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Abstract

As wild animals advance through their available habitat, interactions with

other organisms and their environment occur. These interactions influence

movement decisions, giving rise to complex space use patterns across landscapes.

Untangling the behavioural drivers of movement is therefore critical in

understanding animal space use and ultimately in managing the conservation

of ecosystems. Some animals restrict their movement to a limited area of

their available habitat, known as a home range. This thesis uses mechanistic

modelling to uncover the behavioural drivers behind home range formation in

of a population of long-tailed tits.

Long-tailed tits (Aegithalos caudatus) are small, non-territorial passerines,

commonly found in Europe. Flocks live in partly-exclusive home ranges,

patterns which are unusual amongst non-territorial animals. This thesis shows

that a combination of memory-mediated conspecific avoidance and a response

to the deciduous woodland can adequately explain the observed home range

patterns. Furthermore, I show that the avoidance mechanism depends upon

kin-relatedness and flock size. Finally, I investigate the birds’ fine-scale selection

for different types of trees whilst foraging within their breeding home ranges.

I reveal a set of preferred foraging trees and how the population of birds are

selecting them.



x

Overall, the conclusions and methods throughout this thesis advance not only

our knowledge of long-tailed tits but exemplify the application of mathematics

to understand ecological processes.
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Chapter 1

Background

1.1 Mathematical patterns in ecological

systems

Nature exhibits an abundance of diverse patterns across multiple scales (Liu

et al., 2014). The biological mechanisms driving some of these patterns, such

as the pigment pattern of an adult jaguar (Panthera onca), are unable to

be studied experimentally, but are observed in mathematical equations (Liu

et al., 2006; Xu et al., 1983). Biological insight can be obtained from these

mathematical patterns, if the equations that produce the patterns are built

from some understanding of biological mechanisms (Murray, 1993; Pielou, 1969;

Turchin, 1998).

Nature has a part in revealing mathematical methods too. For instance, the

motion of pollen particles in water observed by the botanist Brown (1828),

now known as Brownian Motion, influenced the work of Einstein (1905) who

described the random movement of the particles as a diffusive process. Einstein’s
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work provided an alternative to the phenomenological approach of deriving

the diffusion equation using Fick’s laws (Fick, 1855); work influenced by the

experiments of Graham (1833). Moreover, Einstein (1905) derived an equation

for the mean squared displacement of a particle, which was later evidenced

experimentally by Perrin (1909); work that subsequently convinced many

scientists of the existence of the atom (Bernstein, 2006). Today, the diffusion

equation is a fundamental equation in ecology and studied across the sciences

(Okubo, 1980; Philibert, 2005).

Patterns in life are not necessarily visual, for instance, the changes in a

population through time (Bulmer, 1974; Elton and Nicholson, 1942) and the

movement of animals through space and time (Turchin, 1998) reveal patterns

that are only identified by collecting data (Kays et al., 2015). The cyclic

temporal patterns of the population densities of lynx (Lynx canadensis) and

hare (Lepus americanus) were famously noticed by fur vendors in 1881 (Krebs

et al., 2001). These temporal patterns were modelled by Lotka (1924) and

Volterra (1926) and have a rich literature of analyses (Wangersky, 1978).

In reality, ecological systems change through both space and time. Introducing

diffusion into a temporal model, such as the Lotka-Volterra equations, describes

the population density spreading out though space (Fisher, 1937; Kolmogorov

et al., 1937). Mathematical descriptions of predator-prey interactions are

similar to chemical reactions and analogous equations are used to describe the

reaction and diffusion of chemical densities in biological systems (Volpert and

Petrovskii, 2009), such as the pigment patterns of a jaguar. The emergence

of patterns in reaction-diffusion systems was predicted in the seminal work of

Turing (1952). Though overlooked at the time (Ball, 2015), recent biological

experiments have revealed that the mechanisms described by Turing (1952)
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are driving the patterns of mammalian hair growth (Sick et al., 2006) and

teeth-like shark scales (Cooper et al., 2018).

Analysing ecological processes requires not only understanding the abundance

of organisms in space and time, such as the lynx and hare populations but also

the predicted location of individual organisms (Turchin, 1998). Rather than

modelling the population density of a species, one can model the probability

density of the occurrence of an individual (Moorcroft and Lewis, 2006). In

this thesis, I explore models for the spatio-temporal change of the probability

density of animal occurrence and uncover the behavioural mechanisms driving

space use patterns.

1.1.1 Movement and space use in ecology

Space use patterns emerge as wild animals move around their landscape

(Kernohana et al., 2001). These patterns are driven by the behaviours that

influence an animal’s movement decisions (Börger et al., 2008). The fundamental

movement behaviours that shape an animal’s space use pattern can be revealed

by modelling the animal’s behavioural decisions as mathematical mechanisms

(Moorcroft and Lewis, 2006; Turchin, 1998). Throughout this thesis, I explore

ways of modelling animal space use mechanistically, meaning that space use

patterns are derived from the process of underlying movement behaviours.

Motivation for studying movement behaviour comes from the effect that moving

organisms have on entire ecosystems. For example, the behavioural decisions of

one animal may drive the movement of other animals by altering the environment

(Riotte-Lambert and Matthiopoulos, 2020). Furthermore, direct and indirect
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interactions between animals can drive the space use of a population (Bateman

et al., 2015; Giuggioli et al., 2011; Potts et al., 2014a).

Further motivation for animal movement research is driven by the impact that

humans have on habitats. Anthropogenic stresses on wildlife influence space use

across the world and continue to be a problem for preserving ecological integrity

in ecosystems. Human disturbance has been shown to reduce movement

distances (Tucker et al., 2018), affect energy expenditure (Houston et al., 2012),

increase disease transmission from animals to humans (Daszak et al., 2000) and

impact patterns of space use temporally (Gaynor et al., 2018). Human effects

can be managed using the predictions achieved from mathematical modelling

and models have previously influenced important conservation decisions (Morris

et al., 2016).

1.1.2 Modelling across scales

In this thesis, I study animal movement mechanisms on two scales, leading to

the following two modelling types;

(1) Individual-based models, where the location of an individual varies

through time. Successive locations in a time series are modelled as

a stochastic path. An example of a path of successive locations is shown

in Fig. 1.1a.

(2) Utilisation distribution models, describing the probability of finding an

individual at a given region in space and time. Here space use patterns

are modelled as a utilisation distribution; a spatio-temporal probability

density of animal occurrence. An example of a utilisation distribution, at

one point in time, is shown in Fig. 1.1b.



1.1 Mathematical patterns in ecological systems 5

(a) (b)

Fig. 1.1. The output from two types of movement mechanisms. Panel (a)
shows a stochastic path drawn from an individual-based movement model.
Panel (b) shows a utilisation distribution model. A utilisation distribution
is a probability density function for an animal’s location at a given time.
Darker shades in Panel (b) indicate higher densities. Space use (Panel b) can
be estimated from a individual-based model (Panel a) using simulations or
mathematical derivations.

Individual-based models (Modelling type 1) define movement mechanisms using

the speed and direction of movement. These individual-based descriptions

range from movement on a discrete grid, governed by transition probabilities

(Hooten et al., 2010), to movement in continuous space, structured using a

probability density function (Ellis et al., 2019; Thurfjell et al., 2014). In this

thesis, I focus on a specific individual-based framework; step-selection analysis

(SSA). This analysis is used to understand a time series of animal locations, by

comparing recorded relocations to other possible relocations to fit a mechanistic

movement model. I review SSA in §1.5, in preparation for applying it to data

in Chapter 4.

A utilisation distribution (Modelling type 2) represents the space use of an

animal. Space use can be estimated from a set of animal locations using

statistical methods to determine areas that are frequently used by the animal
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(Worton, 1989). However, describing a utilisation distribution without dynamic

origins gives little insight into the underlying behaviours of the space use pattern.

Individual-based movement models (Modelling type 1) can estimate space

use by simulations, or mathematical approximations to produce a utilisation

distribution model (Modelling type 2).

The mathematical bridge between a utilisation distribution and an individual-

based model arises from defining a master equation. A master equation is

an iterative equation describing the utilisation distribution at one point in

time, given the utilisation distribution at a previous point in time and the

individual-based description of movement (Okubo, 1980; Turchin, 1998; van

Kampen, 1981). A master equation can be used to derive a partial differential

equation (PDE), a description of the spatio-temporal change of the utilisation

distribution that has the advantage of a rich literature of analysis and numerical

methods (Fritz, 1982). The technique of encapsulating individual-based motion

as a master equation and forming a PDE was introduced by Einstein (1905)

and further advanced by statistical physicists in the early part of the 20th

century to incorporate movement with a bias (Chandrasekhar, 1943; Fokker,

1914; Planck, 1917).

Using ideas from statistical physics, the emergence of animal space use patterns

from individual-based behaviours can be analysed by approximating a master

equation as a diffusion-taxis equation; a type of PDE (Moorcroft, 2012;

Moorcroft and Lewis, 2006). An advantage of using diffusion-taxis equations

is that one can relate the underlying movement decisions to the emergent

spatio-temporal patterns. The diffusion-taxis equation can be analysed to

predict space use patterns and solved numerically to a steady-state to give
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a temporally constant utilisation distribution. I show the derivation of a

diffusion-taxis equation from an individual-based model in Appendix A.1.

Some animals live in restricted areas of space for a long time, known as the

animal’s home range (Börger et al., 2008; Burt, 1943). Home ranges are

a particular type of space use, so are a consequence of dynamic movement

processes (Moorcroft, 2012), however they are often modelled using descriptive

techniques (Fieberg and Börger, 2012). Particular behavioural mechanisms

in diffusion-taxis equations restrict space use to give a home range model

(Moorcroft and Lewis 2006). This method of modelling home ranges is termed

mechanistic home range analysis (MHRA) and is outlined in §1.4. I study these

utilisation distribution models further in Chapter 2 and apply them to data in

Chapter 3.

Prior to detailing the general form of the modelling techniques used in this

thesis, typical animal movement behaviours for understanding space use are

discussed in the next section.

1.2 Why does an animal move?

With appropriate models, patterns of space use resulting from movement

decisions can be calculated (Turchin, 1998). To derive models that answer

ecological questions, one must first develop and test reasonable empirical

hypotheses. Prior to reviewing possible hypotheses for movement, I discuss

differences that may arise in behaviour between individuals and over space and

time.

Life history needs can shift as the seasons change (Birkett et al., 2012; Ferguson

and Elkie, 2004) or throughout the day (Rockhill et al., 2013) so behaviours
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may depend on time. Some types of modelling processes account for this shift

by allowing movement mechanisms to switch as the needs of the animal vary

through time (Parton and Blackwell, 2017; Patterson et al., 2008). Behaviours

may also depend on the habitat. Physical movement may be restricted in some

places as the physiology of an animal affects its ability to explore its landscape

(Kerr and Bull, 2006). There may be places which are unavailable to the animal,

due to the topology of the landscape or fragmentation (Fischer and Lindenmayer,

2007). An animal may be slower or faster in certain environments, depending

on their individual condition, locomotive or navigation capabilities (Nathan

et al., 2008). Lastly, behaviours may vary between individuals. Animals within

a species may exhibit quite different behaviour (Spiegel et al., 2017). Differences

such as personality traits (Spiegel et al., 2017) or body size (Adams and Plowes,

2019; Jetz et al., 2004; Nilsson et al., 2014) have an effect on the movement

and behaviour of some species (Leclerc et al., 2016).

Before formulating hypotheses, one should consider if temporal, spatial or

individual differences should be accounted for within models, or whether the

differences are insignificant enough to be ignored, to reveal more significant

behaviours driving the pattern of space use.

1.2.1 Movement Mechanisms

Throughout the rest of §1.2, I discuss typical animal behaviours that have

been used to drive movement in previous studies. It can be argued that

these behaviours affect the movement decisions of any animal species, but

mathematical modelling aims to untangle the most important mechanisms. I

discuss behaviours and give examples of previous studies in the following four

subsections.



1.2 Why does an animal move? 9

Memory

Modelling an individual that moves in response to spatial memory has been

shown to improve foraging success (Bracis et al., 2015; Riotte-Lambert et al.,

2015). For many species, a realistic assumption is that an animal’s spatial

memory develops and decays as it moves around its environment (Fagan et al.

2013; Potts and Lewis 2016a, Chapter 3). A dynamic memory leads to the the

concept of umwelt, meaning that each individual has a different perception of

the world (Kull, 1998).

An animal’s spatial memory can be modelled using a cognitive map, a density

map taking the same shape and size of the available environment. The dynamic

change of the map is driven by events as they occur, for example, finding a

desirable resource or an interaction with another individual (Potts and Lewis

2016a; Riotte-Lambert et al. 2015, Chapter 3). A cognitive map could be made

up of many layers which each describe a different behaviour and these layers

could be constantly changing (Avgar et al., 2015; Potts and Lewis, 2016a).

Indeed, all of the reasons for movement mentioned within this section can be

modelled as layers of a dynamic cognitive map, changing as an animal moves

through time and space. Still, one must decide whether or not it is sufficient to

assume the knowledge of the animal is not changing through time to unlock

more interesting mechanisms of movement.

Environmental attributes

Most species move around their environment to use resources which are essential

to their survival. Therefore the structure of the environment is an important

part of animal movement models. The simplest assumption (other than a
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homogeneous environment) is to assume that animals are moving within a

unchanging spatially heterogeneous landscape, for example, if resource depletion

is very low then a modeller may consider resource change to be negligible

(Avgar et al. 2015, Chapter 3). However, for some species, modelling a changing

environment is necessary due to extensive resource depletion or seasonal change

(Birkett et al., 2012; Riotte-Lambert et al., 2015).

Location fidelity

Some species of animal have a localizing tendency to a particular place (Okubo,

1980) or places (Benhamou and Riotte-Lambert, 2012), for instance, a watering

hole or den (Moorcroft et al., 2006). The fidelity of a location (Bateman et al.,

2015), or alternatively, the strength of the attraction to a location could change

with time, as with birds provisioning nests (Hatchwell and Russell, 1996). As

attraction to particular places restricts space use, site fidelity gives rise to a

home range, a finite area that an animal chooses to live in, despite having

access to a much larger area (Börger et al. 2008; Moorcroft and Lewis 2006,

§1.4).

In response to other individuals

Animals are likely to move in response to the movements of other individuals

(Avgar et al., 2015). The reaction to this knowledge of other individuals can be

categorised in three ways (Potts and Lewis, 2019): mutual attraction, mutual

avoidance or pursue-and-avoid. Mutually attracting individuals may benefit

from each other such as with large carnivores (Vanak et al., 2013) and birds

(Mönkkönen and Forsman, 2002). Mutual avoidance occurs with interactions

which are either direct (Potts and Lewis, 2016a) such as aggressive displays
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(King, 1973) or indirect such as scent marking (Lewis and Murray, 1993) or

the risk of depleted resources (Ford, 1983). These avoidance mechanisms could

be territorial (Bateman et al., 2015; Potts and Lewis, 2014) or non territorial

(Knapp 2000, Chapter 3). Lastly, an animal being pursued by another animal

can be seen in predator-prey systems (Berryman, 1992).

1.2.2 Data collection

Data collected in field studies can restrain the type of useful models, therefore

restricting the questions which can be answered. Furthermore, data collection

may be impeded by the study species or their habitat. Wild animals are masters

of eluding danger and it is difficult to track and observe them in locations with

challenging topography, particularly ensuring that the animal’s behaviour is

not influenced by the observer.

Modern Global Positioning System (GPS) devices in the form of radio tags

can be fitted to animals as small as some birds and bats (Kays et al., 2015).

GPS devices are capable of producing accurate descriptions of fine scale linear

movements and turning angles with a best expected accuracy of 5m (Bridge

et al., 2011). Still, studies on the majority of species of bats and birds cannot

take advantage of the most recent GPS tagging devices due to the requirement

of tags being less than 5% of the animal’s body weight. The restriction is to

ensure behaviour is minimally affected (Bridge et al., 2011). Some geolocators

are able to be fit to small passerine birds, however the spatial resolution is

very low and unsuitable for tracking fine scale movements that are less than

100m (Thorup et al., 2014). Alternatively, animals can be tracked on foot with

locations recorded using handheld GPS devices, but this relies on the species
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being easily detectable. Moreover, there must be minimal behavioural effects

from the observer and suitable terrain (Wikelski et al. 2007, Chapters 3 and 4).

Technological advances in the past twenty years (Hays et al., 2016; Signer et al.,

2017; Williams et al., 2020) mean that animal tracking data can produce spatial

relocations of very fine temporal resolution. With the correct mathematical

tools (Potts et al., 2018) researchers are able to estimate when decisions to

change movement direction have been made. Alternatively, when tracking

animals on foot observers may be able to recognise and record when decisions

to move have occurred (Chapter 4).

1.2.3 Uncovering movement drivers of animal space use

Understanding the movement drivers behind the space use of animals requires

developing useful questions, establishing hypotheses and building models.

Detailed processes of model development are discussed in Turchin (1998),

who suggests a reiterative modelling process. Turchin (1998) proposes an

initial round of simple model development, where the model and its parameters

are formulated using empirical knowledge of the animal, such as previous

observations or studies. Collecting initial data and observations in the field

can reveal how the model and perhaps the entire question of the study can be

modified and improved. Following this process repeatedly, whilst redesigning

the model and the fieldwork, ensures rigorous systematic data collection and

model fitting.

Realistically, due to time and financial limitations, the repetitive interplay of

model formulation and fieldwork is not always practical. I summarise ideas
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for modelling animal space use mechanistically in the Model Design Process

section of Fig. 1.2.

1.3 The long-tailed tit: a home ranging

passerine

The home range patterns of flocks of my study species, the long-tailed tit

(Aegithalos caudatus), are intriguing since they are stationary, without fidelity

to a location and partly exclusive, yet they are not defending a territory.

Furthermore, the birds are too small to be GPS tagged, therefore direct

observations are necessary to collect movement data that is accurate enough to

examine behavioural decisions.

The long-tailed tit is a small, predominantly insectivorous passerine weighing

only 7-8g, primarily residing in woodland and scrub habitats (Hatchwell, 2016).

Long-tailed tits live in home ranging flocks in the non-breeding season and are

not territorial at any time of the year. The population of long-tailed tits in a

3km2 site of the the Rivelin Valley in Sheffield (52 23◦N, 1 34◦W), has been

studied since 1994.

Outside of the breeding season, flocks of long-tailed tits are comprised of 10-20

individuals that forage and roost together. A flock sometimes uses the same

perch over successive nights, but changes over the season. Immigration between

flocks happens at the start of the non-breeding season as flocks are forming,

but is uncommon later in the season. Locational data shows that each flock’s

home range is mostly comprised of an area exclusive to that flock, with some

overlap with other flock’s home ranges (Hatchwell et al., 2001a; Napper and
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Hatchwell, 2016). In the Rivelin Valley, the abundance of food is plentiful and

the birds are not sharing any finite resources (Hatchwell, 2016). Exclusive home

ranges in other animal species are often due to territory defence or resource

competition, however these behaviours are not observed in this population of

birds.

Whilst nest building, pairs of long-tailed tits forage together. Since the birds

have site fidelity to the nest location, their fine scale movements are easier to

study than the flocks in the non-breeding season. The Rivelin Valley consists

of a complex woodland structure and the location and abundance of different

trees can be estimated with careful fieldwork throughout home range areas. It

is thought that the birds move in response to different tree species, but it is

not known which tree species are preferred.

Field workers in the Rivelin Valley locate birds by listening for birdsong and

locating nests in the breeding season. Once birds are located, they can be

identified by coloured rings on their legs, where > 95% of the population are

ringed each year. Located and identified birds are followed and their location

is recorded on a handheld GPS device at certain time intervals. Since the

birds within a flock (in the non-breeding season) or pair (within the breeding

season) forage together, locations are recorded for the flock or pair, rather

than for individual birds. The data used in this thesis was collected for flocks

over five non-breeding seasons from 2010 to 2019 and for nest building pairs in

2019. Due to the substantial time consumption and the specific skills required

for this field work, the locations of different pairs or flocks were not recorded

simultaneously.
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Understanding the behavioural mechanisms that lead to the emergence of

stationary home ranges in the long-tailed tit system is interesting both ecologically

and mathematically (Börger et al., 2008; Moorcroft, 2012; Napper and Hatchwell,

2016). Revealing the drivers using mechanistic techniques discloses behaviours

not easily found by an experimental approach. Furthermore, the home range

patterns of the non-breeding flocks require movement mechanisms that produce

restricted space use patterns in a limitless area without an attractive point.

I answer two overall questions in this thesis: (1) what are the behaviours driving

the space use patterns of flocks of long-tailed tits and (2) how are pairs of

long-tailed tits moving in response to the complex woodland structure of the

Rivelin Valley. I explore question (1) using a utilisation distribution approach

and question (2) using an individual-based approach. The general ideas of both

methods are introduced in the next two sections.

1.4 Diffusion-taxis models: a utilisation

distribution approach

Non-breeding flocks of long-tailed tits live in home ranges which are largely

exclusive. Since each flock is using a different part of the Rivelin Valley, it is

likely that the space use of one flock depends on the space use of other flocks.

Locations of flocks were not able to be recorded at the same time, so fitting an

individual-based model of movement, based on the movements of other flocks

would not be suitable. Instead, I fit a diffusion-taxis model of space use, built

from underlying behaviours, to locational data. Here I describe the structure of

diffusion-taxis equation models for animal space use, where specific behaviours

are defined in Chapter 3.
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A diffusion-taxis equation is built by approximating an individual-based model

as a spatio-temporal description of space use. The derivation of a diffusion-taxis

equation requires one to form a master equation as described in §1.1.1. These

methods are standard (e.g. van Kampen 1981) and I show the derivation in

Appendix A.1. Diffusion-taxis equations consist of a diffusion and a taxis term.

The diffusion term models movement processes that do not have any directional

bias and drives the speed of diffusion, D(x, t), at location x= (x, y) and time t.

The taxis term models movement in the direction of the vector field A(x, t).

Different behaviours can be included into the terms by including these in the

functions D(x, t) and A(x, t). The diffusion and taxis terms drive the space

use of flock i, defined as the utilisation distribution, ui(x, t) which describes

the probability density of finding flock i at location x at time t.

Each flock of birds, i, requires a different equation to describe their space use.

The diffusion and taxis functions may also depend on i and are denoted here as

Di(x, t) and Ai(x, t) respectively. It may be noted that the diffusion and taxis

functions can also depend on other flocks (e.g. j, Chapters 2 and 3), however I

omit this dependence here for notational purposes. Therefore, a diffusion-taxis

equation for flock i has the general form

∂ui

∂t
= ∇2 [Di(x, t)ui(x, t)

]︸ ︷︷ ︸
Diffusion: aspects of movement

that do not have a directional bias

− ∇ ·
[
Ai(x, t)ui(x, t)

]︸ ︷︷ ︸
Taxis: directional
bias in movement

, (1.1)

where ∇=
(

∂
∂x
, ∂

∂y

)
. To describe space use completely, Equation (1.1) requires

both an initial description of space use and conditions on the boundaries to be
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included in the system. I use zero-flux boundary conditions, defined as follows

∣∣∣∣nx ·
[
∇
(
Di(x, t)ui(x, t)

)
− Ai(x, t)ui(x, t)

]∣∣∣∣
x∈∂Ωi

= 0, (1.2)

where nx is the normal to the boundary ∂Ωi at x and Ωi is the landscape

available to flock i. The space use of flock i is determined by the solution to

Equation (1.1) which is a probability distribution if the following condition is

imposed

∫
Ωi

ui(x, t)dx = 1. (1.3)

Notice that, with boundary conditions (1.2),
∫

Ωi
ui(x, t)dx does not change over

time. Therefore if the initial condition
∫

Ωi
ui(x, 0)dx = 1 then Equation (1.3)

holds. For modelling animal space, the initial conditions of space use should

relate to the ecology of the species being modelled, I consider different ways of

describing initial space use in Chapter 3.

The form of the diffusion term in Equation (1.1) differs from that of a general

convection-diffusion equation with diffusion term ∇[D(x, t)∇u(x, t)]. One may

obtain a diffusion term of the form ∇[D(x, t)∇u(x, t)] by deriving a partial

differential equation using diffusive flux described by Fick’s first law (Fick, 1855).

Instead, I obtained a diffusion term of the form ∇2[D(x, t)u(x, t)] following

the derivation in Appendix A.1, which is more suitable for modelling animal

movement as it is approximated from a stochastic model of movement, similar

to the diffusion equation derivation of Einstein (1905) from Brownian motion.
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In animal movement studies, the diffusion function is often set to be a constant,

Di(x, t) = D (Moorcroft and Lewis, 2006). In Chapter 3, I trial models for

each flock using either a constant or a spatio-temporally varying Di(x, t).

A steady-state solution to Equation (1.1), u∗
i (x), is found when ∂ui

∂t
= 0.

Whether Equation (1.1) settles to a steady-state distribution that results in

home range patterns depends on the movement mechanisms that built the

diffusion-taxis equation. Parameter schemes which give rise to home range

patterns can be analysed without solving the diffusion-taxis equation to a

steady-state (Murray 1993; Turing 1952, Chapter 2), which is useful to find

initial values for fitting to data. For a set of locations xd ∈ Si for flock i,

the steady-state of a diffusion-taxis equation can be fit to the locations by

maximising the following likelihood (Moorcroft and Lewis, 2006)

Li(P |X) =
∏

xd∈Si

u∗
i (xd), (1.4)

where P is the set of parameters in the model and X is the data set. One

can then fit these distributions to data and test between various hypothesised

movement mechanisms to find which set of mechanisms best fits the observed

home range patterns. Such a process is often termed mechanistic home range

analysis (MHRA; Moorcroft and Lewis 2006).

Previous studies of MHRA fit a diffusion-taxis equation to location data by

including an attraction towards a known central place. Including this site fidelity

in a diffusion-taxis equation restricts the movement that drives the steady-state

solution, to give rise to a home range (Okubo, 1980). Furthermore, many

MHRA studies aim to model territorial animals (Moorcroft et al., 2006) using

mechanisms describing scent marking or territorial conflicts (Bateman et al.,
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2015; Moorcroft et al., 2006). However, individual based models of home ranges

show that patterns can arise from environmentally driven mechanisms such

as optimal foraging and memory (Mitchell and Powell, 2004; Riotte-Lambert

et al., 2015).

Non-breeding flocks of long-tailed tits do not have site fidelity or display

territorial behaviour (Napper and Hatchwell, 2016). Recent studies describing

mechanisms of direct conflicts (Potts and Lewis, 2016a) and scent marking

(Potts and Lewis, 2016b) show that it is possible to form stable home ranges

from one-dimensional diffusion-taxis equations, without an attraction towards

a central place.

In Chapter 2, I use the methods of Potts and Lewis (2016a) to derive a

diffusion-taxis equation in two dimensions, with a memory mechanism to model

conspecific interactions. Furthermore, I detail numerical procedures to solve

the diffusion-taxis equation to a steady-state. In Chapter 3, I use the methods

defined in Chapter 2, alongside a habitat taxis mechanism to model the space

use patterns of flocks of long-tailed tits.

1.5 Step-selection analysis: an individual-based

modelling approach

To understand more about the woodland foraging preferences of long-tailed

tits, the movement of pairs whilst nest building was observed. The recorded

movements in response to the distribution of tree species in the Rivelin Valley

can be analysed by fitting the data to an individual-based model. Step-selection
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analysis (SSA) parametrises an individual-based model by comparing recorded

movements to those which were available (Thurfjell et al., 2014).

SSA began as a way to include movement in resource-selection analysis (RSA),

a method of comparing independent locations and the habitat of an individual

(Manly et al., 2002). Analysing autocorrelated locations produces a more

realistic model than independent locations, as animals are likely to make

movement decisions based on their current and previous locations (Forester

et al., 2009; Rhodes et al., 2005). SSA analyses the straight-line segment between

successive locations, termed a step. One of the first studies to introduce SSA

models the movements of elk in response to the risk of encountering wolves

(Fortin et al., 2005). The study incorporated successive movement in their

analyses to include movement characteristics in the model, such as the average

energy cost and the average wolf density of the steps. SSA has since been used

to uncover the movement drivers of many species of birds and mammals (Potts

et al., 2014b; Thurfjell et al., 2014; Zeller et al., 2016). Furthermore, it has

helped to understand influences on movement such as memory (Oliveira-Santos

et al., 2016), responses to roads (Prokopenko et al., 2017), energy benefits

(Merkle et al., 2017) and it was recently used to inform conservation decisions

(Osipova et al., 2019). In Chapter 4 I use SSA to analyse the fine scale woodland

foraging movements of pairs of long-tailed tits.

SSA consists of forming two functions, describing movement and habitat-

selection, respectively. Behaviours are included in SSA using a habitat-selection

function, which often has the log-linear form

Ψ(xj, t) = exp
(
B · Z(xj, t)

)
, (1.5)
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where Z(xj, t) =
(
Z1(xj, t), . . . , Zn(xj, t)

)
is a vector of covariate functions

describing behaviours in response to attributes of the habitat at the end of

the step xj at time t. The parameter vector B = (β1, . . . , βn) control each

covariate. The value of each parameter describes how movement is affected by

the covariate function. Covariate functions may also depend on the individual,

for the long-tailed tits they depend on the pair i, giving a habitat-selection

function, Ψi(B · Zi).

Usually steps are recorded over constant intervals in time, τ . A movement

kernel, ϕτ (xj|xj−1,xj−2) is used to define movement by calculating attributes

from the data such as speeds and turning angles and fitting them to models.

The movement kernel depends on two previous locations, xj−1 and xj−2, so

that the angle turned through from one step to the next can be included in the

model.

Realistically, animals make movement decisions by simultaneously evaluating

habitat information and the distance and turning angle required to get there.

However, in many SSA studies the movement kernel is not parametrised

concurrently with the habitat-selection function. Avgar et al. (2016) introduced

integrated step-selection analysis (iSSA) to express a general framework for

a SSA that defines a movement kernel within the mechanistic model and

simultaneously parametrises the movement kernel and the habitat-selection

function. The model in iSSA is denoted the step-selection function (SSF) and

defines the probability density of moving from xj−1 to xj at time t. For a pair

i, this would have the form

fτ,i(xj|xj−1,xj−2, t) = K−1 ϕτ (xj|xj−1,xj−2)︸ ︷︷ ︸
Movement

Ψi(xj, t),︸ ︷︷ ︸
Habitat

Selection

(1.6)
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where K normalises the function to ensure it is a probability density function.

Space use can be estimated from behaviours by first defining an individual-based

model of movement and simulating the model thousands of times until the

stochasticity is smoothed out (Fieberg et al., 2018; Signer et al., 2019). Simulations

result in a utilisation distribution, but are computationally costly. Instead a

diffusion-taxis equation can be derived from the parametrised individual-based

SSA model (Potts and Schlägel, 2020).

In Chapter 4, I introduce specific forms of Equation (1.6) using iSSA to represent

the movement of nest-building long-tailed tits and calculate a utilisation

distribution by approximating the SSF as a PDE.

1.6 Thesis outline

I derive a two-dimensional diffusion-taxis system to model conspecific avoidance

in flocks of long-tailed tits in Chapter 2. The PDE formalism was previously

introduced in one dimension by Potts and Lewis (2016a).

In Chapter 3, I examine drivers of space use patterns of flocks of long-tailed

tits using mechanistic home range analysis (MHRA). Specifically, I look at the

effects of conspecific avoidance, the response to the woodland environment and

the effect on conspecific avoidance of group size and kinship. Much of this

Chapter has been published in Ellison et al. (2020).

In Chapter 4, I use SSA to understand the foraging decisions of long-tailed

tits within their home ranges, specifically focussing on their response to the

woodland habitat. I use the resulting models to estimate the birds’ home ranges

via a diffusion-taxis approximation.
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Lastly, in Chapter 5 I give some discussion and conclusions.
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Fig. 1.2. A flow chart to model the space use of an animal mechanistically
using the methods in this thesis. The top half (§1.2.3) indicates a framework
to re-iteratively design experiments and models, where the blue route would
be followed before the orange route. Once the data collection is complete, the
model fitting process (shown in the lower half of the diagram) can begin. The
model fitting process is discussed in §1.5-§1.4. These ideas summarise those in
Turchin (1998).



Chapter 2

A diffusion-taxis model for

direct interactions

2.1 Introduction

Flocks of long-tailed tits in the Rivelin Valley live in home ranges that are partly

exclusive to each flock and partly overlapping with other flocks (Napper and

Hatchwell, 2016). Despite being a well studied population (Hatchwell, 2016),

the behaviours driving these space use patterns are not known (Hatchwell et al.,

2001a; Napper and Hatchwell, 2016). In other home ranging animal species,

territoriality, site fidelity and resource depletion are all thought to be common

mechanisms driving home range space use patterns (Moorcroft and Lewis, 2006;

Riotte-Lambert et al., 2015). However, these behaviours are not present in this

population of long-tailed tits (Hatchwell, 2016). In this Chapter, I introduce

methods to model home ranges arising from a memory mechanism that records

conspecific interactions between flocks of long-tailed tits.
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Potts and Lewis (2016a) introduced a one-dimensional diffusion-taxis model for

two hypothetical territorial animals, where space use is driven by the animal’s

memory of direct conflicts. I extend the model of Potts and Lewis (2016a)

into two dimensions to model multiple interacting flocks of birds. I denote this

model as the interaction model, and build it to describe conspecific interactions

that are not necessarily conflicts, broadening this mechanism to be applied to

non-territorial, home ranging animal species.

I introduce the interaction model by deriving a system of partial differential

equations (PDEs) in two dimensions, for multiple flocks. Space use in the

interaction model is described using a diffusion-taxis equation, built from

underlying movement rules. The system is solved through time to a point

where its stops changing and this is the system’s steady-state. I show that in

two spatial dimensions, steady-states corresponding to home ranges are possible.

Furthermore, when the PDEs are solved numerically, the steady-states may

never be reached, as numerical approximations can cause the system to move

between nearby steady-states, without settling on one. I detail a numerical

procedure to determine when the system first becomes sufficiently close to a

steady-state solution to gain a good numerical estimate of that solution, but

before it begins to move towards nearby steady-states. Lastly, I give examples

of possible home ranges that can emerge from the interaction model. The

objective of this Chapter is to introduce and analyse the interaction model, so

that it may be used to understand long-tailed tit ecology in Chapter 3.
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2.2 A diffusion-taxis model for direct

interactions

In the Rivelin Valley, it is thought that flocks of long-tailed tits are avoiding

other flocks (Hatchwell et al., 2001a). I introduce a diffusion-taxis model that

gives rise to home range patterns, built from these observed behaviours of

long-tailed tits. I hypothesise that when two flocks are close enough, they are

able to detect each other via birdsong or sight. I denote this detection generally

as an interaction. I further hypothesise that the birds are recording these

interactions in their memory and avoiding locations where the interactions

occurred. I introduce data, revisit and test these hypotheses with the models

proposed here in Chapter 3.

To understand the behaviours driving the movement of the birds, the spatial

data we model in Chapter 3 is from direct observations, where observing one

flock interacting with another is rare. Approximating an individual based

model as a PDE (see Moorcroft and Lewis 2006) is chosen here to be a

computationally efficient way of modelling the flocks, as extensive simulations

would be required to parametrise individual based mechanisms of interactions.

Other individual based methods such as using an off-lattice model (e.g. Ellis

et al. 2019; Patterson et al. 2008; Thurfjell et al. 2014) would be equivalently

costly to parametrise, discussed further in Chapter 5. The PDE model defined

in Potts and Lewis (2016a) indicates that individual-level interactions can drive

home range formation, without the usually required central place seen in the

literature (Moorcroft and Lewis, 2006).
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2.2.1 The individual-based movement model

The individual-based model (IBM) defined by Potts and Lewis (2016a) was

introduced in two dimensions, here I detail their model specifically for multiple

flocks of long-tailed tits. The IBM describes flocks moving on a grid of square

cells, n = (n,m), of length l. Since the birds within a flock forage together

and have the same home range, I model each flock as one entity, i and I do

not consider inter-flock dynamics. At each point in discrete time, s, each flock

moves either up, down, left, right or stays in the same cell. The probability of

moving in each direction depends on a dynamic cognitive map of interactions,

which has the same size and shape as the grid. Places that these interactions

are likely to happen are denoted as the flock’s interaction zone.

Each flock has a different cognitive map, Ki(n,m, s), and the map describes

the probability of location (n,m) being in the flock’s interaction zone at time

s. The probability, Ki(n,m, s), changes as locations are visited. Ki(n,m, s)

increases in places that direct interactions happen and decreases in places

without interactions. The probability that space (n,m) is in the interaction

zone of flock i in response to other flocks j at time step s+ 1 is

Ki(n,m, s+1) =



1 − µτ
if i and any j are in (n, m)

at s and an interaction
occurs with probability ρτl[

1 − (µ+ βl)τ
]
Ki(n,m, s) if i has no interaction in (n, m) at s,

(1 − µτ)Ki(n,m, s) if i is not in (n, m) at s,

(2.1)

where µ represents the decay of the interaction zone due to finite memory, βl is

the represents the decay of the interaction zone due to flock i visiting alone and
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τ is the interval in time. Interactions between flocks occur with probability ρτ,l.

Equation (2.1) can be explained as follows; Ki(n,m, s) is at its highest value

when i and any other flock j are in (n,m) at s and an interaction happens. If

flock i visits (n,m) at s and no interaction occurs, Ki(n,m, s) is reduced by

βl. Regardless of the event, Ki(n,m, s) is reduced at each time step due to

memory decay, represented by µ.

When making a decision to move, flock i averages over grid spaces in its

perceptual range, d, and moves in response to this average in each direction.

The average is defined as

K̄i(n,m, s) = 1
N(P )

∑
(n′,m′)∈P

Ki(n′,m′, s) (2.2)

where P is the set of all spaces (n′,m′) which are within a radius, d, of (n,m)

and N(P ) is the number of elements in the set P . The probability of flock i

moving to discrete space (n,m) at time step s+ 1, given that the flock was at

(n′,m′) at s can be described as fi(n,m|n′,m′) =



e
4

[
1 + qK̄i(n′ + d,m, s) − qK̄i(n′ − d,m, s)

]
, if (n,m) = (n′ − 1,m′),

e
4

[
1 − qK̄i(n′ + d,m, s) + qK̄i(n′ − d,m, s)

]
, if (n,m) = (n′ + 1,m′),

e
4

[
1 + qK̄i(n,m′ + d, s) − qK̄i(n,m′ − d, s)

]
, if (n,m) = (n′,m′ − 1),

e
4

[
1 − qK̄i(n,m′ + d, s) + qK̄i(n,m′ − d, s)

]
, if (n,m) = (n′,m′ + 1),

1 − e if (n,m) = (n′,m′),
(2.3)

where q ∈ (0, 1) is the strength of the tendency to move away from the

interaction zone. To ensure that the parameters are biologically viable with
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the numerical methods used, I have extended the model of Potts and Lewis

(2016a) to include the probability of a flock staying in the same place, 1 − e.

2.2.2 Deriving the Interaction System

The one-dimensional IBM defined by Potts and Lewis (2016a) was approximated

and analysed as a PDE system. Throughout the rest of this Chapter I extend

their work by deriving a two-dimensional PDE system from their IBM which

I defined in §2.2.1. The interaction model is a system of PDEs where a

diffusion-taxis equation describes the space use of a flock as a utilisation

distribution. PDEs are defined in continuous space, x = (x, y) and time, t. To

move to continuous space and time, I make the following redefinitions

x = nl, y = ml, t = sτ,

ki(x, y, t) =Ki(n,m, s), l2ui(x, y, t) = Ui(n,m, s), (2.4)

where l is the length of each discrete grid square and τ is the length of the

discrete time interval. The multiple of l2 is required because the utilisation

distributions ui and Ui must both integrate to 1 (explained further in Appendix

A.2).

I begin by approximating the probability of a location being in the interaction

zone as a PDE in continuous space and time. I first assume that the grid is

large enough so that the probability of more than two flocks being present at

(n,m) at s is negligible. Then, the probability of an interaction occurring at

(n,m) at time s for flock i is

ρτ,l Ui(n,m, s)
∑
j ̸=i

Uj(n,m, s). (2.5)
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The probability of a location being in the interaction zone is defined using the

expected value of Ki(n,m, s) (Equation 2.1). Writing Ui(n,m, s) as Ui, the

expected value of Ki(n,m, s+ 1) is

⟨Ki(n,m, s+ 1)⟩ = (1 − µτ) ρτ,lUi

∑
j ̸=i

Uj

+
(
1 − (µ+ βl) τ

)
⟨Ki(n,m, s)⟩

1 − ρτ,lUi

∑
j ̸=i

Uj

Ui

+ (1 − µτ) ⟨Ki(n,m, s)⟩
1 − ρτ,lUi

∑
j ̸=i

Uj

 (1 − Ui) , (2.6)

where the angle brackets in Equation (2.6) represent the expected value of

Ki(n,m, s). Moving to continuous space and time using the redefinitions

(2.4), requires taking a continuum limit and follows a similar process to the

one-dimensional derivation in Potts and Lewis (2016a), therefore I omit the

full derivation here. Equation (2.6) is approximated as

dki

dt
= ρui

∑
j ̸=i

uj (1 − ki) − ki (µ+ βui) , (2.7)

where ρ = lim
l,τ→0

l4ρτ,l

τ
and β = lim

l→0
l2βl. Additionally, as I move to continuous

space and time, the average over the interaction zone becomes

k̄i(x, t) = 1
πδ2

∫
Bδ(x)

ki(x, t) dx, (2.8)

where δ = lim
d→∞
l→0

(dl) and Bδ(x) defines the ball with radius δ around the point

x.

The derivation of the diffusion-taxis equation for space use from the IBM shown

by Equation (2.3) begins by defining a master equation for moving to space
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(n,m) at time s+ 1:

Ui(n,m, s+ 1) =
e

4
[
1 + qK̄i(n+ 1 + d,m, s) − qK̄i(n+ 1 − d,m, s)

]
Ui(n+ 1,m, s)

+ e

4
[
1 + qK̄i(n− 1 − d,m, s) − qK̄i(n− 1 + d,m, s)

]
Ui(n− 1,m, s)

+ e

4
[
1 + qK̄i(n,m+ 1 + d, s) − qK̄i(n,m+ 1 − d, s)

]
Ui(n,m+ 1, s)

+ e

4
[
1 + qK̄i(n,m− 1 − d, s) − qK̄i(n,m− 1 + d, s)

]
Ui(n,m− 1, s)

+ (1 − e)Ui(n,m, s). (2.9)

Using the redefinitions (2.4) and rearranging I obtain

1
τ

(
ui(x, y, t) −ui(x, y, t+ τ)

)
=

e

4τ
[
ui(x+ l, y, t) + ui(x− l, y, t)

]
+ e

4τ
[
ui(x, y + l, t) + ui(x, y − l, t) − 4ui(x, y, t)

]
+ qe

4τ

[(
k̄i(x+ (1 + d)l, y, t) − k̄i(x+ (1 − d)l, y, t)

)
ui(x+ l, y, t)

]
− qe

4τ

[(
k̄i(x− (1 + d)l, y, t) − k̄i(x− (1 − d)l, y, t)

)
ui(x− l, y, t)

]
+ qe

4τ

[(
k̄i(x, y + (1 + d)l, t) − k̄i(x, y + (1 − d)l, t)

)
ui(x, y + l, t)

]
− qe

4τ

[(
k̄i(x, y − (1 + d)l, t) − k̄i(x, y − (1 − d)l, t)

)
ui(x, y − l, t)

]
.

(2.10)

Each ui and k̄i is expanded as an approximation of their Taylor series around

(x, y), where any terms of order l3 or higher are considered to be negligible as l

is small. By substituting the Taylor approximations into (2.10) and taking the

limit as τ, l → 0 the diffusion-taxis equation becomes
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∂ui

∂t
= D∇2ui + c∇ ·

[
ui∇k̄i

]
, (2.11)

where ∇ =
(

∂
∂x
, ∂

∂y

)
, c = 4dqD and D = lim

τ,l→0

(
l2e
4τ

)
.

Non-dimensionalization of Equations (2.11) and (2.7) reduces the amount of

parameters, so that analyses of the system and fitting to data are more efficient.

I redefine the parameters in Equations (2.7), (2.8) and (2.11) in Appendix A.3.

The new parameters have the form

ρ = lim
l,τ→0

ρτ,ll
4

τ
, β = lim

l,τ→0
l2βl, D = lim

l,τ→0

l2e

4τ , δ = lim
l→0

ld

c = 4dqD, x̃ = x

L
, ỹ = y

L
, δ̃ = δ

L
, ũi = Lui, k̃i = ki, t̃ = Dt

L2 ,

a = D

ρ
, b = βL

ρ
, γ = c

D
, m = µL2

ρ
. (2.12)

where l is change in space, which is same in both the x and y directions and τ

is the change in time. L is the length of the square domain Ω= [0, L] × [0, L]

that the system is solved over, which is the same for each flock. The continuous

perceptual radius of a flock, when averaging ki(x, t) is denoted by δ.

The system defined here describes the spatio-temporal change of a probability

density function therefore
∫

Ω ui dx = 1 must always be true, to ensure this I

set zero-flux boundary conditions meaning that the amount of density entering

the spatial domain is always equal to the amount exiting. These conditions
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give the interaction system

∂ui

∂t
= ∇2ui + ∇ ·

[
γui∇k̄i

]
, (2.13)

a
∂ki

∂t
= uiΣi ̸=juj(1 − ki) − ki(m+ bui), (2.14)∣∣∣∣nx ·
[
∇ui + γui∇k̄i

] ∣∣∣∣
x∈∂Ω

= 0, (2.15)∫
Ω
ui dx = 1, (2.16)

where the tildes from (2.12) are omitted for notational purposes. The boundary

of the domain to be solved over is ∂Ω and nx is the normal to the boundary

at x. When averaging over ki(x, t) using Equation (2.8), the circular area is

truncated at the boundaries accordingly.

2.2.3 Initial Numerical Solutions

I solve the system (2.13)-(2.16) using finite difference methods, detailed in

Appendix A.4. Numerical solutions for two flocks with initial conditions that

are Dirac delta functions (with the mass concentrated at the points (0.25,

0.25) and (0.75, 0.75) in the domain [0, 1]2) and parameter values a = 0.01, b

= 5, γ = 10, m = 0 and δ = 0.05 are shown in Fig. 2.1. Solutions that are

biologically relevant consist of home range patterns where each flock’s space

use is concentrated on either side of the domain, as a result of the avoidance

mechanism. As the system evolves through time, different biologically relevant

solutions appear. At around t = 0.5 the system appears to be close to a stable

steady state, changing little from t = 0.5 to t = 2. However, if we carry

on simulating the system, it in fact changes very slowly through time. This

suggests the possibility that the numerical system may have a continuum of
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stable steady states and the numerics are moving close to this continuum, but

never quite settling on one stable state, due to small numerical approximations.

In §2.3.2, we demonstrate this continuum of stable steady states in the limit

as δ → 0, giving evidence to support this interpretation of what we are seeing

numerically. In the next section, I investigate the conditions in which patterns

may form in the system (2.13)-(2.16) and define a method to find the numerical

steady-state.

2.3 Pattern formation analysis

The emergence of patterns in non-linear diffusion systems can be predicted

using linear stability analysis (LSA, Murray 1993; Turing 1952). LSA allows one

to investigate the short-term behaviour of a system to estimate when patterns

may occur. Moreover, the asymptotic behaviour of a system can be analysed

with energy functional analysis, using Lyapunov’s direct method for stability

(e.g. Krstic and Smyshlyaev 2008). To analyse when home range patterns

may form in the one-dimensional system for two individuals, Potts and Lewis

(2016a) used both analyses, finding that (1) patterns form for some parameter

regimes and (2) steady-state patterns may depend on the initial conditions. I

extend these analyses to understand the conditions in which patterns may form

in the two-dimensional system for multiple flocks.

In the one-dimensional system for two flocks, the spontaneous emergence of

patterns from small non-constant perturbations of the constant steady-state

depends on the parameters γ and b (Potts and Lewis, 2016a). The γ parameter

corresponds to taxis away from the interaction zone and b corresponds to

the decay of the interaction zone, due to visiting areas without interactions
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0 0.05 0.1 0.5 1

2 10 15 20 100
Fig. 2.1. Numerical solutions of the interaction model. Each solution is labelled
with its corresponding time, t. Solutions are calculated using the numerical
scheme in Appendix A.4 and it takes approximately 55 hours to reach the
solution in the final panel (t = 100). The reasons of this particularly long
computational time are investigated in §2.3.2, where it is indicated that small
numerical errors may cause the system to shift between numerical steady-states.
Parameter values used here are a = 0.01, b = 5, γ = 10, m = 0 and δ = 0.05.
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occurring. I focus on different values of γ and b parameters which give rise to

patterns in the two-dimensional system, for multiple flocks.

2.3.1 Linear Stability Analysis

I perform LSA for the system (2.13)-(2.16) in two dimensions for two and four

flocks. The system has constant steady-states u∗
i (x) = uc and k∗

i (x) = kc. The

value uc is found by the integration condition in Equation (2.16), giving uc = 1

for all i. When Equation (2.14) isn’t changing over time,

kc = n− 1
b+m+ n− 1 , (2.17)

for all i, where n is the number of flocks in the system.

For this analysis, I assume that solutions for ui and ki take the form of their

constant steady-states, with small spatially non-constant perturbations, ûi and

k̂i in the following form (which is standard, see Murray 1993)

ui = u∗
i + ûi = 1 + ui,0 exp (σt+ jκ · x) , (2.18)

ki = k∗
i + k̂i = kc + ki,0 exp (σt+ jκ · x) , (2.19)

where j =
√

−1 and coefficients ui,0 and ki,0 are arbitrarily small. The vector

of wavenumbers κ = (κx, κy), is constant. Substituting the solutions (2.18) and

(2.19) into the system (2.13)-(2.16) and ignoring non-linear terms means the

system can be written in the form

Mnŵ = σŵ, (2.20)
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which is approximately valid for small times, where the non-linear terms are

trivial. In Equation (2.20), ŵ = (û1, . . . , ûn, k̂1, . . . , k̂n), Mn is a matrix and σ

is an eigenvalue of matrix Mn. By plotting the eigenvalue with the greatest

real part against κ, namely the dispersion relation, the existence of positive

ℜ(σ) values for a non-zero range of κ values indicates the formation of patterns,

for a given range of parameters (Murray, 1993).

To find the matrix Mn for the system (2.13)-(2.16), I first find a form for k̄i,

the average of ki over a disc of radius δ centred at x, shown in Equation (2.8).

Converting to polar coordinates this average becomes

k̄i(x, y, t) = 1
πδ2

∫ δ

0

∫ 2π

0
r ki(x+ r cos(θ), y + r sin(θ), t) dθdr, (2.21)

then substituting Equation (2.19) into Equation (2.21) gives

k̄i = 1
πδ2

∫ δ

0

∫ 2π

0
rkc dθdr

+ 1
πδ2

∫ δ

0

∫ 2π

0
rki,0 exp

(
σt+ jκx(x+ r cos(θ)) + jκy(y + r sin(θ)

)
dθdr,

(2.22)

where the first term in Equation (2.22) is equal to kc. The integral in the

second term is

I = k̂i

πδ2

(∫ δ

0

∫ 2π

0
r exp

(
jκxr cos(θ) + jκyr sin(θ)

)
dθdr

)
, (2.23)

= k̂i

πδ2

∫ δ

0

∫ 2π

0
r cos

(
κxr cos(θ) + κyr sin(θ)

)
dθdr

+ j
k̂i

πδ2

∫ δ

0

∫ 2π

0
r sin

(
κxr cos(θ) + κyr sin(θ)

)
dθdr. (2.24)



2.3 Pattern formation analysis 39

The second term of Equation (2.24) is equal to zero as sin(κxr cos(θ)+κyr sin(θ))

has a range [−1, 1] with a period of 2π and is being integrated over a full period.

To evaluate the first term I use the harmonic identity a cos(θ) + b sin(θ) =
√
a2 + b2 cos(θ−ϕ) where ϕ can be set equal to zero as the integral is the same,

regardless of this shift. Using |κ| = κ2
x + κ2

y the integral becomes

I = k̂i

πδ2

∫ δ

0

∫ 2π

0
r cos

(
r|κ| cos(θ)

)
dθdr,

= 2πk̂i

πδ2

∫ δ

0
rJ0

(
r|κ|

)
dr, (2.25)

where J0(x) = 1
π

∫ π
0 cos(x cos(θ))dθ is a Bessel function of the first kind of

order 0. A Bessel Function of the first kind has the general form Jm(x) =
1
π

∫ π
0 cos(x sin(θ) −mθ)dθ for order m. Using the identity

∫
uJ0(u)du = uJ1(u)

and integration by substitution (where u = r|κ|), I obtain

I = 2J1(δ|κ|)
δ|κ|

k̂i, (2.26)

which gives

k̄i = kc + 2J1(δ|κ|)
δ|κ|

k̂i. (2.27)

Substituting (2.18) and (2.27) into Equation (2.13) gives

σûi = −|κ|2ûi − 2|κ|J1(δ|κ|)
δ

k̂i. (2.28)
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Similarly, substituting (2.18) and (2.19) into Equation (2.14) gives

σk̂i = m(n− 1)
a(m+ b+ n− 1) ûi +

∑
p ̸=i

m+ b

a(m+ b+ n− 1) ûp + −(m+ b+ n− 1)
a

k̂i.

(2.29)

The eigenvalues of matrix Mn are defined as

σ1 = γ2J1(δ|κ|)
[
b+m(2 − n)

]
δ|κ|(m+ b+ n− 1)2 − 1, (2.30)

σ2 = −γ2J1(δ|κ|)
[
b+ 2m(n− 1)

]
δ|κ|(m+ b+ n− 1)2 − 1, (2.31)

which are repeated (Mn has size 2n × 2n, so each eigenvalue is repeated n

times). If max(σ1, σ2) > 0 for some κ, the steady-state solution is unstable to

non-constant perturbations, suggesting patterns may form spontaneously.

In the case of two flocks (n = 2), the parameter values a = 0.01, b = 1, γ = 10,

m = 0 and δ = 0.05 give similar dispersion relations to Potts and Lewis (2016a)

(seen by setting κx = κy). As the amount of flocks in the system increases

(from 2 flocks to 4 flocks), the allowed range of γ and b for patterns to occur is

smaller (Fig. 2.2). The range of γ and b parameters which give rise to patterns

as predicted by the LSA are shown by the green areas of Fig. 2.3 (top panels).

2.3.2 An Energy Functional analysis

The energy functional method is a way of finding asymptotically-stable steady

state solutions. An energy functional for the system (2.13)-(2.16) is a functional

of the solution ui(x, t) that gives a value, the energy, which is always decreasing

through time. Before the energy functional is defined, the following assumptions

are used (Potts and Lewis, 2016a). First set δ → 0, so that k̄i(x, t|δ) = ki(x, t).
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(a) (b)

(c) (d)

(e) (f)

2 flocks 4 flocks
Fig. 2.2. Dispersion relations using the eigenvalues, σ1, σ2 (Equations 2.30
and 2.31), of the matrix M2 (left panels) for two individuals and M4 for 4
individuals (right panels). Panels (a) and (b) show the dispersion relation for
a = 0.01, b = 1, γ = 10, m = 0, δ = 0.05. Panels (c) and (d) increase γ to 20
and panels (e) and (f) increase b to 3.
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Next, assume that Equation (2.14) reaches equilibrium quickly and set a = 0.

Also set m = 0 (no decay due to finite memory). Lastly, since the integral

condition (2.16) indicates a constant steady state solution u∗
i (x) = 1, assume

that∑n
i=1 ui(x, t) = n, where n is the number of flocks. Using these assumptions,

Equation (2.13) becomes a function of only ui(x, t):

∂ui

∂t
= ∇ ·

∇ui + γui∇
(

n− ui

b+ n− ui

) . (2.32)

Equation (2.32) can then be written in the form

∂ui

∂t
= ∇2ϕ(ui), (2.33)

where

ϕ(ui) = ui − γb ln(b+ n− ui) − γb(b+ n)
b+ n− ui

. (2.34)

I assume b > 0 and ui < b+ n, to ensure that Equation (2.34) is defined. For

an energy functional, a function Φ(ui) is defined by setting dΦ(ui)
dui

= ϕ(ui), so

that

Φ(ui) = u2
i

2 + γb(2b+ 2n− ui) ln(b+ n− ui) − γb(b+ n− ui). (2.35)

Then, over the domain, Ω = [0, 1]2, the energy functional for the system

(2.13)-(2.16) has the form

E(ui) =
∫ 1

0

∫ 1

0
Φ(ui) dx dy, (2.36)
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which is always decreasing since:

dE(ui)
dt =

∫ 1

0

∫ 1

0

(
dΦ(ui)

dt

)
dx dy,

=
∫ 1

0

∫ 1

0

(
dΦ(ui)

dui

dui

dt

)
dx dy,

=
∫ 1

0

∫ 1

0

(
dΦ(ui)

dui

∇2ϕ

)
dx dy.

=
∫ 1

0

∫ 1

0

(
ϕ∇2ϕ

)
dx dy,

=
∫ 1

0

∫ 1

0

(
ϕ
∂2ϕ

∂x2 + ϕ
∂2ϕ

∂y2

)
dx dy,

=
∫ 1

0

(∫ 1

0
ϕ
∂2ϕ

∂x2 dx
)

dy +
∫ 1

0

(∫ 1

0
ϕ
∂2ϕ

∂y2 dy
)

dx,

=
∫ 1

0

[ϕ∂ϕ
∂x

]1

0
−
∫ 1

0

(
∂ϕ

∂x

)2

dx
 dy

+
∫ 1

0

[ϕ∂ϕ
∂y

]1

0
−
∫ 1

0

(
∂ϕ

∂y

)2

dy
 dx,

= −
∫ 1

0

∫ 1

0

(∂ϕ
∂x

)2

+
(
∂ϕ

∂y

)2
 dx dy,

<0. (2.37)

The seventh line of Equation (2.37) uses integration by parts. The flux of

Equation (2.33) normal to the boundary is zero, therefore, since the domain is

Ω = [0, 1]2, the last line of Equation (2.37) is true. Lastly, Equation (2.37) is

always negative since
(

∂ϕ
∂x

)2
+
(

∂ϕ
∂y

)2
is always positive. Therefore, the energy

functional is always decreasing.

When Equation (2.33) is at steady-state, the flux −∇ϕ = c is constant across

the domain, by definition. The flux normal to the four boundaries is always

zero, therefore at steady-state the horizontal and vertical components of c must

both be zero, leaving ∂ϕ
∂x

= ∂ϕ
∂y

= 0. Equation (2.37) shows that the energy
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is always decreasing, but when the system is at steady-state (2.37) becomes
dE
dt

= 0. Therefore, if E(ui) reaches a minimum, then this value will reached as

the system reaches steady-state.

The energy functional will only reach a minimum value representing the system’s

steady-state if it is bounded below. Potts and Lewis (2016a) prove that in the

one-dimensional system, when m = 0 and δ→ 0, there are no non-constant

classical steady-state solutions and instead search for weakly-defined solutions.

The numerical solutions shown in Fig. 2.1 give evidence towards a particular

biologically relevant solution where, for two flocks, the space use of each flock

is concentrated on either side of the available domain. Therefore, I follow

Potts and Lewis (2016a) and search for minimum energy weak solutions that

correspond to the sort of home ranges that are observed numerically, whereby

each flock i has most of its space use concentrated in one part of the domain,

Si, where m(Si) = 1
n

and outside of Si space use is equal to the constant value

ηi. Specifically, I search for solutions of the form

u∗
i (x) = n−

∑
j ̸=i

ηj, u∗
j(x) = ηj, for x ∈ Si, j ̸= i, for all i, (2.38)

where the sets {Si}i for 1 ≤ i ≤ n partition the space [0, 1]× [0, 1]. Substituting

Equation (2.38) into Equation (2.36) gives

E(u∗
i ) = 1

n
Φ(n−

∑
i ̸=j

ηj) + 1
n

∑
i ̸=j

Φ(ηj). (2.39)

Since b > 0 and ui < b+ n, the energy is bounded below as it is a continuous

function whose domain is the compact set [0, 1]2.
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To find values of ηj that minimise Equation (2.39), numerically for n = 2, 4,

I search for local minima in the domain 0 < ηi < 1 for all i in the parameter

ranges 0 < b < 10 and 0 < γ < 20. For all values of b and γ, the minimum of

Equation (2.39) is when either ηi = 0 or ηi = 1, for all i. For some values of b

and γ there is a local minimum at both ηi = 0 and ηi = 1. When the energy

has local minima at both ηi = 0 and ηi = 1, there are two asymptotically stable

steady-state solutions, so the patterns that result as time tends to infinity

are determined by the initial conditions. Home range patterns correspond

to ηi = 0, since in this case each flock i is only using the space in Si. The

parameter ranges corresponding to home range patterns are shown in Fig. 2.3

(bottom panels) where the green parameter regimes show places where there

is a global minimum ηi = 0 for 0 < ηi < 1 for all i and the pink parameter

regimes show places where there is a local minimum that is not global. The

green parameter regimes correspond to the parameter regimes predicted by

linear stability analysis (LSA), Fig. 2.3 (top panels).

Since the energy functional is always decreasing, if the system reaches a

minimum energy solution described by Equation (2.38) with ηj = 0, for all

j (corresponding the the steady-state of the system), it should not change.

However, the numerical solution in Fig. 2.1 does not appear to result in a

particular steady-state solution but instead slowly changes through time. I

propose that due to the numerical approximation used to solve the system,

it is possible that the system is becomes numerically very close to reaching

a steady-state then starts moving towards another, nearby steady state solution,

potentially in perpetuity. Here I explain this reasoning visually using representations

of solutions to the one-dimensional system (Potts and Lewis, 2016a) and the

two-dimensional system (2.13)-(2.16), for two flocks.
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2 flocks 4 flocks

Fig. 2.3. Parameter schemes for home range pattern formation where values
of b and γ shown by the green area indicate patterns. The left panels represent
the interaction model with two flocks and the right panels represent the model
for four flocks. The top panels are found by the linear stability analysis (LSA).
The bottom panels are found by the energy functional analysis, where the green
areas show values of b and γ where there was a global minimum at ηi = 0
and the pink areas show where there are local minima at η = 0, 1, where
0 ≤ ηi ≤ 1. The pink areas correspond to steady-states which depend on the
initial conditions.
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The hypothetical solution shown in Fig. 2.4 shows solutions in one dimension

for two flocks. Possible minimum energy solutions (Equation 3.18 in Potts and

Lewis 2016a) are shown in panels (a) and (c). It is not possible to continuously

move from panel (a) to (c), as to do this requires moving through non-minimum

energy solutions, such in panel (b), and this requires an increase in energy.

For the two-dimensional case, possible solutions at minimum energy (defined by

Equation 2.38, with ηj = 0, for all j) can be visualised in Fig. 2.5. Two solutions

at minimum energy such as those in panels (a) and (b) can be arbitrarily close

together. The numerical approximation of the system may find a solution very

close to the steady-state then due to numerical error, it may start moving

towards another solution that is very close to a different stable steady-state.

Therefore, it is necessary to determine a method to find numerically the correct

steady-state solution that corresponds to a given initial condition. This is the

subject of §2.4.

To conclude, home range patterns form in the system (2.13)-(2.16) for the ranges

of b and γ shown in Fig. 2.3. By investigating a particular type of solution, I have

shown, through an analytic argument combined with numerical experiments,

that the two-dimensional numerical solution of the system (2.13)-(2.16) may

never settle on a steady-state. Although I have only investigated a restricted

set of solutions (Equation 2.38) with the simplifying assumptions that m = 0

and δ→ 0, the analysis agrees well with linear stability analysis of the full

system (Fig. 2.3, top panels). In the next section, I detail a procedure to find

numerically the steady-state of the system which corresponds to any given

initial condition.
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Fig. 2.4. 1D examples of solutions at minimum energy defined by a
one-dimensional version of Equation (2.38) with ηj = 0, for all j. The top
panel shows a solution with home ranges formed. The middle panel shows a
solution which does not fit Equation (2.38) with ηj = 0, for all j, but could be
moving to a solution at minimum energy. The bottom panel shows a solution at
minimum energy where the home ranges are not connected. This figure shows
that in one dimension it is not possible to move continuously from solution to
another (e.g. from the top panel to the bottom) without minimum energy.
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(a) (b)

Fig. 2.5. 2D examples of solutions at minimum energy defined by Equation
(2.38) for two flocks, i and j, with ηj = 0. The white areas show the space use
of flock i and the black areas show the space use of flock j. Panels (a) and
(b) show different solutions at minimum energy. It is possible to move from
solution (a) to solution (b) without moving out of a minimum energy.

2.4 Numerical methods

The numerical solution shown in Fig. 2.1 appears to move through solutions

that are close to steady-state solutions predicted by the energy functional

analysis (Equation 2.38 with ηj = 0, for all j). To estimate numerically the

steady-state corresponding to an initial condition, I design a numerical scheme

whereby the evolution of ki(x, t) is halted at a point where this steady-state

appears (numerically) to have been reached.

2.4.1 The evolution of ki(x, t)

The size of the interaction zone for each flock i is given by
∫

Ω ki(x, t) dx. The

change in this value over time is shown in Fig. 2.6 for the system solved in

Fig. 2.1. After some initial growth of the interaction zone, the numerical

integral
∫

Ω ki(x, t) dx appears visually to reach a saturation point. To find this
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Fig. 2.6. The numerical integral of ki(x, t) over the study area as the system
solved in Fig. 2.1 evolves through time.

numerical saturation point, the average temporal gradient of the numerical

integral
∫

Ω ki(x, t) dx, over 100 time steps, is given by

κi(t) =
∫

t′∈Tt

∣∣∣∣∫
Ω
ki(x, t′) − ki(x, t′ + 100τ)dx

∣∣∣∣ dt′. (2.40)

where τ is equal to the numerical timestep, Ω = [0, 1]2 is the landscape and

Tt = [t, t+ 100τ ].

The following procedure can be used to stop the evolution of ki. At the point

in time when κi(t) reaches a minimum threshold value, κi,min, the evolution

of the interaction zone for flock i is stopped. After this value is reached,

I continue to evolve ui(x, t) according to Equation (2.13), but keep ki(x, t)

fixed. Then I stop the numerical solution at the first point in time where

maxx|ui(x, t + τ) − ui(x, t)| first dips below a pre-defined tolerance level for

each flock i. The value of κi,min used to stop the evolution of ki(x, t) and the
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tolerance level to stop the evolution of ui(x, t) depends on the numerical scheme

(e.g. grid spacing and time steps).

For numerical solutions in the next section, I use κi,min = 0.2. This value

was found by testing a range of values and choosing the value which had the

smallest difference between the stopping times for the flocks. The range of

values were chosen by ensuring that the minimum value for κi,min resulted in

interaction zones that were sufficiently formed. The formation of the interaction

zone was checked to be sufficient by plotting ki and observing the size of

the interaction zone. Further investigations are required to find the best

quantifiable way to determine the range of κi,min values, e.g. checking the

percentage cover of the interaction zone in the domain. When fitting to data,

further values of κi,min will be explored. I stop the evolution of ui(x, t) when

maxx|ui(x, t+ τ) − ui(x, t)| < 10−10 for a grid of 50 by 50 cells and τ = 10−5.

2.4.2 Numerical solutions of the interaction system

The interaction model was derived to model the home range of multiple flocks of

long-tailed tits using a memory medicated avoidance mechanism. Here I show

examples of numerical solutions of the interaction model for four hypothetical

flocks. The interaction model is defined by Equations (2.13)-(2.16) and solved

to a steady-state using the numerical schemes in Appendix A.4 and §2.4.1.

Steady-state solutions correspond to utilisation distributions and these are

shown in Fig. 2.7 for two different sets of initial conditions. I show solutions

for different values of γ; the parameter which represents taxis away from the

interaction zone. The utilisation distributions in Fig. 2.7 show that by avoiding

locations where previous interactions have occurred, the interaction model

can form an exclusive home range for each flock, with some small overlap.
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γ = 15 γ = 12

γ = 12 γ = 10

Fig. 2.7. Numerical solutions for u∗
i (x) for the interaction system (2.13)-(2.16)

for four flocks using the numerical details in Appendix A.4. Initial conditions in
the top panel are Dirac delta functions which are symmetric about the vertical
and horizontal lines though the middle of the domain. In the bottom panels
the initial conditions are non-symmetric Dirac delta functions. The parameter
values used are values are a = 0.01, b = 10, δ = 0.05, m = 0 and κi,min = 0.2.
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Parameter values which best fit the long-tailed tit study system will be found

in Chapter 3, where I model space use with an extension of the interaction

model.

2.5 Summary

Home range patterns of long-tailed tits in the Rivelin Valley consist of areas of

exclusive space use. The purpose of this chapter was to find a mechanism to give

rise to these patterns from underlying behaviours. I defined the mathematical

groundwork to begin modelling the bird’s home ranges using memory-mediated

conspecific avoidance. I derived and analysed a two-dimensional diffusion-taxis

model, the interaction model, to produce exclusive home ranges. This model

uses a taxis mechanism to describe flocks of long-tailed tits avoiding locations

where interactions between flocks have occurred in the past.

The extension of the interaction model into two-dimensions revealed greater

numerical complications than the one-dimensional system defined by Potts

and Lewis (2016a). Investigations using energy methods indicated that there

is a surface of steady-state solutions and that it is possible the numerical

system may shift continuously through numerical solutions close to the system’s

steady-states. I detailed a numerical scheme to stop the evolution of the

interaction zone at a point where the change in the average value of ki reaches

a low threshold κi(t)= κi,min. The threshold represents the point in time where

each flock of birds has approximately decided upon their interaction zone.

In this chapter I have explored the interaction system enough to be able to use

it as an ecological model of space use for my study species. However, further
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mathematical analyses are required to understand more about the behaviour

of the system, without stopping the evolution of the interaction zone.

Fitting the steady-state pattern of a diffusion-taxis system, such as the interaction

model to home range data is known as mechanistic home range analysis (MHRA).

In previous studies, MHRA has predominantly been applied to territorial canids.

This chapter shows that by extending the model of Potts and Lewis (2016a) into

two spatial dimensions for multiple flocks, MHRA may be used to understand

the home range formation further species, that do not have site fidelity or

show territoriality. This is confirmed in the next chapter, where I show that by

including a simple taxis mechanism to describe an attraction to the woodland

habitat, MHRA can model home range patterns well.



Chapter 3

Mechanistic home range

analyses of long-tailed tits

3.1 Introduction

Patterns of animal space use across habitats are often a combination of the

home ranges of conspecifics and hetrospecifics (Bateman et al., 2015; Potts and

Petrovskii, 2017). Several mechanisms have been revealed to be behind home

range formation, such as the avoidance of predators (Bastille-Rousseau et al.,

2015; Coleman and Hill, 2014), territorial interactions (Bateman et al., 2015;

Giuggioli et al., 2011), optimising foraging (Mitchell and Powell, 2012; Moorter

et al., 2009) and a site fidelity (Moorcroft and Lewis, 2006; Okubo, 1980). The

ubiquity of home ranges in diverse taxa inspires the hypothesis that there are

general mechanisms for the home range formation of animal species, which are

yet to be uncovered (Börger et al., 2008).
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Home ranges of non-breeding flocks of long-tailed tits form a complex arrangement

of distinct areas and overlaps (Napper and Hatchwell 2016; Fig. 3.1). In the

previous Chapter, I hypothesised that these partly-exclusive areas of space use

are driven by flocks avoiding places they have previously interacted (via birdsong

or sight) with other flocks, a behaviour suggested in Hatchwell et al. (2001a)

and by observing the population. To describe this hypothesised behaviour,

I introduced the interaction model: a model of a dynamic cognitive map

describing the places where interactions have recently occurred, coupled with a

taxis avoidance mechanism. Numerically solving the model gives rise to home

range patterns (Fig. 2.7).

The interaction model provides a base model for understanding home range

formation of flocks. In addition to interactions, there is a clear recognised effect

of woodland habitat on the birds movement, that should be accounted for when

modelling space use (Gaston 1973; Hatchwell 2016; Fig. 3.1). By including

different descriptions of taxis towards the woodland habitat, I form multiple

competing hypotheses that extend the interaction model (2.13)-(2.16) to form

multiple different models.

As well as the effect of woodland, I also examine how the relative size of a flock

(i.e. number of individuals) affects the extent to which it avoids neighbouring

flocks. I hypothesise that smaller flocks will tend to have a stronger avoidance

mechanism than larger flocks by assuming that smaller flocks would prefer to

avoid potential conflict (Adams and Plowes, 2019; Dyble et al., 2019; Port et al.,

2011). Furthermore, given that there is an apparent correlation between spatial

proximity and relatedness (Hatchwell et al., 2001b; Napper and Hatchwell,

2016), I hypothesise that the relatedness of neighbouring flocks will be inversely

related to the strength of the avoidance mechanism.
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This study demonstrates the usefulness of mechanistic home range models

for uncovering features of movement that cannot easily be detected using

descriptive, statistical models. The results in this Chapter have been published

in Ellison et al. (2020).

3.2 Long-tailed tits in the non-breeding season

The Rivelin Valley in Sheffield is an area composed of farmland and woodland,

home to a population of long-tailed tits that has been studied for over 25

years (Hatchwell 2016, §1.3). In the non-breeding season (May-February)

long-tailed tits in the Rivelin Valley live in flocks of 10-20 individuals (Gaston,

1973; Hatchwell, 2016) and their main life history goal is to forage for food.

Individuals in the flock forage together and the majority of each flock usually

consists of one or more fledged broods and their parents and helpers (Hatchwell,

2016). Typically, approximately 60-70% of a flock is related to at least one other

member of the flock, where the coefficient of relatedness r ≥ 0.25, meaning we

consider only parents and siblings (Wright, 1922). However, birds often have

relatives in other flocks as a result of dispersal after the breeding season. Flocks

are not consistent between seasons and change due to mortality, dispersal and

breeding events (Napper and Hatchwell, 2016). Furthermore, flock switches

take place but are only common at the start of the non-breeding season (Napper

and Hatchwell, 2016).

In this Chapter, I analyse data from the non-breeding seasons of 2010-13,

which were first reported in (Napper and Hatchwell 2016 collected by Clare

Napper), alongside data collected primarily for this study from the non-breeding

season of 2018-19 (collected by Sarah Biddiscombe). The newer data contains
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additional knowledge of kinship between flocks and the size of each flock. I

focus on data in two different areas of the Rivelin Valley; the Fox Hagg and

the Black Brook woodlands (visualised in Fig. 3.1). Data were collected in the

Fox Hagg woodland of the Rivelin Valley for the 2011-12 season, in the Black

Brook woodland for the 2010-11 and 2012-13 seasons and both woodlands

for the 2018-19 season. Relatedness is determined by extracting DNA from

blood samples collected from nestlings and adults. Field data were collected

and blood samples analysed by Ben J Hatchwell, Clare Napper and Sarah

Biddiscombe.

The average home range size for a single flock in this study is 0.15 ± 0.03km2

(mean 95%±CI; using a 100% minimum convex polygon). Home ranges were

initially calculated as minimum convex polygons to gain a rough estimate of

space use for describing initial space use when modelling. As the flocks forage,

they usually stay in each tree for less than a minute before moving on (B. J.

Hatchwell, pers. obs.). Consequently, tracking data of the birds consists of GPS

locations, recorded at time intervals of one minute. Locations were recorded

on a Garmin Geko 201 GPS with a standard error of 10m. Observations were

made by locating a flock in the study site by recognising their calls and then

identifying ringed individuals.

An observation period began when a flock was first encountered and the first

location was recorded. The observation period ended when sight of the flock

was lost. One location was recorded every minute to give a trajectory for

each observation period. There were 19 ± 2 (mean ±95% CI) locations per

observation period. Data from six of eight flocks that were followed in the

non-breeding season of 2011-12 in the Fox Hagg woodland are included in this

study. I removed two flocks from the analysis of the 2011-12 season as these
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Fig. 3.1. Recorded locations for 11 flocks of long-tailed tits in the 2018-19
non breeding season, each color represents a different flock. The overlapping
home ranges are generally split into the two separate woodlands of Fox Hagg
(left) and Black Brook (right) in all recorded data sets.

contained only 4 and 7 locations, collected over one observation period, so this

was not enough data to estimate home ranges. Data sets for the six remaining

flocks consisted of 155, 341, 140, 110, 152 and 83 locations, recorded over a

range of 5-21 observation periods between May 2011 and February 2012. In

addition to the 2011-12 data, the results are validated using data from the

2010-11, 2012-13 and 2018-19 data sets. For the validation sets I followed a

similar procedure to remove from the analysis any flocks that had data collected

over only one observation period. In each case, there were at most 18 locations

per flock in the removed datasets. Each flock used has >40 recorded locations

taken over >1 observation periods. The 11 flocks used in the non-breeding

season of 2018-19 are shown in Fig. 3.1, for both the Fox Hagg and Black

Brook woodlands.
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3.2.1 Testing for effects of kinship and the size of the

flock

In the 2018-19 data, the individual birds which each flock was comprised of

were observed and recorded. Using this information the size of the flocks can be

estimated, additionally the identity of close kin (parents, offspring and siblings)

is known for 108 of the 192 birds. Table 3.1 shows the size of each flock and

the number of kin-connections between them, for five flocks.

Table 3.1. The number of kin-connections between flocks (A-E) and the size
of flocks for the second data set in 2018-19 shown in the bottom panels of Fig.
3.6. There is a kin connection if two birds are related by either being siblings,
parents or offspring. The size of the flocks is the number of birds in a flock, if
a bird has been seen in different flocks it is given a value of 0.5 in both (no
birds here were seen in more than two of the flocks).

Kin-connections A B C D E

A - 11 7 0 1

B 11 - 6 0 1

C 7 6 - 2 4

D 0 0 2 - 1

E 1 1 4 1 -

Size of Flock 29.5 39.5 12 9.5 8.5

Prior to modelling the space use of the flocks using mechanistic home range

analysis (MHRA), I perform some preliminary analyses. I show that questions

of space use dependent on kinship and flock size for the data in this study are

unable to be answered using a commonly-used method to estimate home ranges

(Worton, 1989), known as kernel density estimation (KDE). Estimating home

ranges using KDE assumes that space use is normally distributed around each
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known location of a flock. Home ranges are then estimated by taking the sum

of the normal distributions, so the resulting space use description does not have

any behavioural origins. I focus on the second data set from the season 2018-19,

with kinship and flock size shown in Table 3.1. The Python 3.4 function

gaussian_kde from the scipy.stats.kde library is used to calculate the

KDEs and this implements automatic bandwidth determination using Scott’s

Rule (Scott, 1992). The Bhattacharyya coefficient (Bhattacharyya, 1946) is

used to represent the overlap of two flocks’ home ranges and is calculated as

follows:

BCij =
∫

Ω

√
Ui(x)Uj(x)dx, (3.1)

where Ui(x) and Uj(x) are utilisation distributions for flocks i and flock j

estimated using KDE and Ω is the available domain. The relationship between

two home ranges is further represented by calculating the distance between the

centroids of the two ranges dij. Kinship is tested using both the number of

connections between flock i and flock j and also by correcting for the size of

the flock. The corrected kin relatedness is calculated as κc = 2κij

si+sj
, where si is

the number of birds in flock i. Fig. 3.2 and Table 3.2 show the results.

The results show that there is no evidence of any correlation between the

overlap of the KDE home ranges of two flocks (nor the distance, dij, between

the home ranges) and the relative size of the flocks (using two different measures

of size, κij or κc
ij). Since all the R2 values were less than 0.06 and all p-values

are greater than 0.5, there is insufficient evidence to suggest that either kin

relatedness or relative flock size explain much of the variation in home range

overlap. Instead I test these effects using MHRA, detailed in the next section.



62 Mechanistic home range analyses of long-tailed tits

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3.2. Scatter plots to show the correlation between KDE home ranges of
each flock and the kin relatedness and size difference of each flock. Regression
lines are plotted and the corresponding correlation coefficients are shown in
Table 3.2.
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Table 3.2. Relationships between the overlap of home ranges of each flock
compared with the kin relatedness and relative size difference in turn where R2

is Pearson’s Correlation Coefficient. The overlaps are measured in two ways
after estimating the home ranges using KDEs (1) by Bhattacharyya’s coefficient
BCij and (2) using the distance between central point of the home range dij.
The two measures of overlap are compared separately with the amount of
kin connections κij and also those corrected for the size of the flock κc

ij. The
relative size difference of each flock was also measured by |si − sj| and si/sj,
where si is the number of birds in flock i.

Measure 1 Measure 2 R2 p-value
(a) BCij κij 0.045 0.56
(b) BCij κc

ij 0.022 0.68
(c) dij κij 0.017 0.72
(d) dij κc

ij 0.0018 0.91
(e) BCij |si − sj| 0.0005 0.95
(f) BCij si/sj, si > sj 0.013 0.76
(g) dij |si − sj| 0.057 0.51
(h) dij si/sj, si > sj 0.045 0.56

3.3 The interaction model with habitat

Woodland structure is complex in the Rivelin Valley, encompassing dozens of

species of trees and shrubs of varying sizes. I simplify the landscape by viewing

woodland as a binary variable: either present or absent. A more detailed

picture of the woodland environment is explored in Chapter 4 where movement

in response to different types of tree is investigated. In this section, I detail

different models to describe this more simple attraction to woodland by defining

different vector fields.

3.3.1 An attraction towards woodland areas

To define the woodland, the landscape is discretised into a grid and any cell

with more than half tree coverage is defined to be in a woodland area. Each

woodland area is defined visually using a procedure detailed in Appendix
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B.1. Attraction to woodland areas is introduced into the interaction model

by defining a vector field vM(x), where different models describing different

behaviours are indicated by M . Each of the vector fields can be visualised

in Fig. 3.3 for the Fox Hagg and Black Brook woodlands. Corresponding

descriptions of the vector fields are defined here

M = 0, no attraction to woodland,

M = 1, taxis acts solely on the woodland edges, to draw flocks in (Fig.

3.3b),

M = 2, taxis acts both on the edges and within the woodland to draw

flocks towards the centre of a woodland area (Fig. 3.3c),

M = 3, taxis acts on the woodland edges and all space outside of the

woodland areas to draw the flocks towards the woodland (Fig. 3.3d),

M = 4, inside the woodland the flocks are drawn towards the centre of

the woodland area and outside they are drawn in (Fig. 3.3e),

M = 5, no taxis mechanism away from the interaction zone and vM(x)

corresponds to the best fitting model from Models 0-4.

Attraction to the central parts of woodland areas is defined using a function

of the distance to the edge of the woodland are, where locations at a greater

distance are more attractive. The mathematical form for the vector fields

corresponding to each of these models on the discrete landscape is defined in

Appendix B.1. Each vM (x|ωM ) depends upon a parameter ωM , which controls

how much the birds are attracted to woodland. The model that includes both
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(a)

(b)

(c)

(d)

Fig. 3.3



66 Mechanistic home range analyses of long-tailed tits

(e)

Fig. 3.3. Panel (a) shows the real landscape taken from satellite images for
the Fox Hagg (left) and Black Brook (right) woodlands, which are the study
sites for the data sets 2011-12 and 2012-13 respectively. Panels (b)-(e) show
the vector fields vM for the Models 1-4 respectively, corresponding to the
woodland images (a) on their respective row. Each of these models represents
an attraction into a woodland area, following the vector fields.

inter-flock interactions and response to woodland has the following form

∂ui

∂t
= ∇2ui + ∇ ·

[
γui∇k̄i − ζuivM

]
, (3.2)

a
∂ki

∂t
= uiΣi ̸=juj(1 − ki) − bkiui, (3.3)∣∣∣∣n ·

[
∇ui + γui∇k̄i − ζuivM

] ∣∣∣∣
∂Ω

= 0, (3.4)∫
Ω
ui dx = 1, (3.5)

where ζ controls the strength of taxis along the vector field vM . The system

(3.2)-(3.5) is solved using the same finite difference methods as Chapter 2

(Appendix B.2). Note that I have simplified the cognitive map of interactions

for each flock by setting m = 0 (Equation 2.14) so that there is no decay of the

interaction zone over time. Therefore the interaction zone decays only due to

each flock visiting locations and no interactions occurring.
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The system is solved numerically and the numerical scheme (Appendix B.2)

defines space and time discretely. The initial conditions used to solve System

(3.2)-(3.5) numerically define uniform space use over estimated home ranges

using minimum convex polygons (MCPs) with the overlaps removed. The

discrete form of the initial conditions for the 2011-12 data set is shown in Fig.

3.4(a) with the data show in Fig. 3.4(d).

For the interaction model to reach a steady-state, it is necessary to stop the

evolution of the interaction zone at a particular threshold value of the average

value of ki(x, t) for all x, calculated as κi(t), shown in Equation (2.40). Using

the described initial conditions with parameters a = 0.01, b = 10, δ = 0.05, γ

= 10, ωM = 1 and ζ = 10, I tested a range of threshold values for κi(t). The

testing process was as follows: for each candidate threshold value the difference

between time t for κi(t) of the first flock to reach the threshold value and t for

the last flock to reach the threshold value was calculated. I chose the threshold

value which gave the smallest difference in t, so the evolution of the interaction

zone is stopped at the first point in time when κi(t)≤ 0.2 for all i.

3.3.2 Fitting models to data

Models are fitted by maximising the likelihood function

L(b, γ, δ, ζ, ωM |X) =
N∏

i=1

Ni∏
n=1

u∗
i (xi,n), (3.6)

where xi,n is the nth location of flock i, X = {xi,n}i,n is the set of all locations,

u∗
i is the numerical steady-state solution of ui, N is the number of flocks and

Ni is the number of locations in the data set for flock i. I use model selection

to find the best-fit model of M = 0, . . . , 5. The Nelder-Mead maximisation
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(a) (b)

(c) (d)

Fig. 3.4. Panels (a)-(c) show three different types of initial conditions with
the minimum convex polygons plotted over. Panel (d) shows the data for the
2011-12 data set with minimum convex polygons plotted over.
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algorithm (Nelder and Mead, 1965) is used to maximise Equation (3.6) and

the best model is selected based on bayesian information criterion (BIC) scores

(Schwarz, 1978), a commonly used measure of model fit that penalises models

with greater parameters. The BIC is calculated as

BIC = k ln
 N∑

i=1
Ni

− 2 ln (L) , (3.7)

where k is the number of parameters, L is the likelihood and Ni is the number

of locations for flock i. Two models, M1 and M2, can be compared using the

Bayes Factor

BF(M1,M2) = exp
(

−1
2

∣∣∣∣BICM1 − BICM2

∣∣∣∣
)
, (3.8)

where a Bayes factor of more than 10 gives strong evidence for the better fitting

model over the other (Kass and Raftery, 1995).

Measurements of flock locations are taken at one minute intervals, However,

the likelihood function in Equation (3.6) requires that data are independent

relocations. In general, it is not possible to determine independence with

absolute certainty, as no matter how large the time interval, the relocation of a

flock will depend their locomotive capabilities and the environment. However, it

is possible to perform a statistical test of locational independence by calculating

the serial correlation in location (Benhamou et al., 2014) as

rz = 1 − E(D2
s)

2E(D2
c ) , (3.9)
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where E(D2
s) is the mean distance squared between successive relocations in

time interval τ and E(D2
c ) is the mean distance between the locations and their

centroid. Obtaining a rz value close to 1 indicates that the distances between

locations are very small compared to the home range size. A value of rz < 0.5

indicates that, on average, the distance between relocations is greater than the

distance to the home range centre, suggesting that relocations show locational

independence. I calculate rz for four different data sets, each corresponding to

a different time interval between relocations, τ . The four data sets are S1, S10,

S30 and Sday corresponding to data sampled every 1 minute, 10 minutes, 30

minutes and one data point sampled each day.

It is necessary to check that the choice of initial conditions does not affect the

results. In addition to the initial conditions shown in Fig. 3.4(a), I repeat the

model selection for the 2011-12 dataset using two other initial conditions for

the Models 1-4, first with the initial space use for each flock concentrated at

the centre of their corresponding MCPs, (Fig. 3.4b) and another where the

initial space use for each flock was uniformly distributed over their MCP (Fig.

3.4c).

3.4 Further drivers of space use patterns

3.4.1 The effect of the landscape on kinesis

Both the woodland and the interaction zone may have an effect on kinesis (i.e.

the diffusion coefficient in Equation 1.1) as well as the taxis mechanism. To

test this I use the following model
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∂ui

∂t
= ∇2 [Φiui] + ∇ ·

[
γui∇k̄i − ζuivM

]
, (3.10)

where Φi(x, t) is a function of space, and depends upon the presence of woodland

and/or the interaction zone. The vector field vM(x) is the function from the

best-fit model out of Models 0-5. I use the following three functional forms for

Φi

Φ(1)
i (x) = exp(µw(x)), (3.11)

Φ(2)
i (x, t) = exp(ψk̄i(x, t)), (3.12)

Φ(3)
i (x, t) = exp(µw(x) + ψk̄i(x, t)), (3.13)

where w(x) is the density value of the woodland. The value of w(x) depends on

whether the best-fit taxis model includes taxis towards the centre of woodland.

Without this central attraction, when extending Model 1 or 3 to incorporate

(3.11)-(3.13), w(x) = 1 for x in woodland and w(x) = 0 for x outside woodland.

When the extending a model including attraction towards the centre of woodland

(Model 2 or 4), w(x) = S(x)ωM for x in woodland, where S(x) is the distance

from x to the woodland edge, and w(x) = 0 outside woodland. Here, Equation

(3.11) models a situation where the presence of woodland alone has an effect

on kinesis. In Equation (3.12), only the interaction zone has an effect on

kinesis. Equation (3.13) incorporates both effects. I investigate this effect

on kinesis both with and without the taxis term in Equation (3.10). For

simplicity in reporting results, when the functions (3.11)-(3.13) are included

in the best-fit taxis model, I denote these extended models as Models 6-8

respectively. Alternatively, when the functions (3.11)-(3.13) are included in
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Equation (3.10) with the second term equal to zero, the models are denoted as

Models 9-11 respectively.

3.4.2 The effect of kinship and flock size

The extended interaction model (3.2)-(3.5) assumes that each flock of birds

is equally worth avoiding, where in reality this avoidance may depend on the

relationship of two flocks. I use the best-fit model from Models 0-11 as a

null model to answer further biological questions by varying the amount of

avoidance depending on the relationship between two flocks. This model is

used to test effects on movement of (a) relative flock size and (b) inter-flock

relatedness. The null model is modified by assuming that the interaction zone

of each flock develops at a different rate for interactions with each of the other

flocks, dependent on either its kin-connections or relative size. Including these

dependencies, Equation (3.3) is changed to

a
∂ki

∂t
= uiΣi ̸=jαijuj(1 − ki) − bkiui, (3.14)

where the various αij take different values depending on the kin-connections

between two flocks or their relative flock size (in §3.3.1-3.4.1, αij = 1 for all

flocks i and j). A larger αij means that flock i is less likely to visit places that

it has previously interacted with flock j than if it were to have a smaller αij . I

set αij to be a function of either the relative size of flock j compared to flock i

and/or the number of kin-connections between i and j, denoted κij. For this,
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there are three functional forms

α
(1)
ij = 1 + σ1

sj

si

, (3.15)

α
(2)
ij = σ2

κσ3
ij

, (3.16)

α
(3)
ij = α

(1)
ij α

(2)
ij , (3.17)

where si (resp. sj) is the size of flock i (resp. j).

Equation (3.15) tests the hypothesis that a flock is less likely to consider a

location safe if they have observed it being used by a larger flock, than if the

same location were observed being used by a smaller flock. A higher value

for α(1)
ij is obtained when sj > si than when sj < si, meaning the probability

that a location will be considered to be in the interaction zone of flock i will

be higher if flock j is larger. Equation (3.16) means a flock would be less

likely to consider a location part of its interaction zone if it had observed a

highly related flock there than if it had observed a less related flock in the same

location. The function α(2)
ij is smaller if there are more kin connections between

flock i and j. Equation (3.17) combines the two hypotheses. The parameters

σ1, σ2 and σ3 are fit using the functions (3.15)-(3.17). BIC (Equation 3.7), is

used both to select between the three models and examine whether they are

an improvement on the null model (αij = 1 for all i, j).
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3.5 Results of the mechanistic home range

analysis

3.5.1 An attraction to the woodland

Analyses of the 2011-12 season indicate that two aspects of movement- a flock’s

response to the habitat and conspecifics- combine to give the key ingredients

in the formation of long-tailed tit home ranges. A combination of both the

interaction mechanism and an attraction towards central woodland models the

home ranges best (shown in Fig. 3.5a), and the particular best-fit model is

Model 4 (Fig. 3.5b). This contrasts with the relatively poor fit of the base

models that included inter-flock interactions only (Model 0; Fig. 3.5c) and with

attraction to woodland only (Model 5; Fig. 3.5d), which can be considered as

null models for the purpose of illustrating the value of Model 4 in capturing

the home range patterns.

Similar findings hold across the four other non-breeding seasons and different

parts of the study site (Fig. 3.6), where best-fit models reveal that flocks are

always being drawn to the centre of the woodland. For three of the other data

sets (2010-11, 2018-191, 2018-192), the best fitting model is confirmed to be

Model 4, and for one (2012-13) it is Model 2 (Table 3.3). These models are the

only two which describe movement towards the centre of woodland (Fig. 3.3).

The data sets and their corresponding utilisation distributions are shown in

Fig. 3.6 and in Appendix B.4.

Some variation in the parameters is notable in Table 3.3, in particular the

parameter controlling the decrease of the interaction zone due to safe visits b

(1.14-13.3), where the outlier is the 2010-11 season (b = 1.14). This is likely
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to do with the smaller number of flocks analysed in this season compared to

others. The first term in Equation (2.14) is a sum that increases with the

number of flocks. Therefore one might expect the parameter b to increase with

the number of flocks, providing a part explanation for this inconsistency. There

is a smaller amount of variation between seasons for γ (7.7-10) which controls

the taxis away from the interaction zone, ζ (12.9-25.9) which controls the taxis

towards central woodland and δ (0.047-0.096) which is the flocks’ perceptual

range. The mean value of δ, when converted into metres is approximately 80m,

so the models suggest that the birds are, on average, considering an area with a

radius of 80m around their present location when making movement decisions.

By considering the mean squared displacement of the data (Appendix B.3) I

find that on average the birds take around 10 days to form their interaction

zone.
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(a) (b)

(c) (d)

Fig. 3.5. Utilisation distributions informed by fitting the steady-state of
Equations (3.2)-(3.5) to data from the non-breeding season of 2011-12. Flock
locations are shown on top of a photograph of the landscape in panel (a) where
each color represents a different flock. Panels (b)-(d) show the steady-state
solution of Equations (3.2)-(3.5) together with observed locations (dots), here
darker contour lines mean a higher probability density. Panel (b) shows the
corresponding utilisation distribution for the best-fit model (Model 4). Panel (c)
shows the the utilisation distribution for Model 0, where there is no attraction
to woodland. Panel (d) shows the utilisation distribution for Model 5, where
there is no directed movement away from other flocks. Here the contour lines
coincide since there are no interactions. Both movement in response to the
environment and in response to other flocks are necessary to create home range
patterns which capture the data well.
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Table 3.3. Best fitting models, their parameter values and their bayesian
information criterion (BIC) scores for all of the data sets. The BIC values
from each data set can be compared with the other models which were tested
by using the last column in the table. The subscripts on the 2018-19 data
sets refer to the two data sets collected that season. The parameter a is not
reported as its value does not affect the steady-state distribution u∗

i (x). The
∆BIC is calculated from next best fitting model for each data set.

Data set
Best-fit

Model

Number

of

flocks

b γ δ ζ ωM BIC ∆BIC

2010-11 4 4 1.14 8.0 0.054 12.9 2.1 3411 227

2011-12 4 6 13.3 9.6 0.072 18.1 0.51 11089 29

2012-13 2 4 2.9 10.0 0.074 19.9 0.74 6399 258

2018-191 4 6 9.2 9.7 0.096 23.5 0.64 10905 151

2018-192 4 5 11.7 7.7 0.047 25.9 1.1 14297 283



78 Mechanistic home range analyses of long-tailed tits

2010-11

2012-13

2018-191

Fig. 3.6
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2018-192

Fig. 3.6. Results for the best-fit model for the seasons 2010-11, 2012-13 and
2018-19 with the corresponding utilisation distributions for the best fitting
models shown. Model 4 is the best fitting model from all data sets apart from
2012-13 which gives Model 2. Models 2 and 4 are the only models that direct
movement into woodland and away from the woodland edges.

3.5.2 Effect of the Initial Conditions

(a) (b) (c)

Fig. 3.7. The utilisation distributions for Model 4 for initial conditions (a)-(c)
(Fig. 3.4) are shown below. Panel (a) shows the initial conditions used in
all other sections. Panel (b) shows the solution where space use is initially
concentrated at the centre of the MCP for each flock. Lastly, Panel (c) shows
the solution where initial space for each flock use uniformly covering the whole
of the corresponding MCP.
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All initial conditions tested (Fig. 3.4) for the 2011-12 data (Models 1-4) indicate

Model 4 to be the best-fit model, shown in Table 3.4 and visualised in Fig.

3.7. This indicates that the results of model selection appear to be robust to

reasonable choice of initial condition.

Table 3.4. The results for fitting Models 1-4 for the data set collected in
2011-12 using initial conditions (a)-(c) visualised in Fig. 3.4. Model 4 is the
best fitting model in all cases.

BIC

Model (a) (b) (c)

1 11859 11833 12135

2 11118 11473 11047

3 11790 11836 11843

4 11089 11436 10978

3.5.3 The independence of data

The value of rz (Equation 3.9) for seasons 2011-18 and data sets S1, S10, S30

and Sday is shown in Table 3.5. The results indicate that data used in the

study (S1) and those sampled every 10 minutes (S10) are highly locationally

correlated. The locational correlation for sub-sampling data every 30 minutes

(S30) varies across years and sub-sampling each day (Sday) shows little locational

correlation, which indicates independence.
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Table 3.5. The results of calculating rz using Equation (3.9) to indicate
locational independence in the full data and sub-samples. Values close to 1
indicate that the distances between locations are very small relative to the
home range size and values close to 0 indicate locational independence. The
results show that only locations sampled each day indicate a consistent lack of
independence over seasons.

S1 S10 S30 Sday

Year locations rz locations rz locations rz locations rz

2010-11 219 0.96 45 0.76 29 0.55 27 -0.21

2011-12 666 0.96 127 0.77 66 0.83 59 0.04

2012-13 381 0.97 69 0.86 38 0.09 34 0.35

2018-191 486 0.99 99 0.81 47 0.48 32 0.06

2018-192 750 0.98 130 0.61 62 0.16 44 -0.22

Given the evidence of a lack of locational independence in the full data set, I test

whether the key results of the study are robust to the data sub-sampled each day.

To test this I fit the Sday data for each of the 2010-13 seasons to Models 1-4 to

understand how this sub-sampling affects the model selection. Table 3.6 shows

that the model selection procedure returns the same best-fit models for the

2010-11 and 2012-13 seasons, regardless of sub-sampling regime. Furthermore,

the models are visually relatively similar (Fig. 3.8b-c) to those using the full

data set (Fig. 3.8a), but the latter gives a slightly tighter fit. The refined

data set for 2011-12 indicates that Model 2 is the best fit and the full data set

indicates Model 4. However, both models describe an attraction towards the

centre of the woodland, so are biologically similar, and the difference in BIC

(∆BIC=10.9) is not dramatic. Therefore it is reasonable to use the complete

data sets when fitting models to ensure I utilise the full known space use of the

birds, despite violating the independence assumption.
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(a) (b) (c)

Fig. 3.8. Utilisation distributions for the full data set and data sampled each
day for the season 2011-12. Panel (a) shows the results of using the full data
set with best fitting Model 4 with all locations. Panel (b) shows the results of
fitting Model 4 to the daily sub-sampled data and Panel (c) shows the best
fitting Model 2 for the sampled data with the sub-sampled locations. Model 2
and Model 4 both contain the mechanisms describing a preference to forage in
the centre of woodland.

Table 3.6. Results for model selection for the seasons 2010-11, 2011-12 and
2012-13 for the full data set and the data set with one location sampled per day.
The model selection procedure indicates Models 2 and 4 (preference towards
the centre of woodland) regardless of sampling regime.

BIC

2010-11 2011-12 2012-13

Model All data One per day All data One per day All data One per day

1 3666 332.5 11859 704.2 6746 455.3

2 3643 338.4 11118 667.6 6399 442.1

3 3638 343.6 11790 709.5 7079 464.2

4 3411 317.5 11089 678.5 6657 442.1

3.5.4 The effect on kinesis

When considering the effect of a landscape-varying kinesis mechanism on the

space use of the flocks, there is no improvement in the model fit. Including the

effect of landscape on kinesis into the best-fit models (Models 6-8 in Table 3.7;
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Table 3.7. Results for including landscape-varying kinesis in the best fitting
model of Models 0-5, for data collected in the three seasons between 2010-13.
Models 6-8 include the functions (3.11)-(3.13) in the Main Text, respectively,
with taxis. Models 9-11 use the same functions, respectively, but without taxis.
The table reports BIC results for the three data sets and The ∆BIC column
gives the difference with the best fitting taxis model for that data set. This
shows that including kinesis does not improve the previous best fit models and
without taxis they are a poor fit.

Model BIC ∆BIC Model BIC ∆BIC
2010 6 3415 4 9 4030 619

7 3415 4 10 4238 827
8 3416 5 11 3925 514

2011 6 11096 7 9 13428 2338
7 11095 6 10 13765 2675
8 11103 14 11 13309 2220

2012 6 6397 2 9 7550 1151
7 6400 1 10 7616 1217
8 6400 1 11 6706 307

Fig. 3.9) from the study gives larger BIC values than the models without such

a kinesis effect. Furthermore, when fitting models where landscape only affects

kinesis (Models 9-11 in Table 3.7; Fig. 3.9) and not taxis, the fit is very poor

compared with models with landscape-driven taxis. These results show that

including kinesis in the best fit taxis models do not improve them and without

taxis, modelling behaviours as effecting only kinesis is a poor fit for each data

set.
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Model 6 Model 7

Model 8 Model 9

Model 10 Model 11

Fig. 3.9. Utilisation distributions for landscape-varying kinesis in the best
fitting model of Models 0-5 (Models 6-8) and as a standalone model (Models
9-11) for data collected in 2011-12.
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3.5.5 The effect of kinship and flocksize

Finally, the model selection procedure was extended for the 2018-19 data

to test for an effect of flock size and relatedness between flocks on home

range utilisation. Here, I assume no effect on kinesis. In the absence of this

additional mechanism, Model 4 was the best fitting model (Table 3.3; Fig.

3.10a), and Model 2 was the next best fit, both indicating avoidance of other

flocks and movement towards the centre of woodland. Model 4 is extended

to incorporate flock size and relatedness. Although visually there is not a

dramatic improvement in the fit between predicted and observed ranges (Fig.

3.10b-d), the extended model results in a reasonable improvement in BIC values

(∆BIC 48-67). More specifically, the results show that smaller flocks avoided

larger flocks and larger flocks were less likely to avoid smaller flocks, while

avoidance decreased as inter-flock relatedness increased (Table 3.8). These

effects of kinship and flock size on avoidance behaviour were not found when

analysed using KDE overlap (§3.2.1).

Table 3.8. The extended version of Model 4, where parameters ω1-ω3
(Equations 3.15-3.17) are fit in addition to the previous parameters, with
the second 2018-19 data set, their parameter values and their BIC scores
corresponding to Fig. 3.10. The BIC values can be compared with the previous
Model 4 (BIC=14297) using the last column in the table, ∆BIC.

Model b γ δ ζ ωM σ1 σ2 σ3 BIC ∆BIC

α1
ij 14.4 7.8 0.050 25.8 1.9 0.068 - - 14233 64

α2
ij 11.8 7.8 0.048 25.9 1.2 - 0.088 1 14248 48

α3
ij 11.6 8.9 0.047 25.9 1.2 0.087 0.99 0.058 14230 67
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(a) (b)

(c) (d)

Fig. 3.10. Panel (a) shows the best fitting model (Model 4) for the second
2018-19 data set (Fig. 3.6d). Panels (b)-(d) show Model 4 with αij defined
in (3.15)-(3.17) respectively. Although there is little change visually from the
previous best fitting model where αij = 1 (Panel (a)) there is a reasonable
improvement in the BIC values (Table 3.8).
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3.6 Summary

The home range patterns produced by foraging flocks of long-tailed tits are

formed from a combination of conspecific avoidance and attraction towards

the centre of woodland. Furthermore, flocks are less likely to avoid locations

where they have interacted with other flocks and smaller flocks are more likely

to avoid larger flocks.

Woodland is described simply as present or absent and will be explored further

in the next Chapter. By modelling the attraction towards the woodland either

uniformly or weighted towards the centre, the latter was discovered to be a

much better fit for all data sets, indicating that flocks prefer foraging away

from the edges of woodland areas. The effects of inter-flock interactions and

the woodland affect the taxis aspect of movement but not kinesis.

Both kinship and flock size have a noticeable effect on conspecific avoidance.

More closely-related flocks are less likely to avoid each other and this confirms

the findings of (Hatchwell et al., 2001a), who showed there was more spatial

overlap between more closely related flocks. I discuss the implications of these

findings further in Chapter 5.

In conclusion, in addition to the new behavioural findings of this study I have

shown that MHRA using partial differential equations is a suitable method to

model the home ranges of flocks of long-tailed tits, where previously it has only

been applied to model the home ranges of territorial animals or those with a

central place attraction.





Chapter 4

The woodland habitat selection

of nest building long-tailed tits

4.1 Introduction

Unravelling an animal’s fine-scale selection of habitat is an important part

of identifying areas for focussing conservation management (Klar et al., 2008;

Morris, 2003). Fine-scale habitat-selection has been studied in a range of wild

animals, from dolphins (Tursiops truncatus, Allen et al. 2001) to ungulates

(van Beest et al. 2012) to feral cats (Felis catus, McGregor et al. 2014). The

selection of locations by animals in heterogeneous landscapes can be analysed

by comparing recorded locations of an animal with the available habitat (Manly

et al., 2002). However, the question of how individual-level movement decisions

are influenced by habitat requires the analysis of habitat-selection and movement

mechanisms simultaneously (Avgar et al., 2016).
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Chapter 3 showed that one of the main mechanisms driving the home ranges

of non-breeding flocks of long-tailed tits is an attraction towards the centre of

woodland. In this Chapter, the same population of long-tailed tits is revisited in

the nest building season of 2019, to determine how the fine-scale distribution of

different trees affects movement decisions. The Rivelin Valley, Sheffield, contains

a complex structure of woodland where many species of trees are thought to

be used by long-tailed tits throughout the year. Evidence of long-tailed tits

foraging selectively comes from Gaston (1973), who suggested that a population

of long-tailed tits in Oxford, in the pre-nesting season, prefer sycamore, when

compared with oak and ash. I investigate which species of trees 18 pairs of

long-tailed tits in the Rivelin Valley selected over a 50-day observation period.

The space use of the birds in the Rivelin Valley has been studied since 1994,

yet the study in this Chapter is the first to map the distribution of woodland

habitat and question how different trees are influencing the foraging decisions

of long-tailed tits.

Field workers studying long-tailed tits in the Rivelin Valley devote the majority

of their time to finding nests each season. The species of nesting trees are

recorded each year (Hatchwell, 2016), but the birds’ favoured tree species for

foraging in is not known. Understanding the selection of foraging trees can

have a practical impact on field work by allowing data collection to be targeted

on preferred foraging and nesting trees, therefore saving time. Furthermore,

it is important to understand the birds distribution, variation in survival and

productivity (i.e. fitness) in different habitats. In the nest building season,

birds are easier to locate and observe due to their site fidelity and their small

home range (relative to the non-breeding season). Additionally, whilst nest
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building, the birds’ main energy expenditure is foraging, rather than caring for

offspring.

To unravel the effects of the woodland structure on movement, I determine

which species of trees the birds tend to select as they move. The size of trees

in this Chapter is represented by how much they cover at canopy and low

level, providing a way to describe the birds’ selection for the magnitude of

each type of tree and indicate which types are preferred. It is important to

understand how the birds are selecting their preferred tree species, therefore

different models describing different ways of selecting a set of trees are tested.

For example, given a set of tree species, would a foraging pair prefer a location

with a larger magnitude of tree cover or more diversity?

The field observations used to collect data for this study were designed to

estimate and record when the birds’ decisions to move are made, rather than

at arbitrary points in time. Using the results of the field work, decisions are

analysed by developing a model using an integrated step-selection analysis

(iSSA) framework (1.5; Avgar et al. 2016). I determine (a) which trees are

preferred, (b) how the birds are selecting for the set of preferred trees and (c)

space use estimations by calculating utilisation distributions from the models.

4.2 Long-tailed tits in the nesting season

4.2.1 Data collection

Field studies were conducted on 18 breeding pairs of nest building long-tailed

tits (Aegithalos caudatus) in the early breeding season of 2019 by Tobit Dehnen.

Pairs build intricate nests, that may take over a month to construct (Lack and



92 The woodland habitat selection of nest building long-tailed tits

Lack, 1958) and in this period, both birds in the pair typically forage and move

around in close proximity. Since both birds in the pair forage together whilst

nest building, I model each pair as one individual entity. Data were collected

over 50 days in the Rivelin Valley, Sheffield, UK (§1.3) in an area covering

approximately 1.2km2 (Fig. 4.1). Similar to the flocks in Chapter 3, pairs of

birds were followed on foot and identified using coloured rings on their legs.

Whilst recording locations, the observer followed the birds at a distance of at

least 5m to reduce observer bias. When birds could not be closely followed

(e.g. when they crossed a river) but were still in sight, locations were later

corrected. Pairs were usually located at the nest site. Once located, each pair

was followed until sight was lost.

Successive animal locations are often recorded through time at constant intervals

(Kays et al., 2015), however this is unlikely to correspond to the times when the

animal decided to move. To capture the pairs’ movement decisions, locations

were recorded when the observer noted that the pair had moved a significant

distance. Significant movements were defined to be when a pair moved to a

location estimated to be more than 10m away from the previously recorded

location. By recording these significant movements, an estimated time for when

the birds decide to move was obtained.

Although the birds within the study site have a very large landscape available

to them, they use a relatively small home range within their available landscape

in which habitat data was collected. One reason for this method is that the

birds spend the breeding season within these home ranges, meaning that it is

reasonable to assume that their habitat knowledge is omniscient throughout

the range. This means that when modelling decisions to move, the birds aren’t

just deciding within a perceptual range of their current location, but making



4.2 Long-tailed tits in the nesting season 93

decisions based on the whole home range. Furthermore, recording the cover

of trees throughout the entire study site is extremely time consuming and

unnecessary if the birds occupy only a small portion of it.

Home ranges were estimated using the recorded locations for each pair as a

95% minimum convex polygon (Burt 1943, MCP) and environmental data

were subsequently collected inside the home ranges. This simple method of

describing space use was used to efficiently obtain habitat information to define

availability and was not considered a definitive model of the pair’s home range.

I use the term tree type to denote different grouped tree and shrub species that

were recorded in the study. Each tree type, s, used in this Chapter belongs to

a set of twenty-two types of tree thought to be used by long-tailed tits when

nest building. The set is denoted as S22 and listed in Appendix C.4.1.

A method of describing the cover of different tree types within the Rivelin

Valley was designed by Tobit Dehnen and Ben Hatchwell. Each MCP was split

into a grid of 25m by 25m squares and data were collected at the intersections

of the squares, these intersections are denoted as habitat locations. At each

habitat location, data were collected at two different foraging heights: the

shrub layer (1-7m) and canopy layer (>7m). The data collection is described

below and is further illustrated with a diagram in Appendix C.2.

For the shrub layer, each habitat location had a 10m by 10m square defined

around it and this was split into quarters. For each quarter the most dominant

tree type (or no tree type) was estimated for each 10% of the quarter. The

most dominant tree type inside a square was decided by choosing the tree type

covering the largest area of the square, by comparing all types of tree in the

square.
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For the canopy layer, a transparent acrylic square with side length 25cm was

split into 25 equal small squares and held above the observer’s head at each

habitat location, at a constant height. Subsequently, the tree type (or no tree

type) that covered the greatest proportion of each of the 25 small squares was

recorded. An approximate percentage estimate, Ts(x), of the cover of each

tree type, s, in the area of each habitat location is calculated by averaging

the shrub and canopy percentages equally. The distribution of types of tree is

reported in Table C.1, showing that the majority of tree types are accessible to

at least 10 pairs.

I assume that the percentage of each tree type for any location in the landscape

can be represented by the nearest habitat location. Any location > 25m away

from any habitat location is not included in the analysis. The habitat locations

for an example pair of birds are shown in Fig. 4.2. Recorded locations for the

birds are assigned to the nearest recorded habitat location, represented as a

Voronoi Diagram1 (Fig. 4.2, Aurenhammer 1991). Additionally, the type of

tree that each nest resides in was recorded and is reported in Fig. C.2, the

most preferred nesting plant is bramble.

Recorded locations are shown on a satellite image of the study site in Fig.

4.1. Each linear displacement between two successive recorded locations is

denoted as a step. A sequence of steps recorded in succession without stopping

is denoted as a path. In total, 1124 steps were recorded with a median of 4

steps per path. The mean step length (distance between recorded locations)

for all pairs was 19 ± 0.7m (95% CI), the mean step time (time taken between

recorded points) was 66 ± 5 (95% CI) seconds and the mean step speed (step
1For a set of two-dimensional points in space, xn, Voronoi diagrams partition space into

regions of convex polygons each containing only one xn, where any point inside the polygon
is closest to the corresponding xn rather than any other xn in the set
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length divided by step time) was 1.5 ± 0.2m/s (95% CI). For two steps in

succession, a turning angle can be calculated, this is the angle the pair turns

through from one step to the next. I denote the turning angles, step times,

step lengths and step speeds collectively as movement attributes.

From the 1124 steps, 1073 steps were recorded with habitat data attached.

Analyses in this Chapter are performed using all 1073 steps from the population

of birds to uncover population level behaviours. Some of the recorded steps

end at the same habitat location as the nest, removing steps ending at the

nest leaves 811 steps. I additionally perform some analyses of tree selection on

the reduced data set of 811 steps. The analysis on the reduced data set is to

ensure that a location is chosen due to the woodland structure, rather than

visiting the nest. The data sets may be reduced further to remove observer bias

from the first encounter of the birds by removing the first step from each path.

Repeating the analyses with data reduced for observer bias does not change

the overall results of the study and is reported in Appendix C.4.3.

4.2.2 Hypotheses of habitat selection

To understand fine scale habitat-selection within home ranges, I develop

hypotheses and subsequently write models to test them. Hypotheses are tested

by describing each one using mathematical formulae within mathematical

models and fitting each model to the data described earlier in §4.2.1. Each

hypothesis can be categorised into two general behaviours for the nest building

pairs: (A) a preference for places close to the nest site and (B) movement

towards preferred types of trees, dependent on how much area the trees cover.
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Fig. 4.1. Recorded GPS locations for 18 pairs of long-tailed tits, plotted
over the study site in the Rivelin Valley, Sheffield, UK. Each colour shows the
locations for a different pair of birds and their nest sites are shown with a star
icon. The locations for the pair of birds visualised in orange on the left side of
the landscape are shown with corresponding habitat locations in Fig. 4.2.

I include a preference for places close to the nest site as it separates the selection

of woodland habitat from the fidelity to the nest. I test two hypotheses that

describe the following: pairs are more likely to select a location if

A1) it is close to the nest site. Since pairs are building nests, I hypothesise

that the pair prefer to choose a place close to the nest.

A2) When the pair are are far away from the nest site, the pair have a greater

preference for locations in the direction of the nest site. This behaviour

assumes that the attraction for places close to the nest site depends on

how far away the pair is.

To examine how long-tailed tits use their woodland habitat selectively whilst

nest building, I investigate hypotheses describing behaviour (B). I first examine

whether there is a set of preferred tree types within the 22 recorded types of
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Fig. 4.2. Locations for an example pair of birds, shown as blue crosses, plotted
over habitat locations, shown as black dots. Each recorded location for a pair
is attached to the nearest habitat location, forming a landscape structured as
a Voronoi Diagram. Each location resides inside a closed area and is assumed
to have the same attributes as the habitat location which resides inside the
area. The edges of the landscape are shaped such that any location more than
25m from a habitat location is discarded from the analysis (shown in red) and
only locations in the green parts of the diagram are included in the analysis
(shown in blue). Each habitat location shows where the percentage of 22 types
of trees was estimated at a spacing of approximately 25m apart vertically and
horizontally. The pair in this figure is represented on a satellite image of the
landscape with orange locations in Fig. 4.1.

tree and if there are specific ways that the tree types are being selected. To

model behaviour (B), the hypotheses are tested on a set of tree types, S. The

set S is either equal to S22 (the set of all tree types) or a subset of S22. The

hypotheses are as follows: pairs are selecting locations

B1) with a different preference for each tree type in S,

B2) based on the presence or absence of any of the tree types in S,

B3) based on the diversity of tree types in S,
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B4) based on the percentage cover of the tree types in S.

Hypothesis (B1) aims to understand the selection for each tree type separately,

which will in turn indicate a set of preferred types of tree. I detail the process of

finding this set in §4.4.3, after introducing the modelling methods. Furthermore,

I describe each of the hypotheses (A1)-(B4) using mathematical formulae in

§4.4.

4.3 Statistical methods

To quantify the birds’ selection for each of the twenty-two types of trees,

recorded steps are compared to control steps that could have been taken. To

understand this habitat-selection, I use iSSA, a general framework for the

inference of movement and habitat-selection across continuous space in discrete

time (Avgar et al., 2016). I introduced iSSA in §1.5, where I noted that

the movement model is denoted as a step-selection function (SSF, Equation

1.6) and may include two functions: a movement kernel, defining movement

independent of habitat and the habitat-selection function, defining habitat

selection, independent of movement. In this section, a movement kernel and a

habitat-selection function are defined for the nest building long-tailed tits to

form a step-selection model.

The formulation of iSSA requires locations to be recorded at regular intervals, so

the time between successive locations is constant (Avgar et al., 2016; Thurfjell

et al., 2014). Recording movements at regular intervals in time has the

advantage of the movement kernel being dependent on only spatial measures

(e.g. the step lengths and turning angles). However, it is unlikely that animals

make their decisions to move at equally spaced points in time. Furthermore,
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the time scale of step-selection analyses have shown to influence space use

estimates (Schlägel et al., 2016). In this Chapter, the birds’ locations were

recorded when significant movements were made (see §4.2.1), resulting in steps

recorded over varying intervals of time. To analyse these steps I use a recently

developed extension of iSSA that allows varying step times (Munden et al.,

2020).

To form the step-selection model I first define the movement kernel,

ϕ(xj, τj|xj−1,xj−2). The movement kernel describes movements of any pair

in the population from location xj−1 to xj. Following Munden et al. (2020),

the kernel is formed of three probability density functions that are fit to the

turning angles αj, the step lengths lj and the step times τj. Measurements

can be visualised in Fig. 4.3, for the path of a hypothetical individual. The

movement kernel has the form

ϕ(xj, τj|xj−1,xj−2) = g1(αj)g2(τj)g3(lj|τj), (4.1)

where it is convenient to fit the distribution g3 to the empirical step speeds

(step length divided by step time). The probability distributions g1 − g3 will

be defined by finding the best fit distributions from those in Appendix C.1.
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x0

l1 x1

x2

x3

l2
l3

α2

α3

Fig. 4.3. A hypothetical path of steps, showing the step lengths, lj (in green)
and the turning angles, αj (in purple). Shown is the trajectory through locations
x0, x1, x2 and x3 (shown in black).

The habitat-selection function, Ψi(B · Zi), has the general form shown in

Equation (1.5). The covariates Zi = Zi(xj,xj−1,xnest,i) describe behaviours

which may depend on the start of the step, the end of the step and the nest

location xnest,i of pair i. The mathematical forms of the covariates which

describe the hypotheses in §4.2.2 are defined precisely in §4.4. The associated

parameters B = (β1, . . . , βn) are inferred in the fit of the model.

The probability density of a pair of long-tailed tits moving from location xj−1

to location xj over time interval τj is modelled as

fi(τj,xj|xj−1,xj−2,xnest,i) = K−1ϕ(τj,xj|xj−1,xj−2)Ψi(B · Zi), (4.2)

whereK =
∫

Ωi

∫
T ϕ(x′

j, τ
′
j|xj−1,xj−2)Ψi(B·Z′

i)dτ ′
jdx′

j is a normalisation constant,

ensuring fi is a probability density function and Z′
i = Zi(x′

j,xj−1,xnest,i). The

landscape available to pair i is Ωi and T is the set of all possible step times

that the pair could move from xj−1 to x′
j.
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4.3.1 Representing Availability

In this study, each pair of long-tailed tits has a different home range that was

initially estimated using a minimum convex polygon (MCP) in which habitat

data was collected. The collection of habitat data in this way means pairs have

different available habitats. The spatial domain, Ωi, represents availability as

it defines the entire landscape of possible locations.

Fitting Equation (4.2) to data requires calculating the integral K for each trial

set of parameter values. This can be computationally expensive, so instead it

is typical in step-selection studies to use a Monte-Carlo approximation (Reiher,

1964) in place of the integral. This turns out to have the added advantage of

being equivalent to conditional logistic regression (CLR): a quick and well-used

technique in ecological research. This approximation works by sampling control

steps from the set of all possible steps that start at xj and end at Ωi. As is

standard for resource- and step-selection analysis, each step in the data is called

a used step and the control steps are termed as available steps. I match each

used step to 100 available steps. The set of available steps can be thought of as

steps the birds could have taken instead of the used step. Fig. 4.4 illustrates

available steps and used steps for a hypothetical pair.

Available steps are sampled from an availability kernel (Avgar et al., 2016),

which has the following form

ϕ̃(αj, τj, lj) = g̃1(αj)g̃2(τj)g̃3(lj|τj), (4.3)

where g̃k has the same functional form as gk (Equation 4.1), for each k, but

may not have the same parameter values.
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x1,1

x2,1

x3,1
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Fig. 4.4. An example path for a hypothetical pair of long-tailed tits with
availability modelled as five alternative available steps for each used step. The
diagram shows used steps (black lines) moving from locations x0, x1, x2 and
x3 with available steps shown by the dashed lines. For example, the green
available steps are steps that could have been taken instead of the used step
from x0 to x1, the purple from x1 to x2 and the red from x2 to x3.

The probability distribution g̃1(αj) is derived by fitting uniform and Von Mises

distributions to the turning angles and choosing the best fitting distribution.

Distributions g̃2(τj) and g̃3(lj|τj) are formed by fitting step times and step

speeds respectively to the exponential, half-normal, log-normal and gamma

distributions and choosing the best fitting distributions (Avgar et al., 2016).
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The parameters for each distribution are inferred by maximising the likelihood

functions

L1(p1, . . . , pP |D) =
∏
j∈D

g̃1(αj), (4.4)

L2(p1, . . . , pP |D) =
∏
j∈D

g̃2(τj), (4.5)

L3(p1, . . . , pP |D) =
∏
j∈D

g̃3(lj|τj), (4.6)

for g̃1, g̃2 and g̃3 respectively, where p1, . . . , pP are the P parameters in each

of the probability density functions (Appendix C.1) and j corresponds to a

step in the set of all steps for all pairs, D. Equations (4.4)-(4.6) are maximised

using a Nelder-Mead algorithm (Nelder and Mead, 1965) and the minimize

function in Python 3.4. The best fitting distributions are chosen by comparing

bayesian information criterion (BIC) values. The form of each distribution used

is reported in Appendix C.1.

Available steps are sampled from the availability kernel (4.3) in a three step

process: first sampling a turning angle from g̃1(αj), then sampling a step time

using g̃2(τj) and last sampling a step length from g̃3(lj|τj). Combining the

turning angle, step time and step speed distributions with the start of the used

step, xj−1 gives an available end location xj,a using the formula

xj,a = xj−1 + la

cos(αa)

sin(αa)

 (4.7)

where la is the step length of the sampled step and αa is the turning angle of

the sampled step.
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4.3.2 Fitting the step-selection function

To fit Equation (4.2) to the data described in §4.2.1 I use the iSSA methods

of Avgar et al. (2016) which I describe briefly here. I begin by constructing a

weighting function

Wi(τj,xj,xj−1,xj−2,xnest,i) = exp (B · Zi + C) . (4.8)

Here, B and Zi are as defined in Equation (4.2), and C is a function that

corrects for the fit of the availability kernel (4.3) with the form

C(τj,xj,xj−1,xj−2) = C1(τj,xj,xj−1,xj−2) + · · · + CN(τj,xj,xj−1,xj−2).

(4.9)

Equation (4.9) corrects for any discrepancy between each function g̃n in

the availability kernel (Equation 4.3, that is parametrised using Equations

4.4-4.6) and the corresponding gn in the habitat-independent movement kernel

(Equation 4.1), which I am aiming to estimate. I give an example of how to use

the correction function in Appendix C.3. The conditional logistic regression

procedure maximises the following likelihood function

L2(B,K|D) =
18∏

i=1

∏
j∈Di

Wi(τj,xj,xj−1,xj−2,xnest,i)∑
a∈Di,j,a

Wi(τj,a,xj,a,xj−1,xj−2,xnest,i)
, (4.10)

where D is the set of recorded locations for the population, Di is the set of

recorded locations for pair i, Di,j,a is the set of available steps for pair i, for used

step j. The end location and the step time of each available step are xj,a and

τj,a, respectively (see Fig. 4.4). Equation (4.10) is maximised using CLR with

the clogit function in the R 3.6.1 package survival. Finally, to parametrise



4.4 Mathematical models for different movement behaviours 105

Equation (4.2), I just need to set the movement kernel as ϕ = ϕ̃ exp(C) and

the habitat-selection function as Ψi = exp(B · Zi).

4.4 Mathematical models for different

movement behaviours

The step-selection function (SSF) model shown by Equation (4.2) depends

on a vector of covariates Zi(xj,xj−1,xnest,i), where each covariate describes a

different behaviour for pair i. The behavioural hypotheses that will define these

covariate functions were defined in §4.2.2 and different models are defined by

different combinations of the covariates. Here I detail mathematical formulae

to describe each of the hypotheses and define different forms of Zi.

4.4.1 Fidelity to the nest

I define mathematical forms to describe hypotheses (A1) and (A2), both

describing an attraction to the nest location. Each hypothesis has a candidate

function associated with it

ZA1(xnest,i,xj) =|xnest,i − xj|, (4.11)

ZA2(xnest,i,xj,xj−1) =|xnest,i − xj−1| cos(θi). (4.12)

Where θi(xj−1,xj,xnest,i) is the angle pair i would need to turn through to

relocate from xj to xnest,i, after the step from xj−1 to xj. The function

ZA2 describes hypothesis (A2) in the following way: ZA2 becomes larger in

magnitude, proportional to the distance |xnest,i − xj−1|, and is at its largest

when cos(θi) = 1 (the location xj is on the line from xj−1 to xnest,i). When
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|θ| < π
2 , the function ZA2 is positive (increasing fi) and when |θ| > π

2 , ZA2 is

negative (decreasing fi). This means that when a pair of birds is choosing

a location, the further away the pair currently is from the nest, the greater

preference they have for locations in the direction of the nest. To summarise,

hypothesis (A1) describes the behaviour that a pair prefers locations closer to

the nest whereas (A2) tests whether the preference is dependent on how far

away the pair currently is and the angle to turn through to get back to the

nest.

To choose the best covariate to represent movement in response to the nest,

Zi in Equation (4.8) is set equal to covariates (4.11) and (4.12) in turn and

Equation (4.10) is maximised. In each case, I test whether the increase in

likelihood is sufficient to reject the null hypothesis that B = 0. Then, I find

the best model out of Equation (4.11) and (4.12) using their BIC.

The null model and the models containing covariates (4.11) and (4.12) are

denoted as Models 0, 1 and 2 respectively and are summarised in Table 4.1.

The best fitting nest covariate is denoted Z∗
A(xj,xj−1,xnest,i).

4.4.2 Woodland habitat-selection

Hypotheses (B1)-(B4) in §4.2.2 correspond, respectively, to the following

covariate functions

Zs
B1(xj) = Ts(xj), where s ∈ S (4.13)

ZB2(xj) = PS(xj), (4.14)

ZB3(xj) = VS(xj), (4.15)

ZB4(xj) =
∑
s∈S

Ts(xj). (4.16)
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The function Ts(x) is equal to the estimated percentage of tree type s at

location xj. Equation (4.13) describes hypothesis (B1) by fitting a separate

covariate for each tree type in s ∈ S. The presence of any of the tree types in S

is described by PS(x), which is equal to 1 if any tree type from set S is present

at location xj or 0 otherwise. The diversity of tree types, VS(x), is equal to

the number of tree types in set S estimated to be present at location xj.

4.4.3 Inferring the preferred types of trees

Since covariates ZB1 − ZB4 depend on a set of tree types S, I determine a set

of preferred tree types S = Sr to be used in models. The types included in

Sr are found by fitting a covariate representing each of the 22 tree types in

S22. The parameters B are inferred by setting Zi in Equation (4.8) to be a

vector including nest covariate Z∗
A and another 22 covariates equal to Zs

B1(xj)

(Equation 4.13), one for each tree type s ∈ S22. For each inferred parameter βs,

exp(βs) is the increase in the odds of a step occurring due to one percentage

point increase in the abundance of the tree type s, keeping all other covariates

constant. For example, exp(βs) = 1.1 indicates that the odds of a step occurring

due to the percentage cover of tree type s increases by approximately 10% for

each percentage point of s present. Positive parameters in B indicate selection

for a covariate. I evaluate the p-values of all positive inferred parameters as

this indicates the significance of the covariate.

The parameters representing the selection of covariates are estimated for the

full data set of 1073 steps and again for the reduced data set of 811 steps (see

§4.2). The reduced set of 811 steps are steps that do not end at the same

habitat location as the nest. Analysing this reduced set separately, allows for
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the interpretation of selection on foraging movements, rather than visiting the

nest.

Long-tailed tits are insectivorous so their movement may depend upon bud

burst as their prey species tend hatch to coincide with these bursts (Gaston,

1973), therefore the preference of a tree type may change over time. I explore

whether there is a difference in the estimated parameter values for particular

tree types over time. The data is split in half, with each half corresponding to

25 consecutive days. Inferring parameters in separate halves of the data means

that if the magnitude of the parameter is significantly different in each half,

the selection of that tree type could be dependent on time.

4.4.4 Model selection

After defining the preferred subset of tree types, Sr, I perform model selection

to test hypotheses (B1)-(B4). Each of the models are fitted by maximising

Equation (4.10) using different combinations of covariates (4.13)-(4.16) in the

weighting function (4.8). All models are fitted with the previously chosen

covariate Z∗
A (either Equation 4.11 or 4.12) using the full 50 days of data.

Model 3 includes covariates Zs
B1(xj) (Equation 4.13) for s ∈ Sr to test hypothesis

(B1). Models 4-6 test hypotheses (B2)-(B4) by fitting covariates ZB2(xj) to

ZB4(xj) (Equations 4.14-4.16), respectively. Model 7 fits the covariates ZB2(xj)

and ZB3(xj) together, to test combined effects of the presence and diversity of

tree types in Sr. Model 8 fits covariates ZB2(xj) and ZB4(xj) together, to test

the effects of the presence and the percentage of the tree types combined. The

covariates included in all models are summarised in Table 4.1. The parameters
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in each model, B, are estimated using CLR with the likelihood function shown

in Equation (4.10).

Table 4.1. The covariates that are included in each model summarized.
Models 1 and 2 are initially fit and compared with Model 0 to find the best
nest covariate, Z∗

A. Models 3-8 are fit and compared to find the best fitting
model.

Model, M Covariates Hypotheses Equations

0 C The null model

1 C, ZA1 (A1) (4.11)

2 C, ZA2 (A2) (4.12)

3 C, Z∗
A, ZB1 (B1) (4.13)

4 C, Z∗
A, ZB2 (B2) (4.14)

5 C, Z∗
A, ZB3 (B3) (4.15)

6 C, Z∗
A, ZB4 (B4) (4.16)

7 C, Z∗
A, ZB2, ZB3 (B2) & (B3) (4.14),(4.15)

8 C, Z∗
A, ZB2, ZB4 (B2) & (B4) (4.14),(4.16)

4.5 Results of the step-selection analysis

4.5.1 Defining movement

The distributions of the movement attributes (turning angles, step times etc)

with the fitted probability distributions super-imposed (Appendix C.1) are

shown in Fig. 4.5. The turning angles are fitted to a uniform distribution (BIC=

3047) and the Von Mises distribution (BIC=3011, Equation C.5). Although

the Von Mises distribution is a better fit (∆BIC=36), the simpler uniform

distribution of turning angles to reduce the parameters in the model.
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(a) (b)

(c) (d)

Fig. 4.5. Histograms of the movement attributes for the population of birds
with best fit probability distributions (Appendix C.1) super-imposed. The
empirical distributions for the turning angles (a), step times (b), step lengths
(c) and step speeds (d) are shown. The best fitting exponential, half-normal,
log-normal and gamma distributions are super-imposed on the step times,
lengths and speeds. The legend labels show the number of parameters in each
model. BIC values for each fit are shown in Table 4.2.

Table 4.2. Results from fitting the various candidate models (C.1-C.4) to
the availability kernel. The best fitting distributions for each of the movement
attributes are shown in bold

PDF parameters BIC (time) BIC (length) BIC (speed)

Exponential 1 9466 10442 8772

Half-normal 1 9893 10283 9548

Log-normal 2 9403 10130 8370

Gamma 2 9355 10127 8584
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The best fit model is determined by the BIC values in Table 4.2. The step

times best-fit a Gamma distribution and the step speeds best-fit a Log-Normal

distribution, giving the following form for the availability kernel

ϕ̃(xj, τj|xj−1) ∝
τ k

j

|xj − xj−1|
exp

(
−τj

θ
− (ln(|xj − xj−1|/τj) − µ)2

2σ2

)
, (4.17)

with the best fit parameters θ = 109s and k = 0.563, µ = 0.6, σ = 1.44 are

dimensionless parameters. As the weighting function is in log-linear form, it is

also useful to write

ϕ̃(xj, τj|xj−1) ∝ exp
−τj

θ
+ (k − 1) ln(τj) +

(
µ

σ2 − 1
)

ln
(

|xj − xj−1|
τj

)

− 1
2σ2 ln

(
|xj − xj−1|

τj

)2
 . (4.18)

The weighting function Wi,M (Equation 4.8), which depends on the Model, M

(Table 4.1) has the form

Wi,M(xj,xj−1, τj) = exp
(
C + B · Zi,M

)
, (4.19)

with the correction function corresponding to Equation (4.18) being

C = κ1τj + κ2 ln
(
τj

)
+ κ3 ln

(
|xj − xj−1|

τj

)
+ κ4 ln

(
|xj − xj−1|

τj

)2

. (4.20)
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4.5.2 An attraction to the nest

The next part of the analysis is to find a covariate to describe an attraction

to the nest using methods described in §4.4.1. The model fit results of fitting

both nest covariates in turn are shown in Table 4.3.

Table 4.3. The best fit covariate function to represent the birds’ movement in
response to the nest. In all cases, Model 1 fits best by having the lowest BIC
value.

Model, M Covariates BIC

0 C 9781

1 C, ZA1 9547

2 C, ZA2 9787

The BIC values show that Model 1 is a much better fit than Model 2 and Model

0 is a similar fit to Model 2. The fit of Model 1 suggests that the birds are

more likely to choose locations close to the nest. Therefore there is evidence

towards hypothesis (A1). The poor fit of Model 2 suggests that being further

from the nest does not mean the birds are more likely to turn towards the

nest, giving little evidence for hypothesis (A2). Therefore, ZA∗(xj) = ZA1(xj)

(shown in Equation 4.11) is used to represent attraction towards the nest site

in further analyses.

4.5.3 The preferred types of trees

I introduce woodland habitat into the analysis by first defining a preferred

subset of tree types, Sr, using methods described in §4.4.3. The results of

fitting the covariates ZA1 and Zs
B1 for s ∈ S22 are shown in Table 4.4. Before

any inference on the parameter values, I investigate only the types which have
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p ≲ 0.1, to ensure there is sufficient data to analyse the result (explained further

in §4.4.3). This leaves eight types of trees (shown in bold text) and the tree

type with the highest parameter value is chestnut where exp(βs) = 1.131.

However, further inspection of the data (Table C.1, Appendix C.4) reveals

more conclusions. Firstly, locations containing chestnut and larch were only

visited by one pair of birds and their home range resides in a small plantation

of woodland, not used by other pairs in the study. To visualise the plantation

area, the locations for the pair selecting chestnut and larch are shown in black

in Fig. 4.1. Larch is not present in the home ranges of any other pairs making

it hard to analyse on a population level as it could mean that either this pair

has individual specific tastes or larch wasn’t available to other pairs.

There are two locations containing chestnut in the entire study site. The first

is in sparse woodland and close to the nest of the pair using the location. The

other location contains a chestnut tree that is 40m from the closest nest and

alone in an open field. The second location containing chestnut is not visited

by any pair, which may be because it requires flying outside of the woodland.

Analysing only the seventeen pairs in the natural woodland indicates that the

preferred tree type is brambles, which is also the chosen nest species for 11 of

the 18 nests.

To understand more about the selection of trees whilst the birds are foraging,

the fit of ZA1 and Zs
B1 is repeated with the set of 811 steps that do not end

at the same habitat location as the corresponding nest site (4.2). The results

for significant tree types are shown in Table 4.5. This analysis reveals different

conclusions for the selection of the tree types, particularly chestnut and brambles.

Firstly, chestnut is not included in the analysis, as all steps to chestnut were to
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Table 4.4. The results of fitting separate covariate functions for each of the
22 types of trees. The parameter values exp(βs) and their 95% confidence
intervals are shown. Chestnut is found to be the most preferred tree type with
exp(βs) ≈ 1.13. The fit of a different covariate for each of the recorded 22 tree
types is prior to fitting Models 3-8. The fit indicates a subset of tree types,
Sr, used to fit further models using the threshold p-value< 0.1 (shown in bold
font).

C + ZA1 + ZB1
Covariate for exp(βs) CI95,L CI95,H p-value
Sycamore 1.008 1.004 1.013 0.00025

Oak 1.009 1.005 1.014 3×10−5

Holly 0.999 0.990 1.009 0.89290
Hawthorn 1.003 0.990 1.017 0.66210

Birch 1.005 0.998 1.012 0.14735
Brambles 1.038 1.023 1.053 4.5×10−7

Alder 1.021 1.007 1.034 0.00217
Ash 0.999 0.987 1.010 0.83263
Lime 1.007 0.993 1.021 0.34301
Beech 1.004 0.996 1.012 0.33832
Willow 1.008 0.997 1.018 0.15242
Hazel 1.015 0.997 1.034 0.09519
Elder 1.018 0.996 1.040 0.10716

Cherry 1.002 0.988 1.017 0.74250
Chestnut 1.131 1.030 1.241 0.00951

Cypress 1.054 0.983 1.131 0.13979
Elm 1.015 0.997 1.033 0.10539

Gorse 0.998 0.971 1.025 0.86591
Larch 1.013 1.006 1.021 0.00036
Rowan 1.012 1.003 1.022 0.01021

Norway Spruce 0.998 0.984 1.013 0.80716
Sikta Spruce 0.974 0.898 1.056 0.51984
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Table 4.5. The results of fitting separate covariate functions for each of the 22
types of trees with all steps to the nest location removed. Results are reported
for any tree type with p-values less than 0.1 and the tree types are listed in the
order of preference indicated by the parameter values with the 95% confidence
intervals are shown.

C + ZA1 + ZB1
Covariate for exp(βs) CI95,L CI95,H p-value

Gorse 1.057 1.020 1.096 0.002
Elder 1.030 1.007 1.054 0.01
Alder 1.026 1.012 1.040 0.0002
Larch 1.019 1.011 1.027 3.6×10−6

Birch 1.010 1.003 1.018 0.007656
Oak 1.010 1.006 1.015 1.9×10−5

Sycamore 1.007 1.002 1.012 4.6×10−3

Brambles 0.941 0.912 0.972 0.0002

the same habitat location as the pair’s nest. Therefore the selection of chestnut

is likely to be due to the tree type’s proximity to the nest, rather than being

preferred for foraging. Movement in response to bramble, has now changed

to show that whilst foraging the birds are actually selecting locations without

bramble. This result again suggests that the apparent selection of bramble in

the previous analysis is due to many birds nesting in the plant. Additionally

for this reduced data set, the p-values of rowan and hazel are high (> 0.1),

indicating that there is not enough evidence to infer the section of these tree

types. In conclusion, by analysing all steps that do not end at the nest, I find

the birds are selecting for gorse predominately, followed by elder, alder, larch,

birch, oak and sycamore in approximately that order.

I performed two alternative model fit procedures using the covariate Zs
B1(xj).

One analysis uses the data collected over the first 25 days and the other analysis

uses data from the second 25 days. The results are shown in Table C.2 in

Appendix C.4.2. Oak, alder and elder have significant values in both halves of
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the data set. The preference for oak and elder increases by a small amount in

the second half of the data set and the preference for alder stays the same.

To conclude, I have found evidence that whilst foraging in the nest building

season, the birds are selecting for gorse, elder, alder, larch, birch, oak and

sycamore, approximately in that order.

4.5.4 Inferring ways of selecting preferred trees

In this section, I infer how a set of preferred tree types, Sr are selected by a pair

of the birds using methods described in §4.4.4. The models are fit to the full

data set of 1073 steps as I eventually aim to find a space use model to represent

the birds’ true movement in the nest building season. Three candidate subsets

were trialled to find the best fitting Sr by fitting Models 3-8. I trialled: (a) the

preferred tree types indicated by all steps (Table 4.4), (b) the preferred tree

types indicated by foraging steps (Table 4.5) and (c) the types of trees in both

(a) and (b). All subsets indicated the same best fitting model and the subset

described by (c) gave the lowest BIC value of all with a difference of ∆BIC=5

with method (a) and ∆BIC=30 with method (b). Using the subset (c), the set

S22 is reduced to the subset

Sr = {chestnut, brambles, gorse, elder, alder, larch, birch,

hazel, rowan, oak, sycamore} , (4.21)

Note that while I have shown that birds are not selecting for brambles when

foraging, including brambles in a model using all steps fits best. This may be

due to many of the nest sites being very close to or inside brambles, as 11 of

18 pairs are nesting in brambles. I further test whether including the actual
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Table 4.6. The results for fitting Models 3-8 compared with the null Model 0
and the model with no habitat selection, Model 1. Models were fit using the
preferred tree types shown in Equation (4.21). The ∆BIC column shows the
difference between the current BIC value and the lowest BIC value. Including
both the covariates ZB2 and ZB4 in the model gives the lowest BIC value, but
not by a large difference. There is evidence that Models 4, 7 and 8 all fit the
data similarly well.

Model , M Covariates Parameters BIC ∆BIC
0 C 4 9781 293
1 C, ZA1 5 9547 58
3 C, ZA1, ZB1 16 9550 62
4 C, ZA1, ZB2 6 9492 4
5 C, ZA1, ZB3 6 9512 24
6 C, ZA1, ZB4 6 9507 19
7 C, ZA1 , ZB2, ZB3 7 9494 6
8 CG, ZA1, ZB2, ZB4 7 9488 0

nest tree type into the models with subset (a) gives a better fit than subset (c).

I found the fit was not better that the subset (c) with ∆BIC=14.

Models 3-8 were fit by maximising Equation (4.10) and the results are shown

in Table 4.6. The best fitting model is Model 8, but there is little difference

(see ∆BIC in Table 4.6) between the BIC values for Models 4, 7 and 8. The

covariates describing diversity and the spatial cover of trees in the set Sr do not

fit as well alone (Models 5 and 6 respectively). However, including a covariate

for the presence of any of tree type in the set improves the fit (Models 7 and 8

respectively). I conclude that the birds appear to be moving in response to the

set of tree types Sr and there is evidence that the birds choose places because

of both the presence of preferred tree types and the spatial cover of tree types

in the set Sr (Model 8). By comparing the BIC values of Model 1 and Models

3-8 in Table 4.6, there is evidence towards the birds choosing locations based

on the presence of tree types (B2), the diversity of tree types (B3) and the total
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cover of trees in Sr (B4). However, there is less evidence towards the birds

having a different preference for each percentage cover of tree type in Sr (B1).

Analyses reported in Tables 4.4, 4.5 and 4.6 are repeated with the first step of

each path removed to reduce observer bias and the conclusions are shown to

be the same in Appendix C.4.3.

4.5.5 The best-fit model

The best fitting model is Model 8, with a set of 11 tree types in the set Sr

(Equation 4.21). Model 8 combines the nest covariate ZA1(xj) = |xnest,i − xj|

with the presence of preferred trees ZB2(xj) = PS(x) and the percentage sum of

preferred tree types ZB4(xj) = ∑
s∈S Ts(x), where S =Sr. This model describes

the birds preferring locations that are close to the nest, have one or more of

the tree types in Sr present, where these have a large magnitude of cover. This

suggests that the birds choose locations where the total cover of preferred trees

is substantial. The SSF has the form

fi(xj, τj|xj−1) = ϕ(xj, τj|xj−1)Ψi(B,Zi(xj))∫
Tj

∫
Ω ϕ(x′

j, τ
′
j|xj−1)Ψi(B,Zi(x′

j))dx′
jdτ ′

j

, (4.22)

where

ϕ(xj, τj|xj−1) = exp
(κ1 − 1

θ

)
τj + (κ2 + k − 1) ln

(
τj

)

+
(
κ3 + µ

σ2 − 1
)

ln
(

|xj − xj−1|
τj

)

+
(
κ4 − 1

2σ2

)
ln
(

|xj − xj−1|
τj

)2
 , (4.23)

Ψi(B,Z(xj)) = exp
β1|xnest,i − xj| + β2PS(xj) + β3

∑
s∈S

Ts(xj)
 , (4.24)
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with dimensionless parameters κ2 = 0.57, κ3 = 0.66, κ4 = 0.086, β1 = −0.026,

β2 = 0.47, β3 = 0.0053 and κ1 = −0.0011s−1.

4.6 Calculating space use

One way of calculating a utilisation distribution for a pair of long-tailed tits is

to simulate Equation (4.22). However this would be computationally expensive,

particularly with sampling non-constant step times as well as step headings

and step lengths. Instead I use results from Moorcroft and Barnett (2008) and

Potts and Schlägel (2020) to parametrise a diffusion-taxis equation using the

parametrised best-fit SSF. The resulting diffusion-taxis equation is solved to

calculate the steady-state and therefore obtain a utilisation distribution for

each pair.

I show the derivation of a diffusion-taxis equation from an individual-based

model (IBM) in Appendix A.1. In this derivation a redistribution kernel is used

to define the probability of moving from location x to another location x′. The

redistribution kernel builds a diffusion-taxis equation and the diffusion and taxis

coefficients (Equations A.6 and A.7 respectively) are dependent on the form of

the redistribution kernel. Potts and Schlägel (2020) derived the diffusion and

taxis coefficients for a diffusion-taxis equation where the redistribution kernel

is equal to a SSF. I use their result to parametrize a diffusion-taxis equation

using the SSF in Equation (4.22). The variables (xj−1,xj,τj) from §4.1-4.5 are

redefined to be (x′,x, τ), for notational purposes.

A general SSF for a pair i, for non-constant step times, has the form
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fi(x|x′, τ) = ϕ(x, τ |x′)Ψi(x)∫
Ωi

∫
T ϕ(x′′, τ ′|x′)Ψi(x′′)dx′′dτ ′ , (4.25)

where Ωi is the landscape that is available to pair i and T is the set of all

possible step times that the pair could move from x′ to x′′. The habitat-selection

function is kept general, so that the appropriate function for each of the Models

3-8, can be inserted into the diffusion-taxis equation and has the form

Ψi,M(x) = exp
(
B · Zi,M(x)

)
. (4.26)

The derivations in Moorcroft and Barnett (2008) and Potts and Schlägel (2020)

require a movement kernel that does not vary with time. Here the movement

kernel is integrated over all possible step times from x to x′ to give

ϕδt(|x − x′|) =
∫ ∞

0
ϕ(|x − x′|, τ) dτ, (4.27)

where δt is the now a constant step time for moving from x′ to x. The redefined

SSF has the form

fδt,i,M(x|x′) = ϕδt(|x − x′|)Ψi,M(x)∫
Ωi
ϕδt(|x′′ − x′|)Ψi,M(x′′)dx′′ . (4.28)

Following the derivation in Appendix A.1 with p(x|x′) = fδt,i,M (x|x′) (Equation

A.1), I arrive at the diffusion-taxis equation (A.5). The functions A(x, t) and

D(x, t) (Equations A.6 and A.7 respectively) are derived in Potts and Schlägel

(2020) and lead to the diffusion-taxis equation
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∂ui,M

∂t
= Dδt∇2ui,M − 2Dδt∇ ·

[
ui,M∇

(
B · Zi,M(x)

)]
, (4.29)

where ui,M(x, t) is a utilisation distribution for pair i for model M and Dδt is

a constant found by integrating the movement kernel over space and taking

the limit as δt → 0. Lastly, Potts and Schlägel (2020) show that there is a

steady-state solution of Equation (4.29), found by inspection when

u∗
i,M(x) = K−1 exp

(
2B · Zi,M(x)

)
, (4.30)

where K is a normalising constant. Equation (4.30) gives an explicit utilisation

distribution for each pair of birds. The utilisation distribution depends only on

B and Zi,M and these were parametrised in §4.5. Fig. 4.6 shows the utilisation

distributions for Model 8 and Model 3 and all other Models are shown in

Appendix C.5.

4.7 Summary

In this Chapter, I apply integrated step-selection analysis (iSSA) to a population

of nest building passerines. Data were collected in the nesting season and this

bias is accounted for by including a preference for locations close to the nest

site whilst investigating movement in response to the woodland structure.

I test two hypotheses regarding the nest location: (A1) a preference for locations

closer to the nest (Equation 4.11) and (A2) a preference for turning back to

the nest when far away from the nest (Equation 4.12). The model describing



122 The woodland habitat selection of nest building long-tailed tits

the former is a much better fit, therefore, further models include a covariate

describing a preference for locations close to the nest.

Analyses of habitat selection in response to the percentage estimate of 22 types

of trees initially aims to understand the birds preference for each type of tree

separately. Birds show significant preference for eight tree types (chestnut,

brambles, alder, hazel, larch, rowan, oak, sycamore). However, some of this

preference is biased by movement towards the nest site. Once I control for this,

by removing any steps that ended at the nest site, I find that gorse is the most

selected tree type followed by elder, alder larch, birch, oak and sycamore in

that order.

As well as investigating the preference for a particular tree type, I also examined

three different hypotheses regarding how the structure of woodland affects

movement decisions. In particular, I examined which of the following explains

best the birds’ movements: (a) the percentage cover of each tree type separately,

(b) the presence or absence of "preferred trees", (c) the tree diversity, measured

as the number of preferred tree types present, (d) the percentage cover consisting

of any of the preferred trees. The resulting model selection procedure indicated

that both the presence and total percentage of preferred tree cover explain

movement decisions best (Table 4.6). However, the ∆BIC values were not

large, suggesting the model selection procedure was unable to separate these

competing hypotheses with high confidence.

Lastly, the utilisation distributions for each of the models are calculated for

nine pairs of long-tailed tits. The plots for the best fitting model (Model 8)

and the worst fitting model (Model 3) are shown in Fig. 4.6 (Models 4-7 are

shown in Appendix C.5).
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In conclusion, there is evidence that whilst nest building the birds are selecting

predominantly gorse and to a lesser extent elder and alder with little selection

of oak and sycamore. Previous to the study in this Chapter it was thought

that in this season the birds were selecting for mostly oak (B.J. Hatchwell,

pers. obs.) and sycamore (Gaston, 1973). Yet, further field work is required to

understand the differences in foraging selection whilst provisioning nests and

whilst flocking in the non-breeding season. I discuss the implications of this

Chapter, alongside previous research in Chapter 5.
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(a) (b)

(c) (d)

Fig. 4.6. Utilisation distributions (Equation 4.30) for nine pairs of long-tailed
tits calculated from fitted SSF functions. The top panels show the utilization
distributions as contour plots as described by the best-fit model, Model 8.
Corresponding locations for each pair are shown as dots in a similar colour to
the contour lines and nest locations are shown using a star icon. The bottom
panels show the utilization distributions for the same pairs using a lesser fitting
model, Model 3. Model selection was conducted by comparing BIC values.



Chapter 5

Discussion and conclusions

5.1 Introduction

Mathematical modelling provides tools to evaluate the elaborate interplay

between the movement decisions and space use of wild animals, in response to

their available landscape and other individuals. I have explored the movement

drivers of the space use patterns of long-tailed tits, whilst they live both in

flocks and as nest building pairs. Here, I discuss the implications of these

findings and further directions.

Home ranges are often produced using descriptive methods in ecological studies

(Carter et al., 2013; Coleman and Fraser, 1989; Ferguson et al., 1999; Napper

and Hatchwell, 2016), yet stationary home ranges are the outcome of dynamic

movement processes (Börger et al., 2008; Moorcroft et al., 1999). This thesis

focusses on understanding the behaviours that drive the patterns, rather than

analysing just the eventual space use description. The conclusions on long-tailed

tit movement behaviour gathered here not only advance our knowledge of



126 Discussion and conclusions

this species, but demonstrate the versatility of mathematical modelling in

understanding biological processes, when extensive experimentation is not

available.

5.2 A home range model to describe interaction

driven space use

Observations of long-tailed tits from a previous study (Hatchwell et al., 2001a)

suggest that there could be a discrete avoidance mechanism between flocks

that causes their home ranges to consist of exclusive areas of space use and

overlaps (Fig. 3.1). In Chapter 2, I extended and analysed a mechanistic space

use model (Potts and Lewis, 2016a) to describe flocks avoiding places they had

interacted with other flocks in the past.

Analysing each flock’s movements with the simultaneous movements of other

flocks by parametrising an individual-based model (IBM, Giuggioli et al. 2011;

Railsback and Grimm 2011), may be a natural first step in understanding

interaction-driven movements for a species where numerous animals are able to

be tracked simultaneously (Kernohana et al., 2001; Macdonald et al., 1979).

Long-tailed tits are too small to be GPS tagged, instead the birds are followed

and data is collected by direct observations (Napper and Hatchwell, 2016).

Researchers observing the long-tailed tits cannot record the movements of

flocks simultaneously without a large number of field assistants. To overcome a

similar problem, Potts et al. (2014a) parametrised an IBM using the movements

of flocks of birds which were not simultaneously tracked, however these birds

were conspicuous and the model assumed that each flock could always detect

the movements of other flocks. The home ranges of flocks of long-tailed tits
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are too large, relative to their approximated perceptive radius to assume that

they can always detect the movement of other flocks. Therefore, parametrising

an IBM for the movements of each flock in response to other flocks would

mean simulating the model and fitting to the overall space use. This would be

extremely computationally expensive, such that this approach would not be

practically viable.

A partial differential equation (PDE) model of space use can be obtained by

scaling an IBM and forming a diffusion-taxis equation. This method has the

advantage of being able to obtain a deterministic pattern of space use from

underlying stochastic movement rules. The corresponding space use pattern

can then be fit to location data. This process of forming a diffusion-taxis model

and fitting to location data is named mechanistic home range analysis (MHRA,

Moorcroft and Lewis 2006). Instead, the movement of flocks in response to

other flocks can be modelled in the underlying movement processes of the

diffusion-taxis equation. I extended the one-dimensional memory driven PDE

model introduced by Potts and Lewis (2016a) into two dimensions, redefining the

territorial conflicts as conspecific interactions and defining it as the interaction

model.

After forming the interaction model, I discovered that in two dimensions there

are numerical complexities not observed in the one-dimensional system. In

particular there may be a surface of stable steady-state solutions that can lead

to the numerical approximation of the model not finding a steady-state. By

visually analysing the numerical solution through time, it is revealed that the

numerical solution moves close to a steady-state then shifts towards another,

without settling on one. To overcome this problem, the dynamic cognitive

map of each flock was stopped from evolving when the space use solution
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reached a point in time which is estimated to correspond to the steady-state

of the given initial condition. Specifically, this is when a threshold value

for the average value of the cognitive map is reached. I later showed that

this method provides a suitable home range model for the birds, however the

shortcoming is that the method relies on the threshold value. This value

was estimated by searching through a range of values and comparing them

with the utilisation distributions visually. Keeping this value constant and

varying the parameter γ (controlling taxis away from the interaction zone),

produces variations in the spatial overlaps of the utilisation distribution of

each flock (Fig. 2.7). The threshold value is kept constant in the later fitting

procedures, but more detailed investigations are required to determine the best

way of choosing this threshold value. Furthermore, numerical investigations into

different approximation methods of the differential equations are required to

understand the most efficient and accurate way to estimate the steady-state of

the interaction model. For example, using the method of lines (Schiesser, 1991)

or trialling an alternative approximation of the taxis term as in Gerisch and

Chaplain (2006) may lead to a system which describes the stable steady-states

more accurately than the approximation of the diffusion-taxis system using

finite-differences. Moreover, additional investigation is required to understand

if these techniques are necessary when extending other diffusion-taxis models to

more than one dimension. One particular example is the scent marking model

of Potts and Lewis (2016b), where a diffusion-taxis equation models space use

in response to a dynamic map of scent marks, similar to the cognitive map of

interactions. For the scent marking model, numerical stable steady-states of

the one-dimensional system are found, however the two-dimensional system is

not investigated.
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It is common in spatial studies to infer conspecific behaviour using the overlaps

of home ranges that are estimated with statistical methods, such as a kernel

density estimation (KDE) or a MCP (Fieberg and Kochanny, 2005). Such

studies have indicated that there are effects of kinship (Oli et al., 2002), body

size and population density (Pearce et al., 2013) on the overlaps for various

study species. In particular, Hatchwell et al. (2001a) used a convex peeling

technique to infer the effects of kin on this population of long-tailed tits.

Whilst these descriptive studies reveal a relationship between conspecifics and

space use, space use is an outcome of movement. Therefore, modelling the

underlying movement process, as the interaction model does, is necessary to

reveal explicit behavioural drivers of animals. Nonetheless, these studies have

merit in indicating the necessity for investigations using mechanistic modelling

or more detailed experimentation.

The interaction model is able to capture the patterns of exclusive areas and

overlaps, from underlying behavioural mechanisms observed in this population

of long-tailed tits. The steady-state solutions shown in Fig. 2.7 show such

home range patterns and how they vary with different values of the parameter γ

(taxis away from the interaction zone). These solutions indicate the suitability

of the interaction model for forming non-territorial home ranges, prior to fitting

to data. In the interaction model, flocks move in response to the average value

of their cognitive map of interactions, over a disc. For simplicity, perception is

assumed to be a binary quantity: perceived within the δ-disc and not perceived

outside this disc. However, it would also be possible to consider other non-local

formalisms, such as exponential decay (Avgar et al., 2015).

Overall, the methods detailed in Chapter 2 not only introduce a two-dimensional

version of an existing PDE system to model non-territorial space use without



130 Discussion and conclusions

an attractive potential, but also demonstrate the possible complexities of

numerically solving such PDEs in two dimensions. Furthermore, the methods

present a detailed example of moving from a two-individual one-dimensional

system, often seen in the literature (Fagan et al., 2020; Potts and Lewis, 2016b),

to a multi-individual, two-dimensional system, required to fit to data.

5.3 The home range drivers of flocks of long-

tailed tits

The interaction model provides a suitable base model to describe taxis driven by

the memory of conspecific interactions. Chapter 3 is dedicated to extending the

model to include interactions with the environment. Previous studies (Gaston,

1973; Hatchwell, 2016) indicate that long-tailed tits prefer to forage in woodland

and visually this idea agrees with the recorded locations (e.g. Fig. 3.1). In

Chapter 3, I discovered that the interaction model fits the data well when

coupled with an attraction to the centre of woodland and avoidance behaviour

in response to relatedness and flock size.

I extended the interaction model to include different ways of modelling taxis

towards the woodland, by modelling the woodland as simply being present

or absent. The best-fit mechanistic home range analysis (MHRA) models all

describe taxis towards the centre of woodland and this result was consistent

through seasons. The discovery that flocks prefer foraging in the centre of

woodland was not considered in previous studies (Hatchwell et al., 2001a;

Napper and Hatchwell, 2016) and this conclusion means future data collection

can be initially focused in central areas to save time. Possible hypotheses

result from this central foraging behaviour. First, it may be related to avoiding
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predation, as studies on several taxa indicate that foraging in the centre of

woodland habitats provides greater protection from predators (Angkaew et al.,

2019; Hansen et al., 2019; Valentine et al., 2019). However some studies

reported the reverse, that there is lower predation risk in edge habitats when

compared with the centre (Newmark and Stanley, 2011; Šálek et al., 2010). A

second hypothesis for the birds foraging in the centre of woodland is a potential

difference in food availability or quality (Rosli et al., 2018; Terraube et al.,

2016). These hypotheses call for further investigation, but quantifying the

predation rate in the non-breeding season and sampling food availability for

insectivores feeding at canopy level requires extensive data collection. Hence,

the mechanistic modelling techniques used in this study demonstrate their

worth in uncovering such behaviours otherwise only discovered by considerable

amounts of field work.

Attraction to the centre of woodland coupled with memory mediated conspecific

avoidance mechanism models the data well (Fig. 3.5). The avoidance behaviour

appears to act as a proxy for territoriality, causing distinct home ranges to form

without requiring directly-observable aggressive behaviour. Yet, the question

of why flocks avoid each other remains unanswered. I offer three hypotheses

regarding the avoidance behaviour, with the first being that flocks are avoiding

antagonistic social interactions (Sharp et al., 2005) so that there is no need

to defend territories. Simulations of intrusive birds entering long-tailed tit

flocks using playback experiments prompt small amounts of aggression that

may deter interactions (Napper and Hatchwell, 2016). The best-fit MHRA

model indicates that small flocks are more likely to avoid large flocks, which

would make sense if the birds intend to avoid aggression. Avoidance dependent

on group size appears to be unusual among social vertebrates, perhaps since
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the exclusive space use of these non-territorial birds is rare. Yet this behaviour

is seen in territorial gray wolves (Canis lupus, Brandell et al. 2020) and models

of battles between social insect colonies, where the outcome of conflicts over

space may be determined by relative colony size (Adams and Plowes, 2019;

Adler et al., 2018).

Secondly, it is possible that living in large flocks is an effective anti-predator

strategy and that the flocks separate to optimise some energetic maximum

(Pulliam and Caraco, 1984). Flocking to limit individual risk of predation

is commonly observed in ornithological studies. For example in chaffinches

(Fringilla coelebs, Lindström 1989) and mixed flocks (Gaddis 1980), sometimes

the size of flocks (Cresswell 1994; Siegfried and Underhill 1975; Vine 1973) or

particular flocking structures affect predation risk (Carere et al. 2009; Procaccini

et al. 2011).

A final explanation for the conspecific avoidance between flocks is a potential

social benefit in strengthening relationships within flocks for the later breeding

season. Long-tailed tits are cooperative breeders and their helping behaviour is

kin-selected (Hatchwell et al., 2014; Leedale et al., 2018; Russell and Hatchwell,

2001). Helping decisions in the breeding season are influenced by association

during the non-breeding season (Napper and Hatchwell, 2016), where vocal cues

are learnt for recognition (Sharp et al., 2005). Therefore maintaining contact

with kin whilst flocking during the non-breeding season, and avoiding diluting

those relationships by recurrent interactions with non-kin in other flocks, may

lead to greater breeding success. Extending the best-fit MHRA model to

include avoidance dependent on kin shows that flocks are less likely to avoid

other flocks that they are related to and supports the idea that separate flocks

are socially beneficial. A positive relationship between home range overlap
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and kinship has been previously observed in the study population (Hatchwell

et al., 2001a) as well as in several other taxa, including mammals (Sera and

Gaines, 1994; Støen et al., 2005; Walker et al., 2008), lizards (While et al., 2009)

and fish (Griffiths and Armstrong, 2002). Thus, the mechanistic description

of avoidance dependent on kin may also drive the space use of many animal

species.

The memory capacity of small passerines is hard to quantify or test biologically,

as little is known about the cognitive abilities of small birds in general, regardless

of species (Emery, 2006). However the models in the MHRA suggest that

flocks remember visual or vocal interactions and choose to avoid those places

in the future. Even a visual analysis of the location data suggests the birds

must have a capacity for memory to enable the boundaries of the home ranges.

Without memory, birds would only respond to present interactions and this

would not explain the segregated patterns. Therefore, including memory as an

indirect inferred behaviour is often necessary and has an abundance of previous

applications (Avgar et al., 2015; Fagan et al., 2013; Merkle et al., 2014, 2017).

The mechanistic models used in this section could theoretically be further

analysed using posterior predictive checks, e.g. simulating replicated data using

the fitted model and comparing it to the real data. Here this could be done

by sampling locations from the utilisation distribution with some variation on

the parameters, known as bootstrapping. One of the reasons this hasn’t been

done here is that the computational time required to perform such analyses is

infeasible, likely taking years to obtain 95% confidence interval, despite being

coded in C++. Instead, plotting the utilization distributions over the location

data, (e.g. Figure 3.5b) gives evidence towards the home range models being a

good fit.
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One advantage of diffusion-taxis models for studying home range patterns is

that they allow users to reveal the behavioural decisions that can give rise to

the recorded space use patterns, using independent recorded locations. These

mechanistic methods are in contrast with statistical models that only give

descriptors of the home range, such as the methods of MCPs and KDEs.

An alternative way to estimate home ranges with mechanistic origins is to

correct for the bias due to autocorrelation in KDE, namely autocorrelated

kernel density estimation (AKDE, Fleming et al. 2015). Inferring behaviour

based on the overlap of home ranges predicted by AKDE (Winner et al., 2018)

uses movement in an attempt to improve on the statistical estimates of KDE,

but the method does not incorporate explicit behavioural processes into the

underlying movement model. Therefore, AKDEs are unable to make inferences

about specific behavioural drivers of space use. That said, AKDE’s advantage

over MHRA is that it allows for autocorrelation in movement. A combination

of AKDE and MHRA may emerge as the way forward, allowing for both

behavioural mechanisms and autocorrelation in an efficient way, but this is

highly non-trivial and has yet to be forthcoming.

Some aspects of movement can be included into home range analysis using

Brownian bridge methods by assuming that movement between locations is

Brownian motion (Horne et al., 2007). Furthermore, the biased Brownian

bridge (Benhamou, 2011) incorporates taxis movement into the Brownian

motion. The diffusion-taxis models developed in Chapters 2 and 3 are based

on a diffusion-taxis equation which results in a utilisation distribution for

biased Brownian motion. Therefore, combining the two methods by including

behaviourally-informed interpolations of space use between successive recorded

locations fixes may be a natural next step.
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In previous MHRA studies, models describe an attraction towards a central place

or territoriality (Bateman et al., 2015; Moorcroft and Lewis, 2006; Moorcroft

et al., 1999), behaviours which are not observed by long-tailed tits outside the

breeding season. The application of MHRA in this thesis not only advances

avian ecology by uncovering the effects of conspecific avoidance and foraging in

the centre of woodland areas, but also shows how the best fit MHRA model

can be used to expose more subtle behaviours, such as the effects of kinship

and flock size. This study demonstrates not only the flexibility of MHRA but

that it can be used to uncover behaviours in animal species that traditional

statistical methods can not.

5.4 The woodland habitat drivers of pairs of

long-tailed tits

Succeeding the study in the non-breeding season, I explored how pairs of nest

building long-tailed tits use their woodland habitat selectively, depending on

the available tree types in their home range. For the study in the non-breeding

season, the birds’ directed-movement within woodland was modelled as either

undirected or towards the centre of the woodland area. Thus the complex

distribution of tree species in the Rivelin Valley was not accounted for. In

Chapter 4, I showed that long-tailed tits use their habitat selectively, preferring

to forage in particular types of trees rather than others by analysing movements

using integrated step-selection analysis (iSSA, Avgar et al. 2016). Subsequently,

a mechanistic space use model was defined that included a mechanism to

describe an attraction to the nest site. Similar to the study in the non-breeding

season, these analyses used methods to infer behaviours based on reasonably
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coarse location data, in comparison to animals fit with tracking devices. Here I

discuss the results and implications of the study.

In this study, the movements of long-tailed tits in the nesting season were

analysed as the pairs are easier to follow at this time of year due to their fidelity

to the nest. I first asked if there were particular types of trees that the birds

prefer to forage in. I found that the birds are predominantly selecting the

tree type gorse followed by elder, alder, larch, birch, oak and sycamore. A

previous study by Gaston (1973) suggested that nest building long-tailed tits

in a study site 120 miles from the Rivelin Valley prefer to forage in sycamore

when compared with oak and ash. However, these conclusions were based

on measurements of time spent in the tree species and did not account for

availability related to the birds current location or the magnitude of the tree

cover. I additionally found that whilst foraging, pairs are not selecting locations

with brambles, known to be the preferred nesting species of many pairs. An

avoidance of brambles could be due to removal of all the movements towards

the nest. Or further reasons, such as a lack of foraging benefit or the reluctance

to enter other birds’ nest areas due to attracting predators, as found in field

sparrows (Spizella pusilla, Burhans 2000).

In the nesting season, long-tailed tits are cooperative breeders and the birds

are much more likely to help pairs they are related to (Russell and Hatchwell,

2001). I found that one pair (shown in black in Fig. 4.1) appeared to select

mostly chestnut and larch, which were not available to the rest of the pairs.

However the selection of the location containing chestnut was unable to be

untangled from visits to the nest. This finding leads to more questions aimed

at understanding whether or not this pair is using chestnut. If so, whether the

preference for both chestnut and larch is due to individual differences or the
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lack of the tree types in other areas. Another question to ask is why this pair

chose to build their nest in a location with quite different trees to the other

pairs in the study site. One possible explanation is that this was the only safe

chestnut tree to use (being small and inside woodland). This leads to another

hypothesis, that these birds are unrelated to the other pairs and therefore more

likely to nest in the small woodland alone (Hatchwell et al., 2001b; Russell and

Hatchwell, 2001; Sharp et al., 2008). Further analysis of long-term data to test

whether pairs without relatives breed in more isolated sites than those with

nearby relatives would be worthwhile.

Different ways that the birds select for the population’s set of preferred trees

were explored, where preferred trees were identified for the population using all

recorded movements. Four ways selecting tree types based on the percentage

cover of the trees at a location were trialled. The ways of selecting the tree

types are described as follows: a location is selected based on (a) the percentage

of each tree type, each with a different selection parameter, (b) the presence of

any tree type, (c) the diversity of tree types and (d) the sum of the percentage

cover of all tree types. Comparing the model fit of different combinations of the

four mathematical formulae reveals that the birds are predominantly selecting

locations due to the presence of any preferred tree and magnitude of cover of the

set of preferred trees, with some evidence for movement decisions biased towards

locations with more diversity. There is less evidence for a mechanism where

the birds are choosing locations based on different preference rates for each

tree type, specifically where a different parameter is fit for the selection of each

type of tree. The analyses of these data lead to the conclusion that the birds do

have preferred tree types, but choose locations based on how much cover those

trees have in total rather than the particular type of tree. A preference for a
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greater amount of canopy cover and alternative measure of tree size, such as

trunk diameter is seen in other insectivore studies (VanderWerf, 1993; Virkkala

and Liehu, 1990; Zwicker and Walters, 1999) sometimes alongside a preference

for higher density of leaves (Holmes and Robinson, 1981; VanderWerf, 1993).

Mapping out the complex and dense tree species that define the woodland areas

in the Rivelin Valley would provide an ideal estimate of habitat availability.

However, this would require a comprehensive study, taking a considerable

amount of field work over years, as in Fuller and Henderson (1992) and Skroblin

and Legge (2012). Instead the birds’ habitat-selection was investigated within

the descriptively estimated home ranges of each pair a method which is feasible

with the availability of field workers and similarly seen in a study on various

insectivorous birds (Hodgson et al. 2006).

The advantage of tracking the birds on foot, compared with studies on tagged

animals, allows the observer to estimate when the pair’s decisions to move

were made. Where many previous step-selection analysis (SSA) studies use

data taken over constant time intervals (e.g. every 1 minute, Thurfjell et al.

2014), the recorded locations of the long-tailed tits instead correspond with

the estimated time of the decision to move. Since the data are recorded over

non-constant time intervals, the movement kernel includes a distribution of

the time difference in observations as well as spatial measures. I use a recent

method by Munden et al. (2020) to include the time difference between locations.

However, Munden et al. (2020) estimate decisions to change direction from

movement data acquired using accelero-magnetometers (Potts et al., 2018), in

contrast to the estimation of decisions from direct observations in Chapter 4.
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A space use model was developed by parametrising a SSF that included a

preference for places close to the nest so that it captured the pairs’ usual

movements. It may be that this preference is dependent on time away from

the nest. However, it was not known how long each pair had been away from

the nest in many of the observations. To approximate home ranges, I use

a diffusion-taxis equation to model the utilisation distribution of each flock,

moving as described by a movement kernel that is parametrised by the best-fit

SSF (Potts and Schlägel, 2020). The diffusion-taxis equation can be analytically

solved to produce an explicit space use model. This recently-introduced method

provides an accessible way to obtain a utilisation distribution from iSSA.

Since the analyses infer parameters at the population level, the model has a

predictive use in further seasons, once nests are located and the habitat is

mapped. Deriving a diffusion-taxis equation to describe space use resulting from

movement defined by the iSSA removes the requirement to perform multiple

simulations to estimate space use (Avgar et al., 2016), which are particularly

computationally costly when simulating non-constant time steps as well as step

lengths.

Long-tailed tits are predominantly insectivorous and the availability of insects

depends on the species of tree and the time of year (Moorman et al., 2007;

Tellería et al., 1997). A previous study by Gaston (1973) found that the

selection of sycamore, oak and ash varied over a 3-4 month period and appears

to depend on when the trees come into leaf, similar to that seen in other bird

species (Hodgson et al., 2006; Tellería et al., 1997) and mammals (Chamberlain

and Leopold, 2000; Dahl, 2005; Rosalino et al., 2005). The data in Chapter 4

were collected over 50 days and by splitting the data in half to give two sets

of 25 days I performed the SSA again to investigate differences. I found that
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the selection parameter for elder had almost doubled and since elder comes

into bud (attracting pre of long-tailed tits) much earlier than the time of data

collection, this increase in selection could be due to nest building materials.

However some p-values were too high to be analysed (oak was included but not

sycamore or ash). Therefore, further observation is required to understand how

the habitat selection differs temporally throughout the year.

The study has led to new conclusions on the woodland habitat selection

of long-tailed tits, resulting in a predictive model of space use and new

behavioural knowledge which can be applied to reduce time spent in field work

studies. Where many other studies infer habitat-selection without accounting

for movement (McGarigal et al., 2016), the iSSA methods here accommodate

movement steps over varying time intervals. I provided a definitive example

of flexible modelling methods that may be used to understand more about a

species, where the fine scale habitat is mapped and movement decisions can be

estimated.

5.5 The next steps for long-tailed tit ecology

Many of the conclusions obtained from methods in this thesis are yet to be

explored by further observations and experiments. A preference for foraging

in the centre of woodland may be difficult to observe directly, but could be

further analysed by interpreting habitat-selection movement paths such as with

a SSA. Investigations to understand potential edge effects on the predation

rate of adults and juveniles would be very worthwhile, but it is complicated

to understand these edge effects on possible predation rate outside of the

nesting season due to immigration and natural deaths. However, a study is
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currently being conducted by Ben Hatchwell on the effects of habitat type on

nest predation rate.

Measuring directly the tendency of flocks to avoid one another would require

analysis of synchronous observations of many flocks, which is a difficult task

for field work. Simulated interactions using the playback of calls from birds in

neighbouring flocks offers an experimental alternative to direct observation of

interactions (Napper and Hatchwell, 2016), but these are difficult to conduct

and suffer from a number of flaws. Instead, MHRA provides a way of making

such inferences with much less data.

The conclusions generated for the long-tailed tits are at the population level

and individual differences are not specifically analysed. There are various

reasons for this. First, in the MHRA of Chapter 3 I inferred the values of six

parameters when fitting models. If I instead estimated different parameters for

each flock, these parameters would have increased by a multiple of the number

of flocks. For context, fitting a model with six parameters takes on average

13±4 hours (mean ±95% CI), however this depends on the the machine used

(the machine used here is described in Appendix A.4). Secondly, flocks do not

reform year on year so understanding population level drivers is more useful

for understanding the space use of flocks in future years.

The computational time for fitting the step-selection models of Chapter 4 for

the nest building pairs is much quicker compared with MHRA and individual

level inference is much more viable (e.g. Osipova et al. 2019; Prokopenko et al.

2017). The reason I fit models to the steps of the population, rather than

individual pairs, is because of the amount of available data and the predictive

capability of models. In general, individual differences in movement behaviour
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are notable and common throughout animal species (Nilsson et al., 2014) and

it may be worthwhile understanding the extent of individual differences within

long-tailed tits to estimate the variability of population-level results.

A considerable amount is already known about the social behaviour of the

Rivelin Valley long-tailed tits in the breeding season due to extensive genetic

studies, behavioural and life history observations and experiments. Related

pairs are generally more likely to nest close to each other (Hatchwell et al.,

2001b; Leedale et al., 2018; Russell and Hatchwell, 2001; Sharp et al., 2008)

and a study on the relatedness of the pairs in Chapter 4 could uncover more.

However, further studies are currently being conducted by Ben Hatchwell to

investigate the relationship between the spatial overlap of the non-breeding

flocks and the corresponding breeding ranges, alongside the interplay of the

social and spatial relationships between seasons, as in a study on great tits

(Parus major, Firth and Sheldon 2016).

Since food resources appear to be abundant in the Rivelin Valley, further

investigation is required to understand what may limit the species’ population

density. Cold weather has been shown to reduce the birds’ survival, indicating

they may benefit from the changing climate (Gullett et al., 2014). Furthermore,

a study on multiple passerines, including the Rivelin Valley long-tailed tits

suggests that when close to the carrying capacity the population density is

dependent on mortality (Sæther et al., 2016). Furthermore, at lower densities

the population equilibrium is more influenced by stochastic environmental

variation driving recruitment (Sæther et al., 2016).

In summary, the studies in this thesis have indicated that long-tailed tits

avoid other flocks in the non-breeding season, prefer foraging in the centre
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of woodland and in particular types of trees. Moreover, the population level

analyses have led to the conclusions and models having predictive capabilities

for future data collection. These investigations have led to further questions

about seasonal and individual differences in habitat selection, the social and

spatial interplay of the population through seasons, and further examination of

the avoidance mechanism in the non-breeding season.

5.6 Using these methods to understand other

animal species

The mechanistic modelling techniques applied to this specific population of

long-tailed tits may also be used to understand the behaviours of further animal

species, which I give non-exhaustive examples of here. Perhaps the most obvious

species to benefit from these methods are those which are unable to be tagged

with GPS devices such as small birds and bats (Kays et al., 2015). In particular,

species with conspecific-influenced space use distributions can prosper from

the MHRA methods. Furthermore, studies where species are directly observed

may be able to uncover behaviours using the iSSA methods by recording data

as decisions to move are detected.

The correlation between relatedness and home range structure is also observed in

taxomically different species to long-tailed tits, for example bottlenose dolphins

(Tursiops truncatus, Frère et al., 2010) and giraffes (Giraffa camelopardalis,

Carter et al., 2013). Understanding the behavioural drivers of these species

using MHRA may require quite similar models to those in Chapters 2 and

3. Moreover, the MHRA methods in this thesis demonstrate the flexibility of

the models and by altering the taxis term these approaches can be applied to
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understand many other home ranging species. Non-territorial species such as

polar bears (Ursus maritimus, Ferguson et al., 1999) and vultures (Coleman and

Fraser, 1989) both live in non-exclusive home ranges which could be understood

using MHRA by building an alternative taxis term. For example, instead of

movement drivers describing avoidance of other individuals of the same species

one could model taxis towards prey or a desirable environment. Vultures are

particularly interesting as they are attracted to a central place which is related

to their age (Coleman and Fraser, 1989), so an attraction parameter could be

introduced which is dependent on age.

Similar to the Rivelin Valley population, long term studies on the apostlebird

(Struthidea cinerea, Griesser et al. 2009) and fairy wrens (Malurus elegan,

Brouwer et al. 2014) use direct observations to understand space use of flocks

and may benefit from the methods used in this thesis. Locations of animals

without GPS tags are further obtained using alternative methods than direct

observations, for example using camera traps (Gelardi et al., 2020; McCarthy

et al., 2019) or proximity devices (Firth et al., 2018), often for studies on social

networks. By using the the spatial locations of these recording devices, the

MHRA methods described in this thesis could be used to understand behaviours

leading to space use.

Step-selection studies have a range of applications in the literature and many

previous models estimate space use using extensive simulations (Osipova et al.,

2019; Thurfjell et al., 2014). These studies can take advantage of the method

of Potts and Schlägel (2020) by instead obtaining a utilisation distribution

using the method of parametrising a diffusion-taxis equation, saving copious

computational time. Comparisons of the utilisation distributions obtained

from short term simulations and a parametrised habitat selection function
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are conducted in Signer et al. (2017). It would be interesting to perform

a similar comparison with short term simulations obtained with variable

and non-variable step time and the utilisation distribution obtained from

parametrising a diffusion-taxis equation using a SSF.

In previous animal tracking experiments, successive animal locations are

predominantly recorded over constant time intervals (Tucker et al., 2018).

The time variant methods used in Chapter 4 (Munden et al., 2020) demonstrate

a simple way to analyse locations recorded as animals make a notable decision

to move, influencing more studies to record direct observations in this way.

Studies on long distance movements for ringed birds with a long-life expectancy

may also benefit (du Feu et al., 2016). Ringed birds are often observed or

briefly captured intermittently throughout their life e.g. (Ambrosini et al.,

2014; Thorup et al., 2014) and data is recorded in encounter databases such as

EURING (du Feu et al., 2016). These individuals may take advantage of the

methods in Chapter 4 by treating each successive observation as a step and

comparing with alternative large scale habitats.

5.7 Final remarks

The studies in this thesis exemplify how mechanistic modelling can be used to

infer the life-history behaviours of animals, given observation data. I presented

the first known application of MHRA for a non-territorial species with no

central attraction, revealing instead the behaviours of kin and group size led

avoidance. Fine scale habitat-selection was explored using iSSA techniques,

revealing the preferred foraging trees of long-tailed tits with a novel method of

analysing the birds’ movement decisions. The models in this thesis have not
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only advanced avian biology but additionally illustrate flexible methods for

further taxa to readily benefit from these mechanistic techniques.



Glossary

availability kernel a kernel which takes the same form as the movement

kernel in step-selection analysis, where parameters fit from the distribution

of movement attributes in the data, first = availability kernel.

available step a step (linear displacement between two locations) which

could have been taken instead of a step in the data. This has the same

starting location but a different end location as the step in the data which

it corresponds to.

cognitive map a representation of an animal’s landscape in the animal’s

memory.

diffusion the movement of a density from a region of high concentration

to a region of low concentration. In this thesis, diffusion describes

the movement of the probability density of a utilisation distribution

from a high concentration to a low concentration. The process is an

approximation a stochastic random walk..

diffusion-taxis equation a partial-differential equation describing the change

in a utilisation distribution through time and space with a diffusion term

and a taxis term.
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habitat location a location at the centre of a 25 by 25m square where the

percentage of 22 species of tree were estimated.

habitat-selection function a function describing the selection and distribution

of attributes of the available habitat.

home range a finite area of a larger available landscape which an animal

chooses to live in as it has all the resources to fulfil its life history needs.

interaction model a system of partial-differential equations where a diffusion-

taxis equation describes space use and the taxis is driven by a dynamic

cognitive map of interactions.

interaction zone a part of a flock’s landscape that it is likely to avoid due

to previous interactions.

kinesis the speed of movement of an organism as a response to a stimulus at

a location.

long-tailed tit a small European passerine, here they are studied in the

Rivelin Valley, Sheffield in non-breeding flocks and breeding pairs.

mechanistic a description of something that is determined by its underlying

process or mechanics.

movement attribute calculated movement measurements, for example step

length, step time, step speed and step heading.

movement kernel a function describing the movement capabilities of an

animal.

path a sequence of successive movements (steps).
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perceptual range the maximum distance which an animal can perceive the

local habitat where it currently resides.

significant movement the movement of a pair of long-tailed tits (Chapter

4) that is more than 10m from their previously recorded location.

steady-state the point at which the solution to a differential equation stops

changing through time.

step the linear displacement between two locations.

step length the distance between two locations in metres.

step speed the step length (distance between two locations) divided by the

step time (time difference between two recorded locations).

step time the time difference between two recorded locations in seconds.

taxis the directed movement of an organism as a response to a stimulus at a

location.

tree type a general group of tree or shrub species recorded in the study, for

example oak, sycamore.

turning angle the angle turned through from the heading of one step to the

heading of the next.

used step a step (linear displacement between two locations) recorded in the

data.

utilisation distribution a probability density function for the location for

an individual or group of individuals at a given region in space and time.
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weighting function a function describing the selection and distribution of

attributes of the available habitat and movement to be used to fit a

step-selection function.
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Appendix A

A.1 A space use model from an individual-

based model

I follow the general derivation of Moorcroft et al. (2006) to show how a general

individual-based model can be approximated as a diffusion-taxis equation

(Chandrasekhar, 1943; Einstein, 1905; Fokker, 1914; Planck, 1917).

The probability of moving from x′ to x in time δt is described here using the

arbitrary individual-based model p(x|x′), which is a normalised probability

density function. The master equation, describing the probability of moving

from all possible x′ to x in small time δt over the landscape Ω has the form

u(x, t+ δt) =
∫

Ω
p(x|x′)u(x′, t)dx′, (A.1)

where u(x, t+ δt) describes the overall space use of the individual at time t+ δt.

The derivation of a diffusion-taxis equation requires expanding Equation (A.1)

as a Taylor series and ignoring small terms as negligible. Therefore, I define the
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very small displacement in time δt as q = x − x′. Since the location x depends

on q, I define the function

ρ(q|x′) = p(x|x′). (A.2)

By changing the variable of integration, Equation (A.1) is rewritten as

u(x, t+ δt) =
∫

Ω
ρ(q|x − q)u(x − q, t)dq. (A.3)

Expanding Equation (A.3) as a Taylor Series about x gives

u(x, t+ δt) =
∫

Ω

(
ρ(q|x)u(x, t) − q · ∇ρ(q|x)u(x, t)

+ |q|2

4 ∇2ρ(q|x)u(x, t) . . .
)

dq, (A.4)

where the third term is formed by taking a mean-field approximation (covariances

in the x and y directions are assumed to be negligible).

Further terms from the Taylor expansion of Equation (A.4) are ignored as q is

small. Since ρ(q|x) is a probability density function,
∫

Ω ρ(q|x)dq = 1. I divide

Equation (A.4) through by δt, take the limit as δt → 0 and switch the order of

differentiation and integration. The diffusion-taxis equation has the form

∂u

∂t
= ∇2 [D(x, t)u(x, t)

]
− ∇ ·

[
A(x, t)u(x, t)

]
, (A.5)

where
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A(x, t) = lim
δt→0

1
δt

∫
Ω

qρ(q|x)dq,

= lim
δt→0

1
δt

∫
Ω
(x − x′)p(x′|x)dx′, (A.6)

D(x, t) = lim
δt→0

1
4δt

∫
Ω

|q|2ρ(q|x)dq,

= lim
δt→0

1
4δt

∫
Ω

|x − x′|2p(x′|x)dx′. (A.7)

where ∇ =
(

∂
∂x
, ∂

∂y

)
, A(x, t) and D(x, t) are the Taxis and Diffusion terms

respectively.

The solution to Equation (A.5), u(x, t), is a description of space use and

depends on the form of probability density function p(x|x′). The function

D(x, t) is the diffusion function and A(x, t) is the taxis function.

In the case where p(x|x′) describes purely random movement directions (the

direction is chosen uniformly), the derivation results in the diffusion equation

which is equivalent to Equation (A.5) with A(x, t) = 0. In the case where

p(x|x′) models movement in a particular direction, then a pure taxis equation

is derived, which takes the form of Equation (A.5) with D(x, t) = 0. These

results indicate that the diffusion term models movement without a directional

bias and the taxis term models directed movement.

Using a similar derivation, a PDE can be derived to approximate space use

from an individual-based model on a grid by considering all discrete movements

(Moorcroft and Lewis 2006; Turchin 1998) and this is shown in §2.2.2.
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A.2 Discrete space and time to continuous

In this section, I use graphical interpretations to explain the redefinitions shown

in Equation (2.4), for moving from discrete to continuous space. Fig. A.1

shows two probability density functions in one spatial dimension which must

integrate to 1. Integrating the function in Fig. A.1 gives

1 = x0ui(x0) = n0Ui(n0) = n0lui(x0)

Ui(n0) = lui(x0).

Similarly in two spatial dimensions Fig. A.2 shows that

1 = x0y0ui(x0, y0) = n0m0Ui(n0,m0) = n0m0l
2ui(x0, y0)

Ui(n0,m0) = l2ui(x0, y0),

so the utilisation distribution ui in continuous space must be multiplied by l to

the power of the number of spatial dimensions, to equal the discrete form Ui.

(a) (b)

Fig. A.1. Theoretical examples of 1D probability distributions (a) ui(x) and
(b) Ui(n), where x = nl.
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(a) (b)

Fig. A.2. Theoretical examples of 2D probability distributions (a) ui(x, y)
and (b) Ui(n,m) where x = nl and y = ml.

A.3 Non-dimensionalisation

Here I define dimensionless parameters for Equations (2.11) and (2.7) in Chapter

2. The parameter L is the length of the domain so

x̃ = x

L
, ỹ = y

L
(A.8)

To non-dimensionalise t, ui and ki, I introduce new composite parameters T, U

and K and define

t̃ = t

T
, ũi = ui

U
, k̃i = ki

K
(A.9)

Inserting the definitions (A.8) and (A.9) into space use Equation (2.11) becomes
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U

T

∂ũi

∂t̃
= DU

L2

(
∂2ũi

∂x̃2

)
+ ∂2ũi

∂ỹ2 + c
UK

L2

 ∂
∂x̃

ũi
∂k̃i

∂x̃

+ ∂

∂ỹ

ũi
∂k̃i

∂ỹ


 .
(A.10)

Redefining T = L2/D, K = 1, γ = c/D and omitting the tildes, I obtain

∂ui

∂t
=
(
∂2ui

∂x2

)
+ ∂2ui

∂y2 + γ

 ∂
∂x

(
ui
∂ki

∂x

)
+ ∂

∂y

(
ui
∂ki

∂y

) . (A.11)

Substituting the above definitions into the equation for the interaction zone,

(2.7), gives

D

L2
dk̃i

dt̃
= U2ρ

(
1 − k̃i

)
ũi

∑
j ̸=i

ũi − k̃i (µ+ Uβũi) . (A.12)

Redefining U = 1/L, a = D/ρ, m = µL2/ρ, b = βL/ρ and omitting the tildes,

gives

a
dki

dt
= (1 − ki)ui

∑
j ̸=i

uj − ki (m+ bui) , (A.13)

which leads to the full System (2.13)-(2.16) in Chapter 2.
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A.4 Numerical techniques

Here I detail the finite difference scheme used to produce numerical solutions

to diffusion-taxis equations in this thesis. Examples of solutions can be seen in

Fig. 2.1.

The finite difference schemes solve equations over a grid of square cells of length

∆x, so that the variables and functions are redefined in a discrete form. The

change in time is denoted as ∆t, giving n = (∆x)x, m = (∆x)y and s = (∆t)t.

I denote the discrete redefinition of ui(x, t) as U s
i,n,m, which is the probability of

individual i being in space (n,m) at time s. The probability ki(x, t) is redefined

to give the probability of space (n,m) being in the interaction zone of flock i

at time s as Ks
i,n,m.

I use the following finite difference approximations to describe differential terms

∂ui

∂t
≈ 1

∆t
(
U s+1

i,n,m − U s
i,n,m

)
, (A.14)

∇2ui ≈ 1
(∆x)2

(
U s

i,n+1,m + U s
i,n−1,m + U s

i,n,m+1 + U s
i,n,m−1 − 4U s

i,n,m

)
,

(A.15)

∇ · (ui∇ki) ≈ 1
4(∆x)2

[(
U s

i,n+1,m − U s
i,n−1,m

) (
Ks

i,n+1,m −Ks
i,n−1,m

)
+
(
U s

i,n,m+1 − U s
i,n,m−1

) (
Ks

i,n,m+1 −Ks
n,m−1

)]
+ 1

(∆x)2U
s
i,n,m

(
Ks

i,n+1,m +Ks
i,n−1,m +Ks

i,n,m+1 +Ks
i,n,m−1 − 4Ks

i,n,m

)
.

(A.16)
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I use the finite difference approximations (A.14)-(A.16) to form time-stepping

equations for the interaction system (2.13)-(2.16). The spatial average k̄(x, t)

from Equation (2.8) is defined as

K̄s
i,n,m = 1

n(P )
∑
P

Ks
i,n′,m′ , (A.17)

where P is the set of cells, (n′,m′), which is any cell on the landscape where the

distance of the centre of the cell from the centre of (n,m) is less than d = δ∆x.

The distance from (n,m, ) to (n′,m′) is |n − n′| =
√

(n− n′)2 + (m−m′)2.

This gives the time-stepping method for each individual i as

Ks+1
i,n,m = Ks

i,n,m + ∆t

(1 −Ks
i,n,m

)
U s

i,n,m

∑
j ̸=i

U s
j,n,m −Ks

i,n,m

(
m+ bU s

i,n,m

) ,
(A.18)

U s+1
i,n,m =U s

i,n,m + ∆t
(∆x)2

{
U s

i,n+1,m + U s
i,n−1,m + U s

i,n,m+1 + U s
i,n,m−1 − 4U s

i,n,m

+γ4

[(
U s

i,n+1,m − U s
i,n−1,m

) (
K̄s

i,n+1,m − K̄s
i,n−1,m

)
+
(
U s

i,n,m+1 − U s
i,n,m−1

) (
K̄s

i,n,m+1 − K̄s
i,n,m−1

)]
+γU s

i,n,m

(
K̄s

i,n+1,m + K̄s
i,n−1,m + K̄s

i,n,m+1 + K̄s
i,n,m−1 − 4K̄s

i,n,m

)}
,

(A.19)
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with zero-flux boundary conditions

U s
i,0,m =U s

i,2,m + γU s
i,1,m

(
K̄s

i,2,m − K̄s
i,0,m

)
, (A.20)

U s
i,N,m =U s

i,N−2,m − γU s
i,N−1,m

(
K̄s

i,N,m − K̄s
i,N−2,m

)
, (A.21)

U s
i,n,0 =U s

i,n,2 + γU s
i,n,1

(
K̄s

i,n,2 − K̄s
i,n,0

)
, (A.22)

U s
i,n,N =U s

i,n,N−2 − γU s
i,n,N−1

(
K̄s

i,n,N − K̄s
i,n,N−2

)
. (A.23)

Alongside Equation (A.17), this gives the numerical time-stepping process used

to solve System (2.13)-(2.16) in Chapter 2. Initial conditions ui(x, y, 0) are

given within the Chapter. The initial condition for the interaction zone was

set to be ki(x, y, 0) = 0 for all i.

Numerical solutions were conducted on a square grid of 50 by 50 cells with

timestep ∆t = 10−5. The timestep was chosen such that ∆t
(∆x)2 <

1
2 , which is the

von Neumann stability condition for finite difference approximations of PDEs

(Smith, 1986). Iterations were stopped when maxn,m|U s+1
i,n,m − U s

i,n,m| < 10−10

for all i. All analyses and numerical solutions were performed in Python 3.4

and C++ programming languages using an Intel(R) Core(TM) i7-4790T CPU

@ 2.70GHz, 2701 Mhz with 8 cores.





Appendix B

B.1 The discrete mathematical form for the

woodland attraction

Here I state the discrete mathematical form of each vector field vM , where

M = 1, . . . , 4, corresponding to each of the models described qualitatively in

§3.3.1. Each of the models, M = 1, . . . , 4, gives a different kind of attraction to

woodland. As the system is solved numerically, I move from continuous space

and time to discrete. The discrete landscape used throughout this thesis is

square grid of square cells n = (n,m), each with length l, where n = xl and

m = yl. For each model I use a discrete mathematical formulation of the vector

field, vM(x), which I denote as VM(n).

Using l = 34m, the discrete grid is placed over the satellite image of the Rivelin

Valley. Any cell with more than half tree coverage is considered to be in a

woodland area. Cells are in a woodland area (connected component) if they

are connected in the satellite image that the grid represents, this procedure is

described in more detail before VM(n,m) for each M .
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I created a map of the environment by plotting the discrete landscape grid over

a satellite image of the Rivelin Valley. The quantity l = 34m was chosen to be

suitable for splitting each section of the landscape that represents a data set,

into an integer grid. An example section can be seen in Fig. B.1(a). For each

cell on the discrete landscape I also determined whether it was in a woodland

area or not and Fig. B.1(b) shows the woodland areas in the study site for the

2011-12 data. Here is the process I followed:

1. For each cell n on the landscape, if it is more than half covered by

woodland in the satellite image then I define it as being “in woodland".

For example, in Fig. B.1(a), cells 560 and 524 would be the only cells in

the panel not defined as “in woodland".

2. Next I inspect each of the adjacent cells to n and decide whether or not

they are also in woodland following the process in Step 1.

3. If an adjacent cell is in woodland and there is woodland over the edge

of the n and the adjacent cell, then I define them to be in the same

woodland area. In Fig. B.1(a) all cells in woodland are in the same

woodland area. Fig. B.2(a) shows an example where the cells to the

right and below n are in the same woodland area. Fig. B.2(b) shows an

example where all adjacent cells to n are in the same woodland area and

n is the cell which joins these woodland areas.

4. In the case that two or more cells adjacent to n are in a different woodland

areas and both have woodland over the edge shared with cell n, but the

woodlands are not joined inside n, cell n would belong to the woodland

area which covered the larger part of n. Fig. B.2(c) shows an example of

this where n belongs to woodland shown by red text.
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The areas for the 2011-12 study site can be visualised in Fig. B.1(b), where

each colour represents a different woodland area.

(a) (b)

Fig. B.1. Panel (a) shows a section of the Rivelin Valley study site with the
discrete grid plotted over, each square cell is 34m wide. Panel (b) shows the
landscape in black and white with the six different woodland areas plotted in
colour for the landscape of the 2011-12 data set where each colour (green, pink,
orange, blue, yellow and aqua) shows a different woodland area.

(a) (b) (c)

Fig. B.2. Each panel shows a representation of a section of the Rivelin Valley
study site with the discrete grid plotted over. Woodland is shown in green and
the different coloured text shows different woodland areas. Panel (a) shows
an example where the cell n is part of the same woodland as the cells below
and to the right of it. Panel (b) shows an example where n belongs to the
same woodland as all four adjacent cells. Panel (c) shows an example where
n is connected to both the red and the blue woodland but belongs to the red
woodland as this covers a greater area of n.
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Each of the discrete vector fields defined below can be visualised in Fig. 3.3.

M=1. Taxis into woodland acts solely on the woodland edges, to draw flocks in.

VM(n,m) =



r̂, if (n,m) is not in the woodland but adjacent

to the woodland boundary,

0, otherwise,
(B.1)

where

r(n,m) =

A(n+ 1,m)ωM − A(n− 1,m)ωM

A(n,m+ 1)ωM − A(n,m− 1)ωM

 . (B.2)

Here, A(n,m) is the area of the woodland containing (n,m), r̂ = r
|r| and

ωM controls the preference for larger woodland areas.

M=2. Taxis into woodland acts both on the woodland edges and within the

woodland to draw flocks towards the centre of a connected component.

VM(n,m) =



r̂, if (n,m) is not in the woodland but adjacent

to the woodland boundary,

d̂, if (n,m) is in the woodland,

0, otherwise,

(B.3)

where
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d(n,m) =

D(n+ 1,m)ωM −D(n− 1,m)ωM

D(n,m+ 1)ωM −D(n,m− 1)ωM

 . (B.4)

Here D(n,m) is the distance from (n,m) to the nearest woodland edge

(measured in number of cells of length l), if cell (n,m) is in the woodland.

D(n,m) = 0 if cell (n,m) is not in a woodland area.

M=3. Taxis into woodland acts on the woodland edges and all space outside of

the woodland areas to draw flocks towards the woodland.

VM(n,m) =


ŵ if (n,m) is not in the woodland,

0 otherwise,
(B.5)

where

w(n,m) =
∑
f∈F

Cf (n+ 1,m) − Cf (n− 1,m)

Cf (n,m+ 1) − Cf (n,m− 1)

 ,

Cf (n,m) =
(
Af (n,m)
gf (n,m)2

)ωM

, (B.6)

where F is the set of all woodlands, f . Af is the area of woodland f and

gf(n,m) is the distance from (n,m) to the nearest edge of woodland f .

The vector w is the resultant of vectors describing movement towards

each woodland f in F and ŵ = w
|w| .
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M=4. Taxis into woodland acts both inside the woodland areas, where flocks

are drawn to the centre of a connected component and outside where

they are drawn in.

VM(n,m) =


ŵ, if (n,m) is not in the woodland,

d̂, if (n,m) is in a woodland area.
(B.7)

B.2 Numerical techniques for the MHRA

To solve the system (3.2)-(3.5) for flocks of long-tailed tits I extend the

finite difference scheme detailed in Appendix A.4 to include taxis towards

the woodland. The involves adding some terms to the iterative equations.

When considering taxis along a vector field I redefine continuous space and

time (x, y, t) to discrete space and time (n,m, s). I redefine vM(x) = (v1, v2)

from §3.3.1 to be

Vn,m = (V1,n,m, V2,n,m)T , (B.8)

where I have omitted the model number M for notational purposes in this

section. The iterative equation for space use is equal to Equation (A.19) with

the following term added to the right hand side

−ζτ

2l

{
U s

n,m

(
V1,n+1,m + V1,n−1,m + V2,n,m+1 + V2,n,m−1

)
+
(
U s

i,n+1,m − U s
i,n−1,m

)
V1,n,m +

(
U s

i,n,m+1 − U s
i,n,m−1

)
V2,n,m

}
. (B.9)
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The boundary conditions are equal to Equations (A.20)-(A.23) with the following

terms added to the right hand side respectively

− 2lζU s
i,1,mV1,1,m, (B.10)

+ 2lζU s
i,N−1,mV1,N−1,m, (B.11)

− 2lζU s
i,n,1V2,n,1, (B.12)

+ 2lζU s
i,n,N−1V2,n,N−1. (B.13)

The time taken to find the best-fit parameters for Equations (2.13)-(2.16) was

13 ± 4 hours (mean ± 95% CI). These times were calculated by solving each

Model 1-4 for the three data sets collected from 2010-13. Example Python and

C++ code is provided in the Supporting Information of Ellison et al. (2020).

B.3 Numerical time to real time

The numerical units of space and time can be related to the data so that one

can infer the real time of home range pattern formation. The mean square

displacement (MSD) is the average amount of space the animal covers per unit

of time. I calculate this for the population of flocks of long-tailed tits. The

MSD of the data is estimated over time for the using the trajectories of recorded

locations. At every 30th point along a recorded trajectory I calculated the MSD

after time intervals of 1 minute, 2 minutes, 3 minutes ect and averaged over the

displacements calculated for each time interval. These MSD values are shown

in Fig. B.3 with a linear fit, MSD= 1650t, superimposed over the plot.
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Fig. B.3. Mean squared displacement (MSD) with units m2, calculated at
time intervals ∆time= 1, . . . , 30 minutes and shown in blue. The green line is
a linear fit forced through the origin.

The linear fit estimates that for every minute, the mean square displacement is

1650m2. In the numerical landscape the area of each cell is equal to 1156m2 in

the real landscape. I calculate the numerical timestep in minutes using

∆x2

∆t
= 1650

1 = 1156
τ
, (B.14)

meaning that each numerical time step is approximately τ =0.7 minutes. The

average number of time steps taken to stop the evolution of ki is 8286 and the

average number of time steps taken to evolve ui is 50375. By assuming the

birds are moving for 10 hours per day this means that the birds take around

10 days to decide where the interaction zone is.
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B.4 Supplementary results for the MHRA

Data Model 0

Model 1 Model 2

Model 3 Model 4

Model Parameters b γ δ ζ ω BIC Difference

0 4 5.95 10.4 0.059 3812 401

1 6 3.5 8.95 0.053 13.7 0.805 3666 255

2 6 3.66 9.53 0.063 13 0.0552 3643 232

3 6 3.08 9.76 0.061 9.44 1.52 3638 227

4 6 1.14 7.96 0.054 12.9 2.05 3411 0

Fig. B.4. Results for the 2010-11 data set
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Data Model 0

Model 1 Model 2

Model 3 Model 4

Model Parameters b γ δ ζ ω BIC Difference

0 4 11.3 10.5 0.048 12244 1155

1 6 8.79 9.16 0.04 25.2 0.844 11859 770

2 6 10.7 9.87 0.065 16.8 0.632 11118 29

3 6 11.8 10.5 0.07 10.7 0.997 11790 701

4 6 13.3 9.6 0.072 18.1 0.51 11089 0

Fig. B.5. Results for the 2011-12 data set
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Data Model 0

Model 1 Model 2

Model 3 Model 4

Model Parameters b γ δ ζ ω BIC Difference

0 4 8.95 10.9 0.037 7132 733

1 6 3.57 9.3 0.058 30.5 0.786 6746 347

2 6 2.87 10 0.074 19.9 0.741 6399 0

3 6 11.4 10.3 0.054 8.98 1.1 7079 680

4 6 11.2 8.72 0.052 20.5 0.765 6657 258

Fig. B.6. Results for the 2012-13 data set
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Data Model 0

Model 1 Model 2

Model 3 Model 4

Model Parameters b γ δ ζ ω BIC Difference

0 4 5.87 9.46 0.062 11690 785

1 6 4.65 8.03 0.048 30.7 0.618 11340 435

2 6 5.11 8.77 0.083 25.7 1.03 11056 151

3 6 11.1 8.06 0.1 25.1 0.873 11210 305

4 6 9.24 9.74 0.096 23.5 0.635 10905 0

Fig. B.7. Results for the 2018-20191 data set
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Data Model 0

Model 1 Model 2

Model 3 Model 4

Model Parameters b γ δ ζ ω BIC Difference

0 4 15 10.5 0.047 16130 1833

1 6 10.7 7.78 0.098 32.9 1.54 15420 1123

2 6 7.25 8.14 0.098 26.2 2.7 15009 712

3 6 12.3 5 0.066 32.8 1.57 14580 283

4 6 11.7 7.74 0.047 25.9 1.11 14297 0

Fig. B.8. Results for the 2018-20192 data set





Appendix C

C.1 Probability distributions used to fit movement

attributes

Here I give the standard forms for the (a) exponential, (b) half-normal, (c)

log-normal and (d) gamma distributions for a random variable y, where y ∈

(0,∞) may be step times, step lengths or step speeds (see §4.2.1).

The exponential distribution is defined as:

ga(y) = λ exp(−λy), (C.1)

and λ has the units 1/[y], where [y] are the units of y.

The half-normal distribution is defined as:

gb(y) =
√

2
ν
√
π

exp(− y2

2ν2 ), (C.2)

where ν has the units [y].

The log-normal distribution is defined as:



192

gc(y) = 1√
2πσy

exp(−(ln(y) − µ)2

2σ2 ), (C.3)

where σ and µ are dimensionless parameters.

The gamma distribution is defined as:

gd(y) = yk−1

θkΓ(k) exp(−y

θ
), (C.4)

where Γ(k) =
∫∞

0 zk−1 exp−z dz represents the gamma function, θ has units [y]

and k is dimensionless.

For turning angles z ∈ (−π, π), the Von-Mises distribution is defined as:

ge(z) = exp(κ cos(z − µ))
2πI0(κ) , (C.5)

where I0(κ) is the modified Bessel function of order 0. The parameters κ and

µ are dimensionless.
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C.2 Sampling the habitat

A B
C D

25m 25m

10m

(a) (b)

Fig. C.1. Diagrams to explain collecting habitat data to describe the coverage
of different tree types at the canopy layer (>7m) and shrub layer (1-7m). The
landscape is split into a 25m by 25m square grid which is shown by the solid
black lines. The observer stands at the intersection points of the solid black
lines (shown by a black circle) and these are the points where data collection
occurs. Panel (a) illustrates the data collection at the canopy layer where the
most dominant tree type is estimated for each of the 25 squares. These squares
are defined by holding a 25cm by 25cm perspex sheet above the observers
head at a constant height and looking at the canopy through this (more than
7m above). An example for a intersection point could be that 8 squares are
covered by oak canopy, 10 squares are covered by birch canopy and 7 squares
are not covered. Panel (b) shows the data collection at the shrub layer where
the dominant tree types are estimated for each quarter A,B,C,D. For example,
A may have 10% holly, 80% hawthorn and 10% brambles.

C.3 Correcting for the fit of the availability

kernel

Here I give a brief example of correcting an availability kernel (Equation 4.3)

to form a corresponding movement kernel (Equation 4.1) using correction

functions (Equation 4.9) in the weighting function (Equation 4.8).
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Each correction function contains parameters, κn corresponding to those in the

availability kernel, denoting the magnitude of the corrections. Here I explain

this process using the Gamma distribution (Appendix C.1) to represent the

distribution of step times τj in Equation (4.3). The following distribution would

be fit to the step times for the population

g̃1(τj) =
τ k−1

j

Γ(k)θk
exp

(
−τj

θ

)
, (C.6)

with shape and scale parameters k and θ, respectively. Since the SSF is

eventually normalised and has a log-linear form, it is useful to write Equation

(C.6) as

g̃1(τj) ∝ exp
(

(k − 1) ln(τj) − τj

θ

)
. (C.7)

The corresponding correction function would have the form

C1(τj) = κ1 ln(τj) + κ2τj, (C.8)

where κ1 and κ2 are inferred alongside the habitat selection parameters B by

fitting Equation (4.8) using CLR.
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C.4 Supplementary data

C.4.1 Initial data

Fig. C.2. Nesting trees of the 18 pairs of long-tailed tits in the season of 2019.
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Table C.1. The distribution of tree types across the study site. These values
are reported to indicate how accessible each tree type is.

tree type

number of

environments

recorded in

(9 total)

number

of pairs

accessible to

(18 total)

number

of habitat

locations

recorded in

(269 total)

mean

percentage

cover per

location

Sycamore 7 16 94 31.7

Oak 9 18 98 29.8

Holly 8 17 78 15.9

Hawthorn 7 16 31 11.9

Birch 6 9 49 32.4

Brambles 4 12 20 7.8

Alder 6 15 22 16.3

Ash 5 12 28 16.0

Lime 3 5 9 20.2

Beech 5 13 36 34.6

Willow 4 12 18 19.1

Hazel 6 15 30 13.4

Elder 6 14 28 7.8

Cherry 3 11 12 19.0

Chestnut 2 4 2 5.0

Cypress 2 4 2 11.5

Elm 5 13 23 19.8

Gorse 1 3 5 17.0

Larch 1 1 6 25.7

Rowan 7 16 33 13.9

Norway spruce 1 1 3 52.7

Sitka spruce 1 1 2 50.0
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C.4.2 Splitting the data into two halves

Table C.2. The tree selection analysis reported in Chapter 4, Table 4.4,
repeated with the data split into two halves of 25 days. Here all steps to the
nest are removed leaving 811 steps.

First 25 days (477 steps) Second 25 days (334 steps)

Covariate exp(βn) CI90,L CI90,H p-value Covariate exp(βn) CI90,L CI90,H p-value

Oak 1.006 1.000 1.013 0.056 Oak 1.02 1.009 1.024 1.×10−5

Alder 1.023 1.000 1.047 0.032 Alder 1.024 1.005 1.039 0.009

Elder 1.025 1.000 1.051 0.072 Elder 1.058 1.000 1.129 0.07

Gorse 1.055 1.017 1.095 0.004 Larch 1.019 1.007 1.023 2×10−5

Sycamore 1.007 1.002 1.013 0.012 Hazel 1.031 0.997 1.066 0.069

Birch 1.011 1.001 1.020 0.03

Brambles 0.901 0.862 0.950 2×10−5

Cypress 0.917 0.831 1.009 0.075

C.4.3 Analyses with the first steps of each path removed

In this section I repeat the analyses shown in the Chapter 4, Tables 4.4, 4.5

and 4.6, where the first step of each path is removed from the analysis. This is

to reduce observer bias from the first encounter with the birds and this section

shows the results stay the same.
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Table C.3. The results for fitting to data with the first step of each path
removed. Separate covariate functions are fit for each of the 22 types of trees.
By indicating which tree type correspond to a p-value less than 0.1. The results
show the eight tree types in Table 4.4 are significant and have similar parameter
values.

C + ZA1 + ZB1

Covariate for exp(βn) CI95,L CI95,H p-value

Sycamore 1.010 1.005 1.016 2.3×10−4

Oak 1.010 1.005 1.015 2.4×10−4

Holly 0.999 0.988 1.011 0.977

Hawthorn 1.002 0.986 1.018 0.985

Birch 1.004 0.996 1.013 0.326

Brambles 1.038 1.019 1.056 5.2×10−5

Alder 1.025 1.010 1.039 0.001

Ash 0.997 0.982 1.012 0.537

Lime 1.007 0.991 1.024 0.438

Beech 1.006 0.997 1.015 0.386

Willow 1.010 0.997 1.022 0.207

Hazel 1.019 0.997 1.042 0.082

Elder 1.023 0.997 1.051 0.072

Cherry 1.005 0.987 1.023 0.672

Chestnut 1.113 0.995 1.246 0.073

Cypress 1.032 0.949 1.123 0.401

Elm 1.016 0.994 1.039 0.174

Gorse 1.000 0.967 1.034 0.890

Larch 1.013 1.005 1.021 0.001

Rowan 1.012 1.000 1.023 0.049

Norway Spruce 0.997 0.980 1.014 0.710

Sikta Spruce 0.976 0.888 1.071 0.605
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Table C.4. The results for fitting to data with the first step of each path
removed and all steps to the nest removed. Separate covariate functions are fit
for each of the 22 types of trees. These results show the same eight tree types
are significant as indicted by the results shown in Table 4.5 (all 1073 steps)
and the parameter values are similar.

CG + ZA1 + ZB1

Covariate for exp(βn) CI90,L CI90,H p-value

Gorse 1.043 0.999 1.088 0.055

Elder 1.036 1.007 1.065 0.013

Alder 1.027 1.012 1.042 3.4×10−4

Larch 1.019 1.010 1.028 2.2×10−5

Oak 1.011 1.005 1.016 1.1×10−5

Birch 1.010 1.002 1.019 0.020

Sycamore 1.009 1.003 1.015 0.003

Brambles 0.942 0.905 0.980 0.003

Table C.5. The results of the model selection with the first step of each path
removed. Models 3-8 are fit and compared with Models 0 and 1. The ∆BIC
column shows the difference between this BIC value and the lowest BIC value.
These show that the same overall results are obtained as using the full 1073
steps shown in Table 4.6.

Model Covariates Parameters BIC ∆BIC

1 C 4 7033 176

2 C, ZA1 5 6899 42

3 C, ZA1, ZB1 15 6908 51

4 C, ZA1, ZB2 6 6861 4

5 C, ZA1, ZB3 6 6876 19

6 C, ZA1, ZB4 6 6868 11

7 C, ZA1 , ZB2, ZB3 7 6864 7

8 CG, ZA1, ZB2, ZB4 7 6857 0
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C.5 Supplementary utilization distributions

from the iSSA

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Fig. C.3. Utilisation distributions for nine pairs of long-tailed tits, calculated
using Equation (4.30), where the weighting functions are replaced by those
corresponding to each model . Model 4 is shown in panels (a) and (b), Model
5 in panels (c) and (d), Model 6 in panels (e) and (f) and Model 7 in panels (g)
and (h).
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