
Errata Sheet to “Physics-based Vision Meets

Deep Learning”

yy1571

March 2021

The section 2.1.1 is very high level. What is in OpenDR? What can
it do? How is minimisation of an appearance error different from
training?

Correction: The paragraph of section 2.1.1 should be rewritten as shown
below:

In energy minimisation approaches to inverse graphics problems, there is a
need for differentiable renderers that model the physical process of image inten-
sity formation. This allows minimisation of an appearance error using gradient
descent or other first-order optimisation algorithms. Loper et al. [13] developed
a differentiable renderer package called OpenDR as a framework. OpenDR could
reproduce the observed images with latent variables like appearance, geometry
and camera, then the error between the reproduced image intensity map and the
observation can be minimised. This differentiable renderer allows us to perform
image rendering with respect to per-vertex brightness, vertex-based geometry
and pinhole-plus-distortion camera, and compute partial derivatives of the ren-
dered image with respect to these image formation parameters. Hence we can
estimate these image formation parameters from an observed image through an
analysis-by-synthesis optimisation, which is achieved by minimising the error
between the observed image and the reproduced image rendered from the es-
timated model parameters. Minimising the error of the rendered image from
this differentiable renderer facilitates the model parameter estimation from an
input image, or it could be integrated into an inverse graphics neural network to
train the network parameters. Zienkiewicz et al. [21] applied a similar idea for
estimating height maps in a real-time robotic system. The rendering objective
isheight map rather than RGB intensities in their case.

Details of the cited papers in section 2.1.2 are not provided. Cited
works from Jaderberg et al. [9] and Hinton et al. [8] are not related to
the topic of this section because their networks do not have a render
layer.

1



Correction: The contents related to [9] and [8] are removed from this section,
and the context is reordered to better explain the cited papers. The new section
2.1.2 should be:

Some work has investigated the idea of a trainable renderer. Dosovitskiy
et al. [3] proposed a neural network for image reconstruction from extracted
feature maps resulting from different hand-crafted or learned descriptors like
HOG, SIFT or trained deterministic CNN. They trained an up-convolutional
network against the loss function comparing original inputs and reconstruction.
Similarly, using differentiable rendering layers inside a network to perform image
reconstruction were implemented by [4, 5, 6, 7, 8]. Gregor et al. [6] employed
an recurrent architecture in their DRAW net that learns to generate images in
an iterative manner. They applied attention modules to make their network
only focus on part of the image canvas at each step, and hence accumulating
and gathering the generated pieces in the final results. In each step, the encoder
generates latent codes conditioned on the input image and previous outputs from
the decoder, which is combined with the attention model to achieve impressive
performance. Gatys et al. [4] tackled the problem of auto-generating images
with respect to the specified artistic style. The fundamental insight supporting
the method is that the representations of content and style are independently
captured by hierarchically different sub-networks inside CNNs. Thus the target
image could be generated by minimising the content matching lossand style
matching loss derived from a pre-trained VGG net [19]. Dosovitskiy et al. [3]
developed a model to render images given scenes description parameters, like
camera position and appearance style. But the effectiveness of the generator
is only validated by synthetic laboratory images. Zhmoginov and Sandler [7]
proposed a face image rendering network being able to construct face image
from a pair of guiding image and identity embedding vector. Similar to Gatys
et al. [4], Zhmoginov and Sandler [20] formulated network training losses by
measuring the feature distance computed by the pre-trained FaceNet, which is
proposed by Schroff et al. [18]. Nalbach et al. [15] explored the graphical shading
problem by using rendering layers. Specifically, their Deep Shadingnet explicitly
takes as input the meaningful scenery attributes defined in common shaders
and use well-trained neural network to act as a self-taught shader as opposite to
manually designed shader.The rendering networks introduced by these works are
generative models simulating the probabilistic process of RGB image synthesis.
In contrast, our BRDF estimation network models a discriminative process on
the statistical BRDF parameter estimation problem and uses a fixed rendering
architecture to formulate the loss function.

Goodfellow et al. [5] proposed the idea of Generative Adversarial Nets (GANs),
which trains a generative model together with a discriminator. The discrimina-
tor is trained to classify real and generated images, and the generator is trained
to fool the discriminator. This adversarial training mechanism encourages the
generative model to generate realistic images capturing the hidden features in
the input images. Radford et al. [17] applied adversarial training with convolu-
tional neural networks in their DCGANs. By employing CNN-based generative
and discriminative models, their generative model could be trained in an unsu-

2



pervised fashion to generate realistic images of different domains. The trained
generator in GANs, however, can only take input of random noise vectors but
cannot perform rendering based on semantic inputs.

The definition of SVBRDF is not given in the first paragraph on page
17: Instead of only estimating uniform BRDF, their networks tackles
a more challenging problem, which decomposes a single input image
to SVBRDF, normal and illumination.

Correction: Instead of only estimating uniform BRDF, their network tackles
a more challenging problem, which decomposes a single input image to spatially-
varying Bidirectional Reflectance Distribution functions (SVBRDF) [16], nor-
mal and illumination.

In Section 3.1 on page 26, the lighting parameters are not input
and not fixed. The lighting fits to the data and hence surely it is
a trainable parameter.

Correction: There is a potential confusion here over the statement that the
lighting parameters are not trainable parameters. Since they are neither input
nor fixed, it may appear that they must be trainable parameters but this is
not the case. A trainable parameter means a parameter whose value affects
the output of the network and whose value is found by minimising training loss
averaged over the training dataset. To clarify the lighting parameter is not like
a trainable parameter, the additional explanations should be included after the
sentence, “Note that this is an untrainable layer, because the Lambertian layer
contains no trainable parameters and is not updated to reduce the loss during
the training process.” on the line 9 of page 26:

As for inferred lighting parameter from the Lambertian layer, they are nei-
ther input nor fixed, it may appear that they must be trainable parameters but
this is not the case. A trainable parameter means a parameter whose value af-
fects the output of the network and whose value is found by minimising training
loss averaged over the training dataset. The lighting parameters act like latent
variables. They are themselves the solution to an optimisation problem whose
inputs are the outputs of the network. The network does not output lighting
parameters. It outputs other quantities from which the lighting parameters can
be derived by solving an optimisation problem. During training, this is done
in-network such that losses that depend on lighting can be computed and the
loss backpropagated through the solution for lighting and back into the net-
work. This all becomes explicit in Chapter 4 when such an architecture is used
in InverseRenderNet.

In Equation 3.2 on page 28, Gx and Dx should be Gy and Dy.
Correction:

Gy = Dy ∗ Z. (1)

3



The sentence under Equation 3.5 on page 29 is unclear for describing
the numbers of u and m× n.

Correction: A clearer description should included after the sentence “This
function is applied to the gradient estimate at each pixel, yielding u surface
normal vectors, where u is length of flatten vector from m× n map.”:

For clarity, u = mn where u is the number of pixels, m the height and n the
width of the image.

The notions used in Equation 3.5 and 3.6 on page 29 are inconsistent
with the other equations, and n should be bold as it is a vector.

Correction: In Equation 3.5, replace n̄ with n and in following sentence.
Equation 3.6 and sentence above, replace n with n̄ and in Equations 3.6, 3.7,
3.8, 3.9, 3.11 replace n(n̄) with n̄(n(g)).

Wrong sentence on the 4th line in the paragraph under Equation 3.25
on page 37: Finally, cameras apply a nonlinear gamma transformation
to the rendered images out of this renderer.

Correction: Finally, we apply a nonlinear gamma transformation to the ren-
dered images out of this renderer so as to model the gamma correction process.

The last two sentences of the paragraph under Equation 3.32 on page
39 are not clear and accurate enough: The training will eventually
converge as long as we start the training from a reasonable initialisa-
tion, which is realised by our phased training scheme. We will discuss
this in details in next chapter (see Section 4.5.2).

Correction: To make this training eventually converge, we combine super-
visions derived from MVS scene reconstructions and a phased training scheme,
which are described in detail in the next chapter. We empirically found alter-
nating between this simple lighting optimisation and the gradient descent opti-
misation for training an inverse rendering neural network allows us to achieve
the training convergence.

`reg is not defined on page 42.
Correction: A new equation and the associated description should be in-

cluded between the sentence “. . . regularisation term `reg is another part of our
loss function:” and “The coefficient of regularisation is . . . ”

`reg =

S∑
s=1

‖ws‖2fro, (2)

where ws is the sth learnt feature kernel inside the neural network, and S is the
total number of kernels. This regularisation loss penalises the overall magnitude
of the values inside the learnt convolutional kernels, which measures the com-

4



plexity of the learnt neural network model. Minimising this loss could restrict
the complexity of the network, hence effectively addressing the overfitting issue.

The sub-section “Convolutional Neural Network” on page 43 does
not clearly describe the network architecture, and Figure 3.7 is not
clear for demonstrating the network.

Correction: The full context in this section and Figure 3.7 should updated:

(a) (b) (c) (d)

Figure 1: Network architecture. (a) Overall architecture; (b) Residual block
group, shown as orange boxes placed in the middle of (a); (c) Convolutional
layers inside residual block; (d) Convolutional layers inside the first residual
block of each group, where the spatial resolution is reduced by the first strided
convolutional layer, and the channel of output feature map is increased by the
third convolutional layer.

The architecture of our ConvNet is realised by a stack of residual blocks
consisting of a simplified encoder-decoder architecture and a residual shortcut
introduced by He et al. [7]. Since our problem is to estimate BRDF parameters
from only one single image, a deep network with powerful learning ability is

5



required. We construct our network with 50 layers following a ResNet layout.
Also, following the downscale rule proposed by Simonyan et al. [19] in their VGG
net, our network performs pooling operations followed by dimension increasing
on the feature map. The visualisation of our network is shown in Figure 1. Our
neural network is constituted by one actuation convolutional layer, 4 groups
of residual blocks and one final fully-connected layer. Each group contains 4
residual blocks, and each residual block consists of 3 convolutional layers and
one skip connection. So there are totally 48 convolutional layers within the
4 residual blocks groups. The actuation convolutional layer in our network
is placed next to the input layer, converting the RGB input images to the
initial feature maps with 64 channels. The following residual blocks are grouped
according to the number of channels of the feature maps, which are 64, 128,
256 and 512. The 4 residual block groups are shown as orange boxes in 1a,
and the internal architecture of residual blocks is shown in 1b. Note that, for
each residual block and group box, the numbers written at the bottom indicate
the channel dimension of the feature maps. Except for the first residual block
group, the pooling and feature channel increment operations are acted by the
first residual block in each group. For simplicity the pooling is done by using
stride of size (2, 2), whose efficiency has been proven by He et al. [7]. The
visualisation of the residual block performing this pooling and feature channel
expansion is shown in Figure 1d. Within this residual block, the first layer
performs strided convolutional to reduce the spatial resolution, and the last
layer increases the number of channels of the convolutional kernel to expand
the dimension of the output feature map. Note that the first residual block
group does not perform the operations of pooling and feature channel expansion,
because the actuation convolutional layer has already transferred the 3D RGB
image to the 64D feature map. The architecture of the other residual blocks can
be found in Figure 1c. Inside each convolutional layer box visualised in Figure
1c and 1d, the numbers on first line stand for the size of the convolutional
kernel, the numbers of the second line indicate the dimension of the output
feature map, and the numbers on the last line are the step size of the stride.
The fully-connected layer at the end of the net maps output from convolutional
layer to 15-D vectors, which represents three 5 dimensional BRDF statistical
model parameters for each colour channel respectively.

Equation 4.3 on page 54 is not an explanation for the case of nz = 0.
Correction: Change the sentence prior to the Equation 4.3 from “. . . pixels,

nz ≥ 0, we can compute . . . ” to:
Since for all visible pixels, nz > 0, we can compute the surface normal

direction from the estimated quantities as.

In the first sentence of the first paragraph under Section 4.4 on page
55, “L2 data term” should be referred to Equation 4.5.

Correction: Change the first sentence in the paragraph under Section 4.4 on

6



page 55 from “As shown in Figure 4.2, we use a L2 data term (the error between
predicted and observed appearance) for self-supervision.” to:

As shown in Figure 4.2, we use a L2 data term (the error between predicted
and observed appearance) for self-supervision, which is described by Equation
4.5 in Section 4.4.1.

The original data of the “79 HDR spherical panoramic images”, which
is described on the 4th line of the paragraph under Figure 4.6 on page
58, is no longer available on the referred website.

Correction: We packed and uploaded the source data online. In order to refer
to the link, an additional sentence should be inserted between the sentences of
“. . . 79 HDR spherical panoramic images taken outdoors [10, 1].” and “As shown
in Figure 4.4 . . . ”:

The URL for the original data is no longer available. We now provide the
source HDR images at:
https://docs.google.com/uc?export=download&id=1yt4c6DriDPN26HRCVW4D1t8z-M6J43Nk.

Why arccos(nguide ·nest) is used rather than nguide ·nest in Equation 4.9
on page 61?

There is no correction to make here. arccos(nguide ·nest) is the angle between
nguide and nest and we seek to minimise this. We could alternately maximise
the dot product nguide · nest but the angular error is more natural and there is
no visible difference between the two in practice.

“. . . correlation coefficient of intensity histograms close to 1.” in the
first sentence under Figure 4.9 on page 65, is a vague description, and
the exact range of the correlation coefficient should be given.

Correction: Change the sentence from “. . . defined as having correlation co-
efficient of intensity histogram close to 1” to:

. . . defined as having correlation coefficient of intensity histograms greater
than 0.95.

“γ = 2.2” is directly used for nonlinear gamma transformation on the
7th line of the paragraph under Section 4.7.2 on page 70, but there
is not reference to explain why this gamma transformation factor has
been used.

2.2 is the standard decoding gamma for the sRGB colour space. It is univer-
sally used, including in other computer vision works that account for nonlinear
gamma, e.g. [11, 12, 14].

In Section 4.8.5, the ground truth is projected to the order 2 SH
approximation of the light map. Explain the fairness of this choice

7

https://docs.google.com/uc?export=download&id=1yt4c6DriDPN26HRCVW4D1t8z-M6J43Nk


and try to provide the errors of reproducing the light map.
Correction: First, the original sentence on the 6th line of the paragraph

under Table 4.7, “Since our network can only infer the lighting represented by
spherical harmonics, we project the ground truth environment map onto order
2 spherical harmonics.”, should be updated as:

Since our network and the employed comparison methods (SIRFS [2] and In-
verseRenderNet) can only infer the lighting represented by spherical harmonics,
we project the ground truth environment map onto order 2 spherical harmonics.

Second, Table 4.7 could be extended with errors of reproducing lighting
maps, such that the new Table should be:

Methods
Global scale Per-colour scale

Reconstruction SH Reconstruction SH

SIRFS [2] 0.026 0.100 0.023 0.089
InverseRenderNet 0.024 0.050 0.021 0.041

InverseRenderNet++ 0.023 0.038 0.019 0.033

Table 1: Quantitative results for illumination estimation. We show global-
scale and per-colour-scale MSE errors for lighting map reconstruction (2nd and
4th Columns) and relit sphere from order 2 spherical harmonics (3rd and 5th
Columns).

This new quantitative evaluation table contains evaluations of the lighting
map reconstruction rather than the 2nd order SH approximation. To explain
this, the following sentence should be added after the sentence “. . . spherical
harmonic lighting.” on the 10th line of the paragraph under Table 4.7 on page
84:

In addition, we also provide the quantitative evaluations of the error between
the front side of the lighting map reconstructed from the lighting predictions
and of the ground truth lighting map.

The details of the scaling operation and interpretation of errors in
Table 4.7 are not provided in Section 4.8.5.

Correction: The extra explanations should be added into the second last
line of the paragraph under Table 4.7. Specifically, the context shown below
needs to be inserted after the sentence “. . . scaling to each colour channel.” on
the second last line of the paragraph:

The global scaling factors adjust the intensity of the lighting predictions to
fit to the ground truth and so remove the scale ambiguity, and the pre-colour
scalings adjust the intensity of the predictions for each of the colour channels
independently, hence excluding the affections from both scale and colour am-
biguities. The global is computed by the ratio between the global median of
prediction and ground truth, and the per-colour scaling factor is obtained by
comparing the per-colour median of prediction and ground truth. The Global-
scale and per-colour-scale MSE errors reported in Table 4.7 are compared with

8



the ground truth lighting map being scaled within the range [0, 1], and the relit
map being scaled to the range [0, 1]. The InverseRenderNet++ achieves the
best performance for both global-scale and per-colour-scale MSE errors.

Misspelling on the 2nd line of the 2nd paragraph under Section 5.8.2
on page 102: . . . InverseRendernet++ . . .

Correction: . . . InverseRenderNet++ . . .

9



References

[1] HDRI-Skies, 2020.

[2] Jonathan T Barron and Jitendra Malik. Shape, illumination, and re-
flectance from shading. IEEE transactions on pattern analysis and machine
intelligence, 37(8):1670–1687, 2014.

[3] Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning
to generate chairs with convolutional neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
1538–1546, 2015.

[4] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural algo-
rithm of artistic style. CoRR, abs/1508.06576, 2015.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. In Proc. NIPS, pages 2672–2680, 2014.

[6] Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. DRAW:
A recurrent neural network for image generation. CoRR, abs/1502.04623,
2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[8] Geoffrey Hinton, Alex Krizhevsky, and Sida Wang. Transforming auto-
encoders. Proc. ICANN, pages 44–51, 2011.

[9] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial trans-
former networks. In Advances in Neural Information Processing Systems,
pages 2017–2025, 2015.

[10] HDR Labs. sIBL Archive, 2007–2012.

[11] Zhengqi Li and Noah Snavely. CGIntrinsics: Better intrinsic image decom-
position through physically-based rendering. In European Conference on
Computer Vision (ECCV), 2018.

[12] Andrew Liu, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros, and Noah
Snavely. Learning to factorize and relight a city. In ECCV, 2020.

[13] Matthew M Loper and Michael J Black. OpenDR: An approximate differ-
entiable renderer. In Proc. ECCV, pages 154–169. Springer, 2014.

[14] Shengjie Ma, Qian Shen, Qiming Hou, Zhong Ren, and Kun Zhou. Neu-
ral compositing for real-time augmented reality rendering in low-frequency
lighting environments. Science China Information Sciences, 64(2):1–15,
2021.

10



[15] Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, Hans-Peter Seidel,
and Tobias Ritschel. Deep shading: Convolutional neural networks for
screen-space shading. 36(4), 2017.

[16] Fred E Nicodemus. Directional reflectance and emissivity of an opaque
surface. Applied optics, 4(7):767–775, 1965.

[17] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks.
In 2016 International Conference on Learning Representations (ICLR), 11
2016.

[18] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
815–823, 2015.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In International Conference on Learning
Representations, 2015.

[20] Andrey Zhmoginov and Mark Sandler. Inverting face embeddings with
convolutional neural networks. CoRR, abs/1606.04189, 2016.

[21] Jacek Zienkiewicz, Andrew Davison, and Stefan Leutenegger. Real-time
height map fusion using differentiable rendering. In Proc. IROS, pages
4280–4287, 2016.

11


