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Abstract

Accurate system models are applicable to many software engineering tasks. Despite their utility,
models are often neglected during development. It is therefore desirable to reverse engineer them
from existing systems. One way to do this is to record traces of the system and infer a model
by generalising from this behaviour.

Unfortunately, the models inferred by current techniques often cannot represent how the data
values associated with each action affect system behaviour. This raises the following questions.
What kind of model do we need in order to show the interplay between behaviour and data?
How can we infer such models from system traces? How can we infer functions to relate input
data with subsequent outputs? How can we use our models once they have been inferred?

To answer these questions, the first contribution of this thesis is a new model definition
designed to show the relationship between data and behaviour. Secondly, I present a technique
to infer such models from system traces, and define a preprocessing step to infer functions
that relate system inputs and outputs. I then empirically evaluate the models produced by my
technique and compare them to those produced by a state-of-the-art tool. Finally, I show how
the inferred models can be used to analyse properties of the systems they represent.

The results show that my technique infers models which are more accurate and intuitive
than the current state of the art. My tool can also handle circumstances where the output of a
system depends on data values not present in the traces, and can identify situations where the
result of particular actions depends on specific data values. The models inferred by my tool can
be used by existing verification tools to prove and refute properties of the underlying systems.
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Chapter 1

Introduction

Computer software is becoming increasingly important in people’s lives. Because of this, there
is an increasing demand for systems to be properly tested and, in some cases, formally verified.
Accurate models of software behaviour are a valuable tool in this process. For example, they can
be used to automatically generate test suites [68], and can act as oracles for regression testing
[59]. For critical applications, a model may be a mandatory requirement to obtain certification.

There are numerous ways in which software can be modelled, and the required formality and
level of detail varies greatly depending on the intended use. For example, a model of an aircraft
autopilot system used for safety certification clearly needs to be much more comprehensive than
a model designed to give an overview of a simple database management system to a client. The
former may use specialist tools such as Simulink and X-Plane [126], where simple hand-drawn
diagrams and natural language documents may be sufficient for the latter.

Formal models use notations with mathematically defined syntax and semantics. Such mod-
els are useful for reasoning about properties of systems, and can facilitate the use of automated
verification tools. There are many formal modelling techniques available, including 7 [134],
VDM [62], and state machines. Informal models are less well-defined and may take the form
of natural language documents or simple diagrams. Such models are generally used to give an
overview of a system to non-technical stakeholders.

Despite their value, models are often neglected during development. This means that there
is a lot of software for which no model exists. It is therefore desirable to be able to reverse
engineer models from existing systems. There are numerous techniques in the literature to help
with this [10, 16, 106, 152], the main idea being to observe how the system behaves and then
make generalisations from these observations.

Automated inference techniques often produce some form of finite state machine model.
These come in numerous flavours with differing levels of detail and computational power. At
the bottom end, we can simply model what actions the software performs in which order. To
add more detail, we can also include in our model any inputs and outputs that are associated
with the various actions. Of course, the input to a particular piece of software often deter-
mines the output. The pinnacle of both detail and computational power is to model the exact
transformation from input to output.

1.1 Motivating Example

To motivate this work, consider a simple vending machine which dispenses drinks. Customers
first select the drink they desire, and then insert coins to pay for it. A running total of their
value is displayed to the user on a small screen. Once sufficient payment has been inserted, the
customer can dispense their drink by pressing the vend button. If the customer presses vend
before they have inserted enough money, nothing is dispensed. Let us assume, for this example,
that all drinks have the same price of one pound.

We would like a model of this system. Unfortunately, the original developers are unavailable
and we do not have access to the source code. We must therefore try to infer a model of the
system by observing its behaviour. As the machine operates, it records the actions it performs
with their associated inputs and outputs. Sequences of such actions are commonly referred to
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as traces. Some traces of the drinks machine are shown in Figure 1.1. Here, actions have a label,
which correspond to method names, and inputs, which correspond to method arguments. They
may also produce observable outputs which represent method return values, or other externally
observable behaviour such as text on a screen.

In Figure 6.1, T use the notation methodName(iy, iz, ...)/[01,02,...] such that coin(50)/[100]
represents the event coin being called with a single input of 50 and producing a single output of
100 which, in this case, represents the screen displaying this value. The select events produce
no observable output, as is often the case with real vending machines. In the traces, events
are delimited by commas, with individual traces being enclosed in angle brackets. Traces will
generally take this form throughout this work.

( (“tea” ), coin(50)/[50], coin(50)/[100], vend() /[ “tea” |)
(select(“tea” ), coin(100)/[100], vend()/[“tea” ])

(select(“coffee” ), coin(50)/[50], coin(50)/[100], vend() /[ “coffee” |
( (“soup” ), vend(), coin(100)/[100], vend()/[“soup” |)

Figure 1.1: Some sample traces of the simple vending machine.

If we have a sufficiently large sample of such traces, we can make generalisations about the
behaviour of the system and infer a model which is able to predict how the system might behave
when faced with new input sequences. Many existing inference techniques [10, 16, 98] infer finite
state machine (FSM) models which cannot handle inputs or outputs. To infer such a model
from the traces in Figure 1.1, we must either remove the data entirely or encode it within the
actions by folding input and output values into the transition labels. Taking the latter approach
to retain as much information as possible, we represent an event label(ig)/[oo] as the atomic
action label_ig_o0g. The transformed traces are shown in Figure 1.2.

(select_tea, coin_50-50, coin_50-100, vend_tea)
(select_tea, coin_100-100, vend_tea)

(select_coffee, coin_50_50, coin_50_100, vend_coffee)
(

select_soup, vend, coin_100-100, vend_soup)

Figure 1.2: Some sample traces of the simple vending machine.

The traces in Figure 1.2 can be transformed into a model which directly represents them.
This is shown in Figure 1.3 but is not a very good model of the system for a number of reasons.
Firstly, it is only able to handle the traces in Figure 1.2, so fails to meet our objective of predicting
system behaviour for new traces. Secondly, the model is larger than it needs to be. Thinking
about how a real drinks machine works, once we have selected tea, it should not matter whether
we pay for it with two 50p coins or a single one pound coin. The resulting state should be the
same. Thus, states g7 and ¢g in the model actually represent the same state in the underlying
system. This is a key concept in FSM inference and is discussed more in Subsection 3.4.2. An
optimal FSM model which could be inferred from the traces in Figure 1.1 is shown in Figure 1.4.

2
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Figure 1.3: A model representing exactly the traces in Figure 1.2.

While the model in Figure 1.4 is smaller than the one in Figure 1.3, it is still a poor model
of the system. In order to maintain the fact that the user receives the same drink they select,
each drink must have its own distinct path through the system. This means that we must have
three paths (one for each drink) which all represent the same top-level behaviour, i.e. selecting
a drink, paying for it, and then receiving it. This is because we are unable to separate the idea
of control flow — what events happen in which order — from data — the exact values flowing
around the system. We are therefore forced to encode data within the control flow of the system,
which makes our model a lot larger than we would like. It also means that adding new data to
the system, for example an additional drink, causes an increase in the size and complexity of
the model which is disproportionately large compared to the change in behaviour.

coin_100-100
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Figure 1.4: A classical FSM model of a simple drinks machine as could be inferred
from the traces in Figure 1.1.

What we would really like is a model which can separate control flow from data. One such
model is shown in Figure 1.5. This is an extended finite state machine (EFSM) model as detailed
in Chapter 4. A detailed explanation of the syntax of transitions can be found in Chapter 4.

For now, it surfaces to say that a transition from anterior state ¢, to posterior state ¢, has the

label:arity[guards] /outputs[updates]
general form g, qn-




1.2. PURPOSE OF THE WORK

In Figure 1.5, the customer calls the select with an input which represents the drink they
wish to purchase. This value is assigned to a register, r1, and a second register, ro, is initialised
to zero. The model moves the model into state g1, which represents a drink having been selected.
From here, the customer may then either insert coins or trigger the vend action.

coin: 1/og := 19 +ig[re := 19 + io]

select : 1/[ry := g, 72 := 0] Q vend : 0[rg > 100]/0g := 71
& 8 (=)

vend : O[ry < 100]
Figure 1.5: An EFSM model of the drinks machine.

The coin transition takes one input (which represents the value of the inserted coin in pence)
and produces one output (which represents the machine displaying its current credit) which is
assigned the value of ro plus the input. ro is then updated to the same value to keep track of it.

Both vend transitions have a guard on r,. Here, there are two possible scenarios. Either the
customer has inserted sufficient payment or they have not. If 5 is less than 100, the customer
has not yet paid enough so cannot receive a drink. If it is greater than or equal to 100, the
customer has paid sufficiently, so can receive their drink. In the latter case, the model moves
into state g2, which represents a completed interaction.

There are several challenges we must overcome to infer a model like the one in Figure 1.5 from
the traces in Figure 1.1. Firstly, the model in Figure 1.5 has states which must be identified.
This challenge has been tackled in a number of ways in classical FSM inference but is made
more complex here by the fact that EFSMs have registers which enable us to arbitrarily move
information between control flow states and registers.

To infer a model by merging states, we must determine which states we wish to merge.
This decision is usually made based on their outgoing transitions. Successful inference by state
merging also relies on the merging of transitions which represent the same behaviour. The
challenge with EFSMs is that transitions which express the same behaviour may not be exactly
identical. We therefore need a way to determine when and how to merge such transitions.

Another key challenge is to generalise the literal inputs and outputs from the traces into
functions that relate input and output. For example, the coin transition in Figure 1.5 has the
output function r + ig. Each of the traces is a concrete instance of this behaviour. We need a
way to automatically infer the function from the traces. This challenge is compounded by the
fact that the model in Figure 1.5 makes use of registers which do not show up in the traces. If we
are to successfully infer output functions, we must also identify when and how to use registers.

1.2 Purpose of the Work

System models have many uses including model-based testing [68, 139], to detect cyber attacks
[143], and to aid the process of requirements capture [40]. Models can also help to provide an
intuitive understanding of complex systems. While this project is mainly concerned with how
to infer models rather than what they will be used for, it is important to keep in mind some
notion of the intended applicability such that my techniques can be effectively evaluated.

4



CHAPTER 1. INTRODUCTION

For the purposes of this work, I aim to formulate tools and techniques which can produce
human-readable models, specifically ones which give an understanding of how data is trans-
formed throughout model execution. With such models, it is then possible to carry out verifi-
cation activities such as model checking in order to verify (or refute) certain properties of the
underlying systems as detailed in Chapter 9. Moreover, the work in this thesis takes place in a
fully passive black-box scenario. That is, models are inferred entirely from traces provided at
the start of inference without examining the inner workings of the system under inference or
consulting an oracle.

1.3 Thesis Aims and Objectives

This thesis aims to advance the field of model inference from traces, specifically the inference of
extended finite state machines. Thus, the thesis aims to answer the high level research question
“What strategies can we apply to automatically infer extended finite state machine models from
black-box traces?”. The thesis answers this question by addressing the previously mentioned
challenges with the following main objectives.

e To bring together desirable characteristics from the various existing EFSM definitions in
the literature to form a new definition which is well suited to inference.

e To establish a technique which can be used to determine whether one EFSM transition
can account for the behaviour of another such that they can be merged.

e To establish a state merging technique to infer extended finite state machine models,
including functions to relate inputs and outputs and mutate the data state, from black-
box software execution traces.

e To evaluate this technique with respect to a baseline and the current state of the art.

e To establish techniques to aid the process of the verification of properties of EFSM models
once they have been inferred.

1.4 Contributions of the Thesis

C1: The formulation of a new EFSM definition that combines desirable characteris-
tics from the literature — A new formal definition of EFSMs which incorporates the desirable
aspects from various existing definitions into a single model definition which is also formalised
in Isabelle/HOL (Chapter 4).

C2: The subsumption in context and direct subsumption relations — The formalisation
of the subsumption in context relation which enables us to tell whether one EFSM transition
accounts for the behaviour of another under certain circumstances, and the direct subsumption
relation on top of this to tell whether one transition in a given EFSM accounts for another in a
different model (Chapter 5).

C3: The use of direct subsumption to formulate a state merging algorithm for EFSM
inference — A state merging technique to infer computational EFSM models from black-box
execution traces, which uses the direct subsumption relation as a basis (Chapter 6).
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C4: A technique to infer functions which relate inputs, outputs, and registers as
well as transition guards — A technique to infer, from black-box traces, the output functions
which relate inputs and outputs, including the use of internal registers. This technique can also
be used to infer guards to distinguish transitions with value-dependent behaviour (Chapter 7).
C5: An empirical evaluation of my inference technique — An empirical investigation
into the performance of my inference technique in comparison to a baseline approach and the
current state of the art (Chapter 8).

C6: A framework to allow model checking and theorem proving to be used in
tandem to prove properties of EFSMs — A framework of function definitions to aid the
verification of models once they have been inferred (Chapter 9).

1.5 Thesis Structure

This thesis is structured as follows.

Chapter 2 begins with an overview of the different aspects of software execution which we
can record. The chapter goes on to discuss the various FSM models that exist in the literature,
as well as introducing a few alternative modelling techniques for completeness. Finally, the
chapter discusses the field of refinement, and how this relates to model inference.

Chapter 3 provides background relating directly to model inference from traces. The
chapter first introduces the inference challenge before outlining how the basic state merging
approach works for classical FSMs and discussing the various techniques in the literature. Next,
the chapter provides an extensive review of the state of the art of EFSM inference before
discussing the limitations of existing techniques and gaps in the literature.

Chapter 4 presents my novel definition of EFSMs which combines desirable characteristics
from various existing definitions in the literature. This definition is formalised in Isabelle/HOL
to serve as a foundation for subsequent work and to allow various key properties to be proven.

Chapter 5 discusses how contezts are used to record the values of registers at various points
during the execution of an EFSM model. The subsumption in context relation is defined as a
way to determine whether one transition can account for the behaviour of another, given a
particular register valuation. The chapter goes on to define the direct subsumption relation on
top of this, which works at EFSM level to determine whether it is safe to merge a given pair of
transitions. Finally, I briefly discuss the necessity of contexts when analysing system properties.

Chapter 6 uses the direct subsumption relation from Chapter 5 as the foundation of a
state merging technique to infer EFSM models from black-box traces. As part of this technique,
simple heuristics are used to recognise certain data usage patterns and abstract away concrete
values in favour of generalised functions that compute output from input. This technique is
implemented as a prototype tool using the Isabelle formalisation from Chapter 4 as a basis.

Chapter 7 presents a more general approach to infer output functions which is free of the
limitations of the heuristics used in Chapter 6. I first introduce the concepts behind genetic
programming before using these ideas as part of a technique to infer functions which relate
inputs and outputs, and recognise when and how registers need to be used.
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Chapter 8 provides a comprehensive empirical evaluation of my inference tool in the context
of several case studies. The performance of my tool is compared to a baseline approach and to
the current state of the art of EFSM inference.

Chapter 9 is concerned with the verification of models once they have been inferred. The
chapter first briefly introduces the field of formal verification before discussing linear temporal
logic (LTL) and how it can be used to specify properties of models. The chapter then goes
on to discuss how Isabelle/HOL can be used to prove properties of EFSMs specified in LTL,
and presents my framework of function definitions designed to make this process easier. Next,
the chapter discusses how we can use a model checking tool to help us find counterexamples to
untrue properties, and why this is useful. Finally, the chapter demonstrates the use of this in
the context of two case studies.

Chapter 10 concludes the thesis with summaries of the contributions of each chapter,
limitations, and ideas for possible future research directions.



Chapter 2
Background I - Finite State Machines

This chapter formally introduces events and traces, and defines the key concept of prefix closure.
It also provides a gentle introduction to finite state machine models and, for completeness, briefly
summarises some other models of computation. Finally, the field of refinement is introduced in
the context of finite state machines.

2.1 Events and Traces

If we are to infer a model of a program, we must first observe how it behaves. For a completely
black-box system, the only behaviour we can model is that which is observable to the outside
world. We can record this observable behaviour in the form of a trace of program execution. A
program trace lists the sequence of actions a program performs during its execution. Collections
of such traces are commonly referred to as logs and can be very useful to system administrators
for debugging and detecting malicious use of software systems. As will be shown in Chapter 3,
program logs can also be used to infer models of system behaviour. This section provides a brief
introduction to the theory of traces, originating from [110], and shows how this can be applied
to real systems to produce observations from which we can infer a model.

2.1.1 Definitions

Finite sequences of symbols over a given alphabet 3 are referred to as strings. Elements of X
can be thought of as observable actions which a system can perform, such that strings represent
possible executions of the system. The set of all strings over ¥ is denoted ¥*. Subsets of ¥* are
referred to as languages. We can then form an intuitive definition of a trace. Before doing so, it
is helpful to introduce some additional terminology which will be used throughout this work.

Definition 1. An action is an activity which can be performed by a system. Inputs (some-
times referred to as arguments) are additional data parameters provided to actions. Outputs
are data values which are produced as a result of performing an action. An event is a triple
made up of an action with its inputs and outputs.

Example 2.1.1. To clarify Definition 1, recall the motivating example from Section 1.1. The
first trace contained an event coin(50)/[100]. Here, the action is coin. There is a single input
of 50 and a single output of 100. The second trace contains an event vend(). Here, there are
no inputs or outputs so the action vend is itself an event. Throughout this work, I refer to
such events as atomic.

Definition 2 provides a working definition of traces. Concurrent systems require a more
complex definition, as in [110], but only sequential systems are considered in this work. Some
examples of traces can be seen in Figure 1.1.

Definition 2. A trace of a system is a sequence of actions in its alphabet, 3, together with
any associated inputs or outputs.
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For reasons which will become clear in Chapter 3, it is helpful for us to define an ordering
on traces such that we can say whether one trace is “less than” another. To do this, we must
first define the concatenation operation such that we can sequentially join traces together.

Definition 3. The concatenation of two traces t; and to, denoted t; - to, is defined as the
“append” operator on lists, in which # is the construction (or Cons) operator.

0-y=vy
(x#as) -y = x#(zs - y)

Example 2.1.2. Consider trace t; = (a,b,c) and t3 = (¢, d, e). Their concatenation t; -ty =
(a,b,c,c,d,e).

Having defined the concatenation operation for traces, we can then define a partial order
relation as follows, which calls a trace ¢; “less than” another trace to iff ¢1 is a prefiz of ts.

Tty &5 Io eyt 0=t

This leads us on nicely to the notion of prefix closure, which is a very important concept for
model inference as it gives us the ability to arrange collections of traces in a trie — a data
structure in which all descendants of a node share a common prefix. This is explained in more
detail in Section 3.4.

Definition 4. The prefix closure of a language £ is {s1 € ¥*|3s € L.s1 C s} with £ being
prefix closed if Vs € £L.s' C s = s’ € L.

Throughout this work, I assume that the trace languages of software systems are prefix closed.
That is, if action a followed by action b followed by action ¢ represents a valid interaction with
the software, simply executing just action a, or action a followed by action b without action c,
also represent valid interactions.

2.1.2 What to Record

Let us return to the running example of the simple drinks machine from Section 1.1, which is
implemented by Java code in Figure 2.1. There are three attributes here: selected (which
stores the selected drink), value (which keeps track of the amount of money inserted so far),
and PRICE (which is the current price of the drinks in the machine in pence). There are also
three public methods which represent the possible actions the machine can perform.

The vend method is particularly noteworthy because it exhibits value-dependent behaviour.
That is, the return value depends on the value of a variable. If value is greater than or equal
to PRICE, then the selected drink is returned. If not, the null value is returned, corresponding
to the user not getting their drink because they have not yet inserted enough money.

If we want to produce traces of the program in Figure 2.1, we must first decide what it is
that we wish to observe. At the lowest level of detail, we could simply record the sequences of
methods (or actions) that are called. Traces of this form would look like (select, coin, vend ).
Such traces allow us to determine the control flow of the application (i.e. which events happen
in what order) but do not give us a particularly comprehensive view of the system.

9



2.1. EVENTS AND TRACES

1 public class SimpleDrinksMachine {
2
3 private String selected;
4 private int value = 0;
5 private final int PRICE = 100;
6
7 public void select (String drink) {
8 this.selected = drink;
9 }
10
11 public int coin(int value) {
12 this.value += value;
13 return this.value;
14 }
15
16 public String vend() {
17 if (value >= PRICE) {
18 return selected;
19 }
20 return null;
21 }
22}

Figure 2.1: A Java implementation of the simple drinks machine.

Both the select and coin methods take an input. We could record these in the traces, as
well as the method name. Traces of this form might look like (select(“tea” ), coin(50), vend())
and allow us to see what kind of inputs each method is normally called with. From this, we
can make generalisations, for example “the coin method normally gets called with a numeric
argument which is greater than zero”. Traces like these allow us to infer models which can be
used as runtime monitors [100] to flag up unusual behaviour, for example if the coin method
was called with a negative input.

To further increase the level of detail, we could record the return values of functions as event
outputs. Traces of this form might look like (select(“tea” ), coin(100)/[100], vend()/[“tea” ]). As
described in later chapters, a large enough collection of such traces might then allow us to infer
a model in which output is symbolically computed from input. Such a model would allow us to
predict how the system might behave when faced with previously unseen inputs. For example, if
we had traces in which users selected “tea” and “coffee”, we could predict what might happen
if they were to select “soup”.

Thus far, we have only considered traces which record information visible to an external
observer of the system. Such traces are referred to as black-box traces. It is as if the system
is encapsulated within a black box which cannot be opened. As a user interacting with the
vending machine program, we know that we have called the coin method with a particular
input argument, and we can record the value which was displayed to us when we did so. We do
not know, however, that there is a variable called value which is mutated by our actions.

10
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If we are able to look inside the “box”, however, we can see that there are some private
internal variables which we cannot access from outside the system. The values of these variables
can also be included as part of the traces. Traces which include information that is hidden to
outside observers are called white-box traces and might look like the one in Figure 2.2, which
correspond to the EFSMs inferred by the techniques presented in [106] and [152]. These traces
allow us to see how internal variables change throughout the execution of a program, again
enabling us to predict how the system might behave when faced with unseen inputs [150].

(

select(input = “tea” ),

coin(input = 50, selected = “tea”,value = 0)
coin(input = 50, selected = “tea”,value = 50)
vend(selected = “tea”,value = 100)

)

Figure 2.2: A white-box trace of the simple drinks machine.

We may choose to include additional information such as timestamps as part of the traces.
The inclusion of timestamps allows us to infer roughly how long each event takes to execute, and
may enable us to infer timed automata from the traces, like in [122]. Such models can then be
used to detect when actions take longer than expected, which might indicate network problems
or suspicious activity.

2.1.3 Obtaining Traces

Depending on the kind of traces we wish to obtain, there are a number of different methods and
utilities available. This section summarises a few of these for completeness, although this thesis
is more concerned with what can be done with traces once they have been obtained and works
under the assumption that trace data at a suitable level of abstraction is readily available.

Most web servers implement some form of logging functionality by default. That is, infor-
mation about requests sent to and from the system is written to a log file. These log files are
primarily intended to help system administrators to detect suspicious activities and to diagnose
issues. If these log files can be transformed into meaningful traces, then they can be used to
infer models. It is also worth mentioning packet sniffing tools such as WireShark,! which enable
users to monitor network packets and inspect the data they contain. For networked systems,
such utilities may be sufficient to obtain trace data.

The main challenge with both of these techniques is the distributed parallel nature of net-
worked systems. Busy web servers can receive millions of requests per second from many users,
which makes the task of discerning individual execution traces extremely difficult.

For local systems, several utilities are available on Linux to record kernel calls made by
programs. One such utility is st race,? which produces black-box traces listing the system calls
made (with their arguments and return values) during program execution. Auxiliary utilities
such as b3? build on top of strace to provide more structured traces.

'https://www.wireshark.org (Accessed 29/08/20)
2https://strace.io (Accessed 29/08/20)
3nttps://github.com/dannykopping/b3 (Accessed 29/08/20)
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If we can modify the source code of the system as part of the tracing process, most program-
ming languages have some sort of logging functionality which can be baked into the program
to provide an arbitrary level of detail about the state of the program as it runs. This is best
done during development, though, as it can be an extremely arduous process if done post-hoc.
It also requires the code to be redeployed, which is not always possible on a live system.

Some languages, for example Java, provide basic functionality to ease the process of post-
hoc logging in the form of aspect oriented programming, [93]. This allows logging code to exist
separately to the program code and, in some cases, does not require recompilation, which can
be helpful for live systems that cannot be taken down.

2.1.4 Negative Traces

Traces which come from real systems are necessarily positive — they describe behaviour which
the system is capable of performing. Negative traces are the opposite of this: they describe
behaviour which the system cannot perform. Where positive traces must be accepted by the
inferred model, negative traces must be rejected, although notions of acceptance and rejection
differ depending on the model.

Example 2.1.3. In our simple vending machine example from Section 1.1, traces in which
a user receives a drink before inserting coins are negative traces because the system does not
exhibit this behaviour. Such a trace might be (vend()/[“tea” |, coin(50)/[50]). Another class of
negative traces is those where the customer receives a different drink to the one they selected.
Such traces might look like (select(“tea” ), coin(100)/[100], vend()/[“coffee” ]).

Negative traces can be just as helpful as positive ones when trying to infer models, as they
help to mitigate overgeneralisation. While it is desirable to generalise beyond the observed
behaviour, it is clearly not desirable to do this excessively. Excessive overgeneralisation occurs
when the inferred model is capable of exhibiting spurious behaviour. An example of this is given
in Chapter 3. If we have some examples of such behaviour, we know when this point has been
reached and can avoid making inference steps which introduce such behaviour to the model.

The main disadvantage of negative traces is that they generally need to be handcrafted. The
number of such traces is then limited by the time and patience of the person tasked with writing
them, as well as their knowledge of the system.

2.1.5 Characteristic Samples

If we are to use traces to infer a model which is faithful to the underlying system, we clearly
need sufficiently many traces to demonstrate the program’s functionality. Ideally we would have
all the traces that the program is capable of producing, but this is often infeasible as there could
be infinitely many. We must therefore work with a representative sample.

Example 2.1.4. Consider again the drinks machine from Figure 2.1. If we only have traces
in which the customer selects tea, this may lead us to believe that tea is the only product sold.
The machine may also be capable of dispensing coffee, soup, or a brimming glass of spiders,
but we have no way of knowing this if “tea” is the only drink we have seen be selected.

We can call a set of traces characteristic of a program’s behaviour if there is no trace which
could be added that would reveal new behaviour [44, 72]. That is, the model that is inferred
from the collection of traces would not be changed by the addition of a new one. The obvious
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question this raises is “How do we know when we have a characteristic sample?”. This idea
is explored in [39], which presents the idea of k-completeness. The idea here is that a log is
k-complete if there is no trace which changes the model inferred from the log by the k-tails
inference algorithm [16]. The paper then goes on to define a metric called k-confidence which is
an estimate of how likely it is that a given log is k-complete. Experimental results presented in
[39] show that the metric is “highly reliable” but it is not particularly well-used in the literature.

2.2 Computational Models

A model is a representation of a system which describes certain aspects of its functionality.
Models are used in a wide variety of domains and have many uses. Computational models
model computation. They show what a computer program should do without necessarily giving
details of how this should be performed. Such models can be used to generate software tests
[68, 139], to detect cyber attacks [143], and to aid the process of requirements capture [40].

In this work, we are concerned with formal models of software, specifically finite state ma-
chines (FSMs). The term “state machines” is used to describe a family of models based around
states and events, the idea being that the model moves from state to state as it responds to
a sequence of events. Models with a finite number of such states are called “finite state ma-
chines”. State machines exist in a multitude of forms and have been around for many decades.
The original idea is attributed to McCulloch and Pitts [111] but there have been contributions
from many other famous names such as Turing [141], Minsky [61], Mealy [112], and Moore [116].

FSMs show the progression of events and the branching points during the execution of a
piece of software. The effect of each action is determined by the current state, which is itself
determined by the previous actions. Thus, the state can be used to store historical information
about previous events. This ability is a key feature of state-based models. The remainder of
this section introduces the various different kinds of finite state machine model, roughly ordered
by computational power.

2.2.1 Labelled Transition Systems

The simplest form of state machine is a labelled transition system (LTS). Here, we have a set
of states, a set of actions, and a transition function which tells us the resulting state for each
action from each state. There are no inputs or outputs here, so events and their corresponding
transitions consist solely of action labels. They are atomic.

Definition 5. An LTS [49] is a tuple (@, qo, 2, T) where

Q@ is a finite non-empty set of states.
qo € @ is the initial state.
¥ is a set of actions (or events) called the alphabet.*

T CSxAxS is a transition relation.

Transitions usually take the form p = ¢ rather than (p,a,q).

4Certain definitions of LTSs also include 7 actions, representing unobservable internal system behaviour. The
LTSs in [49] are designed in terms of observable trace behaviour, so do not include such actions.
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Example 2.2.1. Consider a variant of our simple drinks machine in which a user first inserts
a coin and then selects either “tea” or “coffee”. This can be expressed as an LTS as follows.

({0, 41,42, 43}, o, { coin, tea, coffee}, {0 <2 qr.q1 % q2,q1 <1 g5, })

This LTS models a single drinks machine transaction. In the initial state gg, the only valid
action is coin. This moves the model into state ¢;, from which the user can then choose tea
or coffee. If the user chooses tea, the model moves to state ¢o. If the user chooses coffee, the
model moves into state gs. There are no actions available from either g2 or gs, signifying that
after the user has inserted a coin and chosen a drink, the transaction is finished.

As with all FSMs, LTSs can be expressed diagrammatically without loss of formality. This is
often aesthetically preferable so will be done henceforth wherever possible. The diagrammatic
representation of the LTS from Example 2.2.1 is shown in Figure 2.3. The correspondence
between the two is as follows. The states {qo, q1,q2,93} are shown as labelled circles. The
initial state, qg, is marked as such by an unconnected incoming arrow. The transition relation is
represented by connecting pairs of states with an arrow labelled with the action. The alphabet,
3, can be inferred by enumerating the transition labels. This notation is common to most
diagrammatic FSM representations and will be used throughout this work.

ted
. coin @
—
G
Oﬂée

Figure 2.3: A diagram of the drinks machine LTS in Example 2.2.1.

2.2.2 Deterministic Finite Automata

Deterministic Finite Automata (DFAs) are similar to LTSs but are constructed such that each
state has exactly one outgoing transition for each action in the alphabet. This makes them
deterministic and complete. DFAs also introduce the idea of accepting (or final) states such
that they can accept (or reject) a particular string.

Definition 6. A DFA is a 5-tuple (Q, g0, 2, T, F') where

Q is a finite set of states.

qo € @ is the initial state.

> is the alphabet.

T:0Q x X — Q is the transition function.

F C @ is the set of accepting states.

Definition 7. A model is complete if, from every state, it is able to respond to every action
in 3. That is, every state has at least one transition for each action. A model is deterministic
if, in every state, there is at most one transition for each action in .
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The notion of complete models is quite important. A complete model can respond to every
event in every state, meaning that it can process every string in 3*, even if it does not accept
it. Models which are not explicitly complete can be made implicitly so by adding a “sink state”
for missing transitions.

Example 2.2.2. Recall the simple drinks machine from Example 2.2.1. We may wish to
distinguish when a particular interaction has finished. To do this, we can use accepting states.
Figure 2.4 is an incomplete DFA representation of the simple drinks machine. Here, ¢ and
q3 represent the user having inserted a coin and received a drink. These are completed
transactions so are made accepting (or final) states, denoted by a double circle. In gy no
transaction, valid or otherwise, has yet occurred. State ¢; represents the user having inserted
a coin but not yet selected a drink. The transaction is not yet complete here, so these are not

an accept states.
—
e

Figure 2.4: An NFA representing the simple drinks machine.

While the model in Figure 2.4 is deterministic, it is not complete as it cannot respond to
every action in ¥ from every state. There is no transition for the tea action from state g,
for example. To make our model complete, we must add some additional transitions. Clearly
these transitions do not represent valid actions, so they cannot go to any existing state in the
model. We must therefore add an extra state for the additional invalid transitions to go to. It
should be impossible to escape from this state as, once the model has done something invalid,
it cannot return to validity. The error state therefore has three reflexive transitions, one for
each action. Such error states are referred to as sink states and will become important to this
work in Chapter 9. This is shown in Figure 2.5.

coffee
coin, tea,
coffee

Figure 2.5: A DFA representing the simple drinks machine, in which the sink
state and transitions representing invalid actions appear in grey.

comn,

tea, coffee y
/] tea, coffee
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There also exists a nondeterministic variant of the DFA — the nondeterministic finite au-
tomaton (NFA), which is defined as above but with T': Q x £ — P(Q). This allows each state
to have multiple outgoing transitions for any given action, or even none at all. This means that
NFAs do not have to be either deterministic or complete. If they reach a point during execution
where there is no corresponding transition, the model simply “dies” and the string is rejected.
Additionally, models may include e-transitions, which fire spontaneously without being explic-
itly called. Thus, the alphabet, X, also contains €, which represents the empty character. Note
though, that NFAs are not equivalent to LTSs because they have explicit accepting states and
e-transitions, which LTSs do not have.

Despite their different definitions, DFAs and NFAs are equivalent in computational power.
That is, there does not exist a language which is accepted by an NFA for which we cannot
construct an equivalently accepting DFA, and vice versa. Every DFA is an NFA by construction
and for every NFA, there exists a DFA which accepts the same language. As will be discussed
in Section 2.3, there are stronger definitions of equivalence which can distinguish between the
two kinds of model.

It is not reasonable to be able expect to infer complete models from traces because, as
discussed in Subsection 2.1.5, we cannot know whether the set of traces used to infer the model
sufficiently represents the program. If we have never seen a trace in which the user inserts more
than one coin, we do not know what the appropriate behaviour is. Mostly this is not an issue
as we are attempting to infer a model of the behaviour that the system can exhibit. If we have
no evidence to suggest that the system can perform a certain behaviour, there is no reason
to include it in the model. This will become important, though, when we begin to explore
properties of models in Chapter 9.

2.2.3 Inputs and Outputs

Most inference techniques in the literature attempt to infer either DFAs, NFAs, or LTSs, which
I will collectively refer to as “classical FSMs” throughout the rest of this work. While classical
FSMs show what actions can be performed from which states, they do not tell the full story.
When we interact with software systems, we are usually just as interested in the inputs and
outputs as we are the actions themselves. The atomic transitions of classical FSMs do not have
the capability to model input-output behaviour, so we are in need of a more powerful model.

Mealy machines [112] are one way of modelling systems which produce output. In addition
to the input alphabet X, there is also an output alphabet, A, and an output function such that
every input yields an observable output as well as moving the model from state to state. In some
formalisations, the transition and output functions are combined into one function of the form
Q x ¥ — @ x A. Moore machines [116] are an alternative model where outputs are associated
with states rather than transitions, so are not directly determined by input. Neither of these
models natively includes either input parameters or the capacity for internal data storage, so
they are unsuitable for modelling systems which make intensive use of these features.

Parametrised finite state machines (PFSMs) are a class of model with parametrised actions.
That is, they are capable of handling events with inputs and outputs. Numerous definitions exist
in the literature [101, 131], but they all fall into the same family. In Definition 8 (reproduced
from [101]), the output is expressed as a function of the input parameters and the current state.
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Definition 8. A PFSM is a tuple (Q,I,0, Dy, Do, T, qp) where
Q@ is a finite set of states.
I is a finite set of inputs.
O is a finite set of outputs.
Dy is a set of input parameter values.
Do is a set of output parameter values.
T is a set of transitions.
qo € @ is an initial state.
A transition t € T is described as t = (¢,¢,4,0,p, f), where
q € @) is a source state.
¢ € Q is a target state.
i € I is an input.
o € O is an output.
p C Dy is a predicate on input parameter values.

f:p— Do is an output parameter function.

Example 2.2.3. Figure 2.6 shows a PFSM representing the drinks machine. Here, the coin
transition represents the insertion of a coin of value v. The tea and coffee transitions all take
in a parameter [, which is a boolean value representing whether there is enough tea or coffee
left to make the selected drink. If there is, the drink is dispensed. If not, there is no output.

tea(l)[l = false]

_). coin(v)

coffee(l)[l = false]

Figure 2.6: A PFSM representing two possible traces of the drinks machine.

While the model in Figure 2.6 is much closer to the underlying implementation than the
previous models, the value of the input to coin has no bearing on the behaviour of the model.
This means that the cost of a drink can vary wildly depending on what coins the customer has
on them. Let us say that the price of a drink is one pound. We can then place a guard on
the coin transition so it can only go to state g; if the value is greater than or equal to this.
Otherwise, it simply loops on state gp and returns the coin to the customer. This is still not
the correct behaviour, though, as if the customer has smaller change to the value of a pound,
they cannot purchase a drink even though they have enough money to. To model the customer
paying with multiple coins, we need to keep track of the value of the coins inserted so far.

We could do this by adding extra states to represent the various monetary values, and
transitions from each of these states representing the insertion of a new coin. This would
require an extra 99 states to be added to the model, one for each value up to a pound. From
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each state, we would have an outgoing transition for each denomination of coin going to the
appropriate state. The obvious problem here is that this model would be very large and difficult
to understand, especially considering the simplicity of the modelled behaviour.

We would really like to have an internal variable which represents the total inserted value,
which the coin transition can updated. This allows us to push some of the control state into
a separate data state, making the model much smaller and more intuitive. Unfortunately, the
PFSMs from Definition 8 do not have internal variables, therefore further extension is needed.

2.2.4 Extended Finite State Machines

Every imperative programming language provides some notion of wvariables to store and ma-
nipulate values. This idea can be applied to PFSMs by providing them with simple memory
which transitions can update during model execution. Various extended finite state machine
(EFSM) definitions are presented in the literature [32, 105], as well as similar ideas under dif-
ferent names [20, 29, 56|, but the basic idea is to allow information to be stored for later use,
either as part of output, or in transition guards. One such definition is register automata from
[29], reproduced in Definition 9. Like in PFSMs, transitions take in input parameters (which
can be guarded) but now there is also a set of registers which act as simple memory.

Definition 9. A register automaton (RA) [29, Definition 4.1] is a tuple (L, lo, x,T', A), where
L is a finite set of states (called locations in [29]).
lp € L is the initial state.
A maps each [ € L to {+, —}, essentially corresponding to F' in Definition 6.
x maps each state [ € L to a finite set x () of registers.
I is a finite set of transitions, each of form (I, a(p), g, m, '), where
l € L is a source state.
I € L is a target state.
a(p) is a parametrised action signature.
g is a guard over p and x(l).
7 (the assignment) is a mapping from x(I’) to x(I) U {p}.

The semantics of an RA are defined in [28] as follows. A state of an RA A = (L,lp, x, T, \)
is a pair (I,v) where | € L and v is a mapping from registers to their values. A step of A,

(l,v) o), (I, V") moves A from state (I,v) to state (I’,2’) by responding to event «(d) if there
is a transition (I, a(p),g,m,l') such that d satisfies the guard under valuation v and v’ is the
updated evaluation with with v/(z;) = v(x;) if w(z;) = x;, otherwise v/(z;) = d if w(x;) = p.

Example 2.2.4. Figure 2.7 shows an RA representation of the drinks machine. The user first
inserts a coin of value v, which is assigned to register 1. The user can then insert more coins,
with the new value overwriting r;. The tea and coffee transitions take the parameter [, as
before, but now there are additional guards. If the value of r; is less than 100 (i.e. a pound),
then the respective ¢; — ¢ transition is taken, which produces no output. If the value of r; is
greater than or equal to a pound, then either the ¢; Lea, G2 OT M q3 transition is taken,
depending on the action. Since there is no explicit notion of output here, these transitions set
the value of 5 to the specified drink, representing dispensing it to the user.
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“gea’

Il

tea(D)[l = true AT > 100]r2

coin(v) r1 ==
-®

coin(v) 1 == v
tea(l)[l = false V r1 < 100]
coffee(l)[l = false V r1 < 100]

Coﬁee(l)[

L= true nry > 100),

Figure 2.7: An RA representing the simple drinks machine.

The problem here is that the RAs in [28] cannot perform arithmetic functions, so we are
still unable to maintain a running total.. This is a major limitation of the RAs in [28] and
will be resolved in Chapter 4, when I introduce my own EFSM definition.

Example 2.2.5. Consider the RA in Figure 2.8, which models the controller of a set of lift
doors. Here, there is one register, r1, which represents the timer used by the system. The
timer is initially set by the setTimer action, which takes one input parameter, ¢, and assigns
it to r1. The system then does i waitTimer actions, subtracting one from the timer each
time. When the timer reaches zero, the system is ready and r; is set to ten. The doors begin
closing and the system outputs ten closingDoor events, subtracting one from the timer each
time until the timer reaches zero, at which point the doors are fullyClosed.

wait Timer() closngoor( button[nterrupted openingDoor()
12—7‘1—1 T =T — 11—7”1—1
setTimer(i systemReady()
=1 [ri=0]r:=10 timeout() 7"1 =5
—( 4o
fullyClosed() Tequesf’tOpen fullyOpen()
[7"1 _ O] T = 10

Figure 2.8: An RA representing a simple lift door controller.

Alternatively, the user can interrupt this process by triggering the buttonInterrupted event,
which sets the timer to three and causes the doors to open again. Additionally, a user outside
of the lift can request entry by triggering the requestOpen event, which sets the timer to ten
and causes the doors to open. Once the doors are fullyOpen, the lift waits a few seconds before
a timeout event sets the timer to five and causes the doors to begin closing again. We will
explore this system again in more detail in Chapter 7.

This system is much more suited to an RA than the drinks machine from Example 2.2.4
as there are no explicit outputs here. There is no need to display the value of the time to the
user at any point during the system’s execution. Thus, the fact that RAs do not have distinct
outputs is not a problem here.
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The fact that RAs have no explicit outputs is a weakness in the model. Other EFSM defini-
tions exist which do produce output, but the field of EFSMs is somewhat disparate. There are
many definitions, all with their own strengths and weaknesses. Definitions are often formulated
with a specific application in mind, so are not generally well suited to other tasks. This moti-
vated me to formulate my own EFSM formalism which combines various desirable characteristics
from existing definitions from the literature. This definition is presented in Chapter 4.

2.2.5 The Necessity for Registers

As their name suggests, register automata use registers. These play the role of variables in
imperative programming languages. Transitions may assign and modify registers arbitrarily
throughout the execution of the model. An alternative programming paradigm is functional
programming. Here, full referential transparency is maintained by expressing outputs purely in
terms of inputs. Variable values cannot be arbitrarily mutated. This makes for a very different
programming experience.

1 -module (drinks) .

2 —export ([machine/3]) .

3

4 machine (null, null, Price) ->

5 receive

6 {select, [IO0]} —>

7 machine (I0, 0, Price)

8 end;

9 machine (Selected, Value, Price) when Value >= Price ->
10 receive

11 {coin, [IO0]} —>

12 io:format (""p™"n", [Value + I0]),

13 machine (Selected, Value + I0, Price);
14 {vend, [1} —>

15 io:format (""p"n", [Selected])

16 end;

17 machine (Selected, Value, Price) when Value < Price =->
18 receive

19 {coin, [IO0]} ->
20 io:format (""p™n", [Value + I0]),
21 machine (Selected, Value + I0, Price);
22 {vend, []1} —>
23 machine (Selected, Value, Price)
24 end.

Figure 2.9: The drinks machine program written in Erlang.
Figure 2.9 shows an implementation of the same drinks machine from Figure 2.1 in Er-

lang, a functional programming language. Here, the drinks machine is represented as a process
which receives different messages. Instead of having globally accessible variables representing
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the selected drink, the money inserted, and the price, these variables must be passed around
the program as parameters if they are to be kept track of. For example, upon receiving the
coin message, the machine process restarts itself with value + I0, where I0 represents the
parameter representing the value of the inserted coin.

While “variables” do not change their value here, the effect of restarting the machine process
with new parameters has the same effect. That is, if we inspect the values of Selected, Value,
and Price before and after a coin event, we will see that the value of Value increases by
the input parameter. Register automata, and (E)FSMs in general, cannot be “restarted” in the
same way that functional processes can. In order to represent the change of state caused by the
coin event, there needs to be a state which can change. This is what registers allow us to do.

If we were forced to express output purely in terms of input, we would need to supply the
variables as an inputs to each transition. This would make traces of the drinks machine look
like (select(“tea” ), coin(50, 0, “tea” )/[50], coin(50, 50, “tea” )/[100], vend(“tea” )/[“tea” ]), in
which the first input to coin is value of the coin, the second is the total amount inserted so far,
and the third is the selected drink. While it is perfectly possible to do this, we have effectively
taken the internal Selected and Value state variables and made them external. This is not a
particularly good representation of a real drinks machine as customers should not have to keep
reminding it of the drink they selected every time they insert a coin.

An alternative approach, which classical FSM models take, is to use the control flow state
of the model to store data implicitly. As mentioned in Subsection 2.2.3, this can lead to very
large and unwieldy models. Mutable registers allow us to arbitrarily move information between
the control flow and data states, which can be helpful when working with large (and potentially
infinite) state spaces. In our vending machine example, there is nothing to stop a customer
inserting £1000 in 1p coins. To represent the accumulating value without registers, we would
need 100000 states, one for each inserted coin. Using a register to keep track of this instead
allows us to represent any number of coin insertions with a single control flow state and a
reflexive transition, which makes for a much smaller model that more accurately captures the
behaviour of the underlying system.

2.2.6 Abstract State Machines and Event-B

In addition to state machines, there are a number of alternative formalisms with similar expres-
sive power. Abstract state machines (ASMs) can be thought of as a collection of “if condition
then updates” rules which transform “abstract states” [20]. The condition (or guard) is sim-
ply a predicate which, if true, allows the transition to fire. If it is not satisfied, the transition
cannot fire. The updates are a list of functions of the form f(vy,...,v,) := x which are applied
simultaneously when the transition fires. These updates are interpreted as updating the value
of function f at the indicated parameters vy, ..., v,, for example status(cell) = alive. This can
be thought of, in more conventional C-like syntax as cell.status = alive.

The semantics of ASMs dictate that, at each step, all rules for which the guard passes are
applied. This is slightly different from how nondeterminism works in other FSM-style models
where, if multiple transitions may be taken, one is arbitrarily chosen or multiple “copies” of the
machine are spawned. Here, there is no explicit separation between control flow state and data
variables, however, it is not hard to see that this separation could be artificially implemented
with a cfstate variable. Thus, ASMs can be thought of as an equivalent model to the more
powerful variants of EFSMs.
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ASMs are particularly well suited to model checking and tools such as SAL [46], which
I make use of in Chapter 9, use a very similar representation. The originally intended use,
however, appears to be for the incremental development of systems from requirements capture
to executable code through an informal refinement process [20].

Event-B models are similar to ASMs, again consisting of a set of “if condition then updates”
rules. Event-B is considered an extension to the B-Method [127], the idea being to first specify
an abstract system model and then refine it down to executable code. Event-B has tool support
for this in the form of Rodin [6]. Since Event-B models are so similar to ASMs, they too can be
thought of as an equivalent model to EFSMs.

2.3 Refinement

Abstract specifications tend to leave a lot of behaviour unspecified, especially the implementa-
tional details of how the high level goals are achieved. Refinement is the process of transforming
an abstract specification into a concrete implementation.

Example 2.3.1. Consider the following abstract specification of the simple drinks machine.

A user first inserts a coin to pay for their drink before selecting either “tea” or “coffee” to
dispense their chosen beverage.

There is much unspecified behaviour here. What denominations of coin does the machine
take? How much does a drink cost? Can the machine run out of tea or coffee? During the
process of refinement, decisions would be made to reduce this unspecified behaviour. This is
known as the reduction of nondeterminism.

Refinement is about comparing the behaviour of systems. If an implementation Z refines a
specification S, then the behaviours of Z are consistent with those of S. This can be quantified
in terms of what we can observe. For high level specifications, we do not need to be concerned
about behaviours we cannot see. We can therefore form the relation that if Z refines S, the set
of observable behaviours of 7 is a subset of those of S.

The notion of consistency is an important one in refinement. Any refinement of an abstract
specification must capture all the specified behaviour. For example, the abstract specification
of our simple drinks machine in Example 2.3.1 states that users first insert coins and then select
their drink. Any implementation in which the user selected their drink before inserting coins
would not be a refinement of the specified system.

2.3.1 Nondeterminism

Nondeterminism is central to refinement and refers to a system behaving differently on different
runs when being run under the same conditions. We have already seen nondeterministic finite
state machines in Section 2.2. Let us now establish a formal definition in terms of LTSs.

Definition 10. An LTS (Q,qo,%,T) is nondeterministic if Ip.3a.3¢.3¢.(p,a,q) € T A
(p,a,q') € T. That is, if there is a state with multiple outgoing transitions for the same
label.

22



CHAPTER 2. BACKGROUND I - FINITE STATE MACHINES

Example 2.3.2. Consider the LTS in Figure 2.10, which is a nondeterministic representation
of the simple drinks machine from Figure 2.3. Here, the initial coin event determines whether
the user will receive tea or coffee. Since users of the machine have no explicit control over
which coin transition is taken when they insert their payment, they do not have a say in
whether they receive tea or coffee. This is very different to the model in Figure 2.3, where the
decision is only made after payment has been inserted.

tea
(;O;m‘
coffee

Figure 2.10: A nondeterministic representation of the drinks machine from Figure 2.3.

Despite the user having no control over which drink they receive, there is no trace of the
system which can distinguish the model in Figure 2.10 from that in Figure 2.3. That is to say
that the set of observable behaviours of the two models is identical.

Nondeterminism is not just about there being multiple possible paths through a given model,
but also about unspecified behaviour. In Figure 2.10, it is not specified which coin transition
should be taken in response to the action. This leaves the model with a choice which affects
what it can do later. In Figure 2.3, there is no such choice, meaning that the ability to choose
tea or coffee is retained until the last possible moment.

2.3.2 Trace Refinement

The simplest observation we can make of a system is to record the sequences of events it performs
in the form of traces. Further to Definition 2, it is helpful to define traces more formally in terms
of processes. From this, we can build a refinement relation.

Definition 11. A finite sequence of events o is a trace of process p if 3¢.p = q, i.e. if p can
respond to every event in the sequence. If o is a trace of p, then p is said to accept ¢.%

Example 2.3.3. The event sequence (coin, tea) is a trace of the LTS in Figure 2.3. The event
sequence (tea, coin) is not.

Definition 11 is consistent with our assumption of prefix closure. That is, if a sequence of
events o is a trace of process p, then all prefixes of o are also traces of p. It is also helpful
to extend Definition 11 to models with inputs and outputs. This is done by strengthening the
condition such that, in addition to being able to respond to every event in the sequence, the
model must also produce the correct outputs from the given inputs. From our informal definition
that Z refines S if the set of observable behaviours of Z is a subset of those of S, we can thus
form a definition of trace refinement.

5Here, we are working in terms of LTSs, which do not have explicit accepting states. For models such as
DFAs, which do have explicit accept states, we would need the additional restrictions to handle this.
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Definition 12. Let 7 (p) be the set of traces of process p. We say that p is refined by ¢ if
T(q) € T(p), i-e. if ¢ has less observable behaviour than p.

Example 2.3.4. If we note down the sets of traces of the LTSs in Figures 2.3 and 2.10 then
it becomes apparent that they refine each other, as their traces are equivalent.

T (Figure 2.3) = T (Figure 2.10) = {(), (coin), (coin, tea), (coin, cof fee)}

From Definition 12, we can see that the empty process, shown in Figure 2.11 refines ev-
ery other process because T (Figure 2.11) = (). This comes as a result of the fact that trace
refinement preserves safety properties but not liveness properties.

Figure 2.11: An LTS representing the empty process.

Definition 13. Safety properties are informally described as properties which require that
“nothing bad ever happens”. By contrast, liveness properties require that “something good
eventually happens”.

Example 2.3.5. Consider a simple traffic light controlled pedestrian crossing. One safety
property we might like to have of this system is that the light is never green for both pedestrians
and cars at the same time. A liveness property is that, if a pedestrian presses the button to
cross, the cars are eventually stopped to allow them to do so.

From Definition 13, it is clear that if nothing ever happens, as with the empty process, then
nothing bad can ever happen. Nothing good will happen either, but the system is at least safe.
Ideally though, we would like to be able to use the system for its intended purpose. We are
therefore in need of a stronger definition of refinement such that the empty process can no longer
refine a system which performs actions.

2.3.3 Failures Refinement

Considering a failures semantics allows us to define a relation which preserves both safety and
liveness properties® as per Definition 13. In the failures semantics, we record not only what
processes can do but also what they refuse to do. This allows us to distinguish the systems
represented in Figures 2.3 and 2.10 and to ensure that refinements of a given system allow at
least the same functionality. That is, the empty process no longer refines a process which can
carry out some action.

Definition 14. The pair (0, X) € A* x P(X) is a failure of a process p if
3g.p 5 gANEXT(()N X =0

where NEXT(q) represents the set of possible actions of process q. Let F(p) be the set of
failures of p such that p is failures refined by q if F(q) C F(p), i.e. if g fails less often than p.

6Since I discuss refinement in terms of LTSs as per Definition 5, which do not have 7 actions, there is no
possibility of divergence here.
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Example 2.3.6. Consider the LTS in Figure 2.3. To calculate the refusals of the process, we
ask “What can the system refuse to do initially?”, and then for each event e ask “What can
the system refuse to do after e?”. This then progressively builds the set of failure pairs.

F(Figure 2.3) = {
(), {tea, coffec}),
({coiny), { coin}),
({coin, tea), { coin, tea, coffee}),
({coin, coffee), { coin, tea, coffee})

}
The LTS in Figure 2.10 has the following set of failures.

F(Figure 2.10) = {
(), {tea, coffec}),
({coin), { coin, tea, coffee}),
({ coin, tea), { coin, tea, coffee}),
({ coin, coffee), { coin, tea, coffee})

}

We can now see that the refinement relation between Figures 2.3 and 2.10 is no longer
bidirectional because of what the respective systems can refuse to do after the trace (coin).
Figure 2.3 can only refuse to do a coin event; tea and coffee are both possibilities. The LTS in
Figure 2.10, however, could refuse to do a coffee if the top coin transition was taken initially,
or it could refuse to do a tea if the bottom coin transition was taken. Thus, failures refinement
is strong enough to distinguish between the two systems.

Observing refusals in this way is sufficient to detect nondeterminism in models. Observe that
both ({coiny, { coin, tea, coffee}) and ({coin, tea), { coin, tea, coffee}) are in F(Figure 2.10). Thus,
after (coin), a tea event can either be accepted or refused. Therefore, there must be multiple
coin transitions which take us to different states. A deterministic process does not behave like
this, and refuses exactly those events which cannot extend a given trace.

Definition 15. A process p is deterministic iff

Vo € T(p). (o, X) e F(p)ha€ X = o-{a) ¢ T(p)

2.3.4 Conformance and Extension

This section introduces two relations motivated by considerations from software testing. In
software engineering, conformance testing refers to the activity of ensuring that the software
meets (or conforms to) the specification [140]. If done properly, this is very similar to the notion
of refinement. To define conformance, we need an auxiliary definition refusals after a trace.
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Definition 16. For an LTS p, trace o, and X C X, p after o ref X if
3g.p 5 gANEXT(()N X =0
This allows us to redefine failures refinement as follows.

Vo € ¥*.Va C A. q after o ref X — p after o ref X

Note that this definition of failures refinement is too strong for conformance testing as it
quantifies over all event sequences in X* rather than just those of the original specification.
To define conformance, we weaken the quantification as in Definition 17. Informally, for an
environment restricted to traces of p, the system ¢ will deadlock less often than p. The weakened
quantification allows us to only test traces from the abstract specification, discounting vast
swathes of the search space. It does mean, though, that ¢ may implement functionality which
is not in p. This is not necessarily a bad thing, just something to be aware of.

Definition 17. An implementation ¢ conforms to a specification p iff

Vo € T(p),x C X.q after o ref X — p after o ref X

Example 2.3.7. Consider the LTS in Figure 2.12. This system conforms to the LTS in
Figure 2.3 but has the additional functionality of being able to dispense soup. The conformance
relation in Definition 17 has no way to detect this and, indeed, in environments restricted to
traces of Figure 2.3, the two systems are indistinguishable as soup can never never selected.

e
coffee
q3
BY
0?{(@

coin

Figure 2.12: An LTS which implements additional functionality to Figure 2.3.

Conformance gives us a key characteristic we need later on for inference, namely the capacity
to add functionality, but it cannot be used as an order relation as it is not transitive. That is,
the property xt Ty = y T 2z = z C z does not hold. This is fine in real-world software
engineering where, typically, one only needs to relate one implementation to one specification,
but conformance is not suited to iterative refinement steps. This motivates the definition of
extension which allows us to implement additional functionality but maintains transitivity, thus
allowing multiple refinement steps.

Definition 18. LTS q is an extension of p if

T(p) € T(q) and
Vo € T(p), X € A.(q after o ref X) = (p after o ref X)
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2.3.5 Simple Simulation

It is now time to introduce a simple form of simulation, which is another kind of refinement
relation where we aim to construct a function which relates states in the concrete implementation
to those in the abstract specification.

Definition 19. An implementation I simulates [49] a specification S if there exists a function
S from the states of I to the states of S such that

1. If s is the initial state of I then S(s) is the initial state of S.

2. For all actions a € %, if s 7 5" then S(s) 25 S(s').

Informally, the initial states are identical and every action in the concrete specification has
a corresponding action in the abstract specification. Definition 19 has the implicit assumption
that the two systems have the same sets of externally observable actions, but this is reasonable
given that we require implementations to exhibit the behaviour of their specification. Simulation
is important in FSM inference because we want the final model to simulate the observed traces.
The existence of a simulation relation is sufficient to prove trace refinement, but there exist
systems for which the reverse is not the case.

Example 2.3.8. Consider the two LTSs in Figure 2.13. These are trace equivalent (i.e. they
are trace refinements of each other) but they do not simulate each other. I (on the right)
simulates A (on the left) but A does not simulate I. This is because the simulation relation
must be a function. If we look at the relation between I and A, we have S = { (4o, s0), (41, 50) }-
Going the other way, we would need S = {(so,%0), (S0,%1)} which we cannot have since s
evaluates to both ig and 4.

e a
— —>‘—>

Figure 2.13: Two trace equivalent LTSs with the relation & between states illus-
trated with dashed lines.

Definition 19 is one of many simulation relations in the literature. Other definitions, such
as [145], are more widely accepted and use a relation for S rather than a function. This would
allow the two systems in Example 2.3.8 to simulate each other. The fact that Definition 19 uses
a function is why it is described as simple in [49]. The idea here it to explicitly distinguish
between the implementation and the specification such that, if an action can be carried out in
the implementation, this must be explicitly allowed in the specification. The definition from
[145] is concerned with the equivalence of two systems rather than the behaviour of one system
being contained within that of another.
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Concluding Remarks

This chapter explored the various finite-state models of computation which exist in the literature,
as well as introducing the topic of refinement in the context of FSM models. This should provide
the reader with sufficient background to understand the models which occur in this work. The
next chapter introduces the concept of model inference, and provides the remainder of the
background necessary to understand the remainder of this work and put it into context.
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Chapter 3
Background II - Model Inference

The field of model inference arguably began with the pioneering work of Gold in 1967 [74]. This
work presents the idea that we can learn a language from the strings within it. In a software
context, this means that we can infer a model of a system from the traces it produces. The
relationship between software traces, system tests, and models of execution was first highlighted
by Weyuker in 1983 [153]. Most inference techniques can be thought of as either active or
passive. Active techniques such as Angluin’s famous L* algorithm [10] make use of an oracle of
some kind during the inference process, be that a human user, a model checker, or the system
itself through some kind of dynamic analysis. By contrast, passive techniques such as Beirman’s
k-tails algorithm [16] rely solely on the data provided at the start of inference.

This chapter first gives an overview of how most existing passive inference techniques work,
to serve as a foundation for my own passive inference technique presented in Chapter 6. I then
outline the process of active FSM inference, before discussing some key inference algorithms
from the literature, both for classical and extended finite state machines. I then talk about
the related fields of Process Mining and Program Analysis, before discussing how the quality of
inferred (E)FSM models can be evaluated, and identifying the limitations of current techniques
and gaps within the literature.

3.1 The Inference Challenge

Given a set of traces, called the training set, the challenge is to infer a model which expresses
this behaviour and is also able to predict how the system might behave when faced with new
input sequences. Figure 3.1 illustrates the inference challenge as a Venn diagram.

Training
Set

Figure 3.1: A Venn diagram illustrating the inference challenge in terms of traces.

Model
Traces

The bounding box, >*, represents all possible traces of a given alphabet. The leftmost circle
represents those traces that the system is actually capable of producing. The central smaller
circle represents the training set — the sample of system traces which is used to infer a model.
The rightmost circle represents the traces of the inferred model. Clearly the model must accept
all the traces in the training set, but we also want it to accept additional traces. The inference
challenge is then to infer a model which maximises the intersection between the traces of the
system and the traces of the model, while minimising those traces of the model which are not
also traces of the system.
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3.2 Inference vs. Minimisation

Before discussing model inference in further detail, it is important to differentiate it from the
concept of minimisation. The aim of automaton minimisation is to create the smallest possible
model which is trace equivalent to the original. By contrast, the aim of inference is to create a
model which conforms to the original traces with the possibility of some additional behaviour.

Example 3.2.1. Consider the LTS in Figure 3.2a. This model is larger than it needs to
be. The LTS in Figure 3.2b has only two states, but there is no trace which can distinguish
between the two models. State s; in Figure 3.2b is simulating states ¢; and g9 in Figure 3.2a.

BB B8 8

) An unreduced LTS. A trace equivalent but (¢) A model which con-
smaller LTS. forms to Figure 3.2b but
is not trace equivalent.

Figure 3.2: An LTS and the minimal trace equivalent model.

Inference takes this a step further. The aim here is to produce a model which exhibits all
the original behaviour but may have additional functionality. That is to say that the traces
of the inferred model can be a superset of those of the original, as is the case in Figure 3.2c.
Every trace of Figure 3.2a is also a trace of Figure 3.2c, but (c) is not a trace of Figure 3.2a.

3.3 Basic State Merging

Most techniques for inferring models from traces involve some kind of state merging. That is,
the initial trace set is transformed into a model which accepts exactly and only those traces.
This model is iteratively condensed into a smaller model by merging states which are believed
to represent the same state in the underlying program. To explain state merging algorithms
in detail, let us establish a running example. Recall the drinks machine implementation from
Figure 2.1. Here, customers first select their desired drink. Next, they insert coins to the value
of one pound to pay for the drink. Finally, they dispense their drink by pressing vend. In
Figure 2.1, if they have not inserted sufficient payment, vend returns null. To simplify the
example, let us assume here that vend is never called unless sufficient payment has been inserted.

Given a set of black-box system traces, the aim is to infer a model which generalises the
behaviour they exemplify. The most detailed black-box recording we can make lists the methods
we call, along with any associated input arguments and return values. Some sample traces of
the drinks machine are shown in Figure 3.3.

In the interest of simplifying this example as much as possible, in this section we will infer
a classical FSM model of the traces in Figure 3.3. Unfortunately, these traces have inputs and
outputs, which classical FSMs cannot handle, so we are left with two choices. Either we must
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(select(“tea” ), coin(50)/[50], coin(50)/[100], vend() /[ “tea” )
(select(“tea” ), coin(100)/[100], vend()/[“tea” ])
(select( “coffee” ), coin(50)/[50], coin(50)/[100], vend() /[ “coftee” ])

Figure 3.3: Some sample traces of the simple drinks machine.

abstract away the inputs and outputs to leave only the action names or we must transform the
traces to include the inputs and outputs within the action labels. The input and output values
are quite important here, so the latter approach is preferable. To transform the traces, we can
simply join together all inputs and outputs with an underscore such that the event coin(50)/[50]
(which represents event coin being called with input 50 and producing output 50) becomes
coin_50_50. The transformed traces are shown in Figure 3.4.

(select_tea, coin-50-50, coin-50-100, vend_tea)
(select_tea, coin_100-100, vend_tea)
(select_coffee, coin_50_50, coin_50-100, vend_coffee)

Figure 3.4: The traces in Figure 3.3, transformed to include inputs and outputs as
part of the label.

Most modern state merging algorithms are variations on the procedure shown in Algorithm 1.
There are four main stages here: prefix-tree construction (Line 2 — detailed in Subsection 3.3.1),
scoring merges (Lines 5-7 — detailed in Subsection 3.3.2), merging states (Lines 9-11 — detailed
in Subsection 3.3.3), and nondeterminism resolution (Lines 12-13 — detailed in Subsection 3.3.4).

Algorithm 1 Basic evidence-driven state merging algorithm.

1. function INFER(Traces)

2: (S, 80, L, T) < GENERATEPTA (traces)

3 for sq, so € CHOOSEPAIRS(S,T) do

| (S,T) < MERGE(S, T, 51, S2)

5: function CHOOSEPAIRS(S,T)

6: pairScores < [(SCOREMERGE(s1, $2), ($1,52)) for s1,s2 in SELECTPAIRS(S x 5)]
7 return SORTDESCENDING (pairScores)

g: function MERGE(S, T, s1, $2)
9: S +— (S\ {81, 82}) U {81’2}

10: T < CHANGESOURCES(S1 out, $1,2, 1)

11: T < CHANGEDESTINATIONS(S1 n, 51,2, 1)

12: while (s3,$4) < FINDNONDETERMINISM(S,T") do
13: MERGE(S, T, s3, 84)
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3.3.1 Prefix Tree Acceptor

The first stage of Algorithm 1 is to transform the observed traces into an initial model called
a prefix tree acceptor (PTA). Traces can be expressed as p - s, where p is a prefix and s is a
suffiz. Thus, two traces which share a common prefix can be distinguished by their suffixes.
In a PTA, traces with the same prefix share a common path through the model up until the
point of divergence. For classical FSM models, this guarantees that the PTA is deterministic as
there is a maximum of one outgoing transition for any given action from any given state. For
models that support outputs, PTAs built from traces are not guaranteed to be deterministic
since transitions have the potential to produce different outputs in response to the same action.
This is discussed more in Chapter 6.

A PTA is built from a set of traces by starting with an initial state and iteratively attempting
to walk each trace in the model. When a state is reached from which there is no outgoing
transition for the current event, a new transition is added to a new destination state. From this
point, new states and transitions are required for all subsequent events in the trace. The PTA
built from the traces in Figure 3.4 is shown in Figure 3.5.
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Figure 3.5: A PTA built from the traces traces in Figure 3.4.

®

q10

®

vend_coffee

It is here that the concept of prefix closure from Section 2.1 becomes important to inference.
If we consider software systems to be prefix closed, we do not need to be concerned with explicit
accept states. The rationale behind this is that accepting states are often looked upon as
being “final” states, but software systems often do not have a concrete notion of a “complete”
interaction. It is possible to stop interacting with a system at any time and have the trace up to
that point be a valid trace of the system. Here, we are less concerned about whether a particular
string is in the language of a model. Rather, we are interested in whether our inferred model
can respond to every event in a given trace.

Additionally, many software systems are designed to operate for extremely long periods of
time. This means that traces may also be extremely long. To apply inference successfully, it
may be necessary to use trace prefizes of a reasonable length. This is especially true if we need
to carry out offline learning of an online system which continues to produce trace data even as
we are ready to begin inference. We can only do this, however, if we can assume prefix closure.

In our drinks machine example, it is quite possible for a customer to select a drink, insert
coins to the value of a pound, and then walk away. The system has not behaved incorrectly
here just because the customer has neglected to press vend to dispense their drink. Because of
this, we treat all reachable states as implicitly accepting because a path to a state in the model
represents a trace of the underlying system. Since the PTA is built only from positive traces,
all paths through the model must represent feasible system behaviour.
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A result of the property of prefix closure is that once a trace has revealed itself as negative,
that is, it contains an event which does not represent feasible system behaviour, it cannot
become positive again. That is not to say, however, that prefixes of negative traces are also
negative. On the contrary, most negative traces have positive prefixes. For example, the trace
(select_tea, coin_100-100, vend_coffee) is a negative trace of the vending machine since we receive
a different drink to the one we selected, but the prefix (select_tea, coin_100-100) is perfectly valid
behaviour.

3.3.2 Scoring Merges

Any PTA built from a sufficiently large number of traces will likely contain duplicate instances
of the same program state. That is, if there are multiple ways to reach the same program state,
that state will be represented in the PTA multiple times. The state merging challenge is to
determine these duplicates and merge them into a single state in the model. Essentially this is
a global optimisation problem of which states to merge in order to produce the best possible
model.

To tackle the state merging challenge, we need some means of determining which states are
compatible for merging. While k-tails [16], and many active techniques such as [142], divide
states into equivalence classes, most passive inference algorithms merge states pairwise. Thus,
we additionally require a way of ordering the state merges. In Algorithm 1, the CHOOSEPAIRS
function determines and ranks the compatibility of state merges. The SELECTPAIRS function
first determines all the state pairs which are compatible for merging. Each compatible state pair
is then assigned a numeric score by the SCOREMERGE function, representing the compatibility
of the merge. The potential merges are then sorted highest to lowest according to this score. It
is these two functions which are the novel component of most of the state merging algorithms
in the literature [98, 121, 53], but they are usually at least partially based on the commonality
of outgoing transitions, the idea being that states from which we can perform the same actions
are likely to be equivalent.

It is worth pointing out here that the task of determining transition equivalence is trivial for
classical FSM models because actions only have a label, so transitions are equivalent iff their
labels are equal. This is not so of EFSM models as their actions have additional inputs, which
may be guarded, and may produce outputs by evaluating functions. This means that there is
more than one way of expressing the same behaviour. Thus, the task of determining transition
equivalence is much more difficult and is, to an extent, open to interpretation.

Returning to our running example, let us score state pair merges for the PTA in Figure 3.5.
To make things as simple as possible, the score of each state pair will be the total number of
outgoing transition pairs which share a label. Let the CHOOSEPAIRS function return those pairs
of states which have at least one pair of outgoing transitions with the same label. Breaking ties
based on proximity to the root, we get the following ordered list of state merges.

(1, (q1,497)), (1, (g2, 48)), (1, (g3, ¢5))]

States ¢; and g7 both have an outgoing coin_50_50 transition; states gs and gg both have an
outgoing coin_50_100 transition; and states g3 and g5 both have an outgoing vend_tea transition.
Hence, the three pairs all have a merge score of one. The pair (g1, ¢7) is the first merge in the
list as it is the closest to the root.
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3.3.3 Merging States

Having determined and ordered the state pairs we wish to merge, we can then begin the merging
itself. Merging states is a relatively simple process and is explained as follows. A pair of states
g and gy is merged into a single state g, by replacing all instances of g, and g, in the transition
function with a new state, g, ,, such that all transitions which previously left and arrived at g,
and g, individually now respectively leave and arrive at ¢, ,. The two states ¢, and g, can then
safely be removed from the model. This is often implemented by replacing instances of g, with
gy and then removing ¢, from the model, or vice versa.

Figure 3.6 shows the PTA from Figure 3.5 after having merged states ¢; and ¢;. Here,
the transitions select_tea and select_coffee, which arrived at states g; and g7 respectively in
Figure 3.5, now both arrive at the merged state ¢; 7. Similarly, the two coin(50)/[50] transitions,
which left the separate states in Figure 3.6, now both leave the single merged state.

in_50-100 /" ™\ vend_tea
50 @ coin o @
oS N

coin_100-100 /(]-5\ vend_tea @
\_/

@ - @ q10
coin_50_100 U vend_coffee

Figure 3.6: The PTA from Figure 3.5 after merging states ¢; and q7.
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3.3.4 Resolving Nondeterminism

As Figure 3.6 shows, merging states which have common outgoing transitions leads to nonde-
terministic models. This is not the intended consequence of state merging, though, as we merge
states which we believe share the same behaviour. The “nondeterministic” model which results
is then not nondeterministic at all. Rather, it has two representations of the same behaviour,
one from each of the newly merged states.

A resolution to this is presented in [121] in the form of the DMERGE operation. The idea here
is that if we have two representations of the same behaviour from a given state, the respective
destinations of those transitions are duplicate representations of the same program state. We
can thus merge the two destinations into a single state without compromising the model. This
is likely to introduce further nondeterminism to the model which can be resolved the same way,
leading to a zipping effect occurring along branches of the PTA.

In classical FSM inference, merging the destination states is sufficient to resolve nondeter-
minism since two transitions with the same label, origin, and destination are indistinguishable.
For models with more complex transitions, this is not the case as it may be possible for two
non-identical transitions to express the same behaviour. This is a significant challenge in EFSM
inference and is the subject of Chapter 5.

In our running example, state ¢; 7 has two outgoing coin_50_50 transitions which lead to
states go and gg respectively. If the two transitions represent the same behaviour, their des-
tination states must represent the same program state, so should be merged. The resulting
model then has a state g2 g with two outgoing coin_50_100 transitions. Merging states g3 and
qo resolves this nondeterminism and results in the model shown in Figure 3.7.
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Figure 3.7: The PTA from Figure 3.5 after merging states ¢; and g7 and resolving
nondeterminism.
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3.3.5 Iterative Merging

Once all nondeterminism has been resolved, another iteration of state merging begins and the
next highest scoring pair of states is merged. In our example, this should be g2 and ¢g, but these
were already merged as part of the nondeterminism resolution of the previous merge. We thus
skip straight on to merging states ¢ 9 and ¢s, which both have an outgoing vend_tea transition.
This then leaves us with two outgoing vend_tea transitions from g3 5 ¢ with different destinations.
Following the same process as before, we merge states ¢, and gg to resolve the nondeterminism,
resulting in the model in Figure 3.8.

Coy;
select_tea QW 50 100 pend-ted
q3,5,9
coin_100-100 <)<t

select_ coﬁ”ee Yend_co e,

Figure 3.8: After merging states g3 and g5 and resolving nondeterminism.

There are now no more states which share a common outgoing transition, so the merging
process ends here. Let us now pause to consider the model in Figure 3.8. Clearly it is smaller
than the original PTA in Figure 3.5, which makes it slightly more readable. It is also now
apparent that, no matter whether we insert a single one pound coin or two fifty pence pieces, we
can still acquire either tea or coffee. This was not so in the original PTA as the trace in which
a one pound coin was used to pay for coffee was not in the training set. Thus, we have inferred
a model which correctly predicts the behaviour of the system for an unseen action sequence.

What is not so desirable in Figure 3.8 is that the trace (select_tea, coin-100-100, vend_coffee)
is a valid trace of the model. Indeed, this is also a trace of Figure 3.7, and comes as a result
of merging states q; and g;. While there was no evidence to suggest that the inference process
should not have merged these states, we know from basic contextual knowledge that we should
not be able to receive a different drink to the one we selected. This is a typical example of
overgeneralisation, which is an occupational hazard of passive inference. If, as mentioned in
Subsection 2.1.4, we could give the above trace to the inference process as a negative trace, we
could prevent the merge from going ahead and thus avoid the overgeneralisation. We could also
prevent such overgeneralisation by using active inference such as [40] to query an oracle to find
out whether introducing this trace to the inferred model is acceptable.
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In fact, the only state pair it is safe to merge in this example is g3 and g5. This results in
the model in Figure 3.9. While this model captures the property that we can only ever receive
the drink we selected, it is an undergeneralisation in that it only allows us to pay for coffee with
two 50p coins. Thus, model inference is a trade off between over- and under- generalisation.

coiﬂ—50’50 @ 50109 (o vend_tea
lect-tea ,(a o ) @
coin_100-100 \/
e

Select. @ @ @ q10
coffee coin_50_-50 U coin_50-100 U vend_coffee

Figure 3.9: After merging states g3 and ¢5 and resolving nondeterminism.

3.4 Passive FSM Inference

This section provides an overview of the key state merging algorithms in the literature. As the
field of EFSM inference is relatively new, most existing inference algorithms produce classical
FSMs. The current state of the art EFSM inference algorithms is given in Section 3.6.

3.4.1 Bierman’s k-tails Algorithm

The first state merging technique in the literature is the famous k-tails algorithm [16]. Like all
subsequent state merging algorithms, it is based on the Nerode relation [118], which states that a
language is regular (i.e. there exists a DFA which recognises it) if it has finitely many equivalence
classes. The problem is that this relation requires access to all strings in the language, which
is clearly impractical, especially if the language is infinite. To solve this, an alternative relation
is proposed in [16] which only requires a finite subset of the language. The challenge is then to
infer a model that not only expresses this behaviour, but can also predict how the system might
behave when faced with input sequences that were not in the subset used to infer the model.

The k-tails algorithm is so named because of how it chooses which states to merge. Modern
state merging algorithms tend to merge states pairwise, as in Algorithm 1, but k-tails is a little
different. Here, states in the PTA are partitioned into equivalence classes according to their
k-future, where a k-future is a path of length k from a given state. States which share the same
set of k-futures are assumed to represent the same program state. The equivalence classes are
then each merged into a single representative state. By merging equivalence classes rather than
state pairs, k-tails is much closer to the original Nerode relation.

As we have seen in Subsection 3.3.4, merging states based on their k-future inevitably leads
to nondeterministic models. States ¢y, ..., g, which share the same k-future all have an outgoing
transition with the same label. The resulting merged state q; ... , now has n outgoing transitions,
one from each of its constituent states. The original technique described in [16] makes no explicit
attempt to resolve this. Instead, it is proposed that the value of k be iteratively increased and
the algorithm rerun until a deterministic model is achieved. Higher values of k lead to a higher
number of smaller equivalence classes and, hence, less nondeterministic models. If k is greater
than or equal to the length of the longest trace used to build the initial PTA, then no states are
merged and the model is guaranteed to be deterministic.
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3.4.2 Evidence-Driven State Merging

Competitions such as Abbadingo One [98] and StaMInA [151] have driven the field increasingly
towards state merging algorithms. One class of algorithms which resulted from these compe-
titions is the Evidence-Driven State Merging (EDSM) algorithm. The Blue-Fringe algorithm,
which won the Abbadingo One competition [98], is the first algorithm to be described as such.

A major limitation of all state merging algorithms is that there is no way to be certain that
the state merges we make are correct. As the inference process proceeds, incorrect merges tend
to “snowball” into increasingly inappropriate models. The idea behind Blue-Fringe, and EDSM
as a whole, is to mitigate this problem by merging states pairwise in order of the amount of
evidence that the two states are the same. Here, evidence is provided by a scoring function
which assigns a numeric value to every pair of states, representing the appropriateness of their
merge. We see this as the SCOREMERGE function in Algorithm 1. We can then order our state
merges by their appropriateness, enabling us to make good merges earlier on in the process.

As it was the first EDSM algorithm, let us examine the Blue-Fringe algorithm [98] in more
detail. The algorithm begins by constructing a PTA from the initial traces. The root node
is coloured red and its children coloured blue. The remaining states are left uncoloured. The
CHOOSEPAIRS function returns all state pairs where the first state is red and the second state is
blue. The score of each red-blue merge is decided based on the number of states removed by the
complete merge (with resolution of nondeterminism). If a particular blue state cannot be merged
with any red state, it too is coloured red and its uncoloured children coloured blue. When every
state is coloured red, there are no more possible merges and the algorithm terminates. In this
way, a “blue fringe” moves outwards from the root node as states are merged.

A fresh set of tests after Abbadingo One showed that Blue-Fringe is a fairly powerful tech-
nique. Indeed, the generalised version of EDSM shown in Algorithm 1 forms the basis for
a number of (E)FSM inference algorithms in the literature [53, 121, 152] as well as my own
inference algorithm, presented in Chapter 6.

3.4.3 Negative Traces

As we saw in Subsection 3.3.5, sometimes merging a particular pair of states introduces undesired
behaviour to the model. A key contribution of the RPNI algorithm, presented in [121], is the
idea of using negative traces as part of the inference process, as mentioned in Subsection 2.1.4.
At each stage of inference, the model is checked against these traces to ensure that they are still
rejected. If a state merge causes the model to accept any of the negative traces, the inference
process backtracks and skips to the next potential state merge.

In our example, the inclusion of (select_tea, coin_100_100, vend_coffee) as a negative trace
reveals that merging states ¢; and g7 is a mistake. So too would have been the next state merge
of ¢ and gg. The only state pair that can be safely merged here is the final one, ¢3 and gs.

It is often the case that it is only the last event of a negative trace which exemplifies the
negative behaviour. For example, in the trace (select_tea, coin_100-100, vend_coffee), it is only
the dispensing of coffee which is illegal behaviour. The rest of the trace up to that point is
perfectly valid. If this is known to be the case, then the positive prefixes of negative traces can
also be included in the PTA.
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3.5 Active FSM Inference

Another way to avoid overgeneralisation is to allow the inference process access to some kind of
oracle to direct the inference process. Techniques which make use of an oracle are referred to
as active learners. The first algorithm to do this was Angluin’s famous L* algorithm [10], upon
which many subsequent inference algorithms are based [15, 28, 52].

Active inference is often presented in terms of the minimally adequate teacher model [10].
Here, the inference process is an interaction between a learner and a teacher. It is the learner’s
task to determine a suitable model of a language and the teacher’s job to answer questions from
the learner. The teacher answers two types of question: membership queries, and equivalence
queries. Membership queries consist of the learner asking “Is this string in the language of the
target model?”, and the teacher replying either “yes” or “no”. Equivalence queries consist of
the learner presenting a candidate model to the teacher. If the presented model is equivalent
to the target model, the teacher accepts it. If not, the teacher provides a counterezample of a
string which is in the target language and is not accepted by the presented model.

As with all automata learning algorithms, active inference is based on the Nerode relation,
the problem being to infer an infinite language classification from finite set of strings for which
membership queries have been performed. Where passive inference must rely solely on the
traces it is given, active inference can expand this set with queries, the general aim [30] being to
construct two sets, U and V', where U is the set of short prefixes which represent each Nerode
class (i.e. states in the model) and V is a set of suffizes which distinguish non-equivalent strings.
Here, V represents an overapproximation of the Nerode equivalence relation.

L* learns a DFA for a given alphabet ¥ by beginning with the empty word and iteratively
extending the prefixes in U with members of X, performing membership queries until U is closed.
Formally, Vu € U.Va € ¥.3u’ € U.u - ais Nerode equivalent to w WRT V. At this point, the
hypothesis model is presented to the teacher for classification. If it is correct, the algorithm
terminates. If not, the teacher provides a counterexample and the process continues. Because
the teacher is able to classify correctness of the model, most active inference algorithms can be
proven to be correct, at least to a degree.

The main problem with [10] is acquiring an oracle. Any realistic software system would
require many hundreds of membership queries to be answered in order to construct a model.
In practice, we are also often unable to specify exactly whether a candidate model is “correct”.
Nevertheless, the attraction of provably correct models is strong, and this has motivated a wealth
of literature concerning the automation of the oracle role to infer both classical and extended
finite state machines.

Query-Driven State Merging

Inspired by RPNI and the Blue Fringe algorithm, the Query-driven State Merging (QSM) al-
gorithm [53] incorporates membership queries from the L* algorithm into a state merging tech-
nique. The idea here is to allow the user to guide the inference process, but to use the evidence-
driven approach to help reduce the number of queries to the user. Like RPNI, the algorithm
takes in both a set of positive traces and a set of negative traces. The basic outline of the
algorithm is as in Algorithm 1. A PTA is built from the positive traces and then compatible
pairs of states are merged according to the implicit order on strings, as per the RPNI algorithm.
The key contribution of QSM is what happens after this.
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When an intermediate solution is compatible with both the positive and negative traces, new
scenarios (i.e. traces) are generated and presented to the user for classification as positive or
negative. Before merging a pair of states ¢ and ¢’, query strings are generated based on those
strings which enter the language of the machine as a result. These strings take the form zvw,
where z is the shortest string that gets us to state ¢/, and vw is a suffix of q. By construction,
zv is already an accepted behaviour of the model, so it is just the behaviour of w which is
unknown. Queries can thus be presented in the form of a question: “After having done xv, can
the system do w?”. The end user answers “yes” or “no” and the string is added to the correct
set. Only if all the query strings are classed as positive can the merge go ahead. This process
of querying and merging is iterated until no more state pairs are compatible.

Of course, with any active inference technique, a key evaluation factor is the number of
queries generated. Experimental results in [53] show that the Blue-Fringe merging strategy
generates far fewer queries than RPNI. The number of queries can be further reduced by
providing the algorithm with domain knowledge if it is available. Even so, for non-trivial systems,
the technique still generates enough queries to inhibit its applicability.

Automating Queries

Large numbers of queries become less of a problem if the classification step can be automated.
This is the motivation behind the work presented in [149], which is a modification to the QSM
algorithm that uses dynamic analysis so that the system under inference can act as its own oracle.
The idea here is that the scenarios generated by QSM should correspond to real executions of
the system. As such, the scenarios can be transformed into sequences of method invocations
which can be executed on the real system. In the implementation presented in [149], the user
is asked to provide an XML file corresponding to the execution of the provided scenario. Full
automation of this step is listed as future work. Experimental results on two systems show that
the technique is capable of producing accurate models with relatively sparse training data.

The main drawback of [149] is that the user must manually run the system to produce the
XML files for the inference process. In [137], full automation of query evaluation was realised.
The work presents a technique based on an improved implementation of QSM called StateChum?
for automatically inferring models of the behaviour of Erlang modules. The key contribution is
a wrapper system to dynamically execute the membership queries generated during inference.
This wrapper system converts the scenarios generated by StateChum to sequences of executable
Erlang methods. These traces are then executed and classed as either positive or negative
without the need for human interaction. The major advantage of this is that the system can
evaluate hundreds of queries per second and does not tire, become impatient, or make mistakes
as would a human oracle. A major limitation of this technique is that some functions require
additional input parameters which must be determined. It is suggested in [137] that such
parameters can be captured by code instrumentation, but this requires the modification of the
source code of the system, which may not always be possible.

Using Existing Models

Another way to reduce the burden on the user is to use existing models of the system, for example
from previous versions, to help direct the inference progress. The idea, first proposed by [76], is

lhttp://statechum.sourceforge.net (Accessed 28/08/20)
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to use inaccurate but not entirely irrelevant models to help with model learning and checking
when using L*-like algorithms. Various techniques have sprung up around this [41, 76, 89], with
the field taking the name adaptive learning. The results of [76] show that existing models can
be useful when changes are minor, however [41] shows that the utility of such models degrades
over time as the underlying software system evolves.

The main limitation of adaptive learning is that we cannot use it when there are no existing
system models. This inevitably leads us to question the origin of the first system model, since
it must have been created using a different technique. With that in mind, it is not difficult to
imagine using one of the many passive inference techniques in the literature to come up with
a “first guess” model which could then be used as an oracle for an adaptive learner, although
there does not appear to be any work in the literature investigating this.

Temporal Constraints

Perhaps the main limitation of the techniques proposed by [137] and [149] is that we cannot
always run the system as part of the inference process. It may be computationally expensive
to run traces on the real system or, if model inference is used during the requirements capture
phase of development, the system may not exist yet. This motivated the work presented in
[148], which is another modification of QSM that allows the user to specify temporal constraints
specified in linear temporal logic (LTL), rather than having to classify individual traces.

The main idea of [148] is that temporal constraints discharge many trace queries at once by
specifying general properties instead of specific instances of behaviour. For example, the user
could specify “event y can never follow event 7, which immediately classifies all traces of the
form ...z...y... as negative. Adherence to the provided constraints is verified automatically
during inference by a model checker, with any generated counterexamples being added to the set
of negative traces. This process can infer models fully automatically, however [148] also presents
an active variant of the algorithm which generates additional queries in a similar manner to QSM.

Experimental evaluation on two case studies shows that not only does the provision of LTL
constraints significantly reduce the number of queries to the user (when using the active variant
of the algorithm) but also enables more accurate models to be produced, even with sparse
training data. There is an obvious limitation to this technique, however, which is the ability of
the user to generate reasonable LTL constraints.

3.6 Passive EFSM Inference

Thus far, all the inference techniques that I have discussed have been for classical FSM models
with atomic transitions. The first real technique for inferring EFSM models from traces appears
in [106]. This technique, although rather limited, remained the state of the art of passive EFSM
inference for eight years until the publication of [152]. In this section, I review the state of the
art of passive EFSM inference, before turning the focus to active inference in Section 3.7.

3.6.1 Automatic Generation of Software Behavioural Models

The work of [106] presents a technique called GK-tails, which extends Bierman’s k-tails algorithm
[16] to models with internal variables. Models are inferred from program execution traces by
augmenting classical FSMs with guards inferred by Daikon [59].
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GK-tails is designed to work with white-box traces, as shown in Figure 3.10, which reveal
the values of internal system variables. Here, the anterior value of each variable is shown as
part of each event, with the input to each action being a dummy variable called input. It is
not really possible to show the output of transitions here as all variable values are taken prior
to the transition executing. One possible workaround for this is to model the output of the
previous transition as one of the inputs to the current transition, however this means that the
last transition in each trace is left without an output.

(

select(input = “tea” ),

coin(input = 50, selected = “tea”,value = 0),
coin(input = 50, selected = “tea”’, value = 50),
vend(selected = “tea”, value = 100)

),
(

select(input = “coffee” ),
coin(input = 50, selected = “coffee”, value = 0),
coin(input = 50, selected = “coffee”, value = 50),

vend(selected = “coffee”, value = 100)

);
(

select(input = “coffee” ),
coin(input = 100, selected = “coffee”, value = 0),

vend(selected = “coffee”, value = 100)

)

Figure 3.10: Traces of the simple drinks machine as would be input to GK-tails.

The inference algorithm is completely automated and has four main steps. The first step is a
preprocessing step to merge input-equivalent traces. Two traces are said to be input-equivalent
if they contain the same sequence of method calls which differ only in the input parameters. For
example, the first two traces in Figure 3.10 are input equivalent because both involve a select
action, two coin actions, and then a vend action.

The second step involves using Daikon to derive guards from the traces. For each action,
a predicate is generated which generalises the observed concrete data values. For example,
the select action is called with the inputs “tea” and “coffee”. Daikon could then generate the
guard input € {“tea”, “coffee” }. The coin action is called with inputs 50 and 100. Daikon
might generate the guard input € {50,100}, but the guard input > 50 also accounts for the
observed values. Indeed, there are an infinite number of potential guard expressions here. Some
are, of course, more sensible than others, but it is extremely difficult to evaluate their suitability
without some prior knowledge of the system. This issue will be revisited in Chapter 7.
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The next step is to create the initial EFSM. This is an automaton in which each trace in the
set forms a separate path through the machine, with the only shared node being the root. Each
method call forms a transition guarded by a predicate derived by Daikon in the previous step.
This makes GK-tails one of the few inference algorithms which does not begin with a PTA.

The final stage is to merge compatible states. Compatibility is determined in a similar way
to k-tails [16] — by comparing the k-futures of states — but, rather than dividing states into
equivalence classes, they are merged pairwise like in classical EDSM algorithms. A pair of states
s and s’ are merged by removing state s and adding its transitions to s’ if there is not already
an existing transition for that action. For existing transitions, the guards of the transitions to
and from s’ are extended to include the predicates of the corresponding transitions to and from
s. This process terminates when there are no more pairs of equivalent states.

Since the initial set of traces is likely to be incomplete, strict equivalence between them
is unlikely. Hence, [106] defines some alternative criteria which can be used to determine the
compatibility of state merges. A state weakly subsumes another state if the method calls of its
k-tails are equal but the predicates of the transitions differ such that those of the subsuming
state are more general. A state strongly subsumes another state if the k-tails of the subsumed
state are contained within those of the subsuming state and the predicates differ such that those
of the subsuming state are more general.

Figure 3.11 shows an EFSM that the GK-tails algorithm might infer from the traces in
Figure 3.10. Although [106] calls the inferred models EFSMs, they are not as extended as they
might be. Transitions can place guards on global data variables, but do not have the capacity
to mutate these variables. While the inferred models are very useful for describing what values
are normal and acceptable, they do not show how variable values evolve as the model executes.

coin(input > 50, selected € {“tea”, “coffee” },
value > 0)

vend(selected € {“tea”, “coffee” },
select(input € {“tea”, “coffee” }) value = 100)
-® m ®

N

Figure 3.11: An EFSM of the simple drinks machine as might be inferred by GK-tails.

To evaluate their algorithm, the authors of [106] carried out two small studies to investigate
firstly the usefulness of the inferred EFSMs over their classical counterparts, and secondly the
relative sizes of the models produced using the different merging criteria. For the first exper-
iment, traces were gathered from several applications, fed into GK-tails, and the “interplay”
between control and data analysed. Results showed that EFSMs are more “useful” then classi-
cal FSMs when representing complex interactions. Only one out of the 59 EFSMs with fewer
than five states included any interplay between method calls and data values not representable
by classical FSMs. As complexity increases, there is more interplay and the EFSMs come into
their own. Additionally, the inferred data constraints seemed to be mostly semantically relevant
to the transitions, representing specific implementation details or particular uses of the systems.

To investigate how the merging criterion affects model generation, the authors of [106] im-
plemented a simple shopping cart application and developed two test sets. The first of these was
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designed to exercise the whole set of paths through the model. Some data conditions were tested
well and some conditions were tested sparsely. The second test set was designed to sample both
paths and data conditions poorly.

The results confirm that exact equivalence is a poor merging criterion when the traces do
not exercise a system fully. For the first test set, the EFSMs produced using this criterion
were undergeneralised and failed to identify some loops. Weak and strong subsumption both
successfully generalised the machines and produced suitably compact models.

The cart application was then extended to make it slightly more complex, and a test set
designed to explore the space unevenly was produced. In this case, both equivalence and weak
subsumption failed to adequately generalise the models, but strong subsumption produced a
suitably compact machine. The reason for this is that weak subsumption requires that the out-
going sequences of method calls be exactly equal, which means that it is likely to fail to recognise
similarities between states for sparse trace sets. Strong subsumption, however, recognises these
similarities so is able to produce smaller models.

A proposed use for the EFSMs generated by GK-tails is as a basis for automated test case
generation. Preliminary results from [106] show that test suites generated from EFSMs produce
a higher statement coverage than those generated from classical FSMs with data constraints
inferred separately. No further study of this was carried out, but it is easy to see how EFSMs
might contribute towards solving the weakness identified in [137], namely that method calls have
arguments which are not detailed in classical FSM models so may not be known.

There are two main limitations of the technique proposed in [106]. Firstly, transitions cannot
mutate the data state, so the inferred models do not show how individual control flow events
affect the values of system variables. Secondly, the EFSM models produced by GK-tails may
be nondeterministic, meaning that there may be a choice of transitions from a given state for
a given action. For the models inferred by GK-tails, transition guards play a descriptive role.
They summarise the observed input values rather than attempting to causally link specific data
configurations to control flow events. While nondeterminism can serve as a useful abstraction
technique, nondeterministic models fail to capture the explicit logical relationship between data
and control. As discussed in Subsection 3.4.2, the nondeterminism that arises from merging
states is not real nondeterminism, just duplicate instances of the same behaviour. Consequently,
we should merge these duplicates into a single transition to represent both instances. The GK-
tails algorithm makes no attempt to do this.

In addition to the technical limitations, it is also worth mentioning that the evaluation in
[106] is rather informal. While the size of the inferred models is discussed in detail, there is
very little analysis of their accuracy. It is mentioned that the equivalence merging criterion led
to undergeneralised models, but this is not discussed quantitatively in terms of their predictive
power for unseen traces. There is also no formal definition of the so called interplay between
control and data, nor any quantitative analysis of this.

3.6.2 Inferring EFSM Models from Software Executions

Another EFSM inference technique called MINT is presented in [152]. MINT works by using
data-classifiers to infer guards on FSM transitions which explicitly link the data state of the
system to subsequent event actuation. The input traces and models produced are almost iden-
tical in style to [106]. The main limitation of [106] which MINT solves is the resolution of
nondeterminism which arises as a result of merging states.
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The MINT algorithm follows the same basic structure as all EDSM algorithms. The novelty
here is the use of classifiers both to identify and prioritise potential state merges, and to help
resolve the nondeterminism which arises as a result. Another key contribution of the technique
is that it is modular: arbitrary data classifiers can be used, which widens applicability since
not all classifiers are equally suited to all systems. The implementation supports over fifty of
the algorithms implemented in the Java WEKA library [78]. The MINT algorithm builds on
Algorithm 1 by including an extra step in which a set of classifiers is inferred. Each classifier
corresponds to a method signature such that, for each method call, the classifiers serve to predict
the name of the subsequent method to be called.

Once the classifiers have been inferred from the training set, the PTA is produced from the
same set of traces. The key addition here is that it is labelled with sets of variable values which
correspond to each transition. Pairs of states only share the same prefix if the classifiers produce
identical predictions for every observed data configuration in the prefixes of both states.

Having built the PTA, the next step is to merge state pairs. During state merging, the
CHOOSEPAIRS function takes an additional parameter. Normally, this would just be the states
and transitions in the model. Here, CHOOSEPAIRS also requires a minimum score which deems a
state pair suitable for merging. As well as scoring suitably highly, the respective data values of a
pair of states must lead to the same classifier predictions if they are to be considered equivalent.

The MERGE function is fairly similar to the one in Algorithm 1 except in the way that
nondeterminism is dealt with. Instead of simply merging transitions with the same label, the
data values must also be taken into account, since different values may be treated differently such
that two outgoing transitions which share the same label may still be deterministic. When two
transitions are merged, their data values are also merged by updating the map from transitions to
variables such that the merged transition contains the variable sets of both individual transitions.

The final stage of the merging process is to check that the resulting model is consistent
with the classifiers. For a given transition, its variable sets are presented to its classifier and
the subsequent transition is predicted. If the destination state does not contain an outgoing
transition with that label, the model is inconsistent. In this case, the merge is rejected and the
next highest scoring merge is attempted.

The implementation also includes a decorator class which integrates with Daikon. This
produces models which are quite complex but does provide some basic data constraints if the
chosen classifier is unable to do this. The Daikon guards provide an alternative view of the data
and can give insight into why the classifiers have inferred the rules they have.

MINT was tested with a collection of random traces from a number of systems. To assess
the accuracy of the inferred models, negative traces were synthesised and fed to inferred models,
the expectation being that they should be rejected. Results show that the choice of k for scoring
state merges seems to be the main factor that affects the accuracy of the inferred models. As
with [16], smaller values of k produce smaller models, but this is not necessarily better. In
some cases, the less overgeneralised models resulting from larger values of k£ were more accurate
overall. That said, there were specific instances where the choice of classifier was critical to the
accuracy of the system. Additionally, there was no single optimal configuration. Instead, the
best choice seems to depend on the characteristics of the system under inference.

The implementation is reported to run in reasonable time, however the choices of k and the
classifier affect the runtime dramatically. Unsurprisingly, the runtime grows with the number of
source traces. The choice of classifier here is instrumental as some models, such as naive Bayes,
are particularly time-consuming.
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The main limitation of [152], which is even highlighted in the work, is that the inferred models
are still only declarative. Like in [106], they capture sequences of events and data configurations
which are possible, but do not describe how individual variable values are changed. This means
that the inferred models are useful only for monitoring systems and cannot be used to predict
system behaviour for unseen traces.

3.6.3 Inferring Computational Models

The work presented in [152] is a key contribution to the field of EFSM inference but, as the paper
itself admits, the models do not properly reflect the underlying system. The update functions
— the functions which dictate how transitions mutate variables — are not inferred. This is an
obvious requirement if we want to predict system behaviour rather than just monitor it.

An obvious place to look for a solution to this problem is the field of machine learning,
which has spawned many techniques over the years (such as deep learning and neural networks)
to solve the problem of using training data to predict outcomes for unseen inputs. While the
methods developed here can achieve truly astonishing predictive accuracy, they rarely give much
insight into the underlying data transformations. We would like human-readable expressions
which provide this understanding. The space of possible expressions is clearly too vast to expect
to find ready solutions, so we must find ways to explore it intelligently. Evolutionary algorithms
(EAs) are one way of doing this, and have been used to great effect in [150] as a post-processing
technique to infer variable update functions for the models produced by MINT [152].

This technique begins with an EFSM, as might be inferred by MINT [152] or GK-tails [106].
The first step is to build what are referred to as training sets for each variable of each transition.
These are built by running the traces through the inferred model and identifying the anterior
and posterior values of each variable for each step.

The second stage is the inference of functions which account for the behaviour exemplified
in the training set. This is done using genetic programming (GP), a technique which uses
the principals of EAs to infer expressions which generalise sets of input-output pairs. Here, a
population of candidate solutions is evolved over successive generations, iteratively producing
functions which better account for the behaviour of the training set until an optimum is reached.

A key aspect of GP is that it works with a predefined fixed set of operators. In [150], these
are 4+, —, X, =+ as well as powers, n'" roots and casting from a float to an integer (and vice versa)
in order to allow variables of differing types to interact. The cast operation is necessary as
the GP employed here is strongly typed, meaning that integer and float variables would not
otherwise be able to interact with each other in binary operations such as addition.

In addition to the mon-terminal arithmetic operations, there is also a set of terminal op-
erators. These are either variable names or constant values. In the case of [150], the set of
terminals for each type is made up of all variables of that type, the literal values seen in the
traces and, in the case of numeric values, some additional constants. For doubles, these are
{0.0,0.5,1.0,2.0}. For integers, they are {0,1,2}. Boolean values get {true, false}. The current
implementation focuses primarily on numerical functions. The inference of non-trivial functions
over other types, such as strings and lists, is desirable future work.

The GP algorithm used in [150] produces an initial population of functions as random compo-
sitions of terminals and non-terminals. Each individual in the population is evaluated according
to the difference between the expected and actual outputs. The next stage is to select good
individuals which can be “bred” to form the next generation by combining characteristics from
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both parents. New characteristics are introduced to the population through mutation. This
involves replacing part of an individual with a new randomly generated sub-expression. The
generational loop terminates when either an individual has been found which scores correctly
on all samples from the training set, or after a preset number of generations.

The technique was tested with two programs: CRUISECONTROL [23] and LIFTDOORS [136].
The accuracy of the technique was assessed using k-folds cross validation [95] with & set to 10.
Over k iterations, data from k — 1 fields is used to train the system and the remaining portion is
used to evaluate the model. To mitigate for the stochasticity of GP, the algorithm was repeated
and evaluated 30 times with different random seeds. The accuracy was evaluated by comparing
the values calculated by the model with the ones from the trace using the root mean squared
error (RMSE) between two traces 1 and xo. Since this metric is scale dependent, it is important
to mormalise this value to ensure that different case studies are comparable. To calculate the
normalised RMSE, the RMSE is divided by the difference between the maximum and minimum
values. This gives a value between 0 and 1, where 0 is no error and 1 is consistent large error.

The results of these experiments led to the following conclusions. Firstly, increasing the
number of state variables decreases the accuracy. This can be explained by the fact that each
function which must be inferred has many more variables to account for, increasing the proba-
bility of error. Error is also increased by the breadth of possibility, i.e. the number of outgoing
transitions from each state. If this is increased, there are many more possible paths through the
system which means that much more training data is needed for an accurate result.

There are two clear limitations here. Firstly, this technique only works with variables which
are present in the traces. There is no concept of “hidden” or “internal” variables here. This
means that the technique is reliant on comprehensive white-box traces which record the values
of all variables throughout system execution. It cannot work with black-box traces that only
contain information available to an external observer of the system since these traces do not
capture the values of internal system variables.

The second, somewhat less obvious limitation, is that this is a post-processing technique. It
works with an already inferred model and simply augments it with functions. The functions
inferred here are essentially decorations. They play no part in the inference process and cannot
be used to help infer a better model.

3.7 Active EFSM Inference

Recall from Section 3.5 that active inference algorithms make use of an oracle. Learning is
usually portrayed as an interaction between a learner and a teacher. There is a wealth of
literature concerning the active inference of various kinds of EFSM models from Moore and
Mealy machines to register automata as per Definition 9, including the inference of output and
update functions. This section reviews the most relevant and prominent of these techniques.

3.7.1 Regular Inference for State Machines with Equality Tests

Work presented in [15] extends Angluin’s L* algorithm to infer models with data parameters. To
do this, the paper first introduces symbolic mealy machines, in which input and output symbols
are parametrised. Thus, traces look very much like my own traces in Figure 1.1. The algorithm
has two stages. In the first phase of the technique, a modification of L* [119] for learning Mealy
machines is applied with a finite data domain. This works in exactly the same way as the
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L* algorithm, iteratively performing membership and equivalence queries until the hypothesis
model is correct. This results in a Mealy machine with concrete inputs and outputs. It is the
second stage of the algorithm which is the main contribution of [15]. Here, the authors present a
heuristic based on storing and reusing values to abstract away concrete input and output values
into symbolic functions. For example, in our simple drinks machine, this technique captures
exactly the idea that the the input of select is later used as the output of vend. Indeed, I
implement a similar heuristic in Chapter 6 to recognise the “store and reuse” pattern.

The transformation from concrete Mealy machines to symbolic ones has four phases. The
first phase is to search for values which must be stored. In essence, this is done by observing
concrete input values which are later used as part of transition output. The next step is to
replace the concrete values with symbolic ones, and add register updates to those transitions
which need them. For example, the transition select(“tea” ) becomes select(ig)/[r1 := io]. The
transition vend/op := “tea” would then become vend/oy := 1. This step reveals the fact that
many transitions in the model exhibit the same behaviour with different data, so the third step is
to merge states with identical symbolic behaviour. This is done using a variation of the standard
partition refinement algorithm to divide state pairs of the form (g, d), where ¢ is a state in the
model and d is an ordering on the data values. In the final step of the algorithm, the form of the
transitions is changed to use guards rather than pattern matching equality. Transitions which
differ only in their guards are merged by using their disjunction. For example, the transitions

Sm M) Sn and Sm M Sy, are merged to become Sm a(io)/[io] Sn.

The authors then go on to prove the correctness of their algorithm, but do not present an
implementation. The algorithm was later implemented as part of a tool called LearnLib [125],
which was later built on in [87, 88] to further extend L* to a subset of register automata.

3.7.2 Counterexample-Guided Abstraction Refinement

Another tool which builds off LearnLib is Tomte [4, 3]. The idea here is that previous techniques
[15] can only learn models with small alphabets. The authors of [4] define the dual operations of
abstraction and concretisation and propose that a mapper module is placed between the learner
and the teacher. This enables a large set of concrete actions to be mapped down to a smaller
set of abstract ones, effectively reducing the alphabet size while still maintaining expressivity.

A technique for inferring scalarset Mealy machines (parametric guarded Mealy machines in
which the only data operations are literal (in)equality and assignment) is then presented. This
technique begins with the empty mapper and adds elements when necessary. First, a call is
made to LearnLib to construct a hypothesis model. If this is correct, the algorithm terminates.
If it is not, a counterexample trace is returned and a new abstraction is constructed. This is
done by first assigning a colour to each parameter value in the trace. Values are coloured green
if they are equal to a previous value already in the abstraction table, black if they are equal
to a previous value not in the abstraction table, and red if they are fresh. At this point, the
mapper constructs a new trace from the counterexample in which all black input parameters are
converted to fresh (red) values. If, after abstraction, the two traces are the same, this indicates
that the hypothesis model is incorrect, and the counterexample is forwarded to the learner.

If the two traces are different, a new entry in the abstraction table is required. This is found
by iteratively replacing black parameters in the counterexample trace with fresh (red) values
and performing experiments to see if the outputs change. If there is a change in the output,
this indicates that the value is relevant, and an abstraction is added to the table. In situations
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where replacing a black value with a fresh value does not change the output, this results in a
counterexample traces with fewer black values. Upon finding the new abstraction, the learner
is restarted with the new abstraction table. The Tomte tool was evaluated on several realistic
case studies, including a biometric passport system [5], for which it was able to infer small and
correct models in less than a minute.

3.7.3 RALIib

The active EFSM inference techniques discussed so far have only been able to infer models in
which literal (in)equality and assignment are the only operations which are allowed on data
values. In [28], the SL* algorithm [28] (the S standing for symbolic) is presented to address this
limitation by expanding the set of allowed guard operations to include greater and less than
operations and simple sums of registers and pre-specified constants. Updates remain as literal
assignments only.

Recall from Section 3.5 that the process of active inference involves constructing a set U of
short prefixes representing Nerode equivalence classes, and a set V' of suffixes which define an
overapproximation of the Nerode equivalence relation. The authors of [28] highlight the fact
that the processing of trace suffixes from each location is obviously dependent on the variable
values. Thus, the set V', rather than being formed of trace suffixes, is instead formed of symbolic
decision trees. A symbolic decision tree (SDT) is, effectively, a prefix tree automaton. For a
language £, a (u,V)-tree T is an SDT where u is a concrete sequence of input actions and V'
is a set of symbolic suffixes, i.e. sequences of actions with restrictions on symbolic inputs rather
than concrete values. For all strings uv, where v € V., uv is accepted if it is in £ and rejected
otherwise. Further, in any run of 7, the register ; may only contain the i** data value in uv.

The SL* algorithm has three phases.

Hypothesis Construction This involves making tree queries to a tree oracle and adding the
results to an observation table. For a given £, u, and V as defined above, a tree oracle is
a function O, which returns a (u, V')-tree satisfying the following constraints:

1. Adding more symbolic suffixes cannot make inequivalent trees equivalent;

2. Adding more symbolic suffixes only refines trees and does not merge transitions or
remove registers;

3. Trees are constructed recursively using representative data values (i.e. values which
meet the constraints imposed by guards).

The table is closed if all transitions in the automaton have a target location, i.e. each
input event has a corresponding transition, and is register consistent if all registers are in
scope at the point when they are used. The algorithm proceeds similarly to L*, asking
tree queries and processing the results accordingly until the observation table is closed and
register consistent.

Hypothesis Validation When the observation table is closed and register consistent, the asso-
ciated model is submitted to the teacher for validation. The “teacher” is, again, simulated
with dynamic analysis rather than being a human person. If the model is correct, the
algorithm terminates, else there exists a sequence of inputs which is accepted by the hy-
pothesis but not by the target system or vice versa. If this is the case, the teacher returns
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one such sequence as a counterexample to the current hypothesis model. Even with dy-
namic analysis, equivalence queries cannot be implemented in a black-box situation. This
is because it is infeasible to run the system for every possible input sequence to check
equivalence with the model. Instead, this paper proposes approximating the answer by
exhaustive exploration of the set of data words up to some fixed time limit.

Counterexample Processing The existence of a counterexample means that the current
model either has a missing state or transition, or that data registers have not been used
correctly. Any given counterexample of length m can be written as u;v; where u; is a
prefix of length ¢ where both the incorrect hypothesis model and the correct model behave
identically and wv; is the suffix of length m — ¢, starting with the first event where the
behaviour of the two models differs. To determine the value of ¢, and thus the problematic
transition, the counterexample is analysed step-by-step by asking tree queries for each
event. Once ¢ has been determined, there are then two cases which can be distinguished
for the tree O (u;, V;).

1. The guard g; on the i transition of Or(ui, V;) distinguishes cases that the current
hypothesis model does not distinguish. In this case, the hypothesised model must
split this transition into two transitions which refine the behaviour of the original.

2. The tree O (u;, V;) is not isomorphic to O (u;—1, V;—1) under the renaming of regis-
ters used to construct the hypothesis model. In this case, the state u;_1 is split into
two separate states.

A major problem to solve with active inference is the manifestation of the oracle. In [28], tree
queries O, (V) are implemented using ideas for constructing canonical constraint decision trees
[31]. Essentially, the set of distinguishable classes of traces of the form uv can be represented
as a decision tree with maximally refined guards. The SMT solver Z3 [45] is then used to
generate test cases for all such guards in the trees which can then be executed on the system
under inference. Equivalence queries are then based on tree queries by constructing O (e, w)
for all w € ¥*, starting with & = 3 and iteratively increasing k to a fixed time limit or until a
counterexample is reached.

A subsequent work by the same authors [27] presents a number of practical improvements
to the SL* algorithm, including the capability for models to work with multiple different data
types and the capability to infer models which support instantaneous input and output values
as per Definition 21. These improvements are then implemented as an extension to LearnLib.
This tool, referred to as RALib, is then evaluated on a number of XML model benchmarks. The
results show that SL* uses fewer tests than Tomte and the previous RA learning algorithms
[87, 88] in LearnLib.

3.7.4 A Myhill-Nerode Theorem for Register Automata and Symbolic
Trace Languages

The authors of [70] argue that existing active learning algorithms, including [27] do not scale
very well, noting that black-box approaches such as running test cases on the system under
inference is a costly process. As a solution to this, the propose a grey-boxr method. That
is, integrating some aspects of white-box program analysis (discussed in in Section 3.8) into
black-box techniques.
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In [142], the authors argue that existing grey-box methods [21, 34, 71] are all somewhat ad
hoc, and present an extension to the Myhill-Nerode theorem for symbolic trace languages (i.e.
traces with data like those in Figure 1.1) which is intended to serve as a foundation for future
grey-box approaches. The Myhill-Nerode equivalence defines two words w and w’ in a language
L to be equivalent if there does not exist a suffix v which can distinguish between them. That
is, only one of w - v and w’ - v is in £. As discussed in Section 3.5, a language is regular if and
only if this relation has a finite index, meaning that there is a finite number of states in the
corresponding DFA.

The authors of [142] define their extension to the Myhill-Nerode theorem by defining three
equivalence relations =;, =, and =,, which refer to the locations (states), transitions, and
registers respectively. Since register automata have finitely many of each, the three relations all
have a finite index. Intuitively, two finite traces are location equivalent if they lead to the same
location, transition equivalent if they share the same final transition, and symbols are register
equivalent if they are stored in the same register after the execution of the trace. A symbolic
language is defined to be regular if these relations can be defined over it with finite indices. It is
then shown how to construct a register automaton for a regular symbolic language and proven
that these relations can be defined for any register automaton. This is a major step forward
in the field of active inference, but an inference algorithm based on this relation remains to be
presented.

3.8 White-Box Program Analysis

Black-box inference techniques aim to infer models of programs without knowing any details of
their structure. By contrast, white-box program analysis looks inside the program to analyse its
internal functionality. Such techniques include symbolic execution [26], concolic execution [73],
and tainting [90]. Of these, it is symbolic execution which is the most well established technique.

3.8.1 Symbolic Execution

Symbolic execution involves constructing a tree structure representing the possible paths through
a program up to a given depth. Instead of using concrete values for variables, symbolic values
are used instead. These variables then flow through the various operations of the program
accumulating conditions on their values. For example, we might encounter an if ... then
else ... statement which tests to see if a particular variable x has a value greater
than ten. This splits the execution path into two: one where the test was true, and one where
it was false. We can also obtain information from variable assignments. For example, if our if
statement assigns the value 100 to z if it is less than 10, we know its posterior value.

The models constructed by symbolic execution have states and paths through the system,
and look very similar to EFSM models. Indeed, I apply a very similar technique to symbolic
execution in Chapter 5 when formulating my subsumption relation for the merging of EFSM
transitions. In the literature, tool such as SED [81] can be used to construct symbolic models
which can be used for debugging Java programs. In addition, the symbolic execution trees
can also be used in conjunction with the KeY verification system [80] to verify that a program
satisfies a given specification written in the Java Modelling Language. Not only that, but KeY
can also highlight specific nodes in the execution tree where the specification is violated, thus
helping the user to debug the problem.
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Another feature of KeY [130] is that it is able to reduce the size of symbolic execution
trees by merging states. In [130], an abstraction-based framework formalised in JavaDL [14]
is presented to allow large numbers of states in symbolic execution trees to be merged, thus
reducing the size of proofs over them and enabling more complex programs to be verified. The
main idea here is to abstract away concrete variable values into sets of possible states which
overapproximate the original program. For example, the symbolic execution of 1f condition
then x=1 else x=2 from a state o results in a state which is identical to o except that x is
updated to 1 if condition is true and 2 if condition is false. Thus, we need two different
paths for the two different options. If we were instead to define an abstract domain for x which
covers both branches of the if statement, we avoid the need for two separate paths in the
symbolic execution tree and so reduce the size of any proofs over it.

A concrete execution state is a pair (o, ) consisting of a Kripke state o and a formula ¢
called the program counter. A concrete execution state, for a given program counter, assigns each
variable a concrete value from the universe. For example, the symbolic state (z := z, {c¢ > 0}, ¢)
could be concretised such that z holds any positive integer. Thus, each symbolic state ¢ has a set
of possible concretisations, denoted concr(o). The authors of [130] define a weakenning relation
such that one symbolic state sy is a weakenning of another state s if concr(s;) C concr(ss).
This relation is then shown to be a partial order relation.

The merging of a pair of states in a symbolic execution tree, involves the computation of
a sound abstraction of both states. That is, a state which is a weakenning of the two states
to be merged. This introduces a family of join-semilattices of symbolic execution states. The
authors show that this is sound, meaning that if the merged state is valid then the two separate
unmerged states are valid.

This technique is implemented in the verification tool KeY by extending the Java Modelling
Language such that the user can annotate the program to be verified with the state merging
join operator in front of a Java block after which the join should be applied, for example an
if statement. The authors evaluated their technique with four “micro benchmarks” and a well
known bug [42] in the default Java sorting method. These experiments show that state merging
can reduce the size of KeY proofs by up to 80%, and that the verification of methods previous
out of reach [42] due to the path explosion problem are now possible.

3.8.2 Grey-Box Inference

White-box techniques such as symbolic execution can also be applied in the context of model
inference, and there are several tools in the literature [70, 21, 34, 71] which make use of them.
Sigma* [21] is one such technique and is an extension of the L* algorithm which infers symbolic
transducers [146] that store the k most recent data values. The basic idea here is to use symbolic
execution to infer constraints on input and output values and build a symbolic alphabet from
which L* can be run. Instead of checking equivalence queries using the actual program, Sigma*
constructs a (possibly nondeterministic) symbolic overapproximation of the program and uses
that instead. This means that the deterministic hypothesis models built from membership
queries can be algorithmically checked for equality against the overapproximation model rather
than having to iteratively search for a counterexample by running traces through the program,
as in [28] and other black-box inference algorithms.

In [70], the authors extend the SL* algorithm in RALib to use constraints from Python
programs using tainting [90]. The idea here is to taint each data value in the traces with a
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unique marker. This allows values to be traced around the system under test and predicates
over them to be generated. In an untainted setting, the oracle answers membership queries with
“yes” or “no”, depending on whether the proposed trace is in the language of the target model.
In the tainted setting, constraints on the data variables are also included in the response. For
example, for a simple stack, we might have the trace (push(7), push(7), pop(7)). In the tainted
trace, each 7 is given a unique marker such that, in the white-box setting, we can tell that the
7 of pop(7) is the same value as in the first push(7).

A key part of the technique in [70] is the construction of characteristic predicates on the
tainted data values in the traces. Such predicates are sufficient to construct the symbolic decision
trees used in membership queries of SL*. Characteristic predicates are also very useful when
testing equivalence. The “random walk equivalence oracle” in RALib simply constructs random
traces to find a counterexample. In [70], symbolic suffixes of a given length are generated,
along with their characteristic predicates. For each concrete trace satisfying the predicate, it is
confirmed whether the hypothesis model and target model respond in the same way. If not, the
trace is a counterexample. The use of characteristic predicates here allows counterexamples to be
constructed intelligently, thus they can be found much more often than if they are constructed
randomly. The authors note that RALib struggles with what they call “combination lock”
systems. That is, systems where a given behaviour is only “unlocked” after a specific sequence
of inputs. The use of characteristic predicates here reveals the inputs, enabling reliable discovery
of counterexamples for such systems.

The authors evaluated their system by stubbing various versions of the Python FIFO-Queue
and Set modules as well as several hand-crafted “combination lock” models. The results show
that tainting can improve the performance of RALib by up to two orders of magnitude, but
note that there is still a need to consume fewer tree queries and infer models involving more
complex operations.

While it is clear that white-box methods can improve the performance of inference algo-
rithms hugely, they require access to the source code of the system under inference. There
are many situations where this is perfectly acceptable, but other scenarios (such as legacy or
proprietary components) necessitate black-box learning. Further, this thesis aims to work in
the passive learning scenario, where the learner is not allowed any interaction with the system
under inference (or other oracle) beyond the traces provided at the start of inference.

3.8.3 Call Graphs

The field of white-box program analysis also opens up another use-case for EFSM inference. A
common starting point for many program analysis techniques is some sort of call graph [129].
With such a graph, we can analyse control and data flow through the program, verify correctness,
and search for bugs. There are many algorithms to construct such graphs [9, 12, 48, 135], but
these tend to be language specific and can struggle with some of the more advanced features
of modern programming languages [9]. An alternative approach would be to view each line of
code as an EFSM transition. Thus, we could treat a program as an abstract trace and try to
infer an EFSM from it.

While this seems like an attractive proposal, it falls well outside the scope of the work
presented in this thesis for several of reasons, the main reason being that the primary focus of
this thesis is black-box inference from traces. Like most inference methods in the literature,
the work in this thesis assumes traces to be linear in nature. By contrast, programs tend to be
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hierachical in nature, containing subroutines such as loops and object methods. Consequently,
great care would have to be taken to transform programs into linear objects, for example by by
“unrolling” loops to a fixed depth and making object methods “inline”.

Another reason is that lines of code work with symbolic rather than concrete values, taking
their inputs at runtime. The techniques I develop in this thesis are intended to work with traces
which contain concrete input and output values. Given that the GP preprocessing technique I
present in Chapter 7 essentially aims to convert concrete traces into symbolic ones, it should be
relatively easy to adapt my inference tool from Chapter 6 to work with symbolic traces, but this
does not contribute towards the main objectives of the thesis so will not be explored further.

3.9 Process Mining

Process mining is a relatively new field which sits between data mining and computational
modelling, the idea being to “discover, monitor and improve real processes (i.e., not assumed
processes) by extracting knowledge from event logs” [144]. Unlike the often more theoretical
field of model inference, process mining is much more industry facing, and there are many
practical tools which use process mining techniques such as Discovery Analyst (StereoLOGIC),
Flow (Fourspark), and Interstage Automated Process Discovery (Fujitsu).

The field of process mining has three main aspects: discovery, conformance, and enhancement
[144]. Of these, it is the discovery aspect which is most related to the work in this thesis. Like
with passive inference, discovery is about inferring a model of a process from an event log, i.e.
traces. These models may take the form of Petri-nets, BPMN, UML activity diagrams, or a
number of other formalisms, but they are all (somewhat) comparable to (E)FSM models in that
they show the flow of events in the process and key branching points.

A central idea in process mining is that traces can be recorded from five different perspectives
[144]: control flow, data, time, resources, and function, with the control flow perspective being
most comparable to the field of model inference. While most of the literature on process mining
seems to focus on this perspective, research carried out in [109] considers problems in which
multiple interacting process perspectives are considered together. That work presents two multi-
perspective discovery tools.

The first tool uses recorded data values to infer DC-Net models [109, Definition 8.8] of data
dependencies between different process activities, essentially learning models of the control flow
and data perspectives at the same time. These models have variables, guard functions, and
write operations, but they are causal models rather than computational ones. They show which
variables are related to particular events, but do not show how they change throughout the
execution of the model. Thus, the models cannot be used to predict system behaviour for new
traces or to prove data flow properties. Indeed, there does not seem to be any work in the
literature on process mining which infers predictive models, but prediction does not seem to be
a major objective of process mining.

The second tool in [109] uses domain knowledge to abstract low level activities to high level
ones to discover a more human-readable model. The idea here is that events in traces generally
correspond to meaningful activities, but not necessarily high level functionality. When inferring
system models for human consumption, we want models to be comprehensible. Part of this
is ensuring that the activities (transitions) in the model are recognisable. For example, in our
drinks machine example, we record the high level select, coin and vend actions without the lower
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level memory management activities which inevitably come about as a result of reading from
and writing to variables. Such low level activities are not relevant to most analysts and do not
correspond to meaningful activities, so it is desirable to group them together into a higher level
abstraction. This is what tool in [109] is able to do.

Most (E)FSM inference papers do not consider the possibility that the traces used for infer-
ence may be from a lower level perspective than is desired for the model, nor do they consider
the possibility of subroutines or other implementational features. Instead, traces are treated as
linear strings, and a model is learned accordingly. While it would certainly be very interesting
to apply ideas from [109] to allow us to infer EFSM models at an arbitrary level of abstraction,
or even hierarchical models (such as in [136]) which separate out individual subroutines, this is
very much outside of the scope of this thesis.

3.10 System Identification

System identification is the process of building mathematical models of dynamical systems based
on data observations [103] and is mainly concerned with automated control systems. The field
is a large one, much of which is not directly relevant to the work of this thesis. One area of
interest, though, is the inference of models of hybrid systems, which can be modelled by hybrid
automata [82]. While these are not directly comparable to EFSMs, both models use transitions
to move between states and have internal data variables. Where EFSMs have their variables
explicitly updated by transitions, with hybrid automata, data values change over time in the
states according to some differential equation. For example, consider a simple heating controller.
The heater may transition between the on and off states depending on the temperature. In the
respective states, the temperature will go up and down over time.

In [113], a technique is presented to infer such models from timestamped sequences of variable
values referred to as signals. These signals are first broken down into segments using some signal
segmentation method [124] which detects abrupt changes in the signal. The segments are then
clustered to identify the internal states of the system, and each cluster is assigned a unique
symbol. This then allows trace strings to be formed. For example, the signal [1,1,1,5,5,5,3, 3, 3]
may be segmented as [[1,1,1],[5,5,5],[3,3,3]]. Here, there are three clusters, which may be
assigned the symbols a, b, and ¢ respectively. This would then form the trace string (a, b, c).

Input and output signals are both processed in this way, and can be combined to form I/0
traces, which are defined to be a pair of trace strings s; = a1,a2,...,a; and so = by,ba,...,b;
(representing input and output respectively) such that, for all n, segment a,, occurs concurrently
with b, and for any b; and b;y1, if a; = a;41 and a; # A, ai +1 = A, where A represents a
significant change in output without a change in input.

The authors of [124] use a modified version of LearnLib to transform the I/O traces into
a Mealy machine. Here, membership queries are answered by searching through the traces for
the longest possible match, and returning the corresponding output. Equivalence queries are
answered by searching for a counterexample in the traces. The authors note that this does not
guarantee correctness, but also that they do not deem this to be necessary.

The next step is to infer initial values and flow conditions. Initial values define the values
of variables when the model enters a particular state. Flow conditions describe how a variable
changes while the system is in that state. To infer these functions, the authors propose heuristics
based on statistical methods such as linear regression. After this, timing conditions are added to
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transitions to account for the A points in the traces. Here, there was a marked change in output
without there being a change in input. There may be any number of reasons for this, for example
unobserved internal system values, but the authors attempt to resolve such inconsistencies with
time-based transition guards inferred from the timestamps in the traces. The system from [124]
is evaluated with respect to two case studies: an engine timing model and a fuel control system,
and produces very promising results.

3.11 Evaluating Models

A clear objective of model inference is to obtain a model which accurately represents the un-
derlying system. To effectively evaluate the quality of the models produced by an inference
technique, we need a quantitative way to measure how closely the behaviour of an inferred
model matches that of the underlying system. Unfortunately, there is no single metric which
can give a complete view of this. Instead there are many different metrics, each of which gives
a slightly different picture. This is especially true for EFSM models since both the models and
the traces thereof are more feature rich.

While there are many potential metrics to assess the accuracy of a model, most involve traces.
When evaluating the accuracy of an EFSM model in terms of a trace, we can divide the trace up
into three parts, as in Figure 3.12. The first part of the trace (shown in green in Figure 3.12) is
the accepted prefiz. This is the part of the trace where the model matches the system perfectly.
The portion of the trace shown in yellow in Figure 3.12 represents the part of the trace after
there has been an observable difference between the system and the model (referred to as the
point of deviation) but before the model has stopped recognising events altogether. The yellow
and green sections together are referred to as the recognised prefix. It is worth noting that there
may still be many correctly executed events after the point of deviation — that is, the output
from the model perfectly matches that of the system — but, after the point of deviation, we
know that the model is incorrect since we have observed a difference in behaviour between the
model and the system. The red part of the trace represents the unrecognised suffiz. This is
the part of the trace that comes after the point at which the model has no outgoing transitions
for the current event, referred to as the point of non-recognition. After this point, the model is
unable to process the remainder of the trace.

Figure 3.12: The three parts of a trace.

A key difference between the evaluation of EFSM models and their classical counterparts is
that, for classical models, the point of deviation is the point of non-recognition. That is, the
part of the trace shown in yellow in Figure 3.12 is non-existent. Since classical FSMs only have
atomic actions, they either recognise an action or they do not. The only observable difference
between a model and a system is that the model recognises an action where the system does
not, or vice versa. By contrast, EFSM traces effectively have two parts: the control part and
the data part. The control part is the sequence of actions which are called. The data part is
the inputs with which each action is called and the outputs which are produced in response.
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A popular technique in classical FSM inference [40, 98, 151] is behavioural classification.
That is, the model’s ability to classify traces as either valid or invalid. When given a system, a
model, and a trace, there are four possible outcomes, as illustrated in Table 3.1.

TP The trace is a valid trace of the system and is accepted by the model.
FN The trace is a valid trace of the system and is not accepted by the model.
FP The trace is not a valid trace of the system and is accepted by the model.

TN The trace is not a valid trace of the system and is not accepted by the model.

Model

Accept Reject

Accept TP FN

System

Reject FP TN

Table 3.1: Confusion matrix for trace classification.

The metrics of behavioural classification are built on top of these four situations and are
defined as follows.

tivit TP
SENS1TU1V1 = -
SV = TP FN

- TN
SPECIIIC = =
PeCY = TN T FP

N TP
recision = ———
p TP+ FP

The metric of sensitivity (sometimes referred to as recall) measures a model’s ability to
accept the traces that it should, and is the proportion of positive system traces which were
recognised by the model. Specificity is the dual of sensitivity, and measures a model’s ability
to correctly reject negative system traces. In other machine learning fields, it is the metric of
precision that is normally paired with recall. This measures the proportion of the traces accepted
by the model which were actually positive traces of the system. In the field of model inference,
specificity is the more common pairing since a model’s ability to correctly reject negative traces
is more meaningful. The two metrics of sensitivity and specificity can be combined into a single
metric, the binary classification rate (BCR) as follows.

sensitivity + specificity

B =
CR 5

While BCR is a popular accuracy metric for classical models, and has even been used to eval-
uate EFSM models [150], it has several drawbacks. Firstly, this method relies on the existence
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of negative traces. In [98] and [151], models are inferred from traces of existing reference mod-
els. Negative traces can be obtained relatively easily by constructing the complements of these.
EFSM inference tools are generally evaluated from real programs rather than reference models,
so it is much harder to obtain negative traces. By definition, the programs themselves can only
produce positive traces. This means that negative traces often must be created by hand. A
semi-automated approach is suggested in [152], however, this still involves a considerable amount
of manual effort and contextual knowledge.

Because negative traces are so hard to obtain, many inference methods work only from
positive traces. If the inference process is not given examples of negative behaviour, it seems a
little unjust to use them as part of the evaluation. Rather than testing how the model behaves
when faced with unseen traces, using negative traces to evaluate models inferred only from
positive ones is asking the model to predict an entire class of unseen behaviour.

BCR is a good metric to use if the primary objective is to infer a model which can monitor
behaviour, but it is not so good if we want to infer models which predict behaviour. Here, we
are looking to measure how closely the outputs produced by the system correspond to those
produced by the model. Consequently, the authors of [150] propose an alternative metric: the
normalised root mean square error (NRMSE) between the different values. This is built on top
of the RMSE metric, which measures the mean square error between the outputs produced by a
model in response to a particular trace and the outputs produced by the real system in response
to the same trace. In the context of [150], the updated values of the internal system variables
were taken as the “outputs”.

For two sequences of values X = z1...x, and Y = y;...y,, the RMSE is calculated as
follows.

S oz — yi)?
n

RMSE =

Since the RMSE is scale dependent — its value depends on the literal values in the two sequences,
it is mormalised to produce a value between zero and one by dividing between the range of values
within the traces. That is, the difference between the maximum and minimum observed values.
This defines the NRMSE as the following.

RMSE

NRMSE = ——M——
max X —min X

Note that we normalise solely with respect to the sequence X. Here, X represents the reference
sequence, in this context the trace which comes from the system. Y represents the subject
sequence, or the trace which has come from the model.

The main limitation of NRMSE is identified in [150]: we can only compare traces of the
same length. This means that we are only able to work with the recognised prefix of each trace.
There is no meaningful way to include the unrecognised suffixes of traces in this metric because
the model cannot produce any outputs with which to compare those of the system. This means
that a model which recognises nothing will score just as well as a perfect model. In this way, it
is similar to simple trace refinement from Section 2.3. The accepted prefix contributes nothing
to the model either, since there is no difference between the outputs produced by the model
and those produced by the program. This means that the metric can make models with shorter
recognised prefixes look worse than models with longer ones if the point of non-recognition comes
closer to the point of deviation as there is less potential for contributing error.

57



3.12. INDUSTRIAL APPLICATIONS

The second problem with NRMSE as a metric of accuracy is more conceptual. Is it mean-
ingful to compare the outputs of two different functions when we do not know what the correct
function is? In contrast to other areas of machine learning, we are more interested in the model
than we are its output. Here, we are arguably more interested that a particular output is wrong
than we are in how wrong it is.

Example 3.11.1. Let us say that for an input of 1, the output of a transition in our inferred
model for a particular input is 1000. The output from the system in response to the same
event is 10. This is clearly a big difference and leads to a large NRMSE. Now let a different
model produce the corresponding output of 101. This is much closer to the output of the
system so leads to a smaller NRMSE meaning that this second model scores better.

In this context, though, the primary objective is not to evaluate the output of the model.
What we really want to do is evaluate the model itself. We are just using output as a means
of doing this. If we say that the real function used by the system to calculate this output in
the above instance is ig X 10 and that the functions used by the two models are ig x 1000 and
ig + r1 — 12 + 4 respectively, we are put in a difficult position. Here, it is just happenstance
that the second model has produced an output closer to that of the real system. In fact, the
first model has a function which is syntactically closer to the real system.

Unfortunately, we do not know the actual functions used by black-box systems, and have
no meaningful way to compute the syntactic difference between functions even if we did. For a
large enough test set, it is likely that poor functions will perform poorly, but the point remains
that we are more interested in the model than its outputs here. We do not particularly wish
to favour solutions which are off by a small amount for a large number of events over solutions
which are off by a larger amount for a smaller number of events. Arguably, in this context, we
prefer the latter situation because the proportion of correctly executed actions is higher.

Another popular metric to assess the quality of classical FSM models is the complexity of the
model in terms of the number of states and transitions. This is quite sensible for classical FSMs
since every model has a canonical minimum. This means that smaller models are necessarily
better than bigger ones. This is not so for EFSMs since we can arbitrarily move information
between the control flow and data states. Indeed, for every EFSM there exists a trace equivalent
model with only one control flow state and many reflexive transitions. Such models do not
intuitively represent the control flow of an application, so may not always be more useful than
a multi-state model.

3.12 Industrial Applications

This section briefly discusses how (E)FSM inference and trace analysis are used in industry.
We have already seen how tools such as strace allow us to trace the kernel calls made during
program execution. The software giant SAP provides tools for trace analysis [1] with all of its
systems, and third party tools such as Percepio’s Tracealyzer [2] can construct graphs showing
the communications between different system objects. While these tools are widely used, they
work very much at the level of traces.

Despite the utility of system models and the apparent benefits of automated inference, there
appears to be relatively little of this going on in practice. Attempts have recently been made
to infer FSM models of the Red Hat kernel [47] but this is, as of yet, a very manual process.
Instances like this beg the question “Why is automated inference not more prevalent?”. There
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are many reasons for this, possibly the most significant being that most passive inference tech-
niques are simply not up to the job. Even the models inferred by MINT [152] (the current
state of the art of EFSM inference) are not sufficiently accurate to be commercially applicable.
Another factor, which I will revisit in Section 3.13 is that traces of systems are actually quite
hard to come by. Most end users do not have comprehensive logging enabled by default on their
software as it reduces performance and is simply not necessary for most applications. If we
have to exercise a program for the express purpose of obtaining traces for inference, we may as
well put the same effort into manually inferring a model, as is likely to be more accurate than
anything inferred by current tools.

While there is not enough data to make the use of passive inference tools feasible, this does
not explain why active techniques like [10, 28] are also neglected by industrial practitioners.
One reason for this could be that such techniques require some sort of oracle. This is often the
system itself, with membership queries being answered by running test cases. As mentioned
in [70], this does not scale particularly well to the sort of large scale industrial applications for
which a model might be required. While grey-box approaches such as [70] are a possible solution
to this, most of the techniques are not sufficiently mature to have been picked up by industry.

As discussed in Section 3.9, the field of process mining is much more industrially applicable
than model inference, with many industrial tools — such as Discovery Analyst (StereoLOGIC),
Flow (Fourspark), and Interstage Automated Process Discovery (Fujitsu) — using process min-
ing techniques. Here, models are used to analyse and improve business processes, as well as for
conformance testing however, like classical FSM inference, the main focus is on the control flow
of systems. While techniques such as [109] have been developed to include multiple perspec-
tives, the models inferred here show which variables are updated by particular actions without
showing how. Thus, we cannot use them to prove data flow properties of systems, to predict
system behaviour for unseen executions.

In summary, there are two main barriers which must be overcome before automated inference
tools can be used widely in industrial situations. The first is the accuracy of automatically
inferred models. Most automated tools are simply not able to infer models which are sufficiently
accurate to make it worth running them. The work presented in this thesis aims to push the
boundaries of this to enable us to infer more accurate and comprehensive models. Secondly, there
is insufficient availability of traces to be able to run most inference techniques. People often do
not have execution traces to hand from which to infer models. This is more an implementation
decision on the part of developers and lies outside the scope of this thesis.

3.13 Limitations and Gaps

In this section, I discuss the limitations of current techniques in more detail and identify gaps
in the literature to motivate the novel work I present in subsequent chapters.

The models inferred by both [106] and [152] were originally presented as Finite State Au-
tomata with Parameters (FSAPs) in [105]. These are defined as in Definition 20. These models
can be thought of as guarded FSMs with simple memory. Input events are simple atomic labels
and transitions may place restrictions on data variables in the form of guards (called enabling
functions in [105]) such that they can only be taken under particular circumstances.
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Definition 20. An FSAP is an eight tuple (@, %, D, F, d, ¢, g0, Qr) where

Q@ is a finite non-empty set of states.

qo € @ is the initial state.

Qr CQ\ {0} is the set of final states.

> is a finite non-empty set of input symbols.

D is an n-dimensional space Dy x --- x Dy U {0}.

F is a set of enabling functions of the form f; : D — {0,1}.

0 is the transition function 6 : Q@ X ¥ x D — P(Q).

@ is the selecting function ¢ : Q x ¥ — f with
Ve @,Q CQ\{0},meX,de D.é(qg,m,d) =Q = »(qg,m)(d) = 1.
Vge@Q,meX,de Dp(q,m)(d)=1 = 3Q" CQ\ {0}.5(¢,m,d) =Q".

These models are good for showing what data values are admissible, but transitions cannot
update variable values, so the models cannot show how values change during model execution
— they are not computational. This means that their applicability is limited to monitoring
systems. Given a sequence of method invocations with associated data values, a model can be
used to determine whether the system is capable of producing that sequence. They cannot,
however, be used to answer predictive questions such as “What is the value of variable v after
executing transition ¢?”. To do this, the inference of update functions — the actual functions
which compute individual data values from inputs — is essential.

The technique presented in [150] is a means of adding transition updates to existing models,
but requires detailed knowledge about all variable values throughout the execution of the system,
i.e. white-box traces. If we do not have access to the source code of the system, it can be very
difficult to obtain such traces. Black-box traces only contain input and output values, which
means that [150] is only applicable if there are no internal variables, i.e. if the output of a
transition depends only on its input. While existing GP techniques like the one employed by
[150] are very effective at inferring functions where all the inputs are known, there is no literature
currently available on inferring functions where the output is dependent on hidden variables.

An alternative to [150] is [28]. Rather than postprocessing existing models, this technique
can be used to infer RAs, complete with data updates, from black-box traces. The problem here
is that this technique requires the ability to run the system under inference. For live systems,
it may not be possible to run arbitrary method calls to observe the outcome.

From these limitations, three main contributions can be identified:

1. Tt is clear that there is a need for a passive inference technique, like in [152] which infers
fully computational EFSM models from black-box traces that only contain inputs and
outputs. This is presented in Chapter 6.

2. Most passive inference techniques are based on state merging. To apply this to EFSMs,
we will need some way to compare and merge transitions with data updates. While [106]
presents the idea of subsumption as a means of comparing transitions with guards, no
consideration is given to transitions which update data variables. Chapter 5 extends the
idea of subsumption presented in [106] to transitions with data updates.

3. Our inference technique also needs a means of inferring the existence and use of variables
which are internal to the system but do not occur in the traces. This is presented in
Chapter 7.
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In addition to these contributions, we also need a good method of objectively evaluating
the models which come out of any inference we perform. Essentially, we need to answer the
question “Is the model we have inferred any good?”. It turns out that this is a surprisingly
difficult question to answer, and there are many metrics which can be used. Even in classical
FSM inference, there is no single standard metric which is used throughout the literature, and
the problem is even worse for EFSM inference.

Many classical FSM inference papers, including [98, 151] evaluate models in terms of their
ability to classify legal and illegal behaviour. That is, do they accept valid traces of the system
and reject invalid ones? Another popular metric is the size of the model in terms of the number
of states and transitions, with smaller models generally being seen as better. This is often the
case for classical FSM models, but does not extend to EFSMs since we can arbitrarily move
information between the control state and the data state, meaning that we can convert every
EFSM into an equivalent single-state model.

To test inference tools, we obviously need traces from lots of different subject systems. For
classical FSM inference, it is quite easy to generate pseudo-random FSM models. We can then
generate random walks of these models to obtain traces. This is the approach taken in [98, 151]
but there is no work in the literature about whether tools which perform well on synthesised
systems perform similarly well on real-world systems. This is desirable future work.

For EFSM inference, much of the work in the literature falls a little short when it comes to
evaluating inference techniques. A likely explanation for this is that evaluating the quality of
EFSM models is much more difficult than for their classical counterparts. While, in other fields,
it is standard practice to compare new techniques against a common baseline approach, as well
as the current state of the art, the multitude of different model definitions means that models
inferred by different tools often cannot be meaningfully compared. As a consequence, tools are
often considered in isolation.

Another contributing factor is that it is much harder to obtain the traces needed to infer
EFSM models. This is because, as well as sequences of action labels, we also need the inputs
and outputs associated with each action. Unlike classical FSM models, which can be randomly
generated reasonably easily, to generate an EFSM model we effectively have to generate an
entire computer program. To do this in a meaningful way is extremely difficult and there does
not appear to be any work in the literature which does this.

It is even difficult to automate the task of obtaining traces of existing EFSM models as we
cannot simply pick a random action from the current state like we can for classical FSMs. Indeed,
we cannot even generate the control part of the trace this way since the values of registers affect
whether or not a given path is feasible [91, 147]. Not only that, but we also require data inputs
for each action. The task of obtaining a suitable set of traces which fully covers the behaviour
of an EFSM model is an open problem and effectively reduces to test-case gemeration, which
remains an active research area [7, 92, 102].

Because of the difficulty of generating random EFSM models, techniques in the literature are
often evaluated with respect to a small number of real-world or handcrafted case studies which
have been modified to produce suitable traces. While the use of real-world systems is obviously
preferable to randomly generated examples, the fact that only two or three systems can feasibly
be used is a real threat to the validity of most results. Further, there is no standard library of
traces or systems, meaning that most tools are evaluated using different systems.

In summary, there is clearly a need for some standardisation in the metrics used when
evaluating EFSM models. It is also desirable to compare new inference techniques to a baseline
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approach and to the current state of the art, so we know whether the field is improving. Ideally,
it would also be nice to have access to a bank of subject systems and traces from these systems
with which to evaluate inference techniques so that it is not necessary to first find (or write)
programs from which to obtain traces. In Chapter 8, I present a comprehensive evaluation of
my inference tool. I compare the inferred models to both the original PTA and to the models
produced by MINT [152] using the postprocessing technique presented in [150].

Concluding Remarks

This chapter has introduced the concept of model inference from traces and has laid the foun-
dations for my own EFSM inference technique, which will be presented in Chapter 6. I have
reviewed the state of the art of EFSM inference, both active and passive, and have given details
of how the quality of the models we infer can be evaluated. Finally, I discussed the limitations
of current techniques and identified the main gaps in the literature which the remainder of this
thesis aims to fill.
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Chapter 4
Extended Finite State Machines

Classical FSM models are well-established and widely used, but there is no single generally
accepted EFSM definition. Chapter 2 mentions various definitions from the literature [101, 105]
as well as similar ideas under different names [20, 56]. As discussed in Section 3.13, none of
them are particularly well suited to our purposes. This chapter reviews the limitations of current
models and formulates a new EFSM definition, which was part of the contribution of my work
published in [64], that meets these requirements.

4.1 Introduction

The EFSM models discussed in Chapter 2 extend classical FSM models in various different ways,
with the three main additional features being the following.

1. Parametrised inputs upon which we can place conditions.
2. The ability to produce outputs in response to inputs.

3. State variables which may be updated by evaluating functions in terms of inputs and
anterior variable values.

Most FSM models which claim to be “extended” have at least one of these features, but no
existing model in the literature has all three. Figure 4.1 summarises the features of the various
models discussed in Chapter 2.

Mealy machines [112] are the first real attempt to extend classical FSM models. As well
as responding to actions, transitions also produce an observable output. These models are not
sufficient for our needs, though, as they have neither input parameters nor internal variables.

. . .. c0in50/100 .
Example 4.1.1. Consider the Mealy machine transition ¢,, ———— ¢,, which represents
the event coin(50)/[100]. While the output is a distinct part of the event, the input is not.
Instead, inputs must be encoded within the transition label so are effectively lost. This means
that we cannot compute output from input. There are also no internal variables here, meaning
that we cannot explicitly store information about the current state for later reuse. Like with
classical models, we must encode data within the control flow of the model.

The PFSMs of [101] have both input parameters and observable output values. There is
no data state, though, so we are still forced to encode all information about the current state
within the control flow of the system, just like with Mealy machines and classical FSM models.
Example 4.1.2. Consider the PFSM transition ¢, w) ¢n which represents the
event coin(50)/[100] from our simple vending machine. While the observable behaviour of the
event is represented perfectly, the transition does not capture the full picture. In the real
system, when a user inserts a coin, an internal variable is updated to keep a running total of
how much money has been inserted so far. Without this internal variable, the running total
must be encoded within the control state of the model, just like with classical FSMs.
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Mealy
Machines
[112]

EFSMs
106, 152]

Figure 4.1: The various features of different EFSM models in the literature.

The current state of the art of passive EFSM inference is MINT [152], which produces models
as in Definition 20. As can be seen from Figure 4.1, these models lack all three of our desirable
features. They are classed as extended because they make use of global data variables, but these
cannot be updated by transitions. Thus, they appear to “magically” change during execution
rather than being explicitly computed at each stage. This means that we cannot predict how
systems might behave for previously unseen input sequences. Additionally, these models have
no real notion of input and output. While it is possible to use variables to model these, it can
be helpful to explicitly distinguish between hidden state variables and observable behaviour.
Example 4.1.3. Consider the transitions g, coinfio=50,71=0] Gn coinfio =507 =50] gp which
correspond to the event sequence (coin(50)/[50], coin(50)/[100]). These are the kind of tran-
sitions which appear in the models inferred by [152]. Here, we have one coin transition with
a guard r; = 0 and a second transition with the guard 1 = 50. We can see here that between
the first and second transitions, 71 must be set to 50 but, because the transitions lack update
functions, we do not know how internal variable values are updated during execution.

The work of [150] attempts to extend the models inferred by MINT by augmenting the
transitions with data update functions, providing one of our desirable features, but the models
still lack explicit inputs and outputs. It is possible to use global variables to model inputs and
outputs, but this is neither intuitive nor particularly accurate as it fails to capture the notion
that inputs and outputs can be observed, while internal data values cannot.

The state of the art of active EFSM inference [28] produces models which are closer to
our needs. The register automata used here (defined in Definition 9) separate instantaneous
transition input parameters from persistent global variables, which transitions may update.
Thus, these models exhibit two of our desired features, but lack explicitly observable outputs.

64



CHAPTER 4. EXTENDED FINITE STATE MACHINES

cotn(io)|io=>50 r1:=50

Example 4.1.4. Consider the transition g,, qn which is a register au-
tomaton transition for the event coin(50)/[50]. Here, the transition takes a single input ig
(which is guarded to equal 50) and assigns that value to register r1. Here, we have update
functions and parametrised inputs, but we do not have outputs. While we can model outputs
by assigning further internal variables, this adds an extra layer of complication and doesn’t
really capture the idea of observable behaviour.

What we would really like is the ability to capture the externally observable behaviour of
a system, and its internal data transformations, as separate aspects of the same model. To do
this, we need input arguments which are passed as parameters to the transition. These must be
distinct from the data registers and should not persist after the firing of the transition. We also
need to separate observable outputs (which correspond to method return values), from internal
variables. This allows us to distinguish behaviour that is visible to an external observer from
that which is internal to the system.

The remainder of this chapter is structured as follows. Section 4.2 lays out the formalities
of my proposed EFSM definition. Next, Section 4.3 discusses what events and traces look like
in this setting and how they are handled. Section 4.4 defines what it means for an EFSM to be
nondeterministic, and why nondeterminism is problematic when analysing models. Section 4.5
gives definitions for the terms acceptance and recognition, and discusses the differences between
the two. In Section 4.6, I provide definitions of behavioural equivalence and simulation between
models. Finally, in Section 4.7, T present my formalisation of EFSMs in Isabelle/HOL, and
provide the proofs of various key properties.

4.2 Formal Definition

This section presents my EFSM definition, which formed part of the contribution of [64] and
will be used throughout the rest of this work. One of the main objectives of this thesis is to infer
functions to relate inputs and outputs. Consequently, the model definition explicitly separates
the two. As discussed in Subsection 2.2.5, we also need to store explicitly information about
the current state for later use as we do not want to encode this within the control state of
the model. Consequently, I make use of a set of data registers which persist throughout the
execution of a model and can be updated by transitions. The most similar definition to mine in
the literature is RAs [28], except that my models produce observable outputs and are able to
perform arithmetic as part of data update functions.

It is helpful to discuss the definition in terms of an example. Recall the EFSM in Fig-
ure 1.5 (reproduced below for convenience), which represents the simple drinks machine from
Section 1.1. There are four transitions here. The select transition allows customers to choose
their drink by passing its name in as an input parameter. This is stored in register r, and
a second register, ry, is initialised to zero. The coin transition also takes one input, which
represents the value of the inserted coin. The running total is displayed to the customer as an
output, and is maintained by updating the value of ro. When this total reaches a value greater

than or equal to 100, the ¢ vend, g2 transition can be taken to dispense the selected drink to

the user. If the user tries to trigger vend before this point, the g; vend, q1 transition is taken,
which produces no observable output and leaves all registers unchanged. Having established our
running example, let us now move on to the formal definition. This is shown in Definition 21.
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coin: 1/og := 19 +ig[re := 19 + io]

select : 1/[ry := g, 72 := 0] Q vend : 0[rg > 100]/0g := 71
& 8 (=)

vend : O[ry < 100]

Figure 1.5: An EFSM model of the drinks machine.

Like all (E)FSMs, my models are made up of states and transitions. Unlike other definitions
[112], there is no restriction that the model outputs (or indeed the inputs) must come from a
finite enumeration. The main reason for this comes from the intended application. We want
to use traces to infer EFSM models that are able to predict the behaviour of systems when
faced with previously unseen action sequences. As the traces used to infer a model are almost
always a subset of the full language accepted by the system, if we were forced to define an input
alphabet for the inferred model from these traces, we would almost inevitably end up with an
overly restricted alphabet that limits the predictive power of the model. For example, the traces
in Figure 1.1 only show two of the possible inputs to the select transition. If we were forced to
define an input alphabet for the inferred model from these traces, the select transition would
only be able to accept inputs “tea” and “coffee”. We would then not be able to predict what
would happen if we were to try selecting “soup”.

Definition 21. An EFSM is a tuple, (5, sg,T) where

S is a finite non-empty set of states.
sp € S is the initial state.

T is a finite transition matrix T : (Sx.S) — P(LxNxGx F xU) with rows representing
origin states and columns representing destination states.

InT

L is a set of transition labels

N gives the transition arity (the number of input parameters), which may be zero.
G is a set of boolean guard functions G : (I x R) — B.

F is a set of output functions F : (I x R) — O.

U is a set of update functions U : (I x R) — R.

In G, F,and U

I is a list [ig,%1,...,4m—1] of values representing the inputs of a transition, which is
empty if the arity is zero.
R is a mapping from variables [rg,71,...] to their values.

O is alist [0g, 01, . ..,0,—1] of values, which may be empty, representing the outputs of
a transition.
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As in Figure 1.5, a little syntactic sugar allows an EFSM transition from anterior state ¢,
to posterior state g, to take the following general form.

label:aritygy,....g¢)/ f1,-- frlu1,-.,uu)
dm dn

Further to this, in the interest of brevity, transitions will be referenced in this text simply as

Im Label, qn wherever this does not cause ambiguity.

The first part of each transition is an atomic label which is the name of the event. In
Figure 1.5, the labels are select, coin, and vend. My definition also ascribes an arity to each
transition. This is the number of inputs the transition expects to receive. A transition can
only be taken if it is presented with the correct number of inputs. This is common practice
in most programming languages, where method definitions declare the variables they expect to
receive. Indeed, the input parameters of RAs are exactly this. Here, inputs are indexed by
natural numbers instead of being explicitly named, but the principle is the same. In Figure 1.5,
the select and coin transitions each take one input and the vend transitions do not take any.

Guard expressions [g1,...,gy] place conditions on transition inputs and the anterior data
state. While Definition 21 only allows transitions to have one guard, it is often more aesthetically
pleasing to express guards as a list which is implicitly conjoined. A transition can only be taken
if its guards are satisfied. If, for a given (label, input) pair, there is a transition from the current
state where the guards are satisfied, the EFSM is said to have recognised the input. In Figure 1.5,

guard expressions can be seen on both vend transitions. The ¢; vend, q1 transition has the guard

ro < 100 and the ¢ % g2 transition has the guard ro > 100.

After the guards comes a slash, after which expressions fi, ..., f; define the outputs in terms
of the inputs and current data state. In Figure 1.5, the coin transition has a single output: ro+ig.
The ¢1 vend, o transition also has a single output: 7.

Finally, update expressions uq, . .., Uy, enclosed in square brackets, define the posterior data
state. There should be at most one update function per register per transition in order to
maintain consistency. Both outputs and updates are computed by evaluating expressions over
literals and variables (inputs and registers) from the anterior data state. Assignment syntax
_:= _is used to identify the value being computed. Registers not explicitly updated by a
transition remain unchanged. For transitions without outputs or updates, the corresponding
components are omitted. In Figure 1.5, the select transition has two updates. Firstly, the
register r1 is assigned the value of ip to record what drink the user selected. Secondly, the
register ro is initialised to zero. The coin transition updates ro to ro 4 ig to record the total
amount of money inserted so far.

Data states are written as comma-separated lists of assignments enclosed in angle brackets.
For example, the register state where r; holds value “tea” and re holds value 0 is written as
{ri1 := “tea”,r9 := 0). Registers are globally accessible throughout the execution of the model,
but inputs are instantaneous and can only be accessed by their respective transition. Each
register is initially undefined, and cannot be accessed before a value has been assigned to it. A
consequence of this is that it is not possible to check whether a particular register is defined. This
is very important for the soundness of my transition merging criterion discussed in Chapter 5.
While the number of registers is technically unbounded, since the number of transitions and the
number of register updates on any transition is finite, it follows that the number of registers
used by any given EFSM will also be finite.
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Example 4.2.1. Consider again the lift door controller from Example 2.2.5. Its EFSM
representation is shown in Figure 4.2. This looks quite similar to Example 2.2.5, the only
significant difference being a numerical input arity instead of named parameters.

waitTimer: 0/ closingDoor : 0/ pystonInterrupted : 0,/ openingDoor : 0/
[r1:=m1 — 1] [r1:=r1 — 1] [r1 =3 [r1:=m1 — 1]

setTimer: 1/ systemReady : 0
[r1 == o] [r1 =0]/[r1 := 10] timeout : 0/[ry := 5]
q a2
_/

—( 90

fullyClosed : 0 requestOpen : 0/ fullyOpen : 0
[r1 = 0] [r1 :=10]

Figure 4.2: An EFSM representation of the lift doors controller.

Example 4.2.2. Consider the EFSM in Figure 4.3 which represents a simple game of Space
Invaders. There are three states here. The user first enters the game by pressing start. This
initialises the variables which store the state of the game. Register 1 stores the x coordinate of
the gun turret and is initialised to 200px, which represents the middle of the screen. Register
ro stores how many aliens are left on the board. This is taken from the input to start. Finally,
r3 represents how many lives the player has left, and is initialised to three.

moveFast: 1/ shieldHit : O[r3 > 0]/
[r1 =711 — o] [r3:=r3—1]

sieldHit : 0frs = O

start : 1/[ry := 200,79 :=ig,r3 := 3|

—( 4o

[r2 = 1]
moveWest : 1/ alienHit : Olry > 1]/
[r1 =711+ 1d0] [re:=ro—1]

Figure 4.3: An EFSM representation of a game of Space Invaders.

From ¢y, there are four reflexive transitions. The two movement transitions, move West and
moveFEast, both take one input parameter which is the step size. This is added or subtracted
from the current x value depending on the direction. The shieldHit action represents the user
being hit by an alien and subtracts one from the value of r3. This represents the player losing

a life. There is also a guard here that r3 > 0. If the player has no lives left and is hit again,

the qq shicldHit, g2 transition is taken instead. This represents the player losing the game.

Similarly, the alienHit transition subtracts one from 9, representing an alien being “killed”.

Here, the guard requires ro to be greater than one, meaning that there is at least one alien

left to kill. When the final alien is hit, the ¢; alienHit, g3 transition is taken, which represents

the player winning the game. We will revisit this case study in Chapter 8.
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4.3 Events and Traces

Section 2.1 discussed events and traces generally. This section sets out how they work in the
context of Definition 21. Traces of classical FSM models are simply sequences of atomic actions
(a, b, ¢, ...). EFSMs have actions which take additional input parameters that can be guarded.
Consequently, our definition of actions must reflect this.

Definition 22. An action is a pair consisting of the event name and a list of input parameters.
An ezecution is a sequence of actions.

Actions represent the commands input to the system by the user. They correspond to meth-
ods and functions defined in conventional programming languages. Following the syntax of lan-
guages like C and Java, we express action pairs as label(io, . . . , in) rather than (label, [ig, . .., in]).

When we observe an execution of the model, we see the outputs which are produced in
response to the inputs. If we zip the two sequences together, we get a trace of the system.
Input-output traces of this form have already been used in this work, for example in Figure 1.1.
While transitions may also update the data state, in our model data registers represent the
inner workings of a system. As such, their values are not visible to an outside observer. Only
the label, inputs, and outputs are visible in traces.

Definition 23. An event is a (label, input, output) triple made up of the event name, the
input parameters, and the outputs produced by the model. A trace is a sequence of events.
While traces are usually assumed to be finite, there is no formal restriction on this.

Example 4.3.1. Some executions of the simple drinks machine are as follows.

select(“tea” ), coin(50), coin(50), vend())
select(“tea” ), coin(100), vend())

(“coffee” ), coin(50), coin(50), vend())
select(“soup” ), vend(), coin(100), vend())

select

(
(
(
(

When we observe these traces, we get the following sequences of outputs.

([, [501, [100], [teal)

([, [100], [tea]

(0, [50], [100], [cof fee])
([, vend(), [100], [soup])

Combining the executions and observations, we obtain the following traces, also shown in
Figure 1.1. For aesthetic reasons, we write event triples as label(ig, . . .,%n)/[00, - . ., 0p] Tather
than (label,[ig, ... ,in],[00,- -, 0n]).

( (“tea” ), coin(50)/[50], coin(50)/[100], vend() /[ “tea” ]
(select(“tea” ), coin(100)/[100], vend()/[“tea” ])

( (“coffee” ), coin(50)/[50], coin(50)/[100], vend() /[ “coftee” ])
(select(“soup” ), vend(), coin(100)/[100], vend() /[“soup” ]

select
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4.3.1 Executing Traces

Now that I have defined events and traces in the context of Definition 21, it is time to discuss
how executions are processed to produce observations. Classical FSM models simply react to
each action in sequence and follow the corresponding transition to the next control state. EFSMs
are a little more complex since transitions can also produce outputs and update the data state.

Like with classical FSM models, an EFSM begins in its initial state. Unlike classical models,
EFSMs have both a control and a data state. This data state also begins in its initial state.
That is, all registers are undefined. As discussed in Section 4.2, this is not a fixed value which
can be tested for, but true undefinedness which cannot be evaluated or compared.

Upon receipt of an action, the EFSM constructs the set of transitions which can be taken.
This set is made up of those transitions which leave the current state, have a label and arity
which matches the current action, and have guards which are satisfied by the inputs and current
data state. From these transitions, one is chosen at random to be the transition which “fires”
and the output and update functions are evaluated. These are evaluated in the anterior context.
That is, register values in expressions evaluate to those held before updates were applied. If
there are no viable transitions, the system deadlocks and execution terminates. If there is more
than one possible step for a given input, the model is nondeterministic. The implications of this
are discussed in more detail in Section 4.4.

Example 4.3.2. Consider the execution (select(“tea” ), coin(100)/[100], vend()/[“tea”]),
which is executed in the EFSM shown in Figure 1.5 as follows.

1. The EFSM is in its initial state ¢y and all registers are undefined.

2. The select(“tea” ) action comes in and the set of viable transitions is evaluated. Here,
. select:1/[r1:=ig,r2:=0]
this is {qo a1}

3. Since there is only one viable transition, this is taken and the model moves into state
q1- There are no outputs here, but there are two updates. ry is assigned the value of i,
which here is “tea”, and r9 is assigned the value 0.

4. The next action is coin(50). The only viable transition is ¢; commil/oo:=ratiolra=ratio] q1-
This is taken, and the control flow state does not change. Here, there is an output
function which is evaluated with ro = 0 and iy = 100 such that oy = 100. Finally, 7o is
updated to 100. The value of r; remains unchanged since it is not updated.

5. The final action is vend(). From ¢, there are two vend transitions with arity 0, but

only one for which r, = 100 satisfies the guard. That is g; vendOlra2100}/00:=r1 q2. This
transition is taken, moving the model into state go. The output function is evaluated
with 71 = “tea” so og = “tea” . Here, there are no update functions so the registers
remain unchanged.

Example 4.3.3. Consider the transition f: 0/[r; := 5,79 := 71 +7]. As stated above, updates
are evaluated with the anterior register values. If r; holds the value 3 before this transition
fires, the posterior register values will be 5 and 10 respectively. Register ro will not hold the
value 12, as would be the case if updates were evaluated sequentially. This means that the
order in which update functions are executed does not affect the semantics of transitions.
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It is important to note here that the notion of output is not the same as that of process
algebras like CSP [85]. In CSP, outputs must synchronise with the environment. That is, the
environment must be willing to receive whatever value the model produces. If not, the output
is blocked and the system deadlocks, unable to continue further.

Here, outputs are not required to synchronise with the environment. They happen as a
consequence of events so cannot be blocked. For example, in our simple vending machine
example, if the customer selects tea and pays a suitable fee, but there is a problem with the
machine such that it dispenses coffee, this will happen regardless of the fact that this is not
what the customer expects to receive. In CSP, the machine would not be able to produce the
output “coffee” if the environment (the customer) only expects to receive “tea”.

4.4 Nondeterminism

Nondeterminism is an important concept for all FSM models, but is particularly noteworthy
here as it is much more subtle than with classical FSMs. Here, we must not only consider the
transition labels, but also their arities and guards. This is because it is possible for two transitions
with the same label and arity to be deterministic if their guards are mutually exclusive.

Definition 24. An EFSM is nondeterministic if there exists a state with two or more out-
going transitions with the same label and arity and guards which are not mutually exclusive.

Example 4.4.1. Consider the EFSM in Figure 4.4. Here, the model is nondeterministic since,
if 1 = 100, either of the two vend transitions may be taken. This illustrates the subtlety of
nondeterminism in EFSMs. Here, there is only one scenario which satisfies both guards. For
most values for r1, the model will behave as expected.

coin : 1/og := 1 +ig[ra := ra2 + io]

select : 1/[ry :=ig,r2 := 0] Q vend : 0[rg > 100]/0g := 71

vend : O[re < 100]

Figure 4.4: A nondeterministic EFSM model of the drinks machine.

Nondeterministic models pose several problems from an analysis point of view. It is argued
in [152] that nondeterministic models fail to capture the logical relationship between control
and data that EFSMs are used to show. If there are multiple paths for the same data state,
then there is no causal relationship between the data state and the control flow of the model.

This is a major problem if the model is used to classify correct and incorrect behaviour.
Since, for each action, a transition is chosen at random from the set of viable transitions, it is
quite possible to choose the “wrong” transition such that the model reaches a state from which
there are no possible steps for a subsequent input. This means that nondeterministic models
may have traces which are simultaneously accepted and rejected, thus making them useless for
the task of behaviour classification.
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Another application of EFSM models is automated test generation. Since most software is
(or at least is intended to be) deterministic, it makes sense to generate tests from a deterministic
model. While approaches that use nondeterministic models exist [83], it is clearly better if we
can infer a deterministic model to start with. Additionally, nondeterministic models tend to
produce many more test cases [84], which is undesirable as larger test suites take longer to run.

4.5 Acceptance and Recognition

A common application of (E)FSMs is the classification of behaviour. Here, traces which are
accepted by the model are deemed “correct” and those which are rejected are deemed “incorrect”.
To classify behaviour on that basis, we must have a solid idea of what it means for an EFSM to
accept a trace. Essentially, an EFSM accepts a trace if that trace is a trace of the model. An
alternative definition is shown in Section 4.7. All traces which are not accepted are rejected.

Definition 25. Let 7 (e) represent the set of traces of EFSM e. An EFSM, e, accepts a trace
titt e T(e).

As well as acceptance, it is helpful to discuss the idea of recognition. For classical FSMs, this
is the same as acceptance since traces are made up of atomic actions, but the two are slightly
different for EFSMs as these models produce outputs. Where acceptance is defined in terms of
traces, recognition is defined in terms of executions.

Definition 26. An EFSM recognises an execution if it is able to respond to all the actions
in sequence, even if it does not produce the correct output.

Example 4.5.1. Consider again the EFSM in Figure 1.5. It accepts all the traces in Fig-
ure 1.1. The trace (select(“tea” ), coin(100)/[100], vend()/[“coffee” |) is not accepted, however,
as there is no way for vend to produce the output “coffee” if this was not the input to se-
lect. While this not accepted by our simple drinks machine, the corresponding execution is
recognised as the EFSM is able to respond to every action.

The notion of recognition is important in Chapter 5 when we wish to use one transition in
place of another. Here, we are interested in executions which get the model to the origin state
of a particular transition. We are not interested in the outputs which are produced along the
way, simply the control and data states at a particular point during execution.

4.6 Model Equivalence

There are numerous relations which can be used to determine model equivalence. These are
discussed in detail for classical FSMs in [145], and are arranged into a hierarchy in terms of
their distinguishing power. Let us attempt to lift some of these metrics to EFSMs.

Since we intend to infer models from traces, we are most interested in those metrics defined
in terms of trace semantics. Two classical FSM models a and b are deemed trace equivalent if
the set of traces of a is equal to that of b. Since classical FSMs do not have inputs or outputs,
their actions are atomic and, thus, are not distinct from events. This is not the case for EFSMs,
so we need to be more careful with our definition of trace equivalence.
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Definition 27. Two EFSMs e; and ey are trace equivalent if T (e1) = T (e2).

Trace equivalence is proven inductively on traces. Two models are clearly trace equivalent
on the empty trace. The inductive step is to prove that trace equivalence for traces of length
k implies trace equivalence for traces of length k& + 1. This is usually done by prepending
an arbitrary event. Proofs begin by starting off both EFSMs in the initial state and running
them in parallel, proving equivalence from each subsequent state. This amounts to forming a
bidirectional simulation relation between the two models.

Definition 28. For two EFSMs e; and es, e; simulates e if there exists a function S from
the states of e; to those of ey such that

1. If s is the initial state of e; then S(s) is the initial state of es.
2. For all actions (I,1), if s Mel s’ then S(s)
equivalent.

1@/o ex S(s') and the outputs are

Example 4.6.1. Consider the EFSM in Figure 4.5. This machine is trace equivalent to the
one in Figure 1.5. It may have an extra state, but this is simply an “unrolling” of the reflexive
coin transition. While it is the case that Figure 4.5 simulates Figure 1.5, the inverse is not
true since state ¢ in Figure 1.5 is simulated by states ¢; and g2 in Figure 4.5 meaning that
we cannot set up a function between the states.

coin: 1/0g := 1o +ig[re :=ra + i)

select : 1/[ry := ig, 12 := 0] N coin : 1/og == ro + ig[re := 12 + ig) Q vend : O[rg > 100]/0¢ := 1

vend : 0 vend : O[ra < 100]

Figure 4.5: An EFSM which is trace equivalent to the one in Figure 1.5.

If we are inferring EFSMs by merging states in a PTA built from a trace set, equiva-
lence between the initial PTA and the final model is too strong a condition. If we assert that
T (PTA) = T (inferred), then we are minimising the PTA rather than inferring a model which is
able to respond to new traces. Thus, we cannot predict the behaviour of the system. Instead,
we would like the inferred model to simulate the PTA such that 7(PTA) C 7 (inferred).

For EFSMs, the distinction between executions and traces is vital. If we define equivalence
based on executions, we can end up with EFSMs with completely different output behaviour
being classed as equivalent.

Example 4.6.2. Consider the EFSM in Figure 4.6. This machine is an errant version of the
one in Figure 1.5 which only outputs tea. It is able to respond to all the same actions as

Figure 4.6 but there is an observable difference in the behaviour of the ¢; vend, g2 transition.
In Figure 1.5, the output is the value of r9. Here, it is the value “tea”. Thus, if the customer
selects “coffee”, the difference in behaviour is revealed. Defining execution equivalence in
a similar way to trace equivalence but with executions instead of traces, we can say that
Figure 4.6 is executionally equivalent to Figure 1.5 but the two are not trace equivalent.
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coin : 1/og := 1o + ig[ra := ro + io]

select : 1/[r1 :=ig,r2 := 0] Qvend: 0[r2 > 100]/0¢ := “tea”
& 8 O,

vend : O[rg < 100]

Figure 4.6: An errant vending machine which only dispenses tea, regardless of
the customer’s drink choice.

4.7 Formalisation in Isabelle

Isabelle [120] is an interactive theorem prover which allows formulae to be expressed in a formal
language and provides tools to automatically prove properties of those formulae in a logical
calculus. Isabelle has support for several different logics, the most common being Higher Order
Logic (HOL). Here, we can define datatypes and functions using a Haskell-like syntax, and
prove properties over these definitions with a high degree of automation. This makes Isabelle
the perfect tool with which to properly formalise Definition 21 and the various equivalence and
simulation relations from Section 2.3. This section details my Isabelle formalisation of EFSMs,
which is available at [65], and also provides proofs that our formalisation satisfies some key
intuitive properties such as prefix closure and finite register usage.

While similar tools such as Coq' and Agda? exist, Isabelle is more well established and has
a wealth of search tools and automated proof tactics such as sledgehammer which improve
the user experience. It is also equipped with a code generator [77] which enables functions and
datatypes to be exported to runnable code in several languages. This allowed me to use my
EFSM formalisation as the basis of my inference tool in Chapter 6 without having to manually
code up an EFSM data structure.

4.7.1 Transitions

As described in Section 4.2, EFSM transitions have five components: label, arity, guards, out-
puts, and updates. To implement this in Isabelle, we make use of the built-in record type
such that each component can be easily accessed by its name. The type definitions for these
components are shown in Figure 4.7.

Transition labels are strings, and the arities natural numbers. Guards have a defined expres-
sion type gexp (detailed in Subsection 4.7.5) and the output and update functions are defined
using another datatype aexp (detailed in Subsection 4.7.4). Outputs are simply a list of ex-
pressions to be evaluated. Updates are a list of pairs, the first element being the index of the
register to be updated, and the second element being an arithmetic expression to be evaluated.

lhttps://coq.inria.fr (Accessed 24/03/20)
%https://github.com/agda/agda (Accessed 24/03/20)
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record transition =
Label :: String.literal
Arity :: nat
Guards :: vname gexp list
Outputs :: vname aexp list
Updates :: (nat X vname aexp) list

Figure 4.7: Isabelle/HOL type definitions for transitions.

Example 4.7.1. The definition below shows how the transition coin : 1/0g := ro + i1[re :=
r9 + 4o] is represented in Isabelle.

definition coin :: transition where
coin = (|
Label = STR "'coin’’,
Arity = 1,
Guards =[],
Outputs = [Plus (V (R 2)) (V (10
Updates = [(2, Plus (V (R 2)) (V

N
(1.0)))]

4.7.2 EFSMs as Finite Sets

So far in this thesis, states have been indexed numerically in the form ¢,, where n € N. For
any given EFSM, we thus have S C N, where S is finite. It therefore makes sense to use
natural numbers to index states in the Isabelle formalisation. Definition 21 only allows us to
have finitely many states, however it is a necessity to use an infinite datatype here if we wish to
formalise the inference process presented in Chapter 6 because we need to be able to arbitrarily
add and remove states. Since the vast majority of “states” are unused — they have no outgoing
or incoming transitions — they can be safely ignored. If we enforce the fact that any EFSM
has finitely many transitions between states, we can be safe in the knowledge that only finitely
many states will be used.

Since Definition 21 states that the transition matrix 7 is finite, it must be the case that all
EFSM models have only finitely many transitions between states. We can thus represent any
EFSM transition matrix as a finite set of triples of the form ((s, s),t), in which s is the origin
state, s’ is the destination state, and ¢ is a transition between the two. In Isabelle, I make use
of the theory of finite sets (FSet) from the HOL library. Using finite sets to represent transition
matrices is vital in ensuring that the formalisation is consistent with Definition 21. Without
this restriction, there would be the potential for EFSMs to contain infinitely many transitions
and thus have infinite states.

Introducing the convention that state qg is always the initial state removes the need to
explicitly specify one for each EFSM. This means that any EFSM e = (S, s9,7T) can then be
characterised solely by its transition matrix, T" as follows.

S0 = 0
S = {s|3s't.((s,8),t) € dom(T) Vv ((s,s),t) € dom(T)}

While there is no explicit need to index states numerically (hence Definition 21 does not
require this), I made the decision to index states this way in Isabelle as it allows the arbitrary
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addition and removal of states, as well as an implicit initial state. An alternative (and possibly
more desirable) to this would be to allow the user to explicitly pass in a datatype representing
the state space, and then have the initial state be the infimum of this type. To represent EFSMs
purely as sets of transitions, it is essential that the initial state be implicit in this way since
there is no way to explicitly specify it as such without defining a more complex datatype.

4.7.3 Input and Data Values

Definition 21 deliberately does not restrict the types of inputs, outputs, and register values,
however any concrete implementation of EFSMs clearly requires these types to be specified.
Looking at the traces we have seen so far, for example in Figure 1.1, we at least need the
capability to handle integers and strings. Other basic types include booleans and floating-point
numbers, but we will stick to integers and strings for now. Boolean values can be modelled with
the strings “true” and “false”, and floating-point numbers are not particularly easy to work
with in Isabelle.

Our definition of EFSMs is not strongly typed, but Isabelle very much is, so we must define
a datatype value which aggregates our supported types into a single datatype. This way, we
can define things in terms of the value type and dynamically handle the different cases. The
value datatype, is a sum type of integers and strings that tags its members as either a number
(Num) or a string (Str). In Isabelle, it is defined as follows.

datatype value = Num int | Str String.literal

Since register values are strictly undefined until they are first assigned, the data state is
formalised as a function from the register index (a natural number) to a value option. The
Isabelle option type, equivalent to the Haskell Maybe type, is used to make partial functions
total. It takes a type argument and is defined as being either None (the bottom element used
to represent an undefined value) or Some x, where x is an element from the specified type, in
this case a value. Since the number of registers used by any EFSM is known to be finite?, we
make use of the theory of finite functions (FinFun [104]) from the HOL library. Here, a FinFun
is a function which is constant except for finitely many points. This corresponds to a map (or
dictionary) in conventional programming languages.

4.7.4 Arithmetic and Outputs

Transition outputs and updates take the form of arithmetic expressions. For the inference
technique presented in Chapter 6, we will need to recognise and potentially transform the
different functions. Consequently, I use a deep embedding for arithmetic expressions rather
than simply defining them as functions. A deep embedding defines operators as a datatype over
which we can define functions. The converse of this, a shallow embedding, uses Isabelle’s existing
syntax to define purely semantic operations. The deep embedding allows us to recognise and
transform different expressions where the shallow embedding does not. The aexp datatype is
defined as follows.

datatype 'a aexp = L value | V 'a | Plus 'a aexp 'a aexp | Minus 'a aexp 'a aexp | Times 'a aezp 'a aexp

3The proof of this appears later in this section as one of our “key properties” in Subsection 4.7.11.
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Here, there are two base cases and three recursive operations. The two base cases are
literal constants (tagged L) and variable values (tagged V). The recursive cases are addition,
subtraction, and multiplication. Division is not supported since the value datatype does not
support floats. There are also no non-terminal operations over strings, such as concatenation,
although their addition to the datatype would be relatively straightforward.

Next, we must define a function aval to evaluate arithmetic expressions. Because our
definition of EFSMs is not strongly typed, we cannot use conventional arithmetic to evaluate
such expressions. The reason for this is best illustrated with an example.

Example 4.7.2. Consider the output expression 2 +ig from the coin transition in Figure 4.5.
Clearly this is intended to be a numerical operation but, because we are using the value type
to represent registers and inputs, we must be prepared for the possibility of a malformed input.
What would happen if, instead of a numeric value, the coin transition received a string value
input? Clearly we cannot add a string to an integer in any meaningful way, so the result of
evaluating this expression is undefined.

Since Isabelle functions must be total, I define an arithmetic for the value datatype in
terms of options to allow the bottom element, None, to represent undefined values. Well
formed expressions evaluate as normal. In general, a binary function f : Z — Z — Z is lifted to
the optional arithmetic to become f’ : Z option — Z option — Z option. To do this, I
define a function maybeIntArith as follows.

fun maybe-arith-int :: (int = int = int) = value option = wvalue option = wvalue option where
maybe-arith-int f (Some (Num z)) (Some (Num y)) = Some (Num (f z y)) |
maybe-arith-int - - - = None

Because of our optional arithmetic and the possibility for undefinedness, outputs are of type
value option rather than simply value. Having said that, for well-typed inputs, the outputs
will all evaluate to Some value such that the output is well-defined.

4.7.5 Guards

Transition guards are expressed with guard expressions that are evaluated to test whether the
current register values and supplied inputs meet the specified conditions. Guards are defined as
a datatype gexp in terms of arithmetic expressions as follows.

datatype ‘a gexp = Bc bool | Eq 'a aexp 'a aexp | Gt 'a aexp 'a aexp | In 'a value list | Nor 'a gexp 'a gexp

Here, the only terminal cases are boolean constants true and false. We can compare the
results of two arithmetic expressions either for equality (Eq) or inequality, in the form of the
“greater than” operator (Gt). Finally, we have the logical connective NOR, which is equivalent
to “not or”. The reason for using NOR logic rather than the more conventional logical operations
of conjunction, disjunction, and negation is that NOR is able to capture the functionality of all
three in a single case. This reduces the number of elements in the datatype and, consequently,
the number of subgoals in the various proofs involving guard expressions. For ease of expression,
I defined functions for AND, OR, and NOT in terms of NOR, as well as functions for the <, <, >,
and # operators.
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definition gNot :: ‘a gezp = 'a gexp where
gNot g = Nor g g

definition gOr :: a gexp = ’a gexp = ’'a gexp where
gOr v va = Nor (Nor v va) (Nor v va)

definition gAnd :: ‘a gexp = ’a gexp = 'a gexp where
gAnd v va = Nor (Nor v v) (Nor va va)

definition gImplies :: 'a gexp = 'a gexp = ’'a gexp where
gImplies p ¢ = gOr (gNot p) ¢

definition Lt :: 'a aexp = 'a aexp = 'a gexp where
Ltab=Gtba

definition Le :: ‘a aezp = ’a aexp = ’'a gerp where
Le v va = gNot (Gt v va)

definition Ge :: 'a aexp = 'a aezp = 'a gexp where
Ge v va = gNot (Lt v va)

definition Ne :: ‘a aexp = 'a acxp = 'a gerp where
Ne v va = gNot (Eq v va)

Again, the untyped nature of EFSMs, introduces additional complexity when we attempt to
evaluate guard expressions, meaning that we cannot rely on conventional Boolean logic. The
reason for this is, again, best illustrated with an example.

Example 4.7.3. Consider the guard expression r; > ig. Now let 71 = 5 and ig = “hello” .
The “greater than” relation is not well-defined here. Thus, r; is not greater than iy and the
guard expression must evaluate to false. Now consider the guard 5 > “hello” , which is the
negation of 71 > 9. Under the same variable valuation, this expression must also evaluate
to false since 5 is neither greater than nor equal to “hello” . Then problem is then how to
handle —(ry > ip). If 1 > iy evaluates to false, then its negation must evaluate to true, but
this is inconsistent with the evaluation of 5 > “hello” . We need to separate this notion of
inconsistency from simple logical falsity.

To fix this, we must use a three-valued logic instead of the conventional binary one. For this,
T use Bochvar logic [19]. Here, there are three operators true, false, and invalid. Here, true and
false behave like their boolean counterparts. The invalid truth value signifies that something
has gone wrong, and allows us to propagate this fact over negation. We can then only take a
transition if its guards evaluate to true.

The conventional operators of conjunction, disjunction, and negation are defined as follows.
In these operations, any expression involving invalid evaluates to invalid. This corresponds
to the type errors which might be thrown by a conventional dynamically typed programming
language such as Python when asked to evaluate a badly typed expression.
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4.7.6 Expression Orderings

It is helpful to define a lexicographical ordering over expressions such that we can say that one
is “less than” another.* This is mainly useful for implementational reasons as it allows us to
transform the set representation of EFSMs to lists for efficient processing. This transformation
requires an ordering since lists are inherently ordered structures and sets are not.

If we define our expression ordering correctly, it also provides a way of “breaking ties” be-
tween semantically equivalent but syntactically different expressions, as we can use the “small-
est” one. This makes for more easily understood models and becomes quite important in Chap-
ter 7 where we try to infer output and update functions automatically from trace data.

In order to transform sets into sorted lists, we require a linear ordering. A linear order on a
set S is a (binary) relation < with the following properties.

Irreflexivity = £ =

Asymmetry <y — y <Lz

Transitivity s <y<z = <z
Comparison <z = z<yVy<z
Connectedness t £y —= y£aor —= =y

This enables us to compare any two expressions and have one be less than the other, unless
they are equivalent. As we have encoded expressions with a deep embedding, our order must be
over the syntax of the expressions, without reference to the semantics. This has the somewhat
frustrating consequence that commutative operators cannot be deemed equivalent. For example,
the expressions i1 + 1 and r1 +4; are semantically equivalent but syntactically different, so one
must be less than the other. While this is annoying, it is simply a feature of deep embeddings.
Since our expressions are defined on top of each other (guard expressions being made up
of arithmetic expressions, which are themselves made up of literals and variables), let us first
define orderings for values and variable names. These are fairly intuitive as neither data type is
recursive. Firstly, the value data type has two cases: integers and strings, both of which have
existing natural orderings. The order for values is then defined on top of this as follows.

fun less-value :: value = value = bool where
(Num n) < (Str s) = True |
(Str s) < (Num n) = False |
(Str s1) < (Strs2) = (s1 < s2) |
(Num nl) < (Num n2) = (nl < n2)

Here, the Str case has arbitrarily been chosen to be greater than the Num case, with the
natural orders over the respective datatypes being used in cases where we wish to compare two
elements of the same type. The decision to place strings higher in the ordering is an arbitrary
one as there is no meaningful way to compare integers and strings.

The ordering on variable names is similar. Here, we also have two cases: inputs and registers.
Since there is no obvious way to compare the two, we define inputs to be less than registers.
When we want to compare two inputs or registers, we use the natural ordering on their indices.

4This is used purely over the syntax of expressions. It is not intended or used for guard evaluation like in
Example 4.7.3 as it does not solve the problem of the result of an arithmetic expression being undefined.
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fun less-vname :: vname = vname = bool where
(In1) < (R n2) = True |
(R nl) < (I n2) = False |
(In1) < (In2)=(nl <n2)|
(Rnl) < (R n2) = (nl <n2)

Next we must define an ordering on arithmetic expressions. This is a little more complicated
as there are more cases, some of which are recursive. Unlike values and variables, there is an
intuitive way to order expressions. The expression ¢; +r1 is intuitively smaller than (i1 +71) — 5,
for example. We can formalise this intuition by defining a function height which measures the
height of the expression’s parse tree.

fun height :: 'a aezp = nat where
height (L 12) = 1 |

height (V v2) = 1 |

height (Plus el e2) = 1 + maxz (height el) (height e2) |
height (Minus el e2) = 1 + maz (height el) (height e2) |
height (Times el e2) = 1 + maz (height el) (height e2)

Unfortunately, we cannot order purely by the height of the parse tree as this only forms
a preorder, so only satisfies one of the conditions necessary for a linear ordering. Let us then
attempt to incorporate height into a stricter order relation. Firstly, we say that if the height
of expression a; is less than that of as, then a; < ao. If it is greater, then a; > as. If the
two formulae have equal heights, then we must consider the syntax tree itself. Let us order the
syntactic cases as follows.

literal constants < variables < (a1 + a2) < (a1 — a2) < (a1 X az)

While this ordering is somewhat arbitrary, it makes intuitive sense to place the base cases
below the recursive ones. We have already defined an ordering on values and variable names,
SO it just remains to define what happens when we wish to compare two instances of the same
binary operation.

There is a natural ordering on pairs of elements as follows.

(a1,a2) < (a},ay) < ((a1 <a)) V(a1 =a) Aag < ah))
We can apply this ordering to the arguments of the two binary functions such that
(a1 +a2) < (a} +ab) = ((a1 < a})V (a1 = a} Aas < a}))

and similar for the other cases.

Finally, I define a similar ordering on guard expressions. In the data type, we have five cases:
boolean constant, equivalence, set membership, and the NOR of two guards. Let us arbitrarily
place the cases in this order such that boolean constants are the smallest case and NOR is the
largest. When we wish to compare two equivalent binary operators, we use the ordering on their
respective pairs of arguments as defined above.

Having defined orderings for all components of transitions, we can now define an order on
transitions themselves. This is simply a recursive application of the pair ordering such that

t1 <ty <= (ti.label, (t1.arity, (t1.guards, (t1.outputs, t1.updates)))) <
(ta.label, (to.arity, (ta.guards, (ta. outputs, to.updates))))
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EFSMs are represented by finite sets of pairs of the form ((s1, $2),t), where s; and sy are
states indexed by natural numbers, and ¢ is a transition. Now that we have linear orders for
pairs and transitions, we can arbitrarily convert between a set representation and a sorted list
representation such that we can make use of efficient list processing. It also eases certain proofs
as it enables us to induct over EFSM transition matrices.

4.7.7 Processing Traces

Definition 22 defines an action as a label-input pair. This is exactly the same in Isabelle.
Like transition labels, action labels are represented by strings. Inputs are represented by lists
of values. Executions are lists of actions. The function observe_execution proceeds as
described in Subsection 4.3.1 to produce the corresponding observation of an execution.

fun observe-execution :: transition-matriz = cfstate = registers = execution = outputs list where
observe-ezecution - - - [| = [] |
observe-ezecution e s r ((1, ©)#as) = (
let viable = possible-steps e s T 1 i in
if viable = {||} then
I

else
let (s', t) = Eps (A\z. z |€| viable) in
(evaluate-outputs t i r)#(observe-ezecution e s’ (evaluate-updates t i T) as)

)

To observe an action, we first calculate the set of viable transitions. If this is empty, there
are no possible steps the model can make so we halt execution here. If there are possible steps,
we pick one at random (with the Eps operator), evaluate the outputs, and continue to observe
the execution with the updated control flow and data states.

We can see from the observe_execution function that, in order to observe a trace, we
must know the register values at each step in execution. While they are not directly observable,
the values of registers are very much connected to how an EFSM behaves. This means that
the semantics of a given EFSM are context-dependent such that its behaviour is not entirely
dependent on the control flow state but is also affected by the data state. This turns out to be
critical to the inference process, and is discussed in detail in Section 5.2.

4.7.8 Acceptance and Recognition

As discussed in Section 4.5, EFSM models are characterised by the traces they accept and the
executions they recognise. In Isabelle, trace acceptance and execution recognition are defined
inductively as follows.

inductive accepts-trace :: transition-matric = cfstate = registers = trace = bool where
base [simp]: accepts-trace e s T[] |
step: A(s’, T) |€| possible-steps e s T 1.
evaluate-outputs T i r = map Some p A accepts-trace e s’ (evaluate-updates T i T) t =—>
accepts-trace e s r ((1, i, p)#t)

inductive recognises-execution :: transition-matriz = nat = registers = execution = bool where
base [simp]: recognises-execution e s T [ |
step: 3(s’, T) |€| possible-steps e s r 1 i.
recognises-ezecution e s’ (evaluate-updates T i r) t =
recognises-execution e s v ((1, i)#t)
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For the base case, any EFSM trivially accepts the empty trace since there is nothing for
it to respond to. For the step case, there must be a viable transition for the first event that
produces the correct output and updates the data state such that the rest of the trace is accepted.
Recognition is defined similarly but without the restriction on outputs.

4.7.9 Equivalence and Simulation

Section 4.6 defines trace equivalence and simulation. These are defined in Isabelle as follows.

definition T :: transition-matriz = trace set where
T e = {t. accepts-trace e 0 <> t}

definition trace-equivalent el e2 = (T el = T e2)
inductive trace-simulation :: (cfstate = cfstate) = transition-matriz = cfstate = registers =
transition-matric = cfstate = registers = trace = bool where
base: s2 = f sl = trace-simulation f el s1 r1 e2 s2 12 [| |
step: s2 = f sl =
YV (s1', t1) |€| ffilter (A(s1', t1). evaluate-outputs t1 i r1 = map Some o) (possible-steps el s1 r1 1 7).
3(s2', t2) |€| possible-steps €2 s2 T2 1 i. evaluate-outputs t2 i r2 = map Some o A
trace-simulation f el s1’ (evaluate-updates t1 i r1) e2 s2’ (evaluate-updates t2 i r2) es =
trace-simulation f el s1 r1 e2 s2 r2 ((I, i, o)#es)

The trace_equivalent function is defined exactly as in Definition 27. The simulates
predicate is defined inductively on traces for a given simulation function f : N — N. For an
EFSM e; in state s; to simulate es in state so, the first condition that must hold is so = f(s1).
For the empty trace, this is the only condition that must hold. For the step case, e must have
a corresponding step for every step that e; can make which produces the expected output. To
make the relation type check, we must Some the list of expected outputs (which are values)
to turn them into value options, since this is the returned by evluate_outputs.

It is also possible to define equivalence and simulation in terms of executions. These defi-
nitions are similar to the ones above but without the expected output that comes from traces.
Here, the outputs produced by the two EFSMs must simply be equivalent to each other rather
than some external value. This actually means that executional equivalence and simulation are
actually stronger predicates than their trace counterparts.

inductive ezecutionally-equivalent :: transition-matric = cfstate = registers =
transition-matric = cfstate = registers = execution = bool where
base [simp]: executionally-equivalent el s1 r1 e2 s2 r2 [] |
step: ¥ (s1/, t1) |€| possible-steps el s1 r1 1.
3 (s2/, t2) |€| possible-steps e2 s2 r2 1 i.
evaluate-outputs t1 i r1 = evaluate-outputs t2 i r2 A
ezecutionally-equivalent el s1’ (evaluate-updates t1 i r1) e2 s2' (evaluate-updates t2 i r2) es —>
YV (s2', t2) |€| possible-steps e2 s2 r2 1 i.
3 (s1/, t1) |€| possible-steps el s1 r1 1.
evaluate-outputs t1 i r1 = evaluate-outputs t2 i r2 A
ezecutionally-equivalent el s1’ (evaluate-updates t1 i v1) e2 s2' (evaluate-updates t2 i r2) es —>
exzecutionally-equivalent el s1 r1 e2 s2 r2 ((1, i)#es)

inductive ezecution-simulation :: (cfstate = cfstate) = transition-matric = cfstate =
registers = transition-matrizc = cfstate = registers = execution = bool where
base: s2 = f s1 = execution-simulation f el s1 vl e2s2 12 [] |
step: s2 = f sl =
V (s1', t1) |€| (possible-steps el sI r1174).
3(s2/, t2) |€| possible-steps e2 s2 r2 1 i.
evaluate-outputs t1 i r1 = evaluate-outputs t2 i r2 A
ezecution-simulation f el s1’ (evaluate-updates t1 i v1) e2 s2' (evaluate-updates t2 i 12) es =
exzecution-simulation f el s1 r1 e2 s2 r2 ((I, i)#es)
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Here, rather than being defined simply in terms of recognition, executional equivalence is
defined inductively. Essentially two EFSMs are executionally equivalent if, for every step of
every execution, they produce equivalent outputs. This means that the two EFSMs not only
accept the same traces, but also behave the same on traces that are rejected. This means that,
in terms of observable behaviour, there is no difference between the two models. It therefore
makes sense to call executional equivalence observational equivalence.

4.7.10 Reachability

Reachability is an important part of any (E)FSM formalism. The basic idea is that states
are reachable if there exists a trace which visits that state. The visits predicate is defined
inductively on traces as follows.

inductive visits :: cfstate = transition-matriz = cfstate = registers = execution = bool where
base [simp]: visits s e s T [] |
step: 3(s’, T) |€| possible-steps e s r 4. visits target e s’ (evaluate-updates T i T) t =>
visits target e s v ((1, ©)#t)

definition reachable s e = (I¢. visits s e 0 <> t)

In essence, the empty trace visits a state s’ if the model is already in that state. If the model
is not already in the target state, there must be a transition we can take which will allow us to
visit the target state. Using this predicate, it is then trivial to define reachability.

A key feature of EFSMs is that they have a separate data state in addition to their control
flow state. It therefore makes sense to define a reachability criterion for this too. This is a
very similar pattern to the visits and reachable functions above except that they include
a target data state as well as a control flow state.

inductive obtains :: cfstate = registers = transition-matric = cfstate = registers = execution = bool where
base [simp]: obtains s re s || |
step: 3(s"’, T) |€| possible-steps e s’ v’ 1 i. obtains s v e s’ (evaluate-updates T i r') t =
obtains s e s’ v ((I, i)#t)

definition obtainable s r e = (3t. obtains s re 0 <> t)

4.7.11 Key Properties

Having formalised the various aspects of EFSMs in Isabelle, we can now prove certain key prop-
erties which show that our formalisation is consistent with our intuitive understanding. Some of
these, for example the fact that there are finitely many states in S hold by construction. Others
require more substantial proof. While the proofs here are not particularly earth-shattering, they
show that the formalisation is consistent with our intuitive understanding of how EFSMs should
behave and also lay the foundations for more interesting proofs in Chapter 5.

Finite Registers

Because registers are indexed by natural numbers, all EFSMs have access to infinitely many
storage locations. In fact, though, since any EFSM has finitely many transitions and each
transition only has finitely many data updates, each EFSM only uses finitely many registers.

lemma finite-all-regs: finite (all-regs e)
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Prefix Closure

The idea of prefiz closure, discussed in Subsection 2.1.1, is critical to most (E)FSM inference
techniques. In short, prefix closure means that if a trace is accepted then all of its prefixes are
also accepted. This allows us to begin our inference with a PTA.

lemma prefiz-closure: accepts-trace e s r (t@t’) — accepts-trace e s Tt

Simulation and Equivalence

As discussed in Section 4.6, when we test for trace equivalence, we are effectively building a
simulation relation between two models. Thus, if there exists a simulation relation between the
two models, they should be trace equivalent.

lemma simulation-implies-trace-equivalent:
trace-simulates el e2 = trace-simulates e2 el = trace-equivalent el e2

The implication does not hold the other way, however. Example 4.6.1 serves as a counterex-
ample. Essentially, the problem lies in the fact that one state can simulate multiple states. The
fact that the simulation relation must be a function means that we cannot have one state being
simulated by multiple states, so we cannot always set up a function in the other direction.

It was stated in Subsection 4.7.9 that executional simulation is a stronger relation than trace
simulation. This means that if one model executionally simulates another, then there is also a
trace simulation between the two models.

lemma ezecution-simulation-trace-simulation:
exzecution-simulation f el s1 r1 e2 s2 r2 (map (A(l, %, 0). (I, 1)) t) = trace-simulation f el sl r1 e2 s2r2t

4.7.12 Removing Unreachable States

A key property of unreachable states is that we should be able to remove them without any
effect on behaviour. In terms of our equivalence metrics, an EFSM should be observationally
equivalent to itself with its unreachable state removed. The proof of this is by induction on
traces using an arbitrary starting state, but is interesting as it requires the starting state to be
obtainable, rather than just being reachable. This is because the possible steps we can take from
a given state depend not just on the control flow state, but also on the values of the registers.

lemma ezecutionally-equivalent-remove-unreachable-state:
- reachable s’ e => executionally-equivalent e 0 <> (remove-state s’ e) 0 <> x

lemma ezecutionally-equivalent-remove-unreachable-state-arbitrary:
obtainable s ¢ e = — reachable s’ e = executionally-equivalent e s ¢ (remove-state s’ €) s c x

The first lemma states that if a state s’ is unreachable in EFSM e, the original model is
executionally equivalent to the model with that state removed for an arbitrary execution x
when both models are started in the initial state go with the initial context (). The proof of
this makes reference to the second lemma which states that if a context ¢ is obtainable in state
s of EFSM e and state s’ is unreachable, the two models are executionally equivalent if run
from state s with context ¢. This is proven by induction on executions. Then, since the initial
context is trivially reachable in the initial context, the first lemma can be trivially proved.
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4.8 Conclusion

This chapter presented the definition of EFSMs which will be used for the rest of this work.
Here, transitions have parametrised inputs which are used, along with the persistent data state,
to produce observable outputs. Transitions also have the ability to update the data state by
evaluating functions in terms of inputs and registers. This means that it is possible to compute
the corresponding outputs of any execution.

I have also formalised Definition 21 in Isabelle and proven various key properties of EFSMs.
Not only does this help to show that the definition is consistent with our intuitive understanding
of how EFSMs should behave, but it also paves the way for the work presented in subsequent
chapters. Chapter 5 presents a criterion for determining exactly when a pair of transitions can
be merged. Again, this is formalised in Isabelle [66], with various properties proven. Chapter 6
incorporates this criterion into a technique to infer EFSM models, complete with output and
update functions, from system traces. The implementation of this technique also relies upon
the EFSM Isabelle formalisation presented here, and makes use of Isabelle’s code generator to
transform the formalisation into an executable tool.
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Chapter 5

Formalising EFSM Transition Merging

Having now formed my definition of EFSMs and provided the necessary background on FSM
inference, I now begin to extend classical FSM inference methods to EFSM models. Chapter 6
realises this technique in full, but there is still a problem which needs to be solved before we can
do this. Inference by state merging often requires the merging of transitions in order to resolve
the duplication of behaviour that arises when states are merged. For classical FSMs, this is
relatively straightforward, but it is much more complicated for EFSMs. Before we can infer any
models, we first need a technique for determining whether transitions can be safely merged.

This chapter is the first substantial contribution of the thesis and is based on my original
work published in [64] and [63]. It lays the foundations for the EFSM inference technique,
detailed in Chapter 6, which involves the merging of transitions that update the internal data
state. The primary contributions of this chapter are the following:

e A scheme by which constraints on data values may be traced through EFSMs.

e The definition of the subsumption in context relation based on this scheme, which can
be used to determine under what circumstances one transition is able to account for the
behaviour of another.

e The definition of the directly subsumes relation, which works at EFSM level to determine
when it is safe to merge a given pair of transitions in a model.

5.1 Introduction

Let us begin by reminding ourselves of the problem at hand, and of our running drinks machine
example from Section 1.1. We have an operational software system, in this case a simple drinks
machine controller, for which we do not have access to the source code. We can, however,
observe the behaviour of the system in the form of input-output traces as exemplified below.

(select(“tea” ), coin(50)/[50], coin(50)/[100], vend() /[ “tea” )
(select(“tea” ), coin(100)/[100], vend()/[“tea” ])
(select( “coffee” ), coin(50)/[50], vend(), coin(50)/[100], vend() /[ “coffee” ])

Given these traces, we would like to infer an EFSM model which captures the high-level
behaviour of the system by generalising from the observed behaviour. One way to go about this
is to begin by transforming the traces into a PTA, and then iteratively merge states which we
believe represent the same state in the underlying program.

The decision to merge a pair of states is often made based on the commonality of outgoing
transitions. As discussed in Subsection 3.3.4, this often results in nondeterminism between
the outgoing transitions of newly merged states. This is not true nondeterminism, however,
merely a manifestation of the fact that our model contains duplicate representations of the same
behaviour. We should therefore be able to resolve the nondeterminism by merging duplicated
behaviours into single representative transitions such that each behaviour only appears once.
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For classical FSMs, transitions only represent the same behaviour if their labels are exactly
equal. This means that, in classical FSM inference, we can resolve nondeterminism by simply
merging the destination states of the offending transitions since two transitions with the same
label, origin, and destination are not distinct. With EFSMs, transitions that express the same
behaviour may not be identical, so the merging of transitions needs more careful consideration.

Example 5.1.1. Consider the EFSM fragments in Figure 5.1. Let us refer to the transition
vend : 0/og := “tea” as t; and vend : 0/op := 71 as ta. Say that the inference process merges
states g, and ¢. under the belief that the two vend transitions represent the same behaviour.
This results in the model in Figure 5.1b, in which state ¢,. has two outgoing vend transitions.
Even though the transitions are not identical, we merged ¢, and g. because we believed that
these transitions represent the same behaviour. To reflect this belief, we need to merge them
into one transition which represents both behaviours.

e vend : 0/ogp := “tea ~ _ “tea”
: t1 - Uend;O/OO )
., @)
vend : 0/og := 1y

(a) Fragment of M before merging g, and gc. (b) Fragment after merging g, and gc.

vend O/Oo :

vend : 0/ogp 1= “tea”

?

vend : 0/og := 7y

(c) Fragment after merging the destination (d) We are now stuck, as we do not know
states ¢» and ¢4 to form Ma. how to merge the two behaviours.

Figure 5.1: The evolution of an EFSM fragment during the merging process.

To begin with, we merge the destination states of the two transitions (g, and ¢g4) to form
M, shown in Figure 5.1c. We must then attempt to merge the two transitions themselves.
This would be trivial if they were exactly identical, but they are not. One transition outputs
the literal string “tea” and the other outputs the content of register ry.

At this point, there are four possible scenarios. Firstly, ¢ may account for the behaviour
of to. If this is the case, then it can be used as the behavioural representative and t5 can be
deleted without affecting the observable behaviour of the model. Secondly, t2 might account
for the behaviour of ¢;, meaning that ¢; can be deleted and ¢, can be used as the representative.
Thirdly, it may be that neither transition accounts for the behaviour of the other, but there
exists a third transition which accounts for the behaviour of both. In this case, we can safely
delete t; and to and use this third transition instead. Finally, it may be that none of these
situations hold, and the two transitions cannot be merged into a single behaviour. If this is
the case, we were not correct to merge g, and ¢. and they must remain distinct.
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The ability to merge transitions like those in Example 5.1.1 with confidence requires us to
be able to check whether one transition is able to account for the behaviour of another. This
property is called subsumption and was first introduced in [106] for transitions with guards, and
a very similar idea is was used in [130] to merge states in symbolic execution trees. In both of
these works, subsumption is about weakening the conditions on variable values, so it is sufficient
to define subsumption as logical implication [106], or equivalently as a subset relation [130].
In this way, one transition is able to react to more inputs than the other, thus enabling it to
account for the behaviour, allowing the transitions to be merged.

In the context of EFSMs in Definition 21, however, we are looking to merge transitions with
output and update functions. Because of this, logical implication is not enough. We are in need
of something more like the refinement relations discussed in Section 2.3. In addition to having a
weaker guard, the subsuming transition must also produce identical outputs in situations where
both transitions may be taken. It must also result in a posterior data state which is consistent
with that of the subsumed transition. To extend the subsumption relation to take these factors
into account, Section 5.2 introduces contexts, a scheme for recording constraints on the data
state of EFSMs.

Example 5.1.2. Consider the EFSM in Figure 5.2, in which there are two nondeterministic
vend transitions. Here, the bottom transition subsumes the top one since, if register 7o is
greater than 75 then it is also greater than 50. Thus, the guard of the bottom transition has
a broader precondition. The two transitions are equal in every other way.

coin : 1/og :=ra + ig[ra := ro + io]

vend : O[rg > 75]/0g :=1r
select : 1/[ry := ig, 9 := 0] [ra 1/00 1

q0

vend : Org > 50]/0g := 11

Figure 5.2: An EFSM with two nondeterministic vend transitions.

In addition to broadening the precondition, it is crucial that the data updates performed by
the two transitions are consistent with each other such that the output of subsequent transitions
is not affected by the merge. It is this part of the definition which is not considered in [106, 130].

Example 5.1.3. Consider the EFSM in Figure 5.3. Here, there are two nondeterministic
coin transitions but neither subsumes the other. While the top transition is able to account
for the observable behaviour of the bottom one, if ig = 50 and ro = 0 then the updates of
the two transitions are not consistent. The top transition updates r to 50 while the bottom
transition leaves it unchanged. This is likely to disturb future outputs that make use of 7o, so
we cannot use the top one in place of the bottom one.

coin : 1/og :=1ra + ig[ra := ro + io]

select : 1/[r := g, 72 := 0]
~(a (=)

coin : 1[ip = 50]/0g := 50

Figure 5.3: A fragment of an EFSM with two nondeterministic coin transitions.
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The remainder of this chapter is structured as follows. Section 5.2 introduces contexts and
shows how we can use the guards and updates of transitions to infer constraints on the values of
variables. In Section 5.3, I use contexts to extend the concept of subsumption to transitions with
output and update functions. In Section 5.4, I use subsumption in context as the foundation
for the direct subsumption relation, which can be used to determine whether it is safe to merge
a given pair of transitions. Finally, in Section 5.5, I show how contexts can be used to analyse
properties of models once they have been inferred.

5.2 Contexts

To extend subsumption to transitions with output and update functions, we need to relate the
internal data state of the system to the potential output values of transitions. This section
proposes the use of contexts to help with this, but first let us examine why they are necessary.

As discussed in Chapter 3, the models produced by [106] have transitions which place guards
on the data state of the model. Those transitions do not have observable outputs, nor do
they update the data state. It is therefore sufficient to define subsumption in terms of logical
implication on the guards of transitions. If the guard of one transition is logically implied by
the other, then it accounts for that transition’s behaviour.

Example 5.2.1. Consider the two vend transitions from Example 5.1.2. In [106], they might
be represented as vend(r; > 75) and vend(r; > 50). Here, since 1 > 75 = ry; > 50, the
guard of the second transition is more permissive than that of the first. This means that all
the behaviour of the first transition is implemented by the second. Consequently, the first
transition subsumes the second.

The transitions in my EFSM models not only have guards, but also have observable outputs
and functions that update the data state. Since the internal data state of the system is not
directly observable, it might be tempting to try to use observational equivalence as a behavioural
equality metric. We have already seen observational equivalence for EFSMs in Subsection 4.7.9,
but we really want subsumption to work at the transition level. We could try to adapt the
relation to work for transitions by saying that a pair of transitions is observationally equivalent
if they always produce identical outputs, but this is not adequate for our needs.

As mentioned in Chapter 4, the semantics of an EFSM are context-dependent. Knowing the
control flow state alone is not enough to determine the output of an EFSM when faced with
a given execution. We also need to know the current data state. This is because, while the
registers themselves are not directly observable, they have an observable effect on the behaviour
of an EFSM. The problem with trying to define observational equivalence on transitions is that
data updates cannot be taken into account. Registers could be updated differently by the two
transitions and then used as part of subsequent output functions, thus allowing the behavioural
disparity to manifest itself at a later point in model execution. Thus, the use of observational
equivalence on a per-transition basis is not a strong enough criterion for transition merging.

Example 5.2.2. Consider the EFSM from Figure 5.3. Register 9 always holds the value 0 in
state g1 as the only way to get there from the initial state is to take the select transition, which
sets the value of 5 to 0. This means that, when ig = 50, there is no observable difference
between the two coin transitions. There is, however, a difference in how the transitions update
the internal data state.
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Figure 5.4 shows another segment of the model from Example 5.1.3. Here, depending on
which ¢ =% ¢, transition is taken, there is an observable difference in the output of the
coin, ol .. . . ol
q2 — qs transition. This is clearly undesirable when merging transitions.

coin: 1/og :=ra +iglre :=ra + ig)

coin: 1/og :=ro +ig[re := ra2 + o]
-- e 42 a3 )f--

coin : 1[ip = 50] /00 := 50

Figure 5.4: Another segment of the EFSM from Figure 5.3.

Looking at the examples we have seen so far in this chapter, attempts to determine be-
havioural equivalence often end up being dependent on the values of particular registers, and
are often qualified with restrictions such as “register r must hold value x” or “the value of
register ' must be greater than y”. This leads us to define contextual equivalence which relates
possible register values to observable output.

When transitions evaluate guards, outputs, and updates, they do so in a contert. That is,
it is necessary to have a mapping between the variables which occur in an expression and their
values. This is not the same as the data state of EFSMs, since this only maps registers to their
values. A context also includes the values of the inputs that the transition has received. This
means that all data states are contexts, but not all contexts are data states.

Definition 29. For an EFSM which works with data of type V', a context is a mapping from
variables (inputs and registers) to values of type V.

In the Isabelle formalisation of EFSMs from Chapter 4, EFSM inputs are of type value.
Variables are implemented with the vname datatype, so contexts are maps from type vname
to value. In Isabelle, maps are implemented as functions from type a to b option. Defini-
tion 29 is a little more abstract than this as it is designed to work with arbitrary EFSMs as per
Definition 21, not just those implemented in Isabelle. Thus, an EFSM could accept different
kinds of inputs such as lists, floating-point numbers, or IP addresses in addition to (or instead
of) integers and strings. A more general EFSM implementation in Isabelle which is parametrised
on the types of input the EFSM expects to receive is desirable future work.

Example 5.2.3. Consider the expression (3 x i) 4+ r1. To evaluate this, we need to know the
values of 79 and r;. We need a context. If we evaluate the expression in the context where ig
holds value 11 and r; holds the value 9, the expression evaluates to (3 x 11) +9 = 42. Thus,
in this context, the expression (3 X ig) + r1 is equivalent to the expression 42.

5.2.1 Contextual Constraints

Working at a concrete level is clearly not feasible if we have an infinite input space as, to prove
that one expression accounts for another, we may end up with an infinite number of proof
obligations. It is therefore preferable to make more general statements such as “in contexts
where r1 > 50, transition x is able to account for the behaviour of transition y”. Rather than
just recording the concrete values of registers as an EFSM executes a trace, we can use the
guards and updates of successive transitions to infer sets of constraints on their values.
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Definition 30. Contextual constraints relate variables within contexts and place restrictions
on their values. The empty context, in which all inputs and registers are undefined, is
expressed as {}. Variables which do not appear in the constraint set are not in scope and
cannot be accessed. If a particular variable v is known to be defined but not restricted in
any way, we declare this with an existential quantifier, i.e. Jv.

The reason Definition 30 requires all the variables that are in scope to explicitly appear in
the constraint set is to allow us to distinguish between variables that are unrestricted and those
which are undefined. Contextual constraints are closely related to the SMT problem, where a
set of constraints are specified, the conjunction of which is either satisfiable or unsatisfiable. A
common way of specifying these constraints is using the SMT language [13]. Here, variables must
first be declared before constraints over them can be specified. Variables which are not declared
are unrecognised and cannot be used in expressions. In our sets of contextual constraints, the
existential quantifier serves as an aesthetically acceptable way to declare variables.

Example 5.2.4. If we wish to represent those contexts in which r; is greater than 5, we
would write {r; > 5}. Here, the only variable that is defined is ry, which is known to hold
a value greater than 5. We do not explicitly need the constraint 3r; here since, if r; holds a
value greater than 5, it must have a defined value.

Example 5.2.5. Consider the select transition in Figure 5.5. The transition has no guard,
but does have an arity of one. If we take the transition, there must be exactly one input, g,
in scope. We can express this as {Jip}. Here, ¢ is the only variable which is defined.

When an EFSM executes a trace, the data state is updated by successive transitions. This
means that contexts flow through the EFSM as it processes an execution such that the posterior
context of one transition is the anterior context of the next. Applying a specific form of a general
technique known as symbolic execution [94], we can carry constraints on input and register values
around an EFSM without having to execute it with concrete traces. The basic idea here is that,
in the initial state, all registers are undefined and there has been no input. If a transition is
taken, we know that its guard must have been satisfied, so we can add this information to the
context. Transitions may make changes to the data state, which we must also take account of.
Each transition will have three contexts during its evaluation:

e The anterior contexrt is the valuation of the registers before the transition fires. This
context contains only registers since the transition has not yet received any input.

e The medial context is the valuation used to evaluate the guard expressions. This includes
input values as these are currently in scope.

e The posterior context is the valuation after the updates have executed. Like the anterior
context, this does not include inputs as they do not persist after the transition has fired.

Example 5.2.6. Consider the EFSM in Figure 5.5. In the initial state, gy, no input has been
received and all registers are undefined. The initial context is empty. The only transition which
leaves qq is select. The anterior context is the initial empty context. The select transition has
no guard but does have an arity of one. This means that there must be exactly one defined
input, 7, in the medial context for this transition to fire. We do not know anything about the
value of ig, but we know that it is in scope.
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The posterior context is calculated from the medial context by applying the update func-
tions of the transition. Here, r1 is assigned the value of i5. We do not know the value of
1o but we know that it is defined, so its value can be assigned to r1. The select transition
additionally brings a second register, ro, into scope by assigning it the literal value zero.

select : 1/[ry :=ig,r2 := 0] coin : 1[ig = 50]/0g := 50[re := ra + ig] O
—( 4o q1 - q2 f--
E! \_/ {io = 50, 3r1, 19 = 0}
{} {3]’1,]’2:()} {37])_}i3()}

Figure 5.5: A fragment of an EFSM representing the simple vending machine
with contextual constraints annotated in grey.

Let us now consider the coin transition. The anterior context here is the posterior context
of the select transition we have just taken. The arity of the coin transition is one, so we know
that exactly one input, ig, is defined in the medial context. Furthermore, the guard of coin
(io = 50) gives us information about its value which can be added to the medial context. The
posterior context is then calculated by applying the transition update functions. Register 7o
is assigned the sum of its anterior value (which we know is zero) and the value of io, which we
know must be 50. Thus the posterior value of r5 is 50. The value of r; remains unchanged.

The contextual restrictions published in [64] used a slightly different syntax and did not allow
pairs of arbitrary expressions to be related, only expressions and literal values. For example
the constraint 1 > 5 would have been allowed, but the constraint r; > ro would not. Here,
we remove this restriction such that arbitrary expressions can be related. The need for this
generalisation is best illustrated with an example.

Example 5.2.7. Consider the EFSM in Figure 5.6. Tracing the contexts to state ¢ leaves
transition g with the anterior constraints {3ry, Ira}. The guard of g is r1 > 72 so this is added
to the constraint set, as it must hold if g is taken. Since g makes no change to the data state,
the posterior context also has r; > ro.

Transition h is where the problem arises. Here, there is a guard which asserts that ry < ro,
but we know from the anterior context that this is not true. This leaves us with an unsatisfiable
medial context for h meaning that it cannot be taken.

f:2/[r i=ig,7r2 :=11] N\ 0[r1 > 7] N h:0[r; <]

—( do a1 q2 a3
{3[0311} U {/‘1 > 1‘2} U {I‘] >1ro,r1 < 1‘2}
{} {3)13]2} {7'1 > T’g}

Figure 5.6: An EFSM in which it is necessary for contexts to relate variables.

Although this example is somewhat Byzantine, it illustrates the need for the ability to
relate variables. If we were not able to relate r; and 7o directly, we would not be able to carry
the information necessary to infer that transition h can never be taken. Instead, we would
only know that r; and ro existed and were defined.
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Having shown several examples in detail, I now present the general procedure for computing
the posterior constraint set from a given anterior one. Algorithm 2 describes this process in
detail. Line 2 adds the guards of the transition to the set to form the medial context. If this is
consistent, the update functions can be applied, looking up constraints from the medial context
as necessary. Any constraints involving input values are then removed since, as discussed in
Chapter 4, inputs to events are instantaneous and do not persist after the firing of transitions.

Algorithm 2 Computing the posterior constraints.

1: function POSTERIOR(Transition ¢, AnteriorConstraints c)
2 medial < ¢ U t.guards

3: if CONSISTENT(medial) then

| return APPLYUPDATES(medial, t.updates)

5 else

6: return FALSE

If a constraint set is consistent, this means that all the constraints are satisfiable simultane-
ously. An inconsistent set of constraints on the medial context means that the transition guard
is not satisfied and the transition cannot be taken with the given anterior context. For example,
the constraint set {r; > 7,49 = 2} is consistent because there exist satisfying assignments of i
and r1. The constraint set {r; > ro,71 < ro} from Example 5.2.7 is not consistent, since there
is no assignment of r; such that it is simultaneously greater than and less than rs.

While the examples we have seen so far only include constraints which relate literals and
variables, we can relate arbitrarily complicated expressions. For example, if a transition had a
guard [r1 + ip > 79 + 7], this expression would be carried into the medial constraint set as-is.
It would not make it into the posterior context, however, as it constrains the input variable
1o which does not persist after the firing of the transition. The only time information about
input variables can be carried into the posterior constraint set is if the medial context contains
sufficient information about the value of an input that it can be substituted for.

Example 5.2.8. Consider a transition with guards [r] > i¢, ip > 6] and no update expressions.
Both of these expressions are carried into the medial context but, since both constrain ig,
neither would make it into the posterior context. By transitivity of the “greater than” relation,
however, we know that r; must be greater than 6. This relation constrains only register 71,
which persists throughout the execution of the EFSM so, in the posterior context, it is known
that r; > 6. This rearrangement of expressions is very important, but means that correctly
following the contextual flow through a model without losing any information can be quite
difficult if the transitions have complex guard expressions.

5.3 Subsumption and Generalisation

We want to merge those transitions which we believe to represent the same behaviour into a
single representative transition. To merge transitions, we require some notion of behavioural
equality and generalisation. The idea of subsumption, introduced by [106], provides such a
relation for guarded transitions, but that work does not attempt to handle transitions with data
update functions. With the help of a running example, this section uses contexts to extend the
idea of subsumption to transitions with output and update functions.
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Observe the EFSM fragment in Figure 5.7a and note transitions q; —— ¢o and gz —— qa,
which will be referred to as ¢; and ¢y respectively. States g; and ¢ are now merged into a new
state, ¢q,2, which results in a nondeterministic model since the transitions ¢; and ¢, now both
leave ¢ 2. When 79 = 50, either of the transitions may be taken, but this nondeterminism is not
what we intended when we merged ¢; and g2. We did this because we believed that ¢; and ¢
represent the same behaviour. To complete the merging process, we need to condense the two
representations of the behaviour into a single transition.

coin: 1/og := 19 +ig[ra := 12 + ig]

select: 1/[rq := i coin : 1ig = 50|/0g := 50|ry := 50
N /[r1 0]@ lio 1/00 [r2 ] -

(a) A fragment of an EFSM before merging states ¢1 and go.

com : 1/00 =179 + iO[TQ =719 + ZQ]

select: 1/[r1 := ig]
—>( G0 qi,2p - -

coin : 1[ig = 50]/0g := 50[rz := 50]
(b) The same fragment after merging states ¢1 and g¢o.

Figure 5.7: A fragment of an EFSM before and after merging states ¢; and gs.

Transitions may not always be compatible for merging, so we need a test to determine this.
To represent the same behaviour, transitions must at least have the same label and arity, and
produce the same number of outputs. If this is not the case, there is a trivially observable
difference in their behaviour. We are then left to consider guards, outputs, and updates.

In [106], one transition is said to subsume another if its guard is more general. Applying this
principle to the EFSM in Figure 5.7b has ¢y subsuming ¢, as ¢ has no guard where ¢; requires
its input to equal 50. This looks promising but the outputs and updates need to be considered
too. The principle of subsumption must therefore be extended to take these into account.

5.3.1 Extending Subsumption

Before I present the formal definition of my extended version of subsumption, it is helpful to
first establish an intuition of how the relation should behave. Definition 31 gives a breakdown of
the three conditions that intuitively must hold for a transition ¢ to subsume another transition
t;. The general idea of subsumption is similar to conformance and extension, introduced in
Subsection 2.3.4, the aim being to determine whether one transition implements the behaviour
of another, with the possibility of some additional behaviour. I now explore the three conditions
in Definition 31 in detail, and will formalise them in the next section to arrive at Definition 32.
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Definition 31. Informally, a transition ¢ can be said to subsume transition t; if
1. When we can take t;, we can also take ts.

2. t; and t5 produce equivalent output in cases where it is possible to take either transition.

3. The posterior data state of t5 is consistent with that of ¢;.

Condition 1: Weakening the Guard

Recall that the main objective of inference from traces is to take observations of behaviour and
create a generalised model that is able to predict how the system might behave when presented
with unseen input sequences. To this end, we want to weaken the guards of transitions as much
as possible to allow them to respond to more input values. As in [106], the relation which
determines the relative strength of guards is logical implication. If a guard ¢; is implied by the
guard gs, then g7 is weaker than gs.

Example 5.3.1. Consider the guards ig = 3 and ig < 6. If the guard iy = 3 is satisfied, then
we know that ig < 6. Here, the guard iy < 6 is implied by ig = 3 so is the weaker of the two
guards and would be chosen in preference to iy = 3 as it is satisfied by more input values.

Condition 2: Maintaining Observational Equivalence

While it is desirable to weaken guards such that they are satisfied by more inputs, it is vital
that we do not introduce inconsistencies in the observable behaviour of the model. If there is an
observable difference between the behaviour of the two transitions under circumstances where
the more restrictive transition may be taken, they cannot be merged.

Example 5.3.2. Consider the transitions t; = t : 1[ip < 6]/0g := 3 and t3 = ¢ : 1[ip =
3]/og := 4. Transition t; has a weaker guard than the transition ts, but in the case where
both transitions can be taken (i.e. when iy holds the value 3), the output of the two transitions
is not identical, so neither accounts for the behaviour of the other.

Condition 3: Reducing Unspecified Behaviour

Even though data registers are not directly observable — it is not possible to ask “What is the
value of register r?” — they may be used as part of output functions so have the potential to
affect the observable behaviour of future transitions. It is therefore important that any register
updates performed by the subsuming transition are consistent with those performed by the one
being subsumed, but what does it mean for update functions to be consistent? To solve this,
we again borrow ideas from the field of refinement.

One of the main aims of refinement is to reduce unspecified behaviour. When one program
refines another, its posterior state satisfies stronger conditions. That is, we know more about
the posterior state of the subsuming program than the one being subsumed. Using this as part
of the criterion for merging transitions allows us to be confident that we haven’t introduced a
problem with the data state that only manifests later on in the execution of the model.
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Example 5.3.3. Consider the transitions ¢t : 1/[r; := 5] and ¢ : 1/[r; := 4g]. These two
transitions are equivalent except for how they update register 1. While we certainly know
more about the posterior data state of the first transition than the second, the two update
functions are not consistent. When ¢ is not 5, there is a disparity between the two posterior
data states which cannot be resolved. This creates the potential for different observable
behaviour later on in the execution of the model if r; is used as part of an output function.

The problem here is that the guards are too broad. While we know more about the posterior
state of the function r; := 5 than of ry := iy, there is the potential for both transitions to
accept inputs other than 5. If we instead had ¢ : 1[igp = 5]/[r1 := 5], this would be an instance
of the second behaviour since, when ig holds value 5, r1 is updated to that value.

Example 5.3.3 shows that we cannot consider update functions in isolation. It is not sufficient
to ask “Do we know more about the data state of ¢; than ¢57”. The question we need to ask
is “When we can take both transitions, do we know more about the data state of ¢; than ¢57”.
This way, we take into account the fact that the subsuming transition needs to account for all
of the behaviour that the transition it is subsuming can perform, but also that it only needs to
account for that behaviour.

5.3.2 Formalising the Definition

We have now established the intuition of how we want the subsumption relation to behave. For
transition ¢o to subsume ¢;, it must respond to more (or at least the same) inputs. Additionally,
in situations where it is possible to take both transitions, their outputs must be identical and 5
must produce a more tightly constrained posterior context than ¢;. It is now time to formalise
the definition of subsumption in context into a mathematical predicate.

Let us first tackle the weakening of the guard. It is reasonably easy to formalise the statement
“when we can take t1, we can also take t5” into a logical predicate. To do this, I first define the
function CANTAKETRANSITION as follows. This returns true if a transition ¢ can be taken with
the given inputs, ¢, and register valuation, r. If not, it returns false.

CANTAKETRANSITION(¢,4,r) = (LENGTH(7) = ARITY(t) A APPLYGUARDS(t, 4, 7))

The first conjunct of CANTAKETRANSITION checks that the number of inputs matches the
arity of the transition. If we have not received the correct number of inputs, we cannot take the
transition. The second conjunct checks that the transition guards are satisfied by the inputs
and current data state. The CANTAKETRANSITION function is always evaluated in the anterior
context. That is, the state of the model before a transition has been taken. As discussed in
Section 5.2, the anterior context only contains information about the values of registers, so
is also a data state. Then, for a given anterior context r, we formalise the first condition in
Definition 31 as the following, where ¢ is a list of inputs and r is the current data state.

Vi.CANTAKETRANSITION(¢1,4,7) = CANTAKETRANSITION(¢2,4,7) (5.1)

The formalisation of the second condition of Definition 31 also makes use of the CANTAKE-
TRANSITION function and is relatively straightforward.

Vi.CANTAKETRANSITION(1,4,7) =
APPLYOUTPUTS(¢1,4,7) = APPLYOUTPUTS(t2,7,7) (5.2)
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The final statement of Definition 31 is somewhat more interesting. In situations where we
want to check the subsumption of two transitions, both of which update the same registers,
we want the posterior context of the transition with the weaker guard to be more (or at least
equally) constrained than that of the transition with the stronger guard in situations where we
can take both transitions. We formalise this statement as follows.

Vi.VP. CANTAKETRANSITION(¢1,14,7) =
(P(APPLYUPDATES(t2,4,7)) = P(APPLYUPDATES(t1,4,7))) (5.3)

where
P is a predicate which takes a context and returns boolean true or false.
APPLYUPDATES is a function which takes a transition ¢, a list of input arguments ¢, and
a data state r, and returns the updated data state according to the updates of t.

In Equation 5.3, P is a predicate which takes a context and returns boolean t¢rue or false, for
example, we might define P to be the predicate which returns true if ro = 7. Thus, in contexts
where this holds, P returns true. In other contexts, P returns false. Because we quantify over
all inputs ¢ and all predicated P, this ensures that, for all inputs, every possible posterior context
of the transition o is more constrained than that of ¢;. For transitions which update exactly the
same register(s), the above predicate is an adequate description of the intuition of subsumption,
but there is a case where Equation 5.3 does not behave how we want it to.

Example 5.3.4. Consider the EFSM in Figure 5.8, in which we have two nondeterministic
select transitions. The top transition is a general description of the behaviour of the drinks
machine. It accepts any input, assigns it to r1, and initialises 75 to zero. The bottom transition
is, presumably, a survivor from the original PTA which is yet to be merged. Obviously, we
would like the top transition to subsume it, but Equation 5.3 does not allow for this since
there exist assignments of P and r where Equation 5.3 does not hold. One such value of P is
the function which, for a given context, checks that ro = 0. For the top transition (¢2), this
will be the case, but for the bottom transition ¢;, ro remains unchanged from the anterior
context since it is not explicitly updated. Thus, t; cannot subsume t; in any context where
ro is not already zero. Since our anterior context here is the initial context, in which ry is
undefined, the subsumption cannot go ahead.

coin : 1/og := 19 +ig[ra := ra2 + ig]

select : 1/[ry :=1ig,r9 := 0]

-® « ®

select : 1[ig = “tea” |

vend : O[re < 100]

Figure 5.8: An EFSM with two nondeterministic select transitions.

The argument here for why we want the top transition to subsume the bottom one comes
again from refinement. Both select transitions originate from the initial state, so the anterior
context will be empty. The posterior context of the bottom transition is also empty as it
makes no changes to the data state. Thus, the values of 1 and 79 are undefined. The
posterior constraints of the top transition, however, are {3ry,ro = 0}. Here, r; and 7o are
both defined. Thus, the top transition has less unspecified behaviour.
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To account for the fact that we would like posterior contexts in which a particular register
is undefined to be subsumed by posterior contexts in which that register is defined, we modify
Equation 5.3 to make it the following.

Vi.VP.Vr'. CANTAKETRANSITION(t1,4,7) =
((P(APPLYUPDATES(t2,4,7)(r")) = P(APPLYUPDATES(t1,4,7)(r"))) V (5.4)
APPLYUPDATES(t1,4,7)(r") = UNDEF)

where

P is a predicate which takes a value option and returns boolean true or false.

r’ is a register index.

UNDEF represents register 7’ being undefined.

Equation 5.4 captures precisely the intuitive notion expressed in condition 3 of Definition 31,
namely that the posterior data state of to must be consistent with that of ¢;. That means that
for all registers r’ and predicates P, if the value of r’ in the posterior data state of ¢, satisfies P
then the value of 7/ in the posterior data state of £; must also satisfy P. The second clause of the
disjunction captures the intuition from 5.3.4 that we also want to reduce unspecified behaviour
by allowing previously undefined registers to be updated by the subsuming transition.

If we think of contexts as sets of (register, value) pairs, we can think of 5.4 as saying that the
posterior context of ¢; is a subset of the posterior context of ¢5. Indeed, thinking of 5.4 in this
way makes it very apparent why 5.3 is not what we want: this only holds if the two posterior
contexts are equivalent. The phrasing in 5.4, however, is much more compatible with my Isabelle
formalisation of EFSMs from Chapter 4 which is why I use it here. Since I formalised contexts
and data states as finite functions, there is no easy way to subset over them. It is possible
to explicitly convert finite functions to lists of pairs with the finfun_to_l1ist function, but
proofs involving this function are extremely arduous.

Combining Equations 5.1, 5.2, and 5.4, as well as the fact that transitions clearly must have
the same label and arity to account for each other’s behaviour, we arrive at the formal definition
of subsumption shown in Definition 32.

Definition 32. Transition ¢ subsumes t; in anterior context r if

LABEL({1) = LABEL(t2) A ARITY(t1) = ARITY(t2) A
Vi. CANTAKETRANSITION(¢1,4,7) = CANTAKETRANSITION(¢2,%,7) A
Vi. CANTAKETRANSITION(¢1,4,7) =
APPLYOUTPUTS(t1,%,7) = APPLYOUTPUTS (2,7, 7) A
Vi.VP.Vr'. CANTAKETRANSITION(t1,i,7) =
((P(APPLYUPDATES(t2,4,7)(r’')) = P(APPLYUPDATES(t1,4,7)(r"))) V
APPLYUPDATES(t1,4,7)(r') = UNDEF)

The value UNDEF, used in Equation 5.4, represents a register being undefined. For Equa-
tion 5.4 to work in Definition 32, it is critical that UNDEF operates only at the meta level and
that we cannot check undefinedness as part of a transition guard. That is to say that we cannot
have a guard NULL(r) which returns true if register r is undefined and false if it is defined.
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While many languages (such as Java and Python) do have such a construct, we cannot allow it
here as it would change the semantics of UNDEF from truly undefined unspecified behaviour to
being just another concrete value we can check for.

Example 5.3.5. Consider the EFSM in Figure 5.9. There are two nondeterministic g ER Q1
transitions. According to Definition 32, the top transition should subsume the bottom one,
however, we do not want this to be the case here as the two transitions produce different
posterior data states, only one of which allows the ¢; % ¢» transition to be taken. The top
transition assigns the value 0 to r; such that it is no longer undefined. This means that the
guard of g is not satisfied by the resulting context. Definition 32 does not take proper account
of this, however, since it gives UNDEF a special status.

f:1/[r1=0]
_)@ g: O[NULL(r1)] @
Fi1

Figure 5.9: An example of an EFSM in which having a NULL(r) guard breaks
subsumption.

The NULL(r) guard effectively brings the value UNDEF down to the object level, thus making
it a value in and of itself. This breaks the law from Section 4.2 that a register’s value cannot
be accessed before it has been defined and renders undefinedness as a concept somewhat moot.
Example 5.3.5 is an illustration of this. If it is necessary to check a register’s undefinedness, for
example to ensure that it can only be written to if it does not already have a value, this can be
done by carefully setting up the control flow states such that this holds without the need for an
explicit NULL guard.

5.3.3 Subsumption as a Preorder

Since subsumption captures the idea of generality, it makes sense for it to be some kind of order
relation. Ideally, we would like subsumption to be a partial order, satisfying the properties of
reflexivity, transitivity, and antisymmetry. Using the existing infrastructure from Section 4.7 as
a basis, it is relatively easy to formalise the subsumption relation in Isabelle and prove that it
is a preorder relation.

lemma subsumes-reflexive: subsumes t c t

lemma subsumes-transitive:
assumes pl: subsumes t1 c t2
and p2: subsumes t2 c t3
shows subsumes t1 c t3

This means that, in any context, a transition always subsumes itself and, if a transition
t1 subsumes another transition t5 which in turn subsumes a third transition t3, then ¢; also
subsumes t3. Thinking about subsumption as accounting for behaviour, this is intuitively what
we want. Clearly a transition must be able to account for its own behaviour, and it would be
rather strange if the relation was not transitive. This would mean that the bottom transition
t3 could exhibit some behaviour which the top transition ¢; could not.
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For subsumption to be a partial order relation, we also need antisymmetry, but alas this
property is not true so subsumption is only a preorder. For subsumption to be antisymmetric,
the property SUBSUMES(t1,¢,t3) = SUBSUMES(to,¢,t1) = t; = t3 must hold. This is
untrue for two reasons. The first of these is implementational; the second is more fundamental.

For a pair of transitions to be equal, their labels, arities, guards, outputs, and updates must
all be identical. Because transitions in Isabelle make use of deeply embedded guard and update
expressions, semantically identical expressions can be syntactically different. This means that
they are not equal. For example, the expressions 71 + 1 and 1 4 ¢; are semantically identical,
but their representations in Isabelle are not. The term Plus (V (I 1)) (L (Num 1)) is
clearly different to the term Plus (L (Num 1)) (V (I 1)). This means that, although
transitions might be semantically identical, they are not equal in the eyes of Isabelle.

This problem could be solved by defining a semantic equality operator on transitions, but
there is a second reason why transitivity does not hold which is more deeply rooted in the
definition of subsumption. The latter conjuncts of Definition 32 are all predicated on the fact
that either t; or t5 can be taken in the given context. For example, the third conjunct asserts
that if we can take t1, then the outputs of t1 and to are identical. This is necessary for the
subsumption relation to behave as expected — we only require outputs to be identical when
both transitions can be taken — but means that antisymmetry is also dependent on the fact
that we can take ¢; in the current context, so cannot hold in its own right.

5.4 Direct Subsumption

When merging EFSM transitions, one must account for the behaviour of the other. The sub-
sumption in context relation formalises the intuition that, in certain contexts, a transition to
reproduces the behaviour of, and updates the data state in a manner consistent with, another
transition t1, meaning that 5 can be used in place of ¢; with no observable difference in be-
haviour. The subsumption in context relation requires us to supply a context in which to test
subsumption, but there is a problem when we try to apply this to inference: Which context
should we use? This section answers this question and incorporates the subsumption in context
relation into a new relation direct subsumption which serves as the transition merging criterion
we are looking to formulate in this chapter.

Example 5.4.1. Recall the EFSM fragments from Example 5.1.1. Since we believe that the
two vend transitions represent the same behaviour, we would like to merge them into a single
transition. To do this, we ask if one transition accounts for the behaviour of the other such
that it can be deleted. This means that in every situation where we could have taken ¢; in
M, we should now be able to take t5 in My with no observable difference in behaviour.

Here, we know that t; accounts for the behaviour of t; if 1 holds the value “tea”, but
this glosses over the detail somewhat as it is unlikely that r; will always hold the value “tea”
in state gq.. Surely it could cause a problem if we are in state ¢,. and r; does not hold the
value “tea” 7 Analysing the situation in more detail, we can see that ¢; can only be taken in
M from state g,. We therefore only need t5 to account for the behaviour of ¢ in situations
where it could be taken in My. That is, we only need t5 to subsume t; in contexts which are
obtainable in state ¢,. This means that traces which got us to g, in M; must, when run in
Mo, produce contexts in which ¢ subsumes t;, i.e. contexts in which r; = “tea” . If this is
the case, we say that to directly subsumes t1.
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5.4.1 Formal Definition

In Example 5.4.1, we want to use the direct subsumption relation as a means of determining
whether it is safe to merge a pair of nondeterministic transitions. Since the nondeterminism has
arisen as a consequence of merging states, if we are to use t in place of ¢, it must account for
all of the behaviour which ¢; could exhibit before the merge. This means that to must subsume
t; all contexts which could be obtained in its origin state.

Definition 33. To define obtainability, we require an additional function, OBTAINS, which
returns true if a given trace obtains context r’ in state s’ when executed in EFSM e.
base : t =[ = OBTAINS(s',7’,e,s' 1’ t)
step : 3(s”,tr) € POSSIBLESTEPS(e, s', 77, 1,1).
OBTAINS(s', 7’ e, s, EVALUATEUPDATES(tr, i,1’),t) =
OBTAINS(s', 77, e, 8,7, (I,7)#1)
Thus, a context ¢ is obtainable in state s in EFSM e = (Q, qo, T') if 3t.0BTAINS(s, ¢, €, qo, (), t),

i.e. if there exists a trace ¢t which, when run in EFSM e starting from the initial state go and
the empty context (), leaves the model in state s with context c.

Having defined obtainability, we can then define direct subsumption on top of this. Defini-
tion 34 incorporates subsumption into a relation which can be used to determine if it is safe to
merge a pair of transitions. It is this which allows us to take the subsumption relation from
Definition 32 and use it in the actual inference process. The directly subsumes relation was one
of the main contributions of my original work published in [63], although Definition 32 is a much
more elegant phrasing.

Definition 34. Transition ¢2, originating from state s; in an EFSM ey = (P,po,T), di-
rectly subsumes transition to which originates from state so in EFSM ey = (Q, qo,T") if
Veq o t. (OBTAINS(s1, €1, €1, Po, (), t) A OBTAINS(sg, €2, €2, qo, {),t)) == SUBSUMES(t1, C2,t2).

Example 5.4.2. Recall the EFSM shown in Figure 4.5 (reproduced below for convenience),
which is observationally equivalent to the model in Figure 1.5. Here, states ¢; and g, both have
outgoing coin and vend transitions, so it would make sense for the inference process to attempt
to merge these states. Since the two coin transitions are identical and end up with the same
origin and destination after the merge, they are not distinct so one can be trivially deleted.
The merge does, however, introduce nondeterminism between the vend transitions. Indeed

the transition ¢ M) q1 is nondeterministic with both of the outgoing vend transitions
from go. To resolve this, we must use the direct subsumption relation to investigate which
pair should be merged.

coin: 1/og 1= 1o + ig[re := ra + o)

select : 1/[ry := ig,re := 0] m coin : 1/og == 1o +ig[ra := ra + o) Q vend : 0[ry > 100]/0g := 71

vend : 0 vend : O[rg < 100]

Figure 4.5: An EFSM which is trace equivalent to the one in Figure 1.5.
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Looking at the transitions, we can see that there is clearly no way to merge vend : 0
with vend : O[rg > 100]/0¢ := 71 since they produce different numbers of outputs. By our
definition of subsumption in Definition 32, neither can subsume the other in any context, so
we clearly cannot merge this pair. Let us then consider the other outgoing vend transition,
vend : O[rg < 100]. This transition produces the correct output (nothing), but does it directly
subsume vend : 07

Definition 34 requires that every trace which reaches ¢; in Figure 4.5, when run in the
EFSM after the merge, produces a context ¢y in which vend : O[re < 100] subsumes vend : 0.
Looking at Figure 4.5, we can see that this is the case since the only traces which get the
model to ¢; leave ry holding the value zero. We first select a drink, which initialises 79 to
zero, and then can press vend any number of times, which does not change the value. The
only other action we can take from ¢ is coin, which does change the value of ro but moves
the model into state ¢s, from which we cannot return to ¢;. Armed with this information,
it is then sufficient to prove that vend : 0[ro < 100] subsumes vend : 0 in all contexts where
ro holds the value zero. According to Definition 32, the subsumption can go through since
they transitions have the same label and arity, both have guards which are satisfied when
r9 = 0, and neither produces any outputs or has any update functions. We can therefore use
vend : O[ro < 100] in place of vend : 0 without affecting the behaviour of the model.

The story is not yet complete, though, since direct subsumption also holds in the other
direction. That is, vend : 0 directly subsumes vend : O[rz < 100]. This should mean that we
could use it in place of vend : 0[ry < 100], but this is not the case. If we do this, there is still
nondeterminism between vend : 0 and the other vend transition, vend : O[rg > 100]/0¢ := 1,
but these transitions cannot be merged since they produce different numbers of outputs. Thus,
we must take vend : 0[ry < 100] over vend : 0. We are therefore still in need of a means of
determining which transition to use in circumstances such as this, when both transitions
subsume each other. This is resolved in the next chapter.

5.4.2 Key Properties

Since we have already formalised EFSMs and subsumption in context in Isabelle, it makes sense
to formalise direct subsumption as well. The formalisation of both obtainability in Definition 33
and direct subsumption in Definition 34 is pretty straightforward, with the definitions appearing
more or less as above. We can then prove some key properties of the directly subsumes relation.

Direct Subsumption as a Preorder

Having already proved this for subsumption in context, it makes sense to prove it for direct
subsumption. As before, it would be nice to also have antisymmetry, but we cannot have this
for the same reasons as before.

lemma directly-subsumes-reflexive: directly-subsumes el e2 s1 s2 1t t

lemma directly-subsumes-transitive:
assumes pl: directly-subsumes el e2 sl s2 t1 t2
and p2: directly-subsumes el e2 s1 s2 t2 t3
shows directly-subsumes el e2 s1 s2 t1 t3
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Direct Subsumption in Certain Contexts

In Example 5.4.2, the technique I used to prove direct subsumption was to first prove that
all traces which reached state ¢; in Figure 4.5 obtained a context in which r3 held the value
zero when run in the EFSM after the merge. This can be generalised into the below lemma,
which uses Isabelle’s meta-implication construct = to break direct subsumption proofs into
two subgoals. Meta-implication behaves similarly to logical implication and, in most cases, the
two can be used equivalently, but the real meaning is closer to logical “semantically entails”
(x Ey), i.e. “given that we have x, we also have y” rather than the “if 2 then y” semantics of
implication.

lemma direct-subsumption:

(At cl c2. obtains s1 cl el 0 <> t = obtains s2 c2e2 0 <>t => fc2) =

(Ae. f e = subsumes t1 ¢ t2) =
directly-subsumes el e2 sl s2 t1 t2

The first subgoal is to prove that all traces which reach a given state in the pre-merge model
produce contexts which satisfy a certain condition, f, when run in the post-merge model. This
must usually be proved by induction on traces over the two models. The predicate f must be
determined on a case by case basis and supplied in the application of the rule. The second
subgoal is to prove that, for all contexts which satisfy f, transition ¢; subsumes ¢5. This is
usually relatively straightforward if f is specific enough.

Subsumption in All Contexts

If we can prove that one transition subsumes the other in all contexts, this is sufficient to prove
direct subsumption. This is a useful lemma as it allows us to skip the first subgoal of the above
rule, meaning that we do not have to do induction on traces to prove direct subsumption.

lemma subsumes-in-all-contexts-directly-subsumes:
(Ac. subsumes t2 ¢ t1) = directly-subsumes el e2 s s’ t2 t1

No Direct Subsumption

Equally important to proving that one transition directly subsumes another is proving that a
transition does not directly subsume another. For this, we must show that there is a trace which
gets the pre-merge model to the right state which, when run in the post-merge model, obtains
a context in which subsumption cannot occur. This is usually proven by induction on traces.
lemma visits-and-not-subsumes:

(Fel c2t. obtains s1 cl el 0 <> t A obtains s2 c2 e2 0 <> t N — subsumes t1 c2 t2) =
- directly-subsumes el e2 sl s2 t1 t2

Somewhat frustratingly, we cannot bypass an inductive proof here by proving that the rele-
vant transition does not subsume its other in any context. While this would be very useful, it is
only relevant if the origin state of our transition is reachable. If the origin state is not reachable,
the transition can never execute, meaning that we can replace it with any other transition (or
even remove it entirely) without affecting the observable behaviour of the model. The definition
of direct subsumption I published in [63] got around this by imposing an additional condition
that there must exist a context in which subsumption could occur, but this complicated certain
proofs so I have removed it here. In inference, all states are reachable by construction, so the
removal of this condition does not affect the models we infer.
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5.5 Analysing System Properties

Having created an EFSM model of a system, it is possible (and indeed necessary) to use contexts
to analyse data flow and help prove certain properties. For example, with the drinks machine, we
want to guarantee that customers will always receive the drink they originally selected. Another
desirable property, for the proprietors at least, is that customers only receive their drinks if they
have inserted enough money. The analysis and verification of properties of models is the subject
of Chapter 9, but it is helpful to give an informal example here to illustrate the use of contexts.

Example 5.5.1. Recall our simple drinks machine from Figure 1.5 (reproduced below for
convenience). Looking only at the labels, as would be provided by a classical FSM, it
appears that we can go straight from ¢; to ¢ without inserting any coins. The trace
(select(“tea” ), vend()/[“tea” |} seems like it might be valid, meaning that a user could get
their drink for free. Contexts help to show that this is not a valid trace of the model.

coin : 1/og := 1o + ig[ra := ro + io]

vend : 0[rg > 100]/0g := 71 O
a2

vend : 0[ry < 100]

select : 1/[ry :=1ig,r2 := 0]
—( 90

=0

Figure 1.5: An EFSM model of the drinks machine.

The only way to obtain a drink from the machine is to fire the ¢; "% g, transition. The
only way to reach ¢; from the initial state is via the select transition. This transition produces
posterior constraints {3Iry,r2 = 0}. Triggering vend with an anterior context in which ro =0

only allows ¢; vend, q1 to fire, since 5 holds value zero which is less than 100. This transition
does not produce any output so the user does not obtain their drink, meaning that the above

trace is not accepted by the model.

Transition ¢ vend, g2 can only be taken when ro holds a value greater than or equal to

100. The only transition from ¢; with an update function with the potential to increase the
value of rg is the coin transition. This means that the customer must insert at least one coin
to receive their drink.

The exact proof strategy varies depending on the property being proven, but the main point
here is that we cannot rely solely on control flow information. If we wish to analyse data-flow
properties, we must also take into account the values of registers. In other words, the validity
of many EFSM properties is context-dependent. In the case of Example 5.5.1, the guard of the
vend transition with the desired output cannot be satisfied with an anterior context in which
the value of r5 is less than 100.

As part of such proofs, we many need to analyse transition update functions to see if any
have the potential to affect variables of interest in desired (or undesired) ways. In Example 5.5.1,
if we wish to take the vend transition, the variable of interest is 7o and needs to be increased.
The coin transition has no guard, so may be taken with any anterior context, and produces a
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posterior context with 7o incremented by the value of the input. Assuming that coins have a
positive value, this increases the value of ro. The destination state is equal to the origin, so the
transition may be taken again if the input value was insufficient.

We also need contexts to prove observational equivalence between EFSM models. We have
seen in Subsection 4.7.9 that this is defined inductively on executions, so proofs often proceed by
induction. The general strategy is to start both models off in their initial states and explore the
various possible paths through the models. The proof is complete when all possible paths have
been explored. Because the definition of observational equivalence in Subsection 4.7.9 effectively
executes the two models in parallel, it must take their respective data states into account. To
prove equivalence for arbitrary traces, it is necessary to generalise beyond concrete contexts
and, instead, examine the restrictions on the possible values of important registers. Note that
inductive proofs only allow us to prove properties involving finite traces. To prove properties
over infinite traces, we need to use coinduction, which is introduced in Chapter 9.

Example 5.5.2. Recall the EFSM from Figure 4.5, which is observationally equivalent to
the model in Figure 1.5. The use of contexts is vital to prove equivalence of the two models.
Let us refer to the EFSM in Figure 1.5 as M; and the one in Figure 4.5 as Ms. The proof
proceeds by induction on executions, starting both models off in their initial states. From our
definition in Subsection 4.7.9, we can see that any two models are executionally equivalent on
the empty execution. We therefore only have the step case to prove. That is, for an arbitrary
execution z, if the two models are observationally equivalent for that execution then they are
observationally equivalent for an arbitrary action a; prefixed onto z.

From the initial states, both models have an identical outgoing select transition. We
therefore have two cases of interest: either a; is a select action, or it is not. If ai is not a
select action, both models deadlock so are equivalent henceforth. If a; is a select action, both
models move into their respective ¢; states and produce posterior constraints {3ry, 7o = 0}.

The next stage is inductively prove observational equivalence from this point. Again, we
only need to prove the step case. There are three cases to consider: either our prefixed action
as is coin, vend, or neither. In the latter case, both models deadlock so are equivalent. If we
have a vend action, both models process this in a similar way. Recall that our anterior context
is the posterior context of the select action we have just performed. That is {Ir1,72 = 0}. In

M, we must take the ¢1 pend, q1 transition, since ro = 0, which is less than 100. This leaves

the control flow and data states unchanged. In Ms, we also take the ¢ vend, q1 transition,
which has no guard and leaves both control flow and data state unchanged.

Let us now imagine that our prefixed action as is a coin action. From g1, both machines
can do an unguarded coin transition to produce the constraints {3ry,3re}. This happens
because there are no guards to restrict the value of the input. It could therefore be anything.
All we know is that ro must exist in the posterior context. After this, M is in state g and
Ms is in state ¢;. We must now prove executional equivalence from here. It is at this point
that contexts begin to show their worth.

Both models have three outgoing transitions: one coin and two vend, so we have the same
three top-level cases. As before, if our prefixed action, which we shall call as, is neither a coin
action nor a vend action, both models deadlock so are equivalent. If ag is a coin action, this
is handled similarly to the previous step, with the difference that neither model changes its
control state. While both models update their data state, there is no change to the posterior
constraints. This means that this case is effectively discharged.
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Finally, let us consider the vend action. Here, there are two subgoals we must consider,
which come from the guards on the two outgoing vend transitions. Let us first consider
contexts in which ro < 100. In this case, the vend transition in both cases leaves the state
unchanged but produces posterior constraints {3ry, 72 < 100}. Since our inductive hypothesis
involves the constraints {3ry, Ira}, this subgoal is discharged as our posterior context is more
restricted than the one in the inductive hypothesis. In the other case, where ro > 100, the
vend transition which outputs the selected drink may be taken. This takes both models into
a state from which there are no outgoing transitions. Thus, both models deadlock for any
non-empty trace so are equivalent.

The proofs for examples 5.5.1 and 5.5.2 have both been formalised in Isabelle [66] and are
just some of the ways contexts can be used to prove properties of systems. A more detailed
explanation of how properties of EFSMs can be verified is presented in Chapter 9.

5.6 Conclusion

The main contributions of this chapter were the subsumption in context and direct subsumption
relations. I began by introducing contexts, the mappings from variables to values under which
guards, outputs, and updates are evaluated. I then introduced a scheme to record constraints
on possible data values at different points during the execution of an EFSM model, and used
this to extend the concept of subsumption, originally presented in [106] for guarded transitions,
to EFSM transitions which include data update functions. I used this as a foundation for the
direct subsumption relation, which is used in the next chapter to fully realise a technique to infer
EFSM models with output and update functions from black-box traces. Finally, I briefly showed
how contexts are used to prove certain properties of EFSM models. This is an important part
of Chapter 9, which discusses how temporal properties of EFSMs can be analysed and proven.
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Chapter 6
EFSM Inference from Traces

The previous chapter introduced contexts and presented the subsumption in context and direct
subsumption relations as a means of determining whether one transition is able to account for
the behaviour of another. This relation is essential to EFSM inference, but there is more to the
inference challenge. In this chapter, I present a complete approach for inferring EFSM models,
including functions to compute outputs and modify the internal data state, from black-box traces
which only contain information visible to an external observer of the system. This chapter is
based on my original work presented in [63], the primary contributions being the following.

e A technique which uses black-box traces to infer EFSM models which explicitly relate
input and output values.

e A prototype tool which implements this technique.

In addition to these technical contributions, this chapter has the following key discussion points.
e The scoring of EFSM state pairs to determine their compatibility for merging.
e The resolution of nondeterminism caused by merging states with similar transitions.

e The practical compromises which must be made in order to implement the state merging
algorithm as a usable tool.

6.1 Introduction

Recall that our simple vending machine produces traces like those in Figure 6.1. The aim is to
use traces like these to infer a model which is able to predict how the system might behave when
faced with new traces. Previous work on EFSM inference [106, 152] focusses on establishing
transition guards that aggregate the observed data values. While this is a valuable contribution,
the models inferred by these techniques fail to capture the fact that input determines subsequent
output. The ability to model this is particularly desirable because it allows us to predict system
behaviour, rather than simply monitor it.

(select(“tea” ), coin(50)/[50], coin(50)/[100], vend() /[ “tea” |)
(select(“tea” ), coin(100)/[100], vend() /[ “tea” ])
(select( “coffee” ), coin(50)/[50], coin(50)/[100], vend() /[ “coftee” ])

Figure 6.1: Some sample traces of the simple vending machine.

What we would really like to do is use the traces in Figure 6.1 to infer a model like the one
in Figure 6.2. Here, a register r; records the selected drink, and a second register 75 keeps track
of the amount of money inserted so far. Transitions have update functions which specify how
each register is modified, such that their values at each stage of execution can be computed.
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coin: 1/og := 19 + iglrs := 19 + ig]

select : 1/[ry := 19,72 := 0] Qvend: 0/0g := T1©
—( 4o @ a

Figure 6.2: The ideal EFSM representing the traces in Figure 6.1.

The remainder of this chapter is structured as follows. Section 6.2 presents my state merg-
ing technique for EFSMs. Section 6.3 shows how we can make use of heuristics to generalise
transition behaviour at merge time and discusses the limitations of this approach. Finally, in
Section 6.4, I discuss how I transformed my technique into an executable tool, and discuss the
compromises and optimisations I had to make to achieve this.

6.2 Extending the Inference Process

In this section, I present my technique to infer EFSM models from traces. The process follows
the same basic structure as Algorithm 1, the classical FSM inference algorithm presented in
Section 3.3. First, a PTA is built from the observed traces, and then states are iteratively
merged to form a smaller model. As with classical inference, we want to merge states in the
model which we believe represent the same state in the underlying program. Algorithm 3 shows
an outline of the technique.

Algorithm 3 The top level inference process.

I: function LEARN(I, scoringMetric)
2: return INFER(MAKEPTA((I), scoringMetric)

3: function INFER(efsm, scoringMetric)

L switch INFERENCESTEP(efsm, SCOREMERGES( efsm, scoringMetric))) do
5 case None

6: return efsm

7: case Some new

8: return INFER(new, scoringMetric)

9: function INFERENCESTEP (e, merges)

10: switch merges do

11: case ||

12: return None

13: case ((s1, s2)#t)

14: e/ = MERGESTATES(s1, $2, €)

15: switch RESOLVENONDETERMINISM(NONDETPAIRS(¢'), e, ¢’) do
16: case Some new

17: return Some new

18: case None

19: return INFERENCESTEP (e, t)

108
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There are two main challenges to address here. Firstly, because EFSM transitions are not
simply atomic actions, duplicated behaviours cannot be resolved into a single transition by
simply merging destination states, as it can in classical FSM inference. I address this in Sub-
section 6.2.3. Secondly, as a consequence of this, it is possible for attempts to resolve the
nondeterminism introduced by merging states to fail, meaning that two states which initially
seemed compatible cannot actually be merged. This is not the case in classical FSM inference.
I tackle this in Subsection 6.2.4.

6.2.1 PTA Construction

The first step is to construct a PTA from the observed traces in the same way as for classical
FSM inference. Beginning with the empty EFSM, we iteratively attempt to walk each observed
trace in the model. When we reach a point where there is no available transition, one is added.
For classical FSMs, this is simply an atomic label. EFSMs deal with data, so we need to add
guards which test for the observed input values and outputs which produce the observed values.
For example, the event coin(50)/[100] would cause the transition coin : 1[igp = 50]/0¢ := 100 to
be added to the model. The event label is coin. It takes one input, which must be equal to
the observed input value of 50, and produces the literal output 100. The PTA representing the
traces in Figure 6.1 is shown in Figure 6.3.

— coin : 1[ig = 50]/0p := 100 vend : 0/og := “tea”
coin : io = 50]/00 == 50 @ fio /00 @ /o0 @

vend : 0/og := “tea”

coin : 1[ig = 50]/0g := 50 "/ coin: 1[io = 50]/0g := 100 \_ vend: 0/0g := “coffee”

wed )

coin ; 1[ip = 10

0]/00 =100

Selecy . 1
0=

"coffee;,]
Figure 6.3: The PTA representing the traces in Figure 6.1.

A key aspect that we must be aware of here is that, because our traces have outputs, our
PTA is not guaranteed to be deterministic. For example, consider the traces (a()/[1], b()/[1])
and (a()/[1], b()/[2]). Both traces share the prefix (a()/[1]), after which we may do a b action
to receive an output of either 1 or 2. A PTA built from these traces would be nondeterministic.
This is not to be confused with the situation in Figure 6.3, in which calling the coin action with
50 as an input can produce either 50 or 100 as an output. Here, the PTA is deterministic since
the respective actions occur after different prefixes.

In general, we do not end up with a nondeterministic PTA unless the underlying system is
also nondeterministic. This work makes the assumption that the systems we are trying to infer
models of are deterministic, so no explicit attempt to handle a nondeterministic PTA is made.

6.2.2 Scoring State Merges

As discussed in Subsection 3.4.2; a scoring function is used to determine and order potential
state merges. The SCOREMERGES function in Algorithm 3 takes an EFSM and a scoring metric
and, for each pair of states, applies the scoring metric to produce a numeric value representing
how likely it is that two states represent the same program state. This results in a sorted list of
triples of the form (score, s1, s2), where a high score represents a strong merge candidate.
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A scoring metric takes two states and returns a numerical value representing how likely it
is that they represent the same program state. For classical FSMs, this is often based on how
many outgoing transitions the two states have in common. For EFSMs, determining common
behaviour is more complicated. In addition to an atomic label, transitions also have an arity,
guards, outputs, and updates, all of which may be taken into account when determining how
similar a pair of transitions are. Additionally, as explained in the previous chapter, transitions
may be able to account for each other’s behaviour without being exactly identical. We want to
be able to take this into account when scoring potential state merges.

The most naive way to score EFSM transitions would be to do the same as for classical FSMs
and assign a pair of states one point for each shared outgoing transition. The problem with this
is that it does not take into account the fact that EFSM transitions do not need to be exactly
identical to express the same behaviour. We thus need a more permissive scoring function which
allows non-identical transitions to contribute to the merge score of a pair of states.

The scoring approach I take here and used in [63] is inspired by [152], where the merge
score of each pair of states is equal to the number of outgoing transitions with a shared label.
Because my transitions are slightly more complex than those in [152], T can have a slightly more
fine-grained metric. Here, as well as sharing a label, transitions must have the same arity and
produce the same number of outputs to contribute to the merge score of their respective origin
states. This is because two transitions with different input or output arities cannot represent
the same behaviour since they are respectively either mutually exclusive or observably different.

As well as contributing one point if their labels and arities are the same, transition pairs get
an additional “bonus point” if they are exactly equal. That is, if they have identical guards,
outputs, and update functions. States with lots of identical outgoing transitions more obviously
represent the same program state than those with outgoing transitions which only share a label
and input and output arities. It therefore makes sense to try to merge these earlier on in the
inference process not only because it is more likely that they will actually represent the same
state, but also because the nondeterminism associated with the merge is likely to reveal more
of such states, enabling us to merge many states in a single iteration.

It is easy to conceive more sophisticated scoring approaches. We could, for example, try to
use the subsumption relation from the previous section. We might also attempt to lift either
RPNI or Blue-Fringe to EFSMs, or simply apply these techniques as they are using just the
labels of transitions, although this is unlikely to be generally applicable since it neglects the
data state of the model as well as the inputs and outputs of individual transitions. We could
even attempt to use classifiers on the different data values like MINT [152].

Since most of the novelty between different classical FSM inference techniques in the liter-
ature concerns the way potential states merges are determined and ranked, this suggests that
the scoring function is a crucial part of the inference process so warrants attention in its own
right. A comprehensive investigation into the effects of different merging criteria in terms of
both accuracy and runtime is desirable future work but, since my models are so different to
those which occur in existing literature on passive inference, I chose to to keep things simple
here to maintain focus on the main objective, which is to establish a state merging algorithm
for inferring computational EFSM models from black-box traces. As we will see in Chapter 8,
though, my simple scoring metric can still lead to models which are both small and accurate.

In my implementation, detailed in Section 6.4, the scoring function is a parameter to the
inference process so can easily be swapped for something more sophisticated, although this
is currently likely to have a significant impact on the runtime as the current implementation
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scores every pair of states per iteration. For an EFSM with n states, we score "Cy state pairs
each iteration. Even for moderately sized EFSMs,; this is a very large number. Thus, more
complex scoring metrics are likely to take a prohibitively long time to run. This is partially why
algorithms such as Blue-Fringe do not examine every state pair per merge.

It is also worth mentioning here that, like in [152], T only look at the immediate outgoing
transitions from states. I do not examine longer paths as in k-tails [16]. The reason behind this
is that, unless we are going to consider the update functions within the scoring metric, it does
not make sense to look further ahead. Since we can arbitrarily move information between the
control flow state and the data state by utilising registers, if we wish to apply the principles
from k-tails to EFSMs in a meaningful way, we need to consider the data state as well. Again,
a more detailed exploration of this is desirable future work.

6.2.3 Resolving Nondeterminism by Merging Transitions

When we merge a pair of states, the resulting state then has both sets of outgoing transitions.
This means that the same behaviour may be represented more than once, since we merge states
with outgoing transitions that we believe represent the same behaviour. Duplicated behaviour
often manifests as nondeterminism between outgoing transitions from newly merged states. We
would like to resolve this by merging the offending transitions and their respective destinations,
which must represent the same program state if the transitions represent the same behaviour.

In classical inference, there is no need to explicitly merge transitions. Classical FSM tran-
sitions only represent the same behaviour if their labels are equal, so this happens “for free”
when their destination states are merged because two transitions with the same label, origin,
and destination are not distinct. With EFSMs, transitions that express the same behaviour
may not be exactly identical. Thus, the merging of transitions becomes an explicit step in the
algorithm in addition to merging their destination states.

There is also the possibility that two nondeterministic transitions may not be able to be
merged, which does not occur in classical FSM inference. For example, consider the transitions
vend : 0/[og := “tea” ] and vend : 0. If we have merged their respective origin states under the
belief that they represent the same behaviour, we would also want to merge the transitions to
reflect this belief. Unfortunately, they produce different numbers of outputs so cannot possibly
represent the same behaviour.

The way we go about resolving nondeterminism is similar to how it is done in classical FSM
inference. We simply resolve one nondeterministic transition pair at a time until the model
becomes deterministic again. The two main additional problems to solve here are that, firstly,
EFSM transitions allow multiple expressions of the same behaviour, meaning that we may need
to merge non-identical transitions to resolve nondeterminism; and secondly, we must have a way
to handle what happens if an attempt to resolve nondeterminism fails.

The way we handle the first problem is with subsumption. After merging the destination
states of a nondeterministic pair of transitions, the RESOLVENONDETERMINISM function calls
MERGETRANSITIONS to merge the transitions themselves. When merging EFSM transitions,
one must account for the behaviour of the other under all circumstances where it could have
been taken. The idea of subsumption in context was introduced in Chapter 5 and formalises the
intuition that, in certain contexts, a transition ¢, reproduces the behaviour of ¢t; and updates
the data state in a manner consistent with ¢;, meaning that ¢, can be used in place of ¢; with
no observable difference in behaviour.

111



6.2. EXTENDING THE INFERENCE PROCESS

Algorithm 4 Resolving nondeterminism.

I: function RESOLVENONDETERMINISM([], -, new)
2 if DETERMINISTIC(new) then

3: return Some new
4

5

else
: return None
6: function RESOLVENONDETERMINISM(((from, (dy, dz), (t1,1t2))#ss), old, new)
7: destMerge <— MERGESTATES(d1, dz2, new)

8: switch MERGETRANSITIONS(old, destMerge, t1,t2) do

9: case None

10: RESOLVENONDETERMINISM(Ss, old, new)

11: case Some merged

12: newPairs <~ NONDETPAIRS(merged)

13: switch RESOLVENONDETERMINISM (new Pairs, old, merged) do

14: case Some new’

15: return Some new’

16: case None

17: RESOLVENONDETERMINISM(ss, old, new)

18: function MERGETRANSITIONS(old, destMerge, ty,ts)
19: if DIRECTLYSUBSUMES(0ld, destMerge, ORIGIN(t1, old), t2,t1) then

20: return Some REPLACETRANSITION(destMerge, t1,ts)

21: else if DIRECTLYSUBSUMES(old, destMerge, ORIGIN(t2, 0ld), t1,t2) then
22: return Some REPLACETRANSITION(destMerge, to,t1)

23: else

24: return None

To use the subsumption relation, we must have a context in which to test subsumption. When
merging transitions, one must subsume the other in all obtainable contexts of its origin before
the merge. This was introduced as direct subsumption in Chapter 5. The MERGETRANSITIONS
function in Algorithm 4 tests if one transition directly subsumes the other, meaning that it can
be safely deleted without affecting the behaviour of the model. If this is not the case, neither
transition can be used in place of the other without risking an observable difference in the
behaviour of the model. In this case, MERGETRANSITIONS fails, returning None.

This leads us on to the second problem that must be solved. What happens when neither
transition directly subsumes the other? If MERGETRANSITIONS fails, nondeterminism might be
resolved by merging a different transition pair. Successive attempts are made until either one is
successful or there are no more potential merges. In the latter case, RESOLVENONDETERMINISM
fails, indicating that the original state pair should not have been merged.

In Example 5.4.2, it was identified that we sometimes need to be careful which transition
we use in situations where both transitions subsume each other. There, we had it such that we
needed to merge transitions vend : 0 and vend : O[ry < 100]. The correct strategy was to use
vend : O[rg < 100] to prevent nondeterminism with a third transition, vend : O[rg > 100]/0g :=
71, which cannot be resolved by merging. In that case, if the RESOLVENONDETERMINISM func-
tion chose to take vend : 0 in the first instance, it would need to make a recursive call to resolve
the nondeterminism between this transition and vend : 0[ry > 100]/0g := 1. Since this nonde-
terminism cannot be resolved by merging, the recursive call would return None, indicating that
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the nondeterminism could not be resolved. Because NONDETPAIRS returns all configurations of
nondeterministic transitions, RESOLVENONDETERMINISM would then be able to have another go
at the merge with the vend : 0[ry < 100] being the dominant transition.

An alternative approach to resolving nondeterminism pairwise would be to form equivalence
classes of nondeterministic transitions as in [142] and merge each class in one go. When merging
states pairwise, it is quite rare for nondeterminism to be introduced between more than two
transitions at once, meaning that, if we were to form equivalence classes, most would contain
only two transitions. Since forming equivalence classes requires a pairwise comparison anyway,
I here decided to take the implementationally simpler decision to merge transitions pairwise.

6.2.4 Merging States

The INFERENCESTEP function in Algorithm 3 merges the first (highest scoring) state pair in the
list of potential merges and calls RESOLVENONDETERMINISM (detailed in the Subsection 6.2.3)
to resolve any resulting nondeterminism. If this succeeds, the merging process begins again with
a new list of potential merges, continuing until no more states can be merged. If RESOLVENON-
DETERMINISM fails, this indicates that our belief of the two states representing the same program
state was false, as we were unable to merge their respective behaviours. INFERENCESTEP then
successively attempts to merge lower scoring state pairs until either one is successful or it runs
out of possible merges, at which point inference terminates.

6.3 Introducing Registers

The technique in Section 6.2 allows us to infer deterministic EFSM models from traces by
merging transitions where one directly subsumes the other, but we cannot yet fully capture
the causal relationship between input and output. Recall from Subsection 2.2.5 that most real
systems make use of internal variables that store information about the current state for later
use. To accurately represent such systems, we need models that make use of data variables. We
therefore need a way to infer their use within a model. This section proposes a way do this.

Example 6.3.1. The EFSM in Figure 6.4 is the best model of the traces in Figure 6.1 that
we can infer so far. The model contains two pairs of identical coin transitions which we could
merge by zipping the path ¢1 — g3 — q4 — ¢7 with ¢a — ¢5 — g6 — ¢7. We cannot do this,
though, as it would result in nondeterminism between transitions vend : 0/0p := “tea” and
vend : 0/0g := “coffee” , which suggests they are instances of the same behaviour and should
be merged. Since they have different literal outputs, neither can directly subsume the other
so they cannot be merged. This means we cannot condense Figure 6.4 any further.

coin : 1[ig = 50]/0g := 50 N coin : 1[ig = 50]/0g := 100
q3

sen” )

qa vend ; )
Yoy
/09 i “toq»

coin : 1[ig = 100]/0p := 100

“Coffgan 2 /5\
COfTLe’] @ coin : 1[ig = 50]/0g := 50 Q/ coin : 1[ig = 50]/0p := 100
Figure 6.4: An EFSM model inferred from the traces in Figure 6.1.

Looking at the bigger picture, the two vend transitions do actually exhibit the same be-
haviour. Both produce, as output, the input of the initial select transition. If we could abstract
away the concrete values, we could infer a smaller and more general model of the system.
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The approach I proposed in [63] was to provide MERGETRANSITIONS with a number of small
heuristics to be used if neither transition directly subsumes the other. The aim here is to come
up with arithmetic functions which generalise from the concrete values in the traces, with each
heuristic focussing on a particular data usage pattern. This makes transitions which express
the same behaviour with different data identical, allowing them to be merged. As mentioned in
Chapter 3, traditional machine learning approaches such as deep learning are extremely good
at this sort of thing, however, such methods are black-box predictors. Here, we are interested
in how data are transformed, so require human-readable functions. If neither transition directly
subsumes the other and none of the heuristics are successful, the transition merge fails. While
this approach can be helpful, it has several limitations which I discuss at the end of this section
and improve upon in Chapter 7.

Before continuing, it is worth noting that similar principles are applied in the field of active
inference. As discussed in Chapter 3, work presented in [15] applies a technique which searches
for the reuse of data input values as subsequent outputs, and abstracts these values away by
storing them in a register. This is a very similar principle to the “store and reuse” heuristic
presented later in this section. Additionally, in [28], states are merged when their symbolic
suffixes are isomorphic up to the renaming of registers. In my work published in [63] T discuss
a similar heuristic for recognising when multiple variables have been introduced to a model to
serve the same purpose. In Chapter 7, I employ genetic programming as a hyperheuristic which
generalises these ideas to discover more complex functions.

In Algorithm 5, the TRYHEURISTICS function attempts to apply the heuristics in the order
in which they were supplied until either one of them is successful or there are no more left to
apply. This approach makes the tool extensible and gives the user a degree of control over the
characteristics of the final model as they can choose to provide or withhold particular heuristics.
It also means that the order in which the heuristics are supplied has the potential to affect the
model we infer.

Algorithm 5 The redefined MERGETRANSITIONS function which can now use heuristics.
1: function TRYHEURISTICS(0ld, destMerge, t1, t2, heuristics)
2 switch heuristics do

3: case ||

4

5

return None
: case H#hs
6: switch H(old, destMerge, t1,t2) do
7 case None
8: return TRYHEURISTICS(old, destMerge, t1,ta, hs)

9: case Some e

10: return Some e

11: function MERGETRANSITIONS(old, destMerge, t1, ta, heuristics)

12: if DIRECTLYSUBSUMES(old, destMerge, ORIGIN(t1, old), t2,t1) then

13: return Some REPLACETRANSITION(destMerge, t1,ts)

14: else if DIRECTLYSUBSUMES(old, destMerge, ORIGIN(t2, 0ld), t1,t2) then
15: return Some REPLACETRANSITION(destMerge, to,t1)

16: else

17: return TRYHEURISTICS(heuristics)
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We must be careful with heuristics, though. Since they are external, essentially arbitrary
code, they cannot be deemed inherently trustworthy. That is, there is no explicit obligation on
heuristics to produce models which reflect the traces. For example, we could supply a heuristic
which always returns the empty EFSM. This will always successfully return a model, but it
is clearly unacceptable for the inference process to attempt to proceed with this as it will lead
to a model which does not conform to the original PTA. We must therefore be suspicious of
solutions offered by heuristics if we want our inference process, as a whole, to maintain trace
inclusion between the PTA and the final model.

Since the original set of traces is finite, trace inclusion is very easy to verify. We can simply
run each one through the model and compare the output to the original.! I run this sanity check
at two points during the inference process. Firstly, the TRYHEURISTICS function applies it when
a heuristic claims to have been successful. Secondly, I apply it after each iteration of INFER to
be absolutely certain that the model still reflects the observed behaviour. If this is not the case,
the model is discarded as if the state merge had failed. This leads to a trivial trace inclusion
proof of the inference process — the property is explicitly checked each iteration — but proving
this in Isabelle turns out to be extremely difficult as it requires custom induction rules for the
INFER function. Since the intuition is so trivial, the automated proof is left for future work.

6.3.1 Example Heuristics

This section details some heuristics which are relevant to our running drinks machine example.

The Store and Reuse Heuristic

An obvious candidate for generalisation is the “store and reuse” pattern. This occurs in Exam-
ple 6.3.1 when the input of select is later used as the output of vend. Recognising this pattern
allows us to introduce a storage register to abstract away concrete data values and replace two
transitions whose outputs differ with a single transition that outputs the content of the register.

The first step is to find intratrace matches — instances of data reuse within traces. We walk
each trace in the current EFSM, recording when the output of a transition matches the input
of an earlier transition to obtain a set of matches for each trace of the following form.

{((transition, inputIndex), (transition, outputindez))}

We then look to see if any of the matches concern the transitions we are trying to merge. If
so, we attempt to generalise these transitions. This consists of introducing a fresh register to
act as storage, adding an update to this register, and dropping the restriction on the relevant
input value. The value of this register then becomes the output of the second transition. For
example, we would generalise the pair ((select : 1[ig = “tea” |,1), (vend : 0/0g := “tea”, 1)) to
((select : 1/[r1 := o], 1), (vend : 0/og := 11,1)), where r; does not already occur in the EFSM.

When multiple transition pairs generalise in the same way between multiple traces, we call
this an intertrace match. Finding intertrace matches indicates that the same kind of behaviour
occurs across multiple traces, potentially with different data values. This provides evidence in
favour of generalising and merging transitions in the model.

n an ideal world, it would be good to properly verify simulation as per Definition 19 from one iteration of
inference to the next. While it is possible to use a model checker as a (partial) oracle to this effect, this is simply
too slow to be practical for large models.
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Example 6.3.2. Consider the EFSM in Figure 6.5. To resolve the nondeterminism between
the vend transitions, we need to merge them into a single transition. Neither directly subsumes
the other since there is always a difference in behaviour. Consequently, we need to try to find
a transition which accounts for both of their behaviours.

select : 1[ip = “tea” ] o = 501/00 = 50 vend : 0/0g := “tea”

coin: 111 @ I/09 := 100
O ¢ e O -~

select : 1[ig = “coffee” | coin - 1[ig = 100] /oy — 100 vend : 0/oq := “coffee

coin : 1fip = 50

Figure 6.5: The EFSM from Figure 6.4 after zipping the path ¢1 — q3 — q4 — ¢q7
with g2 = g5 — g6 — 7.

Assuming that Figure 6.5 is inferred from the PTA in Figure 6.3, the store and reuse
heuristic has three traces to consider. The first step is to find intratrace matches by looking
for transitions where an output is equal to an earlier input. We then filter these to remove
those which are not relevant. That is, we only keep those intratrace matches which concern
the transitions we are currently trying to merge, in this case the vend transitions. This leaves
us with the following list of matches.

[
{((select : 1[ig = “tea” |,ip), (vend : 0/[og := “tea” ], 00))},
{((select : 1[ig = “tea” |,ip), (vend : 0/[og := “tea” ], 00))},
{((select : 1[ig = “coffee” ], ip), (vend : 0/[og := “coffee” ], 00))}
]

The next stage is to generalise the transition pairs as described above. To do this, we
introduce a fresh register called r1. For each transition pair, the input of interest is derestricted
and an update is added to assign the input value to the r;. The literal outputs are replaced
with the value of r1. This leaves the following.

[
{((select : 1/[r1 :=1ig],%0), (vend : 0/[op := r1],00))},
{((select : 1/[r1 := 1], 40), (vend : 0/[og := 71],00))},
{((select: 1/[ry :=ig],%0), (vend : 0/[og :=71],00))}
]

We now look for intertrace matches. That is, do multiple transition pairs generalise in
the same way? If so, this indicates that different data is used in the same way, and serves as
evidence that we can carry the generalisation into the model. Here, all three generalised pairs
are equal, so the generalisation goes ahead. This leaves us with the model in Figure 6.6.

m _ 50}/00 = 50 coin : 1ig = 50] /00 _ 100

coin : 1[ig = 100] /0y := 100

Figure 6.6: The EFSM from Figure 6.5 after generalising the model.
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The Increment and Reset Heuristic

Another usage pattern is “increment and reset”. In our drinks machine example, the coin action
outputs the sum of the previous coin inputs. This allows customers to use multiple coins to
pay for their drink and to observe a running total of the payment they have inserted so far.
Correctly identifying this usage pattern is not an easy problem to solve, and a general approach
to this is the subject of Chapter 7, but a naive heuristic is not difficult to implement.

The idea is that, if we want to merge two transitions with identical input values and different
outputs, for example coin : 1[ip = 50]/0¢ := 50 and coin : 1[ip = 50]/0p := 100, then the
behaviour must depend on the value of an internal variable. We implement a heuristic which,
when faced with such a merge, drops the input guard and adds an update to a fresh register, in
this case summing the current register value with the input. For this to work, we must ensure
that the register is initialised before our modified transitions are taken. To do this, we augment
transitions incident to the origin state with an update function which sets the relevant register
to zero. This is the “reset” part of the heuristic which ensures that the register is defined before
it is used. A similar principle can be applied to other numeric functions such as subtraction.

Example 6.3.3. Let us begin with the EFSM in Figure 6.6. States ¢; 2 and g3 5 both have
outgoing coin transitions, so let us attempt to merge them. The resulting state has two
nondeterministic coin transitions, which take an input of 50. We need to merge these into a
single transition, so we merge their respective destination states,

coin : 1[ig = 100]/0g := 100

select: 1/[rq := ig] G123 vend : 0/og := 11

coin : 1[ig = 50]/0¢ := 50 coin : 1[ig = 50]/0g := 100
Figure 6.7: The EFSM from Figure 6.5 merging states ¢ 2, ¢35, and qa .

We now need to merge the two coin : 1[ip = 50| transitions into a single representation
of their behaviour. Since they have different literal outputs, neither subsumes the other
directly. It is now that the increment and reset heuristic comes into play. When we have
two transitions with the same literal input but different literal output, we need to introduce
a register to account for the behaviour. Like with the store and reuse heuristic, this register
must be fresh. Let us call this register ro. The naive approach of the increment and reset
heuristic is to simply replace the literal output with o 4 7p, add this as an update, and drop
the guard. This leaves both coin : 1[ig = 50] transitions as coin : 1/0g := rq +ig[re := r2 + o).

In this case, dropping the guard causes a problem. The other coin transition, with input
guarded to be 100, is now nondeterministic with our newly merged behaviour. If this happens,
the increment and reset heuristic simply removes the offending transition, working under the
assumption that the generalisation we have just made accounts for this behaviour too. This
leaves us with the EFSM in Figure 6.8.
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coin : 1/og := 1o + ig[ra := ro + io]

select : 1/[rq1 := o] G123 vend: 0/0g := 11
e ©

Figure 6.8: The EFSM from Figure 6.7 merging the coin transitions.

We then need the “reset” part of the heuristic to ensure that our fresh register is initialised
before it is used. To do this, we add an update r5 := 0 to all transitions incident to the origin
state of coin. Having done this, it is vital to check that what we have done still reproduces
the behaviour observed in the traces. If it does, the heuristic has been successful. If not, it
has failed to generalise correctly and the heuristic must fail gracefully. This is an important
step since the naivety of the heuristic makes it likely to produce models which do not behave
as expected. This is a major limitation of the approach and is improved upon in Chapter 7.

6.3.2 The Limitations of Heuristics

It is worth mentioning that heuristics in their current form are a serious limitation to the
inference process. While certain heuristics like “store and reuse” have some general applicability,
the scope of individual heuristics is likely to be very limited. The challenge then, for each
system, is to determine and implement heuristics are likely to be applicable. In our simple
drinks machine example, the traces make it clear what the underlying system does, so it is not
difficult to work out where we need to introduce abstractions. For more complex systems, the
underlying behaviour may not be so apparent, meaning that it is much harder to know exactly
what the heuristics need to do. We are thus in a situation where the user effectively needs to
have a “right answer” in mind before they apply inference.

Ideally, we want a more general approach which gives the inference process a way of figuring
out the correct output and update functions on its own, without the help of specially coded
heuristics. In other words, the inference process needs a way to automatically build the heuristics
it needs “on the fly” using only the data from the observed traces. This is an extremely difficult
problem to solve, which is why I have not tackled it here. Instead, this is the subject of Chapter 7.

Currently, heuristics are applied at merge time. This means that we only generalise outputs
and introduce registers as a last resort and that heuristics must work with nondeterministic
models in the midst of resolution. It also means that heuristics only get to see two transitions
at a time. This clearly does not scale since large models built from many traces are likely to
contain lots of duplicated behaviour which will lead us to apply the same heuristic many times
during inference. Unless we are very careful about how we implement heuristics, we may end
up introducing lots of different registers to do the same job.

Another problem with applying heuristics at merge time is that, as well as resolving non-
determinism, they can also introduce it. We see this in Example 6.3.3 where the “increment
and reset” heuristic needs to also modify the coin : 1[ip = 100]/0p := 100 transition to avoid
introducing new nondeterminism. Again, this is manageable in small models but does not scale
to larger ones. Indeed, preliminary experiments with more than the three traces of the simple
drinks machine in Figure 6.1 revealed that the “store and reuse” heuristic can introduce more
nondeterminism than it solves, effectively rendering it useless.
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Instead of trying to generalise transitions as a last ditch attempt to merge behaviour, it
makes sense to try to do this before we begin to merge states. Doing this makes achieving our
goal of finding and merging duplicated behaviour much easier since generalised transitions are
exactly identical. This makes scoring merges and resolving the resulting nondeterminism much
easier, so reduces the work we have to do during merging.

In summary, there are two main problems with my current approach: the scope of applica-
bility and the time of application. We need a more general way to abstract concrete values into
functions, and we need to apply this at the correct time so that we can use it effectively. In
Chapter 7, I present a preprocessing technique based on genetic programming which delivers on
both of these fronts. For now, as in [63], the heuristics serve as a placeholder to bridge the gap
between pure transition merging and the general solution presented in the next chapter.

While it is clear that using merge time heuristics to generalise behaviour is far from ideal,
there are some very useful heuristics which need to be applied during the merging process. In
Subsection 6.4.3, I show how we can use a heuristic to make the DIRECTLYSUBSUMES function
executable. In Section 7.6, I present a heuristic to identify value-dependent behaviour and infer
guards which distinguish between transitions.

6.4 Implementation

Having now formulated the inference algorithm abstractly, the next task is to code this up into
an executable tool which can be practically evaluated. This tool should take a set of traces as
input and produce an EFSM model which represents those traces. Effectively, we are trying
to obtain an executable version of the LEARN function from Algorithm 3. The user should
also be able to supply heuristics to use during merging process. Unfortunately, some parts of
my technique, most notably the DIRECTLYSUBSUMES function, cannot be effectively computed.
This section details how I tackled this to produce a prototype inference tool. An example of its
use is shown in Appendix A.

In Chapters 4 and 5, I presented an Isabelle formalisation of both EFSMs and direct subsump-
tion. As well as being a very effective proof assistant, Isabelle also includes a code generator
[77] which can be used to automatically transform Isabelle functions and data types to exe-
cutable code in various conventional programming languages. Since the generated code satisfies
the same properties as the original definitions, it makes sense to develop my tool in Isabelle
as I can use my existing EFSM formalisation as a basis for this rather than having to start
from scratch in a more conventional language and risk there being inconsistencies between my
formalisation and implementation. This also paves the way for various correctness proofs of the
implementation, such as trace inclusion between the PTA and the final model. Although such
proofs are intuitively very simple and mainly follow “by construction”, they actually turn out
to be extremely difficult to phrase in Isabelle, requiring custom induction rules for the various
functions, so have consequently been left for future work.

Another advantage of Isabelle is that functions can be expressed at a very high level of
abstraction, meaning that Algorithms 3 and 4 can be expressed in Isabelle almost identically
to how they appear in Section 6.2. The fact that it is a purely functional language like Haskell
also means that we have intuitive symbolic equality and full referential transparency, so there
is no risk of accidentally overwriting variables. This all makes Isabelle a very pleasant language
in which to program.
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Having implemented my technique in Isabelle, I then used the code generator to convert these
functions and data types to runnable code. The language I chose was Scala,? a language which
runs on the Java Virtual Machine and, consequently, has access to the various Java libraries.
This makes getting traces into the system, and inferred models out again, quite straightforward.
It also affords access to libraries such as Z3, which 1 use to check satisfiability of guards as
detailed in Subsection 6.4.2 and allows integration with other tools implemented in Java such
as MINT, which I use as the basis for my GP technique to infer output and update functions
in Chapter 7.

6.4.1 Proving Termination

Isabelle’s code generator will only export code for total functions. That is, functions which
always have a defined return value. While it has ways of dealing with what the documentation
calls “explicit partiality”, for example missing patterns in case matches, it refuses to generate
code for functions which cannot be proven to terminate. Isabelle can often do this automatically,
so explicit termination proofs are rarely required. Unfortunately, our inference process contains
two functions for which Isabelle could not automatically prove termination. These functions are
INFER in Algorithm 3 and RESOLVENONDETERMINISM in Algorithm 4.

When we do need to prove termination manually, what we generally need to do is define
a function that measures the arguments and returns a natural number. We then prove that
this strictly decreases every time the function recursively calls itself. Eventually the size of the
arguments will reach 0, at which point the function should hit its base case and terminate.
Defining such measurement functions is notoriously tricky. Indeed, it is not currently possible
to define one for either of the two functions as they currently appear in Algorithms 3 and 4.
They need to be modified a little.

The INFER function performs the outer loop of the inference process, recursively calling
INFERENCESTEP until no more state merges can be made. The measurement function here,
then, is obvious. If INFERENCESTEP merges states, the size of the model should be smaller for
each recursive call to INFER. The problem here is that this assumed property of INFERENCESTEP
is not explicitly proven. Indeed, because we can make use of arbitrary heuristics, as discussed
in Section 6.3, it is not even necessarily true.

There is nothing to stop our heuristics from maintaining or even increasing the number of
states in an EFSM, so it is not guaranteed that the size of the model returned by INFERENCESTEP
is necessarily smaller than the original. We do, however, want to enforce that every iteration
of inference reduces the number of states in the model. While it is certainly possible to write
heuristics which increase the size of an EFSM, this is considered bad behaviour. I therefore
explicitly check for this in INFER such that the number of states in the model gets provably
smaller with each recursive call to INFER. If the model is not smaller, INFER immediately
terminates. This does not penalise heuristics which maintain the number of states in the model
since heuristics are only called by RESOLVENONDETERMINISM once INFERENCESTEP has merged
a pair of states, thus making the model smaller to begin with.

Defining a measurement function for RESOLVENONDETERMINISM turned out to be much more
challenging. The function is called after merging a pair of states introduces nondeterminism to
the model. The destination states of nondeterministic transitions are merged, and the transitions
merged into single representatives of their behaviour such that the EFSM becomes deterministic

2https://www.scala-lang.org (Accessed 13/05/20)
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again. The first argument to RESOLVENONDETERMINISM is a list of “nondeterministic pairs”.
These are tuples consisting of a pair of nondeterministic transitions, their common origin, and
their respective destinations. Each iteration should then decrease the size of this list to make
the model less nondeterministic with each recursive call.

Resolving a nondeterministic pair of transitions involves first merging their respective des-
tination states, and then merging the transitions themselves. The first step of merging the
destination states may, however, introduce further nondeterminism to the model, meaning that
the problem gets worse before it gets better. This does not necessarily spiral out of control and,
if allowed to continue, RESOLVENONDETERMINISM may be able to make the model deterministic.
The fact that we do not want to enforce that the number of nondeterministic pairs monotonically
decreases with each iteration means that we cannot use this alone as our termination measure.
We must take other arguments into account.

Considering the fact that, like INFERENCESTEP, RESOLVENONDETERMINISM merges states
and transitions, perhaps measuring the size of the model like with INFER might be a better
tactic. It may be the case, though, that two nondeterministic transitions represent genuinely
different behaviours and that, rather than merging the transitions, the correct course of action
would be for a heuristic to infer mutually exclusive guards to distinguish the two transitions.
Such a heuristic is presented at the end of Chapter 7. This resolves the nondeterminism but
maintains the number of states and transitions.

The only sensible approach to take is to use all three features (the number of nondeter-
ministic pairs and both the number of states and the number of transitions in the model) in
the measurement function. Like with INFER, we need an explicit test to ensure that our mea-
surement function is decreasing with each recursive call. Instead of using a single value, I use
the tuple (numStates, numTransitions, numPairs). First, I compare the number of states in the
current model to the number in the model we would like to make the recursive call with. If it
is less, this is fine and the recursive call can proceed. If it is more, this is bad and the function
terminates with an error. If it is equal, I perform a similar check with the transitions. If the
number of transitions is also equal, I look at the number of nondeterministic pairs.

While the order we compare states and transitions is arbitrary, we must compare the num-
ber of nondeterministic pairs last, since this is the only metric we would like to be allowed to
increase and still have the recursive call go ahead. Of course, there is the chance that RESOL-
VENONDETERMINISM may still terminate even with the removal of this restriction, but this is
the most liberal we can reasonably be while still guaranteeing termination.

6.4.2 Non-Computable Functions

Having proven termination of the various functions, the vast majority of the inference process
can be exported automatically to executable Scala code using the command export_code
learn in Scala. This generates executable Scala code for the LEARN function and all of its
associated dependencies. The code generator still presents us with an error, though.

Looking at Algorithms 3 and 4, there are two functions which cannot be effectively computed:
NONDETPAIRS and DIRECTLYSUBSUMES. The code generator cannot generate code for these
functions. This leaves us with gaps in the implementation that must be implemented manually.
For these, the code_printing statement provides the ability to replace functions with custom
implementations in the target language.
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Detecting Nondeterminism

The NONDETPAIRS function takes a model and produces a list of nondeterministic transition
pairs. For each state, it checks if there is a choice between any pair of outgoing transitions. This
involves checking if the conjunction of their guards is satisfiable. In Isabelle, we simply write
Jir.APPLYGUARDS(t1,4,7) A APPLYGUARDSL9, 7, 7. We cannot effectively compute this though
because, to know that there exists a satisfying assignment, we must find a witness. Because the
search space is infinite, the code generator does not know how to handle this.

In the Scala implementation, I leverage an existing SMT solver, Z3 [45], by converting transi-
tion guards to the appropriate format at runtime. This was not as straightforward as it initially
sounds, though, because of the way EFSMs handle arithmetic. As discussed in Chapter 4, EF-
SMs are dynamically typed. Because of this we need to use an “optional” evaluation semantics
for arithmetic expressions and a three-valued logic for guards. For Z3 to provide an accurate
answer to the question of satisfiability, I must provide it with the same optional arithmetic and
three-valued logic from Isabelle.

To achieve this, I first defined the necessary datatypes of Value, Option, and Trilean as
in my Isabelle formalisation of EFSMs. The Option datatype takes a type parameter X as an
argument and is either None or Some (x::X).The Value datatype is either Num (n::Int)
or Str (s::String), and the Trilean datatype is either true, false, or invalid.

(declare—-datatype Option (par (X) ((None) (Some (val X)))))
(declare—-datatype Value ((Num (num Int)) (Str (str String))))
(declare—-datatype Trilean ((true) (false) (invalid)))

Next, I defined the arithmetic operators. My arithmetic consists of literal values, input and
register variables, addition, subtraction, and multiplication. My Isabelle formalisation of EFSM
arithmetic works in terms of Value Options rather than Values, and returns None for badly
typed expressions and those involving uninitialised registers. This means that we cannot simply
use Z3’s native operators and, instead, must define our own. The semantics of the P1us function
are that, if its two arguments are Some (Num nl) and Some (Num n2), then it will return
Some (Num (nl + n2)). Otherwise, it will return None. This is defined in Z3 as follows,
and the other binary operators are defined similarly.

(define-fun Plus ((x (Option Value)) (y (Option Value))) (Option Value)
(match x (
((Some v1)
(match vy (
((Some v2)
(match v1 (
((Num nl)
(match v2 (
((Num n2) (Some (Num (+ nl n2))))
(_ None))
))
(_ None))
))
(_ None))
))
(_ None))
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My Isabelle EFSM formalism supports a minimal but functional set of guard operators:
equality, greater than, and set membership. To reduce the number of operators, logical NOR is
the only connective, with the more conventional operators being defined in terms of this. Lifting
this to our three valued logic gives the following definition in Z3.

(define-fun Nor ((x Trilean) (y Trilean)) Trilean

(ite (and (= x true) (= y true)) false
(ite (and (= x true) (= y false)) false
(ite (and (= x false) (= y true)) false
(ite (and (= x false) (= y false)) true
invalid))))

)

The guard operation of greater than is very similar to P1lus in that the function is only
defined over numeric arguments. Since register variables (and the result of evaluating arithmetic
expressions) may be undefined, it must also work over Value Options rather than simple
Values. If both of its arguments are Some number and the first argument is greater than the
second, it returns true. If the second argument is less than or equal to the first, it returns false.
Otherwise, one or both of the arguments is a string or None so it returns invalid. This is defined
in Z3 as follows. The equality test is lifted to return trilean true if its arguments are equal and
trilean false otherwise.

(define-fun Gt ((x (Option Value)) (y (Option Value))) Trilean

(ite (exists ((x1 Int)) (exists ((yl Int))

(and (= x (Some (Num x1)))

(and (= y (Some (Num yl))) (> x1 vyl))))) true
(ite (exists ((x1 Int)) (exists ((yl Int))

(and (= x (Some (Num x1)))

(and (= y (Some (Num yl))) (not (> x1 yl1l)))))) false
invalid))

)

Translating set membership to Z3 is non-trivial since it has no native support for sets. While
it is possible to model sets in Z3 with arrays or boolean predicates, this is overkill here. Instead,
I exploit the fact that s € S =\/,.gs =t and translate membership guards as a disjunction of
equality tests. This requires the logical OR operation to be defined in Z3 in terms of Trileans,
but this is just the negation of the Nor operator defined above.

With the necessary operators defined in Z3, translating guards at runtime can be done
with a couple of simple recursive functions, one for arithmetic expressions and one for guard
expressions. We can then assert that the translated guard expression is equal to trilean true
and check satisfiability. Although I made no special effort to construct the above operations in
such a way as to feed into the various existing optimisations of Z3, they do not appear to have
a significant effect on the runtime to check the kinds of simple guards which are likely to occur
during inference. Indeed, informal experiments revealed that there is no noticeable difference
between the native operations and my custom ones, even for relatively complex guards involving
non-linear arithmetic such as ((((i1 xi1) < 3))A((r1 # 5))). Both representations can be checked
in a few milliseconds. It may be the case that very complex guards involving tens or hundreds
of variables result in a noticeable difference in checking time, but these did not occur during the
evaluation of my tool.

123



6.4. IMPLEMENTATION

Merging Transitions

The nondeterminism that arises when we merge states is resolved by merging first the destination
states of the offending transitions and then the transitions themselves. Transitions can only
be merged if one directly subsumes the other, otherwise there is a risk that the behaviour of
the resulting model will be observably different to that of the original. Testing whether one
transition directly subsumes another is therefore a critical part of the inference process for
EFSMs, however the definition of DIRECTLYSUBSUMES in Algorithm 4 cannot be effectively
computed in the general case as it involves checking subsumption for all traces which bring the
model to a particular state. Reflexive transitions and an infinite input domain means that the
number of traces which must be checked is not necessarily finite.

The ideal solution would be to somehow hook Isabelle into the implementation such that
the system could obtain the relevant proofs during inference. While Isabelle’s sledgehammer
tool provides a high degree of automation, it is not sufficiently advanced to be able to find
subsumption proofs on its own. If we were to make the inference tool interactive, we could
allow the user to supply proofs. Unfortunately, many hundreds of such proofs may be necessary
during inference. While they are not usually intellectually challenging, for larger models they
are still extremely laborious, so it is simply not reasonable to ask this of the user.

The solution to this lies in the fact that the inference process only encounters transitions
from the original PTA and those introduced by the heuristics provided. This means that, for
a particular set of heuristics, the general form of every transition the inference process will
come across is known. It is therefore possible to prove direct subsumption for various pattern
combinations offline such that, at runtime, the direct subsumption check is reduced to a pattern
matching exercise. For example, every transition trivially directly subsumes itself. A proof of the
statement Ve; . Ves. Vs1. Vso. DIRECTLYSUBSUMES(€e1, €2, $1, $2, t, t) allows us to check at runtime
whether two transitions are equal and, if they are, return true without further investigation.

Sometimes it may not be possible to fulfil all the proof obligations for direct subsumption
offline. This is especially true of transitions involving registers, where observable behaviour
depends on the values that are held. Here, subsumption often relies on the anterior context
satisfying certain properties, for example that a particular register must hold a certain value.
We can then reduce the rather abstract notion of subsumption down to this more concrete check.

Even though this approach can significantly reduce the complexity of the properties that need
to be validated at runtime, it does not change the fact that it may still be necessary to check
properties for an infinite number of traces. To solve this problem, I use SAL,? a model checker
with a similar representation to my EFSM models. The intricacies of both the translation of
EFSMs to SAL and the verification process are detailed in Chapter 9. While it is not feasible
to encode the DIRECTLYSUBSUMES predicate in SAL, simple properties like “register r is always
undefined in state s” can be verified (or refuted) in milliseconds.

The catch is that SAL (and model checkers in general) only work with finite datatypes and
finite subsets of infinite types, such as the integers. This means that we sacrifice some of the
safety of an inductive proof, but the payoff is complete automation. If we check traces over
a suitable subset of inputs, then we can be reasonably confident that transition merges made
as a result are safe. Somewhat frustratingly, the definition of direct subsumption requires the
existence of an input which satisfies the guard of the subsumed transition for a particular context.
This means that we often need SAL even when one transition does not subsume another.

Shttp://SAL.csl.sri.com (Accessed 13/05/19)
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Applying this approach to the patterns that occur when using the heuristics detailed in
Section 6.3 allows our executable DIRECTLYSUBSUMES function to simply step through the
cases until one matches. If none of the cases match, the “catch all” case is to ask the user but,
for the heuristics detailed in Section 6.3, this is not required. Let us now examine the various
transitions which arise from these heuristics.

Different Literal Outputs. If two transitions have outputs which always differ, for ex-
ample vend : 0/[og := “tea” | and vend : 0/[og := “coffee” |, then there is always an observable
difference in behaviour. Along similar lines, transitions which produce different numbers of out-
puts are always distinguishable. In both of these cases neither transition directly subsumes the
other as long as, for each transition, there exists a context which can be obtained in the origin
state for which there exists an input which can satisfy the guard.

Drop Guard Add Update. The “store and reuse” heuristic exchanges a concrete-value
guard on an input for an assignment to a fresh storage register. For a pair of transitions, in
which one has been generalised and the other has not, for example select : 1/[r1 := ig] and
select : 1[ig := “tea” ], if we can ascertain that the relevant register (in this case r1) is undefined
in the origin state, then the general transition directly subsumes the specific one.

Register Output. The “store and reuse” heuristic also replaces a literal output with the
value of a register. For a generalised transition to subsume an ungeneralised one, we need to
show that the register holds the original output value in all relevant contexts which can be
obtained in the origin state. This is more difficult than it sounds due to the fact that it is not
necessary for the register to hold the relevant value in all contexts, just in all relevant contexts.

Example 6.4.1. Recall Example 5.1.1 in which we try to merge vend : 0/[op := “tea” ] and
vend : 0/[og := r1]. To prove direct subsumption, it is sufficient to prove that for all traces
which were recognised by the model in Figure 5.1a and brought it to state q,, that are also
recognised by the model in Figure 5.1c and bring it to state g,. leave r; with value “tea”.
This can be checked in SAL by composing the two models.

Increment and Reset. The pattern introduced by “increment and reset” is more subtle.
This heuristic drops a guard and introduces an update which mutates the data state. We end
up testing whether a transition of the form coin : 1/0g := 19 + ig[ra := 72 + ig] subsumes one
of the form coin : 1[ig = n]/og := m. Neither can account for the behaviour of the other here,
as the updates are not consistent with each other. This means that the increment and reset
heuristic only tends to be successful towards the end of the inference process when it is able to
replace many transitions of the form coin : 1[ip = n]/og := m at once.

Further Heuristics. If additional heuristics were used that introduced new kinds of transi-
tions to the model, further case proofs would be required to avoid queries to the user. Depending
on the difficulty of the proofs, this may not be particularly arduous, but is still a weakness of
heuristics in their current form.

6.4.3 A Practical Compromise

While the approach of using a model checker to check properties which imply direct subsumption
initially seems attractive, it makes the inference process prohibitively slow for all but the smallest
of examples. This is due to the problem of state space explosion experienced by all model
checkers. To allow the inference tool to scale to the realistic examples needed to properly
evaluate it in Chapter 8, a different approach is needed.
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To solve this problem, I reduce the direct subsumption down to a heuristic which deletes
each transition in turn and runs the original traces used to build the PTA are still accepted.
The justification for this is that this check will intuitively go through in all situations where we
have full direct subsumption (by “forall elimination”). In situations where we do not have full
direct subsumption but this weaker check still passes, an overgeneralisation is made but we still
maintain trace inclusion on the resulting model. This approach is clearly not as formal as the
use of a model checker, and only considers individual concrete transitions, but the compromise
is necessary to allow models to be inferred automatically in reasonable time.

6.4.4 Code Generator Optimisations

As mentioned above, the code produced by Isabelle’s code generator is not particularly fast
or well optimised. This is compounded by the fact that the Scala compiler has very little
optimisation for recursive functions, upon which this technique relies heavily. To handle larger
case studies more efficiently, certain optimisations had to be applied. These are detailed below.
While no formal experiments were run to quantify the speed-up gained from these changes, they
had a noticeable impact on the runtime of the software on all but the smallest of examples.

Numbers and Strings

The most obvious optimisation is to, wherever possible, use the target language’s built-in con-
structs. Isabelle does this to a certain extent by default, already making use of Scala’s built-in
List and Option types. It does, however, like to define its own numeric datatypes to max-
imise safety. Most numeric datatypes (int, float, double, etc.) are subject to arithmetic
overflow which can lead to unexpected differences between the Isabelle formalisation and its
executable implementation. Consequently, the default behaviour of the code generator is to de-
fine natural numbers (the nat datatype) and then redefine integers in terms of this. This does
not make for efficient computation or readable code. Fortunately, the Code_Target Nat and
Code_Target_Integer theories exist in the HOL library.* Importing these changes the be-
haviour of the code generator to instead use the native integer type (in Scala’s case the BigInt
type is used instead of int as these are not subject to overflow) with just a thin wrapper.

The Code_Numeral theory file goes a step further and provides additional data types
integer and natural which can be used in place of int and nat respectively. This re-
portedly causes the code generator to use the native integer representation without any wrap-
ping at all. This, however, is somewhat fiddly to set up retrospectively, and complicates proofs
somewhat, so was not used here.

The default behaviour for strings is to treat them as lists of characters, where characters are
represented by 8-tuples of bits. This is not only inefficient but makes code very verbose and
totally unreadable. The String theory file provides the datatype String.literal which is
implemented by the native string datatype in the target language. Like the Code Numeral ap-
proach, this is somewhat fiddly to retrospectively incorporate into existing theory files, however
the benefits in efficiency and readability were deemed worth the effort.

dnttps://isabelle.in.tum.de/doc/codegen.pdf (Accessed 13/05/19)
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Lists

While the code generator uses the Scala’s native List type, it does not make use of any natively
implemented functions over lists, instead defining its own recursive versions of basic list utilities
like map and filter. When these are used extensively, the lack of recursive optimisation
on the part of the Scala compiler becomes painfully apparent. To alleviate this issue, the
code_printing statement can be used to map calls to certain functions down to their native
implementations which are, of course, much faster. I did this with the following functions.

“ ”

Cons was mapped to the native infix “_: : 7 operator, mainly to improve readability.

“

rev was mapped to the native function “_.reverse” to reverse a list.

13

member was mapped to the native function “. contains _” to check list membership.

remdups was mapped to the native function “_.distinct” which removes duplicate items
from a list.

length was mapped to the native “_.1ength” function which returns list length.

“ ”

zip was mapped to the native infix “. zip _” operator which zips two lists together.

map was mapped to the native map function which applies a given function to each element of
the given list.

maps was mapped to the native flatMap function which flattens a list of lists to a single list
and applies map to it.

null was mapped to the native _.isEmpty function to check list emptiness.

filter was mapped to the native £ilter function which returns all elements of a list which
pass a given test.

all was mapped to the native _. forAll function which returns true if all elements of a list
pass a given test.

ex was mapped to the native _.exists function which returns true if any element of a list
passes a given test.

nth was mapped to the native list indexing function _[n] which, when given integer n returns
the (n + 1) element of a list.

The final function which I converted to its native implementation was fold, which reduces
a list down to a single value (e.g. its sum or its maximum). This was a little more complicated
as Isabelle implements three different fold functions: fold, foldl, and foldr which are all
expressible in terms of the others. Scala, on the other hand, only has direct conversions of foldl
and foldr. Since all three fold functions are expressible in terms of fold1, the relevant lemmas
were added to the code generator telling it to do this, and the code_printing statement was
used to replace calls to foldl by calls to Scala’s native foldLeft method.

Further speed-ups can be gained by handling list operations in parallel. Scala has out of the
box support for this, so functions such as “map” and “for all” can be replaced by their parallel
equivalents for maximum efficiency when using processors with multiple cores. There is a little
additional overhead here, as sequential lists must be converted to their parallel counterpart
before executing parallel functions, but there is a noticeable speed-up for larger examples.

Another area where efficiency can be gained is sorting. Clearly it makes sense to use Scala’s
native sort method rather than defining a custom one, however this is more complicated than
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a simple replacement. The reason for this is that, while both Isabelle and Scala have a similar
notion of an ordering which datatypes can be made a member of by providing “less than” and
“less than or equal to” functions which (in Isabelle’s case) satisfy the conditions of a partial
(or total) order, the code generator does not make use of this. Consequently, Scala lacks the
evidence it needs to be able to natively sort a list of elements. Fortunately, Scala provides the
sortWith command which allows an arbitrary “less than” function to be supplied. Isabelle
defines all such functions in a Scala object called Orderings. The sortWith function can
then be called with the Orderings.less function, and the relevant type can be inferred by
the Scala compiler.

Sets

The default behaviour of the code generator is to implement sets as lists with a thin wrapper to
the native List datatype. While the Java Collections Framework has several implementations
of sets, my attempts to get the code generator to use them were futile. There are a number of
speed-ups and code clarifications to be gained, however.

Firstly, the default code generator setup covers much more behaviour than was necessary for
this implementation. True mathematical sets can, of course, be infinite, however this obviously
cannot hold if we want to handle them on a real computer. The code generator thus implements
sets as lists of elements and infinite sets as cosets (lists of non-elements). Since none of the sets
used in my implementation are infinite, the code can be simplified to not have to handle cosets.
This does little to improve efficiency but does improve code readability.

Finite Sets

Much of my Isabelle formalisation is in terms of necessarily finite sets. The Isabelle fset
datatype is a subtype of set where its members are finite. This is implemented by the code
generator as a thin wrapper to Set which is itself a thin wrapper to List. In order to improve
readability and reduce unnecessary function calls, various equivalences can be proven and added
to the code generator setup to remove the Set wrapper such that both Set and FSet are thin
wrappers to the native List datatype. Again, this does little to improve efficiency but does
improve readability.

6.4.5 Memoisation

Another way to speed up computation is memoisation, where the results of certain computations
are stored in a lookup table for later use. I make use of memoisation to store those state merges
which have previously failed, such that they need not be attempted again. State pairs which
could not be merged remain distinct in the model, meaning that they will score the same on the
every subsequent iteration. This means that, without memoising failed state pairs, the inference
process builds up a buffer of failed state merges which it must repeatedly try and fail to merge
each iteration before it gets to a state pair which has not yet been tried. For larger models, this
buffer can grow quite large very quickly, which makes the inference process very slow.

This memoisation is used in both the INFERENCESTEP function, where the highest scoring
pair of states is merged, and the RESOLVENONDETERMINISM function, where the destination
states of nondeterministic transitions are merged. In both of these functions, if the pair of
states to be merged is in the set of failed merges, it is skipped.
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The set of failed merges is built by the same functions which use it. When the RESOLVENON-
DETERMINISM function is unable to merge a pair of nondeterministic transitions after merging
their destination states, that state pair is added to the set of failed merges since, if the tran-
sitions cannot be merged now, they will not be able to merged subsequently either. Thus, the
merge of their origin states can never be successful. Similar to the INFERENCESTEP function,
when the RESOLVENONDETERMINISM function returns None, the pair of states which were to
be merged is added to the set of failed attempts.

6.5 Conclusion

Building on the direct subsumption relation from Chapter 5, this chapter presented a technique
to infer EFSM models from black-box system traces. I also showed how heuristics which recog-
nise data usage patterns can be used to abstract away concrete values by introducing registers
to the model. This enables transitions to be merged when neither directly subsumes the other.

The implementation of my technique is based on my Isabelle formalisation of EFSMs, with
the code generator being used to create an executable implementation. For the functions which
could not be made executable, I found other solutions, in the end having to compromise the
formality of the directly subsumes relation in order to allow the tool to run in reasonable time.

Before we can comprehensively evaluate my inference tool, there still remains a hole in the
approach which needs filling: the heuristics. The problem here is that the performance of the
inference technique is almost entirely dependent on the quality and applicability of the heuristics
provided to it. Producing high-quality heuristics often requires some inside-knowledge of the
system under inference. If the user has this knowledge already, they are unlikely to require
automated inference. Ideally, we would like something more generally applicable. This is the
subject of Chapter 7. Once we have this, it is then possible to empirically evaluate the inference
technique on some larger case studies. I do this in Chapter 8.
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Chapter 7

Using Genetic Programming to Infer Computation

In Chapter 6, I presented an EFSM inference technique based on state merging which uses simple
heuristics to identify and generalise certain data usage patterns to enable more transitions to be
merged. The effectiveness of this technique depends on the user’s ability to provide appropriate
heuristics for the traces at hand. This means that the user must either have a vast collection of
heuristics or have some inside knowledge of how the system works. This is a serious limitation
to the applicability of the inference technique from Chapter 6.

Another limitation is the fact that the heuristics are applied at merge time, meaning they
can only really work with two transitions at once. If there are lots of transitions in a model
which represent the same behaviour, it makes sense to try to generalise them all at the same
time. Ideally, it would be good to perform this generalisation as a separate step before we begin
merging states, since this allows us to work with the entire model. Additionally, if we can make
transitions which perform the same function identical by abstracting away concrete values, this
effectively reduces the inference problem back down to classical inference, as we should only
need to merge identical transitions.

The work presented in this chapter aims to solve the limitations of the heuristics from
Chapter 6 by presenting a more general approach for inferring the output and update functions
of transitions, the main contributions being the following.

e An approach based on genetic programming to infer functions which account for sets of
input-output pairs where certain inputs are elided.

e A preprocessing technique for the inference process which makes use of this technique to
infer output and update functions on transitions in the PTA.

e A heuristic for use during inference which uses GP to infer guard functions to distinguish
transitions that exhibit value-dependent behaviour when they cannot be merged.

7.1 Introduction

The task here is to come up with a general way of inferring the functions on transitions which
compute output from input. As part of this, it may be necessary to make use of state variables,
or registers, hence it is also necessary to infer update functions for these as well. Examples 6.3.2
and 6.3.3 in Chapter 6 give a good idea of what we want to achieve here. In situations where
we have transitions that exhibit the same kind of behaviour with different literal values, we
hypothesise that these transitions may be instances of a more general behaviour. If we can
identify this behaviour, we can generalise the model such that more states and transitions can
be merged. This not only results in a smaller model, but also in one which is better able to
predict the behaviour of the system when faced with new executions.

The simple heuristics we saw in Chapter 6 can be thought of as a set of oracles, each providing
a suggestion to the inference process, for example “Have you tried storing the input in a register
for later use?” or “Have you tried adding this input to that register?”. The fact that we must
implement a heuristic for each data usage pattern we wish to generalise is a serious limitation of
the current approach. Implementing good heuristics requires some understanding of the system
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at hand, so we really need to know how the system works before we apply inference. To extend
the applicability of EFSM inference beyond simple examples, we need a general purpose way to
infer output and update functions that does not require us to already have an answer in mind.

As we saw in Subsection 3.6.3, genetic programming has already been successfully used in
the literature [150] to infer update functions for EFSM transitions. Where the heuristics in
Chapter 6 each suggest a single possible solution which may or may not be appropriate, the
idea here is to use evolutionary computation to come up with a bespoke solution “on the fly”
which works for the data at hand. The advantage of this is that users of the inference tool do
not need to have any knowledge about the system under inference to infer a model.

In [150], the GP required comprehensive white-box traces which laid bare the internal vari-
ables of the system. What we would ideally like is to work with black-box traces, which only
contain information visible to an external observer of the system. This makes the task of infer-
ring functions much harder, as we are effectively eliding some of the inputs to each function.

Example 7.1.1. Table 7.1 shows some input-output pairs for the function ig 4+ 1. If the
values of both input variables (ig and 71) are known, it is quite easy to work out what the
function is. Indeed, existing GP implementations such as [150] are reliably able to infer such
functions in a few milliseconds.

ig 11 result

50 0 50
50 50 100
10 0 10
20 10 30
50 10 60

Table 7.1: A set of input-output pairs for the function ig + 1.

Now consider the case where variable 7 is elided and we only have access to the values of
ig. We know that r; exists and might be used in calculating the result, but we do not know for
sure either way, and certainly do not have access to its values. How might we go about inferring
a suitable function? The problem is now twofold. Firstly, the original “guess the function”
problem remains, but is made harder by the fact that we do not have values for r;. Secondly,
because GP relies on evaluating candidate functions to assess their suitability, we must infer
suitable values of r; such that candidate functions involving it can be effectively evaluated.
Of the many successful applications of GP in the literature, for example [96, 25, 107, 150],
there do not appear to be any which tackle the problem of elided inputs.

Another noteworthy aspect of the technique in [150] is that it was a postprocessing technique.
This means that the GP is stuck with whatever model the inference process produces and the
inferred functions play no part in the inference process. Here, I propose a preprocessing technique
to be performed on the proginal PTA before merging. This means that the inferred functions
can influence the merging process and is particularly important here since, unlike in [150], my
transitions produce outputs meaning that they cannot be merged with other transitions unless
the behaviours are consistent. Inferring generalised output functions before attempting merging
helps with this because we can generalise different concrete values to the same symbolic function,
allowing us to merge more transitions.
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The remainder of this chapter is laid out as follows. Section 7.2 first presents a high level
overview of what we would like to achieve here. Section 7.3 provides some necessary background
needed to understand the details my GP approach for inferring functions from incomplete input
sets presented in Section 7.4. Section 7.5 details how this is applied to the inference process.
Section 7.6 presents a means of using GP to detect value-dependent behaviour. Finally, since
GP is quite computationally expensive, Section 7.7 presents some implementational shortcuts
which can be used to reduce the cost.

7.2 Motivating Example

Before delving into the technical details of how GP is applied to the inference process, I will first
present an outline of what we want to achieve in terms of the running drinks machine example.
Recall that the traces in Figure 6.1 can be transformed into the PTA in Figure 6.3, shown
below for convenience. If we wish to generalise the various behaviours in this PTA, we must
first divide the transitions into groups that we think might be instances of the same general
behaviour. Here, there are three such groups: select, coin, and vend. We now need to obtain
output and update functions for each group.

50/00 = 50 coin : 1[ig = 50] /0y := 100 R\ vend : 0/0g := “tea”
O .

o) @<: ~
select * 1o coin : 1 @ @

‘o = 10! —
0]/0p := 100 vend : 0/og := “tea”

coin : 1[ig = 50]/0g := 50 \_/ coin: 1[ig = 50]/0g := 100 \_ vend: 0/0g := “coffee”

Figure 6.3: The PTA representing the traces in Figure 6.1.

The transitions in the select group do not produce outputs, so no functions need to be
inferred. For the coin group, there are three distinct transitions: coin(50)/[50], coin(50)/[100],
and coin(100)/[100]. To generalise this behaviour, we need a function which accounts for the
set of input-output pairs {([50], [50]), ([50], [100]), ([100], [100])}. Here, there are two possible
output values for ig = 50, so we cannot express the behaviour purely in terms of inputs. The
output must depend on the value of a register. If we call this register 1 and assume that it
holds the correct anterior value when each coin transition fires, we can use GP to evolve the
output function ig + r1. This results in the PTA in Figure 7.1.

coin : 1[ig = 50]/

i« 1io = 50/
coin : 1o =2 00 1= ig + T vend : 0/og := “tea”
0 0+ N @

0p =10+ "1 @ a3
_er’) @< ~
coin : 1[z @ 6

%o = 100 “taq?
. % =iy 4 r, I/ vend : 0/0g := “tea
Selecy . 1
iy =2
(7 o~ o~ (m
coin : 1]ig = 50]/ N coin : 1[ig = 50]/ \_ vend: 0/0g := “coffee”
09 =19+ 1 0g =19+ 1

Figure 7.1: The PTA from Figure 6.3 with the output behaviour of the coin tran-
sitions generalised to ig + 7.
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The function iy + 1 only accounts for the input-output behaviours of the coin transitions
if 71 holds the correct value at the point that a transition fires. To use this output function,
we need to ensure that this is the case. The way we do this is to use GP again to infer update
functions for the different transition groups. Looking at Figure 7.1, we can see that the select
transitions need to initialise 71 to zero. This handles two out of the three cases in our set of
coin input-output pairs. For the pair ([50],100), which corresponds to the go — ¢3 and gs — g9
transitions, we need to update the value of r;. For both of these transitions, r; needs to hold
the value 50. Since both transitions immediately follow a coin transition, the output from which
was 50, we could use the same function, ig + r1, as an update.

Finally, the vend group contains two distinct transitions. These transitions do not take any
input, so the set of input-output pairs looks like {([], [“tea” ]), ([], [“coffee” ])}. Since there are
no inputs at all here, we clearly need to introduce another register to account for the different
output values. Let us call this register ro. As with the coin transitions, we must perform a
second round of GP to evolve update functions such that our newly introduced register holds
the correct values when the vend transitions fire. Here, it makes sense to assign the input of
select to 9. This results in the PTA in Figure 7.2.

coin : 1[ig = 50]/

= 0
coin : 1] 70 0 09 1= io +71[r1 =10 +11] vend: 0/og :=ra

0p =0+ nfr . .
96

coin: 1[i, =
0 = 100/ vend: 0/0g :=ry

90 = 4o + 74 [, -'“lu+71
- _ (o) _ (o) @
coin : 1[ig =5 coin : 1[ig = 5l vend: 0/0g =12
1[ip = 50 N 1[ig = 50 N d:0
09 :=1dg +1i[r =g +11] 0p :=1ig + ri[ry =g +11]

Figure 7.2: The PTA after replacing literal outputs with functions and adding
updates where necessary.

Currently, each transition in Figure 7.2 still has its original guard. Ideally, we would like
to remove these guards so that the model can respond to events with different input values
to those observed in the original traces. Dropping the guards introduces nondeterminism but,
like in Subsection 3.3.4, this is not real nondeterminism. It is just a manifestation of the fact
that the model contains duplicated behaviour. Thus, like in Subsection 3.3.4, we can resolve
this nondeterminism by calling the RESOLVENONDETERMINISM function to merge states and
transitions such that the model becomes deterministic again.

After resolving the nondeterminism, we end up with the PTA in Figure 7.3. This is much
transformed from the original PTA in Figure 6.3, but it is still tree-shaped such that traces with
a common prefix share a common path through the model so still warrants the name PTA. We
are now ready to begin scoring and merging states as detailed in Chapter 6.

coln 1/ coin: 1/

select: 1/ I e ) 09 := g +11[r1 :=ip +71] /q}\ vend : 0/0g =13 "
N
coin ; 1/ 6

vend: 0/0g :=ra

0y 1=
0 = lo+11;1_-_m+,1

Figure 7.3: The PTA after resolving nondeterminism.
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We can see from this example that GP effectively performs the role of both the “store and
reuse” and “increment and reset” heuristics from Chapter 6. Rather than handing the inference
technique a solution “off the shelf” which may or may not be appropriate, GP looks at the sets
of relevant input-output pairs and tries to come up with an expression which fits. This means
that we could apply GP to any set of inputs and outputs and have it infer a function. Although
the functions we see here and in my evaluative case studies in Chapter 8 are relatively simple
such that they could reasonably be found through exhaustive search, the use of GP as a search
heuristic means that we can find arbitrarily complex functions from a very large search space of
potential operators, variables, and constants. Of course, the larger the search space, the more
generations the GP will need to find a suitable function.

There are several implementations of GP in the literature, including [150], which can evolve
functions for sets of input-output pairs where all the input values are known. We need more than
this here, though, since our outputs may depend on the values of registers which we cannot see.
The task now is to implement a version of GP that can work with incomplete sets of inputs.

7.3 Background

Having shown the role that GP is to play in the inference process, I now provide some necessary
background material on the underlying principles.

7.3.1 Evolutionary Algorithms

Genetic programming is a specific application of evolutionary algorithms (EAs), a general pur-
pose problem solving technique inspired by the biological process of evolution. The idea here is
that natural resources are limited, so a given population of individuals will become better suited
to their environment over many generations. This process is commonly referred to as natural
selection, and the idea has been successfully used solve many computational problems for which
no exact algorithm is known [8, 33, 55].

The class of problems for which EAs are most useful is combinatorial optimisation problems,
examples of which include route finding, scheduling, and bin packing. Such problems involve
rearranging a finite set of entities or operations into an optimal configuration, and often have
a very large number of possible solutions. Since these problems are either NP-complete or
NP-hard, there is no known way of efficiently computing an optimal solution directly. We are
therefore forced to search for one in the vast space of possible solutions. In the context of GP,
we are looking to arrange various computational operations into a program that generalises the
behaviour exemplified in a given set of input-output pairs.

Evolutionary algorithms help us to systematically explore the search space by directing
exploration towards individuals which seem more promising. A population of candidate solutions
is maintained and evaluated with a fitness function, which takes an individual and returns a
numerical value representing the suitability of the candidate solution. The fitness function can
be viewed as environmental pressure which mimics biological factors such as the availability of
food and prevalence of predators. Individuals with a higher fitness are better suited to their
environment and are more likely to survive to the next generation.

While EAs have many highly technical and specialised variants, the basic procedure is quite
simple. Algorithm 6 shows the high level structure which is common to many EAs. The first
step is to generate an initial population of p individuals. Then, over successive generations,
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this population is evolved by mating and mutating individuals, keeping only those with the best
fitness and discarding the rest. In this way, the average fitness of the population is likely to
improve over successive generations. This means that if we run the GP for long enough, we are
likely to discover an optimal solution if one exists.

Algorithm 6 The general structure of a u 4+ A genetic algorithm.
I: INITIALISE population with p random individuals
2: EVALUATE each individual

3: repeat

|

9

CROSSOVER pairs of parents to create A\ offspring
MUTATE the resulting offspring
6: EVALUATE the offspring

7: SELECT g individuals for the next generation
g: until Optimal solution or stopping condition

In the main loop, pairs of parents are crossed over! to form X\ new offspring. These offspring
are then mutated slightly. This simulates the random genetic mutations that occur during
natural reproduction. The mutated offspring are then evaluated and added to the population.
The best p individuals are then chosen to go on to the next generation. This kind of algorithm
is called a p + A algorithm since, when the A offspring are added to the existing population of
w individuals, the new size is p + A.

The 1 + A evolution strategy is one of many in the literature. It is referred to as a steady
state strategy as individuals remain in the population for many generations if their fitness is
sufficiently high. New individuals only enter the main population if their fitness value is higher
than the current worst individual, so the average fitness increases monotonically over time.

The counterpart to steady state algorithms is generational algorithms. Here, the old popula-
tion is replaced by the new one, regardless of fitness. Thus, the average fitness of the population
can go down between generations. More complex evolutionary strategies such as the 1+ (A, A)
EA [50] exist in the literature, as well as parameterless strategies such as in [75], but these are
not well-established. The intricacies of the various evolutionary strategies are outside of the
scope of this work, so these will not be discussed further here.

Aside from basic evolutionary strategy, the main two areas of variation between EAs are
crossover, which simulates the biological process of sexual reproduction, and mutation which
simulates genetic mutation that occurs as part of natural reproduction. These operations affect
how the search space is explored so have a dramatic impact on the performance of an algorithm.

7.3.2 Genetic Programming

We have already seen in Subsection 3.6.3 that genetic programming can be used to infer functions
that account for sets of input-output pairs. GP was introduced by Koza in [96] as a way of
applying evolutionary algorithms to discover computer programs that produce the expected
outputs when presented with the given inputs. Program fitness is evaluated using a training set
of inputs mapped to their corresponding output. The result of a successful GP run is a function
which is not only correct with respect to the training set, but also generalises to other inputs.
Unlike conventional machine learning techniques, the solutions produced here are readable such
that we can understand how inputs are transformed to produce the output.

IEAs which use crossover are commonly referred to as genetic algorithms, although this is not universal.
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7.3.3 Individual Representation

When applying evolutionary algorithms to a new problem, the first thing we must consider is
how individuals are represented. In standard GP, individuals are represented as syntaz trees
with terminal and non-terminal nodes rather than lines of code. Representing individuals like
this allows us to manipulate them with crossover and mutation much more easily.

Terminal nodes are leaf nodes in the parse tree. These are either literal constants or variables
to be evaluated in a given context. Non-terminals are branch nodes in the tree and correspond
to functions. These can be arithmetic and boolean operations, string concatenation, conditional
branches, etc. As an example, consider the expression 5+ (ig X r1), the syntax tree for which is
shown in Figure 7.4. Here, the terminals are 5, ig, and ;. The non-terminal are + and Xx.

Figure 7.4: The parse tree for the expression 5 + (ig X 71).

It is important to note that syntax trees have no fixed size and can grow arbitrarily large
during evolution, unless an artificial bound is imposed. This can make for functions which
are difficult to read and understand, but does mean that we do not need to know the size of
the function in advance. Several variants of GP exist that do not use a tree representation.
Examples include Linear GP [22], Cartesian GP [115], and Geometric Semantic GP [117]. Since
it is the most established technique, tree-based GP will be the focus here.

7.3.4 Fitness Evaluation

Perhaps the most important thing to consider when trying to solve any problem is how to
evaluate solutions. This is particularly important when using an evolutionary algorithm since
we need to be able to compare the suitability of different individuals. This is done through the
use of a fitness function which takes in an individual and returns a numeric value representing the
suitability of that individual. The biological analogy here is that the fitness function represents
how suited an individual is to the environment. It can also be thought of as a measure of the
acceptability of a given solution. Because of this, it is vital to ensure that the fitness function
is an accurate evaluation of the desired outcome. If not, evolutionary algorithms often find
“creative” ways of circumventing the intended objectives to produce individuals which optimise
the fitness function without actually solving the problem [99].

We can also think of the fitness function as an error function, or the distance of a given
candidate from the optimal solution. For tree-based genetic programming, the general approach
is to have an input-output table like Table 7.1 called a training set. For each row (or target)
in the table, the candidate solution is evaluated under the prescribed input valuations and the
distance between the expected value and the actual value is measured.? This produces a list of
distances, one for each target, which can then be aggregated to produce a single numeric value
such that the best individual in the population has the lowest value.

2This assumes the existence of distance function between the expected and actual values. The definition of
this will vary depending on the their datatype. For numeric values, we can use their arithmetic difference. For
strings, we can use metrics such as Levenshtein distance. More complex data types are not considered here.
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There are various ways to aggregate the list of distances, the most basic being to simply
sum them. This approach is not particularly “fair”, however, as it may give certain targets a
disproportionate effect on the fitness value. If the expected evaluation of one particular target
is very different to the rest, this will lead towards solutions which satisfy that target at the
expense of the others. For example, in Example 7.1.1, the second row has an expected value of
100. Since this is somewhat larger than the other expected values, the GP will yield functions
which produce values closer to 100 than to any other expected value. This is mitigated in [150]
by using the root mean square error (RMSE) to spread the error more evenly across the elements
of the training set so certain elements are not unduly optimised for. The RMSE is calculated
as follows, where n is the number of entries in the training set.

X1 (expected, — actualy)?
RMSE\/ =D :
n

7.3.5 Crossover

The crossover operator determines how individuals from the current population are recombined
to form new individuals. This is meant to simulate the biological process of sexual reproduction.
As in biology, the most common number of parents is two, but this need not be a hard limitation
here if a sensible strategy can be found for recombining more than two parents. This, of course,
is highly dependent on how individuals are represented.

While [96] did not use crossover, studies since then [133] have shown that crossover is a
beneficial operation and it is used in numerous implementations in the literature including
[150], upon which I base my own implementation. For tree-based GP, crossover consists of
exchanging subtrees between individuals. Two parent individuals are chosen and a random
subtree is swapped between parents. An example is shown in Figure 7.5, in which the expressions
54 (ip x r1) and (3 — r1) X 41 are the parents. The nodes r1 and 3 — r; have been selected as
the crossover points, making the offspring 5 + (ip x (3 —71)) and r1 X 41 respectively.

Figure 7.5: Tree-based crossover.

7.3.6 Parent Selection

Before the crossover operator can be applied, the parent individuals must be selected from
the population. One way to select parents is to simply pick them arbitrarily, with or without
replacement, from the population. This is not intuitively sensible, though, as it is likely that
crossing over better individuals will lead to better offspring. Another way of obtaining such
parent individuals is to take the best n individuals from the population and recombine them
in various ways until A children have been created. Most algorithms do not do this, though,
because it tends to lead to premature convergence.
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A common compromise between these two methods of selection is tournament selection.
Here, n pools of m individuals are created by selecting from the population at random. Next,
the individual from each pool with the highest fitness is selected to be a parent. A popular
configuration is m = n = 2, which has been shown to perform well on a number of problems
[114]. This configuration is commonly referred to as “binary tournament selection”.

7.3.7 Mutation

Mutation operators are meant to simulate the small changes in DNA that occur during natural
reproduction. This allows new characteristics to enter the population. Where synthetic mutation
differs from its biological counterpart is that natural mutation is completely random (and often
not beneficial) where most synthetic mutation operators are built intelligently, with a specific
purpose in mind.

As with crossover, mutation is highly dependent on the problem at hand and how individuals
are represented. There are three main mutations which can be applied to individuals represented
as trees. These are illustrated in Figure 7.6 and are defined as follows.

Insertion (INS) replaces a leaf node with a new random subtree, effectively inserting a new
node into the tree.

Substitution (SUB) replaces a branch node with another branch node of the same type, e.g.
substituting a + for a —.

Deletion (DEL) replaces the individual with one of its subtrees, effectively promoting a random
branch node to the root.

The three operators are brought together in the HLV-Prime mutation operator introduced in
[54] which selects uniformly at random one of the three operators to apply.

SUB INS
B & — © & — )

JDFT,

Figure 7.6: The three mutation operators of HLV-Prime.
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7.3.8 Bloat Control

The candidate solutions produced by GP tend to increase in size as the algorithm proceeds,
often without this growth providing much benefit. The same effect can be observed in natural
evolution too, with some species having body parts which serve no useful function, for example
the appendix in humans. Such biological features are referred to as spandrels. In GP this
phenomenon is known as bloat, and affects most EAs where individuals do not have a fixed
maximum size. A number of different techniques exist in the literature to control this.

Steady-State Iterations - While bloat management is often not the primary reason for using
a steady-state algorithm, it does assist in this up to a point. With a steady-state algorithm,
children are added to the population such that it becomes oversized, and the weakest are
killed. This means that individuals with high fitness stay in the population over multiple
generations. Since candidate solutions tend to grow over time, older individuals will be
smaller. Thus, keeping them in the population will result in slower growth of the average
solution size. With generational algorithms, where the new population is made up entirely
of child individuals, there are no older individuals in the population so the average size of
individuals will grow much faster.

Maximum Depth Restriction - Perhaps the simplest bloat management technique is an ar-
tificially imposed maximum size for individuals. Here, children with a tree depth larger
than a pre-specified size are rejected from the population. This guarantees that the final
solution will be small but requires some idea of the size of the optimal solution, which may
not always be known even approximately.

Parsimony Pressure - Given that there are potentially infinitely many ways of expressing any
given function, it is extremely likely that at some point there will be multiple individuals in
the population with the same fitness. Here, there is no hard limit on the size of individuals,
but size is used to break ties in fitness such that smaller individuals are preferred. While
certain GP approaches use candidate size as part of the fitness function [96, 25], this
approach can lead to a function’s size overwhelming its correctness. That is to say that
smaller functions which produce less correct outputs score better than larger functions
which are better able to explain the behaviour. This is especially true during the later
stages of the algorithm when a population’s fitness values are converging.

An alternative is to make tree size a secondary objective alongside correctness. This
technique has mixed results in the literature [18, 43, 57]. The problem again here is that we
first and foremost want correct solutions. It is not acceptable to compromise a candidate
solution’s correctness such that it might become smaller in the same way that this kind of
trade-off is acceptable in truly multi-objective situations.

Another approach, first proposed in [107], is called lexicographic parsimony pressure.
Here, correctness is the only metric used in the fitness function, with size only coming into
play only if it is necessary to decide between two individuals with equal fitness.

Expression Simplification - This approach involves exploiting mathematical identities to re-
move redundant nodes from an individual’s parse tree. For example, the expression x+0 is
equivalent to x+y—y, both of which are equivalent to just . Simplification is used in [132],
which reports strong results, but [79] warns that it might lead to premature convergence.
The reason for this is that the population may be filled with semantically equivalent but
syntactically different individuals with the same fitness which, when simplified, become
identical. This then leads to a high number of duplicates in the population, causing the
algorithm to get stuck in a local optimum from which it is difficult to escape.

139



7.4. GENETIC PROGRAMMING WITH LATENT VARIABLES

7.4 Genetic Programming with Latent Variables

Having covered the basics of how GP can be used to infer functions which relate sets of input-
output pairs, we can now move on to the problem at hand. We would like to automatically infer
output functions for our EFSM transitions from black-box traces. We cannot apply existing
GP techniques to do this as the outputs of certain actions may depend on the values of internal
system variables which are not visible. They are latent. Existing techniques are not designed
to cope with this. We therefore need a new technique to infer functions to relate sets of input-
output pairs where not all the inputs are known. This section presents such a technique.
Algorithm 7 shows the outer loop of my algorithm. The approach is very similar to the
standard (u+ A\)GA, detailed in Subsection 3.6.3, and existing GP methods. Indeed, my imple-
mentation builds on the one from [150].3 An outline of the top-level behaviour is as follows.

Algorithm 7 Outer loop of my GA.

1. function EVOLVEEXPRESSION (trainingSet, size, depth, generations)
2: population + GENERATEPOPULATION(size, depth, type)
1
5

EVALUATEPOPULATION (newIndividuals, trainingSet)
bestIndividual <+ CHOOSEBEST(population)
for i < generations do

6: for i < numCrossovers do

7: (p1, p2) ¢ SELECTPARENTS(population)

8: (c1,¢2) < CROSSOVER(p1, p2)

9: population < populationU {c1}

10: for i < numMutations do

11: population < population U {MUTATE(population[random])}
12: SIMPLIFY POPULATION(population)

13: EVALUATEPOPULATION ( population)

14: REMOVEDUPLICATES ( population)

15: if population.size > size then

16: population < REMOVEWEAKEST(population)

17: if population.size < size then

18: newlndividuals <+ GENERATEP OPULATION(size — population.size)
19: EVALUATEPOPULATION(newIndividuals, trainingSet)

20: population < population U newlndividuals

21: bestIndividual <+ CHOOSEBEST(population)

22: if bestIndividual.fitness = 0 then

23: return bestIndividual

24: return bestIndividual

The first stage of any genetic algorithm is to generate an initial population of individuals.
I do this by randomly combining terminal and non-terminal operators. The next stage of the
process is to evaluate these individuals according to the fitness function. Here, each candidate
expression is evaluated according to the input-output pairs in the training set. A key challenge
here is determining how to evaluate functions which involve latent variables, since their values
do not appear in the training set. The solution to this problem is presented in Subsection 7.4.2.

30penly available at https://github.com/neilwalkinshaw/mint framework. (Accessed 13/02/20)
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The main loop of the algorithm iterates for a fixed maximum number of generations. Here,
new individuals are generated through crossover and mutation, added to the population, and the
weakest individuals are discarded to keep the size of the population constant. After generating
new individuals, I simplify the new population to remove redundant nodes from the candidate
expressions as discussed above.

The next step is to evaluate the simplified population with the fitness function and discard
those individuals with the lowest fitness so that the size of the population remains constant.
Before doing this, however, we must take account of the fact that simplification often results in
a population which contains duplicate individuals. This inhibits the exploration of the search
space, so it is much better if we can keep the population diverse. To this end, I remove duplicate
individuals from the population before discarding the individuals with the lowest fitness. If the
population contained many duplicates, this step may make the population too small. In this
case, new random individuals are generated to fill it back up to the correct size before continuing
on to the next generation.

7.4.1 Initial Population Generation

Before the GP is run, we first need to obtain sets of terminals and non-terminals. Terminals
are either constants such as 5 and “tea”, or variables such as ig and r1. In the context of EFSM
inference, these values can be taken from the traces as detailed in Section 7.5. Non-terminals
are functions such as _+_, _—_, and _x _. In the case of this implementation, these are the only
functions currently supported by the aexp datatype from Chapter 4 which is used to express
outputs and updates. That is not to say that we could not include more complex functions such
as exponentials, logs, or even hashing functions, although additional features such as password
salting mean that we are unlikely to be able to use GP to crack any major security protocols.

Since the aim here is to infer functions that can use latent variables (i.e. EFSM registers),
variables are tagged with whether they are latent. If a variable is latent, this means that its value
does not appear in the traces or the set of input-output pairs. When evaluating expressions, we
must find a suitable value for it to take. This is explained in more detail in Subsection 7.4.2.

Algorithm 8 shows how the initial population is generated. The standard process is to
randomly combine terminals and non-terminals of a given type until a maximum tree depth
is reached. If the set of non-terminals which return elements of the specified type is empty
or the maximum depth is less than two, a random terminal is chosen. Otherwise, either a
random terminal or a random non-terminal is returned. In Algorithm 8, the probabilities of
choosing a non-terminal or a terminal are 0.7 and 0.3 respectively. These probabilities were
chosen arbitrarily such that it is more probable that a non-terminal is chosen and the tree will
be extended further. Whether and how much these probabilities affect the final output of the
algorithm is useful future work, but is somewhat outside of the scope of the project.

For non-terminal nodes, the CREATEINSTANCE function in Line 10 makes recursive calls to
GENERATERANDOMEXPRESSION to generate appropriate child nodes of height mazD — 1 in the
same way. This needs to be specific to each operator such that the correct number of children
with the correct respective return types can be generated.

The interesting part of Algorithm 8 is the while loop on line Line 17 that tries to ensure
that the initial population is made up of distinct individuals. This is not featured in [150],
although it is reasonably common practice in the field of evolutionary computing in general
to stop the initial population becoming clogged with duplicate individuals, which can cause
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premature convergence. If the number of terminals and non-terminals is sufficiently large, this
occurs naturally, but if there aren’t many, we need to give the algorithm as much help as possible
to generate a diverse initial population. It is necessary, though, to provide a fixed TIMEOUT
for this as, without it, population generation will not terminate if the specified population size
exceeds the number of possible individuals.

Algorithm 8 Initial population generation.

1: function GENERATERANDOMEXPRESSION(depth, type)
2: nonTerms <— NONTERMINALS(type)
terms <— TERMINALS(type)

Ut o= W

if nonTerms =0V mazD < 2 then
return SELECTRANDOMTERMINAL(terms)
6: else
7: if random() > 0.7 then
8: return SELECTRANDOMTERMINAL(terms)

9: selected < SELECTRANDOMNONTERMINAL(non Terms)
10: return selected. CREATEINSTANCE(mazD — 1)

11: function GENERATEPOPULATION(size, depth, type)

12: population + {}

13: forie[0... size] do

14: instance = GENERATERANDOMEXPRESSION(mazD + 1, type)

15: if NONTERMINALS(type) # () then

16: iteration = 0

17: while instance € population A iteration < TIMEOUT) do

18: iteration-++

19: instance = GENERATERANDOMEXPRESSION(mazD + 1, type)

20: population < population U {instance}

21: return population

Example 7.4.1. Consider the situation with integer terminals 0, 1, and 2, and non-terminals
+ and —. For a maximum tree depth of 2, there are only 21 individuals which exist. If the
specified population size is greater than 21, without a TIMEOUT, the while loop on line
Line 17 would never terminate since the population will contain every feasible individual. After
this point, only individuals which are already in the population could possibly be generated.

It is important to note that individuals in the initial population are left as they are generated
without any effort to control bloat. Bloat control is only employed after crossover and mutation
have been applied. This is to further help to avoid premature convergence as per [79].

7.4.2 Fitness Evaluation

Having generated the initial population, the next thing we must consider is how to evaluate indi-
viduals. In tree-based GP, the fitness of an individual is determined by evaluating the expression
with the different inputs in the training set and comparing the result with the expected output.
This yields a set of values which can be aggregated together to produce a single numerical value
that represents the candidate solution’s suitability, with better individuals having lower values.
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Example 7.4.2. Consider again the input-output pairs from Table 7.1 and the expression
ig—ry. Clearly this candidate is not correct, but we need some way of quantifying how incorrect
it is. Table 7.2 shows the evaluation of the function compared to the expected values, and the
difference between these values. Aggregating the differences by summing them together gives
an error (or fitness value) of 160. This is a quantification of how well iy — r; accounts for the
observed behaviour, and allows us to compare it to other candidate expressions.

ig rp expected actual distance

50 0 50 50 0
50 50 100 0 100
10 0 10 10 0
20 10 30 10 20
50 10 60 20 40

Table 7.2: Evaluating the fitness of the expression iy — r; for the input-output
pairs in Table 7.1.

The problem here is that not all input values are known. In software systems, the output of
a function may depend on the value of an internal variable which does not appear in the traces.
These correspond to registers in our EFSM models, the values of which are also not directly
observable. If, as in Example 7.1.1, r; corresponds to such a variable, evaluating an expression
which uses it suddenly becomes extremely difficult as we do not know what value it holds.

A naive way of solving the problem of unknown variable values would be to simply use a
default constant value. The problem with this approach is that latent variables then effectively
act as constants and there is no benefit to using them. The main application of latent variables
is to allow the inference of expressions which relate input-output pairs where the inputs alone
are insufficient to do so. For example, there does not exist an expression purely in terms of
1o and constants which explains the behaviour described by Table 7.1 because there are three
different possible outputs when iy holds the value 50. Unless we have a truly nondeterministic
system, there must be at least one other variable involved.

We want to allow latent variables to act as a “fiddle factor” to allow expressions to evaluate
correctly. It is therefore important to allow them to change their value on a per-target basis,
just as any other input can. If we only allow one latent variable per expression, we could, for
each target, solve the expression for the latent variable and use that value in its evaluation. For
example, for the candidate expression i; — 1 from Example 7.4.2, if we know that the expected
result is 50 and ip holds value 50, then we know that 1 must hold the value zero. The problem
with this approach is that it allows every expression to evaluate correctly every time. Thus,
every expression involving a latent variable has perfect fitness. It also limits us to only being
able to use one latent variable per expression, which we may not wish to be constrained to.

We need something in between a static default value and allowing latent variables to mag-
ically make every expression evaluate correctly. The approach I take here is to have a set of
predefined values for latent variables from which the best value is used. These values come
from the set of terminals with which the GP was initially provided. In the context of EFSM
inference, these values come from the inputs and outputs recorded in the traces. Working under
the assumption that registers get their values from inputs, and can manifest as part of outputs,
the set of constant terminals provides a reasonable place to look for potential values of latent
variables. This is the premise behind the CALCULATEDISTANCE function in Algorithm 9.
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The CALCULATEDISTANCE function takes an individual and a target. The minimum distance
is first initialised to infinity. If there are no latent variables, the expression is simply evaluated
for the current target, and the distance between the expected and actual values is calculated.
If the expression makes use of latent variables, we wish to find the valuation which gives us
the least distance between the expected and actual values. For each latent variable, we iterate
through the set of possible values, searching for the valuation with the smallest distance between
the expected and actual values. The possible values of latent variables are the literal constants
of the correct type from the set of terminals.

Algorithm 9 Fitness evaluation of expressions involving latent variables.
1: function CALCULATEDISTANCE(individual, target)
2: minDistance <— oo

latent < LATENT VARS(individual)

Tt o= W

if latent = () then
minDistance < DISTANCE(EVALUATE (individual, target), EXPECTED( target))

6: for var € latent do
7: for value € var.type.values do
8: distance < DISTANCE(EVALUATE(var, value, individual,target), EXPECTED( target))
9: if distance < minDistance then
10: minDistance < distance
11: function EVALUATE(individual)
12: mistakes < 0
13: distances < |]
14: latent < LATENTVARS(individual)

15: totalUnused Vars <— TOTALUSED VARS(trainingSet) \ VARSINTREE(individual)
16: for target € trainingSet do
17: minDistance < CALCULATEDISTANCE(individual, current)

18: distances <+ minDistance# distances
19: if minDistance > 0 then
20: mistakes—++

21: fitness < mistakes + RMSE(distances)
22: if totalUnusedVars = () then
23: return fitness

24: return fitness + latent.size()

The EVALUATE function in Algorithm 9 shows how CALCULATEDISTANCE is used to evaluate
candidate expressions. The for loop spanning lines 16 - 20 calls the CALCULATEDISTANCE
function for each target and records these distances. If the distance is greater than zero, this
indicates that the expression is not correct for that particular target and the variable mistakes
is incremented. The fitness of the individual is then the number of mistakes plus the aggregated
distance values. This is calculated using their RMSE, as detailed in Subsection 7.3.3.

Most tree-based GP simply has the fitness value being the aggregated distances. Here, I
additionally incorporate the number of incorrect targets. This gives a bonus to functions which
evaluate correctly for a large proportion of candidates in the training set, and helps to stop the
GP from favouring functions with a small error for every target in the training set over those
which evaluate correctly for most targets, but produce a larger error for only a few.
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Line 22 tests to see whether the individual uses all the available non-latent variables. If so,
the fitness is simply returned as is. If the candidate uses only some of the available non-latent
variables, the number of latent variables it uses is added to the fitness value. For example, if
there are two input variables and the register r; is a latent variable, the expression ¢; 4+ incurs
a penalty of +1 to the fitness value because it makes use of the latent variable without using
the non-latent variable ig. The function iy + i1 + r; does not incur a latent variable penalty,
however, because all the available inputs are used.

The justification for this is that it is expected that transitions will use their inputs in some
way, otherwise they need not be there. We want to penalise the use of latent variables when
they are not necessary such that they are used as a last resort only. If the GP is able to use them
without penalty, it often discovers that simply outputting the content of a latent variable always
has the potential to yield the correct answer. This is an example of the problem mentioned in
Section 7.3, where EAs find ways to maximise fitness without solving the problem, and is not
a particularly useful or desirable solution in most circumstances. Even when the algorithm
has discovered that outputting the content of a latent variable always has the potential to be
correct, we want to keep searching for a solution which takes the inputs into account. This does
mean that, in situations where this loophole is the only potentially correct answer, the algorithm
can never achieve perfect fitness but, since the algorithm runs for a fixed maximum number of
generations, this will not stop it from terminating.

7.4.3 Mutation

The original mutation operator in [150] is simply the SUB operator of HLV-Prime shown in
Figure 7.6 with the ability to generate new random constants. While [150] reports good re-
sults with this, preliminary experiments revealed that something more complex is needed here.
Consequently, I implemented my own mutation operators, taking inspiration from HLV-Prime.
HLV-Prime is a popular general purpose mutation operator in tree-based evolutionary algo-
rithms, but it only effectively operates over non-trivial trees. If the individual to be mutated
consists solely of a single terminal root node, HLV-Prime can only insert or substitute. In the
context of such trivial trees, the substitution operation effectively generates an entirely new
individual. This is not really what mutation is about. In evolutionary algorithms, mutation
is meant to simulate the small changes in DNA which occur during biological reproduction.
Note the phrase “small changes”. Substituting subtrees in a larger individual is in keeping with
the idea that mutations should be small, but creating an entirely new individual is simply not
appropriate. Thus, I made the decision to treat trivial trees separately from non-trivial ones.

Trivial Trees

For trivial trees made up of a single terminal root node, the INS and SUB operations of HLV-
Prime are disproportionate to the size of the individual. They are not in keeping with the idea
that mutations represent “small” changes in DNA that occur during natural reproduction. If
the node is a constant literal value (for example the number 5 or the string “potato”), a more
appropriate operation is to fuzz according to its datatype as follows.

Double A random value between -1 and 1 is added to the current value.

Integer The value is incremented or decremented by 1.

String Either the first letter is removed or a single character is added to the end.

Boolean The value is negated.
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In addition to fuzzing the values by small amounts, preliminary experiments revealed that
it is extremely helpful to be able to replace a terminal with another value of the same type
from the set of terminals used to generate the initial population. The reason for this is that it
helps to direct the search towards values which are known to be significant. This is obviously
not applicable to boolean constants, though, as there are only two values to pick from. The
implementation of [150] also allows new constant values to be generated at random. While this
does not appear to be particularly harmful, because the field of possible values is so large, it is
also extremely unlikely to be useful. Consequently, I consider it to be a wasted operation, and
did not include this functionality in my own implementation.

If the value is a variable (for example ig, or 7) rather than a constant, fuzzing cannot be
applied so it is mutated by the INS strategy from HLV-Prime, which is the only strategy detailed
here which is appropriate for both terminal and non-terminal root nodes.

Non-trivial Trees

In addition to the three operations from HLV-Prime, I defined three more operations for non-
terminals to bring the total to six possible mutation operators which are selected from uniformly
at random. These are defined as follows.

Random Change of Node to Terminal Here, a random node in the tree is changed to a
random terminal. The idea here is to act as a means of randomised bloat control and help
to remove spurious subtrees added by the INS and SUB operators.

O. o)
G ® = = e
ONRO

Reversing Child Order Here, the order of the children is reversed. This obviously has no
semantic effect on commutative operators like plus but can dramatically change the output
of non-commutative functions like minus.

O (=)
olRO — OO
ONRO ONNO

Fuzz a terminal Here, a random leaf node is chosen and fuzzed as discussed above.

O ()
g n = O &
oONR0 () ()
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In contrast to most genetic algorithms, which only apply one mutation operation per indi-
vidual per generation, I apply up to three in sequence with a probability of 0.5 (after the first
operation), so an individual could, for example, have a node substituted, a node added, and
a terminal fuzzed. Since the probability of a node having three mutation operators applied is
quite small (1 x 0.5 x 0.5 = 0.25), this acts a little like the fast mutation operators in [51], the
idea being that mutations are mostly quite small but are occasionally very big. This helps to
escape local optima and avoid premature convergence.

There are, of course, any number of potential mutation operations for candidate expressions,
with the precise details of this being somewhat outside the scope of this project. Here, I simply
aim to minimally extend the work of [150] to allow it to infer functions involving latent variables
such that I can use it as part of the preprocessing technique I present in the next section.
Since the original mutation operator used in [150] did not lead the algorithm to converge on a
suitable expression acceptably quickly, I sought to extend the range of operations and capture
the intuition that mutation operations should only make small changes to individuals. The
operators presented here are either obvious modifications to HLV-Prime or ad-hoc additions
which improved the outcome of preliminary experiments. A detailed investigation into the
effect of individual mutation operations falls somewhat outside the scope of this thesis and
remains desirable future work.

7.4.4 Types

The issue of types has thus far been somewhat glossed over. In fact, building expressions which
are type correct, and maintaining this through crossover and mutation, is a challenge in itself.
To do this, I give each operator a type signature, similar to Haskell functions. For example,
the plus operator has the type signature [INT, INT, INT]. It takes in two integers and returns an
integer. Thus, the two subtrees of the operator must also return integers.

Because each operator has a well-defined type signature, it then becomes relatively straight-
forward to maintain type correctness. When generating random individuals, we know what
return type each node needs to be. We can also choose crossover points which maintain type
correctness, and only apply mutations which are type correct. For example, we cannot swap the
children of a node if they have different return types because this would not type check. This
becomes very important when we attempt to infer guards in Section 7.6.

7.4.5 Bloat Control

The candidate solutions produced by genetic programming tend to increase rapidly in size as
the algorithm proceeds, without this growth providing much benefit. As mentioned in Subsec-
tion 7.3.8, the use of a steady-state algorithm has the added benefit of helping to reduce the
rate of solution growth, but this alone is not enough. I employ a number of different techniques
from the literature to help reduce bloat as much as possible.

Maximum Depth Restriction

Much of the work in GP follows the technique proposed in [96]. Here, children with a tree depth
larger than a pre-specified size are rejected from the population. I employ this technique during
the generation of the initial population, where individuals are given a hard maximum size. As
discussed in Subsection 7.4.1, individuals are generated randomly such that they may be smaller
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than this maximum size but they are guaranteed not to be larger. Since the size of individuals
in the population tends to grow over time, imposing an initial hard size limit helps to ensure
that smaller expressions are explored. It also stops the system from continually generating
non-terminal nodes as it could if the size of individuals was unbounded, thus guaranteeing
termination of individual generation.

No maximum depth restriction is applied during crossover and mutation, however, as there
is no reliable way to determine in advance what this should be, and it is obviously undesirable
to apply arbitrary restrictions too aggressively. In general, it seems that the other bloat control
strategies that I use are enough to ensure that expressions do not grow unacceptably large
during evolution.

Lexicographic Parsimony Pressure

Given that there are potentially infinitely many ways of expressing any given function, it is
extremely likely that at some point there will be multiple individuals in the population with the
same fitness. Under such circumstances, we can break ties in fitness using parsimony pressure
as discussed in Subsection 7.3.8. Here, the correctness of a candidate solution is the only metric
used in the fitness function. Size only comes into play when we need to decide between two
individuals with equal fitness.

We cannot apply a similar technique to penalise unnecessary register usage, however, as this
would leave the only fitness metric being the aggregated distance between expected and actual
values. Since the “cheats™ solution of simply returning the value of a fresh register is always an
optimal solution, removing the fitness penalty for introducing registers would allow the GP to
terminate as soon as this individual enters the population. Thus, the penalty for using registers
must be part of the fitness function so that the algorithm keeps searching for expressions which
can explain the outputs in terms of inputs.

Expression Simplification

This approach involves exploiting mathematical identities to edit an individual’s parse tree
and remove redundant nodes which, if allowed to persist over many generations, lead to very
bloated final solutions. In my implementation, I make use of Z3 [45] to simplify expressions
after crossover and mutation. The Z3 simplifier works by applying a set of bottom-up rewriting
rules to a given expression and is quite simple to use. Expressions are converted from my
representation to Z3’s representation, simplified, and converted back to my representation.

The simplifier does not always return the smallest representation of a given expression (for
example, it chooses to represent the expression 71 > 51 as —(r; < 51)), but it is deterministic in
its simplification (up to commutativity) such that equivalent expressions simplify to the same
thing. Since it does not impose an order on arguments, expressions like ry + i and ig + r1
remain distinct even though they are equivalent.

Simplification is used in [132] and, to a lesser extent, in the original implementation of [150],
both of which report strong results, but [79] warns that it might lead to premature convergence.
To mitigate this, as discussed at the start of this section, duplicate individuals are removed from
the population after simplification and new random individuals are generated to replace those
lost. This has the effect of maintaining a diverse population to help escape local optima.
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7.5 Application to EFSM Inference

The simple heuristics in Chapter 6 are used to generalise particular data usage patterns and
abstract away concrete values. The main problem with this is that the heuristics are too specific
to be of much use. We have now seen how GP can be used to produce expressions which account
for sets of input-output pairs, and how latent variables can be introduced when no expression
purely in terms of inputs and constants can be found. What remains is to apply this to the
EFSM inference process to infer output and update functions for transitions.

The heuristics in Chapter 6 are only brought into play when we want to merge a pair of
transitions, neither of which directly subsumes the other. This works for simple rule-based
heuristics which look for a single pattern, but is not suitable for GP. Like every machine
learning technique, GP only tends to perform well when it has a lot of training data. The set of
input-output pairs of two transitions is simply not enough information to reliably infer functions
which generalise across a whole EFSM. Since the whole purpose of EFSM inference by merging
is to generalise and merge instances of the same behaviour, it makes sense to try to do as much
of this as possible before the merging begins. Hence, in this section, I propose that GP be used
as part of a preprocessing technique which is applied to the PTA before merging states.

7.5.1 General Approach

We have already seen a basic outline of what we want to do in Section 7.2. For each group of
transitions with the same structure — that is, those transitions with the same label and arity
which produce the same number and types of literal outputs — we want to use GP to infer
output functions. The enables us to abstract away concrete literal values.

The preprocessing technique I propose here has five main operations: transition grouping,
output inference, update inference, standardisation, and generalisation. Before delving into the
details of each stage, I will first present the general approach of my technique in terms of the
running drinks machine example. Recall that the traces in Figure 6.1 can be transformed into
the PTA in Figure 6.3. To fully illustrate my preprocessing technique, we require an extra trace,
(select(“coffee” ), vend(), coin(100)/[100], vend()/[“coffee” |). Here, the user has selected coffee
and then pressed vend before inserting a coin, so did not receive their drink. They subsequently
paid and then successfully dispensed their drink. The four traces can then be transformed into
the PTA shown in Figure 7.7.

cotn : 1[ig = 50]/ vend: 0/

0p := 50 0 1= “tea”
fio < 100)/ vend : 0/
0p = “tea”
coin : 1[ig = 50]/ vend : 0/
0p := 100 0p := “coffee”
0 fqg\ 0 q10
\/
Q @ 713
coin : 1[ip = 100]/ \/ vend: 0/
0 := 100 0g = “coffee”

Figure 7.7: The PTA in Figure 6.3 with the extra trace.
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The first step in the preprocessing technique is to divide transitions into groups according to
their structure. This process is detailed in Subsection 7.5.2 and yields four groups of transitions:
select, coin, vend with one output, and vend with no output. As a shorthand, I will distinguish
the two structural vend groups by writing vend/I and vend/0 to denote the fact that they have
one and zero outputs, respectively.

For reasons explained in Subsection 7.5.2, structural groups are split according to the last
transition which was taken that did not have the same structure. This leads to the coin structural
group being split into two historical subgroups, one containing transitions ¢ — q2, ¢2 — g3,
q1 — q5, g7 — qs, and gs — qog, all of which follow select, the other containing only the transition
q11 — 12, which follows vend.

We must now obtain output and update functions for each group. The transitions in the select
group do not produce outputs so no functions need to be inferred. The first coin group contains
three distinct transitions: coin(50)/[50], coin(50)/[100], and coin(100)/[100]. This produces a
GP training set which looks like {[ig = 50] = [09 = 50|, [ip = 50] = [0y = 100], [ig = 100] =
[0 =100]}. Since there are two possible output values for 49 = 50, we need an extra variable to
relate inputs and outputs. The GP infers that the output function could be iy + 1, if 71 holds
the correct value at the point when each respective coin transition is called.

Introducing a register to the model means that we need to infer update functions to ensure
that it holds the correct value whenever it is evaluated. The details of this are explained in
Subsection 7.5.4, but the general idea is to work out target values for each state in the model
and use these as “outputs” for another round of GP (this time without any latent variables) to
infer update functions for each transition group. This results in the select transitions initialising
the value of r1 to zero, and each coin transition updating it to 7g + 1. The vend transitions do
not need to change its value.

The next stage in my preprocessing technique is standardisation. As we have seen with the
two coin groups, transitions with the same structure are sometimes divided into subgroups by
their history. This means that they may end up with different output and update functions.
Standardisation is about trying to make these functions the same for each structural group.
Subsection 7.5.5 describes the details of this, but the process essentially involves searching for
a configuration of output and update functions from the various subgroups that works for the
whole structural group. Here, the output ig 4+ ;1 and update r1 := ig + 71 work for both coin
subgroups, so we do not need to bother trying to infer output and update functions for the
second coin historical subgroup.

The vend/1 group contains two distinct transitions: wvend()/[“tea” | and vend()/[“coffee” ].
These transitions do not take any input, so the training set looks like {[] = [0y = “coffee”, 0y =
“tea” |}. We clearly need to introduce another register to account for the different output values.
For training sets like this which have multiple possible outputs with no inputs, we can take a
shortcut and simply say that the output must be the value of a register without the need to
even run GP. Let us call this register ro. The justification for this is that we do not have
sufficient information to try to evolve a more complex function. Again, we must evolve update
functions such that our newly introduced register holds the correct values when necessary. Here,
we end up assigning the input of select to ro. The coin and vend/0 transitions can then leave
it unchanged. This results in the PTA in Figure 7.8.

The generalisation step is about making the model able to respond to as many traces as
possible. Currently, each transition in Figure 7.8 still has its original guard. Ideally, we would
like to remove these so that the model can respond to different input values. The problem
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1o = — 501/ coin : 1[ig = 50]/ vend : 0/
coin : 0 i) 00 =g+ r1[r1 :=1do + 1] TN 00i=T2

> \I 00 =10+ rlr \(13/ qa
_ uxed

coin: 1y =
0p = 0 = 100]/ vend : 0/og := 12
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50/ coin : 1[ig = 50]/ vend: 0/
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vend: 0/

vend : 12
0 coin : 1[ig = 100]/
0 = 100 00 1= T2

Figure 7.8: The PTA after replacing literal outputs with functions and adding
updates where necessary.

then is nondeterminism but, like in Subsection 3.3.4, this is really just duplication of behaviour.
We can resolve this nondeterminism by calling the RESOLVENONDETERMINISM function from
Algorithm 4 to merge states and transitions such that the model becomes deterministic again.
After resolving all the nondeterminism, we end up with the PTA in Figure 7.9.

vend : 0/
coin ]/ \ 00 *

com‘»‘_// A %0 = T2
P o
=io
select: 1/ =g T M

: RN o ; 76
oS R
—>

vend : () q11 (112\ @
vend : 0/

coin: 1/
0 := g + r1[r1 =40 + r1] 09 :=T2

Figure 7.9: The PTA after resolving nondeterminism.

This completes the preprocessing step, and we can now begin scoring and merging states
exactly as detailed in Chapter 6. The fact that preprocessed models contain transitions with
output and update functions from the outset of inference proper further motivates the need for
the direct subsumption relation from Chapter 5 since it is highly likely that such transitions will
need to be merged.

7.5.2 Transition Grouping

The first step in my preprocessing technique is to form groups of transitions which represent the
same behaviour. This is decided based on their structure. That is, their label and the number
and types of inputs and outputs. The justification for this is that transitions with the same
structure are likely to represent instances of the same abstract behaviour with different data
values. There are three structural transition groups in Figure 6.3: select, coin, and vend.

In more complex systems, different transitions may read from and write to the same variable.
This means that transitions with the same structure may be subject to the side effects of different
transitions depending on where in a trace they occur. This means that they may need their
anterior context “setting up” differently if they are to evaluate correctly. If we group only by
structure, we ignore this fact and make the GP training data “unclean” such that it is nearly
impossible to infer suitable functions. To mitigate for this, we divide structural groups by
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their history. That is, the last transition which was not of the same structure. This means
that transitions in the same group are not subject to interference by other transitions and the
training data is clean. Thus, it is much easier for the GP to infer output and update functions.

Example 7.5.1. Consider the case where the drinks machine from Figure 1.5 has an extra

» e fund . . .
transition, ¢ refund, q1, which returns the customer’s coins and resets the running total held

in r1, allowing them to restart the payment process. Here, grouping the coin transitions all
together ignores the effect that refund has on the data state. The training data for the GP
is thus “unclean”, making it much harder to infer output and update functions. Instead, we
must divide the coin transitions into those which follow select and those which follow reset.

The disadvantage of this is that the more groups we have, the more registers we end up
introducing. In Example 7.5.1, the two coin groups end up using two separate registers. This is
not ideal, as we know that the transitions actually implement the same behaviour. I solve this
issue with the standardisation step, explained in Subsection 7.5.5.

Another observation which can be made in retrospect of Chapter 8 is that, in highly reactive
systems, subdividing structural groups can lead to very small (or even singleton) training sets.
This obviously hinders the GP hugely and often leads to the original literal output. An alterna-
tive approach would be to first try to infer a function for the entire structural group and only
split by history if this fails. This has the advantage that, in situations where the variable used
by a particular structural group is not subject to interference from other transitions, there is a
much larger training set for the GP to work with. Unfortunately, I only made this observation
after performing the evaluation in Chapter 8 so an investigation into this is left as future work.

7.5.3 Output Function Inference

Output function inference is a call to the GP system from Section 7.4. For each group identified
in the previous step, the GP is asked to provide a function for each output. The GP is first
called without access to a latent variable. If it is unable to come up with a function purely
in terms of inputs and constants, it is called again, this time with access to a latent variable.
The reasoning behind this is that we don’t want to introduce registers unless there is no other
solution. If we can explain output purely in terms of input, it does not make sense to introduce
additional variables for which we must then infer update functions.

Example 7.5.2. Consider again the PTA in Figure 7.7. When we want to infer an output
function for the coin transitions, we have a training set which looks like {[igp = 50] = [0 =
50], [ip = 50] = [0o = 100], [ip = 100] = [0 = 100]}. We first call the GP without a latent
variable. Obviously, it fails since no function exists which can explain the behaviour here.
Calling the GP a second time with a latent variable fixes this problem though, since this
variable can change its value for each target to allow the correct output to be produced.

Consider now, a different set of traces which yields the training set {[ip = 50] = [0p =
60], [i0 = 60] = [0g = 70], [ip = 70] = [o = 80]}. Here, we can see that the output is the input
plus ten. Ideally, we would like this to be the function returned by the GP. If we give access
to a latent variable 1, straight away, however, we are quite likely to get a function which
includes this, for example ig + r,, ig — 7, and just r, all produce the expected output if we
assume that r, holds the correct value. The problem with this is that we do not need the
register here. The behaviour can be explained by the function ig + 10. The GP is much more
likely to discover this if we first call it without access to the register.
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For each output function that introduces a new register, we must attempt to infer update
functions such that the register holds the correct value when the output function is called.
Details of this are given in Subsection 7.5.4. Once this is done, we check to ensure that the new
PTA still satisfies the original traces used to build it. If we cannot infer a set of updates such
that the PTA still accepts the original traces, we cannot use the output function and must fall
back to the original literal outputs.

It is worth discussing here how the sets of terminals and non-terminals required by the GP
are obtained. The set of non-terminals is simply the supported operations from my EFSM
implementation, +, —, and x. Terminals come from the traces. The set of constants is formed
of all inputs and outputs observed in the traces used to build the PTA. As per [150], T also
include the values 0, 1, and 2, regardless of whether they appear in the original traces. For a
transition with arity n, the non-latent variables are ig,...,%,_1, as well as any registers which
are currently defined. Since the main aim of this exercise is to infer functions which use latent
variables (i.e. EFSM registers), we can also provide the GP with one fresh register which is
tagged as being latent, meaning that its value can change as necessary.

We could provide any number of latent registers but, to simplify things a little, I only include
one for each run of GP. This introduces the limitation that the technique will miss cases where
the output of a transition depends on the values held by multiple state variables, but there is no
way of knowing in advance how many variables are used by the actual system. An investigation
into how the ability to use multiple latent variables affects the accuracy of the resulting EFSMs
is desirable future work.

Example 7.5.3. Consider the traces used to build the PTA in Figure 7.7. Here, the observed
constants are “tea”, “coffee”, 50, and 100. Along with 0, 1, and 2, these are the constants
which are given to the GP. The coin transitions have arity one, so we provide one input
variable ig. Since this is the first set of transitions for which we infer an output, there are no
existing registers, but we give access to the latent variable r; the second time we call the GP.

When we infer an output function for the wend/I transitions, which produce a single
output, these have input arity zero. There are no inputs here but, if we can infer the correct
update function for ry, this will hold the value 100 when we call each vend/1 transition. This
has no bearing on the output of the transitions, since all recorded outputs are strings, but it
is included anyway.

7.5.4 Update Function Inference

Having inferred a function which accounts for the outputs of a particular transition group, if
that function makes use of a new register, we need to infer a set of update functions which
ensures that the register holds the correct value each time it is required. In short, this process
involves walking the traces in the PTA, solving for the register such that we have a target value,
and running the GP for each transition group.

Example 7.5.4. Consider the PTA in Figure 7.10. We have inferred that the output of the
coin transitions is r1 + 49, but 71 is never initialised or updated. We need to make sure that r;
holds the correct value every time a coin transition needs it. To do this, we walk each trace in
the model and record the expected output for each coin transition. We then solve the output
function for r; and this becomes the target value. These are shown in grey in Figure 7.10.
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Figure 7.10: The PTA from Figure 7.8 before the update functions were added
with the necessary anterior contexts annotated in grey.

With each target value now known, we can then call the GP again on each group of
transitions. For the select group, for example, the training set looks like {[ig = “tea” | = [r1 =
0], [io = “coffee” | = [r; = 0]}. As there is only a single target value and no input parameters,
the update function for the group is trivial: r; := 0.

With this in place, we can then infer an update function for the coin group. This is slightly
more complicated. The training set looks like {[r; = 0,ip = 50] = [r; = 50]}. Here, there are
several possible outcomes. As there is a single target value of 50, we could simply have the
coin transitions set 1 := 50. This fulfils the requirements of the training set and of the traces
used to build the PTA, but is somewhat underwhelming.

The update functions r1 := iy and 1 := 71 +14¢ also satisfy the requirements of the training
set and of the traces. If given the right random seed, the GP is able to come up with any
of these functions. Whatever function the GP returns is added to the updates of the coin
transitions. There is no need to give the vend/! transitions updates to r; because it is not
used after this point.

The vend/0 transition could additionally set r1 to zero before g1 coin, q12 however, since

r1 is already zero at this point after having just been initialised by gq select, q7, there is no

benefit in this. Indeed, redundant initialisations like this can cause problems when we get to
state merging, so updates are only inserted when they are necessary.

The first step to inferring update functions is to walk each trace in the model and establish
what values the register we are interested in needs to hold at each point in time. For each trace,
this produces a list of tuples containing the current model state, the current register values, the
register values we need to have for the computed output to match the expected output,* the
input values, and the transitions which was taken.

The required register values are propagated back through the model such that every state
has a target value, even if they do not have an outgoing transition which reads from a register.
This means that registers can be initialised and modified at any point before they are used,
not just by the transition immediately before. For example, when we infer the updates for the
vend/1 output function in Example 7.5.4, ro is only required to have a value in states g3, gs,
q9, and ¢q2, but it is the select transitions which intuitively need to initialise it.

4This is established by solving for the newly introduced register, for example if we have the expression
00 := 19 +r1 for input i9 = 50 and the expected value of og is 100, then we know that 71 needs to hold the value
50. In the implementation, this is done using Z3.
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Having established the values that the register needs to hold at each point in the execution,
the transitions are then divided into the same groups as for output function inference. Each
group then has an update function inferred for it. This is done by treating the target register
value as the “output” and calling the GP exactly as for output function inference but without
providing a latent variable. If it can come up with a function which satisfies the training set,
this is added to the transition group. If not, the group remains unchanged.

The main drawback of inferring updates this way is that an attempt will be made to infer
an update function for every historical group. For more complex systems, this means that we
often end up trying to infer updates for transitions which, to a human observer, clearly have
no relevance whatsoever to the register at hand. This is very inefficient, but there is no way to
generally code this human intuition into the inference process. If the transition group genuinely
has nothing to do with the current register, the GP will fail to come up with an update function
which satisfies the training set, so no update will be added.

In the training sets for update functions, existing registers which are not the subject of the
update function are removed from the set of inputs. This is because the more input variables the
GP has access to, the more data it needs to accurately infer a function. Giving the GP access
to too many variables can cause it to infer very strange update functions which are technically
correct with respect to the training set but do not generalise. The effect of stripping extraneous
registers means that each update function can only read from its own register, however, this
is not an unreasonable assumption to make since each output function only gets access to one
new register. Thus, registers are introduced sequentially, one at time. Under these conditions,
it does not make much sense for an update function to read from multiple registers as they are
most likely unrelated to the one at hand.

It is worth noting at this point that this it not the ideal way of inferring output and update
functions. Ideally, we would have the ability to infer suitable updates feed into the inference of
output functions, most likely by including the ability to infer suitable updates as part of the
fitness evaluation of each output function. This is not really feasible in practice, though, since
GP is both computationally and temporally expensive to run. It can take several minutes to
infer update functions for each group as it is. The GP may evaluate many hundreds of candidate
output functions in each run. If we were to attempt to evolve update functions for each of these,
the runtime would be prohibitively long for most realistic systems. Hence, I chose to stage the
inference of output and update functions separately. A more closely coupled inference of the
two is left for future work.

7.5.5 Standardisation

As T explained in Subsection 7.5.2, transitions are grouped not only by their structure, but
also by their history to ensure that the GP has clean training data to work with. Because
the GP works independently for each group, we can end up with different output and update
functions for transitions with the same structure. When this happens, we ideally want to find
a configuration of output and update functions which works for all the different subgroups so
that we can recentralise the output and update functions of transitions. Standardisation is an
attempt to achieve this.

There are three stages of standardisation. The first is to delay register initialisation. The
second is to try to find common output and update functions across transitions with the same
structure. Finally, we attempt to merge registers which appear to be used in the same way.
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Delay Initialisation

The first stage of standardisation is to try to delay the initialisation of registers to be as late as
possible. Before a register can be used, it must first be initialised to a value. Often, this will
be a literal assignment to a constant value, for example r; := 0. Because register updates are
inferred along branches of the PTA, we are often left with the first transition being a “set up”
transition, which initialises all the registers in the model, most of which are not subsequently
used until much later on. This is problematic for two reasons. Firstly, it is unsightly and
unintuitive to have transitions behave this way. It is generally considered bad programming
practice to initialise variables before they are used, so we should try not to do this in our model
either. Secondly, it could cause the inference process to miss transition merges.

Example 7.5.5. Consider the EFSM fragment in Figure 7.11. Here, the transition gg i> Q1
initialises r; to zero. There are then many transitions (denoted by a dashed line connecting
the states ¢; and g¢2), none of which read from or write to r1 until is used in the output of

qs3 LN qa. Transition g4 & g5 then reinitialises 71 back to zero, before it is used again in the
output of gs LN q6-

h:1l/og: =11+ h:l/og =11+

ﬁ. f:0[r:=0] ” " g:1 @ [ry =71 +411] @ g:1/[r1:=0] @ [ry =71 +411] )

Figure 7.11: Part of an EFSM with a “set up” transition.

Here, the g2 EN q3 does not change the value of r; where ¢4 EN @5 reinitialises it to zero.
This means that the two transitions do not have consistent updates, so cannot be merged
without the help of heuristics. The reason for this is that r; is initialised to zero by qq L q1,
so it already holds the correct value when ¢o EN q3 is reached, meaning that there is no need
for it to be updated again.

Intuitively, though, it does not matter whether r; is initialised to zero by qo ER q1 or by
any of the other transitions up to and including ¢ ENS Delaying the initialisation of rq
until just before it is needed not only makes sense from a human perspective, but also gives
the two ¢ transitions consistent updates such that they can more easily be merged.

Note that here, the term “initialisation” is used to mean “setting to a literal constant”
rather than assigning the value of an input. Clearly if we are assigning an input to a register, we
cannot arbitrarily move this assignment around because inputs are instantaneous. By contrast,
if we are simply assigning a constant value, we can do this anywhere so there is no sense in
initialising a register earlier than necessary. That is not to say that there are not occasions
where it might be beneficial to bring forward the initialisation of a register, but there is no
way of knowing in advance the optimal point at which to initialise a particular register, and
preliminary experiments revealed that delaying initialisation seemed to lead to better models.

Centralise Configuration

Recall from the example in Subsection 7.5.1 that the structural group of coin transitions was
split into two historical subgroups. While this is necessary for the GP to work correctly, it is
problematic because it means that transitions which were initially identical in the PTA may
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end up with different output and update functions. This feels somewhat unclean and is likely
to cause problems for the inference process later on, which may be unable to merge the two
behaviours because of their differing functions.

This problem can be resolved by grouping transitions by structure, and then trying to make
all the outputs and updates the same within each structural group. To do this, I collect together
the various output and update functions and try to find a combination of them which accounts
for the behaviour of all the transitions in the group. If such a configuration can be found, all
the transitions in the group are given this configuration. If not, the group remains unchanged.

Example 7.5.6. For the PTA in Figure 7.8, the standardisation of the coin subgroups pro-
ceeds as follows. First, the two groups are joined to form the group

con : 1[i0 = 50]/00 =1y + 7"1[7“1 =10+ 7“1],
coin : 1[ig = 100]/0g := ig + r1[r1 := io + r1],
coin : 1[ip = 100]/0g := 100

Next, a list of candidate functions for each output is generated. In this case, we have
one output with two possible candidate functions: 100 and iy + ;. There is only one pos-
sible update function, r; := ig + 1, which we can either include or not. This gives us four
combinations, tabulated below.

outputs updates
0p := 100 [r1 :=1p + 71]
op := 100 I

Op = io +7r [7‘1 = io + 7"1}
0p =19+ 71 []

For each combination in the table, we replace the outputs and updates of each transition in
the structural group and see if the new PTA accepts the original traces. If it does, we keep this
configuration of outputs and updates for the structural group. In this instance, outputting
0p := 19 + 1 and updating 71 to ig + 1 works for all coin transitions.

Merge Similar Registers

The third stage of standardisation is to merge registers which are used in the same way. As we
have seen, transitions with the same structure are split into subgroups according to the previous
transition. If a particular structural group cannot be standardised, it may be the case that
transitions in the same structural group end up using different registers for the same thing. It
can be extremely helpful to merge these registers, if we can, not only to reduce the number of
registers used by the model, but also to make transitions with the same structure consistent
with each other.

To do this, I first enumerate the registers of the PTA to form the set R and, for each
(ri,m2) € (R x R), I check to see if there are two transitions in the PTA such that ry and r, are
used in the same way, i.e. if the transitions which use the respective registers are isomorphic up
to register renaming. If so, ry is renamed to 7; if the resulting PTA still accepts the traces used
to build it.
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7.5.6 Generalisation

Having now inferred output and update functions for each transition, we now want to remove
the literal input guards so that the model can accept as many inputs as possible. If we have
done our job correctly, the output and update functions should generalise not only to the inputs
in the training set, but also to other inputs which we have not seen. The generalisation step
involves dropping the guard for each transition and then attempting to resolve the resulting
nondeterminism. This is done in exactly the same way as in the main loop of inference, using the
RESOLVENONDETERMINISM function detailed in Algorithm 4 with whatever additional heuristics
have been given to the main inference process.

The dropping of guards is not strictly necessary for model inference, but doing so makes
transitions which express the same behaviour with different data exactly identical, allowing
this fact to manifest itself in the form of nondeterminism during state merging. This allows
us to merge many more transitions. An alternative to this would be to retain the guards, run
the state merging process, and drop (or generalise) them after this has finished (resolving any
resulting nondeterminism as per Algorithm 4). We could even add guards for the literal register
values needed to satisfy the original traces, and then generalise these after state merging. An
investigation into the effect of this is left for future work.

7.6 Distinguishing Guards

Thus far, we have been concerned with the merging of transitions as a means to resolve the
nondeterminism which arises as a result of merging states, but there are sometimes occasions
where we explicitly do not want to do this. In this section, I propose a heuristic (like those
in Chapter 6), to be applied during the merging process, to infer guards which distinguish the
behaviour of transitions which cannot be merged.

Example 7.6.1. Consider the EFSM in Figure 7.12 which has been inferred from the PTA
in Figure 7.7. Here, we can do vend transition and a coin transition from both ¢; and ¢, so
we might consider merging those two states. This then introduces nondeterminism between
pairs of coin and vend transitions. Since the two coin transitions are exactly identical, they
can be trivially merged. The same cannot be said for the two vend transitions.
coin:1/og: =19 +ig coin:1/og:=r9+1ig
[7‘2 =1T9 + Zo] [’I"Q =79 + ’Lo]

select : 1/[ry =g, r2 := 0] Q vend: 0 Q vend: 0/og := 11
T a @

N 2 2/

Figure 7.12: An EFSM in which merging ¢; and ¢ introduces nondeterminism
between two vend transitions which cannot be resolved by merging them.

In Figure 7.12, the ¢; vend, @2 transition has no output, signifying that the customer has

not inserted enough money to pay for their drink. By contrast, the ¢ vend, q3 transition
represents the user receiving their drink after having inserted sufficient payment, so does have
an output. There is clearly no way for these transitions to be merged into a single behaviour
as it is impossible to simultaneously have different numbers of outputs.
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If we cannot resolve nondeterminism by merging transitions, we might then conclude that
we should not merge ¢; and ¢» into a single state. Alternatively, we could consider the possibil-
ity of value-dependent behaviour. Recall the Java code from Figure 2.1 which implements the
simple drinks machine. Here, the vend method has an if statement which affects the return
value. If the user has inserted sufficient payment, the selected drink is dispensed. If not, they
get null. It would be extremely useful if we could somehow express the value-dependent
nature of the vend method in our model. Transition guards allow us to do this and, if we can
infer a mutually exclusive pair of guards to distinguish the two transitions, we can resolve the
nondeterminism which arises from merging states ¢; and g2 in a meaningful way.

In Example 7.6.1, we have two different kinds of vend transition which cannot ever be merged:
one which outputs the selected drink, and one which outputs nothing. In the underlying system,
the difference in behaviour depends on the value of a register. We would like to infer guards
for the different behaviours to reflect this. This is a function which takes inputs and registers
and returns either true or false. We have already seen how GP can be used to infer functions,
and can apply the same technique to infer guards. Indeed, the task of inferring guards is much
easier than inferring output functions as we do not need to use latent variables. The task is
further simplified by the fact that the implementation from [150], which I used as a foundation
for my own work, already supports boolean functions.

With most of the necessary infrastructure already in place, the task of inferring transition
guards is then as simple as determining the training set for the GP. To do this, the original traces
are run through the nondeterministic model up to the point of reaching the newly merged state.
If one of the offending transitions should be taken, the inputs, current register values, and
transition are recorded. This produces two sets, one for each of the two transitions we are
trying to distinguish.

Since we are trying to infer mutually exclusive guards, it is sufficient to infer a single guard
function for one transition and then apply its negation to the other. Thus, for one of the two
sets, the target output value is set true, and for the other set it is false. The GP is then called
with the supported arithmetic and guard operators from Chapter 4 as non-terminals, and the
observed input and register variables and values (plus 0, 1, and 2) as terminals. This should
then produce a guard function which returns true for one set of inputs and registers, and false
for the other. This can then be added to the list of guards for the transition corresponding to
the true training set, and its negation added to the guards of the false transition.

Example 7.6.2. The EFSM in Figure 7.13 is the result of merging ¢; and g2 of Figure 7.12.
Here, we have two nondeterministic vend transitions from g; » which we cannot merge.

coin : 1/og := 1y + ig[ra := ro + io]

select : 1/[r :=1ig,r2 := 0] Q vend: 0/og := 11

vend : 0

Figure 7.13: The result of merging states ¢; and go of the EFSM in Figure 7.12.
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Running the traces used to build the PTA in Figure 7.7 through this model, we end up with
the sets {([], (r1 := 100,75 := “tea” ),vend : 0/0g := r3), ([], (1:= 100,74 := “coffee” ), vend :
0/0¢ := r9)} and {([], (r1 := 0,72 := “coffee” ), vend : 0)}. Thus, we wish to infer a guard
that returns ¢rue when r; = 100 and ro = “tea” and when ry = 100 and ro = “coffee” , but
returns false when r1 = 0 and ro = “coffee” . The guard r; = 100 will do this nicely, as will
a multitude of other guards. We then add this guard to vend: 0/0y := 72 and its negation to
vend:0, which resolves the nondeterminism.

7.7 Implementation Speed-ups

Running the GP is quite computationally expensive, especially with latent variables, but there
are certain steps which can be taken to safely reduce the amount of work that needs to be done.
This section details the steps I took to reduce the computational expenditure.

7.7.1 Population Seeds

GP works by evolving a population of candidate solutions over time. To begin with, the popu-
lation is initialised with random expressions. We can give the GP a head start by adding some
hand-picked expressions which it might find helpful. To this end, when inferring output and
update functions, the population is seeded with all terminal values. This is every input and
register variable, as well as all literal constants available to the GP. This ensures that, if the
training set can be explained by either by a literal value or a variable, this fact will not only
be discovered, but will be discovered quickly. As expressions tend to grow over time, without
seeding in the trivial expressions, the GP sometimes runs for many iterations before the correct
one enters the population and may not even discover it at all.

When there are a lot of terminal values, this may end up creating an initial population which
is larger than the specified desired size. In this instance, after the first generation of GP, there
will be a “cull” of the weakest members such that the population returns to the specified size.

7.7.2 Memoisation

One of the most obvious steps to speeding up computation is memoisation. This technique
involves storing the results of expensive function calls in a lookup table such that functions only
need to be evaluated once for each set of inputs. Since GP is called with a training set, we
can apply memoisation to each training set such that the keys of the lookup table are training
sets and the values are arithmetic expressions. This is particularly applicable to distinguishing
guards, as they are needed throughout the inference process. Before running the GP, the lookup
table is checked to see if it already contains a guard for the training set at hand. If it does, the
guard from the lookup table is returned. If not, the GP is run and a new expression is inferred.
If that expression is correct, it is added to the lookup table. If it is not, we record the failure in
the lookup table so that we need not waste time calling the GP again.

Because the result of GP is stochastic, it may seem odd to store failure in the lookup table,
however the GP is configured such that this is subject to a random seed. Since this remains
constant throughout each run of inference, the result of the GP depends purely on the training
set. Thus, it will produce the same expression for the same training set every time it is called.
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Outputs and updates are only inferred prior to inference, and transitions are grouped such
that it is not particularly likely that the GP will be called lots of times with the same training
set. It is still worth attempting to memoise expressions, though, as structural transition groups
may be split historically, meaning that the same expression can account for multiple training
sets. Rather than building a lookup table, each correctly inferred expression is simply added to
a list. When the time comes to infer a new expression, the list of previously inferred expressions
is first checked to see if it contains an expression which accounts for the training set. Because we
would like to infer the most general function possible for each training set, literal values are not
memoised. This does not affect runtime much since the initial population of the GP is seeded
with terminal values anyway so, if the current training set can be explained by a single literal
value, this will be discovered by the first iteration of GP anyway.

7.7.3 Latent Variables

As we saw in Section 7.4, some training sets simply cannot be explained without latent variables.
This occurs when there are more possible outputs for a given set of inputs than there are inputs.
For update function and guard inference, we do not have access to latent variables so, if we have
more possible outputs than inputs, we can fail prematurely as we know the GP will not find a
suitable expression. In the case of output function inference, which is first called without access
to latent variables in order to discourage their use, at the point of discovering their necessity, we
can simply provide access without having to first try and fail to infer a function without them.

As mentioned in Section 7.5, if we have a training set which has multiple outputs without
any inputs, we do not call the GP. Instead, we simply say that the output must be the content
of a register. This pushes work into the inference of update functions but makes that job easier
since the value of the register is simply output as-is.

7.8 Conclusion

This chapter presented a technique involving GP to infer expressions to relate sets of input-
output pairs. The novelty here is that we do not need all the input values, as my technique allows
latent variables to be used to account for this. I then apply my technique to tackle the problem
of inferring output and update functions for EFSM transitions, and propose a preprocessing
technique to take the place of the simple pattern-recognition heuristics of Chapter 6. The
technique of GP is also applied to infer guards to distinguish the behaviour of transitions when
it is clear that they should not be merged. This is vital to account for value-dependent behaviour,
which would otherwise mean that states and transitions could not be merged.

It still remains to evaluate the effectiveness of my technique. We do not yet know its
limitations or how applicable it is in general. Since the technique is intended to act as a
preprocessor for the inference technique in Chapter 6, it makes sense to perform the evaluation
in this context. An empirical evaluation of both techniques is the subject of Chapter 8.

It is interesting, at this stage, to note down some possible directions of future research.
Currently, output and update functions are evolved in isolation from a training set. It may be
beneficial to make use of co-evolution [69] to evolve updates alongside their respective output
functions. Co-evolution may also be beneficial when inferring guards to distinguish transition
pairs. Currently, only one guard is inferred, and its negation is added to the other transition.
It may be that actively evolving two separate mutually exclusive guards gives better results.
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Another possible area of exploration would be the use of classifiers in the state merging
process, like in MINT [152]. The inference of generalised functions prior to merging means
that models then potentially have internal registers as well. It is these which are fed to the
classifiers in MINT to help them predict the next action. Because MINT works with white-box
traces, these values are readily available, but my technique is designed to work with black-box
traces which only contain input and output values. While we could certainly feed the input
and output values from the traces to classifiers, these values are instantaneous and bound to
individual events. By contrast, internal registers persist throughout the lifetime of the model
s0, like the control flow state, hold information about the history of the model so are more likely
to have a determining effect on subsequent behaviour.
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Chapter 8

Experimental Evaluation

Chapter 6 presented a technique to infer EFSM models from black-box execution traces using
state merging and heuristics. Chapter 7 presented an additional preprocessing step for this
technique which uses GP to infer the functions on transitions that relate inputs, outputs, and
register values. This chapter presents an evaluation of the system in the context of three realistic
case studies: LIFTDOORS, DRINKS, and SPACEINVADERS.

8.1 Introduction

As discussed in Section 3.13, it is often the evaluation of the proposed tools and techniques
where the literature on EFSM inference falls short. There does not appear to be a standard
evaluation process and, due to the fact that most works begin with a new EFSM definition, it
is often impossible to meaningfully compare the models produced by different tools.

The task of objectively evaluating the quality of (E)FSM models is inherently difficult,
especially if there is no reference model available. This is even more problematic for EFSM
models than classical FSMs since we can arbitrarily move information between the control and
data states. Thus, for every system, there is a potential infinitude of trace equivalent models.
To further complicate matters, the intended use-case of the model can affect what we would
like to infer. That is, different kinds of models may be more or less suited to particular tasks
meaning that there is no single optimum model. This applies not just to automatically inferred
(E)FSMs, but also to handcrafted models and more widely to other modelling techniques.

The most similar tool in the literature to my own is that presented in [150], which uses GP
to infer variable update functions on transitions of EFSMs inferred by MINT [152]. Taking
inspiration from the evaluation sections of these works, I have identified four research questions
to be investigated here:

RQ1 How accurate are the models produced by my inference tool?

RQ2 How does eliding variables affect the accuracy of the models produced by my inference
tool?

RQ3 How does the ability to discover value-dependent behaviour affect the accuracy of the
models produced by my inference tool?

RQ4 How well does my tool scale?

4a. How large are the inferred models in terms of states and transitions?

4b. How long does model inference take?

RQs 1-3 are concerned with the accuracy of the models we can infer in various scenarios.
RQ1 seeks to ascertain how well the models produced by my tool compare to the underlying
systems and the models produced by MINT [150], the current state of the art of passive EFSM
inference, in situations where the two techniques are comparable. Additionally, I compare the
inferred models to two baseline approaches, the original PTA built from the traces, and the
model which can be inferred from this without any preprocessing or additional heuristics.
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RQs 2 and 3 are concerned with situations where my tool goes beyond MINT. RQ2 is
an investigation of how my tool copes when the outputs of transitions depend on the values
of variables which do not appear in the traces, and the factors which affect the accuracy of
the inferred models. RQ3 aims to evaluate how the ability to infer guards during inference
to distinguish transitions which cannot affects the accuracy of the models my tool can infer of
systems which exhibit value-dependent behaviour. That is, when a particular action can produce
different classes of behaviour depending on the value of a variable.

Finally, RQ4 seeks to evaluate the performance of the inference tool and how well it is able
to cope with realistic systems. There are two aspects to evaluate here. The first concerns the
technique, and the factors that affect the complexity of the models we can infer. The second is
to do with the implementation and how fast my tool runs. While optimising runtime is not a
major objective of this work, it is clearly important that my tool is able to run in reasonable
time on case studies which are large enough to effectively evaluate it.

To answer these research questions, I first identified some suitable subject systems and
obtained traces from them for the inference tools to work with. I then ran the tools (both my
own tool and MINT) with these traces as input, and computed various quality metrics of the
output models as detailed in Section 8.3.

Unfortunately, it is only possible to compare my tool with MINT for RQ1 and RQ4. Since
MINT is designed to work with white-box traces, it can only operate in a purely functional
setting. That is, when the output (or posterior state) of each transition depends entirely on its
input (or anterior state). MINT cannot handle situations where there are additional variables
at play which do not appear in the traces. Thus, RQ2 considers my inference tool only.

For RQ3, while MINT does infer guards for transitions, this does not really compare to what
I am attempting to do here. The guards inferred by MINT play a descriptive role, aggregating
the observed data values. The guards inferred by my tool are designed to distinguish transitions
where the observable behaviour depends on the value of an input or register. Since the models
inferred by MINT do not have explicit outputs, there is no observable behaviour to distinguish.

The remainder of this chapter is laid out as follows. Section 8.2 outlines the systems I used
in this evaluation and how traces were obtained from each system. Next, Section 8.3 describes
each of the accuracy metrics I used to evaluate the quality of the inferred models. Section 8.4
describes the design and setup of the experiments I performed to answer my research questions.
The results of these experiments are presented in Section 8.5. In Section 8.6, I provide an
informal discussion on the relative utility and understandability of the inferred models. Finally,
in Section 8.7, I discuss some threats to the validity of these results.

8.2 Subject Systems

To evaluate an inference technique, we must first find some systems from which to obtain
traces. What we need here are sequential systems that make use of a data state. As discussed
in Section 3.13, many works in the literature use their own case studies for evaluation, which
are often not openly available. This makes coming up with suitable case studies a difficult
task in and of itself. Here, we have the additional constraint that inputs and outputs must
be either integers or strings, since these are currently the only data types supported by my
implementation. For this evaluation I use two systems from the literature and an extended
version of the simple drinks machine from Section 1.1.
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Ideally, it would have been good to choose systems for which an (E)FSM model already
exists, as this would provide a “model solution” against which to compare the output of the
inference tools. As discussed in Section 3.11, the nature of EF'SMs is such that there is often no
single optimal model, but it is helpful nonetheless to have a rough idea of the behaviour of each
system so we can tell at a glance whether the inference has got the right idea. Unfortunately,
none of these case studies came with a suitable existing model, and the traces are sufficiently
long and numerous that it is infeasible to try to infer a model from them by hand. We can,
however, form a rough idea of what we might expect to infer by inspecting the artefacts of the
systems, since they are all relatively simple.

8.2.1 Lift Doors

The first case study, LIFTDOORS, comes from a model of a lift door controller originally published
in [136]. This case study was also used in [150] to evaluate their system.! In this model, requests
to open or close the door are sent from the central control system. When it receives this signal,
LIFTDOORS opens the door, waits for passengers to enter or leave the lift, and closes the door
again. The variable timer is used as a counter to ensure the door stays open for a certain
amount of time before closing again. When the door is closed, LIFTDOORS sends a signal back
to the central control system.

To ensure that nobody is crushed by the doors, the lift door system is equipped with an
optical sensor which triggers the reopening of the doors if a passenger is stood in the way while
they are closing. Passengers can “hold the lift” for other people by pressing a button inside the
lift which also triggers the reopening of the doors.

Since there was no implementation of this model available, the authors of [150] created a
simple Java implementation from which to obtain traces. This implementation is not openly
available but, since the traces used in [150] are,? I was able to use them for this evaluation.

A typical trace of the LIFTDOORS system is shown in Figure 8.1. Here, events take a single
input (which represents the anterior value of the timer variable) and produce a single output
(which represents the posterior value). As with most realistic traces, it is quite difficult to read,
but this only serves as motivation for the inference of a model.

(setTimer(0)/[5], wait Timer(5) /[4], wait Timer(4) /[3], wait Timer(3)/[2], wait Timer(2) /[1],
wait Timer(1) /[0], systemInitReady(0)/[10], closingDoor(10)/[9], closingDoor(9)/[8],
closingDoor(8)/[7], closingDoor(7)/[6], buttonInterrupted(6)/[3], openingDoor(3)/[2],
fullyOpen(2) /[1], fullyOpen(1)/[0], timeout(0)/[5], closingDoor(5)/[4], closingDoor(4)/[3],
closingDoor(3)/[2], closingDoor(2)/[1], closingDoor(1)/[0], fullyClosed(0)/]0],

fullyClosed(0)/0], requestOpen(0)/[10], openingDoor(10)/[9])

Figure 8.1: A typical trace of the LIFTDOORS system.

ITwo case studies are used in the evaluation of [150]: LIFTDOORS and CRUISECONTROL. Of these, only
LIFTDOORS is applicable to my own work, since CRUISECONTROL relies heavily on the use of floating-point numbers,
which are not currently supported by my implementation.

2http://www.cs.le.ac.uk/people/nw91/Files/ICSMEData.zip (Accessed 15/05/20)
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8.2. SUBJECT SYSTEMS

The traces of LIFTDOORS record ten actions and can be divided up into two parts. The
first part of the trace, up to the systemlInitReady event in Figure 8.1 is common to all traces
of the LIFTDOORS system and appears at the start of each trace, differing only in the input
to setTimer, which initialises the timer to five. The waitTimer action decrements the timer
and is used to make the lift wait a given amount of time. When the timer reaches zero, the
systemInitReady action signals that the lift door is ready, and sets the timer to ten.

After systemlInitReady, the system will make an attempt to close the doors. The input is
always ten, and the system will issue repeated closingDoor events to decrement the timer until
either it reaches zero or a buttonInterrupted action occurs. This represents a passenger pressing
the button to reopen the doors to “hold the lift” for other people and sets the timer to three.
Since there is no sensorInterupted action in the traces, it seems as though the optical sensor did
not make it into the Java implementation. The system will then issue repeated openingDoor
events until the door is fullyOpen, at which point the system will issue timeout. This sets the
timer to 5 and represents the lift having waited sufficient time with the doors open to begin
closing them again. When the doors are fully closed, the system will then issue fullyClosed events
until a requestOpen action is performed, whereupon the cycle begins again. This functionality
can be expressed as the EFSM in Figure 8.2.

waitTimer: 1/ closingDoor: 1/ requestOpen: 1/  openingDoor: 1/
0p =1 — 1 0p =1 — 1 00 := 10 0p =1 — 1
setTimer: 1/ systemInitReady : 1/
Q 0p:=5 0p := 10 timeout : 1/0g := 5
~ ) 8\/ -

fullyClosed : 1/ buttonInterrupted : 1/ fullyOpen : 1/
09 :=0 00:=3 0g:=1p—1

Figure 8.2: A model that we might expect to infer of LIFTDOORS.

The model in Figure 8.2 has four states. As always, qo represents the initial state. State ¢;
represents the lift waiting for passengers to enter or leave the car. State gs represents the door
closing and being fully closed. State g3 represents the door opening and being fully open. This
model is quite compact and it is relatively easy to manually run traces like the one in Figure 8.1
through the model to verify acceptance.

An acceptable alternative would be to do as is done in [136] and split states g2 and g3 up
into states representing the lift doors being in motion and being stationary at their respective
positions. This makes the model slightly bigger but no harder to understand. It would also be
acceptable to have states g2 and g3 representing moving and stationary rather than closing/closed
and opening/open. Again, this would not make the model harder to interpret.

8.2.2 Space Invaders

The second case study is a simplified version of the 1978 arcade game Space Invaders, created
by Tomohiro Nishikado. Here, the user of the system controls a gun turret and tries to shoot
aliens on the screen. Their score increases each time they hit an alien, but aliens can also shoot
back. If the gun turret is hit by an alien, the player loses a “life”. The game is over either when
the user has killed all the aliens, or has lost all their lives.
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The implementation I used here is an openly available® accompaniment to [108] written in
Java. This implementation differs from the original arcade game in several ways. Firstly, in the
original game, the gun turret can only move horizontally across the screen. Here, the user can
move both horizontally and vertically. Secondly, the aliens in the Java implementation do not
shoot back. The player loses a life (here called a “shield”) only if they are directly hit by an
alien. Thirdly, in the arcade game, there is a fixed number of aliens on the screen which the user
must shoot. When they have shot all the aliens, they win the game. In the Java version, there
is no fixed number of aliens. They simply keep spawning until the user runs out of shields, at
which point a test is performed to see if they have shot enough aliens to have won. This means
that the only way to end the game is to run out of shields. Finally, the aliens in the arcade
game only move down the screen towards the gun turret. In the Java version, the aliens have a
random trajectory and can move across the screen as well, bouncing off the edges.

This implementation takes the form of a Java applet, so there was no way to collect traces
automatically. Instead, I collected traces manually by playing the game. To help with this, T
made a few changes to the source code. Like the original arcade game, I made it so that the
gun turret only moves horizontally and the aliens only move vertically. I also made it so that
the gun turret moves across the screen in increments of 50 pixels, meaning that there is only a
small number of positions in which the turret can be. I then made it so that aliens only spawn
above these locations. This makes it easier for the player both to hit and be hit by the aliens
so the games progress faster. Finally, I made it such that once the user has killed five aliens,
victory is declared and the game ends automatically. I also reduced the number of shields from
five to three, again to make the games progress faster.

When recording traces, I chose to record seven events. The start event initialises the game.
The gun turret is spawned in the middle of the screen at the bottom, the score is set to zero,
and the player is given three shields. The moveFast and move West actions move the gun turret
50 pixels right and left respectively. The alienHit action increases the player’s score by one.
The shieldHit action takes a “life” from the player. Finally, the win and lose actions show
appropriate text and play audio clips* to signal whether the player has won or lost.

A typical trace of the SPACEINVADERS system is shown in Figure 8.3. Like with LIFTDOORS,
most events take a single input which represents the anterior value of a variable, and produce a
single output which represents its posterior value. Unlike LIFTDOORS, there are three variables
at work here: x, shields, and aliens, which respectively record the = coordinate of the gun turret,
the number of shields the player has left, and the number of aliens the player has hit. The two
move events take in and modify the x variable by adding or subtracting 50. The alienHit event
increments the aliens variable, and the shieldHit event decrements the shields variable.

(start(200, 3,0)/[200, 3, 0], move West(200) /[150], alienHit(0) /[1], moveEast(150)/[200],
moveFEast(200)/[250], shieldHit(3)/[2], alienHit(1)/[2], alienHit(2)/[3], moveEast(250)/[300],
alienHit(3)/[4], move West(300) /[250], move West(250) /[200], move West(200) /[150],
move West(150)/[100], alienHit(4)/[5], win()/[])

Figure 8.3: A typical trace of the SPACEINVADERS system.

Shttp://www.doc.ic.ac.uk/~Jjnm/book/book_applets/concurrency/invaders (Accessed 15/04,/20)
41 removed all audio from the implementation in the interest of preserving my sanity.
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8.2. SUBJECT SYSTEMS

The general form of traces here is much simpler than for LIFTDOORS. Every trace begins
with a start event, which initialises the three variables. The game is then active, and the player
can move east and west, and shoot or be hit by aliens. When the player hits an alien and the
output is 5, the next event is always win and the game ends. When the player gets hit by
an alien and the output is 0, the next event is always lose and the game ends. The EFSM in
Figure 8.4 shows this graphically.

moveEast : 1/ moveWest : 1/
09 = 19 + 50 0g =19 — 50

start : 1/[r1 := 200, rq :=1ig, 73 := 3]

—>( 4o

shieldHit : 1/ alienHit : 1/
Ootzio—l 001:i0+1

Figure 8.4: A model that we might expect to infer of SPACEINVADERS.

The model in Figure 8.4 has four states, with ¢y representing the initial state. State ¢;
represents an active game. State g represents the user having won the game and g3 represents
the user having lost. The model is compact and summarises the functionality of the system
nicely. The only alternative to this model which is really acceptable would be to merge g2 and
g3 into a single “end of game” state rather than having separate states for winning and losing,
but this would not affect the model’s utility in most applications.

While this model has fewer actions than the lift controller, it is more complex in other ways.
There are three state variables at work here and the system is much more reactive. That is, from
the active game state, there are six possible actions which can occur. As mentioned in [150],
states with many outgoing transitions are capable of producing many different trace suffixes,
which makes it difficult to match sequences of events.

8.2.3 Value-Dependent Behaviour

RQ3 is concerned with how the ability to infer guards during inference to distinguish transitions
which cannot be merged affects the accuracy of the models we can infer of systems which exhibit
value-dependent behaviour. That is, systems like the simple drinks machine in Figure 2.1 where
an action has different classes of observable behaviour depending on the value of a variable, be
that an input or an internal register.

To answer this question, we need slightly different case studies since neither LIFTDOORS nor
SPACEINVADERS exhibits any value-dependent behaviour. For SPACEINVADERS, we know the
winning and losing conditions, but this is not what is meant by “value-dependent behaviour”.
Here, as in Example 7.6.1, by “value-dependent behaviour” I mean that the observable behaviour
(i.e. the output) of a transition depends on the value of either an input or a register. Essentially,
we are looking for situations where two transitions with the same label and arity, which cannot
be merged, can be distinguished by imposing appropriate guard conditions. Since the win and
lose actions have different labels and do not have any recorded output, they do not exhibit
value-dependent behaviour.

168



CHAPTER 8. EXPERIMENTAL EVALUATION

The traces of SPACEINVADERS can be modified to introduce value-dependent behaviour since
the last event of every trace is either win or lose. In the traces, the win event always follows
an alienHit event, while the lose event always follows a shieldHit event. Consequently, we can
make the output of the penultimate events either “win” or “lose” and drop the last event of
each trace. Thus, we end up with the alienHit and shieldHit actions exhibiting value-dependent
behaviour. Either they will produce the posterior value of their respective variables, or the
literal constant “win” or “lose”. The EFSM of the modified system is shown in Figure 8.5.

moveFEast : 1/  moveWest : 1/

0g =19 + 50 09 =19 — 50

atienHit < Ui =41/
= “win”

00

start: 1/[ry := 200,79 := ig,r3 := 3]
—{ do

0p := “IOSe”
shieldHit : 1 alienHit : 1
[io > 1]/ [io < 4]/
09 :=19— 1 09 :=19+1

Figure 8.5: A model that we might expect to infer of SPACEINVADERS with guards.

Unfortunately, there is no sensible transformation which can be applied to the LIFTDOORS
system to introduce similar value-dependent behaviour. Thus, we need another case study. For
this, I used a modified version of the drinks machine in Figure 2.1, in which there are several
drinks of differing prices. Thus, the output of the vend action depends on which drink has been
selected and how much money has been inserted so far. This actually makes the behaviour of
the system quite complicated, despite initially seeming like a very simple example.

We have already seen several examples of traces of the drinks machine, such as in Figure 3.3.
The general format is that a user first selects their drink, inserts coins to pay for it, and dispenses
their drink once they have paid sufficiently. The value-dependent behaviour comes from the vend
action. If a customer tries to dispense their drink before they have paid enough money, they
receive nothing. In this modified machine, whether the customer receives their selected drink
when they press vend depends not just on how much money has been inserted but also on which
drink has been selected. Here, there are three drinks available: tea (which costs 80p), coffee

(which costs £1), and soup® (which costs £1.20). The EFSM in Figure 8.6 depicts the behaviour
of the system.

The model in Figure 8.6 looks very similar to Figure 1.5, but the guards on the vend transi-
tions are much more substantial to account for the fact that the different drinks have different
prices. An alternative but acceptable version of this model would be to separate the disjunc-
tive guards into distinct transitions. This does complicate the model somewhat, and makes it
significantly more difficult to draw in an aesthetically pleasing way, but does not make it any
more difficult to understand the underlying behaviour.

5Whether or not soup should be classed as a drink is left up to the reader.
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coin : 1/
0 :=T9 + ’io

To =179 +1 [(ry
[r2 2 + i) (r1 = “coffee”, ro > 100)V

(r1 = “soup” Arg > 120)]/
select : 1/[ry :=1ig,r2 := 0] 00 =11
N\ 8 @

vend : 1/
[(r1 = “tea” Ary < 80)V
(r1 = “coffee”, ra < 100)V
(r1 = “soup” Arg < 120)]

vend : 1/
= “tea” Ary > 80)V

Figure 8.6: A model that we might like to infer of DRINKS.
8.3 Evaluation Metrics

RQs 1, 2, and 3 are all concerned with the accuracy of the models my tool can infer. Thus, I shall
be using the same metrics for all three of these questions. As discussed in Section 3.11, there
is no definitive metric which can be used to evaluate the accuracy of EFSM models. Instead, a
myriad of different metrics are available, each giving a slightly different view of the system such
that a model which scores well by one metric may score poorly by another. To get a good idea of
the quality of the models output by my inference technique, we must consider several different
angles. This is complicated further by the fact that the structural and functional characteristics
that are desirable of a model are often related to how the model will be used. If we are primarily
interested in a visualisation of a system’s control flow, getting the number and functionality of
states correct is the top priority. By contrast, if we are more interested in data-dependency, it
is much more important that we can correctly infer the use of registers.

As discussed in Section 3.11, most (E)FSM inference techniques in the literature are evaluated
with respect to traces. That is, one set of traces (the training set) is used to infer a model, and
then a second set of traces (the test set) is used to evaluate the predictive power of the model
in terms of some metric. Evaluations are often carried out using a popular machine learning
technique called k-folds cross validation [95]. This involves partitioning the data set into k sets
then, over k iterations, a model is inferred using the union of £ — 1 of these sets as the training
data and the remaining set as the test set. A different test set is used for each iteration, thus
mitigating bias towards any one in particular. The final accuracy score is taken as the average
over all the iterations. I apply a similar technique here to evaluate my tool, and will discuss
this in Section 8.4.

An alternative technique we could use here is to hand write a “gold standard” model of each
system and then evaluate with respect to these in terms of either the structure or the accepted
language. While Section 8.2 provides figures to illustrate the systems, these can be thought
of as “artists’ impressions” rather than a gold standard which must be upheld. Indeed, both
Figures 8.2 and 8.4 were produced by my inference technique while investigating RQ1. While
we could evaluate with respect to these models, it is difficult to get a view of their predictive
power for realistic traces. Moreover, it is very difficult to quantitatively measure the differences
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between two EFSM models in a meaningful way without reference to traces. Thus, while I make
informal structural comparisons in Section 8.6, the quantitative metrics I use to answer RQs 1,
2, and 3 are all trace based. I shall be using the following four metrics.

number of accepted positive traces
total number of positive traces

e Sensitivity =

/20 (X¢—Y3)?
e NRMSE = *——-"— where X is the observation produced by the model in response

max X —min X
to a trace and Y is the observation produced by the system in response to the same trace.

number of correctly executed actions
length of trace

e Proportion of correctly executed actions =

length of accepted prefix
length of trace

e Proportional length of accepted prefix =

8.3.1 Sensitivity

The first evaluation metric I use is sensitivity. This is a popular metric in the literature on
classical FSM inference and is calculated as the number of positive traces in the test set accepted
by the model divided by the number of positive traces in the test set. Thus, it represents the
proportion of traces in the test set which were correctly accepted by the model. Models with a
high sensitivity are considered more accurate than those with a low sensitivity.

Another popular metric in classical FSM inference is specificity. This is the dual of sensitivity
and represents how many negative traces the inferred model correctly rejects. The two are then
combined to calculate the binary classification rate as discussed in Section 3.11. T do not use
specificity here as it requires negative traces, which are quite hard to obtain for realistic systems.
A semi-automated technique is presented in [152], but it is still quite involved.

While sensitivity is an excellent metric for classical FSMs, it falls a little short for EFSMs.
Since classical models have atomic actions, traces are accepted or rejected based on whether or
not they are recognised by the model. Since EFSM transitions can produce observable outputs,
a trace can be recognised but not accepted if the outputs in the trace do not match those
produced by the model. Given that part of the objective of the inference technique presented in
Chapter 6 is to automatically infer output and update functions, if these are inferred incorrectly,
it is unlikely that any trace in the test set will be fully accepted. This means that the sensitivity
of the inferred models may be very low, but does not necessarily mean that the models should
get an accuracy score of zero. Not all EFSMs with zero sensitivity are equally bad models of
the system. Indeed, some models with zero sensitivity can actually score quite highly on other
metrics which view the system differently.

8.3.2 Normalised Root Mean Square Error

Despite the flaws highlighted in Section 3.11, the NRMSE of the recognised prefixes of the
traces in the test set is one such metric. As discussed in Section 3.11, NRMSE aggregates the
difference between the outputs produced by the system and those produced by the model. Thus,
in contrast to the other metrics I use here, lower scores indicate better models. This is not a
particularly trustworthy metric on its own, however, as it does not take into account the rejected
suffix. Thus, in situations where the point of deviation is also the point of non-recognition, the
NRMSE will look perfect even for poor models. If used in conjunction with other metrics,
though, NRMSE can help to give an idea about the output behaviour of the inferred model.
Since it was used as the primary metric in the evaluation of [150], I will also be using it here.
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8.3.3 Accepted Prefix Length

Another evaluation metric I use here is the length of the accepted prefix of each trace. Like
RMSE, the accepted prefix length is scale-dependent, in this case depending on the lengths of
the traces used to evaluate the model. To normalise this, I divide by the length of each trace
to give a value between zero and one. This then represents the proportion of the trace which
was processed before the point of deviation, and indicates how far along a trace we can expect
to get before we notice a different between the behaviour of the model and the behaviour of the
system. As with sensitivity, higher scores indicate better models.

8.3.4 Proportion of Correct Events

The final accuracy metric I use is the proportion of correctly executed events in each trace. This
is calculated as the number of events in each trace where the output of the model matches that
of the system divided by the total number of events in the trace. This is is conceptually similar
to NRMSE in that an event is considered “incorrect” if the expected output is different to the
actual output. The difference here is that this metric gives the same weight to each event. It
also measures correct events, so higher scores indicate better models. Another advantage over
NRMSE is that we are able to take the rejected suffix into account by treating the events within
it as incorrect. Thus, this metric can distinguish between a perfect model and a completely
unreactive model, where NRMSE cannot.

The value of this metric likely to be very similar to the accepted prefix length in most cases
but, as mentioned in [150], when models go awry, it is often because of only a few particular
transitions rather than the entire model. In terms of Figure 3.12, this means that the yellow
midsection between the accepted prefix and the unrecognised suffix could contain many correctly
executed actions. While it is obviously desirable to increase the length of the accepted prefix,
models which are able to correctly execute many actions after the point of deviation are obviously
more desirable than models which cannot do this. This metric takes these actions into account,
so is able to give extra credit to such models.

8.3.5 Evaluating Scalability

RQ4 is concerned with the scalability of my tool. The first part of this RQ is about the size
of the inferred models. To answer this question, I will compare the various configurations
among themselves with respect to the numbers of states and transitions in the inferred models.
Section 8.6 provides a more informal qualitative discussion relating the inferred models to the
exemplary models in Section 8.2.

The second part of the RQ concerns the runtime of the tools. For each experiment, I
recorded the wall clock runtime from start to finish and will use this to compare the different
configurations. While this is certainly not as rigorous as calculating the asymptotic complexity
of each technique, optimising runtime is not a major part of this thesis. Here, I am more
interested in the factors which affect runtime, for which wall clock runtime is a sufficient to be
able to compare the different configurations.
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8.4 Experimental Setup

The output of my inference tool is determined by two things: the training set and the random
seed with which any GP operation (either preprocessing or guard inference) is called. To get
an accurate view of the system, we need to exercise it with different trace sets and different
random seeds. Because this is an empirical study, we need to ensure that we run the system
enough times for the results to reflect the behaviour of the system sufficiently for us to draw
conclusions. According to [11], an acceptable compromise between feasibility and reliability is
30 runs. Thus, we need to run the inference tool with 30 different trace sets. Further, for each
trace set, we should run the tool using 30 different random seeds for the GP. Consequently, the
tool is run 900 times for each configuration of each system. To achieve some comparability of
wall clock runtime for RQ4b, each experiment was run as a separate job on the University of
Sheffield’s Bessemer HPC cluster and was allocated a single CPU core and up to 8 GB of RAM.

In addition to the random seed, there are several other parameters which can be adjusted to
affect the performance of the GP system. These parameters are the size of the population pu, the
number of new individuals generated per generation A, and the maximum number of generations
for which the GP runs. In this experiment, I ran the GP for 100 generations with p = 100 and
A = 10. There may be values of ;1 and A which enable the GP to find optimal functions in fewer
generations, but there is no efficient way to determine these values. Preliminary experiments
revealed that these settings usually enabled the GP to find a function with an optimal fitness if
one existed, but a full parameter optimisation investigation is left for future work.

As well as comparing the models inferred by my tool to those of MINT, I also compare to
two baseline approaches: the initial PTA and the model which my tool infers from this purely
by merging states, i.e. without GP or additional heuristics. In these cases, the output is entirely
dependent on the input traces. No GP occurs here so there is no need to provide random seeds.
Consequently, I only ran these configurations once for each set of traces, i.e. 30 times rather
than 900. This somewhat reduces the reliability of the runtime data for these configurations,
but runtime is not the primary aspect of this investigation and, as we will see in RQ4b, the
runtimes without GP are often too long for 900 repeats to be feasible. Even as it is, it still took
nearly three months to run the entire suite of experiments.

In terms of the training and test sets of traces, k-folds is not directly applicable here. The
main reason for this is the disparity between the number of traces available for LIFTDOORS and
SPACEINVADERS. LIFTDOORS has an openly available set of over 300 traces where SPACEIN-
VADERS had to be run manually to obtain traces. While this does not impose a theoretical limit
on the number of traces available, my own time and patience was a significant limiting factor.
It is obviously unfair to divide the respective trace sets evenly if they are of different sizes, since
this would give the larger trace set an unfair advantage.

Instead of partitioning the trace sets evenly, I made up the respective training and test sets
by drawing random samples of 60 traces and then splitting them into two sets of 30. In the case
of LIFTDOORS, I also discarded traces of length less than five because the vast majority of the
available traces are much longer than this, meaning that short traces are extremely likely to be
prefixes of other traces in the training set and so contribute no new information. This left 348
traces. For SPACEINVADERS, I played the game 100 times to produce 100 traces, all of which
were of a reasonable length. Because the drinks machine was specifically implemented for the
task of evaluating my inference tool, I made it very easy to automatically obtain traces. Thus, I
simply ran the program on a loop to obtain 30 separate training and test sets of 30 traces each.
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8.4.1 Obtaining Traces

To compare my system with MINT [150], we need traces in a format which can be accepted by
both systems. Unfortunately, the input format of MINT is slightly different to the one required
by my inference tool. MINT requires traces in the following form.

trace
setTimer 5
waitTimer
waitTimer
waitTimer
waitTimer
waitTimer 1
systemInitReady 0
closingDoor 10
closingDoor 9
buttonInterrupted 8

N W b O,

Each event is on a new line which consists of the action label followed by the anterior variable
values. Recall that the models inferred in [150] have no distinct inputs or outputs, so we can
consider the anterior variable values to be an action’s “inputs”. Additionally, since MINT uses
white-box traces to infer models, the variables which appear here are actually internal variables
of the system, so would not visible to an outside observer.

My tool from Chapter 6 infers models with inputs, outputs, and internal variables from
black-box traces. Here, traces are lists of JSON objects of the form {"label":"action",
"inputs": [ig,i1,...], "outputs":[og,01,...1}. There are no internal variables here so,
to convert traces in the MINT format to my own JSON format, I model the variables as inputs
and output. Each event in a MINT trace reports the anterior value of every variable. Assuming
there is no interference from the environment between transitions, we can treat the anterior
values of event e, 1 as the posterior values of event e,. I then encode the anterior values for
each event as the input and the posterior values as the output. For the above MINT trace, this
leads to the following.

{"label": "setTimer", T"inputs":[5], "outputs":[5]},
{"label": "waitTimer", "inputs":[5], "outputs":[4]},
{"label": "waitTimer", "inputs":[4], "outputs":[3]},
{"label": "waitTimer", "inputs":[3], "outputs":[2]},
{"label": "waitTimer", "inputs":[2], "outputs":[11]},
{"label": "waitTimer", "inputs":[1], "outputs":[0]}
{"label": "systemInitReady", "inputs":[0], "outputs":[0]}
{"label": "closingDoor", "inputs":[0], "outputs":[10]}
{"label": "closingDoor", "inputs":[10], "outputs":[9]}

The available traces of the LIFTDOORS system are already in the MINT format and only
make use of a single variable, so could be easily converted to the JSON format required by my
tool. For SPACEINVADERS, I recorded traces in the MINT format with each event containing
the anterior values of every variable. I then converted the traces to my JSON format, keeping
only the variable values relevant to each event. For example, the shieldHit event from the
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SPACEINVADERS system only makes use of the shields variable so x and aliens are removed from
the event. DRINKS is only used by my tool, so I recorded the traces in my JSON format.

The conversion from the MINT format to JSON does mean that we lose the last event in
each trace since there is no next action from which we can infer the posterior variable values.
For LIFTDOORS, the available traces are sufficiently long and varied that this does not matter.
For sPACEINVADERS, I recorded a sacrificial dummy action at the end of each trace.

The fact that variable values are being modelled in the JSON trace format as inputs and
outputs makes the investigation of RQ2 relatively simple. For this, we can simply remove one
of the inputs from the traces while keeping the output. Thus, the output behaviour of certain
transitions depends on the value of a variable which is hidden. For example, we can choose to
remove the aliens variable input from the SPACEINVADERS traces to make all the alienHit events
zero arity. Apart from start, whose arity decreases to two, all other events remain unchanged.

8.5 Results

This section presents the results of the experiments I performed to investigate the four research
questions identified in Section 8.1.%

RQ1 How accurate are the models produced by my inference tool?

This research question is concerned with the accuracy of the models we can infer when the traces
contain all the values used to compute the outputs. Here, I am interested in whether and how
GP preprocessing affects the accuracy of the models inferred by my technique, and how these
models compare to those which can be inferred by MINT [150].

Accepted Prefix Length

The first accuracy metric I consider is the accepted prefix length. Figure 8.7 shows the distribu-
tions for each configuration of both programs with the median shown in red. For LIFTDOORS,
we can see that the PTA is able to process 55% of the average trace before there is a difference
between there is a deviation between the behaviour of the system and that of the model. This
is a strong starting point for inference and makes it more likely that we will end up with a
good model of the system. Indeed, the “LIFTDOORS none” plot shows that, even without any
preprocessing, my inference technique is able to produce a model which accepts the entirety of
the average test trace, with relatively few outliers. With GP preprocessing, my inference tool
is always able to achieve this. We can also see from Figure 8.7 that MINT also does a good
job for LIFTDOORS, often inferring a model which can accept the average trace in its entirety,
although there are quite a few outliers here where this was not achieved.

For SPACEINVADERS, the story is quite different. Here, the PTA is not so good a model of
the system, on average only getting through about 20% of a trace before the point of deviation.
Without GP preprocessing, my inference process was always able to produce a model which
accepted every trace in its respective test set. Interestingly, the GP preprocessing slightly
decreases performance here as there are some outlying models for which certain traces have a
point of deviation before the end.

SThe raw data is openly available at https://figshare.com/s/9badfc5bff3643d1£02F.
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8.5. RESULTS

Proportional Lengths of Accepted Prefixes
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Figure 8.7: Proportional accepted prefix lengths.

The reason for this is that the output of the GP depends on both the training set and the
random seed it is called with. Recall that the GP attempts to abstract away concrete values
in favour of symbolic functions that explicitly compute output from input. If the initial set of
traces contains every valid literal value, we can obtain a very accurate model without any kind
of generalisation whatsoever. Even in these situations, certain random seeds can still cause the
GP to produce inaccurate output or update functions, or even fail to discover them entirely. In
such cases, we are forced to default back to the literal outputs from the PTA.

Since the generalisation step of my GP preprocessing technique involves dropping the guards
on transitions, in cases where we have had to retain the literal values, we end up with transitions
which produce concrete literal outputs but have no guards to restrict the input values. This
severely limits the number of states we can merge because there is likely to be a lot of unresolvable
nondeterminism. When this happens, we end up with states in the model that divide the full
functionality of the underlying program state between them and are thus not able to respond
to as many actions as they should.

This ties into the conclusion from [150] that program states with many outgoing transitions
are harder to infer. In Figure 8.4, state ¢; represents an active game and has six outgoing
transitions. Since we can either win or lose a game (but not both in the same trace), we know
that no trace can contain every event which the system can perform. Thus, to infer the full
functionality of an active game, we need to combine information from different traces by merging
states. If we are forced to keep certain states separate which should really be merged, we cannot
amalgamate their transitions. Thus, these states only have partial functionality — there are
certain actions which they should be able to perform that are missing — meaning that some
valid system traces will not be recognised.
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Further evidence for this explanation can be found in Figure 8.11a. Here, we can see that
there are certain instances of SPACEINVADERS for which the model inferred with my GP pre-
processor has a slightly higher than average number of states. If we examine these cases indi-
vidually, we can see that the instances with a higher number of states are exactly the instances
with shorter accepted prefixes. While the actual models are too large to display effectively here,
it is indeed the case that certain events have retained their literal outputs meaning that the
functionality of the active game state has been split between several states.

MINT also does not do as well for SPACEINVADERS as it did for LIFTDOORS. While its
models are still, on average, capable of accepting the traces in the test set in their entirety, they
do this less often than models inferred for LIFTDOORS. The explanation for this is that MINT
requires every event to report the value of every variable. Since SPACEINVADERS uses three state
variables but each event only works with one, there is a lot of irrelevant information. In [150], it
is identified that MINT struggles in situations like this because it gets confused by the surplus
variables, and this is what is happening here. By contrast, my technique does not require that
every variable be present in every event. Thus, each event only needs to record the inputs which
are relevant, so my GP has much less surplus information to mislead it.

Analysing the individual experimental instances reveals that there are only three runs for
which my GP technique was outperformed by MINT. In all other instances, my technique does at
least as well as MINT, outperforming it in 779 experimental runs out of the 900. An inspection of
these outlying instances reveals that, even here, the models produced by MINT are meaningless,
even though two out of the three instances have perfect score. The transition guards inferred by
MINT during inference severely hampered its ability to merge states and transitions, meaning
that the structure of the model does not reflect the control flow of the underlying system. The
models are too large to be displayed effectively in the format of this thesis, but I discuss the
situation in more detail and provide figures in Section 8.6.

Having said that, the models inferred by my own tool in these instances are considerably
larger than those inferred by MINT. As discussed above, when my GP fails to come up with a
function, it must fall back the concrete values from the traces. Unfortunately, my preprocessing
technique drops the guards on transitions regardless of the GP’s success. In situations where
the GP fails, we end up producing a concrete output without restricting the input. This leads to
a lot of unresolvable nondeterminism when merging states, meaning we must keep more states
separate and the inferred models are closer to the original PTA than the model in Figure 8.4.
This turns out to be a common theme throughout this evaluation and is a limitation of my GP
preprocessing technique in its current form. I discuss this in more detail in Chapter 10.

Sensitivity

Figure 8.8 shows the different sensitivities of the various configurations. The figure mostly tells a
similar story to Figure 8.7. For LIFTDOORS, we can see that the PTA generally accepts just over
20% of the traces in the test set, again indicating that the PTA is a strong start for the inference
process. Here, the performance gain from my GP is more apparent than in Figure 8.7. Where
GP preprocessing always gives the inference process the ability to infer a model with perfect
sensitivity, if GP is not used, we average about 0.9. That is, 90% of the traces in the average
test set are accepted in full. Here, MINT is able to infer models whose sensitivity is comparable
with the ones inferred by my technique. In the majority of cases these models achieve perfect
sensitivity, although there are a few outliers which do not.
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Figure 8.8: Sensitivity.

For SPACEINVADERS, the sensitivity of the PTA is always zero. No PTA built from any of
the training sets accepts any of the traces in the respective test set in full. Despite this, my
inference process can still infer a model with perfect sensitivity, even without any preprocessing.
With GP, there are a few outliers with a less than perfect score. The explanation for this is the
same as above. Analysing the individual runs reveals that there are only four instances where
MINT outperforms my technique, three of which are the same as above. In all other instances,
my technique does at least as well as MINT, outperforming it in 778 runs of the 900.

We can see that there are much fewer outliers in Figure 8.8 than for Figure 8.7. The reason
for this is that each test set of traces gives us a single sensitivity data point, in Figure 8.7 we see
one outlier for every trace which was not accepted in full and in Figure 8.8 we see one outlier for
every model which did not accept the entirety of its test set. The fact that there are much fewer
outliers on Figure 8.8 indicates that there are a few really bad models which reject a lot of traces
rather than there being slight imperfections in lots of models, which sheds a more favourable
light on my GP preprocessing technique.

Figure 8.8 reveals that the models produced for SPACEINVADERS by MINT have a much lower
average sensitivity than those produced by my technique. While Figure 8.7 shows comparable
performance between the techniques, this is because there are only a few outlying prefix lengths
plotted on top of each other many times, meaning that their frequency is not visible.

The difference in performance between my system and MINT is, again, due to its requirement
for every trace to show every variable value. This leads the inference to come up with spurious
guards which restricts the number of actions the model can respond to. My preprocessing
technique works only with the variables relevant to each event and explicitly drops the guards
on transitions, making them able to respond to every input value.

178



CHAPTER 8. EXPERIMENTAL EVALUATION

Proportion of Correctly Executed Actions

Figure 8.9 shows the proportion of correctly executed events in each trace. There is relatively
little new information here. Again, for LIFTDOORS the PTA does relatively well on average, my
technique with GP preprocessing produces a perfect score, and MINT appears to be comparable.
The story is consistent for SPACEINVADERS as well. The PTA performs very poorly, but my tool
is able to infer a perfectly accurate model without GP. The GP preprocessor introduces a few
erroneous models, which are the same instances as for the previous metrics.
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Figure 8.9: Proportions of correctly executed events.

Again, we can see that my technique performs better than MINT for the SPACEINVADERS
system. This is not quite so apparent as in Figure 8.8, but the difference is still visible. Looking
at the individual experimental runs, my technique is outperformed by MINT by the same three
experimental runs, and outperforms it in 779 of the 900. This difference in performance is, again,
explained by the fact that MINT requires every event to record the value of every variable, thus
giving it a lot of surplus information which may mislead it when inferring both guards and
update functions.

NRMSE

Finally, let us examine the NRMSE. The box plots in Figure 8.10 are slightly different from
the other metrics. As mentionned in Section 8.3, lower NRMSE scores represent better models.
Despite the fact that we know that neither PTA is a perfect model, all configurations achieve a
perfect NRMSE apart from the plot for SPACEINVADERS with GP. The explanation for this is
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helped by considering the different trace parts, as discussed in Section 3.11. In situations where
a trace can be written in the form zz, where x is the accepted prefix and z is the rejected suffix,
no events are recognised after the point of deviation. This makes for a perfect NRMSE since
the rejected suffix is not included in the metric.
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Figure 8.10: NRMSE.

The only configuration which does not score a perfect NRMSE every time is the one for
my inference technique for SPACEINVADERS with GP preprocessing. Again, there are only a
few outlying instances where this is the case, and these are the same instances as for the other
metrics. The lack of a perfect NRMSE indicates that there is a portion of the trace after the
point of deviation and before the unrecognised suffix where at least one event is recognised but is
not accepted. That is, the output produced by the model does not match that produced by the
system. This indicates that either the GP has come up with an output function which accounts
for the training set but is not sufficiently general or could not find an output function so was
forced to default to the literal values from the PTA. In the latter scenario, since guards are
removed from transitions as part of preprocessing, the transition no longer represents a literal
input-output pair and, instead, is able to respond to any action with the correct label.

Interestingly, MINT is able to achieve a perfect NRMSE here despite the fact that the other
metrics show that its models are not always perfect. Again, the explanation for this is that the
traces have no recognised mid-portion after the point of deviation. This is interesting because
my own GP sometimes leads to models with a non-zero NRMSE. The explanation for this is
that the models inferred by MINT often still have guards on the transitions. This means that
transitions cannot be taken unless they have an appropriate input. This makes a model more

180



CHAPTER 8. EXPERIMENTAL EVALUATION

likely to reject an action rather than recognise it and produce an incorrect output. When this
happens, the remainder of the trace does not contribute to the NRMSE. Unlike MINT, my GP
removes guards from transitions so they can be taken with any input. While this widens the
applicability of transitions, it makes it much more likely that incorrect output functions will
reveal themselves as such.

Looking at the individual runs, my technique is outperformed by MINT for the same four
instances where MINT achieves a higher sensitivity than my technique. What is happening here
is that my GP has failed, meaning we have had to default back to the concrete values from the
PTA. The transition guards are dropped regardless of this, meaning that certain states in the
final model are able to react to inputs which elicit an incorrect literal output. By contrast, the
guards inferred by MINT act in its favour here, limiting the inputs to which each state can react
to those which elicit the correct response.

This does not mean the models are necessarily better, though. As discussed above, the
models produced by both tools in these outlying instances do not adequately reflect the control
flow of the underlying system. Additionally, placing guards on transitions makes the model
less reactive, so the point of non-recognition is likely to occur sooner. Events after this cannot
contribute to the NRMSE, so the model looks better even though it is less reactive. This is
exactly the problem discussed in Section 3.11.

Model Complexity

Figure 8.11 shows the numbers of states and transitions in the inferred models for the various
configurations, plotted using a log scale to account for the large range of values. While scalability
is the subject of RQ4, it is worth considering model complexity here as well in the context of
accuracy. Ideally, we want to infer a model with the same number of states and transitions as
the underlying system. Additionally, models with fewer states and transitions are often easier
to understand than those with many. This is discussed more in Section 8.6.
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Figure 8.11: States and transitions.

We can see from Figure 8.11 that my GP preprocessing technique often enables us to infer
models with fewer transitions than we can without it, although the number of states is often
very similar. The reason for this is that GP allows us to abstract away concrete values in favour
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of more generic functions. This allows us to merge a lot more transitions, so we end up with a
smaller model. Without GP, we retain the concrete values from the original traces. Here, output
is not calculated from input, rather, a literal value is produced as output as a mere consequence
of the input. This means that we end up retaining a lot of transitions which are all instances of
the same behaviour because there is no nondeterminism when we merge states. Not only does
this lead to cluttered models that are difficult to follow, it is also not likely to be a particularly
accurate representation of the system. Most programmers do not code functions as a series of
if input is x then return y rules. Instead, they write more general and meaningful functions. It
is these which the GP helps us to discover. This is discussed more in Example 8.5.3.

Figure 8.11 also shows that there are a few outlying model instances for SPACEINVADERS
with GP preprocessing that have more states and transitions than the rest. As mentioned in
RQL, these are the same models which are less accurate. Here, the GP was unable to successfully
come up with suitable output and update functions, meaning that more states and transitions
had to remain distinct.

Figure 8.11 shows that, while MINT infers models with a similar number of states to my
inference technique (with GP preprocessing), it often infers models with many more transitions.
The reason for this is that MINT often retains guards on transitions. This means that it
encounters less nondeterminism when merging states than my tool so has less difficulty merging
states, but is forced to keep more transitions separate if their guards are not compatible. For my
own technique, the inference of guards is the subject of RQ3, but it comes by default with MINT.
Unfortunately, as we will see in Section 8.6, these transition guards are often not particularly
readable and can clutter the inferred models.

Conclusions

This research question was concerned with the accuracy of the models we can infer when the
traces contain all the values used to compute the output. For LIFTDOORS, the ability to use
GP to generalise away the concrete values on average led my inference technique to produce
better models than without this ability. The models produced by MINT for this case study are
comparable in terms of accuracy.

For SPACEINVADERS, my inference process was able to infer perfectly accurate models even
without GP preprocessing. Consequently, the stochastic nature of GP was revealed as a weakness
here. On the other hand, GP preprocessing did allow us to infer models with fewer states and
transitions. The discovery of functions which explain and generalise the concrete values observed
in the traces meant that we could merge more behaviour. Not only are these models likely to
be easier to understand, they should also be more accurate representations of the underlying
systems because the output is computed from input, rather than simply being produced as a
consequence. This will be discussed in more detail in Section 8.6.

In this case study, the difference in performance between my system and MINT was quite
apparent, with my technique producing significantly more accurate models. This is because
MINT requires every event to report the value of every variable. Thus, it ends up with much
more data to work with, much of which is irrelevant. This is identified as a weakness in [150]
and leads to spurious transition guards being inferred during state merging, severely limiting
the predictive power of the models.
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RQ2 How does eliding variables affect the accuracy of the models pro-
duced by my inference tool?

This research question is concerned with how well my GP preprocessing technique from Chap-
ter 7 is able to utilise latent variables to infer output functions for transitions when certain
variable values do not appear in the traces. To answer this question, I modified the traces I
used to answer RQ1 by removing one input variable at a time. This results in traces where the
output of certain events depends on the value of a variable which is hidden. The task is for the
GP firstly to discover that a register needs to be introduced, and secondly to infer how to use
this register. No comparison between my technique and MINT is possible here since MINT is
only designed to work with white-box traces and does not consider the possibility that there
may be additional variables which are not visible.

Before examining the different accuracy metrics, let us first look at the bigger picture. When
we elide variables, we make the task of generalising concrete values into functions much harder
for the GP. This makes it much more likely that it will produce erroneous functions that force us
to fall back on the concrete values from the traces. Because we drop transition guards as part of
preprocessing, we must keep more states distinct to avoid nondeterminism. As before, this often
means we end up with a model containing states that share between them the functionality of
the underlying program state. Thus, the model will not recognise as many traces as it should.

Sensitivity

Figure 8.12 shows the sensitivity distributions for the various LIFTDOORS and SPACEINVADERS
configurations. For LIFTDOORS, there is only one variable: the system timer. We can see here
that obfuscating this variable has a slight negative impact on the average sensitivity of the
inferred model, both with and without GP preprocessing. This is unsurprising since the GP has
less information to work with. This makes it less likely to come up with the correct output and
update functions, making it more likely that we will end up with a less accurate model.
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Figure 8.12: Sensitivities.

For SPACEINVADERS, there are three different variables which can be elided: the x coordinate
of the gun turret, the number of aliens the player has hit, and the number of shields they have
left. Figure 8.12 shows that any obfuscation gives a considerable drop in performance when
compared to the original traces. We can also see that, no matter which variable is obfuscated,
models inferred with GP perform at least as well (and usually better than) those inferred without
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it. Here, the GP plot with aliens obfuscated looks a little odd. This is due to the fact that
the distribution is bimodal — either the inference does very well or very badly. It does badly
slightly more often, thus the median is very low, but the split is roughly 50:50.

What is interesting in Figure 8.12 is the plots when two variables are obfuscated. Since
obfuscating the x variable alone brings the median sensitivity down to zero, it is not surprising
that further obfuscation leaves this unchanged. What is surprising, though, is the outliers in
the plot with x and aliens obfuscated. These appear to be slightly more accurate than with the
aliens variable present in the traces.

The reason for this is due to the update functions inferred by the GP. With the aliens variable
present as an input to alienHit events, it just so happens that the input value is exactly the
value which should be assigned to a particular register. For example, we might need to assign
the value 2 to register 7 to meet the obligations of a subsequent output function. When the
aliens variable holds value 2, the GP can produce either ro := 2 or ro := ig as the update. In
the latter case, this forces us to keep more transitions separate than if we had used the constant
value since iy is not always 2. With the aliens variable elided, we no longer have access to the
ig variable, so the constant is always used, enabling us to merge more transitions, and thus infer
a more reactive model.

Accepted Prefix Length

Figure 8.13 shows the lengths of the accepted prefixes for the various models. This gives a
more favourable picture than the sensitivity metric. Indeed, for LIFTDOORS, we can see that,
in the average case, there is no point of deviation in the traces. There are quite a few outlying
instances where this is not the case, but the vast majority of these cases still get through at
least half of the trace before the point of deviation. We can also see that there are much fewer
such instances when GP preprocessing is used.
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Figure 8.13: Proportional accepted prefix lengths.

The story is similar for SPACEINVADERS, with Figure 8.13 giving a much more favourable
picture than Figure 8.8. Again, we can see that models inferred with GP preprocessing are always
at least as accurate as those inferred without. What is very clear here is that which variable we
elide has a much greater effect on model accuracy than the number of elided variables. When we
obfuscate aliens and shields together, the drop in accuracy is roughly the sum of the respective
drops when we obfuscate the two variables separately. The same, however, cannot be said when
we obfuscate these variables in combination with x. Here, there is very little change in model
accuracy. The reasons for this are discussed in detail at the end of this section.
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Proportion of Correct Events

Looking at the proportions of correctly executed events shown in Figure 8.14, we get an even
more favourable picture. For LIFTDOORS with time obfuscated, the GP preprocessor often
allows us to infer a model which can execute every event correctly, with relatively few outliers.
This indicates that the GP is generally able to cope well with the elision of the timer variable.
While it is still possible (and indeed quite likely) that my tool will infer a perfect model without
GP preprocessing, there are many more outliers here and it is even possible to infer a model
which can only execute 20% of events correctly. By contrast, nearly every model inferred with
GP preprocessing achieves greater than 80%.
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Figure 8.14: Proportions of correctly executed events.

For SPACEINVADERS, we again see that the accuracy of the inferred model depends primarily
on which variable we have elided, rather than how many. We also see that the proportion
of correctly executed events is usually very similar to the length of the accepted prefix. This
indicates that not many events are executed correctly after the point of deviation, which means
that the portion of the trace between the point of deviation and the point of non-recognition
is either very short or contains many incorrectly executed events. The exception to this is
the “obfuscated aliens GP” plot, which has a much higher proportion of correctly executed
events. This means that the model was able to correctly execute many events after the point of
deviation, so only a few transitions were problematic.

NRMSE

Looking at the NRMSEs shown in Figure 8.15, we can see that the accumulated difference
between expected and actual outputs is usually quite small. As before, we cannot take this
metric in isolation, but it can be helpful when considered in conjunction with the other metrics
discussed above. This is particularly pertinent for the SPACEINVADERS case study. Here, we
can see that GP preprocessing usually leads to models with perfect NRMSEs when aliens and
shields are obfuscated, subject to the usual outliers. When taken in conjunction with the
accepted prefix length and proportion of correctly executed events, this indicates that the point
of non-recognition and the point of deviation are usually the same, meaning that the main source
of inaccuracy is usually the inability to recognise events from certain states.

When the z variable is obfuscated, the NRMSE is much higher. This is interesting as it
means that there is a substantial mid-section between the point of deviation and the point of
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non-recognition where the model is able to recognise events but is not able to correctly process
them. It seems that the GP generally struggles much more to generalise behaviour when we
obfuscate the x variable. The reasons behind this are discussed in the conclusions of this RQ.
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Figure 8.15: NRMSEs.

Model Complexity

Again, let us briefly consider model complexity in the context of accuracy. In Figure 8.16, we
can see that the size of a model is related to its accuracy in terms of the other metrics. As for
RQ1, it seems that the configurations where the inferred models were less accurate generally
had models with more states. The explanation for this is the same as before: if we are forced to
keep states separate which should be merged, we end up with functionality being split between
sets of states, and models which cannot accept as many traces as they should.
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Figure 8.16: Numbers of States.

Particularly noteworthy here are configurations for SPACEINVADERS where the x variable has
been obfuscated, as these models have by far the most states. This provides further evidence
that the GP was not often able to infer a suitable function for these events and was forced to
default to the original literal outputs from the PTA. The reasons behind this are discussed in
the conclusions of the RQ. Because the majority of events are move events, if we were forced to
default back to the literal outputs of these events, the inferred model would be almost identical
to the one inferred without any preprocessing. This is also why obfuscating additional variables
gives very little change in the size of the model.
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Also noteworthy is the configuration with the shields variable obfuscated. Like the other
configurations, GP preprocessing leads to more accurate models, but they have slightly more
states than without preprocessing. This is because the GP preprocessor drops the guards on
transitions. Thus, if it is unable to infer an output function for the shieldHit transitions, it will
have to leave more states separate. On the other hand, it is still able to infer output functions for
the mowve events since the z input to these transitions has not been obfuscated. Because the vast
majority of events in the traces are move events, the ability to correctly infer the appropriate
output functions for these transitions has a much greater impact on the accuracy of the model.

Conclusions

This research question was concerned with how obfuscating variables affects the accuracy of the
models my tool can infer. The first conclusion we can draw from the above results is that GP
preprocessing generally enables my technique to infer more accurate models when this is the
case. This is in keeping with the observation from [106] that using literal equality as a merging
criterion tended to produce less accurate models. While this observation was made in a slightly
different context, it is relevant here as well since, without the ability to generalise away concrete
values, only syntactically equivalent transitions can be merged. With GP preprocessing, we
drop the guards on transitions, thus enabling models to continue processing traces even if the
transitions are not able to generate the correct output in response to the input.

There second conclusion we can draw is that which variable is elided seems to have a much
greater effect on the accuracy of the inferred model than how many variables we elide. When
we elide just one variable, my technique generally does much when the aliens or shields variable
is elided than for . When we elide two variables, if one of these is the x variable, there is
generally very little change in model size or accuracy.

Part of the reason for this is the relative frequencies of the events in the traces which depend
on these variables. Both the alienHit and shieldHit events occur very infrequently in the traces,
with the majority of events being either moveFEast or move West. This means that problems with
these events have a much greater effect on the inferred model and are more likely to be revealed
by the traces in test set. The events concerning aliens or shields occur much less frequently, so
problems with the corresponding transitions have much less of an effect on the model.

This is especially true when we have elided variables in addition to x. Because alienHit
and shieldHit events occur so infrequently, the GP often ends up with very small or singleton
training sets. This means it is often fails to produce an output function or simply sticks to the
original concrete values, even when the corresponding variable is present. Thus, obfuscating it
in addition to x has very little effect on the inferred model. The effect of obfuscation is further
diminished by the fact that it is quite likely that we will encounter a move event which the model
fails to execute correctly (or at all) before we have encountered an alienHit or shieldHit event.
Thus, problems with these events are more likely to be masked when x has been obfuscated.

The reason that obfuscating the z variable has such a detrimental effect on the accuracy
of the inferred models is that there are two actions which are affected by the obfuscation of
x (moveWest and moveEast) where the other two variables are used by only one event each.
Without the obfuscation, both transitions take in a single input which represents the anterior
state of the variable and produce a single output which is its updated value. The two actions
are each other’s inverse: one adds 50 to x and the other takes 50 away.

While LIFTDOORS also has multiple transitions which update the time variable, traces are
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laid out in such a way that time is always reset before it is mutated, meaning that it is possible
to infer update functions which “play well” with each other. With SPACEINVADERS, this is not
the case since both move West and moveFast mutate the x coordinate, respectively decreasing
and increasing it by 50. Since there is no transition to reset x between blocks of move West and
moveFEast actions, update functions cannot be inferred for the two transitions in isolation.

Subdividing structural groups by history mitigates this a little, since the GP is often able to
infer the correct output and update functions for the first few mowve transitions. More specifically,
it can infer output and update functions up to the point where we have a move West after a
moveFast after a moveWest or vice versa. Other non-move actions can obviously occur at any
point in between since these do not affect the z variable.

The reason for this is that each transition group gets its own register, meaning that move West
and moveFast update distinct variables. The GP is usually smart enough to realise that at the
start of the first block of move actions, z holds the value 200 which can be set by the start
transition. After this, move transitions either increase or decrease the variable. When the
direction switches, the second register representing = can also hold a value such that increasing
or decreasing it by 50 produces the correct output, as this can also be set by the start transition.

Example 8.5.1. Consider the following traces where the x variable has been obfuscated.

(start(3,0)/[200, 3, 0], moveWest()/[150], moveW est()/[100], move East() /[150],
moveFEast()/[200], moveWest()/[150])

(start(3,0)/[200, 3,0], moveWest()/[150], moveWest()/[100], moveWest()/[50],
moveFast()/[100], moveWest()/[50])

In a PTA built from these traces, there would be two move West groups: those which follow
start and those which follow moveEast. These are coloured red and blue respectively. There
is only one moveFast group. The three groups are each given their own register when output
functions are inferred, and each simply outputs the content of this register. The problem
comes when we try to infer updates. All goes to plan for the move West group that follows
start. The GP can successfully infer that the register r; must be updated to r1 —50. Similarly
for the moveFast, the GP infers that the register ro must be incremented by 50 each time.

Because a third register, rs, is used for the second group of move West transitions (blue),
the GP is left with inconsistent training sets when it tries to infer updates. For the top trace,
we need r3 to be 150 when it is evaluated by the blue move West. For the bottom trace, we
need it to be 50. There is no single update expression which can be added to any of the
transition groups to achieve this, so update inference fails here. This means we are left with
the default output values from the PTA for the blue moveWest group. The same principle
applies for longer traces which contain multiple direction switches.

When the direction changes for a second time, the various registers representing the under-
lying x variable are no longer in sync. The GP cannot work out what happens after this, so
defaults back to literal outputs for all subsequent move events. This reveals a limitation in the
current way of processing which is that we cannot recognise when two or more transitions need
to update the same variable. For systems like SPACEINVADERS with relatively simple output
and update functions, the underlying behaviour is reasonably obvious to a human, but it is
extremely difficult to automate this intuition in a way which applies generally.
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RQ3 How does the ability to discover value-dependent behaviour affect
the accuracy of the models produced by my inference tool?

Let us now examine how the ability to discover and distinguish value-dependent behaviour affects
the models produced by my inference tool. As discussed in Section 8.2, neither LIFTDOORS
nor SPACEINVADERS exhibits any value-dependent behaviour. For this RQ, I used a slightly
modified version of the SPACEINVADERS case study and a more complex version of the simple
drinks machine. Again, I cannot compare my tool to MINT here since its transitions do not
have outputs, so there is no observable behaviour to distinguish.

Sensitivity

Figure 8.17 shows the sensitivities for the different configurations. The original PTAs have a
sensitivity of zero in all but a few outlying cases of DRINKS. The interesting case study here
is SPACEINVADERS, since the same (slightly modified) traces were used for inference here as for
RQ1. Particularly interesting is the drop in accuracy when GP is used without the ability to
infer guard functions. For RQ1, GP achieved a perfect sensitivity, subject to a few outliers.
Here, we only have a sensitivity of about 0.1. This indicates that even a small amount of
value-dependent behaviour significantly increases the difficulty of the inference challenge.
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Figure 8.17: Sensitivities.

Even more interestingly, inferring models of SPACEINVADERS without any kind of additional
support is quite clearly the best strategy here and achieves a perfect sensitivity. The reason for
this is that every output is purely determined by its input. Even the value-dependent behaviour
on the alienHit and shieldHit transitions is determined by the input. Without any preprocessing,
the literal input guards from the PTA are retained, and the inference process infers pretty much
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the same model as it did for RQ1, except that the win and lose transitions are replaced with
alienHit : 1[ig = 4] /oo := “win” and shieldHit : 1[ig = 1]/0g := “lose” respectively.

The critical thing here is that the single active-game state can be inferred as the literal input
guards stop there from being any nondeterminism between non-identical transitions. Thus, the
inferred EFSM has the same shape as Figure 8.4. The GP preprocessor drops the guards on
transitions to increase generality, meaning that we must keep more states separate as we have
no way to resolve the value-dependent behaviour of the alienHit and shieldHit transitions. As
previously discussed, this leads to less accurate models since the functionality of an active game
is spread across many states rather than being condensed into one.

For DRINKS, the story is very different. Here, models inferred with GP preprocessing achieve,
on average, the same sensitivity as those inferred without, but higher sensitivities are not un-
usual. Despite this, the sensitivities are still very low without the ability to infer distinguishing
guards. This is because the value-dependent behaviour here is much more complicated than
for SPACEINVADERS. As discussed in Section 8.2, the output of the vend action depends not
just on how much money has been inserted so far, but also on which drink was selected. In
the real system, both of these values are stored in variables which do not appear in the traces.
Consequently, vend takes no input and it is much harder to infer what is going on.

The problem here is that the GP preprocessor must come up with exactly the correct output
and update functions for all the transitions. Even if this is the case, the value-dependent
behaviour of the vend transition often means that the nondeterminism introduced by dropping
the guards on transitions often cannot be resolved by merging transitions alone. The initial set
of traces must be conducive to this. If it is not, the inference process must default back to the
original PTA, and we end up with the same model we would get without GP preprocessing.
Even when we can resolve the nondeterminism introduced at the preprocessing stage, we often
cannot merge many more states because of the nondeterminism this introduces.

For both case studies, the ability to infer guards to distinguish transitions during inference
results in a huge increase in the sensitivity of the final model when GP preprocessing is used.
This should not come as too much of a surprise since models of systems with value-dependent
behaviour must also contain value-dependent behaviour in order to be truly accurate. The only
way to achieve this is with transition guards. If we do not provide the ability to infer these, we
significantly limit the accuracy of any model we can infer.

The underlying explanation as to why the ability to distinguish transitions leads to an
increase in accuracy is, again, to do with how states are merged. More specifically, when we
merge states, we need to resolve any nondeterminism which arises by merging further states and
transitions. If a resulting pair of nondeterministic transitions cannot be merged, we cannot merge
the original state pair. By providing the ability to infer guards which distinguish transitions that
cannot be merged, we provide an alternative tool for resolving nondeterminism. This means
that more states can be successfully merged. As discussed above, if we can merge more state
pairs, we generally end up with a model which can accept more traces.

Accepted Prefix Length

Figure 8.18 shows the lengths of the accepted prefixes for the different configurations. Again, we
can see that the ability to infer guards during inference gives a significant increase in accuracy
when GP preprocessing is used. Looking at this figure we can see that, despite initially seeming
very simple, it appears that DRINKS is the more difficult case study. The sensitivity values in
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Figure 8.17 are relatively similar between the case studies for the two GP configurations, but
Figure 8.18 shows a real difference between them. While the average accepted prefix lengths for
the respective PTAs are similar, the average accepted prefix for SPACEINVADERS are noticeably
longer than for DRINKS both with and without the ability to distinguish transitions.
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Figure 8.18: Proportional accepted prefix lengths.

There are two main factors behind this difference in performance. The first is the position of
the value-dependent behaviour within the traces. With SPACEINVADERS, the value-dependent
behaviour only occurs at the end of each interaction. Either a player hits an alien and wins the
game, or the player is hit by an alien and loses the game. Thus, it is the final event in each
trace where the behaviour needs to depend on a value. This make it possible to do quite a lot of
merging without needing to infer any guards. With DRINKS, the customer may attempt to vend
their drink any time after selecting it. This means that we are much more likely to encounter
value-dependent behaviour earlier on in the merging process. If we have the ability to infer
guards, and do so incorrectly, the point of deviation will occur much earlier in the traces than
for SPACEINVADERS. If we do not have the ability to infer guards, we will be able to merge far
fewer states and thus end up with many states which share functionality between them.

The second factor is the complexity of value-dependent behaviour exhibited by the two
systems. While SPACEINVADERS has two value-dependent actions (alienHit and shieldHit), the
behaviour of these events is relatively simple and depends on the value of a single variable.
By contrast, for DRINKS, only the vend action exhibits any value-dependent behaviour, but it’s
behaviour is dependent on both the drink which was selected and the price of that drink. This
makes it much more likely that the GP will fail to find a distinguishing guard and, as a result,
will fail to resolve nondeterminism when merging states. Alternatively, if the GP is able to find
a distinguishing guard, it is much more likely to be incorrect or not sufficiently general.
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Something else which is interesting here is that, while the sensitivity of models inferred
for SPACEINVADERS with GP preprocessing but without distinguishing guards is very low, the
average length of the accepted prefix is quite high, around 90%. This is about the point in the
traces where we might start to expect to encounter value-dependent behaviour. That is, when
it becomes important to distinguish the behaviour of the alienHit and shieldHit transitions.

The same is true for DRINKS. The average point of deviation occurs towards the end, when
the amount of money the user has inserted begins to approach the cost of the drinks. At
this point, the output of the vend transition depends on the exact values of the two variables.
Without the ability to infer guards on data values, we must to encode these conditions within
the control state of the model. As with outputs, this is not what we really want to do as it leads
to overly specific models. When we can distinguish behaviours by inferring guards, we can push
back the point of deviation. Even if the guards we infer are not very accurate, they enable us
to merge states which could not be merged otherwise. This means that there are fewer states
between which the underlying functionality is split, so the model can accept more traces.

Proportion of Correct Events

Figure 8.19 tells a similar story to Figure 8.18. In fact, the two figures are almost identical.
This indicates that the point of non-recognition comes very quickly after the point of deviation
in most cases, which indicates that the main source if inaccuracy in the inferred models is the
inability to recognise events rather than the inference of inaccurate output or update functions.
The main explanation for this is the fact that the value-dependent behaviour means we cannot
merge as many states as we would like to, even when we do have the ability to infer guards.
This means that our inferred models still have lots of states which share the behaviour of the
underlying program state between then, so lack certain transitions.
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Figure 8.19: Proportions of correctly executed events.
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NRMSE

Figure 8.20 shows the NRMSEs of the configurations of each case study. The story here is
consistent with the other metrics in that we get a much better average score when we provide
the ability to infer guards. The figure also provides further evidence that DRINKS is the more
difficult case study, since its NRMSEs are significantly higher than those of SPACEINVADERS.
Because the NRMSEs for SPACEINVADERS are so low, this provides further evidence that very
few events are recognised after the point of deviation.
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Figure 8.20: NRMSE.

The fact that the NRMSEs for DRINKS are quite high indicates that the models are able to
continue processing at least some events after the point of deviation. Figure 8.19 shows that
the number of events is not high, but it is certainly at least one. Assuming we are always able
to select a drink, the only transitions which can be responsible for this are coin and vend.

Without any GP preprocessing, the NRMSE is quite high, but when we preprocess and
provide the ability to infer guards the average NRMSE is very low. This suggests that the main
source of error is the vend transitions, which have zero arity so are unguarded. By contrast,
the coin transitions have inputs which (without GP) are guarded to ensure that they produce
the correct output for each input. When we provide the ability to infer guards, the average
NRMSE drops significantly, implying that the guarding the vend transitions helps to increase
the accuracy of the model, at least until the point of non-recognition.

Model Complexity

Let us now consider model complexity in the context of accuracy. The aim of inferring guards
during inference is to allow value-dependent behaviour to appear explicitly in transition guards,
rather than having to implicitly encode it within the control flow states. This means that, when
we have the ability to infer guards during inference, we should be able to infer smaller as we are
able to resolve more of the nondeterminism which arises when states are merged.
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Figure 8.21: Numbers of States.

Figure 8.21 shows that this is, indeed, the case. For both case studies, the average number
of states in the inferred model is nearly halved when we provide the ability to infer guards. As
for RQ1 and RQ2, we can see that the size of the model is related to its accuracy in terms of
the other metrics, with smaller models seeming to be more accurate. The story is similar for
the numbers of transitions, so the graphs are omitted here.

While the ability to infer guards gives us a smaller model, this does not necessarily mean
that the inferred model is easier to understand. Because we call the GP to infer guards at merge
time, this often means that we end up with more guards on transitions than we need.

Example 8.5.2. When inferring the EFSM for one particular configuration of the simple
drinks machine, we end up with the following vend transition.

vend : 0[ry > 59,71 # 0,79 # “coffee”, r1 # 110]/01 :=r2

While the guards on this transition may be sufficient to distinguish it from its immediate
neighbours, they are not particularly meaningful and are not sufficiently general that it can
be successfully merged with all similar transitions. We can also remove the guard r; # 0 since,
if r1 is greater than 59, it cannot be equal to zero.

The cause of this issue is that guards are inferred at merge time. This means that the GP
often has to work with very small training sets, so we are likely to end up with oddly specific
guards that solve the problem at hand but do generalise well. When applied to the same
transition several times throughout the inference process, we end up with quite a collection of
guards, as illustrated in Example 8.5.2. To resolve this, we need the ability to simplify transition
guards such that we can remove redundant guards from earlier on in the inference process. An
implementation of this would be relatively easy to achieve with something like the Z3 simplifier,
which we have already seen used in Chapter 7, but is left for future work.
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Another weakness with the way guards are inferred is that we only infer a guard for one
transition and apply its negation to the other. In Example 8.5.2; this means that there is a
transition with guard r1 = 0 and another with r; = 110. This kind of guard works well in
the short term to resolve nondeterminism, but does not work well in the long term since literal
equalities like these are too specific. In such situations, we may end up with many parallel
transitions which are not merged together because there is no nondeterminism between them.

What we would ideally like is to provide the GP with larger training sets so that we can
infer better guards. The only way to achieve this is to group certain transitions and infer guards
for them together. Essentially, we would be partitioning transitions into equivalence classes and
then inferring guards to keep these classes separate where this may be required. While this is
certainly a desirable feature, its realisation would be an entirely different technique to the one
presented in this thesis. Consequently, this is left for future work.

Conclusions

This research question addressed how the ability to discern value-dependent behaviour affects
the accuracy of the model we can infer. From the accuracy metrics considered above, the results
seem quite positive. For systems with value-dependent behaviour, the ability to infer guards
which distinguish transitions allows us to infer a much more accurate model when GP is used.
Providing this ability means that we can merge more states in the model and, thus, not have to
keep separate states in the model which represent the same program state.

Having said that, if the output of every action depends purely on the input, GP preprocessing
may not lead to such a good model even if we give the ability to infer guards. This is because
preprocessing drops the guards on transitions which means that, unless it can do a perfect job of
inferring the output functions, it will be unable to merge as many states. The value-dependent
behaviour here not only makes this task more difficult, but is also much less forgiving when the
GP makes mistakes. Without GP, we keep the literal guards from the PTA, so merging states
very rarely introduces nondeterminism. This means that many more states can be merged, thus
condensing the underlying functionality into fewer states which can perform more actions.

RQ4 How well does my tool scale?

Let us now investigate how my tool scales. There are two aspects to this: the complexity of the
inferred models in terms of the number of states and transitions, and the runtime of the tool.
Model complexity is a property of the technique detailed in Chapter 6. Runtime is a property
of the implementation, which is also affected by the environment in which the tool is run.

RQ4a How large are the inferred models in terms of states and transitions?

We have already seen model complexity explored in the context of accuracy. In situations
where we can merge many states, our models tend to be more accurate than when we must
keep separate states which should really be merged. While the accuracy of a model is often
the top priority, it is not the only metric by which we can measure the quality of an inference
technique. If the intended use of a model involves it being inspected by a human, it is obviously
helpful if the model is not only accurate but also easy to understand. This is discussed more in
Section 8.6, but models with fewer states are often easier to comprehend.
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Figure 8.16 shows the numbers of states for the various configurations used to answer RQs 1
and 2. Without obfuscated variables, my inference process almost always manages to infer
models of both systems with less than 10 states, whether or not the GP preprocessor is used.
When it can successfully infer output and update functions, the GP preprocessor enables slightly
more states to be merged, but the improvement is not particularly significant since the number
of states we can achieve without GP is so low to start with.
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Figure 8.16: Numbers of States.

The advantage of GP preprocessing is more apparent when we consider the numbers of
transitions in the inferred models, as shown in Figure 8.22. Here, we can see that models
inferred with GP preprocessing have, on average, much fewer transitions than those inferred
without it. The reason for this is that the preprocessing technique aims to abstract away
concrete values into output functions. This has the effect of making many transitions in the
PTA identical, meaning they can be trivially merged.
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Figure 8.22: Numbers of Transitions.

Without GP preprocessing, transitions retain their literal input guards and output values.
Very little nondeterminism arises when we merge states, so transitions which perform the same
action with different data remain distinct in the inferred model. This often leads to final models
which contain a lot of “parallel” transitions. GP preprocessing does not affect the number of
states we can merge, but it does affect what happens to the transitions. Here, we generalise
behaviour and remove guards, meaning that many more transitions can be merged.
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Example 8.5.3. Figure 8.23a contains a fragment of a model of SPACEINVADERS inferred
without GP preprocessing. The moveFast and moveWest transitions respectively increase
and decrease the value of their input by 50, but do this by producing a literal output value
in response to a literal input input. This means that we need a separate transition for each
possible input/output pair. Since the play area of the game is 400px wide, we need eight of
each transition.

moveFEast : 1[iop = 350]/0g := 400

oveEast : 1[ig = 100]/0¢ := 150

moveWest : 1/0g := ig + 50

moveWest : 1/0g := ig — 50

vove West : 1[ig = 150]/0g := 100

moveEast : 1[igp = 400]/0g := 350
(a) Literal transitions for SPACEINVADERS.  (b) General transitions for SPACEINVADERS.

Figure 8.23: Parallel transitions for SPACEINVADERS.

Figure 8.23b shows the same fragment of a model inferred with GP preprocessing. Here,
we have generalised the output functions and removed the guards such that we can use a
single transition to represent each of the move actions. Not only does this model have fewer
transitions, but it is also much easier to see how the system uses the data values.

If we halved the x increment from 50 to 25, we end up with twice as many distinct input-
output pairs for move West and moveFEast. Without GP preprocessing, the final inferred model
would have twice as many mowve transitions as in Figure 8.23a. With GP, the output functions
would change from 4¢ 50 to ¢o £ 25, so there would be no change in the number of transitions
in the inferred model.

In terms of scalability, what Example 8.5.3 shows is that the GP preprocessor allows us to
infer models for which the number of distinct input-output pairs in the original traces does not
affect the number of transitions in the model. Thus, the difference in transitions between using
GP and not using it is proportional to the number of distinct inputs with which each action in
the traces is called. This is, of course, dependent on the fact that the GP is able to successfully
infer a function which correctly generalises the input-output pairs in the training set.
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While MINT is often able to infer models with the same number of states as my technique,
those models often have more transitions. This is especially true for SPACEINVADERS. As
previously discussed, this is to do with the fact that MINT is less effective in situations where
there are many state variables. Where my technique is forced to keep states distinct if it cannot
merge transitions, MINT is able to infer distinguishing guards by default so is able to resolve
nondeterminism this way. As we will see in Section 8.6, the guards MINT infers are often overly
specific, so it often keeps more transitions separate than is really necessary.

Let us now examine how the obfuscation of variables affects the complexity of the models
inferred by my technique. We cannot compare with MINT here since it is only designed to work
with white-box traces. Figure 8.22 shows that obfuscating the time variable in LIFTDOORS
leads to larger models than without the obfuscation. The explanation for this is the same as in
Example 8.5.3. If we are able to generalise the behaviour of transitions, we are better able to
resolve the nondeterminism which arises as a result of merging states.

What Example 8.5.3 does not explain is the reduction in the number of states in the models
inferred using GP with time obfuscated. For this, we must take a closer look at how obfuscation
works. When we obfuscate a variable, we remove its values from the traces. Transitions with
arity one, with their input obfuscated, become transitions with arity zero. Input guards are lost
as a result of this, but the literal outputs are retained. This means that there is much more
potential nondeterminism when states are merged. Without the ability to generalise outputs
into functions, we cannot resolve nondeterminism by merging transitions, so states which could
be merged with the inputs present must now remain distinct. Consequently, with variables
obfuscated, the ability to generalise behaviour is critical if we want to infer small models.

Figures 8.11a and 8.22 show that the situation is similar for SPACEINVADERS. Like with
LIFTDOORS, the models inferred for SPACEINVADERS with GP preprocessing seem to have sig-
nificantly fewer transitions than those inferred without it. Figure 8.11a shows that the difference
in the numbers of states of models inferred with GP and without is not so great for SPACEIN-
VADERS. The reason for this varies depending on the variable which has been obfuscated.

For aliens and shields, the explanation is to do with the relative frequencies of the respective
events in the traces. Each variable is only involved in a single action, neither of which occurs
particularly frequently. This means that the GP often has insufficient training data to infer a
general function and instead keeps the literal output values, so fewer states can be merged.

For the z variable, the explanation lies in the fact that, as mentioned in the discussion of
RQ2, the GP does not do a very good job at generalising the output behaviour with this variable
elided and we are often forced to default back to the literal outputs from the PTA. Because
move events make up the vast majority of the events in the SPACEINVADERS traces, the model
we can infer with GP is relatively similar to the one we can infer without it.

We can also see from Figures 8.16 and 8.22 that obfuscating additional variables does not
appear to have a huge effect on the size of the model. The main difference in model size seems
to come from obfuscating one variable. This is not particularly surprising for this case study
since the majority of events in the traces are move events, which depend on the x variable.
The corresponding events for the other two variables are relatively infrequent. Thus, when we
obfuscate either of them as a second variable, there is relatively little change in the traces and
the corresponding model.

Let us now consider how the complexity of the inferred models is affected by the ability
to infer transition guards during inference. Again, we cannot compare with MINT here since
the transitions which make up its models do not have any observable behaviour. We have
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already discussed how the ability to distinguish transitions during inference enables us to merge
more states as we have a greater capacity to resolve the resulting nondeterminism. In terms
of scalability, this means that models inferred with this ability scale much better in complexity
than those inferred without.

There is still room for improvement in this respect, though. As discussed above, transitions
often accumulate guards as inference proceeds. The more merges a transition is involved in, the
more guards it is likely to accumulate. Thus, larger PTAs are likely to infer transitions with
more guards. If we could, instead, infer more generally applicable guards, this would not only
reduce the number of guards on transitions in the inferred model, but should also allow us to
merge more transitions, making for smaller models.

Conclusions

This research question was concerned with the factors that affect the complexity of the models
we can infer and how my technique copes with these. Traces with a lot of distinct input-output
pairs that are related in the same way often end up leading to models with a lot of “parallel”
transitions if we are not able to abstract away the concrete values into functions. While this does
not necessarily affect the number of states in the inferred models, they are cluttered with a lot
of extra transitions. The results presented above suggest that my GP preprocessing technique
helps to mitigate this by generalising behaviour such that more transitions can be merged.

An alternative to applying GP as a preprocessing technique would be to do as in [150] and
apply GP as a postprocessing technique. This has the advantage that we can group “parallel”
transitions together rather than having to guess groups based on structure and history like in
Chapter 7, but means that the inferred output and update functions would not get to play a
part in the inference process.

This is particularly important when variables are elided, because there are fewer data val-
ues which can be guarded. Without first generalising transition outputs, we encounter lots of
unresolvable nondeterminism during merging, so need to keep a lot of states separate. If we
were to run GP after merging states, we would likely then be able to merge many more states,
as the generalised transitions would enable us to resolve much of the nondeterminism which
was previously unresolvable. Thus, we would need to run a second pass of state merging after
running GP. In such situations, it makes much more sense to perform GP as a preprocessing
step as I do here rather than having to run two phases of state merging.

While MINT is able to infer models with the same number of states as my technique, its
models seem to have more transitions. This is to do with the fact that MINT infers guards on
transitions by default, meaning it encounters less nondeterminism when merging states but is
forced to keep more transitions separate.

Obfuscating variables makes the task of inference much harder. There are fewer inputs to be
guarded, so we encounter much more nondeterminism when we merge states, forcing us to keep
them separate. Again, my GP preprocessor helps to mitigate this. By generalising behaviour, we
are able to merge more transitions. Thus, we are more able to resolve the nondeterminism which
arises as a result of merging states so are able to merge more of them. For the SPACEINVADERS
case study at least, it seems that the main difference in model size is between eliding zero and
one variables. Additional elisions do not seem to make much of a difference, although this is
likely to be due to the events which correspond to certain variables occurring infrequently in
the traces, thus having little effect on the overall structure of the models.
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RQ4b How long does model inference take?

While optimising runtime was not a high priority for this project, it is clearly important that the
tool runs sufficiently quickly that it can be run on examples large enough to test its limitations.
Figure 8.24 shows the runtimes for the different configurations.
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Figure 8.24: Runtimes.

Looking first at LIFTDOORS, we can see that the runtime of my technique is usually pretty
fast, even with time obfuscated. Interestingly, running the system without any preprocessing is
the slowest configuration by quite a long way. The reason for this can be explained with a little
insight into how the inference program runs. There are two main bottlenecks here. The first is
the resolution of nondeterminism, and the second is the scoring of possible state merges. For a
model with s states, there are *Cy state pairs to score. This obviously grows very quickly with
s, and must be recomputed each iteration. Without GP, the number of states which get merged
each generation will likely be quite small because there is much less associated nondeterminism.
This makes for a lot of time spent scoring potential merges, much of which is actually duplicated
work since most states will remain unchanged between iterations.

The resolution of nondeterminism can be a computationally intensive process but, as it
proceeds, further states are merged. With GP preprocessing, since we end up with many
identical transitions, we will also end up with much more nondeterminism when we merge
states. This means the inference process spends much more time on nondeterminism resolution
but also means that many more states can be merged per iteration. Consequently, we do not
need to spend as much time scoring state merges. Additionally, GP preprocessing makes for a
lot of identical transitions when it is successful. The resolution of nondeterminism between such
transitions is computationally trivial as one can simply be deleted.

Looking at SPACEINVADERS, the story is relatively similar for the average runtimes, but
with a much greater spread and a much higher average. The higher average can be explained
by the fact that the PTAs are usually much larger, as shown in Figure 8.11a. Thus, there
are more states to score in the early iterations of inference. The larger spread in runtimes is
explained by the fact that, if an attempt to resolve nondeterminism fails, the algorithm has to
backtrack and attempt to merge a different pair of states. This problem is exacerbated when
the GP preprocessor goes wrong. It is clearly much more likely that an attempt to resolve
nondeterminism will fail if we have inferred the wrong output function. Conversely, if the GP
is able to correctly infer output and update functions, it is much less likely that an attempt to
resolve nondeterminism fails as nondeterministic transitions should be trivially equal.

200



CHAPTER 8. EXPERIMENTAL EVALUATION

From Figure 8.24, we can see that the slowest configuration, on average, is when we obfuscate
the x variable without any preprocessing. Here, the scoring bottleneck is really working against
us. Because we have the literal input guards, very little nondeterminism arises when we merge
states. This means that we spend very little time on nondeterminism resolution, but does mean
that we only usually merge one or two states per iteration. This means that we score the
potential merges many times during inference. Since models shrink relatively slowly, the time
spent on this step remains long throughout the inference process.

We can see from Figure 8.24 that MINT is much faster than my tool for both case studies.
There are several explanations for this. The first is that much more time has been spent on
optimising the various operations of MINT than my tool. MINT was written from scratch in
Java, and was designed to run quickly. By contrast, my technique was written in Isabelle and is
implemented by automatically generated code which is not particularly fast or well-optimised.
This code is in Scala, the compiler of which is notoriously bad at optimising recursive functions,
which make up the vast majority of my implementation. It is therefore not surprising that
MINT is faster than my tool purely for this reason.

The second reason that MINT is faster than my tool is the way it scores potential state
merges. Where my technique scores every state pair at each iteration, MINT uses the Blue-
Fringe approach [98] discussed in Section 4.6, which considers only a few merges each iteration.
This means that there is much less work to do at each stage, and also means that MINT scales
much better with the number of traces.

Let us now examine how the ability to infer guards to distinguish transitions during inference
affects the runtime of my tool. Figure 8.25 shows the runtimes for the different configurations
of the drinks machine. We can see that the average runtime is very similar with and without
the ability to infer guards. There is, however, the possibility for the runtime to be much greater
if guards can be inferred. A likely explanation for this is that the inference of guards is done
using GP, which takes time to run. If the GP has to be run a lot, this will obviously increase the
runtime. As detailed in Chapter 7, this can be mitigated with memoisation, but this dependent
on there being a memoised guard for the given training set. If the traces are structured such that
there are a lot of training sets, this cannot occur so the memoisation provides limited benefit.

We can see from Figure 8.25 that both SPACEINVADERS and DRINKS have a similar average
runtimes whether or not guards are inferred during inference. This indicates that there is not
much computational cost associated with guard inference. Combining this information with the
fact that guard inference often leads to much more accurate models, this seems to advocate in
favour of the inference of distinguishing guards in situations where value-dependent behaviour
is known to be present.

Conclusions

This research questions was concerned with the runtime of both my inference tool and MINT,
and the factors which affect this. The main conclusion that can be drawn from the results
presented above is that MINT is much faster than my tool, owing mainly to the fact that the
way it scores state merges means it has much less work to do at each iteration. MINT has also
had much more time spent on its optimisation.

The fact that such a large part of my tool’s runtime is spent scoring state merges makes it
relatively easy to improve its runtime. As mentioned in Section 6.4, my tool uses Scala’s parallel
list processing library. Since the scoring of merges is just a map over a list of pairs, it can make

201



8.6. UTILITY

DRINKS Runtime (Minutes) ~ SPACEINVADERSGUARDS Runtime (Minutes)

o
o
Q
400 400 3
o 4
300 300

200 200
100 100
-
0 0
e Q Q e 0 Q
& G (9,2}69 & G (912}59
& &

Figure 8.25: Runtimes.

heavy use parallelism. This means that running the tool with more CPU cores, or even with
access to a GPU, would give a substantial speed up with very little implementational effort. A
second way to speed up scoring would be to use memoisation. As the algorithm proceeds, we
can record which states have changed in some way such that each iteration, we only rescore
the states we need to. Because most states will not change in a given iteration, this cuts down
hugely on the amount of duplicated work each iteration, making the tool run much faster.

An alternative to both of these methods is to use a more advanced scoring metric like
Blue-Fringe, which does not consider every state pair each iteration. Because of this, there is
inherently much less work to do, so the inference can proceed much faster. As discussed in Sub-
section 6.2.2, I deliberately chose to keep things as simple as possible here, but an investigation
into the potential benefits of more complex scoring functions is desirable future work.

The speeding up of nondeterminism resolution is much more difficult, as this is a key feature
of my inference algorithm. As mentioned in Section 7.7, I already make use of memoisation here
to stop the inference trying repeatedly to merge states which it has already failed to merge.
Beyond this, there is very little else which can be done to speed up this step in the algorithm.

8.6 Utility

In addition to the accuracy of models we can infer, it is also important to judge how useful the
inferred models are. To some extent, this depends on the intended application, but models are
often used to give an intuitive overview of how the underlying system functions. It is therefore
important that our inferred models are easy to understand. This is obviously very subjective,
and there are no meaningful metrics to quantitatively evaluate this. Hence, this section provides
only an informal discussion.
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8.6.1 Lift Doors

Let us first examine the utility of the models inferred for the LIFTDOORS system. For RQ1, I
used traces in which all variable values are present, so the output of each transition is always
expressible purely in terms of inputs and constants. Both MINT and my own inference technique
achieved good accuracy here, but what do the inferred models actually look like?

With GP preprocessing, my inference technique infers a model very similar to the one in
Figure 8.2. There was a slight variation in the exact phrasing of the output functions in that
the GP tended to prefer the phrasing “—1 4 iy” to i — 1, but the structure and semantics of
the model were there. The inference never chose to split the moving/moved and closing/closed
into separate states but this is not surprising since, from an inference point of view, there is no
reason to split them. Splitting the states also requires a guard on the openning- and closingDoors
transitions, which the inference was not given the capability to infer for this RQ.

Let us now examine the models inferred by MINT. Figure 8.26 shows an EFSM for the
LIFTDOORS system inferred by MINT. Because MINT uses a slightly different formalism, as
discussed in Chapter 3, the syntax of the transitions is slightly different. Here, transitions take
the form gy, label update guards Qn, S0 the transition waitTimer (t — 1.0) (¢ > 1.0) has label
waitTimer, updates the variable ¢ (which represents the timer variable) to its anterior value less
one, and can only be taken if the anterior value of ¢ is greater than one. For aesthetic reasons,
each ¢,, — ¢, arrow is only drawn once with each transition being on a new line.

waitTimer t = 0.0 (¢ < 1.0)
waitTimer t = (t — 1.0) (¢t > 1.0)
systemInitReady t = 10.0
setTimert = 5.0
buttonInterrupted t = 3.0
closingDoor t = 0.0 (t < 1.0)
closingDoor t = (t — 1.0) (t > 1.0)
fullyClosed
requestOpen t = 10.0
openingDoor (t > 3.0)
openingDoor t = 2.0 (t < 3.0)
fullyOpen t = 1.0 (t > 1.0)
fullyOpen t = 0.0 (¢t < 1.0)

closingDoor t = (t — 1.0) (t > 1.0)
buttonInterrupted t = 3.0

Figure 8.26: An EFSM for the LIFTDOORS system inferred by MINT.

The model in Figure 8.26 only has three states, where the one in Figure 8.2 has four. It also
has a lot more transitions, with some behaviour (such as closingDoor) appearing with both a
literal update and a general function. The majority of activity takes place from state gy. Indeed
MINT quite often merges down to a single state which performs the full functionality of the
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system. While this can still be very accurate in terms of traces, it does not effectively illustrate
the control flow of the system. This is done much better by the model in Figure 8.2 and by my
own inference technique, where states in the models are more clearly linked to the control flow
states of the underlying system.

Something else that is noteworthy here is that MINT occasionally infers redundant updates
such as t = t on the g — ¢o transition. Such updates are not incorrect, but they are unnecessary
since the semantics of the models are such that variables remain unchanged unless they are
explicitly updated. Updates like this clutter models with unnecessary details and make them
more difficult to understand. As discussed in Chapter 7, my technique only introduces update
functions when they are necessary so will never include redundant updates like this.

A key advantage of my system over MINT is that it is able to cope in situations where certain
variables do not appear in the traces. Indeed, it is even able to infer very accurate models for
this case study with the timer variable taken away. Ideally, in this situation, we would hope to
infer a model very similar to the one in Figure 8.2 except that all transitions would have an arity
of zero instead of one and a register would be used and updated in place of the inputs. This is
not quite what happens. In order to achieve such a model, the GP must perfectly infer register
usage. With the variable elided, there is much more freedom for the GP to “experiment” with
different output and update functions. This means that the inference is then unable to merge
as many states as we would like, and we end up with a model which, although accurate, is large
and unwieldy. An example of such a model is shown in Appendix B.

8.6.2 Space Invaders

The next case study is the SPACEINVADERS system. Here, my tool is able to infer much more
accurate models than MINT when the GP preprocessor is used. Indeed, my tool infers the model
in Figure 8.4 with very few exceptions. As mentioned in Section 8.2, this is the only model of
the system that gives a good overview of the underlying behaviour. There are not really any
other acceptable alternatives.

The models inferred by MINT for SPACEINVADERS are generally too large to be effectively
displayed in the format of this thesis. This is not because the models themselves are too large —
they often have four states or fewer — but because the transition expressions are unreasonably
long. An example of such a transition is the following.

alienHit (aliens = (1.0 + aliens))

((aliens < 3.0) A (z < 250.0) A (aliens < 0.0))V

((aliens < 3.0) A (z < 250.0) A (aliens > 0.0) A (x < 100.0))V

((aliens < 3.0) A (z < 250.0) A (aliens > 0.0) A (z > 100.0) A (aliens > 1.0))

Here, the guard expression alone is so long that it must be broken onto three lines. Guards
like this do not make for readable models, especially when MINT tends towards models with a
single state that performs the entire functionality of the system.

Not only are the guard expressions inferred by MINT overly verbose, they are often unnec-
essary. None of the transitions in SPACEINVADERS exhibit any value-dependent behaviour, so
there is no real need to impose a guard on them at all. While it can be informative to aggregate
the data values observed in the traces into a concise guard expression, these guard functions
should only reference variables which are relevant to the transition. The value of the x variable
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in the above guard expression is purely incidental and has nothing to do with the transition
itself. This kind of bloat is an unfortunate product of MINT’s requirement that every event
include the value of every variable.

Having said that, when I modified the traces to introduce value-dependent behaviour for
RQ3, my inference technique did not fare any better. What we ideally want is a model like the
one in Figure 8.5. Here, the guards on the alienHit and shieldHit transitions decide which of
the two respective transitions is taken for a given action. To be able to infer a model like this,
we would have to perfectly infer the guard of each transition such that the inference process
is able to safely merge all the transitions without introducing nondeterminism. Unfortunately,
this is rarely the case, and we tend to end up with large and unwieldy models. While the guards
inferred by my technique are much simpler expressions, they are still overly specific as discussed
in Section 8.5. This means that the inference cannot merge as many states as we would like,
and we end up again with models which are too large to be effectively displayed on an A4 page.

Let us now consider how my inference technique fares when variables are obfuscated. We
have already seen in Section 8.5 that the models we are able to infer are much larger and less
accurate. What we would like to obtain is a model similar to the one in Figure 8.4, but where
a register is used instead of a given input. What we actually end up with are models which are
again too large to be effectively displayed on an A4 page. Again, these models are not necessarily
inaccurate representations of the system in that they may be (close to) trace equivalent, but
they no longer give an intuition of how the system behaves.

8.6.3 Drinks Machine

The final case study I examined was a more complicated version of the drinks machine, the
EFSM for which is shown in Figure 8.6. The ability to infer a model like this again requires the
GP to infer perfect guards. Without this, the nondeterminism which is introduced by merging
states cannot be resolved in the correct way, meaning that certain states cannot be merged.

Unfortunately, the GP heuristic from Subsection 4.7.5 is simply not powerful enough to infer
suitable guards. Instead, we end up with literal equalities which are sufficient to resolve local
nondeterminism but do not generalise across the model. The reason for this is that we do not
have sufficient training data. As we merge more states, we accumulate more training data but,
because we have no way to revise transition guards once they have been added, these literal
guards are retained throughout the inference process. Like with SPACEINVADERS, we tend to
end up with models which are, to some extent, accurate with respect to the test traces but are
too large to be effectively displayed and understood as a whole.

8.7 Threats to Validity

The main external threat to the validity of the results presented here is that I was only able to
test my system on a very small number of systems. Consequently, the accuracy and scalability
results presented here cannot be taken to be representative of all software systems. The main
reason for this, as discussed in Section 3.13, is that it is difficult to find suitable subject systems
and extremely labour-intensive to obtain traces from these systems.

This threat is somewhat mitigated by the fact that the systems and traces thereof are
reasonably diverse. They differ in their reactivity, the number of different possible actions, and
trace length. Nevertheless, it is important to avoid drawing general conclusions about accuracy
and scalability and, like [152], to focus instead on the factors which affect these.
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Another threat to external validity is that the GP preprocessor used as part of my inference
technique is subject to a number of different configuration parameters, such as population size
and the number of new individuals created per generation. I did not spend much time optimis-
ing these parameters for this evaluation. I simply chose arbitrary values that gave acceptable
performance on preliminary experiments. MINT also has a number of configurable parameters
which were all left at their default values. This avoids the internal threat to validity of overfit-
ting configuration parameters to these particular case studies and biasing the results in favour
of either technique. It does, however, open up the external threat to validity that there may be
more suitable configurations than the ones I used, meaning the behaviour of the techniques is
somewhat misrepresented. Without an extensive parameter-optimisation investigation involving
many different case studies, it is impossible to mitigate this threat.

The main threat to construct validity is that the inferred models are not evaluated with
respect to specificity (or similar metric) to ensure that they do not wildly overgeneralise the
original traces. The reasons I did not use such a metric in this evaluation are detailed in
Section 3.11. In summary, the ability to use specificity is reliant on the existence of negative
system traces which are extremely difficult to obtain from real programs, especially if we want
to make these traces meaningful to the underlying system in some way. It also seems unjust to
use negative traces to evaluate a technique which only has access to positive traces.

The threat of excessive overgeneralisation is mitigated to an extent by the kind of models
inferred by my tool. Since traces in the test set are only accepted if the output produced by the
model matches that produced by the system in response to the same action, there is no risk of
inferring models which trivially accept any trace as there is for classical FSM models. There is,
however, the risk that the inferred models are more reactive than the original system, and are
more permissive about which actions can be called from which states with which inputs.

Another threat to construct validity is that models for the SPACEINVADERS case study are
inferred from traces which come from manually playing the game rather than randomly generated
traces from the implementation of a model. I mitigated this threat by playing the game as
randomly as possible, i.e. without the objective of winning. An alternative to this would have
been to implement a model of the system and randomly generate training and test traces from
that, as I did with the simple drinks machine case study. As the majority of my evaluation is
done in terms of system traces, rather than by comparison to a “gold standard” model, this
would not significantly change the results presented in this section as the structure of the traces
would be almost identical. In both situations, the first event would be start and the last event
would be either win or lose. Between these events, the player would be free to move left and
right and hit or be hit by aliens.

In the real system, the game does not end until the player has hit five aliens or been hit by
three. Implementing Figure 8.4 directly would have removed this restriction, allowing the game
to end prematurely. Alternatively, a guard could be added to prevent this. Either way, the
main source of inaccuracy in models inferred by my technique comes from the limitation of my
GP technique exemplified in Example 8.5.1, which would still be given plenty of opportunity
to reveal itself as it only requires a switch from moving in one direction to the other and then
back to the first. With MINT, the problem is the fact that SPACEINVADERS uses three system
variables, which would be the same for a reference model as for the program.

The final threat to the validity of the results in this section is an absence of statistical
tests demonstrating the significance of the performance difference between my GP technique
and MINT. As discussed above, I only evaluated my system with three systems. Thus, the
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significance of any tests performed here would be limited. The threat to validity is nonetheless
mitigated by the fact that my technique outperformed MINT in the vast majority of cases, only
being outperformed by it in three or four outlying instances of SPACEINVADERS, depending on
the metric. For the LIFTDOORS case study, my technique inferred a perfect model every time
where MINT had a few outliers.

8.8 Conclusion

This chapter presented an empirical evaluation of the techniques presented in Chapters 6 and 7 in
the context of several case studies. The results presented in this section show that my inference
tool with GP preprocessing is generally able to infer models which are better able to predict
system behaviour for unseen traces than those inferred by MINT [150], the current state of the
art. A major contributing factor to this is that MINT requires that every event reports the
value of every variable. Where there are multiple system variables at work, the inference ends
up with a lot of irrelevant information which can mislead it.

In addition to my formal research questions, I presented an informal discussion of the utility
of the models we can infer for each case study with respect to what we might call the “optimal”
model. Models like the ones inferred here are often intended to give a high-level overview of the
subject system, so we need our inferred models to intuitively capture this. My technique seems
to be able to achieve this when all variables are present in the traces. The models produced
by MINT tend to be less intuitive, and transitions often have spurious guards which clutter
the model. When we obfuscate variables from traces, MINT cannot cope with this at all, and
the models produced by my own technique become very large and difficult to understand, even
though they often remain relatively “accurate” with respect their predictive power. In terms of
my four main research questions, the main conclusions are as follows.

RQ1 How accurate are the models produced by my inference tool? This research
question was concerned with the accuracy of the models we can infer when the traces contain all
the values used to compute the output. The ability to generalise the concrete values observed
in the traces into computational functions allows my tool to merge more behaviour, enabling it
to infer models with fewer states and transitions. In general, both my tool and MINT were able
to infer accurate models of the subject systems, with those inferred by my tool generally being
more accurate and intuitive.

RQ2 How does eliding variables affect the accuracy of the models produced by
my inference tool? This research question was concerned with how my inference tool copes
when the output of certain events in the traces depends on a variable which is hidden. The
main conclusion we can draw from the results presented here is that which variable is elided has
a much greater effect on the accuracy of the inferred model than how many variables are elided.
For the SPACEINVADERS case study, the inferred models were relatively accurate when the aliens
and shields variables were elided but were significantly less accurate when the z variable was
elided. This is because my current approach struggles when the same variable is mutated by
multiple transitions because it currently has no way to determine which events should share
variables. Indeed, eliding the x variable has such a detrimental effect on the accuracy of the
inferred models that it overshaddows the effect of further elision.
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RQ3 How does the ability to discover value-dependent behaviour affect the accuracy
of the models produced by my inference tool? This research question addressed how
the ability to discern value-dependent behaviour affects the accuracy of the models we can infer.
The accuracy results in this chapter seem to be in favour of this when GP preprocessing is
used. For systems with value-dependent behaviour, the ability to infer guards which distinguish
transitions allows us to merge more states in the model because we are better able to resolve
the resulting nondeterminism. This means that we are more able to merge states in the model
which represent the same program state, thus leading to smaller and more accurate models.

RQ4a How large are the inferred models in terms of states and transitions? This
research question was concerned with the various factors which affect the complexity of the
inferred models. Traces which have a lot of distinct input-output pairs which are related in the
same way often end up leading to models with a lot of “parallel” transitions if we are not able
to generalise these. While this does not necessarily affect the number of states in the inferred
models, they contain more transitions than is necessary. The results presented in this chapter
suggest that my GP preprocessing technique helps to mitigate this by generalising behaviour
such that more transitions can be merged.

When we obfuscate variables, there is much more potential for nondeterminism to arise
when we merge states. This often means we are not able to merge as many states. Again, my
GP preprocessor helps to mitigate this. By generalising behaviour, we are able to merge more
transitions. Thus, we are more able to resolve the nondeterminism which arises as a result of
merging states so are able to merge more of them.

There appears to be very little increase in model size when we elide more than one variable.
This is not particularly surprising for the SPACEINVADERS case study since the majority of events
in the traces are move events, which depend on the x variable. The events which correspond
to the other two variables occur very infrequently so have relatively little effect on the size
and structure of the inferred models. More generally, a “diminishing return” effect on model
size as we obfuscate additional variables is not surprising. When we obfuscate variables, the
inference process is unable to merge as many states because it is unable to resolve the resulting
nondeterminism. As we obfuscate successive variables, the number of new state pairs which
must be kept separate as a result of each obfuscation will diminish because there will be overlap
with previous variables.

RQ4b How long does model inference take? This research question was concerned with
the runtime of the inference tools. The main conclusion here is that MINT runs much faster
than my tool. The main reason for this is that my tool spends a lot more time on the scoring
of potential state merges. Cases where it is possible to merge many states in one iteration of
inference tend to be the fastest to run, since my tool spends much less time scoring potential
state merges. It also seems that, in general, providing the ability to infer guards for transitions
during inference does not significantly affect the average runtime of my tool meaning that, most
of the time, the benefits that this ability affords in terms of size and accuracy come without
extra computational cost.
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Concluding Remarks

Having now proposed and evaluated my EFSM inference technique, it only remains to examine
in a little more detail the applications of the inferred models. As well as being used to show
system functionality, models are also used for more formal analysis. Here, it is critical that the
model accurately captures the behaviour of the system, preferably in a way which is easy to
reason about. The next chapter shows how we might use the models we have inferred to prove
certain behavioural properties of the underlying systems and to reveal potential flaws.
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Chapter 9
Formal Analysis of EFSM Properties

In previous chapters, I showed how EFSMs can be inferred from black-box traces using state
merging, and how GP can be used to infer functions to relate inputs, outputs, and register
values. This chapter is based on work currently in draft [138], and examines how we can analyse
and verify properties of EFSM models once they have been inferred, the primary contributions
being the following.

e The extension of my Isabelle formalisation of EFSMs such that properties in Linear Tem-
poral Logic can be specified and proven.

e A semantically equivalent EFSM formalisation in the model checker SAL to enable coun-
terexamples to be easily generated for untrue properties.

e A framework of function definitions in both tools to ease the specification of properties
and enable automated translation between the two representations.

9.1 Introduction

When we infer a model of a system, we usually do so because we have a specific purpose in mind.
One such purpose is the analysis and verification of system properties, the idea being that it is
often extremely difficult to verify systems. Instead, our model serves as a suitable abstraction
of the system such that we can prove properties more easily.

As an example, consider again the simple drinks machine. At the end of Chapter 5, I gave
examples of two interesting properties that we wish to hold true of the system, namely that the
customer will always receive the drink they selected, and that they cannot receive this drink
without first inserting a sufficient amount of money. While a formal verification of these proofs
is perhaps a little overkill in this setting, there are many systems where such strong assurance
is vital. Consider the simple lift door controller from Chapter 8. Here, people may be put in
danger if the controller misbehaves, and there are various safety-critical properties we may want
to prove about this system, for example that passengers will not be crushed in the doors, or
that the lift must be stationary before the doors can open.

What we need to be able to do here is take a model, specify properties over it, and determine
whether those properties hold. This is the process of formal verification, and there are many
tools and techniques which can help with this. In addition, where a given property is untrue, it
can be extremely helpful to have a concrete counterexample. For EFSM models, these take the
form of traces which violate the given property. Such traces provide insight into why a given
property is untrue, and can be invaluable when trying to fix faults.

The remainder of this chapter is structured as follows. Section 9.2 provides some background
on formal verification such that the remainder of this chapter can be understood. Section 9.3
discusses how LTL is implemented in Isabelle, and how I applied this to EFSMs. Section 9.4
discusses how EFSMs and LTL properties are represented in the model checker SAL and argues
semantic equivalence between the two representations. In Section 9.5, I briefly discuss how we
can automate the translation between Isabelle and SAL. Finally, Section 9.6 provides examples
of how SAL and Isabelle can be used in tandem to develop and prove properties of models.
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9.2 Background

Formal verification is the process of using formal methods to show that a system exhibits certain
properties. As discussed in Section 2.3, it is desirable to verify both safety (nothing bad happens)
and liveness (eventually something good happens) properties. Both of these classes of properties
are temporal properties. They refer to something happening at a particular instance in time.
For example, we may want to verify safety properties like “the doors of a lift are never open
while the lift is moving” and liveness properties like “the lift will eventually arrive after pressing
the call button”. There are three main techniques used to verify system models:

Simulation is a process often used in the verification of hardware and has nothing to do with
the simulation we have seen so far, which is about finding a relation between the states of
two models. Here, the process of simulation involves running a model of the system to be
verified with many inputs to see if it breaks. This technique is relatively straightforward
and can often be easily automated, but it does have some drawbacks. The main limitation
of the technique is that its effectiveness is related to the number of simulations run.
We can only be completely confident that a system will perform properly under those
circumstances which have been simulated. It is often impossible to run simulations for all
circumstances, though, so the simulation can only be run on a subset of inputs. This means
that there may exist inputs for which the system breaks that have not been tested. It is
often unclear how many runs are necessary to determine a reasonable degree of confidence
that a given property holds.

Theorem Proving is at the other end of the scale to simulation and involves mathematically
proving properties of a system model from axioms and inference rules. Proof techniques
such as induction make it possible to prove properties for all inputs, so a proof guarantees
that a system exhibits a given property. The cost of this level of assurance is that it is
often extremely difficult to prove even simple properties of real systems. Proof assistants
such as Isabelle [120], Coq!, and Agda? aim to make this process easier, but the learning
curve is often steep.

Model Checking can be thought of as a compromise between simulation and theorem proving.
A key advantage of model checking is that, under circumstances where a property does
not hold, it is often possible to yield a concrete counterexample in the form of a path
through the transition system which violates the given property. Unfortunately, most
model checking tools can only work effectively with finite systems, or finite subsets of
infinite systems. This has the same limiting effect as simulation in that there may exist
circumstances which can occur in real life for which the model has not been checked.

It is also worth mentioning model-based testing, a technique in which models are used as a
basis to generates test cases for implementations. This differs from simulation in that here, it
is the actual system being tested rather than just a model. While model-based testing is very
much a testing technique rather than a verification technique like those above, it is an attempt
to integrate the rigour of formal methods to the often more ad-hoc field of software testing.

"https://cog.inria.fr (Accessed 24/03/20)
2https://github.com/agda/agda (Accessed 24/03/20)
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9.2. BACKGROUND

9.2.1 Temporal Logic

Temporal logics provide a means of reasoning about properties of systems with reference to
discrete steps through time. In addition to the standard logical operators of conjunction, dis-
junction, negation, and implication, temporal logics provide operators to express information
about when properties need to hold. This enables the values of variables to change over time
such that properties may be true at some points and false at others.

The correspondence between model state and variable interpretation is captured via a la-
belling function L : S — P(V), in which S is the set of states in the model, V is the set of
variables, and P is the interpretation. A variable v € V is true in a system state s € S iff
v € L(s). In addition to the set of states, there is also a set I C S of initial states, and a
transition relation T'C S x S between states. Such a model is called a Kripke Structure [97].

The idea of states being connected by a transition relation is very similar to FSMs, but the
notion of a state is very different. Here, states are more analogous to “program states” or ASM
states from Subsection 2.2.6 than the simple control flow states of FSMs. That is, states are
simply the values of variables at different points in time. Transitions then place guards on these
variables and can apply updates when they fire, just like EFSM transitions. Essentially, we can
think of this as a data-only EFSM.

It is important to note here that the transition function is assumed to be total, meaning
Vs € S.3s' € S.(s,s") € T. This is because the semantics of most temporal logics are only well-
defined over necessarily infinite traces. There have been attempts to define temporal semantics
over finite traces [128] but these are not particularly well studied. The necessity for infinite
traces presents some interesting problems when we wish to verify systems like our running
drinks machine example from Figure 1.5, which have been designed with finite interaction in
mind. This is discussed in more detail in Subsection 9.3.3.

Linear Temporal Logic

Linear temporal logic (LTL) [123] is a temporal logic that provides the ability to express proper-
ties in terms of linear time where each input event corresponds to one time step. LTL provides
the following temporal operators.

G(p) for globally — the given property, p, is always true.

F(p) for eventually — the given property, p, becomes true at some point.

X (p) for next — the given property p is true in the next state.

p U q for strong until — q eventually becomes true and p holds up to that point.

p W q for weak until — like p U q except that g need not become true if p holds globally.

There should be obvious parallels between the above temporal operators and the two main
classes of properties we wish to verify. The globally operator allows us to verify safety properties.
If we want to be certain that bad things never happen, we need to verify G(—b), where b
represents a bad thing happening. Conversely, the eventually operator allows us to verify liveness
properties. If we want to ensure that good things eventually happen, we need to phrase the
property as F'(g), where g represents a good thing happening.
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Example 9.2.1. Consider a simple pedestrian crossing controlled by traffic lights. An obvious
safety property here is that the light for cars and the light for pedestrians should never be
green at the same time. We can phrase this in LTL as follows.

G(—(greenForCars \ greenForPedestrians))

A simple liveness property of the system is that if a pedestrian presses the button to cross the
road, they should eventually be able to do so. A naive phrasing of this would be as follows.

buttonPressed => F(greenForPedestrians)

This is not quite the property we had in mind, though, as this property only applies if the first
event is buttonPressed. We really want the liveness property to hold throughout the lifetime
of the crossing so we need to wrap the property within the globally operator.

G(buttonPressed = F(greenForPedestrians))

The G(p = F(q)) is a very common form for liveness properties.

Example 9.2.2. Let us return to our simple drinks machine example. Say that we would
like to verify the property that a customer will only receive the drink they have selected. We
can phrase this property as G(output # [d] U label = “select” A input = [d]). This property
states that, for some d, the output will never be equal to [d] until we have first called the select
action with input [d]. This ensures that we will not get a drink until we have first selected it.

The semantics of LTL are defined along traces (or paths) of the model. A path 7 is an
infinite sequence of states sg, s1, S2, ... with s; — s;1.1. We can refer to single states of the path
using the notation (i) which represents the i** state in the path. A path is said to be initialised
if 7(0) € I. A suffix of a path, 7%, represents all events after 7(i). We can then define the

semantics of LTL as follows.

TED < pe L(n(0))

TEX(p) << wlEDp

TEG(p) << VjeNriEp

7 E F(p) < JjeNniEp

TEpUq <+ FjeNniEqgAVEk<jrFED
TEpWq < pUqVG(p)

The standard logical operators p A g, pV q, =p, and p = ¢ have the usual semantics.

Computational Tree Logic

In contrast to LTL, which operates over linear time, computational tree logic [36] (CTL) is a
branching time logic. CTL provides the same basic temporal operators as LTL but each operator
must be immediately preceded by a path quantifier, either “all” (A) or “exists” (E). This allows
us to express properties in terms of paths such as “there exists a path such that property p
eventually holds”. It may seem that this would make CTL more expressive than LTL however,
this is not true as there exist LTL formulae which cannot be expressed in CTL, and vice versa
[38]. The logic CTL* [37] subsumes both LTL and CTL as this allows temporal operators to
optionally be preceded by a path quantifier.
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9.2.2 Theorem Proving and Model Checking

If we want to check temporal properties of models, the obvious tool to use is a model checker.
Here, a formal model of the system is specified (which is often some form of abstract state
machine) along with the desired properties. To verify a property, the model checker explores
all possible traces of the specified system in search of one which wviolates it. If such a trace is
found, this can be presented to the user as a clear, and usually succinct, counterexample which
indicates that the specified property does not hold.

If the model checker cannot find a trace that violates a property, this provides reasonable
assurance of its validity but does not guarantee it as it is usually infeasible to explore every
possible trace of a reasonably sized system. To ensure that properties can be checked in finite
and reasonable time, model checkers often take shortcuts, for example working with finite subsets
of infinite datatypes. This means that the absence of a counterexample does not guarantee the
validity of a property.

To guarantee that a property holds, we need to prove it formally. It is here that theorem
proving takes over. We have already seen in Chapter 4 how EFSMs can be formalised in Isabelle.
We can also use Isabelle to state and prove properties phrased in LTL. Isabelle does not take
any of the shortcuts commonly used by model checkers so, if we can prove in Isabelle that a
property holds, this is a much stronger assurance of its validity. The problem here is that the
proofs are often difficult and time-consuming to obtain, so we only want to attempt to prove
properties which we are confident are true.

LTL is notoriously difficult to work with, meaning that it often takes several iterations to
properly capture our intuition. Counterexamples are extremely helpful during this process.
When faced with a counterexample, we know that there is either a problem with the model or
the property. We can then examine the counterexample and decide whether it is valid — in
which case we must fix the model — or whether we need to rephrase our property such that
the given trace no longer violates it. Another use for counterexample traces is to compare a
model to the real implementation of a system. If we can execute each step of the trace in the
real system, we can easily investigate to see if there really is a problem.

While Isabelle has two notable counterexample generators — QuickCheck [24], and Nit-
pick [17] — they are not guaranteed to find a counterexample for every false statement [17].
Indeed, they are rarely able to find counterexamples to properties involving EFSMs and are
certainly not intended to generate traces which violate LTL properties. To make matters worse,
Nitpick can sometimes produce spurious countereramples meaning that it may sometimes find
counterexamples to properties which are, in fact, true.

When working with EFSMs and LTL properties, we really want to be using a model checker
as our counterexample generation tool. Here, we can quickly and easily generate counterex-
amples in the form of traces which violate our property. This allows us to rapidly iterate our
formalisation. Only when our model checker cannot find any more counterexamples do we want
to shift to a formal proof. At this stage we can be reasonably confident that our property holds,
so it is worth putting in the time and effort necessary to prove it properly.

In order to use theorem proving and model checking tools in harmony, we need to be able
to represent models and properties in both in a way which is semantically consistent. The next
two sections detail the two representations and argue semantic equivalence. It is also helpful to
automate the translation between the two representations to save time and reduce the chance
of human error. This is the main contribution of [138].
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9.3 Using Isabelle for LTL

As part of Chapter 4, I described how I formalised EFSMs in Isabelle. We can also state and
prove temporal properties of these models using Isabelle’s formalisation of LTL on streams. This
section details how this formalisation works and how I used it to create a framework of functions
which simplifies the phrasing and proof of LTL properties over EFSM models.

9.3.1 LTL and Streams

Rather than expressing properties over models, like with most model checking tools, Isabelle
LTL predicates apply directly to paths. Here, properties are functions that take a path and
return boolean true or false. Paths take the form of infinite streams of states, where a stream
is a coinductive datatype defined similarly to an inductive list but with only a CONS operator,
i.e. no empty base case. This makes them necessarily infinite. Like inductive lists, coinductive
streams have both a head element (accessed by SHD) and a tail (accessed by STL) which is
the rest of the stream. For properties ¢ and v, and a stream m, Isabelle defines the temporal
operators coinductively as follows.

X(p) nat o xs = ¢ (stl xs)
F(9) base: p T => ev o T
step: ev ¢ (stl m) = ev p 7
G@) e¢mANalwe (stint)= alwon
o U Y base: v T => (p suntil V)
step: @ ™ A (¢ suntil ) (stl ) = (¢ suntil )
© W ) base: b m = (¢ until ) 7
step: o ™ A (@ until ¥) (stl ) = (¢ until P) ©

Note that here the semantics are “backwards”, i.e. defining the conditions necessary for the
temporal properties to hold, rather than the other way round. Note also that the semantics of
weak and strong until appear to be the same. The difference here is that strong until is defined
inductively where weak until is defined coinductively. This has the effect of necessitating that
the base case be true (i.e. the release operator holds) for strong until, where weak until can
continue forever if ¢ holds globally.

Given that the semantics of weak and strong until are so similar, we should be able to phrase
them in terms of each other. Indeed, these are fairly basic identities in LTL semantics. We have
PUY <= dWPAF([)and 9 W < ¢ U ¢V G(¢). From this second identity, we have
the property G(¢) = ¢ W . While these are key LTL identities, their proofs in Isabelle were
surprisingly challenging and are an, albeit small, contribution of this chapter. They have now
been integrated into the Isabelle sources and are now included as part of the core distribution.

9.3.2 EFSMs as Event Streams

When we express an LTL property in Isabelle, it is phrased as “property ¢ holds on stream 7”.
This is a problem for us as we would like to express properties over models. Model checkers
verify properties by exploring every possible trace of the model in search of one which violates
the property. If no such trace is found, the property is said to hold of the model. We can apply a
similar technique here. Instead of saying “property ¢ holds of model m”, we can say “property
© holds of every trace of model m”.
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To apply this implementation of LTL to EFSMs, we must find a way to express them as
streams. Since LTL operators effectively act over traces of models, this seems like a good place
to start, but the traces we have been working with so far are not suitable for this. Firstly, LTL
semantics are defined over necessarily infinite streams where the traces we have seen so far have
all been finite. The second problem is that up to this point, we have been working with black-boz
traces which only contain information visible to the outside observer. If we want to represent
EFSMs as traces, we need to include everything, including the current control flow state and
the values of registers, in the traces.

Example 9.3.1. Returning to our simple drinks machine example, we might like to verify
the property that the customer cannot get their drink without paying for it. We can phrase
this informally as “if we do a vend action which dispenses a drink, ro must be greater than
or equal to 100”.

Here, the desired property is phrased in terms of the value of register ro. This means that
we need more comprehensive traces than have been used so far. In previous chapters, we have
been concerned with inferring models from black-box traces since it might not be possible
to modify or look inside the real system. When verifying properties like this, we need more
comprehensive white-box traces to reveal the values of system variables.

Thinking of each action as a step forward in time, there are five components which char-
acterise a given point in the execution of an EFSM. At each point, the model has a current
control state and data state. Each action has a label and possibly some input parameters, and
its execution may produce some observable output and update the data state. It is therefore
sufficient to provide a stream of 5-tuples containing the current control state, data state, the
label and inputs of the action, and the computed output.

Simply quantifying a property over every conceivable trace is likely to lead to a lot of spurious
counterexamples. Consider the property from Example 9.2.2. If we were to say that this property
holds over all traces, it is easy to falsify this claim with the trace which begins f()/[d]. This
counterexample is spurious though, since there is no way for our simple drinks machine to
generate such a trace. What we need is a way to specify that we are only interested in traces
that our model can actually produce.

Traces of models are generated by observing executions. If a particular trace is a trace of a
given model, there must exist an execution which generates it. If, instead of quantifying directly
over traces, we instead quantify over executions, this gives us what we want. We can then phrase
properties as “for all executions of model m, property ¢ holds on the corresponding trace”.

To express this in Isabelle, I define the make_full _observation function, which is very
similar to the observe_execution function in Subsection 4.3.1 except that it operates over
infinite streams of actions rather than finite lists, and produces white-box traces rather than just
an observation. The make_full_observation function is defined below, with an additional
function watch defined on top of this which starts the make_full _observation off in the
initial control state with the empty data state.

In order to be as consistent as possible with the world view of SAL described in the next
section, the output component of each point in the path is that of the previous transition. That
is, the output produced by the model in response to the action of n™ appears as the output
component of 771, This is a result of the fact that SAL uses an abstract state machine semantics
where the “output” is just another local variable which must be updated by transitions. Thus,
its updated value does not appear until the next state.

216



CHAPTER 9. FORMAL ANALYSIS OF EFSM PROPERTIES

record state =
statename :: nat option
datastate :: registers
action :: action
output :: outputs

type-synonym whiteboz-trace = state stream

fun ltl-step :: transition-matriz = cfstate option = registers = action = (nat option X outputs X registers)
where
ltl-step - None r - = (None, [], ) |
ltl-step e (Some s) r (I, i) = (let possibilities = possible-steps e s 1 i in
if possibilities = {||} then (None, [], r)
else
let (s’, t) = Eps (Az. z |€| possibilities) in
(Some s, (evaluate-outputs t i r), (evaluate-updates t i 1))

)

primcorec make-full-observation :: transition-matriz = cfstate option = registers = outputs = action stream
= whiteboz-trace where
make-full-observation e s d p i = (
let (s’ o', d') = ltl-step e s d (shd i) in
(statename = s, datastate = d, action=(shd i), output = p|)## (make-full-observation e s’ d’ o’ (stl 1))

)

abbreviation watch :: transition-matric = action stream = whiteboz-trace where
watch e i = (make-full-observation e (Some 0) <> [] 1)

Example 9.3.2. Consider again the property “if we do a wvend action which dispenses a
drink, ro must be greater than or equal to 100”. Intuitively, we would phrase this in LTL
as G((label = wvend A output = [d]) = re > 100). Since the output of the current
transition is not visible until the next state, however, we actually need to phrase the property
as G((label = vend N X (output = [d])) = r2 > 100) so that we are looking one step ahead
to examine the output of the wend transition we are interested in, rather than that of its
immediate predecessor.

9.3.3 Making EFSMs Complete

Careful inspection of the definition reveals another way that make_full _observation differs
from observe_execution. Rather than taking a cfstate, it takes a cfstate option.
The reason for this is that we need to make our EFSM models complete. That is, we need them
to be able to respond to every action from every state, like a DFA.

When inferring models from traces, it does not make sense to try to infer complete models
as we are only likely to have a subset of behaviour. If a model does not recognise a given
action in a given state, execution simply terminates and the EFSM is said to have rejected
the action. In the context of LTL, however, this cannot happen because we are working with
necessarily infinite traces. Since these traces are generated by observing action sequences, the
make_full_observation function must keep processing whether there is a viable transition
or not. To support this, make_full observation adds an implicit “sink state” to every
EFSM it processes by lifting control flow state indices from nat to nat option such that
state n is seen as state Some n. The control flow state None represents the sink state.
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When processing streams of actions, make_full_observation proceeds in the normal way
unless and until the model is unable to recognise a particular action from its current state. At
this point, rather than stopping processing, the model moves into the None sink state. Like the
DFA in Example 2.2.2, once this state is entered, there is no escape. From here, the behaviour
is constant for the rest of the time — the control flow state remains None; the data state does
not change, and no output is produced. This allows make_full_observation to continue
processing even after the model has stopped recognising actions.

Example 9.3.3. Consider again the EFSM representing our simple drinks machine. From
qo, if we receive any action which is not of the form select(d), the model moves into the sink
state. Similarly from ¢, if it receives any action not of the form coin(n) or vend(). From go,
any action moves the model into the sink state, since there are no outgoing transitions.

coin: 1/og := 19 + ig[ra := 12 + io]

select : 1/[rq =g, r2 := 0] Q vend : O[rg > 100]/0¢ := 11
& % O,

vend : O[rg < 100]

Figure 1.5: An EFSM model of the drinks machine.

The sink state becomes quite important when proving properties of EFSMs. For models like
our simple drinks machine in Figure 1.5, interactions are intended to be finite. Any property
involving the “globally” quantifier is essentially trying to carry out an infinite interaction. Thus,
the model is almost guaranteed to end up in the sink state at some point, unless we happen to
come upon an immortal individual of infinite wealth who selects a drink and then proceeds to
insert coins for the rest of time without ever dispensing their chosen beverage.

An alternative to a global sink state would be to have unrecognised actions simply loop back
to the current control state without modifying the data state or producing any input. This is
not a particularly sensible course of action, however, since it effectively changes the semantics
of EFSMs such that every trace is accepted. What we do by introducing a sink state is make
it such that every execution is recognised, but we still know whether a trace is accepted or not
because if we are in the sink state, we know we have done something invalid.

9.3.4 Expressing and Proving Properties

Since, in Isabelle, both the temporal operators and the properties over which they operate are
functions from streams to boolean values, this can make even the simplest of properties difficult
both to express and to understand. For example, the property from Example 9.2.2 is expressed
in Isabelle as the following.

lemma LTL-output-vend:
alw (Azs. (label (shd zs) = STR "'vend’ A
nzt (As. output (shd s) = [Some d]) zs) —
-7 value-gt (Some (Num 100)) (datastate (shd xzs) $ 2) = trilean.true)
(watch drinks t)
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Here, we first test to see whether the label at the head of the stream is vend and whether, in
the next state, the output is [d]. This should imply that, in the current state, register ro holds
a value which is greater than or equal to 100. The intuition of this property is quite simple, but
its corresponding expression is almost unreadable to the untrained eye. In order to simplify the
expression and understanding of properties, as well as to facilitate the automated translation
from Isabelle to SAL [138], part of the contribution of this chapter involves the definition of a
number of named functions which can be used to express certain properties of EFSMs.

state_eq takes a natural number representing a control flow state index and returns true if this
is the control flow state at the head of the stream.

label _eq takes a string and returns ¢rue if this is equal to the label at the head of the stream.
input_eq takes a value list and returns true if it equals the input at the head of the stream.

output_eq takes a value option list and returns true if this is equal to the output at the
head of the stream.

check_exp takes a guard expression and returns true if it holds at the head of the stream.

Of these functions, it is check_exp which is the most interesting. Here, we can supply an
arbitrary guard expression as per Subsection 4.7.5 to be evaluated. Here, though, we may also
wish to express properties over the outputs of the EFSM. We can do this easily by defining a
new vname datatype, 1t1l_vname, as follows.

datatype ltl-vname = Ip nat | Op nat | Rg nat

Here, we have inputs represented as Ip, outputs as Op, and registers as Rg. Because the gexp
datatype takes a type parameter which is used to index variables, we simply use 1t1_vname
gexps in place of the vname gexps used in transitions as per Section 4.7, and we can then
define expressions in terms of inputs, outputs, and registers.

The above functions allow us to define the property from Example 9.2.2 as the following.

lemma LTL-output-vend:
alw (((label-eq ""vend’’) aand (nzt (output-eq [Some d]))) impl
(check-exp (Ge (V (Rg 2)) (L (Num 100))))) (watch drinks t)

Here, the logical operations A and — are respectively represented by the aand and impl
operators, which are themselves syntactical constructs from the Isabelle formalisation of LTL
which allow us to integrate logical operators into stream expressions. For example (paandg)s
is equivalent to (As.ps A ¢s).

Where inductive lists require inductive proofs with a base case and a step case, LTL properties
must be proven co-inductively. This is very similar to induction except without the base case.
The general form of these proofs is to first prove that the property holds true in the current state
and then apply the coinduction principle that if the property holds true in the current state,
then it holds true in the next state. This then leads to “unrolling” type proofs where we simply
prove the property for each control-flow state in the model using an arbitrary register valuation,
and then apply the coinduction principle with each outgoing transition. In this instance, we
first explore what happens if we attempt to do a select action. This takes us into state ¢; and
updates the data state. We then prove that the property holds in this state using an auxiliary
lemma, the proof of which proceeds similarly.
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The second case is what happens if we try any action which is not select. Since there is only
one outgoing transition from the initial state, any action which is not of the form select(d) is
invalid, so the model enters the sink state. From here, there is never any output so the property
is trivially true. This is proven using the alw_mono rule, which states the following.

alw ¢ zs N\ (N\zs. ¢ xs = P zs) = alw ¢ zs

That is, if we have a predicate ¢, which we know to hold globally over the stream, and for all
streams xs, ¢ ©s = 1 xs, then we know that i holds on our stream too.

The alw.mono rule is extremely useful when we reach the sink state as it often allows us to
simplify the predicate hugely, meaning that a proof can often be found automatically. In this
example, we can have ¢ = G(output = []) which is known to hold in the sink state.

9.4 Model-Checking with SAL

The previous section showed how we can use Isabelle to prove LTL properties of EFSM models.
An TIsabelle proof of a property provides conclusive evidence that the property holds, but we
only really want to attempt such a proof if we are confident that our property is true. Before
this, it is helpful to use a model checker to help iron out any problems, either with the model
or the phrasing of our property.

The Symbolic Analysis Laboratory (SAL) is a framework which provides several formal anal-
ysis tools, including both a bounded and a symbolic model checker. Of course, SAL represents
both models and properties differently to Isabelle so, in order to use the two tools in harmony,
we need a translation between the two representations which is semantically consistent. There
are many existing model checking tools such as SPIN [86] and nuSMV [35]. SAL was chosen
for this work to facilitate the automated translation tool discussed in Section 9.5. Since the
implementation of this tool is based on a previous work [49], which translates Z specifications
to SAL models, the use of SAL for this work allows some of the original code to be reused.

An alternative to using a model checker would be to implement a model-checking type
algorithm using an SMT solver like Z3. Here, we could construct symbolic traces and check these
for satisfiability against the specified properties. The advantage of this is that we would not
need to limit ourselves to finite types. Unfortunately, this is not feasible for a number of reasons.
Firstly, the encoding of temporal properties in Z3 would be rather difficult to implement and
would likely be a much clumsier specification language than classical LTL. Secondly, Z3 cannot
cope with variable reassignment. In addition to needing a separate variable for every input and
output value, each register update would lead to the creation of a new variable. For traces of
a reasonable length, this would lead to a very large number of variables which would lead to
a very long runtime. For the purposes of this work, I deemed it most appropriate to use an
existing model checking tool.

This section details my representation of EFSMs in SAL and argues semantic equivalence
between the two representations insofar as is necessary to provide counterexamples to untrue
LTL properties. I also briefly discuss a tool to be presented in [138] which is able to automatically
perform the conversion between both representations.
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9.4.1 Input and Output Sequences

In the Isabelle formalisation of EFSMs presented in Section 4.7, inputs and outputs take the
form of lists of values. A major problem which must be overcome here is that SAL has no
support for lists out of the box. To get around this, I make use of the implementation of finite
sequences presented in [49]. These differ from Isabelle’s 1ist datatype in several ways. Firstly,
Isabelle represents lists recursively, with a head and tail. While Isabelle lists are necessarily
finite, they can be arbitrarily long. By contrast, SAL sequences are of a fixed size specified
in their type declaration and are implemented as finite functions of fixed domain from natural
numbers to elements, like an array. Thus, for a sequence s, we have s[0] being the first element
and s[n — 1] being the n'" element.

To enable an exhaustive search for counterexamples, SAL can only work with finite data
types. If we allow lists to be an arbitrary length, we can create infinitely many distinct lists,
thus making the search space for counterexamples infinitely large. While the SAL language
manual® does describe how to define recursive lists in SAL, any attempt to check a model
involving them results in an error message stating that the type is not finite.

To represent inputs as fixed-length SAL sequences, we must apply a lifting such that all
inputs are the same length. To do this, a bottom element 1 is required for any data type we
would like to form a sequence of. This is used to pad out sequences with a length less than
the maximum specified in the type declaration, such that the function from indices to elements
is total (i.e. every element has a value). The “length” of the sequence is then defined as the
minimum index for which the corresponding element is L. When representing EFSMs, the
length of the input sequences used in the traces is set to the maximum arity of any transition in
the EFSM. Similarly, the length for the output sequences is the maximum number of outputs
produced by any transition in the EFSM.

Example 9.4.1. Consider the execution (f(1, 2), g(1), h(4, 5, 6)). To represent this in SAL,
we need to use input sequences with a maximum length of length three or more, since action
h has three inputs. We then have the execution (f(1,2, 1), g(1, L, 1), h(4,5,6)).

The necessity to represent lists as fixed-length sequences in SAL leads to a slight difference
in semantics between the Isabelle and SAL representations. While EFSMs defined in Isabelle
can process inputs of arbitrary length, this is not so in SAL since input sequences of length
longer than the specified maximum are not members of the datatype. Since the main purpose of
using a model checker is to generate counterexamples, that is, traces of the model which violate
a given property, we do not need to consider actions which take more inputs than the maximum
arity of the model since any trace involving such actions is not a valid trace of the model so
cannot serve as a counterexample.

Example 9.4.2. Consider again the simple drinks machine EFSM from Figure 1.5. Here, the
maximum arity of any transition in the model is one. Thus, any trace containing an event
which takes more than one input is not a valid trace of the model, even if the action label is
select, coin, or vend. Invalid traces cannot serve as counterexamples to an untrue property, so
the fact that we cannot generate them does not affect our ability to refute untrue properties.

3http://SAL.csl.sri.com/doc/language-report .pdf (Accessed 24/03/20)
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9.4.2 Values, Integers, and Strings

In the Isabelle formalisation, we aggregate integers and strings into the sum type value. This
is the same in SAL. As discussed above, in order to facilitate input sequences of type value, we
additionally need a bottom element. To achieve this we can first define the datatype B_value,
which has three cases.

B_value : TYPE = DATATYPE

ValueBBR,
Str(stringOf: STRING),
Num (intOf: BOUNDED_INT)

END;

In B_value, the atomic element ValueBB represents the bottom element. Clearly we do
not want this element to occur in the value type, but we do want the other two. Consequently,
we define the value type as {g : B_value | g /= value_BB} meaning that value is a
subtype of B_value which does not include ValueBB.

Note that integers are of the type BOUNDED_INT rather than SAL’s native INTEGER type.
The reason for this again comes from the fact that, in order to effectively check for the existence
of counterexample traces, SAL must work with finite types. Since there are infinitely many
integers, we must work with a finite subset of the datatype. The range of the BOUNDED_INT
type is a parameter passed to the model when it is checked. More specifically, when calling SAL
to check a model, it is required that a minimum and maximum integer are specified. SAL then
only considers integers within this range.

The necessity to use a finite subset of integers when checking properties introduces two
semantic differences from the Isabelle implementation. Firstly, Isabelle is able to handle the
infinite integer type, so properties proven in Isabelle over this type hold true for all integers.
When SAL declares a property to hold, we can only be certain that it holds for integers within
the specified range. This is not just a limitation of SAL, but applies to most established model
checkers in one form or another so is basically unavoidable. The way to mitigate this limitation is
to use a suitable subset of integers when checking properties. Unfortunately, there is no reliable
way to determine this, and it is very much a compromise between reliability and runtime as
SAL obviously takes longer to check properties with more possible values.

The second problem that stems from using a finite subset of the integer type is that we open
ourselves up to arithmetic overflow. That is, when the value of an expression exceeds the maxi-
mum integer, it “loops around” to the beginning of the range. For example, if our BOUNDED_INT
type spans the integers —10...10 and we have an expression that evaluates to 12, it actually
evaluates to —9. Consequently, we effectively have a strange version of modulus arithmetic. To
stop SAL producing spurious counterexamples that exploit over- or underflow of variable values,
we must explicitly guard against this. This is discussed further in Subsection 9.4.7.

While the Isabelle formalisation uses strings both as labels and as data values, SAL has no
support for strings whatsoever. The normal way of defining strings is as a list of characters,
which we obviously cannot do here. We could use finite sequences of a maximum length, but
this does not make for particularly readable models. Instead, the two different uses of strings
in the Isabelle formalisation require two different solutions for SAL.

To represent transition labels, we can form a finite data type LABEL. This excludes the
possibility of actions with an invalid label but, like with input sequences of a length longer
than the maximum transition arity in the model, events with an invalid label cannot appear in
genuine counterexamples since traces involving them are not accepted by the model.
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Example 9.4.3. Consider again our simple drinks machine. Here, we have transition labels
select, coin, and vend. This can be transformed into the following SAL datatype. Actions
with a label other than select, coin, or vend are not recognised from any state in the model
so cannot appear in any counterexample trace.

LABEL : TYPE = DATATYPE
select, coin, vend
END;

Strings also appear as part of the value datatype. Here, the necessity for finite datatypes
presents more of a problem as we effectively need to enumerate exactly the strings we want
to allow as inputs and outputs in counterexamples as a STRING datatype. To tackle this, let
us consider the PTA in Figure 7.7. Here, some transitions produce literal strings as output,
and others have guards which test for particular string inputs. Thus, if we want to represent
this EFSM in SAL, we need to include at least these in our datatype. Since SAL does not
allow empty datatypes, in EFSMs where no string literals are used in any expression, we need
a dummy string. In fact, this is always included as part of the STRING type such that there is
always at least one string literal which is not explicitly mentioned in the EFSM definition. This
helps mitigate the risk of missing counterexamples due to the string datatype being too small.

Example 9.4.4. For the PTA in Figure 7.7, the STRING datatype is defined as the following.

STRING : TYPE = {String__tea, String__coffee, String__dummy};

Of course, there is always a risk of missing counterexamples which require more dummy
values than we have supplied but, again, choosing a good set of strings to use is a non-trivial
problem. Ideally, the string enumeration would be made an additional parameter when checking
properties, but SAL unfortunately does not support this. The way around this is to manually
edit the STRING datatype to add more strings as necessary.

Example 9.4.5. Consider the situation where our string datatype only contains one dummy
element and we called SAL with a BOUNDED_INT range of one, any counterexample which
required more than two input values would be missed. Here, we could add in a second
dummy string as follows.

STRING : TYPE = {String__dummyl, String__dummy2};

Again, this misses counterexamples requiring more than three values, but we can add arbi-
trarily many strings as necessary.

9.4.3 Control Flow States

In the Isabelle formalisation, control flow states are indexed by natural numbers. As discussed
in Chapter 4, this is primarily so that states can arbitrarily be added and removed during
the inference process. In SAL, EFSMs are fixed — we do not need to worry about adding or
removing states — thus we can index states with a finite enumeration. To do this, we have a
data type states which enumerates all the states mentioned in the EFSM transition matrix
such that a state indexed as n in Isabelle becomes State__n in SAL.
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Since the intention is to check LTL properties, we need to make our EFSMs complete, as
discussed in Section 9.3. This is done implicitly by the make_full_observation function
in the Isabelle formalisation. In SAL, we need to be explicit since properties are defined over
models rather than traces. To do this, we need to define and name an additional sink state.
This is indexed as NULL_STATE.

Example 9.4.6. The simple vending machine has three states qg, g1, and ¢o. In SAL, this
becomes the following datatype.

states : TYPE = {State_ 0, State_ 1, State_ 2, NULL_STATE};

As with make_full_observation, we need to keep track of the current control flow state.
Since we do not process executions explicitly in SAL, we need a local variable, cfstate, instead.
Continuing the convention established in Chapter 4 that the initial state is always qg, we initialise
cfstate to State__0. It is then updated by transitions as they are taken.

9.4.4 Data State

In Isabelle, the data state is defined as a finite function from register index (nat) to register
value (value option). SAL does not support an option datatype out of the box, so we
must define one. Since outputs are sequences of type value option, we need an additional
bottom value. I therefore follow the same strategy as for the value datatype, first defining
the B_option datatype and then defining option as a subset of this without the OptionBB
bottom element. It has already been proven in Chapter 4 that the set of registers used by any
given EFSM is finite, thus we can simply define each register used by a given EFSM as a local
variable that can be updated by transitions. Similarly to the Isabelle formalisation, all registers
are initialised to None and remain unchanged unless they are explicitly updated.

9.4.5 Arithmetic

Like in my Isabelle formalisation, since we are using dynamically typed values, we cannot
rely on standard arithmetic and must define our own. The semantics of this are identical to
those specified in Chapter 4 however, because SAL struggles with recursively defined datatypes,
I decided to use a shallow embedding instead of deeply embedding expressions as their own
datatype like I did in Isabelle. This means that arithmetic expressions are represented using
functions over SAL’s existing logical and mathematical constructs rather than by defining a
syntactic datatype for expressions which must then be explicitly evaluated. It would be possible
to define such a datatype in SAL but, since we do not need to recognise and modify the different
expressions here, a shallow embedding is the better approach.

The evaluation of arithmetic functions is very similar in SAL to how it is done by the aval
function in Isabelle. The only difference is that there is no intermediate datatype. Expressions
simply appear as functions which can be evaluated directly. Literal values simply appear as they
are, as do variable names, which are evaluated in the current context. Addition, subtraction,
and multiplication are evaluated by the auxiliary functions value_plus, valueminus, and
value_times, each of which takes two value_options asinput and returns a value_option.
Because constants and inputs are values rather than value_options, we need to Some them
to make expressions type check. For example, rather than writing the expression i1 + 5 as
value_plus (il, Num(5)), we must write value_plus (Some (il), Some (Num(5))).
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9.4.6 Guards

The implementation of guards in SAL required the same three-valued Bochvar logic discussed in
Subsection 4.7.5. Unlike in the Isabelle formalisation, the number of recursive cases is not a prob-
lem here, so I used the conventional logical operators of conjunction, disjunction, and negation
as they are more intuitive. To ease translation of the Nor element of the gexp datatype from
Isabelle to SAL, I also define a function maybe_nor which is evaluated as “not or”. Functions to
check equality, and numeric less than, greater than, etc. which take in two value_options and
return a Trilean are also defined with the same semantics as those in Subsection 4.7.5 such
that any comparison which is not between two defined numeric values (for example a number
and a string or None) returns invalid.

As in Isabelle, the decision of whether a transition may or may not be taken must be a
boolean one. The fact that a guard expression evaluates to Trilean true means nothing to
SAL. To handle this, I defined a function gval in SAL which checks if the evaluation of a
guard is Trilean true, returning boolean true if it does and false otherwise. This is not to be
confused with the function of the same name in the Isabelle formalisation which takes a gexp
and a context and evaluates to a Trilean.

9.4.7 Transitions

Isabelle transitions were described in Chapter 4. They are defined using Isabelle’s built-in
record type and have five components: label, arity, guards, outputs, and updates. In Isabelle,
an EFSM is defined entirely by its transition matrix, which consists of a set of tuples each of
the form ((origin, dest), transition), where origin and dest are natural numbers that index the
origin and destination states.

Models in SAL use an abstract state machine semantics, as described in Subsection 2.2.6.
This means that we do not have explicit states and transitions, rather we have a set of variables
and a series of “if condition then updates” rules. To represent the control flow states of the
EFSM, we define a variable cfstate, which is initialised to zero and updated by transitions.
Each “transition” has an explicit test to see if the cfstate variable holds the correct value
representing its origin state. We must also test to see if the given label is that of the tran-
sition, and that the correct number of inputs have been supplied. This is effectively what the
observe_execution function does in Isabelle, except that SAL does not give the cfstate
variable special semantic significance.

Example 9.4.7. The Isabelle representation of the coin transition from our simple drinks
machine in Figure 1.5, is represented in SAL as shown in Figure 9.1. In SAL a variable followed
by a prime indicates its posterior state, and the unprimed version is its anterior value.

In addition to checking the control flow state, and the label and arity of the action, the
transition also uses the auxiliary function check_bounds to ensure that the result of eval-
uating the output (and update) expression 7y + ¢; is within the range of BOUNDED_INT. As
discussed in Subsection 9.4.2; this is to ensure that the transition cannot be taken if doing so
would result in an arithmetic overflow.
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COIN :
cfstate = State__1 AND
label = coin AND
input_sequencel!size? (i) = 1 AND
check_bounds (value_plus(r__2, Some(i(1l))))
—>
cfstate’ = State_ 2;

r_ 1" =r__1;
r__ 2" = value_plus(r__2, Some(i(l)));
o’ = output_sequence!
insert (value_plus(r__2, Some(i(l))),

output_sequence!empty)

Figure 9.1: A SAL representation of the coin transition.

As well as the transitions from the EFSM, we must also add a transition to the NULL_STATE
which makes the EFSM complete, as described in Section 9.3. To implement this in SAL, we
can make use of SAL’s keyword ELSE which allows the sink-hole transition to fire if and only
if no other transition is able to process the current input from the current state. Like with the
make_full_observation function, in this case, the model moves into the NULL_STATE from
which it is unable to escape.

SINK_HOLE
ELSE
—-—>
cfstate’ = NULL_STATE;
o’ = output_sequence!empty

9.4.8 LTL

Being a model checker, SAL has good support for LTL out of the box. This makes translat-
ing between Isabelle syntax and SAL syntax quite straightforward. One noteworthy difference
between the ways Isabelle and SAL handle LTL properties is that Isabelle properties are ex-
pressed over traces where SAL properties are expressed over models. In Isabelle, we use the
make_full_observation function to express properties over models, but we can also express
properties of the traces themselves — known as hyperproperties [60] — in the same way. For
example, we could use Isabelle to express the property of the drinks machine that, if there exists
a trace in which we can select a drink, pay for it, and receive it, then there exists a different
trace in which we do the same thing with a different drink. There is no way to do this explicitly
in SAL. Instead, we would need to use a hyperproperty model checker.

It is also possible, in Isabelle, to leave variables free, as has been done with d in Example 9.2.2.
Here, this has the same effect as using the “for all” quantifier, but free variables can also act as
concrete instances of an existential. SAL does not support free variables. Instead, all variables
must be quantified either with “for all” or “exists”. This can make translating expressions which
involve free variables from Isabelle to SAL quite difficult. In such situations, it is preferable to
use quantified variables in the first place.
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It is important to note that, while it is common to translate models from Isabelle to SAL,
for properties the reverse is more common. The syntax of SAL is much more pleasant to work
with, and its speed and efficacy at generating counterexamples makes it the perfect tool when
developing properties. Once SAL can no longer find a counterexample, we then translate the
property to Isabelle such that we can build a formal proof that it holds. The fact that it is
more common to translate properties from SAL to Isabelle means that the fact that SAL is
more restricted in the properties it can express is not a problem since we are never faced with
properties which can be expressed in SAL which cannot be expressed in Isabelle.

9.5 Automated Translation

Inspired by a similar tool z2SAL [49] which translates specifications in Z to models in SAL,
a major contribution of [138] is a tool which is able to automatically translate EFSMs and
LTL properties between Isabelle and SAL. The motivation behind this is that performing this
translation manually is both time-consuming and error prone. It therefore makes sense to have
an automated tool to do this for us.

My main contribution to this work is the formalisation of EFSMs in both Isabelle and SAL,
and the arguments presented above that the two representations are sufficiently semantically
equivalent for the purposes of counterexample generation. The implementation of the tool was
inspired by and uses much of the original code from [49] but, since I was not involved with this
part of the work, I will not discuss it further here.

Before continuing, however, it is important to note one important limitation of this work
with regard to LTL expressions. The tool can only work with a subset of LTL expressions that
are expressible in Isabelle. Most notably, the tool can only translate expressions in terms of
concrete values. While both Isabelle and SAL have the capability to quantify variables, the
automated translation tool does not yet support either free or quantified variables. That is to
say that the expression from Example 9.2.2 cannot be translated, but the similar expression
G((label = “vend” A X (output = [“d”])) = ro > 100) can be, since “d” here is a literal
string rather than a free variable.

9.6 Case Studies

We have now seen how EFSMs are represented in Isabelle and SAL, how the two representations
differ, and that it is possible to automatically translate EFSMs and LTL properties between the
two representations. This section illustrates the application of this through three case studies.

9.6.1 Drinks Machine

We have already seen much of the simple drinks machine example which runs throughout this
work. Figure 9.2 shows the full Isabelle definition of the EFSM from Figure 1.5. We can specify
properties of the drinks machine model using the LTL framework detailed in Section 9.3. If
these properties hold, their proofs are usually reasonably straightforward and, assuming some
auxiliary lemmas about the possible steps for each action from each state have already been
proven, can often be found with a reasonably high degree of automation.
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definition select :: transition where
select = (|
Label = STR ''select’’,
Arity = 1,
Guards = |],
Outputs = [],
Updates = [(1, V (I 0)),(2, L (Num 0))]
D

definition coin :: transition where

coin = (|
Label = STR "'coin’’,
Arity = 1,
Guards =[],

Outputs = [Plus (V (R 2)) (V (I 0))],
) Updates = [(2, Plus (V (R 2)) (V (I 0)))]

definition drinks :: transition-matriz where
drinks = {|

((0,1), select),
((101), coin),
((1,1), vend-fail),
§(1,2), vend)

definition vend:: transition where
vend= (|

Label = STR ""vend’’,
Arity = 0,
Guards = [(Ge (V (R 2)) (L (Num 100)))],
Outputs = [(V (R 1))],
Updates = ]
D

definition vend-fail :: transition where
vend-fail = (|

Label = STR ""vend’’,

Arity = 0,

Guards = [(Lt (V (R 2)) (L (Num 100)))],
Outputs =[],

Updates = ]

D

Figure 9.2: The Isabelle formalisation of the simple drinks machine EFSM.

Consider now the EFSM in Figure 9.3. This is identical to the EFSM in Figure 1.5 except
for the guards on the vend transitions. Here, drinks are half price and only cost 50p instead of a
pound. If we attempt to prove the property stated in Example 9.2.2, we obviously cannot, since
it asserts that ro must be greater than or equal to 100 before a user can receive their drink.
Here, 79 only needs to be greater than or equal to 50. The problem with this is that the absence
of a proof does not mean that the property does not hold, just that it has not yet been proven
to hold. In this instance, we know the property to be false, so we could attempt to prove its
negation, but this does not hold for the model either as it asserts that we never get a drink if

ro holds a value greater than or equal to 100.

coin: 1/og := 1o +iglra := 19 + o]

select : 1/[ry := g, 72 := 0]

—( 4o

vend : 0[ry > 50]/0¢ := 11
®

vend : O[ry < 50]

Figure 9.3: Half price drinks machine.

In this situation, we can use SAL to generate a counterexample to the property in the form
of a trace of the model which violates it. This includes concrete input and output values where
necessary so it would be possible to run the trace on the real implementation if desired. In this
case, the trace should represent an interaction in which the user receives their drink when 75 holds
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a value less than 100. To produce a counterexample, SAL must be provided with a definition
of the EFSM, and of the LTL property to be checked. Since we already have a specification of
both the model and the property in Isabelle, we can convert these to SAL automatically using
the tool from [138] mentioned in Section 9.5. We can then call SAL’s symbolic model checker,
which produces the trace shown in Figure 9.4.

Counterexample:
Path
Step 0: Step 2:
-—- Input Variables (assignments) ---— —--- Input Variables (assignments) ---
label = select label = vend
i(0) = Str(String__d) i(0) = ValueBB
—--— System Variables (assignments) --—- ——-— System Variables (assignments) --—-—
ba-pc!l = 2 ba-pc!l = 2
cfstate = State_ 0 cfstate = State_ 1
r__1 = None r_1 = Some(Str(String__d)
r__ 2 = None r__ 2 = Some (Num(90)
o(0) = OptionBB o(0) = Some (Num(90)
Transition Information: Transition Information:
((label SELECT transition at ((label VEND transition at

[Context: drinks_machine, [Context: drinks_machine,

line(39), column(10)])) line (60), column(10)]))
Step 1: Step 3:
—--— Input Variables (assignments) --—-— —-—-— Input Variables (assignments) ---
label = coin label = coin
i(0) = Num(90) i(0) = ValueBB
-—- System Variables (assignments) ---— --- System Variables (assignments) ---—
ba-pc!l = 2 ba-pc!l =1
cfstate = State_ 1 cfstate = State_ 2
r__ 1 = Some(Str(String__d)) r_ 1 = Some(Str(String__d))
r__ 2 = Some (Num(0)) r__ 2 = Some (Num(90)
o(0) = OptionBB o(0) = Some(Str(String__d))

Transition Information:

((label COIN transition at
[Context: drinks_machine,
line (48), column(10)]))

Figure 9.4: A counterexample produced by SAL.

Although Figure 9.4 is a little verbose, it depicts the trace (select(“d” ), coin(90)/]90],
vend()/[“d” ], coin()/[]).* Since we have only inserted one coin with value 90 before receiv-
ing our drink, this trace clearly violates the property that ro must be greater than or equal to
100 before a drink is dispensed. Armed with this trace, we now know the transitions which
are involved in violating the property, so can inspect these to investigate where the problem
is. Since this example is very small, it is easy to see where the error is and fix the problem by
changing the guards on the two vend transitions to use 100 rather than 50.

Once the flaw is repaired, we can run the symbolic model checker again. This time it
produces the message proved, indicating that it was unable to find a trace that violates the
LTL property. Because the drinks machine is not a particularly critical system, this is probably
sufficient evidence of the property’s validity but, as discussed earlier, due to the bounded nature
of model checking is a lesser degree of assurance than an Isabelle proof. Fortunately, we can
use the translation tool from [138] to convert both the fixed SAL model and the LTL property
back to Isabelle and prove our property here, safe in the knowledge that it is now probably true
since SAL did not find any counterexamples.

4Note that this trace is four elements long. The final coin()/[] event allows us to observe the final output
[“d” ]. Since output is set by transitions as they execute, its value can only be observed in the next state.
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While this example is a little contrived, it serves to demonstrate the utility of counterexample
traces. The fault is fairly obvious here, but it is easy to see how less obvious faults can be detected
with this too. For example, we can correctly phrase the guard ro > 100 as 72 > 99. While both
are equivalent, the second guard opens us up to an “off by one” error if we incorrectly type
ro > 99 instead. Here, there is only one value of ry which is in violation of the property in
Example 9.2.2 but SAL is easily able to find this.

9.6.2 LinkedIn Security Exploit

In 2014, the popular social networking site LinkedIn was shown to have a flaw in its behaviour
[58]. The site allows professionals to record details of their experience and qualifications, and to
form networks with others. Users can join and create profiles for free, and can view the profiles
of other users in their network, however they can only view summary information about users
who are outside their network. LinkedIn also offers paid subscriptions which allow users to view
detailed information about any user inside or outside their network.

User profiles contain a link to download the information they contain as a PDF file. This
link is generated dynamically and includes parameters that tell the server whether to provide
detailed or summary information depending on the accessing user’s status (paid or free) and
their relationship (friend or not). One of these parameters is an authentication token generated
by the server on a per-session basis. Although they could not directly generate the required
session tokens, the researchers in [58] discovered that modifying the parameters in the URL to
view someone’s profile to make it look like the user was in their network caused the server to
generate links to access full user profiles instead of just summary information.

To obtain a model of the LinkedIn system, I converted the steps used in the published vul-
nerability description [58] into traces and ran them through my inference tool from Chapter 6.°
The output produced by the tool was a DOT file representing the EFSM in Figure 9.5, which 1
converted to an Isabelle representation using the translation tool from [138].9

pdf - 3[ig = “otherID” ,
. ) i1 = “OUT_OF_NETWORK?” ,i, = “MNn5" |/
-‘o‘\‘c\.“)" L A 09 := “summary_pdf_of_otherID” @
PERR TS S5

pdf : 3lio = “friendID”
login : 1[ig = “free” | view : 3lig = “friendID” , iy = “name” iy = “HM8p” |/
ip = “name” iy = “HM8p” := “detailed_pdf_of_friendID”

login : 1[ip = “paid” ] view : 3[i = “otherID” ,
iy = “name” ,ip = “4zoF” |

pdf : 3[ig = “otherID” ,
i1 = “name” ,ig = “4z0F” |/

“ 3y
> 7 :tfﬁ’r[l),, o 09 := “detailed_pdf_of_otherID .
v,

Figure 9.5: An abstract EFSM model of the LinkedIn site protocol

5Since this system makes heavy use of string values, generates pesudorandom authentication tokens, and has
only four published traces, I did not deem it to be a suitable system to use to evaluate my inference tool in
Chapter 8.

6All the input and generated files for this example are available at https://github.com/jmafosterl/
efsm-sal/tree/master/linkedin.
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In the traces, each page request is an event, with the label being the page accessed, the
inputs being the data parameters, and the output being an abstraction of the returned page.
There are three principal actions in the system: login, view, and pdf. The login event takes one
argument which represents the user ID. These are pseudo-random strings in the real system, but
I abstracted them to represent either a free or a paid user. Only traces involving the free
user were published in [58], however, the written description of the paid user functionality was
sufficient to infer traces of what would happen if a paid user had attempted the same process,
namely that they should be able to view the full profiles of users outside their network.

The view and pdf actions each have three inputs. The first input is the ID of the profile
to be accessed. These are pseudo-random strings in the real system so, to improve readability,
I replaced them with friendID (representing the ID of the friend’s profile), and otherID
(representing the ID of the non-friend’s profile). The second parameter represents whether
the target profile is a friend or not. This appears as name if the target profile is a friend and
OUT_OF _NETWORK if they are not. The third parameter is a pseudorandom authentication token.

The pdf action represents generating a PDF version of the viewed profile, and it was this
that was exploited. My inference tool has correctly represented the fact that both types of login
lead to the same state (s1) and it should be the other parameters that enact the difference
in behaviour. The top three view transitions in Figure 9.5 represent the “correct” behaviour.
The session parameters HM8p, MNn5, 4zoF are the tokens generated for a free user viewing a
friend, a free user viewing someone out of their network, and a paid user viewing someone out
of their network respectively. The bottom wview transition represents the attack: by replacing
the second input with name instead of OUT_OF NETWORK, but leaving the session parameter
with the value MNn5 the attacker is able to cause the system to generate what should be a paid
user’s session token. This leads the model to the state from which it can take the pdf transition
which produces the output abstracted to detailed pdf_of_otherID.

The fact that free users can access detailed information of users outside their network of
friends is clearly not what was intended. The required property of the system could be expressed
as, “After a user has logged in as a free user, they should never be able to get the pdf action
to output the detailed report for users who are not their friend.” Given the abstraction of the
millions of potential user IDs into just friendID and otherID, this becomes the requirement
that after logging in as free, the pdf action called with the input otherID should not output
detailed pdf_of_otherID. Figure 9.6 shows this as an Isabelle lemma.
lemma LTL-neverDetailed:

(((label-eq "'login'’ aand input-eq [Str "'free’’]) impl

(nzt (alw ((label-eq ''pdf'" aand check-exp (Eq (V (Ip 0)) (L (Str "'otherID'")))) impl

(not (nzt (output-eq [Some (Str ''detailed-pdf-of-otherID'")])))))))) (watch linkedIn )

Figure 9.6: An LTL property that defines the expected behaviour.

We can attempt to prove the lemma in Figure 9.6 in Isabelle but, since the property is not
true of the system as it stands, we will inevitably fail to find a proof. As before, the fact that
we cannot prove the property does not show that it is false. With considerable human effort, it
is possible to reach a contradictory proof state which reveals that the lemma is indeed untrue.
This indicates that there is a flaw in the system, but does not provide any insight into where
the problem lies or how we might repair the system. What we really need is a counterexample
trace from SAL. Fortunately, this is easy to obtain as we can use the translation tool from [138]
once again to convert the Isabelle model and property to SAL. We can then run the symbolic
model checker on this to produce the counterexample shown in Figure 9.7.
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Counterexample:

Path

Step 0:
--- Input Variables
label = login

(assignments) ---

Step 2:
--— Input Variables
label = pdf

(assignments) ---

1(0) = Str(String__free) i(0) = Str(String__otherID)
i(1) = ValueBB i(1) = Str(String__name)
i(2) = ValueBB i(2) = Str(String__4zoF)

--— System Variables
ba-pc!l = 3

cfstate = State_ 0
o(0) = OptionBB

Transition Information:

(assignments) —---— —-— System Variables (assignments) --—-
ba-pc!l = 2
cfstate = State_ 6
o(0) = OptionBB

Transition Information:

((label LOGIN transition at ((label PDF2 transition at
[Context: linkedin_ext, [Context: linkedin_ext
line(42), column(10)1])) line (134), column(10)])
Step 1: Step 3:
—--— Input Variables (assignments) ---— —-—-— Input Variables (assignments) --—-
label = view label = view
1(0) = Str(String__otherID) 1(0) = Str(String__4zoF)
i(1l) = Str(String__name) i(l) = Str(String__4zoF)
i(2) = Str(String__MNn5) i(2) = Num(-7)
-—- System Variables (assignments) ---— --- System Variables (assignments) ---—
ba-pc!l = 2 ba-pc!l =1
cfstate = State__1 cfstate = State_ 7
o(0) = OptionBB o(0) = Some(Str(String__detailed_pdf_of_otherID)

Transition Information:
((label VIEW3
[Context:

line(94), column(10)

transition at
linkedin_ext,

1)

Figure 9.7: The counter-example generated by SAL.

Although the trace is quite verbose, SAL has correctly identified the exploit. First, the user
logs in as user free. Next, they call the view action with the parameters otherID, name,
and MNn5. This takes the model into state sg in Figure 9.5, from which the pdf action can be
called with the same parameters to obtain the detailed PDF of the other user’s profile.

Armed with a concrete counterexample, the analyst can propose an improvement to the
system that prevents this flaw being exploited. In this case, the flaw was in assuming that
session tokens in the URL were trustworthy. The solution is to include session information in
the server itself. We can add a register r; to record whether the user logged in as paid or free
and then use this in the guard expressions of subsequent transitions. The resulting system is
shown in Figure 9.8. When we run the symbolic model checker for the same property on the
fixed model, it simply states proved. Now we know that there is no obvious counterexample, it
is worth attempting a proof in Isabelle. This is rather arduous, but does go through successfully.

login : 1/[ry == io]

—

pdf : 3[ip = “otherID” ,
iy = “name” ,ig = “4z0F” |/

_ eothertD”
5" ) | han .
oy = "detailed_pdf of otherID”

pdf : 3[ip = “friendID” ,
1 = “name” iy = “HM8p” |/
0g := "detailed_pdf of _friendI D”

s0

82

Lip = “4zoF” |
pdf : 3lig = “otherID” ,
i1 = “OUT_OF_NETWORK?” , iy = “MNn5" |/
0g =" summary_pdf of _otherID”

2= g

Ny ;
Figure 9.8: The EFSM model of the fixed systems
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9.6.3 Lift Controller

Let us now apply the same technique to a more complex case study. For this, we look again to
[136], the source of the LIFTDOORS case study in Chapter 8. This work contains several EFSMs
which together model the full functionality of a realistic elevator system with four floors. While
the LIFTDOORS system is a popular model for evaluating inference tools, it is actually not a
particularly interesting model when it comes to proving properties. Here, I use the “Central
Elevator Control” model [136, Figure 3.12] which is shown in Figure 9.9.7 In the interest of
clarity, the up and down transitions have been assigned abbreviations in the figure and are
shown in full in Table 9.1.

DOWN43 down : 3[rq = 2,71 = “false”, iy = “true”,is = “true”, iz = “true” |/
00 1= 2,01 := “true” [rq := 3,71 := “true” |

DOWN43STOP  down : 3[re = 2, = “false”, i; = “true”, i = “true”, iz = “false” |/
0p := 2,071 := “false” [ry := 3,71 := “false” |

UP34STOP up : 2[rg = 1,r; = “false”, iy = “true”, iz = “true” |/
00 := 1,01 := “true” [rq := 4,71 := “true” |

DOWN32 down : 3[rq = 2,71 = “false”, iy = “true”,ip = “true”, iz = “true” |/
00 := 2,01 := “true” [ry := 2,7 := “true” |

DOWN32STOP  down : 3[re = 2,71 = “false”, i; = “true”, iy = “true”, iz = “false” |/
00 := 2,01 := “false” [ry := 2, := “false” ]

UP23 up : 3[rag = 1,r; = “false”, iy = “true”, iz = “true”, iz = “true” |/
00 := 1,01 := “true” [rq := 3,71 := “true” |

UP23STOP up : 3[re = 1,1 = “false”, i1 = “true”,is = “true”, iz = “false” |/
0p := 1,01 := “false” [ry := 3,71 := “false” ]

DOWN21STOP down : 2[ry = 2,71 = “false”,i; = “true”, iy = “true”

b b )

00 = 2,01 := “true” [r3 := 1,7 := “true” |

UP12 up : 3[rg = 1,r; = “false”, iy = “true”, iz = “true”, iz = “true” |/
00 := 1,01 := “true” [ry := “true”,ry := 2]

UP12STOP up : 3lro = 1,r; = “false”, i1 = “true”, is = “true”, i3 = “false”

P ) ) ’ s L3

oo := 1,01 := “false” [ry 1= 2,71 := “false” |

Table 9.1: The up and down transitions from Figure 9.9.

As always, state qq is the initial state. In fact, the initialisation of the lift is quite complex
and is abstracted out into a separate EFSM model which sits within state gop. This model is
not shown here but can be found in full in [136, Figure 3.13]. In this example, only the top-
level behaviour illustrated in Figure 9.9 needs to be considered. This thesis does not cover how
EFSMs behave when arranged hierarchically, as it is somewhat outside of the scope of this work.
In essence, the initialisation sub-model serves to ensure that the lift is properly initialised before
operation. This means that the doors are closed and it is on the first floor. In Figure 9.9, the
current floor of the lift is held by the register r4.

"I make a slight deviation here from [136] in that all of my up and down transitions have the labels up and
down respectively. This is not the case in [136]. Here, these transitions are uniquely labelled according to their
origin and destination floors and whether the lift is to stop at the relevant floor. This deviation has little effect
on the model itself but does make Isabelle proofs simpler since there are fewer unique labels.
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UP23STOP
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UP12

Ja

fi

opendoor : 1[i; = “true” |/

09 = “true”’, 01 : =4
motorstop : 2

[r1 = “true”,i; = “true”, iz = “true” |/
0g := 0,01 := 4,09 := “true”

CHNMOA

dOLSEFNMOAd

opendoor : 1[i; = “true” |/

09 = “true”’, 01 : =3
motorstop : 2

[r1 = “true”,i; = “true”, iz = “true” |/
0g := 0,01 := 3,09 := “true”

CENMOa

dOLSZENMOA

motorstop : 2

[r1 = “true”, iy = “true”, iz = “true” |/

0g := 0,01 := 2,09 := “true”
opendoor : 1[i = “true” |/

8 09 := “true”’, 01 := 2
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motorstop : 2
[r1 = “true”, iy = “true”, iz = “true” |/
09 := 0,01 := 1,09 := “true”
opendoor : 1[i1 = “true” |/
09 := “true”’, 01 :=1

Figure 9.9: The EFSM for the lift controller.
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State ¢, represents the lift in its “idle” state. It is stationary with its doors closed. It does
not contain any passengers and awaits a call to a particular floor. Again, this state contains a
sub-model (which can be found in [136, Figure 3.14]) to handle the control logic of summoning
the lift. This is actually quite complex since this model has a directional priority element,
meaning that the lift will service all requests from the direction it is travelling before changing
direction. The lift does not store floors to visit in a list, rather, it stores the current direction
of travel, the floor it is currently at, and whether it should stop at the next floor it reaches.

States fi to fy in Figure 9.9 represent the lift being in motion. The lift can travel between
floors arbitrarily, but the control flow is such that it cannot ascend above floor four, nor descend
below floor one. This is because the only incoming transitions to the respective states stop the
lift. It is also impossible to select a floor which is not in the range [1..4]. States s to s4 represent
the lift being stationary at a particular floor. Here, the doors may open to allow passengers to
enter or alight, after which the lift awaits instruction to visit a particular floor.

A basic safety property of most modern lifts is that, under normal circumstances, they must
be stationary at a floor before the doors can be opened. The desire for this is obvious: if we
can open the doors while the lift is moving, there is a risk that body parts, pets, or items of
clothing could get caught on the wall the lift shaft, potentially causing damage either to the lift
mechanism or the passengers. To make the lift as safe as possible, we would like to verify that
our lift controller does not allow this to happen.

To verify our property, we must first formalise the intuition in LTL. To do this, we need
to specify what it means to “stop the motor” and to “open the doors”. In Figure 9.9, the
stopping of the motor is done by the motorstop transitions, and the opening of the door is done
by the opendoor transitions. The action of successfully opening the doors can be characterised
by calling the opendoor action and receiving the output [n, “true” |, where n is the current floor
number. We can then phrase the property “we cannot open the door until we have first stopped
the lift” in LTL as the following, in which n has been left as a free variable to make the property
independent of the floor the lift is currently on.

((=(label = opendoor A\ X (output = [n, “true” |))) W (label = motorstop)) (9.1)

This phrasing of the property omits the outputs of motorstop and the inputs to both actions.
This is because they do not affect the validity of the property. Calling either action with invalid
inputs will cause the model to enter an implicit sink state, from which our property trivially
holds since we can never successfully open the doors. Similarly, we do not care about the outputs
of motorstop either since, if it is called unsuccessfully, the model goes into the sink state, from
which we cannot open the doors.

Note also that in Equation 9.1, we check the output of opendoor in the next state rather
than the current state. Recall from Section 9.3 that this is because the output of the current
action can only be observed once that action has been completed, i.e. in the next state. This is
common both to the Isabelle framework and to SAL.

Here, we need to use the weak variant of the until operator since we do not necessarily want
to enforce that the motor is eventually stopped. If the lift doors never open, we do not need
to ever stop the lift. If we were to use the strong variant of until, we would eventually have to
stop the lift. This would make the property trivially untrue, since we could simply never call
the motorstop action. At some point, this would result in us ending up in the sink state from
which we can neither stop the motor nor open the doors, but this does not affect the invalidity
of the property. We could phrase our property to explicitly exclude the sink state, but this is
not as elegant or intuitive as the phrasing in Equation 9.1.
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Looking at the Figure 9.9, we can see that the property in Equation 9.1 holds. We can only
open the doors in states s1-s4, which can only be reached by calling the motorstop action. The
proof of this property in Isabelle is a relatively straightforward unrolling proof, showing that
the model enters the sink state if the opendoor action is called before motorstop.

Unfortunately, Equation 9.1 does not really capture the intuition of what we want to verify
as it does not operate over the entire lifetime of the lift controller. More specifically, once we
have stopped the motor for the first time, the until operator is released meaning that anything
can happen after this point. It may be the case that, once the motor starts up again, we are
then free to open the doors while the lift is in motion. Equation 9.1 does not pick this up, so
we need to phrase our property in such a way that it operates globally. An intuitive way to do
this is to simply wrap a “globally” operator around Equation 9.1, as in Equation 9.2.

G((—(label = opendoor N X (output = [n, “true” 1))) W (label = motorstop)) (9.2)

While Equation 9.2 is intuitive, it is not actually true. It is here that SAL comes into its
own. Instead of wasting days of effort trying to prove this untrue property, we can simply use
the tool from [138] to convert the model and property to the SAL representation and generate
a counterexample. Unfortunately, while working with this example, I was so confident that
Equation 9.2 was true that I did not do this. Instead, I attempted to jump straight into
an Isabelle proof, only realising that the property was untrue after a couple of days of work.
While frustrating, this serves as both a cautionary tale and a demonstration of the utility of
counterexample generation.

To generate counterexamples for the lift controller in SAL, we first need to apply small
workaround to account for the fact that we are ignoring the hierarchical structure of the model.
This workaround is to initialise 74 (the register which holds the current floor) to 1, as is done by
the initialisation sub-EFSM. This could be seen as “cheating” but is sufficient for our purposes
here and saves us the trouble of having to condense the hierarchy in [136] into a single model.

With the workaround applied, SAL’s symbolic model checker can then generate the coun-
terexample shown in Figure 9.10. In situations where SAL produces a counterexample, we know
that there is either a problem with the model or the property. Here, the fault lies in phrasing
of the property. The problem is that opendoors is a reflexive transition, meaning that we can
call it as many times as we like. Since, in s7, the motor is already stopped, we do not have to
explicitly stop it again before opening the doors. We must therefore phrase our property differ-
ently. Counterexample generation is invaluable at this stage, as it allows us to quickly iterate
our property until it holds. At each stage, we get a concrete counterexample which allows us to
improve the property.

We can see from the model in Figure 9.9 that we can only successfully perform an opendoor
action from a state where the motor is stopped, i.e. s; to s4. We could, therefore, check this as
part of the statement. This phrasing is shown in Equation 9.3, and states that it is always the
case that we cannot open the door until the control flow state is sq, s3, S3, or s4.

G(
F(label = opendoor A X (output = [n, “true” |)) =
((—(label = opendoor A X (output = [n, “true” |)) W (cfstate € {s1, S2, $3,54})))

)

(9.3)
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Counterexample:

Path

Step 0:

—--- Input Variables (assignments) ---
label = continit

i(0) = ValueBB

i(l) = ValueBB

i(2) = ValueBB

——-— System Variables (assignments) --—-
ba-pc!l = 9

cfstate = State_ 0

r__1 = None

r__2 = None

r__ 3 = None

r__4 = Some (Num(l))

o(0) = OptionBB
o(l) = OptionBB
o(2) = OptionBB

Transition Information:
((label CONTINIT transition at
[Context: liftcontroller3,
line (42), column(10)]))
Step 1:
——— Input Variables (assignments) ---
label = return

i(0) = ValueBB
i(l) = ValueBB
i(2) = ValueBB

—--— System Variables (assignments) --—-
ba-pc!l = 9

cfstate = State_ 9

r__1 = Some(Str(String__true))

r__2 = None

r__3 = None

r_ 4 = Some (Num (1))

o(0) = OptionBB
o(l) = OptionBB
0(2) = OptionBB

Transition Information:

((label RETURN1 transition at
[Context: liftcontroller3,
line(221), column(10)1]))

Step 2:

——-— Input Variables (assignments) ---

label = motorstop

i1(0) = Str(String__true)
i(1l) = Str(String__true)
i(2) = ValueBB

—-—— System Variables (assignments) --—-
ba-pc!l = 9

cfstate = State__1

r__1 = Some(Str(String__true))

r__2 = None

r__3 = None

r__4 = Some (Num(1l))

o(0) = OptionBB
o(l) = OptionBB
o(2) = OptionBB

Transition Information:

((label MOTORSTOP1 transition at
[Context: liftcontroller3,
line (95), column(10)]))

Figure 9.10: The SAL counterexample for the property in Equation 9.2.

Step 3:

—--- Input Variables (assignments) ---
label = opendoor

i(0) = Str(String__true)

i(1l) = ValueBB

i(2) = ValueBB

—-—-— System Variables (assignments) --
ba-pc!l = 9

cfstate = State_ 5

r__ 1 = Some(Str(String__true))

r__ 2 = None

r__ 3 = None

r__4 = Some (Num (1))
o0 (0) = Some (Num(0))
o(l) = Some (Num(1l))
0(2) = Some(Str(String__true))

Transition Information:
((label OPENDOOR1 transition at
[Context: liftcontroller3,
1line (183), column(10)1]))
Step 4:
--- Input Variables (assignments) ---
label = opendoor

i(0) = Str(String__true)
i(l) = ValueBB
i(2) = ValueBB

—--— System Variables (assignments) --—-
ba-pc!l = 8

cfstate = State__5

r__ 1 = Some(Str(String__true))

r__2 = None

r__3 = None

r__ 4 = Some (Num (1))

0(0) = Some (Str(String__true))
o(l) = Some (Num(1l))
o(2) = OptionBB

Transition Information:

((label OPENDOOR1 transition at
[Context: liftcontroller3,
line (183), column(10)]))

Step 5:

-—- Input Variables (assignments) ---—
label = up

1(0) = Num(-1)

i(1) = Str(String__true)

i(2) = Str(String__false)

—--— System Variables (assignments) --—-
ba-pc!l = 20

cfstate = State__5

r__ 1 = Some(Str(String__true))

r__2 = None

r__3 = None

r__4 = Some (Num(1l))

0(0) = Some (Str(String__true))
o(l) = Some (Num(1l))
o0(2) = OptionBB
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This property is not particularly robust, however, since it is not model independent. That is,
it is tied to how we have modelled the lift controller. If we rename the states, the property may
no longer hold. It also requires us to have some knowledge of the model such that we know that
the motor is stopped in the relevant states. Ideally, we would like to avoid this kind of property
and instead phrase things purely in terms of input and output. This way, our properties are not
tied to the model, and we can arbitrarily rename states and registers. We can even change the
structure of the model completely if we want to. If, at some point, we change the model and
the property no longer holds, we know that the fault lies with the new model not the property.

When working with this example, it took several iterations before I eventually settled on
the property shown in Equation 9.4, for which SAL’s symbolic model checker produces the
output proved. Equation 9.4 is rather convoluted and needs a little disentanglement. The
outer globally operator states that the property must hold true throughout the entire execution
of the model. The inner predicate states that if eventually there is a next state in which we
successfully open the doors, this does not occur until either the label is motorstop or the output
is [n, “true” |. It is this second disjunct which is the key. What this is doing is exploiting the
fact that, when we open the doors, the outputs are the current floor n and the string “true”.
We could make this more explicit by writing label = opendoor A X (output = [n, “true” | instead,
but this does not affect the validity of the property since opendoors is the only transition which
could ever produce this output.

G(
F(X (label = opendoor A X (output = [n, “true” |))) —
(=(X (label = opendoor A X (output = [n, “true” ]))) W (9.4)
(label = motorstop V X (output = [n, “true” |)))

)

The next operations somewhat obfuscate the meaning of Equation 9.4. These are necessary
to get round the fact that LTL only looks into the future. What this property is effectively
saying is that, if we successfully open the doors, the previous event was either stopping the
motor or opening the doors. We do not have a “previously” operator in LTL though, so we
must look one step into the future to effectively treat the current action as the “previous” event.

With SAL unable to find a counterexample for this property, we can now embark on an
Isabelle proof. The first step is to translate the SAL property into Isabelle syntax. This can be
done automatically using the tool from [138], which produces the lemma in Figure 9.11.
lemma alw-must-stop-to-open:

alw ((ev (nzt ((label-eq ""opendoor’’) aand
(nat (output-eq [Some (Str "'true’’), Some nl]))))) impl
((not (nazt ((label-eq ''opendoor’’) aand
(nat (output-eq [Some (Str '"true’’), Some nl]))))) until
(((label-eq ""motorstop’’) or (nzt (output-eq [Some (Str ''true’’), Some n))))))) (watch lift i)

Figure 9.11: The Isabelle representation of the property in Equation 9.4.

To prove this, it is helpful to strengthen the property so it applies to all control flow and
data states. The reason for this is that the model contains many cycles, so we can easily loop
back around to states which we have already visited with a different register state. If we do
not generalise our property, we end up with potentially infinite proof goals, which we obviously
cannot fulfil. To do this, we rephrase the lemma in Figure 9.11 to that in Figure 9.12.
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lemma alw-must-stop-to-open-gen:
assumes 3s 7 p t. j= make-full-observation lift (Some s) rp t
shows alw ((ev (nat ((label-eq ''opendoor’’) aand
(nzt (output-eq [Some (Str ''true’’), Some nl))))) impl
((not (nzt ((label-eq "'opendoor’’) aand
(nat (output-eq [Some (Str "'true’’), Some n]))))) until
(((label-eq ""motorstop’’) or (nwzt (output-eq [Some (Str ''true’’), Some nl)))))) j

Figure 9.12: A generalised version of the property in Figure 9.11.

Recall that the coinduction rule for alw is that the property must hold true in the current
state and globally henceforth. Phrasing proof goals as in Figure 9.12 makes the coinductive step
trivial, as we simply need to prove that we can take a step from any state. Because our EFSM
is implicitly complete, we can easily prove this. This means that we only need to think about
the current situation. That is, we need to prove that the inner predicate holds in every state
for every register configuration. It is helpful to phrase this as the lemma in Figure 9.13.

lemma alw-must-stop-to-open-auz:
assumes 3s 7 p t. j= make-full-observation lift (Some s) rp t
shows ((ev (nat ((label-eq ''opendoor’’) aand
(nat (output-eq [Some(Str ''true’’), Some nl))))) impl
((not (nzt (label-eq ''opendoor’’ aand
(nat (output-eq [Some(Str ''true’’), Some nl))))) until
(((label-eq ""motorstop’’) or (nzt (output-eq [Some(Str '"true’’), Some nl)))))) j

Figure 9.13: The inner predicate of Figure 9.12.

Proving the lemma in Figure 9.13 turns out to be quite an undertaking as we must consider
each state in the model as a separate case. This leaves us with ten subgoals: one for each state
and an extra one for an arbitrary invalid state. While none of these subgoals are particularly
intellectually challenging, the sheer number of them makes the proof both long and tedious.

Having proved that the property in Equation 9.4 holds of the lift controller, we now know
that it is impossible to open the doors while the lift is in motion at any point during its operation.
Because we made the exact floor a free variable, we only need to have proved this once rather
than for each floor. Additionally, because we have proven that the property holds for all control
flow states and register configurations, we needn’t concern ourselves with how either of the sub-
models modifies the data state. If we were to work these models into our EFSM, the property
would still hold since neither of them involves opening the doors.

9.7 Conclusion

This chapter has illustrated how two different techniques, theorem proving and model checking,
can be used to prove LTL properties of EFSM models. The ability to do this is an important
step in the certification of many safety-critical systems, so there is a clear motivation for this.
I have shown how the two techniques can be used to complement each other by presenting a
bidirectional translation between the representations of Isabelle and SAL which is sufficiently
semantically equivalent that we can use SAL to find counterexamples to untrue properties. This
is made easier by the use of an automated tool [138] to convert between the two representations.
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The counterexamples generated by SAL can then be used to improve either the model or the
property until no counterexamples can be found. At this point, we can then convert the model
and the property to Isabelle and use coinduction to prove that the property holds.

While it is impossible to quantitatively evaluate the current approach, it is nonetheless
possible to identify some of its strengths and weaknesses. The major strength of the translation
approach is ease of expression. While my framework of definitions for expressing LTL properties
from Section 9.3 is certainly an aesthetic improvement to the lambda notation, the syntax of
SAL and its ability to quickly find counterexamples to untrue properties make a better tool
for developing models and properties. The ability to automatically translate between SAL and
Isabelle enables us to make use of this without extra effort.

The flip side of this is that the tool can only translate properties involving the predicates in
Section 9.3, so is only able to translate a subset of what can be expressed in Isabelle and SAL
individually. Users cannot make full use of Isabelle’s lambda notation to express functions, nor
can they express properties using SAL’s literal mathematical operators. The check_exp function
allows the use of arbitrary guard expressions, all of which are translatable, meaning that this
should rarely be a problem, but users are still limited both in what they can express and how
they can express it. Further to this, there is currently no translation support for quantifiers
and free variables, which means that we cannot yet translate properties which operate over all
possible values or assert that there exists a value for which a property holds.

Another limitation is that, while it is technically possible to express and prove any LTL
property in Isabelle, the proofs are often extremely long and arduous. The fact that it is diffi-
cult to prove interesting properties of complex models should not be surprising, but expert-level
knowledge of Isabelle is required in order to prove even relatively simple properties. Because
Isabelle’s coinduction package is relatively new, there is much less automation than for standard
inductive proofs. This means that the exact phrasing of auxiliary lemmas is much more impor-
tant to Isabelle’s proof tactics than for standard inductive proofs, and it is often necessary to
explicitly substitute for schematic variables. This is not likely to improve any time soon, but
could be mitigated to an extent by the creation of proof tactics which can be applied to auto-
matically break down proofs into subgoals that are easier to work with. The implementation of
such tactics is left for future work.

It is also worth relating the work presented in this chapter back to Chapter 6. There,
it was mentioned that we can use SAL to check the various properties which imply direct
subsumption. Indeed, the automated translation tool has Java bindings and is able to produce
SAL representations of the intermediate models during inference. As discussed in Chapter 6,
though, for realistically sized models the use of SAL during inference is too slow to be practical.
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Chapter 10

Conclusion

This thesis aimed to advance the field of model inference from traces, specifically the inference
of extended finite state machines. Thus, the thesis aimed to answer the high level research
question “What strategies can we apply to automatically infer extended finite state machine
models from black-box traces?”. The thesis answered this question by addressing the following
main objectives.

e To bring together desirable characteristics from the various existing EFSM definitions in
the literature to form a new definition which is well suited to inference.

e To establish a technique which can be used to determine whether one EFSM transition
can account for the behaviour of another such that they can be merged.

e To establish a state merging technique to infer extended finite state machine models,
including functions to relate inputs and outputs and mutate the data state, from black-
box software execution traces.

e To evaluate this technique with respect to a baseline and the current state of the art.

e To establish techniques to aid the process of the verification of properties of EFSM models
once they have been inferred.

10.1 Summary of the Thesis and its Contributions

In Chapter 1 of this thesis, I set out the above objectives and motivated the work with a simple
example. Chapters 2 and 3 went on to provide the necessary background material which makes
up the foundation of the research presented here.

Chapter 4: Extended Finite State Machines

This chapter presented my novel definition of EFSMs which incorporates the desirable aspects
from various existing definitions into a single model definition. This definition was then for-
malised in Isabelle/HOL to serve as a foundation for the work presented in subsequent chapters.
In addition to this, some key properties of EFSMs were proven to show that the formalised
definition is consistent with the intuition of how EFSMs should behave.

C1: The formulation of a new EFSM definition that combines desirable characteristics from
the literature.

Chapter 5: Formalising EFSM Transition Merging

This chapter introduced contexts as a means of recording the values of registers at various points
during the execution of an EFSM model. It went on to use contexts to define the subsumption
in contert relation as a way to determine whether one EFSM transition can account for the
behaviour of another given a particular register valuation. The direct subsumption relation was
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defined on top of this, to determine whether it is safe to merge a given pair of transitions. These
definitions were formalised in Isabelle/HOL using my EFSM formalisation from Chapter 4 as a
basis and various properties, including reflexivity and transitivity, were proven.

C2: The subsumption in context and direct subsumption relations.

Chapter 6: EFSM Inference from Traces

This chapter presented a state merging technique to infer EFSM models from black-box traces
using the direct subsumption relation from Chapter 5 as a foundation. As part of this technique,
simple heuristics were used to recognise certain data usage patterns and abstract away concrete
values in favour of more general functions to compute output from input. This technique was
implemented as a prototype tool using the Isabelle formalisation from Chapter 4 as a basis.

C3: The use of direct subsumption to formulate a state merging algorithm for EFSM
inference.

Chapter 7: Using Genetic Programming to Infer Computation

The work in this chapter aimed to overcome the limitations of the heuristics used in Chapter 6.
The chapter first introduced the concepts of evolutionary computation and genetic programming
before using these ideas as part of a novel technique to infer functions which relate inputs and
outputs, and recognise when and how registers need to be used. This technique can also be used
to infer guards to distinguish transitions with value-dependent behaviour.

C4: A technique to infer functions which relate inputs, outputs, and registers as well as
transition guards.

Chapter 8: Experimental Evaluation

This chapter carried out an empirical investigation into the performance of my inference tech-
nique in comparison with a baseline approach and the current state of the art.

C5: An empirical evaluation of my inference technique.

Chapter 9: Formal Analysis of EFSM Properties

This chapter was concerned with the verification of models once they have been inferred. The
chapter first introduced the field of formal verification and temporal logics before going on to
discuss how Isabelle/HOL can be used to prove properties of EFSMs specified in LTL. T also
presented my framework of functions designed to make this process easier. Next, I discussed how
we can use SAL to find counterexamples to untrue properties and why this is useful. Finally,
the chapter demonstrated the use of this in the context of three case studies.

C6: A framework to allow model checking and theorem proving to be used in tandem to
prove properties of EFSMs.

242



CHAPTER 10. CONCLUSION

10.2 Limitations

This thesis includes some limitations in both its artefacts and their evaluation. For instance,
the current implementation of EFSMs only supports integer and string values. Floating point
numbers, and more complex datatypes such as lists are not supported. The primary focus is
on numeric operations, with the only supported operations being addition, subtraction, and
multiplication. Division is not supported, as this really needs to be an operation over floats.

The GP preprocessing technique presented in Chapter 7 has limited support for shared
variables. It is only able to succeed in cases where a variable is mutated by at most one action.
Other actions can reset the variable to a constant value, but only certain actions can have a
non-constant update.

The GP is also highly dependent on the values which occur in the traces. The assumption
is made that suitable values for any latent variables appear at some point in the traces. If this
is not the case, the performance of the GP is severely inhibited.

Another limitation the GP preprocessing technique is faced with is the fact that it only
introduces one latent variable per transition, and is not allowed to use external registers as
part of update functions. This means that it is likely to perform poorly for systems with more
complex data dependencies.

The evaluation of my techniques in Chapter 8 is limited in the number of case studies which
could be examined. Since finding suitable systems is extremely difficult, I was only able to
use three case studies in my evaluation. These systems may not adequately represent larger
real-world systems, so the confidence in the results is relatively low.

10.3 Future Work

This section presents several ideas for future work.

10.3.1 Increased Datatype and Operation Support

My current implementation of EFSMs only supports integers and strings. To improve the
applicability of my inference tool, I recommend extending the supported datatypes to at least
incorporate floating-point numbers. Ideally, the supported datatypes would be parametric such
that users could easily create custom datatypes.

The situation is similar for operations over the different datatypes. Currently, the focus is
purely numeric and has only three supported operations. I recommend increasing support to
at least include numeric division and string concatenation. Again, the supported operations
should ideally be parametric so that users can easily define their own.

10.3.2 Inference of Output and Update Functions

The current GP-based approach suffers from several limitations. One direction for future re-
search is to increase support for shared variables, possibly by attempting to “share” existing
registers in the model with the GP before introducing new ones. It is also desirable to take
steps to increase the complexity of systems for which the GP will perform well. Allowing more
than one latent variable to be used as part of output functions and allowing other registers
to influence update functions is highly desirable if it can be performed reliably. Additionally,
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in the conclusions of Chapter 7, I identified co-evolution as a possible strategy to infer output
and update functions at the same time. If this could be implemented successfully, this may be
better able to cope with more complex systems since the ability to infer suitable updates can
then affect the fitness of a given output function.

Another limitation to the current approach is that the literal input guards are dropped on all
transitions, whether or not an output function was successfully inferred. In situations where an
output function could not be inferred, this can be extremely problematic for the inference process
as it increases the potential for nondeterminism to arise during state merging without having
mitigated this by generalising the output behaviour. Consequently, I recommend an alternative
technique where the guards on transitions are only dropped if an output function has successfully
been inferred. This is not as easy as only dropping guards on transitions which do not produce a
literal output value, though. We must distinguish those literal outputs which are representative
of a particular behaviour (i.e. successful generalisations in and of themselves) from those which
have simply been retained from the original PTA because we could not successfully generalise
the behaviour. It is only in the second case where we wish to retain the guard.

b2

An alternative to this approach would be to allow the GP to use “if ... then ... else ...
conditions. This would then allow it to infer functions to generalise subsets of the training set,
if it cannot be generalised in its entirety. The if conditions then afford us a relatively easy way
to retain guard conditions while still generalising as much as possible.

10.3.3 Inference of Guards

The current GP-based approach for the inference of guards suffers from two main limitations.
Firstly, transitions often end up accumulating redundant guards as the inference process pro-
ceeds. Secondly, guards are often inferred with too small a training set, making them too specific
to be generally applicable. As a result of this, I recommend an additional preprocessing tech-
nique be implemented. In this technique, we would form groups of transitions which may be
nondeterministic with each other but can clearly never be merged. For example, transitions
with the same label and arity may be nondeterministic, but we clearly cannot merge transitions
which produce different numbers or types of outputs. We could then attempt to infer guards to
distinguish these groups of transitions. Doing this would give the GP access to larger training
sets and, thus, we would be more likely to end up with more generally applicable guards.

10.3.4 State Merging

My current state merging approach ranks merges based on the number of common outgoing
transitions from pairs of states. As discussed in Chapter 6, this thesis focusses on the ability to
infer the functions on transitions which relate inputs, outputs, and internal variables rather than
on the impact of different scoring metrics. Since the results in Chapter 8 show that, even with
this simple metric, the models my technique infers are often more accurate than those inferred
by MINT [152], I did not feel the need to explore this avenue further here. Nevertheless, there is
still much work which can be done in this area. For example, we could try to lift the Blue-Fringe
algorithm [98] to EFSM models, or make use of data classifiers like MINT [152].
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10.3.5 Deep Learning

As mentioned in Chapter 3, traditional machine learning techniques such as deep learning can
infer very accurate predictive models given sufficient training data. While these models are gen-
erally completely black-box, if the primary application of inferring EFSM models is something
like automated regression testing (where the models do not have to be human readable), there
is no reason not to use these techniques to relate input and output functions. This would likely
require significant changes to the current implementation, which is built with human readable
functions in mind, however, it is certainly an interesting avenue to pursue.

10.3.6 Combining Active and Passive Inference

Another interesting potential research area would be to combine active and passive learning as
mentioned in Chapter 3. That is, we could use passive techniques, like those presented in this
thesis, to come up with an initial model which could be fed to an adaptive learner. Moreover,
because the output of my inference tool depends on both the input traces and a random seed
(if GP is used), we could infer several different models for the adaptive learner to work with.
Assuming the models inferred by my technique could easily be converted to an acceptable format
for an existing adaptive learning tool, this process would likely be relatively straightforward.

10.3.7 Evaluation

Given that it is extremely difficult to evaluate inference techniques, I recommend that several
steps be taken to mitigate this. Firstly, I recommend that a “gold standard” dataset be estab-
lished. This would consist of a large set of programs and associated traces and would enable the
creators of subsequent inference tools to more easily evaluate and compare their approaches.

In the field of classical FSM inference, techniques are often evaluated using traces obtained
by randomly walking through models which have been generated automatically [98, 151]. This
enables an arbitrary number of sample systems to be generated with configurable levels of diffi-
culty. It is much harder to apply a similar approach here since EFSM traces and transitions are
much more complex than their classical counterparts. While approaches do exist for generating
feasible traces from existing EFSM models [92], the area is not well explored and there is no
work in the literature which investigates the generation of random models.

Clearly it is only worth evaluating systems with respect to randomly generated models if
the results obtained by doing this translate to real-world systems. There is currently no work
in the literature, even for classical FSMs, which investigates this. I recommend an in-depth
investigation be carried out into whether inference techniques which perform well for randomly
generated systems perform similarly well when inferring models for real-world programs.

Chapter 8 was very focussed on the use of quantitative metrics to evaluate models, however
the utility of a model is often also based on how easy it is for a person to understand. Conse-
quently, I recommend that a human study be carried out to investigate this. Possible research
topics could involve whether EFSMs are easier to understand than their classical counterparts,
and how the inference of guards and output and update functions affect understandability.
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10.4 Concluding Remarks

Models which accurately reflect the behaviour of software systems are extremely valuable for a
number of software engineering tasks. Despite their value, they are often neglected during the
development process. It is therefore desirable to be able to reverse engineer them from existing
systems. There are various tools and techniques which support this, however, most are only
able to infer classical FSM models with atomic transitions. These models show the control flow
of systems, but do not give a picture of how the systems work with data. For this, we need an
EFSM model. The field of EFSM modelling is much less well-established than that of classical
FSMs. Consequently, the first contribution of this thesis is the definition (and formalisation in
Isabelle/HOL) of a new EFSM definition which brings together desirable characteristics from a
number of existing EFSM definitions.

The majority of modern inference techniques involve some kind of state merging. As part
of this, it is also necessary to merge transitions which account for each other’s behaviour. The
second contribution of this thesis is a relation called direct subsumption which is used to identify
when it is safe to merge EFSM transitions. The third contribution involved using this relation as
the basis for a state merging technique to infer EFSM models, complete with output and update
functions, from black-box execution traces. As part of this, the fourth contribution of this thesis
was a generally applicable approach to infer the output and update functions for transitions.
The final contribution of the thesis was a framework to support the verification of models once
they have been inferred. The EFSM formalisation in Isabelle was extended to support the
specification and proof of properties phrased using LTL, and a parallel representation for the
model checker SAL was proposed such that counterexamples to untrue properties can easily
be found. Overall, the work presented in this thesis makes up an effective set of tools for the
inference and verification of EFSM models.
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Appendix A
Tool Use

Figure A.1 is an example of how the inference tool is called. After compiling the code with
sbt, the resulting jar file can then be called with the java -jar command, passing in the
relevant options. Here, the —s naive_eg bonus option represents the scoring function used to
determine whether states are compatible for merging. The naive_eg bonus scoring function
is as described in Subsection 6.2.2. The —p gp argument indicates that the GP preproces-
sor, as described in Chapter 7 is to be used. The -h ws,distinguish argument indicates
that the heuristics to be used at merge time are weak subsumption as described in Subsec-
tion 6.4.3 and distinguishing guards as described in Section 7.6. The —g, —o, and —u options
allow the user to supply random seeds for the distinguishing guards heuristic, output GP, and up-
date GP, respectively. Finally, the two arguments sample-traces/drinks30-train. json
and sample-traces/drinks30-test. json are the files containing the training and test
logs. The model will be inferred using the traces in sample-traces/drinks—train. json
and then evaluated according to the traces in sample-traces/drinks—-test. json. These
traces are all in JSON format as exemplified below.

[

{"label":"select", "inputs":["coke"], "outputs":[1},
{"label":"coin", "inputs":[50], "outputs":[50]},
{"label":"coin", "inputs":[50], "outputs":[100]},
{"label":"vend", "inputs":[], "outputs":["coke"]}

{"label":"select", "inputs":["coke"], "outputs":[1},
{"label":"coin", "inputs":[100], "outputs":[100]},
{"label":"vend", "inputs":[], "outputs":["coke"]}

{"label":"select", "inputs": ["pepsi"], "outputs":[1},
{"label":"coin", "inputs":[50], "outputs":[50]},
{"label":"coin", "inputs":[50], "outputs":[100]},
{"label":"vend", "inputs":[], "outputs": ["pepsi"]}

As it runs, the inference tool prints output to both the terminal window and to a separate
log file. It first outputs the fact that it is building a PTA from the training traces. Once the
PTA is built, the tool outputs the number of states and transitions it has. The next stage is
to run the preprocessor, in this case GP. For each group of transitions with label 1label, the
tool outputs Getting output for label, whether or not a latent variable is being used,
the training set, the best output function, and whether it is correct. In the case where latent
variables are used, the preprocessor must also search for update functions. The printed output
here is very similar to that for the output functions. Finally, the preprocessor outputs how many
states and transitions the resolved PTA has, and how long it took to run.
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Figure A.1: Calling the inference tool for the drinks machine.

Having run the preprocessor, state merging can begin. For each iteration, the tool outputs
s —> s’ where s is the number of states before the merge took place, and s’ is the number
of states after merging and resolving nondeterminism. When no more merges can take place,
the tool outputs Completed in xh ym zs, where x, y, and z are the hours, minutes, and
seconds respectively. The number of states and transitions in the final model are also printed.
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As well as the logfile, the inference tool also produces a DOT [69] representation of the
inferred model like the one shown below. This textual representation of the model can be
compiled to various graphical formats including png, jpg, and svg. It can also be translated to
either Isabelle or SAL by the tool mentioned in Chapter 9. The inference tool also produces
DOT files of the PTA before and after preprocessing and after each successful merge, so we have
a step-by-step reconstruction of the inference process.

digraph EFSM{
sO[fillcolor="gray", label=<s0>];
sl[label=<sl>];
sd4[label=<s4>];

sO0->sl[label=<select:1/[rl:=0, r2:=10>];
sl->sl[label=<coin:1/01:=10 4+ rl[rl:=rl + 10>];
sl->s4[label=<vend:0/0l:=r2>];

The final outputs of the inference tool are records of how well both the PTA and inferred
model performed with respect to the test set. These take the form of JSON files very similar to
the input traces, except that the expected and actual outputs are recorded separately, as well
as the current state of the model and the ID of the transition taken in response to each action.
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Appendix B
Lift Doors EFSM

sifully Closed:0/o, = 0

ity Open:0/o; = ryfry i= 1+ -1 x rg]

timeout:0/o; lbuttontnterrupted:0/o, := 3

closingDoor:0/0 = 1

lbuttonuterrupted:0/o,

losingDoor:0/0, := 3 lrequestOpen:0/o; := 10

felosingDoor:0/o, := 2

losingDoor:0/o; = 3

closingDoor:0/o; := 1

lelosingDoor:0/0; := 0

lopeningDoor:0/o; = 3 ily Closed:0/0,

buttontnterrupted:0/o; = FNgequestOpen:0/o; = 10

openingDoor:0/o; = 2 lopeningDoor:0/o; := 9

openingDoor:0/o, = 8

lopeningDoor:0/o; = 6

lopeningDoor:0/o; := 5

openingDoor:0/0, := 4

Figure B.1: A model of the LIFTDOORS system inferred by my tool from traces
with the timer variable obfuscated.
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