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Abstract

Tidal interactions are important in driving spin and orbital evolution in various astrophysical

systems such as hot Jupiters, close binary stars, planetary satellites, and more. However, the

fluid dynamical mechanisms responsible for tidal dissipation in giant planets and stars remain

poorly understood. One key mechanism is the interaction between tidal flows and turbulent

convection which is thought to act as an eddy viscosity (νE) dampening the large-scale tidal

flow. The efficiency of this mechanism has long been debated, particularly in the regime of fast

tides, when the tidal frequency (ω) exceeds the turnover frequency of the dominant convective

eddies (ωc). The pioneering work of Zahn (1966) proposed that νE ∼ ω−1 while Goldreich &

Nicholson (1977) found νE ∼ ω−2.

Using hydrodynamical simulations we investigate the dissipation of the large-scale (non-

wavelike) equilibrium tide as a result of its interaction with convection. Our approach is

to conduct a wide parameter survey (over a number of parameters) in order to study the

interaction between an oscillatory background shear flow, which represents a large-scale tidal

flow, and the convecting fluid inside a small patch of a star or planet. We simulate Rayleigh-

Bénard convection in this Cartesian model and explore how the effective viscosity depends

on the tidal (shear) frequency in both laminar and turbulent regimes. We also provide a

complementary asymptotic analysis which is an extension of the work of Ogilvie & Lesur

(2012) which supports our findings in the laminar cases.

We will present the results from our simulations to determine the effective viscosity, and

its dependence on the tidal frequency in both laminar and weakly turbulent regimes. The

main results are: a new scaling law for the frequency dependence of the effective viscosity

which has not previously been observed in simulations or predicted by theory and occurs for

shear frequencies smaller than those in the fast tides regime; the possibility of anti-dissipation

(which could result in inverse-tides); and a strong agreement with the frequency dependence

of Goldreich & Nicholson (1977) (despite disagreement with the fundamental mechanism).

These results have important implications for tidal dissipation in convection zones of stars

and planets which we will discuss. The results of this work indicate that the classical tidal

theory of the equilibrium tide in stars and giant planets should be revisited.
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Chapter 1

Astrophysical tides
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1.1.3 Binary stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 The tidal mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 The equilibrium tide . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 The dynamical tide . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Dissipation of tidal energy . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 The weak friction approximation and the constant time lag model 25

1.3.2 Zahn’s linear reduction . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.3 Goldreich and Nicholson’s quadratic reduction . . . . . . . . . . . 28

1.3.4 State of the art simulations . . . . . . . . . . . . . . . . . . . . . 29

1.4 What would we like to know? . . . . . . . . . . . . . . . . . . . . . . . . 31

1.1 The astrophysical importance of tides

Tidal interactions between astrophysical objects, such as stars, planets and moons, are impor-

tant in driving the spin and orbital evolution of these systems. All such objects, which find

themselves in sufficiently close proximity, are subject to tides, which are due to the variation in

the gravitational potential across a body. Tidal theory can be applied to binary stars, planets

orbiting a parent star, or moons orbiting a planet. In all these cases, tides can change the

period and eccentricity of the orbit and affect the spin and orbital angular momentum vec-

tors of the objects in the system. These changes usually occur very slowly, but over the very

long times that these astronomical objects last, they can play a significant role. With such

a diversity of applications, there is a growing interest in improving tidal theory. We begin by

highlighting a few areas where tidal interactions, and in particular the work presented in this

thesis, are of particular importance.

1.1.1 Earth

The study of tidal theory as it pertains to the Earth has a rich history (see aside 1.1) which

we cover only briefly. One aspect we will discuss is the dissipation of tidal energy. As we

will see in § 1.2 and § 1.3 the dissipation of tidal energy plays an important role in the spin-

orbit evolution of the Earth-Moon system. The consequences of this have been detected and

observed in length of day (LOD) (Williams, 2000; Stevenson, 2015) variations as well as the

outward Lunar migration (which has consequences for the Lunar history and formation C̀uk
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et al. 2016) . However, understanding the mechanisms of dissipation in the Earth’s tides has

been an extremely difficult subject. One reason for this is the bathymetry of the oceans plays

an important role in the resulting tidal flows, as evidenced by the differences between the tidal

range at the Bay of Fundy (13 meters) and Venice (1 meter). Another complexity is the vast

zoo of oceanic tidal dissipation sources (see Fig. 1.1).

Although in this work we do not explore the dissipation of tidal energy in terrestrial planets,

this highlights the common theme in the understanding of the consequences of tidal interac-

tions. That is, a thorough understanding of tidal dissipation is essential in understanding and

predicting the consequence of tidal interactions.

Aside 1.1: A brief historical perspective of tidal theory

Much like the ebb and flow of the tides, progress in our understanding of Earth

tides, from antiquity to modern day, has also had a somewhat periodic nature where

progress has typically occurred in bursts. The earliest evidence for at least a practical

understanding of the tides dates back to 2500-1500 BC in the form of a tidal dock

at Kathiawara (Cartwright, 2001). However, the complex nature of Earth tides had

many great thinkers confused and proposing creative yet incorrect theoriesb. Some

notable examples are: William Gilbert (1544-1603), who proposed the tides were of a

magnetic nature (he was responsible for the discovery of the Earth’s magnetic field);

Galileo Galilei (1564-1642), who proposed the tides were a direct result of accelerations

due to orbital motion of the Earth around the Sun (largely he used this as evidence

for the Copernican model of the solar system); Johannes Kepler (1571-1630), who

actually made the correct prediction (based on documented observations), that some

attractive force between the Earth and Moon was responsible, although it met with

fierce resistance from Galileo; and René Descartes (1596-1650), who introduced a quite

creative Theory of Vortices which was regarded as the correct answer for many decades

(despite not only completely ignoring Kepler’s laws but also making no reference to any

previous tidal theory!).

It was Newton’s pioneering work in Philosophiæ Naturalis Principia Mathematica

that provided the correct description for the cause of the tides, which came as a con-

sequence of his Universal Law of Gravitation (which Kepler was close to). However,

Newton’s ideas were not accepted over the Theory of Vortices until 1740 with the help

of giants such as Daniel Bernoulli, Leonhard Euler, Colin Maclaurin, and others. New-

ton, perhaps, gets an unfair amount of credit for his work on tidal theory (Newton’s

main contribution to tidal theory was the Universal Law of Gravitation) as it is the work

of Pierre-Simon Laplace in 1776 which has become the real foundation of modern tidal

theory. The brilliance of Laplace comes in the form of a set of linear partial differential

equations to describe the response of a body to the tidal force.

An in depth review of tidal history can be found in Cartwright (2000).

aThere is evidence, of a controversial nature, for humanity’s understanding of the relationship
between the tides and the lunar cycle that dates back to at least 2000 BC through ancient megaliths
in western Europe.

bOne such novel idea was that the tides were caused by the breathing in and out of a sea god/-
monster.
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Figure 1.1: This schematic shows where tidal energy from the Sun and Moon is
dissipated in the Earth. The quantities are measured in terawatts. This highlights
the complexity of terrestrial tidal dissipation. Recreation from Munk & Wunsch
(1998) (figure 4).

1.1.2 Hot Jupiters

In 1992 the first confirmed planets around another star were observed by Wolszczan & Frail

(1992). These planets were discovered orbiting a neutron star, which were not previously

thought to host planets, and gave us the first surprise in the new field of exoplanetary science.

The next confirmed planet, 51 Peg b, was not until 1995, but this was of great importance due

to it being found around a main sequence star (Mayor & Queloz, 1995). The significance of
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this stems from the fact that approximately 90% (Arnett, 1996) of stars fall into this category.

Furthermore, 51 Peg falls into the same spectral class of star as the Sun, G-type, bringing this

exoplanet closer to home. However this is where any familiarity ends.

Figure 1.2: Mass-period diagram of all exoplanets from the NASA-Exoplanet
Archive as of August 2020 (includes all planets contained within the ‘planetary
systems update’ of the database). Each planet is coloured by its eccentricity where
it is known or by grey where it is not. Planets without a known mass or orbital
period are not displayed. The dashed lines indicate the lower mass and outer
period boundary of HJs.

51 Peg b (Fakhouri, 1995) has roughly half the mass (0.46MJ) of Jupiter but while Jupiter

has an orbital period of 11.9 years, that of 51 Peg b is only a meagre 4.2 days. Naively, we

expect giant planets to form further from their host stars than the observed 0.052AU of 51

Peg b, partly due to there being more solid material1 in the proto-planetary disc at larger AU.

This may not have been so alarming if such planets were an exceptional rarity, however

even by 2000 there were 28 confirmed planets discovered around main sequence stars (for a

brief review of detection methods see aside 8.1) of which 7 of them fell into the classification

of what is now termed the HJ class due to being in the mass regime of a gas giant but

orbiting very close to their host star. We now have in excess of 4200 confirmed exoplanet

discoveries as of August 2020 of which more than 300 fall into the HJ category, highlighting

the surprising normality of such objects. HJ’s are a subset of planets which are loosely defined

as giant planets with orbital periods < 10 days2 which is equivalent to a semi-major axis of

. 0.1AU (Gaudi et al., 2005). This loose definition contains another poorly defined term of

giant planet. Giant planets have a minimum mass, as defined by Clanton & Gaudi (2014), of

0.1MJ which is based on compositional arguments. The maximum mass of a giant planet is

1Solid material, in the form of rocks and ices, are required for the classical core accretion pathway for planet
formation. See Perryman (2018) for a complete review of planetary formation.

2Further subsets of HJ’s are the very hot Jupiters and ultra-short-period hot Jupiters with < 3 day and . 1
day orbits respectively, however, in this thesis we will simply use the inclusive term HJ.
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not yet well defined which stems from our incomplete understanding of brown dwarfs, however,

one can conservatively exclude brown dwarfs from this category and regard the upper limit3

as approximately 13MJ. Although the aforementioned figures make HJ’s sound commonplace

they are in fact reasonably rare. Occurrence rates vary depending on author and on the criteria

used but around 1% of main sequence FGK stars are believed to host a HJ (Wang et al., 2015).

Aside 1.2: Planetary Detection

Without the many creative ways that observers have developed in order to detect

exoplanets, using both ground and space based missions, we would never have uncov-

ered the vast diversity of planetary systems. Figure 1.3, taken from Perryman (2018),

highlights the various techniques that are now routinely used, as well as some of the

mass limitations of each, and prospects for the future. Given how essential detection

methods are to exoplanetary research, it is worth briefly discussing the main detection

methods (for a more thorough review see Perryman 2018).

Figure 1.3: “Exoplanet detection methods. The lower limits of the lines in-
dicate masses within reach of present measurements (solid lines), and those
that might be expected within the next few years (dashed). The (logarith-
mic) mass scale is shown at left. Miscellaneous signatures to the upper right
are less well quantified in mass terms. Solid arrows show relevant discov-
eries. Open arrows indicate measurements of previously-detected systems.
Numbers are from the NASA Exoplanet Archive, 2018 January 1.”. Figure
and caption taken from Perryman (2018).

Radial Velocity: This detection method has been the second most successful tech-

nique used to detect exoplanets and is commonly used by the famous Keck facility and

the highly successful HARPS observatory (Mayor, M. et al., 2003). In some regards it

is also the pioneering method as it was used in the discovery of 51 Peg b.

When a star hosts a planet it will orbit the common centre of mass (barycentre),

although this will be close to the centre of mass of the star itself due to the dominance

of the star’s mass. Providing the planet is not orbiting in the plane of the sky of the

observer, the star will have some component of its orbital velocity directed towards the

3See Perryman (2018) for an extensive discussion on the classifications of planets.
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observer. It is this velocity to/from the observer which can be detected and is the

main component of the radial velocity method. Despite this velocity being very small,

this method has been extremely successful and can even detect multi-planet systems

(multis).

One major limitation of this technique is that it cannot directly estimate the planet’s

mass. The radial velocity technique measures the mass function of the system which

can be obtained through Keplers third law as M = M3
p sin3 i/(M? +Mp)

2, however, if

we wish to evaluate the planet’s mass Mp (where the stellar mass can be estimated, for

example from its spectral type and luminosity class) then we must also know the angle

of inclination with respect to the sky plane, sin i, which cannot be obtained from the

radial velocity method.

Astrometry: While radial velocity concerns itself with the motion of the star along

the line of the observer, astrometry concerns itself with the motions parallel to the

observer (in the plane of the sky). In essence the star is observed and its position in

the plane of the sky is monitored for any slight change. Only one such planet at time

of writing has been confirmed (DENIS-P J082303.1-491201 b, Sahlmann et al. 2013),

although it is expected that GAIA will discover thousands of planets with this method.

Timing (pulsar/variable star): Some stellar objects have stable periodic behaviour

which have their timings altered by the existence of a planet. The best example of this

is the pulsar timing used in the discovery of the first exoplanets by Wolszczan & Frail

(1992). Pulsars are a class of neutron star with powerful magnetic fields and a spin

axis misaligned with the plane of the sky. This configuration results in periodic radio

emission from their magnetic dipole axis to be directed at the observer. In the absence

of a planet the periodicity is remarkably stablea, this makes any slight variation from a

planet easy to detect (although it remains difficult to confirm the discrepancy is from

a planet and not some other source).

Similar techniques can be used for pulsating white dwarfs, rapidly pulsating subdwarfs

and some eclipsing binaries.

Gravitational microlensing: Under general relativity matter acts to distort space-

time causing light to take the shortest path in time (typically a curved path in space)

rather than the most direct route in space (a straight line in space). If a suitably massive

object lies between the observer and their desired target, then the light can bend around

the massive object, which acts like a lens, amplifying the view of the observer’s target

object.

The major advantage of this technique is that, due to its magnifying effect, exoplan-

ets can be discovered at much larger distances than is possible by other techniques.

However, it has some quite major limitations. One limitation is that these systems

are usually more difficult to characterise due to their distances from Earth. Another

important limitation is the requirement for a massive enough object to happen to be

in the correct position and for it to remain there for long enough for a detection to be

possible.

Transits: This has been the most successful method of planetary detection, largely
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due to the impressive output of the Kepler space telescope. In essence this technique

works by monitoring the change in light intensity from the host star as the planet passes

in front of (and hence dimming) and behind of (this also causes a dimming due to the

absence of the planet as a light source) the host star. Despite the dip in light intensity

typically being ≤ 1%, this method can also be used to explore the composition of

a planet’s atmosphere/surface using spectroscopy and photometry which look at the

changes in absorption linesb as the planet transits.

Direct imaging: All previously mentioned methods involve looking at the host star.

In this method the host star is in fact masked out so as to bring the planet into view

through either the reflection of its host star’s light or its own thermal emission. Although

this sounds simple, the flux from the star is significantly larger than that of the planetc,

however, despite this quite serious complication this method has been successful in

discovering exoplanets, most famously Beta Pictoris b (fig 1.4).

Figure 1.4: Image of Beta Pictoris b taken on 3 April 2010 by the VLT’s
NACO instrument. It is estimated that the planet is 6.5 AU away from its
host star at the time of the image.
Credit: ESO.

aThe most stable is PSR J0437–4715 with an error in predicting the next pulse of only 130 nano
seconds (Hartnett & Luiten, 2011).

bEach element in the periodic table absorbs a different frequency of light and as such by looking
at the frequency of gaps in the spectrum one can determine the abundances of material the light has
interacted with.

cFor Jupiter and the Sun the flux ratio is fJup/fSun ≈ 10−9.

Fig. 1.2 displays the mass-period (in Jupiter mass) of all discovered exoplanets (that have

suitable data recorded for them) with each case coloured by its eccentricity. The HJ’s are

located in the top left of the diagram. One clear feature of HJ’s is that they are typically

found on low eccentricity orbits, which may be the result of tidal circularisation, although it is

worth noting the formation pathways for HJ’s are still a matter of some debate (see Dawson &

Johnson 2018 and references therein). Regardless of the formation pathway these planets are
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expected to undergo tidal migration due to dissipation of tidal energy within the host star (this

process will be described more thoroughly in § 1.2). Indeed, there is compelling evidence of

tidally-driven orbital decay for the HJ WASP-12 b (Maciejewski et al. 2016; Patra et al. 2017;

Maciejewski et al. 2018; Bouma et al. 2019; Yee et al. 2019; Turner et al. 2020) based on transit

timing variations over decadal timescales, and similar observations have been attempted for

some other HJ planets4 (see for example Birkby et al. 2014; Wilkins et al. 2017; Petrucci et al.

2019). The inspiral of HJ’s has also been inferred in Hamer & Schlaufman (2019) by exploring

the occurrence rate of HJ’s as a function of stellar age (estimated from measurements of the

stellar Galactic velocity dispersion). They observed that HJ’s are more commonly found around

stars with smaller Galactic velocity dispersion (younger) and hence conclude that the planets

around older stars must have been destroyed within the star’s lifetime. These observations

motivate theoretical studies to understand the mechanisms of tidal dissipation in stars.

1.1.3 Binary stars

The interaction between tidal flows and convection has long been thought to be the dominant

mechanism for producing circularisation and synchronisation of late-type binaries with convec-

tive envelopes (e.g. Zahn & Bouchet 1989; Meibom & Mathieu 2005; Meibom et al. 2006;

Mazeh 2008), the enhanced rates of orbital circularisation in cool-cool and hot-cool binaries

over hot-hot binaries (Van Eylen et al., 2016), and in low-mass binary systems containing fully

convective stars (e.g. Triaud et al. 2017; Von Boetticher et al. 2019). The clearest observa-

tional example indicating the efficacy of this mechanism is in binary systems containing giant

stars (e.g. Verbunt & Phinney 1995; Price-Whelan & Goodman 2018; Sun et al. 2018; Beck

et al. 2019). In the first case, that of late-type binaries, the trend towards circularisation can

be seen in Fig. 1.5 which shows the mass-period-eccentricity relationships, where the mass is

taken as that of the primary5 (the object with the greatest mass). Tidal effects can also be

more directly observed in some binary stars. A good example is the tidally-excited oscillations

of heartbeat stars6 (Welsh et al., 2011; Zimmerman et al., 2017; Guo et al., 2020).

It is clear that an improved understanding of tidal interactions in binary stars is essential as

these systems are far from rare. Table 1.1 shows the occurrence rates of main-sequence binary

systems as well as the expected number of companions a star of a given mass is expected to

have.

Class Mass range (M�) MF

BD < 0.1 22+6
−4%

M 0.1− 0.5 26+3
−3%

FGK 0.7− 1.3 44+2
−2%

A 1.5− 5 > 50%

B 8− 16 > 60%

O > 16 > 80%

Table 1.1: The Multiplicity frequency
(MF), which is the fraction of multi-
ple systems in a population for vari-
ous classes of star (where BD is Brown
dwarfs or very low mass stars). Note
that a multiple system could have one
or many companions but in either case
would be counted once. This data is
taken from Duchêne & Kraus (2013).

4Note that in Wilkins et al. (2017) they found no evidence for the inspiral of WASP-18 b, which orbits an
F star, to within observational limits (supporting some theories e.g. Barker & Ogilvie 2010). This highlights
the dependence of tidal dissipation on stellar spectral type.

5These plots was produced from the data contained in Meibom & Mathieu (2005).
6Heartbeat stars obtained their name due to the radial velocity curve being similar to that of a heartbeat

measured by electrocardiography, see for example figure 5 in Hambleton et al. (2018).
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Figure 1.5: (left) Mass-period diagram of short-period binary stars where the mass
displayed is for the primary. The eccentricity of the orbits is denoted by the colour
of the symbol. (right) Eccentricity-period diagram and coloured by primary mass.
The data is the same in each plot and has been taken from Meibom & Mathieu
(2005) for binary stars in the M35 cluster. These data show that short-period
binaries with sub 10 day orbital periods typically have circular orbits, while those
with longer orbital periods have a much wider range of eccentricities.

1.2 The tidal mechanism

In this section we consider the tidal response of a fluid body, such as a star or planet, to

an orbiting companion. First we will re-derive the tidal potential and tidal force from first

principles7 similar to Murray & Dermott (2000); Souchay et al. (2013); Ogilvie (2014) . We

will then study the response of the body, which we will split up into its wave-like (dynamical

tide) and non-wavelike (equilibrium tide) components.

We begin by considering the configuration in Fig. 1.6 where the primary, defined as being the

most massive object, of mass M1 and secondary, defined as the second most massive object,

which is treated as a point mass, of mass M2 in mutual orbit about the common centre of

mass (barycentre). The vector d points from the centre of the primary to the point mass

secondary. The magnitude of this vector is the semi-major axis |d| = a. We note that this

derivation is performed in an inertial frame of reference, which avoids the need to introduce

the Centrifugal force.

We will consider the gravitational potential inside the primary as a result of the secondary

at some arbitrary point described by the vector x, which originates from the centre of the

primary. The Newtonian (gravitational) potential can be described by

Φ = − GM2

|d− x|

= −GM2

|d|

(
1− 2d · x

|d|
+
|x|2

|d|2

)−1/2

7One motivation for this re-derivation is to highlight that even the most fundamental result is more rich in
mathematics and physics than is implied by the often used description, “the difference in the force of gravity
over distance”.
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Figure 1.6: Schematic of a binary system
to highlight the physical meaning of vari-
ous quantities. The primary and secondary
masses satisfy M1 �M2 with the secondary
treated as a point mass. The spin vector of
the primary is denoted by Ωs (with magni-
tude Ωs) assuming an aligned spin and orbit
(for the purposes of this picture), the orbital
frequency of the secondary Ωo, x is a vec-
tor pointing from the centre of mass to an
arbitrary point within the primary and d is
the vector pointing from the centre of mass
of the primary to the secondary. Finally, φ
and θ denotes the azimuthal and polar an-
gles which vanish on the line of centres and
direction of the spin vector respectively.

= −GM2

|d|

(
1 +

d · x
|d|2

+
3(d · x)2 − |x|2|d|2

2|d|4
+O

(
|x|3

|d|3

))
, (1.1)

where in the intermediate step a Taylor expansion has been applied to the bracketed term and

G is the gravitational constant. From this, the first two terms do not contribute to the tidal

potential. Note that the force which results from this potential can be obtained by evaluating

its gradient. The first term is constant in the potential and hence cannot contribute to a tidal

force. The second terms gives

−∇GM2

|d|
d · x
|d|2

= −GM2d

|d|3
, (1.2)

which simply causes the uniform acceleration responsible for orbital motion of the bodies about

the centre of mass. The tidal potential is defined to be the remaining terms in the potential,

thus we can define

Ψ = −GM2

|d|

(
3(d · x)2 − |d|2|x|2

2|d|4
+O

(
|x|3

|d|3

))
. (1.3)

Due to the increasing exponent on |x|/|d| the quadrupole tidal potential (leading order term

that is quadratic in |x|/|d|) is usually dominant and so we can approximate the tidal potential

with

Ψ ≈ −GM2

|d|

(
3(d · x)2 − |d|2|x|2

2|d|4

)
. (1.4)

At this stage it is worth highlighting that this formulation has kept the orbit, as represented

by d, general. Let us consider a simple case of the secondary having a circular orbit about the

primary’s equator. Defining coordinates (and time) such that the orbit lies along x at t = 0,

we have that

d = (a cos(Ωot), a sin(Ωot), 0) , (1.5)

where we have written |d| = a (this is the conventional semi-major axis), the orbital frequency

Ωo and the time t. It is also useful to introduce the spherical polar co-ordinate system (r, θ, φ)

(θ is the polar angle and φ is the azimuthal angle, see Fig. 1.6) and with origin centred on the
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primary’s centre of mass8,

x = (r sin θ cosφ, r sin θ sinφ, r cos θ) . (1.6)

These can be substituted into eq. 1.4 to give, after some rearrangement,

Ψ ≈ GM2r
2

4a3

(
2− 3 sin2 θ − 3 sin2 θ cos(2φ− 2Ωot)

)
, (1.7)

where we have used |d| = a. The first two terms are static and only lead to a time-independent

deformation of the body, and no time-dependent flow. Since we are interested in studying the

dissipation of tidal flows, we consider the time-dependent portion, which we define as

Ψ2,2 =<
(
−3GM2r

2

4a3
sin2 θ ei(2φ−2Ωot)

)
=<

{
A
(
r

R1

)2

Y 2
2 (θ, φ) e−2iΩot

}
. (1.8)

where we have rewritten the latter part of Ψ2,2 in terms of a l = m = 2 orthonormalised

spherical harmonic9, which we denote with Y m
l , and introduced a tidal amplitude

A = −
√

6π

15

GM2R
2
1

a3
(1.9)

for later use (note that R1 is the radius of the primary). This potential, due to the orbiting

secondary, acts to deform and excite tidal flows inside the primary, the result of which is a

perturbation to its potential. This perturbation then acts back on the secondary. Since we

are considering the secondary as a point mass this mutual interaction only modifies the spin

of the primary and the orbits of both bodies about the centre of mass. The misalignment

of the tidally excited deformation of the primary exerts a torque on the orbital motion of the

secondary, as shown in Fig. 1.7.

Figure 1.7: Schematic of the tidal deforma-
tion which in this case is lagging behind the
line of centres, which is generally the case
for HJ’s but the opposite is the case for the
Earth-Moon system. The primary is torqued
due to the attraction of the secondary result-
ing in the primary’s spin up where, in this
configuration, the torque vector is directed
into the page. Due to Newton’s third law,
conservation of angular momentum and the
rate of change of orbital energy, this results
in an acceleration of orbital velocity and in-
wards migration. See aside 1.3 for a more
detailed description.

8We currently have neglected the spin of the primary, but this could be included into the definition of d.
Further, addition of rotation only changes the tidal frequency from 2Ωo to 2(Ωo − Ωs).

9Spherical harmonics were invented by Laplace to be used in his tidal theory.
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Aside 1.3: Tidal migration: A physical description

The tidal force due to the secondary causes a tidally excited deformation (bulge)

of the primary. In the absence of any dissipation the primary would have an instan-

taneous response to the tidal force and hence the bulge would align with the line of

centres. However, physical systems do have dissipative properties and this results in

a misalignment of the tidally excited deformation which will either precede or lag the

line of attraction depending on spin and orbital periods of the primary and secondary,

respectively, as well as internal effects. In general the bulge will lag (precede) the line

of centres if the secondary has a smaller (larger) orbital period than the primary’s spin

perioda.

If the bulge lags (precedes) behind the line of centres it imposes a negative (positive)

torque to the secondary’s orbit and, due to Newton’s second law, an equal magnitude

and opposite sign torque to the primary’s spin. This then results in an exchange of

angular momentum between the primary and secondary where we have, from the sign

of the torque, that the angular momentum of the secondary’s orbit decreases (increases)

while the angular momentum of the primary’s spin increases (decreases). However, while

the total angular momentum in the system is conserved, the orbital energy is not (we

must have dissipation in order to have a misalignment!). These two facts can be used

to find an expression for the rate of change of the orbital energy which tells us that the

semi-major axis decreases (increases) and hence by Kepler’s laws the orbital velocity

increases (decreases).

This effect is basically an imperfect exchange of rotational and orbital energy between

the two bodies where some kinetic energy is converted to heat (through dissipation).

Some fraction of this heat is then lost to space by radiation leading to a net loss of

energy in the system. This conversion from kinetic energy due to friction is known

as tidal heatingb. As the system advances through time the secondary has its orbital

distance reduced (increased) while the primary will experience spin-up (spin-down). But

remember that it is the mismatch in spin period of the primary and orbital period of

the secondary that causes the tidal evolution of the system and so there is a somewhat

obvious end point being that after some time there will no longer be a mismatch. This

end point (providing there is enough angular momentum to reach this state Hut 1980)

is known as tidal locking and results in one side of the secondary always facing the

primary. It is important to note however that tidal locking is not the end point of the

evolution of the entire system as in the case described, the secondary would be locked

to the primary but the primary does not have to be locked to the secondary. Due to

tidal locking being a gravitational effect it is typical that the smaller body in the system

will lock to the larger one firstc which is what we observe in the Solar system.

As previously mentioned tidal locking is not the end of migration in a system, as

evident from the Moon’s migration away from Earth. From the work of Hut (1980) it

was found that as long as three quarters of the total angular momentum in the system

is orbital angular momentum then the end result is the tidal equilibrium. If this is not

the case then there are two possible fates for the planet, it migrates towards the star
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until it is destroyed, or, it is ejected from the system. Tidal equilibrium is where both

bodies are tidally locked to each other, they orbit the barycentre (common centre of

mass) with zero eccentricity, they are coplanar and their spin axes are aligned. However

this is thought to be an asymptotic process. Indeed from numerical integrations using

simple tidal models it has been found that stellar obliquity (also known as inclination and

spin-orbit misalignment) evolution timescales can be much longer than circularisation

timescales (Barker & Ogilvie, 2009), which might be supported by observations of highly

inclined HJ’s on circular orbits (Albrecht et al., 2012). It is worth noting that it is also

possible for the misalignment to be damped much faster than the orbital migration (Lai,

2012; Barker, 2016b; Lin & Ogilvie, 2017; Damiani & Mathis, 2018).

aAlternatively, based on frequencies, the bulge will lag (precede) the line of centres if the secondary
has a larger (smaller) orbital frequency than the primary’s spin frequency.

bA number of moons within the solar system show evidence of tidal heating such as Europa and
Enceladus which both feature outgassing from geysers (Fairén 2017 and references therein).

cThis depends on the efficiency of dissipation in each of the bodies.

What we are really interested in is the external potential of the tidally deformed primary

as gravity is the only way the two bodies interact. An expression for this can be obtained by

considering the solution to Laplace’s equation

∞∑
l=0

l∑
m=−l

(
Alr

l +Blr
−l−1

)
Y m
l (θ, φ) , (1.10)

where we note that the boundary condition is that the potential vanishes at r → ∞. This

means we can write the quadrupolar (l = 2) part of the external potential as

Φ′ = <

{
B
(
R

r

)3

Y 2
2 (θ, φ) e−2iΩot

}
, (1.11)

where B must now contain information about the modification of the potential due to the tidal

perturbation10. Now, we could derive an external potential due to the deformation11 and sum

with the potential due to the spherical interior (see Murray & Dermott (2000) for details of

this), however, we would quickly run into problems. The main issue is, in general, we do not

know the tidal response of the interior of the primary (which could be a planet, star or other

object).

We now introduce the (tidal) Love number12 (Love 1892, 1909) kml ∈ C. Formally, it is

defined by the ratio of the perturbed gravitational potential to the imposed one. The interior

and exterior potentials are related by use of the Love number in the relation

kml (Ωo) =
Bml
Aml

(1.12)

10In fact, B is at the heart of the tidal problem as it contains all the unknown information about how the
body responds to the tidal potential (such as the body’s rheology for a terrestrial planet).

11In principle this could include the rotational deformation (Barker et al., 2016).
12There is a second tidal Love number, h, which defines the constant of proportionality between the perturb-

ing potential and the tidal displacement on the surface of the primary. Further, there is the fluid Love number
which parametrises how much a fluid body is deformed by rotation.
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for each harmonic component. We have then that <(kml ) describes the elastic part of the

response which is in phase with the imposed potential (from here on we will simply refer to

this as the Love number) which is a measure of the central concentration of a body which

depends on its mass distribution as well as its rigidity (for solid bodies). Considering two

bodies of equal rigidity (or no rigidity in the case of a fluid body) the one with the denser core

will have a smaller Love number. We also have that =(kml ) is out of phase with the imposed

tidal potential and is associated with tidal dissipation and the associated torques. In most

applications it is k2
2 that is of primary concern as it related to the dominant tidal response13.

We also introduce the tidal quality factor Q which describes how efficiently an object can

dissipate the tidal energy. This is analogous to the well studied problem of a damped harmonic

oscillator which admits an in and out of phase response to a forcing (see for example Feynman

1970). For a damped harmonic oscillator a useful quantity is the quality factor Q which is a

measure of how underdamped the oscillator is and defined as the ratio of the energy stored

to the energy dissipated in one cycle. Similarly, the tidal quality factor is defined in the same

way, as (Goldreich, 1963)

Q =
2πE0∮
−Ėdt

, (1.13)

which is the ratio of the maximum (at peak oscillation) energy in the deformation to the

energy dissipated in one tidal period. The Love number and the quality factor can be related

through the complex nature of kml . Thus, much like for the harmonic oscillator, where the

quality factor describes the out of phase response, we have a relation between the tidal Love

number and tidal quality factor for the l = m = 2 component (noting that each l,m harmonic

can have different values of Q) as (Ogilvie, 2014)

=(k2
2) = σ

k2
2

Q
= σ

3

2Q′
, (1.14)

where σ = sgn(ω), which is the sign of the tidal forcing frequency ω = 2(Ωo−Ωs), noting that

we have introduced Ωs for the spin frequency of the primary14. In eq. 1.14 we have introduced

the modified tidal quality factor Q′ which is simply merging <(k2
2) and Q into one parameter for

convenience15, as these two terms frequently appear together in tidal evolution equations. We

can also write the imaginary part of the Love number in terms of the tidal forcing frequency

and the time-lag τ (which is yet another way of parametrising the dissipation) in the tidal

response to the forcing by =(km2 ) = k2
2τω.

Before we continue it is worth highlighting the subtle yet important point of this discussion

on the tidal mechanism. Although it is gravity that causes the tides, without dissipation of the

tidal energy there can be no exchange of spin/orbital energy and angular momentum between

the bodies. As such, if we wish to understand the consequences of tides on the orbital and

spin evolution of astrophysical systems, it is essential to understand the mechanisms behind

the dissipation of tidal energy.

13Although much physics is hidden in <(kml ) it is still of great interest as the k22 harmonic can be measured
with current observational instruments Ragozzine & Wolf (2009); Batygin et al. (2009); Ni (2018).

14We have, until now, largely neglected to mention the spin of the primary for simplicity.
15Note that Q′ is the Q of a homogeneous body, where k22 = 3/2 in this case.
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1.2.1 The equilibrium tide

We now consider the components of the tide and in particular the large-scale non-wavelike

equilibrium tide which is essentially the quasi-hydrostatic large-scale motion of the tidal defor-

mation. Following the approach taken by Zahn (1966, 1977), we start with the equation for a

body in hydrostatic equilibrium in the unperturbed case with no tidal potential

0 = −1

ρ
∇p−∇Φ , (1.15)

where Φ is the body’s gravitational potential, ρ is the density and p is the pressure. If we take

the curl of this expression we get

0 = −1

ρ
∇×∇p−∇1

ρ
×∇p−∇×∇Φ , (1.16)

where we note that the curl of a gradient vanishes, and we are left with, upon application of

the chain rule,

0 =
1

ρ2
∇ρ×∇p . (1.17)

This implies ∇ρ and ∇p must be parallel, and hence be functions of a single variable, and so

from eq. 1.15 it must be the case that Φ is also a function of this single variable (either of ρ,

p or Φ are suitable choices of the single variable).

Next we can define the perturbed quantities

Φ∗ = Φ + Φ′ + Ψ , (1.18a)

ρ∗ = ρ+ ρ′ , (1.18b)

p∗ = p+ p′ , (1.18c)

where we note that •∗ are the full quantities, •′ are perturbed quantities and regular symbols are

the background (basic state) quantities. We also note that Ψ is the imposed tidal potential

from the secondary which satisfies ∇2Ψ = 0 within the body of the primary. Here we are

considering the linear tides regime and so assume small perturbations, which is justified if

the tidal amplitude is small. Since we are looking at the equilibrium tide, which is a quasi-

hydrostatic deformation of the body, and its associated flow, we can substitute these into the

momentum equation, and assume the body maintains hydrostatic balance, which gives

0 = − 1

ρ∗
∇p∗ −∇Φ∗ ,

= −1

ρ

[
1− ρ′

ρ
+O

((
ρ′

ρ

)2
)]

(∇p+∇p′)−∇Φ−∇Φ′ −∇Ψ ,

=
p′

ρ′2
∇p− 1

ρ
∇p′ −∇Φ′ −∇Ψ , (1.19)

where we have used a Taylor expansion for the leading term, followed by substitution of eq. 1.15.

Now we note by application of the chain rule twice, and the fact that ρ = ρ(p), we can write

−∇p
′

ρ
= −1

ρ
∇p′ + p′

ρ2

dρ

dp
∇p . (1.20)
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Thus we can write eq. 1.19 as

0 = −∇W +
1

ρ2

(
ρ′ − p′ dρ

dp

)
∇p , (1.21)

W =
p′

ρ
+ Φ′ + Ψ . (1.22)

We can now take the curl of eq. 1.21 to obtain

0 = −∇×∇W +
1

ρ2

(
ρ′ − p′ dρ

dp

)
∇×∇p+∇

[
1

ρ2

(
ρ′ − p′ dρ

dp

)]
×∇p ,

= ∇
[(
ρ′ − p′ dρ

dp

)
∇ 1

ρ2
+

1

ρ2
∇
(
ρ′ − p′ dρ

dp

)]
×∇p ,

= ∇
[
− 2

ρ3

(
ρ′ − p′ dρ

dp

)
∇ρ×∇p

]
+

[
1

ρ2
∇
(
ρ′ − p′ dρ

dp

)]
×∇p ,

=
1

ρ2
∇
(
ρ′ − p′ dρ

dp

)
×∇p , (1.23)

where we have used, in order, the product rule, the curl of a gradient rule, the distributive law,

the chain rule and finally the fact that ∇p and ∇ρ are parallel (and hence the cross product

is zero). From this we see that ρ′ − p′ dρ
dp

is parallel to ∇p and hence both can be written as

functions of Φ only. Further, due to eq. 1.21, W can also be written as a function of Φ only.

Now, all perturbed quantities (ρ′, p′ Φ′ and W ) can be written in the form e−iωt and

so average to zero over a complete cycle and in particular we note that, for an oscillatory

component with ω 6= 0,

ρ′ − p′ dρ
dp

= 0 . (1.24)

From this we can write

0 = W =
p′

ρ
+ Φ′ + Ψ =⇒ p′ = −ρ(Φ′ + Ψ) , (1.25)

0 = ρ′ − p′ dρ
dp

=⇒ ρ′ = −ρ(Φ′ + Ψ)
dρ

dp
. (1.26)

Now we linearise the full Poisson’s equation using eq. 1.18

∇2Φ∗ = 4πGρ∗

=⇒ ∇2Φ′ = 4πGρ′ , (1.27)

where we have used Poisson’s equation for the background ∇2Φ = 4πGρ and the fact that

∇2Ψ = 0 inside the body. We can then use eq. 1.26 to write the linearised Poisson’s equation

as

∇2Φ′ = −4πGρ(Φ′ + Ψ)
dρ

dp
. (1.28)

This is a linear differential equation16 of a single variable and is valid everywhere inside the

body of the primary (outside of the primary we have ∇2Φ′ = 0). The solution to this equation

can be found for a given Ψ and the result is the gravitational potential perturbation due to the

equilibrium tide. We have thus obtained expressions for the Eulerian gravitational potential

16This equation is of the inhomogeneous Helmholtz type.
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perturbation and the associated pressure and density perturbations for the equilibrium tide.

We are now in a position to compute the resulting tidal flow within the primary.

We consider the tidal displacement vector ξ from the compressible form of the continuity

equation. We have

0 =
∂ρ∗

∂t
+∇ · (ρ∗u) , (1.29)

0 =
∂ρ

∂t
+
∂ρ′

∂t
+∇ ·

[
ρ
∂ξ

∂t

]
+∇ ·

[
ρ′
∂ξ

∂t

]
,

0 ≈ ∂ρ′

∂t
+∇ ·

[
ρ
∂ξ

∂t

]
, (1.30)

where in the last step we have linearised17 using eq. 1.18 and used the fact that the background

density is constant. We can put all terms in this expression inside the time derivative, using the

definition of the Eulerian displacement ξ (which is equivalent to the Lagrangian displacement

in this case) to get

ρ′ = −ρ∇ · ξ − ξ · ∇ρ . (1.31)

A similar expression can be obtained for p′ by expanding out the energy equation if we

assume adiabatic perturbations

0 =
D

Dt

[
p∗

ρ∗γ

]
=

1

ρ∗γ

[
∂p∗

∂t
+ u · ∇p∗

]
− γp∗

ρ∗γ+1

[
∂ρ∗

∂t
+ u · ∇ρ∗

]
︸ ︷︷ ︸
−ρ∗∇·u by eq. 1.29

(1.32)

0 =
∂p∗

∂t
+
∂ξ

∂t
· ∇p∗ + γp∗∇ · ∂ξ

∂t

=
∂p′

∂t
+
∂ξ

∂t
· ∇p+ γp∇ · ∂ξ

∂t
, (1.33)

where in the last step we have linearised17 using eq. 1.18 and used the fact that the background

pressure is constant in time (due to our hydrostatic assumption). We can put all terms in this

expression inside the time derivative, using the definition of the Eulerian displacement ξ (which

is equivalent to the Lagrangian displacement in this case) to get

p′ = −γp∇ · ξ − ξ · ∇p . (1.34)

We can substitute eq. 1.31 and eq. 1.34 into eq. 1.24 to get

0 = ρ′ − dρ

dp
p′ ,

= −ρ∇ · ξ − ξ · ∇ρ− dρ

dp
(−γp∇ · ξ − ξ · ∇p) ,

= −
(
ρ− γpdρ

dp

)
∇ · ξ , (1.35)

where we have used ξ · ∇ρ = ξ · dρ

dp
∇p. This can be written in terms of the buoyancy

17We drop products of ρ′ or p′ and ξ
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(Brunt–Väisälä) frequency N2 as

0 = N2 γpρ
2

|∇p|2
∇ · ξ , (1.36)

where the buoyancy frequency can be written as N2 = −g ·∇ ln
(
p1/γ

ρ

)
. We can demonstrate

this as follows: first we have that

N2 = −g · ∇ ln

(
p1/γ

ρ

)
and g =

1

ρ
∇p , (1.37)

=⇒ N2 = −1

ρ
∇p · ∇ ln

(
p1/γ

ρ

)
, (1.38)

and so

N2γpρ2

|∇p|2
= − γpρ

|∇p|2
∇p · ∇ ln

(
p1/γ

ρ

)

= − γpρ

|∇p|2
∇p · ρ

p1/γ
∇p

1/γ

ρ

= −ρ+
γp

|∇p|2
∇p · dρ

dρ
∇p

= −
(
ρ− γpdρ

dρ

)
. (1.39)

If we consider eq. 1.36 it is clear that N2 6= 0 =⇒ ∇·ξ = 0 and hence the displacement is

incompressible18. From eq. 1.34 we can then use the incompressibility of ξ and then substitute

for eq. 1.25 making use of g = −∇Φ = 1/ρ∇p in order to get

p′ = −ξ · ∇p , (1.40)

Φ′ + Ψ = ξ · g . (1.41)

This gives the radial displacement of the tide. The displacement perpendicular to g can then

be obtained from ∇ · ξ = 0.

Let us now pause to take stock of what we have just derived. We have considered the

tidal potential in the so-called linear tides regime19. From this we have derived a solvable

expression for the tidally excited displacement of the primary. This pioneering description of

the equilibrium tide was first derived by Jean Paul Zahn in his PhD thesis which was later

published Zahn (1966, 1977) and subsequently refined by Zahn (1989) and Remus et al.

(2012). It was not until 1998 when two independent groups (Terquem et al., 1998; Goodman

& Dickson, 1998) discovered an important problem with applying this description of tidal flows.

As such we draw attention to one important assumption we have made, that is N2 6= 0. This

is true in radiative regions of stars where the fluid is stably stratified (as well as in stably

stratified regions of giant planets), however, in convective regions of stars N2 < 0 and since

18This can be made stricter by not making the assumption the left hand side of eq. 1.15 is zero. This leads
to N2 > ω2.

19This is valid providing perturbations to the potential result in deformations which are very small in compar-
ison to the primary’s radius. This is typically the case for the equilibrium tide in stars, but not in all short-period
planets.
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convection is usually efficient then N2 ≈ 0. In particular, if the tidal frequency ω2 is not

much smaller than N2, then our prior results cannot be applied to infer that the equilibrium

tide is incompressible. This raises the question of the validity of these findings in convectively

unstable regions.

In order to address this we can consider a non-rotating adiabatically stratified region of an

inviscid fluid which satisfies the equation

Du∗

dt
= − 1

ρ∗
∇p∗ −∇Φ∗ . (1.42)

We can then substitute for the perturbed quantities eq. 1.18 to get

Du

dt
+

Du′

dt
= − 1

ρ+ ρ′
∇(p+ p′)−∇Φ−∇Φ′ −∇Ψ

= −1

ρ

[
1− ρ′

ρ
−O

((
ρ′

ρ

)2
)]
∇(p+ p′)−∇Φ−∇Φ′ −∇Ψ , (1.43)

Du′

dt
= −1

ρ
∇p′ + ρ′

ρ2
∇p−∇Φ′ −∇Ψ

= −∇p
′

ρ
−∇Φ′ −∇Ψ , (1.44)

Du′

dt
= −∇W , (1.45)

where we have used the Taylor expansion for the fractional term, eq. 1.15 and ∂tu = 0 (since

we are considering a hydrostatic background). We take the curl of this expression to get

∇× Du′

dt
= −∇×∇W , (1.46)

=⇒ ∇× u′ = 0 , (1.47)

∴ ∇× Dξ

dt
= 0 , (1.48)

=⇒ ∇× ξ = 0 . (1.49)

This tells us that the tidal flow and displacement must be irrotational and so we can write

ξ = ∇ζ for some potential ζ. We note that the irrotational property is not generally satisfied

when N2 6= 0. In order to make progress we can combine eq. 1.24, eq. 1.26 and eq. 1.31 to

get

∇ · (ρξ) =
dρ

dp
ρ(Φ′ + Ψ) , (1.50)

which can be solved to determine the tidal displacement and hence the tidal flow by assuming

appropriate boundary conditions. This is the correct description for the equilibrium tide within

a convectively unstable region of a star (and in fluid regions of planets). This equilibrium tide

is often referred to as the “non-wavelike equilibrium tide”20 Ogilvie (2013).

20Leaving “equilibrium tide” to be associated with the radiative zone.
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1.2.2 The dynamical tide

As well as the equilibrium tide there is the possibility for a dynamical tide which consists

of wave-like behaviour within the primary21, as well as their own mechanisms to dissipate

energy. The two main flavours of dynamical tide22 come in the form of inertial waves (which

are restored by the Coriolis force) and internal gravity waves (restored by gravity) as tidal

frequencies are often too low to excite sound waves and surface gravity modes.

Inertial waves

We first consider inertial waves which require the planet or star to be forced by sufficiently

low-frequency tidal forcing (relative to the rotation of the body) that Coriolis forces represent

the dominant restoring force. This type of wave occurs in convective regions of stars and

planets (if we neglect buoyancy forces, N2 = 0). The starting point is the addition of the

Coriolis term into eq. 1.45
∂u′

∂t
+ 2Ωs × u′ = −∇W . (1.51)

To examine some of the properties of this system, we can now seek plane wave solutions of

the form

u′ = <
(
û′ei(k·x−ωt)

)
and W = <

(
Ŵei(k·x−ωt)

)
, (1.52)

where ω is the frequency and k is the wavemode vector (kx, ky, kz). This gives, in the simplest

case in which Ωs lies along the z (rotation) axis and we assume ∇ · u′ = 0, the dispersion

relation

ω2 = 4Ω2
s

(
k2
z

k2
x + k2

y + k2
z

)
. (1.53)

If the star or planet rotates and is forced by a sufficiently low-frequency tidal forcing such that

|ω| ≤ 2Ωs, then the solution admits inertial waves23 which act in addition to the non-wavelike

equilibrium tide and any other forms of dynamical tide.

Typically inertial waves in a full sphere, spheroid or ellipsoid form global modes resulting in

very little dissipation when non-resonantly forced. However, in spherical shells they are focused

into wave attractors (thin beams) that can enhance dissipation for |ω| < 2Ωs. The width of

the rays are determined by a balance between the wave energy and the lateral (cross beam)

viscous diffusion. Inertial waves in shellular or fully spherical convective regions can be a source

of significant tidal dissipation (Ogilvie & Lin, 2004; Wu, 2005b,a; Ogilvie & Lin, 2007; Ivanov

& Papaloizou, 2010; Rieutord & Valdettaro, 2010; Ogilvie, 2013; Mathis, 2015; Bolmont &

Mathis, 2016; Barker, 2020).

Inertial waves are likely to be particularly important in the tidal synchronisation and circu-

larisation of binaries, because then |ω| < 2Ωs for the relevant tidal frequencies. These waves

are unimportant in the slowly rotating host stars of HJs since then ω > 2Ωs but could have

been important in young rapidly rotating stars.

21For terrestrial planets with surface oceans there is also the possibility of surface gravity waves (Lamb,
1994). Surface gravity waves (or f-modes) can be excited by tidal forcing in eccentric systems also e.g. HJ
formation (for a review of HJ formation pathways see Dawson & Johnson 2018).

22Of course there are other sources of wavelike behaviour such as surface gravity, Alfvén waves etc., each
requiring independent and combined study.

23In the interests of clarity it is worth highlighting that if |ω| ≥ 2Ωs holds then inertial waves are not excited.



CHAPTER 1. ASTROPHYSICAL TIDES 21

Internal gravity waves

In this case we again consider a similar Cartesian model to eq. 1.45 but this time we include

the restorative force to be from gravity, which under the Boussinesq approximation leads to

(Chandrasekhar, 1961)
du′

dt
= −∇W +Bez , (1.54)

where B = gρ′/ρ0 is the buoyancy variable with ρ0 as the background density and ρ′ the density

perturbation. We will, however, relate the buoyancy variable to the buoyancy (Brunt–Väisälä)

frequency by

N2 =
dB

dz
. (1.55)

Upon performing a similar plane wave solution as in § 1.2.2, but also including the thermal

energy equation (DtB +N2uz = 0), we get the dispersion relation as

ω = N2

(
k2
x + k2

y

k2
x + k2

y + k2
z

)
. (1.56)

One requirement of these waves is the stable stratification of the fluid and hence N2 > 0

and so for stars these are largely limited to the radiative zone where they are excited by the

interface between the radiative and convective zones by tidal forcing (or convective forcing).

There are then two configurations that can be considered. The first relates to massive stars with

radiative envelopes and convective cores. In this configuration the internal gravity waves are

dissipated by radiative damping or nonlinear effects near the surface (Zahn, 1975; Goldreich &

Nicholson, 1989). The second relates to Sun-like stars with convective envelopes and radiative

cores. These waves then propagate inwards where they can reflect, in which case they can

become standing waves (g-modes), and can be dissipated by radiative diffusion, but in many

applications this source of dissipation is negligible (Goodman & Dickson, 1998). However, these

waves can break if they exceed a critical amplitude, which leads to very efficient dissipation of

tidal energy24 (Ogilvie & Lin, 2007; Barker & Ogilvie, 2010; Barker, 2011; Barker, 2020).

Summary: The equilibrium and dynamical tides

The tidal displacement (and velocity) in the linear tides regime can be obtained by con-

sidering the linearised potential equation, eq. 1.34. In the case of radiative regions where

the fluid is stably stratified (no convection) the correct description of the equilibrium

tide is that of Zahn (1966), eq. 1.41. In this case we find that the tidal displacemen-

t/velocity is incompressible and this is what we call the equilibrium tide. In convective

regions the fluid displacement/velocity no longer needs to be incompressible but instead

it must be irrotational and we must follow the descriptions detailed by Terquem et al.

(1998); Goodman & Dickson (1998); Ogilvie (2014); Barker (2020), which is what we

call the non-wavelike equilibrium tide, eq. 1.50. The purpose of this section is to pro-

vide a more detailed account of the two derivations than those in the literature and

also to highlight the importance of using the correct description of the equilibrium tide

depending on the application.

24This source of dissipation may explain the observed orbital decay rate of WASP-12b.
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As well as the equilibrium tide we also have the dynamical tide which consists of the

wavelike behaviour due to some restoring force. Two well studied restoring forces are

the Coriolis force, which results in inertial waves, and buoyancy forces, which result in

internal gravity waves. Inertial waves may be relevant in convective regions providing

the tidal frequency is at most twice the primary’s spin frequency. While internal gravity

waves occur in radiative regions and, in the case of an interior radiative zone surrounded

by a convective envelope, can result in efficient dissipation of tidal energy due to wave

breaking.

1.3 Dissipation of tidal energy

We now return to the problem of the dissipation of tidal energy, which is the main subject of

this work. In particular we are interested in the dissipation of the quadrupolar equilibrium tide

(§ 1.2.1) as parameterised by the tidal Love number k2
2 and/or the (modified) tidal quality

factor Q (Q′).

The most obvious source of dissipation we could consider is that of molecular viscosity of

the fluid. We can estimate the viscous timescale by

τvisc ≈
d2ρ

µ
, (1.57)

where d is a characteristic length-scale which can be taken as the radius of the star (for

equilibrium tides) and µ is the viscosity coefficient, which for an ionised plasma is of order

1 cm−1 g s−1 . The typical values for the viscous timescale in a star can be found to be

≈ 106 Gyr which is many orders of magnitude longer than even the age of the universe! As

such viscous processes acting on global scale motions can, in general, be neglected inside stars.

A second form of dissipation can occur in stars due to radiative diffusivity which occurs in

the transport of momentum by photons. The timescale for the radiative diffusion (also known

as radiative damping or thermal diffusion) can be estimated by

τrad ≈
d2ρ2cκ

aT 4
, (1.58)

where we have introduced c for the speed of light, κ for the mean absorption coefficient, a for

the radiation density constant and T for the temperature. The typical values for the radiative

diffusion timescale can be found to be ≈ 10 Gyr25 which is at least on the order of the age

of the universe but is significantly longer than the main sequence lifetimes of most classes

of stars with the exception of low mass M-class stars. So we can neglect effects of radiative

diffusion even in low mass stars providing we have a source of dissipation which occurs on

timescales faster than this. Both of these mechanisms are weak, as evident by the dissipative

processes being extremely slow and therefore cannot explain the observations already discussed

(see § 1.1).

25Note that we are considering radiative diffusion for length-scales on the order of the stellar radius on which
the equilibrium tide acts. In general, thermal diffusion has shorter timescales for shorter wavelength motions.



CHAPTER 1. ASTROPHYSICAL TIDES 23

Aside 1.4: Heat transport in the Mixing-Length Theory

Much like the transport of momentum (Fig. 1.8), heat transport can be described by

MLT. In this case we can again consider the schematic below where time advances from

left to right. The bottom of the domain is hotter than the top and so a fluid parcel

at the base of the domain is lifted through the buoyancy force over some distance lmlt

before being destroyed whereby it releases its thermal energy. Hence, the parcel has

transported energy from the lower region to the cooler upper layer.

Another source of dissipation is through the interaction between the tidal flow, which acts

as a background shear flow, and turbulent convection. One of the earliest descriptions of the

interaction between mean flows and turbulence is the mixing-length theory (MLT) of Ludwig

Prandtl (Prandtl, 1925; Kippenhahn et al., 2012; Davidson, 2015) which is routinely used in

stellar models. MLT uses a local parcel argument to describe the motion of eddies and their

transport of some property of the fluid, in our case momentum26, which is best described

with the aid of a diagram, as in Fig. 1.8. The parcel, which can be considered to be a

single eddy, is advected by the flow (which can include the turbulent motion as well as the

background) over some distance lmlt (the mixing length) before dissolving and depositing its

heat and momentum at this location. If the eddy came from a region with lower (higher)

background momentum then, since the background momentum is imprinted into the eddy

(neglecting molecular viscosity), then it will act against (with) the background flow at the

deposition location. This impediment of the background momentum can be considered as

simply another source of viscosity which can be added to the regular molecular viscosity.

As such this interaction has been called an eddy viscosity or effective viscosity27 although

physically the process is better understood as an exchange of energy between the tidal flow

and the turbulent convection (see aside 1.5). In this simple picture, the timescale for this

form of dissipation can be evaluated similarly to that of the molecular viscosity by replacing

µ in eq. 1.57 with a turbulent viscosity µe. This turbulent (dynamic) viscosity is estimated

from µe ≈ ρlmltumlt where we can take ρ ≈ 102 g cm−3, lmlt = Hp ≈ 5 × 109 cm (where Hp

is the pressure scale height) and we can take umlt ≈ 4000 cm s−1 (with all values taken near

the base of the convection zone of the Sun). We can then estimate the timescale by using

26In stellar applications it is more common to use the model for heat transport rather than momentum, see
aside 1.4.

27There are unfortunately a number of names that have been attributed to this phenomena such as “turbulent
viscosity” or “eddy viscosity” which can be a source of confusion.
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τmlt ≈ d2ρ/µe where we take d ≈ 1011 cm as the radius of the Sun. This gives the timescale

for turbulent dissipation as τmlt ≈ 16 yrs. With such a comparatively short timescale it is likely

that turbulent viscosity is much more important than molecular or radiative viscosity, and may

be the dominant mechanism of dissipation of the large-scale non-wavelike equilibrium tide.

This is promising. However, in the above picture, the tidal shear was assumed to be steady. In

many applications of tides, tidal flows are rapidly oscillatory relative to convective timescales.

As a result, the tidal flow may not be damped as efficiently as in these simple arguments.

Figure 1.8: This cartoon demonstrates the
basic principle of mixing-length theory for
momentum transport within a fluid subject to
a background shear. In this picture we have
that time is advancing from left to right and
the vertical direction is defined as perpendic-
ular to the shear flow. At some initial time an
eddy is imprinted with the background shear
momentum before being advected by the flow
which, for convection, results in the eddy be-
ing lifted vertically by the buoyancy force.
The eddy will carry its momentum from the
location of its formation over a distance lmlt

where it is then deposited. In this case since
the momentum is smaller at the initial loca-
tion the eddy will act to impede the shear
flow at the deposition location. This is the
physical idea behind the eddy viscosity of the
MLT model.

Aside 1.5: Differences between effective viscosity and molecular viscosity

Molecular viscosity has strictly a positive value (or zero) by the second law of ther-

modynamics. However, it turns out that the effective viscosity does not have this same

limitation. In the case of molecular viscosity kinetic energy is converted into heat. In

the case of the effective viscosity kinetic energy is transferred between the turbulent

motion and the mean flow. In principle this transfer can occur in either direction and

thus negative effective viscosity can occur. One example of the occurrence of negative

effective viscosity is in the atmospheric phenomenon of the quasi-biennial oscillation

(McIntyre, 1994) which involves gravity waves.

This may seem like a positive step forward, however, while we have a good understanding

of molecular viscosity (further benefited by the near monatomic nature of stellar material) and

we also have a good understanding of radiative diffusion, what we do not have is a very good

understanding of turbulent convection. A number of models have been developed, to try to

model the dissipation and we now give a brief description of the most commonly used. We

will discuss the shortcomings of these models towards the end of this chapter.
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1.3.1 The weak friction approximation and the constant time lag model

We first describe the so-called weak friction approximation for tidal interactions which was

mentioned in § 1.2. This approximation originates from G. H. Darwin28 (Darwin, 1879a,b,c,d)

but was not clearly described until Alexander (1973).

The basic idea can be illustrated as follows. The steady state part of the solution to the

damped harmonic oscillator problem contains a phase lag component

tan(φ) =
2λω

ω2
0 − ω2

≈ 2λω

ω2
0

,

where φ is the phase lag angle (which corresponds to the angle between the line of centres

and the tidal deformation), λ is the damping coefficient, ω0 is the natural frequency of the

oscillator29 (free mode) and we have also used the fact that for planets and stars ω0 � ω.

The weak friction approximation then assumes that φ is small30 which means we can use

the small angle approximation to write tanφ ≈ φ ≈ ∆tdispω where ∆tdisp has units of time31

and is associated with the lag time between the perturbing potential and the response. Now

recall that =(km2 ) ∝ Q′−1 is the phase lag then we can write

Q′ ∝ 1

∆tdispω
, (1.59)

which is the expression for the weak friction approximation of the tidal dissipation. More

thorough explanations of this model can be found in Alexander (1973); Hubbard (1974, 1984);

Zahn (2008); Souchay et al. (2013).

The weak friction approximation does not determine the dissipation and merely gives a useful

expression for how the dissipation is related to the lag angle of the deformation. One way of

modelling the dissipation is then to assume that the lag time ∆tdisp is constant (frequency

independent), and hence φ ∼ ω, in what is known as the constant time lag model (Alexander,

1973; Hut, 1981). The constant time lag model is an approximation made in order to deal

with the nature of the dissipation which is still a problem in the weak friction approximation.

This results in an expression for the frequency dependence of the tidal dissipation as

Q′ ∝ ω−1 . (1.60)

It is useful to note that this model is equivalent to assuming a constant kinematic (or effective)

viscosity. It should also be pointed out that Darwin also derived a simple model which is

consistent with the constant time-lag model. His approach was to model an incompressible

viscous fluid in which the response has a phase lag with the perturbing tidal potential. The

result being that the lag was proportional to the tidal forcing frequency due to viscosity

The power in this simple model comes from the ability to derive closed-form expressions for

28George Howard Darwin was the fifth child of the great Charles Darwin who was responsible for the theory
of evolution by natural selection.

29In stars this could be taken as the dynamical frequency ωdyn = 1/τdyn =
√
GM/R3, where τdyn is known as

the dynamical timescale. In essence this timescale is a measure of how quickly the star in hydrostatic equilibrium
can adjust to a perturbation to the pressure gradient and/or gravity.

30This is a reasonable assumption for planets and stars. In fact it has been measured for the Earth that
φ ≈ 2◦ (Hubbard, 1984) which is, in general, a more dissipative system than stars and giant planets.

31This can be seen from dimensional arguments, [tan(φ)] = 1 and [ω] = T−1 =⇒ [∆tdisp] = T .
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tidal evolutionary processes for any (not just small values) eccentricity or inclination (Alexander,

1973; Hut, 1981; Eggleton et al., 1998). This is partly why this model has been widely adopted

in the literature, even though it may in fact not be valid to describe tidal interactions. We will

revisit this issue later.

1.3.2 Zahn’s linear reduction

It was almost a century after Darwin’s model for tides to be considered in more detail in stars

with convection zones. The largest development in this area came in the form of a model

developed by Jean Paul Zahn (Zahn, 1966) and stems from some details about MLT which

we neglected in § 1.3. It is equivalent to a constant Q model32, for reasons which will become

obvious. It is interesting to note that the constant Q model was first used in Goldreich (1963) to

simply parametrise tidal dissipation for the purposes of computing tidal evolutionary processes,

however, the outcome of the linear reduction model that we will describe here happens to give

a constant Q.

The main additional consideration is to recognise that the fluid in the star or giant planet

would be turbulent, then assume a Kolmogorov turbulent cascade to describe this. Using this

description of turbulence we can then explore the length and timescales of the flow. Consider

turbulence in the convection zone of a star with an integral scale (energy injection scale) l.

First we note that if the eddies on all scales fill the domain then the total effective viscosity

should be approximately equal to the effective viscosity at the integral scale l, that is νe ≈ νl.
However, eddies with turnover timescale longer than half the tidal period, i.e. τl > τω/2,

will not be able to transfer their momentum before the tide has changed direction and thus

should have their contributions reduced. The eddies will be limited to travelling a distance of

(τω/2τl) l over this timescale and so the contribution of these eddies should be reduced by the

same factor. Thus we can write the effective viscosity at an arbitrary length-scale λ as

νλ ∝


λuλ if τω > τλ ,

λuλτω
2τλ

if τω < τλ ,
(1.61)

where u is the velocity of eddies with a scale λ. Goldreich & Nicholson (1977) then argue that

the integral scale dominates the contribution to the effective viscosity (which actually may

not always be the case, see aside 1.6 for details of this subtlety) which allows us to write the

effective viscosity as

νλ ≈ νE ∝


lul if τω > 2τl ,

lulτω
2τl

if τω < 2τl ,
(1.62)

which can be written in terms of frequencies as

νE ∝ umltlmlt min
[
1,
ωc
2ω

]
, (1.63)

where ωc is the convective frequency (τl = 1/ωc) of the dominant eddies and we have used

the mixing-length velocity/length which is typically regarded as that of the integral scale.

32It is important to highlight that the constant Q model is not unique to convective regions of stars. In fact
the model is used in other applications such as for terrestrial planets Dehant (1991).
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One important point about this is that eq. 1.63 contains a constant of proportionality which

actually consists of two constants. The first is taken to be 1/3 without rigorous justification.

In fact, the only real reason for this value is that MLT is analogous to the kinetic theory of

gasses which has ν = 1/3 lv̄ where l is the mean free path and v̄ is the mean velocity of the

molecules (Davidson, 2015). The second is the mixing-length parameter αmlt (Böhm-Vitense,

1958; Kippenhahn et al., 2012) which relates the mixing length to the pressure scale height

Hp through the relation lmlt = αmltHp. As such a more complete form of eq. 1.63 is

νE =
1

3
αmltumltHp min

[
1,
ωc
2ω

]
. (1.64)

We will return to this in Ch. 6.

Aside 1.6: Dominance of the largest scale

Consider an eddy which has length-scale such that l > λ which is allowed to travel

its full distance before dissipating its energy. We can take the ratio of the contributions

from the integral scale to that of our smaller eddy (λ). By making use of the following

Kolmogorov relation (see Landau & Lifshitz 1987; Davidson 2015), between eddies of

length-scale λ and the integral scale l,

uλ ≈ u
(
λ

l

)1/3

, (1.65)

we can obtain an expression for this ratio as

νl
νλ

=

(
l

λ

)4/3

. (1.66)

Hence the contribution from the integral scale is always larger than that due to a smaller

eddy.

We must also consider the ratio of the reduced contribution from the integral scale

to the unreduced contribution of a smaller eddy. Note that in this case the dominant

unreduced eddy must be that with τω. We can use another Kolmogorov relation (see

Landau & Lifshitz 1987; Davidson 2015),

τλ ≈ τl
(
λ

l

)2/3

, (1.67)

along with the previous to write

νl
νω

=
lul
2

(
λω
l

)2/3 1

λωul

(
l

λω

)1/3

=
1

2

(
l

λω

)2/3

. (1.68)

Which suggests that the integral scale is only dominant over a reduced eddy if l >

2
√

2λω using Zahn’s linear reduction factor.

We can relate eq. 1.63 to Q′ by writing ∆tdisp ∝ ω−1 and substituting this into eq. 1.59
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which means that Q′ ∝ const., i.e that this model is equivalent to a constant Q model. It has

been claimed that the application of these ideas in stellar models can explain the circularisation

of solar-type binary stars (e.g. Zahn 2008), but there is an important theoretical objection

which we will now describe.

1.3.3 Goldreich and Nicholson’s quadratic reduction

The work of Goldreich & Nicholson (1977) developed the ideas of § 1.3.2 for the small scale

eddies with 2τλ < τω. However, the authors believed the reduction factor of § 1.3.2 was

insufficient and should in fact be significantly stronger leading to a smaller νE .

Their main argument stems from the fact that although an eddy with 2τλ > τω will move

a distance of lωc/ω in a single tidal period, the eddy does not exchange momentum with the

tidal flow on this timescale. In order to follow the argument we begin with νλ ≈ λuλ and

make use of eq. 1.65 to get

νλ ≈ λuλ

=
lλul
l

(
λ

l

)1/3

= lul

(
τλ
τl

)2

. (1.69)

For eddies with τλ ≤ τω the most important are those with τλ ≈ τω (i.e. the resonant eddies)

as they provide the largest contribution. So Goldreich & Nicholson (1977) argue that

νE ≈ lul
(
τω
τl

)2

, (1.70)

since they claim that the contribution of the largest eddies is at most comparable to those of

the resonant eddies (eddies with timescales similar to the tidal period). In essence what this

is saying is that νE is dominated by the contribution from the largest eddies with turnover

timescales shorter than a tidal period. We note that this can be written in a form equivalent

to eq. 1.63 as

νE ∝ umltlmlt min

[
1,
(ωc
ω

)2
]
. (1.71)

Both of Zahn (1966) and Goldreich & Nicholson (1977) use crude phenomenological argu-

ments and it is worth highlighting the subtle difference between them. In Zahn (1966) the

largest scale (longest timescale) i.e. the integral scale convective eddies provide the domi-

nant contribution but that contribution must be reduced by truncating the length-scale they

typically travel before they deposit their momentum. In Goldreich & Nicholson (1977) the

dominant contribution is from convective eddies with timescales approximately the same as

a tidal period. Essentially their disagreement comes down to which eddy size/timescale you

select as the most important. As such each prescription predicts different scales of dominant

contribution. One criticism of these ideas is that the use of eq. 1.65 may not be valid as if one

were to look at all eddies of size λ then it would be unlikely that they would share the same

value of uλ or τλ, that is, eddies of a given size admit a spectrum of turnover times33. Another

33The use of eq. 1.65 may be appropriate if one is considering statistical properties of turbulence.
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subtlety is that while Zahn (1966) makes use of simple mixing length arguments the results

of Goldreich & Nicholson (1977) hinge on the spectrum of Kolmogorov turbulence (and more

explicitly the scaling relations between velocities/timescales of eddies of some arbitrary size λ

and the integral scale eddies l).

1.3.4 State of the art simulations

To determine which of these viscosity reduction prescriptions should be applied to dissipate the

equilibrium tide (or whether such a prescription based on crude MLT arguments can be applied

at all) when the tidal frequency exceeds the convective frequency has long been considered

as the Achilles heel of tidal theory (e.g. Zahn 1989, Zahn 2008). Further progress is difficult

with the kind of phenomenological arguments that we have just discussed and so much of the

recent progress has been made by way of numerical experiments.

It is now possible to tackle this problem directly using hydrodynamic simulations of convec-

tion. Pioneering work in this direction was undertaken by Penev et al. (2007); Penev et al.

(2009b) and Penev et al. (2009a). Penev et al. (2009b) directly simulated the interaction be-

tween convection (in a deep layer, adopting the anelastic approximation) and a large-scale flow

driven by an oscillatory body force in a Cartesian domain. Their simulations (and the associ-

ated perturbative calculations34 in Penev et al. 2007 based on Goodman & Oh 1997) measured

the effective viscosity and found support for a frequency-reduction that is more consistent with

the linear scaling of Zahn (1966) over a limited range of tidal frequencies, with some evidence

of a weak anisotropy in the components of the eddy viscosity tensor. Motivated by this work,

as well as the deficiency of mixing-length theory in predicting the observational-inferred dissi-

pation in binary stars (Mazeh, 2008), Goldman (2008) explored the problem analytically using

an idealised turbulence model. The resulting expression found agreement with a −2 power law

as well as finding an increased efficiency of dissipation above the standard mixing-length the-

ory, particularly for low frequencies. A further important contribution was subsequently made

by Ogilvie & Lesur (2012), who performed a high-frequency asymptotic analysis in a local

Cartesian model to understand the fluid response to an imposed oscillatory tidal (shear) flow.

They elucidated the viscoelastic nature of the response, and performed complementary simu-

lations to probe the interaction between this flow and convection in a triply-periodic Cartesian

box (so-called “homogeneous convection”). Their analysis and simulations were both consis-

tent with a quadratic reduction in the effective viscosity for high-frequency tides. They also

obtained tentative evidence suggesting the surprising result that νE can become negative at

high frequencies, indicating the possibility of tidal anti-dissipation (where energy is transferred

from the convective flow). However, their negative values of νE contained substantial error

bars, partly as a result of the bursty nature of homogeneous convection and the computational

expense of running long-duration simulations. Braviner (2015) continued this work further by

simulating the interaction between an oscillatory tidal shear flow and a convective-like flow

(ABC flow) in laminar and weakly turbulent regimes. He found support for both the asymp-

totic analysis of Ogilvie & Lesur (2012) and a quadratic reduction in the effective viscosity at

high frequencies for this flow.

The independent studies of Penev et al. (2009b) and Ogilvie & Lesur (2012) obtained

apparently contradictory results regarding the nature of the effective viscosity in the regime

34It is worth noting that these perturbative calculations are likely to be invalid (Ogilvie & Lesur, 2012).
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of high-frequency tidal forcing. The former work simulated multiple pressure scale heights,

whereas the latter assumed a Boussinesq fluid but explored a wider range of tidal frequencies.

The two sets of simulations exhibit different turbulent temporal power spectra, which may be

responsible for the different frequency scalings in the effective viscosity, but these differences

have not yet been explained. This motivates further work to understand the interaction between

tidal flows and convection. The approach taken in this thesis follows Penev et al. (2009b) and

Ogilvie & Lesur (2012) in simulating the dynamics of convection in a local Cartesian model

that represents a small patch of a convection zone of a star or planet. We differ from these

works by adopting the well-studied Rayleigh-Bénard setup to model (Boussinesq) convection,

which allows us to overcome some of the peculiar properties of “homogeneous convection”

(as studied by Ogilvie & Lesur 2012). To drive convection in this system, we impose different

temperatures on two boundaries in the vertical direction, with a hot plate underlying a cool one.

We wish to understand the fundamental fluid dynamical interactions between convection and

tidal flows in this model, using a combination of a hydrodynamical simulations and asymptotic

theory.

The advantages of adopting a local Cartesian model that represents a small patch of the

convection zone of a star or planet are that these simulations are much less computationally

expensive, and this model is much simpler to set up and to analyse than a corresponding

global model. The former allows us to simulate more turbulent convection (at higher Rayleigh

numbers), and for these simulations to be run for much longer. This allows us to average

over long times to form reliable estimates of mean quantities such as the energy and the

Reynolds stress, and to estimate the magnitude of the fluctuations. This is likely to be essential

to accurately determine the effective viscosity, particularly in the regime of high-frequency

tides. The disadvantage of a local model is that global aspects, including the structure of the

convection zone and spatial variations in the stellar or planetary properties are not considered.

In this study, we have chosen to focus on Boussinesq convection, since it is simpler to analyse

and more efficient to simulate than compressible (or anelastic) convection. This allows us to

undertake a wider parameter survey, and to run our simulations for longer to reduce noise.

Summary: Dissipation Prescriptions

It is thought that an important mechanism of tidal dissipation in the convective regions

of stars and planets is due to the interaction between convective turbulence and the tidal

flow. The key takeaways of the discussion on tidal dissipation of the large-scale non-

wavelike equilibrium tide are now summarised, where, besides the disagreement between

the frequency reduction power laws, some shortcomings have been highlighted.

� ωc > ω:

– no frequency dependence on the effective viscosity,

– largest scales dominate the contribution,

– This regime is largely assumed, based on expectations from MLT, without

confirmation.

� ωc < ω and following Zahn (1966):
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– νe ∝ ω−1,

– largest scales dominate the contribution to νe,

– supported by simulations of Penev et al. (2007) (fully compressible based on

perturbative calculations) and Penev et al. (2009b) (anelastic).

� ωc < ω and following Goldreich & Nicholson (1977):

– νe ∝ ω−2,

– largest scales with τλ . τω (the resonant eddies) dominate the contribution

to νe,

– supported by simulations of Ogilvie & Lesur (2012) (homogeneous convec-

tion) and Braviner (2015) (ABC flow),

– supported by theoretical arguments of Ogilvie & Lesur (2012) (using multi-

scale asymptotics) and Goldman (2008) (using turbulence modelling),

– Phenomenological arguments have not been tested.

1.4 What would we like to know?

The fluid dynamical mechanisms responsible for tidal dissipation in stars and giant planets

remain incompletely understood (e.g. Mathis & Remus 2013; Ogilvie 2014). In this work we

focus on tidal dissipation resulting from the interaction of large-scale (non-wavelike) equilibrium

tides and convection inside stars or giant planets. This is a classical tidal mechanism that is

commonly believed to be important in stars (or giant planets) with convective envelopes (Zahn,

1966; Zahn, 1989, 2008). The interaction between the tide and convection is thought to act

like an effective viscosity νE (which is much larger than the microscopic viscosity) in damping

the large-scale tidal flow. However, the efficiency of this mechanism is expected to be reduced

when the tidal shear frequency ω exceeds that of the relevant convective frequency ωc, but the

power law of this reduction has long been a matter of debate (e.g. Goodman & Oh, 1997),

and this issue is still often considered as “the Achilles’ heel of tidal theory” (Zahn, 2008).

The crux of the problem is to what extent the convection should become less efficient at

dissipating the tidal flow when ω > ωc? Based on ideas from mixing-length theory, Zahn

(1966) (see also Zahn 1989) proposed νE ∝ ω−1 when ω � ωc. Goldreich & Nicholson

(1977) suggested that this reduction is insufficient and argue that νE ∝ ω−2, which would

imply much less efficient tidal dissipation at high frequencies. Prior work on this problem has

largely focused on which prescription is true rather than tackling the principles by which the

predictions have been made. The question of which prescription is correct is the general theme

of this thesis, however, the validity of the phenomenological arguments of Zahn (1966); Zahn

(1989) and Goldreich & Nicholson (1977) will also be addressed.



32 1.4. WHAT WOULD WE LIKE TO KNOW?

Aside 1.7: A taste of other problems

There are currently many aspects of tidal interactions that are active areas of research,

and in particular, mechanisms relating to the dissipation of tidal energy. For example,

tidal excitation of internal gravity waves (e.g. Goodman & Dickson, 1998; Ogilvie & Lin,

2007; Barker & Ogilvie, 2010; Barker, 2011; Weinberg et al., 2012; Essick & Weinberg,

2016) can be important in stellar radiation zones, and this mechanism may be responsi-

ble for the observed orbital decay of WASP-12 b (Maciejewski et al., 2016; Patra et al.,

2017; Chernov et al., 2017; Weinberg et al., 2017; Bailey & Goodman, 2019; Yee et al.,

2019). The excitation of inertial waves is being studied in the convective envelopes

of rotating stars or giant planets (e.g. Wu, 2005c; Ogilvie & Lin, 2007; Goodman &

Lackner, 2009; Papaloizou & Ivanov, 2010; Favier et al., 2014; Barker, 2016a), and this

mechanism may be important for tidal circularisation and spin synchronisation. In giant

planets, the role of stably-stratified (or semi-convective) layers is also being explored

(Fuller et al., 2016; André et al., 2017; André et al., 2019; Pontin et al., 2020) with

possible application to the orbital migration of the moons of Jupiter and Saturn (e.g.

Lainey et al., 2009, 2012, 2017, 2020).

Why does it matter which of these prescriptions, if any, are correct? To give just one

example, a crude estimate for the inspiral time of a hot Jupiter orbiting a Sun-like star in a one

day orbit suggests that if there is no frequency-reduction in the effective viscosity the planet

would decay in tens of Myr. On the other hand, if νE ∝ ω−1, the planet would decay in of

order 1 Gyr, and if νE ∝ ω−2, the planet would decay in tens to a hundred Gyr. It is clearly

essential to determine which of these (if any) are correct before we can predict the orbital

decay (or otherwise) of hot Jupiters, and so that we can interpret existing observations. We

will return to the astrophysical implications after presentation of relevant results in both Ch. 3

and 6.

Despite much attention being given to the fast tides regime, little has been given to the

situation when ω < ωc. It has been the general assumption that in this case the effective

viscosity would be frequency independent and that the constant time lag model would then

be appropriate. This has, however, been largely untested and we will begin to address this in

Ch. 6.
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Before we explore the frequency dependence of the effective viscosity acting on tidal flows,

as well as the fundamental fluid dynamics involved, we first describe the approach used in

this work. In this chapter we will describe the model for the convective fluid as well as the

approximation used for the tidal flow. Some brief details of the numerical methods used will

be given with attention focused on non-standard techniques. Finally, expressions for quantities

we are interested in computing in the simulations will be derived.

2.1 Local Cartesian model: small patch of a convection zone

We consider a local Cartesian representation of a small patch of a convection zone of a star or

giant planet subjected to gravitational tidal forcing from a companion (see Fig. 2.1). We note

that in Ch. 1 the tidal frequency typically included the rotation of the primary, ω = 2(Ωo−Ωs).

In the interests of simplifying the model everything that follows will assume the non-rotating

case, Ωs = 0. Doing this means that we are not considering the influence of the Coriolis force.

We ignore the Coriolis term in the equation of motion, as we wish to study the simplest model

of the interaction between tidal flows and convection. The effects of including the Coriolis

term are a natural further development of this thesis. We use Cartesian coordinates1 (x, y, z),

and simulate a Cartesian domain with x ∈ [0, Lxd], y ∈ [0, Lyd] and z ∈ [0, d], where z is the

local radial direction and d is the layer depth (which strictly must be small relative to the local

pressure scale height) and x and y represent the two horizontal directions. A local model has

the significant advantage that it is much simpler to set up and to analyse, and the numerical

methods are also computationally more efficient, than in a corresponding global model. Our

approach is similar to, and builds upon, the pioneering works of Penev et al. (2007), Penev

et al. (2009b) and Ogilvie & Lesur (2012).

1The physical interpretation of this coordinate system is not obvious. One simple example is to consider
the domain to be located along the rotation axis with ex pointing towards the secondary.
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Figure 2.1: Local Cartesian model to study the interaction between tidal flows
and convection. The tidal flow is modelled as an oscillatory shear flow in y that
varies linearly in x, which represents one component of the large-scale non-wave-
like tidal flow in a star (or planet). The local vertical direction is z.

Aside 2.1: The Boussinesq approximation

The Boussinesq approximation essentially linearises the ideal gas law for small departures

from a reference state and ignores density differences in all but the gravity terms of

the momentum equation (Spiegel & Veronis, 1960). In physical terms the anelastic

approximation is saying that the timescales for sound waves to travel one unit of distance

is significantly shorter than for the fluid flow. This assumption is likely to be the case

in the convective interiors of gas giants and stars where we have that u� us, where u

is the fluid velocity and us the sound speed, except near the surface. The Boussinesq

approximation further requires that d � Hp and d � Hρ where Hp is the pressure

scale height and Hρ is the density scale height, that is the domain height is much less

than the pressure and density scale heightsa The Boussinesq approximation results in

the mass conservation equation taking the form of an incompressibility condition.

aFor an ideal gas the pressure and density scale heights, along with the temperature scale height
HT , can be related through the equation of state to give H−1

p = H−1
ρ +H−1

T .

We model convection using the Boussinesq approximation (Spiegel & Veronis, 1960) (see

aside 2.1) and adopt the well-studied Rayleigh-Bénard setup (e.g. Chandrasekhar 1961). The

Boussinesq approximation is appropriate for studying small-scale convection with short length-

scales that are much smaller than a pressure or density scale height, and with flows that

are slow compared with the sound speed. Our approach is similar to Ogilvie & Lesur (2012),

except that they studied convection with periodic boundary conditions in the vertical (so-called

“homogeneous convection”). That model is peculiar due to the existence of exact convection
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solutions (“elevator modes”), which lead to bursty temporal dynamics. We have chosen to

instead adopt impenetrable, stress-free and fixed temperature walls at the top and bottom of

our domain in z. These walls are strictly artificial for stellar convection, but they prevent the

occurrence of elevator modes and allow a statistically steady turbulent state to be attained

more readily.

2.1.1 Tidal flow description

In order to explore the interaction between convection and the tidal flow we must first find

what the tidal flow looks like (following descriptions of Ogilvie 2009, 2013; Barker 2020) so

that the relevant components of it can be studied. We do this by considering eq. 1.50

∇ · (ρ∇ζ) =
dρ

dp
ρΨ , (2.1)

where we have replaced the tidal displacement vector with its associated potential, ξ = ∇ζ
and we have neglected the perturbation to the primary’s potential, Φ′, as this simply adjusts

the magnitude of the overall potential (we only care about the structure of the flow). The

tidal and displacement potentials can be expanded in terms of the spherical harmonics (see

aside 2.2 for a minor detail about the chosen notation)

ζ =
∑
l,m

ζl(r)Y
m
l (θ, φ) , (2.2)

Ψ =
∑
l,m

Ψl(r)Y
m
l (θ, φ) . (2.3)

Aside 2.2: A note about notation

In linear theory for an axisymmetric star, the azimuthal wavenumbers are all uncoupled.

That means that if only one m is forced, only one m contributes to the linear solution.

In general, the response of each m will be different, however, since we will only be

considering a single mode, and in the interests of reducing clutter in the equations, we

write ζl(r) rather than ζml (r) (similarly for Ψl(r)).

Substitution of the spherical harmonic expansions into eq. 2.1 and considering only the

l = m = 2 component2, results in

∇ · (ρ∇ζ2Y
2

2 ) =
dρ

dp
ρY 2

2 Ψ2 . (2.4)

We can now expand the LHS as

∇ · (ρ∇ζ2Y
2

2 ) =
dρ

dr

dζ2

dr
Y 2

2 +
ρY 2

2

r2

∂

∂r

(
r2∂ζ2

∂r

)
− 6ρ

r2
Y 2

2 ζ2 , (2.5)

where we have expanded the divergence, split the Laplacian into its radial and horizontal (polar

2There will also be a contribution to the tidal response from the l = 2, m = 0 component. However, this
component is static and so does not contribute to the dissipation. Also note that the l = 2, m = 1 mode only
contributes if there is a spin-orbit misalignment.
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and azimuthal) components and used the fact that ρ = ρ(r). Using this we can write eq. 2.4

as
1

r2

∂

∂r

(
r2ρ

dζ2

dr

)
− 6ρ

r2
ζ2 =

dρ

dp
ρΨ2 . (2.6)

For simplicity we can consider a uniform density sphere3 but note that to do this we must

write ρ = ρ0H(R1 − r) where ρ0 is some reference density which we can set to unity and

H(R1− r) is the Heaviside step function (which defines the density as ρ0 within the body and

zero outside). We can now write eq. 2.6 as

1

r2

[
2rH

dζ2

dr
− r2δ

dζ2

dr
+ r2H

d2ζ2

dr2

]
− 6H

r2
ζ =

dρ

dp
HA

(
r

R1

)2

, (2.7)

where we have made use of eq. 1.8 (Ψ2(r) = A(r/R1)2) and dH/dr = −δ(R1 − r) where δ

is the Dirac delta function. This equation can be simplified by considering the potential only

inside the primary, that is when r < R1, which means, since δ = 0 everywhere but at r = R1.

This leads to
d2ζ2

dr2
+

2

r

dζ2

dr
− 6

r2
ζ2 =

dρ

dp
A
(
r

R1

)2

. (2.8)

The RHS can be simplified by considering the derivative term and noting that due to the delta

function this term vanishes4,

dρ

dp
=

dρ

dr

dr

dp
= −δ(R1 − r)

dr

dp
= 0 , r < R1 . (2.9)

Thus we are left with a simple homogeneous Cauchy-Euler equation in the interior

r2 d2ζ2

dr2
+ 2r

dζ2

dr
− 6ζ2 = 0 , (2.10)

with general solution

ζ2 = C1r
−3 + C2r

2 , (2.11)

for some constants C1 and C2. These constants can be evaluated by use of appropriate

boundary conditions,

dζ2

dr

∣∣∣∣
r=0

= 0 , (2.12)

dζ2

dr

∣∣∣∣
r=R1

= −Ψ2(R1, t)

g
, (2.13)

where g = GM1/R
2
1 is the surface gravity. Physically the first of these maintains regularity of

the radial displacement (ζ2) at the origin (r = 0) while the second is from the assumption of

a free-surface at the outer boundary (for a quasi-hydrostatic equilibrium) which is subject to

a low-frequency forcing (Ogilvie, 2009).

3In the case of a uniform density body the equations for the equilibrium tide and non-wavelike equilibrium
tide are identical.

4This can also be seen by considering this is dρ/dp = 1/c2s where c2s is the sound speed. However, since
we are considering an incompressible medium we have an infinite sound speed and thus this term vanishes.
Alternatively, given we are considering an incompressible case (∇ · ζ = 0) it follows from eq. 1.31.
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This gives the l = m = 2 component of the radial tidal potential as

ζ2 = −Ψ2(R1, t)

2R1g
r2 , for r < R1 , (2.14)

where we note that Ψ2(R1, t) consists of only the time dependent parts and the constant term

of eq. 1.8. Hence, the tidal displacement is

ζ2,2(r, θ, φ, t) = −Ψ2(R1, t)

2R1g
r2Y 2

2 (θ, φ) . (2.15)

This can be written in global Cartesian coordinates5 as

ζ2,2(x, y, z, t) = − A
8R1g

√
15

2π
(x+ iy)2(cosωt− i sinωt) , (2.16)

where we have used eq. 1.8 (for the constant and time dependent part of Ψ2) and made the

substitution 2Ωo = ω since we are considering the non-rotating case (Ωs = 0). In order to

obtain the velocity field we now take the time derivative of the gradient of the displacement

potential, noting that we are interested in the real part of the solution, this gives

<
(
∂

∂t
∇ζ2,2

)
= A†ω

[
(−x sinωt+ y cosωt)ex + (y sinωt+ x cosωt)ey

]
, (2.17)

where we have combined the constants as

A† = − A
4R1g

√
15

2π
=

√
3

4

(
M2

M1

)(
R1

a

)3

. (2.18)

Note that given R1 < a and under our assumptions that M1 � M2 it must be the case that

A† � 1. We can rewrite the above expression as

u0 = A†ω

− sinωt cosωt 0

cosωt sinωt 0

0 0 0

x . (2.19)

This flow can be seen in Fig. 2.2 for a slice through the equatorial plane of the primary. Note

that since we are exploring only the l = m = 2 component of the tidal flow there is no z

dependence or flow in the ez direction.

Let us first recap what eq. 2.19 represents before a description of how this will be approxi-

mated. Eq. 2.19 describes the tidal flow within the primary excited by the orbiting secondary

on a non-spin-synchronised, spin-orbit aligned, circular and equatorial orbit. In the interests

of simplicity we have neglected rotation of the primary as well as the perturbation to the

potential of the secondary. The primary has been approximated as a constant density sphere

in quasi-hydrostatic equilibrium for illustration here. Finally, it is important to note that this

considers only the l = m = 2 component of the tide6. This gives us the simplest possible

5In the global coordinate system the ex, ey and ez unit vectors are fixed in space. A physical way of
understanding this is that in the global system the unit vector ex might point towards some reference star that
is effectively at infinity, however, in the local system the vector pointing to said star depends on the location
of the local domain within the global domain (this can be understood by considering that the ex vector in the
local coordinates always points radially outwards).

6For justifications of each approximation see the relevant section in the text.
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Figure 2.2: Plot of the tidal flow from eq. 2.19 (where we note that A†ω has
been set to 0.01) in the orbital plane. The plot is for t = 0 and it should be
reminded that this flow is in the absence of dissipation. The blue circle represents
the unperturbed primary’s shape while the red ellipse represents how the body
would deform from the tidal force. (not to scale)

stellar/planetary model for the equilibrium tidal flow.

2.1.2 Approximation to the tidal flow

Since tidal deformations of stars are typically small, it is sensible to explore the regime of linear

tides7, in which the fluid response to each component of the tidal potential can be studied

separately. We will follow Ogilvie & Lesur (2012) in modelling the large-scale tidal flow as an

oscillatory shear flow that is linear in the local Cartesian coordinates. In particular, we model

the tidal flow as a “background flow” which consists of one component of the flow described

by eq. 2.19. Thus our background flow is

u0 = Sx cos(ωt)ey =
ȧx

d
ey , (2.20)

where ω is the tidal frequency, S = a0ω/d is the amplitude of the tidal shear, a0 is the amplitude

of the tidal displacement, and ȧ is the time-derivative of the displacement a(t) = a0 sinωt.

Note that this is only one component of the non-wave-like tidal flow even in the simplest case

of a circular aligned orbit (e.g.Ogilvie 2014) which we described in § 2.1.1.

In our simulations we will typically assume a0 � d (with a typical value a0 = 0.05d), so

that the tidal displacement is much smaller than a density or pressure scale height. This

is reasonable for studying tides in solar-type stars interacting with the convective eddies in

the majority of the convection zone (and in particular near the base), for example (the tidal

amplitude is typically smaller than 10−4 stellar radii, whereas the pressure scale height is of the

order of 0.1 stellar radii except near the surface). Since planet-hosting stars are usually slow

rotators, we ignore rotation in this initial study, but we note that sufficiently rapid rotation

is expected to affect the resulting effective viscosity (Mathis et al., 2016). This is because

rotation modifies convective velocities and length-scales (e.g. Stevenson 1979; Jones 2007;

7Since we assume A† � 1, we neglect nonlinear tidal effects such as the elliptical instability in convection
zones (Barker & Lithwick, 2013; Barker, 2016a), which might be important for tides in the shortest-period hot
Jupiters.
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King et al. 2013; Barker et al. 2014), but we relegate the incorporation of rotation to future

work.

2.1.3 Convection

Along with the approximation of the tidal flow described in § 2.1.2 we require a model for the

convection within the star or giant planet. Within the Boussinesq approximation the flow is

governed by

∂u∗

∂t
+ u∗ · ∇u∗ = −∇p∗ + θez + ν∇2u∗ + f , (2.21a)

∂θ

∂t
+ u∗ · ∇θ = N2uz + κ∇2θ , (2.21b)

∇ · u∗ = 0 , (2.21c)

where u∗ is the total velocity, p is a pressure variable, ν is the (constant) kinematic viscosity,

f is the forcing required to excite the tidal flow, κ is the (constant) thermal diffusivity and we

note that the background reference density has been set to unity. We define our “temperature

perturbation” (see aside 2.3) by θ = αthgT , where αth is the thermal expansion coefficient, g is

the acceleration due to gravity and T is the usual temperature perturbation, so that θ has the

units of an acceleration. The above equations describe perturbations to a linear background

temperature profile T (z), with uniform gradient αthg∂zT = N2, where N2 is the square of the

buoyancy (Brunt–Väisälä) frequency, which is negative in a convection zone. This describes

fluid that is hotter at the bottom of the domain than at the top.

We can consider the tidal flow to be a background flow which is coupled to the convective

motion through the total velocity u∗ = u + u0 (note that we also must have p∗ = p + p0).

On substitution into the governing equations this gives

∂u

∂t
+ u · ∇u + u · ∇u0 + u0 · ∇u = −∇p+ θez + ν∇2u , (2.22a)

∂θ

∂t
+ u · ∇θ + u0 · ∇θ = N2uz + κ∇2θ , (2.22b)

∇ · u = 0 , (2.22c)

∂u0

∂t
+ u0 · ∇u0 = −∇p0 + ν∇2u0 + f , (2.22d)

∇ · u0 = 0 , (2.22e)

where we note that the background flow u0 and perturbed flow u can be separated. Since

we prescribe the background flow we will not explicitly solve the equations for the background

flow (eq. 2.22d and 2.22e), instead this will be considered to be externally imposed (and hence

u0 will be prescribed). As such the system of equations which we seek to study are

∂u

∂t
+ u · ∇u + u0 · ∇u + u · ∇u0 = −∇p+ θez + ν∇2u , (2.23a)

∂θ

∂t
+ u · ∇θ + u0 · ∇θ = N2uz + κ∇2θ, (2.23b)

∇ · u = 0 . (2.23c)
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Aside 2.3: Temperature perturbation

We consider a problem where the temperature is fixed at z ∈ {0, 1} and proceed to

split the actual temperature T into a linear background state (conductive profile) and

a perturbation about this background. This perturbation, θ, is assumed to be small

and has nondimensional form T = 1−N2z+ θ where N2 describes the gradient of the

linear background. On substituting this into the energy equation (eq. 2.21b) we get

∂θ

∂t
− κ∇2θ = N2uz − u · ∇θ . (2.24)

Note that the perturbation to the linear background is defined such that the boundary

conditions θ(z) = 0 ∀z ∈ {0, 1} are satisfied.

We choose units such that d is our unit of length and the thermal timescale d2/κ is our unit

of time (so that velocities are measured in units of κ/d). The latter is chosen to enable a direct

comparison with the linear theory of convection (e.g. Chandrasekhar 1961), though we will

later interpret our results in terms of the convective turnover timescale of the dominant eddies

(or “free-fall” timescale), since this is the most relevant physical timescale in this problem.

The resulting non-dimensional equations are

∂u

∂t
+ u · ∇u + u0 · ∇u + u · ∇u0 = −∇p+ Ra Pr θez + Pr∇2u , (2.25a)

∂θ

∂t
+ u · ∇θ + u0 · ∇θ = uz +∇2θ , (2.25b)

∇ · u = 0 , (2.25c)

where we have avoided introducing new “hatted” dimensionless variables to avoid confusing

the presentation.

We adopt periodic boundary conditions in the horizontal and in the vertical that of stress-

free, impenetrable, fixed temperature boundary conditions such that

∂zux = ∂zuy = 0

uz = 0

θ = 0

 on z = 0 & z = 1 . (2.26)

The key dimensionless parameters describing the convection are the Rayleigh number (which
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measures the strength of convective driving to diffusive processes)

Ra =
−N2d4

νκ
, (2.27)

and the Prandtl number (the ratio of viscous to thermal diffusion)

Pr =
ν

κ
. (2.28)

We also define a scaled Rayleigh number

R =
Ra

Rac
, (2.29)

where Rac = 27π4/4 is the critical Rayleigh number for the onset of convection in a horizontally-

unbounded domain (in the absence of shear) with our adopted boundary conditions in the

vertical (Chandrasekhar, 1961). In principle, the shear could affect the onset of convection,

but we find no evidence that this occurs for the adopted values of a0 (which are a0 ≤ 1).

With this non-dimensionalisation, according to mixing-length theory, the convective velocity

in the limit of large Ra should be independent of the microscopic diffusivities, meaning that it

should scale as
√

Ra Pr (see aside 2.4), and therefore the dominant convective frequency (ωc)

should similarly scale as
√

Ra Pr. In the simulations, we will compute a convective frequency

ωc =
ūrms
z

d
, (2.30)

where the overbar denotes a time average and we define the rms vertical velocity as

urms
z =

√
〈u2
z〉 , (2.31)

where angled brackets denote a volume average. We show that this is observed to scale as√
Ra Pr, as expected, later in the text (Ch. 6, Fig. 6.1).

Aside 2.4: Convective velocity scaling

The scaling for the convective velocity can be crudely obtained from the following

arguments. We first consider the dispersion relation (Chandrasekhar, 1961) in the limit

of {ν , κ} → 0 which is

σ2 = −N2k
2
⊥
k2

, (2.32)

where σ is the growth rate of the convective instability, k2
⊥ = k2

x + k2
y is the horizontal

wavenumber and k2 = k2
⊥ + k2

z . Considering k2
⊥ � k2

z this gives

σ2 ≈ −N2 . (2.33)
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Now if we consider from our choice of nondimensionalisation that

Ra Pr = −N
2d4

νκ

ν

κ
= −N2

(
d2

κ

)2

, (2.34)

thena, from eq. 2.33, we can write

σ ∼
√

Ra Pr , (2.35)

which follows from the nondimensionalisation of eq. 2.33.

Next we consider the following relations

u · ∇u ∼ Ra Pr θez =⇒ u2

d
∼ Ra Pr θ , (2.36)

∂θ

∂t
∼ uz ∼ u =⇒ σθ ∼ u . (2.37)

The first of these (eq. 2.36) is from the momentum equation by considering a statisti-

cal steady state where the injection of energy (the growth of the instability due to the

buoyancy term) is balanced by the transfer of energy down to smaller scales (the advec-

tive nonlinear term). The second expression (eq. 2.37) is obtained from the linearised

temperature equation.

We now substitute for θ from eq. 2.37 into eq. 2.36 and then substitute for the growth

rate σ using eq. 2.35. This gives u ∼ d
√

Ra Pr (=
√

Ra Pr since d = 1) as claimed.

aNote that −N2 has units of T−2 and the fractional term is the square of our chosen nondimensional
time (thermal time) and hence has units T 2 and so this is dimensionally consistent with the LHS of the
expression.

In this work we will first explore laminar cases close to the onset of convection, with R ≤ 10

and Pr = 1, in order to understand the physics behind the interaction between tides and

convection. An advantage of this laminar regime is that we can compare our results with a

complementary asymptotic analysis. We then move on to explore more turbulent cases with

R ≥ 100, which are more relevant for convection in stars. However, in a Sun-like star we

expect Ra ∈ [1021, 1024] and Pr ∈ [10−7, 10−3] in the convection zone (Hanasoge et al.,

2016). Reaching such extreme parameter regimes with simulations (even those adopting the

Boussinesq approximation) is unfeasible, and we are inevitably restricted to modest values of

these parameters, such that R ≤ 104 and Pr & 10−2. We hope that our simulations can be

used to understand the interaction between tides and convection in stars, but this inevitably

requires us to extrapolate our results to the astrophysical parameter regime.

Summary: Model setup and assumptions

The system we wish to numerically integrate is

∂u

∂t
+ u · ∇u + u0 · ∇u + u · ∇u0 = −∇p+ Ra Pr θez + Pr∇2u , (2.38a)
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∂θ

∂t
+ u · ∇θ + u0 · ∇θ = uz +∇2θ , (2.38b)

∇ · u = 0 , (2.38c)

u0 =
a0ωx

d
cos(ωt)ey , (2.38d)

with the boundary conditions

∂zux = ∂zuy = 0

uz = 0

θ = 0

 on z = 0 & z = 1 , (2.39)

and horizontal periodicity (shearing-periodic in x).

Some key features of this model are:

� We adopt the Boussinesq approximation (hence the flow is incompressible),

� We have non-dimensionalised using the thermal timescale, d2/κ,

� The velocity field has been decomposed into a background shear flow (which acts

as our tidal flow) and the convective flow, so that the total flow is, u∗ = u + u0.

2.2 Numerics

We use a modified version of the Cartesian pseudo-spectral8 (see aside 2.5 for justifications for

using this numerical method) code SNOOPY for our simulations (Lesur & Longaretti, 2005;

Lesur & Ogilvie, 2010). This uses a basis of shearing waves with time-dependent horizontal

wavevector components to deal with the linear spatial variation of u0. This is equivalent

to using shearing-periodic boundary conditions in x. In the y-direction we assume periodic

boundary conditions, and in the vertical (z), variables are expanded as either sines or cosines

so that they satisfy the boundary conditions given by eq. 2.26 (e.g. Cattaneo et al. 2003; Lesur

& Ogilvie 2010). Flow variables are expanded such that

ux(x, t) = <
( ∑
kx,ky ,n

ûx(t)eik⊥(t)·x cosnπz
)
, (2.40)

where k⊥(t) = (kx(t), ky), and the sum is over

ki =

{
2πk∗i
Li

: k∗i ∈
[
−Ni

2
,
Ni

2
− 1

]
∩ Z
}

(2.41)

and

n = {n ∈ Z : n = [0, Nz − 1]}, (2.42)

8For a more detailed account of spectral methods see Trefethen (2000); Boyd (2001).
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where Ni is the number of modes in each dimension and i ∈ {x, y} denotes the dimension9.

A similar expansion is used for uy(x, t) and p(x, t), but we also have

[uz(x, t), θ(x, t)] = <
( ∑
kx,ky ,n

[ûz(t), θ̂(t)]e
ik⊥(t)·x sinnπz

)
. (2.43)

Aside 2.5: Why spectral methods?

The foundations of spectral methods is the use of series expansions of the relevant

quantities in order to solve (systems of) partial differential equations. The expansions

take the form

f(x) ≈ fN (x) =

N∑
n=0

fnΥn(x) , (2.44)

where Υn(x) are a set of N orthonormal basis functions and this approximation is

exact in the limit of N → ∞. Of course due to computational limitations N must

be truncated to some finite value. In this formulation we have a set of basis functions

Υn(x) which in spectral methods span the entire domain, that is, computation of any

given point in the domain depends on the state of every other point in the domain. The

spectral method algorithm then solves for the unknown basis coefficients fn. The major

strength of this comes from what is known as ‘spectral convergence’ which means that

the approximations converge towards a solution more rapidly (for smooth solutions), for

increasing N , than other commonly used methodsa (finite element, finite volume, finite

difference).

It is worth addressing some of the significant weaknesses of spectral methods.

Complex geometry: Due to the global nature of spectral methods this makes complex

geometries at best difficult and at worst impossible. Simple cuboid shaped domains are

suitable for spectral methods and so for the problem we are considering this is not an

issue.

Basis functions choice: The choice of basis functions depends on the geometry and

boundary conditions of the problem. In our problem we are considering horizontal

periodic boundary conditions which can be dealt with efficiently with Fourier basis

functions and application of the Fast Fourier Transformb (FFT) to deal with converting

to and from spectral space. In the vertical our equations and boundary conditions

admit a decomposition of the Fourier series basis functions such that the horizontal

velocity components can be decomposed into a cosine series while the vertical velocity

component and temperature perturbation takes the form of a sine series. This is known

as a sine-cosine decomposition. Both of these basis types are computationally cheap.

Discontinuities/shocks: A significant problem with spectral methods occurs if the

solution admits discontinuities (shocks). Such situations result in Gibbs instabilities (a

type of numerical error) which do not die out as N increases (instead approaching a finite

limit) and can result in divergence of computed quantities. Since we are considering

9In general we have Nx, Nx and Nx as the discrete resolution in the ex, ey and ez directions respectively.
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subsonic flow this is of no concern for our problem.

Since the major weaknesses of spectral methods do not cause us problems due to our

simple geometry, we can employ spectral methods and take advantage of the spectral

convergence.

aThe other commonly used numerical methods have polynomial convergence which is strictly slower
than the exponential convergence (spectral) convergence of spectral methods.

bThe FFT is typically attributed to the work of Cooley & Tukey (1965), however, efficient algo-
rithms to compute Fourier co-efficients can be traced back to some unpublished work of the eminent
mathematician Carl Friedrich Gauss (Heideman et al., 1985).

In order to account for the linearity in x of u0 (see aside 2.6), the horizontal wavevector

evolves according to

k̇⊥ = −Sky cos(ωt)ex . (2.45)

so that

kx(t) = kx,0 − a0ky,0 sin(ωt) , (2.46)

ky(t) = ky,0 , (2.47)

where

k⊥(t = 0) = (kx,0, ky,0) . (2.48)

The code uses a 3rd order Runga-Kutta time-stepping scheme and deals with the diffusion

terms using an integrating factor. To accurately integrate (and analyse) high-frequency shear,

we impose an additional time-step constraint such that the timestep δt� 1/ω (in addition to

the usual time-step constraint due to the CFL condition). Further details regarding the code

can be found in e.g. Lesur & Longaretti (2005) or Lesur & Ogilvie (2010). The nonlinear terms

are fully de-aliased using the 3/2 rule (Orszag, 1971; Boyd, 2001).

Aside 2.6: Why do we need time dependent wavevectors?

In our numerical formulation we have used time dependent wavevectors which may

raise the question as to why add this complication. To answer this, consider the ey

component of the term u0 · ∇u in eq. 2.25a,

u0

(
∂uy
∂x

+
∂uy
∂y

+
∂uy
∂z

)
= x

a0ω cosωt

d

(
∂uy
∂x

+
∂uy
∂y

+
∂uy
∂z

)
, (2.49)

which is linear in x. There are no other terms in eq. 2.25a with an x dependence and

hence this term can not be simply balanced by another term without having a time-

dependent k. This in principle would not be a problem if it was not for our choice of

horizontally periodic boundary conditions which this term does not satisfy! The solution

is then to use time dependent wavevectors which in essence means the domain deforms

with the sheara.

This technique is often used in models of astrophysical discs subject to a Keplerian
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shear where it is known as a shearing sheet. In such cases the shear is non-oscillatory

and so the domain gets continually stretched and there are techniques to deal with this

problem. In our model the oscillatory nature of the shear means that this is less of a

problem.

Note that a similar approach has been used by Barker & Lithwick (2013) to study the

elliptical instability.

aA geometric description would be that our domain does not remain in the shape of a cuboid (right
square prism) but is in general a rhombohedron (or more specifically a right rhombic prism).

2.3 Quantities of interest

In this section we detail the quantities which we will compute from our simulations. As a

reminder, the dissipation as a result of the interaction between the tidal flow and convection

is the quantity we are most interested in evaluating. In particular the frequency dependence

of this form of dissipation.

2.3.1 Reynolds stress

We wish to explore the interaction between the background tidal flow u0 and convectively-

driven flows. To do this we are essentially wanting to consider the energy transfer between the

background flow and the convective motion and so we look at the energy equation. The energy

equation can be obtained by applying u· to the (dimensional) momentum equation eq. 2.23a

and then taking the volume average, which gives, after some manipulation and applying our

boundary conditions10,

1

2V

∫
V

D

Dt
|u|2 dV =

1

V

∫
V

u ·θez dV − ν

V

∫
V
|∇ × u|2 dV − 1

V

∫
V

u · (u ·∇)u0 dV . (2.50)

The last term on the RHS is the energy transfer term we are interested in. It can be written

as

− 1

V

∫
V

u · (u · ∇)u0 dV = − 1

V

∫
V
Suxuy cos(ωt) dV

= −S cos(ωt)

V
Rxy(t) . (2.51)

The Reynolds stress, Rxy(t), determines the energy transfer rate between the tidal (shear)

flow and the convection, which can in principle operate in either direction (see Ogilvie & Lesur

2012 and aside 1.5), transferring energy from (to) the convection to (from) the shear, and is

defined from eq. 2.51 as

Rxy(t) =
1

V

∫
V
uxuy dV , (2.52)

where V = LxLyd (and d = 1 with our non-dimensionalisation) is the volume of our domain.

We are interested in the response of this Reynolds stress component at the frequency of the

tidal forcing.

10The Dt |u|2 can also be written as ∂t |u|2 since u · ∇u vanishes when applying our boundary conditions
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2.3.2 Effective viscosity

We are most interested in exploring the effective viscosity νE , which can be related to the

modified tidal quality factor Q′ (see § 1.3), which quantifies the rate of energy transfer between

the tidal and convective flows. The value of νE represents the viscosity that is required to

produce the same energy transfer rate from/to the convective flow to/from the tidal flow as

the simulated flow, which may be turbulent. Following Goodman & Oh (1997); Ogilvie &

Lesur (2012); Braviner (2015), we may define νE by equating the mean rate at which the

shear does work on the flow with the mean rate at which energy is dissipated by a viscosity

νE acting on the background tidal flow.

The mean rate at which the shear does work on the flow can be obtained from the volume

averaged energy equation (u· of eq. 2.23a) by considering the term

− 1

V

∫
V

u · (u · ∇)u0 dV = − 1

V

∫
V
Suxuy cos(ωt) dV . (2.53)

For the mean rate at which the energy is dissipated by viscosity we consider the volume

averaged energy equation for eq. 2.22d (u0· of this equation). The term we are interested in

is the dissipation term

2ν

V

∫
V
e0
ije

0
ij dV =

2νmol

V

∫
V
e0
ije

0
ij dV +

2νE
V

∫
V
e0
ije

0
ij dV , (2.54)

where we have split the dissipation of the background flow into a molecular and turbulent term

(ν = νmol + νE) and

e0
ij =

1

2
(∂iu0,j + ∂ju0,i) , (2.55)

is the rate-of-strain tensor for the background flow. The turbulent viscosity in the background

can then be written, after application of a few vector identities and the boundary conditions,

as

2νE
V

∫
V
e0
ije

0
ij dV = −νE

V

∫
V
|∇ × u0|2 dV

= −νE ȧ2 , (2.56)

where ∇× u0 is the vorticity of the background flow (note that given our shear11 that |∇ ×
u0|2 = ȧ2). We now assume that the energy transfer between the background flow and the

convective turbulence is entirely dissipated by the effective viscosity. As such we can equate

eq. 2.53 and eq. 2.56 to obtain12 the viscous balance as

νE ȧ
2 = − 1

V

∫
V
a0ωuxuy cos(ωt) dV . (2.57)

In order to eliminate the transient nature, particularly in turbulent cases, we take the time

11Reminder that our shear has the form u0 = a0ωx cos(ωt)ey = ȧxey.
12Note that both of these terms appear on the same side of the full system and so when they are equated

this introduces a sign change for one of them.
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average over many cycles13 and average to give

νE
(T − T0)

∫ T

T0

ȧ2 dT = − a0ω

(T − T0)

∫ T

T0

cos(ωt)
1

V

∫
V
uxuy dV dT , (2.58)

νE
a2

0ω
2

2
= −a0ω

∫ T

T0

Rxy(t) cos(ωt) dT , (2.59)

νE = − 2

a0ω

∫ T

T0

Rxy(t) cos(ωt) dT , (2.60)

where we have used

lim
(T−T0)→∞

∫ T

T0

ȧ2 dT =
ω

2π

∫ 2π/ω

0
ȧ2 dT

=
a2

0ω
2

2
, (2.61)

by using T = 2π/ω. Note that T0 is some appropriate initial time and T − T0 is (strictly) an

integer number of periods of the shear flow 2π/ω.

For clarity, the effective viscosity at the frequency of the shear can be evaluated by compu-

tation of

νE(ω) =
−2

a0ω(T − T0)

∫ T

T0

Rxy(t) cos(ωt) dt . (2.62)

This gives the response that is out of phase with the tidal displacement (and in phase with

the tidal shear). In our more turbulent simulations we will typically integrate for hundreds or

thousands of tidal periods to get well-converged values for νE , and T −T0 will not necessarily

be taken to be an integer number of tidal periods. In practice we compute the integral in

eq. 2.62 as a cumulative integral14 and then a linear fit is taken. A more thorough description

of this process can be found in aside 2.7.

Aside 2.7: Evaluation of cumulative integrals and error

To get converged results for νE(ω), it is important to integrate these simulations for

long enough. In order to check this we plot the integral that arises in the expression

for νE (eq. 2.62) for various end times T , excluding terms outside of the integral,

and plot its variation with time T . We then determine the linear regression line for

this quantity over a time interval, [T0, T ], such that the exponential convective growth

phase is omitted (thus T0 > 0). This linear fit provides the value of the integral in

eq. 2.62, allowing νE to be calculated. We evaluate error bars conservatively at 2σ

(where σ is the standard deviation) from the regression line.

The same technique is used for the elasticity which is defined in § 2.3.4 where the

integral in question is that in eq. 2.73.

In the limit of low frequencies (and small a0) the tidal flow becomes quasi-steady as the

tidal period becomes very long compared with the convective timescale, and so νE might be

13In principle, laminar cases could be averaged over a single cycle. However, it is technically easier to average
over many cycles.

14The integral is computed as a time series where the time variable is the end time T .
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thought to represent represent the “eddy viscosity” of convection, and we therefore expect it

to scale as a convective velocity multiplied by a length-scale, as predicted by mixing-length

theory. This would give the prediction15, νE ∝
√

Ra Pr for ω � ωc. We will explore the

frequency dependence of νE , as a function of ω/ωc. Note that νE can be related to the

potential Love number or (modified) tidal quality factor Q′, and is therefore the most relevant

quantity for tidal dissipation. We will discuss this later in Ch. 7 and 8. For example, the orbital

period derivative Ṗ /P due to tidal dissipation is proportional to νE . The effective viscosity is

related to the misalignment angle between the tidal bulges and the line of centres of the star

and planet.

2.3.3 Scaled effective viscosity

When the tidal frequency is much smaller than the convective frequency, ω � ωc, the effective

viscosity is often calculated using νmlt
E ∝ umltlmlt, where umlt is the convective velocity (which

is typically some relevant statistic of the vertical/radial component of velocity), lmlt is the

mixing length (in stellar convection this is typically a multiple of the pressure scale height,

see § 1.3.2) and there exists a constant of proportionality. In our simulations, we define this

constant of proportionality so that

α =
νE
urms
z d

, (2.63)

which we will determine in simulations. Note that this strictly differs from the usual mixing-

length “α” parameter, since it combines the usual parameter with the coefficient involved in

converting umltlmlt to a viscosity – which is commonly assumed to be 1/3 without rigorous

justification. Eq. 2.63 will be of most use in Ch. 6.

2.3.4 Effective elasticity

It can be shown (e.g. Ogilvie & Lesur 2012 and § 4.2) that the fluid responds viscoelastically

to high-frequency shear, and that the dominant response is elastic (with a weaker viscous

component). To explore this component, and to compare with asymptotic theories (in Ch. 4),

we will also compute the effective elasticity of the flow. This is less directly relevant for tidal

dissipation than the effective viscosity, but is important for quantifying the amplitude of the

tidal response, and could be important for e.g. modifying the rates of non-dissipative tidally-

driven apsidal precession. We can obtain an effective elasticity SE by considering the ratio of

tidal shear stress to shear strain, which is a measure of the deformation (e.g. Braviner 2015).

In solid mechanics the shear modulus (also known as the modulus of rigidity) is defined as16

Grig =
τxy
γxy

=
F/A

∆x/l
, (2.64)

where τxy is the shear stress, defined as the ratio of force F over area A, and γxy is shear

strain, defined as the ratio of transverse displacement ∆x to non-sheared length l. Analogous

quantities for our fluid problem can be evaluated in order to quantify the effective (fluid)

elasticity.

15If we consider MLT we have, νE ∝ umltlmlt (see §. 1.3) which on replacing the mixing-length velocity using
umlt ∼

√
Ra Pr (see aside 2.4) we get νE ∝

√
Ra Pr.

16In solid mechanics this is thought of as a real valued quantity, unlike the complex shear modulus we use
in the asymptotic theory described in Ch. 4.
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The typical displacement is related to the shear velocity through integration and considering

the displacement only around the mean, that is

u0 =ȧ(t)xey , (2.65)

=⇒ ∆x ∝
∫

u0 dt =

∫
ȧxeydt = (a(t)x+ C1)ey , (2.66)

for some arbitrary constant C1. Thus we have that the typical displacement magnitude ∆x ∝ a
about x. We also consider the non-sheared length-scale to be the domain size in the direction

of the transverse displacement, that is l = Lx. Hence we have for the fluid strain γxy = a/Lx.

Aside 2.8: Alternative methods for evaluating νE and SE

An equivalent way of evaluating νE and SE is by using the Fourier transform of Rxy(t)

(Ogilvie & Lesur, 2012) as

νE(ω) = <

(
R̂xy(ω)

Sπ

)
, (2.67)

SE(ω) = =

(
R̂xy(ω)

a0π

)
, (2.68)

where we select the value of the Fourier transformed quantity at the shear frequency.

We prefer to use the integral forms given above, since we found this alternative approach

to be very sensitive to the precise frequencies chosen, and the numerical errors obtained

were considerably larger, even if they should be formally equivalent.

The shearing force is applied along x and so the surface area of the application of the tidal

force is LyLz. It is left to determine the force term F . To do this we consider the rate at

which the force does work on the flow, FLxȧ, and relate it to the rate at which the shearing

term does work on the flow −ȧRxyLxLyLz. Equating these two quantities gives

FLxȧ =− ȧRxyLxLyLz , (2.69)

=⇒ F =−RxyLyLz (2.70)

and so we get for the effective shear modulus, which is related to Grig, as

SE =
−RxyLyLz
LyLza(t)

= −Rxy
a(t)

. (2.71)

To evaluate eq. 2.71 we multiply this through by a2 and time average over one cycle, noting

that a = −a0 sin(ωt), and make use of

lim
(T−T0)→∞

a2
0

∫ T

T0

(sin(ωt))2 dt = −a
2
0π

ω

= −a
2
0T

2
, (2.72)
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to get

SE(ω) = −
2
∫ T
T0
Rxy sin(ωt) d t

a0(T − T0)
, (2.73)

which we will also compute in our simulations. This measures the response that is in phase

with the tidal displacement (out of phase with the tidal shear). Note that, in the same way as

for the effective viscosity, in our simulations we will evaluate SE by using a large time interval

T − T0 such that these quantities are adequately converged (see aside 2.7).

Summary: What we wish to compute

The quantity we are most interested in computing is the dissipation of tidal energy in

this model. This has been defined as (§. 2.3.2)

νE(ω) =
−2

a0ω(T − T0)

∫ T

T0

Rxy(t) cos(ωt) dt . (2.74)

We will also be interested in computation of the effective elasticity (which will be useful

for comparisons with the asymptotic computations, see Ch. 3 and 4). This is defined

as (§. 2.3.4)

SE(ω) = −
2
∫ T
T0
Rxy sin(ωt) d t

a0(T − T0)
. (2.75)

The computation of both of these requires the calculation of the volume averaged

Reynolds stress defined as (§. 2.3.1)

Rxy(t) =
1

V

∫
V
uxuy dV . (2.76)

In Ch. 6 we will find it useful to define the scaled effective viscosity (§. 2.3.3)

α =
νE
urms
z d

, (2.77)

to allow comparison with MLT.

It is also important to note our definition of the convective velocity (§. 2.1.3)

ωc =
ūrms
z

d
, (2.78)

where the overbar denotes a time average and we define the rms vertical velocity as

urms
z =

√
〈u2
z〉 . (2.79)
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Chapter 3

Interaction between tides and

laminar convection in small domains
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In this chapter, we will explore results from the model described in Ch. 2. For now we

will focus on laminar convection which can be loosely defined as having a Rayleigh number

Ra close to the onset number Rac (so R close to 1). Another way of thinking about this is

that the resulting flow will be non-turbulent and so is not expected to exhibit a Kolmogorov

cascade. These results will also be compared with a complementary asymptotic analysis which

will be described in Ch. 4.

The purpose of exploring laminar convection is primarily to explore the simplest cases first,

which we can complement with analytical theory. With this approach we can gain insight into

the fundamental fluid dynamical behaviour of the interaction between our prescribed oscillatory

(tidal) flow and the convection. We then build on this by considering more turbulent cases (in

small domains) in Ch. 5.

3.1 Parameter survey

In this chapter we will vary the scaled Rayleigh number which measures the strength of the

convection, in the range 1 < R ≤ 10. The amplitude a0 varies from 0.01 to 0.1, but with these

small values the shear does not affect the convection significantly. The tidal frequency ω is

varied over a wide range, 0.1 ≤ ω ≤ 104. Unless otherwise stated we will take the dimensions

of the box to be1 (Lx, Ly, 1) = (2, 2, 1), though Lx and Ly will be varied in a number of

cases below. In all simulations in this chapter we have set Pr = 1. The initial conditions

will be small amplitude, solenoidal, homogeneous random noise for the velocity field. This is

initialized using the system clock so that each simulation has unique initial conditions (to high

probability).

1As a reminder, the layer depth d is our unit of length, § 2.1.3.
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3.2 Laminar convection with R = 2, 5 and 10

We begin our investigation by exploring the interaction between tidal flows and laminar convec-

tion with R = 2, 5 and 10. Chandrasekhar (1961) shows that with our stress-free boundaries

the critical Rayleigh number for the onset of convection is Rac = 27π4/4 with a critical

wavenumber of π/
√

2. Because of our small shear amplitudes, this is not significantly changed

when the shear is added. By considering the critical Rayleigh number for each mode (e.g. Chan-

drasekhar 1961), we can show that the modes that are first unstable with Lx = Ly = 2 have

the vertical wavenumber n = 1 and are 2D y-aligned rolls with nx = ±1, ny = 0 or 2D

x-aligned rolls with nx = 0, ny = ±1 (these modes first onset when R & 1.05), where we

have defined integers nx and ny by taking nx = 2πnx/Lx and ny = 2πny/Ly. With the

larger box Lx = Ly = 4, convection occurs when R > 1 by exciting 3D modes with nx = ±1

and ny = ±1 (which have a horizontal wavenumber magnitude of π/
√

2). The advantage

of simulating laminar convection when only a small number of modes are unstable is that it

allows us to explore the dependence of the effective viscosity on the nature of the flow most

easily. We can also compare our results with a complementary asymptotic analysis (see Ch. 4).

As R is increased, additional modes become linearly unstable.

3.2.1 Rolls aligned with y with Lx = Ly = 2

Figure 3.1: Flow structure for y-
aligned rolls in a snapshot with
R = 2, with ω = 1 and
ω = 1000 (top and bottom respec-
tively), both with a0 = 0.05. The
plotted quantities are ux (left) and
uy (right). Note that only uy differs
noticeably between low and high-
frequency cases.

We first select simulations with initial conditions such that 2D y-aligned convection rolls

are preferentially excited, which saturate nonlinearly with an approximately steady amplitude.

These simulations were performed with a resolution of at least (Nx, Ny, Nz) = (64, 64, 16),

which was found to be adequate. In the absence of shear, such a linear mode would have

nonzero ux and uz velocity components (but uy = 0) and be independent of y. The shear

(plus weak nonlinearity) induces an additional oscillatory uy component of the velocity, which is

typically much smaller than that of the unperturbed convection roll. We present the horizontal

flow structure for ux and uy in a snapshot from two simulations with R = 2, with ω = 1 (top

panels) and ω = 1000 (bottom panels) in Fig. 3.1 at times t = 100 and 29.9, respectively. In

these simulations the convective frequency ωc ≈ 5.5 (see eq. 2.30) which means that ω = 1

is in the low-frequency regime (ω/ωc < 1), and ω = 1000 is in the high-frequency regime
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(ω/ωc � 1). The shear does not strongly modify the convection in these simulations, and ux

is similar in both cases. On the other hand, the spatial structure of uy differs between the

low and high-frequency regimes, as shown in the right panels of Fig. 3.1, indicating that we

might expect the Reynolds stresses to differ. The flow is qualitatively similar in simulations

with R = 5 and 10.

Figure 3.2: Frequency-dependence
of νE(ω) for laminar y-aligned con-
vection rolls with R ∈ {2, 5, 10},
indicating that νE is reduced at
high frequencies such that νE ∝
ω−2. The mixing-length theory pre-
diction for νE , with a constant of
proportionality of 1/6, such that
νE = 1

6νe, is plotted as the hori-
zontal line, which matches the data
for low frequencies. We also plot
the prediction from an independent
asymptotic analysis (Ch. 4) as the
solid lines at high frequency. These
are all proportional to ω−2 and
are in excellent agreement with the
data. Error bars for νE are plotted,
but these are very small since the
flow is laminar.

We compute νE using eq. 2.62, and this is plotted as a function of ω for these simulations

with R = 2, 5 and 10 in Fig. 3.2. Each value of R exhibits two distinct behaviours. For

ω < 20 i.e. “low frequencies”, we find νE to be independent of ω. For ω > {30, 90, 200}
(for R = 2, 5, 10, respectively), we find that the effective viscosity is reduced and decays with

frequency such that νE ∝ ω−2. This matches the results of Ogilvie & Lesur (2012) for ho-

mogeneous convection and Braviner (2015) for ABC flow. In Ch. 4 we provide an asymptotic

analysis which explains why laminar convection gives νE ∝ ω−2. We also provide a simpler

mathematical derivation of this result for steady y-aligned rolls in Ch. 4. Such a high-frequency

scaling is in accordance with Goldreich & Nicholson (1977), but their model was based on Kol-

mogorov turbulence rather than laminar flow (see § 1.3.3), and it disagrees with Zahn (1966)

(see § 1.3.2). Note that the amplitude of the uy component increases with ω (e.g. Fig. 3.1), fol-

lowing the behaviour of the oscillatory shear flow u0, but this component becomes increasingly

in phase with the tidal displacement at high frequencies, thereby reducing νE . On this figure,

we have included simulations with several different values of a0 = {0.01, 0.02, . . . , 0.09, 0.1},
but these are not highlighted in the figure since our results were observed to be independent

of a0 for these values. This is consistent with us probing the regime of linear tides.

Note that in laminar simulations with small R, we find that calculating the integral in eq. 2.62

directly gives similar results to the technique described2 (and more specifically aside 2.7). The

reason for this is the variation in the cumulative integral about the regression line3 for laminar

cases has magnitude proportional to ω−1 for ω > ωc or to a0 for ω < ωc (which in both cases

2In more turbulent runs with larger R the approach in § 2.3.2 in § 2.3.2 was found to give cleaner results.
3Note that the variation in the cumulative integral about the regression line for SE does not have any clear

trend. However, the variation is found to also be small.
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is small).

For low frequencies, and in particular as ω → 0 such that the tidal shear becomes quasi-

steady, we expect νE to be approximated well by the mixing-length theory of convection if the

flow is turbulent, i.e. by νE ∝ νe = umlt`. We define νe to be an effective viscosity from MLT

(without any constant multiplicative factors), umlt to be the mixing-length velocity, which we

can approximate by umlt ≈ ūrms
z , defined in eq. 2.31, after a suitable time averaging, and

` ∼ d is a length-scale. We also expect νe ∝ umlt ∝
√

Ra Pr (see aside 2.4) when R � 1.

Even in laminar convection, where we might not expect mixing-length theory to apply, we find

the simulations to be described very well by νE ≈ 1
6νe for ω . ωc, as is shown in Fig. 3.2.

Note that a frequency-independent νE is consistent with a constant tidal lag-time for this tidal

component (e.g. Alexander 1973; Mignard 1980; Hut 1981, also see § 1.3.1).

Figure 3.3: Same as Fig 3.2,
showing νE(ω) for laminar con-
vection with R = 2, 5, 10, but
with frequencies scaled by the
convective frequency, ωc. This
clearly highlights the transition
from frequency-independent νE to
νE ∝ ω−2 occurs when ω ≈ 5ωc in
these cases.

In Fig. 3.2, to conveniently separate results with different R, the unit of time is kept as the

thermal timescale for both the x and y axes, therefore cases with larger R values have larger

convective velocities and frequencies in these units, and we expect the νE to increase with R.

In Fig. 3.3, we instead scale frequencies with a convective frequency ω (without re-scaling the

y-axis), where ωc = ūrms
z /d where ūrms

z is the time-averaged rms value of uz (see § 2.1.3). This

figure shows clearly that the transition from constant νE to νE ∝ ω−2 occurs when ω ≈ 5ωc.

Note that there is also an enhancement in νE for ω ≈ ωc in the simulations with R = 5 and

10.

For high frequencies such that ω & ωc, we expect the rapid oscillatory nature of the tidal

shear to inhibit the effective viscosity. In Ch. 4, we present an asymptotic linear analysis using

the method of multiple scales to calculate νE (and SE) in the high-frequency regime in which

ω � ωc. This calculation builds upon prior work by Ogilvie & Lesur (2012) by extending their

formalism so that it applies to Rayleigh-Bénard convection. For further details of how the

asymptotic method is applied see § 4.2.

The asymptotic analytical prediction is shown as the solid lines at high ω in Figs. 3.2 and

3.3. The theory is in excellent agreement with our simulations for each R value considered.
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For y-aligned rolls, we also obtain good agreement between each of the methods of evaluating

the magnitudes of the velocity components. This provides an independent check that our

simulations are correctly probing the high-frequency regime.

Figure 3.4: Frequency-dependence
of SE(ω) for laminar y-aligned con-
vection rolls with R ∈ {2, 5, 10},
where frequencies have been scaled
by the convective frequency, ωc.
Theoretical predictions of SE for
ω � ωc are computed using the
theory presented in Ch. 4 and are
plotted here as solid lines. Square
symbols denote negative values of
SE while circles denote positive val-
ues. We have omitted error bars
since they are small, but they typ-
ically fit within the symbol plotted
except for small ω (ω/ωc . 0.1).

We show the corresponding results for the effective elasticity (eq. 2.3.4), SE , in Fig. 3.4,

where we have scaled frequencies by the convective frequency. We find that SE ∝ ω1.77 for

ω . 5ωc, which is an empirical scaling, with a transition to a frequency-independent SE for

ω & 5ωc. This frequency independence is in qualitative agreement with the findings of Braviner

(2015) for the related problem of ABC flow. The value of SE in the high-frequency regime

from the theoretical prediction in Ch. 4 is shown as the solid lines. Error bars are omitted from

this figure for clarity. As with νE we observe that SE is independent of a0 for the values of

a0, R and ω simulated here (so we do not explicitly show this). One interesting feature is that

for R ∈ {5, 10} we observe a statistically significant sign change in SE , going from negative

at low ω to positive at high ω, at ω ≈ ωc, which does not occur for R = 2. We have also

observed that SE appears to transition from increasing with ω to being flat at approximately

the same frequency (as opposed to scaled frequency ω/ωc) in each case. The case with R = 5

is intermediate between the case with R = 2, where SE is always positive, and the case with

R = 10, which exhibits a change in sign. As a consequence we observe a more pronounced

transition between positive and negative values for R = 5.

Note that SE � νE at high frequencies, emphasizing that the response is primarily elastic,

with a weaker viscous component.

3.2.2 Rolls aligned with x with Lx = Ly = 2

In this section we analyse similar simulations to § 3.2.1 except that the initial conditions select

x-aligned convection rolls4. For these cases we use the same box size and set of R values but

the resolution is chosen to be (Nx, Ny, Nz) = (64, 64, 32), which was found to be sufficient

4The amplitude of the corresponding mode in the initial conditions determines which roll orientation is
selected.
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in all cases. In the absence of shear such linear convection solutions would have nonzero uy

and uz velocity components, with ux = 0, and they would saturate nonlinearly with a steady

amplitude. The flow is similar to that shown in Fig. 3.1 except that the roll is aligned with

x rather than y. The ux component behaves differently in the high and low frequency cases

however.

Figure 3.5: Frequency-dependence
of νE(ω) for laminar x-aligned con-
vection rolls with R ∈ {2, 5, 10}.
This demonstrates the surprising
result that νE is negative in these
cases. νE is also reduced at high
frequencies such that νE ∝ ω−2.
The mixing-length theory predic-
tion for |νE |, with a constant of
proportionality of 1/6, such that
|νE | = 1

6νe, is plotted as the
horizontal line, which matches the
magnitude of the data for low fre-
quencies. We also plot the predic-
tion from an independent asymp-
totic analysis (Ch. 4) as the solid
lines at high frequency, which con-
firms our observation of negative
νE . These predictions are propor-
tional to ω−2 and are in excellent
agreement with the data. Error
bars for νE are plotted, but these
are very small in most cases as the
flow is laminar.

We show νE as a function of ω (not scaled by ωc so as to separate data with different R) in

Fig. 3.5, using the same method as for the y-aligned simulations in the previous section. The

most surprising feature is that νE is negative for all ω. This indicates that the convective flow

is transferring energy to the tidal flow. Negative values were previously obtained in the (more

turbulent) simulations of Ogilvie & Lesur (2012) (§ 1.3.4), though only at high frequency and

with error bars that could not conclusively rule out positive values. Our results in Fig. 3.5

conclusively demonstrate that statistically significant negative values5 are attained in laminar

convection consisting of rolls aligned with x.

As in the previous section, the value of |νE | is approximately independent of frequency until

ω ≈ 5ωc (this is most clearly shown by scaling frequencies with ωc, but we have omitted

this figure to save space), above which it falls off with frequency such that |νE | ∝ ω−2. We

have also analysed simulations with R = 2 in which we vary the tidal amplitude such that

a0 ∈ {0.0005, 0.005, 0.05}, finding that our results for νE (and SE) are independent of a0 for

the simulated values.

As in the previous section, we have extended the theory of Ogilvie & Lesur (2012) to also

apply to x-aligned convection rolls, as explained in Ch. 4. This allows us to independently

5We have also performed preliminary simulations to explore whether νE remains negative for very small ω,
and we find some evidence of a possible transition to positive values for ω . 10−4, although exceptionally long
run times were required and the error bars were large in these cases.
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predict νE (and SE) in the high-frequency regime by fitting the amplitude of the convection

roll. Our results are shown as the solid lines in Fig. 3.5. These results are in good agreement

with our simulation data, which provides independent confirmation of the negative values for

νE , as well as the quadratic fall-off with ω. Note that the asymptotic prediction departs most

strongly from the simulation results for R = 10, presumably because we have adopted a single

mode in the analysis, which is no longer strictly applicable.

Figure 3.6: Frequency-dependence
of SE(ω) for laminar x-aligned con-
vection rolls with R ∈ {2, 5, 10},
where frequencies have been scaled
by the convective frequency, ωc.
The lines connect the data points
with each value of R and highlight
the sign change in SE as ω is var-
ied. Note that the high-frequency
behaviour is not predicted accord-
ing to the theory in Ch. 4, since it
requires the computation of higher-
order terms. In this plot negative
(positive) values of SE are denoted
by red error bars on square symbols
(blue error bars on round symbols).

We show SE as a function of ω in Fig. 3.6, where we have scaled the frequencies with ωc.

For y-aligned rolls, we previously found that SE increased for small ω and was independent of

frequency for large ω, similar to the results of Braviner (2015) for ABC flow (§ 1.3.4). However,

for x-aligned rolls, we instead find SE to be independent of frequency for small ω and to fall

off rapidly with frequency such that SE ∝ ω−2 at high frequencies. For each of the R values

considered, SE also changes sign at a certain frequency, transitioning from positive at low ω

to negative at high ω. This again differs from y-aligned rolls, where SE was instead negative

for small ω. In both x and y-aligned cases, SE is negative when it is small and varying with

ω, and is positive when it is larger in magnitude and independent of ω.

The asymptotic theory presented in Ch. 4 predicts SE = 0, and so is unable to explain

the high-frequency behaviour of SE for x-aligned rolls shown in Fig. 3.6. However, this is

consistent with our observation that SE ∼ ω−2 at high frequency, since this implies we must

consider higher order terms (in ω−1) to explain this with theory.

3.2.3 R = 2 with larger boxes such that Lx = Ly = 4

Our final set of simulations to explore the interaction between tidal shear and laminar con-

vection have R = 2 but with a larger box such that Lx = Ly = 4 using a resolution of

(Nx, Ny, Nz) = (64, 64, 16). In this case, we expect multiple convective modes to be excited,

including 3D modes with nx = ±1, ny = ±1 as well as the quasi-2D x and y-aligned con-

vection rolls that we have studied in the previous two sections. Each mode is expected to

provide its own contribution to the effective viscosity (and elasticity), which we can quantify
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Figure 3.7: Snapshots of the flow
for two cases with different ini-
tial conditions that we refer to
as stripes/spots and spots/stripes
(top and bottom, respectively) with
ω = 1000 at t = 97 and 290 (re-
spectively). These have R = 2 and
(Lx, Ly, Lz) = (4, 4, 1). The plot-
ted quantities are ux (left) and uy
(right).

and compare with theory. Since 3D modes are preferentially excited in these cases, unlike

those with Lx = Ly = 2, we can use this set of simulations to probe the contribution of 3D

modes to νE .

We show a snapshot of ux and uy in two simulations with ω = 1000 in Fig. 3.7, which

indicates that the flow consists of a superposition of a number of convective modes. We

explored different random initial conditions and determined that there were two main flow

configurations, as shown in the top and bottom panels of this figure. We will refer to these

as stripes/spots (corresponding to the patterns in ux and uy) and spots/stripes, respectively.

These cases provide a more robust test of the asymptotic theory in Ch. 4, since many of

the terms in the theory are identically zero when only an x or y-aligned convection roll is

considered.

Figure 3.8: Frequency-dependence
of νE(ω) for laminar convection
with R = 2 in a box with Lx =
Ly = 4 for two different flow con-
figurations. The asymptotic high-
frequency prediction (shown as the
solid lines), is computed by incor-
porating multiple modes in the the-
ory in Ch. 4. We obtain very good
agreement with the values and sign
of νE in each case, corresponding
with the two flows in Fig. 3.7, where
the stripes/spots flow has νE > 0
and spots/stripes flow has νE < 0.

We show the frequency-dependence of νE for each of these cases in Fig. 3.8. As in § 3.2.1

and 3.2.2, both cases exhibit an approximately frequency-independent νE for ω . ωc, and for
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ω & ωc, |νE | ∝ ω−2. Interestingly, the different flow configurations shown in Fig. 3.7 exhibit

different signs for νE , which remain the same for all ω. The case with stripes/spots (top panels

of Fig. 3.7) has νE > 0 for all ω and the case with spots/stripes (bottom panels of Fig. 3.7)

has νE < 0. This agrees with what we might expect based on § 3.2.1 and 3.2.2, since the

stripes/spots flow contains a larger amplitude y-aligned roll component, and the spots/stripes

flow contains a larger amplitude x-aligned roll component. These examples illustrate once

more that for laminar convection, the effective viscosity can be negative.

We show our prediction for the high-frequency behaviour of νE as the solid lines in Fig. 3.8,

where each of the two flow configurations have been treated separately. These agree well

with the simulation data, and are found to correctly predict the magnitude and sign of νE in

each case, such that the spots/stripes case is negative and the stripes/spots case is positive.

The case with negative values is slightly less well predicted by theory, probably because this

depends more strongly on the θ component of the flow, which is more strongly modified by

nonlinearity.

These simulations agree with the asymptotic theory in Ch. 4 in cases where multiple modes

contribute, and we have also shown that 3D laminar convection can exhibit a negative effective

viscosity. Next, it is essential to determine how robust these results are to increasing R, allowing

us to explore more turbulent convective flows.

3.3 Discussion

In this chapter we have presented an analysis of the frequency dependence of the effective

viscosity and effective elasticity. For laminar convection with low R values for fixed Pr and

with a domain sizes of (Lx, Ly, Lz) = {(2, 2, 1), (4, 4, 1)}.
We defer a more in depth discussion until after presentation of more turbulent convection

in similarly sized domains, in Ch. 5.

Summary: Key findings

For laminar convection we find two quasi-stable flow configurations with either convec-

tive cells aligned in the ey or ex directions.

� ey and (Lx, Ly, Lz) = (2, 2, 1),

– νE is constant for ω/ωc . 5 (consistent with the constant time lag, § 1.3.1),

– νE ∝ (ω/ωc)
−2 for ω/ωc & 5 (consistent with the quadratic reduction

model, § 1.3.3),

– νE is strictly positive,

– SE is constant for ω/ωc & 5,

– SE ∝ (ω/ωc)
−1.77 ω/ωc . 5.

� ex and (Lx, Ly, Lz) = (2, 2, 1),

– νE is constant for ω/ωc . 5 (consistent with the constant time lag, § 1.3.1),

– νE ∝ (ω/ωc)
−2 for ω/ωc & 5 (consistent with the quadratic reduction

model, § 1.3.3),
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– νE is strictly negative,

– SE is constant for ω . 1,

– SE follows a polynomial power law decay (which is close to, and might be,

quadratic) for ω & 1.

� (Lx, Ly, Lz) = (4, 4, 1),

– two observed flow configurations (which we classify as stripes/spots and

spots/stripes),

– νE is constant for ω/ωc . 5 (consistent with the constant time lag, § 1.3.1),

– νE ∝ (ω/ωc)
−2 for ω/ωc & 5 (consistent with the quadratic reduction

model, § 1.3.3),

– stripes/spots have νE > 0 for all ω values explored,

– spots/stripes have νE < 0 for all ω values explored.

The asymptotic analysis performed in the following chapter (Ch. 4) is in good agreement

with the high-frequency regimes (ω & ωc) for all cases, excluding SE for ex aligned

rolls where higher orders are likely required to obtain quantitative agreement.
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Chapter 4

Multi-scale asymptotic analysis
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In this chapter we outline a simple description of the high-frequency νE scaling for ey aligned

rolls, which was discussed in Ch. 3. We will then go through the details of our extension to the

more rigorous multi-scale asymptotic analysis of Ogilvie & Lesur (2012). Our goal is to provide

further understanding and a complementary asymptotic analysis for the results of Ch. 3.

4.1 Simple derivation of νE scaling for y-aligned convection rolls

Here we provide a simple explanation (rather than the formal analysis we will go through in

§ 4.2) for why νE ∝ ω−2 for high-frequency shear in the specific case of y-aligned laminar

convection rolls (as described in § 3.2.1). We consider the ey component of the momentum

equation (using the dimensionless variables described in Ch. 2),

∂tuy = −Sux cos(ωt) +∇2uy − u · ∇uy − u0 · ∇uy − ∂yp . (4.1)

For a steady y-aligned roll, ux is approximately time-independent, uy is small in the absence

of shear, and ∂y ≈ 0. For high-frequencies and laminar flows, the dominant balance in eq. 4.1

is (see aside 4.1)

∂tuy ≈ −Sux cos(ωt), (4.2)

which implies uy ≈ −a0ux sinωt, such that the response is primarily elastic (out of phase

with the shear). We have confirmed that the amplitude of uy matches this prediction, and is

indeed approximately independent of ω in our simulations in this high-frequency regime. The

resulting effective viscosity (eq. 2.62)

νE ∝
1

ω

∫
〈uxuy〉 cos(ωt) dt (4.3)

therefore vanishes to leading order1.

1Since the
∫

sin(ωt) cos(ωt) dt = 0 when integrated over an integer number of cycles and 〈uxuy〉 ∼
〈ux〉〈uy〉 since 〈ux〉 is constant.
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Aside 4.1: Dominant balance for high-frequency shear

In order to obtain the dominant balance in eq. 4.1 in the high-frequency regime we

consider the following. Since the flow is laminar we can neglect the nonlinear term,

since we are considering an ey aligned roll there is no variation in this direction and so

we can neglect the pressure term and the term which represents advection of uy by the

background. This leaves us with

∂uy
∂t

=ν∇2uy − Sux cos(ωt) . (4.4)

Let us consider the balance between the time derivative and the shear term, since these

are the terms we claim are the dominant balance. We can then write

∂uy
∂t

=− uxa0ω cos(ωt) , (4.5)∫
∂uy
∂t

dt =− uxa0ω

∫
cos(ωt) dt (4.6)

=⇒ uy ∝uxa0 cos(ωt− π/2) , (4.7)

where we note that ux can be treated as constant. First we note that this predicts

that in the high-frequency limit that uy does not depend on ω which is consistent with

results from the simulations. We now have that Rxy ∝ uy ∝ cos(ωt − π/2) which

predicts that in the high-frequency limit that the Reynolds stress is out of phase by π/2

with the shear and has been found to agree with results from the simulations.

In order to ensure that this balance is indeed the correct one for the high-frequency

regime we must also consider the case when the viscous term balances with the shear.

Let us consider

uxS cos(ωt) = ν∇2uy , (4.8)

and convert to Fourier space by using

uy = ûye
i(k·x) cosnπz and ux = ûxe

i(k·x) cosnπz , (4.9)

where kx = nπ and we note that ûx is constant in time, to get

ûxa0ω cos(ωt) =− νk2ûy , (4.10)

=⇒ ûy ∝
a0ωûx
νk2

cos(ωt) . (4.11)

This predicts that uy scales linearly with ω which is in fact what we observe in the low

ω limit. Also, this has no phase lag with the shear which again is behaviour we observe

in the low ω limit rather than high ω. Finally, we have that Rxy ∝ uy ∝ cos(ωt) and

so

νE ∝
∫
cycle

cos2(ωt) dt , (4.12)

which has a finite value independent of ω and hence in agreement with the low ω results.
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From this we can say that the leading order balance in the low-frequency regime for ey

aligned rolls is that of eq. 4.8 while the high-frequency leading order balance is that of

eq.4.4.

To obtain the frequency scaling for the effective viscosity, we must therefore consider the

next largest terms in eq. 4.1. We may write2 uy = uy,0 +uy,1 + . . . , where uy,0 is the dominant

contribution just obtained, and uy,1 is the leading order correction. For laminar convection, we

suppose that uy,1 is dominated by the viscous term acting on the uy,0 component, and hence

∂tuy,1 ≈ ∇2uy,0, (4.13)

where uy,0 is given by eq. 4.7, implying uy,1 ∝ 1
ω cosωt. We thus obtain

νE ∝
1

ω

∫
〈uxuy〉 cos(ωt) dt ∝ 1

ω2
(4.14)

for the largest nonzero contribution. This scaling would also be expected if the nonlinear

and pressure terms (involving uy,0) were instead dominant in eq. 4.13 for uy,1 (instead of the

viscous term).

One weakness of this analysis is it is not directly applicable to ex aligned rolls. In order to

explore this problem further we instead turn to a more rigorous asymptotic analysis.

4.2 Asymptotic linear analysis for high-frequency tidal flows

We now extend upon the linear asymptotic analysis of Ogilvie & Lesur (2012) for high-frequency

oscillatory shear. We set out to provide a complementary analysis to explore further the

response at high frequency, and to validate the results of our simulations of laminar convection,

particularly the surprising appearance of negative effective viscosities. Our primary extension

is to incorporate buoyancy forces and to consider perturbations to the temperature field. This

was found to be necessary since Ogilvie & Lesur (2012) considered a flow driven by an imposed

body force that is divergence-free, but buoyancy forces in Rayleigh-Bénard convection do not

satisfy this property.

In order to aid comparisons with our modification and the original work of Ogilvie & Lesur

(2012), notes will be provided which reference equations from the Ogilvie & Lesur (2012). The

convention we will adopt in this section is to say ‘OL#’ to refer to the equation numbered #

from the unmodified version3 in Ogilvie & Lesur (2012). Since not all equations are numbered

we will adopt the convection that a decimal place will indicate counting from the last labelled

equation.

This section builds upon section 3 in Ogilvie & Lesur (2012) (see also Braviner 2015 who

corrects some typographical errors), and we adopt their notation and use the dimensional

equations for ease of comparison with their work. The momentum equation is (OL18 but

2This can be obtained formally by expanding in the small parameter ε = 1/ω, as is done in the next section.
3In the interests of clarity, one would read ‘OL12’ to mean ‘equation 12 in Ogilvie & Lesur (2012) and

‘OL4.2’ would be read as ‘the second non-numbered equation after equation 4 in Ogilvie & Lesur (2012).
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replacing fj with the buoyancy term)

(∂t + ui∂i)uj = −∂jp+ θδj3 + ν∆uj , (4.15)

where ∆ ≡ ∇2. The velocity field satisfies ∂iui = 0, and we incorporate the heat equation

(∂t + ui∂i)θ = N2uz + κ∆θ . (4.16)

We define horizontally-sheared coordinates (OL4)

x′ = x , y′ = y − a(t)x , t′ = t , a(t) = a0 sin(ωt) , (4.17)

so that partial derivatives transform according to (OL5 with inclusion of z derivatives)

∂x = ∂′x − a∂′y , ∂y = ∂′y , ∂z = ∂′z , ∂t = ∂′t − ȧx∂′y , (4.18)

and define the velocity components (OL6 with inclusion of uz)

ux = vx , uy = vy + ȧx , uz = vz. (4.19)

Eq. 4.16 gives us an extra equation to be used with OL7 and OL8. In sheared coordinates we

obtain the system

(
∂′t + vj(∂

′
j − aδj1∂′y)

)
vi + ȧvxδi2 = −

(
∂′i − aδi1∂′y

)
p

+ν(∂′j − aδj1∂′y)(∂′j − aδj1∂′y)vi + θδi3, (4.20)(
∂′t + vj(∂

′
j − aδj1∂′y)

)
θ = N2uz + κ(∂′j − aδj1∂′y)(∂′j − aδj1∂′y)θ, (4.21)(
∂′t − aδi1∂′y

)
vi = 0 . (4.22)

Since we are interested in small amplitude shear, we linearise the above equations in the shear

amplitude. The basic convective flow in the absence of the shear satisfies (our new versions

of OL18 and OL19 with an additional equation)

(∂′t + vj∂
′
j)vi = −∂′ip+ ν∆′vi + θδi3, (4.23a)

(∂′t + vi∂
′
i)θ = N2uz + κ∆′θ, (4.23b)

∂′ivi = 0 , (4.23c)

and the pressure satisfies (which now contains an extra term in comparison to OL20)

∆′p = ∂′zθ − (∂′ivj)(∂
′
jvi), (4.24)

where the linear operator4 ∆′ is defined by (OL8.1)

∆′ = ∆ + 2a∂′x∂
′
y − a2∂′2y . (4.25)

The presence of buoyancy forces here is the key difference compared with Ogilvie & Lesur

(2012).

4Note that this is the Laplacian operator but in the sheared coordinates.
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We also linearise in terms of vi, pi and θ (for example we write θ = θ̄+δθ) which means the

system eq. 4.23 becomes (OL21 but including the temperature equation and buoyancy term

in the momentum equation)

(∂′t + v̄j∂
′
j)δvi + (δvj∂

′
j − av̄x∂′y)v̄i + ȧv̄xδi2 =− ∂′iδp+ aδi1∂

′
yp̄− 2νa∂′x∂

′
yv̄i

+ ν∆′δvi + δθδi3 , (4.26a)[
∂′t + v̄i∂

′
i

]
δθ +

[
δvi∂

′
i − av̄x∂′y

]
θ̄ =N2δvz + κ∆δθ , (4.26b)

∂′iδvi − a∂′yv̄x =0 . (4.26c)

Note that in the interests of making expressions easier to read we drop the bar notation from

now on.

4.2.1 Application of the asymptotic expansion

We use the method of multiple scales, introducing a fast time variable to represent the rapid

shear, T ′ = t′/ε, where ε � 1 is a small parameter that characterises the ratio of convective

to shear frequencies5. We pose the asymptotic expansions (OL22 and OL23 with the inclusion

of an expansion for θ) for the perturbed parts of the linear expansion6 for each of vi, pi and θ

δvi = δvi0 + εδvi1 + ε2δvi1 + . . . , (4.27a)

δpi =
1

ε
δp0 + δp1 + εδp2 + . . . , (4.27b)

δθ =
1

ε
δθ0 + δθ1 + εδθ2 + . . . . (4.27c)

On substitution of eq. 4.27 into the momentum equation (eq. 4.26a) we find that the leading

order, O(ε−1), is

∂′T δvi0 + ȧvxδi2 = −∂′iδp0 + δθ0δi3 . (4.28)

Similarly for the continuity equation (eq. 4.26c) results in the leading order balance, O(1), of

∂′iδvi0 − a∂′yvx = 0 . (4.29)

Finally for the temperature equation (eq. 4.26b) the leading order balance, O(ε−2), is

∂′T δθ0 = 0 =⇒ δθ0 = constant (4.30)

but due to the boundary conditions we must have that

δθ0 = 0 . (4.31)

So the leading order equations are

∂′T δvi0 + ȧvxδi2 = −∂′iδp0 , (4.32a)

5Note that this means that quantities such as δθ and δvi are now functions of t′ and T ′ and so time
derivatives require application of the chain rule, i.e. ∂′T δθ → ∂′tδθ + ε−1∂′T δθ.

6For example we write θ = θ̄ + δθ.
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δθ0 = 0 , (4.32b)

∂′iδvi0 − a∂′yvx = 0 , (4.32c)

which are identical to OL24 and OL25.

We now consider the next order for the momentum equation and temperature equation7.

We have for the momentum equation at next order, O(ε0),

∂′T δvi1 + (∂′t + vj∂
′
j)δvi0 + (δvj0∂

′
j − avx∂′y)vi =− ∂′iδp1 + aδi1∂

′
yp

+ ν(∆′δvi0 − 2a∂′x∂
′
yvi) + δθ1δi3 , (4.33)

which is the same as OL32 except for the addition of the δθ1. Similarly for the temperature

equation to next order, O(ε−1), gives

∂′tδθ0 + ∂′T δθ1 + v̄i∂
′
iδθ0 = κ∆δθ0 (4.34)

but we have that δθ0 = 0 and so this is just

∂′T δθ1 = 0 =⇒ δθ1 = 0 . (4.35)

On careful examination of the temperature equation it becomes clear that δθn = 0∀n ∈ N.

Hence perturbations to the temperature field do not enter at any order with this choice of

asymptotic ordering.

4.2.2 An alternative θ expansion

We could also choose the expansion of θ in eq. 4.27 to be

δθ = δθ0 + εδθ1 + ε2δθ2 + . . . (4.36)

to match the expansion of the velocity term. To leading order in the momentum equation8

(eq. 4.26a), O(ε−1), using this expansion gives

∂′T δvi0 + ȧvxδi2 = −∂′iδp0 , (4.37)

where an important point to note is that neither θ or δθn, ∀n ∈ N0, appear in the momentum

at leading order (this will be important shortly). Since the continuity equation8, eq. 4.26c, is

unchanged and does not include θ or δθ we can immediately write the continuity equation to

leading order, O(ε−1), as

∂′iδvi0 − a∂′yvx = 0 . (4.38)

From the temperature equation8, eq. 4.26b, the leading order, O(ε−1), gives

∂′T δθ0 = 0 =⇒ δθ0 = constant (4.39)

7We need not examine the continuity equation any further as it is clear that our modification does not
affect it, thus the continuity equation will not differ from Ogilvie & Lesur (2012).

8Reminder that the bar notation is dropped to make the equations easier to read.
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but due to the boundary conditions we must have that

δθ0 = 0 . (4.40)

Thus we have the same as OL24 and OL25 and hence the same as eq. 4.32 using the other

expansion of δθ.

The next order, O(ε0), in the momentum equation gives

∂′T δvi1 + (∂′t + vj∂
′
j)δvi0 + (δvj0∂

′
j − avx∂′y)vi =− ∂′iδp1 + aδi1∂

′
yp

+ ν(∆′δvi0 − 2a∂′x∂
′
yvi) + δθ0δi3 , (4.41)

where we have left in δθ0 so it is clear that it enters at this order, and continuity (at O(ε0))

gives

∂′iδvi1 = 0 . (4.42)

Finally (although as we will see this is not required), the temperature equation at O(ε0) gives

∂′T δθ1 + ∂′tδθ0 + δvi,0∂
′
iθ − avx∂′yθ = N2δvz,0 + κ∆δθ0 , (4.43)

where the viscous term and the ∂′t terms are clearly zero since δθ0 = 0. Hence at first order

our equations are

∂′T δvi1 + (∂′t + vj∂
′
j)δvi0 + (δvj0∂

′
j − avx∂′y)vi =− ∂′iδp1 + aδi1∂

′
yp

+ ν(∆′δvi0 − 2a∂′x∂
′
yvi) , (4.44a)

∂′T δθ1 + δvi,0∂
′
iθ − avx∂′yθ =N2δvz,0 , (4.44b)

∂′iδvi1 =0 . (4.44c)

The key things to notice is that δθn,∀n ∈ N0, does not enter into the momentum at this

order and hence the result is identical to OL32. Thus, since this is the highest order we are

considering we know that we do not need to consider δθ with this expansion.

4.2.3 Calculating the effective viscosity and elasticity

The key result of both § 4.2.1 and § 4.2.2 is that we need not consider δθ. In fact the inclusion

of thermal effects only manifests in a modification to the pressure term, OL20. We will now

derive the modifications to Ogilvie & Lesur (2012) that are required to take into account

buoyancy.

As we have seen in § 4.2.1 and § 4.2.2, to leading order we obtain OL24 and OL25. The

linearised shear stress δRxy0 = 〈vxδvy0 + δvx0vy〉, therefore satisfies (OL29)

∂′T (−δRxy0) = −ȧ〈v2
x − 2(vx∂

′
y + vy∂

′
x)∂′y∆

′−1vx〉, (4.45)

where angled brackets denote a volume average. To obtain the perturbed shear stress at the

next order, which is necessary to obtain the effective viscosity, we note that since both of the

expansions in § 4.2.1 and § 4.2.2 agree with the first order expansion (OL32) we can start
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from OL33.1:

∂′T (−δRxy1) =〈vx(∂′t + vj∂
′
j)δvy0 + vy(∂

′
t + vj∂

′
j)δvx0

+ vx(δvj0∂
′
j − avx∂′y)vy + vy(δvj0∂

′
j − avx∂′y)vx

+ (vx∂
′
y + vy∂

′
x)δp1−avy∂′yp︸ ︷︷ ︸

− νvx(∆′δvy0 − 2a∂′x∂
′
yvy)

− νvy(∆′δvx0 − 2a∂′x∂
′
yvx), (4.46)

where δRxy1 = 〈vxδvy1 + δvx1vy〉, and where we have highlighted the only term that requires

modification due to our inclusion of buoyancy. The pressure is determined by

p = ∆′−1∂′zθ −∆′−1(∂′jvj)(∂
′
jvi) , (4.47)

which we can substitute into eq. 4.46 (note this is our modified version of OL20). The new

contribution to the highlighted term is ∆′−1∂′zθ, which becomes −avy∆′−1∂′y∂
′
zθ in eq. 4.46.

A second term arises from OL33.2 that has the form

−∆′−1(∂′yvx − ∂′xvy)(a∂′x∂′yp) , (4.48)

which on considering only the additional contribution due to buoyancy forces we obtain

−a∆′−1(∂′yvx − ∂′xvy)(∆′−1∂′x∂
′
y∂
′
zθ) , (4.49)

thus, equation OL33.3 will have additional terms of

−avy∆′−1∂′y∂
′
zθ − a∆′−1(∂′yvx − ∂′xvy)(∆′−1∂′x∂

′
y∂
′
zθ) , (4.50)

which need to be followed until OL33.6. The first step is to apply ∂′T which gives

−ȧ
(
vy∆

′−1∂′y∂
′
zθ + ∆′−1(∂′yvx − ∂′xvy)(∆′−1∂′x∂

′
y∂
′
zθ)
)

≡ −ȧGθ1 . (4.51)

We can write eq. 4.45 and OL33.6 with the new term in eq. 4.51 in the form

∂′T (−δRxy0) = ȧG0 , (4.52a)

∂′2T (−δRxy1) = −ȧ
(
G1 + Gθ1

)
, (4.52b)

where G0 and G1 are the same as OL40 and OL41 (see aside 4.2). These are the final results

required to obtain the effective elasticity and viscosity of the flow. These are straightforward

in principle to evaluate for laminar flows since the G quantities on the right hand side depend

only on the basic convective flow. Note that

SE = G0 , (4.53)

νE =
1

ω2
(G1 + Gθ1) , (4.54)
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to this order. These equations therefore indicate that for high-frequency shear, the leading

order response is a frequency-independent effective elasticity, and a weaker (effective) viscous

response that scales quadratically with (inverse) frequency. In principle, the G coefficents can

take either sign, depending on the basic flow. This is therefore a mathematical derivation to

justify why νE ∝ ω−2 for high-frequency shear. Note that this agrees with the Goldreich &

Nicholson (1977) scaling law, but the reasons are very different.

Aside 4.2: Complete forms of OL41 and OL41

For completeness we include the full expressions for G0 and G1 from Ogilvie & Lesur

(2012) accounting for the correction of a sign error highlighted in Braviner (2015). We

have that

G0 = A1jj1 − 2A1221 − 2A2121 (4.55)

and

G1 =− (B1jj1 −B1221 −B1122 + C1jj1 − C1221 + 3C1122

− 2D1jj221 − 2D2jj121 + 3D1jj221 + 3D1jj212

−Dijij1221 −Dijij1212 +Dijij22 + 4E2121 + 4E2112) , (4.56)

where

A =〈vi∂′j∂′k∆′−1vl〉 , (4.57)

Bijkl =〈(∂′tvi)∂′j∂′k∆′−2vl〉 , (4.58)

Cijkl =− ν〈vi∂′j∂′kvl〉 , (4.59)

Dijklmn =〈vivj∂′k∂′l∂′m∆′−2vn〉 , (4.60)

Dijklmnpq =〈vivj∂′k∂′l∂′m∂′n∂′p∆′−2vq〉 , (4.61)

Eijkl =〈vm(∂′m∂
′
n∆′−1∂′ivj)∂

′
n∆′−1∂′kvl〉 . (4.62)

In all there are 4 distinct terms for G0 that need to be evaluated and 62 for G1 (not

including our Gθ1 term). While in general this is highly complex, in the cases we explore

it turns out that the majority of these terms do not contribute.

4.3 Implementation of the asymptotic method

To evaluate these quantities (eq. 4.52) for a given convective flow for comparison with simu-

lations, we assume a set of individual convective modes which each satisfy

ux(kx, ky) = <
(
ûxeikxx+ikyy cos(πz)eσt

)
, (4.63a)

uy(kx, ky) = <
(
ûye

ikxx+ikyy cos(πz)eσt
)
, (4.63b)

uz(kx, ky) = <
(
ûze

ikxx+ikyy sin(πz)eσt
)
, (4.63c)

θ(kx, ky) = <
(
θ̂eikxx+ikyy sin(πz)eσt

)
, (4.63d)
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p(kx, ky) = <
(
p̂eikxx+ikyy cos(πz)eσt

)
. (4.63e)

We can linearise eq. 2.22a-2.22c to get

∂ux
∂t

= −∂p
∂x

+ ν∇2ux , (4.64a)

∂uy
∂t

= −∂p
∂y

+ ν∇2uy , (4.64b)

∂uz
∂t

= −∂p
∂z

+ ν∇2uz + θ , (4.64c)

∂θ

∂t
= −N2uz + κ∇2θ , (4.64d)

∇ · u = 0 ,

which we can then substitute for eq. 4.63 to eliminate9 ûx, ûy, θ̂ and p̂. We then have that

ux(kx, ky) = <
(
− ikxkzN

2

k2σκσν
ûze

i(kxx+kyy) cos(πz)eσt
)
, (4.65a)

uy(kx, ky) = <
(
− ikykzN

2

k2σκσν
ûze

i(kxx+kyy) cos(πz)eσt
)
, (4.65b)

uz(kx, ky) = <
(
ûze

i(kxx+kyy) sin(πz)eσt
)
, (4.65c)

θ(kx, ky) = <
(
− N2

σκ
ûze

i(kx+kyy) sin(πz)eσt
)
, (4.65d)

where σν = (σ + νk2), σκ = (σ + κk2), k2 = k2
x + k2

y + π2 and the growth rate σ can be

obtained from the dispersion relation for each case10. We can fit the amplitudes of each of

ux, uy, uz and θ separately, but still assuming a single linear mode for each variable, by taking

max(ux) (and similarly for other variables) within the domain. This in essence means we use

ux(kx, ky) = <
(
iûsimx ei(kxx+kyy) cos(πz)

)
, (4.66a)

uy(kx, ky) = <
(
iûsimy ei(kxx+kyy) cos(πz)

)
, (4.66b)

uz(kx, ky) = <
(
ûsimz ei(kxx+kyy) sin(πz)

)
, (4.66c)

θ(kx, ky) = <
(
θ̂simei(kx+kyy) sin(πz)

)
, (4.66d)

where •̂sim = max [<(•̂)] for each wavemode (kx, ky) of a given simulation. It should be noted

that in practice we take the average in time of the maximum. An alternative method is briefly

described in aside 4.3. Once the amplitudes of the quantities in eq. 4.66 have been evaluated

they can simply be plugged into the appropriate expressions eq. 4.53 to obtain SE and νE

for each wavemode. There are some subtleties to this method which are best described by

relevant examples.

9In order to obtain the expressions we consider the ez component of the divergence of the momentum
equation to obtain an expression for p̂ in terms of ûz as well as the temperature equation to obtain θ̂ in terms
of ûz. Both of these are then substituted into the ex and ey components of the momentum equation to get
ûx and ûy in terms of ûz.

10The dispersion relation in its nondimensional form can be found to be (k2 + σ)(k2 + σ/Pr)k2 = Rak2⊥
where k2⊥ = k2x +k2y. This can be evaluated simply for each given simulation, note that since this is a quadratic
in σ we get two solutions and we take the fastest growing case (that with the greatest magnitude real part).
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Aside 4.3: An alternative method

Since the results in Ch. 3 are just above onset, we can use eq. 4.65 so that only a single

value is needed for this fit (we chose to use the amplitude of ûz).

Note that this has also been tried, although not reported, as it obtains very similar

results for our cases. It might be expected that the chosen method would also be more

stable to increasing strength of non-linearities as it partly avoids the application of linear

theory when relating the amplitudes of the components (but still neglects generation of

any other kx, ky or nπ components).

In the cases presented in § 3.2.1 and § 3.2.2 the flow primarily consists of only a single

convective mode11. As such we can use our simulation snapshots (e.g. Fig. 3.1) to fit the

amplitude of the flow (such as ûz) and input this into a Mathematica script that calculates

the asymptotic predictions for νE and SE following § 4.2.

In the larger domain sizes of § 3.2.3, computing the asymptotic predictions using the ap-

proach outlined here is more difficult due to the presence of multiple modes that could each

contribute to νE . We can calculate the contribution from the most important modes by taking

a horizontal Fourier transform of a set of flow snapshots to determine the amplitude of each

Fourier kx, ky mode in the flow (selecting the maximum value over all z). The amplitude of

each mode may vary in time and so we use a suitable time-average to obtain these values. We

also convert quantities like N2 and ν to the forms used in the simulations. Once we have the

amplitude of ux, uy, uz and θ for each mode, we compute their contributions to νE separately

using the approach outlined above, and then sum up their contributions to obtain a prediction

for νE . We consider all modes which have a contribution within 3 orders of magnitude of the

dominant (typically the largest scale) mode, and we find large wavenumber modes contribute

less to νE . This approach is only expected to work for steady laminar convection near onset

(because the theory contains terms that depend on the derivative of the convective flow with

respect to time). However, the asymptotic theory in principle applies to more complex flows

if they can be adequately represented.

We have found that the new term Gθ1 is essential to obtain negative effective viscosities for

laminar convection. Note that it vanishes for y-aligned rolls, since ∂′y = 0. On the other hand,

for x-aligned rolls, ∂′x = 0, so only the first term in Gθ1 contributes. It turns out if we substitute

the form of each wavemode, eq. 4.66, into Gθ1 then we obtain

Gθ1 = vy∇′−1∂′y∂
′
zθ = −πky

k2
ûy θ̂ < 0 , (4.67)

since we take ûy and θ̂ as max(<[ûy]) and max(<[θ̂]) respectively. This demonstrates that

any purely x-aligned roll (kx = 0; ky = 2πny/Ly, ∀ny ∈ N0) will always result in a negative

contribution to the total Gθ1 . For a 3D convective mode, all terms in G1 could be important in

principle.

11Note that for x-aligned rolls, kx = 0, and for y-aligned rolls, ky = 0.
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4.4 Discussion

In order to help understand the results in Ch. 3 we have first outlined a simple derivation using

force balances to obtain crude explanations for the observed ω−2 scaling for an ey aligned roll.

This has also provided insight as to which terms in the momentum equation are dominant in

each of the low and high-frequency regimes. We have also extended the asymptotic analysis of

Ogilvie & Lesur (2012) to include buoyancy effects. This allows us to quantitatively predict the

amplitude and sign of the effective viscosity and elasticity for a given steady laminar convection

flow. We have obtained the important result that νE < 0 is a robust result obtained in both

theory and simulations (particularly for x-aligned rolls).

Summary: Key findings

In cases with ey aligned rolls we find that considering the balance of the time derivative

of the y-component of velocity and the shear term we are able to explain the νE ∼ ω−2

result of § 3.2.1. We also have that this is the leading order balance in the high-

frequency regime, while in the low-frequency regime it has been shown that the leading

order balance is between the shear terms and the viscous term (for uy component of

the momentum equation). This analysis is not applicable to ex aligned roll cases and

so we appeal to the multi-scale asymptotic method of Ogilvie & Lesur (2012) which we

modify to include buoyancy effects. Some important points about the method are as

follows:

� perturbations of θ are unimportant,

� the inclusion of the heat equation and buoyancy effects only acts to modify the

pressure gradient,

� expressions for SE and νE can be obtained which can be readily evaluated for

steady laminar flows,

� the inclusion of the buoyancy is able to predict the observed negative values of

νE and we have therefore confirmed our numerical results in Ch. 3 are robust.
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We will now expand on the study of Ch. 3 to consider more turbulent cases such that R� 1.

In such cases the flow can be described as turbulent and may exhibit a Kolmogorov cascade,

although this inertial range may be short. With more complex flow patterns we will also turn

our attention to more statistical approaches such as examination of kinetic energy spectra.

5.1 Parameter survey

In this chapter we will vary the scaled Rayleigh number R � 1, which measures the strength

of the convection, the tidal frequency ω and amplitude a0. All cases in this chapter will have

domain sizes of (Lx, Ly, d) = (2, 2, 1). The Prandtl number will be Pr = 1 except where it

has been explicitly stated (§ 5.2.2). Everything else, such as initial conditions, will be the same

as described in § 3.1.

These simulations are much more computationally demanding than those that only aim

to explore the dynamics of the convection, since we must integrate them for multiple tidal

periods and for many convective timescales to accurately probe the interaction between tides

and convection. This is the reason that we have limited our study to modest values of R ≤ 103

in this chapter.

5.2 More turbulent convection with R = 100 and R = 1000

The simulations of laminar convection described in Ch. 3 provide a starting point to explore

the interaction between tidal flows and convection. Those cases had the significant advantage

that the flow was sufficiently simple that we could compare our results with the independent

asymptotic analysis of Ch. 4. Since convection in stars is highly turbulent, it is important to

study more astrophysically relevant cases with much larger values of R. We begin by studying
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cases with R = 100, both with Pr = 1 and then with different Pr, before moving on to cases

with R = 1000.

5.2.1 R = 100 with Lx = Ly = 2

Figure 5.1: Flow in weakly turbulent simulations with R = 100, with ω = 5000
and a0 = 0.05, where ux is plotted in the left panel and uy in the right panel
at t = 90. The flow is three-dimensional but is dominated by x and y-aligned
convection rolls, which can be seen by the tendency for ux to align with y and uy
to align with x.

We now present results with R = 100, which corresponds with a weakly turbulent regime.

These simulations have (Lx, Ly, Lz) = (2, 2, 1), are run with (Nx, Ny, Nz) = (64, 64, 64), and

result in a fully three-dimensional time-dependent convective flow. We show this in a snapshot

with ω = 5000 at t = 90 in Fig. 5.1. The flow is qualitatively similar for all ω considered, and

consists of several modes, including both x and y-aligned rolls. This can be seen in Fig. 5.1 by

observing that ux preferentially aligns with y and uy aligns with x, indicating the dominance

of these rolls in the flow, even if other components are also present.

Aside 5.1: Computation of spectral flow structure

In order to compute the results of Fig. 5.2 we use

ui(nx, ny) =
1

2(T − T0)

∫ T

T0

∫ 1

0
ûi(nx, ny, z, t)û

∗
i (nx, ny, z, t) dz dt , (5.1)

where ∗ denotes the complex conjugate, hats represent horizontally (2D) Fourier trans-

formed quantities, ni = Liki/2π and i ∈ {x, y}. In practice the temporal resolution is

not as high as the one we use for global quantities (such as νE), however the integration

is performed over many time snapshots to reduce any bias.

We can determine the dominant (kx, ky) wavenumbers in the flow by evaluating the vertically

integrated and temporally-averaged horizontal power spectrum of |ûx|2 and |ûy|2, which we

plot in Fig. 5.2 for two different frequencies with ω = 10 and ω = 10000. We plot the integer

wavenumbers on each axis i.e. nx = Lxkx/2π and ny = Lyky/2π. This shows that the

flow at both low and high frequencies contains multiple modes, but that the x and y-aligned
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Figure 5.2: Vertically integrated
and temporally averaged horizon-
tal power spectrum of |ûx|2 (left)
and |ûy|2 (right) as a function of
(kx, ky) in simulations with R =
100 and a0 = 0.05, for two differ-
ent frequencies with ω = 10 and
ω = 10000 (top and bottom, re-
spectively). We plot the integer
wavenumbers on each axis i.e. nx =
Lxkx/2π and ny = Lyky/2π. The
flow is fully three dimensional but
is dominated by a small number of
large-scale modes.

convection rolls with (kx, ky) = (0, 2π/Ly) or (2π/Lx, 0) are dominant. We have run several

simulations with the same parameters with different random initial conditions and the flow has

a similar spectrum in each case with (Lx = Ly = 2).

Figure 5.3: Temporally-averaged
kinetic energy spectrum Ê(k⊥) as a
function of k⊥ in a simulation with
R = 100, a0 = 0.05 and ω = 1000.
This is representative of all simula-
tions with R = 100. The red line
represents the Kolmogorov scaling
(k−5/3) and the blue line shows the
de-aliasing scale.

In Fig. 5.3, we show the time-averaged and vertically-integrated kinetic energy spectrum1

Ê(k⊥) as a function of horizontal wavenumber k⊥ (computed by summing up the mode

energy in wavenumber rings of unit width in the (kx, ky)-plane, where k2
⊥ =

√
k2
x + k2

y). This

is computed using the horizontal Fourier transform of the velocity field. A more thorough

description of the computation of this spectrum will be given in Ch. 6 where the results will

be explored in more depth. This shows that the energetically dominant scales are those on the

size of the box, but that smaller scales are also present with non-negligible amplitudes. With

R = 100, the flow has a short inertial-like range, which can be seen by comparing the data

(black line) with the Kolmogorov (-5/3) scaling (red line). This figure also demonstrates that

our simulations are well-resolved horizontally, since the energy in wavenumbers close to the

de-aliasing scale (blue dashed vertical line) is more than 6 orders of magnitude smaller than

the peak.

Since the convective flow with R = 100 is non-steady, accurately computing the effective

viscosity (and elasticity) in this case is more challenging than for the laminar simulations.

1This is a spatial spectrum. We will frequently refer to spatial spectra through the terminology of “wavenum-
ber spectrum”
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Figure 5.4: Cumulative integrals used to compute νE based on eq. 2.62, ignoring
the factors outside the integral. Decreasing (increasing) behaviour indicates posi-
tive (negative) νE . The blue dashed line shows the linear fit used to compute νE ,
and the magenta dashed lines highlight the error, defined by 2σ from the mean
trend. Top: an example case in the low-frequency regime (ω . ωc) with ω = 120
where the effective viscosity is such that νE > 0. Bottom: an example case in
the high-frequency regime (ω & ωc) with ω = 1000 where the effective viscosity
is such that νE < 0.

We previously outlined our approach to determine νE in § 2.3.2 (also in aside 2.7), and in

Fig. 5.4 we show the results of computing the cumulative integral required to calculate νE as

a function of the end-times T , omitting the constant multiplicative factors outside the integral

in eq. 2.62. This figure shows an example with low frequency (ω = 120) and another with high

frequency (ω = 1000), along with the linear fit as the dashed blue line. The magenta dashed

lines denote the error bars defined at two standard deviations (σ) from the mean. Both cases

show temporal variability but exhibit a well-defined linear slope, indicating that the resulting

values for νE are well-converged. In this figure, since we have omitted the numerical factors

outside the integral in eq. 2.62, including the sign, a trend that is decreasing (increasing) in

Fig. 5.4 represents a positive (negative) effective viscosity. This means that the case with

ω = 120 has νE > 0 and ω = 1000 has νE < 0. The error bars are smaller for ω = 1000 since

the simulation has been run for more tidal periods. We have analysed similar plots in all of
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our simulations to ensure that νE is always well-converged.

Figure 5.5: Plot of νE versus ω
scaled by the convective frequency
ωc in simulations with R = 100.
Positive values are indicated by blue
symbols and negative values by red.
There is a clear transition from pos-
itive to negative values at ω/ωc ≈
10. At high ω (ω/ωc & 5), we again
find |νE | ∝ ω−2.

The results for νE are shown in Fig. 5.5, where we have scaled ω by the convective frequency.

Similar to the laminar simulations presented in Ch. 3, this case also has a frequency-independent

effective viscosity at low frequencies, with a transition to νE ∝ ω−2 at high frequencies. The

transition occurs at ω/ωc ≈ 5 (where ωc ≈ 64 in this case). The most surprising feature in

Fig. 5.5 is that the sign of νE changes at ω/ωc ≈ 10, with low ω having positive νE (plotted

using blue symbols) and large ω having negative νE (plotted using red symbols). The negative

effective viscosities at high frequencies are highly statistically significant. Indeed, the error bars

– obtained in the same way as those plotted in the bottom panel in Fig. 5.4 – on the points

with ω/ωc > 1 are very small because these simulations have been run for many hundreds of

tidal periods, indicating that the values of νE are very robust. This corroborates the tentative

finding that negative effective viscosities are possible at high frequencies obtained by Ogilvie

& Lesur (2012).

Also shown on Fig. 5.5 is a low-frequency fit based on mixing-length theory, where we have

used 1
20νe. The constant of proportionality is clearly smaller than the value (1/6) required

to fit our laminar results in Ch. 3, possibly because the convective length-scales are reduced

at higher Ra. It is possible that larger box sizes would permit larger wavelength convective

modes, which can enhance νE and lead to a constant of proportionality that is more consistent

with our laminar simulations. We will explore this issue in Ch. 6.

To explore further the occurrence of negative νE at high frequencies, we have also performed

a set of simulations in which the amplitude a0 is varied. These allow us to explore whether

the sign change in νE is related to the increasing amplitude of the tidal flow relative to the

convective flow i.e. to check whether we are still exploring the regime of linear tides at high

frequencies. We focus on simulations varying a0 near the transition, taking ω = 1000 (so that

ω/ωc ≈ 15). The resulting values for νE are shown in Fig. 5.6 as a function of a0. This shows

that νE < 0 for all ao ≤ 0.1, but that νE > 0 when a0 ≥ 0.1. The occurrence of negative

values with very similar magnitude for all cases with a0 ≤ 0.1, suggests that, for these values,

we are probing the regime of linear tides, since νE depends only very weakly on a0. However,
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Figure 5.6: Plot of νE versus a0 for
R = 100 and ω = 1000 (so that
ω/ωc ≈ 15.6) to explore the depen-
dence of our results on a0. Since νE
is approximately independent of a0

for a0 ≤ 0.1, this suggests that the
simulations in Fig. 5.5 are primarily
exploring the regime of linear tides.
For large amplitudes, the sign is ob-
served to change, potentially indi-
cating a departure from the linear
regime.

for larger amplitudes we obtain different results, with positive νE , suggesting that the largest

amplitude cases are no longer probing the regime of linear tides. Note that Ogilvie & Lesur

(2012) instead fix the shear (a0ω) in their simulations, so the concurrence of our results with

their observation of negative values at high frequencies also suggests that the transition to

νE < 0 in Fig. 5.5 is not caused by a transition out of the regime of linear tides.

Our observation of negative effective viscosities suggests the intriguing possibility of tidal

anti-dissipation due to the interaction between tides and convection. This means that energy

is transferred from the convective flow to the tidal flow, in opposition to the standard picture

in which the tidal flow is damped by its interaction with the convection. Unlike molecular

viscosity, there is nothing in principle preventing the effective viscosity from being negative,

even if this result is surprising (see aside 1.5).

Figure 5.7: Plot of the frequency
dependence of SE(ω) scaled by the
convective frequency ωc for simula-
tions with R = 100 and a0 = 0.05.
For all values of ω we obtain posi-
tive values.
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We plot the effective elasticity SE in Fig. 5.7. Similar to our laminar results in Fig. 3.4,

SE increases with ω until ω ≈ 5ωc, above which there is a transition to a regime in which

SE is independent of ω, with a possible enhancement for ω ∼ ωc. Note that there is no

change in sign and SE remains positive for all ω, unlike what we have observed in our laminar

simulations.

Figure 5.8: Iso-surfaces showing ν̃E , the spatial contribution to νE based on
eq. 5.2, where 80% of the maximum (blue) and minimum (red) values are shown
in two simulations ω ∈ {10, 10000} (top to bottom respectively) with R = 100
and a0 = 0.05. The maximum values are distributed in space but are primarily
localised near to the boundaries in z.

We would like to understand where in the domain the flow contributes the most to the

effective viscosity and also which scales are important. To explore this, we recorded the spatial

structure using at least ten snapshots per ω−1 in simulations with R = 100, a0 = 0.05 and
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ω ∈ {10, 100, 1000, 10000}. Fig. 5.8 shows the result from evaluating

ν̃E(x, y, z) =
−2

a0ω(T − T0)

∫ T

T0

ux(x, y, z, t)uy(x, y, z, t) cos(ωt) dt (5.2)

for the cases ω = 10 and 10000, where T0 and T are the start and end times of our simulation.

This is effectively evaluating eq. 2.62 in a point-wise sense before volume-averaging. Note

that νE = LxLyd〈ν̃E〉 where we note that 〈•〉 is a volume average2. We plot iso-surfaces

representing 80% of the maximum positive (blue) and negative (red) values of ν̃E within the

domain. This allows us to identify where in the domain contributes the most to both the

positive and negative values of νE .

The regions near to the boundaries in z clearly provide the dominant contribution to both

the positive and negative values of νE , at both low and high frequency. This is what we

might have expected based on the linear modes because we have adopted stress-free boundary

conditions and the convection is only weakly turbulent. There is no obvious pattern in the

spatial distribution of negative and positive contributions, nor is there an obvious change in

the spatial distribution between the low and high-frequency cases.

Figure 5.9: Temporally-averaged
and vertically-integrated
R̂xy(kx, ky) spectrum as a
function of integer wavenum-
bers nx = Lxkx/2π and
ny = Lyky/2π in four simulations
with ω = 10, 100, 1000, 10000
(top left, top right, bottom left,
bottom right, respectively), all
with R = 100 and a0 = 0.05.
This shows that the dominant
scales for the Reynolds stress are
the box-scale x and y-aligned
convection rolls, but that other
modes also contribute.

In order to determine the dominant spatial scales contributing to both positive and negative

values of νE , we performed a horizontal Fourier transform of the point-wise Reynolds stress.

The contribution to νE due to each (kx, ky) mode is given by

ν̂E(kx, ky) =
−1

2a0ω(T − T0)

∫ T

T0

R̂xy cos(ωt) dt , (5.3)

where T0 and T are the start and end times of our simulation. We have defined

R̂xy(kx, ky, t) =
1

4

∫ 1

0
ûx(kx, ky, z, t) û

∗
y(kx, ky, z, t) + c.c. dz , (5.4)

where c.c. denotes the complex conjugate and hats denote a horizontal Fourier transform.

Note that νE is obtained by summing up ν̂E(kx, ky) over all of the modes, and we have used

this to verify our method (some small differences remain due to the timestep being larger in

2Eq. 2.62 is computed from the volume averaged Reynolds stress and hence the equivalence.
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the data used to compute the spatial structure).

First we show a temporal average of R̂xy on the (kx, ky)-plane in Fig. (5.9), where the

axis values represent the integer wavenumbers. The largest-scale modes provide the dominant

contribution to νE , particularly the box-scale x and y-aligned convection rolls, though smaller

scales also contribute non-negligibly.

Figure 5.10: Spatial spectrum of
ν̂E (eq. 5.3) as a function of
the integer wavenumbers nx =
kxLx/2π and ny = kyLy/2π,
which represents the dominant con-
tributions to νE due to differ-
ent horizontal wavenumber modes.
The cases shown are all for R =
100 and a0 = 0.05, with ω =
10, 100, 1000, 10000 (top left, top
right, bottom left, bottom right, re-
spectively).

We plot ν̂E(kx, ky) on the integer (kx, ky)-plane in Fig. 5.10, which shows the contributions

due to each mode to νE . The higher frequency cases with ω ∈ {100, 1000, 10000} show that

the x-aligned roll (nx = 0, ny = 1) provides a negative contribution to νE , and the y-aligned

roll (nx = 1, ny = 0) provides a positive contribution. This is in accord with our expectations

based on laminar convection in § 3.2.1 and 3.2.2, as well as the theory in Ch. 4. The lowest

frequency case with ω = 10 behaves differently however, but this is a case where the theory

does not apply. In that case, the x-aligned roll component provides a positive contribution to

νE .

Finally, we show the temporal Fourier transform3, which we will refer to as the frequency

spectrum, of the volume-averaged Reynolds stress, R̃xy and kinetic energy Ẽ as a function

of frequency ω̃, where ω̃ is the angular frequency 2πf , in Fig. 5.11. These quantities are

shown for one low-frequency simulation with ω = 100 (with νE > 0) and one high-frequency

case with ω = 1000 (with νE < 0). The forcing frequency ω is indicated by the grey dashed

vertical line. This shows that when R = 100, the flow contains a wide range of frequencies,

and that there is a peak at the forcing frequency ω. We observe that ω = 100 coincides with

a part of the Ẽ spectrum with a shallow negative slope for a decade or so in ω̃, potentially

coinciding with an inertial range. On the other hand, ω = 1000 lies above a transition in

Ẽ to a steeper decay with ω̃, potentially indicating frequencies in the dissipation range. We

speculate that the sign of νE may be related to whether ω lies in the inertial (positive νE)

or dissipative (negative νE) frequency range. If this is true then higher R would result in

an inertial range that extends to higher frequencies, hence we would require a larger value

of ω to obtain negative νE . Although our findings of negative νE values are robust for high

frequencies, it would be worth simulating more turbulent cases with larger R to explore this

further. Indeed, we will explore this issue further in Ch. 6.

3A more in depth description of the temporal Fourier transform will be given in Ch. 6.
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Figure 5.11: Temporal power spectrum of Reynolds stress R̃xy (top row) and
kinetic energy Ẽ (bottom row) as a function of frequency ω̃ for one low-frequency
case with ω = 100 (left column) and one high-frequency case with ω = 1000 (right
column). The black dashed line highlights the respective convective frequency
while the dashed grey/blue line highlights the shear frequency.

5.2.2 Effects of varying Pr

Our simulations until now have all adopted Pr = 1, which is the most convenient choice

computationally. In stellar interiors however, Pr � 1 (e.g. 10−6 at the base of the solar

convection zone), and in the mantles of terrestrial planets, Pr > 1. It is therefore important

to determine how changing Pr modifies our results. This is particularly important because the

theory in Ch. 4 identifies the key role of the temperature perturbation in producing negative

values for νE . To do this, we have performed two sets of additional simulations with R = 100

with both Pr = 0.1 and Pr = 10. We show the ux and uy velocity field in a snapshot from

an illustrative simulation with each Pr in Fig. 5.12, which can be compared with the Pr = 1

case in Fig. 5.1.



CHAPTER 5. TIDES AND TURBULENT CONVECTION IN SMALL DOMAINS 85

Figure 5.12: Snapshot of ux (left) and uy (right) for R = 100, a0 = 0.05,
ω = 1000, at time t = 175, with Pr = 0.1 and Pr = 10 (top and bottom,
respectively). This can be compared with Fig. 5.1 and shows the effects of varying
Pr on the flow.

Aside 5.2: The Prandtl number

As is clear from eq. 2.28, the Prandtl number is the ratio of viscous to thermal diffusion.

What is less obvious is what this means for the behaviour of the fluid. The first important

thing to note is that this quantity is a material measure which does not depend on the

geometry or boundary conditions of the problem.

For flows with large Prandtl number, Pr � 1, the flow is dominated by the viscous

term while small Prandtl number, Pr � 1, the flow is dominated by the advective

and convective nonlinearities. For a fixed Rayleigh number an increase of the Prandtl

number tends to lead to weaker fluctuations in the velocity (flow structures larger

than thermal structures) while a decrease tends to lead to more turbulent flows (flow

structures smaller than thermal structures). Astrophysical examples of a high and low

Prandtl number flow is that of the mantles of terrestrial planets and the interiors of

stars respectively.

For more detail on the effects of Prandtl number see Goluskin (2016); Verma (2018).

We show the frequency-dependence of the effective viscosity from these simulations in

Fig. 5.13. This figure can be compared with the simulations with Pr = 1 in Fig 5.5. To
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Figure 5.13: νE(ω) as a function
of frequency using the convective
frequency scaling ωc for two cases
with Pr ∈ {0.1, 10} with R = 100
and a0 = 0.05. This shows qualita-
tively similar behaviour to Fig. 5.5.
Positive values are indicated by blue
symbols and negative quantities by
red. We have used α = 1/6 for
the low-frequency constant of pro-
portionality.

allow these simulations to be most clearly distinguished, we have not re-scaled the y-axis νE

values, and our use of the thermal timescale as our unit of time in the governing equations

means that νE is expected to move upwards as we increase Pr if this scales in the way predicted

by mixing-length theory (νE ∝
√

Ra Pr, see aside 2.4). We also plot the mixing-length scaling

that fits our laminar simulations (1
6u

rms
z ) as the horizontal dashed lines in this figure.

For both Pr = 0.1 and 10 we also obtain a frequency-independent νE for ω/ωc . 5,

which transitions to νE ∝ ω−2 at higher frequencies. At low frequencies, the simulations with

Pr = 10 most closely agree with the mixing-length scaling obtained in our laminar simulations,

in comparison with the simulations with Pr = 0.1, which has slightly smaller values of νE . This

is presumably because the velocity field in the case with Pr = 0.1 contains more smaller scale

eddies, as we can see by comparing the top and bottom panels of Fig. 5.12. When Pr = 0.1,

νE transitions to negative values for ω & 10ωc, similar to our previously-presented cases with

Pr = 1. On the other hand, our simulations with Pr = 10 do not exhibit a transition to

negative values in this range of ω. The occurrence of negative effective viscosities at high

frequencies may provide support that such values could be possible in stellar interiors, where

Pr is small.

5.2.3 R = 1000 with Lx = Ly = 2

We now move on to analyse more turbulent simulations with R = 1000 and a0 = 0.05 with

Pr = 1. We use a resolution of (Nx, Ny, Nz) = (128, 128, 64), which was found to be sufficient

for the flow to be well-resolved. In these cases, the flow is fully three dimensional and time-

variable. We show the ux and uy components of the flow in a snapshot at t = 175 in a

simulation with ω = 50000 in Fig. 5.14. We also plot the wavenumber (horizontal power)

spectrum of the kinetic energy Ê(k⊥) as a function of k⊥ in Fig 5.15. The flow consists of

many modes, though the box-scale rolls are still energetically dominant.

The effective viscosity is plotted as a function of frequency in Fig. 5.16. This shows very

similar behaviour to R = 100 (Fig. 5.5) in that νE remains approximately independent of
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Figure 5.14: Plots of the ux (left) and uy (right) components of velocity for the
cases R = 1000, a0 = 0.05, ω = 50000 and t = 21.

Figure 5.15: Kinetic energy spec-
trum for a simulation with R =
1000, a0 = 0.05 and ω = 1000.
The Kolmogorov scaling (−5/3) is
shown as the red dotted line and the
aliasing scale is shown as the blue
dashed vertical line.

ω for ω . 5ωc. When ω & 10ωc, there is a transition to negative values with magnitudes

falling off such that |νE | ∝ ω−2. As with the simulations in § 5.2.1, we find that νE is

smaller than we would expect based on extrapolating the mixing-length scaling that applies

to our laminar simulations. Indeed, νE is less efficient than (d/6)urms
z (where d = 1 in our

nondimensionalization), which was previously found to describe the laminar simulations. This

is potentially due to the dominant length-scales being smaller than d. It is unclear whether

larger horizontal boxes would lead to larger νE values, and this will be explored in Ch. 6.

We show the effective elasticity (SE) as a function of frequency in Fig. 5.16. This shows

similar behaviour to the results for R = 100 shown in Fig. 5.7, in that for ω & ωc we find that

SE becomes independent of frequency. However, in the low-frequency regime, when ω . ωc,

SE exhibits non-monotonic behaviour in this case. It is worth noting that the evaluation of

SE for low frequencies is increasingly sensitive to error4, making this regime difficult to probe.

We show the spectrum of ν̂E(kx, ky) on the integer (kx, ky)-plane for the simulation with

ω = 1000 (with ωc ≈ 178) in Fig. 5.17, which shows the contributions to the effective viscosity

due to the various modes. Multiple modes contribute to the effective viscosity in this case, but

the x-aligned (y-aligned) roll continues to provide a dominant negative (positive) contribution.

4This sensitivity comes from considering the integral used in evaluation of SE , eq. 2.73, where in cases with
small ω we require time averaging over many tidal periods. This is exasperated by the small values of SE in
this regime.
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Figure 5.16: Plots of SE(ω) (left) and νE (right) scaled by the convective fre-
quency ωc for various simulations with R = 1000 and a0 = 0.05. The effective
elasticity is found to be positive for all values of ω explored. For the effective
viscosity, positive quantities are indicated by blue symbols and negative quantities
by red. We also denote an ω−2 power law to the high-frequency regime where
ω > ωc by a purple dotted line.

Figure 5.17: Spectrum of ν̂E as a func-
tion of integer (kx, ky) for a simula-
tion with R = 1000, a0 = 0.05 and
ω = 1000. The largest and smallest
amplitude is indicated above the fig-
ure.

In this case the 3D modes also contribute appreciably.

Our simulations with R = 100 and R = 1000, and those with R = 100 with smaller Pr,

indicate broadly similar results. Further work is required to explore more turbulent regimes

with larger values of R, as well as simulations with larger boxes (see Ch. 6), to explore the

robustness of these results.

5.3 Discussion

We will now discuss the results of Ch. 3 and this chapter which explore laminar and turbulent

convection and its interaction with a prescribed tidal flow in a small domain.

Our simulations have demonstrated that the effective viscosity describing the damping (or

otherwise) of large-scale tidal flows through their interaction with convection exhibits two (or

possibly three) regimes. For low tidal frequencies such that ω . 5ωc, we obtain a frequency-

independent νE , which approximately agrees with the eddy viscosity from the mixing-length

theory of convection (to within a constant factor e.g. Böhm-Vitense 1958; Zahn 1989). When
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ω & 5ωc, we observe that νE ∝ ω−2, implying a significant reduction in the effective viscosity

at high frequencies (e.g. Goldreich & Nicholson 1977). In the high-frequency regime, we also

observe νE to become negative, indicating the intriguing possibility of tidal anti-dissipation.

Broadly, our results are consistent with Ogilvie & Lesur (2012) and Braviner (2015), but we

used a different setup to model the convection.

R α =
(
νE
urms
z

)
β = νEω2 urms

z

2x 0.160 674 5.50

2y 0.163 631 5.47

2 (4× 4× 1) 0.355 360 4.25

5x 0.174 5079 13.44

5y 0.174 3691 13.44

10x 0.146 13882 22.86

10y 0.150 10921 22.88

100 0.051 17002 64.44

100 (4× 4× 1) 0.193 20842 48.87

1000 0.033 622001 178.09

Table 5.1: Table listing values and scalings for the effective viscosity as a function
of R in both the low and high-frequency regimes, as well as the typical rms vertical
velocity. For the laminar simulations, in the first column we use a subscript on the
R value to indicate whether the flow consists of x or y-aligned convection rolls.
The values of ūrms

z are obtained by taking an average over all simulations with
this value of R (and roll orientation) for ω < ωc.

In Table 5.1, we list the values of α and β used to fit νE = αūrms
z d in the low-frequency

regime, and νE = βω−2 in the high-frequency regime. In Fig. 5.18 we also show a comparison

of the vertical convective velocity with the mixing-length scaling as a function of R (taking

an average over all simulations with this value of R). This shows that the convective velocity

approaches a diffusion-free mixing-length scaling (ūrms
z ∝

√
R) for R & 10. On the other

hand, we observe a departure in νE from the mixing-length expectation, with α depending on

R, tending to decrease as R is increased. We speculate that this may be due to the convection

being constrained by the horizontal box size in the simulations with the largest R. Evidence

in favour of this hypothesis includes the value of α increasing in simulations with R = 100 as

we increase the box size from Lx = Ly = 2 to Lx = Ly = 4, as listed in Table 5.1, in addition

to the energy spectrum in e.g. Fig. 5.15. Simulations with larger Lx and Ly are required to

explore this issue further, and these will be described in Ch. 6.

Our observation that νE ∝ ω−2 when ω � ωc is robust as to whether we simulate laminar

convection, with only one scale, or turbulent convection with many (spatial and temporal)

scales. Furthermore, our results demonstrate that the largest spatial scales (locally) are those

that primarily contribute to the effective viscosity. The phenomenological arguments of Goldre-

ich & Nicholson (1977), which extended Zahn (1966) to a turbulent flow with a Kolmogorov

spectrum, assumed that only eddies with turnover times faster than the tidal period, corre-

sponding with short spatial scales, contribute to the effective viscosity (see § 1.3.3). This

argument is at odds with our finding that it is the largest spatial scales that dominate this

interaction. Therefore, even though we obtain a quadratic frequency reduction like Goldreich

& Nicholson (1977), our simulations do not support their theoretical arguments for the reason
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Figure 5.18: Comparison of the rms
vertical convective velocity with
the mixing-length scaling, plotting
ūrms
z /
√
R as a function of R. This

indicates a trend towards ūrms
z ∝√

R for large enough R.

behind this scaling. It would be worth exploring further the fundamental mechanism that re-

sults in the attenuation of the effective viscosity, perhaps by building upon the theory in Ch. 4.

We will revisit this issue in Ch. 6.

It is worth pointing out that in our more turbulent simulations the magnitude of the negative

values of νE is smaller than the molecular viscosity νmol (which is equal to one in each of the

figures with Pr = 1) in the high-frequency regime. Whether or not the negative values would

become important in reality for tidal evolution depends partly on whether νE increases with R

in the high-frequency regime so that it exceeds νmol. In our cases with larger R the negative

values of νE increase as R is increased (see Table 5.1), but these values remain smaller than

ν. If this remains the case at larger R, the negative νE values would not be astrophysically

significant for tidal evolution. In our limited exploration into the effects of changing Pr we

found that decreasing Pr results in similar negative values for νE at high frequencies to the

case with Pr = 1, but this remains to be confirmed in a more extensive parameter survey.

Our simulations adopted the Boussinesq approximation, which means that they are strictly

applicable to studying the local interaction between convection and tidal flows on scales that

are much smaller than a pressure scale height. In stars, the convective velocities (and length-

scales) vary with radius, typically increasing (decreasing) as we approach the stellar surface,

where the validity of a Boussinesq model will eventually break down. However, our results do

indicate that the effective viscosity will be maximised, and therefore tidal dissipation will be

dominated, by radii for which ω . 5ωc, which typically involve radii closer to the stellar surface

than to the base of the convection zone. This issue will be explored further in Ch. 7.

Another caveat of our model is that we have followed Ogilvie & Lesur (2012) in only

simulating one component of the tidal flow, corresponding with an oscillatory shear flow. In

reality (even in a non-rotating homogeneous body with a circular companion), the tidal flow

would contain additional components as we discussed in Ch. 2. We have not demonstrated

in this thesis whether these other components would behave in a similar manner to produce

negative values for νE , and this would be worth exploring further.
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Summary: Key findings

Note that this summary is for the turbulent cases only and can be combined with that

of the laminar cases presented in Ch. 3.

� Low ω regime (ω < ωc),

– νE is frequency independent (consistent with the constant time lag, § 1.3.1),

– νE is strictly positive,

– SE follows a polynomial power law.

� High ω regime (ω > ωc),

– νE ∝ ω−2 (consistent with the quadratic reduction model, § 1.3.3),

– νE transitions from positive to negative with increasing ω,

– SE is frequency independent.

� In both regimes the largest scales dominate the contribution to νE ,

� SE follows the laminar findings for ey aligned rolls.
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Chapter 6

Interaction between tides and

turbulent convection in large domains
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The purpose of this study is to build upon previous chapters, which explored the interaction

between Rayleigh-Bénard convection and an oscillatory tidal-like flow in Cartesian domains,

by exploring larger domain sizes and by performing a much wider parameter survey. Despite

the results of Ch. 3-5 agreeing with the power law proposed by Goldreich & Nicholson (1977)

for high frequencies, our observation that the largest scales dominated the effective viscosity

differs from the mechanism proposed in their theory. Indeed, in Ch. 5, we found that the largest

scales were comparable with the domain size, and thus an investigation into the impact of any

constraints of adopting such a limited domain size is important. Our wider parameter survey

will also enable us to explore the effective viscosity not just for the highest forcing frequencies,

but over a wide range of astrophysically relevant frequencies. As well as investigating larger

domains, and guided by Penev et al. (2009b) and Vidal & Barker (2020b) we explore further

the turbulent statistics of the convection, both with and without the tidal shear. This will

enable us to determine if the nature of the turbulence, and its statistical properties, is key to

understanding the frequency-dependence of the effective viscosity. If so, this would provide an

important advance in our understanding of this mechanism.

Between the work presented in Ch. 3-5 and the work in this chapter another relevant paper

was published, Vidal & Barker (2020b). The authors explored the effective viscosity dependence

within a sphere which was homogeneously heated1. The model used studied the full tidal flow

in a homogeneous star/planet of eq. 2.19 rather than the single component that we consider.

They recovered the νE ∝ ω−2 power law in the high-frequency regime. More interestingly they

observed hints at a frequency dependence in what was referred to as the “anomalous range”

which suggested an ω−1 scaling. They also showed hints that this may be connected to the

1Essentially what this means is that instead of a heat source at some boundary there is heating throughout
the domain.
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frequency spectra but due to the computational cost of these simulations were not able to

probe sufficiently low frequencies to demonstrate this conclusively.

A summary of relevant findings up to the time of the work in this chapter can be found in

table. 6.1.

6.1 Preliminaries

As with the work in Ch. 3 and 5 we will find it helpful to evaluate the 1D horizontal wavenumber

spectrum (spatial), which we will now provide a more rigorous description of. To obtain this

we first Fourier transform the three velocity components in the two horizontal directions to

obtain the discrete version of (j = x, y or z)

ûj(kx, ky, z, t) =

∫ ∞
−∞

∫ ∞
−∞

uj(x, y, z, t)e
i(kxx+kyy) dx dy. (6.1)

The 1D horizontal energy spectrum is then defined by writing kx = k⊥ cos θ, ky = k⊥ sin θ,

time-averaging and vertically integrating, so that

Ê(k⊥) = lim
T→∞

1

2T

∫ T

0

∫ 1

0

∫ 2π

0
(ûxû

∗
x + ûyû

∗
y + ûzû

∗
z) k⊥ dθ dz dt. (6.2)

Here •̂ defines Fourier transformed quantities, •∗ defines complex conjugates.

In our simulations, kx and ky take on the discrete values

kx =
2πnx
Lx

, ky =
2πny
Ly

, (6.3)

where nx and ny are integers (smaller than or equal to Nx/2 = Ny/2), so we approximate

eq. 6.2 by considering rings with fixed width in wavenumber space. In simulations with various

Lx = Ly for each R we select the number of k⊥ values N⊥ = N largest
x where N largest

x is the

number of kx values in the largest domain with length2 Llargest
x . We also pick the maximum

kx value in the largest domain to evaluate k⊥. We then define the set of k⊥ values to be

k⊥ =

{
2πn⊥

Llargest
x

: n⊥ ∈ N0 < N⊥

}
(6.4)

so that each ring has width 2π/Llargest
x . For each ring we identify the set K of integer pairs

(nx, ny) such that (kx, ky) lies inside the k⊥ ring,

K =

{
(nx, ny) :

2πn⊥

Llargest
x

≤ 2π

√
n2
x

L2
x

+
n2
y

L2
y

<
2π(n⊥ + 1)

Llargest
x

}
. (6.5)

We note that some of the k⊥ bins contain no kx , ky values, and in such cases we remove this

bin and interpolate between the adjacent bins.

2This was not required in Ch. 5 where we did not make comparisons of the spectrum between domain sizes,
as such in Ch. 5 we simply use N⊥ = Nx.
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Our numerical approximation to the 1D horizontal energy spectrum is then

Ê(k⊥) =
1

2(T − T0)

∑
(nx,ny)∈K

∫ T

T0

∫ 1

0
ûxû

∗
x + ûyû

∗
y + ûzû

∗
z dz dt. (6.6)

Note that every wavenumber pair (kx, ky) falls in exactly one ring, so the sum of Ê(k⊥)

over all k⊥ rings exactly equals the sum over all horizontal wavenumber pairs. Our algorithm

therefore partitions all of the temporally-averaged and vertically-integrated energy into bins

which correspond approximately to a horizontal wavelength 2π/k⊥. This allows us to examine

the energy contained in the various horizontal length-scales.

Ch. 5 as well as previous numerical work (Penev et al. 2009b; Vidal & Barker 2020b) has

suggested that the frequency spectrum (temporal) of the kinetic energy, and/or Reynolds

stress, may be important for determining the frequency dependence of the effective viscosity.

In particular, it appears that for a certain “intermediate” range of frequencies (meaning for

an interval around ω ∼ ωc), the Reynolds stress frequency spectrum may have the same

frequency dependence as the effective viscosity (Vidal & Barker, 2020b), though this has not

yet been demonstrated for low frequencies, and the spectrum may depend on the nature of the

convection (e.g. Penev et al., 2009b). Therefore, we evaluate the frequency spectrum, which

is a commonly used diagnostic in turbulent convection (e.g. Ashkenazi & Steinberg 1999;

Kumar et al. 2014; Kumar & Verma 2018), by computing

Γ̃(ω̃) =

∫ ∞
−∞

Hw(t) 〈Γ〉(t) eiω̃t dt with Γ = (E,Rxy) , (6.7)

where 〈Γ〉 is the volume-averaged kinetic energy E or Reynolds stress Rxy, Hw is the Hann

window function (Oppenheim & Schafer, 2010) which we have applied in order to reduce

spectral leakage, and ω̃ is the angular frequency. We present the frequency spectra with

application of a 20-point moving average in order to clean up the signal. We will later plot

these spectra by scaling ω̃ by the convective frequency ωc. For completeness we note that the

kinetic energy is evaluated using

E(t) =
1

2LxLy

∫ Lx

0

∫ Ly

0

∫ 1

0
u · u dz dy dx . (6.8)

Despite Ch. 3-5 and previous work (see table. 6.1) finding agreement with Goldreich &

Nicholson (1977) that νE ∝ (ωc/ω)2 for high-frequency tidal forcing, i.e. ω � ωc, the

mechanism they proposed has not been explored in detail. In particular, Goldreich & Nicholson

(1977) proposed that with a short tidal forcing timescale τT the resonant eddies would have

a small length-scale λ and small typical velocity uλ corresponding to the values expected in a

Kolmogorov cascade, λ/lmlt ∼ (τT /τconv)
3/2 and uλ/u

mlt ∼ (τT /τconv)
1/2 giving an effective

eddy viscosity νE ∼ λuλ ∼ (τT /τconv)
2 ∝ (ωc/ω)2 (see § 1.3.3). However, Ch. 5 hinted

that this argument may not be correct, since the large-scale energetically dominant convective

modes appear to contribute the most to the effective viscosity, and the contributions appeared

to fall off rapidly with increasing wavenumber. One shortcoming of our previous analysis was

that the convection was intentionally simulated in a small horizontal domain (to enable a

more straightforward comparison with asymptotic theory), but this artificially constrained the

turbulent state, as the most energetically dominant modes were always at the box scale in
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these simulations. In this chapter, we revisit this issue with simulations in wider horizontal

domains that are “more turbulent”, and present an analysis of the time-averaged and vertically-

integrated wavenumber (spatial) spectrum of the kinetic energy, Ê(nx, ny), and Reynolds

stress, R̂xy(nx, ny), where ni are the integer wavenumbers ni = kiLi/π, and i = x or y. With

this we are able to evaluate contributions to the effective viscosity from each wavenumber

in the flow, enabling us to directly test the mechanism proposed by Goldreich & Nicholson

(1977).

6.1.1 Parameter survey

In this work we explore the behaviour of four of the key parameters in the problem. Our

main focus is the frequency dependence of the effective viscosity νE(ω). Our new simulations

build upon Ch. 3 and 5 by simulating wider horizontal domains (Lx, Ly > 2), leading to “more

turbulent” convection for a given R, and by exploring further the low-frequency regime, ω < ωc.

The parameters of simulations presented in this chapter are summarised in Table 6.3 where

the data for Lx = Ly = 2 is the same as that presented in Ch. 3 and 5 for cases with Pr = 1.

Further, we note that all simulations presented in this chapter have Pr = 1. This brings the

total number of simulations performed in this study to be in excess of 700. The strength of

the convection is varied by varying R. Due to the demanding nature of these simulations,

which for convergence of νE are required to be integrated for multiple tidal periods (in some

cases this means hundreds of diffusion times), we are again limited to values of R ≤ 1000,

which is much smaller than the values expected in stars3. We therefore hope to find robust

features in our simulations that can be extrapolated to real stars or planets. We also revisit

here the dependence of νE on tidal amplitude a0. Everything else, such as initial conditions,

will be the same as described in § 3.1.

6.2 Results

6.2.1 Convection without shear

We begin our investigation by considering convection in the absence of oscillatory shear. In

particular, for reasons that will become clear later on, we are interested in the wavenumber

(eq. 6.6) and frequency spectra (eq. 6.7) of the kinetic energy (eq. 6.8) and Reynolds stress

(eq. 2.52) and how these vary as the strength of the convective driving R, and domain size

Lx = Ly are varied.

We compute the wavenumber spectrum of the kinetic energy as described by eq. 6.6 for

R ∈ {2, 100, 1000} and various domain sizes Lx = Ly ∈ {2, 4, 8, 12, 16, 24, 32}. The results

can be seen in Fig. 6.1. We ensure that the resolution per unit length for a given R is held

constant in all but the smallest domains, which are slightly better resolved. This ensures that

the de-aliasing scale, defined by kalias⊥ = 2πNx/(3Lx) (where Nx is the number of grid-points

in the x direction), occurs for the same value of k⊥. These simulations have been found to be

well resolved by comparing the spectra for various resolutions.

From these results we observe an energetically dominant peak in the spectrum at k⊥ ≈ 2

3The convection zones of Sun-like stars are expected to have Ra ∈ [1021, 1024] and Pr ∈ [10−7, 10−3] (e.g.
Hanasoge et al., 2016).
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Figure 6.1: Time-averaged and vertically-integrated kinetic energy spectra, Ê, as a
function of horizontal wavenumber k⊥, for R ∈ {2, 100, 1000} (denoted by dashed,
solid and dot-dashed lines, respectively) and various domain sizes (see legend) for
convection in the absence of oscillatory shear (a0 = 0). These spectra are visually
indistinguishable (above the inherent variability within the convection) when a
weak tidal shear is applied. The thick grey lines show the classical Kolmogorov
−5/3 power law for the turbulent cascade of energy, for reference. The inset
panel shows that the vertical convective velocities obey the classical diffusion-free
mixing-length scaling derived in Ch. 2, for which urms

z ∝
√
R (Spiegel, 1971). We

note this data for the fixed domain size of (8, 8, 1) corresponding to the cases
displayed in Fig. 6.2.

(which, we note, is similar to the onset wavenumber π/
√

2), which corresponds to a length-

scale of Lpeak ≈ 3, for each value of R. In cases with smaller Lx (such as those presented

in Ch. 3 and 5), the energy is instead preferentially dominated by the largest wavelengths in

the box. The spectrum in smaller domains is similar to those in larger domains except for the

smallest k⊥ values.

In the more turbulent cases with R ∈ {100, 1000}, we can see from Fig. 6.1 that they

possess identifiable inertial ranges that extend from the peak of the spectrum until k⊥ ≈
(20, 30), respectively, which are consistent with the classical Kolmogorov −5/3 power law

(e.g. Kolmogorov, 1941; Davidson, 2015). For even higher k⊥, we observe a dissipation range

in which the energy falls off faster with k⊥. The cases with R = 2 for all domain sizes

are laminar and lack a clear inertial range. We show in the inset panel of Fig. 6.1 that the

convective velocities obey the classical diffusion-free scaling of mixing-length theory, such that

urms
z ∝ R0.5 (see aside 2.4 noting that we have Pr = 1).

We note that in order to make fair comparisons the spatial resolution has been chosen such

that the aliasing scale takes the same value of kx , ky. The result of this is that in the larger

domains there are more kx , ky pairs to be distributed in the k⊥ bins, which we note we have

fixed for each R case. As such the smaller domains have lower resolution in k⊥ space than the

larger domains despite being equivalently resolved in real space, hence the increased variation

in the spectrum for smaller domains. Various statistics for these cases can be seen in Table 6.2,

which show that we attain convergence for sufficiently large Lx = Ly.

We next compute the frequency spectrum of the kinetic energy, as described by eq. 6.7,

for various cases with R ∈ {50, 70, 100, 200, 300, 500, 700, 1000} and a fixed domain size of
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Figure 6.2: Frequency (temporal) spectra of the volume-averaged kinetic energy
for various values of R (see legend), with a domain size of (8, 8, 1) in the absence of
oscillatory shear. The solid lines highlight the scaling expected in the inertial range
of (ω̃/ωc)

−2 for a Kolmogorov cascade. For frequencies above those in the inertial
range, we observe a power law decay of magnitude greater than −2 which can be
attributed to the dissipation range (beyond which lies high-frequency noise). The
dotted lines represent the (ω̃/ωc)

−0.5 power law that exists at frequencies lower
than the inertial range until a flattening of the spectrum at very low frequencies
(corresponding with white noise). We note that the displayed spectra represent
smoothed 20-point moving averages of the full spectrum to reduce noise. The
inset panel is an example of the frequency spectrum for the case of R = 100
before smoothing.

Figure 6.3: The same as Fig. 6.2 but with the spectra scaled by (ω̃/ωc)
2 in order

to highlight the short inertial range. The inertial range for the R = 1000 case is
approximately (3, 6) while it is vanishingly small for R = 50.

(8, 8, 1), which has been guided by our analysis of the wavenumber spectrum. These are shown

in figure 6.2, which are computed by using a 20-point moving average in order to smooth the

original noisy signal (see insert). The angular frequency ω̃ in each case has been scaled by the

convective frequency.
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R Lx(= Ly) urms
x urms

y urms
z Nx = Ny Nz E⊥

2 2 5.44 0 5.44 32 32 29.6
2 4 3.64 7.2 4.29 64 32 44.4
2 8 8.01 3.43 4.64 64 32 52.6
2 12 5.19 5.59 4.11 128 64 38.7
2 16 5.55 5.33 4.07 256 64 38.3
2 24 5.47 5.5 4.05 512 64 38.6
2 32 5.54 5.45 4.05 512 64 39.1

100 2 47.67 51.11 64.32 64 128 4637
100 4 61.01 59.81 48.98 64 128 4919
100 8 56.99 58.37 48.61 128 128 4527.4
100 12 58.49 58.03 48.11 192 128 4589.9
100 16 58.18 58.49 47.52 256 128 4570.2
100 24 58.29 58.8 47.71 384 128 4591
100 32 58.63 58.68 47.71 512 128 4604.4

1000 2 148.94 146.66 178.74 128 192 38783
1000 4 166.22 173.82 145.43 192 192 39643
1000 8 164.96 164.22 144.64 256 192 37302
1000 12 165.81 167.59 143.7 384 192 37937
1000 16 167.66 165.68 143.29 512 192 37963

Table 6.2: Table listing the time-averaged rms velocity components urms
i : i ∈

{x, y, z}, and the horizontal Nx = Ny and vertical Nz resolutions, for each R
and domain size. We evaluate the energy per horizontal unit area E⊥ in each
case. This table is associated with the un-sheared cases of convection reported in
Fig. 6.2.

In the Kolmogorov description of turbulence, the inertial range follows a −2 power law in

the frequency spectrum (Landau & Lifshitz, 1987; Kumar & Verma, 2018). This power law is

highlighted in figure 6.2 by the solid black line. For each value of R, this inertial range begins

at ω̃/ωc ≈ 3 and extends to higher frequencies with increasing R. In the case of R = 1000

this inertial range extends until ω̃/ωc ≈ 6 while for R = 50 the range is vanishingly small.

This can more clearly be seen in Fig. 6.2 where we have re-plotted the data with application

of an (ω̃/ωc)
2 scaling factor (as well as zooming in on a narrower range of frequencies) which

highlights the short inertial ranges. We observe a dissipation range above the inertial range, as

is evident from the more rapid drop-off in the energy for higher frequencies. The key feature

of this figure is our observation of a new power-law for intermediate frequencies ω̃/ωc . 3,

with an approximate exponent of −0.5 which extends over approximately two decades to lower

frequencies. For very low frequencies, ω̃/ωc . 10−2, the spectrum then flattens off to indicate

frequency-independent white noise. We note that not all of our spectra extend to low enough

frequencies to observe the appearance of this white noise due to computational limitations.

Snapshots of the horizontal flow showing the ux and uy components of velocity at chosen

times are presented in Fig. 6.4 for example simulations with R ∈ {2, 100, 1000}, all in (8, 8, 1)

domains. We note that these snapshots are also representative of cases including the oscillatory

shear, since the flow is not strongly modified by its presence.

In the more turbulent cases, R ∈ {100, 1000}, the flow is fully three-dimensional and

temporally chaotic for all domain sizes explored. As R is increased ever smaller features

in the flow appear, which is consistent with the extension of the inertial range in Fig. 6.1. For
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Figure 6.4: Snapshots of the ux (left) and uy (right) velocity components for
convection in the absence of oscillatory shear. The values of R ∈ {2, 100, 1000}
and the domain size are displayed in each panel. As expected, as R is increased,
ever smaller scales are manifested in the flow (as seen in the bottom three rows),
though large-scale components remain. The flow in the sheared cases is similar.

the laminar cases with R = 2 the flow consists of spatially persistent features with temporally-

periodic amplitudes that are similar to the results in smaller domains presented in Ch. 3. The

frequency spectrum for this laminar case, and in smaller domains, consists of discrete peaks.

On the other hand, we comment that R = 2 simulations in larger domains with Lx = Ly ≥ 12

instead exhibit a chaotic flow (which is still non-turbulent due to the lack of an inertial range),
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with a frequency spectrum that is more similar to those with larger R values.

6.2.2 Frequency dependence of the effective viscosity

We now move on to the main task of this chapter, which is to analyse the interaction between

oscillatory tidal (shear) flows and convection. Before we do we would like to make the reader

aware that in what follows we will primarily make use of the scaled effective viscosity, α, defined

in § 2.3.3 (see eq. 2.63). An important point is that α quantity strictly differs from the usual

mixing-length parameter as it combines the usual mixing-length parameter with the constant

of proportionality from relating the mixing length to the pressure scale height (see § 1.3.2).

The oscillatory (tidal) shear flow, described by Ch. 2, is now introduced and we begin by

presenting results for the magnitude of the scaled effective viscosity α (eq. 2.63) in simulations

with various values of R ∈ {2, 100, 1000}, ω = [0.001, 10000], Lx(= Ly) ∈ {2, 4, 8, 12, 16}
and a0 = [0.05, 1]. Details of the typical ranges of these parameters for various cases, including

further details such as the resolution, are given in Table 6.3. The results are presented in

Fig. 6.5, where ω has been scaled by the relevant convective frequency ωc. The main result

here is that νE is a frequency-dependent quantity and is strongly attenuated for high-frequency

tidal forcing, in agreement with the results in previous chapters and prior works (Ogilvie &

Lesur 2012; Vidal & Barker 2020b).

In order to reduce the influence of noise on the computation of νE , we evaluate eq. 2.62 by

computing the cumulative integral, to which we apply a linear fit to determine νE . This method

also allows us to define an error in νE using two standard deviations from the mean slope,

as adopted in Ch. 5. To ensure convergence, the simulations are run for tens to thousands

of tidal periods (with the exception of some cases with ω < 0.1 that could only be run for

approximately one tidal period). These long-duration simulations were successful in reducing

the error in the computation of νE , which is demonstrated by the small error bars in Fig. 6.5,

which are typically smaller than the symbols plotted.

In the high-frequency regime ω/ωc & 5, for all values of R, we observe a clear −2 power law

(represented by the dotted lines in Fig. 6.5). This corresponds with the high-frequency scaling

law (νE ∝ ω−2) of Goldreich & Nicholson (1977), and clearly disagrees with the high-frequency

scaling law (νE ∝ ω−1) of (Zahn, 1966). This result is consistent with Ch. 3-5, as well as

prior simulations of similar problems (see Table. 6.1). The theory of Goldreich & Nicholson

(1977) assumes a Kolmogorov turbulent cascade to obtain a −2 power law for νE . In Ch. 3

we noted that R = 2 simulations were laminar and yet still followed the −2 scaling. This

remains true for the larger domains considered here, thus demonstrating that a turbulent flow

is not required to obtain a −2 power-law scaling for νE at high frequencies. The behaviour of

laminar convection with R = 2 can probably be explained by applying the asymptotic theory

developed in Ch. 5, which extends that of Ogilvie & Lesur (2012), providing all convective

modes are accounted for, though we do not attempt to do so here as our larger domains would

require considering many modes. We will later show (see Fig. 6.8) that the scatter in the

high-frequency regime for R = 100 can be attributed to an amplitude (a0) dependence of α.

Fig. 6.5 provides evidence for a previously undiscovered scaling νE ∝ ω−0.5 for intermediate

frequencies with ω/ωc ≈ (10−2, 1). This new regime is clearly observed in the middle panel

with R = 100 in all domains with Lx > 2, and is highlighted by the solid line representing a -0.5

power law (this regime is also present with R = 2 in the largest domains Lx ≥ 12). To the best
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Figure 6.5: Scaled effective viscosity |νE |/urms
z d as a function of scaled shear

frequency, ω/ωc, that arises from the interaction between the oscillatory tidal flow
and convection. Various shear amplitudes are shown, in the range a0 ∈ [0.05, 1],
and the effects of a0 will be discussed later (and shown in Fig. 6.8). The cases
shown have R ∈ {2, 100, 1000} (top to bottom respectively) with various domain
sizes (see legend). We denote the sign of the effective viscosity using circles for
positive and triangles for negative values. Error bars are shown but these are
often smaller than the sizes of the symbols. The dashed lines show horizontal
fits to the low-frequency regime. The solid lines show the (ω/ωc)

−0.5 scaling for
intermediate frequencies, which is a new result in this work. The dotted lines
show the classic (ω/ωc)

−2 scaling for high-frequency tidal forcing. The scatter of
points in the frequency range ω/ωc = (100, 102) for R = 100 and ω/ωc ≈ 40 for
R = 1000 can be attributed to a shear amplitude dependence that is shown more
clearly later in Fig. 6.8.
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of our knowledge, this is the first time this scaling has been observed in simulations, and it has

also never been predicted theoretically. The cases with Lx = 2 previously presented in Ch. 3

and 5 instead exhibit a frequency-independent νE for ω . ωc. This difference demonstrates the

importance of resolving the peak of the spatial spectrum (see Fig. 6.1). This new intermediate

regime is not evident in the R = 1000 simulations, probably because we have not been able to

run simulations for sufficiently low frequencies to observe it clearly (these cases are particularly

computationally expensive). The lowest frequencies for R = 1000 may be starting to transition

to this regime, but we are unable to confirm this at present.

For cases exhibiting an intermediate regime with a −0.5 power law, the magnitude of the

scaled effective viscosity, α, becomes independent of the domain size and tidal amplitude,

as long as the domain size is large enough to resolve the peak of the wavenumber spectrum

(Fig. 6.1). We also note that the magnitudes of νE in the intermediate and low-frequency

regimes are significantly larger than for the cases in smaller boxes. They are also larger,

by more than an order of magnitude, from the naive expectation from MLT, which would

predict α = 1/3 (Zahn, 1989). This suggests that convection is more efficient at damping

low-frequency tidal flows than previously expected.

The R = 2 case exhibits a change in behaviour in this intermediate frequency range as we

increase the domain size, from frequency-independent behaviour in smaller boxes, to following

a −0.5 power law in larger boxes. This coincides with our observation that the flow transitions

from deterministic to chaotic in the largest boxes, as well as being related to the requirement

to resolve the energetically dominant scales (see Fig. 6.1), which we will address further in

section 6.2.3. Note that the flow is non-turbulent for R = 2, and yet it still exhibits the same

−0.5 scaling for νE .

In Ch. 3 and 5 we observed a frequency independent regime for ω/ωc . 5, which can be

seen in Fig 6.5, in domain sizes of (2, 2, 1) for all R (it also occurs in domains up to Lx = 8

for the R = 2 cases). In larger domains, this frequency-independent regime is only observed

for very low frequencies, ω/ωc . 10−2. We have only observed this regime for R = 100 due

to the computational expense of probing such low values of ω. Indeed, these typically require

approximately 1000 diffusion times to obtain convergence in the evaluation of νE . Where

possible, we have shown the best fit to the frequency-independent regime with dashed lines in

Fig. 6.5.

On physical grounds, there are no restrictions on the sign of the effective viscosity defined

by eq. 2.62 (see aside 1.5). Indeed, in Ch. 3-5, as suggested in the earlier simulations of

Ogilvie & Lesur (2012), we observed robust negative values for νE for very high frequencies in

the turbulent cases. In Fig. 6.5 we have denoted positive values with circles and negative by

triangles. In Ch. 3, we found that in laminar cases the initial conditions determined the sign

of νE . This behaviour is again observed in the R = 2 cases up to domain sizes of (8, 8, 1). In

the (12, 12, 1) and larger cases, where the flow is chaotic, and there is an increase of energy

transfer between convective modes, there appears to be a preference towards positive values

for νE , with negative values only occurring around the transition between the intermediate

and high-frequency regimes.

For the more turbulent R ∈ {100, 1000} cases with the domain size (8, 8, 1) we observe the

same behaviour as in the smaller box simulations of Ch. 5, in that νE transitions from positive

(ω/ωc . 10) to negative values (ω/ωc & 10). However we note that for the R = 100 cases in
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the large domain (12, 12, 1), νE is also positive for frequency ratios much larger than 10. We

have also conducted simulations in small (2, 2, 1) domains with R = 10000 (not presented)

where the transition to negative values is shifted to higher frequencies, ω/ωc ≈ 30, than for

R ∈ {100, 1000}. This suggests that the transition to negative values occurs for unrealistically

high tidal frequencies in convection with astrophysically relevant values of R.

Convection in stars is much more turbulent, with much larger values of R, than we can

explore in our simulations. One of our key goals is to determine if there are robust features or

scaling laws as R is varied. In Fig. 6.6, we compare the scaled effective viscosity as a function

of the scaled shear frequency for various values of R ∈ {50, 100, 200, 500, 1000} in a fixed

domain size (8, 8, 1).

Fig. 6.6 shows the frequency dependence of νE in our simulations. We include a range of

R ≥ 50 in this plot, but by plotting |νE |/urmsz d we collapse the low-frequency data (ω/ωc < 1)

onto a single “master curve”. This collapse is only observed in simulations in large domains

that resolve the energetically dominant length-scale, for which further increases in domain

size are not observed to strongly affect our results (see Fig. 6.5). The scaling adopted here

assumes the convection to approach a diffusion-free mixing-length regime in which convective

velocities scale as
√
R (which is demonstrated in the inset panel in Fig. 6.1; e.g. Spiegel

1971), such that ωc and νE would also be expected to scale as
√
R (see aside 2.4). We have

therefore demonstrated in Fig. 6.6 that the convective velocities (and dominant length-scales)

for R ≥ 50 are essentially in the diffusion-free mixing-length regime for our simulations. At

higher frequencies, there is still considerable scatter which comes mainly from dependence on

the shear amplitude a0. In the inset, symbols + correspond to a0 = 1, • to a0 = 0.5 and

× to a0 = 0.05. There is a systematic increase in νE with amplitude, which we will explore

further below. However, the data for the same values of a0 collapse reasonably well onto their

R-independent curves even for high-frequency tides. For numerical reasons it is difficult to

get consistent results for νE with low amplitude tides at low frequencies, so the low frequency

points ω/ωc < 0.1 are mostly for amplitudes above 0.5, but generally we found little evidence

for significant variation of scaled effective viscosity with amplitude at low frequency.

The frequency-independent low frequency regime is observed when ω/ωc < 10−2, for each

of R = 50, 100 and 200, though we should point out that there only are few simulations with

such low frequencies. The dashed line in this case is the linear fit to the constant slope for the

R = 100 cases, which also matches those with R = 50 and 200.

It is clear from Fig. 6.6 that the new intermediate scaling regime for ω/ωc ≈ (10−2, 1− 5)

holds for all R values explored, highlighting that this new regime is also robust. In the high-

frequency regime, when ω/ωc & 1−5, we observe a robust transition to a −2 power law for all

values of R. However, in this regime, there is more scatter in the points from a single “master

curve”, which can be attributed a shear-amplitude dependence of our results, since here we

adopt various a0 ∈ {0.05, 0.5, 1} (as we will explain further below).

Negative (positive) values of the effective viscosity in Fig. 6.6 are denoted by triangles

(circles). If we consider the lowest frequency for each R ∈ {50, 100, 200, 500, 1000} for which

νE is negative, we find this to occur at approximately ω/ωc ∈ {2, 4, 5, 30, 20}, respectively.

This shows that with exception of the R = 500 case, the larger the value of R the higher

frequency required to obtain negative values of the effective viscosity. We also note that the

apparent discrepancy in the R = 500 case could be the result of the particular discrete values
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of the frequency that have been run.

6.2.3 Comparing the frequency spectra to effective viscosity

Figure 6.7: Examples of the
frequency spectra of the kinetic
energy for convection in the pres-
ence of oscillatory shear, with
R = 100, a0 = 0.5, (Lx, Ly, Lz) ∈
{(8, 8, 1), (12, 12, 1)} (red
and blue, respectively) and
ω ∈ {0.3, 0.06} (top, with ω < ωc)
and {700, 800} (bottom, with
ω > ωc). The angular frequency
has been scaled by the relevant
convective frequency. The solid
lines show the 20-point moving
average of the full spectrum, which
is shown using faded lines. An
inertial range is observed, where
the spectrum follows an (ω̃/ωc)

−2

power law (green line), before
entering the dissipation range for
the highest ω̃. We also observe a
significant region which features
a (ω̃/ωc)

−0.5 power law in the
spectrum, which matches the
scaling observed for νE in Figs. 6.5
and 6.6. The vertical dashed lines
correspond to the frequency of
the oscillatory shear in each case.
Similar results are obtained for
the frequency spectrum of the
Reynolds stress.

Ch. 5 and previous work (Penev et al. 2009b;Vidal & Barker 2020b) have suggested that

the frequency (temporal) spectrum of the kinetic energy Ẽ(ω̃) (or Reynolds stress) may play

an important role in determining the frequency-dependence of the effective viscosity. In this

section we explore more closely the connection between the frequency spectrum of the kinetic

energy and the frequency dependence of the effective viscosity. Examples of the frequency

spectrum of the kinetic energy (evaluated after applying a Hann window function) can be seen

in Fig. 6.7 for the low-frequency tide regime with ω ∈ {0.3, 0.06} (top) and the high-frequency

tide regime with ω ∈ {700, 800} (bottom). All cases in Fig. 6.7 have R = 100 and a shear

amplitude a0 = 0.5 covering two cases in each of the high and low-frequency regimes with

domain sizes Lx ∈ {8, 12} (dark red and dark blue, respectively) and the tidal frequencies (see

legend) denoted by the vertical dashed lines. For these plots we scale the angular frequency

ω̃ = 2π/τ (where τ represents the period of each Fourier component) of the spectrum by the

relevant convective frequency (ωc) in each simulation, so as to make a meaningful comparison

between these spectra results and the profiles of νE . In Fig. 6.7 the solid lines represent the

20-point moving average of each full kinetic energy spectrum (which are plotted using faded
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lines). We also note that similar spectra have been obtained for all simulations that have been

run for a long enough duration.

Figure 6.8: Magnitude of the effective viscosity from figure 6.5 (right axis - points)
with the frequency spectra of the convection over-plotted, Γ̃(ω̃) (left axis - lines)
where Γ ∈ {E,Rxy} is either the kinetic energy, E, (blue) or Reynolds stress, Rxy,
(red). The R = 1000 case has been replaced with R = 500 due to computational
limitations of reaching the lowest frequencies with higher R values. The symbols
for the effective viscosity now highlight the amplitude a0 for each case, while the
sign is no longer identified in this figure to clarify the presentation. The symbol
colour denotes the domain size (see legend). The 20-point moving average of the
frequency spectrum is shown here. Various relevant power laws are denoted by the
dotted and dashed lines which are highlighted in the legend. Appendix A shows
cases of R ∈ {50, 200, 1000}.



CHAPTER 6. TIDES AND TURBULENT CONVECTION IN LARGE DOMAINS 109

In these low tidal frequency example cases (Fig. 6.7 top) we observe a small inertial-like

range defined by a −2 power law (green line) (Landau & Lifshitz, 1987; Kumar & Verma,

2018) in the kinetic energy spectra starting at ω̃/ωc ≈ 4 and extending to ω̃/ωc ≈ 10. Beyond

this, we observe a dissipation range where the spectrum transitions to a power law decay

with magnitude greater than 2, followed by low-power noise at very high frequencies as a

consequence of the finite time-step size. For frequencies lower than the inertial range, we

observe a power law exponent that is consistent with −0.5 (light blue line) extending down to

ω̃/ωc ≈ 10−1 before the spectrum approaches white noise for the lowest observable frequencies.

The frequency spectrum of the kinetic energy and Reynolds stress are both consistent with the

un-sheared cases presented in section 6.2.1 for all cases where the shear frequency is in the

low or intermediate regimes. We note that in the high-frequency regime the shear introduces

a strong resonant response in the spectrum at the shear frequency, which is related to the

larger shear amplitude a0ω at high frequencies. The rapid drop-off in the frequency spectrum

then allows the energy injected by the shear to become observable for these high frequencies.

Fig. 6.7 also shows that the shape of the frequency spectrum is independent of domain size,

providing the energetically dominant convective modes are resolved spatially.

In the high-frequency cases (Fig. 6.7 bottom) the spectrum behaves similarly to the low-

frequency cases when ω̃/ωc . 5. We observe a significant modification of the spectrum

in the high-frequency regime beginning with a substantial peak in the spectrum at the shear

frequency. The peak is not confined to the discrete frequency of the shear and has a substantial

lead and lagging tail. Further, we observe a significant resonant chain of peaks each with the

same shape as the main peak.

We now compare the frequency spectra (evaluated after applying a Hann window) of kinetic

energy (blue) and Reynolds stress (red) with the scaled effective viscosity in figure 6.8. Note

that the symbols denoting the scaled effective viscosity are shown as a function of the scaled

tidal frequency, ω/ωc, whereas the spectrum is plotted as a function of ω̃/ωc. As before, the

solid lines for the spectrum represent its 20-point moving average. We demonstrate these

comparisons for cases similar to those in figure 6.5, that is, cases with R ∈ {2, 100, 500}
(cases with R = 1000 were excluded due to the difficulty in reaching the intermediate regime

but can be found in Appendix A along with cases with R ∈ {50, 200}), domain sizes Lx =

Ly ∈ {2, 4, 8, 12, 16} and various amplitudes a0 = [0.05, 1]. For each value of R, we show

a representative spectrum of kinetic energy and Reynolds stress, choosing cases with the

longest run time to effectively probe the low-frequency regime. As the domain size does not

significantly alter the spectrum as long as it is “large enough” (see figure 6.7), we plot a case

with a domain size (8, 8, 1) for each R. Similarly, the shear in the low-frequency regime only

weakly affects the spectrum, as we can observe from comparing figures 6.2 and 6.7, so we

adopt a representative case for each R with ω < 1 that has the longest run time. In figure 6.8

the symbols now denote the amplitude of the shear (see legend for the values).

The key result of figure 6.8 is that for low and intermediate frequencies such that ω/ωc . 5,

the frequency dependence of νE(ω) closely follows the spectrum of the energy and Reynolds

stress. This agrees with the global simulations of Vidal & Barker (2020b). It is an important

result because it suggests that we can infer the frequency dependence of νE in stars if we know

the spectrum of the convection.

It is worth highlighting that, although the left and right y-axis values are offset, the range of
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values in both is similar. We also note that there is a good agreement between the spectrum

of the kinetic energy and the Reynolds stress, though the kinetic energy has slightly smaller

amplitude than the Reynolds stress.

We continue our analysis of figure 6.8 by considering the high-frequency regime where

ω/ωc & 1. As alluded to earlier, we observe an amplitude dependence in the magnitude

of νE , which is most clearly observed in cases with R = 100 and shear amplitudes of

a0 ∈ {0.05, 0.5, 1}. This amplitude dependence shifts where the transition to the −2 power

law begins, which is here observed to occur when ω/ωc ≈ (0.6, 1.5, 3), respectively. In the

high-frequency regime, νE ∝ ω−2 for higher ω. This only agrees with the spectrum for a nar-

row range of frequencies corresponding to the inertial-like range. For higher frequencies, the

spectrum transitions into a dissipation range, where the power law exponent is steeper than

−2, whereas the effective viscosity continues to follow the −2 power law. This again suggests

that, despite the power law of the inertial range and the frequency dependence of the effective

viscosity being the same, this cannot explain the robustness of νE ∝ ω−2 for high-frequency

tidal forcing.

For intermediate frequencies, ω/ωc ≈ (10−2, 100), we observe a strong agreement in the

power law of the effective viscosity with both the kinetic energy and Reynolds stress frequency

spectra for all R plotted. The transition from intermediate to high-frequency regimes in the

effective viscosity does not always coincide with when the spectrum falls off more steeply

than a −0.5 power law. In fact, the R = 100 cases clearly demonstrate that the amplitude

dependence plays a role in deciding when the effective viscosity transitions to the quadratic

scaling regardless of the slope of the spectrum.

Although we have shown that there is good agreement with the frequency-dependence of

the scaled effective viscosity and the frequency spectrum of kinetic energy (or Reynolds stress)

in the intermediate and low-frequency regimes, the relationship between these quantities is a

constant of proportionality. That is, we have shown that νE(ω/ωc) ∝ Ẽ(ω̃/ωc). Since the

intermediate and low-frequency spectrum appears to be approximately amplitude and domain

size independent, this constant of proportionality may be some function of R (and possibly Pr

which we have not explored in this work).

For the R = 2 cases shown in figure 6.8, we only display domain sizes of Lx = Ly ∈ {12, 16},
since these are required to obtain a −0.5 power law in the intermediate regime. This may be

related to the transition to a chaotic flow and/or the requirement of resolving the energetically

dominant scales in larger domains. Cases in smaller domains exhibit a frequency spectrum

consisting of discrete peaks, suggesting little energy exchange between eddies with different

time-scales. However, in the larger domains the frequency spectrum is more continuous. This

suggests that this new −0.5 power law regime is a consequence of the frequency spectrum of

chaotic/turbulent flow. In addition, the robustness of this new regime for both laminar and

turbulent flows indicates that it may be relevant for understanding the interaction between

tidal flows and convection in stars and giant planets.

In Table 6.3 we summarise three key quantities of interest from our simulations and the

range of parameters explored. The key quantities are:

� time averaged rms of the vertical component of velocity, urms
z .

� linear fit values of α in the low-frequency regime, indicating the constant of proportion-
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ality between νE and urms
z d.

� γ = νE(ω/ωc)2, which represents the y-axis crossing of the quadratic fit to the high-

frequency regime, for R = 100, a0 ∈ {0.05, 0.5, 1}, including only simulations such that

ω/ωc > 1.

In the interests of examining the amplitude dependence of the effective viscosity in the high-

frequency regime, Table 6.4 lists γ and urms
z for the cases with R = 100 in a domain of size

(8, 8, 1) for three different amplitudes a0 ∈ {0.05, 0.5, 1}.

R a0 γ = νE(ω/ωc)2 urms
z

100 0.05 11.403 48.83

100 0.5 29.282 48.47

100 1 133.38 49.93

Table 6.4: Table listing values of γ =
νE(ω/ωc)2, which is the y-intercept
of the linear fit to the high-frequency
regime assuming a (ω/ωc)

−2 power law,
and the time and volume averaged verti-
cal component of the velocity (the con-
vective velocity), urms

z , for various shear
amplitudes, a0. All cases are for R = 100
and with domain size (8, 8, 1). This
shows the effects of varying the tidal am-
plitude on our high-frequency results for
νE .

In the larger domains, the low-frequency regime is shifted to significantly lower frequencies

than in the cases in Ch. 5 which makes this regime computationally difficult to examine. Where

possible we report the linear fit to the low-frequency regime to provide an estimate of α there.

It is clear that as the domain size increases then the magnitude of the linear fit to α also

increases until we reach an approximate convergence once the energetically dominant modes

of the convection are contained in the box. This convergence can be seen most clearly in the

cases with R = 100 in Table 6.3.

In the high-frequency regime we examine the quantity γ and find that it increases with

R in chaotic and turbulent cases but appears to have a smaller value than in the laminar,

deterministic cases (R = 2 small domains Lx ≤ 8). In Table 6.4 we see that γ also increases

with increasing shear amplitude.

As would be expected the data in Table 6.3 shows that as R increases so does urms
z . For

increasing domain size the values of urms
z converge once Lx ≈ 4, which we note is similar to

when the peak of the wavenumber spectrum is contained within the box. Table 6.4 shows that

the shear amplitude has little, if any, effect on urms
z , which is used to scale the shear frequency.

As such this, the amplitude dependence of γ to be unlikely to be due to the shear significantly

modifying the dominant eddies of the convection (in principle the shear could still affect the

“resonant eddies” with lower energies).

6.2.4 Spatial structure of the Reynolds stress and effective viscosity

To explore the mechanism governing the interaction between tides and convection in more

detail, we analyse the spatial (wavenumber) spectrum of the Reynolds stress R̂xy(nx, ny) and

effective viscosity ν̂E(nx, ny) as in Ch. 5 (eq. 5.3 and 5.4). These quantities are vertically-

integrated and time-averaged spatial spectra that are computed as a function of the horizontal

integer wavenumbers nx and ny, as described in section 2.3. The computation of ν̂E(nx, ny)
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requires sufficiently good temporal resolution that the time integral (as in eq. 2.62) is accurately

computed.

Figure 6.9: Ex-
amples of the
temporally-averaged
and vertically-
integrated spatial
spectra of the
Reynolds Stress
R̂xy(nx, ny) (left
column) and ef-
fective viscosity
ν̂E(nx, ny) (right
column) as a func-
tion of the integer
wavenumbers nx and
ny. The top three
rows are for R = 100
with ω/ωc ∈
{0.02, 0.2, 20}
with a domain size
of (Lx, Ly, Lz) =
(8, 8, 1). The bot-
tom two rows are
also for R = 100
but with ω/ωc ∈
{0.01, 0.2, 212},
and for the larger
domain size of
(Lx, Ly, Lz) =
(12, 12, 1), which
more clearly demon-
strate the dominant
ring in the spatial
spectrum. The fre-
quencies shown cor-
respond to cases in
the low, intermediate
and high-frequency
regimes. Similar
results are obtained
for all values of R
and domain sizes
explored.

Example cases are shown in figure 6.9 with R = 100 and a0 = 0.5 for two different domain
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sizes (8, 8, 1) and (12, 12, 1), each demonstrating three cases for each box size which lie in the

low, intermediate and high-frequency regimes (the respective frequencies can be seen in the

figure). For adequate temporal averaging, we ensured that at least 10 snapshots were taken

per tidal period, and the simulations were integrated for many tens of tidal periods. Similar

figures have been obtained for a number of other cases that show similar behaviour. We also

note that the spectra in Fig. 6.9 have been zoomed in to show the lowest wavenumbers, since

we find higher wavenumbers to contribute negligibly.

We observe that R̂xy(nx, ny) is maximal in a ring that coincides with the energetically

dominant wavenumber in Fig. 6.1, and this quantity then falls off rapidly in magnitude with

increasing nx and ny. The same wavenumber ring also provides the dominant contribution to

ν̂E(nx, ny). The modes in this ring provides the dominant contribution to the total effective

viscosity νE , suggesting that the largest (energetically dominant) scales of the convection are

the most important. This appears to contradict the main hypothesis of Goldreich & Nicholson

(1977), who claim that the resonant eddies dominate the interaction, and that the largest

scales could at most contribute a comparable amount as the resonant eddies. There is a peak

in the frequency spectrum (e.g. of the Reynolds stress) at the forcing frequency, but this does

not appear to be correlated with a ring of modes in the wavenumber spectrum. Instead, it

appears that it is the response of the energetically dominant modes at the forcing frequency that

dominates the contribution to νE . However, we caution that our simulations do not possess a

sufficiently long inertial range to clearly test the expectations of Goldreich & Nicholson (1977)

solely within the turbulent cascade, which would require much more turbulent simulations.

In the high-frequency cases, the ν̂E(nx, ny) spectra shows a strong negative contribution

from the nearly x-aligned components of the flow, and a slightly weaker contribution from the

positive nearly y-aligned components. This is compatible with the predictions of the asymptotic

theory in Ch. 4. Note also that more modes provide an observable contribution to νE for larger

frequencies, which results from the larger shear amplitude a0ω in these cases.

6.3 Discussion

In this chapter we have presented a much wider parameter survey than Ch. 3-5, and in particular

we have studied convection in wider boxes, allowing the peak of the energy spectrum to be

fully resolved. These new simulations support our prior results for high-frequency tidal forcing,

in that we find strong evidence in favour of νE ∝ ω−2, but they have also uncovered a new

intermediate frequency scaling that has not been previously reported (or predicted). This

new frequency scaling has νE ∝ ω−0.5 for frequencies 10−2 . ω/ωc . 1 − 5 (depending on

amplitude). In this section we discuss further this new regime, and some of the implications

of our results.

Previous simulations of anelastic convection (Penev et al., 2009b), and Boussinesq spherical

convection in a model with homogeneous internal heating (Vidal & Barker, 2020b), have

observed an intermediate frequency scaling for νE ∝ ω−1 for a range of frequencies around

ω ∼ ωc. This is consistent with the −1 slope in the frequency spectrum of the kinetic energy

in the simulations of Vidal & Barker (2020b) (and possibly also in Penev et al. 2009b). This

differs from our results in this frequency range, where we find νE ∝ ω−0.5. In addition,

simulations with various strengths of convective driving in spheres are found to give different
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exponents from -0.5 to -1 in the intermediate regime (Vidal et al., 2020). Further work is

required to explore in detail this difference, though we hypothesise that it may result from the

radial variation in the heat flux in the spherical model, which is constant in our Cartesian case.

The study of the frequency spectrum of turbulent convection has been primarily directed

towards the inertial range in order to make comparisons between the classical theories (Kol-

mogorov, 1941; Bolgiano, 1959; Obukhov, 1959), which are based on the spatial spectrum,

and experiments (Sano et al., 1989; Ashkenazi & Steinberg, 1999; Wu et al., 1990; Shang &

Xia, 2001; Liot et al., 2016), where the data is primarily temporal in nature, with the objective

of understanding the nature of the turbulence. The low-frequency portion of the spectrum

has received far less attention, with the majority of prior interest coming from the classical

area of “1/f noise” (Dmitruk & Matthaeus, 2007; Pereira et al., 2019; Vidal et al., 2020).

Our results suggest that an understanding of the frequency spectrum of convection may allow

us to predict the effective viscosity acting on the equilibrium tide for low and intermediate

frequencies (though perhaps not for high frequencies). As such, this provides new motivation

for research into the long term dynamics of turbulent convection in more realistic models.

The agreement of the frequency spectrum and the effective viscosity was observed to break

down when the high-frequency regime was reached. The transition to the high-frequency

regime depends on the tidal amplitude, where larger amplitudes are found to shift the tran-

sition to higher frequencies. This may be related to the relative energy in the tidal shear

to the convection at these frequencies. However, this should be explored further in a future

investigation.

Despite the existence of a −2 power law in the frequency spectrum of convective turbulence

Landau & Lifshitz (1987); Kumar & Verma (2018), which the effective viscosity follows, the

effective viscosity trend maintains this power law even when the frequency spectrum transitions

into the dissipation range with a much faster fall-off. This demonstrates that the effective

viscosity does not follow the spectrum at high frequencies (at least in our simulations), and

the agreement in the power law may be coincidental. In the theoretical prediction of Goldreich

& Nicholson (1977) the −2 power law was predicted by applying Kolmogorov turbulence and

assuming that the “resonant eddies” that are resonant with the tidal shear would provide the

dominant contributions to the effective viscosity. However, we have shown that a turbulent

cascade is not required to obtain a −2 scaling (see also Ogilvie & Lesur 2012; Braviner 2015).

For example, R = 2 cases possess no inertial range in the wavenumber spectrum, which is

hence non-Kolmogorov-like, and yet we still obtain a −2 power law for νE . An independent

prediction of the −2 scaling was made using asymptotic analysis (Ogilvie & Lesur, 2012) which

we extended in Ch. 4 to include thermal effects, which also allows for the prediction of negative

effective viscosities.

Goldreich & Nicholson (1977) claimed that the “resonant modes” provide the dominant

contributions to the effective viscosity, but the largest scale modes could contribute a compa-

rable amount. We have conducted a Fourier analysis of the spatial structure of the Reynolds

stress and of the contributions to the effective viscosity. We found that the effective viscosity

is dominated by the energetically dominant ring of modes in wavenumber space. We do not

observe any appreciable contribution from resonant eddies. We do however observe a signifi-

cant temporal resonance observed in the frequency spectrum (which is found to occur for all

spatial wavenumber bins above the dissipation length-scale).
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In this and Ch. 3-5, we provided robust measurements of negative effective viscosities, as

originally found in a slightly different convection model by Ogilvie & Lesur (2012). Here we

find that increasing the strength of the convection shifts the transition to higher frequencies,

suggesting that for realistic Rayleigh numbers in planets and stars, the frequency required to

produce a negative νE , and therefore tidal anti-dissipation, would be prohibitively high (see

also Vidal & Barker 2020b). The negative values may therefore not be relevant in reality.

Summary: Key findings

This summary is in combination with the previous summaries of Ch. 3-5.

� High-frequency regime (ω > ωc),

– νE ∝ ω−2 (consistent with the quadratic reduction model, § 1.3.3),

– νE transitions from positive to negative at higher ω/ωc for larger R (hence

may not be physically relevant in astrophysical applications),

– shear amplitude, a0, dependence of |νE |,

– largest scale eddies dominate the contribution to νE (not the resonant eddies

§ 1.3.3),

– does not follow frequency spectrum for kinetic energy.

� new intermediate frequency regime (10−2 . ω < ωc),

– νE ∝ ω−0.5 not previously predicted by any model or simulation,

– follows the frequency spectrum of kinetic energy,

– shear amplitude independent,

– requires energetically dominant mode in the wavenumber spectrum of kinetic

energy to fit within the domain,

– requires chaotic flow.

� low-frequency regime pushed to very low frequencies (ω/ωc . 10−2),

– νE is frequency independent (consistent with the constant time lag, § 1.3.1),

– scaled effective viscosity has magnitude α > 1/3,

– transition to this regime occurs when the frequency spectrum flattens to

white noise,

– shear amplitude independent.

� in all regimes the largest scales dominate the contribution to νE ,

� for a single choice of shear amplitude the frequency dependence of the effective

viscosity collapses onto a single master curve.
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Chapter 7

Astrophysical implications
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In this chapter we consider the astrophysical implications of the results presented in Ch. 3-6.

We will first explore a simple example case of a HJ planet around a main sequence sun-like

star and estimate the inspiral timescale and modified tidal quality factor (Q′) using different

prescriptions for the frequency dependence of the effective viscosity. The purpose of exploring

this simple case is to highlight the importance of using the correct model for the tidal dissipation

that arises from the interaction between the tidal flow and convection, and hence emphasise

the importance of our results and motivate further research in this area.

7.1 A simple illustrative calculation

Let us consider a single example to illustrate the importance of considering the correct pre-

scription for νE for high frequencies. We can crudely estimate the rate of orbital decay of

a Jupiter-mass planet in a one day aligned circular orbit around a slowly rotating Sun-like

star. Tidal dissipation in the star usually leads to planetary orbital decay because Ωs < Ωo (if

νE > 0, but not if νE < 0), raising the question as to the planet’s long-term survival. This

example could represent a close-in hot Jupiter such as WASP-12 b (e.g. Maciejewski et al.

2016; Patra et al. 2017). We can use our results to predict the tidal orbital evolution time-

scale due to the effective viscosity of the convection. We will apply our results in a simplified

spherically-symmetric stellar model, which is described by a basic state dependent only on

spherical radius r (e.g. Kippenhahn et al. 2012). We will use publicly available stellar models

computed using1 Model S (Christensen-Dalsgaard et al. 1996) or MESA (Paxton et al. 2011,

2013, 2015, 2018, 2019 ).

1The Model S stellar model is specifically for the Sun while the MESA code is a more general stellar evolution
code to produce realistic models of stars.
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7.1.1 Preliminaries

Before we explore this problem let us first derive and define some important quantities which

we will use in our analysis. Note that although we will be considering a planet around a star,

what follows can also be applied to binary stars where we simply exchange the planet for a

star.

Effective viscosity

The most important quantity we wish to evaluate is the effective viscosity which we can use a

smoothed version of eq. 1.64 as in Ogilvie & Lin (2007)

νE(r) = αcu
mlt(r)lmlt(r)


1 if ℵ = 0 ,(

1 +
(
|ω|
ωc(r)

)ℵ)−1

if ℵ ∈ {1, 2} ,
(7.1)

where2 αc = α/αmlt (see § 2.3.3) can be taken from Table. 6.3 to apply these results of our

simulations, umlt(r) is a convective (mixing-length) velocity, lmlt = αmltHp is a mixing length,

which consists of the pressure scale height Hp = Hp(r) and the mixing-length parameter

which is often taken αmlt ≈ 2, and ωc(r) is the convective frequency which can be related to

the convective velocity by ωc = umlt(r)/lmlt(r). Note that we have introduced ℵ to account

for the three prescriptions of the frequency reduction3 and highlight that this neglects any

frequency dependence4 when ω < ωc. This leaves us to evaluate umlt(r) where we use the

expression (rearrangement of equation 9 in Ogilvie & Lin (2007))

umlt(r) =

(
3

8
αmltHp

gδFlum

ρcpT

)1/3

, (7.2)

where g is the magnitude of the gravitational acceleration which can be obtained from

g(r) =
GM?(r)

r2
, (7.3)

and the quantity δ is defined as (where the subscript means evaluation at constant pressure)

δ = −
(
∂ log ρ

∂ log T

)
p

, (7.4)

where G is the gravitational constant, M? = M?(r) is the stellar internal mass5, ρ = ρ(r) is

the density, cp = cp(r) is the specific heat at constant pressure, T = T (r) is the temperature

and Flum is the convective luminosity flux. Note that we can compute the convective turnover

time as

τc =
lmlt

umlt
=

1

ωc
. (7.5)

2Note that our definition of α includes the mixing-length parameter as well as the constant of proportionality.
Thus we divide through by the mixing-length parameter as it is already included in the mixing length.

3In the interests of clarity, 0 corresponds to no frequency reduction, 1 for the linear reduction and 2 for the
quadratic reduction. See Ch. 1 for further details.

4For this calculation we ignore the “intermediate regime” as it is not relevant for the frequencies in this
problem.

5The internal mass is the mass contained within some radius r.
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The final ingredient is the evaluation of Flum which can be done by subtracting the radiative

luminosity from the total luminosity and integrating over the stellar volume, that is

Flum =
L− Lrad

4πr2
, (7.6)

where Lrad is the radiative luminosity which is defined by (see Kippenhahn et al. 2012 equation

5.11)

Lrad = −16πaradcr
2T 3

3κopρ

dT

dr
, (7.7)

where arad is the radiation density constant, c is the speed of light, dT/dr is the temperature

gradient, κop = κop(r) is the opacity and L = L(r) is the total luminosity. It is worth noting

that some of these equations can be bypassed depending on the stellar model that is used, for

example, while the convective velocity is an output of the commonly used MESA stellar model

it is not for the Model-S for the Sun.

Orbital motion

Another useful expression is the relationship between the semi-major axis and the orbital period,

which by Kepler’s laws is

Porb = 2π

√
a3

G(M? +Mp)
, (7.8)

where a is the semi-major axis, M? is the internal stellar mass and Mp is the planet mass.

Note that for an aligned circular orbit the tidal frequency is ω = 2(Ωo−Ωs), and for Ωo � Ωs

(i.e. slowly rotating star with short-period orbit), ω ≈ 2Ωo so that Ptide = Porb/2. This can

be used, for example, if we wish to consider a planet with a given orbital separation rather

than orbital period. It can also be useful for converting orbital distance into orbital frequency.

Crude estimate for the inspiral timescale

The inspiral timescale, τa, is an important quantity to evaluate as this gives the time for the

inward (or outward) migration of the planet. This timescale can then be compared to the age

of the system or the expected lifetime of the system to quantify the importance of whatever

mechanism is causing the migration. In our case we are considering the inspiral timescale as

a result of tidal dissipation of the equilibrium tide. The timescale for the evolution of the

semi-major axis6 can be estimated from (see Rasio et al. 1996 where we have used our own

notation)

a

|ȧ|
= fℵτc

M2
?

MenvMp

(
1 +

Mp

M?

) ( a

R?

)8

, (7.9)

where fℵ is the reduction factor which is a function of the frequency (we will define this

more thoroughly soon), τc is the convective turnover time (eq. 7.5), Menv is the mass of the

6The evolution of the semi-major axis is defined as ȧ/a which has a negative sign for an inspiraling orbit
and positive for outspiraling.
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convective envelope, Mp is the planet mass and R? is the stellar radius. We can write the

mass of the convective envelope as

Menv = 4π

∫
conv

r2ρ dr , (7.10)

where the integration is taken over the radius of the convective envelope rather than the full

stellar radius. An approximation to this can be made by considering that the planet’s mass

is much lower than that of the star, Mp � M?. This means that the bracket term on the

denominator can be neglected and we can write

τa ≈ fℵτc
(
M?

Menv

)(
M?

Mp

)(
Porb

Pdyn

) 16
3

, (7.11)

where we have used eq. 7.8 and the definition of the dynamical timescale7

Pdyn = 2π

√
R3
?

GM?
(7.12)

to write the final term. It is worth highlighting that this timescale is the time taken for the

planet to migrate from its initial semi-major axis, a, to the centre of the host star, a = 0.

Although not strictly physical due to the Roche limit, this provides a fair comparison between

the cases as well as a reasonable estimate due to the accelerating nature of tidal inspiral.

We now turn to the definition of fℵ where ℵ ∈ {0, 0.5, 1, 2}. This term contains both a

reduction constant associated with time integration of the evolution of the semi-major axis as

well as taking account of the reduction factor due to the frequency dependence of the dissipa-

tion, which we write as fℵ = f intℵ fdispℵ . First, the frequency dependence of the dissipation can

be written as (our definition is the inverse of equation 5 in Rasio et al. 1996 with inclusion of

ℵ which chooses the reduction factor)

fdispℵ = max

[
1,

(
2τc
Porb

)ℵ]

= min

[
1,

(
ω

ωc

)ℵ]
, (7.13)

where we write in terms ot the timescales and frequencies for completeness. Now the constant

f intℵ comes from integration of eq. 7.9 with respect to the semi-major axis a. We can evaluate

this by considering the ‘a’ terms in eq. 7.9 (the inverse of equation 3 of Rasio et al. (1996)),

so

a
dt

da
∼ fdispℵ a8 , (7.14)∫ 0

a

dt

da
da ∼

∫ 0

a
a−3ℵ/2a7 da , (7.15)

where we note that since fdispℵ ∼ P−ℵorb then fdispℵ ∼ a−3ℵ/2. Now since, a = a → t = 0 and

7The dynamical timescale, which is also known as the free-fall timescale, is a measure of time a star takes
to respond to a disturbance in the balance between pressure and gravity.
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a = 0→ t = τa we can write ∫ τa

0
da ∼

∫ 0

a
a−3ℵ/2a7 da , (7.16)

τa ∼
2

16− 3ℵ
a(16−3ℵ)/2) . (7.17)

This allows us to write for each ℵ the following

fℵ =


1
8 if ℵ = 0 ,

2
13max

[
1,
(

2τc
Porb

)]
if ℵ = 1 ,

1
5max

[
1,
(

2τc
Porb

)2
]

if ℵ = 2 ,

(7.18)

where we note that this neglects any frequency dependence when ω < ωc.

Stellar (modified) tidal quality factor

We will also wish to consider the modified tidal quality factor within the star (as described

in Ch. 1). To obtain an expression for this quantity, Q′?, we compare equation 3 in Rasio

et al. (1996) with an equivalent expression, equation 7, in8 Ogilvie & Lin (2007). We will

consider the case where the orbital frequency is greater than the stellar spin frequency and

hence sgn(Ωo − Ωs) = 1, thus equating and rearranging these equations we find that

Q′? = −9πfℵ
τc
Porb

M2
?

Menv(M? +Mp)

(
a

R?

)3

= −9πfℵτc
M2
?

Menv(M? +Mp)

Porb

P 2
dyn

, (7.19)

where we note that all quantities in this expression have been defined in this section.

7.1.2 Analysis

In our simple problem we are considering a HJ planet orbiting a slowly-rotating Sun-like star

on the main sequence. In Fig. 7.1 we plot the convective timescale for the Sun as a function

of the normalised stellar radius with a highlighted region to show the relevant tidal timescales

for HJ’s. We take the timescale for the convection near the base of the convection zone

(r/R? ≈ 0.77) with corresponds to approximately 20 days, following Rasio et al. (1996). It is

clear that the tidal period of HJ’s is always much less than the convective timescale and thus

HJ’s find themselves in the high-frequency regime9 (in which ω > ωc). Fig. 7.1 also plots the

stellar density as a function of the normalised stellar radius for the convection zone with an

insert for the density over the full stellar radius. We choose the base of the convection zone for

our turnover timescale due to the larger density (which can be seen as approximately constant

in comparison to the radiative zone, see insert) which plays a role in the total dissipation,

8Note that in their symbols n is the orbital frequency which we call Ωo. We also use Ωs to be the spin
frequency of the star as opposed to Ω∗ in the notation of Ogilvie & Lin (2007).

9We have taken the tidal period to be half the orbital period and hence have not taken account of the
stellar rotation period. If we take the stellar rotation period as 27 days (the equatorial rotation period of the
Sun) then we have the tidal period for our HJ to be Ptide ≈ [0.36, 7.9].
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although in our analysis in this section we neglect density variation. Note that the density plot

in Fig. 7.1 is in units10 of g cm−3 .

Figure 7.1: Left: The convective timescale (τc), calculated from eq. 7.5 using
data from Model S, as a function of the stellar radius which is scaled by the total
radius. The shaded region highlights the range of tidal periods for HJ’s where the
upper limit is taken as 5 days (half the upper limit of orbital period of 10 days,
see § 1.1.2) while the inner limit is taken as 0.383 days which is taken from the
shortest period HJ (as of November 2020 this is NGTS-10b with an orbital period
of 0.76 days, McCormac et al. 2020). The dashed line is an approximate timescale
at the base of the convection zone. The insert shows the associated convective
velocity in cgs units, the point where the velocity is zero defines the edge of the
convective zone. Right: The density as a function of radius (using Model S and
radius scaled by the total radius) which covers slightly more than the convection
zone. The insert is the same but covering the full radius of the Sun.

We show the radial dependence of the effective viscosity in a Sun-like star in Fig 7.2 by

computing eq. 7.1 using data from Model S. We have chosen a tidal period 0.5 day, corre-

sponding with a hot Jupiter on a 1 day orbit11. Since α is an order 1 parameter we use α = 1

rather than the values reported in Table. 5.1 as qualitatively this will not affect our conclusions

here. Here we take αM ≈ 2 for the usual mixing-length parameter in accordance with Model

S. The three lines represent the prediction from assuming ℵ = 0, 1, 2, corresponding with no

frequency-reduction, the linear frequency-reduction of Zahn (1966), and a quadratic reduction,

respectively. The prescriptions clearly give very different predictions for the magnitudes of νE ,

spanning many orders of magnitude, particularly at the base of the convection zone where

ω � ωc. If ℵ = 2 (and also for ℵ = 1), νE is dominated by regions close to the surface, where

ωc is largest.

The data from Model S for the current Sun can be used for a crude estimate of the inspiral

timescale (using eq. 7.9), where we assume that the planet orbits faster than the star rotates

and hence that tidal dissipation drives inward migration. We take τc ≈ 20 days which approx-

imately corresponds to the base of the convection zone where the largest convective eddies

10In astrophysics it is common to use centimetre, grams and seconds (known as cgs) as the units.
11This is equivalent to a semi-major axis of a ≈ 0.02AU .
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Figure 7.2: Effective viscosity eval-
uated as a function of radius in the
solar convection zone according to
mixing-length theory for each pre-
scriptions for its high-frequency be-
haviour (eq. 7.1). We adopt a tidal
period of 0.5 days, corresponding
with a hot Jupiter on a 1 day orbit.
This demonstrates the importance
of using the correct prescription for
νE (in cgs units).

reside. We thus find

τa ≈


30 Myr if ℵ = 0,

3 Gyr if ℵ = 1,

321 Gyr if ℵ = 2.

(7.20)

It is worth reminding the reader that this is the timescale for the planet to migrate from its

initial semi-major axis to a = 0. Since our simulations are consistent only with ℵ = 2 (for such

tidal periods), this suggests that the orbital decay timescale of the closest hot Jupiters around

solar-type stars due to this mechanism would be negligible over the main-sequence lifetime of

the star.

This crude estimate is very simplistic, and we have not considered the integrated νE due

to all eddies throughout the convection zone (e.g. Zahn 1989; Ogilvie & Lin 2007; Remus

et al. 2012; Barker 2020), but it illustrates that these prescriptions give significantly different

predictions for orbital decay timescales. Note also that a modified stellar tidal quality factor

for this mechanism can be defined by (Zahn, 2008; Ogilvie, 2014)

Q′? ∝
1

ω∆t
∝


ω−1 if ℵ = 0,

const if ℵ = 1,

ω if ℵ = 2,

(7.21)

where ∆t ∝ 1/νE is a tidal lag time12. Note that our results imply that Q′ is not constant

for the interaction between tides and convection. We also find that it does not scale like a

constant-time lag (1/ω) except for very low frequencies according to Ch. 6.

7.2 Effective viscosity and timescales following stellar evolution

In many astrophysical applications, tidal forcing occurs in the high-frequency regime for the

dominant convection eddies, such that ω/ωc � 1. Based on our results, this implies a

12Using eq. 7.19 we find Q′? values of 2× 105, 2× 107 and 2× 109 for ℵ = 0, 1, 2 respectively for a Jupiter
mass planet around a Sun-like star on a one day orbit. In the interests of clarity, it is important to highlight
that this is specifically for a 1 day orbit and as the period changes so too do these values.
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significant reduction in the effective viscosity. As stars evolve, their convective velocities and

length-scales evolve, leading to large changes in turbulent viscosities predicted by MLT. Here

we apply our results to predict planetary orbital decay around an evolving solar-mass star. We

compute the dissipation more accurately than in the previous section by integrating over all of

the eddies in the convection zone for a particular νE prescription that matches our simulations.

7.2.1 Effective viscosity model

To apply the results of Ch. 6, we must adopt an appropriate fit for νE . We choose to fit the

points in Fig. 6.6 which provide the maximum estimate of the dissipation (here we ignore any

possible amplitude dependence for ω/ωc & 1), such that we define

νFIT = umltlmlt


5 if ( |ω|ωc < 10−2),

1
2

(
ωc
|ω|

) 1
2

if ( |ω|ωc ∈ [10−2, 5]),

25√
20

(
ωc
|ω|

)2
if ( |ω|ωc > 5),

(7.22)

where umlt is the convective velocity and lmlt is the mixing length, and ωc = umlt/lmlt, which

are obtained in stellar models computed with MESA. Note that the constant, 5, is obtained

from the results of Ch. 6 (see Table. 5.1) while the following constants are determined by

ensuring continuity of νE at the transition frequencies that are assumed (based on the results

of Ch. 6). For the purposes of this crude application (and in the absence of compressible

simulations), we have simply replaced d with lmlt and urms
z with umlt and calculated these

at each radius in the convection zone. To apply this in a stellar model we calculate the

correct equilibrium tide in convective envelopes (Terquem et al., 1998; Ogilvie, 2014), and

then compute the dissipation integral following the procedure outlined in13 Barker (2020).

The result is then converted into a tidal quality factor Q′eq, which is an inverse measure of the

dissipation (e.g. Ogilvie, 2014) (see Barker 2020 for further details).

The resulting orbital decay rate for a (circularly orbiting) short-period planet of mass Mp

around a slowly rotating star of mass M? and radius R can be computed from

d ln a

dt
= − 9π

Q′eq

(
Mp

M?

)(
M?

M? +Mp

) 5
3 P

10
3

dyn

P
13
3

orb

. (7.23)

This is subtly different from the inverse of eq. 7.11 (note that τa ∝ a/|ȧ|) as it includes the

(modified) tidal quality factor for the equilibrium tide, Q′eq, (this will be explained later in this

section) and also does not assume Mp �M?.

The expression for the (modified) tidal quality factor for the equilibrium tide14 can be

obtained by considering the viscous dissipation of the equilibrium tide which is defined as

Dν =
ω2

2

∫
r2ρ(r)νE(r)Dl(r) dr , (7.24)

13See also Zahn (1989) and Remus et al. (2012) for a similar approach using the conventional equilibrium
tide, which is strictly invalid in convection zones. This predicts more efficient dissipation than our model by a
factor of 2-3 for the same νFIT.

14This is also detailed in Barker (2020).
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where Dl(r) is obtained from the viscous fluid stress tensor (in spherical harmonics) for the

non-wavelike equilibrium tide as computed in § 1.2.1. This gives Dl(r) to be

Dl(r) = 3

∣∣∣∣dξrdr
− ∆l

3

∣∣∣∣2 + l(l + 1)

∣∣∣∣ξrr + r
d

dr

(
ξh
r

)∣∣∣∣2 + l(l − 1)(l + 1)(l + 2)

∣∣∣∣ξhr
∣∣∣∣2 , (7.25)

where

∆l =
1

r2

d

dr

(
r2ξr

)
− l(l + 1)

ξh
r

(7.26)

and ξ is the tidal displacement vector for the equilibrium tide in the convective region of the

host star (see § 1.2.1 for how this is defined) which can be expanded in terms of spherical

harmonics (Y m
l e−iωt). Explicitly, for a single harmonic, say l = m = 2, the displacement

vector can be written as

ξ =
(
ξr(r)er + rξh(r)∇

)
Y m
l (θ, φ)e−iωt , (7.27)

where er is radial unit vector and ∇ is the gradient operator. With this definition the tidal

quality factor is given by

Q′eq =
3(2l + 1)R2l+1

? |A|2

16πG

|ω|
Dν

, (7.28)

where A is the dimensional tidal amplitude15. To give a clearer picture of this quantity, in

eq. 1.8 we would have that A = A/R2
1. Note that A is required here as ξ ∝ A in linear theory

and hence Dν ∼ A2, thus Q′eq is independent of A in linear theory.

7.2.2 Analysis

Figure 7.3: Left: Contours of log10Q
′
eq resulting from dissipation of the correct

equilibrium tide in the convective envelope of a 1M� star (with initial metallicity
0.02) as a function of age and tidal period based on applying νFIT. Right: inspiral
time τa as a function of orbital period resulting from this mechanism, for a 1MJ

planet in circular orbit about a slowly rotating 1M� star at various ages prior to
the red giant phase (Prot = 100 d for all curves, which may be relevant for later
ages).

15A has units of time−2 which can be seen from analysis of eq. 1.8.
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We show Q′eq (from eq. 7.28) computed using νFIT (eq. 7.22) in models of a 1M� star

(computed with an initial metallicity 0.02) in the left panel of Fig. 7.3 as function of tidal

period Ptide = 2π/ω and age (in yrs). The models used are computed using the MESA code

and provide 400 snapshots which follow the evolution of the star. This shows that during the

main sequence, solar-mass stars have Q′eq ∼ 1010 for tidal periods of order 1 day, though Q′eq

is smaller during pre-main sequence phases (ages prior to approximately 107 yr) and as the star

evolves off the main sequence (ages approaching 1010 yr), indicating more efficient dissipation

during these phases16.

We note that the relevant tidal frequency, assuming Porb � Prot, is ω = 4π/Porb, and

that the high-frequency regime is found to be the relevant one for short orbital periods (at

all stages in stellar evolution). As a result νFIT ∝ P 2
orb, implying that Q′eq ∝ P−1

orb, so that

the right hand side of eq. 7.23 is proportional to a−5, indicating accelerating inspiral. The

corresponding timescale for orbital decay of a 1 MJ hot Jupiter is

τa ≈ −
1

5

(
d ln a

dt

)−1

≈ 250 Gyr

(
MJ

Mp

)(
Porb

1 day

) 10
3

, (7.29)

which we have evaluated in a stellar model similar to the current Sun (assuming Prot = 20

days). Note that the 1/5 constant comes from eq. 7.17.

We show similar estimates for τa as a function of orbital period Porb, computed numerically

for a 1M� star for a range of ages, in the right panel of Fig. 7.3. We have assumed Prot = 100

days for all ages for the purposes of this figure, since the curves shown are unaffected by rotation

except for the latest ages when the star is expected to rotate so slowly. This figure, and the

estimate in eq. 7.29, indicates that convective damping of equilibrium tides plays a negligible

role for planetary orbital decay around main sequence stars, even assuming the most optimistic

fit for νFIT consistent with our simulations. This is because of the strong reduction in the

effective viscosity with the quadratic scaling law. On the other hand, for later evolutionary

stages as the star begins to evolve onto the red giant phase, this mechanism becomes more

efficient, primarily because the stellar radius becomes much larger. This mechanism thus

predicts the destruction of many short-period planets during the later stages in the evolution

of solar-mass stars. (We have omitted figures showing even later evolutionary stages for clarity,

but planets out to much wider orbits can be rapidly destroyed by this mechanism.)

Our results using νFIT (with α = 5 at low frequencies) is found to predict more efficient

dissipation by approximately a factor of 15, and therefore shorter tidal evolutionary timescales

by this factor, than the usual assumption α = 1/3 that is usually assumed when applying

the Goldreich & Nicholson (1977) reduction (e.g. Ogilvie & Lin, 2007). We note that an

enhancement in α is apparently required to explain the results of Hansen (2012), though they

employ the linear reduction law, and thus their model predicts much more efficient dissipation

at high frequencies. However, we caution that the application here of our results in Fig. 6.6,

based on Boussinesq simulations, is very crude. In addition, our simulations find a scatter at

high frequencies of approximately an order of magnitude depending on tidal frequency, so the

precise results of our application are probably uncertain to within at least such a factor.

16As a reminder νE ∝ Q′−1 and so a smaller value of Q′ is to be interpreted as more efficient dissipation.
This can be seen from eq. 7.28 which has Q′eq ∼ D−1

ν .
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7.3 A brief word on negative effective viscosities

As mentioned in aside 1.5, negative effective viscosity should be considered as an energy

transfer process rather than an analogue of molecular viscosity. In the formalism we have

described in this work the definition of a positive effective viscosity is such that the convective

motion extracts energy from the tidal flow. In this case the energy being provided to the

convection comes at a cost of the orbital or rotational energy. The case of negative effective

viscosity can simply be thought of as the inverse of this process, that is, the tidal flow extracts

energy from the convection (which is powered by fusion within the star).

One might be tempted think of negative effective viscosities as simply inverting the direc-

tion of the evolution of orbital parameters (semi-major axis, eccentricity, etc.). From this

perspective the prediction of negative effective viscosity would seem at odds with the obser-

vations presented in § 1.1! The problem with this viewpoint is it neglects that we have been

considering a local model and it is perhaps the case that the global picture consists of a net

positive effective viscosity with locally negative regions. The overall result of this would be

a further reduction in the efficiency of this mechanism to dissipate the tide, over and above

any frequency scaling, when integrating over the entire convection zone. In principle, a global

negative effective viscosity is possible and would indeed drive an inverse tidal evolution. For

example, the excitation of eccentricity of the secondary.

Another useful way to consider this problem is through the tidal torque. Much like the

problem of the sum total of the effective viscosity, the total torque is the sum of contributions

to the tidal torque from all sources. That is, we must consider the turbulent dissipation of

the equilibrium tide alongside other sources of tidal dissipation such as inertial waves, internal

gravity waves, etc. Thus even if the total effective viscosity was negative it may be that other

mechanisms are dominant and have opposing sign of tidal torque. In fact a similar process

is thought to be occurring with the retrograde rotation of Venus where the gravitational and

atmospheric tides impose torques on the planet with opposite sign (Correia & Laskar, 2001;

Correia et al., 2008).

7.4 Summary

In this chapter we have applied the results of the simulations (and theory) presented in Ch. 3-6

to toy problems based on real world physical systems. In particular, in this chapter, we have

focused on the problem of the orbital evolution of HJ planets around Sun-like stars. We will

discuss some additional implications of this work in Ch. 8.

Summary: Key findings

We have demonstrated through simple models the following:

� the correct prescription for the frequency dependence of the tidal dissipation is

essential,

� inspiral timescales span many orders of magnitudes depending on the prescription

used (from much shorter than the lifetime of the system to significantly longer),
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� the high-frequency regime is the relevant case for 1 MJ HJ planets around Sun-like

stars,

� this then suggests that this mechanism is unlikely to be the dominant mechanism

for tidal dissipation for HJ’s

We have also discussed the consequences and interpretation of negative effective vis-

cosities. Considerations that should be made are:

� negative effective viscosity may be a localised phenomenon,

� we must consider all sources of tidal torque (not just the mechanisms in this

work),

� global negative effective viscosity would result in an inverse tidal evolution (such

as excitation of eccentricity).
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Chapter 8

Conclusions and future work
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The interaction between large-scale equilibrium (non-wavelike) tidal flows, as described in

§ 1.2, and turbulent convection is believed to act as an effective viscosity (νE) in damping these

tidal flows. This mechanism has long been thought to be one of the dominant mechanisms of

tidal dissipation in stars with convective envelopes1 (Zahn, 1966, 1977; Zahn, 1989; Zahn &

Bouchet, 1989). However, it is probably the most uncertain tidal mechanism, making it difficult

to make robust predictions for the resulting spin-orbit evolution in astrophysical systems. In

particular, it is thought that the effective viscosity mediating the interaction between the tidal

flow and convection depends strongly on the tidal frequency, and its efficiency is expected to

be greatly reduced when the tidal frequency is larger than the relevant convective frequency

(Zahn, 1966; Goldreich & Nicholson, 1977; Goodman & Oh, 1997). However, the correct

frequency scaling that should be applied in the high-frequency regime has been a matter of

much controversy (see § 1.3), with the original work of Zahn (1966) proposing νE ∼ ω−1 when2

ω � ωc, and Goldreich & Nicholson (1977) later proposing νE ∼ ω−2 instead. The resolution

of this issue is essential before we can apply this mechanism to make robust predictions for

tidal evolution in planetary systems and binary stars.

We have presented the results from an extensive parameter survey of numerical simulations,

in Ch. 3, 5 and 6, designed to explore the interaction between large-scale equilibrium tidal

flows and convection within a star or giant planet. We have used Boussinesq hydrodynamical

simulations of a local Cartesian patch of convective fluid, which is modelled within the well-

studied Rayleigh-Bénard system (§ 2.1.3), to which we impose a large-scale tidal-like shear

flow as a “background flow” (§ 2.1.1). Our analysis of these simulations has primarily focused

on the evaluation of the effective viscosity (eq. 2.3.2) which arises as a result of the interaction

between the convection and this tidal-like flow. We have presented an in-depth study into the

1The tidal excitation and dissipation of inertial waves, perhaps through their interaction with convection,
may also be important for low tidal frequencies (see e.g. Ogilvie 2014 and references therein).

2This regime is relevant in most applications.
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relationship between the frequency spectrum of both the energy and the Reynolds stress in the

convection and the frequency-dependence of the effective viscosity, in Ch. 5 and 6.

In this parameter survey we have explored a wide range of parameters, to explore the effective

viscosity (in Ch. 3, 5 and 6) and the effective elasticity (in Ch. 3 and 5). This has largely

focused on the tidal (shear) frequency dependence ω, which is our primary concern, but in order

to gain a more complete understanding has also considered effects of shear amplitude (a0), the

strength of convection (parametrised by the scaled Rayleigh number R), the horizontal domain

size (Lx = Ly) and a brief look at the effects of changing the ratio of molecular viscosity to

thermal diffusivity (through the Prandtl number Pr).

8.1 Main results

We have determined that the effective viscosity governing the interaction between tidal flows

and convection exhibits three different regimes depending on the ratio of the tidal and con-

vective frequencies (as shown most clearly in e.g. Fig. 6.6). We refer to these as the low

frequency, intermediate frequency and high-frequency regimes, respectively. Our main results

are as follows, where we also highlight which of the three regimes each statement applies to:

1. (low-frequency regime) For very low tidal frequencies, the effective viscosity becomes

frequency-independent. The transition into this regime is observed to occurs at ω/ωc .

10−2, which is a much lower frequency than has been predicted (Zahn, 1966; Goldreich

& Nicholson, 1977) or observed in simulations to date (see Table 6.1). Previous work

instead expected or observed the transition to occur at approximately the convective

frequency. This frequency-independent regime coincides with the commonly-adopted

constant tidal time-lag model (e.g. Darwin, 1879d; Mignard, 1980; Hut, 1981; Eggleton

et al., 1998), which our results have shown is only valid for a limited range of very low

tidal frequencies ω/ωc . 10−2. The constant time-lag model is therefore not appropriate

for modelling tidal interactions except for such low frequencies, which are usually not

relevant in astrophysical applications.

2. (low-frequency regime) We find this mechanism to be considerably more efficient than

has been previously proposed at very low frequencies. In particular, we have determined

that νE ≈ αurms
z d, where3 α ≈ 5. This result appears to be independent of Rayleigh

number, suggesting that we might be able to extrapolate this to astrophysical parameter

values. Previous work has adopted a naive mixing-length picture based on the analogy

with kinetic theory, which instead gives α = 1/3 (e.g Zahn, 1989; Ogilvie & Lin, 2007)

if d corresponds with the usual mixing length. In our Boussinesq model d is the most

natural length-scale to identify with the mixing length, but compressible models are

needed before we can be fully confident of the appropriate value of α.

3. (intermediate regime) We have discovered a new regime with a different frequency scaling

νE ∝ ω−0.5, which occurs in the range 10−2 . ω/ωc . 1 − 5 (depending on tidal

amplitude), which we refer to as the intermediate-frequency regime. This regime is

observed for all Rayleigh numbers considered, suggesting that it might be a robust feature

of the interaction between tides and convection. To the best of our knowledge, this

3We remind the reader that this is strictly different from the usual mixing-length “α” parameter, see § 2.3.3.
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regime has never previously been predicted or reported. A similar intermediate regime,

but with a different power law of −1 was however observed for spherical convection in

Vidal & Barker (2020b) for 1 . ω/ωc . 5. The existence of such an intermediate regime

here and in Vidal & Barker (2020b) may explain the disagreement between the results in

our Ch. 3, 5 and Ogilvie & Lesur (2012) compared with Penev et al. (2009b). This new

regime may be relevant in many astrophysical applications where the constant time-lag

model was previously applied.

4. (low/intermediate regime) The frequency scaling of the effective viscosity, in both the

low and intermediate frequency regimes, appears to follow the corresponding slope of the

frequency spectrum of the kinetic energy (and also the Reynolds stress) when ω/ωc . 1

(see also Vidal & Barker, 2020b,a). This is shown in Fig. 6.8. In these regimes, the

agreement of the slope of the eddy viscosity points with both the energy and Reynolds

stress curves is robust, but the constants of proportionality could depend on the Rayleigh

number, the Prandtl number and the tidal amplitude (though the dependence on the

latter has been found to be weak). In principle, this could be determined by performing a

more extensive parameter survey for larger R for frequencies that lie within the interme-

diate regime. This would be a challenging task however, since simulations with large R

are computationally costly, and we have only been able to robustly find the intermediate

regime for νE in simulations with R ≤ 500.

5. (high-frequency regime) For ω & ωc, we provide strong evidence clearly demonstrating

that the effective viscosity follows νE ∝ ω−2, in agreement with prior simulations (Ogilvie

& Lesur 2012; Braviner 2015 and those performed concurrently with this thesis Vidal &

Barker 2020b,a) and theoretical expectations (Goldreich & Nicholson, 1977; Goldman,

2008; Ogilvie & Lesur, 2012), see Table 6.1. This mechanism is therefore much less

efficient for high-frequency tidal forcing than would be predicted by adopting the less

drastic frequency-reduction of Zahn (1966). One implication is that this mechanism is

unlikely to cause appreciable orbital decay for hot Jupiters orbiting main-sequence stars

(for which dynamical tide mechanisms such as internal gravity wave damping or inertial

waves in sufficiently rapidly rotating stars are probably much more important).

6. (high-frequency regime) Despite our simulations being in agreement with Goldreich &

Nicholson (1977) in finding νE ∝ ω−2 in the high-frequency regime, our results do not

support their physical explanation. This is most clearly evident from our observation

that it is the energetically dominant modes of the convection which contribute the most

to the effective viscosity. In fact, we do not observe any significant contribution from

the “resonant modes” in the spatial spectrum (see Fig. 6.9), which were predicted by

Goldreich & Nicholson (1977) to provide the dominant contribution. However, we do

observe resonant behaviour in the frequency spectrum of the kinetic energy, particularly

when the shear is in the high-frequency regime. In the absence of a simple mechanism

to explain this scaling, the asymptotic analysis in Ogilvie & Lesur (2012), which we have

extended in Ch. 4, does however provide a mathematical prediction for this behaviour

which highlights that the convection responds viscoelastically to high-frequency shear.

7. (high-frequency regime) The sign of the effective viscosity, νE , transitions from positive
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to negative (anti-dissipation) within the high-frequency regime. The mechanism behind

the transition to anti-dissipation is unclear, however, there are signs that the transition

is pushed to ever higher frequencies with increasing strength of convection (R). This

observation is consistent with the asymptotic theory presented in Ch. 4 and corroborates

the tentative detection of negative values in Ogilvie & Lesur (2012). Further, we have

demonstrated that laminar convection gives robust negative values in small domains for

certain roll alignments (Ch. 3), which depend on the initial conditions. This result is

explained by the asymptotic theory in Ch. 4.

8. (combining all regimes) From Fig. 6.6 it seems clear that if the appropriate scaling is

chosen, that is the scaled effective viscosity (eq. 2.63) and scaled shear frequency (ω/ωc

where ωc is defined by eq. 2.30) the effective viscosity collapses to a single master curve

(for a given a0) which is independent of R, as far as we are able to probe this. This

suggests that we can explore its consequences using stellar models, as we describe in

Ch.7 (see also Barker 2020).

Our results confirm that tidal dissipation in convective regions due to this mechanism does

not behave like a frequency-independent tidal quality factor. For very low-frequency tidal

forcing (ω � ωc), our results indicate that this mechanism behaves in a similar way to the

commonly-adopted constant tidal lag-time model, at least in the simplest cases of either an

aligned circular orbit or an aligned, spin-synchronised, weakly eccentric orbit, where there is

only one tidal frequency (Darwin, 1879d; Alexander, 1973; Mignard, 1980; Hut, 1981; Eggleton

et al., 1998; Ivanov & Papaloizou, 2004). However, we have shown that νE is frequency

dependent for a range of frequencies even for ω . ωc and does not attain a constant value

until ω/ωc . 10−2. This indicates that the constant time-lag model is strictly inappropriate

to model tidal interactions even in (most of) the low-frequency regime. In addition, our result

that νE ∝ ω−2 when ω & ωc, clearly indicates in the general case that if any component

of the tide has a frequency that is comparable with or larger than the dominant convective

frequency, then different components of the tide will be damped at different rates i.e. they will

have different lag times (Lai, 2012), and these will no longer be constant (see also Ivanov &

Papaloizou 2004; Vick & Lai 2020). The consequences of this should be explored in future

work.

Our results disagree with the high-frequency scaling law of Zahn (1966) and Zahn (1989),

and apparently also with the prior simulations of Penev et al. (2007) and Penev et al. (2009b)

(see § 1.3.2, 1.3.4 and Table 6.1). The reason for this discrepancy has not yet been elucidated,

but it is possible that it is due to the narrow range of frequencies they probed being only in the

intermediate regime (and hence they would not observe ω−2 behaviour). Alternatively, it may

be related to differences in the turbulent temporal power spectra between these simulations.

Another possibility is that compressible convection responds differently to tidal forcing in an

important way compared with the Boussinesq convection that we have modelled. The simula-

tions in Penev et al. (2009a) adopted the anelastic approximation, allowing them to simulate

multiple density scale heights, whereas our model is effectively restricted to single scale height.

However, our simulations have been run for a much longer duration, over a much wider range

of frequencies, and they have also been confirmed for laminar convection with an independent

asymptotic analysis. A further difference between our models is that their simulations adopted
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a body force to drive the tidal flow rather than a background flow in a shearing box.

8.1.1 Secondary results

Our main astrophysically relevant results have been described above, but we have also obtained

a number of interesting fluid dynamical results which we will now summarise. We will briefly

highlight some of these results which may help shed light on the fundamental physics at play.

1. In small domains (Lx = Ly = 2, Lz = 1) with weak convection (low R ≤ 10) we find

convective rolls aligned in either the ex or ey directions and it has been found that they

result in robust values of either negative or positive (respectively) magnitudes of the

effective viscosity regardless of frequency. This result is supported by the asymptotic

analysis presented in Ch. 4 which extends that of Ogilvie & Lesur (2012). Furthermore,

the frequency scaling and sign for the ey aligned case, νE ∝ ω−2, can be obtained by a

simple force balance argument.

2. In small domains (Lx = Ly = 2, Lz = 1) with weak convection (low R ≤ 10) we find

that the effective elasticity, SE , behaves differently for each of the ex or ey configurations.

In the ex aligned cases SE demonstrates frequency independence in the low-frequency

regime and approximately a quadratic power law in the high-frequency regime, while the

inverse is true for ey aligned rolls.

3. For larger domains (up to Lx = Ly = 4) we find that the flow structure consists of

the superposition of a set of discrete wavemodes (which for these cases we have named

spots/stripes and stripes/spots). Each class of structure will result in either a positive or

negative effective viscosity regardless of the frequency but the effective viscosity follows

the same frequency dependence as in the smaller domains.

4. In small domains (Lx = Ly = 2, Lz = 1) with R = 100 we find that SE follows the trend

of ey aligned rolls. That is, SE demonstrates frequency independence at high-frequency

regime and approximately a quadratic power law in the low-frequency regime.

5. In our asymptotic analysis in Ch. 4 inclusion of the thermal contribution (which we in-

troduce in our extension of Ogilvie & Lesur 2012) is essential to obtain negative effective

viscosities in our model. Interestingly, this addition only manifests as a modification to

the pressure term up to the order we consider.

6. In the larger domain sizes with turbulent (chaotic) flow patters, presented in Ch. 6 we

found that in the low and intermediate frequency regimes that the effective viscosity was

shear amplitude, a0, independent while in the high-frequency regime we observed signs

of dependence on the magnitude of a0.

7. In Ch. 6 we demonstrated that, for a number of decades in frequency, the frequency

spectrum of the volume average kinetic energy follows a −0.5 power law. This occurs in

the sub-inertial range (ω < ωc) which is a regime that has received very little attention

from the convection community.

It would be interesting to explore further the contributions of different wavemode contribu-

tions to the effective viscosity as this may shed light on the physical mechanism behind the

negative viscosity.
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8.2 Astrophysical consequences

We consider here some of the applications of these results to various astrophysical systems.

This is by no means an exhaustive list but will cover what we consider to be the most important.

8.2.1 Hot Jupiters

One implication of our results is that the inferred orbital decay of the shortest-period hot

Jupiters4 with observed transit timing variations (e.g. Maciejewski et al. 2016; Patra et al.

2017; Maciejewski et al. 2018; Bouma et al. 2019) is unlikely to result from the interaction

between tides and convection. Instead, these observations are probably explained by the tidal

excitation and dissipation of internal gravity waves in radiative regions (Goodman & Dickson,

1998; Ogilvie & Lin, 2007; Barker & Ogilvie, 2010; Barker, 2011; Weinberg et al., 2012; Essick

& Weinberg, 2016; Chernov et al., 2017; Barker, 2020). This mechanism is able to provide

the required level of dissipation to explain the decaying orbit of WASP-12 b5 (e.g. Barker

2011; Chernov et al. 2017; Weinberg et al. 2017; Bailey & Goodman 2019), if we assume

that these waves are fully dissipated. However, uncertainties remain regarding the structure

of the star (whether or not it has a radiative core), and whether these waves should in fact

be fully damped. In general, our results imply that convective damping of equilibrium tides is

unlikely to be an important mechanism for planetary migration around main-sequence stars.

Instead, dynamical tides such as inertial waves in young rapidly-rotating stars (Mathis, 2015;

Bolmont & Mathis, 2016; Barker, 2020), and internal gravity waves, are likely to be much

more important.

Aside 8.1: Ultra Short-Period planets (USP’s)

USP’s are the terrestrial equivalent to HJ’s in that they are small rocky planets in

sub 1 day orbits around their host star.

Recently, the survival over the main sequence lifetimes of Sun-like stars of USP’s on

circular orbits has been considered. Observations suggest that USP’s do not undergo

significant inspiral over the lifetime of the star (Hamer & Schlaufman, 2020). One

explanation for this is that these planets are deep into the high-frequency regime and

hence dissipation of the equilibrium tide would be weak (and hence extremely long

inspiral timescales).

8.2.2 Giant planet satellites

Another implication of our results is that the strong tidal dissipation required to explain the

outward migration of the satellites of Jupiter and Saturn (Lainey et al., 2009, 2012, 2017) is

unlikely to be produced by the convective damping of large-scale tidal flows. This supports

prior theoretical arguments by Goldreich & Nicholson (1977). However, these planets rotate

sufficiently rapidly that convection is likely to be strongly rotationally constrained, motivating

further simulations like those in this paper, but in the presence of rapid rotation (e.g. Barker

4For a non-exhaustive list of the most favourable HJ’s for migration detection see Barker (2020); Patra
et al. (2020).

5The transit time variation of WASP-4 b has been attributed to the star’s acceleration towards Earth Bouma
et al. (2020). It is possible this star is too small for dissipation due to wave breaking of internal gravity waves.
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et al. 2014, by building upon the phenomenology of e.g. Mathis et al. 2016). Dynamical tides

such as inertial waves (Ogilvie & Lin, 2004) or internal gravity waves may be essential here.

In particular, the presence of a stably-stratified layer caused by gradients in heavy elements

may be important (André et al., 2017; André et al., 2019; Pontin et al., 2020), as may the

mechanism of resonance locking (Fuller et al., 2016)

8.2.3 White dwarf giant planets

Recently, observations have discovered a giant planet on a short-period orbit around a white

dwarf (Vanderburg et al. 2020; Lagos et al. 2020; Muñoz & Petrovich 2020). Convective

damping of equilibrium tides is believed to cause planetary destruction around evolved stars

(e.g. Mustill & Villaver 2012). Our findings suggest that the effective viscosity from the

equilibrium tides interacting with convection is strongest in the low-frequency regime and this

is usually the most relevant regime for evolved stars (such as red giants). As such our results

may have important consequences to constrain the state of the system before the evolved giant

star transitioned into a white dwarf and the subsequent migration6 of the planet.

8.2.4 Stellar binaries containing an evolved star

When low to intermediate mass stars (0.3 to 10M�) evolve off of the main sequence7 they

expand into evolved giants with deep convective envelopes. Tidal dissipation of inertial waves

is not thought to contribute in these stars as, due to expansion and conservation of angular

momentum, they are slow rotators where inertial waves may not be efficiently excited (or at

all). Due to being slow rotators, evolved stars find themselves in the low-frequency regime of

the tidal dissipation of the equilibrium tide, and hence where this mechanism has its greatest

strength.

The work of Verbunt & Phinney (1995) explored the circularization of binaries containing

a white dwarf. In their work they used the description of the incompressible equilibrium tide

of Zahn (1989) as described8 in § 1.2.1. Further, for lack of a better model at the time,

they took α = 1/3, as per Zahn (1966, 1977); Zahn (1989) (which we remind the reader has

no real physical basis). Their work found good agreement with observations despite both of

these shortcomings. As pointed out by Barker (2020), the incorrect use of the incompressible

equilibrium tide results in an order one over prediction while the α = 1/3 assumption makes an

order one under prediction, hence neither having an adverse affect on the results in this case.

Hence the Verbunt & Phinney (1995) conclusion may be approximately correct after both of

these corrections have been accounted for.

8.2.5 Young stellar binaries

Much of the previous work in considering tidal evolution of young stellar systems has assumed

that dissipation of the equilibrium tide is the dominant mechanism (Zahn & Bouchet, 1989;

6Some work has already considered the migration of planets around white dwarfs, e.g. Veras et al. (2019);
Veras & Fuller (2019, 2020)

7We are considering the evolved stars on the Red Giant Branch, Asymptotic Giant Branch, Horizontal
Branch, etc.

8Note that the incompressible equilibrium tide is only applicable in the radiative regions of stars and hence
their application to the convective regions is incorrect.
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Zahn, 2008; Nine et al., 2020). However, such young stars are typically rapid rotators and

hence, not only are these systems likely to be in the high-frequency regime where the equilibrium

tide is weak, but they will also be susceptible to the efficient excitation of inertial waves (and

hence dissipation of the dynamical tide). The question of which of these sources of dissipation

is dominant has been explored by Barker (2020) where it was shown that the dissipation of

inertial waves (providing they are excited) dominates, see also Mathis (2015).

8.2.6 Anti-dissipation

It is important to note that we obtained statistically significant negative effective viscosities,

particularly at high frequencies, indicating the possibility of tidal anti-dissipation. In principle,

this could drive the opposite tidal evolution to that which is commonly expected e.g. excitation

rather than damping of planetary eccentricities. Despite our results indicating negative values

are likely pushed to non-physically high frequencies in physical systems, it is nevertheless an

important consideration for more realistic models (such as inclusion of rotation, fully com-

pressible, magnetic fields, etc.), which may allow for negative effective viscosities. The recent

work9 of Fuller (2020) has indicated that in close stellar binaries anti-dissipation (what they

refer to as inverse tides) is also possible if one of the stars is undergoing self-excited pulsa-

tions. Similar to how what we have explored in this work, where convection could theoretically

transfer energy into the tidal flow, these pulsations can pump energy into the tidal flow.

8.3 Where do we go from here?

Much further work is required to explore the interaction between tidal flows and convection,

to study: more turbulent regimes of convection, the incorporation of rotation, modelling sig-

nificant density variation (e.g. by simulating convection using the anelastic approximation),

and the extension of this problem to idealised (and, ultimately, more realistic) global models

of stars or planets.

Despite much progress having being made in recent years on this problem there is still much

work to do to understand the physics of the interaction between tidal flows and convection. In

this work we performed Boussinesq simulations, which effectively limits them to small domains

relative to a pressure scale height, but convection in stars can occur over many scale heights

so that compressible effects could be important. We propose that simulations to investigate

anelastic convection, which would build upon Penev et al. (2009b) by exploring a much wider

range of parameters, and in particular tidal frequencies, would be of great interest. These

simulations would be able to make a more quantitative comparison with mixing-length theory.

In addition, since all stars and planets rotate, it is important to study the effects of convection

in this problem. It is known that sufficiently rapid rotation acts to constrain convection

(Stevenson, 1979; Barker et al., 2014; Currie et al., 2020), which probably affects the effective

viscosity (Mathis et al., 2016). The consequences of the inclusion of rotation, and its effects

on the frequency spectrum of kinetic energy, have not yet been explored numerically.

9The work in Fuller (2020) was conducted after the work presented here.
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Appendix A

Effective viscosity with frequency

spectra for R ∈ {50, 200, 1000}

Figure A.1: See Fig. 6.8 for a detailed description (and the associated text § 6.2.3)
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Common symbols

a Semi-major axis. 9, 119

A Tidal amplitude. 11

αmlt Mixing-length parameter. 27, 118

a0 Tidal displacement amplitude. 38

α Scaled effective viscosity. Scaled by the convective

frequency. 49, 89, 110

β Quadratic fit parameter for small domains. 89

d The vector pointing from the centre of the primary to

the point mass secondary. 9, 10

d layer depth of the Cartesian domain. 33, 40

δ Dirac delta function. 36

Dν Viscous dissipation of the equilibrium tide. 124

Ê Kinetic energy. Specifically this symbol is used for the

wavenumber (spatial) spectrum of kinetic energy. 77,

94, 96

Ẽ Temporal Fourier transform of the volume averaged

kinetic energy. This gives the frequency spectrum of

the kinetic energy. 83, 107

Flum Stellar luminosity flux. 118, 119

fℵ Viscosity reduction factor. 119, 121

G The gravitational constant. 10

Γ Reynolds stress or kinetic energy. 96

γ Quadratic fit parameter for large domains. 110, 112

Hp Pressure scale height. 23, 27

H Heaviside step function. 36

Hw Hann window function. 96

kml Tidal Love number. 13, 14

k2
2 Tidal Love number for the quadrupole moment. 14

k The vector of wavemodes. 20

kx Wavemode in x. 20, 94

ky Wavemode in y. 20, 94

kz Wavemode in z. 20

k2
⊥ Sum of the square of horizontal wavenumbers. 41, 77
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k2 The sum of squared wavenumbers, k2 = k2
x + k2

y + k2
z .

41, 72

k⊥ The horizontal wavenumber. 94

lmlt The mixing length. 23, 27, 118

Lx Length of the Cartesian domain’s x axis. 33

Ly Length of the Cartesian domain’s y axis. 33

Lrad Radiative luminosity. 119

M1 Mass of the primary. 9

M2 Mass of the secondary. 9

M? Stellar internal mass. 118

Mp Planet mass. 119

Menv Mass of the stellar convective envelope. 120

N2 Buoyancy (Brunt–Väisälä) frequency. 18, 21, 39

νe Effective viscosity from mixing-length theory. 26, 56

νE Effective viscosity (also see eddy viscosity). 26, 27, 28,

47, 48, 50, 63, 65, 70, 118

Nx The discrete resolution in the ex direction. 44

νmol molecular viscosity. 47, 90

nx The wavenumber for the wavemode kx. 54, 76, 94

ny The wavenumber for the wavemode ky. 54, 76, 94

ν̂E Fourier transform of the effective viscosity as a function

of the wavemodes (kx, ky). 82

νFIT Model for the effective viscosity frequency dependence.

124

Ωs Spin frequency of the primary. 10

Ωo Orbital frequency of the primary. 10

ω Tidal forcing frequency. 14, 33, 38, 56

ωc Convective frequency. 26, 41, 118

ω̃ The angular frequency associated with the frequency

spectra. 83, 107

Φ Newtonian (gravitational) potential. 9

Ψ Tidal potential. 10, 15

p Pressure. 15

Pr Prandtl number. 41, 42

Porb Orbital period. 119

Pdyn Dynamical timescale. 120

Q Tidal quality factor. 14

Q′ Modified tidal quality factor. 14, 25
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Q′? Stellar modified tidal quality factor. 121, 123

R1 Radius of the primary. 11

ρ Density. 15

Ra Rayleigh number. 41, 42

R Scaled Rayleigh number (scaled by the critical Rayleigh

number for the onset of convection). 41

Rac The critical Rayleigh number for the onset of

convection. 41, 54

Rxy Reynolds stress. 46

R̂xy Fourier transform of the Reynolds stress as a function

of the wavemodes (kx, ky) and time t. 82

R̃xy Temporal Fourier transform of the volume averaged

Reynolds stress. This gives the frequency spectrum of

the Reynolds stress. 83

S Background (tidal) flow amplitude, which is a function

of frequency. 38

SE Effective elasticity. 49, 50, 51, 70

θ Temperature perturbation. 39, 40

T Linear background temperature. 39, 40

τc Convective turnover time. 118

τa Inspiral timescale. 120, 126

u0 Background tidal flow. 38, 39

u∗ The total velocity. 39

u Flow field neglecting some background. 39

urms
z The root mean square of the vertical component of

velocity. 41

umlt The mixing-length velocity. 118

ξ Tidal displacement vector. 17, 18, 125

Y m
l Spherical harmonic of degree l and order m. 11

ζ Tidal displacement potential. 35
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Common terms

AU An astronomical unit. Defined as the mean distance

between the Sun and Earth.. 4

buoyancy (Brunt–Väisälä) frequency Buoyancy (Brunt–Väisälä) frequency, see also N2. 21

background flow We describe the tidal shear flow as an imposed

background flow within the domain. 38

constant time lag model A model for the dissipation of tidal energy by assuming

a constant time lag. 25

constant Q model A model for tidal dissipation in which the tidal quality

factor Q is constant. 26

eddy viscosity Also see effective viscosity. 23, 49

effective viscosity Viscosity due to fluid motion (not to be confused with

molecular viscosity). Also see νE . 23

frequency spectrum The temporal Fourier transform of some quantity. 83,

96

HJ Hot Jupiter. 4

integral scale The largest spatial scale of energy injection into a

system. 26

line of centres An imaginary line between the centres of the primary

and secondary. 11, 25

Love number The measure of a bodies central concentration, see also

kml . 13

mixing-length theory (MLT) The mixing-length theory of Prandtl. 23

non-wavelike equilibrium tide The equilibrium tide valid within convective regions

(also see § 1.2.1). 19

primary The more massive object in a binary system. 9

resonant eddies Eddies with timescales similar to the tidal period. 28

Reynolds stress Determines the energy transfer rate between the tidal

(shear) flow and the convection. 46
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secondary The second most massive object in a binary system. 9

turbulent viscosity Also see effective viscosity. 23

temperature perturbation The perturbed temperature about a linear background.

39

tidal anti-dissipation Conventional tidal theory considers the energy of the

tidal flow being dissipated. Tidal anti-dissipation is a

process by which energy is injected into the tidal flow

by some mechanism. 80

weak friction approximation The approximation that the angle between the tidally

excited deformation and the line of centres is small. 25

wavenumber spectrum The spatial spectrum of some quantity. 77, 94
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