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Abstract

The coronavirus (COVID-19) has greatly accelerated the demand and highlight

the importance of developing high-speed networks. Due to the bandwidth short-

age in microwave band, millimeter wave (mmWave) communication attracts sig-

nificant attention to support future high-speed communication. Although mmWave

frequency spectrum offers orders of magnitude greater spectrum, this spectrum

suffers much greater attenuation compared to conventional cellular bands because

of penetration losses, reflection and signal atmosphere.

To overcome the high propagation lose in the mmWave band, large number of

antennas can be adopted at both transmitter and receiver to provide large beam-

forming gains. Thanks to the short wavelength of mmWave signals, large arrays

can be packed in to a small area. However, the large number of antennas makes

fully digital beamforming unpractical considering the huge power consumption

caused by devices operating at radio frequency (RF). To reduce the hardware

costs and power consumptions, constrained architectures have been proposed. By

connecting each RF chain to multiple antennas with phase shifts, hybrid archi-

tecture is able to reduce the hardware cost and power consumption with reduced

number of RF chains. However, because of the constrained architecture and the

large number of antennas, it is difficult to obtain the channel state information

(CSI) which is of great importance for obtaining desirable beamforming gains. In

this thesis, we investigate the channel estimation problem for mmWave massive

multiple-input and multiple-output (MIMO) systems with hybrid architecture.

Novel channel estimation algorithms with high accuracy and acceptable com-

plexity are proposed.

Firstly, we aim to propose a mitigation method for off-grid errors in mmWave

massive MIMO systems, because the off-grid errors deteriorate the performance

of channel estimation significantly at high signal-to-noise ratios (SNRs). An ef-

ficient off-grid error mitigation method utilizing interior-point (IP) method with

orthogonal matching pursuit (OMP) method is proposed. The performance can be

improved with slightly increased complexity. Secondly, we aim to further improve
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the accuracy of channel estimation at low SNRs considering large noise. We pro-

pose to use Bayesian matching pursuit method with different virtual sparsity and

appropriate assumptions according to the characteristics of the mmWave channel.

By selecting a set of candidate support patterns with high posterior probabilities,

accuracy of channel estimation can be improved with less complexity compared

with other Bayesian based methods. Thirdly, we jointly consider the noise impact

and the off-grid error impact. An efficient Bayesian based method with off-grid

mitigation method is proposed. We show that this proposed method is able to

overcome the impact of large noise and off-grid error together and achieve superior

performance of channel estimation at all SNRs with reasonable complexity.

Finally, we investigate an important characteristic that mmWave channels

spread in the form of clusters of paths in the angular domains. The spread is

used to formulate the channel estimation as a block sparse signal recovery prob-

lem. Then we propose a block Bayesian matching pursuit method to improve

the performance of channel estimation. We show that making use of the angu-

lar spread of the path clusters in the angle of arrival (AoA) domain noticeably

improves the accuracy of channel estimation with less computational complexity

compared with other Bayesian based methods.
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Chapter 1

Introduction

1.1 The Global Bandwidth Shortage and The

Millimeter Wave Bandwidth Abundance

We are living in unprecedented times. Directly or indirectly, coronavirus disease

2019 (COVID-19) has affected everyone around the world. During the pandemic,

millions of people are required to work from home and keep distance with others.

E-commerce, video on demand, telemedicine, distance education all have seen

significant and even extreme increases in focus because of COVID-19. Even after

the pandemic, social distance and home working are likely to become the ‘new

normals’. The virtualization of every aspect of life has placed significant demands

on infrastructure. In particular, not only connectivity, but also high speed data

rate are critical for communication systems in the future.

In the June 2020 edition of the “Ericsson Mobility Report” [6], the last decade

has witnessed an unprecedented growth in mobile traffic. Because smart devices

become increasingly powerful and ubiquitous, it is predicted that total internet

traffic from PCs will drop from 41% in 2018 to 19% by 2022. Smartphones will

account for 44% of total Internet traffic by 2022, up from 18% in 2017. In par-

ticular, around 410 million additional smartphone users are expected in India by

2025. Having seen the enormous growth in traffic per smartphone, the adoption

of immersive consumer services using virtual reality (VR) and augmented reality

(AR) is expected to lead to an even higher growth rate in long term. The global

average monthly traffic per smartphone is expected to increase from 5.8−24 gi-

gabyte (GB) per month. Figure. 1.1 shows a recent global mobile traffic growth.

The Mobile traffic is expected to reach 164 exabyte (EB) per month in 2025. To

meet such dramatically growing demand of cellular data, tremendous increase of

network capacity has to be in place.
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Figure 1.1: Global mobile network data traffic and year-on-year growth (EB per

month).

According to Shannon capacity, the max data rate can be achieved is given

by [7]

C = B log2

(
1 +

Pr
σNB

)
> R

≈ W × n× log2 (1 + SNR) .

(1.1)

where C denotes the channel capacity in bit-per-second, B denotes the channel

bandwidth, Pr denotes received signal power, σN denotes power spectral density

of noise at receiver, and R denotes the achievable rate in practice. In the ap-

proximation equation, W denotes the radio frequency spectrum utilized by the

network, n denotes the number of antennas on uncorrelated signal paths, and

SNR denotes the received signal-to-noise ratio on the communication channel.

Based on the Shannon capacity, perhaps one of the most obvious approaches to

increasing a system’s capacity is to increase the channel bandwidth, namely W in

(1.1). Nowadays, there is a total around 700 megahertz (MHz) spectrum available

for the third Generation (3G) and the fourth Generation (4G) networks operated

by national and local cellular carriers. But this existing microwave spectrum has

been extensively used and is becoming increasingly congested, i.e. 50% of 4G cell

sites in the US will run out of capacity by 2020 [6]. The lack of available bandwidth

has resulted in fierce competition for spectrum licensing, leading to high costs for

the network operators to obtain exclusive rights [8]. For this reason, obtaining
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1.1 The Global Bandwidth Shortage and The Millimeter Wave
Bandwidth Abundance

additional bandwidth in the microwave band is no longer a feasible solution to

further increase capacities for the future communication systems.

Fortunately, the ‘global bandwidth shortage’ is only for the existing ‘desir-

able’ bandwidth for long distance communication. This desirable frequency range

is known as the “microwave spectrum” and is typically considered to comprise

electromagnetic frequencies below 6 gigahertz (GHz). Almost all commercial radio

communications including amplitude modulation (AM) / frequency modulation

(FM) radio, high-definition TV, cellular, satellite communication, global posi-

tioning system (GPS), and Wireless Fidelity (Wi-Fi) use radio frequency (RF)

spectrum from 300 MHz to 3 GHz because of its favourable propagation charac-

teristics for commercial wireless applications. The mobile systems have to move

away from this spectrum and seek out higher available bandwidth allocations for

future communication. As a result, significant interest has grown for the spectrum

between 30−300GHz which are considered as mmWave bandwidth.

In the fifith Generation (5G) communication, data rate is improved by making

use of mmWave bandwidth and several symbiotic technological directions are

independently emerging by tacking the components of Shannon’s Law [9].

• More spectrum (W): millimeter wave (mmWave) is the radio frequency

wave in the frequency range of 30−300GHz with wavelength between 1−10

millimeters. In the 5G context, millimeter waves refer to frequencies between

24−71GHz.

• More antennas (n): massive multiple-input multiple-output (MIMO) is an

extension of MIMO which expands beyond the legacy systems by adding a

much higher number of antennas on the base station. The ‘massive’ number

of antennas helps achieving large beamforming gain, which brings drastic

improvements in throughput and efficiency.

• Shorter propagation distance: small cell. Considering the same transmis-

sion power and environment, SNR is inversely proportional to propagation

distance. Small cells [10] are low-powered cellular radio access nodes that

operate in licensed and unlicensed spectrum that have a range of 10 me-

ters to a few kilometers. Small cells are currently viewed as a solution to

allow re-using the same frequencies and as an important method of increas-

ing cellular network capacity, quality and resilience. Increasing the small

cells density increases capacity and spectral efficiency of served users at the

expense of increasing the cost of interference management [11].
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Individually, compared to the current broadband systems, each of these tech-

nological directions offers an order of magnitude increase in wireless capacity.

In combination with one another, they can achieve thousand-fold increase in

capacity that will be needed in the future. An encouraging factor is the rela-

tionship between these three directions. Smaller cell sizes are attractive to the

mmWave spectral band because of the increased path loss at higher frequencies.

Massive MIMO provides large beamforming gains which can extend coverage to

longer ranges to guarantee the quality of communications in ’small cells’. And the

shorter wavelength in mmWave is appealing to massive MIMO transceiver designs

because of the reduced antenna size. The relationship between these symbiotic

technological directions is illustrated as Figure. 1.2, showing the great potential

of the mmWave cellular systems.

Figure 1.2: Relationship between mmWave, massive MIMO and small cells.

1.2 Beamforming and Hybrid architecture: The

Enabler of Millimeter Waves

How to provide high directional antenna gains for mmWave communication?

The most widely accepted answer is to use multi antenna arrays to generate

desirable beamforming gains. The path loss between two isotropic antennas (or

half-wavelength dipoles) is inversely proportional to the square of the carrier fre-

quency. This simply means the size of an antenna can be smaller and capture less

passing electromagnetic energy when it is designed for higher frequency signals.

Fortunately, considering the use of multiple antenna elements, the smaller size

of antennas allows that greater numbers of antenna elements to be placed into

a small space [8]. It has been proved that the mmWave signals employing multi
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1.2 Beamforming and Hybrid architecture: The Enabler of Millimeter
Waves

antenna arrays have no inherent free space propagation disadvantage as existing

in the microwave signals employing multi arrays in the same total area [1]. As a

result, the mmWave array is able and suitable to apply advanced massive MIMO

technologies such as ‘beamforming’ to achieve desirable directional antenna gains.

Beamforming is defined as a signal processing technique used in multi-antenna

systems to create directional signal transmission or reception. When an antenna

array is utilized for wireless communication, signals radiating from each antenna

add constructively in some directions and destructively in others, thereby creating

a radiation pattern similar to directional antennas [12]. If the spacing between

antenna elements is half of the carrier wavelength, the result is a strong narrow

“beam” that can be electronically steered in specific direction. In addition to the

large directivity gains, beamforming is able to reduce interference in small cell

networks by minimizing interfering signals from undesirable directions [13].

Specifically, there are three beamforming architectures proposed based on the

number of RF chains used, and their pros and cons are as follows

• Digital beamforming: it employs separate RF chains and analog to digital

converters (ADCs) for all antenna elements. Therefore, the processing is

fully in the digital domain allowing infinite directions of beamforming. But

this architecture has the highest power consumption compared to the other

two architectures with reduced number of RF chains, thus, limiting the

practical usage.

• Analog beamforming: it is only allowed to use one RF chain for all antenna

elements. Multiple antenna elements are connected via phase shifters or

switches to a single RF chain so that the processing is performed in the

analog domain [14]. The one RF chain architecture consumes less power

compared to the other two architectures. However, transmission or reception

is possible only in one direction at one time slot. This means that it is

not possible to realize multi-stream or multiuser benefits associated with

MIMO.

• Hybrid beamforming: a hybrid MIMO architecture consisting of an analog

beamformer in radio frequency domain cascaded with a digital MIMO pro-

cessor in baseband is a compromise. Multiply antennas are possible to share

one or multiply RF chains in a hybrid MIMO architecture [15]. As a result,

beamforming directions are limited but flexible than analog beamforming

and it has lower power consumption compared to the digital beamforming.

It is more desirable in practical applications to utilize beamforming with
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hybrid architecture to overcome the high propagation loss with acceptable

power consumption.

1.3 Channel Estimation Challenges and Research

Problems

As in conventional microwave MIMO systems, accurate channel state information

(CSI) is needed so that the transceiver can design efficient hybrid MIMO pro-

cessors and guarantee accurate recovery of the transmitted signal [3]. Although

channel estimation for microwave systems have been well studied for many years,

channel estimation for mmWave is different.

First, the high propagation losses inherent in mmWave frequency results in

the most challenging problem that any pilot signals are received at low received

SNRs. Proper beamforming is necessary to increase SNR during channel estima-

tion. However, the large antenna size for beamforming makes the size of chan-

nel matrix grows exponentially. The conventional channel modeling for massive

MIMO will lead to unacceptable computational complexity. Instead of estimating

all the entries of the channel matrix, only the angle-of-departure/angle-of-arrival

(AoD/AoA) of dominant paths and the corresponding path gains are estimated.

This channel modeling requires special designed sparse recovery methods.

In addition to channel modeling, in order to provide proper beamforming, a

large number of training beams need to be used to scan the mmWave channel.

Considering the transmit power, narrow beam is commonly used for scanning and

results in significant training time duration. Algorithms utilizing characteristics

of mmWave channels are necessary to reduce the number of training beams.

The huge power consumption as a result of RF chains is another challenge.

Conventional fully digital communication is required to equip every antenna with

its own digital RF chain which contains many devices such as the power am-

plifier (PA) and ADC. These devices are power hungry especially at mmWave

frequency and incur unacceptable energy consumption. As a result, highly con-

strained hardware such as hybrid architecture or analog architecture are com-

monly used in practical mmWave communication to reduce both hardware cost

and power consumption. However, this hardware reduction results in an inability

to use multiple transmit/receive beam directions in any given time slot, and in

many cases, the number of possible directions is also limited by quantized phase

shifters or switches [3]. As a consequence, estimating CSI in mmWave systems is

extremely difficult.
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1.3 Channel Estimation Challenges and Research Problems

1.3.1 Literature Review

Many research have been done to solve the challenges in mmWave channel es-

timation in recent years. Leveraging channel sparsity is probably unavoidable

and mmWave channels are sparse in both time and angular dimensions [16], [17].

The channels of mmWave communications are sparse in the sense that impulse

responses are dominated by a small number of clusters of significant paths.By

exploiting the virtual channel representation model [18], instead of estimating all

the entries in the channel matrix, only the AOD, AOA of dominant paths and the

corresponding path gains are estimated. Then compressive sensing (CS) methods

are widely applied to obtain CSI from a small set of RF measurements with less

beam training time and reduced computational complexity [3].

Some closed-loop beam scanning techniques were proposed recently [19], [20].

Closed-loop techniques perform coarse channel estimation by beam training as

introduced in [21]. These methods can avoid an exhaustive beam search and sig-

nificantly reduce the complexity by well designed processes. However, the perfor-

mance of the close-loop method tends to be limited by the beamforming dictionary

(codebook) and the scanning techniques are impractical for outdoor environment

where the communication needs larger beamforming gain, which is difficult to

achieve for wide searching beams at initial stages with limited transmitted power.

An alternative approach is to use open-loop channel estimator which applies

fixed width of training beam and does not need as much feedback from receiver as

in the the close-loop methods [22]. Open-loop techniques perform explicit chan-

nel estimation: the transmitter emits pilot vectors for channel estimation, and the

receiver estimates the channel from the received pilot signals. In [22], the orthogo-

nal matching pursuit (OMP) algorithm was used to solve the sparse signal recov-

ery problem. After that, many modified algorithms for open-loop estimator are

proposed such as diagonal-search orthogonal matching pursuit (DS-OMP) [23],

parameter perturbed orthogonal matching pursuit (PPOMP) [24] and interior

point aided orthogonal matching pursuit (IP-OMP) [25]. But the performances

of these non-Bayesian based methods are greatly affected by large noise.

In order to further improve the open-loop channel estimation accuracy by de-

creasing the noise impact, Bayesian based CS methods such as sparse Bayesian

learning (SBL) [26] and fast Bayesian matching pursuit (FBMP) [27] have been

proposed in mmWave channel estimation. SBL is a learning method. It is tolerant

to noise and doesn’t need sparsity information, but the learning process induces

huge time complexity. FBMP is another Bayesian based method. It makes ap-

propriate assumptions of noise variance and non-zero element variance according
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to the characteristics of mmWave channel to avoid learning process and achieve

desirable performance simultaneously.

In addition to the estimation errors caused by noise, off-grid error is another

challenge for mmWave channel estimation. In the virtual channel representation

model, continuous angles are discretized based on predetermined angular grid.

The grid-error is the error results from quantification. Many research focus on off-

grid error mitigation for both non-Bayesian based methods and Bayesian based

methods. For instance, [24], [25] are proposed for OMP method and [28], [29] are

proposed for the SBL method.

Except for the noise and off-grid error, characteristics of mmWave channel

are further studied. For example, different delay taps of the wideband channel

may share the same AoD/AoAs. This characteristic is utilized in [30] to reduce

the training overhead. In [31], clustering block sparse Bayesian learning (CBSBL)

algorithm for mmWave channel estimation is proposed. It exploits the correlation

between the mmWave channel. Recently, angular spread in mmWave communica-

tion is revealed by real-world measurements in dense-urban propagation environ-

ment [8], [32]. Thus, the structurally limited scattering channel model has been

adopted in the literature [33] [5] and [34]. In [33], a two-stage compressed sensing

scheme was proposed and it was shown that the proposed scheme achieves a lower

sample complexity than conventional compressed sensing methods which does

not exploit the angular spread of mmWave channels. [5] essentially couples the

channel path power at one angular direction with its two-dimensional AoD-AoA

neighboring directions and adopts coupled sparse Bayesian learning to estimate

the CSI. [34] addresses the channel estimation problem within a Bayesian frame-

work. Specically, [34] adopts a matrix factorization formulation and translate the

problem of channel estimation into searching for two-factor matrices. Then a mod-

ified Bayesian inference method is proposed for the mmWave channel estimation.

However, both [5] and [34] are based on Bayesian learning method which adopt

expectation-maximization (EM) algorithm to estimate the hyperparameters with

huge computations.

There are still many open problems. For example, efficient off-grid mitiga-

tion methods for both non-Bayesian based CS methods and Bayesian based CS

methods are necessary. Also, it is challenging to improve the channel estimation

accuracy in low SNR scenarios. And more specific characteristics of mmWave

channel can be utilized to further improve the channel estimation accuracy or

decrease the computational load [3].
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1.4 Original Contributions

1.3.2 Research Problems

In this thesis, we focus on channel estimation problem for mmWave massive

MIMO communication with hybrid architecture. We aim to design channel esti-

mation methods based on mmWave characteristics and improve the accuracy of

channel estimation with reasonable complexity. The principle research problems

are elaborated as follows.

• The first research problem (Chapter 3) that we consider in this thesis is the

off-grid error problem of non-Bayesian based open-loop channel estimation

method (OMP) in mmWave massive MIMO systems. Off-grid errors deteri-

orate the performance of channel estimation significantly at high SNRs. We

aim to achieve more accurate channel estimation at lower cost of complexity.

• The second research problem (Chapter 4), we turn our attention to noise

impact. Although a number of Bayesian based methods have been proposed

for mmWave channel estimation to improve the support estimation with

large noise, their learning processes lead to unacceptable computational

load. We aim to find out more accurate locations of the non-zero elements

in channel matrix with significant decreased complexity.

• The third research problem in this thesis (Chapter 5) considers off-grid error

impact and noise impact together. Motivated by the results in Chapter 3

and Chapter 4, we aim to develop a Bayesian based estimation strategy

with specific off-grid mitigation method.

• The fourth research problem (Chapter 6) is to further reduce the training

complexity and improve the accuracy of channel estimation by exploiting

more characteristics of mmWave channel. By investigating an important

characteristic called angular spread, we aims to achieve superior accuracy

of channel estimation with even less computational complexity.

1.4 Original Contributions

The original contributions are outlined as follows.

• After evaluating the impact of off-grid angle errors in mmWave channel es-

timation through simulation, IP-OMP algorithm is proposed to reduce the

off-grid error by adjusting the grid points based on the interior point opti-

mization. In this way, the achievable best performance of channel estimation

is much better than that of the OMP with increased grid number.
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• A Bayesian matching pursuit based method is proposed. We make appro-

priate assumptions according to the characteristics of mmWave channel to

avoid unacceptable training complexity caused by learning methods. We

also select a set of candidate support patterns with high posterior prob-

abilities to decrease the impact of noise and improve the performance of

channel estimation.

• Motivated by the results in Chapter 3 and Chapter 4, we develop a Bayesian

based estimation strategy called off-grid improved Bayesian matching pur-

suit (OG-IBMP) with specific off-grid mitigation method. It overcomes the

disadvantages of the methods proposed in Chapter 3 and Chapter 4. The

proposed OG-IBMP is the first off-grid mitigation method for BMP algo-

rithms with detailed theoretical analysis. It further improves the channel

estimation performance at all SNRs. In addition, the OG-IBMP does not

require sparsity information and it is robust at high SNRs which cannot be

achieved by FBMP.

• Finally, we utilize an important characteristic of mmWave communication,

the angular spread. Exploiting the sparsity in angular domain and mak-

ing use of the angular spread of path clusters in the AoA domain enables

superior accuracy of channel estimation with less computational complex-

ity. We derive the AoA angular spreads as blocks in channel matrix di-

rectly and utilize the block sparsity by formulating the channel estima-

tion to a block signal recovery problem. Block orthogonal matching pursuit

(BOMP) algorithm is applied to validate our channel estimation formula-

tion. Then we utilize this block property in the Bayesian matching pur-

suit based mmWave channel estimation and proposed the block Bayesian

matching pursuit (BBMP) method which produces superior performance

compared with existing methods including BOMP.

1.5 Thesis Outline

Throughout this thesis, we focus on the channel estimation problem in mmWave

systems aiming at achieving superior channel estimation performance with ac-

ceptable complexity.

Following this theme, in Chapter 2, we begin by introducing some funda-

mentals of mmWave channel estimation including the characteristics of mmWave

channel, mmWave channel models and hardware constraints. In Chapter 3, to

improve the accuracy of channel estimation, we develop an off-grid mitigation
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Chapter 2

The fundamentals of mmWave

Channel Estimation

2.1 Characteristics of mmWave Communication

As introduced in Chapter 1, mmWave broadband makes a possible 100 GHz new

spectrum for mobile communication. It is 200 times spectrum which is currently

allocated for this purpose. Because of the very small wavelength compared to

the size of most of the objects in the environment, propagation at mmWave is

unique. Understanding the characteristics of mmWave channel is fundamental to

developing signal processing algorithms for mmWave transmitters and receivers.

2.1.1 mmWave Bandwidth Abundance

There are 252 GHz within the 3-300 GHz spectrum which can potentially be

suitable for mobile broadband as shown in Figure. 2.1. Because oxygen molecule

(O2) absorbs electromagnetic energy at around 60 GHz, the frequencies in the

57−64 GHz can experience attenuation of about 15 dB/km. The interference

between different terminals can be avoided completely. It is only suitable for

short distance (< 1km) communication. The absorption rate by water vapor

(H2O) can be up to tens of dBs in the range of 164−200 GHz [1]. These bands for

mobile broadband applications will be limited. With a reasonable assumption,

40 percent of the remaining spectrum are available for mobile communication.

mmWave mobile broadband makes a possible 100 GHz new spectrum for mobile

communication.

Some research has focused on path loss models for longer range outdoor links

of mmWave picocellular networks recently including measurements in New York

City [35]. A result of these studies for distances of up to 200m with a low power
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Figure 2.1: Waveband for 3GHz to 300GHz [1].

base station is that, the distance-based path loss in mmWave links is not worse

than that in the conventional cellular frequencies after being compensated by the

additional beamforming gain. It was these findings that suggested the mmWave

bands may be suitable for small cells. As a result, people showed more interest

in mmWave cellular systems. At the same time, the results also showed that,

directional antenna gains would be crucial for employing mmWave frequencies in

cellular networks.

2.1.2 Distance-Based Path Loss

One of the most important characteristics of mmWave is the high propagation

loss. It prevents the usage of mmWave bandwidth on mobile communication. For

free-space propagation, the transmit power, Pt, and far field receive power, Pr,

are related by Friis’ Law [36],

Pr = GrGt

(
λ

4πdt

)2

Pt, (2.1)

where dt is the transmitter-receiver separation distance, λ is the wavelength and

Gt and Gr are the transmit and receive antenna gains. Friis’ Law implies that in

the absence of directional antenna gains, mmWave propagation will experience a

higher path loss compared to conventional lower frequencies. Fortunately, for a

given physical antenna aperture, the maximum directional gains generally scale

as Gr, Gt ∝ λ−2 , because more antenna elements can be installed in the same

physical area.
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2.1 Characteristics of mmWave Communication

2.1.3 Blocking and Outage

The distance-based path loss of mmWave frequencies can be compensated by

directional transmission. However, another most challenging issue in mmWave

communication is heavy penetration losses through many common materials. Ma-

terials such as brick can attenuate mmWave signals by as much as 40 to 80 dB [1],

and the human body itself can result in a 20 to 35 dB loss [37]. Foliage loss can

also be significant [38]. As shown in Table 2.1 [1], many building materials attenu-

ate millimeter wave signals significantly and thus it is difficult to provide coverage

to the inside of buildings as microwave communication does. To complement such

a network, indoor coverage can be provided by indoor millimeter wave femtocells,

or Wi-Fi solutions [1].

Table 2.1: Attenuations for different materials and frequencies [1]

Some research has focused on path loss models for longer range outdoor links

of mmWave picocellular networks recently. A surprising result of these studies

for distances of up to several hundreds meters [8] with a low power base station

is that, the distance-based path loss in mmWave links is not worse than that in

the conventional cellular frequencies after being compensated by the additional

beamforming gain. The human body (depending on the material of the cloth-

ing) and most building materials are reflective. This allows them to be important

15



scatterers to enable coverage via non-line-of-sight (NLOS) paths for cellular sys-

tems [39]. This is good because diffraction (a primary means of coverage in sub

6 GHz systems ) is not significant at mmWave frequencies. Specially, the mea-

surements in New York City [8] confirm that the coverage is possible up to 200m

from a potential cell site. It was these findings that suggested the mmWave bands

may be suitable for small cells and directional antenna gains would be crucial for

employing mmWave frequencies in cellular networks.

Considering the blocking and outage, a two-state model (line-of-sight (LOS)

and NLOS) or a three state model (LOS, NLOS, and signal outage) is used

to quantify the effect of blocking. The probability of a link in each state is a

function of distance. Statistical models for these three state model in New York

City measurements [8] are similar with some LOS-NLOS probabilities used in 3rd

generation partnership project (3GPP) LOS-NLOS for heterogeneous networks.

Blocking models can also be designed from random shape theory [40] or from

geographic information [41]. Using such models, it is possible to evaluate the

coverage and capacity in mmWave cellular networks. A major outstanding issue

is characterizing the joint probabilities in outage between links from different

cells.

2.2 Multi-antenna Systems and Models

2.2.1 The Uniform Linear Array

Because of the high propagation loss, MIMO system is necessary for mmWave

communication. Considering a MIMO system with NT element uniform linear

array (ULA) at the transmitter, ULA is one of the most widely adopted array

models. As shown in Figure. 2.2, the 2-dimension (2D) geometric model for the

transmitter consists NT antenna elements, with uniform spacing d such that the

nth antenna element’s position along the x-axis can be expressed as d(n− 1). We

assume signal s1 received on ULA from angle θ1, θ1 ∈ [0, π]. It is also assumed

that the array is in the far field of any of the sources such that the impinging

signals are planar. Note that a wave arriving at the nth antenna travels d cos θ1

more meters compared to the distance traveled to reach the (n − 1)th antenna,

where d is the distance between each antenna. This makes signals at contiguous

antennas have time delay of d cos θ1/c and a phase delay of fcd cos θ1/c where c is

the propagation speed in meters per second and fc is the carrier frequency of the

signal. If we reference the antenna phases with respect to the first antenna, we
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2.2 Multi-antenna Systems and Models

can then describe the signal received by each antenna through a NT -long vector

as (2.2).

Figure 2.2: Array response for ULA.

x(t) =


x1(t)
x2(t)

.

.

.
xNT (t)

 =


s1(t)

s1(t− d
λ

cos θ1)
.
.
.

s1(t− (NT − 1) d
λ

cos θ1)

 ≈


1

e−j2πfc
d
λ

cos θ1

.

.

.

e−j2πfc(NT−1) d
λ

cos θ1

 s1t = a(θ1)s1(t),

(2.2)

a(θ1) = [1, e−j2π
d
λ

cos θ1, e−j4π
d
λ

cos θ1 , ..., e−j2π(NT−1) d
λ

cos θ1 ]T , (2.3)

where the approximation is called narrowband array approximation [42] and λ

denotes the wavelength of operation. This shows that a small time delay can

be accurately modeled as a simple phase shift if the delay is small relative to

the inverse bandwidth of the signal. For an N-element ULA, dropping the sub-

script/superscript, the array response of an ULA is represented as

a(θ) = [1, e−j2πϑ, e−j4πϑ, ..., e−j2πϑ(N−1)]T . (2.4)

The vector a(θ) is called the array steering vector. It describes a mapping between

AoDs/AoAs and array response. The normalized spatial angle ϑ is related to the
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physical angle θ as ϑ = d
λ

cos θ = α cos θ and α is the normalized antenna spacing,

N = NT when aT (θT ) represents the array weights needed to transmit a beam

focussed in direction θT , N = NR when aR(θR) represents the signal response at

the receiver array due to a point source in direction θR.

2.2.2 The Geometric MIMO Channel Model

In three-dimensional channel models which are critical for mmWave arrays, the

steering vectors are functions a(θ, φ) = aaz(θ) ⊗ ael(φ) of both the vertical (az-

imuth) angle θ and elevation angle φ. Given the steering vectors, the MIMO

channel can be described by a multi-path model [2] of the form

y(t) =
L∑
`=1

α`e
j2πν`taR(θR,`, φR,`)a

H
T (θT,`, φT,`)x(t− τ`) + n(t), (2.5)

where x(t) is the transmitted signal vector, y(t) is the received signal vector,

n(t) is the noise vector, and L is the number of paths. Each path is described

by five parameters: its angle of arrival pair (θR,`, φR,`), angle of departure pair

(θT,`, φT,`), delay τ`, complex gain α` and Doppler shift ν`. The Doppler shift

is determined by the angle of arrival or departure relative to the motion of the

receiver or transmitter. It is often useful to represent the channel in the frequency

domain. In general, the channel response is time-varying

H(t, f) =
L∑
`=1

α`e
j2π(ν`t−τ`f)aR(θR,`, φR,`)a

H
T (θT,`, φT,`). (2.6)

Suppose that the channel is sufficiently slow varying over the signal duration of

interest T , that is, the Doppler shifts of all the paths are small, ν`T � 1, (∀`, ` =

1, ..., L). Then, (2.6) can approximately be expressed as

H(f) =
L∑
`=1

α`e
−j2πτ`faR(θR,`, φR,`)a

H
T (θT,`, φT,`). (2.7)

If in addition, the bandwidth of the channel C is sufficiently small so that τ`C �
1, (∀`, ` = 1, ..., L). Then we can get the narrowband spatial model for the channel

matrix

H(f) =
L∑
`=1

α`aR(θR,`, φR,`)a
H
T (θT,`, φT,`). (2.8)

Paths are typically described as arriving in “clusters” in statistical MIMO models.

Each cluster has the same distribution on the delay, power, and central angles of

arrival and departure. Statistical multipath models derived from measurements

can be found in [43] and [32] for 802.11ad systems.

18



2.2 Multi-antenna Systems and Models

In this chapter, we assume that the transmitter and receiver only implement

horizontal (2-D) beamforming. Extensions to 3-D beamforming are possible [15]

and helpful. Planar array will be discussed in Chapter 5. The algorithms and

results developed in the thesis can be applied to arbitrary antenna arrays. One-

dimensional uniform linear arrays(ULAs) of antennas at both the transmitter

and receiver considering the far-field scattering characteristics for generality and

simplicity . (2.8) can be expressed as

H(f) =
L∑
`=1

α`aR(θR,`)a
H
T (θT,`). (2.9)

H(f) can be written in a more compact matrix form as

H = ARHaA
H
T , (2.10)

AT = [aT (θT,1), aT (θT,2), . . . , aT (θT,L)] ∈ CNT×L, (2.11)

AR = [aR(θR,1), aR(θR,2), . . . , aR(θR,L)] ∈ CNR×L, (2.12)

whereNT ,NR are the number of antennas at transmitter and receiver respectively,

Ha = diag(α), with α = [α1, α2, . . . , αL]. The widely used discrete physical model

is discussed as (2.10) and illustrated in Figure. 2.3.

2.2.3 Virtual Channel Representation

Although (2.10) describes a channel with a limited number of paths, the channel

matrix H itself is not a sparse matrix so that the computational complexity of

mmWave channel estimation is high because of large number of antenna. Thanks

to the highly directional nature of propagation and the high dimensionality of

MIMO channels at mmWave frequencies, mmWave channel is sparse in the an-

gular domain. In order to utilize the angular sparsity, the virtual channel repre-

sentation [2] is widely employed in mmWave channel estimation. Different from

conventional physical channel modeling (2.10), the virtual channel representation

keeps the essence of physical modeling without its complexity, provides a tractable

linear channel characterization, and offers a simple and transparent interpreta-

tion of the effects of scattering and array characteristics on channel capacity and

diversity [2]. Specifically, the virtual representation describes the channel with

respect to fixed spatial basis functions defined by fixed virtual angles that are

determined by the spatial resolution of the arrays.

19



The fixed virtual angles are called as ’gird’ in the thesis. Grid selection has

been proved to have great impact on performance of compressive sensing algo-

rithms. Well-designed grid is able to reduce the coherence of proposed CS for-

mulation and improve the recovery performance [22]. Comparison of the different

grid selections will be discussed in 5.

In this Chapter, we assume that the AoDs/AoAs are taken from a uniform

grid of size G, i.e. θ̃T,g1 , θ̃R,g2 ∈ {0, π
G−1

, . . . , π(G−1)
G−1

}, g1 and g2 are the index

of grid point. We make G � L to achieve the desired resolution [19]. We can

define the array response matrices, whose columns are the array response vectors

corresponding to the angles in the grid, as ĀT ,ĀR. Using these matrices, H

can be approximated in terms of a L-sparse matrix Hb ∈ CG×G , with L non-

zero elements in the positions corresponding to the AoAs and AoDs. The virtual

channel representation, which is illustrated in Figure. 2.4, can be expressed as

H =
G∑

g1=1

G∑
g2=1

αg1,g2aR(θ̃R,g2)aHT (θ̃T,g1)

= ĀRHbĀ
H
T ,

(2.13)

where the matrices ĀT ∈ CNT×G and ĀR ∈ CNR×G are defined by the fixed

virtual angles {θ̃T,g1} and {θ̃R,g2}. The G × G matrix Hb is the virtual channel

representation. In contrast to the discrete model (2.10), the virtual representation

is linear and is characterized by Hb as ĀT and ĀR are fixed. Noted that, there

are grid-errors in (2.13), because the true AoDs/AoAs do not fall to the uniform

fixed virtual angles accurately. If the grid size G is large enough this sampling

error is usually neglected.

!
!
!

!
!
!TransmitterArray Spatial Mutipath Channel ReceiverArrayθR,1θR,2

α1α2

α3α4α5 α6

θT,2θT,3

ScatterersθT,1

Figure 2.3: Schematic illustrating physical channel modeling. [2]
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2.3 Massive MIMO Architecture for Millimeter Wave Communication

!
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ScatterersTransmitterArray Spatial Mutipath Channel ReceiverArrayα1,1 α1,2

α2,1α3,1α4,1α5,1

α1,3

Figure 2.4: Schematic illustrating virtual channel representation of the scattering

environment depicted in Figure. 2.3. [2]

2.3 Massive MIMO Architecture for Millimeter

Wave Communication

Massive MIMO technology is popular in current cellular systems at sub-6GHz fre-

quencies [3]. It can be employed in mmWave communication to overcome the huge

propagation loss. The array at mmWave tends to be larger than lower frequency

systems (from 32 to 256 elements). Fortunately, due to the small wavelength, the

size of each antenna is smaller so that the array size remains small.

At mmWave frequencies, there are important architectural differences with the

massive MIMO communication at sub-6GHz frequencies. At lower frequencies, all

the signal processing action are processed in the baseband that different antenna

has dedicated RF chain and ADC, as illustrated in Figure. 2.5. At higher carrier

frequencies, it is difficult to have a separate RF chain and a data converter for

each antenna because of several hardware constraints. First, the space limitation

makes it impractical to employ a complete RF chain per antenna. There are

many devices in an RF chain at mmWave such as the PA and the low noise

amplifier (LNA). These devices have to be packed behind each antenna, and

all the antenna elements are placed very close to each other due to the small

wavelength to avoid grant lobe. Second, high power consumption is challenging.

PA and ADC are power hungry devices especially at mmWave frequency [3]. The

exact power consumption depends on the device and technology that are deployed.

Table 2.2 shows the range of the power consumed by different devices in mmWave

communication. These figures are taken from a number of recent papers proposing
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prototype devices for PAs, LNAs, phase shifters, voltage-controlled oscillators

(VCO) and ADCs at mmWave frequencies. Lt and Lr are the number of RF

chains at the transmitter and receiver.

Figure 2.5: Conventional MIMO architecture at frequencies below 6 GHz. [3]

In addition, considering the high path loss of mmWave propagation, massive

MIMO technology is necessary to be applied to provide desirable beamforming

gains. Beamforming is used to change both amplitude and phase which helps in

power variation as well as beam steering in the desired directions. In this case,

many mmWaves massive MIMO architectures have been proposed with hardware

constraints. Different trade-offs are made between power consumption and system

performance.

Table 2.2: Range of the power consumption for different devices in a mmWave

front-end [3]

.
Device Number of devices Power(mW)

(single device)

PA NTNR 40-250

LNA NTNR 4-86

Phase shifter NTNR × LTLR 15-110

ADC LTLR 15-795

VCO LTLR 4-25

2.3.1 Analog-only beamforming

Analog beamforming is one of the simplest approaches to apply massive MIMO

in mmWave systems. In analog beamforming, phase variation is applied to the
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2.3 Massive MIMO Architecture for Millimeter Wave Communication

analog signal. It can be applied at both the transmitter and receiver and it is

often implemented using a network of digitally controlled phase shifters. In this

configuration, several antenna elements are connected via phase shifters to a single

RF chain, as illustrated in Figure. 2.6. The phase shifter weights are adaptively

adjusted using digital signal processing using a specific strategy to steer the beam

and meet a given objective, for example to maximize the received signal power.

The fundamental idea behind analog beamforming is to control the signal

being transmitted or received on each antenna in the analog domain before sam-

pling, and then add the signals together so that they can be sampled by a single

RF chain and yields a significant reduction in hardware cost, complexity, and

power consumption.

However, there are some limitations for analog beamforming. First, the perfor-

mance achieved by analog beamforming is limited by the use of quantized phase

shifts which can not provide continuous angle directions and lacks amplitude ad-

justment. Second, as analog beamforming implements beamforming in the analog

domain before sampling, a received signal vector can only be collected by a single

beamforming vector before it is added together and sampled. It results in only

single digital measurement per signal time slot and makes the time complexity in

mmWave channel estimation a very challenging issue. Also, it is not possible to

realize multi-stream or multi-user benefits associated with MIMO.

Figure 2.6: mmWave MIMO system using analog only beamforming. [3]

2.3.2 Analog-Digital Hybrid architecture

A more recently proposed compromise between conventional digital architectures

and analog-only architectures involves using a combination of both [15]. The idea

of combination is first introduced under the name of antenna soft selection for a

point to point MIMO scenario [44]. It is shown in [44] that for a point to point
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MIMO system with diversity transmission, antenna soft selection can realize the

optimal fully digital beamformer if and only if the number of RF chains at each

end is at least two. The idea of antenna soft selection is reintroduced under

the name of hybrid beamforming for mmWave frequencies [15]. For a point to

point large scale MIMO system, [15] proposes an algorithm based on the sparse

nature of mmWave channels. It is shown that the spectral efficiency maximization

problem for mmWave channels can be approximately solved by minimizing the

Frobenius norm of the difference between the optimal fully digital beamformer

and the overall hybrid beamformer. Using a compressed sensing algorithm called

basis pursuit (BP), [15] is able to design the hybrid beamformers which achieve

good performance.

In the hybrid system, digital RF chains are much fewer in number than total

adopted antenna numbers. Each RF chain is connected to all antennas via phase

shifters. An example of the hybrid beamforming architecture is shown in Figure.

2.7. The precoding/combining processing is divided between the analog and dig-

ital domains. A transmitter with NT antennas and LT RF chains is assumed to

communicate with a receiver with NR antennas and LR RF chains. The trans-

mitter and receiver communicate via Ns data streams so that Ns < LT < NT

and NR > LR > Ns. Analog beamforming is a special case when Ns = NRF = 1.

Assuming that Ns > 1, then the hybrid approach allows spatial multiplexing

and multiuser MIMO to be implemented. Considering mmWave signals are easily

blocked, multiple spatial streams is important and desirable for transmission. So

hybrid architectures are more widely adopted than analog-only beamforming.

Assuming flat-fading and perfect synchronization, the discrete-time model for

the received signal y of a single symbol period s can be formulated as

y =
√
PCHHPs + CHn

=
√
P (CRFCBB)HH(PRFPBB) + N,

(2.14)

where P represents the average transmitted power per symbol, and n ∈ CNR×1 is

the noise vector with CN(0, σ2
n) entries. P = PRFPBB is composed of an RF pre-

coder PRF ∈ CNT×LT and a baseband precoder PBB ∈ CLT×Ns . Equivalently, the

hybrid combiner C = CRFCBB is composed of an RF combiner CRF ∈ CNR×LR

and a baseband combiner CBB ∈ CLR×Ns . The performance of channel estimation

is highly effected by training beam pattern design. The precoding and combin-

ing matrices PRF and CRF are subject to specific constraints depending on the

hardware architecture of the RF beamforming stage. Specifically, as in [15], the

RF beamforming stage which employs a network of phase shifters imposes the

constraint of unit norm entries in CRF and PRF . The design of hybrid precoding
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2.4 Summary

and combining matrices have been extensively investigated [15]. Most hybrid pre-

coding algorithms are designed based on maximizing the mutual information or

minimizing coherence of sensing matrix [22]. In this thesis, we focus on channel

estimation and make use of the beam pattern design method in [45] and [22]. We

will discuss the details in the following Chapters.

For mmWave channel estimation, the hybrid architecture has shown attrac-

tive advantages. First, it allows multiple digital measurements (NRF ) per signal

time slot. This significantly reduces the time complexity in mmWave channel es-

timation. Second, for channel estimation, it is crucial to design the training beam

pattern wisely. Hybrid architecture makes it possible to generate beam patterns

as the sum of multiple beamforming vectors (NRF ). Specifically, it means that an

unconstrained training beam pattern can be approximated by linearly summa-

tion of multiple beam vectors which are under the constraint of quantized phase

shifters. Third, with hybrid architecture, the hardware complexity is significantly

reduced compared to fully digital beamforming.

Figure 2.7: Massive MIMO architecture at mmWave based on hybrid analog-

digital precoding and combining [3].

2.4 Summary

In this Chapter, the characteristics of mmWave communication channel are de-

scribed. According to these characteristics, hardware architectures and channel

modeling for mmWave communication are presented. Specifically, the virtual

channel representation is introduced to utilize the sparsity in angular domain.

Then, analog-only architecture and hybrid architecture are discussed as alterna-

tives of fully digital architecture which has unacceptable power consumption.
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Chapter 3

IP Aided OMP Based Channel

Estimation for Millimeter Wave

Massive MIMO Communication

3.1 Introduction

As explained in Chapter 1, large number of antennas make mmWave channel

estimation challenging because there are huge number of entries expected for the

mmWave channel matrix. Fortunately, it has been shown that mmWave chan-

nel has sparsity in angular domain [16] with virtual channel representation [18].

Therefore, instead of estimating all the entries in the channel matrix, only a lim-

ited number of AoD, AoA of dominant propagation paths and the corresponding

path gains need to be estimated [46]. The key objective of mmWave channel esti-

mation is to identify these paths. Thus CS techniques can be leveraged to conduct

channel estimation.

Recently, some CS-based channel estimation algorithms have been proposed

to explore channel sparsity in mmWave systems, e.g., [19, 20, 22, 45]. [19, 20] are

closed-loop beam training-based methods. The fundamental idea is to search

through multiple transmit/receive directions by creating initial beam patterns

that span a wide angular range and makes the beams fine only around the an-

gles where AoDs/AoAs are present. This is a multistage process that can avoid

exhaustive beam search which employs narrow beams to search every angles of

interest [22]. In [19], the authors first estimate the AoDs/AoAs by closed-loop

beam training and then estimate the path gain associated with each pair of AoD

and AoA. At each stage the transmitter emits the pilot beams, and the receiver

selects the best beam and feeds back its decision. This process starts with wide

beams that cover all of the angles of interest and improves the angle resolution

27



only around the angles where AoDs/AoAs are present. The performance of the

close-loop method tends to be limited by the beamforming dictionary (codebook)

designed for beam training. An improved codebook employing the continuous ba-

sis pursuit (CBP) method instead of the conventional grid-based approach was

proposed in [20]. Compared with [19], [20] significantly improves the estimation

accuracy. By initially using wider beam patterns, close-loop methods are able to

reduce the number of measurements required for channel estimation. However,

this introduces a loss of beamforming gain, leading to a lower SNR at the receiver

due to wider beam and limited power. Therefore, in order to achieve desirable

accuracy for mmWave channel estimation with close-loop methods, a trade off

has to be made between beam width and transmitted power.

An alternative approach is to use open-loop estimator exploiting sparse nature

of mmWave channels. An open-loop method was developed using fixed width

training beam without feedback from receiver to transmitter [22, 45]. To reduce

computation, orthogonal matching pursuit (OMP) algorithm was used to solve

the sparse signal recovery problem [47].

3.1.1 Related Works and Motivations

Conventional OMP is a grid based algorithm [47]. Despite the continuous nature

of AoDs/AoAs, only G values are considered in estimation referred to as grid

points (circles in Figure. 3.1). All AoDs/AoAs are approximated as the nearest

grid points. The black dots indicate off-grid angles. The approximation results in

off-grid errors. The estimation accuracy of grid based CS algorithm is deteriorated

by off-grid angles severely. The impact of off-grid errors is shown in Figure. 3.3.

In fact, the off-grid or basis mismatch problem in compressive sensing have

been studied for several years. [48] concludes the drawbacks of applying discrete

grid. First, in cases where off-grid happens, the signal cannot often be sparsely

represented which is required by CS. Second, it is difficult to improve the recovery

performance by increasing the number of grid points since a higher mutual co-

herence of sensing matrix does not satisfy restricted isometry property (RIP) any

more. RIP characterizes the nearly orthonormal matrices which are necessary for

utilizing CS algorithms. Third, although very carefully design of grid may improve

the reconstruction in theory, very fine grids often lead to numerical instability is-

sues. The solutions can be divided into two classes. One is post-processing, that

is, there has been off-grid problem. Methods are proposed to reduce off-grid im-

pact on reconstruction performance as much as possible. The other is the gridless

method. Compressive sensing are applied without grid to avoid off-grid problem.
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3.1 Introduction

Gridless solutions are mainly based on atomic norm minimization (ANM)

method which is a canonical convex approach for super resolution. The atomic

norm is first proposed in [49] as a general framework for designing tight convex

relaxations to promote simple signal decompositions, where one seeks to use a

minimal number of atoms to represent a given signal from an atomic set com-

posed of an ensemble of signal atoms. Celebrated convex relaxations such as the

l1 norm approach for cardinality minimization [50] can be viewed as particular

instances of atomic norms for appropriately defined atomic sets. Specializing the

atomic set to a dictionary containing all translations of the template signal over

the continuous-valued parameter space, estimating the underlying translation pa-

rameters is then equivalent to identifying a sparse decomposition in an infinite-

dimensional dictionary. For mmWave channel estimation, gridless methods based

on ANM were proposed in [51], [52], [53], [54] and [28]. However, existing analy-

ses of atomic norm denoising typically only produce bounds that are tight up to

some constant, making it less useful in practice [55]. And one benefit of atomic

norm minimization over traditional spectrum estimation approaches is that it can

automatically select the model order. However, the choice of the regularization

parameter depends on the noise level, which may not be available in practice [55].

Although the gridless solutions show desirable estimation performance, its theory

and applications in mmWave communication require further investigation.

Another alternative solution is post-processing which reduces off-grid impact

on reconstruction performance as much as possible. In many cases, it is not nec-

essary to apply gridless method which may be difficult or highly complex. Some

post-processing methods were proposed recently in [56], [57], [24] and [58]. [56]

presents a mixed compressed sensing maximum likelihood algorithm that uses

continuous dictionaries to estimate the channel. In [57], by optimizing an objec-

tive function through the gradient descent method, the proposed scheme can iter-

atively move the estimated grid point towards the optimal solutions, and finally

mitigate off-grid impact. [24] develops an algorithm which implements a gradient

descent based parameter update within an outer OMP based technique. In [58],

the off-grid errors are regarded as adjustable parameters and can be iteratively

refined by minimizing the constructed objective function.

[45] and [22] were proposed for mmWave channel estimation several years ago.

Specially, a multi-grid OMP (MG-OMP) method was proposed to achieve better

precision [45]. The MG-OMP starts with a coarse grid and refines the grid only

around the regions where AoDs and AoAs are present. A finely quantized angle

grid is proposed for OMP method in [22] to reduce the coherence of the redundant

dictionary and improve estimation performance. While even with finely quantized
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angle grid or multi-grid, off-grid errors remain there because of fixed grid points

and adversely affect the estimation performance.

Motivated by the previously discussed limitations, we focus on post-processing

methods in this chapter. We propose an enhanced approach employing OMP al-

gorithm for mmWave MIMO channel estimation. An optimization method called

interior point (IP) algorithm will be utilized with OMP to mitigate the off-grid

error and further improve angle estimation accuracy. The proposed approach can

be also employed with MG-OMP or other grid-based OMP algorithms. It is shown

that our proposed method can significantly improve the channel estimation ac-

curacy by reducing the off-grid error.

3.1.2 Main Contributions

After evaluating the impact of off-grid angle errors in mmWave channel estimation

through simulation, IP-OMP algorithm is proposed to reduce the off-grid error by

adjusting the grid points based on the IP optimization. Simulation results show

that the IP-OMP algorithm significantly improve the normalized mean square er-

ror (NMSE) performance of channel estimation compared to conventional OMP,

while requiring an affordable computation, and that the achievable best perfor-

mance of estimation is much better than that of the OMP with increased grid

number.

3.1.3 Chapter Organization

The organization of this chapter is as follows. Section 3.2 presents the system

model. The Least Square (LS) based channel estimation and CS based channel

estimation problem are formulated and solved in Section 3.3. The improved al-

gorithm for the hybrid MIMO channel estimation are designed in Section 3.4.

Training beam pattern design and simulation results illustrating the performance

of the proposed algorithm are given in Section 3.5. Finally, the conclusion is

presented in Section 3.6.

3.2 System Model

We consider a single user hybrid MIMO system shown in Figure. 3.2 [45], where

the transmitter equipped with NT antennas and NRF RF chains communicating

with a receiver with NR antennas and NRF RF chains (NRF ≤ min(NT , NR)).

Noted that it is different from (2.14) introduced in Chapter 2. (2.14) is the model

of the received signal for a single symbol period. At the training period, suppose
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3.2 System Model

Figure 3.1: An illustration of angle grid and the off-grid angles.

Figure 3.2: Hybrid Massive MIMO system for mmWave communication.

that NBeam
R measurements at successive NBeam

R instants using NBeam
T different

beamforming vectors at NBeam
T time slots are performed.

In the channel estimation stage, the transmitter uses NBeam
T (NBeam

T ≤ NT )

pilot beam training patterns denoted as {fm ∈ CNT×1 : m = 1, . . . , NBeam
T } and

receiver uses NBeam
R (NBeam

R ≤ NR) beam patterns denoted as {wn ∈ CNR×1 : n =

1, . . . , NBeam
R }. As transmitter sends training beams fm to receiver successively,

we consider the transmitter beam fm one by one and each fm is received through

receiver beam patterns wn. We assume that NRF RF chains are used at receiver.

The receiver is able to generate NRF receive beams simultaneously and receive

yq ∈ CNRF×1 for q ∈ {1, . . . , NBlock
R } at the RF chain in one time slot (symbol

period). The NRF symbols received by NRF chains in one time slot is named as a

block. Here q denotes the received block index and NBlock
R =

NBeam
R

NRF
is the number

of received blocks for NBeam
R beam patterns. We assume NBeam

R and NBeam
T are

multiples of NRF . Collecting all q received block signals can represent the received

signal ym ∈ CNBeam
R ×1 for one transmitter beam fm in q time slots. The received
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vector at the RF chains for the q-th block and the m-th transmit beam is given

by

yq,m = WH
q Hfmxp + WH

q nq,m, (3.1)

where Wq = [w(q−1)NRF+1, . . . ,wqNRF ] ∈ CNR×NRF is the beam pattern matrix

for RF receive beam patterns at one time slot for fm. xp is the transmitted pilot

symbol. Each w is a beam pattern generated by one RF chain at receiver. H ∈
CNR×NT represents the channel matrix, and nq,m ∈ CNR×1 is the i.i.d Gaussian

noise vector with variance σ2
n. Collecting yq,m for q ∈ {1, . . . , NBlock

R }, we get

ym ∈ CNBeam
R ×1 given by

ym = WHHfmxp + diag(WH
1 , . . . ,W

H
NBlock
R

)

× [nT1,m, . . . ,n
T
NBlock
R ,m]T ,

(3.2)

where W = [W1, . . . ,WNBlock
R

] ∈ CNR×NBeam
R . ym is the received signal for fm in

q time slots. To represent the signals for all NBeam
T transmit beams, we collect

ym for m ∈ {1, . . . , NBeam
T } to get

Y = WHHFX + N

=
√
PWHHF + N,

(3.3)

where Y = [y1, . . . ,yNBeam
T

] ∈ CNBeam
R ×NBeam

T , F = [f1, . . . , fNBeam
T

] ∈ CNT×NBeam
T

and N ∈ CNBeam
R ×NBeam

T is the noise matrix given by

N = diag(WH
1 , . . . ,W

H
NBlock
R

)
[
[nT1,1, . . . ,n

T
NBlock
R ,1]T ,

. . . , [nT1,NBeam
T

, . . . ,nTNBlock
R ,NBeam

T
]T
]
.

(3.4)

The matrix X ∈ CNBeam
T ×NBeam

T is a diagonal matrix with xp on its diagonal.

Throughout the thesis, we assume identical pilot symbols so that X =
√
P INBeam

T

where P is the pilot power.

In the mmWave communication, hybrid MIMO architecture is employed. The

transmit and receive training matrices are regarded as hybrid beamforming matrix

and they can be decomposed as F = FRFFBB and W = WRFWBB, where

FRF ∈ CNT×NT and WRF ∈ CNR×NR represent the RF beamforming matrices,

FBB ∈ CNT×NBeam
T and WBB ∈ CNR×NBeam

R represent the baseband processing

matrices. In this case, (3.3) can be formulated as

Y =
√
P (WRFWBB)HH(FRFFBB) + N. (3.5)

FRF , WRF , WBB and FBB will be designed in Section 3.5.

The mmWave narrowband channel can be approximated by a geometric chan-

nel mode with L scatterers due to its limited scattering feature [15]. Each scatterer
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3.2 System Model

contributes only one path of propagation between transmitter and receiver. As

introduced in Chapter 2, the channel matrix can be written as

H =

√
NTNR

L

L∑
`=1

α`aR(θR,l)a
H
T (θT,l), (3.6)

where L is the number of scatterers, αl is the complex gain, θR,l and θT,l are

the AoA and AoD of the l-th path, respectively. We assume the ULA whose

array response vectors are denoted as aR(θR,l) ∈ CNR×1 for the receiver and

aT (θT,l) ∈ CNT×1 for the transmitter. For an N-element ULA, the steering vector

can be given by

a(θ) = [1, e−j2πϑ, e−j4πϑ, ..., e−j2πϑ(N−1)]T , (3.7)

where the normalized spatial angle ϑ is related to the physical angle (of arrival

or departure) θ ∈ [0, π) as ϑ = d
λ

cos θ = β cos θ, d denotes the antenna spacing,

λ denotes the wavelength of operation and β is the normalized antenna spacing.

We assume that N = NT when aT (θT,l) represents the array weights needed to

transmit a beam focused in direction θT,l, and N = NR when aR(θR,l) represents

the signal response at the receiver array due to a point source in direction θR,l.

In this chapter, we consider d = λ
2
. The channel gains {αl}Ll=1 are modeled by

i.i.d. random variables with distribution CN(0, σ2
α). The AoAs and AoDs are

modeled by the Laplacian distribution whose mean is uniformly distributed over

[0, π), and angular standard deviation is σAS. As (2.10) shown in Chapter 2, the

channel model (3.6) can be rewritten in matrix form as

H = ARHaA
H
T , (3.8)

where

AR = [aR(θR,1), . . . , aR(θR,l), . . . , aR(θR,L)] ∈ CNR×L

AT = [aT (θT,1), . . . , aT (θT,l), . . . , aT (θT,L)] ∈ CNT×L
(3.9)

and Ha =
√

NTNR
L

diag(α1, . . . , α`, . . . , αL).

In order to utilize CS methods, virtual channel representation is employed as

discussed in Chapter 2. We assume that AoAs/AoDs (θT,l, θR,l) are approximated

as grid points (θ̃T,g1 , θ̃R,g2) in an uniform grid of size G as

θ̃T,g1 , θ̃R,g2 ∈ {
π

2(G− 1)
,

π

2(G− 1)
+

π

G− 1
, . . . ,

π

2(G− 1)
+
π(G− 1)

G− 1
}, (3.10)

33



where g1 and g2 are the index of grid point. G � L is chosen to acheive desired

resolution as in [15], [19], [45].

ĀT = [aT (θ̃T,1), . . . , aT (θ̃T,g1), . . . , aT (θ̃T,G)] ∈ CNT×G, (3.11)

ĀR = [aR(θ̃R,1), . . . , aR(θ̃R,g2), . . . , aR(θ̃R,G)] ∈ CNR×G (3.12)

are defined as array response matrices. Using these matrices, H can be approx-

imated in terms of a L-sparse matrix Hb ∈ CG×G, with L non zero elements in

the positions corresponding to the AoAs and AoDs.

H =
G∑

g1=1

G∑
g2=1

αg1,g2aR(θ̃R,g2)aT
H(θ̃T,g1) + E

= ĀRHbĀ
H
T + E.

(3.13)

There is a grid error E in (3.13), because the true continuous AoDs/AoAs do not

fall onto the uniform grid points precisely as illustrated in Figure. 3.1. Intuitively,

the grid errors can be mitigated by increasing the grid size. However, for CS

channel estimation in mmWave communication, using larger G is not desirable.

Because the sensing matrix employed in channel estimation does not satisfy RIP

and leads to even worse estimation performance [59]. Also a larger G leads to

exponentially increasing complexity of OMP algorithm. Most works on channel

estimation for mmWave MIMO communication leave grid errors as unexplored

area. Therefore, to improve the achievable channel estimation performance with a

reasonable complexity, we propose to employ IP method to minimize the off-grid

angle error and refine the grid accordingly in every iteration of OMP algorithm.

3.3 Formulation of mmWave Channel Estima-

tion Problem

In this section, two different formulations of the mmWave channel estimation

problem are presented. The least square formulation is first presented for the

purpose of comparison.

3.3.1 Least Square Channel Estimation

To formulate the channel estimation problem, it is necessary to vectorize the

received signal matrix Y in (3.5). Denoting vec(Y) by yv and therefore (3.5) is
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3.3 Formulation of mmWave Channel Estimation Problem

rewritten as

yv =
√
P (FT

BBFT
RF ⊗WH

BBWH
RF ) · vec(H)

+ vec(N)

= Q · vec(H) + nQ,

(3.14)

Using the property of the Khatri-Rao product

vec(ABC) = (CT ⊗A) · vec(B). (3.15)

The matrices WH
BBWH

RF , H and FRFFBB in (3.14) are regarded as A, B and

C in (3.15) respectively. nQ is the vectorized noise. Let Q =
√
P (FT

BBFT
RF ⊗

WH
BBWH

RF ) ∈ CNBeam
T NBeam

R ×NTNR , a natural approach to estimating vec(H) is the

LS approach, which results in a closed-form solution given by (QHQ)−1QHyv. The

use of LS solution for mmWave communication is difficult, because the LS solution

requires NBeam
T NBeam

R ≥ NTNR so that QHQ has full rank. However, NT and NR

are usually large integers for mmWave MIMO system and NBeam
T NBeam

R ≤ NTNR.

This difficulty can be overcome in the CS approach as the number of entries to

be estimated in the CS formulation is proportional to the sparsity level which is

much less than NTNR.

3.3.2 Compressive Sensing Channel Estimation

Considering the system model in (3.5) and channel model in (3.13) neglecting grid

error E, the mmWave channel estimation can be formulated as a sparse problem

by vectorizing Y in (3.5). Using property of Khatri-Rao product (3.15) for (3.5)

and Hb in (3.13), equation (3.14) can be rewritten as

yv=
√
P (FT

BBFT
RF ⊗WH

BBWH
RF ) · vec(Hb) + nQ

=
√
P (FT

BBFT
RF ⊗WH

BBWH
RF )ADhb + nQ

=Q̄ · (hb) + nQ,

(3.16)

where AD = Ā∗T ⊗ ĀR is an NTNR × G2 dictionary matrix that consists of the

G2 column vectors of the form aHT (θ̃T,g1)⊗aR(θ̃R,g2), with θ̃T,g1 and θ̃R,g2 , the g1th

and g2th points, respectively, of the angle uniform grid i.e. θ̃T,g1 = π
2(G−1)

+ g1π
G−1

,

θ̃T,g2 = π
2(G−1)

+ g2π
G−1

. hb = vec(Hb) is an G2× 1 vector which represents the path

gains of the corresponding quantized directions. In (3.16), Q̄ =
√
P (FT

BBFT
RF ⊗

WH
BBWH

RF )AD ∈ CNBeam
T Nbeam

R ×G2
is the sensing matrix. The formulation of the

vectorized received signal in (3.16) represents a sparse formulation of the channel

estimation problem as hb has only L non-zero elements and L� G2. This implies

that the number of required measurements to detect the non-zero elements of hb

is much less than G2. Given the formulation in (3.16), CS algorithms such as

OMP can be adapted to solve this channel estimation problem.
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3.4 Proposed IP-OMP Method

Considering the previous estimation problem using CS method in (3.16), given

that the true continuous-domain AoDs and AoAs may lie off the grid, the grid

representation in this case will result in the degradation of estimation perfor-

mance. This can be mitigated to a certain extent by finer discretization of the

grid, but that may lead to longer computation time and higher mutual coherence

of the sensing matrix, thus becoming less effective for sparse signal recovering.

To effectively estimate the position of non-zero values, and consequently the cor-

responding AoDs/AoAs and path gains, OMP method is used in conjunction

with the IP method in this chapter named as IP-OMP. The proposed IP-OMP

algorithm solving (3.16) is summarized in Algorithm 1.

Algorithm 1 operates as follows. In the initial stage, when t = 1, this algorithm

chooses the column j of Q̄ that is the most strongly correlated with the residual

rt−1 in step 3. The residual starts as the measurement vector yv and update as

step 10. Each column index obtained in step 3 corresponds to an AoD/AoA pair

and referred to as AoD/AoA pair index. In step 4, the column number j is added

to set Ωt. The most strongly correlated column in Q̄ is determined by the column

of the dictionary matrix AD when hybrid precoding and combining matrix are

given. AD = Ā∗T ⊗ĀR is an NTNR×G2 dictionary matrix that consists of the G2

column vectors. Each vector follows the form as aHT (θu)⊗ aR(θv), with θu and θv,

the uth and vth discrete points, respectively, of the uniform angle grid. We first

find the estimated AoD/AoA value through column index j in the tth iteration

as AoDt = π
2(G−1)

+ ceil( j
G
− 1) π

G−1
and AoAt = π

2(G−1)
+ mod(j− 1, G) π

G−1
where

u = ceil( j
G

), v = mod(j − 1, G) + 1 are the index of grid points as described in

(3.11) and (3.12) respectively.

However, the main problem for conventional OMP method is that the off-

grid angles deteriorate the accuracy in step 3. Because the true AoD/AoA are

continuous values instead of the discrete values in step 5, it means that, in step

3, |Q̄(i)Hrt−1| can be even larger than the value corresponding to the jth col-

umn if we can choose a more accurate AoD/AoA pair. Therefore, we can obtain

improved AoD/AoA pair via maximizing |Q̄(i)Hrt−1|. Considering the order of

complexity, we choose to employ IP method to minimize the off-grid error and

estimate more accurate AoD/AoA pair index based on the result from step 3.

We set xt = (AoDt, AoAt) as original point corresponding to the jth column in

Q̄. We define the correlation between the sensing column and the residual as

f(AoD′t, AoA
′
t) = |((FT

BBFT
RF ⊗WH

BBWH
RF )(a∗(AoD′t)⊗ a(AoA′t)))

Hrt−1| and set

−f(AoD′t, AoA
′
t) as objective function. Through minimizing objective function
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3.4 Proposed IP-OMP Method

between the adjacent grid points, we can obtain new angle pair x′t = (AoD′t, AoA
′
t)

which is most correlated with residual rt−1. This optimization problem in step 6

can be formulated as

min
AoD′t,AoA

′
t

−f(AoD′t, AoA
′
t)

s.t.

{
|AoD′t − AoDt| < π

2(G−1)
,

|AoA′t − AoAt| < π
2(G−1)

.

When we obtain x′t using IP method, the new most strongly correlated column

is calculated as p = (FT
BBFT

RF ⊗WH
BBWH

RF )(a∗(AoD′t)⊗ a(AoA′t)) in step 7. Use

p to replace the column j in sensing matrix Q̄ as step 8. The updated matrix Q̄

is the new sensing matrix with the corrected grid. In this way, we adjust the grid

point and sensing matrix in every iterative step to find a more accurate angle

and corresponding path gain. The channel gains associated with the new grid

points are obtained by evaluating the LS solution of yv = Q̄Ωth in step 9, where

Q̄Ωt ∈ CNBeam
t NBeam

r ×t is the sub-matrix of Q̄ that only contains the columns

whose indices are included in Ωt and h ∈ Ct×1 is a vector with varying size.

In step 10, the contributions of the chosen column vectors to yv are subtracted

to update the residual. This procedure is repeated until t = K. In step 13,

the algorithm constructs the sparse channel vector hb ∈ CG2×1 by putting K

estimated channel gains into the corresponding position according to elements in

Ωt. So that hb(i) = ht−1 for i ∈ Ωt−1 and hb(i) = 0, otherwise. hb is the channel

matrix as in (3.16).
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Algorithm 3.1 IP-OMP method for mmWave channel estimation

Require: sensing matrix Q̄, measurement vector yv, known sparsity K
and grid G
1: Ωt−1 =empty set, residual r0 = yv, set the iteration

counter t = 1
2: while t ≤ K do
3: j = arg max

i=1,...,G2
|Q̄(i)Hrt−1|

4: Ωt = Ωt−1 ∪ {j}
5: AoDt = π

2(G−1)
+ ceil( j

G
− 1) π

G−1

AoAt = π
2(G−1)

+ mod(j − 1, G) π
G−1

xt = (AoDt, AoAt)
6: min

AoD′t,AoA
′
t

f(AoD′t, AoA
′
t), x

′
t = (AoD′t, AoA

′
t)

7: p = (FT
BBFT

RF ⊗WH
BBWH

RF )(a∗(AoD′t)⊗ a(AoA′t))
8. Q̄j = p
9: ht = arg min

h
‖yv − Q̄Ωth‖2

10: rt = yv − Q̄Ωtht
11: t = t+ 1
12: end while
13: hb(i) = ht−1 for i ∈ Ωt−1 and

hb(i) = 0 otherwise
14: return hb

3.5 Simulation and Analysis

The performance of the proposed method is examined via computer simulation

with the following parameters. ULAs are assumed at both transmitter and re-

ceiver with NT = 32 and NR = 32 antennas. They have NBeam
T = 32 and

NBeam
R = 32 training beams respectively. All simulation results are averaged

over 500 channel realizations with a carrier frequency of 60GHz. Training beam

pattern design is essential for channel estimation. We first introduce the choices

of RF beams then design of baseband processors following the procedure in [45].

3.5.1 Training Beam Pattern Design

Because only phase shifts are used to generate beams for RF beamforming. We

suggest the use of discrete Fourier transform (DFT) beams so that FRF and WRF

can be designed as DFT matrices. The transmit and receive weight vectors are

given by the columns of NBeam
T × NBeam

T and NBeam
R × NBeam

R DFT matrices

respectively. The transmitter uses NBeam
T ≤ NT pilot beam patterns denoted as

{fp ∈ CNT×1 : ‖fp‖2
2 = 1, p = 1, . . . , NBeam

T }, and the receiver uses NBeam
R ≤ NR

beam patterns denoted as {wq ∈ CNR×1 : ‖wq‖2
2 = 1, q = 1, . . . , NBeam

R }. In this
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3.5 Simulation and Analysis

case, it is convenient to assume that NT ,NR,NBeam
T and NBeam

R are powers of two

with NBeam
T < NT and NBeam

R < NR.

To design the baseband processors for given RF beamformers, we consider the

coherence µ(Q̄) defined as

µ(Q̄) , max
1≤m,n≤G2,m 6=n

|Q̄(m)HQ̄(n)|
‖Q̄(m)‖2 · ‖Q̄(n)‖2

, (3.17)

where Q̄ is defined as (3.16). ĀT and ĀR are defined as (3.11) and (3.12). FBB and

WBB are block diagonal matrices given by FBB = diag(FBB,1, . . . ,FBB,i, . . . ,FBB,Nblock
T

)

and WBB = diag(WBB,1, . . . ,WBB,i, . . . ,WBB,Nblock
R

) whose diagonal entries,

FBB,i and WBB,i, consist of NRF×NRF complex valued matrices. NBlock
R =

NBeam
R

NRF

and NBlock
T =

NBeam
T

NRF
are the number of receive blocks and transmit block respec-

tively.

In compressed sensing, it is known that a small µ(Q̄) improves the estima-

tion performance [60]. The objective is to design the sensing matrix Q̄ so that

µ(Q̄) is minimized. Due to the identity, µ(A⊗B) = max{µ(A), µ(B)}, we have

µ(Q̄) = max{µ(ĀH
T FRFFBB)T , µ(WH

BBWH
RF ĀR)}, indicating that the designing

problem for Q̄ can be decomposed into the design of FBB and WBB minimizing

µ(ĀH
T FRFFBB)T and µ(WH

BBWH
RF ĀR), respectively. Next, design of WBB will

be described.

Following the approach in [61], objective function µ(WH
BBWH

RF ĀR) is mod-

ified so that it is the sum of the squared inner products of all column pairs of

WH
BBWH

RF ĀR. For the block diagonal matrix WBB = diag(WBB,1, . . . ,WBB,i, . . . ,WBB,NBlock
R

)

the new objective function is written as

G∑
m

G∑
n,m 6=n

|W̄(m)HW̄(n)|2

=

NBlock
R∑
i

‖(WH
BB,iW

H
RF,iĀR)HWH

BB,iW
H
RF,iĀR − IG‖2

F ,

(3.18)

where W̄ , WH
BB,iW

H
RF,iĀR and WRF,i ∈ CNR×NRF is the ith sub-matrix of

WRF = [WRF,1, . . . ,WRF,i, . . . ,WRF,NBlock
R

]. Thus designing WBB is decomposed

into desigining {WBB,i : i = 1, . . . , NBlock
R } by solving

WBB,i = arg min
WBB,i

‖(WH
BB,iW

H
RF,iĀR)H

×WH
BB,iW

H
RF,iĀR − IG‖2

F , 1 ≤ i ≤ NBlock
R .

(3.19)

It is shown in [61] that the optimal solution of (3.19) is given by (3.20).

WBB,i = U1(Λ1
−1/2)H , 1 ≤ i ≤ NBlock

R , (3.20)
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where U1 and Λ1 are the matrices of the eigenvectors and eigenvalues, respec-

tively, satisfying WH
RF,iĀRĀH

RWRF,i = U1Λ1U1
H . The designing FBB is similar

to that for WBB and given by (3.21).

FBB,i = U2
∗(Λ2

−1/2)T , 1 ≤ i ≤ NBlock
T , (3.21)

where U2 and Λ2 are the matrices of the eigenvectors and eigenvalues, respec-

tively, satisfying FT
RF,iĀ

∗
T (FT

RF,iĀ
∗
T )H = U2Λ2U2

H . The baseband processor de-

sign based on (3.20) and (3.21) will be used in the simulation in Section 3.5.2.

3.5.2 Simulation Results

The performance of the proposed method is examined through computer sim-

ulation with the following parameters. ULAs are assumed at both transmitter

and receiver with NT = NR = 32, NRF = 4 and antenna spacing d = λ
2
. They

have DFT training beams with NBeam
T = NBeam

R = 32. All simulation results are

averaged over 500 channel realizations with a carrier frequency of 60GHz. The

channel gains {αl}Ll=1 are modeled by i.i.d. random variables with distribution

CN(0, σ2
α) where σ2

α = 1. The AoAs and AoDs are modeled by the Laplacian

distribution whose mean is uniformly distributed over [0, π). At each channel re-

alization, the number of scatterers L is determined by L = max{P10, 1} where

P10 is the outcome of the Poisson random variable with mean 4.

Figure. 3.3 compares the NMSE defined as 10 log10

(
E(‖H−HLS/CS‖2

F/‖H‖2
F )
)
.

Note that, normalization is used because the sparsity of channel makes large num-

ber of elements in channel matrix are very small. In this case, mean square error

is hard to be compared. We generate 3 different groups of continuous AoDs/AoAs

pair for CSI and apply OMP algorithm with grid size G = 40 for channel esti-

mation. The difference between the generated angle and the grid point is fixed

as ∆θ = (0, π
4(G−1)

, π
2(G−1)

), referred to as OMP1, OMP2, OMP3. OMP1 repre-

sents the algorithm without off-grid error. OMP2 and OMP3 represent the al-

gorithms with different off-grid errors. Specifically, for OMP1, OMP2, OMP3,

θT,` and θR,` take values from set { π
2(G−1)

, π
2(G−1)

+ π
G−1

, . . . , π
2(G−1)

+ π(G−1)
G−1

},
{ π

2(G−1)
+ π

4(G−1)
, π

2(G−1)
+ π

G−1
+ π

4(G−1)
, . . . , π

2(G−1)
+ π(G−1)

G−1
+ π

4(G−1)
} and { π

2(G−1)
+

π
2(G−1)

, π
2(G−1)

+ π
G−1

+ π
2(G−1)

, . . . , π
2(G−1)

+ π(G−1)
G−1

+ π
2(G−1)

} respectively. We assume

OMP4 has known AoDs/AoAs and only estimate the channel gains. As shown in

Figure. 3.3, OMP3 has a distinct performance gap between OMP4, because the

impact of noise. OMP1, OMP2 and OMP3 show that the off-grid angles deterio-

rate channel estimation performance severely. Note that, NMSEs improve slower

than SNR because the grid size G = 40 is not large enough for 32 antennas are

both transmitter and receiver.
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It demonstrates that the channel estimation performance can be improved by

mitigating the impact of off-grid error.
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Figure 3.3: NMSE vs SNR comparison with OMP method with different off-grid

error.

In Figure. 3.4, we consider OMP algorithms and IP-OMP algorithms with dif-

ferent grid size G. For G = 64, 128, 256, OMP algorithms are named as OMP64,

OMP128 and OMP256 respectively. And IP-OMP algorithms withG = 64, 128, 256

are named as the IP-OMP64, IP-OMP128 and IP-OMP256 respectively. G should

be large enough to guarantee the sparsity of channel representation. The grid

points used in OMP algorithms are uniformly distributed as { π
2(G−1)

, π
2(G−1)

+
π

G−1
, . . . , π

2(G−1)
+ π(G−1)

G−1
}. We also consider the conventional LS algorithm for

comparison (same training beam pattern as OMP64). As shown in Figure. 3.4, LS

method has the worst performance with complexity O
(
(NTNR)2NBeam

T NBeam
R

)
.

And all of the OMP based methods with complexity O(LNBeam
T NBeam

R G2) can

achieve better performance compared to the LS method from 0dB to 6dB. Among

three conventional OMP methods, as expected, the performance is better when

G increases from 64 to 128. However, when G grows from 128 to 256, the esti-

mation becomes worse, because the large grid size also induces a higher mutual

coherence of sensing matrix which does not satisfy RIP any more. In CS theory,

sensing matrix should satisfy RIP to guarantee recovery performance. So we can

not improve estimation performance by keeping increasingG. In order to achieve a

desirable estimation performance, IP-OMP algorithms are employed. Comparing
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with OMP, IP-OMP algorithm performs better when G = 64, 128, 256. Espe-

cially, for G = 64, 128, the impact of grid error is significantly mitigated and the

performances are much better than the corresponding OMP algorithm with the

same G. Specifically, IP-OMP64 achieve 2dB to 5dB compared with OMP64. And

the improvement is significant at higher SNR, because the optimization range of

angles is more accurate. IP-OMP256 improves little because of the great number

of G results in limited space to further improve the angle estimation.

We use MATLAB to calculate the computational complexity of IP-OMP and

OMP for G = 64, 128, 256 respectively. If we consider the complexity of OMP64 as

1. Then the complexity is 1, 4 and 16 for OMP64, OMP128, OMP256. The results

show that the complexity of the corresponding IP-OMP is 6, 12 and 24. That is to

say IP-OMP64 can achieve much better performance than that of OMP128 and

OMP256, at the cost of slightly increased complexity compared with OMP128 and

significantly reduced complexity compared with OMP256. In summary, IP-OMP

algorithm can use a small G value to achieve significant improved estimation

performance without causing unaffordable computational load.
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Figure 3.4: NMSE vs SNR comparison with OMP method with different values

of G.

In Figure. 3.5, we consider OMP64 algorithms and IP-OMP64 algorithms

with different sparsity from 1 to 10 at the same SNR (4dB). As expected, both

OMP64 and IP-OMP performance decrease with more multipath. The increasing

non-zero elements makes angle (support) estimation more difficult for OMP. With
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Figure 3.5: NMSE vs SNR comparison with OMP method with different sparsity,

G=64.

less accurate angle estimation, the optimization range of IP-OMP is not sufficient

to correct all of the off-grid errors. Therefore, the improvement also decreases from

more than 4dB to less than 3dB. For mmWave channel, the sparsity is usually

less than 10.

In Figure. 3.6, NT = NR = 16 and NBeam
T = NBeam

R = 16 are applied. We

choose G = 64, 128, 256 for OMP algorithms and IP-OMP algorithm respec-

tively. Compared with Figure. 3.4, all compressive sensing methods achieve worse

NMSE performance with increased sparsity, because the number of measurement

decreases from 1024 to 256. However, IP-OMP32 still improves the performance

by more than 2dB in this cases. It proves that our proposed method can achieve

desirable performance even with limited number of measurements.

3.6 Summary

In this chapter, we presented a novel approach for channel estimation in mmWave

MIMO communication. To solve the problem in the conventional grid-based OMP,

IP method was applied to improve the angle estimation, and thereby improve the

channel estimation. The simulation results demonstrated that the proposed IP-

OMP clearly outperform OMP, while requiring an affordable computation load.

The achievable best performance is much better than that of the OMP with
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Chapter 4

Bayesian Matching Pursuit

Based Channel Estimation for

Millimeter Wave Communication

4.1 Introduction

As explained in Chapter 3, CS methods can be applied to the channel estimation

to increase accuracy of estimation with less complexity. However, according to

simulation results in Figure. 3.3, we find that even without off-grid errors, there

is a distinct performance gap between the estimation of the existing CS methods

with or without given sparsity pattern (SP). This chapter will focus on enhancing

the performance by improving accuracy of SP estimation.

4.1.1 Related Works and Motivations

As explained in Chapter 3, open-loop methods can be divided into non-Bayesian

based algorithms and Bayesian based algorithms. OMP [45] is a typical non-

Bayesian based method which finds the sub-optimal solution. In OMP, the SPs

of CSI are estimated based on the coherence between the columns of sensing

matrix and the received signal. So it is able to reconstruct sparse signal within

short time but highly affected by noise. Recently, Bayesian based methods such as

SBL [26] and Bayesian compressive sensing (BCS) [62] are proposed to be applied

in mmWave communication channel estimation to improve SP estimation with-

out the need of sparsity information. [26] employs SBL algorithm which makes

appropriate statistical assumption and applies estimation techniques to identify

the desired sparse solution. Specifically, the SBL adopts a Bayesian framework

assuming each element following independent, zero-mean, Gaussian distribution
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with unknown variance which are assigned the Gamma conjugate prior as hy-

perpriori. EM method is utilized to compute a Maximum A Posteriori (MAP)

estimate. BCS [62] is another Bayesian based method. Instead of applying EM

to calculate MAP estimate, a more efficient implementation has been derived

by analyzing the properties of the marginal likelihood function. It estimates CSI

through maximizing the marginal likelihood. Although Bayesian based algorithms

are able to achieve relative better performance and less affected by large noise,

for mmWave channel estimation, the performance is still distinctly worse than

the method that with known SP especially at low SNRs as shown in [25], [58].

Motivated by the previously discussed limitations, in this chapter, we propose

a method using ‘virtual sparsity’ to apply Bayesian matching pursuit (BMP)

without the need to know sparsity to improve the channel estimation accuracy

significantly at a low complexity. Based on a general mathematical method for

signal processing which is proposed in [63], we make appropriate assumptions

according to the characteristics of mmWave channel and select a set of candi-

date SPs with significant posterior probabilities for minimum mean square error

(MMSE) channel estimation.

Note that, as explained in Chapter 3, all grid based CS algorithms have off-

grid errors. Many research have been done such as [25], [58] and [28] to mitigate

this error for OMP, l1-norm minimization and SBL respectively. In this chapter,

we do not apply any off-grid mitigation and only compare the proposed algorithm

with original the OMP, SBL and BCS without off-grid error mitigation to ensure

fairness. The off-grid mitigation for Bayesian based methods will be discussed in

Chapter 5.

4.1.2 Main Contributions

In this chapter, a new method based on BMP is proposed to improve the accuracy

of mmWave channel estimation. We make appropriate assumptions according to

the characteristics of the mmWave channel and select a set of candidate SPs with

high posterior probabilities to estimate CSI. Numerical simulation shows that

our proposed method has significantly improved channel estimation performance

with acceptable complexity compared to existing methods including OMP, SBL

and BCS.

4.1.3 Chapter Organization

The organization of the paper is as follows. Section 4.2 presents the system model

and formulates the channel estimation problem with CS method. The Bayesian
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4.2 System Model

matching pursuit method for mmWave channel estimation is designed in Section

4.3. Simulation results illustrating the performance of the proposed algorithm are

given in Section 4.4. Finally, the conclusion is presented in Section 4.5.

4.2 System Model

We consider a single user hybrid MIMO system which is the same as the one in

Chapter 3, where the base station (BS) and mobile station (MS) are equipped

with NT and NR antennas. Both BS and MS have NRF RF chains (NRF ≤
min(NT , NR)). In the channel estimation stage, BS uses pilot beam training vec-

tors {fm ∈ CNT×1 : m = 1, . . . , NBeam
T } (NBeam

T ≤ NT ) to scan NBeam
T different

directions successively. The pilot beams are received by NBeam
R (NBeam

R ≤ NR)

combining vectors {wn ∈ CNR×1 : n = 1, . . . , NBeam
R } (NBeam

R ≤ NR) at MS. The

received signal for the mth pilot beam is given by

ym = WHHfmxp + WHnm, (4.1)

where xp is the transmitted pilot symbol. W = [w1, . . . ,wNBeam
R

] ∈ CNR×NBeam
R

is the combining matrix at MS. H ∈ CNR×NT represents the channel matrix, and

nm ∈ CNR×1 is the i.i.d Gaussian noise vector with variance as σ2
n. Note that,

it is different with the noise in (3.2). We consider different noise during NBlock
R

different time slots for receiving the mth transmitted beam in (3.2). But in (4.1),

the noise keeps constant as nm during receiving the mth transmitted beam to

simplify formulation. Collecting ym for m ∈ {1, . . . , NBeam
T }, we get

Y = WHHFX + N

=
√
PWHHF + N,

(4.2)

where Y = [y1, . . . ,yNBeam
T

] ∈ CNBeam
R ×NBeam

T , F = [f1, . . . , fNBeam
T

] ∈ CNT×NBeam
T

and N = [WHn1, . . . ,W
HnNBeam

R
] ∈ CNBeam

R ×NBeam
T is the noise matrix. X ∈

CNBeam
T ×NBeam

T is a diagonal matrix with xp on its diagonal. We assume identical

pilot symbols so that X =
√
P INBeam

T
where P is the pilot signal power.

The mmWave channel model is the same as Chapter 3. It can be represented

by the virtual channel representation method as

H =
G∑

g1=1

G∑
g2=1

αg1,g2aR(θ̃R,g2)aT
H(θ̃T,g1) + E

= ĀRHbĀ
H
T + E,

(4.3)

where

θ̃T,g1 , θ̃R,g2 ∈ {
π

2(G− 1)
,

π

2(G− 1)
+

π

G− 1
, . . . ,

π

2(G− 1)
+
π(G− 1)

G− 1
}. (4.4)
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g1 and g2 are the indices of grid point. G � L is chosen to achieve desired

resolution.

ĀT = [aT (θ̃T,1), . . . , aT (θ̃T,g1), . . . , aT (θ̃T,G)] ∈ CNT×G, (4.5)

ĀR = [aR(θ̃R,1), . . . , aR(θ̃R,g2), . . . , aR(θ̃R,G)] ∈ CNR×G, (4.6)

are defined as array response matrices. aT (θtl) and ar(θ
r
l ) can be given by

aT (θ̃T,g1) = [1, e−j2π
d
λ

cos θ̃T,g1 , . . . , e−j2π
d
λ

cos θ̃T,g1 (NT−1)]T

aR(θ̃R,g2) = [1, e−j2π
d
λ

cos θ̃R,g2 , . . . , e−j2π
d
λ

cos θ̃R,g2 (NR−1)]T ,
(4.7)

where d and λ denote the antenna spacing and the wavelength of operation. In

this chapter, we consider d = λ
2
. The channel gain αg1,g2 is modeled by i.i.d.

random variables with distribution CN(0, σ2
α). In this chapter, we assume σ2

α = 1.

The AoAs and AoDs are uniformly distributed in the interval [0, π).

Using these matrices, H can be approximated in terms of a L-sparse matrix

Hb ∈ CG×G, with L non zero elements in the positions corresponding to the AoAs

and AoDs. Note that the virtual channel representation is not exactly equal to

the real channel matrix H because of the quantized grid error. In this chapter,

we don’t mitigate the impact of off-grid errors.

Considering the system model in (4.2) and channel model in (4.3), the mmWave

channel estimation problem can be formulated as a sparse signal recovery problem

by vectorizing Y in (4.2). Using property of Khatri-Rao product vec(ABC) =

(CT ⊗A) · vec(B) for Y and H, we can get

yv=
√
P (FT ⊗WH) · vec(H) + vec(N)

=
√
P (FT ⊗WH)vec(ĀRHbĀ

H
T ) + nQ

=
√
P (FT ⊗WH)ADhb + nQ

=Q̄ · (hb) + nQ,

(4.8)

where yv ∈ CM×1 is the vectorized received signal where M = NBeam
T NBeam

R

is the measurement dimension. AD = Ā∗T ⊗ ĀR is an NTNR × G2 dictionary

matrix that consists of the G2 column vectors of the form aHT (θ̃T,g1)⊗ aR(θ̃R,g2),

with θ̃T,g1 and θ̃R,g2 , the g1th and g2th points, respectively, of the angle uniform

grid. hb = vec(Hb) represents the path gains of the corresponding quantized

directions. hb is an N × 1 vector where N = G2 is the virtual channel dimension.

Q̄ =
√
P (FT ⊗WH)AD ∈ CM×N is the sensing matrix. (4.8) is a sparse signal

recovery problem as hb has only L non-zero elements and L � N . Noise nQ is

assumed to be white Gaussian noise with variance σ2
n, i.e., nQ ∼ N(0, σ2

nIM).
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4.3 Proposed Bayesian Matching Pursuit Method for mmWAVE
Channel Estimation

Compressive sensing(CS) methods including OMP [45], SBL [26] and BCS [62]

can be leveraged to recover h from noisy received signal yv.

As introduced in Section 4.1.1, all these algorithms aim to find the most likely

SP, which may not be the most accurate one. In contrast to the MAP estimator,

MMSE estimator uses a fusion of SPs to form its result. Thus, in this chapter,

we propose to work with a mixture of chosen candidate SPs based on posterior

possibility with appropriate assumption.

4.3 Proposed Bayesian Matching Pursuit Method

for mmWAVE Channel Estimation

A general mathematical method for signal processing is proposed in [63]. How-

ever, it has very high complexity and many limitations to be applied in specific

scenarios. For example, it requires known sparsity but it is difficult to know the

sparsity in mmWave channel estimation. So we propose to use ‘virtual sparsity’ in

our methods. Furthermore, appropriate statistical assumptions is made according

to the characteristics of mmWave channel to avoid using EM to estimate hyper-

parameters. The choices of these statistical assumptions are explained in detail

as follows.

4.3.1 Assumptions for mmWave channel

{hn}Nn=0 are the elements in sparse vector hb. We assume that {hn}Nn=0 are drawn

from T specific Gaussian distributions. sn = t ∈ (0, 1, . . . , T − 1) is used as a

mixture parameter to index the component distribution. When sn = t, hn ∼
N(µt, σ

2
t ). The choice of parameters for T distributions depends on the applica-

tion. For example,

• Zero-mean binary prior: T = 2. (µ0, σ
2
0) = (0, 0) is set to make sure that

hn = 0. (µ1 = 0, σ2
1 > 0) is set to characterise the active non-zero element.

This is the simplest way to represent a sparse signal. But it is probably

hard to distinguish the ‘active’ elements. In this case, a large variance is

desirable.

• Nonzero-mean binary prior: T = 2. (µ0, σ
2
0) = (0, 0) is set to make sure that

hn = 0. (µ1 > 0, σ2
1 > 0) is set to characterize the active non-zero element.

Compared with the Zero-mean binary prior, this is more suitable for the

case if the active element has a known non-zero mean. For example, we

want to recover a picture which only has one known color.
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• Nonzero-mean ternary prior: T = 3. (µ0, σ
2
0) = (0, 0), µ1 = −µ2 6= 0, σ2

1 =

σ2
2 > 0, and λ1 = λ2. λt is the possibility that the value follows Gaussian

distribution which is indexed by the tth distribution. It is appropriate for

real valued case with no prior knowledge of sign.

In addition to the examples discussed above, we can choose more complex distri-

butions like T -ary circular prior for other specific applications.

For mmWave channel estimation, we did simulation based analysis to deter-

mine the values of parameters. In Figure. 4.1, we compare k-ary binary prior

and 2-ary binary prior with variance σ2
k = 1 (k is a random positive integer) and

σ2
0 = 0. We choose the random positive value is from 2 to 10. All simulation results

are averaged over 500 realizations. The results show that the number of Gaus-

sian distributions does not effect performance when the variances are the same.

Large T only leads to higher complexity. So we assume that each element in the

sparse signal is drawn from 2-ary Gaussian distribution in our application. More

details will be discussed in Section 4.4. Therefore, T = 2 and sn = t ∈ {0, 1} is

used as a mixture parameter to index the component distribution. When sn = 0,

(µ0, σ
2
0) = (0, 0) is set to make sure that hn = 0. When sn = 1, (µ1 = 0, σ2

1 6= 0)

is set to indicate an active non-zero coefficient. σ2
1 can be any positive value.

Then, we did simulation based analysis to determine the variances σ2
1. Vari-

ances are set as 0.1, 0.5, 1, 2, 10, 30, 100 in the simulation. As shown in Figure.

4.2, the estimation performance improves with increasing variance. Because we

assume zero means, larger variance is able to make estimation more sensitive and

accurate. As simulation shows, variances larger than 30 achieve almost the same

performance. More details will be discussed in Section 4.4. In this chapter, we

choose 100 as postulated value for σ2
1 to characterize the non-zero elements. σ2

n

is assumed as one tenth of the received power PR according to simulation based

analysis. More details of noise impact will be discussed in Chapter 5.

Based on the above analysis, we assume that {hn}Nn=0 are drawn from 2 specific

Gaussian distributions. One with (µ0, σ
2
0) = (0, 0) is to make sure that hn = 0.

The other one with (µ1, σ
2
1) = (0, 100) is set to characterize hn 6= 0. {sn}N−1

n=0 are

treated as i.i.d random variables as Pr{sn = t} = λt (0 < λt ≤ 1). λt is the

probability that the value follows Gaussian distribution indexed by sn = t. We

make
∑

t=1 λt � 1 to ensure the sparsity. Considering h = [h0, . . . , hN−1]T and

s = [s0, . . . , sN−1]T , the priors can be written as

h | s ∼ CN(µ(s),R(s)), (4.9)
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4.3 Proposed Bayesian Matching Pursuit Method for mmWAVE
Channel Estimation

where [µ(s)]n = µsn and R(s) has diagonal [R(s)]n,n = σ2
sn . Considering (4.8),

the channel vector hb and the received signal yv are joint Gaussian conditioned

on the mixture parameters s as

[
yv
hb

] ∣∣∣∣s ∼ CN

([
Q̄µ(s)
µ(s)

]
,

[
Φ(s) Q̄R(s)

R(s)Q̄H R(s)

])
, (4.10)

where

Φ(s) , Q̄R(s)Q̄H + σ2
nIM . (4.11)

4.3.2 MMSE Coefficient Estimation

For channel estimation, MMSE estimate of hb from yv is

ĥmmse , E{hb|yv} =
∑
s∈S

p(s|yv)E{hb|yv, s}. (4.12)

From (4.10) it is straightforward [64] to obtain

E{hb|yv, s} = µ(s) + R(s)Q̄HΦ(s)−1(yv − Q̄µ(s)
)
. (4.13)

We collect the set of all possible SPs in matrix S. If we know all possible 2N

({0, 1}N) posterior probability p(s|yv)s∈S, (4.12) can be calculated. But it is im-

practical to compute all possible 2N posterior probabilities p(s|yv)s∈S. Note that,

the size of SΩ which includes the SPs with non-negligible posterior probability

p(s|yv)s∈SΩ
can be small and practical to compute because of the sparsity. Using

only the dominant SPs in SΩ yields the approximate MMSE estimate

ĥammse , E{hb|yv} =
∑
s∈SΩ

p(s|yv)E{hb|yv, s}. (4.14)

The primary challenge in the computation of (4.14) is to obtain SΩ to calculate

p(s|yv) and Φ(s)−1. So, we first leverage a fast method to search for SΩ.

4.3.3 Search for Dominant SPs

We search for SΩ by selecting s ∈ S with the significant posterior probability

p(s|yv). According to the Bayesian rule, the posterior probability can be written

as

p(s|yv) =
p(yv|s)p(s)∑

s′∈S p(yv|s′)p(s′)
, (4.15)
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where p(s|yv) are equal to p(yv|s)p(s) up to a scale. For convenience, we work in

logarithm domain and define α(s,yv) as the SP selection metric:

α(s,yv) , ln p(yv|s)p(s)

= ln p(yv|s) +
N−1∑
n=0

ln p(s)

= −
(
yv − Q̄µ(s)

)H
Φ(s)−1(yv − Q̄µ(s)

)
− ln det

(
Φ(s)

)
−M lnπ +

N−1∑
n=0

lnλsn .

(4.16)

The significant p(s|yv) corresponds to significant value of α(s,yv). So we search

SΩ based on metric α(s,yv) using non-exhaustive tree search method.

The search starts with s = 0. In the first stage, we change only one element to

non-zero in s which corresponds to N different ‘one element active’ SPs. We store

all these possible SPs in the matrix S(1) and calculate the metric α(s) for them.

We choose D SPs with largest metrics and store them in the matrix S
(1)
Ω . In the

second step, we activate one more element from the D chosen SPs in S
(1)
Ω so that

we have (N−1)+(N−2)+ ...+(N−D) possible ‘two element active’ SPs in S(2).

Then D ‘two element active’ SPs with largest metrics among these (ND− (1+D)D
2

)

possible SPs are chosen and stored in S
(2)
Ω . Repeat this procedure J times to get

D ‘J-element active’ SPs with largest posterior possibility as candidate SPs.

The value of D is fixed and chosen as 5, because our simulation shows the

benefits of increasing D diminish quickly for D > 5. The value of J is deter-

mined by the sparsity of the channel. However, we don’t know the real sparsity

of mmWave channel. So we define a virtual sparsity L
′
. We choose an arbitrary

small integer from 2 to 5 as the virtual sparsity because the real sparsity for

the mmWave channel is generally less than 10 [3]. We calculate λ1 as: L
′
/N .

L
′

follows Binomial (N, λ1) distribution. It is common to use the approximation

L
′ ∼ N(Nλ1, Nλ1(1 − λ1)), in which case Pr(L

′
> J) = 1

2
erfc( J−Nλ1√

2Nλ1(1−λ1)
).

We assume that J0 is a very small target value of Pr{L′ > J}. In this case, J

can be calculated as J = derfc−1(2J0)
√

2Nλ1(1− λ1) + Nλ1e . The use of pre-

determined virtual sparsity provides superior performance with low complexity

without the need to know real sparsity.

4.3.4 Fast Metric Update

In the above search, metric α needs to be calculated for each possible SP. We

adopted a fast metric update method [63] to reduce the computational complexity.
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4.3 Proposed Bayesian Matching Pursuit Method for mmWAVE
Channel Estimation

For the case that [s]n = t and [s′]n = t′, where s and s′ are identical except

for the nth coefficient. For brevity, we use µt′,t , µt′ − µt, σ
2
t′,t , σ2

t′ − σ2
t and

∆n,t′(s,yv) , α(s′,yv) − α(s,yv) below. Note that the root node (S
(0)
Ω = 0) has

the following metric

α(0,yv) = − 1

σ2
‖yv‖2

2 −M lnσ2 −M ln π +N lnλ0. (4.17)

To derive the fast metric update, starting with property

Φ(s′) = Φ(s) + σ2
t′,tqnq

H
n , (4.18)

where qn is the nth column of Q̄. The matrix inversion lemma implies

Φ(s′)
−1

= Φ(s)−1 − βn,t′cncHn (4.19)

cn , Φ(s)−1qn (4.20)

βn,t′ , σ2
t′,t(1 + σ2

t′,tq
H
n cn)−1. (4.21)

According to [63], we assume that σ2
t′ 6= σ2

t , (4.18)-(4.21) imply

∆n,t′(s,yv) = βn,t′
∣∣cHn (yv − Q̄µ(s)

)
+ µt′,t/σ

2
t′,t

∣∣
− |µt′,t|2/σ2

t′,t + ln (βn,t′/σ
2
t′,t)

+ ln(λt′/λt),

(4.22)

where ∆n,t′(s,yv) quantifies the change to α(s,yv) corresponding to the change

of the nth index in s from t to t′. And then we can work out the metric for s′ as

α(s,yv) + ∆n,t′(s,yv). In this chapter, T = 2, t = 0, t′ = 1.

In summary, the proposed Bayesian Matching Pursuit based method is a non-

exhaustive tree-search using the SP selection metric (4.16) with fast metric up-

date. According to the characteristics of mmWave channel, we choose to apply

T = 2, (µ0, σ
2
0) = (0, 0), (µ1, σ

2
1) = (0, 100), D = 5, L′ = 5, λ1 = L

′
/N, J =

derfc−1(2J0)
√

2Nλ1(1− λ1) + Nλ1e, J0 = 0.005. The algorithm is illustrated in

Algorithm 4.1, where δ represents the approximate posterior probability of s using

the renormalized estimate

p(s|yv) =
exp{α(s,yv)}∑

s′∈S exp{α(s′,yv)}
≈ exp{α(s,yv)}∑

s′∈SΩ
exp{α(s′,yv)}

. (4.23)

When the search ends, the algorithm would return the MMSE estimation of hb

using (4.14).

Algorithm 4.1 Search via Bayesian Matching Pursuit

αroot = − 1
σ2‖yv‖2

2 −M lnσ2 −M ln π +N lnλ0

for n = 0 : N − 1 do
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croot
n = 1

σ2 qn, βroot
n = σ2

1(1 + σ2
1q

H
n croot

n )−1

for t = 1 : T − 1 do

αroot
n,t = αroot + ln βroot

n

σ2
1

+ βroot
n |crootH

n yv + µt
σ2

1
|2 − |µt|

2

σ2
1

+ ln λ1

λ0

end for

end for

for d = 1 : D do

n=[], p=[], ŝ(d,0) = 0, z = yv

for n = 0 : N − 1 do

cn = croot
n , βn = βroot

n

for t = 1 : T − 1 do

αn,t = αroot
n,t

end for

end for

for j = 1 : J do

(nΩ, tΩ) = (n, t) indexing the largest element in

{αn,t}t=1:T−1
n=0:N−1 which leads to an as-of-yet

unexplored node.

α(d,j) = αnΩ,tΩ , ŝ(d,j) = ŝ(d,j−1) + tΩδΩ

n = [n, nΩ], t = [t, tΩ], z = z− qnΩ
µΩ

for n = 0 : N − 1 do

cn = cn − βnΩ
cnΩ

cHnΩ
qn, βn = σ2

1(1 + σ2
1q

H
n cn)−1

for t = 1 : T − 1 do

αn,t = α(d,j) + ln βn
σ2

1
+ βn|cHn z + µt

σ2
1
|2 − |µt|

2

σ2
1

+ ln λ1

λ0

end for

end for

ĥ(d,j) =
∑j

k=1 δ[n]k [σ
2
1c

H
[n]k

z + µ[t]k ]

end for

end for

4.4 Simulation and Analysis

The performance of the proposed method is examined via computer simulation.

ULAs are assumed at both BS and MS with NT = NR = 32. We use NBeam
T = 32

training beams at BS, NBeam
R = 32 combining beams at MS and NRF = 4 at

both BS and MS. All simulation results are averaged over 500 channel realiza-

tions with a carrier frequency of 60GHz. The channel gains {αl}Ll=1 are modeled

by i.i.d. random variables with distribution CN(0, σ2
α) where σ2

α = 1. The AoAs
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4.4 Simulation and Analysis

and AoDs are modeled by the Laplacian distribution whose mean is uniformly

distributed over [0, π). At each channel realization, the number of scatterers L is

determined by L = max{P10, 1} where P10 is the outcome of the Poisson random

variable with mean 4. The grid points used in proposed algorithms are distributed

as { π
2(G−1)

, π
2(G−1)

+ π
G−1

, . . . , π
2(G−1)

+ π(G−1)
G−1

} where G = 64. The design of hy-

brid precoding and combining matrices have been extensively investigated, so we

just adopt the precoder and combiner presented in [61]. F = (Λ
−1/2
F UH

F )T where

UF and ΛF are the matrices of the eigenvectors and eigenvalues of Ā∗T (Ā∗T )H .

W = (Λ
−1/2
W UH

W )H where UWΛWUH
W = ĀR(ĀR)H . G = 64 is used to satisfy

RIP for applying CS algorithms. For BCS and SBL, true noise power is provided.

For the proposed method, parameters are selected as explained in Section 4.3. In

fact, an algorithm for computing approximate maximum likelihood estimates of

the hyperparameters such as σ2
1 and σ2

n, based on a generalized EM update, is

presented in [63] to achieve better performance. However, as for SBL, employing

EM algorithm induces huge time consumption which is a challenge for channel

estimation. We also use a large virtual sparsity 10 to compare with the algo-

rithm which uses small virtual sparsity 5. The proposed algorithms are named as

Proposed S and Proposed L for small virtual sparsity and large virtual sparsity

respectively.
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Figure 4.1: NMSE comparison between k-ary and 2-ary binary prior at different

SNRs.
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Figure 4.2: NMSE with difference variance at different SNRs (dB).

In Figure. 4.1, we compare 2-ary binary prior and k-ary binary prior where

k is a random positive integer. Considering h is a sparse vector, (µ0, σ
2
0) = (0, 0)

and (µ1, σ
2
1) = (0, 1) for 2-ary binary prior. (µ0, σ

2
0) = (0, 0) and (µk = 0, σ2

k = 1)

are set for k-ary binary prior. k is a random positive value from 2 to 10. The

results show that the number of Gaussian distribution doesn’t effect performance

in our application. Large T only leads to large complexity.

In Figure. 4.2, we compare the performance of FBMP methods with differ-

ent prior variances which are 0.1, 0.5, 1, 2, 10, 30, 100. Small virtual sparsity

is used. As shown in the figure, the estimation performance improves with in-

creased variance. Because estimation is calculated from E{hb|yv, s} = µ(s) +

R(s)Q̄HΦ(s)−1(yv− Q̄µ(s)
)

where [µ(s)]n = µsn , Φ(s) , Q̄R(s)Q̄H +σ2IM and

R(s)’s diagonal is [R(s)]n,n = σ2
sn . When we assume zero means, larger variance

makes estimation more sensitive and accurate. We also observe that variances

larger than 30 do not improve the performance further.

In Figure. 4.3, we compare the accuracy of channel estimation of OMP, SBL,

BCS, the Proposed S and the Proposed L. The performance of channel estimation

accuracy is measured by the NMSE defined as 10 log10

(
E(‖H−Hestimate‖2

F/‖H‖2
F )
)
.

As shown, our proposed methods perform better than any other CS algorithms at

low SNRs. The Proposed S achieves the best performance with 3-4 dB improve-

ment compared with BCS when SNR < 9dB. For higher SNRs, the Proposed L

can achieve 2dB improvement over BCS. We found that smaller virtual sparsity

56



4.4 Simulation and Analysis

Figure 4.3: Comparison of NMSE vs SNRs (dB).

works better for low SNRs, but bigger virtual sparsity is required for higher SNRs.

This is because we did not consider off-grid error mitigation in this chapter. The

accuracy of channel estimation is affected by noise and off-grid errors. At higher

SNRs, where the off-grid effect dominates, the additional active elements can

help mitigate off-grid error impact and improve the estimation performance. On

the contrary, noise dominates at lower SNRs, then adding extra active elements

which are redundant for MMSE estimation will lead to worse performance. Ap-

parently, larger virtual sparsity requires higher complexity, so we have to consider

the trade-off between complexity and estimation accuracy. For mmWave channel

estimation, using small virtual sparsity provides sufficient accuracy even for high

SNRs, with a much lower complexity as indicated by the runtime in Figure. 4.4.

Figure. 4.4 displays the average runtime of all CS based methods. Note that,

we use average runtime to compare the time complexity because SBL and BCS

are learning based algorithms which are difficult to find the time complexity.

However, average runtime is not exactly equal to the time complexity due to the

coding problems. In Figure. 4.4, our Proposed S method is significantly faster

than SBL, on the same order of BCS, significantly slower than OMP. Note that

true noise is provided to SBL and BCS to decrease the complexity to comparable

level. The result shows that our proposed methods can greatly improve channel

estimation performance with affordable computation.

The above simulation results have shown that our proposed algorithm is better
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Figure 4.4: Runtime of different methods at different SNRs (dB).

than SBL and BCS in terms of estimation accuracy. In addition, its complexity

is comparable with these learning algorithms which are given true noise power.

The reasons are summarized as follows.

• In the SBL-based method, corresponding to a practical scenario, the beamspace

channel vector for a hybrid mmWave system is sparse and it can be well

modeled by the N-ary Gaussian distribution as proved in SBL-based meth-

ods [26]. They assume that each element in channel vector follows the in-

dependent Gaussian distribution with zero mean and unknown variance.

So they need to learn the variances of N different Gaussian distributions

through EM or type II maximum likelihood function. Instead of learning

the parameters, we model the channel vector from 2-ary Gaussian mixture

with given means and variances. The means and variances of 2-ary Gaussian

mixture are chosen as (0, 0) and (0, 100) according to the characteristics of

mmWave channel estimation application. It significantly decreases the com-

putational load.

• In SBL and BCS, the MAP estimator is used to estimate parameters of

distribution based on the most likely SP. However, the most likely SP may

not be the most accurate one. These approaches do not take into account

the posterior probabilities for any other candidate SPs. In this chapter, we
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4.5 Summary

seek to determine not only the most likely SP, but also the set of SPs with

non-negligible posterior probabilities.

4.5 Summary

In this chapter, we propose a novel method based on Bayesian matching pursuit

algorithm for channel estimation in mmWave MIMO communication. Through se-

lecting appropriate parameters according to the characteristics of mmWave chan-

nel, we utilize Bayesian model to implement MMSE channel estimation using a

set of candidate SPs. The simulation results demonstrated that our algorithm

can outperform all existing methods while requiring an affordable computational

complexity.
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Chapter 5

Bayesian Compressive Sensing

Based Estimation of Off-grid

Channel for Millimeter Wave

Communication

5.1 Introduction

As introduced in Chapter 3 and Chapter 4, off-grid error and SP estimation error

are two main reasons that limit the performance of most existing CS based channel

estimation algorithms. We have proposed method to mitigate off-grid error in

Chapter 3 and increase accuracy of SP estimation in Chapter 4 respectively. In

this chapter, we propose a method to solve these two problems simultaneously.

5.1.1 Related Works and Motivations

Recently, many works focus on mitigating the off-grid error impact and improving

the accuracy of SP estimation. As discussed in Chapter 3, some off-grid mitigation

methods have been proposed for non-Bayesian based methods in mmWave chan-

nel estimation. For example, IP aided OMP [25] and IR-based Super-Resolution

Channel Estimation [57] are proposed for non-Bayesian based methods to miti-

gate the off-grid impact. But the SP estimation error of the non-Bayesian methods

limits the performance improvement.

As discussed in Chapter 4, works on open-loop channel estimation for mmWave

communication can be divided into non-Bayesian based algorithms [45] and Bayesian

based algorithm [27]- [65]. Although non-Bayesian based methods significantly re-

duce the training overhead and increase the accuracy of estimation, knowledge
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of the sparsity is required and the channel estimation performance is limited by

the SP estimation error with large noise. Bayesian based methods are able to

estimate the CSI without prior information of sparsity and significantly improve

the estimation performance with large noise. However, the proposed Bayesian

based methods such as SBL [26] and BCS [65] have very high complexity. They

assume that each element follows the Gaussian distribution with unknown vari-

ance which are assigned the Gamma conjugate prior. SBL utilizes the EM method

to compute a MAP estimate, while BCS adopts a more efficient implementation

by analysing the properties of the marginal likelihood function. Both SBL and

BCS have hundreds times greater complexity than OMP. FBMP [27] introduced

in Chapter 4 is another Bayesian based method. It makes appropriate assump-

tions according to the characteristics of the mmWave channel and selects a set

of candidate SPs with high posterior probabilities to estimate CSI. FBMP shows

superior performance than other Bayesian based algorithm with less complexity.

However, it is non-robust at high SNRs and requires rough a priori information

of sparsity.

Very few off-grid mitigation methods for Bayesian based methods are proposed

in mmWave channel estimation. Improved SBL [28] utilizes the Taylor expansion

to find a more accurate angle set to mitigate the off-grid impact in mmWave

channel estimation utilizing SBL. However, it is only for single receive antenna

system and has unacceptable complexity.

Motivated by the above issues, we first simplify the FBMP method and pro-

pose a matching pursuit method based on the MAP, named as improved Bayesian

matching pursuit (IBMP). IBMP has almost the same performance as FBMP but

with much lower complexity. However, IBMP has similar problems with FBMP:

it is non-robust at high SNRs because of the off-grid errors and requires a priori

knowledge of sparsity. Thus, an off-grid IBMP (OG-IBMP) method is proposed

to mitigate this problem through analysing the the impact of off-grid errors.

5.1.2 Main Contributions

1. An improved BMP method is proposed. Among all the existing mmWave

channel estimation methods that do not apply off-grid error mitigation,

IBMP can achieve almost the best performance at lower SNRs. In addition,

it has the lowest complexity among all Bayesian based methods for mmWave

channel estimation.

2. OG-IBMP is proposed and it is the first off-grid method for BMP algorithms

with detailed theoretical analysis. It further improves the channel estimation
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5.2 Models and Formulation of mmWave Channel Estimation
Problem

performance of IBMP at all SNRs.

3. The OG-IBMP does not require sparsity information and it is robust at

high SNRs which cannot be achieved by FBMP.

5.1.3 Chapter Organization

The remainder of this chapter is organized as follows. In Section 5.2, we introduce

the mmWave communication system model and utilize CS theory to formulate

the channel estimation as a sparse signal recovery problem. In Section 5.3, we pro-

pose an IBMP algorithm to estimate the CSI without known sparsity. In Section

5.4, theoretical analysis is carried out to demonstrate the performance deterio-

ration at high SNRs and the impact of off-grid errors on IBMP. Based on the

theoretical analysis, we propose a modified method, i.e. OG-IBMP based on se-

quential quadratic programming (SQP) in order to mitigate the off-grid problem.

In Section 5.5, simulation results are presented to demonstrate the superiority of

OG-IBMP. In Section 5.6, we conclude the chapter.

5.2 Models and Formulation of mmWave Chan-

nel Estimation Problem

5.2.1 System Model

We consider a single user hybrid MIMO system which is the same as the one

in Chapter 3, where the transmitter employs NT antennas and NRF RF chains

to communicate with a receiver with NR antennas and NRF RF chains (NRF ≤
min(NT , NR)).

In the channel estimation stage, the transmitter applies NBeam
T (NBeam

T ≤ NT )

different transmit beams denoted as {fm ∈ CNT×1 : m = 1, . . . , NBeam
T } to

transmit pilots symbols xp and the receiver uses NBeam
R (NBeam

R ≤ NR) differ-

ent receive beams denoted as {wn ∈ CNR×1 : n = 1, . . . , NBeam
R }. We assume

that the transmitter sends training beams fm to receiver successively. Because

the receiver has limited number of RF chains, it only generates NRF receive

beams simultaneously. The receive signal in one time slot can be represented by

yq ∈ CNRF×1, q ∈ {1, . . . , NBlock
R } where q denotes the received block index and

NBlock
R =

NBeam
R

NRF
is the number of received blocks. We assume NBeam

R and NBeam
T

are multiples of NRF . The received signal for all NBeam
T transmit beams is given
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by

Y = WHHFX + N

=
√
PWHHF + N,

(5.1)

where Y = [y1, . . . ,yNBeam
T

] ∈ CNBeam
R ×NBeam

T , F = [f1, . . . , fNBeam
T

] ∈ CNT×NBeam
T

and X ∈ CNBeam
T ×NBeam

T is the diagonal pilot signal matrix. N ∈ CNBeam
R ×NBeam

T is

the noise matrix given by

N = diag(WH
1 , . . . ,W

H
NBlock
R

)
[
[nT1,1, . . . ,n

T
NBlock
R ,1]T ,

. . . , [nT1,NBeam
T

, . . . ,nTNBlock
R ,NBeam

T
]T
]
.

(5.2)

where ni,j represents the noise received by the ith received block for the jth trans-

mit beam. Throughout the chapter, we assume identical pilot symbols so that

X =
√
P INBeam

T
where P is the pilot power. F and W are regarded as beamform-

ing matrices. Because hybrid analog/digital architecture is employed in mmWave

communication, they can be decomposed as F = FRFFBB and W = WRFWBB,

where FRF ∈ CNT×NT and WRF ∈ CNR×NR represent the RF beamforming matri-

ces, FBB ∈ CNT×NBeam
T and WBB ∈ CNR×NBeam

R represent the baseband processing

matrices. As a result, (5.1) can be formulated as

Y =
√
P (WRFWBB)HH(FRFFBB) + N. (5.3)

FRF , WRF , WBB and FBB will be designed in section 5.5. More details of the

derivation are presented in Chapter 3. H is the channel matrix. As introduced in

Chapter 3, we apply virtual channel representation for channel modeling.

H =
G∑

g1=1

G∑
g2=1

αg1,g2aR(θ̃R,g2)aT
H(θ̃T,g1) + E

= ĀRHbĀ
H
T + E,

(5.4)

where

θ̃T,g1 , θ̃R,g2 ∈ {0,
π

G− 1
,

2π

G− 1
, . . . ,

π(G− 1)

G− 1
}. (5.5)

g1 and g2 are the index of G grid point. G � L is chosen to achieve desired

resolution.

ĀT = [aT (θ̃T,1), . . . , aT (θ̃T,g1), . . . , aT (θ̃T,G)] ∈ CNT×G, (5.6)

ĀR = [aR(θ̃R,1), . . . , aR(θ̃R,g2), . . . , aR(θ̃R,G)] ∈ CNR×G (5.7)

64



5.2 Models and Formulation of mmWave Channel Estimation
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are defined as array response matrices. aT (θtl) and ar(θ
r
l ) can be given by

aT (θ̃T,g1) = [1, e−j2π
d
λ

cos θ̃T,g1 , . . . , e−j2π
d
λ

cos θ̃T,g1 (NT−1)]T ,

aR(θ̃R,g2) = [1, e−j2π
d
λ

cos θ̃R,g2 , . . . , e−j2π
d
λ

cos θ̃R,g2 (NR−1)]T ,
(5.8)

where d and λ denote the antenna spacing and the wavelength of operation. In

this chapter, we consider d = λ
2
. The channel gain αg1,g2 is modeled by i.i.d.

random variables with distribution CN(0, σ2
α). In this chapter, we assume σ2

α = 1.

The AoAs and AoDs are uniformly distributed in the interval of [0, π).

E is grid error caused by the quantization of angles. As explained in Chapter

3, E can not be mitigated by increasing grid size G. Most works on Bayesian

based channel estimation for mmWave MIMO communication leave grid errors

as an unexplored area. Therefore, to improve the achievable channel estimation

performance with a reasonable complexity, in this chapter, we propose to employ

SQP method to minimize the off-grid angle error and refine the grid accordingly

in each iteration of the Bayesian matching pursuit algorithm.

5.2.2 Formulation of mmWave Channel Estimation Prob-

lem

Considering the system model in (5.3) and channel model in (5.4), the problem

can be formulated as a sparse signal recovery problem as in Chapter 3. Using

property of the Khatri-Rao product, i.e. vec(ABC) = (CT ⊗A) · vec(B) for Y

and H, we can get

yv=
√
P (FT ⊗WH) · vec(H) + vec(N)

=
√
P (FT ⊗WH)vec(ĀRHbĀ

H
T ) + nQ

=
√
P (FT ⊗WH)(Ā∗T ⊗ ĀR)vec(Hb) + nQ

=
√
P (FT ⊗WH)ADhb + nQ

=Q̄ · (hb) + nQ,

(5.9)

where yv ∈ CM×1 is the vectorized received signal and M = NBeam
T NBeam

R is the

measurement dimension. AD = Ā∗T ⊗ ĀR is an NTNR × G2 dictionary matrix

that consists of the G2 column vectors of the form aHT (θ̃T,g1)⊗aR(θ̃R,g2), with θ̃T,g1

and θ̃R,g2 , the g1th and g2th points, respectively, of the angle uniform grid. hb =

vec(Hb) = (h1, h2, . . . , hN) is the vectorized channel gain of the corresponding

quantized directions where N = G2 and {hn}Nn=0 are the elements. Q̄ =
√
P (FT⊗

WH)AD ∈ CM×N is the sensing matrix. According to the formulation (5.9), spare

vectorized channel path gain hb can be recovered from noisy received signal yv

with known sensing matrix Q̄ by CS methods.
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CS algorithms including OMP, SBL, BCS and FBMP have been applied in

mmWave channel estimation. Among them, FBMP has significantly better per-

formance compared with other methods especially at low SNRs [27]. However, it

has many disadvantages such as degrading seriously with off-grid errors especially

at high SNRs, requiring sparsity information and relative high complexity. Thus,

in the next section, we simplify the FBMP to a MAP based single SP estimation

with appropriate assumption to reduce the computational load. Based on that,

we further propose an off-grid error mitigation method to overcome the problems

including the need of sparsity information and the deterioration of performance

at high SNRs.

5.3 Bayesian Matching Pursuit method for mmWave

Channel Estimation

In order to apply Bayesian matching pursuit idea, we need to choose our sig-

nal model and priors according to the characteristics of mmWave channel. The

Bayesian model is similar with the one in Chapter 4. But we only choose the most

likely SP instead of a set of candidate SPs with significant posterior probabilities

to reduce the complexity.

The noise nQ in (5.9) is assumed to be white circular Gaussian noise as nQ ∼
CN(0, σ2

nIM). In this application, {hn}Nn=0 are assumed to be drawn from two

specific Gaussian distributions indexed by sn = t ∈ {0, 1}. sn = 0 indexes the

distribution with (µ0, σ
2
0) = (0, 0) which implies hn = 0 ; and sn = 1 indexes

the distribution with (µ1, σ
2
1) which allows hn 6= 0. Without prior information,

we choose µ1 = 0 and σ2
1 can be any positive number. We use σ2

1 = 1 in this

section and the choice of different values of σ2
1 will be discussed according to

specific applications in Section 5.5. {sn}N−1
n=0 are treated as i.i.d random variables

as Pr{sn = t} = λt (0 < λt ≤ 1). λt is the probability that hn follows the

Gaussian distribution indexed by sn = t. We make λ1 � 1 to ensure that hb is

sparse. Considering hb = [h0, . . . , hN−1]T and s = [s0, . . . , sN−1]T , the priors can

be written as

hb | s ∼ CN(µ(s),R(s)), (5.10)

where [µ(s)]n = µt and R(s) has diagonal [R(s)]n,n = σ2
t . Considering (5.9), the

channel vector hb and the received signal yv are joint Gaussian conditioned on

the mixture parameters s as[
yv
hb

] ∣∣∣∣s ∼ CN

([
Q̄µ(s)
µ(s)

]
,

[
Φ(s) Q̄R(s)

R(s)Q̄H R(s)

])
, (5.11)
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5.3 Bayesian Matching Pursuit method for mmWave Channel
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where

Φ(s) , Q̄R(s)Q̄H + σ2
nIM . (5.12)

To estimate the CSI, we store the set of all possible SPs as S and seek to find

the MAP estimate of hb from yv as

ĥmap , E{hb|yv, smap}, (5.13)

where smap is the sparsity pattern which has the largest posterior probability

p(smap|yv) among all possible 2N p(s|yv)s∈S. From (5.11) it is straightforward [64]

to obtain

E{hb|yv, smap} = µ(smap) + R(smap)Q̄HΦ(smap)−1(
yv − Q̄µ(smap)

)
.

(5.14)

We note that the primary challenge in the computation of (5.14) is to find out

smap and calculate Φ(smap)−1. So, we first apply a fast method to search for smap.

5.3.1 Search for the Most Likely SP

Different from searching the multiple dominant SPs in the Chapter 4, we only

search for smap by selecting s ∈ S with the largest posterior probability p(s|yv).
According to the Bayesian rule, the posterior probability can be written as

p(s|yv) =
p(yv|s)p(s)

p(yv)
, (5.15)

where p(s|yv) are equal to p(yv|s)p(s) up to a scale. For convenience, we work in

logarithm domain and define α(s,yv) as SP selection metric:

α(s,yv) , ln p(yv|s)p(s)

= ln p(yv|s) +
N−1∑
n=0

ln p(s)

= −
(
yv − Q̄µ(s)

)H
Φ(s)−1(yv − Q̄µ(s)

)
− ln det

(
Φ(s)

)
−M ln π +

N−1∑
n=0

lnλsn .

(5.16)

The largest p(s|yv) corresponds to the largest value of α(s,yv). So we search smap

based on metric α(s,yv) using a non-exhaustive search tree method.

As illustrated in Figure 5.1, the search starts with s = 0 in Layer 0. We change

only one element from 0 to 1 in s which corresponds to N different ‘one non-zero

element’ SPs in Layer 1. We calculate the metric α(s) for all SPs at Layer 1 and

store the SP as S1 with the largest metric. For Layer 2, we activate one more
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element from S1 so that we have N − 1 possible ‘two-element active’ SPs. Again,

we calculate the metrics for SPs at Layer 2 and store the SP as S2 with the largest

metric. We do this procedure K times to get the ‘K-elements active’ SP with the

largest posterior possibility as the smap.

...

...

...

.

.

.

...

.

.

.

Figure 5.1: Non-exhaustive search tree.

However, the real sparsity of mmWave channel is usually unknown so that it

is difficult to determine the proper value of K which should be a little larger than

the real sparsity. In this case, we introduce a virtual sparsity L′ as chapter 4. For

mmWave channel estimation, we choose L′ = 5 considering that the real sparsity

for mmWave channel is generally less than 10. Then we calculate the non-zero

probability λ1 with virtual sparsity which is L
′
/N . Because L

′
follows Binomial

(N, λ1) distribution. It is common to use the approximation L
′ ∼ N(Nλ1, Nλ1(1−

λ1)), in which case Pr(L
′
> K) = 1

2
erfc( K−Nλ1√

2Nλ1(1−λ1)
). Through choosing a

very small target value of Pr(L
′
> K) as K0, we can find the proper value of

K as derfc−1(2K0)
√

2Nλ1(1− λ1) + Nλ1e. The use of pre-determined virtual

sparsity L′ provides superior performance with low complexity without the need

to know real sparsity. Note that, it may induce degraded performance when the

real sparsity is much bigger than the virtual sparsity. This will be discussed in

Section 5.4.

5.3.2 Fast Metric Update

Another primary challenge in the computation of (5.14) is the high computational

load for calculating Φ(sM)−1. So, we adopt a fast metric update method [27]

to reduce the computational complexity. Different from the fast metric update
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method in Chapter 4, we only calculate the metric for the SP with largest the

largest posterior probability instead of multiple dominant SPs.

In our search tree, the search begins from the root node (S0 = 0) which has

the following metric

α(0,yv) = − 1

σ2
n

‖yv‖2
2 −M lnσ2

n −M ln π +N lnλ0. (5.17)

We notice that the candidate SPs in the K layer have only one additional non-zero

element compared with the chosen SP SK−1 in the K−1 layer. This characteristic

can be used to derive fast metric update. We use [s]n to represent the value of

the nth element in s. For the case that [s]n = 0 and [s′]n = 1, where s and s′

are identical except for the nth coefficient, we propose an efficient method to

compute ∆n,δ(s,yv) , α(s′,yv) − α(s,yv). For brevity, we define µδ , µ1 − µ0

and σ2
δ , σ2

1 − σ2
0. To derive the fast metric update, starting with property

Φ(s′) = Φ(s) + σ2
δqnq

H
n , (5.18)

where qn is the nth column of Q̄. The matrix inversion lemma implies

Φ(s′)
−1

= Φ(s)−1 − βncncHn , (5.19)

cn , Φ(s)−1qn, (5.20)

βn , σ2
δ (1 + σ2

δq
H
n cn)−1. (5.21)

According to [27], (5.18)-(5.21) imply

∆n(s,yv) = βn
∣∣cHn (yv − Q̄µ(s)

)
+ µδ/σ

2
δ

∣∣
− |µδ|2/σ2

δ + ln (βn/σ
2
δ )

+ ln(λ1/λ0),

(5.22)

where ∆n(s,yv) quantifies the change to α(s,yv) corresponding to the change of

the nth index in s from 0 to 1. And then we can work out the metric for s′ as

α(s,yv) + ∆n(s,yv).

Even though, the complexity still remains high. The main reason is that cn

needs O(M2) operations using standard matrix multiplication according to (5.20).

We further reduce this complexity of O(M) by making use of the structure of

Φ(s)−1.

Assuming that s is the SP which is identical with spre but with one more active

element at the npre
th coefficient, if we have computed and stored the corresponding

parameters for spre as βnpre and cnpre , (5.20)-(5.21) imply that

cn = [Φ(spre)
−1 − βnprecnprecHnpre ]qn

= cnpre − βnprecnprecHnpreqn.
(5.23)
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Comparing (5.23) and (5.20), we can successfully reduce complexity by M times

via making use of the stored cnpre . Accordingly, z(s) , y − Q̄µ(s) can be recur-

sively updated as

z(s) = y − Q̄µ(spre)− qnpreµδ. (5.24)

If we define C , [c0, . . . , cN−1], having computed {cn}N−1
n=0 and {βn}N−1

n=0 , (5.14)

can be represented as

E{hb|yv, smap} = µ(smap) + R(smap)CHz(smap), (5.25)

because C = Φ(smap)−1Q̄ and Φ(smap) is Hermitian.

In summary, we speed up the algorithm by reducing FBMP to a MAP based

single SP estimation with fast calculation methods and appropriate assumption to

reduce computational load. The algorithm is shown in Algorithm 5.1 and named

IBMP. When the search ends, the algorithm would return the estimation of hb

based on (5.14). Simulations in Section 5.5 prove that IBMP is superior most of

the existing methods with affordable complexity which is several times less than

that of FBMP. However, it has non-robust problem at high SNRs. In addition, it

is not reliable to choose a small ‘virtual sparsity’ when the real sparsity is much

higher than expected. In the next section, the cause of this is analyzed and an

off-grid error mitigation method is proposed.

5.4 Off-grid Improved Bayesian Matching Pur-

suit

In order to overcome the disadvantages of IBMP, we first focus on the analysis

of the performance deterioration at high SNRs. According to model (5.9), we

define hs as the sub-vectors of hb based on support s and Q̄s as the sub-matrix

consisting of columns of the matrix Q̄ corresponding to support s. (5.9) can be

rewritten as

yv = Q̄shs + Ē. (5.26)

If we ignore the off-grid error, Ē is the same as nQ in (5.9). Then, (5.16) can be

represented as

α(s,yv) = −yv
HΦ(s)−1yv − ln det

(
Φ(s)

)
−M lnπ +

N−1∑
n=0

lnλsn .
(5.27)
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5.4 Off-grid Improved Bayesian Matching Pursuit

Algorithm 5.1 Matching Pursuit Based on MAP

αroot = − 1
σ2
n
‖yv‖2

2 −M lnσ2
n −M ln π +N lnλ0

for n = 0 : N − 1 do

c
(0)
n = 1

σ2
n
qn, β

(0)
n = σ2

1(1 + σ2
1q

H
n c

(0)
n )−1

α
(1)
n = αroot + ln β

(0)
n

σ2
1

+ β
(0)
n |(c(0)

n )Hyv|2 + ln λ1

λ0

end for

n=[], ŝ(0) = 0, z = yv

for k = 1 : K do

n∗ = n indexing the largest element in

{α(k)
n }n=0:N−1 which leads to an as-of-yet

unexplored node.

α(k) = α
(k)
n∗ , ŝ(k) = ŝ(k−1) + δ[n∗], n = [n, n∗]

while k < K do

for n = 0 : N − 1 do

c
(k)
n = c

(k−1)
n − β(k−1)

n∗ c
(k−1)
n∗ (c

(k−1)
n∗ )Hqn,

β
(k)
n = σ2

1(1 + σ2
1q

H
n c

(k)
n )−1,

α
(k+1)
n = α(k) + ln β

(k)
n

σ2
1

+ β
(k)
n |(c(k)

n )Hz|2

+ ln λ1

λ0

end for

end while

end for

hb =
∑K

k=1[σ2
1c

H
[n]k

z]

Because yv, M and N are known and unchanged. Φ(s) is essential for metric

comparison at each layer. We choose the new active SP element index n∗ in layer

k based on the objective function

n∗ = arg max
s∈ŝ(k−1)

a

(
yv

HΦ(s)−1yv − ln det
(
Φ(s)

)
+

N−1∑
n=0

lnλsn
)
, (5.28)

where ŝ
(k−1)
a represents the SPs with only one new active element compared with

ŝ(k−1). According to (5.12), Φ(s) , σ2
1Q̄sQ̄

H
s + σ2

nIM . At high SNRs, σ2
n is ex-

tremely small and the column vectors of matrix Q̄sQ̄
H
s are linearly related so that

det
(
Φ(s)

)
= det

(
σ2

1Q̄sQ̄
H
s

)
= 0. As a result, ln det

(
Φ(s)

)
tends to be negative

infinity. And the objective function in (5.28) turns to infinity with respect to any

different supports. Hence support selection method using (5.28) does not function

properly and this causes performance deterioration at high SNRs.

Another reason leading to the limit to the performance is the ignorance of

off-grid errors. Considering the true continuous AoDs/AoAs may lie off the grid,
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the grid representation in this case will result in the degradation of estimation

performance. (5.26) can be written as

yv = Q̄shs + Ē = Q̄sxs + nQ + ne, (5.29)

where ne represents the off-grid error which is always a non-zero value and doesn’t

decrease as nQ does at high SNRs. Because the continuous AoDs/AoAs follow

Gaussian distribution and we apply uniform quantization, the off-grid error should

also follow Gaussian distribution CN(0, σ2
e) where σ2

e is the variance of off-grid

error. Apparently, ignoring off-grid error leads to det
(
Φ(s)

)
= 0 at high SNRs.

When we take off-grid error into account, det
(
Φ(s)

)
increases to det

(
σ2

1Q̄sQ̄
H
s +

σ2
nIM + σ2

eIM
)

which would not be extremely small any more at high SNRs. It

directly prevents the objective function from becoming infinity at high SNRs.

Because off-grid error can not be reduced to a certain extent by increasing SNRs

or increasing resolution of the grid [25], we modify the existing grid points and

the corresponding sensing matrix to mitigate the off-grid error as

yv = Q̄shs + nQ + ne = Q̂shs + nQ, (5.30)

where Q̂s is the new sensing matrix corresponding to modified grid points. In-

corporating this off-grid mitigation into the IBMP, we propose the OG-IBMP

method to solve the off-grid problem, as summarised in Algorithm 5.2 and ex-

plained below.

In the initial stage, root metric αroot, c
(0)
n and β

(0)
n for layer 0 are calculated

so that we can obtain candidate metrics for layer 1 as α
(1)
n . After initialization,

iteration begins for layer k = 1 : K. In each iteration, we choose the largest metric

from candidate metrics α
(k)
n for layer k and store the index as n∗. Then off-grid

mitigation begins.

In the first step, we find the original estimated AoD/AoA value through

column index n∗. When the design of hybrid precoding and combining matrix

are completed, Q̄ is only determined by the columns of the dictionary matrix

AD. Because AD = Ā∗T ⊗ ĀR is an NTNR × G2 dictionary matrix that con-

sists of the G2 column vectors in the form of aHT (θ̃T,g1) ⊗ aR(θ̃R,g2), with θ̃T,g1

and θ̃R,g2 , the g1th and g2th points, respectively, of the uniform angle grid, the

original estimated AoD/AoA can be calculated as AoDk = 0 + ceil(n∗
G

) π
G−1

and

AoAk = 0 + (mod(n∗−1, G) + 1) π
G−1

where g1 = ceil( j
G

), g2 = mod(n∗−1, G) + 1

as step 1 in the process. However, the off-grid problem for IBMP method is that

the off-grid angles deteriorate the accuracy when we estimate angles in step 1.

Because the true AoD/AoA are continuous values, it is possible to find out a more

accurate AoD/AoA pair AoD′k/AoA
′
k around the original estimated AoDk, AoAk.
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5.4 Off-grid Improved Bayesian Matching Pursuit

In this case, it is obvious that we can find AoD′k/AoA
′
k pair through maximizing

metric α
(k)
n∗ . Considering the complexity, we choose to employ SQP method to

mitigate the off-grid error and estimate more accurate AoD′k/AoA
′
k based on the

chosen n∗ for layer k.

In step 2, we set xk = (AoDk, AoAk) as original point corresponding to the

n∗
th column in Q̄. We define the objective function for optimization as f with

qn∗ = (FT
BBFT

RF ⊗WH
BBWH

RF )(a∗(AoD′t)⊗ a(AoA′t)), (5.31)

c(k−1)
n∗ = Φ(̂s(k−1))−1qn∗ , (5.32)

β(k−1)
n∗ = σ2

1(1 + σ2
1q

H
n∗c

(k−1)
n∗ )−1, (5.33)

α(k)
n∗ = ln

β
(k−1)
n∗

σ2
1

+ β(k−1)
n∗ |(c(k−1)

n∗ )Hz|2 + ln
λ1

λ0

, (5.34)

f = −α(k)
n∗ . (5.35)

Through minimizing the objective function f between the adjacent grid points,

we can obtain new angle pair x′t = (AoD′t, AoA
′
t) which results in the largest

metric α
(k)
n∗ . This optimization problem based on (5.31)-(5.35) is formulated as

min
AoD′t,AoA

′
t

f(AoD′t, AoA
′
t)

s.t.

{
|AoD′t − AoDt| < π

2(G−1)
,

|AoA′t − AoAt| < π
2(G−1)

.

SQP method is adopted because it is proved to be highly effective for solving

constrained optimization problems with smooth nonlinear objective function and

constraints [66].

In step 3, after obtaining x′t using SQP method, we refine the grid point by

adjusting the corresponding dictionary vector AD, so that the column indexed by

n∗ is updated as qn∗ = (FT
BBFT

RF ⊗WH
BBWH

RF )(a∗(AoD′t)⊗ a(AoA′t)). When the

grid points are adjusted towards the continuous true angle point, off-grid impact

is mitigated.

In step 4, we update c
(k−1)
n∗ , β

(k−1)
n∗ , α

(k)
n∗ as (5.32)-(5.34) based on the updated

q̄n∗ from step3. α
(k)
n∗ is the optimized largest metric with newly updated grid

points for ŝ(k−1). Till now, off-grid mitigation ends. It is ready to calculate α
(k+1)
n

for the next layer.
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Then, we continue the iteration as IBMP does for all the K layers and find

the ŝ(K) with the largest metric as the estimated SP. Finally, hb is the channel

matrix as expressed in (5.25).

Algorithm 5.2 Off-Grid Improved Bayesian Matching Pursuit

αroot = − 1
σ2
n
‖yv‖2

2 −M lnσ2
n −M lnπ +N lnλ0

for n = 0 : N − 1 do

Φ(̂s(0))−1 = (σ2
nIM)−1

c
(0)
n = 1

σ2
n
qn, β

(0)
n = σ2

1(1 + σ2
1q

H
n c

(0)
n )−1

α
(1)
n = αroot + ln β

(0)
n

σ2
1

+ β
(0)
n |(c(0)

n )Hyv|2 + ln λ1

λ0

end for

n=[], ŝ(0) = 0, z = yv

for k = 1 : K do

n∗ = n indexing the largest element α
(k)
n∗ in

{α(k)
n }n=0:N−1 which leads to an as-of-yet

unexplored node.

Off-grid mitigation begin

1: AoDk = 0 + ceil(n∗
G

) π
G−1

AoAk = 0 + (mod(n∗ − 1, G) + 1) π
G−1

xk = (AoDk, AoAk)

2: max
AoD′k,AoA

′
k

f(AoD′k, AoA
′
k)

output: x′k = (AoD′k, AoA
′
k), F = f(x

′

k)

3: p = (FT
BBFT

RF ⊗WH
BBWH

RF )(a∗(AoD′k)⊗
a(AoA′k))

q̄n∗ = p

4: update c
(k−1)
n∗ , β

(k−1)
n∗ and optimized α

(k)
n∗

Off-grid mitigation end

α(k) = α
(k)
n∗ , ŝ(k) = ŝ(k−1) + δ[n∗], n = [n, n∗]

Φ(̂s(k−1))−1 = Φ(̂s(k−1))−1 − β(k−1)
n∗ c

(k−1)
n∗ (c

(k−1)
n∗ )H

while k < K do

for n = 0 : N − 1 do

c
(k)
n = c

(k−1)
n − β(k−1)

n∗ c
(k−1)
n∗ (c

(k−1)
n∗ )Hqn,

β
(k)
n = σ2

1(1 + σ2
1q

H
n c

(k)
n )−1,

α
(k+1)
n = α(k) + ln β

(k)
n

σ2
1

+ β
(k)
n |(c(k)

n )Hz|2

+ ln λ1

λ0
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5.5 Simulation Results

end for

end while

end for

hb =
∑K

k=1[σ2
1c

H
[n]k

z]

5.5 Simulation Results

The performance of the proposed methods IBMP and OG-IBMP are examined via

computer simulation. ULAs are assumed at both BS and MS with NT = NR = 32.

We use NBeam
T = 32 training beams at BS and NBeam

R = 32 combining beams

at MS. All simulation results are averaged over 500 channel realizations with a

carrier frequency of 60 GHz. At each channel realization, the number of scatterers

is L = 7. The channel gains {α`}L`=1 are modeled by i.i.d. random variables

with distribution CN(0, 1). The AoAs and AoDs are uniformly distributed in the

interval [0, π). We sample [0, π) uniformly with grid size G. The design of hybrid

precoding and combining matrices have been extensively investigated, so we adopt

the precoder and combiner presented in [61]. F = (Λ
−1/2
F UH

F )T where UF and

ΛF are the matrices of the eigenvectors and eigenvalues of Ā∗T (Ā∗T )H . W =

(Λ
−1/2
W UH

W )H where UWΛWUH
W = ĀR(ĀR)H . G = 64 is used to satisfy RIP to

apply CS algorithms. For BCS, true noise power are provided based on SNR. For

our proposed IBMP method, simulation results of varying σ2
1 and σ2

n are compared

and two different ‘virtual sparsity’, 10 and 5 are considered as L-IBMP and S-

IBMP respectively. Proposed IBMP algorithm with off-grid mitigation method

is named as OG-S-IBMP and OG-L-IBMP with small virtual sparsity and large

virtual sparsity respectively. BCS is included for comparison because of its state

of art performance. Note that the true noise power is given to BCS to decrease

the huge complexity to comparable level with other algorithms.

The parameter σ2
1 and σ2

n can be estimated by the EM algorithm to improve

the performance at the cost of huge complexity. In order to reduce the complexity

in our application, we investigate the impact of both σ2
1 and σ2

n so that we can

choose the value of parameters efficiently and achieve desirable performance.

In Figure 5.2, we compare the performance with different σ2
1 and known σ2

n. σ2
1

is chosen as 0.1,1 and 100. As shown in Figure 5.2, choosing larger σ2
1 significantly

improves the estimation accuracy. In fact, we can choose any positive value for

σ2
1. But it is hard to distinguish them from non-active elements considering the

small variances and zero means of Gaussian distribution. The results show that

IBMP performance is even worse than OMP when σ2
1 is 0.1 at low SNRs. Our

simulation based analysis shows that variance larger than 100 would not improve
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Figure 5.2: NMSE of IBMP at different SNRs (dB) with different σ2
1 and known

σ2
n.
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Figure 5.3: NMSE of IBMP at different SNRs (dB) with σ2
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Figure 5.4: Runtime of IBMP with σ2
1 = 100 and different σ2

n.

performance further in mmWave channel estimation. So we choose 100 as σ2
1 for

IBMP and the following OG-IBMP in our application.

In Figure 5.3, we fix σ2
1 = 100 and compare the performance with different

σ2
n. We select σ2

n as Pr/100, Pr/10, and the true noise. Pr is the received signal

power. Although all IBMP results are better than that of OMP, IBMP with

known σ2
n achieves the best performance among them. Without the knowledge

of σ2
n, different assumptions of σ2

n have little impact on estimation accuracy. We

found that smaller ‘virtual sparsity’ achieves better performance at low SNRs and

is more noise resistant, but bigger virtual sparsity is required for higher SNRs.

This is because the accuracy of channel estimation is affected by noise and off-

grid errors. At higher SNRs, where off-grid error dominates, additional active

elements can help mitigating off-grid error impact and improving the estimation

performance. On the contrary, noise dominates at lower SNRs. In such case, it

is very difficult to choose large number of right locations of active elements. The

increasing number of wrong active locations will lead to even worse performance.

Compared with performance of L-IBMP with and without known σ2
n, there is a

significant performance gap at low SNRs. The theoretical analysis also proves the

phenomenon that large σ2
n degrade the performance of L-IBMP which is more

sensitive than that of S-IBMP. In our application, σ2
n is usually unknown so that
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Figure 5.5: NMSE of IBMP at different SNRs (dB) without off-grid error.

L-IBMP is difficult to perform well even with very high complexity as shown

in Figure 5.4. As a result, for mmWave channel estimation, we choose to apply

S-IBMP with fixed parameter as σ2
1 = 100, σ2

n = Pr/10 to provide sufficient and

stable accuracy with a much lower complexity. In this case, S-IBMP achieves 2-5

dB improvement compared with OMP, but S-IBMP is less robust at higher SNRs

as analysed in Section 5.4.

In Figure 5.5, it shows the performance with known σ2
n, σ2

1 = 100 without

off-grid error. It shows that, as proved by the theoretical analysis that mitigating

off-grid errors can solve the performance flattening problem for S-IBMP at high

SNRs.

In Figure 5.6, we assume that σ2
1 = 100, σ2

n = Pr/10 and apply the proposed

off-grid mitigation methods namely OG-S-IBMP and OG-L-IBMP comparing

with OMP, IP-OMP, BCS, S-IBMP and L-IBMP. The results show that IP-

OMP, OG-S-IBMP and OG-L-IBMP all have a better performance because of the

application of the off-grid error mitigation method. Among them, our proposed

OG-S-IBMP achieve the best performance. Also, OG-S-IBMP has a significant

improvement compared with OG-L-IBMP because it is more sensitive to off-

grid error than to the noise. On the contrary, OG-L-IBMP is more sensitive to

noise instead of off-grid error. So OG-L-IBMP has less improvement with off-
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Figure 5.6: NMSE of OG-IBMP at different SNRs (dB) with σ2
1 = 100 and σ2

n =

Pr/10.

grid mitigation method especially at low SNRs. Specifically, OG-L-IBMP is 4dB

worse than OG-S-IBMP when SNR is less than 16dB. When the noise is very

small (SNR>16dB) and off-grid error dominates, OG-L-IBMP can achieve almost

the same performance as OG-S-IBMP. Considering the much lower complexity

of OG-S-IBMP and the superior performance at both low SNRs and high SNRs,

we can simply use small virtual sparsity for all cases and apply OG-S-IBMP

without a prior information of sparsity. Compared with the state of art algorithm

such as BCS, OG-S-IBMP achieves more than 5dB performance improvement

at all SNRs. If super resolution is needed, as Figure 5.5 shows, EM method can

be employed to estimate the true noise and further improve the performance to

-35dB at the cost of hundreds of times higher complexity.

In Fig. 5.7, a well-designed grid is employed. Specifically, the designed grid

point ϕg is determined to satisfy cos(ϕg) = 2
G

(g− 1)− 1, for g ∈ {1, 2, ..., G} [22].

Note that, the grid point ϕg is non-uniformly distributed in the [0, π] but cos(ϕg)

is uniformly distributed in [−1, 1]. This grid is proved to be able to reduce the

coherence of proposed CS formulation [22]. As shown in Fig. 5.7, all the CS

algorithms achieve better estimation performance compared with Fig. 5.6. Among

them, OMP algorithm is most affected by designed grid. S-FBMP has multiply
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Figure 5.7: NMSE at different SNRs (dB) with σ2
1 = 100, σ2

n = Pr/10 and well-

designed grid.

larger complexity than S-IBMP, but it only achieves slightly better performance

than S-IBMP in our application. Other Bayesian based algorithms almost keep the

trend as Fig. 5.6, but with 2-5 dB improvement. Fig. 5.7 proves that the proposed

algorithms are able to improve the channel estimation performance with any grid

designs.

The average runtime of algorithms are illustrated in Figure 5.8 to evaluate

the complexity of different methods. Our proposed OG-S-IBMP is significantly

faster than OG-L-IBMP and on the same order with L-IBMP and BCS. BCS is

comparable with these algorithms because we assume the noise power is known.

Among them, OMP is the fastest algorithm.

In summary, the proposed OG-S-IBMP algorithm can overcome the disadvan-

tages of S-IBMP including the deterioration at high SNRs and the requirement of

sparsity information. OG-S-IBMP method is able to achieve the best performance

among all existing algorithms with slightly higher complexity.
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Figure 5.8: Runtime of OG-IBMP at different SNRs (dB) with σ2
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σ2
n = Pr/10.

5.6 Summary

In this chapter, we first propose a fast MAP based method IBMP for channel

estimation in mmWave MIMO communication. Then we improve the IBMP by

implementing off-grid mitigation method. Simulation results demonstrated that

OG-S-IBMP overcomes all the disadvantages of IBMP and outperforms existing

methods with affordable computational complexity.
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Chapter 6

Exploiting Angular Spread for

Channel Estimation in

Millimeter Wave MIMO System

6.1 Introduction

The sparsity of mmWave channel has been exploited to reduce the training over-

head as discussed in Chapter 3-5. In this chapter, we propose to exploit angular

spread that exhibits in the dominant propagation directions in mmWave channels.

6.1.1 Related Work

The characteristics of mmWave channel are further investigated by lots of re-

search. For example, it was found that the multipaths in the realistic mmWave

channel exhibit the clustered nature, that is, different delay taps of the wide-

band channel may share the same AoDs/AoAs [30]. In this Chapter, a block form

OMP called block orthogonal matching pursuit (BOMP) [30] will be adopted

to reduce the training overhead by utilizing this characteristic. In [31], the cor-

relation between the mmWave channel is utilized with clustering block sparse

Bayesian learning (CBSBL) algorithm to avoid the suboptimal solutions in chan-

nel estimation.

In addition to the above characteristics, recently, several real-world measure-

ments in the dense-urban propagation environment reveal that mmWave channels

spread in the form of clusters of paths in the angular domains (AoD and AoA).

The angular spread induces a block sparse pattern in the resulting complex chan-

nel gain matrix, which has been shown in [8], [32] and [39]. Specially, real-world

channel measurements [8], [32] at 28 GHz and 73 GHz were shown to have an
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angular spreads of 15.5◦ and 15.4◦, respectively, in terms of root mean-squared

(RMS) beamspread per cluster at AoA. And the measured AoD spreads (in terms

of RMS) are 10.2◦ and 10.5◦, respectively. For example, in Figure 6.1, a signal sent

from the transmitter reaches the receiver via a few clusters of paths. Since the

wavelength of electromagnetic waves in the mmWave system are likely to be com-

parable with the roughness of the object surfaces that bounce off the waves, the

angles of departures at the transmitter and the angles of arrivals at the receiver

are likely to be clustered, such as the clusters a,b, c and d illustrated in Figure

6.1. [5] generated the power profiles of the path cluster using the proposed statis-

tical channel model with fitted large-scale parameters in [32] as shown in Figure

6.2. As demonstrated in [5], the angular spreads give rise to a structured spar-

sity pattern that can be exploited to improve the mmWave channel estimation

performance. Thus, this scattering channel model has been adopted in the litera-

ture [33] [5] and [34]. A two-stage compressed sensing scheme was proposed and

it was shown that the proposed scheme achieves a lower sample complexity than

a conventional compressed sensing method that exploits only the sparse structure

of mmWave channels [33]. [5] essentially couples the channel path power at one

angular direction with its two-dimensional AoD-AoA neighboring directions and

adopts coupled sparse Bayesian learning to estimate the CSI. [34] addresses the

channel estimation problem within a Bayesian framework. Specically, they adopt a

matrix factorization formulation and translate the problem of channel estimation

into searching for two-factor matrices. Then a variation of the Bayesian infer-

ence method is proposed for the mmWave channel estimation. However, both [5]

and [34] are based on the Bayesian learning method which adopts the EM algo-

rithm to estimate the hyperparameters with huge computational complexity.

6.1.2 Main Contributions

In this chapter, we exploit the sparsity in the angular domain and make use of

the angular spread of the path clusters in the AoA domain. The two-dimensional

joint AoD-AoA spread will be our future work. Different from [5], [33] and [34]

which study angular spread based on the low-rank structure or statistical prob-

ability with high complexity, we derive the AoA angular spreads as blocks in

channel matrix directly and utilize the block sparsity by formulating the channel

estimation to a block signal recovery problem. BOMP algorithm is applied for

estimation. We then utilize this block property in the Bayesian matching based

mmWave channel estimation and propose the block Bayesian matching pursuit

(BBMP) method. The contributions of this chapter can be summarized as follows.
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6.1 Introduction

Figure 6.1: Angular spreads in mmWave communication [4].

1. We formulate channel estimation as a block sparse signal recovery problem

exploiting the angular spread at AoAs. BOMP algorithm is applied to solve

this channel estimation problem and showed much better performance with

lower complexity comparing with OMP.

2. BBMP algorithm is proposed for mmWave channel estimation based on

our block sparse signal recovery formulation. Simulation shows that this

method improves estimation accuracy and reduces computational complex-

ity compared with the Bayesian learning based methods and other Bayesian

matching pursuit methods.

6.1.3 Chapter Organization

The remainder of this chapter is organized as follows. In Section 6.2, we intro-

duce the mmWave communication system model and some previous works on the

formulation of the channel estimation for mmWave. In Section 6.3, we formulate

the channel estimation for mmWave as a block sparse recovery problem exploit-

ing the AoA angular spreads. BOMP is applied to solve the problem. In section

6.4, we propose the BBMP algorithm to further improve the channel estimation

performance and reduce the high complexity induced by the searching process

in FBMP. In Section 6.5, simulation results are presented to demonstrate the

superiority of BOMP and BBMP. In Section 6.6, we conclude the chapter.
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Figure 6.2: Channel path power profiles for two separated path clusters with AoA

spreads larger than AoD spreads; Colors represent the average power [5].

6.2 System Model and the Conventional Chan-

nel Modeling

We consider a single user hybrid MIMO system which is the same as the one in

Chapter 3, where the BS is equipped with NT antennas and NRF RF chains

communicating with a MS with NR antennas and NRF RF chains (NRF �
min(NT , NR)).

In the channel estimation stage, the transmitter applies NBeam
T (NBeam

T ≤ NT )

different transmit beams denoted as {fm ∈ CNT×1 : m = 1, . . . , NBeam
T } to trans-

mit pilots symbol xp and receiver uses NBeam
R (NBeam

R ≤ NR) different receive

beams denoted as {wn ∈ CNR×1 : n = 1, . . . , NBeam
R }. We assume that the trans-

mitter sends training beams fm to receiver successively. Because the receiver has

limited number of RF chains, it only generates NRF receive beams simultane-

ously. The receive signal in one time slot can be represented by yq ∈ CNRF×1, q ∈
{1, . . . , NBlock

R } where q denotes the received block index and NBlock
R =

NBeam
R

NRF
is

the number of the received blocks. We assume NBeam
R and NBeam

T are multiples

of NRF . The received signal for all NBeam
T transmit beams as

Y = WHHFX + N

=
√
PWHHF + N,

(6.1)
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6.2 System Model and the Conventional Channel Modeling

where Y = [y1, . . . ,yNBeam
T

] ∈ CNBeam
R ×NBeam

T , F = [f1, . . . , fNBeam
T

] ∈ CNT×NBeam
T

and X ∈ CNBeam
T ×NBeam

T is the diagonal pilot signal matrix. N ∈ CNBeam
R ×NBeam

T is

the noise matrix given by

N = diag(WH
1 , . . . ,W

H
NBlock
R

)
[
[nT1,1, . . . ,n

T
NBlock
R ,1]T ,

. . . , [nT1,NBeam
T

, . . . ,nTNBlock
R ,NBeam

T
]T
]
.

(6.2)

where ni,j represents the noise received by the ith received block for the jth trans-

mit beam. Throughout the chapter, we assume identical pilot symbols so that

X =
√
P INBeam

T
where P is the pilot power. F and W are regarded as beamform-

ing matrices. Because hybrid analog/digital architecture is employed in mmWave

communication, they can be decomposed as F = FRFFBB and W = WRFWBB,

where FRF ∈ CNT×NT and WRF ∈ CNR×NR represent the RF beamforming matri-

ces, FBB ∈ CNT×NBeam
T and WBB ∈ CNR×NBeam

R represent the baseband processing

matrices. As a result, (6.1) can be formulated as

Y =
√
P (WRFWBB)HH(FRFFBB) + N. (6.3)

The design of FRF , WRF , WBB and FBB will be presented in section V.

The mmWave channel can be approximated by a physical channel model with

L scatterers due to its limited scattering feature [19]. Each scatterer contributes

only one path of propagation between BS and MS. The channel matrix can be

written as (3.6)-(3.9)

H =

√
NTNR

L

L∑
`=1

α`aR(θR,`)a
H
T (θT,`)

= ARHaA
H
T .

(6.4)

We apply virtual channel representation to model the mmWave MIMO channel

as introduced in (3.10)-(3.13),

H =
G∑

g1=1

G∑
g2=1

αg1,g2aR(θ̃R,g2)aHT (θ̃T,g1) + E

= ĀRHbĀ
H
T + E.

(6.5)

Considering the system model in ((6.3)) and channel model in ((6.5)), the mmWave

channel estimation problem can be formulated as a sparse signal recovery problem

by vectorizing Y in ((6.3)). Using the property of Khatri-Rao product vec(ABC) =

(CT ⊗A) · vec(B) for Y and H, we get

yv=
√
P (FT ⊗WH) · vec(H) + vec(N)

=
√
P (FT ⊗WH)vec(ĀRHbĀ

H
T ) + nQ

=
√
P (FT ⊗WH)ADhb + nQ

=Q̄ · (hb) + nQ,

(6.6)
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as (3.16). It is the conventional formulation for mmWave channel estimation.

hb ∈ CG2×1 is a L (L� G2) sparse vector, it can be recovered by CS algorithms.

6.3 Exploiting AoA Angular Spread in mmWave

Channel Estimation

6.3.1 System Block Model and Formulation of mmWave

Channel Estimation Problem

We consider that each scatterer contributes only one path of propagation and

the AoAs have angular spreads. The continuous angular spreads are modeled as

M -gridpoint-long blocks on a discrete angle grid G. M can be approximated by

rounding up ( θs
180◦

G−0.5) where θs is the AoA angular spread in degree based on

real world measurements [32]. Then the channel model (6.4) can be reformulated

as

H =

√
NTNR

LM

L∑
`=1

M∑
m=1

α`,maR(θr`,m)aHT (θt`). (6.7)

where θt` is the AoD of the `-th path, {θr`,m}Mm=1 are the discrete AoA points within

the angular spread of the `-th path. α`,m is the complex path gain for the path

between θt` and θr`,m. (6.7) can be rewritten as a matrix form

H = BRHCBH
T , (6.8)

where

BR = [Br(θ
r
1), . . . ,Br(θ

r
` ), . . . ,Br(θ

r
L)] ∈ CNR×ML,

Br(θ
r
` ) = [aR(θr`,1), . . . , aR(θr`,m), . . . , aR(θr`,M)] ∈ CNR×M ,

BT = [Bt(θ
t
1), . . . ,Bt(θ

t
`), . . . ,Bt(θ

t
L)] ∈ CNT×ML,

Bt(θ
t
`) = [aT (θt`), . . . , aT (θt`), . . . , aT (θt`)] ∈ CNT×M ,

HC = diag(αb(1), . . . ,αb(`), . . . ,αb(L)) ∈ CML×ML,

αb(`) = diag(α`,1, . . . , α`,m, . . . , α`,M) ∈ CM×M .

(6.9)

We choose G as integral multiple of ML. Using the virtual channel representation

as (6.5) but ignoring off-grid error, (6.8) can be approximated as

H ≈ ĀRHCĀH
T , (6.10)

where HC ∈ CG×G is an ML-sparse channel gain matrix. Note that, according

to the structure of BT and BR in (6.9), AoA spread leads to an M non-zero
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6.3 Exploiting AoA Angular Spread in mmWave Channel Estimation

Figure 6.3: Block sparse structure of HC .

elements appearing at adjacent rows in HC . In addition, each AoA spread shares

a common AoD, as a consequence, the M non-zero elements also appearing at the

same column of HC . Thereby, in HC , the non-zero elements which represent the

channel gain of an AoA angular spread should be an M -element block in columns

as shown in Figure 6.3.

To apply the compressive algorithms, we vectorize the received signal Y, as

we did in (6.6), and we get

yv=
√
P (FT ⊗WH) · vec(H) + vec(N)

=
√
P (FT ⊗WH)vec(ĀRHCĀH

T ) + nQ

=
√
P (FT ⊗WH)ADhC + nQ

=Q̄ · (hC) + nQ,

(6.11)

where Q and nQ are the same as in (6.6). hC = vec(HC) is an G2 × 1 vector

with block sparsity. (6.11) is a block sparse signal recovery problem. Structure

CS methods can be leveraged to recover hC from the noisy received signal yv.

6.3.2 Block Orthogonal Matching Pursuit Method for mmWave

MIMO Channels

The standard sparsity model in the conventional sense assumes that non-zero

elements can appear anywhere in hC [47]. As discussed in block-sparse model [67],
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the non-zero entries of hC appear in blocks rather than arbitrarily spread in the

vector. We assume that the vector hC ∈ CG2×1 is a concatenation of N = G2

M

blocks and each block has M elements. The vector hC is described as:

hC = [hTC [1],hTC [2], . . . ,hTC [N ]]T , (6.12)

where hC [i] ∈ CM×1 for i = 1, . . . , N . The vector hC has only L non-zero blocks.

In mmWave communication, the center of the blocks appears randomly and these

blocks will be adjusted to the nearest block hTC [i] to fit (6.12).

Accordingly, the sensing matrix Q is divided as a concatenation of N matrices

as

Q̄ = [Q̄[1], Q̄[2], . . . , Q̄[N ]], (6.13)

where submatrix Q̄[i] ∈ CNBeam
T NBeam

R ×M for i = 1, . . . , N are termed as blocks.

The block OMP has been proposed to solve this block sparse recovery problem

[67]. At the k-th step, BOMP selects the block that is the best match to the

current residual according to:

ik = argmin
i
‖Q̄H [i]rk−1‖2, (6.14)

where rk−1 is the residual defined as step 7 in following algorithm.

Algorithm 6.1 BOMP method for mmWave channel estimation

Require: sensing matrix Q̄, measurement vector yv, sparsity L and grid
G
1: Ωk−1 =empty set, residual r0 = yv, set the iteration

counter k = 1
2: while k ≤ 2L do
3: ik = arg max

i=1,...,N
|Q̄[i]Hrk−1|

4: Ωk = Ωk−1 ∪ {ik}
5: Q̄Ωk = Q̄[Ωk]
6: hk = (Q̄H

Ωk
Q̄Ωk)

−1Q̄H
Ωk

yv
7: rk = yv − Q̄Ωthk
8: k = k + 1
9: end while
10: hC [i] = hk−1 for i ∈ Ωk−1 and

hC [i] = 0 otherwise
11: return hC

In Section 6.5, simulation results are presented to demonstrate that BOMP

achieves better estimation accuracy than OMP with less complexity. However,

the performance of OMP and BOMP will deteriorate at low SNRs [19]. In this

90



6.4 Block Bayesian Matching Pursuit Based mmWave Channel
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case, hC is overwhelmed by noise, and the support of hC detected by the classic

non-Bayesian based compressive sensing method is inaccurate, leading to the

deteriorated performance as demonstrated by the simulation results. In addition,

sparsity information is usually unknown in the mmWave channel estimation. To

improve the accuracy of estimation without knowing the sparsity information, a

Bayesian based block compressive sensing method exploiting angular spreads is

proposed in the Section 6.4.

6.4 Block Bayesian Matching Pursuit Based mmWave

Channel Estimation

6.4.1 Assumptions for the mmWave channel

In order to apply the Bayesian based compressive sensing method to estimate the

mmWave channel, appropriate statistic assumptions need to be made according

to the characteristics of the mmWave channel. The noise nQ in (6.11) is assumed

to be white circular Gaussian with variance σ2
n, i.e., nQ ∼ CN(0, σ2

nIMs) where

Ms = NBeam
T NBeam

R is the number of measurements. {hi}Nsi=1 are the elements in

the sparse vector hC where Ns = G2 is the number of elements in the channel

matrix. We assume that {hi}Nsi=1 are drawn from two specific Gaussian distribu-

tions. Considering the block structure shown in (6.12), the block sparsity can be

explicitly expressed as

hC [n] = {hi}Mn
i=M(n−1)sn, (6.15)

where {hi}Mn
i=M(n−1) are the channel coefficients of the nth block. sn ∈ {0, 1} is a

binary index used as a mixture parameter for the distribution of the nth block

Pr(sn = t) =

{
p1, for t = 1,

1− p1, for t = 0.
(6.16)

{sn}Nn=1 are treated as i.i.d random variables as Pr{sn = 1} = p1 (0 < p1 ≤ 1).

s = [s1, s2, . . . , sN ] is the mixture index of N blocks. p1 is the probability that

the channel coefficients in the nth block follow Gaussian distribution indexed by

sn = 1. When sn = 0, (µ0, σ
2
0) = (0, 0) is set to make sure that hC [n] = 0.

When sn = 1, (µ1, σ
2
1) = (0, 100P ) is set to indicate an active non-zero coefficient

where P is the power of the received signal. In fact, σ2
1 can be set as any positive

value. We set 100P because relative large variance can improve the accuracy.

Simulation based analysis shows that a variance larger than 100P would not

improve performance further [27]. More details about the choice of the variance
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value will be discussed in the following derivation. We make p1 � 1 to ensure the

sparsity. zn is the support vector of the nth block

zn = sn ⊗ IM , (6.17)

where IM ∈ CM×1 is a vector with all entires equal to 1. Considering hC =

[hTC [1],hTC [2], . . . ,hTC [N ]]T and z = [z[1]T , z[2]T , . . . , z[N ]T ]T is the support pat-

tern (SP) of hC , the priors can be written as

hC | z ∼ CN(0,R(z)), (6.18)

where covariance matrix R(s) has the structure-property, i.e.,

R(z) =


σ2
s1

IM 0 . . . 0
0 σ2

s2
IM . . . 0

...
. . .

...
0 0 . . . σ2

snIM


MN×MN

. (6.19)

has diagonal [R(s)]n,n = σ2
sn . Considering (6.11), the channel vector hB and the

received signal yv are joint Gaussian conditioned on the mixture parameters z as[
yv
hC

] ∣∣∣∣z ∼ CN

([
0
0

]
,

[
Φ(z) QR(z)

R(z)QH R(z)

])
, (6.20)

where

Φ(z) , Q̄R(z)QH + σ2
nIM . (6.21)

6.4.2 MMSE Coefficient Estimation

The MMSE estimate of hC from yv is

ĥmmse , E{hC |yv} =
∑
z∈Z

p(z|yv)E{hC |yv, z}. (6.22)

From (6.20) it is straightforward [64] to obtain

E{hC |yv, z} = R(z)QHΦ(z)−1yv. (6.23)

We collect the set of all possible SPs in a matrix Z. If we know all possible

posterior probability p(z|yv)z∈Z, (6.22) can be calculated. Although employing

block structure is able to reduce the number of possible SPs from 2MN to 2N , it

remains impractical to compute all possible 2N posterior probability. But the size

of ZΩ which includes the SPs with non-negligible posterior probability p(z|yv)z∈ZΩ

can be small and practical to compute because of the sparsity. Making use of the

dominant SPs in ZΩ yields the approximate MMSE estimate

ĥammse , E{hC |yv} =
∑
z∈ZΩ

p(z|yv)E{hC |yv, z}. (6.24)

We first leverage a fast method to search for ZΩ.
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6.4.3 Search for Dominant SPs

We search for ZΩ by selecting z ∈ Z with significant posterior probability p(z|yv).
According to the Bayesian rule, the posterior probability can be written as

p(z|yv) =
p(yv|z)p(z)∑

z′∈Z p(yv|z′)p(z′)
, (6.25)

where p(z|yv) are equal to p(yv|z)p(z) up to a scale. For convenience, we work in

logarithm domain and define α(z,yv) as SP selection metric:

α(z,yv) , ln p(yv|z)p(z)

= ln

(
1

(2π)
Ms
2 |Φ(z)| 12

exp (−1

2
yHv Φ(z)−1yv)

pL1 (1− p1)N−L

)
= −Ms

2
ln(2π)− 1

2
ln |Φ(z)| − 1

2
yHv Φ(z)−1yv

+
‖z‖0

M
ln

p1

(1− p1)
+N ln(1− p1).

(6.26)

So we search ZΩ based on metric α(z,yv) using non-exhaustive tree search method.

The search starts with z = 0. In the first stage, we change only one block

elements zn to 1. It has N different ‘one block-element active’ SP. We store all

these possible SPs as Z(1) and calculate the metric α(z) for them. We choose

D SPs with the largest metrics and store them as Z
(1)
Ω . In the second step, we

activate one more block elements from the D chosen SPs in Z
(1)
Ω so that we have

(N − 1) + (N − 2) + ... + (N − D) possible ‘two block-elements active’ SPs in

Z(2). Then we choose D SPs with the largest metrics among these possible SPs

and store them as Z
(2)
Ω . We do this procedure J times to get D ‘J block-elements

active’ SPs with the largest posterior possibility as candidate SPs.

The value of D is fixed and chosen as 5, because the simulation results show

the benefits of increasing D diminish quickly for D > 5. The value of J is deter-

mined by the sparsity of the channel. However, the real sparsity of the mmWave

channel is unknown. So we define a virtual sparsity L
′
. We choose an arbitrary

small integer from 2 to 5 as the virtual sparsity because the real sparsity for

mmWave channel is generally less than 10. Based on the virtual sparsity, p1 can

be calculated as: L′/N and L′ follows Binomial (N, p1) distribution. It is common

to use the approximation K
′ ∼ N(Np1, Np1(1−p1)), in which case Pr(L′ > J) =

1
2
erfc( J−Np1√

2Np1(1−p1)
). We choose J = derfc−1(2J0)

√
2Np1(1− p1) +Np1e where J0

is a very small target value of Pr{L′ > J}. The use of pre-determined virtual

sparsity achieves superior performance with low complexity without the need to

know the real sparsity.
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6.4.4 Fast Metric Update

In the above search, metric α needs to be calculated for each possible SP. We

adopted a fast metric metric update method [63] to reduce the computational

complexity. Compared with the fast metric update method in Chapter 5, all the

calculations are block elements based instead of single element based.

For the case that z[n] = 0 and znew[n] = 1, where z and znew are identi-

cal except for the coefficients in the nth block. For brevity, we use ∆n(z,yv) ,

α(znew,yv) − α(z,yv) below. According to (6.26), the root node (Z
(0)
Ω = 0) has

the following metric

α(0,yv) =− Ms

2
ln(2π)−Ms lnσn −

1

2σ2
n

‖yv‖2
2

+ L ln(1− p1).

(6.27)

When SP is updated, the primary challenge in the computation of metrics is

to obtain Φ(znew) and Φ(znew)−1. First of all, we compute Φ(znew) due to the

support update. For any n and znew, we have

Φ(znew) = Q̄R(znew)QH + σ2
nIMs

= Q̄R(z)QH + σ2
nIMs +

Mn∑
i=(n−1)M+1

σ2
1qiq

H
i

= Φ(z) + σ2
1Q̄[n]Q̄[n]H ,

(6.28)

where qn is the nth column of Q. Q̄[n] is defined in (6.13). The matrix inversion

lemma (A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1 implies

Φ(znew)−1 = Φ(z)−1 −Φ(z)−1Q̄[n]

(
1

σ2
1

IM+

Q̄[n]HΦ(z)−1Q̄[n]

)−1

Q̄[n]HΦ(z)−1

= Φ(z)−1 −CnΠnC
H
n ,

(6.29)

where

Cn , Φ(z)−1Q̄[n], (6.30)

Πn ,

(
1

σ2
1

IM + Q̄[n]HCn

)−1

. (6.31)

According to (6.30), we can observe that the update of Cl includes matrix in-

version which has high complexity. Fortunately, the previous information can be
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exploited. We assume that z is the SP which is obtained from updating zpre. z and

zpre are identical except for the coefficients in the npre-th block that zpre[npre] = 0

and z[npre] = 1. Based on (6.29), we have

Φ(z)−1 = Φ(zpre)
−1 −Cpre

npre
Πpre
npre

Cpre
npre

H , (6.32)

so that Cn can be calculated applying the previous value as

Cn =
(
Φ(zpre)

−1 −Cpre
npre

Πpre
npre

Cpre
npre

H
)

Q̄[n]

= Cpre
n −Cpre

npre
Πpre
npre

Cpre
npre

HQ̄[n]
(6.33)

where

Cpre
n = Φ(zpre)

−1Q̄[n], (6.34)

Cpre
npre

= Φ(zpre)
−1Q̄[npre], (6.35)

Πpre
npre

=

(
1

σ2
1

IM + Q̄[npre]
HΦ(zpre)

−1Q̄[npre]

)−1

. (6.36)

To this end, we are able to calculate metrics fast and we have

α(znew) = −Ms

2
ln(2π)− 1

2
ln |(Φ(znew)|

− 1

2
yHv Φ(znew)−1yv +

‖znew‖0

M
ln

p1

(1− p1)

+N ln(1− p1)

= −Ms

2
ln(2π)− 1

2

(
ln |(Φ(z)|+M lnσ2

1 − ln |Πn|
)

− 1

2

(
yHv Φ(z)−1yv − yHv CnΠnC

H
n yv

)
+

(
‖z‖0

M
ln

p1

(1− p1)
+ ln

p1

(1− p1)

)
+N ln(1− p1)

= α(z) + ∆n(z),

(6.37)

where

∆n(z) = −M
2

lnσ2
1 +

1

2
yHv CnΠnC

H
n yv

+
1

2
ln |Πn|+ ln

p1

(1− p1)
.

(6.38)

∆n(z) quantifies the change to α(z) corresponding to the change of the coefficients

in z[n] from 0 to 1. In this way, once the SP is updated, the metric of new SP

can be fast computed based on the metric of the previous SP.

In summary, the proposed block Bayesian Matching Pursuit based method is

a non-exhaustive tree-search using the SP selection metric (6.26) with fast metric
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update method. The algorithm is shown in Algorithm 6.2, where the approximate

posterior probability of z is estimated as

p(z|yv) =
exp{α(z,yv)}∑

z′∈Z exp{α(z′,yv)}
≈ exp{α(z,yv)}∑

z′∈ZΩ
exp{α(z′,yv)}

. (6.39)

According to the characteristics of the mmWave channel, (µ0, σ
2
0) = (0, 0), (µ1, σ

2
1) =

(0, 100P ), D = 5, L′ = 5, p1 = L
′
/N, J = derfc−1(2J0)

√
2Nλ1(1− λ1)+Nλ1e and

J0 = 0.005 are applied.

In Algorithm 6.2, line 1-2 are the initialization. Line 3-6 compute the met-

ric when only one block is active. Step 7-24 update the metrics with the fast

method and apply a tree search for significant SPs. After obtaining D candidate

J-elements SPs, we can compute the posterior probability based on (6.39). At the

end, according to (6.24), the algorithm would return the channel approximate

MMSE estimate ĥammse.

Algorithm 6.2 block Bayesian Matching Pursuit mmWave Channel Estimation

Input:

Received signal yv, sensing matrix Q̄, block length M , number of transmit

and receive antenna NT , NR. number of transmit and receive beam patterns

NBeam
T , NBeam

R and hypotheses of channel statistics σ2
1, σ

2
n, L′;

Output:

Channel approximate MMSE estimate ĥammse in (6.24);

1: Ms = NBeam
T NBeam

R , N = NTNR
M

, p1 = L′

N
, ZΩ = ∅

2: α0 = −Ms

2
ln(2π)−Ms lnσn − 1

2σ2
n
‖yv‖2

2 + L ln(1− p1)

3: for n = 1 : N do

4: C0
n = Φ(z)−1Q̄[n],Π0

n =
(

1
σ2

1
IM + Q̄[n]HCn

)−1

5: α0
n = α0 +−M

2
lnσ2

1 + 1
2
yHv CnΠnC

H
n yv+

1
2

ln |Πn|+ ln p1

(1−p1)

6: end for

7: for d = 1 : D do

8: n=[], ẑ(d,0) = 0,

9: for n = 1 : N do

10: Cn = C0
n, Πn = Π0

n

11: αn = α0
n

12: end for

13: for j = 1 : J do

14: n∗ = n indexing the largest element in

{αn}n=1:N which leads to an as-of-yet

unexplored node.
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6.5 Simulation Results

15: α(d,j) = αn∗ , update ẑ(d,j) z[n∗]=1M×1

←−−−−−−− ẑ(d,j−1)

16: n = [n, n∗]

17: for n = 1 : N do

18: Update Cn via (6.33)

19: Update Πn via (6.31) and ∆n(z) via (6.38)

20: Obtain αn = α(d,j) + ∆n(z)

21: end for

22: end for

23: ZΩ = ZΩ ∪ ẑ(d,j)

24: end for

25: Compute p(z|yv) via (6.39)

26: Compute estimation ĥammse via (6.24)

6.5 Simulation Results

The performance of the proposed method is examined through computer sim-

ulation with the following parameters. ULAs are assumed at both transmitter

and receiver with NT = NR = 32, NRF = 4 and antenna spacing d = λ
2
. They

have DFT training beams with NBeam
T = NBeam

R = 32. All simulation results are

averaged over 500 channel realizations with a carrier frequency of 60GHz. The

channel gains {αl}Ll=1 are modeled by i.i.d. random variables with distribution

CN(0, σ2
α) where σ2

α = 1 and the channel gains in each cluster are assumed to

have internal coherence as 0.95. The AoAs and AoDs are modeled by the Lapla-

cian distribution whose mean is uniformly distributed over [0, π). At each channel

realization, the number of scatterers L is determined by L = max{P10, 1} where

P10 is the outcome of the Poisson random variable with mean 4. We sample (0, π]

uniformly with G = 64 samples. To simplify the calculation, we assume that the

size of AoA angular spread is always between 9.95◦ to 12.78◦ according to the

real world measurement [32] and this results in a block length of M = 4 when

G = 64. The design of analog/digital hybrid precoding and combining matrices

have been extensively investigated. We use phase shifts to generate DFT beams

for analog beamforming. FRF and WRF can be designed as DFT matrices.

We use the approach in [22] to generate precoding matrix for baseband through

minimizing the coherence of sensing matrix Q̄. FBB and WBB are block diago-

nal matrices given by FBB = diag(FBB,1, . . . ,FBB,i, . . . ,FBB,Nblock
T

) and WBB =

diag(WBB,1, . . . ,WBB,i, . . . ,WBB,Nblock
R

) whose diagonal entries, FBB,i and WBB,i,

consist of NRF × NRF complex valued matrices. NBlock
R =

NBeam
R

NRF
and NBlock

T =
NBeam
T

NRF
are the number of receive blocks and transmit block respectively. It is shown
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in [22] that the optimal solution of WBB and FBB to minimize the coherence of

the sensing matrix are given by (6.40) and (6.41).

WBB,i = U1(Λ1
−1/2)H , 1 ≤ i ≤ NBlock

R , (6.40)

where U1 and Λ1 are the matrices of the eigenvectors and eigenvalues, respec-

tively, satisfying WH
RF,iĀRĀH

RWRF,i = U1Λ1U1
H .

FBB,i = U2
∗(Λ2

−1/2)T , 1 ≤ i ≤ NBlock
T , (6.41)

where U2 and Λ2 are the matrices of the eigenvectors and eigenvalues, respec-

tively, satisfying FT
RF,iĀ

∗
T (FT

RF,iĀ
∗
T )H = U2Λ2U2

H .
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Figure 6.4: NMSEs of BOMP at different SNRs (dB).

In Figure 6.4, we compare methods OMP, extended OMP, BOMP and BCS.

OMP takes L (number of nonzero paths) and ML (number of nonzero elements)

as sparsity. We named the latter as extended OMP. BOMP adopts L as block

sparsity. At each channel realization, the number of scatterers L is determined

by L = max{P10, 1} where P10 is the outcome of the Poisson random variable

with mean 2. BCS is included for comparison. BCS is a Bayesian based learning

method which achieves stable performance at different SNRs without sparsity

information. The performance of the accuracy of channel estimation is measured

by the NMSE defined as 10 log10

(
E(‖H−Hestimate‖2

F/‖H‖2
F )
)
. As shown in Figure

6.4, the worst performance is achieved by OMP, because the OMP takes the
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0 2 4 6 8 10 12 14 16 18 20

SNR(dB)

0

1

2

3

4

5

6

ti
m

e
(s

)

OMP(L)

extended OMP(ML)

BCS

BOMP(L)

0 0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

Figure 6.5: Runtime of BOMP at different SNRs (dB).

number of nonzero paths as sparsity, which is smaller than the real sparsity so it

prevents the performance from further improving even at high SNRs. Extended

OMP takes sparsity as ML but does not utilize the block feature. In this case,

when the noise power is low, the extended OMP achieves much better performance

because of the larger number of iterations. However, it is still worse than BCS

at high SNRs and BOMP at all SNRs. The noise power is provided to BCS to

reduce the complexity to be comparable with others. Compared with the OMP

methods, BCS has stable performance and doesn’t need sparsity information.

However, it requires orders higher complexity due to parameter learning process.

BOMP method performs the best compared with OMP methods and BCS at

all SNRs. Although the extended OMP and BOMP both consider ML non-zero

estimates, by making use of AoA angular spread feature, BOMP requires 1
M

times

less iterations but achieves more accurate support estimation. As a result, BOMP

achieves 2− 6dB better performance than that of the extended OMP.

Figure 6.5 displays the average runtime of methods in Figure 6.4. BOMP,

OMP and extended OMP are significantly faster than BCS, especially at low

SNRs. BOMP and OMP are on the same order of computational complexity,

because they both process 2L iterations. In each iteration, the computational load

is the same. The extended OMP has M times higher complexity compared with

OMP and BOMP because it needs 2ML iterations. In summary, Figure 6.4 and

Figure 6.5 show that BOMP can achieve better performance with less complexity
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Figure 6.6: NMSEs of BBMP at different SNRs (dB).

compared with OMP. Angular spread can be utilized to improve the accuracy of

the mmWave channel estimation and reduces the computational complexity..

FBMP with different virtual sparsity and the proposed BBMP are added

in Figure 6.6 for comparison. FBMP (L′) and FBMP (ML′) use L′ and ML′

as virtual sparsity, respectively. BBMP adopts L′ as virtual block sparsity. In

general, scatterers are less than 10 so that we take L′ = 6 [27] in the simulations.

As shown in Figure 6.6, the extended FBMP performs even better than BOMP

without considering block feature. But it requires much higher complexity because

of the Bayesian based calculation. FBMP (L′) has a flatten performance due to

the same problem as OMP. The adopted virtual sparsity is too small for FBMP

to provide accurate estimation. Among all the algorithms, BBMP has the best

performance. It achieves more than 5dB gain comparing with BOMP and nearly

5 dB better performance gain over FBMP (ML′) at all SNRs.

Figure 6.7 displays the average runtime of methods in Figure 6.6.Note that

the BBMP line coincides with the S-FBMP line. All Bayesian based methods

have higher complexity than OMP based methods. The results show that BCS

is the slowest. FBMP(ML′) is several times slower than the extended OMP and

more than 10 times slower than BOMP. FBMP and BBMP have almost the same

complexity because of the same number of iterations. Although BBMP and the

extended FBMP have the same number of nonzero estimates, BBMP is much

faster by exploiting the feature of AoA blocks. BBMP is 3 times slower than
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6.5 Simulation Results

Figure 6.7: Runtime of BBMP at different SNRs (dB).

the extended OMP and nearly 10 times slower than BOMP. In fact, runtime

are mainly determined by the number of iterations. The number of iterations of

OMP, extended OMP, BOMP are determined by real sparsity , but for FBMP

and BBMP, the number of iterations are determined by the virtual sparsity.

In summary, BOMP is the fastest and all Bayesian based methods have huge

complexity. But BBMP can achieve an relative affordable complexity by utilizing

angular spread.

Figure 6.8 compares the performance of the above methods with varying num-

ber of scatters L at SNR = 4dB. OMP and the extended OMP use the sparsity

of L and ML respectively. BOMP uses a block sparsity L. FBMP utilizes vir-

tual sparsity L′ and ML′ respectively. BBMP adopts a virtual block sparsity of

L′ = 6. BCS does not need sparsity information. Although OMP, the extended

OMP, BOMP have the real sparsity information, the performances are slightly

worse when sparsity increases because of the growing number of nonzero elements

in the channel matrix. BCS is a learning method which is almost the same at all

SNRs with varying L. FBMP (L′) decreases significantly when the real sparsity

grows, because the virtual sparsity L′ is too small compared with the growing

number of nonzero element. Compared with FBMP (L′), FBMP (ML′) utilizes

ML′ as the virtual sparsity which is M times larger than that of FBMP (L′).

It ensures the algorithm to achieve stable performance. For BBMP, when the

real block sparsity grows to 6 which is exactly the same as our assumed virtual
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Figure 6.8: NMSEs at different sparsity.

block sparsity L′, the BBMP achieves the best accuracy of estimation. And the

estimation performance deteriorates when the true block sparsity further grows

larger than the assumed L′. This suggests that a relative larger L′ (i.e. 6− 10) is

required to guarantee the estimation accuracy. The results show that even with-

out accurate sparsity information, BBMP still provides better performance than

other state-of-the-art methods.

6.6 Summary

In this chapter, we utilized the AoA angular spread feature in the mmWave

communication through formulating the channel estimation as a block sparse

signal recovery problem. The BOMP method was first employed and compared

with the conventional OMP methods which use the conventional channel model.

Simulation results demonstrated that through utilizing angular spreads, BOMP

is able to achieve better performance while requiring less computation compared

with OMP. The latter proposed BBMP makes use of the block property in the

mmWave channel estimation and does not need sparsity information. Simulation

results show that the BBMP offers nearly 8dB better performance compared with

BOMP with a relative affordable complexity.
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Chapter 7

Conclusion

In this thesis, we proposed novel channel estimation techniques for mmWave mas-

sive MIMO systems. The key results and analysis have shown that the proposed

mmWave channel estimation methods are able to improve accuracy with afford-

able complexity. This chapter provides a summary of the work presented in this

thesis and highlights the main conclusions of this work. Some potential areas for

future research are also discussed here.

7.1 Summary

In Chapter 3, we consider the off-grid problem of the non-Bayesian based open-

loop channel estimation method (OMP) in mmWave massive MIMO systems.

After evaluating the impact of the off-grid angle errors in mmWave channel esti-

mation through simulation, IP-OMP algorithm is proposed to reduce the off-grid

error by adjusting the grid points based on the interior point optimization. Simu-

lation results show that the IP-OMP algorithm significantly improve the NMSE

performance of the channel estimation compared to the conventional OMP, while

requiring an affordable computational load. Especially, we use MATLAB to cal-

culate the computational complexity of the IP-OMP and the OMP methods for

G = 64, 128, 256 respectively. The results show that IP-OMP64 can achieve 4dB

performance improvement than that of the OMP128 and the OMP256, at the

cost of slightly increased complexity compared with OMP128 and significantly

reduced complexity compared with OMP256. In summary, IP-OMP algorithm

can use a small G value to achieve the best performance which is much better

than that of the OMP with greater grid level. However, we find that even with

off-grid mitigation methods, non-Bayesian based methods are not able to achieve

desirable performance when the SNR is low, because the impact of noise is sig-

nificantly larger than the impact of the off-grid errors at low SNRs. This inspires
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us to develop efficient Bayesian based methods for mmWave channel estimation

in Chapter 4.

In Chapter 4, to improve the accuracy of the channel estimation and reduce

the unacceptable complexity of the existing Bayesian based methods, we propose

FBMP method with different virtual sparsity (Proposed S, Proposed L) based on

the Bayesian matching pursuit idea. We make appropriate assumptions according

to the characteristics of the mmWave channel and select a set of candidate SPs

with high posterior probabilities to estimate CSI. Numerical simulation shows

that our proposed S method achieves the best performance with 3-4 dB improve-

ment compared with BCS when SNR < 9dB. For higher SNRs, the Proposed

L can achieve 2dB improvement over BCS. At the same time, our proposed S

method is significantly faster than SBL, on the same order of BCS with known

noise. Note that noise should be estimated using EM in SBL and BCS, but we

assume it known for the purpose to reduce complexity to comparable level. How-

ever, we did not consider off-grid error mitigation in this chapter. The accuracy

of channel estimation is affected by off-grid errors significantly at higher SNRs,

where the off-grid effect dominates.

In Chapter 5, we jointly consider the off-grid error impact and the noise im-

pact. Motivated by the results in Chapter 3 and Chapter 4, we develop a Bayesian

based estimation strategy called improved Bayesian matching pursuit with spe-

cific off-grid mitigation method. It overcomes the shortcomings existing in the

methods proposed in Chapter 3 and Chapter 4. Specifically, among all the exist-

ing mmWave CE methods that do not apply off-grid error mitigation, IBMP can

achieve almost the best performance at lower SNRs. In addition, it has the lowest

complexity among all the Bayesian based methods for the mmWave channel esti-

mation. Furthermore, the proposed OG-IBMP is the first BMP based algorithm

with off-grid error mitigation and detailed theoretical analysis. Compared with

the state of the art algorithm such as BCS, the OG-S-IBMP achieves more than

5dB performance improvement at all SNRs on the same order of complexity of

BCS. More importantly, the OG-IBMP does not require sparsity information and

it is robust at high SNRs which cannot be achieved by the FBMP.

In Chapter 6, we utilize an important characteristic of the mmWave commu-

nication called angular spread. Exploiting the sparsity in the angular domain and

making use of the angular spread of the path clusters in the AoA domain enables

the proposed algorithms to achieve superior accuracy of channel estimation with

less computational complexity. Different with existing works which study angular

spread based on the low-rank structure or statistical probability, we derive the

AoA angular spreads as blocks in channel matrix directly and utilize the block
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7.2 Recommendations for Further Work

sparsity by formulating the channel estimation to a block based signal recovery

problem. BOMP algorithm is applied to validate our channel estimation formula-

tion. Compared with OMP, BOMP successfully reduces the computational com-

plexity and improves the performance. We then utilise this block property in the

Bayesian matching based mmWave channel estimation and proposed the BBMP

method. Simulation results showed that BBMP achieves at least 5 dB better

performance compared with other algorithms including FBMP, OMP, BCS and

BOMP. In addition, by utilizing the angular spread, the complexity of BBMP

stays at a low level which is at the same order of the complexity with FBMP.

7.2 Recommendations for Further Work

7.2.1 Gridless compressive sensing

Related to the work presented in Chapter 3 and Chapter 5, the most promising

extension to the off-grid error mitigation methods would be the gridless com-

pressive sensing. Although we have proposed methods to mitigate off-grid errors

for both the non-Bayesian based method and the Bayesian based methods, off-

grid errors can not be completely removed. In order to avoid off-grid errors from

the source, gridless methods can be employed. Atomic norm minimization is a

potential approach which is proposed in [48] to recover sparse signal without

grid. [68] proposes a computationally efficient gridless solution based on the ex-

pectation maximization generalized approximate message passing approach for

mmWave massive MIMO system with one-bit quantization. Therefore, applying

the gridless compressive sensing methods for mmWave channel estimation would

be promising to completely solve the off-grid error problem.

7.2.2 Deep Learning

Deep learning has been successfully applied in number of areas with significant

performance improvement such as computer vision, speech recognition and so

on. Recently, [69] has presented some initial results for channel estimation and

signal detection in orthogonal frequency-division multiplexing (OFDM) systems

employing deep learning method. Different from the existing OFDM receivers

which first estimate CSI explicitly and then recover the transmitted symbols

using the obtained CSI, the proposed deep learning-based approach works with an

end-to-end manner which estimates CSI implicitly and recovers the transmitted

symbols directly. [70] treats CSI matrix as a picture with noise and proposes

a learned denoising-based approximate message passing (LDAMP) network for
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channel estimation. This neural network can learn channel structure and estimate

channel from a large number of training data. In summary, deep learning is a

promising tool for channel estimation and signal detection especially for the very

complicated channel environment.

7.2.3 Extended Works

In addition to the aforementioned research areas, it is also possible to extend our

research to more general scenarios. In this thesis, we suppose that the channel

under consideration is sufficiently narrow and sufficiently slow varying over the

signal duration without Doppler shifts of all paths. Research can be extended

to consider fast time varying channels, wideband channels and multi-user in the

future.

First, mmWave systems can be wideband. It is important to develop channel

estimation methods for wideband mmWave communication with hybrid archi-

tecture. Recently, [71] propose channel estimation techniques for purely time or

frequency domains and for combined time/frequency domains. Their solutions

are suitable for both single carrier-frequency domain equalization and orthogonal

frequency-division multiplexing systems. Extend our channel estimation method

to wideband application with OFDM systems will be interesting.

Second, considering Doppler shift, channel estimation for mmWave systems

over time-varying channels is a challenging problem in high-speed mobile scenar-

ios. [72] considers the AoDs/AoAs vary more slowly than path gains and formulate

the channel estimation as a block signal recovery problem. They propose a novel

greedy algorithm based on compressive sensing method to estimate AoAs/AoDs

firstly and then estimate the gains by LS method. [73] and [74] propose deep

learning based channel estimation algorithms by performing offline training to

the learning network. The CSI generated by the training samples can be effec-

tively utilized to adopt the characteristics of fast time-varying channels. How to

make our proposed method available for high-speed mobile scenarios can be the

future work.

Finally, we only consider point to point mmWave communication. How to

apply our proposed methods to multi-user mmWave systems is also interesting

to explore. Recently, [75] develops a novel simultaneous-estimation with iterative

fountain training framework, in which multiple users estimate their channels at

the same time and the required number of channel measurements is adapted to

various channel conditions of different users. At last, it is interesting to extend

works in Chapter 6 by making use of both AoDs/AoAs angualr spread.
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[56] J. Rodŕıguez-Fernández, N. González-Prelcic, and R. W. Heath, “A com-

pressive sensing-maximum likelihood approach for off-grid wideband chan-

nel estimation at mmwave,” in 2017 IEEE 7th International Workshop on

Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

IEEE, 2017, pp. 1–5.

[57] C. Hu, L. Dai, T. Mir, Z. Gao, and J. Fang, “Super-resolution channel estima-

tion for mmwave massive MIMO with hybrid precoding,” IEEE Transactions

on Vehicular Technology, vol. 67, no. 9, pp. 8954–8958, 2018.

114



REFERENCES

[58] B. Qi, W. Wang, and B. Wang, “Off-grid compressive channel estimation for

mm-wave massive MIMO with hybrid precoding,” IEEE Communications

Letters, vol. 23, no. 1, pp. 108–111, 2018.

[59] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”

IEEE signal processing magazine, vol. 25, no. 2, pp. 21–30, 2008.

[60] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE trans-

actions on information theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[61] L. Zelnik-Manor, K. Rosenblum, and Y. C. Eldar, “Sensing matrix optimiza-

tion for block-sparse decoding,” IEEE Transactions on Signal Processing,

vol. 59, no. 9, pp. 4300–4312, 2011.

[62] M. U. Aminu, M. Codreanu, and M. Juntti, “Bayesian learning based

millimeter-wave sparse channel estimation with hybrid antenna array,” in

2018 IEEE 19th International Workshop on Signal Processing Advances in

Wireless Communications (SPAWC). IEEE, 2018, pp. 1–5.

[63] P. Schniter, L. C. Potter, and J. Ziniel, “Fast bayesian matching pursuit,”

in 2008 Information Theory and Applications Workshop. IEEE, 2008, pp.

326–333.

[64] H. V. Poor, An introduction to signal detection and estimation. Springer

Science & Business Media, 2013.

[65] S. Ji, Y. Xue, L. Carin et al., “Bayesian compressive sensing,” IEEE Trans-

actions on signal processing, vol. 56, no. 6, p. 2346, 2008.

[66] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta

numerica, vol. 4, pp. 1–51, 1995.

[67] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Uncer-

tainty relations and efficient recovery,” IEEE Transactions on Signal Pro-

cessing, vol. 58, no. 6, pp. 3042–3054, 2010.

[68] L. Xu, F. Gao, and C. Qian, “Gridless angular domain channel estimation

for mmwave massive MIMO system with one-bit quantization via approxi-

mate message passing,” in 2019 IEEE Global Communications Conference

(GLOBECOM). IEEE, 2019, pp. 1–5.

[69] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel estima-

tion and signal detection in ofdm systems,” IEEE Wireless Communications

Letters, vol. 7, no. 1, pp. 114–117, 2017.

115



[70] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based channel es-

timation for beamspace mmwave massive MIMO systems,” IEEE Wireless

Communications Letters, vol. 7, no. 5, pp. 852–855, 2018.

[71] K. Venugopal, A. Alkhateeb, N. G. Prelcic, and R. W. Heath, “Channel

estimation for hybrid architecture-based wideband millimeter wave systems,”

IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1996–

2009, 2017.

[72] Q. Qin, L. Gui, B. Gong, J. Xiong, and X. Zhang, “Compressive sensing based

time-varying channel estimation for millimeter wave systems,” in 2017 IEEE

International Symposium on Broadband Multimedia Systems and Broadcast-

ing (BMSB). IEEE, 2017, pp. 1–6.

[73] Y. Liao, Y. Hua, X. Dai, H. Yao, and X. Yang, “Chanestnet: A deep learning

based channel estimation for high-speed scenarios,” in ICC 2019-2019 IEEE

International Conference on Communications (ICC). IEEE, 2019, pp. 1–6.

[74] Y. Liao, Y. Hua, and Y. Cai, “Deep learning based channel estimation algo-

rithm for fast time-varying MIMO-OFDM systems,” IEEE Communications

Letters, vol. 24, no. 3, pp. 572–576, 2019.

[75] M. Kokshoorn, H. Chen, Y. Li, and B. Vucetic, “Beam-on-graph: Simulta-

neous channel estimation for mmwave MIMO systems with multiple users,”

IEEE Transactions on Communications, vol. 66, no. 7, pp. 2931–2946, 2018.

116


	1 Introduction
	1.1 The Global Bandwidth Shortage and The Millimeter Wave Bandwidth Abundance
	1.2 Beamforming and Hybrid architecture: The Enabler of Millimeter Waves
	1.3 Channel Estimation Challenges and Research Problems
	1.3.1 Literature Review
	1.3.2 Research Problems

	1.4 Original Contributions
	1.5 Thesis Outline
	1.6 List of Publications

	2 The fundamentals of mmWave Channel Estimation
	2.1 Characteristics of mmWave Communication
	2.1.1 mmWave Bandwidth Abundance
	2.1.2 Distance-Based Path Loss
	2.1.3  Blocking and Outage

	2.2 Multi-antenna Systems and Models
	2.2.1 The Uniform Linear Array
	2.2.2 The Geometric MIMO Channel Model
	2.2.3 Virtual Channel Representation

	2.3 Massive MIMO Architecture for Millimeter Wave Communication
	2.3.1 Analog-only beamforming
	2.3.2 Analog-Digital Hybrid architecture

	2.4 Summary

	3 IP Aided OMP Based Channel Estimation for Millimeter Wave Massive MIMO Communication
	3.1 Introduction
	3.1.1 Related Works and Motivations
	3.1.2 Main Contributions
	3.1.3 Chapter Organization

	3.2 System Model
	3.3 Formulation of mmWave Channel Estimation Problem
	3.3.1 Least Square Channel Estimation
	3.3.2 Compressive Sensing Channel Estimation

	3.4 Proposed IP-OMP Method
	3.5 Simulation and Analysis
	3.5.1 Training Beam Pattern Design
	3.5.2 Simulation Results

	3.6 Summary

	4 Bayesian Matching Pursuit Based Channel Estimation for Millimeter Wave Communication
	4.1 Introduction
	4.1.1 Related Works and Motivations
	4.1.2 Main Contributions
	4.1.3 Chapter Organization

	4.2 System Model
	4.3 Proposed Bayesian Matching Pursuit Method for mmWAVE Channel Estimation
	4.3.1 Assumptions for mmWave channel
	4.3.2 MMSE Coefficient Estimation
	4.3.3 Search for Dominant SPs
	4.3.4 Fast Metric Update

	4.4 Simulation and Analysis
	4.5 Summary

	5 Bayesian Compressive Sensing Based Estimation of Off-grid Channel for Millimeter Wave Communication
	5.1 Introduction
	5.1.1 Related Works and Motivations
	5.1.2 Main Contributions
	5.1.3 Chapter Organization

	5.2 Models and Formulation of mmWave Channel Estimation Problem
	5.2.1 System Model
	5.2.2 Formulation of mmWave Channel Estimation Problem

	5.3 Bayesian Matching Pursuit method for mmWave Channel Estimation
	5.3.1 Search for the Most Likely SP
	5.3.2 Fast Metric Update

	5.4 Off-grid Improved Bayesian Matching Pursuit
	5.5 Simulation Results
	5.6 Summary

	6 Exploiting Angular Spread for Channel Estimation in Millimeter Wave MIMO System
	6.1 Introduction
	6.1.1 Related Work
	6.1.2 Main Contributions
	6.1.3 Chapter Organization

	6.2 System Model and the Conventional Channel Modeling
	6.3 Exploiting AoA Angular Spread in mmWave Channel Estimation
	6.3.1 System Block Model and Formulation of mmWave Channel Estimation Problem
	6.3.2 Block Orthogonal Matching Pursuit Method for mmWave MIMO Channels

	6.4 Block Bayesian Matching Pursuit Based mmWave Channel Estimation
	6.4.1 Assumptions for the mmWave channel
	6.4.2 MMSE Coefficient Estimation
	6.4.3 Search for Dominant SPs
	6.4.4 Fast Metric Update

	6.5 Simulation Results
	6.6 Summary

	7 Conclusion
	7.1 Summary
	7.2 Recommendations for Further Work
	7.2.1 Gridless compressive sensing
	7.2.2 Deep Learning
	7.2.3 Extended Works


	References

