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Abstract

Quantum channel discrimination is a highly versatile task in quantum information. Almost any

physical process can be modelled as a quantum channel, so discrimination between channels has

broad applications across many fields of science. Since the processes modelled by quantum chan-

nels and the contexts in which we want to discriminate between them are so wide-ranging, it

should come as no surprise that the possible protocols are equally varied. The most general dis-

crimination protocols can use any sequence of operations allowed by physics.

This is what makes protocol stretching such a powerful mathematical tool. It allows the cal-

culation of bounds on the performance of any discrimination protocol and can be applied to any

situation in which the channels involved are jointly simulable by some quantum processor.

Certain channels, such as the amplitude damping channels, cannot be simulated using stan-

dard teleportation. Others, like the lossy bosonic channels, can be (individually) simulated using

teleportation, but two lossy channels with different losses cannot be jointly simulated.

In this thesis, we characterise port-based teleportation so that it can be used as a tool for chan-

nel simulation. Port-based teleportation is a variant of quantum teleportation that can simulate any

channel in the asymptotic limit of infinite ports. For a finite number of ports, we can find resource

states that simulate amplitude damping channels well. By combining our channel simulations with

the technique of protocol stretching, we are able to tighten existing bounds on the discrimination

of amplitude-damping channels.

We also address the relatively unstudied subfield of channel position finding. We use channel

simulation to bound the performance of environment localisation, and we show the viability of

idler-free channel position finding over pure loss channels. Finally, we calculate the secret key

rate for a scenario of quantum hacking based on a side channel in the sender’s device.
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2.1 An example of quantum channel simulation. In panel (a), we show the i-th round

of a protocol in which Alice and Bob carry out arbitrary LOCCs on their states

before and after each channel use. The red dashed line demarcates the division be-

tween Alice’s systems and Bob’s systems and the locality of the LOCCs is defined

with respect to this division. C denotes the channel, and each channel use consists

of Alice sending Bob a state via the channel. Note that this is a global (non-local)

operation. In panel (b), we have replaced the channel C with the quantum opera-

tionQ, which acts on the input state sent by Alice and on a resource state (denoted

σ) to send the same output state to Bob as is sent by the channel in panel (a). We

have therefore used Q (and σ) to simulate C, and so Alice and Bob share the same

state after the i-th channel use in panel (a) as in panel (b) (hence the REE between

their states is the same in both cases). If Q is also an LOCC (with respect to the

division between Alice’s systems and Bob’s systems), then the channel use cannot

have increased the REE between Alice and Bob by more than the REE of σ. . . . 24
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3.1 The output fidelity of the classical, bipartite entangled, and idler-free protocols as

a function of the transmissivity of the target channel, ηT . We set the transmissivity

of the background channels, ηB , to 0.95 and impose an energy constraint so that

the average number of photons per channel use is no more than 50. We also set

m = 3, so that there are two identical background channels and one target channel.

The output fidelity for the idler-free protocol with ηB and ηT swapped is also

shown. Unlike for the classical and bipartite entangled protocols, this swap affects

the output fidelity for the idler-free protocol (since, in the classical and bipartite
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than the classical protocol for ηT ' 0.75. . . . . . . . . . . . . . . . . . . . . . 41

3.2 The output fidelity of the classical, bipartite entangled, and idler-free protocols

as a function of the total number of channels in the sequence, m. We set the

background transmissivity, ηB , to 0.2, the transmissivity of the target channel,

ηT , to 0.7, and the average number of photons per channel use, NS , to 1. Only the

idler-free protocol is affected by changingm. We see that the output transmissivity

increases as m increases, but levels off for large m. As m increases, the effect on

the output fidelity of swapping ηB and ηT decreases. . . . . . . . . . . . . . . . 42

3.3 The output fidelity of the classical, bipartite entangled, and idler-free protocols

as a function of the average number of photons in the signal states, NS . We set

the background transmissivity, ηB = 0.9, the transmissivity of the target channel,

ηT = 0.95, and the number of channels in the sequence, m = 2. Fidelity is given

in decibels. The output fidelity of the classical protocol gives a straight line be-

cause the scale is logarithmic and the classical output fidelity scales exponentially.

This line crosses the curves representing the output fidelities for both the idler-free

and the bipartite entangled protocols, showing that the classical protocol gives a

lower output fidelity than either of the other protocols over some parameter ranges. 43
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3.4 An example of the setup in the thermal loss case. Each thermal loss channel can

be represented by a beamsplitter that mixes the input mode with an environmental

thermal state. Thermal loss channels are parametrised by the transmissivity of the

beamsplitter and the average photon number, n̄, of the thermal state. We consider

a sequence of thermal loss channels for which the beamsplitters all have the same

transmissivity, τ . One of the channels has a thermal state with a different aver-

age number of photons from the others; this is the target channel. The average

number of photons in the thermal state of the target channel is denoted n̄T , whilst

the average number of photons in the thermal state of the background channel is

denoted n̄B . The task is to locate the target channel; in the case of this setup, it is
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3.5 The reduction of a general adaptive discrimination protocol to a single round of

quantum operations on a resource state. In panel (a), we have the most general

discrimination protocol using M uses of the sequence of channels. ρ0 is some ini-

tial quantum state. We then apply some sequence of quantum operations (denoted

by QO) interspersed with uses of the sequence of channels (denoted by Ci, where

the label i depends on the channel position). At each channel use, we may send a

one-mode state through each of the channels in the sequence (and these modes are

generally correlated with auxiliary modes that do not pass through the channels).

Each round of quantum operations is allowed to be adaptive. This means that (i)

entanglement can be present between ancillary modes of different quantum oper-

ations and (ii) measurements can be done on some subset of the modes and used

to optimise following quantum operations. These measurements can always be

delayed to the end of the protocol, by using controlled operations, so as to make

all the QOs trace preserving. The final output of the adaptive protocol is denoted

ρi0; there are m possible outputs depending on the channel position. Channel dis-

crimination is then the task of discriminating between these m different possible

outputs, by means of an optimal collective quantum measurement (which may in-

clude all the delayed measurements). In panel (b), we simulate the channel with

teleportation, using some teleportation protocol (TP) and a resource state (σi).

Note that σi is the resource state for the entire sequence of channels and is the

tensor product of the resource states for teleportation of the m − 1 background

channels and the target channel, with the order of the subsystems determined by

the label i. Note that neither the teleportation protocol nor the quantum operations

depend on the label i and so the entire discrimination protocol can be represented

as some single fixed quantum operation on ρ0 and M copies of the resource state,

σi. This representation is shown in panel (c). . . . . . . . . . . . . . . . . . . . 47

3.6 Regions in which we can prove a quantum advantage for thermal loss channels,

as a function of their noise difference εdif and mean noise εav, for different values

of the transmissivity τ . Note that the region for a higher value of τ completely

contains the region for any lower value of τ . The minimum value of εav for fixed

εdif is εdif+1
2 , since neither εT nor εB can be less than 1
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3.7 The setup for a CPF protocol that provides a benchmark for the general quantum

case. In panel (a), we have the protocol for the thermal loss case and in panel (b),

we have the protocol for the thermal amplifier case. In both cases, we begin by

carrying out two-mode squeezing on a vacuum state, with squeezing parameter

r0, as given in Eq. (3.92). This is denoted S(r0). We then pass one of the modes

through the channel, denoted C, and then carry out two-mode squeezing again,

this time with squeezing parameter r1. Finally, we carry out a photon counting

measurement (denoted PC) on one of the modes and trace over the other mode.

This process is repeated M times (where M is the number of probes used) for

every channel in the sequence. Note that in the thermal loss case, the measure-

ment is carried out on the channel mode, whilst in the thermal amplifier case, the
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LB” and “quantum UB”) and a lower bound on the error is given for classical
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quantum and the classical cases (labelled “quantum MLE” and “classical MLE”).

For the quantum upper bound, we use the expression in Eq. (3.72). For a large

number of probes (in this case, greater than or equal to 1854), the upper bound

on the error of quantum protocols is smaller than the lower bound on the error of

classical protocols, proving we have a quantum advantage (in the darker shaded

area). However, a much smaller number of probes (396) is required for the bound

based on the MLE in the quantum case to beat the classical lower bound, and

hence we are able to show a quantum advantage for any number of probes greater
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erodynes one half of a TMSV state to get the value kα̃, which linearly corresponds

to kα (the displacement of the signal state). The signal state enters the channel and

is subject to some thermal noise due to beamsplitting with one mode of an entan-

gling cloner (the thermal state ω′). It is then heterodyned by Bob, to obtain β. The

resultant state of Alice, Bob and Eve is pure. The channel between Alice and Bob

is a thermal channel, characterised by η′ and ε′; this is represented by the blue,

dashed arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.7 Plots of the secret key rate (in logarithmic scale) versus channel transmission η

of the main quantum channel, in the absence of excess noise (lossy channel rate).

The top curve is the PLOB bound [5], which is the secret key capacity of the lossy

channel, i.e. the maximum key rate achievable over this channel by any point-to-

point QKD protocol in the absence of side-channels [6]. We then show the ideal

rate of the coherent state protocol [7] with no side channels. Lower curves refer

to the coherent state protocol in the presence of a side-channel with an increasing

number of photons n̄, ranging from the leakage mode case (n̄ = 0) to more active

hacking (n̄ = 1, 3, 7). As we can see, the key rate is always positive (for any value

of n̄), but it quickly declines as n̄ increases. . . . . . . . . . . . . . . . . . . . . 136

6.8 Security thresholds in terms of maximally-tolerable excess noise versus channel

transmission (in decibels). The shaded regions are the regions in which secret key

distribution is possible for a given side-channel. The boundaries of the regions

show the values of the excess noise at which secret key distribution becomes im-

possible for a given transmission and side-channel. Adding the leakage mode

side-channel significantly decreases the tolerable excess noise for a given trans-

mission, and increasing the average photon number n̄ of the side-channel further

decreases it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xv



List of Figures

6.9 This is an extension of the original setup (Fig. 6.1), in which both the average

number of photons entering Alice’s device, n̄, and the modulation amplitude of

the side-channel mode, m, are monitored. Unlike in the original case, m does

not have to equal 1 and can take any real value. The dashed red line marks the

part of Alice’s device that is accessible to Eve. The key rate for this setup can be

calculated similarly to the key rate for the original setup; the only difference is in

the expression for the k parameter, which affects the “effective loss”, the “effective

excess noise” and “effective modulation amplitude”. See text for more explanation. 139

xvi



Acknowledgements

I would not be where I am today, were it not for the ongoing love and support given to me by my

family. My sincerest thanks go to Melwyn, Tina, and Aaron and to my grandparents: Yvonne,

Selby, Angelo, and Lucy.

This thesis would not have been possible were it not for the help, support, and opportunities

given to me by my supervisor, Prof. Stefano Pirandola. He has guided my research throughout my

PhD and has given me the best possible start in the world of academia. I am also grateful for my

collaboration with my co-authors: Leonardo Banchi and Quntao Zhuang.

My thanks go also to the others in the Quantum Information group, past and present, and espe-

cially to my office mates - Athena Karsa, Kieran Wilkinson, Alasdair Fletcher, and Cillian Harney

- for the help, stimulating discussions, and friendship they have given me over the years. You have

truly taught me the meaning of the phrase “Live, laugh, love”. I thank also Timothy Atkinson and

Chaitanya Kaul, who have welcomed me since my first day in the department.

I am sincerely grateful for all of my friends, both from York and from UCL, for their support,

encouragement, and memes.

A quantum physicist moved to a new house and found that the doorbell had an extraordinarily

loud chime. So much so that it was the loudest doorbell that he, or any of his friends, had ever

heard. Eventually, he decided to submit it to the Guinness book of World Records. He called them

up and the woman on the phone was amazed by the sound of his doorbell, even over the call.

“We’ll submit it right away,” she said. “We’ll send a carpenter around to remove it from the door

frame so that we can measure exactly how loud it is at our lab.”

”Wow!” exclaimed the physicist. “That seems excessive. Can’t you just measure it here?”

”Oh no,” replied the woman. “We can’t perform a Bell measurement locally.”

xvii



Declaration

I declare that the research described in this thesis is original work, which I undertook at the Uni-

versity of York during 2017 - 2020. Except where stated, all of the work contained within this

thesis represents the original contribution of the author.

Some parts of this thesis have been published in journals or preprinted on the arXiv; where

items were published jointly with collaborators, the author of this thesis is responsible for the

material presented here. For each published item the primary author is the first listed author.

• Hacking Alice’s box in continuous-variable quantum key distribution, Jason Pereira and

Stefano Pirandola. Published in Physical Review A 98, 062319, (2018). [8]

• Optimal environment localization, Jason Pereira, Quntao Zhuang, and Stefano Pirandola.

Published in Physical Review Research 2, (2020). [9]

• Bounds on amplitude-damping-channel discrimination, Jason Pereira and Stefano Piran-

dola. Published in Physical Review A 103, (2021). [10]

• Characterising port-based teleportation as a universal simulator of qubit channels, Jason

Pereira, Leonardo Banchi, and Stefano Pirandola. Accepted for publication in Journal of

Physics A: Mathematical and Theoretical, (2021). [11]

• Idler-free channel position finding, Jason Pereira, Leonardo Banchi, Quntao Zhuang, and

Stefano Pirandola. Preprinted on the arXiv, (2020). [12]

Copyright © 2020 by Jason Luke Pereira

The copyright of this thesis rests with the author. Any quotations from it should be acknowledged

appropriately.

xviii



Chapter 1

Introduction

1.1 Quantum channels

Classically, when a bit is sent from one place to another, the map describing how it is transformed

is called a channel. Physically, an example of a channel is a communication line through which

information must be transmitted. In an ideal case, the receiver would receive exactly what the

sender is sending (this is called an identity channel), but this is not always the case. Part of

the signal could be lost or corrupted during transmission, resulting in the receiver’s output being

different from the sender’s input. For example, an erasure channel is a type of channel that either

faithfully transmits a bit or (with some probability) transmits an erasure state, which carries no

information about the input bit other than that it was lost. Another example of a classical channel

is a bit-flip channel: for such channels, a bit with value 0 is mapped to a bit with value 1 with

probability p0→1, a bit with value 1 is mapped to a bit with value 0 with probability p1→0, and

the bit is faithfully transmitted in all other cases. Channels can also describe how the value of

a bit changes over time. An example is information storage on a disk. If the information on a

disk is slowly being corrupted over time, due to, for instance, physical wearing-down of the disk

or the disk being stored in an area with a magnetic field, the input-output relations between the

information that was originally stored on the disk and the information that would be read from the

disk at some later point in time define a classical channel. Classical channels can be symmetric

(meaning that bits of either value are affected identically) or not. More complicated channels can

have a memory [13]; for a memory channel, the input-output map for the i-th transmission may

depend on the (i−1)-th transmission (rather than being independent and identical for each channel

use).

The maximum rate at which information can be reliably transmitted through a classical channel
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1.1 Quantum channels

(in terms of bits per transmission) is called the classical channel capacity. The channel capacity

for a number of basic channels is well-known [13, 14].

Quantum channels are the quantum analogue of classical channels; they are mathematical

objects describing the transformation of a quantum state [15]. Any map that sends valid quantum

states to valid quantum states is a quantum channel. As such, they model a vast number of physical

processes, and their study is of great interest in the field of quantum information. A relevant

example for the field of quantum communications is the optical fibre connecting two parties in a

communication scheme.

Quantum channels are more varied than classical channels, since there are more basic trans-

formations that can be enacted on a quantum state than on a bit. For instance, whilst a bit can be

lost with some probability or flipped from 0 to 1 (or vice versa) with some probability, a qubit can

undergo the same transformations, but it can also have its phase changed or be transformed into

some arbitrary superposition of the 0 and 1 states. Any transformation that can be applied to a bit

by a classical channel can be applied to a qubit by a quantum channel, along with a number of

transformations that cannot be applied to a bit.

As well as there being a broader variety of quantum channels than classical channels, there are

also a larger number of quantities of interest for quantum channels [16]. As well as the classical

channel capacity, as defined for classical channels (the maximum rate at which classical informa-

tion can be faithfully transmitted), quantum channels also have a secret key capacity, which is the

maximum rate at which private key distribution can be carried out over such a channel (without an

eavesdropper gaining information about the key whilst remaining undetectable). Quantum chan-

nels also have a quantum capacity, which is the maximum rate at which they can reliably transmit

quantum information. These capacities can be calculated assuming the aid of one or two-way clas-

sical communications. The broadest definition of the quantum capacity is the two-way capacity,

which allows unlimited local operations and classical communications (LOCCs) between channel

uses [5]. The maximum rate at which entanglement can be distributed over a quantum channel

(the entanglement-distribution capacity) is also of interest. Accordingly, quantum channels are

less well understood in general than classical channels.

The classical channel capacity is of interest for applications such as sending classical infor-

mation over quantum networks, where the goal is to transfer as much information as possible.

The classical capacity of a wide variety of channels, including the quantum erasure channel [17],

the phase erasure channel [16], and the generalised Pauli channels [18], are known. Classical in-

formation transfer can be aided by pre-shared entanglement; in this case, we must consider the
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1.2 Channel discrimination and parameter estimation

entanglement-assisted classical capacity. This is the relevant parameter for applications such as

super-dense coding [19].

The secret key capacity is of interest for quantum key distribution (QKD) scenarios [20]. It

gives the best possible secret key rate achievable by any possible QKD protocol over a given

channel. As such, it can be used to quantify how well a protocol performs, in terms of how close

it comes to achieving the maximum possible key rate. The secret key capacity is less than or equal

to the classical channel capacity, since a secret key is a particular type of classical information that

must be distributed from sender to receiver.

The entanglement-distribution capacity is important because pre-shared entanglement is an

important resource for a variety of protocols, including super-dense coding, quantum teleportation

and QKD. It is equal to the two-way quantum capacity, which is the maximum rate at which

quantum information can be transferred over a quantum channel (with unlimited LOCCs between

channel uses). The quantum capacity is useful for scenarios in which the goal is to distribute

quantum information over a quantum channel or network. These quantities are less than the secret

key capacity, since a maximally entangled pair of qubits can be used to faithfully send a bit from

the sender to the receiver, without an eavesdropper being able to obtain any information about it.

A hierarchy of the various two-way bounds was given by Pirandola et al. in Ref. [6].

1.2 Channel discrimination and parameter estimation

Suppose we are presented with a black box that contains some channel from a set of possible

options. Quantum channel discrimination is, as the name suggests, the task of determining which

channel we have. Specifically, by sending probes into the black box, collecting the outputs, carry-

ing out operations on them, and carrying out measurements, we want to determine which channel

is in the box. The method by which we attempt to discriminate between the channels is called

our protocol. More generally, we can refer to any algorithm by which we may attempt to achieve

a task (such as secret key distribution or parameter estimation) as a protocol for that task. The

probability of us correctly guessing which channel we have is called the success probability and

the probability of us guessing the channel incorrectly is called the error probability. These proba-

bilities obviously depend on the protocol we use. If we are allowed to probe the box an unlimited

number of times, we can always find a protocol with an error probability that tends to 0 with the

number of channel uses. Suppose, however, that we are only allowed a finite number of channel

uses (which we will sometimes refer to as rounds of the protocol), N . We then want to find the
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protocol that maximises the success probability for a given N .

In fact, there are two major routes that we can go down. We can construct a protocol that

minimises the error probability - this is called minimum error discrimination - or we can construct

a protocol that never misidentifies the channel when it succeeds but has some chance of failing -

this is called unambiguous discrimination [21]. We will focus on minimum error discrimination.

The most general N -round protocol we can construct consists of us preparing some initial

quantum state, probing the channel with some part of it, and then carrying out arbitrary quantum

operations between rounds [2, 22]. This can include measurements. This has the structure of a

quantum comb [23].

Adaptive protocols, where subsequent probes can be dependent on measurements carried out

on previous probes, have proven to be more powerful than non-adaptive protocols [24]. Harrow et

al. found a pair of channels that cannot be perfectly discriminated between by any non-adaptive

protocol with a finite number of rounds, but that can be perfectly distinguished between by a 2-

round adaptive protocol. This has necessitated the study of the most general adaptive protocols,

in order to establish ultimate bounds on the minimum achievable error probability for quantum

channel discrimination [25]. Quantum channel simulation and protocol stretching (see Chapter 2)

are powerful tools for establishing these ultimate bounds [2, 5, 26–28].

One well-studied task within quantum channel discrimination is binary discrimination. This

is discrimination between only two possible channels. For equal prior probabilities, the error

probability in distinguishing between the two possible output states of a discrimination protocol is

known exactly, in terms of the trace norm (the Helstrom bound) [29].

A related task is that of parameter estimation. In this scenario, the possible channels are

continuously parametrised by a variable, θ, and our task is to estimate the value of θ as precisely as

possible. We again have a quantum comb structure (in the most general case). Channel simulation

and protocol stretching can once again be used to reduce the protocol to a block form in a number

of important cases [30].

1.2.1 Applications

One application of binary discrimination is in quantum illumination [31–44], where a device must

discriminate between the presence and the absence of an object. Another application is the pro-

tocol of quantum reading, in which classical information that is encoded in the reflectivity of

memory cells is read off by quantum states [25, 45]. By describing the input-output relations of

the probing systems as quantum channels, both of these tasks can be treated as problems of quan-

4



1.3 Motivation and structure of the thesis

tum channel discrimination (with the different channels corresponding to the different possible

outcomes).

An example in quantum communications is quantum hacking [20, 46, 47], where Eve may

wish to determine aspects of the settings of Alice’s and Bob’s devices, by probing them via side-

channels. If the settings affect the quantum channel that the probes would pass through, Eve

could carry out a discrimination protocol between the possible channels and therefore the possible

settings.

Quantum metrology [48] uses quantum states to make more precise measurements than are

possible classically or makes equally precise measurements whilst using less energy. Many tasks

within quantum metrology involve parameter estimation. For instance, suppose we want to find

the transmissivity of a delicate sample. Our task would then be to probe it with a limited number

of photons in order to determine the transmissivity: this is parameter estimation.

Spedalieri et al. considered the use of quantum states of light (correlated thermal states and

superpositions of number states) to probe delicate biological samples in order to both estimate

the transmissivity (parameter estimation) and discriminate between the presence and absence of

bacteria (channel discrimination) [3].

1.3 Motivation and structure of the thesis

Since almost any physical process can be regarded as a quantum channel, discrimination between

quantum channels is a task with relevance to many fields of science. As a result, protocols for

channel discrimination have a very broad applicability. Any measurement task can be reduced

to a task of parameter estimation and any scenario in which we want to decide which of a set of

possible physical processes is occurring can be reconstructed into a task of channel discrimination.

Quantum protocols have been shown to be capable of improving the precision of measure-

ments [48], the amount of classical information that can be read out from a memory cell (for fixed

energy) [45], the energy required to detect targets [31, 32, 41], and the energy required to detect

the presence of bacteria in a sample or discriminate between two types of bacteria [3].

As a result, a key question is: what is the ultimate performance limit of a quantum protocol?

If we can establish tight bounds on the best possible success probability or precision of a quantum

protocol, we can assess which tasks might be further improved by better protocols. Since quantum

hacking can be modelled as a task of channel discrimination (or parameter estimation, in the case

of a continuous alphabet), it is also vital from an information security perspective to assess to
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what degree an eavesdropper can exploit vulnerabilities, taking into account how technology and

discrimination protocols might improve in the future. This will become especially important as

classical cryptography becomes insecure (due to Shor’s algorithm [49] and the development of

quantum computers), requiring either the development of post-quantum cryptography [50] or for

quantum communication technology to be rolled out around the world.

Channel simulation and teleportation stretching are powerful techniques that allow the formu-

lation of ultimate bounds on any discrimination or parameter estimation protocol. One issue they

currently have is that certain channels do not commute with standard teleportation, meaning that

protocols involving these channels cannot be stretched in the same way.

In this work, we want to improve the power of the techniques of channel simulation and tele-

portation stretching by utilising alternatives to standard teleportation. We aim to thereby tighten

existing bounds on quantum channel discrimination, especially those relating to important chan-

nels, such as the phase-insensitive Gaussian channels and the amplitude damping (AD) channel.

This thesis will present a number of results in the fields of quantum channel simulation and

channel discrimination, which have then been applied to physical scenarios. We improve the

characterisation of qubit port-based teleportation (PBT) and the channels that it simulates, hence

making it more useful as a tool for qubit channel simulation. We also look in some depth at a

quantum hacking attack.

Chapter 2 introduces the reader to some basic concepts, relating to quantum information, that

will be useful going forwards. We start by discussing some basic differences between DV and

CV quantum information and then go on to define some important quantities, such as the trace

norm and the Bures fidelity, and explain their properties. We then give a very brief introduction to

the formalism of Gaussian quantum information and present some helpful formulae. Finally, we

explain how the techniques of channel simulation and protocol stretching can be applied, by way

of an example.

Channel position finding (CPF) is a little-studied subfield of channel discrimination. CPF is

the task of finding the position of a target channel amongst a sequence of background channels. In

Chapter 3, we approach CPF in two different ways. We start by considering a scenario in which we

must discriminate between pure loss channels, with different transmissivities, using limited energy.

In this case, it is not possible for us to stretch the protocol using standard teleportation stretching;

instead we consider a specific input state for a one-shot protocol. More specifically, we find the

output fidelity in an idler-free setting (i.e. without any entanglement between the signal states

and any states that do not pass through the channels), using an input state that has correlations

6



1.3 Motivation and structure of the thesis

between the signal states for each channel. We then consider a scenario that is on the other end

of the spectrum: we allow the input states to have unbounded energy and unlimited entanglement

with an idler and calculate ultimate bounds on the error probability of any possible protocol. In

this case, the task is environment localisation (CPF over a sequence of phase-insensitive Gaussian

channels with fixed transmissivity).

In order to carry out teleportation stretching on a range of protocols, we would like to be able

to simulate channels that do not commute with standard teleportation. An important example is

the AD channel. One option is PBT. Chapter 4 develops PBT as a useful tool for channel simula-

tion. We calculate explicit analytical expressions for the channel enacted by PBT for an arbitrary

resource state. We then characterise the PBT protocol (with the square-root measurement) itself,

by finding the channel from a resource state to the Choi matrix of the qubit channel it enacts. We

find improved resource states for AD channel simulations.

Chapter 5 applies the results of the previous chapter in order to obtain tighter lower bounds on

the error probability of an AD channel discrimination protocol. The upper bound on the optimal

error probability is also tightened, and a bound based on the quantum Cramér-Rao bound (which

is approximate for low numbers of channel uses) is found to approach our new upper bound for

large numbers of channel uses. We calculate the diamond norm between any two AD channels and

thereby find the ultimate one-shot error probability for a discrimination protocol. We then apply

our bounds to physical scenarios involving quantum hacking and biological quantum sensing.

Chapter 6 looks in detail at a specific quantum hacking attack on a coherent state CV-QKD

protocol. We calculate the key distribution rate for a coherent state protocol where the sender has

a side-channel in her device that allows Trojan states, with a bounded mean photon number, to

enter. We see that the key rate rapidly drops, even when the eavesdropper’s mean photon number

is very low. Finally, we discuss how the side-channel attack could be mitigated using a passive

architecture with active monitoring to characterise any vulnerabilities.

Chapter 7 summarises our results. We present our conclusions and discuss the direction that

further study could take.
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Chapter 2

Preliminaries

In this chapter, we introduce some of the basic concepts and techniques that will be used through-

out this work. We start by briefly describing some differences between discrete and continuous

variable states. We go on to define some quantities of interest, relating to quantum states and

channels, that are important in quantum channel discrimination. We then give a very brief intro-

duction to those aspects of Gaussian quantum information that will be of relevance to the reader,

focusing on the unitaries, channels, and formulae that we will need in Chapters 3 and 6. Finally,

we introduce and discuss the techniques of channel simulation and protocol stretching. We ex-

plain how they can help with calculation of channel quantities, using the example of the two-way

entanglement distribution capacity, and then describe some other applications of the technique.

2.1 Discrete and continuous variables

The systems studied in quantum information science can be divided into two broad categories:

discrete variable (DV) systems and continuous variable (CV) systems. DV systems encompass

quantum states with finite-dimensional Hilbert spaces (e.g. qubits or qutrits), whilst CV quantum

information science deals with infinite-dimensional Hilbert spaces.

Physical processes such as the decay of an atom from one energy level to another can be

well-modelled as the evolution of DV systems (although the environment with which the atom

is coupled is infinite-dimensional). Further, when operating in the number state basis, DV sys-

tems can be used to model low energy scenarios. This is because truncation of the higher energy

states will have little effect on the states, in this case. For quantum communications applications,

the states of a qubit can be encoded by photonic states. Implementations include encoding the

information in the presence or absence of a photon, in the phase of a photon (this is called time-
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bin encoding; the state of the qubit determines whether the photon arrives early or late) or in the

polarisation of a photon.

In quantum communications, DV systems are important because a lot of existing quantum key

distribution (QKD) protocols use qubits as the signal states. Examples include BB84 [51] and

B92 [52]. In fact, many existing experimental implementations of QKD use DV protocols [53].

Important qubit channels include the amplitude damping (AD) channel and its generalisation

- the generalised AD channel, the Pauli channels, and the quantum erasure channel [15].

The (qubit) Pauli channels carry out each of the Pauli unitary transformations on the input state

with some probability of each. The erasure channel either faithfully transmits the input state or

replaces it with an erasure state (which is orthogonal to both |0〉 and |1〉), indicating that the input

state was lost. These are all relatively simple channels and are well-studied.

The AD channel is a channel that faithfully transmits the state |0〉, but causes the state |1〉

to decay to |0〉 with some probability. It is a good model for a variety of scenarios in which

a quantum state may decay from a higher energy state to a lower energy state, such as when a

particle decays from an excited state to the ground state. It can also model low energy imaging

scenarios, in which a probe with an average photon number of much less than a photon per mode

is used to image a sample. Calculating channel quantities for the AD channel is often complicated,

due to its asymmetry. Notably, it is not teleportation-covariant and so cannot be simulated by the

standard teleportation protocol, using its Choi matrix as a resource. The generalised AD channel

is analogous to a (CV) thermal loss channel, in the same way that an AD channel is analogous to

a (CV) pure loss channel.

CV quantum information science encompasses all scenarios in which the variables are not

restricted to a finite set of values [54]. Examples of continuous variables that can parametrise

quantum states include position, momentum and energy. Note that these can all be discrete vari-

ables (or very closely modelled by discrete variables), depending on the scenario. For instance,

energy can be discrete for an electron in an atom, which may be restricted to a fixed set of energy

levels, but the energy of a free particle is a continuous variable. In quantum communications sce-

narios (and also in many quantum metrology scenarios), the CV states represent bosonic modes of

light. In this case, the continuous variables are the quadratures of the electric field for each mode.

CV systems can also be used for quantum communications, and a number of CV-QKD proto-

cols exist [20, 55]. Some of these have been experimentally implemented [56]. An advantage of

using CV systems for quantum information (over using DV systems) is that a lot of existing tech-

nology can be re-purposed for CV-QKD: homodyne and heterodyne detectors already exist and
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are used in classical communications. It is also easy to generate coherent states (which many CV

protocols use), whilst it is difficult to produce reliable single-photon sources and detectors. Often,

DV-QKD systems approximate single-photon sources using strongly attenuated lasers, and this

opens up the systems to quantum hacking attacks, such as photon-number splitting (PNS) [57,58],

since strongly attenuated lasers will produce multiple-photon signal states some proportion of the

time.

Gaussian states are an important subcategory of CV states [55, 59, 60]. They are completely

characterised by the expected values of their quadratures and the quadrature covariance matrix

(CM). This is an important quality, as it greatly simplifies calculations involving them, by allow-

ing us to work in the phase space of bosonic modes, in which Gaussian unitaries, channels, and

measurements take very simple forms. As a result, a number of tools have been developed for

Gaussian states. See Section 2.3 for more information.

2.2 Quantities of interest

We will begin by discussing some basic quantities of interest that we can calculate for a quantum

state. These introductory notions can be found in Ref. [15].

A pure d-dimensional quantum state can be described by a d-dimensional vector (either a bra

or a ket). On the other hand, a mixed state requires a d by d dimensional density matrix, ρ, to fully

characterise it. In order to represent a valid quantum state, ρ must be positive semidefinite. As a

result, an important quantity of a quantum state is its purity. This is given by

P (ρ) = Tr[ρ2]. (2.1)

P takes values between 1
d (for a maximally mixed state) and 1 (for a pure state).

The Von Neumann entropy of a quantum state is the quantum analog of the classical Shannon

entropy. It is given by

S(ρ) = −Tr[ρ log ρ], (2.2)

where the base of the logarithm determines the units. Generally, we will want to work in bits, so

we will use base 2 for our logarithms.

The Shannon entropies of a pair of classical random variables give rise to its mutual informa-

tion, which is a measure of the amount of information that one variable encodes about the other.

Similarly, the Von Neumann entropies of a pair of quantum states give rise to its quantum mutual
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information, which is a measure of the correlations between the states.1 However, more relevant

for our purposes is the Holevo bound, which gives an upper bound on the accessible classical

information that a quantum state encodes about a classical variable. In other words, there is no

possible measurement on a state ρ that gives more information about a classical variable X than

H(ρ), where

H(ρ) = S(ρ)−
∑
i

p(X = xi)S(ρi). (2.3)

ρi is the state ρ conditioned on X taking the value xi. If X has a continuous probability distribu-

tion, the sum in Eq. (2.3) becomes an integral [55].

A necessary condition for the d-dimensional state ρ to be separable, with respect to a biparti-

tion into a d1-dimensional system and a d2-dimensional system (where d1 + d2 = d), is that it has

a positive partial transpose. This means that the partial transpose of ρ must also be a valid density

matrix in order for ρ to be separable. The partial transpose of ρ can be obtained by dividing it into

a d1 by d1 block matrix, with blocks that each have dimension d2 by d2, and then transposing each

block. For the cases in which ρ represents a two-qubit state or a qubit-qutrit state, this condition

is also sufficient to show separability [61].

2.2.1 Useful quantities for state discrimination

Distinguishing between two possible quantum states is an important task in quantum information.

One measure of the distance between two quantum states, ρ1 and ρ2, is the trace norm (also called

the Schatten 1-norm), which is defined by

‖ρ1 − ρ2‖1 = Tr(|ρ1 − ρ2|) = Tr

(√
(ρ1 − ρ2)(ρ1 − ρ2)†

)
. (2.4)

The trace norm is a particularly important metric because it gives the optimal success probabil-

ity, psuccess, for a measurement discriminating between the two states ρ1 and ρ2. The Helstrom

bound [29] states that

psuccess =
1

2
+

1

4
‖ρ1 − ρ2‖1. (2.5)

The trace norm takes values between 0 and 2. It is invariant under unitary transformations, non-

increasing under quantum operations, convex, and it obeys the triangle inequality, meaning

‖ρ1 − ρ2‖1 + ‖ρ2 − ρ3‖1 ≥ ‖ρ1 − ρ3‖1. (2.6)

1The quantum mutual information of the state ρ12 (with respect to systems 1 and 2) is given by S(ρ1)+S(ρ2)−S(ρ12).
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2.2 Quantities of interest

Combining this with the Helstrom bound, we can also write

p12
success + p23

success −
1

2
≥ p13

success, (2.7)

where pijsuccess is the probability of successfully discriminating between states ρi and ρj .

Whilst considering the Schatten norms, it is worth mentioning the Schatten ∞-norm, ‖ρ1 −

ρ2‖∞, which is simply the largest eigenvalue of |ρ1−ρ2|. Like the 1-norm, the∞-norm takes val-

ues between 0 and 2, is invariant under unitary transformations, is convex, and obeys the triangle

inequality (although it is neither non-increasing nor non-decreasing under quantum operations).2

The Bures fidelity is another measure of the closeness of two quantum states. It is defined by

F (ρ1, ρ2) = Tr

(√√
ρ1ρ2
√
ρ1

)
. (2.8)

Note that the quantum fidelity is sometimes defined as the square of the expression given here.

Eq. (2.8) takes a simpler form if one or both of the states are pure. If ρ1 = |σ1〉 〈σ1| is a pure state,

we can write

F (ρ1, ρ2) =
√
〈σ1| ρ2 |σ1〉 (2.9)

and if both ρ1 and ρ2 are pure, we can write

F (ρ1, ρ2) = |〈σ1|σ2〉| , (2.10)

where ρ1 = |σ1〉 〈σ1| and ρ2 = |σ2〉 〈σ2|. It takes values between 0 and 1. It is invariant under uni-

tary transformations, non-decreasing under quantum operations, and concave. Another important

property of the fidelity is that it is multiplicative with respect to tensor products. It is this property

that often makes it much easier to calculate, for tensor product states, than the trace norm. It is

possible to bound the trace norm in terms of the fidelity; we find

2(1− F (ρ1, ρ2)) ≤ ‖ρ1 − ρ2‖1 ≤ 2
√

1− F (ρ1, ρ2)2, (2.11)

with the upper bound becoming an equality when both states are pure.

We now consider useful bounds on the task of parameter estimation. We can give the Bures

distance, dB , in terms of the fidelity:

dB(ρ1, ρ2) =
√

2(1− F (ρ1, ρ2)). (2.12)

2For a simple counterexample, consider the channel (which we denote as C) with Kraus operators {|0〉〈0|+ 1√
2
|1〉〈1|+

|2〉〈2| + |3〉〈3| , 1√
2
|0〉〈1|}, acting on a 4-dimensional input Hilbert space. Let σ1 = diag( 1

2
, 1
2
,− 1

2
,− 1

2
) and let

σ2 = diag(0, 1,− 1
2
,− 1

2
). Then, ‖σ1‖∞ < ‖C(σ1)‖∞ and ‖σ2‖∞ > ‖C(σ2)‖∞.
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2.2 Quantities of interest

This is important because we can calculate the quantum Fisher information (QFI) using the Bures

distance. If a quantum state, ρθ, encodes a parameter θ, we can write

QFIθ =
4d2

B(ρθ, ρθ+δθ)

δθ2
. (2.13)

The QFI is additive with respect to tensor products. Now suppose we haveN copies of the state ρθ

and want to estimate θ. The achievable variance for our measurement, Var(θ), is lower bounded

in the asymptotic (in terms of N ) case by the quantum Cramér-Rao bound [62, 63]. This is given

by

Var(θ) ≥ (NQFIθ)
−1. (2.14)

2.2.2 Useful quantities for channel discrimination and parameter estimation

We now look at quantities that can be used to determine how well we can discriminate between

two quantum channels or to find the variance of an estimator for estimating a parameter encoded

in a quantum channel.

Let us begin by defining the Choi matrix of a channel. For a DV channel, C, acting on d-

dimensional input states, the Choi matrix is defined as

(II ⊗ CS)
[
Bd
IS

]
, (2.15)

Bd
IS =

1√
d

d−1∑
i=0

|i〉I |i〉S (2.16)

where S labels the system that passes through the channel, I labels an idler system, and II is

the identity channel on the idler mode. In other words, the Choi matrix is the output state if the

channel is applied to half of a generalised Bell (maximally entangled) state. We can also consider

other definitions based on different choices for the initial generalised Bell state. The Choi matrix

of a channel completely characterises it: a channel is one to one with its Choi matrix (for a fixed

choice of initial generalised Bell state).

For a (one-mode) CV channel, the asymptotic Choi matrix is the infinite-squeezing limit of

a sequence of two-mode squeezed vacuum states (see Subsection 2.3.1), one mode of which has

been passed through the channel.

Since every channel is uniquely defined by its Choi matrix, it would be natural to use the trace

norm between the Choi matrices of two channels as a measure of the distance between them.3

3We will sometimes refer to the trace norm between two channels; this should be understood as the trace norm between

the Choi matrices of the channels.
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2.2 Quantities of interest

This is, indeed, one way of quantifying the distance between a pair of channels, however in many

circumstances, we are interested in finding an upper bound on the distinguishability of quantum

channels (equivalently, a lower bound on the error probability of discriminating between them).

In the one-shot scenario (i.e. the case in which we are allowed only one channel use), this reduces

to finding the input state that maximises the trace norm between channel outputs. Except for in

special cases, this is not the maximally entangled state.

Instead, we define the diamond norm4 between channels C1 and C2 as

∥∥C1 − C2
∥∥
� = sup

σin

∥∥(II ⊗ (C1
S − C2

S)
) [
σin
SI

]∥∥
1
, (2.17)

where the supremum is taken over all valid, pure input states on the signal and idler systems.

One might wonder why the idler system is required; without an idler, the phase change enacted

by the channel would not be measurable, because the global phase of a quantum state cannot

be measured, only the relative phase of one state to another (in this case, the relative phase of

the signal and the idler). Note that we do not lose generality by restricting to pure input states,

because the convexity of the trace norm guarantees that there exists a pure state that maximises

the trace norm. The diamond norm therefore gives the ultimate one-shot bound on the probability

of successfully discriminating between two channels.

The diamond norm can be found numerically using semidefinite programming [64]. Let us

call the Hilbert space of the input states X and the Hilbert space of the output states Y and define

J(C1
S − C2

S) as

J(C1
S − C2

S) = d
∥∥∥(II ⊗ (C1

S − C2
S)
) [
Bd
IS

]∥∥∥
1
. (2.18)

The (dual) semidefinite programming problem for finding the diamond norm is:

minimise :
1

2
‖TrY(Y0)‖∞ +

1

2
‖TrY(Y1)‖∞

subject to :

 Y0 −J(C1
S − C2

S)

−J(C1
S − C2

S) Y1

 ≥ 0,

where Y0 and Y1 are positive operators on X ⊗ Y . Nechita et al. [1] used the semidefinite pro-

gramming problem to prove the following bounds on the diamond norm:

1

d
‖J(C1

S − C2
S)‖1 ≤ ‖C1

S − C2
S‖� ≤ ‖TrS

(
|J(C1

S − C2
S)|
)
‖∞ (2.19)

4Some works refer to the trace/diamond distance rather than the trace/diamond norm. We avoid these terms in this work

in order to prevent confusion, because the trace distance is sometimes defined as being half of the trace norm.
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2.3 Gaussian quantum information

Another related quantity of interest is the energy-constrained diamond norm. This is defined

slightly differently by Pirandola et al. [5] than by Shirokov [65] and Winter [66]. Here we present

the form used by Shirokov and Winter. The energy-constrained diamond norm is defined by

∥∥C1 − C2
∥∥
�E = sup

σin∈DE

∥∥(II ⊗ (C1
S − C2

S)
) [
σin
SI

]∥∥
1
, (2.20)

DE = {σin : Tr(ĤSσ
in) ≤ E}, (2.21)

where ĤS is the Hamiltonian for the input system.

2.3 Gaussian quantum information

As mentioned in Chapter 1, the study of Gaussian states and channels is an important topic within

CV quantum information. Here we will give a broad overview of Gaussian states and introduce

some basic notions related to Gaussian quantum information. For a more in-depth introduction to

the field, see the reviews by Weedbrook et al. [55], Adesso et al. [59], and Olivares [60].

A bosonic system is a collection of modes of a quantised field. The most important example

in quantum information science is the quantised electromagnetic field, whose modes represent

radiation modes of light (characterised by a frequency and a direction). A state of the system can

be described by the number of particles (photons) in each of the modes; this is the number state or

Fock basis representation. Since there is no upper limit on the number of particles in a mode, this

is an infinite-dimensional basis.

Each mode can be modelled as a quantum harmonic oscillator with its own annihilation and

creation operators, â† and â, defined by

â†i |n〉i =
√
n+ 1 |n+ 1〉i , âi |n〉i =

√
n |n− 1〉i , âi |0〉i = 0, (2.22)

where i labels the mode on which the operators act. These definitions explain the names of the

two types of operator: a creation operator acts on a mode by adding a particle to it, whilst an

annihilation operator removes one. The operators obey the commutation relation

[â†, â] = −1. (2.23)

Note that â and â† are not Hermitian operators and so do not represent observables of the system.

By combining the annihilation and creation operators for a mode, we get the number operator

for that mode,

â†â = n̂. (2.24)
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2.3 Gaussian quantum information

The eigenstates of the number operator are the Fock states, which make up the Fock basis. The

number operator acts on Fock states to give

n̂ |n〉 = n |n〉 , (2.25)

where n is the number of particles in the mode (hence the name of the operator).

We can also define the quadrature field operators as

q̂ =
â+ â†√

2κ
, p̂ = −i â+ â†√

2κ
, (2.26)

where κ is a constant that defines the vacuum (or shot) noise of the system (the variance of the

quadratures when there are no particles in a mode). Common values of κ are 1
2 , corresponding

to a vacuum noise of 1, and 1, corresponding to a vacuum noise of 1
2 . The vacuum noise will be

specified whenever we consider Gaussian states; in this chapter we will work in a κ-independent

setting (i.e. without setting the vacuum noise). Many of the κ-independent formulae given here

are presented in Ref. [20]. q̂ and p̂ are Hermitian operators and so they represent real observables

of the system. q̂ and p̂ are often referred to as the position and momentum operators respectively,

since these are what they represent in the quantum harmonic oscillator model, although, in the

optical case, they represent orthogonal components of the electromagnetic field.

We would now like to switch to an alternative representation of the bosonic system that is

easier for us to work with. This is done by mapping the density matrix of a state to an equivalent

quasi-probability distribution - called a Wigner function - on a real symplectic space. We start by

defining the vector x̂ as

x̂ = (q̂1, p̂1, . . . q̂N , p̂N )T , (2.27)

where N is the number of modes in the system. We then define the Weyl operator,

D(ξ) = eix̂
TΩξ, (2.28)

Ω =
N⊕
i=1

 0 1

−1 0

 , (2.29)

where Ω is called the symplectic form and ξ ∈ R2N is a vector. We then define the characteristic

form of a density matrix ρ as

χ(ξ) = Tr[ρD(ξ)]. (2.30)

The Fourier transform of the characteristic function then gives us the Wigner function of the state

represented by ρ:

W (x) =

ˆ
R2N

d2Nξ

(2π)2N
e−ix

TΩξχ(ξ), (2.31)
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2.3 Gaussian quantum information

where x ∈ R2N is a vector of eigenvalues of the quadrature operators (i.e. of x̂). Hence, W (x) is

a quasi-probability distribution over the possible quadrature values that a state can take.

Gaussian states are defined by having a Gaussian Wigner function,

WGaussian(x) =
1

(2π)N
√

det[V ]
e−

1
2

(x−x̄)TV −1(x−x̄), (2.32)

where x̄ is the first moments vector (made up of the expectation values of the quadratures), defined

as

x̄ = Tr(x̂ρ), (2.33)

and V is the covariance matrix. The elements of the covariance matrix (also known as the matrix

of second moments) are defined by

Vij =
1

2
Tr({x̂i − xi, x̂j − xj}ρ), (2.34)

where {·, ·} denotes the anticommutator. Gaussian states are therefore completely characterised by

their first moments vector and their covariance matrix. This means that we only have to deal with

a 2N -dimensional vector and a 2N by 2N covariance matrix rather than an infinite-dimensional

system.

As an example, we can consider one of the most important single-mode Gaussian states: the

vacuum state. This is the state of the system when there are no particles in the mode. It has the

first moments vector

x = (0, 0)T (2.35)

and its covariance matrix is

V =
1

2κ

1 0

0 1

 . (2.36)

Thermal states are similar to vacuum states: they also have no non-zero components in their

first moments vectors and their covariance matrices are also obtained by multiplying the identity

matrix by a multiplicative factor. They have covariance matrices of the form

V =
2n̄+ 1

2κ

1 0

0 1

 , (2.37)

where n̄ is the mean photon number of the state.

2.3.1 Gaussian unitaries, channels and measurements

A unitary that maps Gaussian states to other Gaussian states is called a Gaussian unitary. A

Gaussian unitary, U , which enacts the transformation ρ→ UρU †, can be represented in the phase
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2.3 Gaussian quantum information

space by a symplectic matrix, S, and a vector, d. S transforms the first and second moments of ρ

according to

x̄→ Sx̄+ d, V → SV ST . (2.38)

Some of the most important Gaussian unitaries are the displacement operator, the beamsplitter

operator, and the two-mode squeezing operator.

The displacement operator displaces states in phase space. Its symplectic matrix is the identity

matrix and so a displacement operator is defined by its vector d, which describes how it translates

the quadratures of a state. When applied to a vacuum state, the displacement operator generates

coherent states, which are eigenstates of the annihilation operator.

The beamsplitter operation mixes two modes via the symplectic matrix

S(τ) =

 √
τI

√
1− τI

−
√

1− τI
√
τI

 , (2.39)

where τ is the transmissivity of the beamsplitter, which determines the degree to which the two

modes are mixed with each other. It ranges from 0 to 1. The components of its vector d are all 0.

The two-mode squeezing operator again acts on two modes and can be used to generate entan-

glement between them. Its symplectic matrix is

S(r) =

cosh rI sinh rZ

sinh rZ cosh rI

 , (2.40)

where Z is the Pauli Z-matrix. The components of its vector d are all 0. By applying the two-

mode squeezing operator to a two-mode vacuum state, one can generate a two-mode squeezed

vacuum (TMSV), which is one of the most common types of entangled state found in CV quantum

information. The parameter r determines the degree of the squeezing and hence the amount of

entanglement generated. As r → ∞, we get an unphysical state with infinite entanglement and

infinite energy.

Similarly to Gaussian unitaries, we define Gaussian channels as those channels that map Gaus-

sian states to other Gaussian states. A Gaussian channel can be represented by a displacement

vector, d, and real matrices, N and T , that obey the complete positivity condition

N + iΩ− iTΩT T ≥ 0. (2.41)

Its action on the first and second moments of a Gaussian state is given by

x̄→ T x̄+ d, V → TV T T +N. (2.42)
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2.3 Gaussian quantum information

Some of the most important Gaussian channels in quantum information are the one-mode

Gaussian channels and particularly the phase-insensitive one-mode channels [67]. For this class

of channels,

T =
√
τI, (2.43)

N = νI, (2.44)

where τ and ν are both positive real numbers. τ is called the transmissivity and ν is called the

induced noise. By setting both of the components of d to 0, we get three important types of

channel. When 0 ≤ τ < 1, we have a lossy channel. When τ > 1, we have an amplifier channel.

For both of these channels (i.e. for any τ 6= 1), we can write

ν = |1− τ |2n̄+ 1

2κ
, n̄ ≥ 0. (2.45)

A lossy channel with n̄ = 0 is called a pure loss channel and an amplifier channel with n̄ = 0 is

called a quantum-limited amplifier. We have an additive noise Gaussian channel for τ = 1.

A Gaussian measurement, analogously to Gaussian unitaries and channels, is one that, when

applied to a Gaussian state, both produces a Gaussian distributed outcome and leaves the un-

measured modes of the system in a Gaussian state. We will look at two very useful Gaussian

measurements: homodyne detection and heterodyne detection.

Homodyne detection measures one quadrature of a mode, whilst heterodyne detection mea-

sures both, albeit with an extra vacuum noise unit added to the variance of each quadrature. The

noise is added because heterodyne measurements are experimentally realised by mixing the mode

that is to be measured with a vacuum state using a balanced beamsplitter (i.e. one with a transmis-

sivity of 1
2 ) and then homodyning each output state (obtaining the value of one quadrature from

one output state and the value of the other quadrature from the other output state).

Suppose we want to measure the first mode of an N -mode state. Let the covariance matrix of

the state prior to the measurement be

V =

 A C

CT B

 , A =

Aqq Apq

Apq App

 , (2.46)

where A, B, and C are all block matrices. A would be the covariance matrix of the first mode

if we discarded the remaining modes, B would be the covariance matrix of the remaining N − 1

modes if we discarded the first mode, and C describes the correlations between the first mode and

the remaining modes. Let the first moments vector of the state be

x̄ = (qA, pA, x̄
T
B)T , (2.47)
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where qA and pA are real numbers and x̄B is a 2(N − 1)-dimensional vector. A homodyne or

heterodyne measurement will have an outcome that is Gaussianly distributed. A homodyne mea-

surement of the q̂A-quadrature will have a mean of qA and a variance ofAqq and a measurement of

the p̂A-quadrature will have a mean of pA and a variance of App. A heterodyne measurement will

have an outcome drawn from a multivariate Gaussian distribution with a mean value of (qA, pA)T

and a covariance matrix of A + 1
2κI. If the measurement is carried out on a subset of modes of

a multimode system, we may also be interested in how the measurement affects the state of the

unmeasured modes. The covariance matrix of the remaining modes will become

Ṽ = B − CT ÃC, (2.48)

where Ã is given by diag(A−1
qq , 0) for a homodyne measurement of the q̂A-quadrature,

diag(0, A−1
pp ) for a homodyne measurement of the p̂A-quadrature, and (A + 1

2κI)
−1 for a het-

erodyne measurement.

One more important measurement that is worth mentioning, despite being non-Gaussian, is

the photon counting measurement. The probability distribution of the measurement outcomes can

be obtained using a Fock basis representation of the measured state. In particular, when applied

to a thermal state, with its covariance matrix as given in Eq. (2.37), the expected value of the

measurement is n̄ and the probability of a measurement outcome of n photons is

p(n) =
n̄n

(n̄+ 1)n+1
. (2.49)

Note that the outcomes of the photon counting measurement take discrete (integer) values.

Many CV protocols have been developed for which the signal states are Gaussian. Depending

on the protocol, the signal states may be coherent states [68] or one-mode squeezed states [69,70].

The detection may be either homodyne [71] or heterodyne [7]. Since the signal states involved, the

operations applied to the states and the measurements used are all Gaussian, we call such protocols

fully Gaussian. It has been shown that collective Gaussian attacks are optimal for fully Gaussian

protocols [72] and, as a result, the security analysis of fully Gaussian protocols can be reduced to

a much simpler form.

The bosonic channels that signals are sent along for these protocols are generally modelled as

single-mode, phase-invariant channels. Thermal loss channels (lossy channels with n̄ > 0) can

model long communication channels with environmental noise (such as the channels experienced

by states sent down long optical fibres or by states transmitted through the atmosphere to or from

a satellite). They are also applicable to quantum metrology scenarios in which light is being used

to probe a sample. Additive Gaussian noise channels are good models for low loss scenarios, such

20



2.3 Gaussian quantum information

as some quantum reading, short-range quantum sensing or short-range quantum communications

applications.

Pirandola et al. found bounds on the generic two-way capacity of thermal loss channels, using

channel simulation and teleportation stretching (see Section 2.4), that are tight for high transmis-

sivities [5]. Their bounds on additive Gaussian noise channels are tight for low induced noises.

They also found bounds for thermal amplifier channels (which are tight for low gains), which are

less important in quantum information but complete the set of phase-insensitive Gaussian chan-

nels.

2.3.2 Calculating the quantities of interest

We want to be able to calculate some of the quantities of interest mentioned in Section 2.2 for

Gaussian states.

We start by describing a useful tool for Gaussian quantum information: the symplectic decom-

position. Any covariance matrix can be diagonalised via a symplectic transformation. Specifically,

for any valid covariance matrix, V , there exists a symplectic matrix, S, such that

V = SDST , D =

N⊕
i=1

νiI2, (2.50)

where I2 is the 2-dimensional identity matrix. The numbers νi are called the symplectic eigen-

values of V and are equal to the absolute values of the eigenvalues of the matrix iΩV . Recall

that every symplectic matrix represents a Gaussian unitary transformation; the existence of S for

every V means that every Gaussian state can be formed by applying a Gaussian unitary to a direct

sum of thermal states. This also tells us that any one-mode Gaussian state can be purified into

a TMSV with S applied to the system mode (since each mode of a TMSV is a thermal state if

the other mode is discarded). Note that, whilst the symplectic eigenvalues are simple to find, the

diagonalising symplectic, S, may not be. See [73] for an algorithm for constructing S.

The symplectic decomposition also gives us a quick way to check the validity of a covariance

matrix. A positive matrix V is the covariance matrix of a valid Gaussian state iff all of its sym-

plectic eigenvalues are greater than or equal to (2κ)−1. This is the uncertainty principle applied to

Gaussian states. It is also obvious from the symplectic decomposition, since, if a symplectic eigen-

value were less than (2κ)−1, the corresponding thermal state (with its covariance matrix written

according to Eq. (2.37)) would have to have a mean photon number n̄ < 0, which is impossible.

This leads on to an easy way to check whether a two-mode state is separable [74]. Two-mode

Gaussian states are separable iff they have a positive partial transpose. Let V be the covariance
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matrix of a valid Gaussian state and let Ṽ be the covariance matrix of that state after partial

transposition has been applied. The original state was only separable if the symplectic eigenvalues

of the transformed state are all greater than or equal to (2κ)−1. In other words, a state is only

separable if the covariance matrix of the partially transposed state is also the covariance matrix

of a Gaussian state. In the two-mode case, this condition is also sufficient for separability. V is

related to Ṽ by

Ṽ = (I1 ⊕ T2)V (I1 ⊕ T2), T2 =

N2⊕
i=1

Z, (2.51)

where the subscripts 1 and 2 label the two subsystems (with respect to which we want to assess the

separability) and N2 is the dimension of the second subsystem. Note that despite the similar form

of the transformation, T does not represent a unitary operation, since it transforms valid states into

invalid states.

Since enacting a unitary on a quantum state cannot change its entropy, the entropy of a Gaus-

sian state can be calculated using its symplectic decomposition [75]. We can use the formula

S(ρ) =
N∑
i=1

g(n̄i), (2.52)

g(x) = (x+ 1) log2(x+ 1)− x log2(x), n̄i = κνi −
1

2
, (2.53)

where the n̄i give the mean photon numbers of the thermal states in the symplectic decomposition

and where S is given in bits.

As discussed in Section 2.2, the trace norm between two states is important for tasks involving

quantum state and channel discrimination. Whilst the trace norm itself is complicated to calculate

for Gaussian states, the fidelity between any two Gaussian states (which bounds the trace norm

from above and below and also can be used to calculate the QFI) has an analytical form that can be

given in terms of the first moments vector and covariance matrix. Banchi et al. [76] showed that

the fidelity of two Gaussian states, F (ρ1, ρ2), with first moments vectors x̄1 and x̄2 and covariance

matrices V1 and V2 (respectively), is given by

F (ρ1, ρ2) =
Ftot

4
√

det[κ(V1 + V2)]
e

1
4

(x̄1−x̄2)T (V1+V2)−1(x̄1−x̄2), (2.54)

Ftot = 4

√√√√det

[
2κ

(√
I +

(VauxΩ)−2

4κ2
+ I

)
Vaux

]
, (2.55)

Vaux = ΩT (V1 + V2)−1

(
Ω

4κ2
+ V2ΩV1

)
, (2.56)

where det is the determinant function and Ω, the symplectic form, is defined as in Eq. (2.29).
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2.4 Channel simulation and protocol stretching

Channel simulation is a highly useful technique for calculating the properties of quantum chan-

nels, with applications in quantum communications [5], quantum metrology, and quantum channel

discrimination [6, 22, 25, 30]. It will be used extensively in this work. It involves the replacement,

in a protocol (which may be any task involving quantum channels, such as parameter estimation or

QKD), of a quantum channel with a similar or equivalent quantum operation, in order to simplify

a variety of calculations involving the protocol.

Suppose, for example, we are presented with the task of distributing entanglement between

two remote locations over a specific quantum channel, C. The method by which we do so is called

our protocol. We wish to distribute the maximum possible amount of entanglement for a fixed

number of uses, and our protocol is constrained only by the laws of physics and the fact that we

cannot act globally. In other words, our sender, who we will call Alice, can prepare and send

any quantum states that she wishes over the channel C and can freely send and receive classical

communications over a classical communications channel. Our receiver, who we will call Bob,

can perform any quantum operations that he wishes on the states that he receives (or any ancillary

states that he prepares himself), including measurements, and can freely send and receive classical

communications to Alice between transmissions of states down the quantum channel (which we

will call rounds of the protocol). Alice can even decide which state to send in a given round

based on the classical communications she received from Bob in previous rounds. The only thing

that Alice and Bob cannot do is perform a joint quantum operation on their combined quantum

state; this is because they are in remote locations. Thus, they are restricted to local operations and

classical communications (LOCCs).

In order to assess the performance of a protocol, we consider the relative entropy of entan-

glement (REE) of the protocol’s output; this is the amount of entanglement that the protocol has

distributed between the parties (assuming that Alice and Bob originally started with no shared en-

tanglement; if this is not the case, we can consider the increase in the REE compared to the initial

state). If we divide the amount of distributed entanglement by the number of rounds required to

achieve it, we get the rate at which a given protocol distributes entanglement (for a fixed number of

transmissions). If we take the number of rounds of the protocol to infinity, we get the asymptotic

rate of entanglement distribution (note that this can never be less than the rate for a fixed number

of rounds, since we can simply repeat a protocol with a finite number of rounds infinite times).

Suppose we are now tasked with finding (or upper bounding) the maximum asymptotic rate of

entanglement distribution for any possible protocol carried out over C. This is called the two-way
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2.4 Channel simulation and protocol stretching

Figure 2.1: An example of quantum channel simulation. In panel (a), we show the i-th round

of a protocol in which Alice and Bob carry out arbitrary LOCCs on their states before and after

each channel use. The red dashed line demarcates the division between Alice’s systems and Bob’s

systems and the locality of the LOCCs is defined with respect to this division. C denotes the

channel, and each channel use consists of Alice sending Bob a state via the channel. Note that this

is a global (non-local) operation. In panel (b), we have replaced the channel C with the quantum

operation Q, which acts on the input state sent by Alice and on a resource state (denoted σ) to

send the same output state to Bob as is sent by the channel in panel (a). We have therefore used

Q (and σ) to simulate C, and so Alice and Bob share the same state after the i-th channel use in

panel (a) as in panel (b) (hence the REE between their states is the same in both cases). If Q is

also an LOCC (with respect to the division between Alice’s systems and Bob’s systems), then the

channel use cannot have increased the REE between Alice and Bob by more than the REE of σ.

entanglement distribution capacity of C (it is called the two-way capacity because we allow clas-

sical communications in both directions). The fact that Alice and Bob can freely communicate

between rounds and adapt their strategy accordingly means that we cannot simply assume that the

REE of the output of the best possible N -round protocol is N times the REE of the output of the

best possible 1-round protocol. How, then, might we go about calculating this quantity?

We now apply the techniques of channel simulation and protocol stretching, as developed in

Ref. [5], to this calculation, in order to demonstrate how they can be used. As a starting point, let

us consider the fact that Alice and Bob are restricted to LOCCs. LOCCs cannot increase the REE

between two remote parties. Therefore, none of the quantum operations between transmissions

can have increased the REE between Alice’s state and Bob’s state (we will henceforth refer to this
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2.4 Channel simulation and protocol stretching

simply as the REE between Alice and Bob). However, sending states down the quantum channel

can increase the REE between Alice and Bob (obviously, or no protocol could ever have a non-zero

rate).

Let A denote the system that C takes as an input. Now, suppose there exists some quantum

operation, Q, that acts on the A system of any input state, ρin
CA, which may be entangled with an

idler system, C, and some ancillary state, σB , to produce an output state such that

TrB
[
(IC ⊗QAB) [ρin

CA ⊗ σB]
]

= IC ⊗ CA(ρin
CA), (2.57)

where IC represents the identity channel on system C and TrB denotes the partial trace over

system B. In other words, the output of IC ⊗QAB , after tracing over the ancillary output system,

B, is exactly the same as the output of IC ⊗ CA, for every possible input state ρin
CA. We then say

thatQ simulates the channel C. Note that, in general, the input and output states can have different

dimensions, and that the output system need not be the “original” system A (e.g. the operation

Q could select a subsystem from σ to be the output and then output the original input as part of

the ancillary output). The idler system, C, is required for the same reason that an idler is required

when calculating the diamond norm: two channels can affect the input system in the same way,

but each can apply a different phase change to the system (relative to the idler system).

Suppose that the channel C were replaced by the quantum operation Q. This replacement is

depicted in Fig. 2.1, for the i-th channel use. In other words, suppose that each round, after Alice

has prepared and transmitted her state, some third party, who we will call Charlie, implements

the quantum operation Q on the transmitted state and an ancillary state σ (that he prepared before

the protocol started and which may be entangled) and then transmit the output state (after tracing

over the ancillary system) through an identity channel to Bob. We call the state σ a resource state,

since it is a pre-prepared resource that is consumed by the operation Q. Since the states held by

Alice and Bob are exactly the same as they would be if Charlie had instead allowed Alice’s signal

state to simply pass through the channel C, there is no possible way for Alice and Bob to know

whether this is the case. Consequently, the output state of the protocol (and hence the final REE

between Alice and Bob) must be the same in both cases. Thus, this new protocol, with every use

of C replaced by a use of Q, is equivalent to the old protocol in terms of every possible physical

quantity that could be calculated for the output state.

Now let us suppose that Q is an LOCC operation with respect to some bipartition in the

system B. By this we mean: suppose we can split Charlie’s ancillary system into systems B1 and

B2 (which may be entangled) and then perform the operation Q by carrying out some LOCCs on

the systems AB1 and B2. The output that is sent on to Bob is drawn from the system B2 (after the

25



2.4 Channel simulation and protocol stretching

LOCCs) and all of the remaining systems can be traced over (including the original input system,

after the LOCCs have been applied). Then, the system B1 can be considered to be part of Alice’s

system and the system B2 can be considered to be part of Bob’s system. Since all operations

involved in the protocol are now LOCCs with respect to the bipartition between Alice’s system

and Bob’s system, the REE of the output state of the protocol cannot be greater than the REE

of the initial state (which must now include the REE of all of the copies of σB1,B2 used in the

protocol). We have combined all of Alice and Bob’s operations into a single round of LOCCs on

an initially entangled state, and we say that the resource state has been “stretched” back in time

to before all of the quantum operations. The new protocol is said to be in block form. Since each

channel use has been replaced by one use of Q (with each use requiring one copy of σ), the REE

between Alice and Bob after N rounds of any protocol must be upper bounded by the REE of

σ⊗NB1,B2
(again, with respect to the bipartition between B1 and B2). Using the subadditivity of the

REE, one can find the further condition that the REE of the output state is less than or equal to N

multiplied by the REE of σB1,B2 , and hence that the two-way entanglement distribution capacity

is upper bounded by the REE of σB1,B2 , giving us the upper bound that we wanted.

The tightness of the upper bound on the two-way entanglement distribution capacity depends

on the choice of the quantum operation, Q, and the resource state, σ. Pirandola et al. [5] used

quantum teleportation as the operation and found simple analytic bounds for a wide class of quan-

tum channels, called Choi-stretchable channels. Specifically, these are the channels that commute

with (standard) quantum teleportation and so can be simulated using their Choi matrices as the

resource state.

Our replacement of the channel C with the quantum operation Q is an example of quantum

channel simulation. We then stretched the adaptive N -round protocol into a 1-round protocol

enacted on an N -copy resource state. If the operation Q is a teleportation protocol, we call this

process teleportation stretching.

For more information about the use of teleportation simulation for calculating channel capac-

ities, see the review by Pirandola et al. [6].

2.4.1 Applications of the techniques

Although protocol stretching was first used to bound various channel capacities (such as the two-

way entanglement distribution capacity, as described above) [5], channel simulation and the tech-

nique of stretching an initial resource state back in time to reduce an adaptive protocol to a block

protocol can also be applied to a variety of other quantum information tasks.
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2.4 Channel simulation and protocol stretching

Examples include finding the QFI of a channel parametrised by a variable, θ, (and thereby

bounding the performance of parameter estimation protocols) and finding channel discrimination

bounds for a pair of channels, CA and CB [30]. For these tasks, we want to bound the performance

of the most general protocols possible. We therefore allow the protocols to be adaptive, with

unlimited quantum operations between channel uses; these general protocols can therefore be

represented as quantum combs5 [22, 23].

In both of these cases, the requirements for the simulating quantum operation are different

from the case in which we want to bound the two-way entanglement distribution capacity. Specif-

ically, we do not require that Q be an LOCC operation, since the sender is also the receiver and

there is no requirement that operations on the states be in any way local. Instead, we must choose

Q such that the channels are jointly programmable. In the parameter estimation case, this means

that all of the channels parametrised by θ must be simulated by the same quantum operation, Q,

but with different resource states, σθ. In the quantum channel discrimination case, this means

that both of the channels must again be simulated by the same quantum operation, Q, but with

different resource states, σA and σB . In this setting, we often refer to the resource states as pro-

gram states and the quantum operation as the quantum processor, due to the correspondence with

a programmable quantum gate array [77].

For greater detail about the applications of channel simulation and protocol stretching in quan-

tum metrology see the reviews by Laurenza et al. [22] and Pirandola et al. [25].

2.4.2 Further considerations

It is worth noting that the condition in Eq. (2.57) is more restrictive than it needs to be. It defines

a perfect simulation. In fact, we can consider an imperfect simulation, which meets the condition

∥∥TrB[IC ⊗QAB(ρin
CA ⊗ σB)]− IC ⊗ CA(ρin

CA)
∥∥

1
≤ ε, (2.58)

where ε is some small, positive, real number that defines how close the simulation is to the actual

channel C. In other words, ε is the diamond norm between the original channel and its simulation.

Then, the output of our N -round protocol has a trace norm from the output of some approximate,

5Just as quantum channels transform quantum states into other quantum states, quantum combs transform quantum

channels into other quantum channels or transform quantum combs into other quantum combs. A quantum comb can

be represented as a series of quantum operations with slots for quantum channels to fit in. The set of quantum combs

is therefore the set of the most general maps transforming an input sequence of channels (with fixed causal order) into

an output state. The concept of quantum combs is explained in greater detail in Ref. [23].
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2.4 Channel simulation and protocol stretching

stretchable protocol that is upper bounded byNε (using the triangle inequality and the fact that the

quantum operations between channel uses are the same for both protocols and so cannot increase

the trace norm between the outputs). We are still able to use this approximate simulation to calcu-

late some channel properties, because it is often possible to add some ε-dependent cost function

to account for the imperfect simulation (the form of the function depends on the channel property

that we are trying to bound).

As mentioned previously, Pirandola et al. [5] were able to simulate Choi-stretchable channels

using the Choi matrices of the channels as their program states. This was possible because Choi-

stretchable channels commute with the teleportation unitaries, meaning that for any teleportation

unitary U ,

C(UρinU †) = V C(ρin)V †, (2.59)

for all input states ρin, where V is some other unitary (which does not depend on ρin). If this is

the case, the channel, C, can be applied to Bob’s half of a Bell state to produce a Choi state. Alice

then carries out standard teleportation on the input state, ρin, using her half of the Choi state as

the resource. Bob applies the appropriate correction unitary to his state (but with the teleportation

unitaries Ui swapped for the corresponding unitaries Vi), which has already had C applied to it,

and hence teleportation with the Choi resource applies the channel C to the input state ρin.

Standard teleportation is only able to perfectly simulate certain quantum channels, even when

using the most general resource states. In the DV case, standard teleportation can only perfectly

simulate the Pauli channels [78]. Cope et al. generalised the standard teleportation protocol by

introducing a noisy classical communication channel and thereby expanded the set of simulable

channels [26]. Pirandola et al. [27] introduced conditional channel simulation, allowing some

other classes of channels, such as the dephrasure channels (formed by the pointwise application

of a Pauli-Z channel and an erasure channel) [79], to be simulated. The set of simulable channels

can be expanded still further by considering port-based teleportation [80, 81]. This is a variant

of quantum teleportation that is able to simulate any quantum channel in the asymptotic limit of

infinite ports. Even for a finite number of ports, it can give a good enough simulation of many

types of channels to be used as a tool for bounding the error of channel discrimination tasks [2].

Finally, we note that it is possible to use channel simulation and protocol stretching tech-

niques on CV systems. In many cases, however, we will need to consider the asymptotic limit

of a sequence of finite-energy simulations. This is because perfect quantum teleportation of a

CV state requires infinite energy [82]; this is an unphysical situation and so we cannot use this

type of teleportation as our simulating quantum operation. Instead, we can use the finite-energy

28



2.4 Channel simulation and protocol stretching

Braunstein-Kimble teleportation protocol [83], which can be parametrised by an energy constraint,

µ. For any finite µ, we do not have perfect teleportation, and so our channel simulation will also be

imperfect. We can find the energy-constrained diamond norm between the actual channel and its

simulation for any energy constraint, µ̃ [5, 65, 66]. We can then find a bound on whatever channel

property we are trying to calculate based on the resource state for this finite-energy simulation.

This bound will potentially be a function of µ and µ̃. We must then take the limit as µ → ∞ and

then µ̃→∞ (note that the order of the limits can matter).
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Chapter 3

Channel Position Finding

The work in Section 3.2 forms the basis of a paper that has been submitted to Physical Review

A, whose authors are (in order) Jason Pereira, Leonardo Banchi, Quntao Zhuang, and Stefano

Pirandola. The idea for the reduction of the fidelity calculation to a calculation between three-

mode states came from Leonardo Banchi. The preprint of this work is available on the arXiv [12].

The work in Section 3.3 forms the basis of a paper published in Physical Review Research,

whose authors are (in order) Jason Pereira, Quntao Zhuang, and Stefano Pirandola [9]. Quntao

Zhuang proposed using photon counting and the maximum-likelihood estimation to give bounds

for specific protocols and calculated the success probability of the measurement (Eqs. (3.100) to

(3.107)).

The first section of this chapter will introduce the task of channel position finding (CPF) and

describe some of its possible applications. The next section will give bounds on the error proba-

bility for an idler-free protocol applied to a sequence of pure loss channels. The third section will

give ultimate bounds for an environment localisation task, which hold for all adaptive protocols,

and will apply them to some physical scenarios. The final section summarises the presented work.

3.1 Introduction

CPF is a little-investigated but important subcategory of quantum channel discrimination. In chan-

nel discrimination, we know that an unknown channel is drawn from a set of possible channels

and our goal is to determine which element of the set it is. In CPF, we have a sequence of chan-

nels, all but one of which are identical. The dissimilar channel is the target channel, the remaining

channels are background channels, and our goal is to determine the label of the target channel (i.e.

find its position in the sequence). This can be expressed as a special case of quantum channel dis-
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3.1 Introduction

crimination by considering the entire sequence of channels to be a single multi-mode channel and

the channel sequences given by the different label options to be the elements in the set of possible

multi-mode channels.

CPF is a less well-studied task than binary channel discrimination. Discrimination between

multiple possible quantum states has been investigated, resulting in, for instance, the development

of the pretty good measurement (PGM) [84, 85]. However, little research has been conducted on

the error probability for discriminating between multiple possible quantum channels.

Recently, Zhuang and Pirandola [86] formulated a sequence of lower bounds on the error prob-

ability of identifying one channel from a set of possible channels that hold for any set of possible

qudit channels and for the most general adaptive protocols. The bounds are based on channel

simulation using PBT. They found that the error probability for any discrimination protocol for a

set of m possible channels, involving no more than M channel uses is bounded by

perr ≥
∑

k,k′ : k′>k

pk′pkF (ρEk′ , ρEk)2MN − Md(d− 1)

N
, (3.1)

where pi is the prior probability of the channel Ei, ρEi is the Choi matrix of Ei, d is the dimension

of the channels in the set, F is the Bures fidelity and N is any positive integer. Thus, we have a

sequence of lower bounds (one for each value of N ) and must optimise over N to find the tightest

lower bound in the sequence. Here, N represents the number of ports in the PBT simulation.

Tighter bounds are given for cases in which the simulation error is known or the Helstrom limit

between Choi matrices is easily calculable. Zhuang and Pirandola also simplified the bounds

further for sets of channels that are jointly teleportation covariant and hence showed that, for such

channel sets, there exists a non-adaptive discrimination protocol that is optimal (has the minimum

possible error probability). This is a result that was previously only known to hold for binary

discrimination [30]. They then applied these bounds to the task of CPF, presenting bounds for the

discrimination of sets of erasure channels, depolarising channels and AD channels.

3.1.1 Channel position finding on lossy channels

An important case of CPF is locating a (bosonic) thermal loss channel with a different trans-

missivity or induced noise amongst a sequence of background lossy channels. This is a task with

applications in quantum illumination [32,40,41], spectroscopy [87], and quantum reading [25,45].

In quantum illumination, one may know that a target is present in one of several locations but not

know where. A discrimination protocol could involve probing the possible locations with light

then collecting and carrying a measurement out on the return states. The different losses and in-
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duced noises experienced by the probes, depending on whether they encountered the target or not,

could be modelled as different lossy channels. A similar situation could arise in spectroscopy.

In this scenario, the different channels could represent the optical absorbance of an unknown

substance at different frequencies. Since different substances have different absorption spectra,

finding the position of an absorption line could be equivalent to identifying the substance. In

quantum reading, the reflectivity of a memory cell takes one of two possible values - encoding one

of two possible bit values - and so readout is performed by probing the cell with signal states and

discriminating between the possible channels. However, one could also consider a formulation in

which bits are instead encoded in the position of a cell with a higher or lower transmissivity than

the others [88].

Zhuang and Pirandola [88] upper bounded the performance of classical CPF protocols (i.e.

non-adaptive protocols that only use signal states with positive semidefinite P-representations1).

They then calculated the performance of a specific non-classical protocol and thereby showed

a quantum advantage for the task. This protocol involves sending two-mode squeezed vacuum

(TMSV) states through the channels and then measuring them with a proposed new type of receiver

called the generalised conditional nulling receiver. Their bounds are applied to quantum reading -

modelled as a scenario of CPF between pure loss channels - and quantum target finding, a task of

quantum illumination.

Zhuang and Pirandola upper bounded the optimal error probability by proposing a specific

protocol and calculating its error probability, but they did not lower bound the error probability.

This highlights a difficulty with bounding the performance of CPF on lossy channels over all adap-

tive protocols. Any two lossy channels with different transmissivities are not jointly teleportation

covariant. As such, the technique of teleportation stretching [5, 22, 30], for reducing an adaptive

protocol to a block protocol, cannot be easily applied. One route for research is to find approxi-

mations of the channels that are jointly simulable by some teleportation protocol (for instance, by

using continuous variable PBT [91]; little research has been carried out on this topic). Another is

to find bounds for specific protocols, as Zhuang and Pirandola did. The non-classical protocol that

they investigated required the retention of idler modes. If we do not have a good quantum memory

(with low decoherence over a long storage time), the correlations between the signal and the idler

1Whilst entangled states constitute one type of quantum state with no classical analogue, they are not the only such

states. In fact, there exist states with no classical analogue that are completely unentangled. One way of determining

whether a state is classical is to use the Glauber–Sudarshan P representation [89, 90]. If the P-representation of a state

is not positive semidefinite then that state has no classical analogue.
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modes will quickly degrade and the benefits of using an initially entangled state will be lost. The

idler-free case is therefore worth investigating, since this will tell us whether we can still have a

quantum advantage even in the technologically limited case in which we cannot store an idler.

3.1.2 Environment localisation

A related case to discriminating between lossy channels with different transmissivities is CPF on

a sequence of channels that all have the same transmissivity but for which the target channel has

a different induced noise. The channels could be thermal loss channels, additive Gaussian noise

channels, or thermal amplifier channels, depending on the transmissivity. Since the action of a

phase-insensitive Gaussian channel is equivalent to mixing the signal state with some environ-

mental thermal state at a beamsplitter [55, 92], CPF on channels with a fixed transmissivity can

be regarded as environment localisation: finding the target environmental thermal state. This task

has applications to thermal imaging, since the mean number of photons in an environmental mode

can depend on the temperature of the environment, and quantum communications, where it can be

applied to tasks such as eavesdropper localisation (attempting to find the communications line or

section of line with a higher induced noise, potentially due to the presence of an eavesdropper).

An important feature of a sequence of phase-insensitive Gaussian channels with fixed trans-

missivity is that the channels are jointly teleportation covariant. This means that, unlike the sce-

nario in which the target and background channels have different transmissivities, ultimate bounds

on the error probability can be established using channel simulation and teleportation stretching.

This is why Pirandola and Lupo could bound the minimum variance for an estimation of the noise

of a thermal loss channel using teleportation stretching [30]. Bounds established in this way will

hold for the most general adaptive protocols.

3.2 Idler-free channel position finding

We consider CPF between a sequence of pure-loss channels for a specific type of one-shot pro-

tocol. The protocols we consider send fully symmetric Gaussian states through the sequence of

channels. They are non-adaptive and idler-free, meaning that the output state has tensor product

form and we do not retain any modes that are entangled with the signal modes before they are sent

through the channels. The advantage of idler-free protocols is that they can be easier to imple-

ment. In order to benefit from the use of an idler, the idler must be stored in a quantum memory,

potentially for a long time (if the signal states take a significant time to pass though the channels).

33



3.2 Idler-free channel position finding

Building quantum memories that simultaneously have a long storage time and a high memory ef-

ficiency is still a challenging area of research [93–95]. We allow entanglement between the signal

states for each channel, but constrain the total mean number of photons sent through the channel

sequence. Note that we set the vacuum noise equal to 1 in this section.

3.2.1 Finding the covariance matrices of the possible outputs

Consider a sequence of m one-mode, pure-loss channels, where m − 1 of the channels are iden-

tical “background” channels and one of the channels is a target channel. The target channel has

transmissivity ηT , whilst the background channels all have transmissivity ηB . The task is to locate

the target channel using an idler-free protocol. If we are allowed to send unlimited energy into

the channels, the error probability trivially goes to 0, so we impose an energy constraint on our

CPF protocol, allowing no more than NS photons to be sent through each channel. The m-partite

channel input that we consider has no first moments and the CM2

Vin =


µI Γ . . . Γ

Γ µI . . . Γ
...

. . . . . .
...

Γ Γ . . . µI

 , Γ := diag(c1, c2), (3.2)

where µ is specified by the energy constraint (via µ = 2NS + 1) and c1 and c2 determine the level

of entanglement between the modes. We want to calculate the error probability for CPF using a

signal state of this form.

The problem of CPF can be reduced to state discrimination between the m possible outputs

of the adaptive protocol used (with each outcome corresponding to a different target channel po-

sition). By bounding the fidelity between the different output states, we can find both upper and

lower bounds for the minimum error probability perr (optimised over all adaptive protocols) of

state discrimination. The lower bound on the discrimination error between a sequence of m states

{ρi}, with probabilities {pi}, is [96]

perr ≥
m∑

i,j : i>j

pipjF (ρi, ρj)
2, (3.3)

2This is a fully symmetric (invariant under permutation of modes) Gaussian state. In the case of maximal correlations,

this state can be regarded as a Gaussian analogue of the GHZ state (a particular type of multipartite entangled DV

state), since it is a maximally entangled (for a given energy constraint), fully symmetric state.
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and the upper bound, based on the PGM, is [97]

perr ≤ 2

m∑
i,j : i>j

√
pipjF (ρi, ρj), (3.4)

where F is the Bures fidelity, defined as

F (ρi, ρj) = Tr
√√

ρiρj
√
ρi. (3.5)

As a result, finding the fidelity between the possible output states of this protocol will allow us to

bound its error probability.

Vin has only two distinct symplectic eigenvalues [98]:

ν− =
√

(µ− c1)(µ− c2), ν+ =
√

(µ+ (m− 1)c1)(µ+ (m− 1)c2). (3.6)

ν+ is m − 1 times degenerate. We set c1 = −c2 = c and assume maximal correlations (meaning

that we maximise c). By requiring Vin > 0 and ν± ≥ 1 (the bona fide condition), we find that the

maximum value of c is

cmax =

√
µ2 − 1

m− 1
. (3.7)

Let us now define ρi as the output state for the case in which the i-th channel is the target

channel. Since both our input and the channels involved are Gaussian, the output states ρi are

also Gaussian and hence (since, like the input, they will have no first moments) can be described

entirely by their CMs, Vi. Therefore, the fidelity between any pair of possible output states ρi and

ρj can be expressed as F (Vi, Vj). The CM of output state ρi is

Vi =



∆B · · · ΓB ΓT ΓB · · · ΓB
...

. . .
...

...
...

...

ΓB ∆B ΓT ΓB · · · ΓB

ΓT · · · ΓT ∆T ΓT · · · ΓT

ΓB · · · ΓB ΓT ∆B ΓB
...

...
. . .

...

ΓB · · · ΓB ΓT ΓB · · · ∆B


, (3.8)

where we have defined

∆B := (ηBµ+ (1− ηB))I, ∆T := (ηTµ+ (1− ηT ))I, (3.9)

ΓB = ηBcmaxZ, ΓT =
√
ηBηT cmaxZ. (3.10)
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Z is the Pauli Z matrix.

We now need to find the fidelity between pairs of m-mode CMs. However, we can greatly

simplify our calculations by reducing the problem to the fidelity between two three-mode CMs,

via a unitary transformation of our output states.

3.2.2 Reduction to the fidelity between three-mode systems

Due to the symmetry, F (Vi, Vj) = F (V1, V2) for all i 6= j, so it suffices to calculate F (V1, V2).

Let {âi} be the set of annihilation operators for all of the modes. We can transform {âi} via the

unitary

U = I1,2 ⊗ U ′ (3.11)

where I1,2 is the identity on modes 1 and 2 and where U ′ has elements

U ′jk = eijkφ, φ =
2π

m− 2
. (3.12)

We can verify that U ′ is a valid unitary by writing

(U ′U ′†)jk =
m−2∑
l=1

ei(k−j)lφ (3.13)

= δjk. (3.14)

U transforms {âi} into {â′i}, where

â′1 = â1, â
′
2 = â2, (3.15)

â′3+j =
1√
m− 2

m−3∑
k=0

eikφâ3+k. (3.16)

This means that the quadrature operators of the modes, {qi} and {p̂i}, are transformed into {q′i}

and {p̂′i}, where

q̂′1 = q̂1, q̂
′
2 = q̂2, (3.17)

p̂′1 = p̂1, p̂
′
2 = p̂2, (3.18)

q̂′3+j =
1√
m− 2

m−3∑
k=0

[cos (jkφ)q̂3+k − sin (jkφ)p̂3+k] , (3.19)

p̂′3+j =
1√
m− 2

m−3∑
k=0

[sin (jkφ)q̂3+k + cos (jkφ)p̂3+k] . (3.20)

These are calculated using the relations q̂ = â+ â† and p̂ = i(â† − â).
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3.2 Idler-free channel position finding

This transformation puts both V1 and V2 in block diagonal form, such that the resulting CM

has a 6 by 6 block and a 2m − 6 by 2m − 6 block, the latter of which is the same in both cases.

We can verify this by calculating the components of the transformed CMs, V ′1 and V ′2 . In order to

demonstrate how this is done, let us explicitly calculate the value of
〈
p̂′1p̂
′
3+j

〉
for V ′1 . Using the

expression in Eq. (3.20), we get

〈
p̂′1p̂
′
3+j

〉
=

1√
m− 2

m−3∑
k=0

[sin (jkφ) 〈p̂1q̂3+k〉 + cos (jkφ) 〈p̂1p̂3+k〉] . (3.21)

The covariances 〈p̂1q̂3+k〉 and 〈p̂1p̂3+k〉 are components of the original covariance matrix, V1, and

are given in Eqs. (3.8) to (3.10). First, note that 〈p̂iq̂j〉 = 0 for all i and j (since every 2 by 2

submatrix of V1 is diagonal). Defining

dB = (ηBµ+ (1− ηB)), dT = (ηTµ+ (1− ηT )), (3.22)

γB = ηBcmax, γT =
√
ηBηT cmax, (3.23)

we obtain

〈
p̂′1p̂
′
3+j

〉
= − γT√

m− 2

m−3∑
k=0

cos (jkφ)

= −
√
m− 2γT δ0,j ,

(3.24)

where δ is the Kronecker delta symbol, and where we have used the result

l∑
k=1

cos (jk
2π

l
) = lδ0,j (3.25)

(for integer l). Note that this is 0 for j > 0, i.e. for all modes with labels greater than 3.〈
q̂′1q̂
′
3+j

〉
is simply −

〈
p̂′1p̂
′
3+j

〉
, and

〈
p̂′2p̂
′
3+j

〉
can be obtained simply by substituting ηBcmax

for
√
ηBηT cmax, giving

〈
p̂′2p̂
′
3+j

〉
= −
√
m− 2γBδ0,j . (3.26)

Note that for V2, we simply swap
〈
p̂(q̂)′1p̂(q̂)

′
3+j

〉
and

〈
p̂(q̂)′2p̂(q̂)

′
3+j

〉
.

We have now shown that no correlations exist between modes 1 and 2 and modes 4 to m. In

order to show that the transformation puts the CM in block diagonal form, we must also show

that no correlations exist between mode 3 and modes 4 to m. To do this, we must calculate〈
p̂(q̂)′3p̂(q̂)

′
3+j

〉
. Again using Eq. (3.20), we obtain

〈
p̂′3p̂
′
3+j

〉
=

1

m− 2

m−3∑
k,l=0

[sin (jkφ) 〈p̂3+lq̂3+k〉 + cos (jkφ) 〈p̂3+lp̂3+k〉] . (3.27)
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3.2 Idler-free channel position finding

Substituting in Eqs. (3.22) and (3.23), we derive

〈
p̂′3p̂
′
3+j

〉
= −γB

m−3∑
k=0

cos (jkφ) +
dB + γB
m− 2

m−3∑
k=0

cos (jkφ), (3.28)

where we have split the expression into contributions from the on and off-diagonal components of

the original CMs. Simplifying, we get

〈
p̂′3p̂
′
3+j

〉
= (dB − (m− 3)γB)δ0,j , (3.29)

thus there are no correlations between mode 3 and modes 4 to m. We have therefore carried out a

unitary transform on V1 and V2 such that they are in block diagonal form, with a 6 by 6 block and

a 2m − 6 by 2m − 6 block. Since the 2m − 6 by 2m − 6 block is the same for both V1 and V2,

we can ignore this block (trace over the remaining m− 3 modes) when calculating the fidelity of

the two CMs. This reduces the problem to the analytically solvable case of finding the fidelity of

a pair of three-mode Gaussian states.

Let V ′1 be the CM of ρ1 after the unitary U has been enacted on it, transforming it into block

diagonal form. Then, let V 3−mode
1 be the CM after the trace has been taken over the last m − 3

modes. V 3−mode
1 takes the form

V 3−mode
1 =


∆T ΓT

√
m− 2ΓT

ΓT ∆B

√
m− 2ΓB

√
m− 2ΓT

√
m− 2ΓB ∆B + (m− 3)ΓB

 . (3.30)

To obtain V 3−mode
2 , we simply swap modes 1 and 2.

We can also calculate the structure of the traced over modes, although this does not affect

the fidelity calculation, since it is the same for both V ′1 and V ′2 . Let us calculate
〈
p̂′3+j p̂

′
3+k

〉
for

j, k > 0. Considering only the non-zero components, we get

〈
p̂′3+j p̂

′
3+k

〉
=

1

m− 2

m−3∑
x,y=0

[sin (jxφ) sin (kyφ) 〈q̂3+xq̂3+y〉

+ cos (jxφ) cos (kyφ) 〈p̂3+xp̂3+y〉] .

(3.31)
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3.2 Idler-free channel position finding

We now split this into three terms, by writing

〈
p̂′3+j p̂

′
3+k

〉
=
t1 + t2 + t3
m− 2

, (3.32)

t1 = γB

m−3∑
x,y=0

[sin (jxφ) sin (kyφ)− cos (jxφ) cos (kyφ)] , (3.33)

t2 = dB

m−3∑
x=0

[sin (jxφ) sin (kxφ) + cos (jxφ) cos (kxφ)] , (3.34)

t3 = −γB
m−3∑
x=0

[sin (jxφ) sin (kxφ)− cos (jxφ) cos (kyφ)] . (3.35)

We can then write

t1 = −γB
m−3∑
x,y=0

cos ((jx+ ky)φ), (3.36)

t2 = dB

m−3∑
x=0

cos ((j − k)xφ), (3.37)

t3 = γB

m−3∑
x=0

cos ((j + k)xφ), (3.38)

where we have used

cos (a+ b) = cos (a) cos (b)− sin (a) sin (b). (3.39)

Since j, k > 0, t1 = 0. t2 is non-zero iff j = k and t3 is non-zero iff j+ k = m− 2. We therefore

derive

〈
p̂′3+j p̂

′
3+k

〉
= dBδj,k + γBδj+k,m−2. (3.40)

Via a similar derivation, we find

〈
q̂′3+j q̂

′
3+k

〉
= dBδj,k − γBδj+k,m−2. (3.41)

We now have all of the components of the CM of the traced over modes.

The fidelity F (V1, V2) = F (V 3−mode
1 , V 3−mode

2 ) can now be easily found using the formula

from Ref. [76].

3.2.3 Numerical investigations

We investigate the behaviour of the idler-free fidelity function. The output fidelity of a classical

protocol, as calculated in Ref. [88], and the output fidelity of a protocol in which each channel is

individually probed by one mode of a bipartite entangled state with the idler retained (which we
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3.2 Idler-free channel position finding

refer to as the bipartite entangled protocol) are natural points of comparison. If the output fidelity

of the idler-free protocol is lower than that of the classical protocol over some parameter range, it

would be an indication that there is a benefit to using the input state described by Eq. (3.2), rather

than using the classical protocol. If the output fidelity for the idler-free protocol is close to that of

the entangled state protocol with idlers, this would indicate that the cost to performance of using

an idler-free protocol is small. Note that this is only an indication, as the fidelity is a measure

of the distinguishability of states, but this does not necessarily mean that the error probability

in discriminating between states is completely determined by the fidelity. In order to prove an

advantage of one protocol over another, we would have to bound the error probabilities based

on the output fidelities. This was done in Ref. [88] to prove that a protocol involving bipartite

entangled states has a quantum advantage over classical protocols.

Note that for both the classical protocol and the bipartite entangled protocol, the possible

output states, ρi (where the label i indicates that the i-th channel is the target channel), are all in

the tensor product form

ρi = ρ1
i ⊗ ρ2

i ⊗ . . . ρii ⊗ . . . ρmi , (3.42)

where the state ρji is the output of the j-th channel (conditioned on the i-th channel being the target

channel). Now let ρB be the output state from a background channel and let ρT be the output state

from a target channel. We can then write the output fidelity as

F (ρi, ρj) = F (ρ1
i ⊗ . . . ρii ⊗ . . . ρ

j
i ⊗ . . . ρ

m
i , ρ

1
j ⊗ . . . ρij ⊗ ρ

j
j ⊗ . . . . . . ρ

m
j )

= F (ρii ⊗ ρ
j
i , ρ

i
j ⊗ ρ

j
j)

= F (ρB, ρT )2,

(3.43)

where we have used the fact that the fidelity is multiplicative with respect to tensor products. This

means that the number of channels in the sequence, m, has no effect on the fidelity between any

pair of possible outputs.

The classical protocol involves sending coherent (displaced vacuum) states through the chan-

nels. The displacement of the states is the maximum allowed by the average photon number

constraint on the signal states, and the energy of the input states is evenly distributed amongst the

m probes. The fidelity between output states is given by

F class = e−NS(
√
ηB−

√
ηT )2 . (3.44)

The bipartite entangled protocol individually probes each channel with one mode of a bipartite

entangled state (with no correlation between the signal states for each channel). Each bipartite en-

tangled state is a TMSV with the maximum squeezing parameter allowed by the energy constraint.
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Figure 3.1: The output fidelity of the classical, bipartite entangled, and idler-free protocols as a

function of the transmissivity of the target channel, ηT . We set the transmissivity of the background

channels, ηB , to 0.95 and impose an energy constraint so that the average number of photons per

channel use is no more than 50. We also set m = 3, so that there are two identical background

channels and one target channel. The output fidelity for the idler-free protocol with ηB and ηT

swapped is also shown. Unlike for the classical and bipartite entangled protocols, this swap affects

the output fidelity for the idler-free protocol (since, in the classical and bipartite entangled cases,

the output states are in tensor product form). The output fidelities are highest when ηT is close

to ηB and decrease as the difference between the two transmissivities increases. The idler-free

protocol gives a lower output fidelity than the classical protocol for ηT ' 0.75.

The bipartite entangled protocol has an output fidelity of

F bipartite = (1 +NS(1−
√

(1− ηB)(1− ηT )−√ηBηT ))−2. (3.45)

In Fig. 3.1, we plot the output fidelities for the various protocols against the transmissivity of

the target channel, ηT . We fix the background transmissivity, ηB = 0.95, the number of channels

in the sequence,m = 3, and the average number of photons sent through each channel per channel

use, NS = 50. We see that there is a region (ηT ' 0.75) for which the idler-free protocol has a

lower fidelity than the classical protocol. This indicates that the idler-free protocol could have a

use as an intermediate between the easily implemented classical protocol, based on the sending

of coherent states, and the bipartite entangled protocol, which gives a lower output fidelity in this

range but could be harder to implement, due to the need for a quantum memory to preserve the

idlers. The idler-free protocol could be easier to implement, despite the fact it still requires the
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Figure 3.2: The output fidelity of the classical, bipartite entangled, and idler-free protocols as a

function of the total number of channels in the sequence,m. We set the background transmissivity,

ηB , to 0.2, the transmissivity of the target channel, ηT , to 0.7, and the average number of photons

per channel use, NS , to 1. Only the idler-free protocol is affected by changing m. We see that

the output transmissivity increases as m increases, but levels off for large m. As m increases, the

effect on the output fidelity of swapping ηB and ηT decreases.

generation of a non-classical state, because it does not require a quantum memory.

Fig. 3.1 also has a curve labelled “idler-free (reversed)”. This gives the fidelity for the idler-

free protocol when the values of ηB and ηT are swapped. It is immediate from Eq. (3.43) that

neither the fidelity of the classical protocol nor that of the bipartite entangled protocol are affected

by swapping ηB and ηT , however this is not the case for the idler-free protocol (for m > 2). In

fact, Fig. 3.1 shows that there can be a significant difference between the two fidelities.

Fig. 3.2 plots the various output fidelities against the number of channels in the sequence. In

this plot, ηB = 0.2, ηT = 0.7, and NS = 1. As previously mentioned, the output fidelities of the

classical and the bipartite entangled protocols do not depend on m. Fig. 3.2 shows that the output

fidelity for the idler-free protocol increases as m increases, but levels off for large m.

Since the output fidelity for the idler-free protocol increases with m, it makes sense to study

the m = 2 case when comparing the protocols. It is possible to analytically find the output fidelity

for this case. We calculate

F idler−free,2−mode = (1 +NS(ηB + ηT − 2ηBηT − 2
√
ηBηT (1− ηB)(1− ηT )))−1. (3.46)

Fig. 3.3 plots the output fidelities against the average number of photons sent into each channel.
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Figure 3.3: The output fidelity of the classical, bipartite entangled, and idler-free protocols as

a function of the average number of photons in the signal states, NS . We set the background

transmissivity, ηB = 0.9, the transmissivity of the target channel, ηT = 0.95, and the number of

channels in the sequence, m = 2. Fidelity is given in decibels. The output fidelity of the classical

protocol gives a straight line because the scale is logarithmic and the classical output fidelity scales

exponentially. This line crosses the curves representing the output fidelities for both the idler-free

and the bipartite entangled protocols, showing that the classical protocol gives a lower output

fidelity than either of the other protocols over some parameter ranges.

We have set ηB = 0.9, ηT = 0.95, and m = 2; since there are only two channels in the sequence,

switching ηB and ηT does not result in a different task, and so we do not plot the case with ηB

and ηT switched. The fidelity is given in decibels; this allows it to be clearly seen that the output

fidelity of the classical protocol scales exponentially with NS , since the curve is linear in a log

scale. In fact, this is evident from the form of the expression in Eq. (3.44). On the other hand,

F bipartite is inversely proportional to a polynomial inNS . Considering the expression in Eq. (3.45)

for large NS , we see that it scales as roughly N−2
S . We can see from Fig. 3.3 that the scaling of

the idler-free output fidelity is also less than exponential. From Eq. (3.46), it can be seen that the

output fidelity in the m = 2 case scales as approximately N−1
S for large NS . Since the output

fidelity is lowest in the m = 2 case, the classical protocol will always beat the idler-free protocol

(and the bipartite entangled protocol) for sufficiently high NS , due to the different scalings.
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3.3 Optimal environment localisation

3.3 Optimal environment localisation

We now consider a case of CPF in which the target channel has the same transmissivity as the

background channel but a different induced noise at the output. In this scenario, the channel

outputs are not identical even in the case of a vacuum input (i.e. when no signal states are sent

into the channels). We refer to this as the channel sequence having a passive signature. The

task can be regarded as environment localisation: we are finding the channel whose Stinespring

dilation [55, 92] has a different environmental noise from that of the other channels. We consider

all phase-insensitive, Gaussian channels: these comprise the thermal loss channels, the thermal

amplifier channels, and the additive noise channels. A key property of a sequence of one-mode,

phase-insensitive, Gaussian channels with the same transmissivity is that - unlike a sequence of

channels with different transmissivities - they are jointly teleportation covariant. This is important

because it means that it is possible to use channel simulation in order to establish lower bounds on

the error probability for discriminating between the channels in the sequence, even for the most

general, adaptive protocols [22]. Note that we set the vacuum noise equal to 1
2 in this section.

3.3.1 Channel simulation

Consider a sequence of m one-mode, phase-insensitive, Gaussian channels, where m − 1 of the

channels are identical “background” channels and one of the channels is a target channel. The

target channel has the same transmissivity, τ , as the background channels, but a different induced

noise, ν (note that we consider a generalised transmissivity which may take values between zero

and infinity). Suppose we want to identify the target channel and can do so by probing the se-

quence of channels using some adaptive protocol that involves sending M transmissions through

the sequence of channels (each transmission consists of sending a one-mode state through every

channel in the sequence). We do not impose any energy bound on the transmissions. We would

like to bound the minimum probability of error in identifying the target channel, with the minimi-

sation carried out over all possible adaptive protocols. The structure of the most general adaptive

protocol can be considered to be a quantum comb [22, 23].

A schematic of a possible setup is given in Fig. 3.4, which shows a sequence of three thermal

loss channels with the same transmissivity, τ . Two of these channels are background channels

(with environmental noise n̄B) and one of the channels is the target channel (with environmental

noise n̄T ). At each channel use, we are allowed to send an input state through the sequence of

channels, and this input state may be dependent on the previous channel outputs. Each channel is
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Figure 3.4: An example of the setup in the thermal loss case. Each thermal loss channel can

be represented by a beamsplitter that mixes the input mode with an environmental thermal state.

Thermal loss channels are parametrised by the transmissivity of the beamsplitter and the average

photon number, n̄, of the thermal state. We consider a sequence of thermal loss channels for which

the beamsplitters all have the same transmissivity, τ . One of the channels has a thermal state with

a different average number of photons from the others; this is the target channel. The average

number of photons in the thermal state of the target channel is denoted n̄T , whilst the average

number of photons in the thermal state of the background channel is denoted n̄B . The task is to

locate the target channel; in the case of this setup, it is the middle channel.

represented by a beamsplitter interaction with a thermal mode, and all of the beamsplitters have

the same transmissivity, but the thermal mode with which the input modes interact is different for

the target and background channels.

Any pair of one-mode, phase-insensitive, Gaussian channels with the same transmissivity is

jointly teleportation covariant, using the Braunstein-Kimble (BK) protocol [83]. This means that

both channels can be simulated using the same teleportation protocol, but with different resource

states. In fact, using the BK protocol, a valid resource state for channel simulation is the asymp-

totic Choi matrix of the channel [99–101]. The Choi matrix of a channel is the output state when

part of a maximally entangled state is passed through the channel. For bosonic systems, the max-

imally entangled state Φ is the limit for infinite squeezing of a sequence of TMSV states [55] Φa,

45



3.3 Optimal environment localisation

i.e. Φ = lima Φa, where a is the level of squeezing and each Φa has covariance matrix (CM)

V a
in =

 aI
√
a2 − 1

4Z√
a2 − 1

4Z aI

 . (3.47)

Therefore, the Choi matrix σE of a bosonic channel E is defined as the infinite-squeezing limit of a

sequence of states {σaE} where the generic element is given by a TMSV state partially propagated

through the channel, i.e. σaE := I ⊗ E(Φa). In the following, when we work with an asymptotic

Choi matrix σE we implicitly mean that this is the limit of an underlying ‘Choi sequence’ {σaE}.

Correspondingly, the teleportation simulation over σE is meant to be an asymptotic operation,

where the simulation is defined over the Choi sequence {σaE} after which the limit for infinite

squeezing is taken [5]. Note that Gaussian states, which all elements of the sequence are, are

completely described by their CM and their first moments vector. For states in the Choi sequence,

all elements of the first moments vector are 0.

As previously mentioned (in Subsection 3.2.1), the error probability of any CPF protocol can

be bounded using the fidelity between its possible outputs.

Since we can use the same teleportation protocol for both the target and the background chan-

nels, the entire discrimination protocol can be reduced, via stretching [2,5,30], to a single proces-

sor applied to different resource states (with the resource state depending on the position of the

target channel). This adaptive-to-block reduction is shown in Fig. 3.5.

Since no trace preserving quantum operation can increase the distance between two quantum

states (the fidelity of any two input states will be less than or equal to the fidelity of the resulting

output states), the fidelity between the possible output states is lower bounded by the fidelity

between the possible resource states. Let σiM be the resource state composed of M(m− 1) copies

of the asymptotic Choi matrix of the background channel, σB , and M copies of the asymptotic

Choi matrix of the target channel, σT , arranged such that the M copies of the asymptotic Choi

matrix of the target channel is the i-th 2M -mode subsystem. Note that each asymptotic Choi

matrix consists of two modes. We can write

σiM = P1i

[
σ⊗MT ⊗ σ⊗M(m−1)

B

]
, (3.48)

where the operator P1i swaps the first 2M -mode subsystem with the i-th 2M -mode subsystem.

We can then lower bound the fidelity of any pair of output states of a discrimination protocol with

M channel uses using

F (ρiM , ρ
j
M ) ≥ F (σiM , σ

j
M ). (3.49)
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Figure 3.5: The reduction of a general adaptive discrimination protocol to a single round of quan-

tum operations on a resource state. In panel (a), we have the most general discrimination protocol

using M uses of the sequence of channels. ρ0 is some initial quantum state. We then apply some

sequence of quantum operations (denoted by QO) interspersed with uses of the sequence of chan-

nels (denoted by Ci, where the label i depends on the channel position). At each channel use, we

may send a one-mode state through each of the channels in the sequence (and these modes are

generally correlated with auxiliary modes that do not pass through the channels). Each round of

quantum operations is allowed to be adaptive. This means that (i) entanglement can be present

between ancillary modes of different quantum operations and (ii) measurements can be done on

some subset of the modes and used to optimise following quantum operations. These measure-

ments can always be delayed to the end of the protocol, by using controlled operations, so as to

make all the QOs trace preserving. The final output of the adaptive protocol is denoted ρi0; there

are m possible outputs depending on the channel position. Channel discrimination is then the task

of discriminating between these m different possible outputs, by means of an optimal collective

quantum measurement (which may include all the delayed measurements). In panel (b), we sim-

ulate the channel with teleportation, using some teleportation protocol (TP) and a resource state

(σi). Note that σi is the resource state for the entire sequence of channels and is the tensor product

of the resource states for teleportation of the m − 1 background channels and the target channel,

with the order of the subsystems determined by the label i. Note that neither the teleportation pro-

tocol nor the quantum operations depend on the label i and so the entire discrimination protocol

can be represented as some single fixed quantum operation on ρ0 and M copies of the resource

state, σi. This representation is shown in panel (c).
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Using the fact that each asymptotic Choi matrix in the resource is independent (i.e. using the

tensor product structure of the resource states), we can write

F (σiM , σ
j
M ) = F (σT , σB)2M , (3.50)

for all i 6= j.

More precisely, since the asymptotic Choi matrices, σT and σB , are defined by the infinite-

squeezing limit of two sequences of output states, {σaT } and {σaB}, the fidelity functional is

computed over the elements of the sequences and then the limit is taken, i.e. F (σT , σB) :=

lima F (σaT , σ
a
B). It is important to notice that the bound F (ρiM , ρ

j
M ) ≥ F (σT , σB)2M holds for

any generally adaptive protocol P . Therefore, we may write

Fi,j := inf
P
F (ρiM , ρ

j
M ) ≥ F (σT , σB)2M . (3.51)

At the same time, we note that this lower bound is achievable by a block protocol Pablock

where m copies of the tensor product state Φa⊗M are prepared and each TMSV state Φa is used

for the single-probing of I ⊗ EB/T , so that the quasi-Choi matrix σaB/T is generated at the output

for measurement. It is easy to see that, in the limit of infinite squeezing a → ∞, this protocol

achieves the performance at the right hand side of Eq. (3.51), so that we may write

Fi,j = F (σT , σB)2M , for any i, j. (3.52)

Let us optimise the error probability over all possible (generally adaptive) protocols P . We

define this optimal error probability as

popt
err = inf

P
perr; (3.53)

it is the smallest achievable error probability for any discrimination protocol. As a consequence

of the reasoning above and the inequalities in Eqs. (3.3) and (3.4), we can write

popt
err ≥

m∑
i>j

pipjF (σT , σB)4M , (3.54)

popt
err ≤ 2

m∑
i>j

√
pipjF (σT , σB)2M . (3.55)

Let us now assume that each channel position is equally likely, and so pi = 1
m for every value of

i. We can then carry out the sums in Eqs. (3.54) and (3.55) and write

popt
err ≥

m− 1

2m
F (σT , σB)4M , (3.56)

popt
err ≤ (m− 1)F (σT , σB)2M . (3.57)
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3.3.2 Calculating the fidelity between Choi matrices

We now must calculate the fidelity between the (asymptotic) Choi matrices of the target and the

background channels. A phase-insensitive, one-mode, Gaussian channel [55] can be parametrised

by two parameters: its transmissivity, τ , and its induced noise, ν. It transforms the CM of an input

two-mode state, Vin, with the transformation

Vin →
(
I⊕
√
τI
)
Vin

(
I⊕
√
τI
)T

+ (0⊕ νI) , (3.58)

where I is the 2 by 2 identity matrix. There are three main classes of phase-insensitive, Gaussian

channels that we must consider: thermal loss channels, thermal amplifier channels and additive

noise channels. Loss and amplifier channels both have ν ≥ |1−τ |2 (recall that the vacuum noise is

set to 1
2 ), but loss channels have 0 ≤ τ < 1, whilst amplifier channels have 1 < τ . Additive noise

channels have ν ≥ 0 and τ = 1.

Passing the second mode of a TMSV state Φa with an average photon number per mode of

n̄ = a− 1
2 through a phase-insensitive, Gaussian channel results in the state with CM

Vout =

 aI
√
τ
(
a2 − 1

4

)
Z√

τ
(
a2 − 1

4

)
Z (aτ + ν)I

 , (3.59)

where Z is the Pauli Z matrix.

The Bures fidelity of a pair of two-mode Gaussian states ρi and ρj , with zero first moments

and CM Vi and Vj is given by [76, 102]

F (ρi, ρj) =

√
χ+
√
χ− 1

4
√

det (Vi + Vj)
, (3.60)

χ = 2
√
A+ 2

√
B +

1

2
, (3.61)

A =
det
(
ΩViΩVj − 1

4I
)

det (Vi + Vj)
, (3.62)

B =
det
(
Vi + i

2Ω
)

det
(
Vj + i

2Ω
)

det (Vi + Vj)
, (3.63)

Ω = I⊗

 0 1

−1 0

 . (3.64)

Using this expression, we can calculate the fidelity of a pair of output states of phase-insensitive,

Gaussian channels (when the input state is a TMSV) with the same transmissivity.

In the case of thermal loss and amplifier channels, we define εT = νT
|1−τ | and εB = νB

|1−τ | ,

where νT is the induced noise of the target channel, νB is the induced noise of the background
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channels, and τ is the transmissivity of all of the channels in the sequence. In fact, εT and εB give

us the mean photon number of the environment for each channel, via the equation

n̄T (B) = εT (B) −
1

2
. (3.65)

We find that the fidelity of the outputs of two such thermal loss or amplifier channels is ana-

lytically given by

Floss/amp(τ, εT , εB, a) =

√
2
(√
α+ β +

√
α− β

)
β

, (3.66)

where we define

α =
(
4εT εB + 4a2(4εT εB + 1)

+(4a2 − 1)
√

(4ε2T − 1)(4ε2B − 1)

)
|1− τ |2

+ 8a(εT + εB)τ |1− τ |+ (1 + τ)2,

(3.67)

β =4 (τ + 2a(εT + εB)|1− τ |) . (3.68)

Taking the limit of this expression as a→∞, in order to obtain the fidelity between the Choi

matrices, we get

F∞loss/amp(εT , εB) =

√
4εT εB + 1 +

√
(4ε2T − 1)(4ε2B − 1)

√
2(εT + εB)

. (3.69)

Note that we no longer have any explicit dependence on τ .

Thus, our discrimination bounds for thermal loss or amplifier channels become

popt
err ≥

m− 1

2m
(F∞loss/amp(εT , εB))4M , (3.70)

popt
err ≤ (m− 1)(F∞loss/amp(εT , εB))2M . (3.71)

The upper bound in Eq. (3.71) can become larger than the error probability for randomly guessing

the position of the target channel, which is given by m−1
m . We can combine these two upper bounds

to get

popt
err ≤ (m− 1) min{m−1, (F∞loss/amp(εT , εB))}. (3.72)

In order to investigate the behaviour of F∞loss/amp, we re-parametrise Eq. (3.69) in terms of the

mean of εT and εB , i.e.

εav =
εT + εB

2
, (3.73)

and the absolute value of their difference, i.e.

εdif = |εT − εB|. (3.74)
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Differentiating with regard to εdif , we get a negative semi-definite function and differentiating

with regard to εav, we get a positive semi-definite function. This means that either increasing the

difference in the average number of photons between the target and background channels (whilst

keeping the mean fixed) or decreasing the mean of the ε-values, whilst keeping the difference

fixed, will decrease the minimum fidelity of the output states.

We now consider the case of additive noise channels. We find that the fidelity of the outputs

of two such channels becomes

Fadd(νT , νB, a) =
2a
√
νT νB +

√
(2aνT + 1)(2aνB + 1)

(2a(νT + νB) + 1)
. (3.75)

Taking the limit of this expression as a→∞, we get

F∞add(νT , νB) =
2
√
νT νB

νT + νB
. (3.76)

We can again substitute this expression into Eqs. (3.56) and (3.57). Our discrimination bounds for

additive noise channels become

popt
err ≥

m− 1

2m
(F∞add(νT , νB))4M , (3.77)

popt
err ≤ (m− 1)(F∞add(νT , νB))2M . (3.78)

We now investigate the behaviour of F∞add by re-parametrising Eq. (3.76) in terms of νav and

νdif , where νav is the mean of νT and νB and νdif is the absolute value of the difference between

them. Note that νdif ≤ 2νav. We can then rewrite Eq. (3.76) as

F∞add(r) =

√
1− r2

4
, r =

νdif

νav
. (3.79)

Thus, we can see that the fidelity between the Choi matrices of two additive noise channels depends

only on the ratio of νdif to νav. Differentiating with regard to r, we see that the fidelity decays as

r increases.

3.3.3 Classical limits

Let us define a classical protocol as a non-adaptive protocol that restricts the states sent through the

sequence of channels to an arbitrary mixture of coherent states. Since the Gaussian channels we

are considering are phase-insensitive and since both the target and the background channels have

the same transmissivity, enacting a phase-shift or displacement on the input states sent through the

channels cannot affect the fidelity of the output states (since these unitary operations commute with

the channels). The joint concavity of the Bures fidelity and the linearity of the channels means
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that the optimal classical input state (to minimise the fidelity between output states) is a single

coherent state (not a mixture). As a result, the classical discrimination protocol that minimises the

lower bound on the error probability sends vacuum states through the channel at each channel use.

This means that such protocols use only the passive signature of the channels.

We can obtain expressions for the minimum fidelity between output states for classical pro-

tocols by using our expressions for the fidelity between the output states using TMSV inputs in

Eqs. (3.66) and (3.75) and setting a = 1
2 . This gives us the fidelity between the output states of

the channels when the input state is a vacuum state.

In the case of thermal loss and amplifier channels, the minimum classical fidelity between

output states is

F class
loss/amp(τ, εT , εB) =

√
γ + δ +

√
γ − δ

δ
, (3.80)

where we define

γ = 4εT εB|1− τ |2 + 2(εT + εT )τ |1− τ |+ (1 + τ2), (3.81)

δ = 2 (τ + (εT + εT )|1− τ |) . (3.82)

In the case of additive noise channels, the minimum classical fidelity between output states is

F class
add (νT , νB) =

1√
(νT + 1)(νB + 1)−√νT νB

. (3.83)

We can now give upper and lower bounds on the error of classical discrimination protocols.

We write

pclass
err ≥

m− 1

2m
(F class)4M , (3.84)

pclass
err ≤ (m− 1)(F class)2M , (3.85)

where the fidelity function is given by either Eq. (3.80) or Eq. (3.83), depending on the class of

channel.

3.3.4 Quantum advantage

We say that there is a quantum advantage if we can show that there exists some quantum discrimi-

nation protocol that gives a lower probability of error than any classical protocol. In order to prove

a quantum advantage for CPF, we need to show that the lower bound on the error of classical pro-

tocols is larger than the upper bound on the error of all protocols. In other words, we must show

that

m− 1

2m
(F class)4M ≥ (m− 1)(F∞)2M . (3.86)
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This is equivalent to showing

2M ln

(
(F class)2

F∞

)
≥ ln(2m). (3.87)

Noting that ln(2m) > 0, since m ≥ 2, we can see that the condition in Eq. (3.87) will always be

met for sufficiently large M (number of probes) as long as the condition

(F class)2 > F∞ (3.88)

holds. Whether this condition is met depends only on the parameters of the target and background

channels. Note that even if this condition is not met, it does not mean there is no quantum advan-

tage; it could be the case that the bounds are not tight. In fact, in Subsection 3.3.5, we provide

alternative bounds which can potentially show quantum advantage even in cases in which the

condition in Eq. (3.88) is not met.

Unlike F∞loss/amp, the fidelity F class
loss/amp depends on the transmissivity τ . In fact, differenti-

ating, we find that dF
dτ ≥ 0 for 0 ≤ τ < 1 and that dF

dτ ≤ 0 for τ > 1. Further, as τ → 0,

we have F class
loss/amp → F∞loss/amp. This can be intuitively understood, since the entire channel

discrimination process, including the coupling of the signal mode with the environment, can be

regarded as a (generalised) measurement on the environmental modes. Thus, no matter how much

entanglement the interacting modes have, the possible output states that the final measurement

distinguishes between cannot have a lower (pairwise) fidelity than the possible configurations of

environmental modes that are being discriminated between. In other words, the infinite squeezing

case is equivalent to a direct measurement on the environmental modes before they are mixed with

the signal states, whilst, in any finite energy scenario, we send signal states to interact with the

environmental modes and then measure the signal states. Since the τ = 0 case corresponds to

the signal states being completely replaced by the environmental modes, the classical protocol, in

this case, is also a direct measurement on the environmental modes. Consequently, in the case of

thermal loss channels, for all values of εT and εB , there is some threshold value of τ such that

channels with τ below the threshold do not meet the condition in Eq. (3.88). Setting τ = 1
2 , we

find that (F class)2

F∞ ≤ 1, and hence the inequality in Eq. (3.88) does not hold for any channel ensem-

ble with τ ≤ 1
2 . See Appendix A and the supplementary Mathematica files of Ref. [9] for more

details.

Fig. 3.6 illustrates the region in which we meet the condition in Eq. (3.88) (and so can prove

a quantum advantage for some number of probes), in the case of thermal loss channels, for a few

choices of transmissivity, τ . The plot is in terms of εdif and εav, as defined in Eqs. (3.73)-(3.74).

We see that higher transmissivities result in a larger region in which we can prove a quantum
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Figure 3.6: Regions in which we can prove a quantum advantage for thermal loss channels, as a

function of their noise difference εdif and mean noise εav, for different values of the transmissivity

τ . Note that the region for a higher value of τ completely contains the region for any lower value

of τ . The minimum value of εav for fixed εdif is εdif+1
2 , since neither εT nor εB can be less than 1

2 .

advantage. Further, as εdif increases, the region in which we can prove quantum advantage narrows

(in terms of the allowed values of εav).

The condition for the inequality in Eq. (3.88) to hold takes a simple form for additive noise

channels. We again re-parametrise in terms of νav and νdif . We can then write the condition purely

in terms of νav. Thus, we find that for a sequence of additive noise channels, we will always have

a quantum advantage for some number of probes as long as

νdif >

√
32ν4

av − 8ν2
av − 8νav − 1− (4νav + 1)

√
8νav + 1

2
√

2νav

. (3.89)

3.3.5 Bounds from specific protocols

We can consider specific discrimination protocols; these can provide benchmarks for both the

classical (entanglement-free) and entangled cases. In the classical case, we have vacuum input. In
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this case, the return state is thermal, therefore a photon counting measurement coupled with the

maximum-likelihood estimation (MLE) gives the Helstrom performance [103]. In this protocol,

we carry out photon counting on each of the return states, and simple derivation shows that the

MLE decision rule reduces to choosing the channel with the maximum/minimum photon count,

i.e. we estimate the target channel to be

arg max
s
Ns, if n̄T > n̄B, (3.90)

and

arg min
s
Ns, if n̄T < n̄B, (3.91)

where s is an index labelling the channels in the sequence and Ns denotes the total number of

photons counted from the return states of channel s (cumulatively, over all M channel uses).

We can consider a similar protocol involving entanglement, in the cases of thermal loss and

amplifier channels. In these cases, we can get thermal return states by sending TMSV states

through the channels, carrying out anti-squeezing operations on the return states and then tracing

over one of the two modes. For each probe sent through one of the channels, we start by carrying

out two-mode squeezing on a pair of vacuum modes, with squeezing parameter

r0 =
1

2
ln
(

2a+
√

4a2 − 1
)
. (3.92)

This results in the TMSV state Φa, which has an average photon number per mode of n̄ = a− 1
2

and the CM given by Eq. (3.47). The first mode is kept as an idler, whilst the second mode is

passed through the channel. Each individual channel output state will then have a CM of the form

in Eq. (3.59); we then carry out two-mode squeezing on the state, with squeezing parameter

r1 =
1

2
ln

(
|1−

√
τ |

1 +
√
τ

)
. (3.93)

For a thermal loss channel, we discard the idler mode; the resulting state has the CM

V a
ret,loss = Disc1

[
S(r1)V a

out,lossS
T (r1)

]
(3.94)

=
ν + 2aτ − τ

√
4a2 − 1

|1− τ |
I, (3.95)

where S is the two-mode squeezing matrix, given by

S(r) =

cosh(r)I sinh(r)Z

sinh(r)Z cosh(r)I

 , (3.96)

55



3.3 Optimal environment localisation

Figure 3.7: The setup for a CPF protocol that provides a benchmark for the general quantum case.

In panel (a), we have the protocol for the thermal loss case and in panel (b), we have the protocol

for the thermal amplifier case. In both cases, we begin by carrying out two-mode squeezing

on a vacuum state, with squeezing parameter r0, as given in Eq. (3.92). This is denoted S(r0).

We then pass one of the modes through the channel, denoted C, and then carry out two-mode

squeezing again, this time with squeezing parameter r1. Finally, we carry out a photon counting

measurement (denoted PC) on one of the modes and trace over the other mode. This process is

repeated M times (where M is the number of probes used) for every channel in the sequence.

Note that in the thermal loss case, the measurement is carried out on the channel mode, whilst in

the thermal amplifier case, the measurement is carried out on the idler mode.

and where Disc1 indicates that we discard the first (idler) mode. We can get a return state with the

same form for an amplifier channel by carrying out the same process, but tracing over the other

mode (the mode which passed through the channel). In other words, we have

V a
ret,amp = Disc2

[
S(r1)V a

out,ampS
T (r1)

]
(3.97)

=
ν + 2aτ − τ

√
4a2 − 1

|1− τ |
I. (3.98)

This protocol is illustrated in Fig. 3.7.

We now note that the CM in Eq. (3.95) has finite energy, even in the limit of infinite squeezing

(a → ∞). Letting V∞ret,T (B) be the asymptotic return state from the target (background) channel

(for either a thermal loss or a thermal amplifier channel), we find that

V∞ret,T (B) =
νT (B)

|1− τ |
I = εT (B)I. (3.99)

Hence, we can get thermal return states even in the case of infinite entanglement. Note that these

are the same return states we would get in the classical case if the channels had a transmissivity

of 0. Note too that we cannot enact this protocol in the additive noise case, since our expression

56



3.3 Optimal environment localisation

in Eq. (3.93) for the squeezing parameter r1 diverges as τ → 1. We can then carry out photon

counting measurements on the return states and estimate the target channel using the MLE.

We now calculate the success probability of the MLE. The probability that a thermal mode

with average photon number n̄ is measured to have k photons is given by

Pn̄(k) =
n̄k

(n̄+ 1)k+1
. (3.100)

We then calculate the probability that M thermal modes, with the same average photon number of

n̄, are measured to have a total of k photons, by replacing the thermal distribution with a sum of

independent and identically distributed (iid) thermal distributions. We find that this probability is

given by

Pn̄,M (k) =

(
k +M − 1

k

)(
n̄

1 + n̄

)k ( 1

1 + n̄

)M
, (3.101)

where the binomial coefficient accounts for the different ways in which the photons can be dis-

tributed across the measured modes. From this we can calculate the probability that the M modes

are measured to have fewer than nc photons in total:

prn̄,M (count < nc) =

nc−1∑
k=0

Pn̄,M (k). (3.102)

Let us first consider the case in which n̄T > n̄B . In this case the MLE gives the correct answer

when all of the background channels have return states that are measured to have fewer photons

than those of the target channel. We must also consider the possibility that the return states of

one or more of the background channels are measured to have the same number of photons as

the return states of the target channel (but not more). In this case, we choose randomly between

the channels that gave the highest photon counts. This gives a total success probability (for the

entangled case) of

pMLE
succ,n̄T>n̄B

=
m∑
c=1

1

c

∞∑
nc=0

[
prn̄B ,M (count < nc)

]m−c
× Pn̄T ,M (nc)

(
m− 1

c− 1

)
(Pn̄B ,M (nc))

c−1.

(3.103)

Here, the index c is the number of channels with the same photon count (hence, c = 1 is the case

in which all of the background channels give a lower photon count than the target channel). The

factor of 1
c comes from the random choice when multiple channels give the same photon count.

Note that in the case of nc = 0, the only non-zero contribution is in the case c = m, corresponding

to a photon count of 0 for the target and all of the background channels. If this occurs, there is a
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1
m chance of the target channel being randomly guessed correctly. In this case, we define

prn̄B ,M (count < 0)0 = 1. (3.104)

Extension to the case in which n̄T < n̄B can be done trivially, by writing

prn̄,M (count > nc) = 1− prn̄,M (count < nc + 1). (3.105)

Then we have a success probability of

pMLE
succ,n̄T<n̄B

=
m∑
c=1

1

c

∞∑
nc=0

[
prn̄B ,M (count > nc)

]m−c
× Pn̄T ,M (nc)

(
m− 1

c− 1

)
(Pn̄B ,M (nc))

c−1.

(3.106)

In both cases, the error probability is given by

pMLE
err = 1− pMLE

succ . (3.107)

Note that for the classical MLE error probabilities, we simply substitute n̄T (B) with the average

photon numbers of the classical return states, i.e. n̄T (B)|1− τ |.

This quantity can be easily numerically calculated. Using this semi-analytic benchmark, we

can show a quantum advantage with a lower value of M than is required for the condition in

Eq. (3.87) to be met. This is demonstrated in Fig. 3.8. It is also useful as it is based on a protocol

that can be easily implemented.

The scaling of the MLE error with the number of subsystems is of interest. We can upper

bound the error in the case of m subsystems in terms of the success probability for 2 subsystems,

which we will call pMLE
succ,2. The error probability for m subsystems then obeys the inequality

pMLE
err,m ≤ 1− (pMLE

succ,2)m−1 = 1−
(
1− pMLE

err,2

)m−1
, (3.108)

since the target channel having a higher photon count than one background channel cannot de-

crease the probability that it will have a higher photon count than a different background channel.

In fact, this bound is an overestimate for any m > 2, since the conditional probability that the

target channel has a higher photon count than one background channel, given that it has a higher

photon count than a different background channel, is more than pMLE
succ,2. This can be understood

by considering the iid outcomes of 3 (6-sided) dice rolls denoted a, b and c. The probability that

a > b is the same as the probability that a > c and is equal to 5
12 , however the probability that

a > c given that a > b is more than 5
12 , since the condition makes it less likely that a is a small
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number and more likely that a is a large number. Expanding the inequality in Eq. (3.108) to the

first order in pMLE
err,2 , we get

pMLE
err,m ≤ (m− 1)pMLE

err,2 . (3.109)

This inequality is strict form > 2. This means that the MLE error scales more slowly withm than

the upper bound in Eq. (3.57), which is based on the PGM. However, for some sets of channel

parameters, the upper bound in Eq. (3.109) can be close to the actual value of pMLE
err,m.

It is also of note that, whilst the bounds based on the fidelity are symmetric under the exchange

of νT and νB , the MLE bound is not (for more than two subsystems). Thus, using this protocol in

one of our applications, we may achieve a different error probability for finding a single cold pixel

in a hot background than for finding a single hot pixel in a cold background.

3.3.6 Applications of the bounds

Let us consider some physical applications of these bounds. One possible scenario in which one

may need to discriminate between various channels with the same transmissivity is thermal imag-

ing. The sequence of channels could represent a sequence of pixels that is being probed with

microwave or infrared radiation, where we know that one pixel is hotter (or colder) than its sur-

roundings and want to know its location. Alternatively, we could be imaging a surface with a

microscope and want to find the frequency at which a source on the surface is emitting radia-

tion. The different channels would then represent different frequencies. These tasks can both be

modelled as a CPF task over a sequence of thermal loss channels with the same transmissivity.

In Fig. 3.8, we consider an imaging task, in which a colder pixel must be located from a se-

quence of 9 pixels, each of which has an area, A, of 4000 µm2. We consider a case in which

imaging is carried out in the microwave range (with a wavelength of 1 mm), with high transmis-

sivity, a background temperature of ∼ − 0.39°C and a target temperature of ∼ − 25.59°C. We

assume that our detectors are very close to the pixels and that our imaging pulses have a time du-

ration, t, of 100 ns. We also assume that the pulses are transform-limited (meaning that they have

the minimum possible time-bandwidth product) and so set the bandwidth of detection to 2.5 MHz.

This is in line with the fact that a transform-limited pulse has a time-bandwidth product (in terms

of the variances) of 1
4 [104].

We find the mean photon numbers by calculating the induced noise, which is independent of

the transmissivity. Planck’s law states that the spectral radiance of a black body, at a frequency f ,
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3.3 Optimal environment localisation

Figure 3.8: Error probability in decibels (dB), 10 log10(perr), as a function of the number of the

probes per pixel, for a thermal imaging task in which a sequence of m = 9 pixels, each of area

4000 µm2, is probed using microwaves (with wavelength 1 mm). The transmissivity of each pixel

is 0.99 and the goal is finding the one pixel at temperature 247.56 K (−25.59°C, εT = 21) in a

background of pixels at temperature 272.76 K (−0.39°C, εB = 23.2). Lower and upper bounds

on the error probability are given for general quantum protocols (labelled “quantum LB” and

“quantum UB”) and a lower bound on the error is given for classical protocols (labelled “classical

LB”), for differing numbers of states sent through the channels (probes). Benchmarks based on

the MLE are also shown for both the quantum and the classical cases (labelled “quantum MLE”

and “classical MLE”). For the quantum upper bound, we use the expression in Eq. (3.72). For a

large number of probes (in this case, greater than or equal to 1854), the upper bound on the error of

quantum protocols is smaller than the lower bound on the error of classical protocols, proving we

have a quantum advantage (in the darker shaded area). However, a much smaller number of probes

(396) is required for the bound based on the MLE in the quantum case to beat the classical lower

bound, and hence we are able to show a quantum advantage for any number of probes greater than

395 (in the lighter shaded area).

is given by

R(f, T ) =
2hf3

c2(e
hf
kT − 1)

, (3.110)

where c is the speed of light, h is Planck’s constant, k is the Boltzmann constant, and T is the

temperature of the pixel. By dividing R by hf , we obtain the number of photons emitted per unit

time, per unit area of the pixel into an infinitesimal frequency range and into a unit solid angle.
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3.3 Optimal environment localisation

We must then integrate R
hf over the bandwidth of the detector and multiply it by the duration of

the imaging pulse, t, the solid angle over which the detector collects photons, ω, and the area of

the pixels, A, in order to obtain the induced noise, ν. We therefore write

νB/T = Aωt

ˆ fmax

fmin

2f2

c2(e
hf

kTB/T − 1)

df, (3.111)

where TB/T is the temperature of the background/target pixel and fmin/max is the

minimum/maximum frequency in our frequency range. We set ω = 2π (i.e. we assume that

the detector collects all light emitted in one hemisphere normal to the surface of the pixel). This

is justified by our assumption that the detector is close to the pixels. If the detector were further

away, we could adjust ω accordingly (and may have to reduce the transmissivity, τ ). Dividing νB

and νT by |1− τ | gives the values of εB and εT respectively.

Note that, for the bounds based on fidelity, swapping εT and εB does not affect the calculations,

so these would be the same if the task were to find a target pixel at temperature −0.39°C in a

background of pixels at −25.59°C. This is not the case for the benchmark based on the MLE.

From Fig. 3.8, we see that we can prove a quantum advantage for a large number of channel uses

(probes). We also see that the (quantum) MLE bound enables us to show a quantum advantage at

a much lower value of M than the fidelity-based quantum upper bound.

Before considering the next example, it is also worth noting that it is likely that the classical

lower bound (blue dashed) in Fig. 3.8 is not tight, since we see a gap between it and the classical

MLE performance (green dashed). Therefore quantum advantage is likely to hold for any number

of probes, since we see that the quantum MLE (green solid) beats the classical MLE (green dashed)

for any number of probes. A future study might be able to prove such a quantum advantage.

Another scenario in which one may wish to discriminate between thermal loss channels with

different noises could arise in quantum communications. One may know that one of a sequence

of communications lines has a higher excess noise than the others, perhaps due to the presence of

an eavesdropper, and may wish to localise the eavesdropper by finding the channel with the higher

excess noise.

This scenario is illustrated in Fig. 3.9, where we consider transmission over communication

lines with a loss of 10 dB. Excess noise is expressed in dimensionless vacuum noise units and

is defined in terms of the transmissivity and the thermal number of the channel as ε = τ−1(1 −

τ)n̄ [20]. We consider background excess noises of 0.01 and an excess noise for the eavesdropper

of 0.1. In this case, we cannot prove a quantum advantage, although the quantum lower bound is

lower than the classical lower bound. This is in accordance with the fact that we cannot meet the
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Figure 3.9: Error probability in decibels versus number of probes per communication line for the

problem of eavesdropper localisation. We consider a transmissivity of 0.1, corresponding to a

loss of 10 dB. The background channels have an excess noise of 0.01, whilst the channel with

the eavesdropper has an excess noise of 0.1. Lower and upper bounds on the error probability

are given for general quantum protocols (labelled “quantum LB” and “quantum UB”) and a lower

bound on the error is given for classical protocols (labelled “classical LB”). Benchmarks based on

the MLE are shown for both the quantum and the classical cases (labelled “quantum MLE” and

“classical MLE”). In this case, the quantum upper bound never goes below the classical upper

bound, so we are not able to prove a quantum advantage.

condition in Eq. (3.88) with any channel ensemble that has τ ≤ 1
2 . The quantum MLE benchmark

is also lower than the classical MLE benchmark, but does not go below the classical lower bound.

This is again likely to be caused by the classical lower bound not being tight.

Another possibility is that we could have a multi-mode cable with multiple frequency channels

and wish to find a channel with lower noise than the others. This is another case of discrimination

between a sequence of thermal loss channels with different noises. If the transmissivity is high

enough (for instance, for a short-range cable) we could potentially also model this scenario as a

sequence of additive noise channels.

Fig. 3.10 illustrates this situation. We consider a sequence of 100 additive noise channels and

want to find the channel with the lower induced noise. The background channels have an induced

noise of 0.03 and the target channel has an induced noise of 0.01. We can show a quantum

advantage for a number of probes greater than or equal to 20. Note that, whilst we can provide
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Figure 3.10: Error probability in decibels versus number of probes per channel for the problem

of additive noise localisation. We want to find the channel with the lower induced noise from

a sequence of 100 additive-noise channels. The background channels have an induced noise of

0.03, whilst the target channel has an induced noise of 0.01. Lower and upper bounds on the

error probability are given for general quantum protocols (labelled “quantum LB” and “quantum

UB”) and a lower bound on the error is given for classical protocols (labelled “classical LB”). The

benchmark based on the MLE is shown for the classical case (labelled “classical MLE”). For a

number of probes greater than or equal to 20, the upper bound on the error of quantum protocols

is smaller than the lower bound on the error of classical protocols, proving we have a quantum

advantage (in the shaded area).

a classical benchmark based on the MLE, we cannot provide a quantum MLE benchmark in the

additive noise case. This is due to the fact that the squeezing parameter in Eq. (3.93) diverges as

τ → 1, meaning that the protocol shown in Fig. 3.7 cannot be enacted in the additive noise case.

3.4 Summary

In this chapter, we considered the task of CPF, both on a sequence of pure loss channels and on a

sequence of phase-insensitive Gaussian channels with fixed transmissivity (environment localisa-

tion).

In the pure loss case, we found the output fidelity for an idler-free protocol. The protocol is

assumed to be one-shot in this work, but could be trivially extended to the M -round case by tak-

ing the M -th power of the calculated fidelity. We showed that such a protocol has a lower output
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fidelity than the classical (coherent state) protocol over some parameter ranges. This means that it

could be a viable alternative to the bipartite entangled protocol for technologically limited scenar-

ios in which we do not have access to a quantum memory. We also investigated the behaviour of

the output fidelities of the three different types of protocol.

In the environment localisation case, we calculated the minimum output fidelities for thermal

loss, thermal amplifier, and additive noise channels and used them to establish upper and lower

bounds on the error probability of discrimination. These bounds hold for the most general adaptive

protocols. We then calculated the minimum output fidelity for a classical protocol and so found

a region in which we could show a quantum advantage. We also considered a specific protocol

involving a photon counting measurement followed by a maximum-likelihood estimation, which

allowed us to numerically tighten the upper bound on the error probability. The bounds were

then applied to a range of scenarios, as a demonstration. We therefore proved that there exist

quantum protocols that are advantageous over all classical protocols for a variety of environment

localisation tasks, and detailed a specific quantum protocol that achieves a lower error probability

than any classical CPF protocol, for certain channel ensembles.

A possible extension to this work would be formulating bounds on the related task of quantum

pattern recognition [105, 106]. In this scenario, there may be multiple target channels or there

could be multiple different types of background channel.
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Chapter 4

Characterising qubit port-based

teleportation

The work in this chapter forms the basis of a paper that has been accepted for publication in

Journal of Physics A: Mathematical and Theoretical, whose authors are (in order) Jason Pereira,

Leonardo Banchi, and Stefano Pirandola [11].

The calculation in Subsection 4.2.5 was used to strengthen a result in the paper “Fundamen-

tal limits to quantum channel discrimination”, whose authors are (in order) Stefano Pirandola,

Riccardo Laurenza, Cosmo Lupo, and Jason Pereira.

We start this chapter by introducing port-based teleportation (PBT) and discussing its use-

fulness for channel simulation. We then calculate the Choi matrix (and Kraus operators) of the

quantum channel simulated by qubit PBT with a given resource state (and using the square-root

measurement). We also give simplified expressions for the two port case. We use the formulae

to calculate the depolarising probability of a PBT channel using maximally entangled states as

a resource. After this, we characterise the PBT process itself, by finding the Kraus operators of

the channel mapping a resource state to the output Choi matrix for PBT using that resource state.

Next, we apply the formulae to resources that can simulate the amplitude damping (AD) channel

and present new classes of resource states that can simulate it better than using multiple copies of

the Choi matrix of the simulated channel. Finally, we summarise our findings.

4.1 Introduction

Quantum teleportation [83, 107, 108] is a powerful tool in quantum information [15, 54, 55, 109–

112]. Teleportation protocols utilise entanglement between quantum states held by a sender and
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4.1 Introduction

a receiver to transmit a state. The resulting quantum channel, which maps the sent state to the

received state, is determined by the protocol used and by the resource state held by the sender

and receiver prior to the protocol being enacted. Such protocols have applications in quantum

communications protocols (for example, superdense coding [15]) as well as in quantum computing

(quantum gate teleportation [113]), and they can be used as a mathematical tool for the simulation

of quantum channels [5, 6] (as mentioned in Chapter 2) and quantum networks [114, 115].

The standard teleportation protocol, as proposed by Bennett et al. [107], uses a shared (be-

tween the sender and the receiver) two-qubit state. A measurement is performed on the sender’s

qubit and the qubit to be teleported, projecting the pair of qubits onto a Bell state. Based on the

result of this measurement, one of the four Pauli operators (including the identity) is applied to

the receiver’s state. The quantum channel resulting from teleportation using this protocol depends

on the resource state used. This protocol has limitations, however, as it is only able to simulate

Pauli channels [78]. This stems from the fact that the Pauli operators, which are probabilistically

applied to the receiver’s state, do not commute with every unitary operator. The class of simulable

channels was expanded using a generalisation of the standard teleportation protocol, however this

protocol is still not capable of simulating all channels [26].

One option for a universal processor that can simulate any channel (for a large enough pro-

gram state) is the programmable quantum circuit (PQC) from Ref. [28]. Note, however, that this

is not a teleportation protocol and does not enact LOCCs. It therefore cannot be used to stretch a

key/entanglement distribution protocol (but is still an option for stretching a channel discrimina-

tion or parameter estimation protocol).

In Refs. [80,81], Ishizaka and Hiroshima introduced a new teleportation protocol, called port-

based teleportation (PBT). We consider the qubit version of this protocol. In the protocol, the

sender and receiver each hold part of a resource state. Each qubit held by the receiver corresponds

to a qubit held by the sender, and this shared two-qubit state is referred to as a port. In the standard

case introduced by Ishizaka and Hiroshima, each port is an identical Bell pair. Then, a joint

measurement is carried out on the sender’s states and the qubit to be teleported; the result of this

measurement is transmitted to the receiver, and based on this result, the receiver selects one of the

ports and traces out the others. This measurement is chosen to be the square-root measurement,

which projects the qubit to be teleported and one of the sender’s resource qubits onto a Bell pair.

Ishizaki and Hiroshima were able to simplify the calculation of the entanglement fidelity of the

teleportation channel by representing the qubits held by the sender as a system of spins.

For a finite number of ports N , the input-output channel from this protocol is a depolarising
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4.2 Finding the qubit PBT channel for an arbitrary resource

channel. The diamond norm between this channel and the identity channel decreases to zero in the

limit of N →∞. Consequently, in the asymptotic limit, PBT can perfectly simulate any quantum

channel, due to the fact that the only post-processing required is the selection of the correct port

(which commutes with every channel). In Ref. [2], Pirandola et al. took advantage of this fact to

formulate bounds on the error probability of general adaptive discrimination protocols acting on

any pair of quantum channels.

In a more general setting, one can replace the original Bell pairs of the PBT protocol with

any two-qubit state, and we may even allow entanglement between the ports. Doing so results

in the simulation of channels other than the depolarising channel. An explicit characterisation of

the qubit channel given by enacting PBT using a given resource state is of interest in quantum

information science. If we know the input-output relations for the PBT protocol, we can calculate

analytical expressions for the PBT output for any input state and resource state. Such expressions

could be used to improve channel bounds based on channel simulation.

4.2 Finding the qubit PBT channel for an arbitrary resource

4.2.1 Calculating the elements of the channel’s Choi matrix

We consider an N -port qubit PBT protocol. We call the sender’s part of the resource state the A

modes and the receiver’s part of the resource state the B modes. In order to characterise the chan-

nel simulated by PBT using a given resource state, we calculate the Choi matrix for that channel.

To do so, we consider a maximally entangled 2-mode state,
∣∣ΦBell

〉
C0C1

= 1√
2

(|00〉+ |11〉). C0

denotes the idler mode and C1 denotes the signal mode. The measurement consists of a POVM

described by the operators Ôi = Πi,AC1 ⊗ IBC0 , where i = 1, . . . , N . We consider the case in

which the Πis describe a square-root measurement. Given a certain measurement result i, Bob

assumes that the state is teleported to the i-th mode Bi and discards all the other ports via a partial

trace applied to all Bj with j 6= i, all the A modes and C1.

We assume that each port is symmetric under permutation of labels, i.e. that a swap operation

that swaps both ports Ai and Aj and ports Bi and Bj does not change the density matrix of the

resource state. This does not mean that the ports have to be independent of each other; it is still

possible for the A modes (or the B modes or both) to have some entanglement with each other.

Consequently, all measurement outcomes are equally likely and all outcomes result in the same

channel for the teleported state. We can therefore assume that the state is teleported to the first B

port without loss of generality and so only consider one operator. We can justify this assumption as
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4.2 Finding the qubit PBT channel for an arbitrary resource

it is simple to show that, for any non-symmetric resource state φ, there exists a symmetric resource

state φsym that gives precisely the same channel [116].

Defining Pπ as the qubit channel resulting from PBT using the program state π, we write

PπAB (ρC1) =
N∑
i=1

TrAB̄iC1

[(√
ΠiAC1

⊗ IB
)

(πAB ⊗ ρC1)
(√

ΠiAC1
⊗ IB

)†]
, (4.1)

where Bi is the port to which the state is teleported, B̄i denotes all ports except for Bi and Πi is

the measurement operator applied to teleport the state to port i. Applying the symmetry condition,

each value of i gives the same output state, so we can carry out the sum and write

PπAB (ρC1) = NTrAB̄1C1

[(√
Π1AC1

⊗ IB
)

(πAB ⊗ ρC1)
(√

Π1AC1
⊗ IB

)†]
. (4.2)

The Choi matrix of this channel is then given by

IC0 ⊗ PπAB
(∣∣∣ΦBell

〉〈
ΦBell

∣∣∣
C1C0

)
. (4.3)

For simplicity, let us initially consider what happens to a teleported arbitrary state ρC1 (i.e.

temporarily ignore the idler mode). Using the fact that the operator enacts the identity on the B

modes, we can take the trace on the B̄ modes prior to the action of the operator. This allows us the

simplification

PπAB (ρC1) = NTrAC1

[(√
Π1AC1

⊗ IB1

)
TrB̄1

[πAB ⊗ ρC1 ]
(√

Π1AC1
⊗ IB1

)†]
. (4.4)

We denote the matrix representation of PπAB (ρC1) as Vout. We can then write

Vout =

V 00
out V 01

out

V 10
out V 11

out

 , (4.5)

V ij
out = 〈i|PπAB (ρC1)|j〉

= N

〈
i

∣∣∣∣TrAC1

[(√
Π1AC1

⊗ IB1

)
TrB̄1

[πAB ⊗ ρC1 ]
(√

Π1AC1
⊗ IB1

)†]∣∣∣∣j〉 . (4.6)

Again using the fact that we enact the identity on the B modes, we can take the contraction over

the mode B1 within the operation, arriving at

V ij
out = NTr

[√
Π1AC1

〈
i
∣∣TrB̄1

[πAB ⊗ ρC1 ]
∣∣j〉√Π1

†
AC1

]
(4.7)

= NTr
[
Π1

〈
i
∣∣TrB̄1

[πAB ⊗ ρC1 ]
∣∣j〉] , (4.8)

where we have used the cyclic invariance of the trace and the fact that Π1 is a hermitian operator.

In the second line and henceforth, we neglect the subscripts on Π1. We now define Ri+1,j+1 =
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4.2 Finding the qubit PBT channel for an arbitrary resource

〈i|B1TrB̄1
[πAB]|j〉B1 (the +1 is so that the labels run from 1 to 2 rather than from 0 to 1). Using

this, we can simplify the expression for Vout to

Vout = N

Tr[Π1(R11 ⊗ ρC1)] Tr[Π1(R12 ⊗ ρC1)]

Tr[Π1(R21 ⊗ ρC1)] Tr[Π1(R22 ⊗ ρC1)]

 . (4.9)

Returning to considering the Choi matrix, C, we can use this simplification to write

C =
N

2


χ11

00 χ12
00 χ11

01 χ12
01

χ21
00 χ22

00 χ21
01 χ22

01

χ11
10 χ12

10 χ11
11 χ12

11

χ21
10 χ22

10 χ21
11 χ22

11

 , (4.10)

χijmn = Tr[Π1(Rij ⊗ |m〉 〈n|C1
)]. (4.11)

It is worth noting that the Choi matrix is a valid density matrix, so we need only find expres-

sions for the terms on or above the main diagonal. It is also worth noting that R11 and R22 are

(unnormalised) density matrices, whilst R12 and R21 are not, in general.

4.2.2 Simplifying by representing the qubits as a system of spins

Let us now consider the structure of the measurement Π1, in a similar way to the analysis in

Ref. [81]. Π1 is a square-root measurement and can be linearly decomposed as Π1 = ρ−
1
2σ1ρ

− 1
2 +

1
N (I − ρ−

1
2 ρρ−

1
2 ), where σi is the projector onto the Bell pair 1√

2
(|01〉 − |10〉) between qubit C

and the ith qubit in the sender’s resource state (note that it is a different Bell pair from
∣∣ΦBell

〉
, the

Bell pair we used to define the Choi matrix) and ρ =
∑N

i=1 σi, as defined in Ref. [81]. Note that

the powers of ρ are taken over its support. Let us call the first term in this linear decompositionM1

and call the second term M2; we then have Π1 = M1 + M2. Ishizaka and Hiroshima found that

the eigenvalues of ρ take one of two possible forms: λ−j = 1
2

(
N
2 − j

)
or λ+

j = 1
2

(
N
2 + j + 1

)
(these expressions differ slightly from those given in Ref. [81], using a pre-factor of 1

2 rather than
1

2N
; this is purely due to defining σi slightly differently). The two types of eigenvalues correspond
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to two types of eigenvectors:∣∣∣Ψ(λ∓j ,m, α)
〉

= Ξ±−(j,m+
1

2
)

∣∣∣∣Φ[N ](j,m+
1

2
, α)

〉
A

|0〉C

+ Ξ±+(j,m− 1

2
)

∣∣∣∣Φ[N ](j,m− 1

2
, α)

〉
A

|1〉C ,
(4.12)

Ξ++(j,m) =

〈
j,m,

1

2
,
1

2

∣∣∣∣j +
1

2
,m+

1

2

〉
,Ξ+−(j,m) =

〈
j,m,

1

2
,−1

2

∣∣∣∣j +
1

2
,m− 1

2

〉
,

Ξ−+(j,m) =

〈
j,m,

1

2
,
1

2

∣∣∣∣j − 1

2
,m+

1

2

〉
,Ξ−−(j,m) =

〈
j,m,

1

2
,−1

2

∣∣∣∣j − 1

2
,m− 1

2

〉
,

(4.13)

where Ξ±±(j,m) represents a Clebsch-Gordan coefficient, with the first superscripted sign de-

termining whether j increases or decreases by 1
2 and the second superscripted sign determin-

ing whether m increases or decreases by 1
2 . Note that 〈j,m, 1

2 ,±
1
2 |J,M〉 = 0 if |M | > J or

m± 1
2 6= M .

Ishizaka and Hiroshima treat the qubits as spins and hence treat the state AC as a combination

of an N -spin system and a spin singlet;
∣∣∣Φ[N ](λ∓j ,m, α)

〉
then gives the orthogonal basis vectors

of an N -spin system. j corresponds to the magnitude of the spin of the resource state; this is

a positive integer or half-integer with minimum value 0 (1
2 ) when N is even (odd). We call the

magnitude of the total spin (of the A and C modes) s; s has a maximum value of N+1
2 , which

occurs when every spin is aligned (all qubits in AC are 0 or all are 1). m corresponds to the spin

of the total system in the z-direction. For fixed s, m runs from −s to s. The eigenvectors with

eigenvalues λ−j correspond to those states in which the total spin magnitude of the system AC

is the sum of the spin magnitudes of the systems A and C (i.e. the A qubits have total spin j,

the C qubit has total spin 1
2 , so the system AC has total spin j + 1

2 ) and the eigenvectors with

eigenvalues λ+
j correspond to states in which the spins subtract (i.e. the A qubits have total spin

j, the C qubit has total spin 1
2 , so the system AC has total spin j − 1

2 ). Consequently, for fixed s,

we have eigenvalues λ−j with j taking values up to s− 1
2 and eigenvalues λ+

j with j taking values

up to s + 1
2 (we also cannot have λ+

0 , since this would require the A qubits to have negative total

spin). For some values of j, multiple states
∣∣∣Φ[N ](λ∓j ,m)

〉
exist (i.e. j and m do not uniquely

define a basis vector); in this case, we label the different states with α, which runs from 1 to the

degeneracy of the j-value, γ(N, j), (which depends only on N and j, not on m). The degeneracy

is given by

γ(N, j) =
(2j + 1)N !(

N
2 − j

)
!
(
N
2 + j + 1

)
!
. (4.14)

Ishizaka and Hiroshima then divide the vectors in the N -spin basis into two types, based on

how they are constructed from the (N − 1)-spin basis; these are labelled
∣∣∣Φ[N ]

I (j,m, α)
〉

and
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4.2 Finding the qubit PBT channel for an arbitrary resource∣∣∣Φ[N ]
II (j,m, α)

〉
. The eigenvectors of ρ constructed using these basis vectors are then labelled∣∣∣ΨI(λ

∓
j ,m, α)

〉
and

∣∣∣ΨII(λ
∓
j ,m, α)

〉
. This categorisation is useful, because we can express ρ

and M1 in terms of these vectors. The N -spin vectors are constructed as∣∣∣Φ[N ]
I (j,m, α)

〉
= Ξ−−(j +

1

2
,m+

1

2
)

∣∣∣∣Φ[N−1](j +
1

2
,m+

1

2
, α)

〉
Ā

|0〉A1

+ Ξ−+(j +
1

2
,m− 1

2
)

∣∣∣∣Φ[N−1](j +
1

2
,m− 1

2
, α)

〉
Ā

|1〉A1
,

(4.15)

∣∣∣Φ[N ]
II (j,m, α)

〉
= Ξ+−(j − 1

2
,m+

1

2
)

∣∣∣∣Φ[N−1](j − 1

2
,m+

1

2
, α)

〉
Ā

|0〉A1

+ Ξ++(j − 1

2
,m− 1

2
)

∣∣∣∣Φ[N−1](j − 1

2
,m− 1

2
, α)

〉
Ā

|1〉A1
,

(4.16)

and the eigenvectors of ρ are constructed as∣∣∣ΨI(λ
∓
j ,m, α)

〉
= Ξ−−(j +

1

2
,m+ 1)Ξ±−(j,m+

1

2
)

∣∣∣∣Φ[N−1](j +
1

2
,m+ 1, α)

〉
Ā

|00〉A1C

+ Ξ−+(j +
1

2
,m)Ξ±−(j,m+

1

2
)

∣∣∣∣Φ[N−1](j +
1

2
,m, α)

〉
Ā

|10〉A1C

+ Ξ−−(j +
1

2
,m)Ξ±+(j,m− 1

2
)

∣∣∣∣Φ[N−1](j +
1

2
,m, α)

〉
Ā

|01〉A1C

+ Ξ−+(j +
1

2
,m− 1)Ξ±+(j,m− 1

2
)

∣∣∣∣Φ[N−1](j +
1

2
,m− 1, α)

〉
Ā

|11〉A1C
,

(4.17)

∣∣∣ΨII(λ
∓
j ,m, α)

〉
= Ξ+−(j − 1

2
,m+ 1)Ξ±−(j,m+

1

2
)

∣∣∣∣Φ[N−1](j − 1

2
,m+ 1, α)

〉
Ā

|00〉A1C

+ Ξ++(j − 1

2
,m)Ξ±−(j,m+

1

2
)

∣∣∣∣Φ[N−1](j − 1

2
,m, α)

〉
Ā

|10〉A1C

+ Ξ+−(j − 1

2
,m)Ξ±+(j,m− 1

2
)

∣∣∣∣Φ[N−1](j − 1

2
,m, α)

〉
Ā

|01〉A1C

+ Ξ++(j − 1

2
,m− 1)Ξ±+(j,m− 1

2
)

∣∣∣∣Φ[N−1](j − 1

2
,m− 1, α)

〉
Ā

|11〉A1C
.

(4.18)

These explicit expressions will be useful later.
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First, we write ρ as a sum of projectors,

ρ =

N+1
2∑

s=smin

[
λ−
s− 1

2

s∑
m=−s

∑
α

(∣∣∣∣ΨI(λ
−
s− 1

2

,m, α)

〉〈
ΨI(λ

−
s− 1

2

,m, α)

∣∣∣∣+∣∣∣∣ΨII(λ
−
s− 1

2

,m, α)

〉〈
ΨII(λ

−
s− 1

2

,m, α)

∣∣∣∣
)

+

λ+
s+ 1

2

s∑
m=−s

∑
α

(∣∣∣∣ΨI(λ
+
s+ 1

2

,m, α)

〉〈
ΨI(λ

+
s+ 1

2

,m, α)

∣∣∣∣+∣∣∣∣ΨII(λ
+
s+ 1

2

,m, α)

〉〈
ΨII(λ

+
s+ 1

2

,m, α)

∣∣∣∣
)]

.

(4.19)

We then write ρ−
1
2 in the same way, getting

ρ−
1
2 =

N+1
2∑

s=smin

[
(λ−
s− 1

2

)−
1
2

s∑
m=−s

∑
α

(∣∣∣∣ΨI(λ
−
s− 1

2

,m, α)

〉〈
ΨI(λ

−
s− 1

2

,m, α)

∣∣∣∣+∣∣∣∣ΨII(λ
−
s− 1

2

,m, α)

〉〈
ΨII(λ

−
s− 1

2

,m, α)

∣∣∣∣
)

+

(λ+
s+ 1

2

)−
1
2

s∑
m=−s

∑
α

(∣∣∣∣ΨI(λ
+
s+ 1

2

,m, α)

〉〈
ΨI(λ

+
s+ 1

2

,m, α)

∣∣∣∣+∣∣∣∣ΨII(λ
+
s+ 1

2

,m, α)

〉〈
ΨII(λ

+
s+ 1

2

,m, α)

∣∣∣∣
)]

.

(4.20)

The above expression is taken only over the support of ρ; some of the eigenvectors have an eigen-

value of 0, and we leave these out of the sum. From the form of the eigenvalues, we can see

that they are all positive definite except for in the case where j = N
2 . The eigenvalue λ−N

2

= 0.

The corresponding eigenvectors,
∣∣∣∣ΨII(λ

−
N
2

,m, α)

〉
, define the vector space that is not part of the

support of ρ and hence the sum of the corresponding projectors gives us M2 (since ρ−
1
2 ρρ−

1
2 is

the identity over the support of ρ). Note that there is no
∣∣∣∣ΨI(λ

−
N
2

,m, α)

〉
vector, since this would

require basis vectors of the (N − 1)-spin subsystem with j = N+1
2 to exist. We can write the

expression for M2,

M2 =
1

N

N+1
2∑

m=−N+1
2

∑
α

∣∣∣∣ΨII(λ
−
N
2

,m, α)

〉〈
ΨII(λ

−
N
2

,m, α)

∣∣∣∣ . (4.21)

We now want to find the form of M1 = ρ−
1
2σ1ρ

− 1
2 . We express σ1 as

σ1 =
1

2
(|01〉 − |10〉)(〈01| − 〈10|)A1C

⊗

N−1
2∑

j=jmin

j∑
m=−j

∑
α

∣∣∣Φ[N−1](j,m, α)
〉〈

Φ[N−1](j,m, α)
∣∣∣
Ā
.

(4.22)
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We then want to find 1√
2
(〈01|− 〈10|)A1C

∣∣∣∣ΨI(II)(λ
∓
s∓ 1

2

,m, α)

〉
AC

; this will allow us to calculate

ρ−
1
2σ1ρ

− 1
2 . Ishizaka and Hiroshima calculated these using the expressions in Eqs. (4.17) and

(4.18) (and the explicit form of the Clebsch-Gordan coefficients), finding

1√
2

(〈01| − 〈10|)A1C

∣∣∣∣ΨI(λ
−
s− 1

2

,m, α)

〉
AC

=

√
s

2s+ 1

∣∣∣Φ[N−1](s,m, α)
〉
Ā
, (4.23)

1√
2

(〈01| − 〈10|)A1C

∣∣∣∣ΨI(λ
+
s+ 1

2

,m, α)

〉
AC

= 0, (4.24)

1√
2

(〈01| − 〈10|)A1C

∣∣∣∣ΨII(λ
−
s− 1

2

,m, α)

〉
AC

= 0, (4.25)

1√
2

(〈01| − 〈10|)A1C

∣∣∣∣ΨII(λ
+
s+ 1

2

,m, α)

〉
AC

= −
√

s+ 1

2s+ 1

∣∣∣Φ[N−1](s,m, α)
〉
Ā
. (4.26)

Combining our expressions for ρ−
1
2 and σ1 and Eqs. (4.23) to (4.26), we find that M1 takes the

form

M1 =

N−1
2∑

s=smin

s∑
m=−s

∑
α

[
(λ−
s− 1

2

)−1 s

2s+ 1

∣∣∣∣ΨI(λ
−
s− 1

2

,m, α)

〉〈
ΨI(λ

−
s− 1

2

,m, α)

∣∣∣∣
− (λ−

s− 1
2

λ+
s+ 1

2

)−
1
2

√
s(s+ 1)

2s+ 1

(∣∣∣∣ΨI(λ
−
s− 1

2

,m, α)

〉〈
ΨII(λ

+
s+ 1

2

,m, α)

∣∣∣∣
+

∣∣∣∣ΨII(λ
+
s+ 1

2

,m, α)

〉〈
ΨI(λ

−
s− 1

2

,m, α)

∣∣∣∣
)

+(λ+
s+ 1

2

)−1 s+ 1

2s+ 1

∣∣∣∣ΨII(λ
+
s+ 1

2

,m, α)

〉〈
ΨII(λ

+
s+ 1

2

,m, α)

∣∣∣∣] .

(4.27)

We have summed s from smin to N−1
2 , rather than to N+1

2 , since λ−N
2

= 0 and the vector∣∣∣∣Ψ(λ+
N
2

+1
,m, α)

〉
does not exist.

We now calculate
〈

0

∣∣∣∣ΨI(λ
∓
s∓ 1

2

,m, α)

〉
,
〈

0

∣∣∣∣ΨII(λ
∓
s∓ 1

2

,m, α)

〉
,
〈

1

∣∣∣∣ΨI(λ
∓
s∓ 1

2

,m, α)

〉
and〈

1

∣∣∣∣ΨII(λ
∓
s∓ 1

2

,m, α)

〉
(where the contraction is over the C qubit). Using the expressions in

Eqs. (4.17) and (4.18) and substituting in the explicit form of the Clebsch-Gordan coefficients [81],

we calculate〈
0

∣∣∣∣ΨI(II)(λ
−
s− 1

2

,m, α)

〉
=

√
1

2
− m

2s

∣∣∣∣Φ[N ]
I(II)(s−

1

2
,m+

1

2
, α)

〉
A

, (4.28)〈
1

∣∣∣∣ΨI(II)(λ
−
s− 1

2

,m, α)

〉
=

√
1

2
+
m

2s

∣∣∣∣Φ[N ]
I(II)(s−

1

2
,m− 1

2
, α)

〉
A

, (4.29)〈
0

∣∣∣∣ΨI(II)(λ
+
s+ 1

2

,m, α)

〉
=

√
1

2
+

m

2(s+ 1)

∣∣∣∣Φ[N ]
I(II)(s+

1

2
,m+

1

2
, α)

〉
A

, (4.30)

〈
1

∣∣∣∣ΨI(II)(λ
+
s+ 1

2

,m, α)

〉
= −

√
1

2
− m

2(s+ 1)

∣∣∣∣Φ[N ]
I(II)(s+

1

2
,m− 1

2
, α)

〉
A

. (4.31)
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We now have enough to start calculating the components of the Choi matrix. As an ex-

ample, let us consider the top-left component, χ11
00. We are given R11, R12 and R22 as the

specification of the resource state. Let us demand that these are given in the N -spin basis (the∣∣∣Φ[N ]
I(II)(j,m, α)

〉
basis). In order to make it clear which components of the resource state we

are referring to without choosing some specific matrix representation, we define the function f11
I,I

such that f11
I,I(j1,m1, α1, j2,m2, α2) is the coefficient of

∣∣∣Φ[N ]
I (j1,m1, α1)

〉〈
Φ

[N ]
I (j2,m2, α2)

∣∣∣
in R11. We similarly define f11

I,II , f11
II,I and f11

II,II , and similar functions for R12, R21 and R22.

These functions are simply a way of specifying the resource state. Together, R11, R12 and R22

give the resource state after tracing over all but oneB mode. With our assumption that the resource

state is unchanged by a swap operation between two ports, this is sufficient to specify the resource

state.

We then calculate contributions to the Choi matrix from M1 and M2, using the expressions in

Eq. (4.27), Eq. (4.21), and Eqs. (4.28) to (4.31). Recall that M1 acts on the support of ρ and M2

acts on the part of the resource state that is not on the support of ρ. The contribution to χ11
00 from

M1 is

Tr[M1(R11 ⊗ |0〉 〈0|C1
)] =

N−1
2∑

s=smin

s∑
m=−s

∑
α

[
q2
−f

11
I,I(s−

1

2
,m+

1

2
, α, s− 1

2
,m+

1

2
, α)

− q−r+

(
f11
I,II(s−

1

2
,m+

1

2
, α, s+

1

2
,m+

1

2
, α)

+f11
II,I(s+

1

2
,m+

1

2
, α, s− 1

2
,m+

1

2
, α)

)
+r2

+f
11
II,II(s+

1

2
,m+

1

2
, α, s+

1

2
,m+

1

2
, α)

]
,

(4.32)

q± =

√
2(s±m)

(N + 1− 2s)(2s+ 1)
, (4.33)

r± =

√
2(s±m+ 1)

(N + 3 + 2s)(2s+ 1)
, (4.34)

where we have used the explicit form of the eigenvalues. The contribution to χ11
00 from M2 is

Tr[M2(R11 ⊗ |0〉 〈0|C1
)] =

1

N

N+1
2∑

m=−N+1
2

(
1

2
− m

N + 1
)f11
II,II(

N

2
,m+

1

2
, 1,

N

2
,m+

1

2
, 1).

(4.35)

We do not need to sum over α, since there is no degeneracy in the states we sum over. By adding

these two contributions and multiplying by N
2 (as per Eq. (4.10)), we get the top-left component
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of the Choi matrix. We call this component C11. Then,

C11 =
N

2

N−1
2∑

s=smin

s∑
m=−s

∑
α

[
q2
−f

11
I,I(s−

1

2
,m+

1

2
, α, s− 1

2
,m+

1

2
, α)

− q−r+

(
f11
I,II(s−

1

2
,m+

1

2
, α, s+

1

2
,m+

1

2
, α)

+f11
II,I(s+

1

2
,m+

1

2
, α, s− 1

2
,m+

1

2
, α)

)
+r2

+f
11
II,II(s+

1

2
,m+

1

2
, α, s+

1

2
,m+

1

2
, α)

]

+
1

2

N+1
2∑

m=−N+1
2

(
1

2
− m

N + 1
)f11
II,II(

N

2
,m+

1

2
, 1,

N

2
,m+

1

2
, 1).

(4.36)

We can express this more succinctly by defining the functions

gab [−+−+](s,m) =
∑
α

fab (s− 1

2
,m+

1

2
, α, s− 1

2
,m+

1

2
, α), (4.37)

where the index a could be “11”, “12”, “21”, or “22” and the index b could be “I, I”, “I, II”,

“II, I”, or “II, II”. Equally, the signs given as arguments to the g function can be changed (e.g.

we could have “++++” instead of “-+-+”), and in this case the signs in the f function change

accordingly. We can then express C11 as

C11 =
N

2

N−1
2∑

s=smin

s∑
m=−s

[
q2
−g

11
I,I [−+−+](s,m) + r2

+g
11
II,II [+ + ++](s,m)

−q−r+

(
g11
I,II [−+ ++](s,m) + g11

II,I [+ +−+](s,m)
)]

+
1

2

N+1
2∑

m=−N+1
2

(
1

2
− m

N + 1
)g11
II,II [−+−+](

N + 1

2
,m).

(4.38)

To get the expressions forC12 andC22, we simply replace g11 with g12 and g22 respectively in

the expression for C11. Equally, once we have the expression for C13, we can get the expressions

for C14, C23 and C24 by replacing g11 with g12, g21 and g22 respectively in the expression for

C13. Similarly, starting from the expressions for C33, we get the expressions for C34 and C44 by

replacing g11 with g12 and g22 respectively in the expression for C33. Essentially, if we divide the

Choi matrix into quarters, we only need one expression per block of four elements, and the other

expressions only require trivial modifications. We also only need the expressions for the upper

triangle of the Choi matrix, since the Choi matrix is a valid density matrix and so is hermitian. We
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give the expressions for C13 and C33 below:

C13 =
N

2

N−1
2∑

s=smin

s∑
m=−s

[
q−q+g

11
I,I [−+−−](s,m)− r−r+g

11
II,II [+ + +−](s,m)

+q−r−g
11
I,II [−+ +−](s,m)− q+r+g

11
II,I [+ +−−](s,m)

]
+

1

2

N+1
2∑

m=−N+1
2

√
1

4
−
(

m

N + 1

)2

g11
II,II [−+−−](

N + 1

2
,m),

(4.39)

C33 =
N

2

N−1
2∑

s=smin

s∑
m=−s

[
q2

+g
11
I,I [−−−−](s,m) + r2

−g
11
II,II [+−+−](s,m)

+q+r−
(
g11
I,II [−−+−](s,m) + g11

II,I [+−−−](s,m)
)]

+
1

2

N+1
2∑

m=−N+1
2

(
1

2
+

m

N + 1
)g11
II,II [−−−−](

N + 1

2
,m).

(4.40)

These are, in fact, fairly simple expressions, although quite long when written in this form. If we

impose constraints on the resource state, we can simplify the expressions.

We now have an analytical expression for the Choi matrix for any PBT qubit operation. The

only assumption made is that all ports are identical. Any channel simulable via PBT can be

simulated using a resource state of this type [116].

To show how the Choi matrix, C, is constructed from the components given, we write the fol-

lowing, where * denotes the complex conjugate and where Cij(g11 → gkl) means the expression

for Cij with all instances of g11 replaced with gkl:

C =


C11(g11) C11(g11 → g12) C13(g11) C13(g11 → g12)

C11(g11 → g12)∗ C11(g11 → g22) C13(g11 → g21) C13(g11 → g22)

C13(g11)∗ C13(g11 → g21)∗ C33(g11) C33(g11 → g12)

C13(g11 → g12)∗ C13(g11 → g22)∗ C33(g11 → g12)∗ C33(g11 → g22)

 . (4.41)

We may also wish to find the Kraus operators [99] of the qubit channel resulting from PBT

using a given resource state. This is an alternative but equivalent channel representation to the Choi

matrix. We may also wish to characterise the channel mapping from a given resource state to the

output Choi matrix of the qubit channel. This channel takes a resource state as input and outputs

the Choi matrix of the qubit channel resulting from PBT using that resource state. These Kraus

operators are rectangular (the number of qubits in the output is less than the number in the input).

They characterise the processor (i.e. the operation of carrying out a square-root measurement on

the modes AC1, followed by the selection of a B port based on the measurement outcome).
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4.2 Finding the qubit PBT channel for an arbitrary resource

4.2.3 Converting from the Choi matrix to the Kraus operators of the qubit channel

The Choi matrix holds all information about the state, but we would like to also be able to express

the channel as a set of Kraus operators [99]. We can do this using the following algorithm, starting

from the Choi matrix V .

1. Find the eigendecomposition of V and write:

V =
4∑
i=1

λi
∣∣v′i〉 〈v′i∣∣ . (4.42)

2. We then define |vi〉 =
√
λi |v′i〉, so that we can write:

V =

4∑
i=1

|vi〉 〈vi| . (4.43)

3. The (up to) four Kraus operators, labelled as Ki, are then written (in the canonical basis) as

Ki =

〈00|vi〉 〈10|vi〉

〈01|vi〉 〈11|vi〉

 (4.44)

We can verify that, if the Kraus operators constructed in this way are applied to a Bell state,

we recover the initial Choi matrix. Numerically, this algorithm is simple to implement, since we

are only finding the eigendecomposition of a 4 by 4 matrix.

An intuition about why this algorithm works can be gained by calculating the output state,

ρout, for an arbitrary input state, ρin, with no idler modes, using both the Kraus operators, Ki, and

the Choi matrix, V . Using the Kraus operator formalism, we can write

ρout =
4∑
i=1

Kiρ
inK†i . (4.45)

Using the link product formalism, which gives the output state of a channel directly from the Choi

matrix and the input state, we can write [23]

ρout = ρin
A ∗ VAB = TrA[(ρin,T

A ⊗ IB)VAB], (4.46)

where ∗ denotes the link product, T denotes the transpose, and the subscripts A and B denote the

systems on which the operators are defined. Applying the decomposition in Eq. (4.43), we can

write

ρout =

4∑
i=1

TrA[(ρin,T
A ⊗ IB) |vi〉 〈vi|AB]. (4.47)
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By direct calculation, using the expression for the Kraus operators given in Eq. (4.44), we get

Kiρ
inK†i = 〈0|A ρ

in,T
A |0〉A 〈0|A |vi〉AB 〈vi|AB |0〉A + 〈0|A ρ

in,T
A |1〉A 〈1|A |vi〉AB 〈vi|AB |0〉A

+ 〈1|A ρ
in,T
A |0〉A 〈0|A |vi〉AB 〈vi|AB |1〉A + 〈1|A ρ

in,T
A |1〉A 〈1|A |vi〉AB 〈vi|AB |1〉A .

(4.48)

Finally, we can simplify, writing

Kiρ
inK†i = TrA[(ρin,T

A ⊗ IB) |vi〉 〈vi|AB], (4.49)

and thus showing the equivalence of Eqs. (4.45) and (4.47). Hence, we demonstrate that the Kraus

operators defined by Eq. (4.44) describe the same channel as the Choi matrix V .

4.2.4 Two port PBT

As an example, suppose we only have two ports. Let us calculate the Choi matrix for this case.

We again assume that the two ports are identical under exchange of labels. The reduced re-

source states R11, R12 and R22 are then 4 by 4 matrices. We will write them in the basis:

{ 1√
2
(|10〉−|01〉), |00〉 , 1√

2
(|10〉+|01〉), |11〉}. These are the vectors {

∣∣∣Φ[2]
I (0, 0)

〉
,
∣∣∣Φ[2]

II (1,−1)
〉
,∣∣∣Φ[2]

II (1, 0)
〉
,
∣∣∣Φ[2]

II (1, 1)
〉
}. Note that there are no degenerate (j,m) combinations for two ports,

so we do not need to specify the degeneracy, α. We can therefore immediately remove the sum

over α. Since s = 1
2 is the only value of s for which either

∣∣∣Φ[2]
I (s− 1

2 ,m)
〉

or
∣∣∣Φ[2]

II (s+ 1
2 ,m)

〉
exist, we do not need to sum over s either and simply set s = 1

2 . Rij takes the form

Rij =


f ijI,I(0, 0, 0, 0) f ijI,II(0, 0, 1,−1) f ijI,II(0, 0, 1, 0) f ijI,II(0, 0, 1, 1)

f ijII,I(1,−1, 0, 0) f ijII,II(1,−1, 1,−1) f ijII,II(1,−1, 1, 0) f ijII,II(1,−1, 1, 1)

f ijII,I(1, 0, 0, 0) f ijII,II(1, 0, 1,−1) f ijII,II(1, 0, 1, 0) f ijII,II(1, 0, 1, 1)

f ijII,I(1, 1, 0, 0) f ijII,II(1, 1, 1,−1) f ijII,II(1, 1, 1, 0) f ijII,II(1, 1, 1, 1)

 ,

(4.50)

where we have excluded α from the arguments of f . We again note that R11, R12, R21 and R22

are derived from the density matrix of the full resource state by taking the trace over all B modes

except for the first B mode. In the two mode case, they can be written as

R11 = 〈0|B1 TrB2 (R) |0〉B1 , (4.51)

R12 = 〈0|B1 TrB2 (R) |1〉B1 , (4.52)

R21 = 〈1|B1 TrB2 (R) |0〉B1 , (4.53)

R22 = 〈1|B1 TrB2 (R) |1〉B1 . (4.54)
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4.2 Finding the qubit PBT channel for an arbitrary resource

The expression for C11 now reduces to

C11 =
1

2
Tr
[
R11

]
− 1

2
√

3

(
f11
I,II(0, 0, 1, 0) + f11

II,I(1, 0, 0, 0)
)
, (4.55)

where we have used

Tr
[
R11

]
= f11

I,I(0, 0, 0, 0) + f11
II,II(1,−1, 1,−1) + f11

II,II(1, 0, 1, 0) + f11
II,II(1, 1, 1, 1)

= Tr [〈0|B1R |0〉B1] .
(4.56)

The expressions for C13 and C33 reduce to

C13 =
1√
6

(
f11
I,II(0, 0, 1,−1)− f11

II,I(1, 1, 0, 0)
)
, (4.57)

C33 =
1

2
Tr
[
R11

]
+

1

2
√

3

(
f11
I,II(0, 0, 1, 0) + f11

II,I(1, 0, 0, 0)
)
. (4.58)

4.2.5 Calculating the depolarisation probability for qubit PBT with a maximally

entangled resource

PBT with a maximally entangled resource state enacts a depolarising channel [81]. Our analyt-

ical formulae for the components of the output Choi matrix give an easy way to calculate the

depolarising probability of the channel simulated by N -port PBT.

The Choi matrix of a depolarising channel is

Cdep =


1
2 −

ξ
4 0 0 1

2 −
ξ
2

0 ξ
4 0 0

0 0 ξ
4 0

1
2 −

ξ
2 0 0 1

2 −
ξ
4

 , (4.59)

where ξ is the depolarising probability of the channel. Since the channel has only one parameter,

we only need to find one (non-zero) element of the Choi matrix in order to characterise it. We

pick C33
dep (the third element on the main diagonal); the expression for this component is given by

Eq. (4.40).

We start by finding R11 for the maximally entangled resource,
∣∣ΦBell

〉 〈
ΦBell

∣∣⊗N . We find

R11 = 〈0|B1TrB̄1
[
∣∣∣ΦBell

〉〈
ΦBell

∣∣∣⊗N
AB

]|0〉B1

=
1

2N−1
〈0|B1

∣∣∣ΦBell
〉〈

ΦBell
∣∣∣
A1B1

|0〉B1 ⊗ IĀ1

=
1

2N
|1〉 〈1|A1

⊗

∑
j,m,α

∣∣∣Φ[N−1](j,m, α)
〉〈

Φ[N−1](j,m, α)
∣∣∣
Ā1

 ,

(4.60)
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4.2 Finding the qubit PBT channel for an arbitrary resource

where the sum is over all valid values of j, m, and α. We can express R11 in the N -spin basis

using Eqs. (4.15) and (4.16). This allows us to write the functions

f11
I,I(s−

1

2
,m− 1

2
, s− 1

2
,m− 1

2
) =

1

2N
[
Ξ−+(s,m− 1)

]2
=

s−m+ 1

2N (2s+ 1)
(4.61)

f11
I,II(s−

1

2
,m− 1

2
, s+

1

2
,m− 1

2
) =

1

2N
[
Ξ−+(s,m− 1)Ξ++(s,m− 1)

]
= −

√
(s−m+ 1)(s+m)

2N (2s+ 1)

(4.62)

f11
II,II(s+

1

2
,m− 1

2
, s+

1

2
,m− 1

2
) =

1

2N
[
Ξ++(s,m− 1)

]2
=

s+m

2N (2s+ 1)
, (4.63)

noting also that f11
I,II = f11

II,I , since R11 is a conditional density matrix (and therefore must be

hermitian).

We can express the degeneracy for the N − 1-spin basis as

γ(N − 1, s) =
(2s+ 1)(N − 1)!(

N−1
2 − s

)
!
(
N+1

2 + s
)
!

=
2s+ 1

N

(
N

N−1
2 − s

)
, (4.64)

where the expression on the right hand side uses a binomial coefficient. We can therefore write

q2
+gI,I + r2

−gII,II + q+r− (gI,II + gII,I) =
(s+m)(s−m+ 1)

2N+1N(2s+ 1)

(
N

N−1
2 − s

)
×
[
(λ−
s− 1

2

)−
1
2 − (λ+

s+ 1
2

)−
1
2

]2

,

(4.65)

where it is implicit that the indices for the g-functions are those found in the first sum in Eq. (4.40).

We then carry out the sum

s∑
m=−s

(s+m)(s−m+ 1) =
2

3
s(s+ 1)(2s+ 1). (4.66)

We expand the last term in Eq. (4.65), getting[
(λ−
s− 1

2

)−
1
2 − (λ+

s+ 1
2

)−
1
2

]2

= 8
(N + 2)−

√
(N + 2)2 − (2s+ 1)2

(N + 2)2 − (2s+ 1)2
. (4.67)

We then calculate(
1

2
+

m

N + 1

)
gII,II =

1

2NN(N + 1)

(
N − 1

2
+m

)(
N + 1

2
+m

)
, (4.68)

where it is implicit that the indices for the g-function are those found in the second sum in

Eq. (4.40). We perform the sum

N+1
2∑

m=−N+1
2

(
N − 1

2
+m

)(
N + 1

2
+m

)
=

1

3
N(N + 1)(N + 2). (4.69)
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Substituting these expressions into Eq. (4.40), we get

C33
dep =

1

3× 2N−2

N−1
2∑

s=smin

[
s(s+ 1)

(
N

N−1
2 − s

)
(N + 2)−

√
(N + 2)2 − (2s+ 1)2

(N + 2)2 − (2s+ 1)2

]

+
N + 2

3× 2N+1
,

(4.70)

which immediately gives

ξN =
1

3× 2N−4

N−1
2∑

s=smin

[
s(s+ 1)

(
N

N−1
2 − s

)
(N + 2)−

√
(N + 2)2 − (2s+ 1)2

(N + 2)2 − (2s+ 1)2

]

+
N + 2

3× 2N−1
,

(4.71)

where ξN is the depolarising probability of the N -port qubit PBT channel with a maximally en-

tangled resource. We numerically observe that ξN scales approximately with 1
N for large N .

This probability is calculated in a similar way in Ref. [2], but without using the explicit formulae

presented here.

4.3 Characterising the qubit PBT protocol

We want to characterise the channel mapping from the (input) program state (with 2N qubits)

to the (output) Choi matrix of the PBT channel (with 2 qubits). This is a characterisation of

the PBT protocol itself (with the square-root measurement and a permutation-symmetric resource

state). An implicit expression for this map is derived in Ref. [28], however here we derive explicit

expressions for the Kraus operators.

Defining Λ as the channel from the program state to the Choi matrix of the qubit channel, we

can write

Λ(π) =
N∑
i=1

TrAB̄iC1

[(√
ΠiAC1

⊗ IBC0

)(
πAB ⊗

∣∣∣ΦBell
C0C1

〉〈
ΦBell
C0C1

∣∣∣) (√ΠiAC1
⊗ IBC0

)†]

(4.72)

=
∑
ik

KikπK
†
ik, (4.73)

where Bi is the port to which the state is teleported, Πi is the measurement operator applied to

teleport the state to port i and

Kik =
〈
e

(i)
k

∣∣∣√ΠiAC1
⊗ IBC0

∣∣∣ΦBell
C0C1

〉
. (4.74)

The
∣∣∣e(i)
k

〉
are basis vectors on the systems AB̄iC1 (the traced over systems).
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First, let us apply the assumption of symmetry under exchange of labels. We can therefore

replaceKik withKk =
√
NK1k. We can now calculate

√
Π1, using the expressions in Eqs. (4.27)

and (4.21). From the fact that M1 and M2 have orthogonal supports, we can take the square roots

of each separately. In fact, due to M1 having no mixing between basis vectors with different s, m,

or α values, we can treat each set of values {s,m, α} separately and hence can write

√
Π1 =

∑
smα

√
M smα

1 +
√
M2, (4.75)

where M smα
1 is the contribution to M1 from the two eigenvectors

∣∣∣∣ΨI(λ
−
s− 1

2

,m, α)

〉
and∣∣∣∣ΨII(λ

+
s+ 1

2

,m, α)

〉
. Since M2, as expressed in Eq. (4.21), is already diagonal, it is trivial to

write

√
M2 =

1√
N

N+1
2∑

m=−N+1
2

∣∣∣∣ΨII(λ
−
N
2

,m)

〉〈
ΨII(λ

−
N
2

,m)

∣∣∣∣ , (4.76)

where we have removed the sum over α, due to there being no degeneracy in the component

eigenvectors.

We now want to find
√
M smα

1 , starting from

M smα
1 = (λ−

s− 1
2

)−1 s

2s+ 1

∣∣∣∣ΨI(λ
−
s− 1

2

,m, α)

〉〈
ΨI(λ

−
s− 1

2

,m, α)

∣∣∣∣
− (λ−

s− 1
2

λ+
s+ 1

2

)−
1
2

√
s(s+ 1)

2s+ 1

( ∣∣∣∣ΨI(λ
−
s− 1

2

,m, α)

〉〈
ΨII(λ

+
s+ 1

2

,m, α)

∣∣∣∣
+

∣∣∣∣ΨII(λ
+
s+ 1

2

,m, α)

〉〈
ΨI(λ

−
s− 1

2

,m, α)

∣∣∣∣ )
+ (λ+

s+ 1
2

)−1 s+ 1

2s+ 1

∣∣∣∣ΨII(λ
+
s+ 1

2

,m, α)

〉〈
ΨII(λ

+
s+ 1

2

,m, α)

∣∣∣∣ .
(4.77)

From the form of Eq. (4.77), we can see that M smα
1 can be written as

M smα
1 = |vecsmα〉 〈vecsmα| , (4.78)

|vecsmα〉 =

√
(λ−
s− 1

2

)−1
s

2s+ 1

∣∣∣∣ΨI(λ
−
s− 1

2

,m, α)

〉
−
√

(λ+
s+ 1

2

)−1
s+ 1

2s+ 1

∣∣∣∣ΨII(λ
+
s+ 1

2

,m, α)

〉
,

(4.79)

where it must be noted that |vecsmα〉 is unnormalised. This means that M smα
1 has only one non-

zero eigenvalue, given by

eigsmα = (λ−
s− 1

2

)−1 s

2s+ 1
+ (λ+

s+ 1
2

)−1 s+ 1

2s+ 1

=
4(N + 1)

(N + 1− 2s)(N + 3 + 2s)

. (4.80)
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Consequently, we can write

√
M smα

1 = (eigsmα)−
1
2 |vecsmα〉 〈vecsmα| . (4.81)

Combining our expressions for M1 and M2, we have√
Π1 =

1√
N

∑
m

∣∣∣∣ΨII(λ
−
N
2

,m)

〉〈
ΨII(λ

−
N
2

,m)

∣∣∣∣
+
∑
smα

√
(N + 1− 2s)(N + 3 + 2s)

4(N + 1)
|vecsmα〉 〈vecsmα| .

(4.82)

We now express the basis vectors
∣∣∣e(1)
k

〉
as

|ek〉 = |ek1〉AC1
|ek2〉B̄ , (4.83)

where B̄ refers to the B modes except for B1. |ek1〉AC1
are the |vecsmα2 〉 basis vectors (on the

system AC1) and the |ek2〉B̄ are any choice of orthonormal basis vectors on the system B̄. There

are two types of Kraus operator, depending on whether |ek1〉AC1
lies in the support of M1 or of

M2. We will label these Kraus operators K1
k and K2

k respectively. Using Eqs. (4.28) to (4.31), we

find that the Kraus operators K2
k take the form

K2
k =

1√
2

(√
1

2
− m

N + 1
|0〉C0

〈
ΦII(

N

2
,m+

1

2
)

∣∣∣∣
AC1

+

√
1

2
+

m

N + 1
|1〉C0

〈
ΦII(

N

2
,m− 1

2
)

∣∣∣∣
AC1

)
〈ek2 |B̄ ⊗ IB1 ,

(4.84)

where the label k determines the m value and the choice of basis vector |ek2〉B̄ . We find that the

Kraus operators K1
k take the form

K1
k =

√
N

2

[
|0〉C0

(√
(λ−
s− 1

2

)−1
s

2s+ 1

(
1

2
− m

2s

)〈
ΦI(s−

1

2
,m+

1

2
, α)

∣∣∣∣
−

√
(λ+
s+ 1

2

)−1
s+ 1

2s+ 1

(
1

2
+

m

2(s+ 1)

)〈
ΦII(s+

1

2
,m+

1

2
, α)

∣∣∣∣
)
AC1

+ |1〉C0

(√
(λ−
s− 1

2

)−1
s

2s+ 1

(
1

2
+
m

2s

)〈
ΦI(s−

1

2
,m− 1

2
, α)

∣∣∣∣
+

√
(λ+
s+ 1

2

)−1
s+ 1

2s+ 1

(
1

2
− m

2(s+ 1)

)〈
ΦII(s+

1

2
,m− 1

2
, α)

∣∣∣∣
)
AC1

]
〈ek2 |B̄ ⊗ IB1 ,

(4.85)
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where the label k determines the values of s, m and α, and the choice of basis vector |ek2〉B̄ . We

can simplify this expression, and so can write

K1
k =

√
N

2

[
|0〉C0

(
q−

〈
ΦI(s−

1

2
,m+

1

2
, α)

∣∣∣∣− r+

〈
ΦII(s+

1

2
,m+

1

2
, α)

∣∣∣∣)
AC1

+ |1〉C0

(
q+

〈
ΦI(s−

1

2
,m− 1

2
, α)

∣∣∣∣+ r−

〈
ΦII(s+

1

2
,m− 1

2
, α)

∣∣∣∣)
AC1

]
〈ek2 |B̄ ⊗ IB1 ,

(4.86)

where q± and r± are defined as per Eqs. (4.33) and (4.34).

Note that the basis vectors |ek2〉B̄ simply trace over the B̄ system, i.e. for each Kraus operator,

there are 2N − 1 other Kraus operators that are identical up to a change in k2. Hence, we can

trace over the B̄ modes of the resource state; in this case the Kraus operators of the channel from

TrB̄ [πAB] to the output Choi matrix are K1
k and K2

k without the vectors |ek2〉B̄ (i.e. the labels k

determine only the values of s, m and α).

4.4 Simulating the amplitude damping channel

We know that in the limit of N → ∞, a resource state comprised of N copies of the Choi matrix

of a given channel perfectly simulates that channel. This is because PBT over such a resource state

is equivalent to passing the transmitted state through an identity channel followed by the desired

channel. However, for finite N , it may be the case that there is a resource state that simulates

a given channel better than N copies of the Choi matrix. Our metric for judging which of two

channels is a better simulation of a given channel is the diamond norm, D�, between the simulated

channel and the channel simulating it. The diamond norm between channels E1 and E2 is defined

by

D� = sup
φ

Tr |I⊗ E1(φ)− I⊗ E2(φ)| , (4.87)

where the supremum is taken over all input states φ (and where the identity is enacted on idler

modes of φ). Of particular interest are resource states with tensor-product structure (i.e. N iden-

tical copies of a two-qubit state). The simple structure of such states makes it easier to carry out

calculations on them for channel simulation. For instance, [5] found that the achievable secret key

rate of a quantum channel can be upper bounded by the relative entropy of entanglement (REE) of

a resource state that can be used to simulate that channel. If a state has tensor-product structure,

the calculation of its REE can be simplified: the REE of such a state is N times the REE of a
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single copy of the two-qubit state. Let us refer to all resource states with tensor-product structure

as tensor-product resources.

One channel of interest is the AD channel. This channel is characterised by the Choi matrix

(for the input state 1√
2
(|01〉 − |10〉))

R(p) =



p
2 0 0 0

0 1−p
2 −

√
1−p
2 0

0 −
√

1−p
2

1
2 0

0 0 0 0

 , (4.88)

where p is the probability of a qubit with value one being flipped to a zero. One possible type of

resource state is comprised of N copies of this state, R(p1)⊗N , where p1 is the damping proba-

bility of the AD channel used to generate the resource state, i.e. the resource state is N copies of

the output Choi matrix of an AD channel with damping probability p1. Note that this is not the

same Bell state that we have been using to define the Choi matrix previously; we have previously

used the input state 1√
2
(|00〉 + |11〉). We have chosen the state

∣∣ΦBell
〉

in this case because it is

the resource state
∣∣ΦBell

〉 〈
ΦBell

∣∣⊗N that simulates the identity channel (due to the structure of

the measurement). Consequently, it is the resource R(p1)⊗N that asymptotically gives a perfect

simulation of the AD channel. Let p0 be the damping probability of the AD channel that we are

trying to simulate; this need not necessarily be equal to p1. We denote the Choi matrix of the PBT

channel with resource state φ, PBT [φ]. Applying the explicit expressions that we have derived,

we find

PBT [R(p1)⊗N ] =



1
2 −

ξN (1−p1)
4 0 0

(
1
2 −

ξN
2

)√
1− p1

0 ξN (1−p1)
4 0 0

0 0 p1
2 −

ξN (1−p1)
4 0(

1
2 −

ξN
2

)√
1− p1 0 0 (1− p1)

(
1
2 −

ξN
4

)

 ,

(4.89)

where ξN is again the depolarisation probability of the channel given by carrying out N -port PBT

with a maximally entangled resource state (as calculated in Subsection 4.2.5). We will refer to

such a resource state (N copies of the Choi matrix of an AD channel, with damping probability

generally different from that of the simulated channel) as a Choi resource.

Consider the special case of p1 = p0 (simulating an AD channel with N copies of its own

output Choi matrix); it has been shown that in this case, the diamond norm of the simulated

channel from the simulating channel is the same as the trace norm between the Choi matrices [2].
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We will denote the diamond norm using this resource as D0
�; it is given by

D0
� = ξN

(
1− p0

2
+
√

1− p0

)
. (4.90)

ξN ≤ 6−
√

3
6 ' 0.71, since this is the value for 2 ports. D0

� provides a useful benchmark, since

we know it converges to 0 in the limit of infinite ports, and hence R(p0)⊗N is a common choice

of resource state for calculations involving channel simulation. For instance, in Ref. [2], resource

states composed of N copies of the Choi matrix of the simulated channel were used to obtain

a general bound on channel discrimination, and this bound was specifically applied to the AD

channel.

In the asymptotic limit, in the case of p1 = p0, the output Choi matrix in Eq. (4.89) tends

to the Choi matrix of the simulated channel, as expected. However, for finite N , a lower D�

can be achieved by choosing a value of p1 for the resource state different from p0 (the damping

probability of the channel we are simulating).

Let us consider for which values of p1 we can know the diamond norm exactly. We have upper

and lower bounds on the diamond norm between (qubit) channels with Choi matrices X and Y

given by Ref. [1]:

Tr |X − Y | ≤ D� ≤ 2 ‖Tr2 |X − Y |‖∞ , (4.91)

where the trace is taken over the mode which passed through the channel. These two bounds

are equal (and therefore give the exact diamond norm) if the matrix Tr2 |X − Y | is scalar (pro-

portional to the identity matrix). The difference between the Choi matrices of the simulated and

simulating channels, in this case, is

PBT [R(p1)⊗N ]−R′(p0) =


−e1 0 0 −c

0 e1 0 0

0 0 e2 0

−c 0 0 −e2

 , (4.92)

e1 =
ξN
4

(1− p1), e2 = e1 −
p0 − p1

2
, c =

1

2

(√
1− p0 − (1− ξN )

√
1− p1

)
, (4.93)

where R′ is the Choi matrix for the input state 1√
2
(|00〉+ |11〉). If e1 = ±e2, the modulus of the

matrix, with the trace taken over the second mode, will be scalar. This is true in two cases:

p1 = p0, (4.94)

p1 =
p0 − ξN
1− ξN

. (4.95)
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Figure 4.1: The trace norm, the numerically found diamond norm and the analytical upper bound

on the diamond norm from Ref. [1] are plotted against p1, the damping value of the AD channel

used to produce the resource state, for the resource given in Eq. (4.88). The plot with p0 = 0.36

lies in the regime where p1 = p0 gives a better simulation than p1 = p0−ξN
1−ξN , and the plot with

p0 = 0.7 lies in the regime where the opposite is true. In both cases, the actual minimum of the

diamond norm lies between these points and lies near the minimum of the trace norm. In both

cases, this minimum of the trace norm lies at exactly p1 = 2p0−ξN
2−ξN .

The first case is the known case of N copies of the Choi matrix of the simulated channel. In

the second case, we find that the diamond norm, D1
�, is given by

D1
� =

1

2

(1− p0)ξN
1− ξN

+

√
4(1− p0)

(
1−

√
1− ξN

)2
+

(1− p0)2ξ2
N

(1− ξN )2

 . (4.96)

For sufficiently low values of ξN and sufficiently high values of p0, this second expression for

the diamond norm, D1
� is lower than D0

�. Specifically, we find that there is a function in ξN

separating the two regimes. This function crosses p0 = 0 at a ξN value of about 0.237 and for

values of ξN < 0.237, the second expression is always lower (except in the trivial case of p0 = 1).

ξN < 0.237 for a number of ports equal to or greater than 6, so for N ≥ 6, D1
� ≤ D0

�. Note that

if p0 < ξN , this second point does not exist, since that would require a negative value of p1. The

plots in Fig. 4.1 illustrate these two regimes in the case of 4 ports. We therefore have a resource

that simulates a given AD channel better than N copies of the Choi matrix of that channel, for any

finite number of ports, with an analytical expression for the diamond norm between the channels.

Asymptotically (in N ), the right hand side of Eq. (4.95) tends to the right hand side of

Eq. (4.94), since ξN tends to 0. This is as expected, since we know that the Choi resource with

p1 = p0 simulates the AD channel perfectly in the asymptotic limit of N .
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Figure 4.2: The trace norm, the numerically found diamond norm and the analytical upper bound

on the diamond norm from Ref. [1] are plotted against p1, the damping value of the AD channel

used to produce the resource state, for the resource given in Eq. (4.88). In both of the cases shown,

the minimum of the trace norm no longer lies at p1 = 2p0−ξN
2−ξN , but rather at a lower value of p1.

In the case of p0 = 0.85, the minimum of the trace norm (and therefore of the diamond norm)

still lies between the two points for which the diamond norm is exactly known (p1 = p0−ξN
1−ξN and

p1 = p0), whereas for p0 = 0.95, this is no longer the case.

Although we have two points for which the diamond norm is known exactly, this does not mean

that the minimum diamond norm for simulating a given channel lies at either of these two points.

In fact, we find numerically that the minimum of the diamond norm often lies near the minimum

of the trace norm between the Choi matrices, rather than at either of these known points. We also

find that for all p0 ≤ v1, where v1 is a function of ξN that is always greater than 2
5 , the minimum

of the trace norm lies at 2p0−ξN
2−ξN , and that for all p0 ≤ v2, where v2 is a function of ξN that is

always greater than 2
3 , the minimum of the trace norm lies between p1 = p0−ξN

1−ξN and p1 = 2p0−ξN
2−ξN .

See Section B.1 of Appendix B for more details.

If the minimum of the trace norm lies between p1 = p0−ξN
1−ξN and p1 = p0, the two points at

which the diamond norm is equal to the trace norm, we are guaranteed that the minimum of the

diamond norm will fall between those two points, since the trace norm, which lower bounds the

diamond norm, will have no local minima outside of these points. This means that the trace norm

will have a negative gradient at every point below p1 = p0−ξN
1−ξN and a positive gradient at every

point above p1 = p0. The plots in Fig. 4.2 show values of p0 for which the minimum of the trace

norm does not lie at p1 = 2p0−ξN
2−ξN .

Whilst the Choi resource with p1 chosen to minimise the diamond norm simulates the AD
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channel better than the case of p1 = p0, the two resources tend towards each other as N increases.

A resource state of interest would be one that has tensor-product structure, simulates some AD

channel better than the Choi resource and is distinct from the Choi resource for all p1 values. We

find that such a resource exists. Let Rnew(a) be a two-qubit state, defined by

Rnew(a) =


0 0 0 0

0 a −
√
a(1− a) 0

0 −
√
a(1− a) 1− a 0

0 0 0 0

 , (4.97)

where a is a parameter characterising the density matrix. Consider the resource state Rnew(a)⊗N

(N copies ofRnew(a), such that each port is a copy ofRnew(a)). This is a tensor-product resource

and the state of each port is clearly different from the state in Eq. (4.88) for all parameter values

except for the case of p = 0 and a = 1
2 . This resource state illustrates the importance of the

explicit expressions for the components of the Choi matrix resulting from PBT: whilst it would be

possible to calculate PBT [R(p)⊗N ] by applying an AD channel to the (known) output of the PBT

channel using a maximally entangled resource, the same technique cannot be used to calculate

PBT
[
Rnew(a)⊗N

]
.

Carrying out PBT using this resource state, which we will call the alternate resource, results

in the Choi matrix:

PBT
[
Rnew(a)⊗N

]
=


x 0 0 z

0 1
2 − x 0 0

0 0 y 0

z 0 0 1
2 − y

 , (4.98)
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x =

N−1
2∑

s=smin

s∑
m=−s

a
N+1

2
+m(1− a)

N−1
2
−m

×
N !

[(
N+1

2 − s
)− 1

2 (s−m) +
(
N+3

2 + s
)− 1

2 (s+m+ 1)

]2

2
(
N−1

2 − s
)
!
(
N+1

2 + s
)
!(2s+ 1)

+

N+1
2∑

m=−N+1
2

a
N+1

2
+m(1− a)

N−1
2
−m
(
N+1

2 +m
) (

N+1
2 −m

)
2N(N + 1)

,

(4.99)

y =

N−1
2∑

s=smin

s∑
m=−s

a
N−1

2
+m(1− a)

N+1
2
−m

×
N !(s+m)(s−m+ 1)

[(
N+1

2 − s
)− 1

2 −
(
N+3

2 + s
)− 1

2

]2

2
(
N−1

2 − s
)
!
(
N+1

2 + s
)
!(2s+ 1)

+

N+1
2∑

m=−N+1
2

a
N−1

2
+m(1− a)

N+1
2
−m
(
N−1

2 +m
) (

N+1
2 +m

)
2N(N + 1)

,

(4.100)

z =

N−1
2∑

s=smin

s∑
m=−s

a
N
2

+m(1− a)
N
2
−mN !

2
(
N−1

2 − s
)
!
(
N+1

2 + s
)
!(2s+ 1)

[(
N + 1

2
− s
)−1

(s2 −m2)

+ 2

(
N + 1

2
− s
)− 1

2
(
N + 3

2
+ s

)− 1
2

(s2 +m2 + s)

+

(
N + 3

2
+ s

)−1

((s+ 1)2 −m2)

]

−

N+1
2∑

m=−N+1
2

a
N
2

+m(1− a)
N
2
−m
(
N+1

2 +m
) (

N+1
2 −m

)
2N(N + 1)

,

(4.101)

where smin is 0 for oddN and 1
2 for evenN . The elements of the Choi matrix have been calculated

using the expressions in Eqs. (4.38) to (4.40). We can therefore write

PBT
[
Rnew(a)⊗N

]
−R′(p0) =


x− 1

2 0 0 z −
√

1−p0
2

0 1
2 − x 0 0

0 0 y − p0
2 0

z −
√

1−p0
2 0 0 p0

2 − y

 , (4.102)

Again, we can find the values of a at which this matrix is scalar by finding the points at which

x− 1
2 = ±

(
y − p0

2

)
. In this case, however, we have a more complicated expression in terms of a

and p0, which depends on N , making it difficult to find a general (for arbitrary N ) expression for

the diamond norm at these points where the diamond norm is known exactly (however it is simple

to find the expression for fixed N ).
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Figure 4.3: The trace norm, the numerically found diamond norm and the analytical upper bound

on the diamond norm from Ref. [1] are plotted against a, the parameter that parametrises the state

in Eq. (4.97). Comparing with Fig. 4.1, we can see that at the “known points” where the diamond

norm is known analytically (where the trace norm coincides with the diamond norm), the diamond

norm is significantly lower for the resource Rnew(a)⊗N than at the known points for the Choi

resource. Further, the minimum diamond norm for this new resource is significantly lower than

the minimum diamond norm for the Choi resource.

Using this resource, we can prove that for all N and for some range of p0 values, there exists

some tensor-product resource, which is distinct from R(p)⊗N , for which the diamond norm from

the AD channel can be found analytically and is smaller than the diamond norm using the resource

state R(p)⊗N for both p = p0 and p = p0−ξN
1−ξN . This means that, for any finite value of N , there

are some (low) values of p0 for which we can find a tensor-product resource state that gives a

diamond norm from the AD channel lower than either D0
� or D1

�. This is demonstrated in Fig. 4.3,

for N = 4, using the resource state Rnew(a)⊗N and is proven in Section B.2 of Appendix B.

For low N , the alternate resource beats the Choi resource over a large range of p0 values and

by a significant amount. This can be seen for the case of N = 6 in Fig. 4.4. Note that at a = 1
2

and p = 0, the two resources are the same, and these parameter values are the starting points of

the graphs in the figure.

Similarly to the case of the Choi resource, we find numerically that for a large range of p0

values, the value of a that gives the minimum of the trace norm coincides with the value that

minimises the diamond norm and is the a value for which y − p0
2 = 0 (just as, for the Choi

resource, the minimum of the trace norm occurs at the value of p that sets e2 = 0, for all p0 <
2
5 ).

Numerically we find a trend that there exists a range of p0 values such that the resource state
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Figure 4.4: The diamond norm is plotted against the damping probability of the AD channel

being simulated for PBT with the resource state Rnew(a)⊗N (new resource) and the resource state

R(p1)⊗N (Choi resource). In the left-hand plot, we choose p1 = p0−ξN
1−ξN and choose a such that

x(a) − y(a) = 1−p0
2 , so that the trace norm coincides with the diamond norm. In the right hand

plot, we choose p1 = 2p0−ξN
2−ξN and choose a such that y(a) = p0

2 ; these are close to the optimal

parameters to minimise the diamond norm. In both cases, we start at the minimum value of p0 for

which p1 is non-negative. The new resource is better than the Choi resource for a large range of

p0 values and especially for low p0.

Rnew(a)⊗N , with a chosen so that y = p0
2 , gives a better simulation of the AD channel (lower

diamond norm) than R(p1)⊗N , for any value of p1. However, this range of p0 values becomes

increasingly small as N increases. This has been numerically confirmed forN < 11. Specifically,

this occurs for low p0.

The explicit expressions for the Choi matrix of the PBT channel therefore allow us to calculate

the diamond norm for a resource that simulates certain AD channels better than a tensor-product

of Choi matrices.

4.5 Summary

Qubit PBT simulates a quantum channel on the teleported qubit, with the channel depending on

the resource state used. Using Eqs. (4.38) to (4.41), we can find the Choi matrix for the channel

simulated by a given resource state. We assume this resource state to be symmetric under exchange

of labels, since this assumption does not restrict the simulable channels. We also provide a simple

algorithm for converting to the alternative channel representation of Kraus operators. We show
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how the Choi matrix can be easily calculated in the two port case, giving simplified expressions

(namely, Eqs. (4.55), (4.57) and (4.58)).

In Eqs. (4.86) and (4.84), we give the Kraus operators that describe the PBT protocol itself (for

a fixed number of ports, the square-root measurement and a resource state that is symmetric under

exchange of labels). These Kraus operators characterise the map from the 2N -qubit resource state

to the two-qubit Choi matrix and thus offer a complete description of the PBT protocol. This is a

complete analytical characterisation, which could be efficiently exploited in works leading on from

Ref. [28], where techniques of machine learning and semi-definite programming are employed to

find the optimal resource state for PBT (and other teleportation protocols).

We consider simulating the AD channel with PBT and find that, for finite numbers of ports,

using N copies of the Choi matrix of the simulated channel as the resource state gives a higher

diamond norm than using N copies of the Choi matrix of a different AD channel. We also find

that there exist resource states with tensor-product structure that simulate the AD channel better

than any Choi resource, in the low damping range. These improved simulations will prove useful

in Chapter 5.

In this chapter, we only present results for the qubit case. Future work could explore PBT in

the qudit or continuous variable cases. In the qudit case, this is complicated by the Clebsch-Gordan

coefficients, which do not take the simple form they take in the qubit case. Clarifying the math-

ematical aspects of PBT is important for the fundamental role that this protocol plays in various

areas of quantum information theory, not only in problems of ultimate channel discrimination [2]

but also in communication problems such as position-based quantum cryptography [117, 118].
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Chapter 5

Bounds on amplitude damping channel

discrimination

The work in this chapter forms the basis for a paper published in Physical Review A, whose authors

are (in order) Jason Pereira and Stefano Pirandola [10].

In this chapter, we start by discussing the importance of the task of discrimination between

amplitude damping (AD) channels. In the second section, we describe the task of binary AD

channel discrimination via an adaptive protocol and present the various bounds. We also calculate

the diamond norm between AD channels. We then compare the bounds with existing bounds and

apply them to two different scenarios. The final section summarises the presented work.

5.1 Introduction

Pure loss channels constitute an important class of quantum channels. They can be used as models

in many situations in which the environmental noise is low. Examples include quantum commu-

nications [5] and quantum metrology [62] (where the parameter being measured could be the loss

of the channel). Since the loss of a communications line determines the rate at which a secret

key can be exchanged over it (via quantum key distribution), it would be useful to be able to

accurately determine the transmissivity of a lossy channel. As seen in Chapter 3, it is difficult

to bound the ultimate precision with which an adaptive protocol can discriminate between two

bosonic lossy channels, because two lossy channels with different transmissivities are not jointly

teleportation-covariant.

AD channels are qubit channels that act similarly to lossy channels: they can be regarded as
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lossy channels that only act on qubit states. They map input states, ρin, according to

AD : ρin → K0ρ
inK†0 +K1ρ

inK†1, (5.1)

K0 = |0〉 〈0|+√η |1〉 〈1| , K1 =
√

1− η |0〉 〈1| , (5.2)

where p is a parameter of the channel and K0 and K1 are the Kraus operators.

In physics, they are good models for energy dissipation in qubit systems [15] and, in quantum

information, they can model low noise scenarios where the number of photons passing through

a quantum channel is also low. They have also been used as a model for the transfer of a qubit

through a spin chain [119]. The task of discriminating between two AD channels is therefore

of interest in quantum information science, so it is desirable to bound the error probability of

discrimination protocols.

Since adaptivity has been shown to improve the performance of discrimination protocols [24],

bounds on the distinguishability of AD channels must take this into account. Generally this can

be done using teleportation stretching (see Chapter 2 for more details), but AD channels are not

teleportation-covariant. This means that they are an important class of channel that cannot be

simulated using standard teleportation.

Pirandola et al. used port-based teleportation (PBT), with a resource state composed of multi-

ple copies of the Choi matrix of the channel, to simulate the AD channel in order to lower bound

the error probability for the most general adaptive discrimination protocol [2]. However, this

bound is not tight: there is a large gap between the upper bound and the lower bound, leaving a lot

of room for improvement (although it is not immediately clear if it is the lower bound, the upper

bound, or both that needs tightening).

Since we found in Chapter 4 that there exist resource states that can simulate AD channels

better than multiple copies of their Choi matrices (for a fixed number of ports), it is natural to

wonder whether the bounds in Ref. [2] can be tightened by simulating the AD channels using

these improved resource states instead. That is the focus of this chapter.

5.2 Analytical results

Suppose we are given an AD channel, C, which we know to have a transmissivity, η, equal to

either ηX or ηY and wish to determine which of these two values η takes. Note that an AD

channel is the qubit version of a pure loss channel, in that the pointwise application of a hard

energy constraint of one photon and a pure loss channel with transmissivity η reduces to an AD

channel with transmissivity η (or damping probability 1 − η). Suppose we are allowed to carry
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out any protocol involving our channel, but with a maximum of N channel uses. Let CX be the

AD channel with a transmissivity of ηX and let CY be the AD channel with a transmissivity of ηY .

Our task is to carry out the optimal protocol for discriminating between CX and CY , subject to the

constraint on the total number of channel uses.

A general protocol consists of quantum operations on some initial state, followed by a channel

use, followed by further operations (which can include measurements) and further channel uses,

until a total ofN channel uses have occurred [2]. At this point, a final set of quantum operations is

carried out, and then a measurement is made on the final state, which we will label as ρN,outi in the

case in which the channel is Ci. Note that this protocol is allowed to be adaptive, meaning that each

step in the protocol can depend on previous steps. We define the optimal protocol as the protocol

for which we maximise the trace norm between ρN,out
X and ρN,out

Y and then carry out the most

discriminating measurement possible. This optimal value of the trace norm is denoted by Dopt,N
CXCY .

If we have CX and CY with equal probabilities, this is the protocol that minimises the probability of

error in identifying which channel we have. It is also worth noting that, for the optimal protocol,

we can assume without loss of generality that all of the operations between channel uses are

unitaries, as any other operations (such as quantum channels, of which measurements are a special

case) can be modelled as unitaries, by allowing the user of the protocol to hold the distillation of

all operations performed. This cannot decrease the trace norm between output states.

5.2.1 Bounding the maximum trace norm using channel simulation

We now apply the technique of channel simulation [2, 5, 28]. Suppose we have a qubit quantum

processor Q(π), which takes the resource state π as a program and enacts the channel CQ(π) on

an input qubit, via some set of trace-preserving quantum operations. Suppose also that there exist

program states πX and πY , such that the enacted channels, CQ(πX) and CQ(πY ), are sufficiently

close to the two AD channels that we want to discriminate between. More precisely, suppose we

can write

∥∥CQ(πX) − CX
∥∥
� ≤ εX , (5.3)∥∥CQ(πY ) − CY
∥∥
� ≤ εY , (5.4)

where we have used the diamond norm between the channels. This is the maximum of the trace

norm between the outputs of the channels, maximised over all input states (including those with

idlers). Then, we replace the N channel uses in our discrimination protocol with the channel

enacted by the processor (with program state πX(Y ) in the case in which the channel is CX(Y )) and
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call the output state of the resulting protocol ρN,out
Q(πX(Y ))

. We can then write

∥∥∥ρN,out
Q(πX) − ρ

N,out
X

∥∥∥
1
≤ NεX , (5.5)∥∥∥ρN,out

Q(πY ) − ρ
N,out
Y

∥∥∥
1
≤ NεY . (5.6)

Using the fact that all of the operations are trace-preserving, and the only difference between

the two cases is the initial program state, we can write∥∥∥ρN,out
Q(πX) − ρ

N,out
Q(πY )

∥∥∥
1
≤
∥∥∥π⊗NX − π⊗NY

∥∥∥
1

(5.7)

≤ 2

√
1− F

(
π⊗NX , π⊗NY

)2
, (5.8)

where F (ρ1, ρ2) is the quantum fidelity, defined by

F (ρ1, ρ2) = Tr
√√

ρ1ρ2
√
ρ1. (5.9)

Using the multiplicativity of the fidelity with respect to tensor products, we get∥∥∥ρN,out
Q(πX) − ρ

N,out
Q(πY )

∥∥∥
1
≤ 2

√
1− F (πX , πY )2N . (5.10)

Finally, using the triangle inequality, we write

Dopt,N
CXCY ≤ NεXY + 2

√
1− F (πX , πY )2N , (5.11)

εXY = εX + εY , (5.12)

where Dopt,N
CXCY is maximised over all possible protocols. The trace norm between two states, D, is

related to the maximum probability of successfully discriminating between them, psucc via

psucc =
1

2
+
D

4
, (5.13)

and so we have an upper bound on the probability of discriminating between two AD channels CX

and CY , which holds over all possible adaptive protocols. Alternatively, by defining

perr = 1− psucc (5.14)

=
1

2
− D

4
, (5.15)

we have a lower bound on the error probability.

Note that the tightness of this bound depends both on the chosen program states, πX and πY ,

and on the quantum processor, Q, used. In order to attain a tight bound, we need to both min-

imise the simulation errors, εX and εY , and minimise the trace norm between the program states
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simultaneously. For instance, we could conceive of a trivial quantum processor that measures the

program state in the computational basis and then, depending on the outcome of the measurement,

enacts either CX or CY . Choosing the program states |0〉 and |1〉, we get εX(Y ) = 0, but the trace

norm between the program states is maximised, and hence our bound is too large. More useful

bounds can be found with processors that use PBT, as discussed in Subsection 5.2.2, and with a

different trivial processor, as discussed in Subsection 5.2.3.

5.2.2 Quantum processors for AD channel simulation

As previously mentioned, the tightness of the bound depends on the quantum processor and pro-

gram states used to simulate the channels. We wish to minimise the simulation error whilst keep-

ing our program states as similar to each other as possible, in order to achieve the tightest possible

bound.

One idea that may be intuitively appealing is to use (standard) quantum teleportation [107] to

simulate the AD channels. For certain qubit channels (namely, Pauli channels), quantum telepor-

tation using the Choi matrix of the channel as a resource (program state) can perfectly simulate

the channel (with a simulation error of 0). The Choi matrix of a qubit channel is the state obtained

by sending one half of a Bell pair through the channel.

The issue with this is that standard quantum teleportation cannot simulate non-Pauli channels

[78], and so we would have a very high simulation error. This would result in a bound that would

be too loose to be useful.

One alternative is to use PBT [80, 81]. PBT uses a combined measurement (the square-root

measurement) on an input state and m ports, held by the sender, to teleport the input state to one

of m ports, held by the receiver. The receiver then traces over the remaining ports. The process

is discussed in more detail in Chapter 4 and in Refs. [11, 80, 81]. The program state is the shared

resource state of 2m qubits, m of which constitute the sender’s ports and m of which constitute

the receiver’s ports.

A possible program state, in this case, is m copies of the Choi matrix of the AD channel. It is

known that in the asymptotic limit of m→∞, such a simulation becomes perfect. The issue with

this is that the trace norm between the program states of the two possible channels increases as

the number of copies increases, and so we cannot take the asymptotic limit of m. Instead, we can

accept some small but non-zero simulation error and try to find the optimal value ofm to minimise

the total value of the bound.

This is the approach taken by Pirandola et al. in Ref. [2], for calculating a lower bound for
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the error probability of discriminating between two AD channels (i.e. the same type of bound that

we want to calculate here). We will call the family of bounds that come from PBT simulations

using the Choi matrix of the simulated channels as a resource the standard Choi bounds (and will

implicitly assume that the optimal value of m has been chosen).

In fact, for finite m, there are program states that simulate AD channels better than m copies

of the Choi matrix of the simulated channel. This was discussed in Chapter 4 (which draws from

the work presented in Ref. [11]), where two classes of resource states capable of providing better

simulations of AD channels were described.

The first class uses m copies of the Choi matrix of a different AD channel from the one being

simulated as a resource. Specifically, to simulate an AD channel with transmissivity η, we use m

copies of the Choi matrix of the AD channel with transmissivity η′, where

η′ =
η

1− ξm
. (5.16)

ξm is the PBT coefficient form ports, as defined in Eq. (11) of Ref. [2], and represents the depolar-

isation probability when carrying out PBT with a maximally entangled resource state. As such, it

is a number between 0 and 1, and consequently η′ > η. Our notation here differs from Chapter 4,

since we are characterising the AD channels with η rather than the damping probability (which is

1 − η). Note that we also require η ≤ 1 − ξm. We will call the bounds deriving from PBT using

this resource state the improved Choi bounds.

The second class uses pure resource states, parametrised by a parameter a, that take the form

Ralt(a) =
(√
a |01〉 −

√
1− a |10〉

)⊗m
. (5.17)

An advantage that comes from the fact that this resource state is pure is that the trace norm between

different program states is analytically calculable (since the upper bound coming from the fidelity

is tight). The value of the parameter a is determined by both the damping probability of the AD

channel that is being simulated and by the number of ports, m, and is chosen so as to minimise

the simulation error. We will call the bounds deriving from PBT using this resource state the

alternative resource bounds.

In all three cases, we must tune m so as to obtain the tightest bound possible.
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5.2.3 The trivial bound

We can also formulate a bound based on a trivial processor that simply always enacts the channel

CX . In this case, we have

εX = 0, (5.18)

εY = ‖CX − CY ‖� , (5.19)∥∥∥π⊗MX − π⊗MY
∥∥∥

1
= 0. (5.20)

In other words, the bound in Eq. (5.12) simply becomes

Dopt,N
CXCY ≤ ND

�
CXCY , (5.21)

D�CXCY = ‖CX − CY ‖� . (5.22)

This is N times the diamond norm between the two channels that we are trying to distinguish

between. Note that this bounds is not specific to AD channels and could be applied to any binary

discrimination task.

In fact, we can write an alternative and simpler proof that this bound holds. Let

S(N,m) = {CX , CX , ...CX , CY , CY , ...CY } (5.23)

be a sequence of N channels that are either CX or CY . Specifically, the first m channels are CX

and the next N −m channels are CY . Then let P(S(N,m)) be the output of a fully general and

potentially adaptive protocol P , which has a total of N channel uses, where the i-th channel use

involves sending the signal through the channel that is the i-th element of S. E.g. if S(3, 2) =

CX , CX , CY , P(S) is the output of a discrimination protocol when the channel that we are trying

to identify as either CX or CY (and which the protocol assumes is always the same) is CX for the

first two channel uses and is CY for the final channel use. We then have

P(S(N,N)) = P(CX , CX , ...CX) = ρN,out
X , (5.24)

P(S(N, 0)) = P(CY , CY , ...CY ) = ρN,out
Y . (5.25)

We therefore want to upper bound the trace norm between P(S(N,N)) and P(S(N, 0)). We

start by writing

‖P(S(N,N))− P(S(N,N − 1))‖1 ≤ D
�
CXCY . (5.26)

This is due to the fact that the states are identical prior to the final channel use, the states imme-

diately after the final channel use cannot be further apart than the diamond norm between the two
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channels and any subsequent post-processing is the same in both cases and so cannot increase the

trace norm between the states.

By a similar argument we have

‖P(S(N,N − 1))− P(S(N,N − 2))‖1 ≤ D
�
CXCY , (5.27)

and generalising, we can write

‖P(S(N, i))− P(S(N, i− 1))‖1 ≤ D
�
CXCY . (5.28)

Then, using the triangle inequality, we can write

‖P(S(N, i))− P(S(N, i− j))‖1 ≤ (i− j)D�CXCY , (5.29)

and therefore

‖P(S(N,N))− P(S(N, 0))‖1 ≤ ND
�
CXCY , (5.30)

as required.

The diamond norm between any two AD channels is presented in Subsection 5.2.4.

5.2.4 Calculating the diamond norm between two AD channels

We start by making an ansatz that the exact diamond norm between two AD channels can be

achieved using a state of the form

|φ(t)〉 =
√
t |00〉+

√
1− t |11〉 , (5.31)

where 0 ≤ t ≤ 1. The trace norm between two AD channels for such a state, D|φ(t)〉,1
CXCY , is then

given by

D
|φ(t)〉,1
CXCY = |ηX − ηY |(1− t)

(
1 +

√
1 +

4t

(1− t)x2

)
, (5.32)

x =
√
ηX +

√
ηY . (5.33)

Defining tmax as the value of t that maximises D|φ(t)〉,1
CXCY , we find

tmax = max{0, 1− 1

2− x
}. (5.34)

From this, we can see that the problem is split into two regimes: one in which tmax = 0 and one

in which tmax > 0. Note that for the extremal case of t = 0, the idler mode is not necessary, since
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the state given by Eq. (5.31) is separable for this parameter value. Consequently, probing with |1〉

is equivalent to probing with |11〉. The first regime occurs when

√
ηx +

√
ηY > 1. (5.35)

We can then calculate the trace norms for each regime:

D�,t=0
CXCY = 2|ηX − ηY |, (5.36)

D�,t>0
CXCY =

2|√ηX −
√
ηY |

2− (
√
ηX +

√
ηY )

. (5.37)

The next step is to prove that the expressions in Eqs. (5.36) and (5.37) are the diamond norms

in each regime. We do this using semidefinite programming. In Ref. [64], Watrous showed that

finding the diamond norm can be reduced to a semidefinite programming problem. In a semidefi-

nite programming problem, some matrices must be chosen, subject to constraints, to maximise or

minimise a quantity that is dependent on these matrices. More specifically, every problem consists

of a primal and a dual problem. Each valid solution to the primal problem provides a lower bound

to the quantity, and so one maximises over the primal problem. Each valid solution to the dual

problem provides an upper bound to the quantity, and so one minimises over it. Therefore, in

order to show that Eqs. (5.36) and (5.37) give the diamond norm, we must find matrices satisfying

the constraints of the dual problem for the diamond norm that give the expressions in Eqs. (5.36)

and (5.37) as the diamond norm. The dual problem is to find positive matrices Y0 and Y1 that

satisfy the constraint

M =

 Y0 −J(CX , CY )

−J(CX , CY ) Y1

 > 0, (5.38)

where J is the Choi matrix of channel CX minus the Choi matrix of channel CY , multiplied by the

dimension of the input system (which, in our case, is 2). The upper bound on the diamond norm,

which we must then minimise, is

D�CXCY ≤
‖TrS(Y0)‖∞ + ‖TrS(Y1)‖∞

2
, (5.39)

where the partial trace is taken over the signal (rather than the idler) mode and the norm is the

operator norm (i.e. the largest eigenvalue). In our case, we have

J(CX , CY ) =


0 0 0

√
ηX −

√
ηY

0 0 0 0

0 0 ηY − ηX 0
√
ηX −

√
ηY 0 0 ηX − ηY

 . (5.40)

102



5.2 Analytical results

Let us first consider the t = 0 case. Consider the matrices

Y t=0
0 =


D�,t=0
CXCY 0 0 |√ηX −

√
ηY |

0 0 0 0

0 0 1
2D
�,t=0
CXCY 0

|√ηX −
√
ηY | 0 0 1

2D
�,t=0
CXCY

 , (5.41)

Y t=0
1 = Y t=0

0 . (5.42)

We can immediately see that

TrS
(
Y t=0

0

)
= TrS

(
Y t=0

1

)
= D�,t=0

CXCY

1 0

0 1

 , (5.43)

and so the upper bound on the diamond norm coming from this solution is equal to the expression

in Eq. (5.36). The distinct, non-zero eigenvalues of M t=0 are

e1
Mt=0 = 2|ηX − ηY |, (5.44)

e2
Mt=0 = 2 (|ηX − ηY | − |

√
ηX −

√
ηY |) , (5.45)

e3
Mt=0 = 2 (|ηX − ηY |+ |

√
ηX −

√
ηY |) , (5.46)

the smallest of which is e2
Mt=0 . Since e2

Mt=0 > 0 for the regime in which t = 0 (i.e. for x > 1),

M t=0 > 0 in this regime, as required. The non-zero eigenvalues of Y t=0
0 (and Y t=0

1 ) are

e1
Y t=0 = |ηX − ηY |, (5.47)

e2
Y t=0 =

|ηX − ηY |
2

(
3−

√
1 +

4

x2

)
, (5.48)

e3
Y t=0 =

|ηX − ηY |
2

(
3 +

√
1 +

4

x2

)
. (5.49)

e2
Y t=0 is the smallest of these, and e2

Mt=0 > 0 in the regime in which t = 0, so both Y t=0
0 and

Y t=0
1 are positive. Therefore, Eq. (5.36) gives the exact diamond norm for the t = 0 regime.

Next, we consider the t > 0 case. Consider the matrices

Y t>0
0 =


D�,t>0
CXCY 0 0 |ηX−ηY |

2−x

0 0 0 0

0 0 1
2D
�,t=0
CXCY 0

|ηX−ηY |
2−x 0 0 D�,t>0

CXCY −
1
2D
�,t=0
CXCY

 , (5.50)

Y t>0
1 = Y t>0

0 . (5.51)
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Tracing over the signal mode, we get

TrS
(
Y t>0

0

)
= TrS

(
Y t>0

1

)
= D�,t>0

CXCY

1 0

0 1

 , (5.52)

and so the upper bound on the diamond norm coming from this solution is equal to the expression

in Eq. (5.37). The non-zero eigenvalues of M t>0 are

e1
Mt=0 = 2|ηX − ηY |, (5.53)

e2
Mt=0 =

4|√ηX −
√
ηY |

2− x
, (5.54)

e3
Mt=0 =

4|√ηX −
√
ηY |

2− x
− 2|ηX − ηY |, (5.55)

which are all positive. The non-zero eigenvalues of Y t>0
0 (and Y t>0

1 ) are

e1
Y t>0 = |ηX − ηY |, (5.56)

e2
Y t>0 =

|√ηX −
√
ηY |

2(2− x)

(
3 + (1− x)2 − x

√
4 + (2− x)2

)
, (5.57)

e3
Y t>0 =

|√ηX −
√
ηY |

2(2− x)

(
3 + (1− x)2 + x

√
4 + (2− x)2

)
. (5.58)

These are again all positive, proving that Eq. (5.37) gives the exact diamond norm for the t > 0

regime.

A logical next step would be to calculate the diamond norm between multiple uses of two

AD channels, i.e. between the two channels C⊗NX and C⊗NY . However, this is a more difficult

task. Numerically, we find that input states of the form |1〉⊗N achieve the diamond norm in

some cases, as for the single use case, but that the regimes are more complicated to characterise.

Further, for large numbers of channel uses, numerically finding the diamond norm via semidefinite

programming is computationally expensive.

5.2.5 Lower bounds on the optimal trace norm

It is helpful to also find lower bounds on the maximum trace norm between protocol outputs,

Dopt,N
CXCY since this allows us to assess how tight our upper bounds are. One option is to find the

diamond norm between C⊗NX (N copies of CX ) and C⊗NY . The only reason that such a lower bound

would not be tight is if adaptivity between rounds adds to the discriminative power of a protocol

(it is not yet known whether this is the case). The problem with using such a bound is that it is

difficult to find the diamond norm for N > 1 (as discussed in Subsection 5.2.4).
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An alternative is to consider specific protocols that could be implemented and to find the trace

norms between outputs in these cases. Since we are looking for the maximum trace norm over all

possible protocols, any specific protocol provides a lower bound on this maximum.

Pirandola et al. [2] provided a lower bound on the trace norm between protocol outputs, based

on consideration of a non-adaptive protocol, in which N copies of a Bell state are sent through the

channel. The output of this protocol is N copies of the Choi matrix of the channel. They found

that

Dopt,N
CXCY ≥ 2

(
1− fChoi(ηX , ηY )N

)
, (5.59)

fChoi(p, q) =
1 +

√
(1− p)(1− q) +

√
pq

2
. (5.60)

fChoi is the fidelity between the Choi matrices of channels CX and CY . We refer to this as the Bell

state lower bound.

In fact, we find that we can obtain a slightly tighter bound using an alternative, non-adaptive

protocol, in which N copies of the state |1〉 are sent through the channel. Note that this is also the

input state that achieves the maximum quantum Fisher information (QFI) per channel use [120]

and so is the optimal input state for parameter estimation, at least in the asymptotic limit of a large

number of channel uses. In this case, we obtain the tighter bound

Dopt,N
CXCY ≥ 2

(
1− f |1〉(ηX , ηY )N

)
, (5.61)

f |1〉(p, q) =
√

(1− p)(1− q) +
√
pq. (5.62)

This bound is again based on the fidelity between the possible outputs of the protocol.

For sufficiently small N , we can do better still by calculating the exact trace norm for this

protocol (rather than lower bounding it). Since the output state of the protocol takes the form

ρN,out
X(Y ) =

(
(1− ηX(Y )) |0〉 〈0|+ ηX(Y ) |1〉 〈1|

)⊗N
, (5.63)

for channel CX(Y ), the trace norm between the two possible outputs, D|1〉,NCXCY , is

D
|1〉,N
CXCY =

N∑
i=0

(
N

i

) ∣∣∣ηN−iX (1− ηX)i − ηN−iY (1− ηY )i
∣∣∣ . (5.64)

We will refer to this bound as the improved lower bound. The problem with using this bound for

large N is that the binomial coefficients become large and therefore computationally difficult to

calculate.

When applying the trace norm bounds to channel discrimination, the improved lower bound

can be approximated using the quantum Cramér-Rao bound (QCRB), as per [3]. The QCRB lower

105



5.2 Analytical results

bounds the error-variance for estimating a channel parameter, based on the QFI with respect to that

parameter. In our case, we have

σ2
η ≤

1

NHη
, (5.65)

where σ2
η is the variance of an estimation of η around its true value and Hη is the QFI with respect

to η. As shown in Ref. [120], the optimal QFI is achieved using number states with the maximum

number of photons per channel use. In our case, this is the state |1〉 and the maximum QFI per

channel use is

Hmax
η =

1

η(1− η)
. (5.66)

The QCRB therefore takes the form

σ2
η ≤

η(1− η)

N
. (5.67)

We can return to a binary hypothesis testing scenario by picking a threshold value, τ , of η, such

that if our estimation of η is greater than τ , we decide that we have channel CX (for ηX > ηY ),

and if not, we decide that we have channel CY . We assume that our estimation of η, η′, follows a

Gaussian probability distribution, centred on the true value of η, with a variance equal to the lower

bound from Eq. (5.67). For CX(Y ), this distribution is given by

pηX(Y )
(η′) =

1

ση
√

2π
e
−(η′−ηX(Y ))

2

2σ2ηX(Y ) . (5.68)

Spedalieri et al. then calculated the probabilities of deciding we have channel CY when we

have channel CX (perr
X ) and of deciding we have channel CX when we have channel CY (perr

Y ) [3].

These error probabilities are

perr
X = N−1

X

ˆ τ

0
pηX (η′)dη′, (5.69)

perr
Y = N−1

Y

ˆ 1

τ
pηY (η′)dη′, (5.70)

NX(Y ) =

ˆ 1

0
pηX(Y )

(η′)dη′, (5.71)

where the normalisation factors, NX(Y ), are due to restricting the probability distributions to the

range [0, 1] and again assuming ηX > ηY . In the case in which both channels have prior proba-

bilities, we can then choose the value of τ that minimises the mean of these two errors, in order to

find the total error probability (in the asymmetric case, we can minimise a weighted mean of the

errors). This then gives us an estimate of the error probability obtained using the improved lower

bound on the trace norm.
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It should be noted that this estimate is only tight for a large number of channel uses. For a

small number of channel uses, the QCRB is often not tight [121]. Since Eq. (5.67) lower bounds

the variance of the parameter estimates (rather than upper bounding them), we do not attain an

upper bound on the error probability, but rather an estimate of the error probability attained using

the upper bound in Eq. (5.64) (since we are using the same input states in both cases, and the trace

norm between the output states gives the lowest possible error in discriminating between them).

In fact, for low N , the estimate of the bound based on the QCRB, which we will call the QCRB

bound, underestimates the minimum error probability over a range of values. We will therefore

only apply it for large N (> 100). The advantage of using it in this range is that it is more easily

calculated than the upper bound in Eq. (5.64), whilst being significantly tighter than the bound on

the error probability attained using Eq. (5.61).

5.2.6 Upper bounds from PBT simulations

We now calculate the upper bounds based on PBT simulations of the AD channel. We consider

three types of resource state, as mentioned in Subsection 5.2.2.

The first type is the Choi matrix of the simulated channels, resulting in the upper bounds in

Ref. [2], which we call the standard Choi bounds. These bounds are

Dopt,N
CXCY ≤ Nε

std
m,XY + 2

√
1− fChoi(ηX , ηY )2mN , (5.72)

εstdm (η) = ξm

(η
2

+
√
η
)
, (5.73)

εstdm,XY = εstdm (ηX) + εstdm (ηY ), (5.74)

wherem can take any positive, integer value. Note that we have a family of bounds, since we have

a bound for any value of the number of ports, m. We must then optimise over m to achieve the

tightest possible bound in this family.

The second type of resource state is similar to the first, but ηX and ηY have been replaced by

η′X and η′Y , according to Eq. (5.16). The reason we choose this value of η′X(Y ) is that this is one

of the points at which the diamond norm between the channel and its simulation coincides with

the trace norm. This means that we have an analytical expression for the resulting family of trace

norm bounds, which we call the improved Choi bounds. Further, for all values of m ≥ 6, the
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simulation errors are lower than for the standard Choi resource. These bounds are

Dopt,N
CXCY ≤ Nε

imp
m,XY + 2

√
1− fChoi(η′X , η

′
Y )2mN , (5.75)

εimp
m (η) =

1

2

(
(η)ξm
1− ξm

+

√
4(η)

(
1−

√
1− ξm

)2
+

η2ξ2
m

(1− ξm)2

)
, (5.76)

εimp
m,XY = εimp

m (ηX) + εimp
m (ηY ). (5.77)

In fact, since the chosen values of η′X and η′Y are not necessarily the values that give the tightest

possible bounds, we could numerically minimise over all pairs of “Choi-like” resources simulating

CX and CY . In other words, we could simulate CX withRChoi(η′′X) and CY withRChoi(η′′Y ), where

RChoi(η) = C(η)⊗m, (5.78)

C(η) =



1−η
2 0 0 0

0 1
2 −

√
η

2 0

0 −
√
η

2
η
2 0

0 0 0 0

 . (5.79)

We could then numerically minimise over η′′X and η′′Y to find the optimal resource states. However,

in this case, we would not have an analytical expression for the simulation error and would need

to calculate it numerically, by finding the diamond norm for both simulations; this involves max-

imising the trace norm between the channels and their simulations over all possible input states.

We would then also need to minimise the bounds overm. This would involve a lot more numerical

minimisation/maximisation than simply numerically optimising the standard and improved Choi

bounds over m. This is why we do not find optimal bounds for this more general resource.

Finally, we consider resource states, Ralt(a), of the form given in Eq. (5.17). The Choi matrix

of the channel simulated by carrying out PBT with this resource state is given in Chapter 4 (see

also [11]). Writing the Choi matrix in the form

ρChoi
PBT(Ralt(a)) =


x 0 0 z

0 1
2 − x 0 0

0 0 y 0

z 0 0 1
2 − y

 , (5.80)

where the expressions for x, y and z are functions of a (and m), which are given in Chapter 4

(Eqs. (4.99) to (4.101)), we choose aX(Y ) such that

x
(
aX(Y )

)
− y

(
aX(Y )

)
=
ηX(Y )

2
. (5.81)
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We then simulate CX(Y ) with aX(Y ) and call the resulting bounds the alternative resource bounds.

We choose this value of aX(Y ) because this is one of the points at which the diamond norm

between the channel and its simulation coincides with the trace norm. Similarly to the case of the

“Choi-like” resources, we could minimise our bound over all possible values of aX(Y ), rather than

choosing this value, but this would again require a lot more numerical minimisation/maximisation.

The simulation error is given by

εalt(aX(Y )) = 1− ηX(Y ) − 2y +
√

(1− ηX(Y ) − 2y)2 + (
√
ηX(Y ) − 2z)2

∣∣∣
a=aX(Y )

, (5.82)

and the fidelity between the resource states is given by

falt(aX , aY ) =
√
aXaY +

√
(1− aX)(1− aY ). (5.83)

The alternative resource bounds are therefore given by

Dopt,N
CXCY ≤ Nε

alt
XY + 2

√
1− falt(aX , aY )2mN , (5.84)

εalt
XY = εalt(aX) + εalt(aY ). (5.85)

Although this may not be immediately apparent from the expressions, both εalt
XY and falt depend

on m, since the expressions for x, y, z and aX(Y ) all depend on m. Therefore, we again want to

pick the optimal value of m, in order to achieve the tightest possible bound. Note that the resource

states are pure, meaning that our expression for the trace norm between different resource states is

exact.

In order to optimise over m, we use analytical functions that closely approximate the standard

and improved Choi bounds, but that do not feature ξm. This is done because the expression for

ξm is too complicated to easily find an analytical minimum of the full bounds. Specifically, we

replace ξm in the simulation error expressions with m−1; this gives us expressions that we can

easily locate the minima of, for fixed ηX , ηY and N . We then use the closest integer values of m

to our minima when calculating the actual values of the bounds (substituting them into the original

expressions). When referring to the standard or improved Choi bound in Section 5.3, it is implicit

that this process has been carried out, and that the bounds are calculated for the optimal value

of m. For the alternative resource bounds, we find numerically that the bound gets tighter as m

increases, rather than having a maximum, so we pick a fixed, high value of m.

5.2.7 Extending to the qudit case

We will briefly consider the case in which we must discriminate between two pure loss qudit

channels, rather than two AD channels (which are pure loss qubit channels). The Stinespring
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dilation of such a channel is a beamsplitter acting on an environmental vacuum mode. The action

of the beamsplitter can be described as

|n〉S |0〉E →
n∑
i=0

√
ηn−i(1− η)i

(
n

i

)
|n− i〉S |i〉E , (5.86)

where S labels the signal mode (the input mode to the channel), E labels the environmental mode

and η is the transmissivity of the beamsplitter (and the channel). The binomial coefficient on the

right-hand side of the expression comes from the choice of which photons are transferred to the

environmental modes. This means that a d-dimensional, pure loss channel, with transmissivity η,

can be described by the d Kraus operators

Kj =
d−1∑
i=j

√
ηi−j(1− η)j

(
i

j

)
|i〉 〈i− j| , (5.87)

where the label j ranges from 0 to d− 1.

Calling our pure loss d-dimensional channels CdX and CdY , with transmissivities of ηX and ηY

respectively, the J-matrix of the two channels (the difference between the Choi matrices, multi-

plied by the input dimension of the channel, as per Subsection 5.2.4) can be written as

J(CdX , CdY ) =
d−1∑
i=0

(∣∣viηX〉 〈viηX ∣∣− ∣∣viηY 〉 〈viηY ∣∣)SI , (5.88)

∣∣viη〉SI =
d−i−1∑
j=0

√
ηj(1− η)i

(
i+ 1

j

)
|i+ j〉S |j〉I , (5.89)

where S labels the signal mode and I labels the idler mode.

In order to calculate simulation bounds in the qudit case, we would require expressions for the

output of qudit PBT channels and would require new resource states capable of simulating pure

loss qudit channels. However, the trivial bound, based on the diamond norm, can still be used in

the qudit case (substituting the diamond norm between channels CX and CY , in Eq. (5.21), with

the diamond norm between CdX and CdY ).

We do not have an analytical expression for the diamond norm between channels CdX and CdY ,

as we do for the qubit case. Instead, we can find it numerically, using semidefinite programming,

using the formula for the difference between Choi matrices, given in Eq. (5.88). The issue here

is the same as with finding the diamond norm for multiple channel uses. As the input dimension

becomes large (i.e. for large d), numerically finding the diamond norm becomes computationally

expensive.

An alternative is to bound the diamond norm, using a result from Ref. [1]. Nechita et al.
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showed that the diamond norm between any two channels, A and B, can be bounded by

‖A − B‖� ≤ ‖TrS |J(A,B)|‖∞ , (5.90)

where J(A,B) is the difference between the Choi matrices of A and B, multiplied by the input

dimension of the channels. Here we have first taken the absolute value of the matrix J(A,B),

then taken the partial trace over the signal mode. We have then taken the largest eigenvalue (the

operator norm) of the resulting matrix as our bound. Note that this coincides with the trace norm

and is therefore exactly the diamond norm, if the matrix is scalar after the partial trace is taken.

Applying this bound to the expression in Eq. (5.88) gives a computationally cheaper (but less tight)

bound on the diamond norm (and hence on the optimal trace norm between protocol outputs) than

finding the diamond norm numerically, via semidefinite programming.

Numerical investigation shows that the diamond norm between two qudit channels, CdX and

CdY , appears to coincide with the diamond norm between d− 1 uses of two qubit channels, C⊗d−1
X

and C⊗d−1
Y (for the same transmissivities, ηX and ηY ). This suggests some connection between

the two cases, however it is not clear what the connection is.

It is also worth noting that the (approximation of the) upper bound on the error probability of

discriminating between two equiprobable channels attained by using the QCRB still holds in the

qudit case (as long as the number of channels is large enough for the approximation to be valid),

with the only change being to the lower bound on the channel parameter variance, in Eq. (5.67).

In this equation, N(d − 1) is substituted for N . This is because the maximum QFI per channel

use is

Hmax
η,d =

d− 1

η(1− η)
, (5.91)

and the input state that attains this value is |d− 1〉 [3, 120]. The QFI is additive, so the maximum

value of the total QFI is the same for both lossy channels and AD channels, as long as the total

number of photons sent through the channel is the same.

5.3 Numerical investigations

Carrying out numerical PBT simulations for our three classes of resource states over a variety

of ηX , ηY and N values, we find that the improved Choi bound beats the standard Choi bound

over the entire range of investigated parameter values. We also find that the alternative resource

bound, for a sufficiently large number of ports, m, beats the both Choi bounds across almost the

entire range, and that the trivial bound also beats the Choi bounds over a wide range of values.
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Figure 5.1: Upper and lower bounds on the maximum value of the trace norm between the two

possible outputs of an adaptive discrimination protocol with no more than 10 channel uses. The

channels being discriminated between are AD channels with transmissivities ηX and ηY , where

ηY = ηXηXY . In this case, ηXY = 0.95. The two upper bounds based on PBT simulations

using “Choi-like” resources are significantly less tight than the trivial (upper) bound and the upper

bound based on PBT simulations using the alternative resource. Each of these latter two bounds

is optimal over some range of ηX values. The improved lower bound is tighter than the Bell state

lower bound. The grey shaded area is the region between the tightest upper and lower bounds.

In fact, either the trivial bound or the alternative resource bound beat both of the Choi bounds

over the entire range of values that was investigated. Since this was a numerical study, it is not

possible to definitively say that the tightest out of the trivial bound and the alternative resource

bound is always tighter than either of the Choi bounds, however this is the case for a wide range

of parameter values.

In Figs. 5.1 and 5.2, we demonstrate the performance of the various bounds. Choosing ηX >

ηY , we decompose CY as the pointwise application of CX and some other AD channel, CXY , with

transmissivity

ηXY =
ηY
ηX

. (5.92)

Two specific values of ηXY (one per plot) were chosen: 0.95 and 0.9. Two values of N , the total

number of channel uses, were also chosen: 10 and 30. With these kept fixed, ηX was then varied
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Figure 5.2: Upper and lower bounds on the maximum value of the trace norm between the two

possible outputs of an adaptive discrimination protocol with no more than 30 channel uses. The

channels being discriminated between are AD channels with transmissivities ηX and ηY , where

ηY = ηXηXY . In this case, ηXY = 0.9. For these parameter values, the upper bound based on

simulation using the alternative resource is always better than the other three upper bounds. It is

to be expected that the trivial bound performs less well for high values of N , because it scales

linearly with N , whilst the bounds based on PBT do not. The improved lower bound has a distinct

advantage over the Bell state lower bound. The grey shaded area is the region between the tightest

upper and lower bounds.

from 0.01 to 0.99 and the bounds were studied over this range. For the alternative resource bound,

we have set m = 150.

As shown in the plots, the improved Choi bound performs better than the standard Choi bound,

however both are beaten by either the trivial bound or the alternative resource bound (which of

these is highest depends on the parameter values). The trivial bound performs better than the

alternative resource bound when ηX and ηXY are large and when N is small.

The new lower bound on the optimal trace norm (based on sending N copies of the state |1〉

through the channel) is tighter than the lower bound from Ref. [2] (based on sendingN copies of a

Bell state through the channel) across the entire range. It is clear, however, that there is still room

to tighten either the upper or the lower bounds, since there is still a gap between the tightest upper
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Figure 5.3: Comparison with the bounds on the error probability of discriminating between two

AD channels, one with damping rate p and one with damping rate p + 0.01, with equal prior

probabilities, with no more than 20 channel uses, found in Ref. [2]. The line labelled “standard

Choi” is the lower bound found in Ref. [2] and the line labelled “Bell state UB” is the upper bound

from the same paper. The other lines are the new bounds presented here and the grey shaded area

is the region between the tightest upper and lower bounds.

bound and the tightest lower bound, especially in Fig. 5.2.

In Fig. 5.3, we compare our new bounds to the bounds presented in Fig. 4 of Ref. [2]. We plot

the error probability of discriminating between two AD channels, with equal prior probability,

using the equation in Eq. (5.15). The AD channels are characterised by the damping rate, p, rather

than by the transmittance, η, although the two quantities are trivially connected via the equation

p = 1− η. One channel has a damping rate of p and the other has a damping rate of p+ 0.01. The

maximum number of channel uses is 20. The new lower bounds on the error probability (which

come from the new upper bounds on the trace norm) are tighter than the lower bounds in Ref. [2]

over the entire range; in this case, the alternative resource bound is the tightest lower bound. The

new upper bound on the error probability (coming from the improved lower bound on the optimal

trace norm) is slightly tighter than the upper bound in Ref. [2] over the entire range, but most

noticeably for a high damping rate, p.

We now consider two examples of how these bounds might be applied to quantum information
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tasks. The tasks we consider are quantum hacking and biological sensing (a quantum metrology

task).

5.3.1 Applying the bounds to quantum hacking

Suppose a hacker, Eve, is attempting to eavesdrop on communications between a sender, Alice,

and a receiver, Bob, who are implementing the BB84 protocol. Suppose also that Eve is able to

send photons into Alice’s device before each transmission (and to receive some return state). Eve

could use this side-channel to gain more information on the states sent by Alice than is accounted

for in the security proofs. For instance, Alice’s basis choice could be enacted by a polariser [122].

By sending in photons with a known polarisation, Eve could glean information about Alice’s

basis choice based on the loss experienced by the photons (which could be basis dependent).

Then, if Eve could determine Alice’s basis with a high probability of success, she could carry

out an intercept and resend attack on the photons sent through the main channel, without greatly

disturbing them. In other words, she could measure the signal states in the basis that she believes

them to have been sent in, based on her side-channel attack. Alice and Bob would only detect

errors in half of the cases in which Eve incorrectly guesses Alice’s basis. Since, in this scenario,

Eve’s error probability is low, the quantum bit error rate detected by the trusted parties would be

much lower than the 25% normally expected for an intercept and resend attack.

We model the attack as Eve carrying out a general, adaptive discrimination protocol with up to

N channel uses. We set the transmissivity of one of the channels as ηY = 0 and then choose three

different values of ηX : 10−5, 5 × 10−6 and 10−6. We then calculate Eve’s discrimination error

probability, assuming equal prior probabilities of each channel occurring, for various numbers of

channel uses. In this scenario, we assume that we have a perfect polariser, and so for one channel

(i.e. for one polarisation), the photons sent through are completely absorbed by the polariser,

whilst for the other channel, they are undisturbed by the polariser. We assume that the input states

are so strongly attenuated that they can be modelled as a train of at most single photon states by the

time they arrive at the polariser and hence that Eve’s protocol can be modelled as a discrimination

protocol between AD channels. This is a reasonable assumption, since BB84 involves the sending

of single-photon states, which are often produced using strongly attenuated laser pulses. It is thus

reasonable to assume that a laser pulse sent by Eve into Alice’s device, through the optical fibre,

would be similarly attenuated, such that the pulse arriving at the polariser could be well-modelled

as a qubit state. We also assume that further attenuation occurs as the states leave the device,

giving rise to the low values of ηX . This is in line with the architecture in Ref. [123], which limits
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Figure 5.4: Upper and lower bounds on the discrimination error probability for an eavesdropper

carrying out an adaptive protocol to discriminate between two BB84 preparation bases, with at

most N channel uses. We assume that Eve must send qubit states through an AD channel, in order

to determine whether the channel has a transmissivity of ηX or of ηY . ηY = 0, whilst ηX takes

values of 10−5, 5× 10−6 and 10−6; each case is represented by a different colour. The continuous

lines give lower bounds on the error probability, whilst the dashed lines give upper bounds. The

upper bounds are based on the improved lower bound, from Eq. (5.64). The lower bounds are

based on the trivial bound, from Eq. (5.21), and the alternative resource bound, from Eq. (5.85);

whichever bound has a higher value for a given N is used for that value of N . For the alternative

resource bound, m = 150. We find that, for all three values of ηX , the trivial bound gives a tighter

bound for N ≤ 4 and the alternative resource bound gives a tighter bound for N > 4.

the total mean photon number leaving Alice’s device via the optical fibre, per signal sent through

the main channel, to 10−6.

The assumption that Eve’s states can be modelled as (up to) one-photon states probing AD

channels can be justified by numerically finding the energy-constrained diamond norm [5, 65, 66]

between a lossy channel and the pointwise application of a truncation channel (a channel mapping

all number states of the form |n > 1〉 to |0〉) and the same lossy channel, for low transmissivities.

More specifically, we use the semidefinite program for calculating the energy-constrained diamond

norm given in Ref. [66]; note that the definition of the energy-constrained diamond norm used by

Winter [66] (and Shirokov [65]) differs slightly from the definition given by Pirandola et al. [5].
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We find that, for ηX = 10−6, the truncation to one-photon states has a small effect on the error

probability.1

Since one of the channels (CY ) will always output the state |0〉, we can significantly simplify

the improved lower bound. Eq. (5.64) reduces to

D
|1〉,N
CXCY = 2(1− ηNX ). (5.93)

The upper and lower bounds found are shown in Fig. 5.4. The upper bounds come from the

improved lower bound and the lower bounds are based on whichever is tighter of the trivial bound

and the alternative resource bound. For the chosen values of ηX , the trivial bound is tighter for

N ≤ 4. This is in line with our expectation that the trivial bound performs less well (compared to

bounds based on PBT simulation) for large values ofN , due to its linear scaling. The gap between

the upper and lower bounds is small in proportion to their values, but still shows significant room

for improvement, especially for large N . It is not clear whether it is the upper bounds, the lower

bounds, or both which need tightening.

5.3.2 Applying the bounds to biological sensing

Quantum channel discrimination protocols have applications in biology. The concentration of

bacteria in a growth medium affects the transmissivity of light through the medium. The tasks of

distinguishing between the presence and absence of bacteria in a sample and of distinguishing be-

tween two possible concentrations of bacteria can therefore be considered to be quantum channel

discrimination tasks, where the two possible channels are lossy channels with different transmis-

sivities. Further, in biological applications, low photon numbers are often desirable, since intense

radiation can harm the samples that are being probed. As a result, in some scenarios, modelling

the task as an AD channel discrimination task may be appropriate.

In Ref. [3], Spedalieri et al. show that quantum light sources and detectors can reduce the

error probability for both detecting the presence or absence of E. coli in a sample and determining

whether a sample contains E. coli or Salmonella. They start by determining the transmissivities

of growth media containing E. coli and Salmonella bacteria, as a function of time. The time-

dependence comes from the changing concentrations of the bacteria in the media as they grow.

The two possible types of bacteria and the case with no bacteria present therefore correspond to

three different possible lossy channels. Determining whether a specific bacteria is present or absent

1See the supplementary data of Ref. [10] for more details.
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and determining which of the two types of bacteria is present then become channel discrimination

tasks.

Spedalieri et al. consider the task of parameter estimation, where the parameter to be estimated

is the transmissivity of the channel. They consider both coherent state sources and the optimal

input states for parameter estimation, from Ref. [120] (which are number states that send the

maximum number of photons through the channel per channel use). They then bound the error

probability for detecting the presence of E. coli and discriminating between E. coli and Salmonella,

by using the expressions in Eqs. (5.69) and (5.70). In the symmetric testing case (equal prior

probabilities), the mean of perr
X and perr

Y is minimised over τ . Note, however, that the resulting

expression (the QCRB bound) only provides an upper bound on the optimal error probability for

sufficiently large N (i.e. in the regime in which the QCRB is tight).

In Figs. 5.5 and 5.6, we plot upper and lower bounds on the optimal error probability for

an adaptive protocol with up to 150 channel uses, each sending at most one photon through the

channel. This is reasonable, because it is desirable to send only a small amount of energy through

the channels and because the error probabilities from Eqs. (5.69) and (5.70) can be achieved in

this way.

Fig. 5.5 bounds the error probability over time for detecting the presence of E. coli in a sample.

In this scenario, CX is the channel corresponding to a blank sample (no bacteria present), and so

ηX has a constant value of ηbk = 0.92. CY is the channel corresponding to a sample with E. coli

present and has a transmissivity of

ηY = ηE.Coli(t) = ηbk − c1,E.Colit
2 + c2,E.Colit

3, (5.94)

where c1,E.Coli and c2,E.Coli are constants (for a fixed type of bacteria) with values of 0.1 hrs−2

and 0.0088 hrs−3 respectively and where t is the time, in hours, since the sample was prepared.

The values of c1,E.Coli and c2,E.Coli were experimentally determined in Ref. [3], and the cubic

expression for ηE.Coli, from Eq. (5.94) is valid for small t (≤ 3).

The lower bound is the tightest out of the lower bounds derived from our upper bounds on the

trace norm. In fact, this is always the bound based on the trivial bound (in the regime in which the

lower bound is > 0). For the upper bound, we consider both the error probability derived from

the exact form of the improved lower bound on the trace norm [from Eq. (5.64)] and the QCRB

bound. Since the two bounds overlap almost perfectly, the approximation is valid in this regime

(N = 150). It is clear that there is room for improvement of either the upper or the lower bounds

on the trace norm for large N .
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Figure 5.5: Upper and lower bounds on the error probability of detecting the presence of E. Coli

bacteria in a sample, with a maximum of 150 channel uses (each using no more than one photon)

as a function of time. The transmissivity of the blank sample is constant, whilst the transmissivity

of the sample containing E. Coli is modelled as following a cubic equation (with respect to the

time since the sample was prepared). The lower bound (denoted “LB (trivial)”) is derived from

the trivial bound on the trace norm. The exact form of the upper bound (“UB (exact)”) is derived

from the improved lower bound on the trace norm and the approximation to the upper bound

(“UB (QCRB)”) is based on the QCRB bound. Since the two bounds overlap almost perfectly, the

approximation is valid in this regime.

Fig. 5.6 bounds the error probability over time for discriminating between samples of E. coli

and Salmonella. In this scenario, CX is the channel corresponding to a sample containing E. coli

and CY is the channel corresponding to a sample containing Salmonella. In this case, we calculate

the time-dependent transmissivities differently, by modelling the absorbances, A, of the samples

as Gompertz functions and applying the formula

η = 10−A. (5.95)

The absorbances are modelled as following

A = c1e
a +Abk, (5.96)

a = −e
c2e
c1

(c3−t)+1
, (5.97)
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Figure 5.6: Upper and lower bounds on the error probability of discriminating between E. Coli

and Salmonella bacteria in a sample, with a maximum of 150 channel uses (each using no more

than one photon) as a function of time. The absorbances of the samples are modelled as following

Gompertz functions. The lower bound (denoted “LB (trivial)”) is derived from the trivial bound

on the trace norm. The exact form of the upper bound (“UB (exact)”) is derived from the improved

lower bound on the trace norm and the approximation to the upper bound (“UB (QCRB)”) is based

on the QCRB bound. Since the two bounds overlap almost perfectly, the approximation is valid

in this regime. The absorbances are initially very similar, but become more distinguishable as

the time since the sample was prepared increases. We note that this plot differs from Fig. 10 in

Ref. [3]; this is because Spedalieri et al. consider probing with a mean total of 103 photons, whilst

we only allow a maximum of 150 photons in total. They also model the transmissivities of the two

samples using cubic equations, rather than Gompertz functions.

where Abk is the absorbance of a blank sample and c1, c2 and c3 are experimentally determined

coefficients that depend on the type of bacteria present in the sample. Spedalieri et al. found that

the triple (c1, c2, c3) took values (0.309, 0.139, 2.634) for E. coli and (0.242, 0.0882, 2.672) for

Salmonella [3]. Abk (which was the same for both samples) took the value 0.144.

The lower bound is derived from the tightest of our upper bounds on the trace norm, which is

again the trivial bound over the entire regime in which the lower bound is > 0. The upper bounds

are calculated in the same way as for Fig. 5.5, and we again find that the exact form of the bound
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and the approximation overlap almost perfectly. The bounds briefly peak after a little more than 2

hours, before decreasing again, due to the fact that the difference in the absorbances of the samples

briefly decreases before increasing again. Once again, we have a large gap between the bounds,

which could be improved by tightening either the lower or the upper bounds. It is not yet known

which bound most needs to be tightened.

5.4 Summary

In this chapter, we calculated multiple new bounds on the optimal trace norm for discriminating

between two AD channels. We have strengthened both the upper and the lower bounds on the

optimal trace norm by presenting the improved Choi bounds, the alternative resource bounds,

the trivial bound and the improved lower bound on the trace norm. We have also calculated the

exact diamond norm between AD channels, thus obtaining the exact error probability for one-shot

channel discrimination between any two AD channels, in analytical form.

The bounds were then numerically investigated and we found that the either the alternative

resource bound or the trivial bound gave the tightest lower bound over a wide range of parameter

(ηX , ηY , and N ) values. The bounds were applied to two different scenarios: quantum hacking

of BB84 and biological quantum metrology (detecting and discriminating between bacteria in a

sample). In the latter scenario, we also confirm that the QCRB bound is valid as an approximation

of the discrimination error probability derived from the improved lower bound on the trace norm

(and is therefore a valid upper bound on the error probability) for large N (in our case, N = 150).

We briefly discussed how these results could be extended to pure loss qudit channels, however

this is an area that is open to more research, which could find bounds on the error probability

of adaptive discrimination protocols between any two lossy channels. Another area for continued

research is the further tightening of either the upper or the lower bounds on the optimal trace norm,

since there is still room for improvement.

This work contributes to the theory of channel simulation of AD channels and significantly im-

proves the bounds on the optimal error probabilities for adaptive discrimination protocols between

AD channels.
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Chapter 6

Trojan horse attacks on coherent state

protocols

The work in this chapter forms the basis of a paper published in Physical Review A, whose authors

are (in order) Jason Pereira and Stefano Pirandola [8].

We start this chapter by discussing quantum hacking in general and the Trojan horse attack

specifically. In the next section, we introduce our side channel model and calculate the key rate of

a coherent state protocol when the sender’s device is subject to a Trojan horse attack. We briefly

discuss how the attack could be mitigated and then we summarise our work.

6.1 Introduction

Quantum information science [109, 111, 124] is advancing at a rapid pace. The progress of quan-

tum computing [15] threatens to make current, classical cryptography insecure. Quantum key

distribution (QKD) [125–127] is a possible solution to this problem, offering provable informa-

tion security based on physical principles. It is possible to design QKD protocols that ensure that

any eavesdropper can hold only an arbitrarily small amount of information about the message sent.

This holds true regardless of how advanced the eavesdropper’s technology is.

Security proofs for QKD protocols have a few assumptions that must hold in order for them

to be valid [128]. The two trusted parties (Alice and Bob) must have isolated devices, which

are inaccessible to the eavesdropper (Eve). The devices should be fully characterised, so that

an adversary cannot exploit device imperfections to acquire information about the key or to alter

the trusted parties’ estimations of the quantum channel properties. The trusted parties must also

have an authenticated (but not secure) classical channel; an eavesdropper can listen in to classical
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communications along this channel, but cannot alter them. If we relax any of these conditions, the

secure key rate for a protocol may change.

Current commercial implementations of discrete variable (DV) protocols, such as BB84 [51]

with decoy states [129, 130], have been shown to be vulnerable to a variety of attacks that exploit

device imperfections, such as “side-channels” that leak information from the trusted parties’ de-

vices to Eve [46]. These attacks include detector blinding attacks [131], time-shift attacks [132]

and Trojan horse attacks [133].

A variety of attacks on continuous variable (CV) protocols have been proposed. In experimen-

tal realisations of QKD, the local oscillator (which is used by Bob to carry out his measurements)

is often sent down the quantum channel; this introduces a vulnerability that an eavesdropper can

exploit. Häseler et al. [134] demonstrated that Eve could disguise an intercept and resend attack by

replacing the signal state and the local oscillator with squeezed states. The wavelength-dependence

of beamsplitters in Bob’s setup can be exploited to engineer his measurement outcomes [135,136].

Altering the shape of the local oscillator pulse can allow an eavesdropper to change Bob’s estima-

tion of the vacuum noise [137,138]. Saturation attacks [139,140], which push Bob’s detectors out

of the linear mode of operation, have also been proposed.

One way of avoiding attacks that exploit device imperfections is to use device-independent

QKD [128, 141]. This is a family of protocols that do not require Alice’s and Bob’s devices to be

trusted. Such protocols are immune from many side-channel attacks, but have significantly lower

key rates than protocols that require trusted devices. Measurement-device independent (MDI)

QKD protocols have been formulated for both the DV [142,143] and the CV [144] cases and have

much higher key rates than fully device-independent protocols. MDI-QKD removes threats from

the detector’s point of view, but still assumes that the state-preparation devices are completely

trusted. Therefore, MDI-QKD is also subject to the quantum hacking described in this chapter.

In this chapter we consider a Trojan horse attack, where Eve sends extra photons into Alice’s

device, in order to gain information about the states being sent through the main quantum channel

without disturbing the signal state. This type of attack was first considered in depth by Vakhitov et

al. [145]. Such an attack may be used in DV protocols [146], in order to distinguish decoy states

from signal states or to gain information about Alice’s basis choice.

Gisin et al. [147] described how reflectometry could be used by Eve to gain information about

Alice’s phase modulator settings and analytically calculated the information leakage in terms of

the photon number of the state received by Eve after the side-channel. They assumed attenuation

of the side-channel mode by Alice and showed that the information leakage is reduced if Alice can
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6.2 Calculating the key rate with a side channel in the sender’s device

randomise the phase of the side-channel mode.

Lucamarini et al. [123] calculated the secret key rate for BB84, with and without decoy states,

in the presence of a Trojan horse side-channel, in terms of the photon number of the state received

by Eve. They then bounded the incoming photon number in terms of the Laser Induced Damage

Threshold (LIDT) of the optical fibre and the time for which Alice’s device gate is open, assuming

that the Trojan horse photons are sent in via the main channel, whilst the gate is open. Based on

this constraint, they designed an architecture to passively limit the photon number of the received

state and hence the information leakage.

Tamaki et al. [148] found general analytical expressions for the information leakage of DV

protocols due to Trojan horse attacks, in terms of the actions of the phase and intensity modulators.

This allows the secret key rate of a general DV protocol in the presence of a Trojan horse side-

channel to be calculated, as long as the phase and intensity modulators are well-characterised.

In Chapter 5, we describe how a discrimination protocol between two amplitude damping

channels could model an attempt by an eavesdropper to gain information on the basis choice

for the BB84 protocol [51], via a Trojan horse attack. We gave bounds on the discrimination

error probability, which hold for the most general adaptive protocols. We thereby found ultimate

bounds on the probability of an eavesdropper successfully discovering the basis choice, although

our lower bounds on the error probability may not be achievable (since the bounds are not tight).

In this chapter, we look in detail at a specific type of Trojan horse attack on a CV-QKD protocol.

Here we assume a CV protocol based on the modulation of coherent states [7], so that the

attack is against the modulator. The experimental viability of carrying out a Trojan horse attack

on the commercial CV system SeQureNet has previously been considered [149]. We assume that

Eve is both hacking Alice’s device with n̄ mean photons per run and tapping the main quantum

channel between Alice and Bob, which can be assumed to be a thermal-loss channel.

6.2 Calculating the key rate with a side channel in the sender’s device

6.2.1 General scenario

We consider two parties, Alice and Bob, who are trying to establish a secret key, with a third party,

Eve, trying to gain information about the secret key. Alice initiates a coherent state protocol [7,55].

This involves her displacing a vacuum state by a Gaussian-distributed random (two-dimensional)

variable, α. In real implementations, this displacement is generally carried out by independently

modulating the phase and the intensity, so that the overall displacement has a Gaussian distribution.
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She then sends the displaced vacuum state (called the signal state) to Bob, via a quantum channel.

Bob then carries out a heterodyne measurement on the signal state, to obtain a value β. This

process is repeated several times. Alice and Bob compare some of their values via a classical

communication channel in order to establish the transmittance, η, and excess noise, ε, of the

channel. Bob and Alice then establish a secret key based on their shared knowledge of Bob’s

values (this is called reverse reconciliation).

Whilst the signal states are in the main quantum channel, we allow Eve to enact any unitary

operation upon them. We assume that Eve can listen in on all classical communication between

Alice and Bob (but cannot alter it). She can then store all states involved in the operation (except

for the signal state) in a quantum memory and carry out an optimal measurement on them after

all quantum and classical communication has been completed, in order to gain information about

Bob’s values. Alice and Bob therefore assume that all of the noise and loss of the channel has been

caused by Eve’s unitary operations and try to bound the maximum knowledge that Eve could have

obtained about Bob’s values. As long as Alice has more information about Bob’s values than Eve,

it is possible for Alice and Bob to obtain a secret key.

If Eve is only able to access the main channel and is not able to access Alice or Bob’s devices

in any way, the optimal attack on the signal state for a given attenuation and noise is an entangling

cloner [150]. The secret key rate for this case has been calculated [151]. Here we instead consider

the case where Eve also has access to part of Alice’s device via a side-channel. Eve can send a

Trojan horse mode into Alice’s device, which will be displaced by α in the same way as the signal

state. This side-channel mode contains an average number of photons n̄, and we assume that Alice

is able to monitor these photons and estimate their number. This will not be the case for most

current CV-QKD implementations, especially since certain potential Trojan horse side-channels

may not have been identified yet, so additional quantum metrological tools must be placed inside

Alice’s box in order for this assumption to be met. To represent Eve’s Trojan horse mode, we

assume it is part of a two-mode squeezed vacuum (TMSV) state [55] with squeezing r, so that

n̄ = sinh2 r. This is an active attack when n̄ > 0 and it is a passive one when n̄ = 0, meaning

that we just have a leakage mode from Alice’s device.

Recently, a side-channel on CV-QKD based on leakage from a multimode modulator was

considered by Derkach et al. [152], building on their previous work [153]. These works considered

leakage modes prior to and after modulation of the signal state, for both the coherent state and the

squeezed state protocols. However, these authors did not consider side-channels that allow Eve to

send photons into Alice’s device (non-zero values of n̄). They also considered homodyne, rather
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Figure 6.1: The channel setup under consideration. A is Alice’s device, B is Bob’s device and E

is Eve’s device. The dashed green line marks the part of Alice’s device that is accessible to Eve.

Eve sends one mode of a TMSV state into Alice’s device to be displaced by α in the same way

as the signal state. Alice knows the average photon number, n̄, of Eve’s state. The (displaced)

squeezed vacuum modes and the signal state form the state ψ0. Eve enacts a unitary on this total

state and any ancillary modes, then sends the signal state to Bob and stores the remaining modes

in a quantum memory. Bob carries out a heterodyne measurement on the signal state, obtaining

β. We find the key rate assuming that the main channel is a thermal channel, with transmittance η

and excess noise ε, as represented by the blue dashed arrow.

than heterodyne, measurements by the receiver. In this chapter, we will consider a more general

scenario, where the hacking of Alice’s device is active, therefore involving the use of two-mode

squeezing, so that n̄ > 0 photons enter the device. We analyse the security when the side-channel

mode is modulated by α, exactly as the signal mode is (we later generalise to the case where its

modulation is mα). See Fig. 6.1 for an overview of the situation.

To find the secret key rate in reverse reconciliation, we need to calculate the mutual information

between Alice and Bob I(α : β) and that between Eve and Bob. The latter is upper-bounded by

the Holevo bound I(E : β), which can be calculated as the reduction in entropy of Eve’s output

state when conditioned by Bob’s value, β. We upper-bound Eve’s knowledge of Bob’s state by

assuming that all noise and loss experienced by the signal state is due to Eve enacting unitary

operations on the signal state and some ancillary modes, which are then stored in a quantum
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6.2 Calculating the key rate with a side channel in the sender’s device

memory.

Note that we set the vacuum noise equal to 1 in this chapter.

6.2.2 Reduction of the attack

If there are no side-channels, Eve’s Holevo bound can be calculated by assuming that the signal

state is entangled with some state held by Alice and that α is the result of a heterodyne measure-

ment on a TMSV state [150]. In the presence of our side-channel, the initial state held by Eve

prior to her enacting the main channel is tripartite and composed of the signal mode and Eve’s

side-channel modes. Our first step must be to determine the first and second moments of this

state ψ0 (see Fig. 6.1). We label the initial first moment vector X0 and the initial second moment

(covariance) matrix V0. For a fixed value of α, we have the conditional state ψ0|α which is the

tensor product of a coherent state |α〉 〈α| and a TMSV state where one of the modes has also been

displaced by α. The conditional moments are given by

X0|α =


α

α

0

 , V0|α =


I 0 0

0 cosh 2rI sinh 2rZ

0 sinh 2rZ cosh 2rI

 , (6.1)

where I is the one-mode identity matrix, 0 is the one-mode zero-matrix, and Z is the Pauli Z-

matrix.

In order to find the elements of V0, we add the expectation value of X0|α · X0|αT to V0|α.

Using 〈α〉 = 0 and
〈
α2
〉

= µ, we find

X0 =


0

0

0

 , V0 =


(µ+ 1)I µI 0

µI (µ+ cosh 2r)I sinh 2rZ

0 sinh 2rZ cosh 2rI

 . (6.2)

From the covariance matrix V0 we can compute the three symplectic eigenvalues [55]

v1 = 1, (6.3)

v2 = µ+
√

1 + µ+ µ2 + µ cosh 2r, (6.4)

v3 = −µ+
√

1 + µ+ µ2 + µ cosh 2r, (6.5)

and compute the entropy of the total state as [55] S(ψ0) =
∑3

k=1 g(vk) where [154]

g(x) =
x+ 1

2
log2

x+ 1

2
− x− 1

2
log2

x− 1

2
(6.6)

x�1→ log2

ex

2
+O(x−1). (6.7)
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Figure 6.2: An equivalent channel to the setup in Fig. 6.1. Alice draws a two-dimensional variable,

α, from a Gaussian distribution then displaces one vacuum state by k1α and another by k2Zα. The

first mode is sent through the main channel to Bob as the signal state and the second mode is leaked

to Eve. The equivalence can be seen from the fact that Eve can get the initial state from Fig. 6.1,

ψ0, by enacting the unitary Ũ−1 and can then enact the same arbitrary unitary, U . We can regard

this as Eve enacting a single combined unitary, U ′.

The fact that v1 = 1 tells us that there is a symplectic transformation that reduces ψ0 to a

tensor product of a two-mode state and a vacuum state. We can build on this observation and

reduce the number of modes. In fact, we may show the reduction to the setup in Fig. 6.2, which

only involves the signal mode, modulated by k1α (with k1 > 1), and a single Trojan horse mode,

modulated by k2Zα (with k2 real). We can design a Gaussian unitary Ũ that converts the initial

state ψ0 from Fig. 6.1 into the initial state ψ3 from Fig. 6.2. This unitary operation Ũ is the optical

circuit shown in Fig. 6.3, where we have labelled the signal state as ψB , Eve’s squeezed state that

enters the side-channel as ψE1 and Eve’s idler state (the squeezed state that does not enter the

side-channel) as ψE2 .

To see how the circuit transforms the state, we examine it after each of the three optical com-

ponents; we label the states after each component with the subscripts 1, 2 and 3. ψi has first

moments vector Xi and covariance matrix Vi. The conditional state ψi|α is associated to Xi|α

and Vi|α. The symplectic matrix of the ith component is Si and it characterises the transformation

of the state from ψi−1 to ψi as follows: Vi = SiVi−1S
T
i and Xi = SiXi−1.
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The first component is a balanced beamsplitter, acting on the signal state and Eve’s side-

channel mode. This sets the quadratures for Eve’s side-channel mode to 0. It has symplectic

matrix

S1 =


1√
2
I 1√

2
I 0

− 1√
2
I 1√

2
I 0

0 0 I

 , (6.8)

and it results in the following moments for ψ1|α and ψ1

X1|α =


√

2α

0

0

 , (6.9)

V1|α =


cosh2 rI sinh2 rI sinh 2r√

2
Z

sinh2 rI cosh2 rI sinh 2r√
2

Z
sinh 2r√

2
Z sinh 2r√

2
Z cosh 2rI

 , (6.10)

V1 = V1|α⊕ 2µ


I

0

0

 . (6.11)

The second component is a two-mode squeezer, operating on Eve’s modes such that one of

them becomes a vacuum state. Its squeezing parameter is given by r2 = log

(√
2 cosh r−sinh r√

cosh2 r+1

)
,

and it has symplectic matrix

S2 =


I 0 0

0
√

2 cosh r√
cosh2 r+1

I − sinh r√
cosh2 r+1

Z

0 − sinh r√
cosh2 r+1

Z
√

2 cosh r√
cosh2 r+1

I

 . (6.12)

The moments of ψ2|α and ψ2 are given by

X2|α =


√

2α

0

0

 , (6.13)

V2|α =


cosh2 rI 0

√
cosh4 r − 1Z

0 I 0√
cosh4 r − 1Z 0 cosh2 rI

 , (6.14)

V2 = V2|α⊕ 2µ


I

0

0

 . (6.15)
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Figure 6.3: A circuit that converts the initial (pre-main channel) state from the setup in Fig. 6.1 into

the initial state from the setup in Fig. 6.2. This shows that the two channel setups have the same

key rate, since Eve can enact any unitary operation and hence is able to convert one into the other.

We label this entire circuit Ũ . Eve can also enact the inverse, Ũ−1. ψB denotes the signal state,

ψE1 denotes Eve’s squeezed state that enters the side-channel and ψE2 denotes Eve’s idler state.

BS1 is a balanced beamsplitter and Sq2 and Sq3 are two-mode squeezers. BS1 moves all of the

displacement onto the first mode, such that Eve’s states are no longer displaced, Sq2 unsqueezes

Eve’s states such that one of the modes becomes a pure vacuum state and Sq3 unsqueezes the

signal state and Eve’s remaining mode such that they become pure displaced vacuum states.

Note that one of the modes has become a vacuum state. Henceforth, we neglect this mode and

implicitly enact the identity operation on it. We now see that, for fixed α, the system is a displaced

TMSV state. The third component undoes the squeezing, leaving us with two displaced vacuum

states. Its squeezing parameter is given by r3 = −arcsinh
(

sinh r√
2

)
and it has symplectic matrix

S3 =


√

cosh2 r+1√
2

I − sinh r√
2
Z

− sinh r√
2
Z

√
cosh2 r+1√

2
I

 . (6.16)

The moments of ψ3|α and ψ3 are

X3|α =

 k1α

k2Zα

 , V3|α =

I 0

0 I

 , (6.17)

V3 =

(1 + k2
1µ)I k1k2µZ

k1k2µZ (1 + k2
2µ)I

 , (6.18)

where we have set

k1 :=
√

cosh2 r + 1, k2 := − sinh r. (6.19)

This concludes the proof of equivalence between the setups in Fig. 6.1 and Fig. 6.2.
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Figure 6.4: An alternative channel setup that must give the same secret key rate as the setup in

Fig. 6.2 assuming the presence of a thermal-loss channel. The difference between the two setups

is that in Fig. 6.2, the x-quadrature of Eve’s side-channel state is modulated by k2αx and the p-

quadrature is modulated by −k2αp; in this figure,the x-quadrature is still modulated by k2αx but

the p-quadrature is modulated by k2αp. Since the two quadratures encode independent variables

and since the x-quadrature is not affected by the change, the mutual informations arising from the

measurement of the x-quadrature, IxAB and IxEB , must be the same in each setup and hence the

key rates must be the same. We assume that Eve beamsplits the signal state with some thermal

state with variance ω. This specific representation of Eve’s unitary is unique up to isometries on

her output ancillas. In other words, if we fix the channel to be thermal-loss, then its dilation into a

beams-splitter with an environmental thermal state is fixed up to unitaries acting over Eve’s entire

output Hilbert space [4].

We note that the two components (quadratures) of α are uncorrelated with each other and have

the same variance. Let us also assume that the two quadratures of Bob’s outcome (β) are also

uncorrelated with each other and have the same variance. This is certainly the case in the presence

of a thermal-loss channel, characterised by a transmittance η and an excess noise ε, which is the

most typical scenario in QKD. Next, we show that the setup in Fig. 6.2 has the same key rate as

the setup in Fig. 6.4, in which the signal mode is modulated by k1α and the side-channel mode

is modulated by k2α (rather than by k2Zα). Note that in Fig. 6.4, we have also imposed that the

general unitary results in a thermal-loss channel.
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Since we assume that the main channel does not mix the quadratures, we can treat the two

quadratures of α, which we denote as αx and αp, as independent variables that have been sent

through the channel and measured to give the independent variables βx and βp respectively. Let

IxAB (IpAB) denote the mutual information between Alice and Bob arising from the measurement

of the x-quadrature (p-quadrature) and let IxEB (IpEB) denote the maximum mutual information

between Eve and Bob arising from the measurement of the x-quadrature (p-quadrature). Since

the x and p quadratures of α and β are independent and identically distributed, IAB and IEB are

double IxAB and IxEB respectively.

Let I ′AB , I ′xAB , I ′EB and I ′xEB be the counterparts of IAB , IxAB , IEB and IxEB respectively for the

setup in Fig. 6.4. It is again true that I ′AB and I ′EB are double I ′xAB and I ′xEB respectively. Further,

since the quadratures are independent and the x-quadratures of Eve’s states are not affected by

the change in setup (the only difference is that the p-quadrature of Eve’s side-channel mode is

modulated by k2αp rather than by −k2αp), IxAB must be the same as I ′xAB . This means that IAB is

the same as I ′AB and IEB is the same as I ′EB . Note that this holds for all channels (not just thermal

channels) that do not mix the quadratures and so the Z matrix in Fig. 6.2 can be neglected for any

such channel.

Hence, the setup in Fig. 6.4 must give the same key rate as the setup in Fig. 6.2 and therefore

the setup in Fig. 6.1. The setup in Fig. 6.4 is equivalent to a main channel setup with a higher initial

modulation and a lower effective transmittance. The equivalent main channel attack is shown in

Fig. 6.5. The signal state is modulated by kα, where

k =
√
k2

1 + k2
2 =
√

2 cosh r =
√

2(n̄+ 1), (6.20)

and hence the modulation amplitude is k2µ. k is a function of n̄, which characterises the side-

channel. We note that k1 and k2 are functions only of n̄. By choosing an appropriate parameter

for the beamsplitter in Fig. 6.5, Eve can get the initial state of Fig. 6.4. We then effect a thermal

channel by beamsplitting with the thermal state with parameter ω. We can reduce both operations

to a single beamsplitter operation with some other thermal state ω′ (see Fig. 6.6).

This allows us to calculate the key rate in the same way as a main channel attack but with

a higher “effective modulation amplitude”, µ′, and a lower “effective transmittance”, η′. These

effective parameters (the channel parameters that the trusted parties would calculate for the setup

in Fig. 6.5) are related to the measured values of µ and η by

µ′ = k2µ, η′ =
η

k2
. (6.21)

The effective transmittance accounts for both beamsplitters and is the transmittance that we would
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Figure 6.5: This is a setup without a side-channel that must give the same secret key rate as the

setup with the side-channel. The variance of Alice’s variable in this setup is higher than the actual

variance of α, and the channel transmittance for this setup is lower than the observed channel

transmittance, η. The channel for this setup can be regarded as a thermal channel with parameters

η′ and ε′ (represented by the blue, dashed arrow).

observe if, instead of a setup with a signal state modulated by µ and a side-channel (as seen in

Fig. 6.1), we had a setup with a signal state modulated by µ′ and no side-channel, with the same

measured values of β (as seen in Fig. 6.5). This was found by multiplying the transmissions of the

two beamsplitters in Fig. 6.5.

It is helpful to clarify the definition of the excess noise, ε. To do so, we introduce the random

variable n: this is the total relative input noise of β around α, including the vacuum noise. We

can describe β in terms of n as β =
√
η(α + n). Here n is characterised by its second moment〈

n2
〉

= 1+(1−η)/η+ε. We now find the effective excess noise, ε′ (as would be observed for the

setup in Fig. 6.5), using the fact that we have the same measured β values in all representations. β

can be expressed in terms of effective parameters as β =
√
η′(kα+n′), where the second moment

of n′ is now given by
〈
n′2
〉

= 1 + (1 − η′)/η′ + ε′. We then substitute in the definition of η′,

compare the expressions for β, and solve for ε′, i.e.

ε′ =
η

η′
ε = k2ε. (6.22)
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Figure 6.6: This is the entanglement-based representation of the attack in Fig. 6.5. Alice het-

erodynes one half of a TMSV state to get the value kα̃, which linearly corresponds to kα (the

displacement of the signal state). The signal state enters the channel and is subject to some ther-

mal noise due to beamsplitting with one mode of an entangling cloner (the thermal state ω′). It

is then heterodyned by Bob, to obtain β. The resultant state of Alice, Bob and Eve is pure. The

channel between Alice and Bob is a thermal channel, characterised by η′ and ε′; this is represented

by the blue, dashed arrow.

6.2.3 Computation of the key rate

To calculate the secret key rate for a main channel attack with a modulation amplitude of µ′, a

transmittance of η′ and an excess noise of ε′, we can use an entanglement-based representation

(rather than a prepare and measure representation) [150]. This representation is shown in Fig. 6.6

and is valid as long as µ > 0.

Alice heterodynes one mode of a TMSV state, obtaining the value kα̃ (and hence also the

value of α) and preparing the state ρ(kα). She then sends the prepared signal state through the

channel to Bob, who heterodynes it to obtain β. In the channel, the signal state is beamsplit with

the thermal state ρth(ω). The total state shared by Alice, Bob and Eve, which we denote ρABE ,

is pure since Eve holds the purification of the channel. This means that the entropy of Eve’s state,

ρE , is equal to the entropy of the combined state of Alice and Bob, ρAB . The combined state of

Alice and Eve conditioned by some value of β, ρAE |β, is also pure, so the entropy of Eve’s state

conditioned by β, ρE |β, is equal to the entropy of Alice’s state conditioned by β, ρA|β.
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The covariance matrix of ρAB is

VAB =

 (µ′ + 1)I
√
η′µ′(µ′ + 2)Z√

η′µ′(µ′ + 2)Z (η′(µ′ + ε′) + 1)I

 , (6.23)

the covariance matrices of the conditional states ρA|β and ρB|α are given by

VA|β =

(
µ′ + 1− η′µ′(µ′ + 2)

η′(µ′ + ε′) + 2

)
1, (6.24)

VB|α = (η′ε′ + 1)I. (6.25)

We can calculate the symplectic eigenvalues of VAB using the formula in Ref. [55]. The expres-

sions for these eigenvalues can be simplified by taking the asymptotic limit in µ (the limit as

µ → ∞). In this limit, µ′ → ∞ and all other parameters stay the same. We assume that η′ ≤ 1,

since realistically, Eve will not enact a main channel that causes gain rather than loss. We denote

the two symplectic eigenvalues of VAB in this limit as v∞AB,1 and v∞AB,2 and denote the symplectic

eigenvalue of VA|β in this limit as v∞A|β . We find these to be:

v∞AB,1 = 1 +
ε′η′

1− η′
, (6.26)

v∞AB,2 = µ′(1− η′), (6.27)

v∞A|β =
2

η′
+ ε′ − 1. (6.28)

We calculate the mutual information between Alice and Bob, I(α : β), as the reduction in

(classical) entropy of β when conditioned with α. The asymptotic limit of this mutual information

is equal to

I(α : β)∞ = H(Vβ + 1)−H(Vβ|α+ 1) (6.29)

= log2

η′µ′

η′ε′ + 2
, (6.30)

where H is the Shannon entropy [13] and Vβ (Vβ|α) is the variance of Bob’s outcome β (condi-

tional outcome β|α). We then calculate the Holevo bound between Eve and Bob in the asymptotic

limit. We find:

I(E : β)∞ = log2

e v∞AB,2
2

+ Sconst, (6.31)

where

Sconst = g(v∞AB,1)− g(v∞A|β) (6.32)

is the entropy contribution that does not scale with µ. The first term of this expression comes from

the asymptotic form of g(v∞AB,2), as per Eq. (6.7).
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Figure 6.7: Plots of the secret key rate (in logarithmic scale) versus channel transmission η of

the main quantum channel, in the absence of excess noise (lossy channel rate). The top curve is

the PLOB bound [5], which is the secret key capacity of the lossy channel, i.e. the maximum

key rate achievable over this channel by any point-to-point QKD protocol in the absence of side-

channels [6]. We then show the ideal rate of the coherent state protocol [7] with no side channels.

Lower curves refer to the coherent state protocol in the presence of a side-channel with an increas-

ing number of photons n̄, ranging from the leakage mode case (n̄ = 0) to more active hacking

(n̄ = 1, 3, 7). As we can see, the key rate is always positive (for any value of n̄), but it quickly

declines as n̄ increases.

The asymptotic secret key rate is given by the difference

K∞(n̄, η, ε) = I(α : β)∞ − I(E : β)∞ (6.33)

= log2

2η′

e(1− η′)(η′ε′ + 2)
− Sconst. (6.34)

The extra information gained by Eve due to the side-channel is the difference between the key rate

with the side-channel and the key rate without. In general, the asymptotic key rate decreases as

the effective transmission decreases (either due to an increase in the average photon number of the

side-channel mode or due to increased line loss) and as the channel noise increases. This is shown

in the plots in Figs. 6.7 and 6.8.

The asymptotic secret key rate K∞ takes a particularly simple form if the channel does not
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add any noise (a pure-loss channel). In fact, it becomes

K∞lossy = − log2 (1− η′)
η′

− log2 e (6.35)

=
2(n̄+ 1)

η
log2

[
1− η

2(n̄+ 1)

]
− log2 e. (6.36)

The rate K∞lossy is always positive and plotted in Fig. 6.7 for various mean photon numbers n̄,

where it is also compared with the ultimate point-to-point rate or PLOB bound − log2(1− η) [5].

Each time n̄+ 1 doubles (e.g. when n̄ goes from 0 to 1, from 1 to 3, or from 3 to 7), the key rate

K∞lossy decreases by approximately 3 dB.

In the low transmission regime (i.e. long distances), it is known that the PLOB bound becomes

roughly linear in η and is approximately equal to η/ ln 2 '1.44η bits per transmission. It is also

known that, without side-channels, the coherent state protocol has a long-distance ideal rate of

about η/(2 ln 2)'0.72η bits per transmission, which is half the PLOB bound. The linearity also

holds when we include the side channels. In fact, for low η, we find that the key rate of Eq. (6.36)

becomes

K∞lossy'
η

4(n̄+ 1) ln 2
' 0.36

n̄+ 1
η . (6.37)

Note that with the leakage mode (n̄ = 0), this rate is half that of the coherent state protocol

without side-channels. This rate keeps halving each time (n̄+ 1) doubles; this can also be seen in

the constant decrease in intercept between each of the plots in Fig. 6.7.

We then calculate the threshold excess noise, εmax, for a given channel transmission, η, and

side-channel parameter, n̄. This is the value of the excess noise up to which secret key distribution

is possible. The threshold condition εmax = ε(η, n̄) is given by solving K∞(k, η, ε) = 0. In

Fig. 6.8, we show the security threshold of the coherent state protocol [7] without side-channels

and, then, in two cases with side-channel modes (n̄ = 0 and 1). The shaded regions show the

regions in which secret key distribution is possible for a given side-channel.

The leakage mode case (n̄ = 0) has a significantly lower security threshold than the case

with no side-channel, and increasing the average photon number further decreases the threshold,

for fixed transmission. For instance, for channel transmission of 20 dB, the presence of leakage

(n̄ = 0) decreases the tolerable excess noise by' 0.06 (from about 0.12). For active hacking with

n̄ = 1 photon, we have a further decrease of ' 0.03. In other words, a side-channel with n̄ = 1

gives a ' 75% decrease in tolerable excess noise at this distance. If n̄ is increased, the attack

becomes even more powerful. It is then important for Alice to be able to accurately measure n̄, by

characterising her devices as accurately as possible.
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Figure 6.8: Security thresholds in terms of maximally-tolerable excess noise versus channel trans-

mission (in decibels). The shaded regions are the regions in which secret key distribution is pos-

sible for a given side-channel. The boundaries of the regions show the values of the excess noise

at which secret key distribution becomes impossible for a given transmission and side-channel.

Adding the leakage mode side-channel significantly decreases the tolerable excess noise for a

given transmission, and increasing the average photon number n̄ of the side-channel further de-

creases it.

6.2.4 Generalisation of the side channel

We can also consider a simple extension, in which Eve’s side-channel mode is modulated by mα,

whilst Alice’s signal state is modulated by α. m is a multiplicative factor on the displacement of

the Trojan state; m = 1 gives the case that has already been considered. This setup is shown in

Fig. 6.9. Without loss of generality, we assume that m > 0, since Eve can always apply a phase

shift of π to her modes. Similarly to the original m = 1 case, we can show that this attack is

equivalent to a standard attack against the main channel but with an “effective modulation ampli-

tude”, an “effective excess noise” and an “effective loss”. The original and effective parameters

are related by the same Eqs. (6.21) and (6.22), but where k becomes the following function of both
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Figure 6.9: This is an extension of the original setup (Fig. 6.1), in which both the average number

of photons entering Alice’s device, n̄, and the modulation amplitude of the side-channel mode, m,

are monitored. Unlike in the original case, m does not have to equal 1 and can take any real value.

The dashed red line marks the part of Alice’s device that is accessible to Eve. The key rate for this

setup can be calculated similarly to the key rate for the original setup; the only difference is in the

expression for the k parameter, which affects the “effective loss”, the “effective excess noise” and

“effective modulation amplitude”. See text for more explanation.

n̄ and m1

k(n̄,m) =
√
m2(2n̄+ 1) + 1. (6.38)

By monitoring both n̄ and m, Alice can therefore fully quantify the effect of any single mode

side-channel of this type. Alice can find n̄ by monitoring the average photon number entering her

device. There are a number of ways in which she could find m. For instance, she could monitor

the total average outgoing photon number of her device across all modes.

1Note that if m = 1, this reduces to the previous case. Note also that if m = 0, we do not have a side-channel and so

k = 1, hence the “effective loss” is equal to the observed loss, as we would expect. See Appendix C for the details of

the derivation.

139



6.3 Mitigating the effects of the side channel

6.3 Mitigating the effects of the side channel

If the modulator can be surrounded by a passive attenuator, such that any photons not entering

or leaving via the main channel are highly attenuated, the effects of any Trojan horse photons

not entering via the main channel can be greatly mitigated. The attenuator can be modelled as a

beamsplitting operation with a vacuum mode. The effects on the information gained by Eve are

twofold: the first quadrature of her side-channel mode is scaled down by the attenuation and the

correlations between Eve’s Trojan horse mode and her idler mode are reduced. The conditional

state ψES ,EI |α received by Eve after the side-channel (conditioned on Alice’s value), will be an

attenuated TMSV state. It has the covariance matrix

VES ,EI |α =

 (2n̄+ 1)I 2
√
n̄′(n̄+ 1)Z

2
√
n̄′(n̄+ 1)Z (2n̄′ + 1)I

 , (6.39)

where n̄ is the initial photon number of the TMSV state (prior to the side channel), n̄′ is some

positive real number less than n̄, ES is the signal mode, and EI is the idler mode.

Let ψESEIP |α be the purification of ψES ,ES |α. Eve does not hold the purifying mode P , but if

she did, it could only help her. Therefore, let us assume she is given it; this is equivalent to saying

she is given the other output of the beamsplitter with its quadratures set to 0. Then the modes EIP

together purify ES . Any one-mode thermal state can be purified by a TMSV [55]. Hence, there

exists some unitary acting only on the purifying systems EI and P that results in a TMSV on the

modes ESEI with n̄′ photons per mode (and a vacuum state on P ).

If the Trojan horse mode is modulated bymα, we can say that the first quadrature of this mode

after the attenuator is m′α, where m′ is some positive, real number less than m. Then, the key

rate is lower-bounded by the key rate calculated before, but with n̄ and m replaced by n̄′ and m′

respectively. More specifically, the expression for k in Eq. (6.38) becomes

k(n̄′,m′) =
√
m′2(2n̄′ + 1) + 1 (6.40)

=
√
Tm2(2T 2n̄′ + 1) + 1, (6.41)

where T is the transmission of the attenuator. This expression rapidly approaches unity as T

decreases. Here we have assumed that the Trojan horse state passes through the attenuator twice:

once prior to modulation and once after modulation. Hence, we have set m′ =
√
Tm and n̄′ =

T 2n̄.

The expression for the maximum secret key rate in this case is a lower bound: giving Eve

access to the purification mode P cannot decrease the Holevo bound on her mutual information,

140



6.3 Mitigating the effects of the side channel

but it is not immediately obvious whether it increases it. It is therefore not obvious whether this

lower bound is tight or whether the power of the side-channel would be even further reduced by

the attenuation; this is a question that is open to further study.

Without upper-bounding the incoming photon number, the addition of an attenuator does not

provide provable security by itself, since we do not know the initial values of m and n̄, hence

quantum metrological tools are still required. It may be possible to find an upper-bound on the

incoming photon number for a given device, using physical considerations, such as the point at

which damage to the modulator from the incoming photons would become obvious to Alice.

In order to limit the effects of a Trojan horse mode introduced via the main channel, the

passive architecture to limit Trojan horse attacks in the DV case, introduced in Ref. [123], could

be implemented in the CV case. The incoming photon number is bounded using the LIDT of the

optical fibre constituting the main quantum channel; the photon number threshold is dependent on

the frequency of the incoming photons, since lower frequency photons are less energetic, however

the frequency is bounded from below by an optical fibre loop and a filtering block, which select

for frequencies. There is then an attenuator, which greatly reduces the photon number of any

incoming state. In this case, the attenuation will not decrease the magnitude of modulation of the

Trojan horse state compared to the signal state, as it does in the case in which the Trojan horse

photons do not enter via the main channel. This is because the signal state will be attenuated

in the same way as the Trojan horse state. The incoming photons sent by Eve would still be

attenuated, leading to damping of the off-diagonal elements of VES ,EI |α. By suitably choosing

the attenuation, bearing in mind the maximum photon number of Eve’s Trojan horse state, Alice

could decrease the correlations between Eve’s Trojan horse mode and her idler mode to an arbitrary

degree and hence could effectively reduce Eve’s side-channel to a leakage mode (n̄′ = 0).

Bounding the incoming photon number using the LIDT raises another issue, since we have

assumed that modulation of the signal mode is unbounded and hence can be taken to infinity.

Since the photon number of the signal state will also be limited by the LIDT, this is not entirely

true. However, if the LIDT is sufficiently high, this should not greatly affect the secret key rate.

Increasing the LIDT does not increase the photon number of Eve’s outgoing side-channel mode as

long as the attenuation is raised accordingly.

One further possible problem could occur if the attenuator itself is not properly characterised.

If it re-radiates absorbed photons or scatters light in such a way that it is accessible to Eve, the

attenuator itself may provide a leakage side-channel. Alternatively, it may have a much higher

transmission at certain frequencies, allowing Eve to send Trojan horse photons through without
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much attenuation.

6.4 Summary

In this chapter we have considered the effects of hacking Alice’s box in one-way CV QKD, namely

the coherent state protocol of Ref. [7], which is hacked while being implemented over a thermal-

loss quantum communication channel. We have assumed that a Trojan horse side-channel mode

is introduced in Alice’s device and is modulated in the same way as the signal state. Under this

condition, we have found out how quickly the key rate of the original protocol is deteriorated by

increasing the mean number of photons n̄ inserted in the device. Even the presence of a leakage

mode (n̄ = 0) is able to halve the rate. Then, each time the value of (n̄ + 1) doubles, the long-

distance key rate is further halved.

Then we have also considered a direct generalisation of the basic side-channel attack in which

the Trojan horse mode is modulated at a different amplitude (mα) to the signal state. If this

modulation is inefficient (m < 1), then the attack is weaker than the basic one. However, if

m > 1, then the attack becomes more deleterious. In order to deal with this situation, Alice should

be able to estimate not only the mean number of extra photons n̄ entering the device, but also the

mean number of extra photons leaving the device, so that she can also evaluate m. Therefore, it

seems that quantum metrological tools [22, 30, 48, 62, 63, 155, 156] are necessary inside Alice’s

box, unless Eve’s hacking is mitigated by other means which suitably modify the original setup

and protocol.
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Chapter 7

Conclusions

In this chapter, we will summarise the presented work and then provide possible directions that

future research could take.

7.1 Summary of the presented work

In Chapter 1, we introduced the task of channel discrimination. We stated that the aim of this

work was to improve the power of the techniques of quantum channel simulation and protocol

stretching as tools for bounding the discrimination error and thereby to tighten existing bounds on

the performance of the most general channel discrimination protocols.

Chapter 2 provided an overview of important quantities, formalisms, and techniques for quan-

tum channel discrimination.

In Chapter 3, we investigated the performance of idler-free protocols for channel position

finding (CPF) over a set of pure loss channels. By doing so, we showed that quantum protocol

that use non-classical states can outperform classical protocols, even in the limited-technology

scenario in which we are not able to store an idler. This is a useful result, because it shows that

there is an advantage to developing quantum technologies for channel discrimination tasks, even

if the development of a quantum memory proves difficult.

We then applied the technique of teleportation stretching to find tight bounds on the optimal

output fidelity of a CPF protocol over a set of phase-insensitive Gaussian channels with fixed

transmissivity. Since the lower bound on the output fidelity that we found is achievable, we cal-

culated the exact output fidelity for the optimal (in terms of output fidelity) protocol. This also

showed that the optimal protocol does not require adaptivity (this is in line with the finding by

Pirandola and Lupo that the optimal protocol for channel discrimination is non-adaptive for such
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channels [30]). We thereby bounded the error probability of the optimal CPF protocol. We were

able to demonstrate quantum advantage over a range of parameters. Applications to a number of

physical scenarios were considered, demonstrating the importance of CPF in both thermal imaging

and quantum communications (in the form of eavesdropper localisation and finding the optimal -

in terms of lowest induced noise - quantum communication channel).

Chapter 4 accomplishes the task of improving the power of quantum channel simulation by

completely characterising qubit port-based teleportation (PBT), thereby allowing it to be used as

a universal simulator of qubit channels. The analytical expression for the Choi matrix of the qubit

PBT channel using the most general resource state possible is given and so is the channel from a

resource state to the output Choi matrix. We then applied our analytical expressions to the task of

channel simulation of the amplitude damping (AD) channel and were able to improve on existing

channel simulations based on using copies of the channel’s Choi matrix (i.e. achieve a lower

simulation error).

Chapter 5 tightens existing lower bounds on the error probability of the most general discrim-

ination protocols between AD channels, using the improved simulations from Chapter 4. We also

tighten the existing upper bounds and show that, for a large number of channel uses, a discrimina-

tion bound based on the quantum Cramér-Rao bound, found in Ref. [3], can approximate the new

upper bound. We present the diamond norm between any two AD channels and thus give the exact

discrimination error probability in the one-shot case. The bounds are then applied to a variety of

physical scenarios.

Chapter 6 takes a detailed look at a specific quantum hacking scenario, in which an eaves-

dropper has a side-channel into the sender’s device and can send in Trojan states. By reducing the

attack to an equivalent side-channel free setup, we compute the key rate for the scenario and show

that a side channel can greatly reduce the key rate of a protocol. We therefore suggest the use of

active monitoring to characterise any side-channels and passive architecture to mitigate the effect

of any attack.

7.2 Directions for future work

CPF is a task that has not yet been well-studied. As a result, there are a number of open questions

relating to it. In Chapter 3, we saw that idler-free protocols can achieve a quantum advantage when

carrying out CPF on a set of pure loss channels. It may be worth investigating whether there are

other protocol designs that can outperform the classical protocol - or even the bipartite entangled
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protocol - whilst remaining technologically limited in some way.

PBT is a powerful tool for the simulation of qubit channels. However, it can also be used to

simulate qudit channels. Its characterisation for higher dimensional input states is an open area for

research and could potentially allow the construction of tighter discrimination bounds for many

classes of qudit channels.

In Chapter 5, we significantly tightened the existing bounds on AD channel discrimination.

There is still a gap between the upper and lower bounds (except for in the one-shot case), however,

and so there is room for improvement of one or the other. Potentially, this could be accomplished

using an even better simulation of the AD channel. The diamond norm for multiple copies of the

AD channel (used in parallel) would give the ultimate bound on the discriminative power of a

non-adaptive protocol and may be analytically calculable.

Finally, it may be possible to simulate the generalised AD channel using PBT and therefore to

construct bounds on discrimination protocols between different generalised AD channels.
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Appendix A

Appendices for Chapter 3

A.1 Behaviour of the classical fidelity function

We now prove the statement in Subsection 3.3.3 of Chapter 3 that F class
loss/amp → F∞loss/amp as τ → 0.

Substituting τ = 0 into Eq. (3.80), we get

F class
loss/amp(0, εT , εB) =

√
γ0 + δ0 +

√
γ0 − δ0

δ0
, (A.1.1)

γ0 = 4εT εB + 1, δ0 = 2 (εT + εT ) . (A.1.2)

Rearranging, we get

F class
loss/amp(0, εT , εB) =

√
2γ0 + 2

√
γ2

0 − δ2
0

δ0
, (A.1.3)

and then, using √
γ0 ± δ0 =

√
(2εT ± 1)(2εB ± 1), (A.1.4)

we get √
γ2

0 − δ2
0 =

√
(4ε2T − 1)(4ε2B − 1). (A.1.5)

Thus, we have

F class,τ=0
loss/amp =

√
4εT εB + 1 +

√
(4ε2T − 1)(4ε2B − 1)

√
2(εT + εB)

(A.1.6)

= F∞loss/amp. (A.1.7)

The proofs that dF
dτ is positive semidefinite in the range 0 ≤ τ < 1, that dF

dτ is negative

semidefinite in the range τ > 1, and that (F class)2

F∞ ≤ 1 for τ = 1
2 are straightforward but lengthy

to write out and so are given in the supplementary Mathematica files of Ref. [9].
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Appendix B

Appendices for Chapter 4

B.1 Location of the minima of the trace norm, for the Choi resource

Let us calculate the trace norm by finding the eigenvalues of the matrix resulting from taking the

difference of the Choi matrices of the simulated and simulating channel (i.e. the right hand side of

Eq. (4.92)). This matrix has eigenvalues ei, where e1 and e2 have already been given in Eq. (4.93).

The remaining eigenvalues are:

e3 = −1

2

(
(e1 + e2) +

√
(e1 − e2)2 + 4c2

)
, (B.1.1)

e4 = −1

2

(
(e1 + e2)−

√
(e1 − e2)2 + 4c2

)
. (B.1.2)

The trace norm is the sum of the absolute values of the eigenvalues. We can show that e3 is always

negative and e4 is always positive. We start by showing that |e1 +e2| ≤
√

(e1 − e2)2 + 4c2. Note

that e1 is a linear function of p1 that is always positive and that e2 is a linear function of p1 that

goes to 0 at p1 = 2p0−ξN
2−ξN , and is negative for p1 less than this value. For p1 = p0−ξN

1−ξN , e1 +e2 = 0,

and above this value of p1, it is positive. We can therefore show that 2c ≥ |e1 + e2| in the regime

in which e1 + e2 is positive, using

d(2c)

dp1
=

1− ξN
2
√

1− p1
,

d(e1 + e2)

dp1
=

1− ξN
2

,
d(2c)

dp1
≥ d(e1 + e2)

dp1
, (B.1.3)

2c|
p1=

p0−ξN
1−ξN

=
√

1− p0 − (1− ξN )

√
1− p− ξN

1− ξN
=
√

1− p0(1−
√

1− ξN ) ≥ 0. (B.1.4)

Since the gradient of 2c is always larger than the gradient of e1 +e2 in this regime and c is positive

at p1 = p0−ξN
1−ξN , whilst e1 + e2 is equal to 0, 2c ≥ |e1 + e2| for p1 ≥ p0−ξN

1−ξN . For p1 <
p0−ξN
1−ξN ,

e1 − e2 = p0−p1
2 ≥ |e1 + e2|, because e2 is negative in this region. Hence, at all points,

|e1 + e2| ≤ max[e1 − e2, 2c] ≤
√

(e1 − e2)2 + 4c2. (B.1.5)
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As a result, e3 is always negative and e4 is always positive. We therefore find

|e3|+ |e4| =
√

(e1 − e2)2 + 4c2. (B.1.6)

|e1|+ |e2| has two regimes, corresponding to p1 ≤ 2p0−ξN
2−ξN and p1 >

2p0−ξN
2−ξN . In the first regime,

|e1|+ |e2| = p0−p1
2 and in the second, |e1|+ |e2| = ξN

2 (1−p1)− p0−p1
2 . The gradient of |e1|+ |e2|

is −1
2 in the first regime and 1−ξN

2 in the second regime, with a discontinuity at p1 = 2p0−ξN
2−ξN .

Taking the second derivative of (e1− e2)2 + 4c2, we find that it is always positive, so the gradient

of |e3|+ |e4| is always increasing, and hence |e3|+ |e4| has at most one minimum.

The gradient of |e3|+ |e4| is given by

d|e3|+ |e4|
dp1

=
p1 − p0 + 2(1− ξN )

(√
1−p0
1−p1 − (1− ξN )

)
4

√
p0−p1

2

2
+ (
√

1− p0 − (1− ξN )
√

1− p1)2

, (B.1.7)

and the gradient of the total trace norm, Dtrace, is given by

dDtrace

dp1

∣∣∣∣
p1<

2p0−ξN
2−ξN

=
d|e3|+ |e4|

dp1
− 1

2
, (B.1.8)

dDtrace

dp1

∣∣∣∣
p1>

2p0−ξN
2−ξN

=
d|e3|+ |e4|

dp1
+

1− ξN
2

. (B.1.9)

Note that the expressions for the gradient of the trace norm are different in each regime (on either

side of the discontinuity).

Consider the case in which the minimum of |e3| + |e4| occurs “after” the discontinuity (i.e.

at p1 >
2p0−ξN
2−ξN ). There are two possibilities: if the (second) expression for the gradient of the

trace norm assessed at p1 = 2p0−ξN
2−ξN is negative, the minimum of the trace norm will lie in the

region p1 > 2p0−ξN
2−ξN , whereas if it is positive, there is no stationary point and the minimum of

the trace norm is located exactly at the discontinuity. By numerically minimising the expression

for the gradient assessed at the discontinuity over p (between 0 and 1) and over ξN (between

0 and 6−
√

3
6 ), we find that it is always positive. Hence, if the minimum of |e3 + e4| occurs at

p1 >
2p0−ξN
2−ξN , the minimum of the trace norm lies at 2p0−ξN

2−ξN . Note that this is the point at which

e2 = 0.

Similarly, if the minimum of |e3| + |e4| occurs “before” the discontinuity, but the (first) ex-

pression for the gradient of the trace norm remains negative up to the discontinuity, the minimum

of the trace norm will be at the discontinuity. Solving for this gradient to equal 0, we get a polyno-

mial in ξN and p0, giving the value of p1 at which the minimum of the trace norm occurs (or would

occur, if it is after the discontinuity). When this value becomes less than 2p0−ξN
2−ξN , the minimum

of the trace norm lies at the value of the polynomial, rather than at the discontinuity. We can find
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the value of p0 at which this occurs for a given value of ξN . This is a polynomial function of

ξN . Higher values of ξN require higher values of p0, and the minimum value of p0 for which the

minimum of the trace norm can occur in the the region p1 <
2p0−ξN
2−ξN is 2

5 . For all p0 <
2
5 , the

minimum trace norm always lies at p1 = 2p0−ξN
2−ξN .

We can find the value of p0 at which the minimum of the trace norm crosses the line p1 =

p0−ξN
1−ξN , which we denote pcross

0 . We find that we have another polynomial function of ξN :

pcross
0 =

1 + 4ξN − 8ξ2
N + 5ξ3

N + (1− ξN )
7
2 − ξ4

N

3− 3ξN + ξ2
N

. (B.1.10)

This function has a minimum value of 2
3 , at ξN = 0. Note that if p0 ≤ pcross

0 , the gradient of

|e3|+ |e4| is always negative in the range p1 <
p0−ξN
1−ξN and is always positive in the range p1 > p0,

and hence the same is true of the gradient of the trace norm. Hence, for all p0 ≤ 2
3 , we are

guaranteed that the minimum of the diamond norm lies between p1 = p0−ξN
1−ξN and p1 = 2p0−ξN

2−ξN .

B.2 Comparison of the alternate resource and the Choi resource at

known points and low damping

Carrying out PBT using a resource consisting ofN copies of the state in Eq. (4.97) (which we will

call the alternate resource) results in the Choi matrix given in Eq. (4.98). The difference between

Choi matrices with the AD channel is (as given in the main text)

PBT
[
Rnew(a)⊗N

]
−R′(p0) =


x− 1

2 0 0 z −
√

1−p0
2

0 1
2 − x 0 0

0 0 y − p0
2 0

z −
√

1−p0
2 0 0 p0

2 − y

 , (B.2.11)

with x, y and z defined in the main text. We define aknown as the value of a such that the first

diagonal element of this matrix is the same as the third diagonal element. This is a value of a

for which the diamond norm is known analytically and is equal to the trace norm between Choi

matrices; we refer to this as a known point. At the point aknown = 1
2 the resource state is simply a

maximally entangled state.

Carrying out PBT using a resource consisting of N copies of the state in Eq. (4.88) (which

we will call the Choi resource) results in the Choi matrix given in Eq. (4.89), and the difference
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between Choi matrices is (as given in the main text)

PBT [R(p1)⊗N ]−R′(p0) =


−e1 0 0 −c

0 e1 0 0

0 0 e2 0

−c 0 0 −e2

 , (B.2.12)

with e1, e2 and c defined in the main text. We define pknown
1 as the value of p1 such that the first

diagonal element of this matrix is the same as the third diagonal element, similarly to aknown. The

minimum value of pknown
1 is 0; at this point the resource state is again a maximally entangled state.

The corresponding p0 value for aknown = 1
2 is ξN

2 . The corresponding p0 value for pknown
1 = 0

is also ξN
2 . Consequently, at this point, both resources simulate the AD channel equally well.

Differentiating the expression in Eq. (4.96), we find that the gradient of the diamond norm for the

Choi resource at p1 = pknown
1 , D1

�, is

dD1
�

dp0
= −1

2

 ξN
1− ξN

+
2
(
1−
√

1− ξN
)2

+
(1−p0)ξ2N
(1−ξN )2√

4(1− p0)
(
1−
√

1− ξN
)2

+
(1−p0)2ξ2N
(1−ξN )2

 , (B.2.13)

which is finite and negative for all ξN < 1 (a condition which holds for all N ≥ 2). We will now

show that the gradient of the diamond norm for the alternate resource at a = aknown, which we

will denote as D2
�, diverges as aknown tends to 1

2 from above.

We first find that D2
� takes the form

D2
� = p0 − 2y +

√
(p0 − 2y)2 + (

√
1− p0 − 2z)2

∣∣∣∣
a=aknown(p0)

, (B.2.14)

by using the fact that the eigenvalues of a matrix of the form
x1 0 0 x2

0 −x1 0 0

0 0 x1 0

x2 0 0 −x1

 (B.2.15)
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are {±x1,
√
x2

1 + x2
2}. We then differentiate D2

�, getting

dD2
�

dp0
= 1− 2

dy

da

daknown

dp0

+
(p0 − 2y)

(
1− 2dyda

daknown

dp0

)
+ (
√

1− p0 − 2z)
(

−1
2
√

1−p0
− 2dzda

daknown

dp0

)
√

(p0 − 2y)2 + (
√

1− p0 − 2z)2

=

(
1 +

(p0 − 2y)− 1
2 + 2z

2
√

1−p0√
(p0 − 2y)2 + (

√
1− p0 − 2z)2

)

− 2
daknown

dp0

(
dy

da
+

(p0 − 2y)dyda + (
√

1− p0 − 2z)dzda√
(p0 − 2y)2 + (

√
1− p0 − 2z)2

)
(B.2.16)

where y and z are evaluated at a = aknown(p0). We will show that the term in the right-hand

bracket of Eq. (B.2.16) is positive sufficiently close to a = 1
2 . Note that since x ≤ 1

2 and x− 1
2 =

y − p0
2 , p0 − 2y ≥ 0

Let us find an expression for dyda . Recall that y is given by

y =

N−1
2∑

s=smin

s∑
m=−s

a
N−1

2
+m(1− a)

N+1
2
−m

×
N !(s+m)(s−m+ 1)

[(
N+1

2 − s
)− 1

2 −
(
N+3

2 + s
)− 1

2

]2

2
(
N−1

2 − s
)
!
(
N+1

2 + s
)
!(2s+ 1)

+

N+1
2∑

m=−N+1
2

a
N−1

2
+m(1− a)

N+1
2
−m
(
N−1

2 +m
) (

N+1
2 +m

)
2N(N + 1)

,

(B.2.17)

and define conty1(s,m) and conty2(m) such that

y =

N−1
2∑

s=smin

s∑
m=−s

a
N−1

2
+m(1− a)

N+1
2
−mconty1(s,m)

+

N+1
2∑

m=−N+1
2

a
N−1

2
+m(1− a)

N+1
2
−mconty2(m),

(B.2.18)

noting that conty1(s,m) and conty2(m) have no a-dependence. Hence, applying the product rule of

differentiation,

dy

da
=
N(1− 2a)

2a(1− a)
y +

N−1
2∑

s=smin

s∑
m=−s

a
N−1

2
+m(1− a)

N+1
2
−m 2m− 1

2a(1− a)
conty1(s,m)

+

N+1
2∑

m=−N+1
2

a
N−1

2
+m(1− a)

N+1
2
−m 2m− 1

2a(1− a)
conty2(m).

(B.2.19)

151



B.2 Comparison of the alternate resource and the Choi resource at known points and low damping

Note that if m goes to 1−m, conty1(s,m) is unchanged (i.e. conty1(s,m) = conty1(s, 1−m)) and

2m − 1 goes to −(2m − 1). Note too that conty1(s,−s) = 0 and that m = 1
2 sets 2m − 1 to 0,

meaning that we can write

dy

da
=
N(1− 2a)

2a(1− a)
y +

N−1
2∑

s=smin

s∑
m={1, 3

2
}

(
a
N−1

2
+m(1− a)

N+1
2
−m

− a
N+1

2
−m(1− a)

N−1
2

+m
) 2m− 1

2a(1− a)
conty1(s,m)

+

N+1
2∑

m={1, 3
2
}

(
a
N−1

2
+m(1− a)

N+1
2
−mconty2(m)

− a
N+1

2
−m(1− a)

N−1
2

+mconty2(1−m)
) 2m− 1

2a(1− a)
,

(B.2.20)

where the minimum value of m is 1 for odd N and 3
2 for even N . We now note that, for a ≥ 1

2 ,

a
N−1

2
+m(1− a)

N+1
2
−m ≥ a

N+1
2
−m(1− a)

N−1
2

+m, (B.2.21)

with equality only at a = 1
2 , meaning that sufficiently close to a = 1

2 , the second sum in

Eq. (B.2.19) dominates. Note too that conty2(m) > conty2(1 − m) (with a finite difference be-

tween conty2(m) and conty2(1−m) that does not depend on a), and hence dy
da > 0 for a sufficiently

close to 1
2 .

Let us now find an expression for dz
da . Recall that z is given by

z =

N−1
2∑

s=smin

s∑
m=−s

a
N
2

+m(1− a)
N
2
−mN !

2
(
N−1

2 − s
)
!
(
N+1

2 + s
)
!(2s+ 1)

[(
N + 1

2
− s
)−1

(s2 −m2)

+ 2

(
N + 1

2
− s
)− 1

2
(
N + 3

2
+ s

)− 1
2

(s2 +m2 + s)

+

(
N + 3

2
+ s

)−1

((s+ 1)2 −m2)

]

−

N+1
2∑

m=−N+1
2

a
N
2

+m(1− a)
N
2
−m
(
N+1

2 +m
) (

N+1
2 −m

)
2N(N + 1)

,

(B.2.22)

and define contz1(s,m) and contz2(m) such that

z =

N−1
2∑

s=smin

s∑
m=−s

a
N
2

+m(1− a)
N
2
−mcontz1(s,m) +

N+1
2∑

m=−N+1
2

a
N
2

+m(1− a)
N
2
−mcontz2(m).

(B.2.23)
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Differentiating, we get

dz

da
=
N(1− 2a)

2a(1− a)
z +

N−1
2∑

s=smin

s∑
m=−s

a
N
2

+m(1− a)
N
2
−m m

a(1− a)
contz1(s,m)

+

N+1
2∑

m=−N+1
2

a
N
2

+m(1− a)
N
2
−m m

a(1− a)
contz2(m).

(B.2.24)

Note that contz1(s,m) = contz1(s,−m) and contz2(s,m) = contz2(s,−m). Hence, we can write

dz

da
=
N(1− 2a)

2a(1− a)
z +

N−1
2∑

s=smin

s∑
m={1, 3

2
}

(
a
N
2

+m(1− a)
N
2
−m

− a
N
2
−m(1− a)

N
2

+m
) m

a(1− a)
contz1(s,m)

+

N+1
2∑

m={1, 3
2
}

(
a
N
2

+m(1− a)
N
2
−m − a

N
2
−m(1− a)

N
2

+m
) m

a(1− a)
contz2(s,m).

(B.2.25)

Note that this approaches 0 as a approaches 1
2 , hence there exists some finite, positive ε such that

for all 1
2 ≤ a ≤

1
2 + ε, we have

dy

da
+

(p0 − 2y)dyda + (
√

1− p0 − 2z)dzda√
(p0 − 2y)2 + (

√
1− p0 − 2z)2

> 0. (B.2.26)

It now suffices to show that da
known

dp0
diverges as a tends to 1

2 from above. We write

daknown

dp0
=

(
dp0

daknown

)−1

=
d

da
(1− 2(x− y)) = −2

d

da
(x− y). (B.2.27)

Using the symmetry of the PBT protocol, we can see that x[a] = 1
2 − y[1− a]. We can therefore

write

dp0

daknown
= 2

d

da
(y[a] + y[1− a]) . (B.2.28)

The differential dy[a]
da is given in Eq. (B.2.19), and we can similarly write

dy[1− a]

da
=
N(1− 2a)

2a(1− a)
y[1− a]+

N−1
2∑

s=smin

s∑
m={1, 3

2
}

(
a
N−1

2
+m(1− a)

N+1
2
−m

− a
N+1

2
−m(1− a)

N−1
2

+m
) 2m− 1

2a(1− a)
conty1(s,m)

+

N+1
2∑

m={1, 3
2
}

(
a
N−1

2
+m(1− a)

N+1
2
−mconty2(1−m)

− a
N+1

2
−m(1− a)

N−1
2

+mconty2(m)
) 2m− 1

2a(1− a)
.

(B.2.29)
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The expression y[a] + y[1− a] is symmetric around a = 1
2 and both dy[a]

da and dy[1−a]
da are finite at

this point, so a = 1
2 is either a maximum or a minimum of this expression.

Suppose that it is a minimum. Numerically, we find a clear trend indicating that this is the

case for all N , with the second differential tending towards 1 from below (from a value of 0 at

N = 2) as N increases. Then, da
known

dp0
diverges to positive infinity as a approaches 1

2 from above.

Consequently, dD
2
�

dp0
diverges to negative infinity. Hence, there exists some finite positive ε such that

the gradient of the diamond norm for the Choi resource, assessed at p0 = ξN
2 + δ is less negative

than the gradient of the diamond norm for the alternate resource, assessed at the same point, for

all positive δ < ε. Consequently, the diamond norm for the Choi resource at the known point is

less than the diamond norm for the alternate resource for all ξN2 < p0 ≤ ε.

Suppose instead that it is a maximum. Then, daknown

dp0
diverges to negative infinity as a ap-

proaches 1
2 from above, and dD2

�
dp0

diverges to positive infinity. However, in this case, increasing a

by a small amount from 1
2 decreases p0, since dp0

daknown is negative. Consequently, there exists some

finite positive ε such thatD2
� assessed at p0 = ξN

2 −δ is lower thanD1
� assessed at p0 = ξN

2 +δ for

all positive δ < ε. In this case, an AD channel applied to the output of the PBT channel, with the

damping probability p′ chosen such that total channel simulates an AD channel with p0 = ξN
2 + δ

would result in D2
� < D1

�. This is equivalent to using the tensor-product resource composed of N

copies of

R′new(a) =


p′(1− a) 0 0 0

0 a −
√
a(1− a)(1− p′) 0

0 −
√
a(1− a)(1− p′) (1− a)(1− p′) 0

0 0 0 0

 , (B.2.30)

which is still distinct from any state of the form in Eq. (4.88).

Hence, in either case and for any N , there exists some tensor-product resource that simulates

the AD channel better than the Choi resource, at either of its known points, for some range of p0

values.
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Appendix C

Appendices for Chapter 6

C.1 Calculation of the k-value for any m-value

The steps to study the setup in Fig. 6.9 are very similar to those for the m = 1 case. By using

a beamsplitter on modes 1 and 2 followed by two-mode squeezers on modes 2 and 3 and then

on modes 1 and 3, we can show that the setup is equivalent to one in which the signal state is

modulated by k1α and a single pure side-channel mode is modulated by k2Zα (as in Fig. 6.2, but

with different values for k1 and k2). We then again use the fact that this gives the same key rate as

a setup in which the side-channel mode is modulated by k2α instead of by k2Zα and hence that

it gives the same key rate as one in which the signal state is modulated by k =
√
k2

1 + k2
2 , with a

beamsplitter in the main channel.

We label the initial covariance matrix of the total state as V m 6=1
0 , the initial covariance matrix

for fixed α as V m6=1
0 |α, and the initial quadratures for fixed α as Xm6=1

0 |α and then use the sub-

scripts 1, 2 and 3 to denote these objects after the beamsplitter, the first two-mode squeezer and

the second two-mode squeezer respectively. The optical circuit is the same as in Fig. 6.3; only the

parameters of the optical components are changed for the m 6= 1 case.
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The first and second moments of the initial state are

Xm 6=1
0 |α =


α

mα

0

 , (C.1.1)

V m 6=1
0 |α =


I 0 0

0 cosh 2rI sinh 2rZ

0 sinh 2rZ cosh 2rI

 , (C.1.2)

V m 6=1
0 =


(µ+ 1)I mµI 0

mµI (m2µ+ cosh 2r)I sinh 2rZ

0 sinh 2rZ cosh 2rI

 . (C.1.3)

The first optical component is a beamsplitter that sets the quadratures of modes 2 and 3 to 0

(moves the entire displacement onto mode 1). This beamsplitter has angle

θm 6=1
1 = arccos

1√
m2 + 1

, (C.1.4)

and changes the first and second moments of the state to

Xm6=1
1 |α =


√
m2 + 1α

0

0

 , (C.1.5)

V m6=1
1 |α =


m2 cosh 2r+1

m2+1
I 2m sinh2 r

m2+1
I my(1)Z

2m sinh2 r
m2+1

I m2+cosh 2r
m2+1

I y(1)Z

my(1)Z y(1)Z cosh 2rI

 , (C.1.6)

V m 6=1
1 = V m6=1

1 |α⊕ (m2 + 1)µ


I

0

0

 , (C.1.7)

where y(1) = (sinh 2r)/
√
m2 + 1.

The next component purifies the second mode, reducing the state to a bipartite state. It acts

on the second and third modes and has squeezing parameter rm 6=1
2 = −arcsinh

√
2 sinh r√

m2 cosh 2r+m2+2
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C.1 Calculation of the k-value for any m-value

. The first and second moments become

Xm 6=1
2 |α =


√
m2 + 1α

0

0

 , (C.1.8)

V m 6=1
2 |α =


m2 cosh 2r+1

m2+1
I 0 y(2)Z

0 I 0

y(2)Z 0 m2 cosh 2r+1
m2+1

I

 , (C.1.9)

V m 6=1
2 = V m6=1

2 |α⊕ (m2 + 1)µ


I

0

0

 , (C.1.10)

where

y(2) =

√
2m sinh r

√
m2 cosh 2r +m2 + 2

m2 + 1
. (C.1.11)

The final component unsqueezes the remaining two modes, such that the state for fixed α is

a vacuum state. The squeezing parameter is rm6=1
3 = −arcsinhm sinh r√

m2+1
. The first and second

moments become

Xm 6=1
3 |α =


√
m2 cosh 2r+m2+2√

2
α

−m sinh rZα

0

 =


km 6=1

1 α

km 6=1
2 Zα

0

 , (C.1.12)

V m 6=1
3 |α =

I 0

0 I

 , V m 6=1
3 =

 x+I y(3)Z

y(3)Z x−I

 , (C.1.13)

where

x± =
1

2
(m2µ cosh 2r ±m2µ+ 2), (C.1.14)

y(3) = −mµ sinh r
√
m2 cosh 2r +m2 + 2√

2
. (C.1.15)

Since we have shown that there is an optical circuit that reversibly converts the initial state

of the setup in Fig. 6.9 to the initial state of the setup in Fig. 6.2, the two setups must have the

same secret key rate for the same thermal noise. As shown in the main text, this also means that

the setup in Fig. 6.9 has the same secret key rate as the side-channel-free setup with an “effective

modulation” of µ′ = k2µ, an “effective channel loss” of η′ = η
k2

and an “effective excess noise”
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C.1 Calculation of the k-value for any m-value

of ε′ = k2ε, where

k =
√
k2

1 + k2
2 (C.1.16)

=

√
1

2
(m2 cosh 2r +m2 + 2) +m2 sinh2 r (C.1.17)

=
√
m2(2n̄+ 1) + 1. (C.1.18)

This is the result given in the main text.
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Abbreviations

AD Amplitude Damping

CPF Channel Position Finding

CV Continuous Variable

DV Discrete Variable

LB Lower Bound

LIDT Laser Induced Damage Threshold

LOCC Local Operations and Classical Communications

MLE Maximum-Likelihood Estimation

PBT Port-Based Teleportation

PLOB Pirandola-Laurenza-Ottaviani-Banchi

QCRB Quantum Cramér-Rao Bound

QFI Quantum Fisher Information

QKD Quantum Key Distribution

REE Relative Entropy of Entanglement

RNG Random Number Generator

TMSV Two-Mode Squeezed Vacuum

UB Upper Bound
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