
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Chapter 1: Introduction  

Magnetic resonance (MR) is a spectroscopic/imaging technique at the forefront of molecular 

profiling research used for the diagnosis of disease by tracing aberrant cellular function.1, 2 MR 

can provide both fundamental molecular data (spectra), alongside macroscopic structural 

information (images), in a non-invasive and non-destructive manner. Although MR can detect 

and characterise molecular structure and function, the techniqueôs inherent sensitivity is 

somewhat limited by low thermal polarisation between quantised energy states of the nuclei when 

exposed to a magnetic field (section 1.2). In order to overcome this limitation, it is typical to use 

strong magnetic fields (>7 T), high concentrations and signal averaging, all of which can be 

impractical to implement for in-vivo measurements.   

An alternative approach, to increase the sensitivity of MR, involves physical manipulation of the 

magnetic state populations, so called hyperpolarisation.3 Indeed, it is now possible to track 

metabolic flux of specific molecules in the body using hyperpolarisation techniques.4-6 Recent 

research uses hyperpolarisation for the detection and conversion of 13C labelled pyruvate to lactate 

as a means to image tumour metabolism in breast cancer.7 Example hyperpolarised MR imaging 

data adapted from Gallagher et.al (2020) are shown in Figure 1.1. Such data will facilitate 

improved diagnostics and treatment response tracking, with substantial benefits to patients. MR 

enhanced with hyperpolarisation, is therefore emerging as a minimally invasive alternative to 

nuclear medicine for molecular imaging. It is now a major research area in imaging-bioscience.8 

 

Figure 1.1:13C-pyruvate and 13C-lactate images acquired from a breast cancer patient 
following i.v. injection of hyperpolarised [1-13C]- pyruvate. (A) Standard structural MR. (B) 
Hyperpolarised 13C-pyruvate and (C) 13C-lactate images. (D) LAC/PYR map showing tumour 
heterogeneity represents decreased delivery of hyperpolarised substrate at the tumour 
centre. (E and F) Dynamic (temporal resolution = 4 s) hyperpolarised 13C-pyruvate and 13C-
lactate images.7 Data adapted from Gallagher et al. (2020). 
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 A Brief History of Molecular Imaging  

Over 100 years ago the discovery of X-rays revolutionised diagnostic medicine by enabling 

physicians to see, for the first time, structural images of the internal living body. Imaging of gross 

anatomical structure was further augmented through the invention of Computerised Tomography 

(CT) in 1967 by Sir Godfrey Hounsfield9, 10 and Magnetic Resonance Imaging (MRI) in 1973 by 

the American chemist Paul Lauterbur.11 While CT finds wide usage12 in modern medicine, X-ray 

exposure is high13 and it does not deliver the required functional molecular information (beyond 

perfusion of iodine-based contrast agents, which have known side effects14) for more subtle 

disease staging.  

It was initially the evolution of complementary cutting-edge nuclear medicine which permitted 

deeper probing into the body on a molecular level.  The combination of structural and functional 

information within the body is critically important to medicine for several reasons; (i) it helps to 

gain a better understanding of the biological pathways leading to disease; (ii) it helps with early 

diagnosis; (iii) it allows a quick assessment of the efficacy of drugs; and (iv) aids the selection of 

therapy chosen and effective personalised medical treatment. 

In 1963, Kuhl and Edwards demonstrated that single photon emission computed tomography 

(SPECT) was a promising technique for tracking molecular function.15, 16 SPECT uses injectable 

radionuclides (molecules containing isotopes such as 99mTc, 111In or 123I) which emit gamma rays 

for subsequent detection outside the body. Localised function can be probed by creating 

radiolabelled ligands, the properties of which are designed to bind to certain types of 

healthy/diseased tissues.   Modern gamma cameras, which rotate around the subject, produce 3D 

tomographic images that aid disease diagnosis. Today SPECT finds particular application in 

probing neuronal17, 18 and cardiac19 molecular function; albeit with relatively low spatial & 

temporal resolution.20 

In 1976, Hoffman and Phelps developed Positron Emission Tomography (PET)21, 22, which uses 

radionuclides incorporated into biologically active molecules e.g. sugars, proteins or hormones.23 

2-deoxy-2(18F)fluoro-D-glucose (FDG),24 a glucose analogue,  in which a positron emitting radio-

nucleotide (18F) is introduced in place of the hydroxyl group at the 2 position of the glucose 

molecule (Figure 1.2), is one of the most widely used radioactive tracers. Following injection, the 

tracer collects in areas of the body where there are abnormal levels of chemical activity associated 
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with disease. As the radio-nucleotide decays (FDG T1/2 = 109.7 min), it emits a positron which 

upon annihilation with an electron produces a pair of high energy (511 keV) photons orientated 

at ~180° with respect to one another. Detection of near simultaneous multiple annihilation events 

by an array of photon scintillation detectors, around the subject, is used to produce 2D images. 

Resultant images are of higher spatial resolution than SPECT.20, 25   

 

Figure 1.2: Chemical structure of 2-deoxy-2(18F)fluoro-D-glucose. 

In the specific case of FDG, after emitting a positron, 18F decays to 18O which binds to a labile 

proton. It is subsequently metabolised to glucose-6-phosphate labelled with a harmless non-

radioactive ñheavy oxygenò. Other common PET isotopes include 15O (T1/2 = 2.03 min), 13N (T1/2 

= 9.96 min), 11C (T1/2 = 20.4 min) which are used to monitor heart conditions,26 neurodegenerative 

diseases27 and cancer28. Isotopes with much longer half-lives (e.g.  64Cu; T1/2 = 12.7 h), are also 

used. For example, 64Cu -CuCB-bicyclam has been developed as a PET receptor imaging agent to 

target the chemokine C-X-C motif receptor 4 (CXCR4), which is important in cancer metastasis, 

in autoimmune diseases, and stem cellïbased repair processes after stroke and myocardial 

infarction.29   

PET  has also developed into a vital molecular imaging tool for the early staging of metastases30, 

31, assessing therapy response32 and monitoring disease reoccurrence.33, 34 Cancerous cells have a 

higher metabolic rate of glucose than normal cells known as the Warburg Effect35. Thus, tumour 

cells show up as hot spots on 18FDG-PET scans.  

It should be noted, however, that caution should be taken when interpreting FDG-PET images. 

Non-cancerous conditions such as lymph node response to inflammation/sarcoidosis36, 37 can be 

mistaken for cancer38. Treatment assessment using 18FDG-PET is difficult in some organs (e.g., 

prostate and brain) due to both poor tumour and increased background uptake, respectively.25 In 

addition, although the amount of injectable/ingestible tracer is on the pico to nanomolar scale it 

is radioactive and therefore PET is classed as invasive. A further disadvantage is the need for 

specialised equipment, in the form of a cyclotron39, for synthesis of the biologically active radio-



Introduction 

46 

nucleotide. Due to the radio-nucleotide half-life and the logistics of producing the agent, timing 

is crucial and there is little room for error.  An advantage of PET is the high sensitivity, but this 

is coupled with the disadvantage that it is the incorporated radioisotope which is being recorded 

and so the molecule should not be metabolised rapidly (or should be metabolically trapped as with 

FDG). 

Since 2001 combined PET and computerised tomography (CT) has replaced stand-alone PET.40 

CT adds detailed structural anatomy to the relatively low-resolution functional PET images.41, 42 

In the clinic the combination of X-ray CT and PET images has led to improvements in tumour 

detection.43 Recent research exploits 18F FDG-PET/CT to assess pneumonia/acute respiratory 

diseases in COVID-19 patients.44, 45  

Magnetic resonance imaging (MRI) produces anatomic images from thousands of voxels whose 

signals arise from bulk magnetic properties of tissue.  The signal is based predominantly on the 

protons found in fat and water within the body. MRI has the advantage of offering higher spatial 

and temporal resolution over PET/SPECT and it does not expose the patient to any ionizing 

radiation. Combined PET/MRI modalities were developed in 1997 by Shao et al.46 Specifically 

for neuroimaging, a combination of electroencephalography (EEG), PET and MRI has also been 

developed (Shah et al. 2012). The three techniques complement each other well; the strength of 

MRI is in structuralïfunctional imaging, PET provides molecular imaging and EEG provides a 

temporal dimension where the other two modalities are weak.47-49 

Magnetic Resonance Spectroscopy (MRS) is an MRI technique where spatial resolution is 

sacrificed to produce spectra from a smaller number of voxels identifying metabolite molecules 

differentiated by their chemical shifts (ŭ). It has therefore become a powerful technique for 

studying metabolism in vivo. 1H MRS may be used to measure the levels of various abundant 

metabolites, including lactate, neutral lipids, choline and phospholipid metabolites, such as 

phosphocholine in oncology50, or neurochemicals such as GABA and glutathione in 

neurodegenerative diseases.51-54 

Several metabolically relevant nuclei in addition to hydrogen (1H) are MR active/visible allowing 

a  range of metabolites in a variety of tissues to be detected including 13C and 31P which have long 

been used in the investigation of metabolic processes in vivo.55  31P can be used to observe energy 

metabolism by monitoring ATP, inorganic phosphate56 and intracellular pH.57  Measurement of 

23Na tissue concentration can be used to monitor tumorous tissue elimination after chemotherapy58 
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and even whole body imaging59 The non-invasive nature of MRS allows repeated experiments 

with no harm to the patient so that response to long-term treatment (drug therapy) and rapid 

intervention (e.g. exercise, insulin stimulation) can be assessed.   

Due to its relative insensitivity, thermal MRS is often limited to regions where metabolites are in 

a high enough concentration to be detected, for example in the brain or tumours. However, even 

then the spatial and temporal resolution is limited and increasing the magnetic field strength can 

only help to a certain extent. Therefore, the need for hyperpolarisation techniques, such as 

dissolution-dynamic nuclear polarisation (d-DNP) which can increase 13C MRS sensitivity by 

10,000-fold, is clear. This sensitivity increase has not only allowed detection of 13C labelled 

metabolites but also their metabolism and tissue distribution.3, 4  

MRS combined with hyperpolarisation techniques provides a way to obtain both high-definition 

structural information and fast dynamic functional information to aid diagnosis with zero risk 

even with repeated measurements to the patients. At the moment these techniques are still in their 

infancy and therefore at present combinations with other imaging modalities can be 

complementary. 

To understand how hyperpolarisation techniques can help to overcome the insensitivity in NMR 

and MRS a more in-depth examination is required of the underlying principles. 

 Nuclear Magnetic Resonance 

The field of Nuclear Magnetic Resonance (NMR) spectroscopy exploits MR phenomenon to 

study chemical, physical and biological properties.60 Since its introduction in 1946 by Bloch61 and 

Purcell62 NMR  has become one of the leading analytical methods in chemistry. Both NMR and 

MRI play unique roles, the former as an analytical spectroscopic tool across the sciences, the latter 

primarily for clinical diagnostics across the medical specialities. However, the scientific basis 

underpinning both technologies is the same. In this section the physical basis of the nuclear 

magnetic resonance signal is described. Some of the basic imaging techniques employed in this 

thesis are outlined. A full understanding is based in quantum theory but by using some classical 

descriptions, it is much easier to grasp the complex scientific principles of NMR. This section is 

only intended as an overview and the author directs to óPrinciples of Nuclear Magnetic Resonance 

Microscopyô 63, Nuclear Magnetic Resonance64 and Spin Dynamics: Basic of Nuclear Magnetic 

Resonance 65 if a full understanding is required.  
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 Physical basis 

Some nuclei have an intrinsic angular momentum known as spin and consequently possess a 

magnetic dipole moment that can be exploited in NMR and MRI. Hydrogen (1H) provides the 

simplest nuclei to explain the NMR phenomenon. A positively charged proton, has thermal energy 

resulting in classical rotation/spin with angular momentum.  In this classical model the rotating 

charge induces a small magnetic field and the nucleus possesses a magnetic dipole moment, ɛ 

(Figure 1.3 a).  

On a more realistic quantum level the system is described by the spin quantum number I. For any 

nuclei, the spin quantum number is determined by the number of unpaired protons and neutrons 

(each having spin ½).  For nuclei with I = 0 there is no angular momentum, no magnetic moment 

and therefore the nucleus is NMR silent. Any nucleus with I > 0 possesses spin and is therefore 

óNMR activeô. Spin angular momentum, I , is a vector quantity where both its direction and 

magnitude are quantised.  A spin I nucleus has 2I + 1 projections onto an axis e.g., the z axis. The 

z component of I , i.e., Iz is quantised according to equation [1.1]. 

Ὅ ά̯           [1.1] 

The magnetic quantum number, m has 2I+1 values between -I and +I in integral steps therefore 

for a proton m = +½ and -½. 

Spin angular momentum and the magnetic moment of a nucleus are related by the gyromagnetic 

ratio, g (equation [1.2]).  

Ⱨ ‎╘     ρȢς 

where ɔ is a fundamental property of the specific nucleus (possessing a different value for every 

nuclear isotope), thereby acting as a unique fingerprint for identification.  
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Figure 1.3: (a) Classical model of a spin system.  Thermal energy results in spinning charge 
with angular momentum (I), generating a small magnetic dipole moment (µ). (b) Random 
orientation of spins in bulk matter in the absence of an external magnetic field resulting in 
a net magnetic moment of zero. (c) Spins in the presence of an external magnetic field 
aligned with and against magnetic field. 

Any nucleus with an odd number of protons and/or neutrons (e.g., 13C, 19F, 31P, 17O) exhibits these 

essential spin properties. However, 1H is often the target nucleus due to 99.985% isotopic 

abundance, high natural abundance (especially for in-vivo imaging)66 and high gyromagnetic 

ratio. 

In the absence of an external static magnetic field, the magnetic moments of bulk matter will be 

randomly orientated (Figure 1.3 b). Thus, there is no net nuclear magnetization. When placed in 

a static magnetic field (B0), the individual magnetic moments align either parallel or anti-parallel 

to the field,67 with a slight excess of spins in the parallel orientation (Figure 1.3 c).  

Classical torque induces precession around B0 (Figure 1.3 c) with an angular frequency ‫  known 

as the Larmor frequency, which can be calculated using equation [1.3] where ὄ is the static 

magnetic field strength. 

‫  ‎ὄ           ρȢσ 

The Larmor frequency therefore is a characteristic property for a particular nucleus (defined by 

g) and for the chemical environment of that nucleus (which changes local ὄ Ȣ   
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Figure 1.4: a) Magnetic field B0
 with spins precessing at the Larmor frequency aligned 

parallel or anti parallel (Classical view). b) Energy level diagram of a nucleus with I = 1/2 
resulting in two energy levels m = -½ and m = +½ when placed in a magnetic field (Quantum 
view).  

On a quantum level, spins have ςὍ ρ possible energy levels. The existence of these classical 

spin states is a consequence of the quantum óZeeman Effectô (Figure 1.4). For 1H with spin Ὅ   

there are therefore two possible energy levels (defined by magnetic quantum numbers ά   and 

ά   , termed Ŭ and ɓ respectively.  The difference in energy, ȹE, between two spin ½ levels 

is given in equation [1.4].64 

ЎὉ ‎̯ὄ         ρȢτ 

where ̯ Ὤς“ϳ . Thermal energetics are such that there is a slight excess of spins in the lower 

energy state. Resultant state populations follow Boltzmann statistics at thermal equilibrium and 

the number of excess spins is given by equation [1.5].   

ὲ

ὲ
 ὩЎϳ        ρȢυ 

where ὲ  and ὲ  are the lower and upper energy state populations respectively; Ὧ  is 

Boltzmannôs constant and Ὕ is temperature. As thermal energy (ὯὝ is much greater than the 

energy state difference (ЎὉ, the exponent in equation 1.4 can be expanded (Ὡ ρ ὼ) and 

the normalised population difference calculated as per equation [1.6]. 
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ὲ ὲ

ὲ ὲ
 
ЎὉ

ςὯὝ
         ρȢφ 

For 1H (g = 42.58 MHz/T) in a 9.4 T static magnetic field ȹE = 2.65 x 10-25 J (eqn. [1.3]). At 

300 K the population difference can be calculated with equation [1.6] as 3.2 x 10-5; or 1 in ~32,000 

extra nuclei in the low energy state. Thus, a net magnetization exists in the direction of the applied 

magnetic field (Figure 1.3c) defined as the z axis.  

Although this population difference is extremely small, when imaging the human body with 1H 

at standard clinical field strengths of 1.5 T, one can calculate that in a single voxel (imaging 

volume element) of 0.02 mL the number of excess protons would be 6.02 x 1015 (6 million billion) 

and, therefore, represents a significant signal for subsequent excitation and detection (section 

1.2.2). The linear dependence of population difference (~ net magnetisation) on the gyromagnetic 

ratio (through ЎὉ) is noted. Thus, NMR signal is inherently smaller for the other applicable nuclei 

(e.g. 13C) even before considering differences in natural abundance. Nevertheless, this small low 

energy level population excess can be manipulated. Hyperpolarisation techniques for doing this 

will be explored in sections 1.3 & 1.4 and are the basis of this thesis. 

The resultant net magnetization cannot be detected in the z axis (as it is dwarfed by the huge static 

magnetic field in the same direction). To detect this net magnetisation, it must be perturbed, by 

an oscillating magnetic field, B1 (perpendicular to the static field, B0, and rotating at the same 

Larmor frequency), into the transverse (x-y) plane. This is done through a process of 

electromagnetic excitation.   

 Excitation and Detection 

Net magnetization is perturbed into the x-y plane by a short Radio Frequency (RF) pulse emitted 

from a surrounding antenna. The frequency of this RF pulse must be óresonantô to the Larmor 

frequency defining the energy difference between the spin states. Thus, only nuclei that precess 

with the same frequency as the RF pulse will be excited. In a rotating frame of reference, the 

effect is a rotation of the net magnetization around B1 (the RF field) onto the transverse (x-y) 

plane (Figure 1.5); perpendicular to B1 and B0. The angle of net magnetization rotation 

(determined by the pulse power and duration) is called the nutation or flip angle (FA). Following 

cessation of the RF pulse the precessing magnetisation vector will induce a time varying AC 

current in a receiving antenna/coil. The magnitude of this time oscillating current will reduce as 
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the system relaxes back to equilibrium. Fourier transformation of this time oscillating signal 

delivers the component Larmor frequencies (if multiple are present) as a spectrum.   

 

Figure 1.5: Excitation step where an RF pulse (of variable power and duration) can be 
applied at the Larmor frequency to tip the net magnetisation through an angle towards the 
transverse (XY) plane. 

 Relaxation 

The relaxation of spins back to thermal equilibrium occurs via two key mechanisms; i)   

longitudinal (T1) (Figure 1.6); and ii) transverse (T2) relaxation (Figure 1.8). T1 describes 

magnetisation evolution in the z direction while T2 describes the x-y plane evolution (e.g., T2 is 

not simply the loss of x-y magnetisation into the longitudinal, z plane). Note at thermal 

equilibrium the magnitude of the net magnetisation is defined as M0. 
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i) Longitudinal T1 (spin-lattice) Relaxation 

 

Figure 1.6: T1 relaxation showing spins returning to the z direction immediately after a 90º 
pulse. 

As soon as the excitation RF pulse stops (at t = 0), excited spins will return to the low energy 

state. The net magnetization relaxes back to align with the static magnetic field (z axis). 

Longitudinal magnetisation (MZ) reflects the z-component of the net magnetisation vector. 

Therefore, at t = 0, following a 90º excitation pulse, there is no longitudinal magnetization (high 

and low energy states are equally populated). T1 is the time constant of ódecayô as the longitudinal 

magnetisation returns to a magnitude M0 (Figure 1.7a); as described by equation [1.6].   

ὓ ὓ ρ Ὡ         ρȢφ 

In MRI, T1 relaxation is very important. Not all protons are bound in the same way within the 

body. In fat tissue, for example, magnetically shielded 1H atoms are found within large 

triglyceride molecules which rotate at an optimum rate efficient for T1. Fat therefore has a short 

T1 value. Conversely magnetically deshielded 1H atoms in small water molecules, spin more 

rapidly at a rate which is inefficient for T1 relaxation.  Water therefore has a longer T1 value. By 

exploiting these differences in T1, image contrast between different tissues results when imaging 

at short repetition times (TR), as can be seen in Figure 1.7. For clarity repetition time is the amount 

of time between successive excitation pulses i.e., repeated measures required for spatial encoding 

(see section 1.2.4).  At short TR tissues with long T1 will not have relaxed to thermal equilibrium.  
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Therefore, subsequent excitations will result in signal attenuation for that tissue pool in contrast 

to those with short T1. The subsequent image is said to be T1 weighted. 

 

Figure 1.7: (a) T1 relaxation curve. (b) T1 weighted image.68 (c) T2 relaxation curve. (d) T2 
weighted image.68 

Note that full relaxation of the longitudinal magnetisation is on the order of seconds. Scanning at 

long TRs (5 x longest T1) ensures excitation from thermal equilibrium for all tissues and therefore 

avoids T1 weighting.  Image contrast is now determined by T2 relaxation, which occurs on a much 

faster (ms) time scale. Unfortunately, scans can take tens of minutes to complete (depending on 

the required resolution). 

ii) Transverse T2 (spin-spin) Relaxation 

Following excitation with a 90° RF pulse (B1), the magnetization vector rotates around B1  into 

the x-y plane to be perpendicular to B1. At this time point (t = 0) the nuclei are all in phase 

(individual magnetic moments, be them in the high or low energy state, are all pointing in the 

same transverse direction).   Immediately after the 90° pulse, the net magnetization continues to 

precess around the z-axis in the transverse x-y plane; but spins do not remain in phase for long. 

The magnetic moments of the individual spins influence each other (spin-spin interaction) 
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generating random local increases/decreases in field and thus slightly different precession 

frequencies (equation 1.2). The moments (precessing at different rates) begin to de-phase, thus 

reducing the transverse magnetisation vector. Eventually the spins will be completely dephased 

and there will be no transverse magnetisation and thus no current induced in the detector (Figure 

1.8). In most biological tissues this process occurs on the order of milliseconds (much faster than 

spin-lattice relaxation).  

 

Figure 1.8: T2 relaxation showing spins dephasing across the XY plane after a 90° pulse.  

Following a 90º excitation pulse (t = 0) the net magnetization, M0, is flipped fully into the 

transverse plane. T2 is the time constant of transverse Mxy signal decay described by:  

ὓ ὓὩ          [1.8] 

Once again, when thinking in terms of MRI, T2 depends on how the hydrogen proton is bound 

within its molecule and that again is different for each tissue. T2 is therefore another parameter, 

which is used in MRI to obtain contrast. 

As it is the precession of the transverse magnetisation that induces the AC current in the nearby 

detector; when dephasing occurs the magnitude of the current will decrease. This time decaying 

signal is called a Free Induction Decay (FID). It is noted that due to the presence of magnetic field 

inhomogeneities and chemical shift, NMR signal actually decays faster than T2 times would 

predict. Extra dephasing, and thus signal decay caused by such effects is given a time constant 

T2*. 



Introduction 

56 

 Spatial Encoding 

Fourier transformation unravels the different oscillating components of the FID to obtain a 

spectrum as a function of frequency. The target nuclei in differing chemical environments 

resonate at slightly differing frequencies depending on the relative shielding/deshielding 

experienced and gives rise to chemical shift which is the basis of NMR.  At this point, it is not 

possible to know where the different signals originated from, in a spatial sense. Spatial 

localisation in MRI is achieved through the introduction of varying magnetic field gradients.11, 69, 

70 Resonant frequency is a linear function of the applied magnetic field (Larmor equation 1.2), 

therefore, if a linear magnetic field gradient is applied across the sample, the resonant frequency 

of the nucleus becomes a function of its spatial position within the applied gradient. Spatial 

encoding in standard MRI uses a single nuclear chemical environment (e.g., the abundant water 

pool within the body). Modern MRI systems employ three gradient coils to encode slice, 

frequency and phase information in ók-spaceô (before 2D Fourier transform into an image). A full 

description of spatial encoding is beyond the scope of this thesis and the reader is referred to 

ñPrinciples of MRIò by Friedman et al.71  

 Spectroscopic Imaging 

As mentioned above MRI is employed in the medical specialities for diagnostic purposes, utilising 

the water protons (1H) as a marker of gross changes in soft tissue anatomy (based on changes in 

T1/T2 relaxation).  Today MRI remains unrivalled in the clinic for such purposes. However, as 

detailed in section 1.1, imaging structure alone limits application when considering relevant 

biochemistry.  

Observing the body at a molecular level, with MRI, is much more complex as cell metabolites are 

present at ͯ10 000 times lower concentration than tissue water.72 The imaging gradient coils can 

be pulsed in such a way, and the water pool signal supressed with RF, to provide spectroscopic 

information from localised voxels within the body. Spatial resolution is lost but the gain in 

chemical shift resolution enables proton magnetic resonance spectroscopy (1H MRS) to be used 

to assess localised metabolic properties51. Although there are advantages over anatomic imaging 

alone, on a typical clinical scanner detection requires low spatial (1 cm3) and temporal resolutions 

(5-10 min) that mitigate for the low metabolite concentrations.73 On these time scales MRS cannot 

relay more important dynamic information about metabolic flux.  Without a method to increase 

the sensitivity of MR to the metabolites of interest it is a difficult technique to implement for real-
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time metabolic imaging.  MR signal enhancement by hyperpolarisation can temporarily help to 

overcome these limits by providing transient signal enhancements of several orders of magnitude.  

 Hyperpolarisation 

NMR/MRI insensitivity is driven by low natural abundance (nano to micro molar concentrations) 

confounded by the low Boltzmann nuclear polarisation (equation 1.5). To overcome the low 

thermal polarisation of spin states, on a theoretical level, one needs to force more spins into the 

low energy state, thus increasing the net magnetisation and available signal for subsequent 

detection. On a simple level this can be done by cooling samples (to decrease kBT) and/or by using 

stronger magnetic fields (to increase DE).  However, such solutions are either very expensive 

(stronger superconducting magnets) and/or impractical (sample cooling) particularly when 

considering in-vivo MRI applications. One must therefore consider a more fundamental quantum 

manipulation to hyperpolarise the sample. Again the purpose being to  produce a significant 

deviation away from the Boltzmann distribution, leading to a larger proportion of the nuclear 

spins in the low energy state to generate a larger net magnetisation (Figure 1.9) and thus signal.74   

  

Figure 1.9: a) Boltzmann distribution at thermal equilibrium of nuclear spins across the 
higher energy level (ɓ) and the lower energy level (Ŭ); b) Hyperpolarised nuclear spins. 

The term óHyperpolarisationô (HP) is often used today to describe a collection of techniques 

manipulating spin populations including, spin exchange optical pumping (SEOP - used for nuclei 

in the gas phase); Dynamic Nuclear Polarisation (DNP ï for the solid/liquid phase) and Para-

Hydrogen Induced Polarisation (PHIP ï for the gas/liquid phase). This thesis focuses on the 

application of the latter two techniques in the liquid phase. 


































































































































































































































































































































































































































































































































