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Abstract

The train unit scheduling optimization (TUSO) problem aims at seeking a conflict-free

operational plan for a set of train units to serve all trips defined in a fixed timetable with

minimum operational costs. TUSO is addressed at two levels: the network level and the

station level. The network level focuses on determining the serving sequence of trips for

each train unit, where the stations are simplified as single points. The station level deals

with the issues left in a network-level solution with detailed infrastructure restored.

Prior to this research, TUSO at the network level, specific on the UK railway operating

system, has been tackled as a multi-commodity network flow problem. Whereas train

unit flows are balanced and optimised over the service network, potential operational

conflicts due to layouts in individual train station have been ignored. This research

mainly concerns resolving such operational conflicts at the station level. However, this

research has also made contributions in improving the network flow model.

This research follows the two-phase approach [60] to tackle TUSO at these two

levels. TUSO is first solved at the network level in Phase I, where two solvers have

been developed, namely RS-Opt [57] and SLIM [26]. Given a solution from the network

level, two operational aspects are left undetermined: coupling order issues and linkage

feasibility. To finalize these two aspects, an adaptive approach expanding Phase I to

Phase II is proposed. Phase II takes a further step of station-level resolution and

attempts to complete a fully operable schedule. The logistics of coupling/decoupling

activities and tentative linkages are determined in detail to prevent conflicts where

possible, particularly focusing on developing an operable schedule without conflicts

of coupling order or crossing linkages in train stations. If the unresolvable station-

level conflicts still exist at Phase II, the process loops back to Phase I with added

constraints to avoid the identified conflicts. Through these two phases, a global optimal

solution that is also operable considering station-level layouts will be secured. Moreover,

the observation on the network-level experimental results from the existing RS-Opt

and SLIM has inspired the research on improving the network flow model from the

perspective of considering additional terms in the objective function such as the slack

time and the number of cars. It is extended as a new methodology to evaluate the

effectiveness of alternative objective function designs.
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Chapter 1

Introduction

1.1 Railway transport planning

The ’Transport Statistics Great Britain 2018 Report’ shows that track transport

(including national rail, underground, light rail and tram) plays a more and more

important role in people’s daily life through the last 30 years [1]. As shown in

Figure 1.1, the journeys completed by track modes increase continuously while

the bus journeys outside the London area drop steeply. In terms of operational

kilometers, shown in Figure 1.2, the national rail has a significant rise, but the

Figure 1.1: Passenger journeys

1



2 CHAPTER 1. INTRODUCTION

Figure 1.2: Passenger kilometers

kilometer variation of bus services is rather small. Compared to buses, train ser-

vices have the advantage of medium-to-long-distance transport. The increasing

demand of track transport raise new challenges: how to manage the massive rail-

way system efficiently? With the development of computing capacity, the railway

industry gradually turns to invest in computer-aided systems at the planning and

operational stages. For instance, the Canadian National Railway uses a decision

support system (DSS) to successfully decrease the incidence of derailments while

other companies were experiencing an increase [71]. Lots of literature also focus

on automatic planning and operating methods. For instance, Kroon et al. de-

velop a DSS that can assist the planners of Railned in generating timetables for

railway trips [46]; Ingolotti et al propose a DSS to efficiently and quickly solve

and plot the single-track railway scheduling problem [43].

Public railway transport planning is an intractable and complicated process

that needs tremendous work of many interacting aspects. Thus, the entire plan-

ning process is usually divided into a few hierarchical stages, as shown in Figure

1.3 [34, 87, 70]. In the classic sequential planning process, the results of the pre-

vious planning stage are considered as pre-fixed information for the next stage.

This strategy leads to a sub-optimal operation for the railway system [75]. First is

demand analysis, focusing on the determination of passengers’ traveling demands
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Figure 1.3: Hierarchical railway transport planning process

and their O-D pairs. The line planning aims at determining a set of routes to

be convenient for the potential passenger demands with some frequencies and

stop patterns for trip services [74]. These two stages are usually classified as the

strategic level with a time scale of 5 to 15 years, which are objective to resource

acquisition. Generally speaking, timetabling is the allocation, subject to con-

straints, of given resources to objects being placed in space-time, in such a way

as to satisfy as nearly as possible a set of desirable objectives [14]. The timetable

scheduling for railway transportation aims at determining a periodic timetable

for a set of trips that do not violate track capacities and satisfies some operational

constraints [20]. Thereafter comes train unit scheduling where two subproblems

are derived: train unit assignment, train unit shunting. Train unit assignment

is to determine the utilization plan of limited train units to cover all the trips

defined by a given timetable under some constraints. Train unit shunting takes

care of the shunting operations in stations or depots. The crew scheduling stage

aims to distribute the personnel to ensure every trip has enough staff. Two levels

are considered for theses three scheduling stages: the tactical level has a time
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scale of 1 - 5 years to deal with resource allocation; the operational level of 24

hours to 1 year is about daily operations. At the operational level, rescheduling is

also necessary when some unexpected disruptions are encountered, for example,

strike, severe weather, train unit breakdown. This research focuses on the train

unit scheduling problem, marked as blue with an underline in Figure 1.3, which

is the pre-planning of daily operations in advance of a new timetable going live.

In the UK, the schedules planned usually serve for a duration of over six months,

therefore, optimization is significantly important.

1.2 Train unit scheduling optimization (TUSO)

Currently, the UK railway system is operated by 17 franchises [2], such as Na-

tional Express, Northern Rail, First Great Eastern, TransPennine Express (TPE),

Great Western Railway (GWR). Each operator possesses/leases a certain number

of train units whose leasing, operating, and maintenance costs are quite expen-

sive. Railway operators have to provide adequate train units to satisfy passenger

demands and comply with many complex operational rules required by franchise

agreements. Thus, railway operators always try to make use of limited train unit

resources as efficiently as possible. For some regions where many commuting trips

are conducted, train unit scheduling is even more crucial for the distribution of

limited fleet resources, for instance, the Greater London centred area in southern

England and the Edinburgh-Glasgow centred area in Scotland.

Compared to traditional locomotive trains, a train multiple unit (referred to

as train unit for short) has a fixed number of carriages, e.g., 2-car and 4-car units.

It has a built-in engine(s) capable of moving in either direction. Figure 1.4 gives

some train unit examples of one to four cars. Train units are commonly used

in modern railway passenger transportation of many countries, such as the UK,

China, Japan, and many other European countries. Train units can be classified

into different types according to many characteristics, for instance, the power

source (electric multiple unit (EMU), diesel multiple unit (DMU), and bi-mode

multiple unit (BMU)), number of carriages, number of seats. Based on physical

configurations of train units and special panning rules, a train unit family is

defined as a set of train unit types that are allowed to be coupled together. Table
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Figure 1.4: Train unit examples

1.1 shows some families of different types of train units used in the UK railway

system. In the UK railway industry terms, a timetable defines a set of logical

Table 1.1: Example train unit families used in the UK

Family Unit type Power source Cars Seats Example operator

1
Class 170/1

DMU
2 109

CrossCountry
Class 170/3 3 182

2
Class 317/5

EMU
4 291

Greater Anglia
Class 317/6 4 268

3
Class 755/3

BMU
3 153

Greater Anglia
Class 755/4 4 205

4
Class 158/0

DMU
2 138

Great Western Railway
Class 158/9 3 142

5 Class 350/4 EMU 4 205 TransPennine Express

6 Class 802/2 BMU 5 326 TransPennine Express

trips operated on the railway network with a series of attributes: origin and

destination (O-D pair), departure and arrival times, route, intermediate stations,

and parking platforms. A few notable restrictions for each logical trip are the

passenger demand to be satisfied, the train unit types and the maximum number

of train units or carriages that are allowed to serve this trip.

Train unit scheduling optimization, referred to as TUSO for short, aims at

seeking an optimized operable plan of utilizing the limited number of train units at

the railway tracks concerning specific objectives and constraints. The features of

TUSO in this thesis also include coupling/decoupling operation, empty-running,
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mileage, re-platforming, reversal, coupling order issues, station feasibility. Some

research of TUSO includes maintenance planning as well, for example, [17, 36, 86,

48]. In the UK, however, maintenance provision can often be achieved later either

within the slacks between scheduled train trips or by swapping physical units of

the same type. Therefore the train unit scheduling stage conventionally does

not consider maintenance planning. TUSO takes three pieces of information as

inputs: a timetable describing trips, a fleet of train units, railway infrastructure,

and operational rules. The solution of TUSO is normally the sequence of trips

that are consecutively served by every utilized train unit, which demonstrates

its working loads on an operational day. The train unit(s) assigned to serve a

timetabled trip is defined as a train unit block, which could be a single unit

or multiple coupled units. In the UK, train unit scheduling is also called train

unit diagramming. A diagram describes the sequence of serving trips and other

auxiliary activities (e.g., coupling/decoupling, reversal) for a certain train unit.

Table 1.2 is an example diagram (referred to as AK 219 FO) from the TPE

company, used from 20/12/2019 to 15/05/2020 [3]. This train unit is of type class

185/0 with three carriages. The locations visited by this train unit are listed in the

first column. The second and third columns give the arrival and departure times.

The fourth column demonstrates the serving trips during an operational day. The

specific route occupied by each trip is listed in the fifth column to avoid ambiguity

when there is more than one route between two locations. The auxiliary activities

are shown in the sixth column, including reverse, attach, and detach. The last

column shows the train unit formation and permutation when a unit block of

multiple coupled units serves one trip, where ’1’ and ’2’ represent the front and the

rear, respectively. A reverse activity flips the front-rear sequence of a formation

of multiple coupled units. For instance, trip ’1B66’ has a reverse operation at

location ’ManchstrP’, referring to Manchester Piccadilly. As a result of this

reverse activity, the coupled train unit sequence is flipped from ’218(1)/219(2)’

to ’219(1)/218(2)’.

Currently, the train unit schedule is produced manually in the UK, on the

basis of trial-and-error and ad-hoc manner. The manual method can guarantee

the feasibility of a train unit schedule at the railway infrastructure. However,

this process is very time consuming and cannot ensure the optimality. Once the
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timetable is finalized, the operators proceed to the train unit scheduling process,

followed by the crew scheduling and rostering process. Train unit scheduling is a

bottleneck before train crew scheduling. Savings in train unit schedules will

Table 1.2: A train unit diagram from TransPennine Express (TPE)

Diagram: AK 219 FO. Fleet : 185/0 LTP

Start Date: 20/12/2019; End Date: 15/05/2020

Miles from Fuel: Start 700.00, End 1366.12

Miles: Loaded 645.37, Empty 20.75, Total 666.12

Location Arr Dep WTT Route Activities Coupled
Sheffield 03:25 1B59 Main
Huddrsfld 04:16 04:17 1B59 Gdb
ManchstrP 04:52 04:56 1B59 Reverse
Mancr Air 05:11 Attach
Mancr Air 06:53 1B66 218(1)/219(2)
ManchstrP 07:11 07:18 1B66 Stkp Reverse 219(1)/218(2)
Sheffield 08:11 08:12 1B66 Main 219(1)/218(2)
Cleethpes 09:05 Detach
Cleethpes 11:26 1B77
Doncaster 12:04 12:42 1B77 Main
Sheffield 13:08 13:11 1B77 Stkp
ManchstrP 14:02 14:07 1B77 Reverse
Mancr Air 14:23 14:53 1B82
ManchstrP 15:11 Attach

Reverse
ManchstrP 15:18 1B82 Stkp 219(1)/227(2)
Sheffield 16:09 16:11 1B82 Main 219(1)/227(2)
Doncaster 16:35 16:37 1B82 219(1)/227(2)
Cleethpes 17:49 18:26 1B91 Reverse 227(1)/219(2)
Doncaster 19:39 19:43 1B91 Main 227(1)/219(2)
Sheffield 20:09 20:11 1B91 Stkp 227(1)/219(2)
ManchstrP 21:01 Detach

Reverse
ManchstrP 21:09 1B91
Mancr Air 21:25 21:53 1B96
ManchstrP 22:15 Attach

Reverse
ManchstrP 22:02 1B96 Romly 219(1)/220(2)
Sheffield 23:01 23:12 1B96 Wdbrn 219(1)/220(2)
Rothram C 23:32 23:32 1B96 219(1)/220(2)
Doncaster 23:51 24:05 5B96
CroftnDep 24:59
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lead to savings in crew. Thus, this research focuses on deriving an automated

scheduling method, particularly on the optimization objectives and solution qual-

ity, and the resolution of station-level conflicts, based on fundamental research

[57, 26].

1.3 TUSO at two levels

In practice, a timetable from a railway operator could have up to two thousand

trips operated in a weekday. Train unit block serving each trip must be scheduled

at the complex railway network as well as detailed station infrastructure. TUSO is

a complicated and sophisticated problem that is hard to solve because it involves

several systems, e.g., timetables, rail networks and station layout, train unit

fleet, engineering and operational rules. They lead to a large number of complex

constraints to be satisfied, for instance, passenger demands, fleet size, type-route

compatibility, turnaround time, coupling/decoupling activities, coupling order,

reversal en-route, track capacities. These complicated constraints make TUSO

as a whole a challenging problem to solve. Therefore, TUSO is addressed at two

levels: the network level and the station level [56, 47]. The network level allocates

train unit resources to obtain the serving sequence of trips in a fixed timetable

with minimum operational costs. This level has been studied in literature [60, 17].

At the network level, stations are simplified as single points where the detailed

layouts are not considered. This simplification means all the shunting movements

required for connections between arrivals and departures are assumed feasible, no

matter what schedule is given by the network level. The station level deals with

the remaining issues left in the network-level solution with station infrastructure

restored, mainly coupling order assignment and the finalization of tentatively

linkages that are assigned at the network level.

1.3.1 Research synopsis for the network level

Motivation In literature [56, 17], the network-level problem is modeled as an

integer linear programming (ILP) of multi-commodity flows based on a directed

acyclic graph (DAG), which is shown as an NP-hard problem [76, 16, 55]. In
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the DAG, nodes represent trips with the source and the sink added as usual,

and linkages represent potential connections between any two nodes. An exact

solver is developed based on branch-and-price [57] and convex hull techniques

[58], named ’rolling stock optimizer (RS-Opt)’. RS-Opt is an exact method but

only suitable for small to medium problem instances. Thus, a size-limited itera-

tive method (SLIM) boosting RS-Opt to deal with large instances is also derived

[26]. As SLIM is supposed to extract good structural properties contributing to

the solution such that a solution whose structure is highly overlapped with the

’optimal’ solution obtained by RS-Opt solely is expected. However, the experi-

mental results show that the solution schedule converged through SLIM is very

different from that obtained by RS-Opt alone, even when their final objective

function values are very close or even identical. Although the branch-and-price

process in RS-Opt may have influenced the arc selection from the original DAG,

the design of objective function may have contributed to the unexpected behav-

ior such that alternative objective function designs are considered at the network

level. Moreover, the correlations amongst the hierarchical optimization crite-

ria are complicated. One might synergize/conflict with another, or there may be

some more unrevealed or unclear correlations. Thus, ’how much a given objective

function can be trusted?’ and ’what optimization criteria should be considered

in the objective function?’ are significant questions. These considerations have

driven the expanding research on the methodology of evaluating objective func-

tion effectiveness, seen in Chapter 5.

Research approach The research of this part considers the scheduling prob-

lems that can be modeled as network flow problems and their main optimization

criteria have a clear hierarchy such that the objective function can be formulated

as a weighted sum. Integer Linear Programming (ILP) models and their exact

solvers have the advantage of delivering ’(near-) optimal’ solutions. For a complex

real-world scheduling problem, the solution usually contains many combinatorial

properties, for instance the schedule structure. Using small problem instances

that an exact ILP method can solve to optimality, we propose a methodology

to benchmark the effectiveness of alternative objective function designs, includ-

ing three main steps: design alternative objective functions, obtain solutions and
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their features, evaluate the effectiveness of alternative objective function designs.

The main measure of effectiveness is in the structural similarity between the

auxiliary heuristic converged solutions and the exact solver found solution. In

conjunction with other solution features, the objective function effectiveness is

further quantified as an aggregation of several derived elements.

Contribution While the research on multi-criteria optimization and param-

eter control are extensive and fruitful in the literature, they mainly focus on

the performance of solution algorithms rather than establishing high confidence

in the objective function or contributing to the ’definition’ of what is consid-

ered as optima in the objective function, which are blank in the literature. The

methodology proposed at the network level bridges these two gaps to quantify

the objective function effectiveness and identify what is optimal to be considered

in the objective function. For a real-world scheduling problem, consider an exact

Integer Linear Programming (ILP) solver (P ) as a black-box, used to deliver a

benchmark solution s∗. An auxiliary heuristic approach (P̄ ) which iteratively

calls P with an improved reduced input is established to deliver a set of heuristic

solutions {s1, s2, ..., sz} compared to s∗. Through the comparisons, a series of

features are derived to quantify the effectiveness of alternative objective function

designs. Although we may still need to rely on the judgement of domain experts,

considering structural properties in the objective function design may help bet-

ter covering the ’hidden’ criteria considered by practitioners and establish higher

confidence in the objective function.

1.3.2 Research synopsis for the station level

Motivation Station-level layouts and infrastructure are significant when im-

plementing a network-level schedule at stations, which are the main place ter-

minating arrival trips and generating new departure trips. In a network-level

solution schedule, there are two things assigned: the train unit block serving

each trip, the linkages between arrivals and departures. However, the simplifi-

cation of station layouts at the network level results in some uncertainties that

may cause operational conflicts, classified into two operational aspects. The first
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aspect is the sequence of multiple train units (referred to as the coupling order).

Coupling/decoupling activities can sometimes only be operated in a specific se-

quence. The second aspect is linkage finalization at platforms that have been

assumed to be operable at the network level. Each linkage implies a series of

station operations. The tentatively assigned linkage at the network level may

invalidate the solution at the station level. These two aspects will be finalized at

the station level, seen in Chapter 6.

Research approach An adaptive approach is proposed to expand the network

level (Phase I) to the station level (Phase II), attempting to finalize a fully op-

erable schedule. The basic Phase I model optimizes train unit assignment at

the network level and tentatively allocates unit blocks to trips and their con-

nections. The incompleteness of undetermined coupling orders and unfinalized

tentative linkages may cause severe operational conflicts at the stations. Phase II

is to take a further step of station-level resolution and to fix the incompleteness.

Station level constraints would be very complex and difficult to generalize in an

all-encompassing TUSO model, therefore, they are hidden/ignored in Phase I.

Phase I has the benefit that its solution may have already automatically satis-

fied many of the station level constraints although they have not been explicitly

modeled. This adaptive approach incrementally inserts constraints for Phase II

against station-level conflicts identified in the solution from Phase I. The main

loop of this method is between Phase I core solver (RS-Opt, developed by Lin and

Kwan [57]) and Phase II including the process of station-level conflict detection

and coupling order assignment. This method resolves the station-level constraints

and assigns feasible coupling orders. A new scheduling solution is sought if Phase

II has encountered unresolvable conflicts, and newly formulated critical station

constraints are fed back to RS-Opt to eliminate those inoperable conflicts. The

experiments show the correctness and effectiveness of this approach.

Contribution The problems at the network level and the station level are usu-

ally considered separately. The network-level model has the limitation of ignoring

station-level constraints, which leads to an incomplete solution. This defect re-

stricts the operability when it is implemented at the station level because of a set
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of undecided factors, for instance, the coupling order impacted by station layouts,

timings, and unit movement directions, etc. This piece of research expands the

network level research to the station level and scrutinizes the potential problems

in a solution of the network level. An integer linear programming with station-

level constraints eliminating possible conflicts is proposed. Based on the research

about the network level of TUSO, an adaptive approach is proposed to con-

sider the station-level constraints efficiently producing a complete and operable

solution by systematically analyzing and iteratively adding station-level conflict

constraints. Through this method, the linkages given by the basic network-level

model can be finalized and feasible coupling orders can also be assigned if there

is no conflict detected.

1.4 Outline of thesis

In chapter 2, the existing research relevant to this thesis is briefly reviewed.

Firstly, a brief overview of the previous research relevant to TUSO is given, which

has been addressed at two levels: the network level and the station level. The re-

view on the network level is presented in three subsections: train unit assignment,

train unit scheduling, and train unit circulation. The station-level mainly focuses

on the review of trip and train unit planning within a station/depot. Also, the

research bridging the network level and the station level are discussed. There-

after, the topic related to the objective function evaluation is reviewed, including

multi-criteria optimization, parameter tuning and control.

Chapter 3 describes TUSO at both the network and the station levels in detail,

including restrictive constraints, optimization criteria. The requirements at the

network level are discussed as below: the fleet size of each train unit type, pas-

senger demands, compatibility between train unit and route/depot, turnaround

time, and coupling/decoupling issues at the network. Requirements, when a

network-level solution is applied to the station level, are discussed from the fol-

lowing aspects: coupling order, linkage slack time, crossing linkages, platform

type and capacity, re-platforming shunting, interchangeability between the same

type of train units. The optimization criteria and solution qualities are discussed

from six aspects: fleet size, running mileage, empty running, number of cou-
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pling/decoupling events, connection preference, and unit type preference.

Chapter 4 firstly introduced the directed acyclic graph (DAG) framework,

where DAG generation, decision variables, and arc costs are elaborated. Based

on the DAG, a multi-commodity fixed-charge integer linear programming is es-

tablished, where the constraints for both the network and the station levels are

contained. Later on, the two existing solvers, RS-Opt [57] and SLIM [26], for

the network level are further introduced. The experimental observations through

these two solvers are discussed to elicit one of the main research topics of this

thesis: effectiveness evaluation for the objective function designs. In the end, the

complexity of the station-level constraints is also discussed.

Chapter 5 proposes a methodology to evaluate objective function effectiveness.

Firstly, an introduction on the objective function is presented. The methodology

includes three parts: design alternative objective functions, heuristic approach,

obtain solutions and their features, and evaluate objective function effectiveness.

The methodology is tested by real-world TUSO instances. Four alternative ob-

jective functions are evaluated. The experimental results are discussed at the

end.

Chapter 6 proposes an adaptive method of expanding the network level to

the station level. Firstly, the definition of coupling order is formalized, followed

by relevant function and operator definitions. Thereafter, coupling order prop-

agation on the network is introduced, in which the propagating boundaries are

defined. The adaptive approach includes two parts: coupling order assignment

and conflict detection. The methods of conflict resolution are hereafter intro-

duced. The experiments are conducted based on both artificial and real-world

TUSO instances.

Chapter 7 gives conclusions of this research and presents future research di-

rections.
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Chapter 2

Literature review

This chapter firstly gives an overall review of the TUSO problem studied in this

thesis, including an overview on train planning, the train unit planning at the

network level, the trip and train unit planning at the station level, bridging be-

tween the network and the station levels. Then the objective function evaluation

problem, which is scarce in the literature, is discussed and its relevant aspects of

multi-criteria optimization and parameter control are reviewed.

2.1 Overview on train planning

In the overall review of [7, 27], the whole spectrum from infrastructure-related

issues to passenger and freight transportation problems, solved by operations re-

search methods, has been discussed. Since the big difference between passenger

and freight railway transport, Huisman et al. [39] specifically surveys on opera-

tional research in passenger railway transportation specific for the characteristics

of the European Union, in which the train planning process at Nederlandse Spoor-

wegen Reizigers (NSR, which is a company operating Netherlands railway) are

classified as two levels and four stages. The two levels are the central level and

the local level. The central level is mainly about the entire network involved

operations such as timetabling, train unit assignment and circulation. The local

level is mainly about local-size-impact operations including shunting, platform

assignment and routing of train units at each station. The four stages include

15
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strategic planning, tactical planning, operational planning, and short-term plan-

ning. The strategic stage only takes place at the central planning level while all

the other three stages involve both the central and local levels.

The train planning process in the UK, especially for busy passenger rail sys-

tems, is normally broken down into several stages [82]. The first stage consists

of train operators drawing up outlines or drafting train plans (timetables) for

running train services. This drafting process is mainly based on a few estimated

factors: travel demands between origins and destinations, demand distribution

throughout the day, promising revenues and costs, available rolling stock and

crews, existing contracts and commitments, business or marketing plans, and the

knowledge that they may have about competitors. The draft train plans are

likely to contain various types of conflicts, for instance, train times, headways,

line and platform usages. The second stage adjusts and fixes the conflicts that

may exist in the first stage plan. The plan refinement at this stage also considers

the compatibility with the plans made by other operators, because some lines

and stations will be operated by more than one railway operator. More informa-

tion about the passenger railway planning, scheduling, and operations is as per

literature [52, 39, 21, 22, 19, 25]. Some extending surveys on AI planning are as

per Wilkins [83].

As the consecutive stage of the timetabling process, the train unit scheduling

problem is also addressed as two levels: the network level and the station level

[60, 47]. The network level aims to solve train sequencing and fleet assignment

by considering stations as simple points and temporarily ignoring station layouts.

The coupling and decoupling activities are a distinct feature to satisfy passenger

demands at the network flow level and redistribute train unit resources. The

station level copes with finalizing the tentative plan given by the network level to

fix undetermined issues because of the simplification of the station layouts. One

of the research topics of this thesis focuses on how to deal with the station-level

resolution to seek an operable schedule while considering detailed infrastructure.

This topic has not been scrutinized in literature. Considering the problems re-

searched in this thesis, the train unit planning problem is reviewed at two levels:

the network level and the station level. The network level includes train unit

assignment, train unit scheduling, and train unit circulation. The station level
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contains routing trips through stations, station shunting scheduling, and depot

shunting scheduling. Thereafter, some research bridging these two levels are re-

viewed.

2.2 Train unit planning at the network level

During the process of dealing with the train unit planning at the network level,

the train unit planning at the station level is usually ignored and derived as a

separate problem. The train unit planning problem at the network level deter-

mines the plan of utilizing a set of train units to serve the pre-described trips in

a given timetable. There are three similar but different approaches to describe

this problem, namely the train unit assignment problem (TUAP), the train unit

scheduling problem (TUSP), and the train unit circulation problem (TUCP).

They are attributable to the research groups in Italy, UK, and the Netherlands,

respectively.

2.2.1 Train unit assignment

The train unit assignment problem (TUAP) is mainly researched by the Italian

group DEIS at the University of Bologna. Given a set of timetabled trips to be

performed every day, and a set of train units of different types, TUAP calls for

the specification of train units to be used, and, for each of these train units, of the

associated trips. Cacchiani et al. [17] first present an integer multi-commodity

flow model based on a pre-generated directed acyclic multi-graph (DAG) (in-

cluding arc formulation and path formulation), on which nodes represent trips (a

dummy start node and a dummy end node are added) and arcs represent possible

connections. Each commodity stands for a train unit type, used to partition the

arcs in the DAG into subsets. The flow amount at a trip node gives the train

unit combination serving that trip. For each trip, there is a passenger demand

counted as the number of seats and a coupling upper bound on the number of

units to be satisfied. The constraints for maintenance and overnight balance are

also included. An LP-based heuristic is developed for the path formulation, where

the weak knapsack constraints of coupling upper bound (no more than 2 units,
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∑
xi ≤ 2) and passenger demands (

∑
aixi ≥ b) are replaced by tighter convex

hull constraints [15]. Three instances of 528, 662, 588 trips from regional Italian

train operators are experimented with and without handling maintenance and

overnight balance constraints. Besides, five sub-instances are derived from the

original three instances by train unit type are also tested. Without maintenance

and overnight balance constraints, the original three instances are solved by this

heuristic method in 1932s, 2309s, 1878s, respectively. The five sub-instances are

solved in a time range of 18-1590s. With these two additional constraints, the

original and their sub-instances are solved in 5897-14105s and 18-8519s. It shows

this heuristic can find 10-20% better solutions than the practitioners’ solutions

for the majority of the cases.

For the same problem described in [17], Cacchiani et al. [18] present a fast and

effective heuristic method based on Lagrangian relaxation. The heuristic consists

of a construction phase of solutions and a local search phase for improvement.

The same instances from [17] but with fewer train unit types are tested. When

there is no execution time limit, the new heuristic can find solutions for all the

instances in a short time, which is seven times faster than the method proposed

in [17]. However, the solution quality is 6% worse on average. When various

execution-time limits are imposed, the new heuristic turns out even much faster

and still provide good-quality solutions. This new heuristic is suitable for all

cases in which the problem either must be solved many times (e.g., when it is

integrated with other phases of railway planning) or when it must be solved very

quickly (e.g., real-time planning).

2.2.2 Train unit scheduling

The train unit scheduling problem (TUSP) is mainly researched by the British

group from the University of Leeds. Considering more comprehensive real-world

features in the UK railway system, the train unit scheduling problem (TUSP) is

firstly addressed as two levels: the network level and the station level [60, 47].

TUSP at the network level shares very similar definitions and settings with

TUAP, for example, no line-based network decomposition, no pre-sequenced

trips, etc. Their mathematical models are both established based on a pre-
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generated directed acyclic graph. Compared to the research from DEIS, the UK

group considers more real-world constraints specifically on the UK railway sys-

tem: banned/restricted locations for coupling/decoupling operations, unit type

compatibility, various coupling upper bound, complex turnaround time, and the

avoidance of excessive and/or redundant coupling/decoupling operations. In

terms of solving approaches, the DEIS group mainly uses heuristic-based meth-

ods. The British research group proposes an exact method and a hybrid method.

The following gives a brief review of the research on the network-level problem

of TUSP.

An integer multi-commodity flow model [56] based on a pre-generated DAG is

established for the network level. An exact method, named rolling stock optimizer

(referred to as RS-Opt), is proposed based on the customized branch-and-price

method [57], where convex hull techniques [58] and dynamic column generation

are applied. Except for normal variable branching, customized branching strate-

gies are also designed to handle some constraints, e.g., train-family compatibility,

locations banned on coupling/decoupling operations. The static and dynamic

orders of applying different branching strategies are presented. Three constraints

(passenger demands, train unit coupling upper bound, and car upper bound) are

converted as tighter convex hull constraints to narrow down the solution space.

The column generation is applied to both root and leaf nodes of the branch-and-

bound tree. This is because if only the root node of the BB tree is solved by

column generation, then the root may not contain all the columns needed for

finding an optimal integer solution. To avoid the search trapped to local optima,

a jump mechanism is embedded in RS-Opt. The computational experiments

are conducted based on two groups of real-world instances from First ScotRail,

a major passenger train operation in Scotland, UK. The results after applying

different branching strategy orders are compared. The best strategy is to give

variable branching the lowest priority, and the worst is to give it the highest

priority. RS-Opt can find competitive solutions to the manual solution in a rea-

sonable time. Also, it has good performance in reducing over-provision and empty

running.

Through the observation of the solutions obtained by the model in [57], it is

noticed that the solutions contain some unnecessary coupling/decoupling activi-
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ties. Thus, a heuristic branch-and-bound approach exploiting flow potentials to

reduce coupling/decoupling redundancy in the network-level model is proposed

[59], which can be understood as a new branching strategy on coupling and decou-

pling activities. In the experiments, unnecessary coupling/decoupling activities

are efficiently reduced. The solution obtained by this method has the potential of

obtaining the same number of coupling/decoupling events as in the manual solu-

tion with better quality in other aspects. To further reduce coupling/decoupling

events and solve complex turnaround time, fixed-charge variables are introduced

to the basic model proposed in [57], expanding to a branch-and-price-and-cut

method [54]. The complex turnaround time is considered as dynamic cuts added

to the basic model. Since the newly introduced fix-charge variables largely in-

crease the problem complexity, the basic method [57] is pre-solved and its solution

is used as a warm-start to the speed up the solving process. Another feature in the

UK railway system is bi-level passenger demands, classified as the desirable ca-

pacity and targeted capacity which are extracted from historic capacity provisions

and passenger count surveys. Thus, a new integer multi-commodity flow model

based on the previous research is proposed [53]. A branch-and-price method sim-

ilar to the method in [57] is applied. Computational experiments conducted on

First ScotRail class 334 instance show the effectiveness of solving the new feature.

Although the exact method is capable to deliver the optimal solution for the

given objective function, it can only deliver solutions for small to medium size

problem instances. According to the experiment observation, RS-Opt without

fix-charge variables hardly delivers solutions when there are more than 500 trips.

With fixed-charge variables, even 100 trip instances are hard to solve. Thus, a

size-limited iterative method (referred to as SLIM) is proposed to amplify the

power of RS-Opt [26]. SLIM has an arc controller to shrink the size of original

DAG into a relatively small size as iterative input driving RS-Opt to seek a new

solution. At the convergence, a sub-optimal solution will be delivered. Also,

concurrent computing is applied to speed up the algorithm. Real-world datasets

from Great Western Railway (a British train operating company owned by First-

Group that operates the Greater Western railway franchise) have been tested.

The experimental results show that when there are 4 cores, SLIM has the best

performance. The comparisons between the solutions obtained by RS-Opt and
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SLIM have been made. SLIM can converge to the same fleet size with RS-Opt

solution in a much shorter time. Also SLIM can solve instances that RS-Opt fails

to deliver the optimal solution within 12 hours.

2.2.3 Train unit circulation

Similar to TUAP and TUSP, the train unit circulation problem (referred to as

TUCP) also seeks an appropriate allocation plan for train units covering all trips

in a fixed timetable. The relevant objective pursued by TUCP is to provide effi-

cient and robust trip services to passengers. Robustness means that the factors

that have the potential to cause any distributions should be avoided as much

as possible. For example, coupling and decoupling train units to adjust the ca-

pacity of a trip are usually considered as one of such factors. The Netherlands

researchers deeply studied TUCP based on the railway network operated by NSR.

Their research has been successfully applied in practice for NSR cases as a DSS.

The railway networks considered in TUAP and TUSP are treated as a whole,

however, NSR network is usually operated line-by-line and per day of the week,

which contains relatively independent trip-service patterns. After the train unit

circulation of a single day in a week has been determined, the second step is to

make these single day plans to fit each other, defined as the cycling problem.

TUAP and TUSP do not consider the train unit cycling problem. Therefore,

TUCP is simplified to decide the number and type of train unit for trips run-

ning an individual line or a few lines and afterward to guarantee the train unit

circulation is balanced over a week.

Schrijver [76] studies on the real-world TUCP for a case in Nederlandse Spoor-

wegen (NS) of a single line operated on a single day and firstly proposes a network

model based on a directed graph D = (V,A). For each location x ∈ X and for

each time t when any trip leaves or arrives at x, a vertex is formed (x, t), referred

to as the arrival and departure events at stations. For any stage of any trip ride,

leaving place x at time t and arriving at place y at time t′, an arc from (x, t)

to (y, t′) is constructed, referring to trips. Flows of different commodities stand

for train units of different types. The optimization target is to minimize the

total number of train units concerning the given bounds on demands and capaci-



22 CHAPTER 2. LITERATURE REVIEW

ties. Some local issues, for example, time allowances and train unit permutation

restrictions regarding coupling/decoupling are not considered. The commercial

mixed-integer programming solver CPLEX is used to solve this network model.

Two scenarios that are single type and two types have experimented, and the

result comparisons have been shown. The couping order problem has been ad-

dressed but has not been considered in their circulation model.

A concept of ’transition graph’ has been introduced in the research of [6, 69]

to capture coupling/decoupling and coupling order problems in TUCP. These two

aspects strongly increase the complexity of TUCP. An ordered sequence of train

units serving a trip is defined as a composition. A transition graph represents

all the feasible compositions for each trip and the potential transition connec-

tions between compositions at the successive locations along the journey of the

trip. [6] focuses on the determination of appropriate numbers of train units of

different types together with their efficient circulation on a single line. An in-

teger multi-commodity flow model with several additional constraints related to

station shunting is proposed and a heuristic solution approach is developed to

solve this model. The solution obtained by solving the model without compo-

sition constraints is used as a strong lower-bound for the full model. Real-life

instances from NSR have experimented. [69] describes a model and a branch-

and-price algorithm to solve the TUCP on two interacting lines. Variables and

constraints describing unit inventories at each station are introduced to ensure

there are no negative inventories. Two real-world cases are conducted, and the

outcome is outperforming the commercial solver CPLEX 8.0. [31] extends the

problem addresses in [69] to take into account the underway combining and split-

ting of trains. A line of 167 timetabled trips, which have been divided into 665

trips according to possible changes of composition underway, has experimented

by CPLEX. The planners at NSR agreed that the solutions from their model are

in any respect better than the manually created plans.
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2.3 Trip and train unit planning at the station

level

The problem of trip and train unit planning at the station level is considered as

a relatively independent problem from the network level. The previous schol-

ars normally study this problem based on a local-impact size, e.g., within a

station/depot. The trip and train unit planning within a station refers to the

detailed local plans on how the arrival objectives move among rail infrastructures

within a location, i.e., platforms, sidings, and other tracks, to be conflict-free

accomplishing necessary works and re-generate departures appropriately (correct

time, correct position) with minimum operational costs. This section is going to

review the literature from the following aspects: routing trips through stations,

station shunting scheduling, and depot shunting scheduling.

2.3.1 Routing trips through stations

A railway station is bounded by so-called entry points and leaving points. The

routing problem aims at routing all trains in the most appropriate way going

through the station, given the timetable of arrivals and departures, station lay-

outs, and the safety system. For an arriving train, the safety system reserves an

inbound route from the entry point to the arrival platform; similarly, the safety

system reserves an outbound route from the departure platform to the exit point

for a departing train. In practice, the safety system ensures that any two re-

served routes are conflict-free. In this problem, coupling/decoupling operations

should be taken into consideration as well, i.e. finding two inbound routes to

and one outbound route from the same platform for a coupling operation and

vice versa for a decoupling operation. This problem is described in a decision

support system (DSS), called DONS, developed by the Dutch researcher group,

which mainly contains two complementary modules: CADANS and STATIONS.

The CADANS module is developed by Schrijver and Steenbeek [77], assisting the

planners to generate cyclic hourly timetables. The STATIONS module assists

the planners to check whether the timetable generated by CADANS is feasible

with respect to the routing of trips through railway stations and to generate
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operational routing plans for trips within stations [88, 46].

To find conflict-free routes for trips, a mathematical model is established in

[88] based on the Node Packing Problem (NPP), whose formal definition is as fol-

lows [62]: ”Let G = (V,E) is an undirected graph, where V is the nodes set and E

is the edges set. Thus, a ’node packing’ is a set Q ⊆ V such that no edge joins two

elements in Q. Then the NPP is to find a node packing of maximum cardinality.”

The model is solved by a branch-and-cut approach. The experiments are con-

ducted based on a Dutch railway station with 15 platforms, roughly 100 signals

and 135 sections, about 60 of which contain a switch. Both real-world timetables

and randomly generated timetables are tested, and the results show the effec-

tiveness in solving the routing problem. The approach proposed by [88] mainly

focuses on the algorithms that can be incorporated into the module STATIONS,

however, it is not sufficient for solving the routing problem for large Dutch railway

stations such as Amsterdam Central Station (CS) and Utrecht CS. Thus, Kroon

et al. [46] make a complementary, mainly focusing on computational complexity.

An extensive description of this problem is analyzed regarding the safety system,

and it is concluded that some sections and routes of a railway station can be

ignored and only a subset of the track sections and the routing possibilities needs

to be taken into account. They show that the routing problem is NP-complete as

soon as each trip has three routing possibilities. However, if each train has only

two routing possibilities, the problem can be solved in polynomial time. This re-

sult can be extended to the case where coupling and uncoupling of trains, certain

service considerations, and a cyclic timetable have to be taken into account.

Zwaneveld et al. [89] describe this routing problem as a weighted node packing

problem to improve the methods proposed by [88, 46], containing extra features of

shunting decisions and route preferences. An improved branch-and-cut approach

based on preprocessing is developed to solve the problem. The preprocessing

identifies superfluous nodes that can be removed from the problem instance. The

experiments show that this method can handle the routing problem for all the

railway stations in the Netherlands efficiently, and it has been implemented in

DONS. Lusby et al. [62] extend the NPP definition to be the weighted node pack-

ing problem (WNPP) by introducing weights on the nodes. The maximum node

packing is the packing with maximum total weight. Thus the routing problem
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is formulated as a large set-packing model, maximizing the total benefit in rout-

ing all trains. A branch-and-price approach is developed to solve this problem,

focusing on dual representations of some feasible solutions. The computational

experiments are conducted based on Pierrefitte-Gonesse junction in Germany

with 64 block sections, 118 track sections, and track-length range 100-3900m in-

teracting with freight, intercity, and express. The results show that this approach

can give fairly good results for all 5 randomly generated timetables, which set

that the trains arrive at the junction every 90-144s on average, with a horizon of

1 hour.

2.3.2 Station shunting scheduling

Shunting schedules guarantee that the assigned train units to the arrival and

departure trips are operable at stations in terms of fixed timings and layouts.

Shunting schedules play an important role in the railway operational system

particularly on the realizability of the train unit schedule. A timetable defines

arrival/departure times and platforms for each trip, and a train unit schedule

assigns train unit blocks to serve each trip. And a shunting schedule ensures the

train unit blocks can appear exactly where they are expected.

Tomii et al. [78] define station shunting problem: the objective of the shunting

scheduling problem is to decide for trains that need shunting where the sidetracks

should be assigned considering shunting times. This problem is considered as

a resource-constrained project scheduling problem. An occupation of a track

is regarded as a work, and a series of occupations of tracks/sidings form the

project. Tracks and sidetracks are considered as resources. This problem has been

divided into two subproblems: resource allocation and shunting time decision.

A two-stage-search algorithm is proposed to solve this problem combining with

probabilistic local search and PERT (Program Evaluation Review Technique).

The candidate shunting schedules produced by the local search will be evaluated

by PERT. The experiments are conducted on two actual train schedule in a middle

size station with 6 tracks and 2 sidings. The results show that the proposed

method succeeded in obtaining a practical solution.

Different from the shunting problem for trains defined in [78], Freling et al.
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[32] defines the shunting scheduling for train units in a railway station, consisting

of matching the arriving and departing shunt units, and parking these shunt units

on the shunt tracks, such that the total shunting costs are minimal. The main

focus is on shunting train units that are temporarily unused between two trips

to sidings. A two-phase approach is proposed to solve this problem within a

24-hour time range. The first phase gives a rough match between the arrival

and departure train units. The second phase further determines the detailed

shunting plan at each siding for each train unit. The approach is based on a

set-partitioning integer linear programming model solved by branch-and-bound

together with root-only column generation, where each column corresponds to a

feasible assignment plan for a siding. Two types of sidings, i.e. First-In-Last-Out

(FILO) sidings (unidirectional) and free sidings (bidirectional) are considered.

The model minimises the number of coupling/decoupling operations and prevents

capacity overflow and unit blockage at all sidings. Instances for a station with up

to 80 train units to be parked at 19 sidings have been tested. The results show

that near-optimal solutions can be found, which have small gaps from the global

optimality.

Kroon et al. [45] consider the two subproblems (train unit matching and sid-

ing shunting assignment) of train unit shunting planning, divided by [32], as an

integral problem. An integrated approach with four models is proposed to achieve

global optimality. Firstly, the FILO shunt tracks are considered in a basic model

that contains an excessive number of constraints for eliminating crossing possibil-

ities. To reduce the number of constraints for eliminating crossing possibilities,

a second model aggregating crossing constraints into clique constraints is given.

Then, a third model is presented to implicitly describe the clique inequalities ef-

ficiently by introducing additional variables and employing comparability graphs

[35]. Thereafter, a model including the “virtual tracks” is presented such that

the problem size can be further reduced. The models for FILO shunt tracks have

been extended to another new model to suit the scenarios involving free tracks.

Commercial mixed-integer programming software CPLEX is used to solve these

models. Computational experiments on two stations of the NSR network have

been conducted. One station has 15 free shunt tracks and 4 FILO shunt tracks

with 50-125 train units to be parked and the other has 11 free shunt tracks and
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2 FILO shunt tracks with 30-45 shunting train units. The results have shown

that the aggregation methods for the crossing constraints are successful and the

models are able to produce solutions of acceptable qualities with reasonable com-

putational time.

For a single station, the research of Freling et al. [32] and Kroon et al. [45]

only consider the linking between the arrival and departure train units that have

to be shunted to shunt yards (shunt tracks, sidings) with connection time gaps

of medium lengths. The matching for the arrival and departure units with short

time gaps are supposed to be already given in the previous train unit circulation

stage. The coupling order in a coupled train unit block and the parking order

on a track are considered, but the influence of fixed orders in one station on

other connected stations are not considered. If a train unit block with a fixed

order arrives at the destination, this order may not be consistent with the order

required by the destination. If this train unit block has a medium to long time

gap to serve the next trip, it can be regarded as a shunting problem described in

[32, 45]. But when the time gap is short, there might be a coupling order conflict

that may disrupt the normal railway network operation.

The second phase of TUSP described in [60] is also presented as shunting

scheduling. The first phase of [60] is a train unit assignment problem which gives

train unit combination serving each trip and tentative linkages between arrivals

and departures for each station. The most important optimization target is to

minimize the fleet size. The second phase respects the objectives of the first phase

and modifies the first phase results by resetting some linkage pairs to preserve

the global optimality. The second phase models the train unit shunting problem

as a 6-dimensional matching problem with a mixed-integer linear programming

(MILP) formulation. The second phase includes the following elements: the

matching between arrival and departure units, unit positions, parking berths

(including the platforms and siding lines), parking methods, conflicts between a

pair of shunting plans. Thus, a shunting plan is presented as π = (u, p, v, q, b,m),

and a(π) = (T (u), T (v)) is on behalf of a unique valid linkage a ∈ A. u and

v mean arrival and departure unit; p and q denote positions and their possible

choice sets for arrival unit u and departure units v; b is on behalf of parking berth

and m stands for the parking method. π and a(π) are corresponding to each
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other. For each shunting plan, there is a shunting plan cost cπ and the objective

function aims at minimizing the total shunting plan costs with a conflict-free

principle. Due to the deterministic feature, the conflict relations between every

pair of fixed shunting plans are considered to be pre-computed as input data.

A promising solution approach is described for the second phase which is based

on the pre-generation approach and the research of Muter et al.[66] about the

column-and-dependent-row generation.

2.3.3 Depot shunting scheduling

The depot shunting problem is mainly about making a schedule that can guide

train units to have their designated works such as inspection, cleaning of the

cars, maintenance, etc. In the research of Nagasaki et al. [67], a system that can

generate car shunting schedules in a depot automatically has been created, which

contains two steps. Three features are determined at the first step by using a rule-

based algorithm: the order of shunts and works, the routes of shunts, and the place

to conduct the works. The second step firstly detects violations by Programming

Evaluation and Review Technique (PERT) and resolves the detected condition

violation. This system changes the schedule by using different methods, such

as changing a track to hold, changing a route to shunt, and swapping the order

of works. Depending on the conditions of the violations, the system searches

for the appropriate method to resolve these violations step by step. The rule-

based algorithm is suitable for reflecting the scheduler’s experience, and PERT

enables the system to easily and quickly manipulate a shunting schedule. A

greedy algorithm is used as a trail to deal with this combinational optimization

problem, in which strategy of jumping out of the local optima is applied. Three

datasets are tested, however, their system can only solve one case out of three.

Wang et al. [81] establish an integer programming model to handle the depot

yard arrangement whit respect to the constraints of occupation compatibility of

resources, EMU operation and routine maintenance plans. The optimization tar-

gets are to minimize the unnecessary time occupying critical track sections and

the total costs of shunting paths. This depot shunting problem has been trans-

formed into a shop scheduling problem based on a topological graph of shunting
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tasks with additional space and time constraints. A solution approach based

on the MAX-MIN ant system is designed to solve this model and it can obtain

favourable results for numerical examples.

Jacobsen et al. [44] define a shunting problem in a workshop area with different

equipment, where workshops to repair trains and depot tracks to park trains

are assigned considering the timings of relevant activities. The solution is a set

of shunting plans for trains. The plan states when and where each train has

to be shunted (including to the workshops) and ensures that sufficient crew is

available for each repair. The shunting plans cannot invalidate corresponding time

constraints and should be conflict-free to each other. Three heuristics are applied:

Guided Local Search (GLS), Guided Fast Local Search (GFLS), and simulated

annealing (SA). To generate a complete high-quality schedule, the solutions found

by heuristics are used as an initial feasible solution to launch the model solved

by CPLEX. The experiments are conducted for three workshop areas: the first

one has 4 depot tracks and 3 workshops; the second one has 6 depot tracks and 5

workshops; the third one has 8 depot tracks and 6 workshops. Artificial instances

in these three workshop areas are tested. The results show that GLS has the best

performance throughout all three heuristics, also the solutions from GLS have

the smallest gaps (1.68%, 1.35%, 1.21% for three workshop areas respectively)

from the optimal solution found by CPLEX.

Wang et al. [80] model depot shunting problem as a 0-1 programming to

determine an optimal shunting schedule for electric multiple units depot (SSED).

The objective is to minimize the number of shunting movements. The constraints

include track occupation conflicts, shunting routes conflicts, time durations of

maintenance processes, and shunting running time. They propose an enhanced

particle swarm optimization (EPSO) algorithm to solve the optimization problem.

And their empirical study shows the EPSO algorithm performing better than the

traditional particle swarm optimization algorithm in the aspect of optimality.

2.4 Bridging the network and the station levels

The train unit scheduling problem at the network level and the station level are

not isolated. They are connected by running trips on the railway network. In re-
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cent years, some researchers study bridging the two levels together. [60] proposes

models for both the network flow level and the station level. The network level

is a fixed-charge multi-commodity flow model, and the station level is a multi-

dimensional matching model. These two models can communicate through arc

variables. The network level temporarily ignores station layouts and generates a

tentative train unit scheduling solution which may not be operable at the station

level. Taking this tentative solution as input, the station level will re-match the

linkages considering a specific shunting plan with respect to station infrastruc-

ture. Conceptually, the linkages re-matched by the station-level model will be

encouraged if they are chosen by the network-level solution. Ideally, the good

quality and operable solution at both levels can be achieved through this com-

munication. A branch-and-price solver [57] for the network level is developed,

and a heuristic wrapper reducing the input size as input to drive the branch-

and-price solver to tackle large instances is also developed. However, the station

level is still left undetermined. There is a series of very complex constraints at

the station-level model which is about eliminating conflict shunting plans. Un-

fortunately, generating the sets of conflicting shunting plans in advance as input

for the station level to apply these complex constraint is impossible because of

tremendous possible combinations need to be checked. Thus, this thesis proposes

new thoughts and methods to further determine the parts that have been left

open by the network level to ensure a more deterministic and operable solution

at the station level.

Haahr and Lusby consider integrating the rolling stock scheduling problem

and the train unit shunting problem within railway depots with a simplified as-

sumption that depot tracks are all dead-end, referred to as IRSUSP. Two similar

branch-and-cut based approaches are proposed to solve the IRSUSP. The first

approach is extended from the branch-and-price framework for the rolling stock

scheduling problem proposed in [37], where a new routine is introduced to assess

the feasibility of rolling stock schedules from a shunting perspective at all de-

pots. The second model is inspired by the work in [31], and an additional routine

to test the shunting feasibility of rolling stock schedules is added. These two

approaches are referred to as route first method (RFM) and route last method

(RLM) respectively. In addition, a comparison of different methodologies for solv-
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ing a subproblem of the train unit shunting problem, track assignment problem,

is presented. Several real-life case studies provided by DSB S-tog, a suburban

train operator in the greater Copenhagen area, are tested. Computational results

for the two proposed integrated frameworks highlight the need for integration on

an operational planning level, where the problem is more constrained due to the

initial positions of the units. It is shown that both the RFM and the RLM are

capable of quickly finding good solutions and that, if optimality is required, the

RLM is superior.

Zhong et al [86] consider the problem of rolling stock scheduling with main-

tenance requirements. A heuristic approach is proposed to solve this problem as

two main stages. The first stage deals with the rolling stock scheduling problem

where the maintenance restrictions are ignored. A conventional mixed-integer

programming model is used and CPLEX is used to solve this model to gener-

ate multiple ranked candidates of rolling stock schedules for the first stage. The

maintenance restrictions are restored at the second stage, and candidate rolling

stock schedules are checked whether they are feasible. The candidate checking at

the second stage is performed as an assignment problem, written in C#. These

two stages are iteratively performed to avoid generating all schedules in the first

stage before proceeding to the second stage. If a solution is feasible with respect

to the maintenance constraints, the algorithm will be terminated. The perfor-

mance of this approach is analyzed based on the computational results of real-life

instances provided by the Chinese High-Speed Railway. These instances focus

on the railway network within the Zhengzhou Group, which is one of the busiest

railway networks in China. Compared to the manual schedule that is currently in

use, the proposed approach yields far superior schedules. The optimized sched-

ules improve rolling stock efficiency and lead to a reduction in operating cost of

approximately 10.5%.

2.5 Multi-criteria optimization

To solve a real-world problem by mathematical programming, model simplifica-

tion is usually applied to simplify the complexity of the problem to be easier

to solve, for instance, transforming nonlinear expression to linear expression, ig-
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noring non-significant factors, and converting time-related parameters to static

parameters. Many real-world problems have multiple optimization criteria that

can be modeled as a set of mathematical terms, denoted as Z = {z1, z2, . . . , zn},
to be considered in the objective function. These optimization criteria are of-

ten in conflict and their priorities are not easy to be determined such that these

problems are usually regarded as multi-criteria optimization [29]. The studies on

multi-criteria optimization are extensive in literature. Mostly, the objective func-

tion(s) of fixed optimization terms are used in multi-criteria optimization. The

main focus is the performance of solution algorithms rather than establishing the

confidence of objective functions, which is scarce in the literature.

There is no definite ranking order for the solutions of a multi-criteria optimiza-

tion problem, i.e., no single solution can simultaneously optimize every criterion.

This is because the multiple cost functions are often in conflict and do not have an

optimization hierarchy. Consequently, the multi-criteria problems usually do not

consider a unique optimal solution but a set of representative trade-off solutions.

The classical methodology is to use priori methods [24]. Two well-known priori

methods are the constraint method and the weighted summation method. The

constraint method is to optimize one of the objectives and consider the others as

constraints with estimated cost bounds [38]. The weighted summation method

adds all terms together to be considered as a single objective function (2.1) by

introducing weights λi, and possibly an additional condition (2.2) is added [63].

The single objective function is easier and more deterministic because it uses

a trade-off numerical value to measure the solution quality. Unfortunately, the

estimated cost bounds and scaled weights are hard to define. And the solution

generated based on given bounds/weights may not be preferred by users. On

the other hand, the Pareto front technique aims to compute a set of dominant

trade-off solutions for users to choose [68]. However, the number of solutions

required to accurately represent the Pareto front of a given problem increases

exponentially with the number of objectives; the storage or time requirement of

some quality indicators, such as hypervolume, diversity measure, and hyperarea

difference, also increases exponentially with the number of objectives [51].

Many train planning and scheduling problems can also be considered as multi-

criteria optimization problems. A multi-objective model is proposed to deal with
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the passenger train scheduling problem [34]. Two conflicting optimization crite-

ria are considered: railway company-view optimization criteria, passenger-view

optimization criteria. They minimize fuel consumption and traveling time re-

spectively. A two-objective integer programming model is established to describe

the train utilization and operation problem in a subway system, which is solved

by a genetic algorithm [85]. A multi-objective formulation is proposed to assess

mainline train services considering the interests of multiple stakeholders, such as

journey times, customer waiting times, punctuality, and crowdedness [23]. Simi-

larly, a genetic algorithm is applied. The trade-off between conflicting objectives

is illustrated through the Pareto analysis.

min

{
n∑
i=1

λizi(x) : x ∈ X

}
(2.1)

n∑
i=1

λi = 1, (0 < λi < 1,∀i ∈ {1, 2, . . . , n}) (2.2)

Multi-criteria optimization in literature mainly concerns Pareto fronts and

their analysis, in which conflict multi-objectives have individual objective func-

tions that are not merged. However, the multiple objectives considered in this

research are not in strong conflict and have a discernible importance hierarchy to

be merged into a single weighted sum objective function.

2.6 Parameter tuning and control

The ‘errors’ or ‘uncertainties’ arises when simplification and approximations have

been applied to mathematical models and solution approaches such that the re-

duction of uncertainties is considered during the model calibration process sum-

marized as parameter tuning and control. After mathematical models and so-

lution approaches are established in which the optimization terms are fixed, the

studies on parameter tuning/control also draw a lot of attention. This section

briefly reviews the literature on parameter control. The main focus of parameter

tuning is on how to obtain a set of parameter setting which gives the algorithm

good performance.
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Parameter tuning and control are usually studied after objective functions

are determined and solution approaches are developed. It tunes the parame-

ters affecting the time needed of an algorithm to find an optimal solution but

does not contribute to the ’definition’ of what is considered as optimal. Con-

ventionally, most mathematical algorithms have default parameter settings that

are manually set in an ad-hoc manner based on the considerable effort of exper-

iments and experience [65]. For instance, there are 80 parameters in CPLEX

affecting the search mechanism that can be controlled by users [41]. During the

last few decades, many automatic methods of parameter tuning and control are

reported in the literature, particularly in (meta-)heuristic methods. They are

classified into four types [30]: (i) sampling methods, (ii) model-based methods,

(iii) screening methods, (iv) meta-evolutionary methods. Sampling methods re-

duce the search effort by cutting down the number of parameters. However, this

leads to the challenge of predicting a limited number of parameters that have the

best performance and robustness. A sampling method to systematically tune pa-

rameters (up to five) is proposed, which is based on statistical analysis and local

search techniques [5]. The second type of method establishes models based on

the parameter data to reduce the total number of experiments. For instance, the

sequential model-based algorithm configuration (SMAC) method based on ran-

dom forests is model-based [40], which expands this method to general algorithm

configuration problems. Screening methods identify the best parameters with a

minimum number of experiments. ’*-Race’ approaches are commonly used [12, 9].

Meta-evolutionary methods consider parameter tuning as an optimization prob-

lem, for example the parameter iterated local search (ParamILS) method [41] and

the focused iterated local search (FocusedILS) method [42], which have inspired

the configuration studies of the multi-objective problem [13].

However, only a little research discusses weight tuning for objective function

terms. The analytical hierarchy process is used to assign the weights of the

penalized terms in the objective function which are some soft constraints of the

nurse scheduling problem [8]. Based on historical data, a method to automatically

determine the relative importance of soft constraints is proposed [64]. In train

planning and scheduling research, the weights of objective function terms are

mostly set as pre-fixed parameters, but the method of deriving those weights are
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not explained [57, 79, 31].

One focus of this thesis is to explore the effectiveness of an objective function

based on an established mathematical model that has been properly simplified

and a developed exact solver whose parameters are fixed. The alternative objec-

tive function designs containing different optimization terms are established. The

weight of each term is set based on their importance hierarchy. However, weight

tuning is beyond the discussion of this thesis.



36 CHAPTER 2. LITERATURE REVIEW



Chapter 3

TUSO with station-level

resolution

This chapter elaborates on the train unit scheduling optimization problem in

detail based on the UK railway industry cases. Firstly a brief introduction on the

restrictions of TUSO at the network level is presented, followed by the station-

level concerns for a network-level solution. The optimization criteria for TUSO

and solution qualities are then discussed. The relevant information about the

TUSO problem in the UK is not well documented. The description in this research

is mainly obtained from intensive communications and discussions with some

railway practitioners and a software company providing solution packages for

public transport management, whose staff are very familiar with the UK railway

market and have years of railway operating experiences. They are Great Western

Railway(GWR), TransPennine Express (TPE), Greater Anglia, as well as Tracsis

Plc. However, some details may still be different from one operator to another,

even for the train operating companies within the UK.

3.1 Brief requirements for the network level

Since TUSO at the network level is already well established in literature [57,

58, 55, 53, 54, 59, 26], this section only briefly presents the requirements and

restrictions considered in the network level, including fleet size, passenger de-

37



38 CHAPTER 3. TUSO WITH STATION-LEVEL RESOLUTION

mands, type-route/depot compatibility, turnaround time, coupling/decoupling

issues. More details can be found in Lin’s thesis [52].

3.1.1 Fleet size

Every train operator possesses a fleet of train units in different types. Each type

has a limited number of train units. For example, TransPennine Express (TPE)

has a fleet listed in Table 3.1 to operate main routes of North West England,

Yorkshire and Humber, North East England, Scotland. TPE also has 14 Class

68 locomotives plus 66 Mark 5A carriages. If a schedule uses more train units

Table 3.1: TransPennine Express (TPE) fleet

Train unit type Class 185 Class 350/4 Class 397 Class 802/2
Fleet size 51 5 12 19

than what the operator has, it is an invalid schedule. Considering the other

complex auxiliary activities that a train unit must have, e.g., maintenance, and

their expensive operational fees, operators would like to use train units as few as

possible to satisfy the demands efficiently.

3.1.2 Passenger demands

A timetable only defines a set of logical trips, to which physical train unit(s) need

to be assigned. The assigned train unit(s) are supposed to satisfy the passenger

demands of every trip described in the timetable, which is an important constraint

for the automatic scheduling system. The distribution of passenger demands

strongly affects the allocation of train unit resources over the railway network.

Thus, the utilization of train units to efficiently cover all passenger demands

directly affects some optimization criteria, for instance, fleet size, mileage.

In the UK, passenger demands are usually obtained based on historical data

measured as the number of seats. Every year, some surveys on the actual seats

requested by some timetabled trips are carried out. The survey results are con-

sidered as a valuable factor to generate a new schedule for the next year, thus, the

features of real passenger demand distribution are reserved. If a trip is covered by
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some train units that are more than needed, it is defined as an over-provision trip,

vice versa, an under-provision trip. In a manual schedule, it is quite often to run

some under-provision trips during peak hours because of a shortage of train units.

In this research, passenger demand for each trip is considered as hard constraints

that are not allowed to be invalidated. In other words, the under-provision trips

will not appear in the schedule. However, over-provision trips are acceptable to

provide diversification for train unit allocation, which is useful to balance train

unit resources over the railway network.

3.1.3 Type-route/depot compatibility

Train units and routes/depots have many configurations such that the compat-

ibility between them must be considered. Railway routes are built based on

different standards. EMU cannot run on the routes which are only designed for

DMU, but BMU can run on both the electrified routes and the routes for DMU.

In the UK railway industry, the maintenance work for each train unit is usually

assigned to certain depots, i.e., it should return to the specified depots when it

needs maintenance. Besides, some planning rules also define the matches between

train units and routes/depots. Consider the TPE franchise and fleet as an exam-

ple. The train units of class 185 run all routes in the areas of North and South

TransPennine & TransPennine North West. The train units of class 350/4 and

class 397 operate on the routes in TransPennine North West. Class 802/2 train

units are used on two routes: Liverpool Lime Street - Edinburgh via Newcastle,

Manchester Airport - Newcastle. And the locomotive hauled stocks (Class 68 +

Mark 5A) run on the route of Liverpool Lime Street - Scarborough via Manch-

ester Victoria. These units/vehicles are assigned to many depots. Class 185 and

class 350/4 are maintained by Siemens at Ardwick depot in Manchester with a

smaller facility in York. Scottish stabling points for both stocks include Cork-

erhill C.S.M.D. (Glasgow) and Craigentinny T.&R.S.M.D. (Edinburgh). Class

802/2 is maintained by Hitachi at Doncaster Carr and Craigentinny. Class 397

and loco-hauled sets are maintained by Alstom (on behalf of TPE) at Longsight

(Manchester), Edge Hill (Liverpool), and Polmadie (Glasgow). The nature of

feasible matches between train units and routes/depots can be converted as the
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compatibility relations among train unit types and trips.

3.1.4 Turnaround time

Turnaround time only applies to the period connecting two trips, but not to the

intermediate stops within a trip en-route. Thus, a prerequisite for any two trips

to be consecutively served by the same train unit is that the time gap between

the arrival time of the terminating trip and the departure time of the leaving trip

should be long enough for the train unit to accomplish a series of operations at

the corresponding station. For example, cleaning, watering, coupling/decoupling,

and other station shunting movements. Turnaround time can be considered as

four parts: basic turnaround time, formation length time, coupling/decoupling

time, and station shunting time. The basic turnaround time is location and O-D

based. Most train stations in the UK accept 3-5 minutes of basic turnaround time

if there is no other specification about the O-D or other operations. Table 3.2 gives

some exceptional examples of basic turnaround time requirements. The minimum

Table 3.2: Exceptional examples of basic turnaround time from GWR

Destination Location Origin Power type Turnaround time
HST 7 min

OLDOHST PADTON HST 7 min
PENZNCE BRSTLTM HST 25 min
PLYMTH BRNSTPL DMU 15 min
WSMARE CRDFCEN DMU 10 min

turnaround times requested by different length of train unit blocks, measured by

the number of carriages, are classified differently. In GWR, 3 minutes are needed

for 1-3 carriages, and 1 more minute is needed for every 3 more carriages. The

formation length time should be applied if it is longer than the basic turnaround

time.

On top of the basic turnaround time or the formation length time, extra

buffering time may need to be allocated for coupling/decoupling operation and

some other station shunting movements. The time to perform a coupling or a

decoupling operation is usually defined in operational rules. In GWR for exam-

ple, a coupling operation needs 5 minutes, and a decoupling operation needs 4
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minutes. Figure 3.1 gives an example to calculate the minimum time needed for

the coupling/decoupling operations of linkage (i, j). In this example, there are

Figure 3.1: Turnaround time calculation for the connection (i, j)

5 trips and 4 connections in total. To form { 3○, 4○, 5○} to serve j, the train

unit block { 1○, 2○, 3○} after serving trip i firstly needs to be decoupled into two

shorter train unit blocks:{ 1○, 2○}, and { 3○}. Thereafter, train unit block { 3○}
needs to be coupled with train unit block { 4○} and { 5○} sequentially. Thus,

one decoupling operation ( 1○ 2○|| 3○) and two coupling operations ( 3○+ 4○, and

3○+ 5○) are needed to form { 3○, 4○, 5○} that is used to serve j. Denote the time

for a coupling operation as τcpl, and the time for a decoupling operation as τdpl.

Thus, time needed for the coupling and decoupling operations (τcd) for linkage (i,

j) is shown in expression (3.1).

τcd = τdpl + 2 ∗ τcpl (3.1)

The basic turnaround time is considered during the process of generating

DAG because it is static. The formation length and coupling/decoupling time

are dynamic while forming the solution at the network level, which are considered

as dynamic cuts. However, the station shunting time is omitted at the network

level since the station details are ignored, which will be discussed in section 3.2.2.
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3.1.5 Coupling/decoupling issues

Multiple train unit blocks can be attached to form a longer train unit block where

coupling activities occur. Reversely, a multi-unit block can be detached as two

or more shorter train unit blocks, where decoupling activities occurr. Coupling

and decoupling activities aim to redistribute limited train units to satisfy pas-

senger demands and balance them around the railway network. This section

introduces the coupling/decoupling issues that are considered at the network

level: coupling compatibility, coupling upper bounds, location restrictions on

coupling/decoupling, and coupling/decoupling en-route.

Coupling compatibility : The train units of different families (examples seen

in Table 1.1) are not permitted to have coupling operation. According to the

observation of all problem instances studied in this thesis, train unit families

partition the entire fleet into multiple mutually exclusive subsets, i.e., a train

unit type is contained in a sole family as well as there is no type overlapping

among any two families. Usually, the number of train unit types in a family is

relatively small, and some families have only one train unit type.

Coupling upper bound : When multiple train units coupled together, the length

of coupled train unit block must be considered because of the capacity of station

infrastructure and some special planning rules. Many factors affect coupling

boundaries, e.g. unit combination, coupling length, time band, etc. They are

measured by the number of train units or carriages. Normally, the train unit

coupling upper bound is 3-4, and the carriage upper bound is 12. When both

unit and carriage numbers are restricted, the tightest boundary should be applied.

Location restrictions on coupling/decoupling : Coupling/decoupling activities

may not be allowed at some locations because of many reasons, e.g., operations

rules, infrastructural restrictions, management efficiency. Some locations may

entirely ban on coupling/decoupling such that there is no such operation at any

time at any place at these locations. Some locations only ban coupling/decoupling

operations during certain time bands or at certain places, e.g., some platforms or

a certain direction. Some locations may only allow only coupling or decoupling

operated.

Coupling/decoupling en-route: In the UK railway operating process, it is nor-
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mal to have coupling/decoupling operations at some intermediate stations, which

change the train unit formation of a trip en-route. There are two possible rea-

sons: the topological structure of the rail network like hubs or junctions, the

unbalanced passenger demands distribution through the subsections of an O-D

pair. Consider the unit diagram given in Table 1.2 as an example. The O-D of

trip 1B82 and trip 1B91 is Doncaster - Manchester Airport, on which Manchester

Piccadilly is an intermediate station. Trip 1B82 has a coupling en-route activity

at Manchester Piccadilly, and reversely trip 1B91 has a decoupling en-route activ-

ity also at Manchester Piccadilly. Because the passenger demands of subsection

Doncaster - Manchester Piccadilly are higher than that of subsection Manchester

Piccadilly - Manchester Airport.

3.2 Station-level concerns for a network-level so-

lution

Given a network-level solution, this section describes the concerns that need to

be resolved and finalized when station infrastructure is restored to the model,

including coupling order, linkage slack time, crossing linkages, platform type and

capacity, re-platforming shunting, interchangeability between train units of the

same type, and other features.

3.2.1 Coupling order

We define a coupling order as a permutation of a train unit block of multiple train

units. Coupling orders are significant to be determined at the station level be-

cause many coupling/decoupling activities can only be operated in a specific order

under the specific station shunting environment. Thus, the coupling/decoupling

activities assigned by the network level solution can be used to infer operable

coupling orders based on moving directions, timings, and station layouts. If re-

ordering is inevitable for the sake of avoiding operational conflict, the feasibility

of corresponding slack time must be considered, details seen in section 3.2.2.
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Coupling order formation

If the station-level infrastructure is not considered, the coupling orders of the

assigned train unit block of a trip have n! possibilities, where n is the number

of train units in the block. Consider the trip i in Figure 3.1 as an example,

whose assigned train unit block is { 1○, 2○, 3○}, such that there are 6 potential

coupling orders: [ 1○ 2○ 3○], [ 1○ 3○ 2○], [ 2○ 1○ 3○], [ 2○ 3○ 1○], [ 3○ 1○ 2○], [ 3○ 2○ 1○].

However, not all of them are operable at the station level. A decoupling operation

must be done after the train unit block { 1○, 2○, 3○} serving trip i, and the two

decoupled train unit blocks ({ 1○, 2○}, and { 3○}) are going to serve trips m and

j respectively. Suppose trips i, m, j are at the same ’dead-end’ platform, which

has only one accessible end. Without considering the other coupling operations

for trip j, the simplified illustration of infeasible and feasible coupling orders of

train unit block { 1○, 2○, 3○} operated at a dead-end platform is demonstrated

in Figure 3.2. For the infeasible coupling order case, train unit 3○ blocks the

Figure 3.2: Coupling order at a dead-end platform

departure of train unit block { 1○, 2○}, which needs to leave earlier to serve trip

m. However, the latter coupling order is feasible to support the assignment that

using { 1○, 2○} to serve trip m and { 3○} to serve trip j, which is conflict-free. The

coupling order of train unit block { 1○, 2○} is not significant in this circumstance,

because it does not cause any conflict in this decoupling operation. Thus, only two
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coupling orders of train unit block { 1○, 2○, 3○} are feasible out of six potential

coupling orders: [ 3○ 2○ 1○], [ 3○ 1○ 2○]. It is worthy to mention that these two

feasible coupling orders at this circumstance may not be feasible globally, which

will be explained in the paragraph of ’Coupling order propagation’.

Coupling order propagation

Train stations are not isolated in a rail network but connected by routes. Running

trips concatenate the operations at the starting, intermediate, and terminating

stations together. Coupling order is normally formed at the origin station of a

trip, and its influence is not confined within the origin but can be propagated

to other stations because of running trips and connections among trips. Thus, a

coupling order formed at a specific station must be operable at other influenced

stations at any time. For instance, station A proposes a locally feasible coupling

order for a train unit block based on its current shunting environment. How-

ever, it may be invalid to other stations or even to station A since the shunting

environment is dynamically changing by time. If a conflict caused by coupling

order arises at a station, additional operations, e.g., re-ordering shunting, must

be adopted to fix this invalidity. This not only increases operational costs but

also may disturb/delay other trips. Thus, coupling order decisions at stations

must be sophisticated.

Coupling order reversal en-route

Usually, no coupling or decoupling operation happens at intermediate stations,

but one feature of the coupling order captured while considering moving directions

is front-rear-reversal. If the arrival and departure directions of a coupled unit

block are opposite at some platforms of intermediate stations, the front and rear

of the unit block will be reversed; otherwise, the coupling order keeps the same.

Figure 3.3 illustrates scenarios that exhibit coupling order reversal en-route of a

coupled unit block based on the specific platform structure and trip directions.

Thus, a trip may have different unit sequences at its origin, intermediate stations,

and destination.
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Figure 3.3: Coupling order scenarios at intermediate stations

3.2.2 Linkage slack time

The slack time of a linkage (directed arc in the DAG) is defined as the time

gap between the departure time of its head node trip j (τ depj ) and the arrival

time of its tail node trip i (τarri ). The slack time (τ(i,j)) of linkage a = (i, j) is

shown in expression (3.2), where A represents all the trip-to-trip connections in

the solution.

τ(i,j) = τ depj − τarri , ∀(i, j) ∈ A (3.2)

This limited slack time is the total time for the train unit block assigned on

the linkage to finish all the involved manoeuvre, such as cleaning, watering, cou-

pling/decoupling, re-ordering, re-platforming. The turnaround time needed for

train unit(s) is classified as basic turnaround time (τ 1
a ), formation length time

(τ 2
a ), coupling/decoupling time (τ 3

a ), and station shunting time (τ 4
a ), seen in sec-

tion 3.1.4. Thus, the total turnaround time needed for a trip-to-trip linkage a is

shown as expression 3.3.

trta = {τ 1
a , τ

2
a}max + τ 3

a + τ 4
a , ∀a ∈ A (3.3)

The first three parts (τ 1
a , τ

2
a , τ

3
a ) are captured at the network level. τ 3

a only counts

the time consumed by the number of coupling/decoupling operations, which can

be calculated by expression (3.1). The time consumed by station shunting move-

ments (τ 4
a ) is considered at the station level. The station shunting movements,

e.g., forming appropriate coupling orders and re-platforming, ensure that train
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units can be operated smoothly (conflict-free) in stations. At the network level,

the turnaround time consumed by those auxiliary station-level operations is not

accurately accounted for, i.e. insufficient slack time may invalidate a network-

level solution. A linkage is locally feasible at a station if there is sufficient slack

time to accomplish essential manoeuvre to avoid station conflict.

∆τa = τa − trta ≥ 0, ∀a ∈ A (3.4)

Hence, the slack time of each trip-to-trip arc in a network-level schedule must be

checked by constraints (3.4) if some station-level operations are inevitable. ∆τ

must be not less than 0. Otherwise, the connection is infeasible.

3.2.3 Crossing linkages

To illustrate, suppose four single unit trips i, j, m, n are linked at a through

platform at station B with no problem of unit type compatibility and seat ca-

pacities. Two possible network-level solutions are abstracted, as shown in Figure

3.4, referred as first-in-first-out (FIFO) connection and first-in-last-out (FILO)

connection respectively. However, these two solutions may turn out to be in-

Figure 3.4: Two Possible Solutions

feasible while considering unit-block moving direction on the restricted station
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Figure 3.5: Example snapshot of two units prior to their next assigned departures

tracks. Figure 3.5 shows a possible parking position of these two units at the

platform before the departure of j and n. Concerning the departure time of j

and n, solution (1) will be feasible if and only if j departs to the ”up direction”

and the solution (2) will be feasible if and only if j departs to the ”down di-

rection”. Otherwise, crossing occurs as the unit assigned to n blocks the unit

serving j, which is supposed to travel earlier than n. If no station information

is introduced in the model, the feasibility of tentatively assigned arcs cannot be

finalized. This example illustrates how crossing linkages can seriously affect the

validity of a network-level schedule.

3.2.4 Platform type and capacity

During daytime scheduling, coupling and decoupling operations are often exe-

cuted at platforms in the UK. Hence, the configuration and accessibility of plat-

forms are significant to be considered. There are two main types of platforms:

dead-end platform and through platform. To some degree, the platform accessi-

bility locally decides the moving directions of train units since their movements

are rigidly restricted by tracks. Dead-end platform can only be approached from

one end of the track, i.e. the train units accumulated on it must follow the rule

of FILO. The moving directions of approaching and leaving a dead-end platform

must be opposite to each other. On the other hand, through platform can be

reached via both ends, which has more complex utilization in the real-world rail-

way management. It is common in the UK railway industry to logically divide a

through platform into a few sub-platforms, for instance, Cardiff Central Station

through platform 3 and 4 are used as 3A, 3B, and 4A, 4B respectively. This log-

ical dividing gives through platforms a lot more flexibility but also increase the

problem complexity. In practice, the trips are operated by many train operating

companies, and platforms are often divided by train operations companies at a



3.2. STATION-LEVEL CONCERNS FOR ANETWORK-LEVEL SOLUTION49

station. In this thesis, we only consider the trips operated by a single company,

although the incompatibilities between the trips operated by different train op-

erating companies may theoretically cause conflicts. At the network level, the

coupled unit upper bound and carriage upper bound for each trip are considered

based on the limitation of the physical length of the corresponding platform. At

the station level, the unit accumulation on the platform with time is considered

to assure the units parking at the same platform will not invalidate the schedule.

3.2.5 Re-platforming shunting

Some train units arrive at a platform and finish all the necessary operations and

later leave the station from the same platform without shunting away to any other

places, for example, sidings or other platforms. However, some train unit blocks

may leave from a different platform from its arrival platform, thus, re-platforming

shunting must be operated. At the network level, station-level shunting opera-

tions are not realized because of the ignorance of station layouts. In the UK

railway industry, schedulers try to avoid re-platforming movements and accom-

plish the station operations for an arrival train unit at the same platform. When

a re-platforming operation is inevitable, there are two essential constraints to be

considered. One is if there is enough slack time for this re-platforming operation,

which goes back to τ 4
a defined in constraints (3.3). How long this re-platforming

operation takes is measured as ten minutes after discussing with railway opera-

tors. The other is that feasible time boundaries for the re-platforming train units

should be considered to ensure that there will be no blockage caused by this

re-platforming operation at an inappropriate time. Given timetable defines the

arrival time and departure time for logical trips, however, the departure times and

arrival times for the re-platforming operations on the train units to be prepared

to serve another trip at stations are flexible. The existing train units parking on

the platforms may result in that the involved re-platforming operations can only

be operated at a specific time range. Also, re-platforming operations at different

time ranges may result in different coupling orders. Considering the coupling

order propagation on the network, only a specific time range may provide the

feasible coupling order.
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3.2.6 Interchangeability between train units of the same

type

Each railway operator usually has many types of train units. The train units of

the same type share common configurations such that they are interchangeable.

In a schedule, each train unit has a unique diagram with detailed routes and

serving trips. When a train unit is not available, a substitute of the same type

can replace its mission, if the changed mission does not affect their necessary

maintenance. This feature gives the shunting operations at the station level

great flexibility by swapping the diagrams of the same type of train units. In this

thesis, the coupling order of the train unit blocks consisting of same-type train

units can be considered as conflict-free because the potential blockages can be

easily avoided by swapping the missions of these train units.

3.2.7 Other features

Some factors can help determine coupling orders and ease/remove station-level

conflicts. Firstly, some flexible timings for re-platforming, depot/siding shunting,

and empty running can be utilized to determine the feasible time slot producing

the conflict-free coupling order. This will be re-visited in section 6.1.3. Secondly,

some linkage re-matching can be applied locally to resolve the local conflicts.

Thirdly, introducing extra essential shunting movements within the slack times

of the involved linkages can also resolve some local conflicts.

3.3 Optimization criteria and solution qualities

It is difficult to use a single objective function to satisfy all real-world optimiza-

tion perspectives, but the comprehensive analysis of these perspectives is helpful

to design the objective functions. In the practice of real-world scheduling, the

optimization goals are multiple and complex. For a timetable that is served by a

single type of train unit, the number of total needed train units plays the most

important role in the objective function. When multiple types of train units are

involved, operators may also care about the utilization balance between different
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types. Besides, some schedulers may prefer to optimize the number of carriages

or the seat over-provision. Through the fruitful discussion with railway operators,

this thesis summarises the optimization criteria of TUSO as follows: fleet size,

running mileage, empty running, number of coupling and decoupling, connection

preference, and unit type preference.

3.3.1 Fleet size

In the UK, a train operating company is a business entity operating passenger

trips on the franchised railway network with a limited number of train units. As

the high costs of buying/leasing, maintaining train units, operators expect to use

fewer train units to cover timetabled trips. Thus, minimizing the fleet size is the

most significant criterion. Sometimes the minimization of carriage numbers is

also considered when multiple train unit types of large differences in capacities

are used.

3.3.2 Running mileage

Running mileage is the main operating cost of a fleet, which refers to the total

distances done by the fleet to finish the one-day workload. If one train unit is

sufficient to serve some trips but two or more train units (referred to as over-

provision) are assigned, we consider this assignment as an inappropriate plan

because train unit mileages are wasted. In practice, over-provision is allowed for

some specific reasons, e.g., it is a good way of relocating train unit resources

over the railway network to reduce the number of empty running and save crew

resources. If the mileage minimisation is strongly encouraged, it is possible to

affect the fleet size minimisation, because the extreme case of mileage minimisa-

tion is that many train units only serve one trip. Thus, the mileage minimisation

is generally encouraged but there is no need to forbid the over-provision. Be-

sides, running mileage has different calculation methods, for instance, train unit

mileage, carriage mileage, and seat/passenger mileage.
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3.3.3 Empty running

Empty running is necessary for many reasons such as maintenance, train unit

resource balance, thus, empty running is defined when train units run from one

location to another without carrying passengers. Generating new empty running

may have the advantage of flexible timings. However, the new empty running

must be checked and approved in advance to ensure that it does not result in

any conflict on tracks at any time with other movements, e.g., timetabled trips.

As the empty running is a pure cost for operators, it should be avoided if an

alternative train unit utilization is available, for example, re-distribute a train

unit through the network by coupling to the train unit block assigned to serve a

timetabled trip such that no conflict will occur.

3.3.4 Number of coupling and decoupling

Coupling and decoupling operations are normally used to distribute unit resources

across the rail network to satisfy various passenger demands with a fewer number

of train units. However, these operations should not be largely encouraged as

they complicate the station-level shunting operations and may lead to blockages

[50, 47]. Besides, from the observation of the experiments based on the existing

RS-Opt, the scheduling results at the network level will often yield many unneces-

sary coupling/decoupling events (further introduced in section 4.1.3), which will

not occur in a manual schedule. These unnecessary coupling/decoupling opera-

tions imply considerable wastes on operational costs and unpredictable potential

conflicts if the plan were implemented directly at the station level. Therefore,

coupling and decoupling events should be avoided if it is evitable.

3.3.5 Connection preference

In practice, compact diagrams, in which the time gap between any pair of two

consecutive trips are mostly small and medium, is preferred. Under a compact

schedule, train units can be operated more efficiently covering more trips and

occupying less capacity of station infrastructure. Besides, the FIFO pattern is

encouraged, i.e., the train unit that arrives at a location earlier is expected to
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leave from this location earlier if there is no conflict.

3.3.6 Train unit type preference

Each operator possesses a certain number of train units in different types, and

each type is suitable for some specific routes according to physical configurations

and operational rules. Although a train unit type may be operable on multiple

routes, there usually a type-route preference defined, which is considered as the

type-trip preference because of trips running on the routes. In other words,

a trip can be served by multiple types of train units, but these types are not

equally preferred. For example, unit types class 156 and class 158 are both

permitted for running on the route between Glasgow Central and Edinburgh

Waverley via Shotts, but class 156 is preferred. Besides, it has been observed

from the experimental results that the existing RS-Opt is inclined to utilize the

train unit with higher passenger capacity. Thus, it is significant to consider the

preference of different train unit types.

3.3.7 Summary

These criteria will be converted into measurable expressions at the modeling and

formulating stage. Although there are multiple optimization criteria, TUSO con-

siders multiple criteria in a single sum weighted objective function, because these

criteria are not in conflict and have a discernible importance hierarchy that can be

maintained by the well-designed weights of terms in the objective function. Com-

pared to the multi-criteria optimization problem, the single objective function is

more deterministic and easier to implement. The relations between optimization

objectives and solution qualities are complex. The optimization criteria are de-

rived based on the business targets that can also be used to measure solution

qualities. In return, the solution qualities imply the effectiveness of objective

functions. Further relations among objective functions and solution qualities will

be discussed in chapter 5.
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Chapter 4

Modeling and formulating for

TUSO at the network level

This section introduces the modeling strategies and mathematical formulation for

TUSO at the network level. Firstly, a directed acyclic graph (DAG) is described

which is generated based on a given timetable and some constraints. Based on the

pre-generated DAG, a multi-commodity fixed-charge integer linear programming

is established. The terms that may be considered in the objective function are

modeled separately. In the end, the constraints at the network level are intro-

duced. In the literature [57, 26], the optimization criteria of Term 1a and Term 3

are mainly modeled. In this research, many more potential optimization criteria

are modeled (for instance, number of cars, slack time) and how the Term 1b,

Term 2, and Term 4 play a role in delivering a good solution will be discussed

in Chapter 5. Besides, how to assign the weights for different optimization cri-

teria to maintain the discernible optimizing importance is also discussed. The

constraints for the network level are mainly modeled in [57, 26]. In this research,

the constraints for eliminating the station-level constraints when a network-level

solution is applied at the station level are newly modeled. The method of detect-

ing the potential conflicts located in a network-level solution will be discussed in

Chapter 6.

55
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4.1 A directed acyclic graph (DAG)

4.1.1 DAG generation and decision variables

Using a directed acyclic graph (DAG) to model TUSO at the network level is

implemented in literature [15, 56]. A DAG consists of a set of nodes and a set of

directed arcs such that no cycle exists, denoted as G = (N ,A). The nodes set N
consists of the timetabled trips (N), and the source and the sink ({s, t}) that are

added to represent siding/depot, i.e. N = N ∪ {s, t}. The arcs in A represent

potential connections between any two nodes. This representation is defined as

connection-arc graph representation. DAG is generated on a given timetable and

a series of real-world requirements and constraints as follows:

– Basic turnaround time: as introduced in section 3.1.4, the operational rules

define some basic turnaround times, which are static such that they are con-

sidered as hard constraints while generating arcs of DAG. Usually, this basic

turnaround time is 3-5 minutes, however, there are also some exceptional

cases that need a longer time. For example, the trips from ’BRSTLTM’

at location ’PENZNCE’, the basic turnaround time needed for the train

units of the power type of ’HST’ is 25 minutes, seen in Table 3.2. Any arc

that does not obey the basic turnaround time constraints will not be gener-

ated. The basic turnaround time may not be feasible because the dynamic

turnaround time, defined in section 3.1.4 including formation length time,

coupling/decoupling time, and station shunting time, changes during the

train unit assignment process.

– O-D pairs of connected trips: as we defined beforehand, arcs represent

potential connections between any two trips, whose origin and destination

are described in the given timetable. If the tail-trip destination of an arc

is the same as the head-trip origin, a trip-to-trip arc can be generated.

Otherwise, this arc will not be generated or regarded as an empty running

from the tail-trip destination to the head-trip origin. A sufficient time

window for the empty running must be counted, for instance, the running

time between two locations, the shunting time for involved operations, and
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some buffering time waiting for a proper gap to insert this empty running

without any congestion with other timetabled trips.

– Permitted train unit types: the compatibility between railway route and

train unit type results in a set of permitted train unit types for each trip. If

there is no common train unit type for two consecutive trips, the connection

between these two trips cannot be generated.

Table 4.1 gives a timetable of 5 trips labeled as T1 to T5, in which O-D pair,

origin, destination, departure time, arrival time, permitted unit type, and de-

mands of each trip are provided. Two train units of compatible type X and Y are

available, where X has 100 seats, and Y has 200 seats. Based on the information

given in Table 4.1, an original DAG can be generated, as shown in Figure 4.1.

The arcs in a DAG can be classified into three types:

Table 4.1: An example timetable of 5 trips

Trip Origin Destination Dep Time Arr Time Permitted Type Demands

T1 S1 S2 6:00 10:00 X 300

T2 S3 S4 8:00 9:00 Y 200

T3 S2 S4 10:15 13:30 X, Y 100

T4 S4 S5 14:00 15:00 Y 200

T5 S2 S4 15:30 17:00 X, Y 200

(i) Trip-to-trip arcs (A): this type of arcs connect the arrivals to the departures

at a location, which are the most common arcs in a solution DAG.

(ii) Sign-on (A0) and sign-off (A∞) arcs: they connect trip nodes with the

source and the sink.The arcs coming out from the source are called sign-on arcs

representing the start of a train unit diagram. The arcs terminating at the sink

are defined as sign-off arcs demonstrating the end of the one-day workload. Each

diagram of a specific train unit starts with a sign-on arc and ends up with a

sign-off arc.

(iii) Empty running arcs (Ae): in this thesis, empty running is represented

as arcs in DAG. Three types of empty running are considered: empty running

moving within the same station (e.g., re-platforming/siding shunting movement),

empty running going to the depot and returning to the same location, and empty
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Figure 4.1: The original DAG generated from the timetable given in Table 4.1

running connecting two passenger trips at different stations. It is noticeable that

generating a large number of empty running arcs will increase the complexity of

the original DAG. Thus, an alternative way is to extract existing empty running

from manual diagrams and insert to the DAG.

Thus, the arc set of the original DAG is A = A ∪ A0 ∪ A∞ ∪ Ae, where

A0 = {(0, i)|i ∈ N}, A∞ = {(i,∞)|i ∈ N}, A = {(i, j)|i, j ∈ N, and sia = sjd},
and Ae = {(i, j)|i, j ∈ N, and sia 6= sjd}. sia and sjd represent the arrival location

of trip i and the departure location of trip j respectively. Let use K to denote

the set of train unit types used in a given timetable. Based on the compatibility

between train unit type and route, type graphs (Gk,∀k ∈ K) are constructed

based on the original DAG (G). Each Gk is a subgraph of G. Two type graphs

can be derived for train unit types of X and Y according to the original DAG in

Figure 4.1 and permitted type information in Table 4.1, as shown in Figure 4.2.

We use Pk and Ak to represent the path set and arc set on Gk respectively. A

path p ∈ Pk represents a train unit diagram of type k, which contains a collection

of consecutive arcs and serving trips starting from the source and ending at the

sink. Based on G and Gk, decision variables are defined as follows:

– arc-type-flow variables: xa ∈ N, ∀a ∈ Ak, ∀k ∈ K, representing the number

of train units of type k flowing on arc a.
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Figure 4.2: Type graphs derived from Figure4.1

– path-type-flow variables: xp ∈ N, ∀p ∈ Pk, ∀k ∈ K, representing the

number of train units of type k flowing on path p.

– arc-selection (fixed charge) variables: ya ∈ {0, 1}, ∀a ∈ A, indicating if an

arc a = (i, j) is selected in the solution.

The arc-type-flow and path-type-flow variables are inter-convertible, seen in ex-

pression (4.1), where Pa represents all the paths containing type arc a.

xa =
∑
p∈Pa

xp, ∀a ∈ Ak,∀k ∈ K (4.1)

As the arcs in G carry many features in TUSO, the consideration of arc costs

should be carefully exquisite. Two types of arc costs, including arc usage cost

and slack time cost, are discussed as follows.

4.1.2 Arc usage cost

The arc usage cost refers to the cost of selecting one arc, denoted by ca (∀a ∈ A).

It is defined as constants according to the classifications of arc types. We consider

the cost of a trip-to-trip arc as the base cost because it only implies some station-

level operations, but the other types of arcs need many other operations, for

example, depot shunting and empty running. Selecting a sign-on arc means the

fleet size will be increased at least by one train unit. Selecting a sign-off arc means

the corresponding train unit(s) will terminate its workload and do not serve other

trips. Besides, sign-on and sign-off arcs are usually associated with depot/siding

shunting operations. If a train unit terminates its workload too early, more train
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units may be needed to cover other trips. To minimize the fleet size, it is expected

to use fewer train units to satisfy all the trips in the given timetable. Thus, the

costs for sign-on and sign-off arcs are higher than a trip-to-trip arc. Similarly,

empty running arcs represent some trips that do not carry any passenger but a

pure cost for operators such that the cost of empty running arcs should also be

higher than the base cost. This type of cost is considered in the existing RS-

Opt [57], in which the encouragement for long-gap arcs during off-peak time for

inserting maintenance plan is also considered.

4.1.3 Slack time cost

Normally, an arrival train unit should not park at a platform for a long time.

It should serve another departure trip as soon as possible or be shunted to the

depot/siding. Thus, the slack time cost is newly considered to encourage the

selection of the arcs with short/medium time gaps to achieve the objective of

compact diagrams that enable train units to efficiently satisfy trips, denoted as

c′a=(i,j),∀i, j ∈ N . The longer the slack time is, the higher the cost is, i.e., the

arcs with shorter slack time are encouraged. In the UK, maintenance works for

train units are usually inserted into some long-gap connections during the off-

peak time. Besides, some slack connections is helpful to reserve the robustness.

Thus, some long turnaround time connections located at the off-peak time ranges

are also encouraged, which has been considered in the existing RS-Opt [52] such

that it will not be discussed in this thesis. As we do not consider the scheduling in

depot/siding, the slack time cost is only counted for trip-to-trip arcs and empty

running arcs (A ∪Ae). Firstly, we define the slack time cost of an arc as
τa=(i,j)

τmax
,

where the actual slack time (τa) is normalized by the maximum slack time (τmax)

in the original DAG. Considering that FIFO connections are more preferred than

other connections (e.g., FILO connections), examples seen in Figure 3.4, the slack

time cost is further defined as expression (4.2).

c′a=(i,j) =

(
τa=(i,j)

τmax

)2

(4.2)
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The square in expression (4.2) is to encourage FIFO connections that can be

firstly proved for the connections between any four trip nodes (2-to-2) with time

relation of τarri < τarrm < τ depj < τ depn , as shown in Figure 4.3. Suppose these trips

Figure 4.3: Trigonometry for four trip nodes

can be satisfied with a single train unit of the same type such that the connection

pairs between these four trips are classified as two types: uncrossing pair (solid

arcs) and crossing pair (dashed arcs).

Theorem 1. If the slack time is not squared, the uncrossing pair and the crossing

pair in Figure 4.3 are regarded as the same quality, i.e., they have the same

summation value of corresponding slack times, τ(i,j) + τ(m,n) = τ(i,n) + τ(m,j).

Proof. τ(i,j) + τ(m,n) = τ depj − τarri + τ depn − τarrm ;

τ(i,n) + τ(m,j) = τ depn − τarri + τ depj − τarrm ;

Thus, τ(i,j) + τ(m,n) = τ(i,n) + τ(m,j);

Theorem 1 holds.

Theorem 2. If the slack time is squared, the uncrossing pair in Figure 4.3 is

encouraged, i.e., the summation value of the squared slack times of the uncrossing

pair is smaller than that of the crossing pair, τ 2
(i,j) + τ 2

(m,n) < τ 2
(i,n) + τ 2

(m,j).

Proof. Based on the Pythagoras formula, we have equations 1○ and 2○;
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τ 2
(i,n) − τ 2

(i,j) = (a+ b+ c)2 − (a+ b)2 = c2 + 2ac+ 2bc, equation 1○;

τ 2
(m,n) − τ 2

(m,j) = (b+ c)2 − b2 = c2 + 2bc, equation 2○;

1○ - 2○: (τ 2
(i,n) + τ 2

(m,j))− (τ 2
(i,j) + τ 2

(m,n)) = 2ac > 0;

Theorem 2 holds.

The denominator (τ 2
max) is not considered in the proof because it is a fixed

value for a specific DAG. Based on the proof for ’2-to-2’ connections, it can be

extended to ’n-to-n’ connections, i.e., the FIFO connections always have a smaller

sum of squared slack times than any other feasible connections, as long as the

passenger demands of n arrival trips and n departure trips can be satisfied by one

train unit such that no coupling/decoupling operations are involved. Let us de-

note the arrival trips by {i1, i2, . . . , in} and the departure trips by {j1, j2, . . . , jn},
both sorted in an ascending order by time. Suppose that the feasible FIFO con-

nection exists for the ’n-to-n’ nodes, denoted as AFIFO in expression (4.3). Let

AnotFIFO be any other feasible arc connection set other than AFIFO. Thus, we

have Theorem 3 to be proved.

AFIFO = {(i1, j1), (i2, j2), . . . , (in, jn)} (4.3)

Theorem 3. For n arrival trips i1, i2, . . . , in, and n departure trips j1, j2, . . . , jn

with the arrival time relations τarr(i1) < τarr(i2) < · · · < τarr(in) and departure time

relations τ dep(j1) < τ dep(j2) < · · · < τ dep(jn), the following relations holds:

∑
a∈AFIFO

τ 2
a <

∑
a∈AnotFIFO

τ 2
a , ∀AnotFIFO (4.4)

Proof. Theorem 2 shows that the uncrossing pair always has a smaller sum of

squared slack time than the crossing pair. By definition, AFIFO does not contain

any crossing, but any AnotFIFO contains at least one crossing, which means at

least one crossing pair can be swapped by uncrossing pair with reduced the sum

of squares. Therefore, AFIFO has the lowest sum of squared slack times. Theorem

3 holds.

Figure 4.4 gives an example of converting a AnotFIFO for n = 5 into the AFIFO.

Firstly, a crossing pair (marked as red) is swapped by an uncrossing pair resulting
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in A′notFIFO. A second swap on A′notFIFO leads to the FIFO connection. Each

swap, the sum of squares on slack time is reduced. However, the slack time cost

without square cannot distinguish the differences between AFIFO and AnotFIFO.

Thus, we say the squared slack time cost has the advantage of encouraging FIFO

connections.

Figure 4.4: Connection swapping (n = 5)

For the connections involving multiple compatible train units, both types

of connections demonstrated in Figure 4.5 are feasible. Although Figure 4.5(a)

shows the connections we expected, the connections of Figure 4.5(b) often ap-

pear in the experimental results produced by the existing RS-Opt. We define

the case of Figure 4.5(b) as ’unnecessary coupling/decoupling’. The unnecessary

coupling/decoupling may be caused by the particular algorithm in RS-Opt based

on the path-type-flow variables and lacking station layout information [59]. Train

schedulers prefer to keep coupled train units together if there is no need to operate

coupling/decoupling because any extra operation consumes resources, e.g., time,

station capacity, crew. Besides, unnecessary coupling/decoupling operations in-

crease the complexity of station shunting that may invalidate the network-level

connections because of limited slack time, or that may be infeasible to operate

since those operations can only be executed in a specific coupling sequence [49].

The final solution is a sub-graph of the original DAG, on which the number of
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Figure 4.5: Unnecessary coupling and decoupling operations

coupling and decoupling operations can be captured by counting the get-in and

the get-off arcs of each trip node. By definition, coupling/decoupling operations

involve more arcs such that the consideration of arc usage cost and slack time

cost can support the minimization of the total number of coupling/decoupling

events, including unnecessary coupling/decoupling events.

4.2 Mathematical model

An arc at the network level implies a series of shunting operations at the sta-

tion level. We have to make sure that all arcs/flows of a solution schedule are

operable on the station-level infrastructure. Based on the original DAG, a multi-

commodity fixed-charge integer linear programming with the station-level conflict

elimination is established. The station-level constraints eliminate potential con-

flicts by not selecting the solutions containing infeasible arc(flow) combinations.

It is an integrated model covering the constraints for TUSO at both the network

level and the station level, which is an expansion based on the path-variable-based

model for the network level [56, 57]. For the convenience of modeling the con-

straints for station-level conflicts of infeasible arc(flow) combinations, this model
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uses arc-type-flow variables xa introduced in section 4.1.1. The mathematical

model includes three parts: optimization terms that may be considered in the

objective function, weight assignment, and constraints.

4.2.1 Optimization terms

The optimization terms that are supposed to be considered in the objective func-

tion are formulated based on the actual optimization criteria discussed in section

3.3. Terms will be discussed one by one instead of introducing an established

objective function because one research topic in this thesis is about exploring the

solution quality improvement by customizing the optimization terms considered

in the objective function, seen in chapter 5.

Fleet size (Term 1)

Usually, the fleet size is the most important optimization criterion for railway

operators because of the expensive fees of leasing, operating, and maintaining.

This criterion can be modeled from two considerations. One is to minimise the

total number of train units only; the other is to consider the minimisation of train

units and carriages. When there is only one train unit type, minimisation of train

units is sufficient, seen in expression (4.5). The total number of train units can

be obtained by adding up the flows of different types of train units on all sign-on

arcs.

Term 1a:
∑
k∈K

∑
a∈Ak

0

xa (4.5)

While multiple types of train units are in use, the second consideration has the

advantage of minimizing the number of carriages under the condition without

increasing the total number of train units. On the other hand, it can keep a

balance for the utilization among different types, especially when they have large

capacity differences to avoid excessive over-provision of capacities. The expression

(4.6) is formulated for the second consideration, in which ck represents the number

of carriages of train unit type k. w1 and w2 are the weights for train units and
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train carriages.

Term 1b:
∑
k∈K

∑
a∈Ak

0

(w1xa + w2(ckxa)) (4.6)

Let us consider the usage of train units as the reference such that w1 = 1, the

relative value of w2 is designed as expression (4.7) to ensure the minimisation

of carriages will not affect the minimisation of train units. cmax refers to the

maximum carriage number of a train unit. 4 is a small bias value to adjust the

weight of carriage minimisation. In the UK, a train unit can have 12 carriages at

the most, and 4 is usually set as 2 in this thesis.

w2 =
1

cmax +4
(4.7)

Running mileage (Term 2)

As each arc connects with a tail node and also a head node, running mileage of

train units can be captured by counting the mileage of the head node (or the tail

node) of each selected arc (mj(a)), as shown in expression (4.8). We assume that

the mileage of the source and the sink node is 0. To be more flexible in terms of

the operator’s preference, carriage mileage, seat mileage can also be considered

as optimization terms.

Term 2:
∑
k∈K

∑
a=(i,j)∈Ak

(mj(a)xa) (4.8)

Arc usage (Term 3)

According to the arc classification in section 4.1.1, the arc usage costs of sign-

on/off arcs, trip-to-trip arcs, empty running arcs are formulated in this part, as

shown in expression (4.9), where ca is the arc usage cost defined in section 4.1.2.

Term 3:
∑
k∈K

∑
a∈Ak

(caxa) (4.9)
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Slack time (Term 4)

This term is corresponding to the optimization criterion of connection preference:

a compact diagram is preferred. Minimizing the total slack time is an option

to guide the solver to choose short/medium connections under the condition of

sufficient turnaround time. As explained in section 4.1.3, c′a is used to encourage

FIFO connections such that this term is established as expression (4.10).

Term 4:
∑
k∈K

∑
a∈Ak

(c′axa) (4.10)

Coupling and decoupling events (Term 5)

This term is formulated based on the arc-selection variables ya (defined in section

4.1.1), whose value range is given in expression (4.11). Thus, the total number of

coupling and decoupling operations can be obtained by expression (4.12), where

Ainj and Aoutj represent the get-in arc set and the get-out arc set of trip j. For

the locations that do not allow any coupling/decoupling operations at some time

ranges, every arrival trip can only choose one get-out arc, and every departure

trip can only have one get-in arc.

ya =

1, if
∑

k∈K:a=a(k) xa ≥ 1

0, otherwise
(4.11)

Term 5:
∑
j∈N

(
∑
a∈Ain

j

ya +
∑
a∈Aout

j

ya) (4.12)

Train unit type preference (Term 6)

When a trip can be served by not equally preferred multiple types of train units,

type preference should be introduced, which can be considered from route wise.

Let use αkj to represent the cost of using type k to serve trip j referring a specific

route. Thus, the type-cost for every trip can be demonstrated as a matrix, where

the train unit type with a higher type-route preference has a lower cost. Five trips

(T1-T5) that can be served by three train unit types (k1-k3) are considered as an

example. The type-cost matrix is shown in Table 4.2. For the types that are not
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Table 4.2: Cost matrix for train unit type preference

αkj T1 T2 T3 T4 T5

k1 0.1 0.3 0.3 0.2 0.3
k2 0.2 0.1 0.5 0.5 0.4
k1 0.7 0.6 0.2 0.3 0.3

allowed to serve some trips, the corresponding preference costs in the matrix can

be considered as ’∞’. As the decision variable used in the mathematical model

is arc-based, the type preference costs attaching to trips can be modeled as arc

cost. For each arc, we only count the type-cost for the head node or the tail

node. Therefore, the optimization term of type preference cost is established as

expression 4.13.

Term 6:
∑
k∈K

∑
a∈Ak

αkjxa=(i,j) (4.13)

Other ways of type-preference consideration include capacity wise and inventory

wise. The first differs the preference based on the passenger-seat capacity, where

the train unit type with a larger number of seats costs more. The second differs

the preference based on the inventory of each type owned by the operator. Except

for considering this criterion in the objective function, hard constraints of lower

bounds for each train unit type can also be set by experienced schedulers.

4.2.2 Weights assignment

For TUSO, six terms are extracted from business optimization criteria and mod-

eled based on the DAG. As these terms have discernible optimization hierarchy to

railway operators, the objective function is constructed in a weighted summation

formulation. The weight for each term can be measured based on the approximate

value range of the respective term to maintain the hierarchy. Thus, we consider

the lower bound of a higher hierarchy term as the upper bound of the lower hi-

erarchy term. In this section, the weights for the first four terms (term 1 to term

4) are discussed in detail because they are the most important terms to railway

operators, and they are all based on the arc-type-flow variable xa. The objective

function consisting of these four terms is written as expression (4.14), where W1
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to W4 are the weights for the respective terms. To maintain the optimization

hierarchy, the relation W1 · Term1 > W2 · Term2 > W3 · Term3 > W4 · Term4

should hold.

minimize W1 · Term1 +W2 · Term2 +W3 · Term3 +W4 · Term4 (4.14)

The fleet size (the total number of train units) is the most important term and we

consider it as a reference such that W1 is set up as ’1’. As the linear relaxation

value of Term 1 (R) is easy to obtain and it is the lower bound of the fleet

size. R is supposed to be quite close or equal to the solution fleet size (integral

solution) R∗, i.e., R ≤ R∗ always holds. Thus, we consider R as the base to

derive appropriate weights of the other three terms, which will not invalidate the

optimization hierarchy.

With a timetable with passenger demands, the approximate running mileage

range of train units can be measured based on the train unit bounds [uminj , umaxj ],

where uminj is the minimum number of train units satisfying the passenger demand

of trip j and umaxj is the maximum number of train units allowed to serve trip j.

Let use mj to present the actual mileage of trip j. Thus, the approximate unit

mileage range is shown in expression (4.15). Let us denote
∑

j∈N umin
j mj∑

j∈N umax
j mj

as γ.

∑
j∈N

uminj mj < Term2 <
∑
j∈N

umaxj mj (4.15)

Relation (4.16) can be obtained.

γ ·R <
R∑

j∈N u
max
j mj

· Term2 < R (4.16)

As R ≤ R∗ = W1 · Term1 holds, we can assign W2 =
R∑

j∈N u
max
j mj

. The arc

usage is simplified as the number of arcs selected in the solution, denoted as |A∗|,
whose approximate value range can be obtained by considering two extreme cases.

(i) Suppose that there is only one path on which all trips in the given timetable

are satisfied by a single train unit such that |N |+1 arcs are in use. (ii) The worst

case is that there are |N | paths, where each path covers a single trip such that
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2|N | arcs are selected. We assume the maximum allowed flow on an arc is umax.

Therefore, the maximum number of arcs in the solution is 2umax|N |. Since only a

small portion of arcs have multiple flows and 2|N | is already a very extreme case,

we use |N | < |A∗| < 2|N | as the approximate arc usage range, which is evidenced

by our experiments that all the total number of solution arcs are in this range

and still quite far from 2|N |. By doing a similar inference with the mileage wight

derivation, expression (4.17) can be obtained. Thus, the weight for arc usage is

W3 =
γ ·R
2|N |

.

γ ·R
2

<
γ ·R
2|N |

· Term3 < γ ·R < W2 · Term2 < W1 · Term1 (4.17)

Slack time cost for arc a is c′a =

(
τa
τmax

)2

, seen in expression (4.2). Thus, term

4 can be written as
1

τ 2
max

∑
k∈K

∑
a∈Ak τ 2

axa. Most of the arcs selected in the

solution are short to medium but τ 2
max is usually a very big number, e.g., it is

very common for τmax to be more than 1200 minutes. Therefore, W4 is set as
1

τ 2
max

directly, where W4 << W3 such that the optimization hierarchy can be well

maintained.

4.2.3 Constraints

Fleet size constraints (C1)

For each type k ∈ K, there is an upper bound bk. To schedulers, a lower bound

(b′k) can also be considered. These constraints are as shown in expression (4.18).

The upper bound constraints can be relaxed to easily find a feasible solution to

start the algorithm but penalized with a big M in the objective function.

b′k ≤
∑
a∈Ak

0

xa ≤ bk, ∀k ∈ K (4.18)



4.2. MATHEMATICAL MODEL 71

Flow conservation constraints (C2)

The flow conservation constraints are to ensure the flow of every train unit type

on each trip node is balanced, where Ainj and Aoutj are the get-in type-arc set and

get-out type arc set of trip j.∑
a∈Ain

j

xa −
∑
a∈Aout

j

xa = 0, ∀j ∈ N, ∀k ∈ K (4.19)

Convex hull constraints (C3)

Each trip i ∈ N has to satisfy three basic hard constraints: passenger demands

(C3a), unit coupling upper bound (C3b) and carriage upper bound (C3b), presented

as expressions (4.20), (4.21), and (4.22) respectively.∑
k∈Kj

∑
a∈Ain

j

qkxa ≥ qj, ∀j ∈ N (4.20)

∑
k∈Kj

∑
a∈Ain

j

ukxa ≤ uj, ∀j ∈ N (4.21)

∑
k∈Kj

∑
a∈Ain

j

vkxa ≤ vj, ∀j ∈ N (4.22)

These constraints can be converted into equivalent convex hull constraints that

are tighter, as shown in expression 4.23. Fj is the convex hull facets for trip j.

Hj
(f,k) and hjf are coefficients at type k position and the corresponding RHS of

facet f for trip j. More proofs can be found in [58].∑
k∈Kj

∑
a∈Ain

j

Hj
(f,k)xa ≤ hjf , ∀f ∈ Fj, ∀j ∈ N (4.23)
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Consistency constraints between xa and ya (C4)

For each arc a ∈ A, if it is selected in the solution: ya = 1 and xa ≥ 1; otherwise:

ya = 0 and xa = 0. Here, ua is the biggest unit number that an arc can flow.∑
k∈K:a=a(k)

xa ≤ uaya, ∀a ∈ A (4.24)

Coupling/decoupling time constraints (C5)

These constraints are to ensure that there is sufficient time for the coupling and

decoupling operations, referring back to the example demonstrated in Figure 3.1.

Empty-running arcs (between different locations) usually have a very long slack

time where the time for coupling/decoupling operations can be assumed feasible.

C5 is not applied to sign-on and sign-off arcs as the scheduling of sidings/depots

is not considered in TUSO. Moreover, some long trip-to-trip arcs have long slack

times that are sufficient to operate the maximum number of coupling (Ci) and

decoupling (Dj) operations allowed by the corresponding trips. Thus, if a trip-

to-trip arc a = (i, j) satisfies condition (4.25), there is no necessity to consider

coupling/decoupling time constraint, where ζij is the time allowance available

to operate coupling/decoupling operations of arc (i, j). The trip-to-trip arcs

that do not satisfy condition (4.25), denoted as A′, need to dynamically consider

constraints (4.26).

τdcpl ·Di + τcpl · Cj ≤ ζij (4.25)

τdcpl(
∑
a∈Aout

i

ya − 1) + τcpl(
∑
a∈Ain

j

ya − 1) ≤ ζij, ∀a ∈ A′ (4.26)

Constraints for eliminating conflicting arc combinations (C6)

While considering station-level infrastructure in arc selection, a selected arc is

feasible if and only if it is operable within permitted time and station layouts,

and a train unit schedule is feasible if every arc in the schedule is a feasible

arc. Moreover, some related arcs when considered together may cause a conflict

because of the factors discussed in section 3.1 and 3.2. To be more precise, a

conflict is caused by the unit-type-quantity flow on a set of arcs. Therefore, the
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constraints for eliminating station-level conflicts (C6) can be modeled from two

aspects, called ArcSelection constraints (C6a) and TypeFlow constraints (C6b)

respectively. There are some advantages and disadvantages of constraints C6a

and C6b. The ArcSelection constraints are straightforward and easy to apply.

However, these constraints are slightly over-tight and they might rule out some

feasible solution because they do not consider any flow combination on the target

infeasible arc set. On the other hand, the TypeFlow constraints do not have that

side effect and they are just tight enough to eliminate the infeasible unit-type-

quantity-flow combinations on the target arc set. However, these constraints will

largely increase the problem size since new variables need to introduced. For

station-level conflict elimination, these two types of constraint can be applied

separately or mixed. The boundaries of addressing a conflict arc sub-set will be

discussed in section 6.3.

(i) ArcSelection constraints (C6a): a ArcSelection conflict contains a set of arcs

which together are not compatible at the station level, denoted by Ā. If

the arcs in Ā are not all selected in a solution, the specific conflict will not

appear in the solution. Let Z1 be the set of possible arc selection conflicts.

A conflict-free schedule must not contain any arc set Ā ∈ Z1.∑
a∈Ā

ya ≤| Ā | −1, ∀Ā ∈ Z1 (4.27)

(ii) TypeFlow constraints (C6b): a TypeFlow conflict represents an infeasible

combination of the unit-type-quantity flow on a set of arcs due to physical

railway structure. Let Z2 represents the set of possible type flow conflicts.

These conflicts actually are integral points in the solution space. The in-

teger cut technique proved by [10] can be applied to eliminate infeasible

binary integral points, represented as p = (x1, · · · , xi, · · · xn). The infeasi-

ble integral point is divided into two sets shown in expression (4.28).

B = {i | xi = 1}, Q = {i | xi = 0} (4.28)

The logical relation of this event can be converted to expression 4.29 equiv-
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alent to expression 4.30.

¬[(∧xi, (i ∈ B)) ∧ (∧xi, (i ∈ Q))] (4.29)

(∨¬xi, (i ∈ B)) ∨ (∨xi, (i ∈ Q)) (4.30)

Since the variable xi is binary, expression (4.30) can be restrictively mapped

to the integer constraints (4.31) to avoid a certain integral point.∑
i∈B

(1− xi) +
∑
i∈Q

xi ≥ 1 (4.31)

This technique is only valid for binary variables. Necessary adaptation is

derived below to apply it on an integer model. A set of working binary vari-

ables are introduced based on arc-type-flow variables, denoted as follows:

– arc-type-flow binary variables: xqa ∈ {0, 1},∀a ∈ Ak,∀k ∈ K,∀q ∈ U .

U denotes the set of natural values which can be assigned to corre-

sponding arc-type-flow integer variable xa.

For example, suppose the unit coupling upper bound is 3, i.e., U = {0, 1, 2, 3},
and type graph Gk1 is in use. For each arc-type-flow integer variable xa,

there would be four corresponding arc-type-flow binary variables: x0
a, x

1
a,

x2
a, and x3

a. The binary values for them are defined as expression (4.32)

xqa =

1, if xa = q, q ≥ 1.

0, otherwise.
(4.32)

A conflict should be isolated from the entire solution if we only target to

eliminate a specific type flow conflict structure. Let Ă represent the set of

arcs containing the type flow conflict structure; B contains all the type-flow

binary variables with value 1, and Q holds the other variables over the arc

set Ă. The TypeFlow constraints are shown in equation (4.33), where Z2 is

the set of Ă. ∑
B

(1− xqa) +
∑
Q

xqa ≥ 1, ∀Ă ∈ Z2 (4.33)
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The domains for each type of variables are shown at the places where they are

defined.

4.3 Existing solvers for the network level of TUSO

The network level of TUSO has been researched during the last few years and

many results have been achieved. This section mainly introduces the established

two solvers, called RS-Opt (rolling stock optimizer) and SLIM (size-limited iter-

ative method).

4.3.1 RS-Opt

RS-Opt is established by Zhiyuan Lin and Raymond Kwan and the related re-

search can be found in [56, 60, 57, 58, 53, 55, 54, 59]. This section gives a

brief on the mainline of RS-Opt research. The arc-based formulation is intuitive

and straightforward, however, the path-based model is usually more preferable

than the former because the path-based model can be solved more efficiently by

applying the column generation technique [57]. Thus, an equivalent path-based

formulation (4.34), denoted as (PF ), is converted from the arc-based formulation.

Theoretically, a path-based formulation is the result of applying Dantzig-Wolfe

decomposition to a corresponding arc-based formulation although a path formu-

lation itself is self-explanatory without the corresponding arc formulation (seeing

proofs in [57]). As the transform between the arc-based model and the path-based

model is only related to xa and xp, only the terms and constraints related to the

arc-type-flow variable (xa) are converted into (PF ).

(PF ) minmize
∑
k∈K

∑
p∈Pk

cpxp (4.34a)

subject to
∑
p∈Pk

xp ≤ bk,∀k ∈ K (4.34b)

∑
k∈K

∑
p∈Pk

j

Hj
(f,k)xp ≤ hjf , ∀f ∈ Fj, ∀j ∈ N (4.34c)
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The consistency constraints between xa and ya (expression (4.24)) is converted

as expression (4.35). The remaining constraints are kept the same.∑
k∈K

∑
p∈Pk

a

xp ≤ uaya, ∀a ∈ A (4.35)

The path cost cp consists of three parts: flow cost, nodes cost, and arc cost, as

shown in expression (4.36).

cp = c0
p +

∑
j∈Np

cj +
∑
a∈Ap

ca (4.36)

RS-Opt is an exact method solving the problem of TUSO at the network level

by a customized branch-and-price method [11], which is a technique for solving

large-scale ILP problems by combining branch-and-bound (BB) method [84] and

column generation [61, 28]. The branch-and-bound method is a traditional ap-

proach to solve ILPs based on partial enumeration and divide-and-conquer. The

column generation technique is a well-established method to solve large-scale

ILPs. It only considers a subset of variables to form a restricted master problem

(RMP), and iteratively adds new variables that may improve the objective value

by inspecting the results of subproblems. For the network level of TUSO, it is not

possible to generate all the paths in advance because of the tremendous possibil-

ities of node-arc combinations based on the original DAG with a large number of

timetabled trips. Thus, combining the BB method and column generation tech-

nique can deal with this situation as only a small subset of potential paths need

to be considered at each iteration.

Figure 4.6 shows the basic mechanism of the customized branch-and-price

method of solving the path-based model (PF ) [52]. The fixed-charge binary

variables (ya) largely increase the problem complexity such that the optimization

terms and constraints related to ya are firstly ignored. The LP relaxation of

(PF ) is regarded as the RMP, denoted as (P̄F ), which is solved by column

generation at each active BB tree node. Let φk ≤ 0, ∀k ∈ K and ψ(f,j) ≤ 0,

∀f ∈ Fj, ∀j ∈ N be the optimal dual variables associated with constraints

(4.34b) and (4.34c) respectively. The subproblems can be performed for each



4.3. EXISTING SOLVERS FOR THE NETWORK LEVEL OF TUSO 77

Figure 4.6: Basic mechanism of RS-Opt

k by solving the kth shortest path problem defined as expression (4.37), where

Xk = {x ∈ ZAk

+ |Mkxk ≤ bk}. Mkxk ≤ bk is a uniformed expression of constraints

(4.18) and (4.19). Proofs can be found in literature [57].

c̄∗k(φ, ψ) = min
x∈Xk

{
1

bk

( ∑
a∈Ak

caxa −
∑

j∈N,f∈Fj

∑
a∈Ain

j

Hj
(f,k)ψ(f,j)xa

)
− φk

}
(4.37)

At each iteration, a pair of upper bound and lower bound will be updated.

Recording bounds has the advantage of terminating the column generation pro-

cess when the gap between the upper and lower bound is regarded as acceptable.

Four customized branching strategies are applied, including train-family branch-

ing, banned location branching, arc-type-flow variable branching, arc-selection
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variable branching. The train-family branching is used to eliminate the incompat-

ible matches between train unit types and routes. The banned location branching

deals with some locations that do not allow coupling/decoupling operations thus

each arrival can only be connected to one departure. These two branching strate-

gies are designed to deal with the requirements discussed in section 3.1.3 and

section 3.1.5. The other two branching strategies are traditional ’fractional to

integral’ branchings. The binary branching on the fixed-charge variables are also

associated with coupling and decoupling time constraints C5. They largely in-

crease the problem complexity, such that the dynamic cut generation scheme is

applied that will only add the specific constraints when needed [54]. The solver

without ya is considered as a warm-start for the branch-and-price-and-cut method

to solve constraints C5 [54]. Besides, the order of applying the first three branch-

ing strategies is also investigated. The experiments show that the performance

is better if the arc-type-flow variable branching is executed after the other two

strategies. In terms of BB tree exploration, depth- and best-first search meth-

ods are considered. Moreover, a ’jump’ strategy is designed to avoid the search

trapped at the middle level of the BB tree.

Except for the research of establishing RS-Opt, some other works at the net-

work level have also been investigated. To deal with the fuzzy passenger re-

quirement which is a very common case in the UK railway industry, a new inte-

ger multi-commodity flow model with bi-level capacity requirements is proposed

based on the previous research [53]. A heuristic branch-and-bound approach

based on the core RS-Opt is proposed to reduce coupling/decoupling redundancy

(seeing the example demonstrated in Figure 4.5). This method exploits arcs that

are not fully utilized and discovers better flow potentials to improve the unnec-

essary coupling/decoupling operations [59].

4.3.2 SLIM

TUSO at the network level is an NP-hard problem that is hard to solve [33, 76,

16, 57]. RS-Opt is an exact method, which has the advantage of delivering an

’optimal’ solution with the price of high computational cost. The experiments

show that RS-Opt without considering the fixed-charge variables can solve small
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to medium size problem instances (up to 500 trips) [57]. With the fixed-charge

variables, RS-Opt may fail to deliver a solution for even small-size instances (e.g.,

100 trips) [54]. However, the number of trips in a real-world timetable could

be very large (e.g., more than one thousand trips) such that the corresponding

original DAG will be enormous.

The complexity of TUSO is because of the great number of arc-flow combi-

nations in the original DAG. As the optimizing solution is a subgraph of G, a

heuristic wrapper named as arc controller is designed to produce compact and

reduced graphs, which is used as iterative inputs for RS-Opt to seek a new so-

lution. The hybrid method of arc controller and RS-Opt is called SLIM [26].

The framework of SLIM is shown in Figure 4.7. At iteration i, the arc controller

Figure 4.7: Basic mechanism of SLIM

launches RS-Opt with a reduced graph G ′. As G ′ is of small size, RS-Opt can

yield an optimal solution graph G∗i quickly. This new solution will be stored in

the solution pool for the next iteration. Based on the solution pool and the orig-

inal DAG, a new G ′ will be formed for the next iteration by the arc controller.

The SLIM process is started with an initial feasible solution. The arc controller
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aims at constructing a reduced graph that is sufficient for RS-Opt to produce a

near-optimal solution. The arc controller contains two main processes to refine

the full DAG to be reduced: Extraction and Augmentation.

(i) Extraction: this process is based on the solution pool in which all the

’optimal solutions’ found by SLIM iterations are stored. At each iteration, this

process extracts an essential graph Ḡ∗ from the solution pool to make sure there

must be a feasible solution. The essential graph is the base for constructing the

reduced DAG. The extraction methods can be problem-specific. For the TUSO

problem, choosing the best existing solution and choosing a random solution are

in consideration.

(ii) Augmentation: this process takes a small portionof arcs from the original

DAG, which is called augmented arc set Ā. The reduced DAG is obtained by

merging the essential DAG and the augmented arcs, i.e. G ′ = Ḡ∗ + Ā. The

augmentation process secures some chances for RS-Opt to find a better solution.

As the reduced DAG is much smaller than the original DAG, it is expected to

deliver an ’optimal solution’ very quickly. Three methods of forming augmented

arcs are proposed and applied in [26]: location-based heuristic (LBP), time-based

heuristic (TBH), and path-based heuristic (PBH).

SLIM has three stop criteria: maximum running time, maximum iterations,

maximum iterations without improvement for objective function values. SLIM

can find solutions with better objective function values than the one found by

RS-Opt solely because RS-Opt allows stops with an acceptable gap between the

lower bound and the upper bound. SLIM splits the original DAG into many

small sub-graphs, and the optimal solution will be sought for each sub-graph.

This allows SLIM to find many more acceptable integral solutions, especially

near the convergence. In the experiments, SLIM can solve real-world instances

that RS-Opt solely fails to deliver solutions. For some instances that are solvable

by RS-Opt alone, SLIM can converge to the same or very close objective function

values to the solution conveyed by RS-Opt itself.
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4.4 Discussion

4.4.1 Experiment observations on the existing solvers

Given a timetable containing a set of trips, RS-Opt alone yields a single optimal

solution s∗. SLIM calls RS-Opt and seeks the sub-optimal solution iteratively to

form a solution set S = {s1, s2, ..., sz}. Not that the solving mechanism of SLIM

is the same with that of RS-Opt, and its convergence relies on the objective

function value improvement that indicates if the given reduced graph contains

a better solution compared to the last iteration. At the convergence of SLIM,

the gap of objective function values between sz and s∗ should be very small, and

these two solution DAGs should contain a high percentage of the same arcs. The

percentages of arcs in s∗ that are also present in the iterative solutions in S have

been compared. The experiments show that SLIM and RS-Opt can usually turn

out very similar objective function values, but the solution arcs are dissimilar.

For some datasets, e.g., GWR-EMU, the overlapping arc percentages are only ap-

proximately 40%. The common arc percentage is not as high as our expectation,

even when the iterations were leveling off with the objective values quite close

to the optimal objective value yielded by RS-Opt solely. Although the branch-

and-price process in the RS-Opt solver and the arc controller heuristics in SLIM

may have influenced the graph arc selection, the design of objective function may

have contributed to the observed behavior as well. The most likely reason could

be that the existing objective function is not sensitive enough to differentiate the

graph structure. This observation drives a generic work of objective function ef-

fectiveness evaluation, where the objective functions are formulated as weighted

summation and the optimization criteria have discernible optimization hierarchy,

seen in chapter 5.

4.4.2 Station-level constraints

Section 4.2 introduces a full model for TUSO including the constraints of the net-

work and station levels. The two alternative constraints of eliminating station-

level conflicts (shown in expressions (4.27) and (4.33)) are based on fixed-charge

variables that largely increase the complexity of solving the model. Besides, com-
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puting the potential conflict arc(flow) sets (Z1 and Z2) in advance as inputs based

on the station-level structures and the original DAG is a massive work, because

numerous of arc-selection/type-flow combinations are supposed to be checked.

This makes solving the model as a whole almost impossible. On the other hand,

the coupling order for coupled train unit blocks is also left to be further de-

termined. Since many of the station-level constraints could have already been

satisfied implicitly by the network flow solution, an adaptive method is proposed

to determine feasible coupling orders and resolve the station-level conflicts based

on the basic network flow model, seen in chapter 6.



Chapter 5

Objective function evaluation

Real-world scheduling problems, e.g., train unit scheduling, are virtually all NP-

hard. Often, only near-optimal solutions could be delivered in practice. For

instance, the ’exact’ solver for an ILP model may have to incorporate rules to

cut short a branch-and-bound search. For an objective function, the ability to

differentiate as fine-grain as possible the near but sub-optimal solutions is very

important. Another hurdle in designing the objective function is that real-world

schedules typically have numerous possible structural properties that the prac-

titioners would be concerned about. However, it would be impractical to elicit

and incorporate all such considerations as optimisation criteria in designing the

objective function. Many detailed optimisation criteria in real-world scheduling

would inevitably remain ’hidden’ and not explicit in the objective function.

Large and complex instances of real-world scheduling problems often need an

auxiliary heuristic (but not necessarily resorting to entirely heuristics) to help an

exact ILP solver to derive near-optimal solutions within a practical time. It is

important for the auxiliary heuristic searches not to be wandering over a large

’poorly differentiated’ solution space because of an ineffective objective function.

Using small problem instances that an exact ILP method can solve to optimality,

we propose a methodology to benchmark the effectiveness of alternative objective

function designs. The main measure of effectiveness is in the structural similar-

ity between the auxiliary heuristic converged solutions and the exact solver found

solution. In conjunction with other solution features, the objective function effec-
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tiveness is further quantified as an aggregation of several derived elements. This

methodology is explained and demonstrated on a train unit scheduling problem

with four alternative objective functions designed. The results show that two of

them are significantly more effective than others.

5.1 Introduction

The objective function is usually a trad-off amongst a series of explicit and hid-

den optimization criteria and also a trade-off between complexity and accuracy.

A perfectly defined objective function taking into account all aspects does not

exist except for some idealized cases designed for theoretical interests. In prac-

tice, the ideal case that the designed objective function can rank all the feasible

solutions precisely is hardly achieved. The real case is usually that the solu-

tions of very similar or even the same objective function value have very different

structural properties. This phenomenon also appeared in the experiments of

TUSO at the network level (further explained in section 5.2). The solution ap-

proaches for a scheduling problem can be classified into two types: exact methods,

and pure/hybrid heuristic methods. The exact models are normally solved us-

ing black-box commercial optimizers such as Gurobi, CPLEX, FICO. Although

they claim to deliver ’exact optima’, they are often computationally practical

only for relatively small problem instances because of the complex combinatorial

nature. The claimed ’exact optima’ are usually only near but sub-optimal solu-

tions because of not exhausted branch-and-bound tree and other simplifications

to deliver the solution within a practical time. The heuristic methods can only

claim ’sub-optimal’ solutions, whose (near) optimality is hard to ensure. Never-

theless, heuristic methods have the advantage of delivering multiple near-optimal

solutions through customized search and converging conditions.

The final solution is delivered based on the combinatorial correlations between

the main optimization criteria modeled in the objective function. The complex

structures in a schedule solution representing detailed operational plans. It is

vital for an objective function to have the ability to differentiate solutions as

fine-grain as possible especially when they are near-optimal. Thus, we propose

a systematical approach to benchmark the effectiveness of alternative objective
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function designs for a real-world scheduling problem that satisfying the following

features and assumptions: 1○ Only a few main criteria that are not in conflict but

have a discernible importance hierarchy to be formed in a weighted sum objective

function are identified to satisfy the other hidden criteria. 2○ It can be modeled as

a network-flow problem where the structure of how to connect nodes matters and

the practitioners prefer some certain patterns of connections, for example, first-in-

and-first-out connections. 3○ Assume there is a ready-to-use exact solver for the

considered problem and we trust the solution obtained by the exact solver is the

best near-optimal solution to be considered as a solid benchmark to compare. The

correlations amongst the hierarchical optimization criteria are complicated. One

might synergize/conflict with another, or there may be some more complicated

correlations unrevealed. Thus, what optimization criteria should be considered

in the weighted-sum objective function is also significant. This question can be

explained by comparing the effectiveness of alternative objective function designs

that contain different main optimization criteria.

Using an exact ILP method that can solve a scheduling problem to optimal-

ity, we propose a methodology with an auxiliary heuristic of differentiating and

promoting good structural properties in the solutions to investigate the effective-

ness of alternative objective function designs, including three stages. 1○ Design

alternative objective functions: the main optimization criteria potentially to be

formulated into the objective function are obtained through intensive discussions

with practitioners. 2○ Obtain solutions and their features: an exact ILP solver

(P ) taking the entire input is used to deliver an ’optimal’ solution as the bench-

mark, and an auxiliary heuristic approach (P̄ ) is developed to iteratively call P

with a reduced input that is updated and optimized during the convergence to

the final heuristic solution. Through the comparisons between the benchmark

and heuristic solutions, a series of elements reflecting the objective function ef-

fectiveness are exacted. 3○ Evaluate the effectiveness of alternative objective

function designs: the main measure for the effectiveness is in the structural sim-

ilarity between the auxiliary heuristic converged solutions and the exact solver

found solution. In conjunction with other solution features, the effectiveness of an

objective function is quantified as an aggregation of the solution features derived

at the second stage based on the analytic hierarchy process [72].
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This methodology is explained and demonstrated on the TUSO problem for

which four alternative objective function designs are evaluated. The results show

that the objective functions of higher effectiveness can guide P̄ to differentiate

good structural properties and converge to the solutions that have very high

structural similarities with their corresponding benchmark solutions obtained by

P . However, the objective functions of lower effectiveness lead P̄ to wander over

poorly differentiated solutions whose structures are far from the benchmark solu-

tion, even when the objective function value of the final solution obtained by P̄ is

very close to or identical to the optimum claimed by P . Through the effectiveness

analysis for the alternative objective function designs containing different main

optimization criteria, the criterion that promotes/reduces the objective function

effectiveness the can also be identified.

5.2 Methodology

This section describes a methodology of evaluating the effectiveness of alternative

objective function designs, which is inspired by the experimental investigation

of the TUSO problem. TUSO is modeled as an integer multi-commodity flow

problem on a pre-generated directed acyclic graph (DAG) that is considered as

the input for solution approaches. The solution is a subgraph of the full DAG,

which depicts only the train unit flows determined. Therefore, the size of the

full DAG directly affects the computational complexity of solving the network

flow problem because of enormous arc-and-flow combinations. An exact solver

called RS-Opt has been developed for small/medium instances [57]. A size-limited

iterative method called SLIM has also been developed for larger instances [26].

RS-Opt takes the entire DAG as input and delivers an ’optimal’ solution s∗. SLIM

aims at iteratively extracting and refining the full DAG into a small subgraph

such that RS-Opt can yield a solution quickly. At convergence, a solution sz

carrying similar structural properties with s∗ is expected. However, the structural

properties of s∗ and sz are very different although their objective function values

are very close or even the same. Although the branch-and-price process in RS-Opt

may have influenced the graph arc selection, the design of objective function not

agile to differentiate solution structures may have contributed to the unexpected
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phenomenon such that alternative designs are considered.

Thus, a methodology with an auxiliary heuristic of promoting good structural

properties in the solutions is established to evaluate the effectiveness of alternative

objective functions as shown in Figure 5.1. The first stage is to design alternative

Figure 5.1: Methodology flowchart

objective functions for a specific scheduling problem. For each objective function

design, this methodology utilizes an exact solver P and an auxiliary heuristic

P̄ that iteratively forms reduced inputs from the entire input for P to obtain a

series of heuristic solutions. The solution from P is considered as a benchmark

and the heuristic solutions obtained during the iterations of P̄ are compared to

the benchmark. Through the comparisons between the solutions obtained from

these two streams, the values of solution features reflecting the effectiveness of

each objective function design are obtained. In the third stage, the effectiveness

of each objective function design is calculated by hierarchically integrating all
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the solution features. The practitioners are involved in this stage to review if

the evaluation results from the systematical methodology cooperate with their

judgement.

5.2.1 Alternative objective function designs

Stage 1 aims at forming several candidate objective functions through the prob-

lem investigation. The participation of practitioners is important at this stage,

especially on identifying main optimization criteria with discernible optimization

importance. These optimization criteria are only a few from the complete list

of criteria for the considered problem. The business optimization criteria for

real-world problems are often descriptive and macroscopical. Modeling them as

mathematical terms is a vital step to enable the problem to be solved in math-

ematical programming. As the main optimization criteria we considered respect

a discernible importance hierarchy, they can be formulated in a weight-sum ob-

jective function and the weights of corresponding mathematical terms can be

assigned to maintain the importance hierarchy. Considering the most important

optimization criterion as the basis, the weights for the other terms can be derived

based on the approximate value ranges of their respective optimization criteria.

Denote the set of terms as Terms = {f1, f2, . . . , fn}, where n is the total number

of optimization terms converted from the main optimization criteria. Thus, the

alternative objective functions are designed based on different combinations of

these optimization criteria in the weighted sum formulation. A candidate objec-

tive function can be expanded as below:

Fk = wafa + wbfb + · · ·+ wmfm, 1 ≤ m ≤ n (5.1)

where m terms from Terms are considered. a, b, . . . ,m are chosen from the range

of [1, n] without repetition such that there would be Cm
n candidates with m terms.

A set of alternative objective functions including different terms can be generated,

represented as set F = {F1, F2, . . . , Fk, . . . }.
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5.2.2 Heuristic approach

Let us define the original graph of a scheduling problem (referring to the entire

input) as the entire problem space outlined by all the nodes and arcs, which

maps to the entire solution space. Given a problem space, a solution is often

a rather small subset of the entire input scattered in different corners of the

entire problem space. This means the entire input contains plenty of information

that does not contribute to the final solution but increases the computational

complexity. Thus, deriving optimized reduced inputs containing good structural

properties is an effective method to reduce the complexity of the entire problem.

This heuristic aims at extracting an optimal reduced input enabling the exact

method to deliver a solution as good as the ’optimal’ solution obtained by the

exact method solely. A solution containing all the nodes and arcs to convey a

feasible solution flow is defined as an essential graph. An entire problem space

can be divided into many small regions. Each region contains a small set of

arcs that are in a certain relation, for instance they are located in the same

time range. At each iteration, one/more regions are augmented to the essential

graph to increase the potential of deriving some better structural properties to

the solution. Suppose we arrange those regions on a wheel. Augmenting different

regions on the wheel to the essential graph is defined as rotation on regions.

Thus, a heuristic approach P̄ iteratively extracting the essential graph and

rotating on regions to promote good structural properties in the reduced inputs for

an exact solver P to converge the final solution is designed, as shown in Algorithm

1. P̄ requires the entire input (G) and a ready-to-use exact solver (P ) to ensure

a set of iterative solutions. Let use soList to store the solutions found during the

iterations of P̄ . P̄ starts with an initial feasible solution s0 that can be obtained by

some simple heuristics for instance greedy algorithm. The Extraction() method

takes the solList as input to extract an essential graph g∗ to ensure the reduced

input formed at this iteration has a feasible solution. Extraction() can be defined

in many customized methods. For instance, extracting the best solution in solList

could be an option which is helpful to speed up the convergence of P̄ . Randomly

extracting any solution is also an option that has the advantage of helping P̄ jump

out of the potential local optimal solutions. According to the characteristics of a
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Algorithm 1 Pseudo code of P̄

Require: G, P
Ensure: solList

1: s0 := initialFeasibleSolution
2: solList.add(s0)
3: repeat
4: g∗ := Extraction(solList)
5: regionList := RegionDivideMethod(g∗,G)
6: for all g in regionList do
7: ĝ := g∗ ∪ g −→ Augmentation
8: si := P (ĝ)
9: solList.add(si)

10: end for
11: until reachStopCriteria()

specific network-flow problem, G can be organized in many ways to divide regions

stored and arranged in regionList.

The loop on regionList represents the rotation on regions to ensure that every

corner of the entire problem space is reached. The merge between g∗ and a region

g is defined as Augmentation and the region g is defined as an augmented region.

The Augmentation results in a reduced input ĝ. In each iteration, a reduced in-

put is used to launch P such that a series of iterative solutions can be found

and stored in solList. The augmented regions are applied systematically and the

scheme for dividing the problem space is to group combinatorial features for pro-

moting good structural properties to the solutions. The intensified search within

the augmented region applied (in conjunction with the essential graph) aims at

finding the suitable replacements from the augmented region for some parts of

the essential graph resulting in an improved solution si. P̄ will stop when one

of the stopping criteria is reached, for example, maximum time/iteration, none

improvement on the objective function value for a certain number of iterations.

The size of a region can be controlled through a parameter µ. Logically, we usu-

ally set 0 < µ << 1 to make sure |ĝ| << |G| such that P can deliver an ’optimal’

solution quickly. On the other hand, the benchmark solution s∗ is obtained by

considering the entire graph G as input for P , i.e. s∗ = P (G). A reduced input

that is enough for P to deliver a solution as good as the benchmark solution s∗ is
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defined as an optimal reduced input. At convergence, P̄ feeds an optimal reduced

input to P to produce the final solution sz. Before convergence, the reduced input

at each iteration is sub-optimal but is of a very small size such that P can be

executed very quickly to claim an ’optimal’ solution si, which may be extracted

as an essential graph for the next iteration. Given the entire input G, P̄ can

find a set of iterative solutions S = {s1, s2, . . . , si, . . . , sz} during the process of

skimming G into the optimal reduced input.

Consider a scheduling problem as an example to illustrate the working mech-

anism of P̄ , seen in Figure 5.2. The entire input G that could be massive is shown

in Figure 5.2(a). Figure 5.2(b) gives an essential graph g∗ that is a naive solution

where every node is covered by the arcs related to the source and the sink. Figure

5.2(c) is the reduced input in which the augmented region of blue arcs are added

by Augmentation to the essential graph shown in Figure 5.2(b). Figure 5.2(d)

shows an improved solution graph obtained by P considering Figure 5.2(c) as

input.

Figure 5.2: An example to illustrate the working mechanism of P̄

5.2.3 Solution features

For a comparison between the solutions obtained from P and P̄ , four main fea-

tures reflecting the objective function effectiveness are extracted: the quantified
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values of the main optimization criteria, structural similarities, the number of dif-

ferent solutions obtained during the iterations of P̄ , the objective function values

of the final solutions.

(i). The quantified values of the main optimization criteria: the objective

function value guides the convergence of search algorithms, but the trade-off

numerical value of multiple mathematical terms may be meaningless to practi-

tioners. However, the actual values of the main optimization criteria carried in

the solution are very important to the practitioners because they are the busi-

ness targets. Thus, the optimization criteria values reflect if the corresponding

objective function performs well. Some of the main optimization criteria may not

play a big role in the effectiveness evaluation process. This is because they are

modeled/synergized by the mathematical terms in the objective function such

that they are supposed to be well minimized/maximized, i.e., a criterion may

have the same value in the different solutions converged by different objective

function designs. The values of all the main optimization criteria quantified from

the solutions with respect to alternative objective function designs are stored in

the set TV .

(ii). Structural similarities: as we assumed in section 5.1, the benchmark

solution s∗ found by P solely is the best near-optimal solution we can obtain.

P̄ divides the entire input into many small-size reduced inputs corresponding to

many sub solution spaces. An ineffective objective function may lead P̄ to wan-

der over a large ’poorly differentiated’ sub solution space, resulting in a heuristic

solution whose structural property is far from s∗ even if they have very similar

or even the same objective function value. The solution to a scheduling problem

is often a subgraph of the original graph. A solution schedule usually contains

many diagrams where how the diagrams connect are also very important because

the structural properties of a solution schedule convey the detailed operational

plans. Thus, investigating the structural similarities between the heuristic solu-

tions and s∗ is very significant to benchmark the objective function effectiveness.

For an objective function, all the heuristic solutions found by P̄ , {s1, s2, ..., sz},
are compared to the benchmark s∗, presented in Figure 5.3.

For the structural comparisons, an effective objective function is endorsed by

two indicators: very high structural similarity between sz and s∗, roughly getting
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Figure 5.3: Structural comparisons

higher structural similarities between the ranked iterative solutions and s∗. Three

aspects are derived from the structural comparisons. First is the structural simi-

larity range, defined as r = ξ+−ξ−, where ξ+/ξ− represents the similarity margin

between the iterative solution with the best/worst objective function value and

s∗. r shows how much the similarities has been increased through the iterations

of P̄ . All the alternative objective functions start with the same initial feasible

solution such that the lower bounds (ξ−) of the ranges (corresponding to each

objective function design) are valid to be compared. Another two aspects are the

slope and the R-squared value of the linear regression fitting curve for the scatter

figures. The slope demonstrates how quickly the similarity is improved through

the iterative solutions of P̄ . The similarities between the ranked iterative solu-

tions from P̄ and s∗ are supposed to be improved in line with the improvement

of the objective function value such that the solutions in the scatter figures are

supposed to be located close to the fitting curve. The R-squared value shows

the deviations between the iterative solutions and the fitting curve. It is wor-

thy to point out that ’R-squared equals 1’ is hard to achieve for most real-world

scheduling problems because of the complex nature and the trade-off during the

modeling process. All the features related to the structural similarities are stored

in the set DC.

(iii) The number of different solutions obtained during the iterations of P̄ : this

feature investigates the capability of a given objective function to differentiate

schedule properties during P̄ iterations where the essential graphs and regions

rotate on the entire problem space. We define the solutions that carry the same

objective function value (with respect to the same objective function design)
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but different structures as homogeneous solutions (HS ). HS are regarded as the

same quality by the numerical objective function value. Let us use an example

Figure 5.4: An example of homogeneous solutions

to illustrate HS. Suppose the nodes are customers who need to be served, and

the source and the sink are added as usual. The directed arc between any two

customers means they can be served consecutively. Suppose the optimization

target only considers the minimum number of workers to serve all customers.

For this example, the two solutions, shown in Figure 5.4, need four workers but

these customers are served in very different sequences, regarded as two HS. When

the connection lengths matter, these two HS could be of very different quality

to practitioners. For such a case, the designed objective function is supposed to

be able to differentiate as fine-grain as possible the structural properties in the

solutions especially when the solutions are near but sub-optimal.

The objective function values partition and rank the solution space. Suppose

the complete solution space is known. Figure 5.5 (a) and (b) show an example

of a solution space in which all feasible solutions are ranked by two alternative

objective functions respectively. The gray area represents the solution sector car-

Figure 5.5: Ranked solution space
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rying the optimal objective function value. The other solutions are getting worse

along with the arrow direction. The size of the top-rank solution sector and hence

the number of optimal HS, of Figure 5.5(b) is smaller than that in Figure 5.5(a),

indicating that the second objective function can differentiate the structural prop-

erties better. To find all HS in the top sector, some exhaustive (or brute-force)

search methods can be used to explore the entire solution space. However, it is

very computationally expensive. Usually, solvers terminate if any solution in the

top sector is found, which means the other HS are abandoned without further

investigation. Moreover, the real optimality (upper bound = lower bound) is

hard to achieve in practice because of the computational complexity. Thus, some

relaxed stopping criteria must be utilized. For instance, the ’relative gap’ from

the optima, denoted as δ, is often calculated by δ =
ub− lb
lb

, where ub and lb

are upper bound and lower bound respectively. For such a case, even the exact

method may return only a sub-optimal solution whose objective function value is

worse than that of the solutions in the top sector. ’How much worse it could be’

depends on the value of δ shown in Figure 5.5(c). This relaxation allows heuristic

methods to find some solutions which have better objective function values than

s∗.

In each iteration, P̄ rotates to a different region of the entire problem space

based on an essential graph to form a reduced input. Each reduced input cor-

responds to a solution subspace. Equivalently, P̄ extracts many subspaces from

the complete solution space. Each solution subspace is searched by P to claim

one ’(near-) optimal’ solution as the representative in the top-rank solution sec-

tor of this subspace. Thus, P̄ iteratively ranks the representative solutions from

different solution subspaces. For some ineffective objective functions, the rep-

resentative solutions for many different solution subspaces may have the same

objective function value although their schedule structures are significantly dif-

ferent. This may lead to a quick convergence, however, too many HS are not a

good sign for objective function effectiveness. In conclusion, for an effective ob-

jective function, it is expected to find many different iterative solutions in terms

of objective function value and schedule structure, and ’less HS for each objective

function value’ is expected. These features are stored in the set SN .

(iv) The objective function values of the final solutions: the objective function
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values of the final solutions from P̄ is compared to that from P respective to

each objective function design. The comparison results could be three values:

CG ={better, same, worse}. The reason why it could be ’better ’ is because

of some relaxed stopping criteria, for example, the ’relative gap’ introduced in

Figure 5.5(c) considering δ > 0.

5.2.4 Evaluation

Every solution feature reflects the effectiveness of the objective function to some

extent, therefore, a scheme of integrating all solution features together is proposed

to benchmark objective function effectiveness, including two steps.

(i) First is to estimate the relative importance of all the solution features

based on the understanding of real-world problem and algorithm behaviors, where

the analytical hierarchy process [72] is applied. This process is a widely used

systematic approach for quantitatively measuring the relative importance among

different factors to support the decision making for multi-criteria problems. The

relative importance between any two same-layer features is measured on the basis

of a 1 to 9 scale, where 1 means they are equally important and 9 means one is

extremely important compared to the other one. For instance, if feature i is w

(1 ≤ w ≤ 9) times more important than feature j, the relative importance of i

over j is wij = w. Accordingly, the relative importance of j over i is wji = 1/w.

Hence, a comparison matrix can be obtained, generally written as a square matrix

W below, in which wij = 1/wji. To obtain the importance weight vector, each

element in W is firstly normalized by its column summation to be converted as

W nor, i.e. w′ij = wij/
∑n

i=1wij.

W =


1 w12 . . . w1n

w21 1 . . . w2n

. . . . . . . . . . . .

wn1 wn2 . . . 1

 −→ W nor =


w′11 w′12 . . . w′1n

w′21 w′22 . . . w′2n

. . . . . . . . . . . .

w′n1 w′n2 . . . w′nn



The estimated weight vector is calculated by wi =

∑n
j=1 w

′
ij

n
based on W nor. The

consistency ratio (CR) refers to the reliability of the measured weights through
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the pairwise comparison method. Generally, the measured weights are acceptable

if CR ≤ 10% [73]. The features reflecting the effectiveness of objective function

have two layers, and each feature at the first layer has some sub-features, as

explained in section 5.2.3. The global weight of each sub-feature is its local

weight multiplied by the local weight of its parent feature, denoted as ŵi.

Figure 5.6: Hierarchical structure of solution features

(ii) The second is to quantify the integrated effectiveness for alternative ob-

jective function designs based on the derived solution features. The magnitudes

of solution features may be different such that their values should be normalized.

On the other hand, each feature reflects the objective function effectiveness in

either a positive or negative way. Consider the ’minimization’ problem as a ref-

erence. If the statement ’smaller feature value endorses better objective function

effectiveness’ is true, this feature reflects the objective function effectiveness in a

positive way, stored in the set PF . On the contrary, this feature is in a negative

way, stored in the set NF . The integrated effectiveness of objective function k is

calculated by unifying all the features in both PF and NF together, as shown in

expression (5.2), where vi is the normalized value of feature i. Thus, the smallest

value of Pk indicates the best effectiveness of objective function Fk.

Pk =
∑
i∈PF

ŵivi −
∑
i∈NF

ŵivi,∀k ∈ F (5.2)
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5.3 Computational experiments

5.3.1 Problem preparation and initialization

A train unit has a fixed number of passenger carriages, which cannot be split

but can be coupled with other train units. TUSO assigns a limited number of

train units to cover all the trips in a timetable satisfying a series of constraints

such as passenger demands, unit-route compatibility, turnaround time, etc. The

optimization target is to obtain a set of unit diagrams (referring to schedule)

with minimal operational costs, describing the serving sequences of trips and

some auxiliary activities, for example, coupling/decoupling operations. TUSO

is described as an integer multi-commodity network flow model based on a di-

rected acyclic graph (DAG) [57], in which multi-commodity refers to different

types of train unit. Nodes represent trips, a source, and a sink. Arcs represent

potential connections among nodes that are generated according to real-world

requirements and constraints. A path on the DAG represents a unit diagram

from the source to the sink. The objective function candidates including different

potential optimization criteria are shown in Table 5.1. F1 is the base objective

Table 5.1: Objective function candidates

Objectives Fleet size Arc usage Mileage Compact diagram
F1 Yes Yes No No
F2 Yes Yes Yes No
F3 Yes Yes No Yes
F4 Yes Yes Yes Yes

* F1 is the base objective function embedded in the exact solver P

function embedded in the developed exact solver P . Compared to F1, every other

objective function contains some extra term(s). Fleet size is usually the most im-

portant target because of expensive leasing and maintaining fees. Mileage implies

fuel consumption. A compact diagram means there should not have many dra-

matic long turnaround time arcs chosen in the solution. The weights are assigned

based on their approximate ranges. The importance hierarchy is maintained by

considering the minimum value of a more important term as the maximum value

of a less important term.
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5.3.2 Solution feature information

The solution features of TUSO are listed in Table 5.2. TUSO is modeled based

on DAG and its solution is a sub-graph of the full DAG. Thus, the structural

similarity of the TUSO problem is measured by the arc overlapping between

the compared two solutions. The integrated weights of sub-features (column ŵi)

and how each sub-feature reflects the objective function effectiveness (column

PF/NF) are also given. The consistency ratio for the first layer features is CR

= 9.5%, and CR values for the second layer features are 0%, 2.6%, 0.47%, 1%

respectively. They are in the acceptable range indicating the reliability of the

estimated weights.

Table 5.2: Details of solution features

NO. Solution features PF/NF ŵi
1

TV

Fleet size

PF

0.2479
2 Mileage 0.1239
3 Arc usage 0.0620
4 Compact diagram 0.1239
5

SC

Structural similarity

NF

0.1490
6 Range 0.0673
7 R2 0.0259
8 Slop 0.0259
9

SN
In terms of OF value

NF
0.0163

10 In terms of structure 0.0306
11 Ave # of HS PF 0.0862
12

CG
Better

PF

0.0225
13 Same 0.0134
14 Worse 0.0068

5.3.3 Experimental results

This section reports on the computational experiments for investigating the ef-

fectiveness of alternative objective function designs for TUSO. Although P̄ is

practical for large instances, experiments using small instances are conducted so

that the exact solver P alone is able to yield benchmark solutions. Thus, three

small real-world datasets shown in Table 5.3 are used. These datasets are from
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Greater Anglia operating the East Anglia franchise in the UK and providing

many commuter/regional services throughout the East of England. The exact

Table 5.3: Datasets information

Dataset No. of trips Full DAG (arc #) No. of O/D Unit type
D1 109 1080 11 class 755/3
D2 133 1684 12 class 755/4
D3 137 1514 12 class 360/4

solver P (RS-Opt [57]) is coded in FICO Xpress-MP 8.5 with Mosel, and the

auxiliary heuristic P̄ (SLIM [26]) is written in C#. RS-Opt and SLIM have been

upgraded to carry the features for the objective function effectiveness evalua-

tion, for instance, multiple alternative objective function designs, well-measured

wights to maintain the discernible importance of different optimization criteria,

compact diagram, and mileage. The experiments are conducted on a 64-bit work-

station with 16G RAM and an Intel Core i7-6700 CPU. RS-Opt has a customized

branch-and-price strategy and only utilizes the simplex solver of Xpress-MP to

solve LP-relaxation during the column generation process without employing the

default integer programming solver provided by Xpress-MP [57]. One of the stop-

ping criteria of RS-Opt is defined as the ’relative gap’ explained in Figure 5.5(c)

such that SLIM may converge to the solutions whose objective function values

are better than the benchmark solution claimed by RS-Opt solely. SLIM is set to

run 10 times and each time runs a maximum of 3000 iterations. A greedy method

is employed to construct the initial feasible solution to start the process ensuring

that each candidate objective function has the same start point.

Solution feature results

For SLIM, running time is not considered as an indicator for the objective func-

tion effectiveness because a random method is used in Extraction() attempting

to obtain iterative solutions as many as possible, which may lead SLIM to stop

at the maximum iteration. However, running time is significant to benchmark

objective function effectiveness because it shows how quick the alternative ob-

jective function designs guide RS-Opt to find the benchmark solution s∗. The

average running times of the three datasets with respect to different objective
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function designs are given in Figure 5.7. The results show that F3 can quickly

guide RS-Opt to find the ’(near-) optimal’ solution, but F2 takes almost 4 times

of F3 running time to converge.

Figure 5.7: RS-Opt average running
time

Figure 5.8: Structural similarities

(1) Quantified values of main optimization criteria Four main optimiza-

tion criteria are considered: fleet size, arc usage, mileage, and compact diagram.

The compact diagram is modeled by the time length (slack time) of arcs. At the

convergence of RS-Opt and SLIM according to each objective function candidate,

the quantified values of all the main optimization criteria can be derived from the

final solution. All alternative objective function designs can always lead RS-Opt

and SLIM to converge to the solutions which have the same values for the first

three main optimization criteria, as shown in Table 5.4. The first and the third

Table 5.4: Quantified values of the first three optimization criteria

Convergence Fleet size Mileage (mile) Arc usage
D1 7 6902.6 116
D2 17 13382.1 190
D3 20 13691.2 230

optimization criteria are always modeled in all alternative objective function de-

signs, thus, it is reasonable to have no difference because they are supposed to

be minimized. We notice that there is no difference in the second optimization

criterion as well no matter whether it is considered into the objective function.

One reason may be that this optimization criterion is positively supported by the

optimization of some other criteria.
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Table 5.5 shows the quantified values of slack time for three datasets. ’B/A/W’

represents the ’best/average/worst’ slack time value carried by the final solutions

obtained from multiple runs of SLIM. The ’Max gap’ row shows the maximum

difference between the maximum and minimum values from RS-Opt and SLIM

based on the four alternative objective function designs. The results show that

the last optimization criterion, modeled as slack time, has a significant differ-

Table 5.5: Slack time (mins)

Dataset D1 D2 D3
Solver RS-Opt SLIM (B/A/W) RS-Opt SLIM (B/A/W) RS-Opt SLIM (B/A/W)

OFs

F1 2034 2000 8782 7693/8346/8946 9899 9507/9993/10930†

F2 2160† 2000 9197 7913/8384/9634† 9597 9872/10015/10501
F3 1813? 1843 7180 7046/7193/7309 8897 8905/9020/9099
F4 1813? 1813?/1828/1843 7257 6716?/6993/7223 9064 8789?/8993/9133

Gap 347 187/172/157 2017 1197/1391/2411 1002 1083/1022/1831
Max gap 347 2918 2141
Notes: ?/† marks the minimum/maximum slack time for each dataset; OFs: objective functions

ence amongst the solutions from alternative objective function designs, where

the biggest ’max gap’ for D2 is almost 3000 minutes. For each dataset, the final

solutions from RS-Opt and SLIM always carry the same values for the first three

optimization criteria no matter which objective function is in use such that these

three solution features reflect the effectiveness of alternative objective function

designs to the same degree. On the other hand, the last optimization criterion

(slack time) that varies a lot throughout the solutions converged by different ob-

jective functions can act as a significant feature to indicate the objective function

effectiveness.

(2) Structural similarities Figure 5.8 demonstrates the results of structural

similarity comparisons between the final solutions obtained by RS-Opt and SLIM.

F3 guides SLIM to obtain the solution that has the highest similarity to the

benchmark solution for all the three tested datasets. Comparing F1 to F3, F2 to

F4, the different optimization criterion in the objective function is ’compact dia-

gram’. F3 and F4 generally guide SLIM to obtain solutions that have much higher

similarities with the corresponding benchmark than F1 and F2. This indicates

that ’compact diagram’ plays an important role in differentiating the structural
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properties. Considering Figure 5.7 and Figure 5.8 together, F3 always takes the

shortest time and leads to the highest similarity.

Figure 5.9: Structural similarities between the iterative solutions and the bench-
mark solution

Figure 5.9 shows the structural similarities between the iterative solutions and

the corresponding benchmark solutions for three datasets. The figures of F1 and
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F2 for D1 are not shown because SLIM only finds one solution whose structural

similarity to the corresponding s∗ can be found in Figure 5.8. Compared to F1 and

F2, a few aspects endorsing a better objective function effectiveness are observed

for F3 and F4: (i) many more iterative solutions are found; (ii) the solution space

is ranked more precisely; (iii) the R-squared values are larger; (iv) the ranges

of structural similarity are larger which means the similarities have been largely

increased via the process of objective function value getting better.

(3) The number of different solutions obtained during the iterations

of P̄ Table 5.6 shows the sub-feature values of SN , including the number of

solutions in terms of objective function value, the number of solutions in terms

of schedule structure, and the average number of HS (seen Table 5.2). F1 and F2

can only find very few solutions in terms of the objective function value through

many runs, and even only one solution found for D1. However, for each objec-

tive function value, there are many more solutions in different structures. This

means many different subspaces derived by SLIM converge to the same objective

function value but in different structures, i.e., the given objective function leads

SLIM to wander over a large ’poorly differentiated’ solution space. Consider the

results marked as bold in Table 5.6 as an example. F2 found 4 distinct objec-

Table 5.6: Number of iterative solutions

Dataset D1 D2 D3
Features No. 9 10 11 9 10 11 9 10 11

F1 1 1 – 6 58 9.667 40 272 6.8
F2 1 1 – 4 44 11 41 269 6.561
F3 26 27 1.039 279 973 3.488 895 1190 1.298
F4 17 21 1.235 436 918 2.106 814 1069 1.245

tive function values, however, these 4 objective function values corresponds to 44

different schedule structures 1. This phenomenon confuses SLIM to distinguish

better structural properties and converge to a better solution. On average, each

1Note: in Figure 5.9 of ’D2-F2’, it seems that only ’two’ objective function values are found.
This is because some values are very close. The ’four’ values are 29.2749, 29.2750, 29.3749,
29.3750 respectively. The same reason applies to other countable values in Figure 5.9 which
looks like not consistent with Table 5.6.
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objective function value has 11 HS. If the entire solution space is searched, this

number would be even larger which means F2 does not rank the solutions well.

F1 and F2 can only lead SLIM to find a single solution whose structure is very

different from but objective function value is identical to the benchmark solution.

This is considered as a bad indicator for objective function effectiveness, thus,

the values of the eleventh feature for F1 and F2 are empty for D1. On the other

hand, F3 and F4 can find a lot more different solutions in terms of objective

function value and schedule structure. Besides, the average number of HS for

each objective function value is also much smaller. For D1 solutions found by

F3, only one objective function value has a HS. The others are all unique (one

objective function value corresponds to one detailed schedule), which is desirable.

According to the structural comparisons, the effectiveness of F3 and F4 is much

superior to F1 and F2.

(4) Objective function values of the final solutions Table 5.7 gives the

results of the objective function values of final solutions from SLIM compared

to that from RS-Opt for each dataset over four alternative objective function

designs. The comparison results of F1 and F2 have three cases: better, same, and

worse. However, F3 and F4 can always lead SLIM to find solutions whose objective

Table 5.7: Convergence comparison of three datasets

Convergence F1 F2 F3 F4

D1 Same Same Better Better
D2 Better Better Better Better
D3 Worse Worse Better Better

function values are better than their corresponding benchmark solutions. For F3

and F4, the solutions with the same objective function value of s∗ are also found by

SLIM and their schedule structures are the same to the corresponding benchmark

structures. The feature values for the comparison of objective function values are

converted as a matrix with binary values to calculate the integrated objective

function effectiveness, seen in the last three columns of Table 5.8.
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Integrated effectiveness

Through the analysis of solution features, generally F3 and F4 have better effec-

tiveness than F1 and F2. This section evaluates the integrated effectiveness for

alternative objective function designs by employing the method proposed in sec-

tion 5.2.4. To compute the integrated effectiveness according to expression (5.2),

the weights and normalized values of all the features are needed, in which weights

are demonstrated in Table 5.2. To obtain comparable vi, the quantified value of

Table 5.8: Normalized values for features

Data F v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

D1

F1 1 1 1 .942 .905 0 0 0 .039 .037 .8 0 1 0
F2 1 1 1 1 .931 0 0 0 .0385 .037 .8 0 1 0
F3 1 1 1 .84 1 1 1 1 1 1 .841 1 0 0
F4 1 1 1 .84 1 1 .802 .868 .654 .778 1 1 0 0

D2

F1 1 1 1 .955 .808 .277 0 0 .0138 .06 .879 1 0 0
F2 1 1 1 1 .801 .435 0 0 .009 .045 1 1 0 0
F3 1 1 1 .781 1 1 1 1 .64 1 0.317 1 0 0
F4 1 1 1 .789 .99 .949 .115 .0236 1 .943 .191 1 0 0

D3

F1 1 1 1 .905 .847 .478 .492 .483 .0447 .229 1 0 0 1
F2 1 1 1 1 .831 .426 .711 .622 .046 .226 .965 0 0 1
F3 1 1 1 .848 1 1 .867 1 1 1 .191 1 0 0
F4 1 1 1 .863 .991 .98 1 .928 .909 .898 .183 1 0 0

each feature is normalized by the largest value across the four candidate objective

functions, shown in Table 5.8. The first three columns are the normalized values

of fleet size, mileage, and arc usage. Referring back to Table 5.4, their quantified

values across four candidate objective functions are the same. Thus, they equally

reflect the effectiveness of each candidate, i.e. the effectiveness is mainly deter-

mined by the other features. The last three columns are the matrix converted

from the comparisons of the objective function values of the final solutions from

SLIM and RS-Opt, in which each element is binary. For instance, the matrix

for D1 means: F1 and F2 guide SLIM to converge at a solution with the same

objective function value of benchmark solution; F3 and F4 converge to a solution

with a better objective function values than the benchmark solution.

Table 5.9 demonstrates the results of integrated effectiveness. It shows that

the effectiveness of F3 and F4 is remarkably better than F1 and F2, which is

consistent with the analysis of the quantified values of solution features. The
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effectiveness of F3 is slightly better than F4, and similar phenomena is observed

between F1 and F2. This indicates that ’mileage’ does not significantly contribute

to the objective function effectiveness and may have some negative influence on

the effectiveness. On the other hand, the effectiveness of F3 is much better than

Table 5.9: Integrated effectiveness

F1 F2 F3 F4

D1 0.4717 0.4751 0.2734 0.3081
D2 0.4647 0.4717 0.2268 0.2660
D3 0.4344 0.4399 0.2217 0.2288

Rank F3 > F4 > F1 > F2

F1. Similarly, F4 performs much better than F2. This implies that ’compact

diagram’ largely promote SLIM to differentiate better structural properties to

the solutions and further boosts objective function effectiveness. Moreover, these

three datasets have the same effectiveness rank for four alternative objective func-

tion designs: F3 > F4 > F1 > F2, which is also consistent with the effectiveness

ranked by the average running times of RS-Opt shown in Figure 5.7. According

to the feedback from the practitioners, F3 is the most effective objective function

using only three main optimization criteria to cover other ’hidden’ criteria con-

sidered by practitioners. And the solutions found by F3 and F4 are significantly

better than that found by F1 and F2 in practice. This feedback endorses that

the proposed methodology can effectively and systematically establish confidence

in alternative objective function designs. Through this investigation and discus-

sion with the practitioners, it is concluded that considering fleet size, arc usage,

and compact diagram in the objective function is the most effective combination

of main optimization criteria. Through the comparison between the alternative

objective function designs containing different optimization criteria, we identify

mileage slightly reduces objective function effectiveness but compact diagram

largely increases objective function effectiveness.
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Additional experiments on the number of coupling/decoupling opera-

tions and carriages

This section presents some additional experimental results on the number of cou-

pling/decoupling operations and carriages concerning different terms in the ob-

jective function. These experiments are carried out by RS-Opt solely without

considering fixed-charge variables. In the model with fixed-charge variables, the

number of coupling/decoupling operations is considered as a term in the objective

function. As the fixed-charge variables largely increase the problem complexity,

we try to avoid to use the model with fixed-charge variables. Theoretically, con-

sidering the slack time cost can positively reduce the total number of unnecessary

coupling/decoupling operations without using fixed-charge variables, as the anal-

ysis in section 4.1.3.

Table 5.10: Number of coupling and decoupling operations of D2 and D3

F1 F2 F3 F4

D2 28 37 19 21
D3 45 38 31 35

Table 5.10 gives the results of the total number of coupling/decoupling opera-

tions under different objective functions. D1 is not included in this table because

its solution does not contain any coupling/decoupling operation. For D2 and D3,

the total number of coupling/decoupling operations in the solutions obtained by

F3 and F4 is much fewer than the other two objective functions. Besides, the so-

lution delivered by F3 has the lowest number of coupling/decoupling operations.

These results support the theoretical analysis in section 4.1.3 and comply with

the evaluation results of the objective function effectiveness.

Figure 5.10 to Figure 5.13 give part of the solution connections at station

Ipswich (visualized by Tracs-RS [4]) that are obtained through different objective

functions for D1. Comparing F1 to F3, F2 to F4, slack time is added. These

station view comparisons enable us to intuitively investigate that considering the

slack time in the objective function can effectively decrease the total number of

coupling/decoupling operations. Let us consider the connections marked in the

red square in Figure 5.10 and Figure 5.11 as an example. We can notice that
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Figure 5.10 contains many unnecessary coupling/decoupling operations. On the

other hand, the connections for those trips in Figure 5.11 are very neat in which

no unnecessary coupling/decoupling operations are contained. Similar results are

also observed in the other comparisons in these figures. Besides, the first-in-first-

out connections in the solution obtained by the objective functions considering

slack time are obviously encouraged.

Figure 5.10: D2 Ipswich station view obtained by F1
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Figure 5.11: D2 Ipswich station view obtained by F3

As D1, D2, and D3 has only a single train unit type, D4 and D5 are used

to carry out the experiments on carriages. D4 has 243 trips and two train unit

types; D5 contains 579 trips and seven types of compatible train units. Table

5.11 gives the computational time of RS-Opt for these two datasets under the

alternative objective functions. The objective function effectiveness reflected by

running time comply with the experiments on D1, D2, and D3. The running

times under F3 and F4 are significantly shorter than that under F1 and F2. Same
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Figure 5.12: D2 Ipswich station view obtained by F2

with the total number of coupling and decoupling. Besides, the effectiveness of

F3 is superior to the others. Thus, we carry out the experiments on the carriage

minimization (Term1b) based on F3 and F4, and the results are shown in Table

5.12.

Notice that the total number of train units are always the same no matter

if Term1b is considered. However, the total number of carriages can be further
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Figure 5.13: D2 Ipswich station view obtained by F4

Table 5.11: Running times and coupling/decoupling operations of D4 and D5

F1 F2 F3 F4

D4
Running time (s) 1099 1166 663 795
C/D 34 40 27 29

D5
Running time (s) 699 952 143 165
C/D 45 38 31 35
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Figure 5.14: D3 Liverpool street station view obtained by F1

optimized when Term1b is considered. For instance, the solutions obtained by F3

and F4 use 93 carriages, which are 3 of class 755/3 and 21 of class 755/4; on the

other hand, the solutions considering Term1b contain only 89 carriages in which 7

of class 755/3 and 17 of class 755/4 are in use. It is noticeable that different train

unit types with distinct capacities (number of carriages) in the solution is more

balanced when Term1b is considered. The carriage optimization will not affect the
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Figure 5.15: D3 Liverpool street station view obtained by F3

optimization of train unit numbers because of the well-measured weights, details

seen in section 4.2.2. The carriage minimization can save operational costs and

carriage mileages because running a longer train unit costs more.
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Figure 5.16: D3 Liverpool street station view obtained by F2

Table 5.12: Number of units and carriages of D4 and D5

F3 F3 + Term1b F4 F4 + Term1b

D4
Unit 24 24 24 24
Carriage 93 89 93 89

D5
Unit 70 70 70 70
Carriage 139 138 139 138
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Figure 5.17: D3 Liverpool street station view obtained by F4

5.4 Discussions

For a complex real-world scheduling problem that is virtually NP-hard and has

numerous possible structural properties, it is not easy to establish confidence in

the effectiveness of objective function designs. The study on this topic is very

scarce in the literature. There is a lot of research studying real-world multi-

criteria optimization and automatic methods for algorithm parameter control,
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seen in the literature review in sections 2.5 and 2.6. However, they mostly pay

attention to promote the performance of algorithms to deliver better quality

solutions or shorten the computational time. In this research, a methodology

evaluating objective function effectiveness through the comparisons between the

solutions obtained from an exact ILP method and an auxiliary heuristic method is

presented. A set of features reflecting objective function effectiveness are derived,

where the main measure of effectiveness is in the structural comparisons between

the heuristic solutions and the exact solution. A hierarchical scheme of integrat-

ing all features is devised to quantify the objective function effectiveness. The

experiments carried out with TUSO instances strongly support the effectiveness

of this methodology. Besides, some additional experimental results on improving

the optimization of the total number of coupling/decoupling events and carriages

through objective functions are also presented. The TUSO problem researched

at the University of Leeds [57, 58, 26, 49] has inspired this work. In ongoing

work, we are investigating methods to improve the auxiliary heuristic method to

perform better in deriving reduced inputs. Another direction is how to evaluate

the objective function effectiveness if no practical exact method solver is available

but only a heuristic method is available. We may consider a dynamic benchmark

that can be updated once a better solution is found until no improvement can be

achieved.
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Chapter 6

Station level resolution

Train unit scheduling at the network level focuses on assigning the vehicle flows

to cover a timetable satisfying seat demands, which left coupling orders undeter-

mined and tentatively assigned linkages unfinalized. The research in this chapter

aims at expanding the network level (Phase I) to the station level (Phase II) to

resolve these two aspects to obtain a conflict-free solution at the specific station

layouts. While non-operable linkages may not be difficult to recognise by human

schedulers, precise algorithms are needed for the computer to detect conflicts

through the entire network based on complex station-level constraints. The cou-

pling order, coupling order propagation, and also coupling/decoupling operations

need to be precisely formalized to decompose the complex graph into some fun-

damental parts which are easier for applying the logic of detecting conflict and

finalize the tentative linkages systematically. This chapter includes the following

parts: coupling order definition, function and operator definitions, coupling or-

der propagation boundaries, an adaptive approach for the station-level resolution,

and experimental results.

6.1 Coupling order definition

The solution from Phase I is a set of paths each corresponding to a certain train

unit sequentially serving a set of trips. This solution gives a collection of units

for each trip and connections among trips. There is no defined unit sequence

119
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in a coupled unit block because of the simplification of station level constraints.

Hence, a multi-set can be defined to represent the collection of units for each trip,

denoted by Uj. The elements in Uj are the units of same or different types serving

trip j. The number of elements of the same unit type in Uj is the type flow of trip

j. For instance Uj = {X,X, Y, Y } means trip j is served by 4 units composed of 2

units of type X and 2 units of type Y . In a network flow solution, two attributes

for a trip j are important to introduce the concept of coupling order, which are

the predecessor and successor node sets (Ij and Rj). The predecessor/successor

node set of trip j contains all the nodes that have an arc to/from trip j. Consider

Figure 6.2 as an example, the predecessor node set of trip j is {i1, i2, ..., im} and

the successor node set of trip j is {r1, r2, ..., rm}. In addition, the trip timing

and direction information related to a given timetable and corresponding station

structure are also important in later discussion. Their notations are shown in

table 6.1. Here, dp(j) and ap(j) are binary values since each platform has two

Table 6.1: Notations of some trip attributes

Notations (j ∈ N) Definitions

Ij predecessor node set for trip j in a given solution
Rj successor node set for trip j in a given solution
dp(j) departing direction of trip j
dt(j) departing time of trip j at its departure platform
ap(j) arriving direction of trip j
at(j) arriving time of trip j at its arrival platform

notional directions of approach/travel. Let us define them as {up, down}, which

will be used in the rest of this part. One value has to be crossed out for the

dead-end platforms since they only have one end accessible. Thus the general

unit-block collection for each trip can be described as expression (6.1). Normally,

the unit coupled together can be up to 4 in real-life, i.e. m ≤ 4, |Ij| ≤ 4, and

|Rj| ≤ 4.

Uj = { u1 u2 ... um },∀j ∈ N (6.1)

For trips served by a single unit (m = 1), there is no need to consider their

coupling order. Besides, the unit sequence of unit blocks of same type is also not
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critical. This is based on the assumption that the diagram assignment among

same-type units can be easily swapped since unit circulation and maintenance

are not considered in this research.

Day-time coupling and decoupling operations are mostly done at platforms

in the UK. Those activities are critical because they form/request a certain unit

sequence. This feature together with trip attributes in table 6.1 can be utilized

to tentatively assign locally feasible coupling orders to some trips. Let Sj denote

the set of stopping stations of trip j. To formalize the coupling order concept,

let us define a sequenced multi-set Os
j to represent the coupling order for trip j

at location s, s ∈ Sj, j ∈ N . Start of a sequence is the front of a certain moving

direction followed by sequenced unit blocks as the rear. During the coupling or-

der assignment process, it has three status: fixed, unfixed, and semi-fixed, which

can be described in a general expression (6.2). The elements in Os
j are sequenced

subsets of Uj. The union of all the elements in Os
j must be the same with Uj,

because Os
j and Uj express the unit formation of trip j, as shown in expression

(6.3). Generally, Os
j = Uj if Os

j is ”unfixed”.

Os
j = [ v |v ⊆ Uj ] = [ v1 v2 ... vm′ ], ∀s ∈ Sj, ∀j ∈ N (6.2)

m′⋃
i=1

vi = Uj, ∀j ∈ N, m′ ≤ m (6.3)

In the context of arrival and departure, a unit block has a front and a rear with

respect to its travel direction. As shown in Figure 6.1, the coupling of two unit

blocks can either be a front-front (Figure 6.1a) or front-rear (Figure 6.1b and c)

attachment. Rear-rear (Figure 6.1d*) attachment is physically impossible unless

one of the unit blocks reverses into the platform, in which case the reversed

approaching end is regarded as the front. Similarly, after the decoupling of a unit

block, the two resulting unit blocks may next travel in the same direction with

front-rear facing or in the opposite directions with rear-rear facing (front-front

facing is physically impossible).
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Figure 6.1: Coupling position

6.2 Function and operator definitions

In real life, the moving direction of a train journey may be reversed at some

en-route stations. With a known unit sequence in a trip at a certain station,

the unit sequences at other stations are all known by counting the number of

en-route reversal operations. For a given network flow schedule, it is worthy to

tentatively seek if there is a feasible coupling order assignment existing. Coupling

and decoupling operations can locally fix some feasible coupling order. Running

trips can spread the influence of coupling order out to the whole network. Ac-

cordingly, a front-and-rear reversal function is defined to express the en-route

reversal movement, which will be applied once the moving direction is reversed.

In addition, coupling and decoupling operators are also defined based on the as-

sumption that the trips involving coupling/decoupling events are operated at the

same platform. Their notations are shown in table 6.2. The operations related

to different platforms, for example re-platforming, will be further explained in

section 6.4.1.
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Table 6.2: Function and operator

Symbols Remarks

Rev(δ) front-and-rear reversal function
” + ” coupling operator
”− ” decoupling operator

(1) Front-and-rear reversal function Rev(δ): the parameter δ is a coupling or-

der. This function can be applied multiple times, defined as Revn(δ), n ∈ N.

While n is odd, δ will be reversed; otherwise, the same order is kept. Testing

n is odd or even is a matter of computational implementation.

(2) Coupling operator: a coupling event is referring to two (sequenced-)sets

joining together to form a longer (sequenced-)set. The arcs involving this

operation are called coupling linkages. Let us define the coupling operator

(+) on two unit blocks with the resultant coupling order as shown in ex-

pression (6.4). That is, the second operand unit block w is attached to the

rear of the first operand unit block v.

u = v + w =⇒ Ou = [OvOw] (6.4)

Let i1, i2 denote train unit blocks arriving at the same platform to be at-

tached and i1 arrives first, at(i1) ≤ at(i2). Suppose i is the resultant unit

block after the attachment. As shown in Figure 6.1, i1 and i2 can arrive

from the same/opposite direction(s). Considering ap(i1) as the reference di-

rection, the coupling order of the resultant unit block is shown in expression

(6.5).

i =

i1 + i2, if ap(i1) = ap(i2)

Rev(i2) + i1, otherwise

=⇒ Oi =

[Oi1Oi2 ]

[Rev(Oi2)Oi1 ]

(6.5)

Once the coupled formation Oi based on the reference direction is fixed,
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the next step is to assign Oi to trip j according to the relative directions

between dp(j) and ap(i1), seen in expression (6.6).

Oori
j =

Oi, if dp(j) = ap(i1)

Rev(Oi), otherwise
(6.6)

(3) Decoupling operator: Similar to the discussion on the coupling operator in

(2), let us define the decoupling operator (−) on two unit blocks with the

resultant coupling order of first operand as shown in expression (6.7), in

which the second operand unit block w is detached from the rear of the

first operand unit block v.

u = v − w =⇒ Ov = [OuOw] (6.7)

Let r, r1, r2 denote train unit blocks such that r1 and r2 depart from

the same platform after being detached from r. Suppose r1 departs first

(dt(r1) ≤ dt(r2)), and using dp(r1) as the reference direction. The coupling

order of unit block r can be obtained according to expression (6.8).

r1 =

r − r2, if dp(r1) = dp(r2)

r −Rev(r2), otherwise

=⇒ Or =

[Or1Or2 ]

[Or1Rev(Or2)]

(6.8)

With the arrival direction of r, the requested coupling order at the destina-

tion of trip j can be assigned as expression (6.9).

Odest
j =

Or, if ap(j) = dp(r1)

Rev(Or), otherwise
(6.9)

For the dead-end platform, the unit blocks can only arrive from the same direction

and the departure direction must be opposite to the arrival direction.

When there is no coupling (|Ij| = 1) or decoupling (|Rj| = 1) related to form-



6.3. COUPLING ORDER PROPAGATION BOUNDARIES 125

ing/decomposing some new unit blocks, coupling order is temporarily considered

as not constrained. The coupling-order significance of unfixed trips will be re-

stored at the stage of coupling order propagation through the whole network.

Another case shown in Figure 6.2 refers that trips involve more than one cou-

pling/decoupling operations, i.e., |Ij| ≥ 3 or |Rj| ≥ 3. This case is considered in

an iterative way as shown in algorithm 2. Only one coupling operation is applied

at each iteration. The temporary coupling order during the iteration process is

stored in Otemp till all the unit block of trips in Ij is traversed. Thus the final Oi

can be obtained to be assigned to Oori
j . Similarly, this method can be applied to

multi-decoupling operations as well. Let use D to represent the size of |I ′j|. The

complexity of algorithm 2 is O(D).

Figure 6.2: Multiple (de-)coupling operations

6.3 Coupling order propagation boundaries

In this section, we shall systematically extract concise parts of the DAG where

coupling order conflicts could arise in a given Phase I solution because the cou-

pling order has not been maintained along with network flow level. With respect

to the full DAG G, a Phase I solution is a sub-graph G∗ ⊂ G with train unit flows

assigned. Disregarding the source and sink and arc directions, G∗ is decomposed

into one or more disjoint connected graphs, which can be classified into two types

as follows, represented as sets G1 and G2 respectively.
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Algorithm 2 Multi-coupling operations

Require: Ij
Ensure: Oori

j

1: I
′
j := sorted(Ij); i1 := I

′
j.f irstTrip; Otemp := Odest

i1

2: for all idx in I
′
j \ i1 do

3: Otemp ← ”+” for Otemp and Oiidx

4: end for
5: Oi := Otemp

6: if dp(j) = ap(i1) then
7: Oori

j := Oi

8: else
9: Oori

j := Rev(Oi)
10: end if

– We do not consider the coupling order issue for a sub-graph if it has only

a single unit type or it has multiple unit types but does not involve any

coupling/decoupling operation, stored in G1.

– The sub-graphs who do not satisfy the conditions for G1 will be stored in

G2 because their coupling order issues matter.

In a g ∈ G2, there may be some trips that are served by only one single unit

type, denoted as set N1. The coupling order issue for those trips are immaterial,

thus, g can be further decomposed to smaller sub-graphs to analyze the coupling

order issue by trimming off all the trips in N1. Let use G3 to denote the set of

sub-graphs decomposed from all the graphs in G2. Figure 6.3, shows an example

graph g ∈ G2 in which the trips that are free of coupling order issue (single unit

type) are represented as dashed circles. Two independent sub-graphs (marked out

by blue boxes) can be extracted from g when those dashed nodes are trimmed

off. A graph in G3 is the smallest unit to analyze the coupling order issue on the

network. The coupling order issue of a g1 ∈ G3 has nothing to do with that of

another g2 ∈ G3, but is sealed within g1 such that the coupling orders for the trips

contained in g1 are affected to each other, defined as coupling order propagation.

If the coupling orders of the trips in a graph g1 in G3 are not compatible to each

other, all the get-in and get-out arcs of the nodes in g1 in G3 will be collected

as an infeasible arc combination. Take the second sub-graph in Figure 6.3 as
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Figure 6.3: Two sub-graphs extracted from a graph in G2

an example, if the coupling orders of T14, T15, T17 are not compatible to each

other, the arcs {T11-T14, T10-T14, T14-T16, T15-T16, T16-T17, T16-T18} will

be collected as an infeasible arc combination.

To illustrate how coupling order propagates through a graph in G3, the first

sub-graph in Figure 6.3 is taken as an example. At its fringe, all the get-in

and get-out arcs and their connected nodes (T3, T4, T9, T10, and T12) are

restored. Figure 6.4a shows the DAG with one coupling and two decoupling

operations. One en-route reversal operation (marked as *) will happen to T3,

T8, T10 and T12. Figure 6.4b is the corresponding schematic space-time diagram

and their serving units assigned at the network flow level, in which (de-)coupling

operations are marked as black circles. Stations A, B, C have only one platform

and their platform types are also indicated. There may be other trains visiting as

intermediate stops, which are not shown here. They are usually planned at the

timetabling stage such that they will not be in conflict with other terminating

trips.

First of all, assign local feasible coupling orders by coupling/decoupling oper-

ations introduced in section 6.2 and the results are as follows:

(1) Coupling operation to form T5 with regard to arcs (T3,T5) and (T4,T5)

by considering ap(T3) as the reference direction.

Since, ap(T3) = ap(T4) and at(T3) < at(T4)

We have, i = i3 + i4 =⇒ Oi = [O3O4] = [{Y, Y }{X}] = [Y Y X]
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Figure 6.4: A sub-graph extracted from Figure 6.3

Since dp(T5) 6= ap(T3), Oori
5 = Rev(Oi) = [XY Y ]

Thus, Odest
5 = Oori

5 = [XY Y ]

Since, no en-route reversal operation for T5, Oori
5 = Odest

5 = [XY Y ].

(2) Decoupling operation for T7 through arcs (T7,T8) and (T7,T9) to serve T8

and T9 with consideration dp(T8) as the reference direction.

As dp(T8) 6= dp(T9), r8 = r′ −Rev(r9)

Thus, Or′ = [O8Rev(O9)] = [{X, Y }{Y }] = [{X, Y }Y ]
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Since ap(T7) = dp(T8), Odest
7 = Or′ = [{X, Y }Y ]

Then, Oori
7 = Odest

7 = [{X, Y }Y ]

(3) Decoupling operation for T8 to serve T10 and T12 over arcs (T8,T10) and

(T8,T12). Let dp(10) be the reference direction.

Since, dp(T10) = dp(T12) and dt(T10) < dt(T12)

We get, r10 = r − r12 =⇒ Or = [O10O12] = [{Y }{X}] = [Y X]

Because of ap(T8) 6= dp(T10), Odest
8 = Rev(Or) = [XY ]

Thus, Oori
8 = Rev(Odest

8 ) = [Y X]

Through the operations above, the coupling orders of T5 and T8 are fixed and the

coupling order of T7 is semi-fixed, but the coupling order of T6 is still unfixed.

Three possible tracking methods are considered for the coupling order propaga-

tion: early to late tracking, late to early tracking, and tracking starting with any

intermediate trip. These methods may result in conflict-free or coupling order

collision at different locations on the network.

Method 1: T5 → T6 → T7 → T8.

– T5→ T6: since there is no en-route reversal happening to T6 and ap(T5) =

dp(T6), thus Oori
6 = Odest

6 = Odest
5 = [XY Y ].

– T6 → T7: because ap(T6) 6= dp(T6) and no en-route reversal for T7 as

well, thus Oori
7 = Odest

7 = Rev(Odest
6 ) = [Y Y X].

– Compare the propagated coupling order to the semi-fixed coupling order

requested by the decoupling operation: [Y Y X] is not compatible with

[{X, Y }Y ].

– Conclusion: coupling order collision at T7.

Method 2: T8 → T7 → T6 → T5.

– T8 → T7: this involves a decoupling operation which is considered at the

stage of partially finalizing the locally feasible coupling order of T7. With
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known coupling order of T8, Odest
7 = [Oori

8 Rev(Oori
9 )] = [Y XY ]. This cou-

pling order must be compatible with the semi-fixed coupling order of T7

because this propagation only uses the fixed coupling order of the unit block

serving T8 to replace the unfixed part in [{X, Y }Y ].

– T7 → T6: Oori
6 = Odest

6 = Rev(Oori
7 ) = [Y XY ].

– T6 → T5: Oori
5 = Odest

5 = Oori
6 = [Y XY ].

– Compare the propagated coupling order to the fixed coupling order formed

by the coupling operation: [Y XY ] is not compatible with [XY Y ].

– Conclusion: coupling order collision at T5.

Method 3: tracking starts with any intermediate unfixed trip, T6 in this exam-

ple. The coupling order of T6 can be fixed via T5 or T7.

– T5 → T6: Oori
6 = Odest

5 = [XY Y ].

– T7 → T6: Odest
6 = Rev(Oori

7 ) = [Y {X, Y }].

– Oori
6 and Odest

6 are not compatible to each other.

– Conclusion: coupling order collision at T6.

As shown in the example above, although the coupling order collision might

be located in different places because of different propagation tracking methods,

the same set of arcs are involved, which are all the get-in and get-out arcs of

the nodes in a graph g ∈ G3. For a given network-flow-level schedule, there

may results in some individual coupling order collisions, and it is also possible

that there are some collisions with overlapping arcs. For the latter case, the

collisions with overlapping arcs can be considered via two strategies: consider

them individually such that each conflict contains the overlapping arcs, or group

them together as a combined conflict. Some experiments on these strategies will

be shown in section 6.5.
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6.4 An adaptive approach

This part proposes an adaptive method to resolve the station level constraints

based on the basic network flow model. Station-level conflicts are detected from

a given network flow schedule, which are translated into additional constraints

of RS-Opt. Some conflicts can be detected by the visualization tool, TRACS-

RS [4]. Moreover, a more analytical method of detecting conflicts for a given

Phase I solution will be discussed in section 6.4.1. Figure 6.5 shows the flowchart

of this method. The basic Phase I containing constraints C1 to C4 (referring

Figure 6.5: Flowchart for the adaptive approach

back to Chapter 4.2.3) is solved by RS-opt in [57]. Phase II attempts detecting

potential conflicts and assigning feasible coupling orders. Once an unresolvable

station-level conflict is encountered, a corresponding station-level constraint C5

(seen in Chapter 4.2.3) will be formulated and added to RS-Opt. A new solution

is to be sought once some new station-level constraints are added. If no more

station-level blockage is detected, corresponding feasible coupling order of trips

served by multi-units will also be given such that a solution with richer coupling

order information will be delivered.

Phase II contains two core parts. The first part is the conflict detection and
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coupling order assignment which is based on a series of factors, for instance,

physical structure of railways and stations, timing and moving directions of trips,

tentatively assigned arcs and unit flows for trips etc. For a given station operation

environment, conflicts are detected when a tentative linkage is not operable, or

feasible coupling order cannot be found at a certain platform, or a preassigned

coupling order is not feasible to another operation environment. The second part

is to extend Phase I and resolve the detected conflicts.

This method does not have the risk of getting stuck in a dead loop and we will

discuss this from two aspects: 1○ The conflicts located in a network-level solution

are sparse because many of the station level constraints could have already been

satisfied implicitly by the basic network flow solution in Phase I. This is endorsed

by the findings from the practitioner. 2○ Once a conflict is detected in a network-

level solution, all the solutions that contain this conflict will not be considered as

feasible such that they will never become a solution delivered by Phase II leading

to an endless loop.

6.4.1 Coupling order assignment and conflict detection

A two-stage method is proposed to assign coupling order and detect potential

infeasibility caused by crossing linkages or coupling order collision. The first

stage is based on each platform which has two purposes: one is to assign locally a

feasible coupling order with regard to coupling/decoupling operations introduced

in 6.2; the other is to verify related linkage feasibility. The second stage is to find

out the compatibility among locally fixed coupling order within each g ∈ G3 and

also further fix some unfixed/semi-fixed coupling orders by spreading the locally

feasible coupling order assigned by the first stage to the network.

Platform-based stage

This stage mainly assigns locally feasible coupling order and detects potential

conflicts mainly caused by crossing linkages. The platform function can be mod-

eled as a data structure behaving similar to a double-ended queue for storing

and processing unit blocks, in which unit blocks are sequenced by ”push” and

”pop” operations, shown in Figure 6.6. A ”push” operation refers to one unit
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block getting into the platform with a ”journey” and a ”pop” operation refers

to one unit block getting out of the platform with a ”journey” after some neces-

sary operations. The ”journey” here can be either a timetabled trip or a shunting

Figure 6.6: Data structure for unitStore

movement, for example a re-platforming movement. The two ends for ”push/pop”

operations correspond to two approaching directions to a through platform, which

can be mapped to up and down directions. The dead-end platform can also be

imitated by disabling one end. Besides, this data structure has capacity limi-

tation regarding to the platform length. While pushing each arrival unit block,

virtual ”dividers” are added to isolate it from the existing unit blocks since unit

blocks are physically separate when they arrive. This data structure is denoted

as unitStore.

Algorithm 3 describes the process at a platform. It takes a platform h and

basic solution s of Phase I as input. The output is a richer train unit schedule (s′)

with locally feasible coupling order assigned at each platform and verified linkages.

Conflicts will be collected in CF1 which will be further resolved. Three lists are

formed for platform h: arrival list, departure list and linkage list connecting the

arrivals to departures. This algorithm starts with the following initializations:

dL and aL are time sorted departure and arrival trips respectively; dtrip and

time is assigned with the first departure trip and its departure time respectively;

unitStore is initialized as empty. Once time is assigned a new value, all the

trips in aL whose arrival times are smaller than time, defined as set Adt, will

be attempted to push in unitStore once there is enough space. If there is not

enough space, shuntingAway() function will be called to verify all the existing
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Algorithm 3 Platform-based stage

Require: s, h, (∀h ∈ H)
Ensure: s′ and CF1

1: s′ := s; dL := sortedDepTripList; aL := sortedArrTripList; dtrip :=
dL.firstTrip(); time := dtrip.depT ime; unitStore := empty

2: repeat
3: for all atrip in Adt = (aL | atrip.arrT ime < time) do
4: if (unitStore.length+ atrip.length ≤ max) then
5: unitStore.push(atrip.composition)
6: else if (∃i ∈ unitStore: shuntAway(i) and i.length ≥ atrip.length)

then
7: sh := shuntingMove; s′.update(sh); unitStore.remove(i);
8: unitStore.push(atrip.composition)
9: else

10: dt := {unitStore.depTrips, link(atrip).headNodes}
11: c := OCconflict; CF1.add(c). // Over capacity conflict
12: dL := dL.remove(dt); aL := aL.remove(atrip); unitStore.clear()
13: if dL.isEmpty() = false then
14: dtrip := dL.firstTrip(); time := dtrip.depT ime; go to for loop
15: else
16: break;
17: end if
18: end if
19: aL.remove(atrip)
20: end for
21: links := dtrip.getInLinkages
22: verify := linkImplement(links, unitStore)
23: if verify.operable = true then
24: orders := verify.orderList
25: s′.update(orders); unitStore.pop(dtrip.composition)
26: else
27: c := verify.LIconflict
28: CF1.add(c). // Linkage implementation conflict
29: uc := c.linkedUnitblocks; unitStore.remove(uc)
30: update element sequence in unitStore
31: end if
32: dL.remove(dtrip); dtrip := dL.firstTrip(); time := dtrip.depT ime
33: until dL.isEmpty()
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unit blocks to find out if some of them can be shunted away to secure enough

space for the newly push-in unit block. The linkage slack time will be verified

during this process. If shuntingAway(i) = true, the newly push-in unit block

can be stored in unitStore and accordingly shunting movement will be saved in

s′. Otherwise, all the arcs linked with those unit blocks will be considered as a

conflict stored in CF1 because they invalidate the platform capacity constraint,

denoted as OCconflict. All the unit blocks will be cleared out from unitStore,

and the departure trips corresponding to the unit blocks in unitStore and atrip

will be removed from dL, and new dtrip and time will be assigned to restart the

for loop.

After all the arrival unit blocks arriving earlier than current time are suc-

cessfully pushed into unitStore, the algorithm starts to deal with the unit blocks

which are supposed to be popped out to serve the trip whose departure time is

time. A function called linkImplement(), shown in algorithm 4, is applied to

verify the feasibility of links which are the get-in linkages of this departure trip

with respect to the current unitStore status. If all the get-in linkages are verified

as operable, the locally feasible coupling orders will be updated to s′ and the unit

block serving this trip will be popped out of unitStore. Otherwise, the conflict

related to the linkage implementation, denoted as LIconflict will be saved into

CF1 to be resolved later and the unit blocks related to this conflict uc will be

removed from unitStore. Then dtrip and time will be renewed for next iteration.

A conflict will not break this algorithm until all the departure trips is verified

because this strategy tries to collect as many conflicts as it can.

For Algorithms 3, the ’repeat’ operation is executed based on list dL. Under

the ’repeat’ loop, there are three parts whose complexities need to be consid-

ered: 1○ a loop on aL to find out Adt is firstly executed; 2○ a loop based on

Adt to judge if the arrival trips in Adt can be parked on platform h is launched,

under which another loop on unitStore is needed to check if any shunting move-

ments can be inserted; 3○ Algorithm 4 to finalize the corresponding linkages

is called by Algorithms 3. Thus, the complexity of Algorithm 3 is O(|dL| ∗
(|aL| + |Adt| ∗ |unitStore| + O(Algorithm4))). The complexity of Algorithm 4

is O(|ubs.arrTrips|) because it has only one loop based on ubs.arrTrips. The

sizes of |dL| and |aL| depend on the given timetable and railway network. |Adt|
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Algorithm 4 linkImplement()

Require: links, unitStore
Ensure: orderList, LIconflict, operable

1: c := links.count(); ubs := unitStore(dir, c)
2: i := ubs.firstArrTrip; j := ubs.lastArrTrip; operable = true
3: if links.tailT rips = ubs.arrTrips then
4: if c = 1 and i.getOutArc.count() ≥ 2 then
5: orderList.add(Odest

i ). // Assigned by ”− ”, case 2○
6: else if c ≥ 2 then
7: counter := 0
8: for all at in ubs.arrTrips do
9: if at.getOutArc.count() = 1 then

10: counter = counter + 1
11: end if
12: end for
13: if counter = c then
14: orderList.add(Oori

dtrip). // Assigned by ” + ”, case 3○
15: else if counter = c− 1 and j.getOutArc.count() ≥ 2 then
16: orderList.add(Oori

dtrip, O
dest
j ). // Assigned by both ” + ” and ”−”, case

4○
17: else
18: operable = false; LIconflict. // No feasible order assigned
19: end if
20: end if
21: else
22: operable = false; LIconflict. // Crossing linkages
23: end if

and |ubs.arrTrips| are usually smaller than 4 in practice representing less than

4 train units allowed to be coupled together to serve next trip and |unitStore| is

bounded by the platform length that normally can park no more than 12 units.

Let us use J , E, L, V to denote |dL|, |aL|, |Adt|, |unitStore| respectively. There-

fore, the complexity of Algorithm 3 is O(J ∗ (E + L ∗ V )). As this algorithm is

executed for every platform in H, thus, the complexity is O(J ∗H∗ (E+L ∗V )).

Algorithm 4, linkImplement(), is a sub-part of algorithm 3 and the coupling

and decoupling operations (”+”, ”−”) defined in section 6.2 are applied in this

algorithm. There are two types of input for this algorithm: one the the links

obtained at line 19 in algorithm 3, the other is the current status of unitStore.
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Figure 6.7: 4 possible cases of operations to form a departure trip

This algorithm focuses on verifying if the linkages in links of a departure trip

(dtrip) are operable under the corresponding unitStore circumstances and returns

an assigned locally feasible coupling order or a conflict. Let us define dir as the

end (up or down) of unitStore that complys with the departure direction of

dtrip and c is the total number of linkages in links. Thus, we define a function

unitStore(dir, c) to obtain c unit blocks counted from the end dir, stored in

ubs. i and j are the arrival trips delivering the first and last unit blocks in ubs

respectively. Let us consider an example by using the unitStore status shown in

Figure 6.6. Suppose c = 3, dir = down, thus, ubs = [uz+1uzuz−1], and i and j

refers to the arrival trips delivering uz+1 and uz−1 respectively. This algorithm

firstly justifies if the unit blocks in ubs are delivered by the arrival trips which are

actually linked to dtrip. If this condition is satisfied, the operations converting

the linked arrival trips to dtrip will be investigated, which can be classified into

four cases: 1○ no coupling or decoupling, 2○ decoupling only, 3○ coupling only,

4○ both coupling and decoupling, as shown in Figure 6.7. For case 1○ it will be

claimed as operable if this condition is satisfied because it only requests standard

turnaround time that has been considered while generating DAG. The case 2○ 3○
4○ can be differentiated by counting c and get-out arcs of each arrival trips for the

unit blocks in ubs. The feasibility of these cases will be ensured if a corresponding

locally feasible coupling order can be assigned. Otherwise, this algorithm claims

the given links as inoperable and returns the corresponding conflict.

Network-based stage

The result from the platform-based stage is the basis of the network-based cou-

pling order propagation process to finalize more feasible coupling orders or to
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detect conflict caused by coupling-order collision. As station operations are con-

nected by running trips some unfixed/semi-fixed trips can be further determined

taking advantage of the coupling order propagation on the network based on the

solution graph of Phase I and the railway-network structure, and the coupling

order conflict can also be captured during the propagation process over g ∈ G3.

The issues considered at this stage include: coupling order propagating, en-route

reversal of a unit block, and flexible timings for some empty shunting movements

(discussed in section 6.4.1).

Algorithm 5 Network-based stage

Require: s′, θ
Ensure: s′′ and CF2

1: G3 := graphSplit(s′); s′′ := s′

2: for all g in G3 do
3: i := g.fixedL.anyTrip
4: backwardSearch(eLi); forwardSearch(lLi)
5: if propatingToEdge = true then
6: orders := finalizedOrder(g)
7: s′′ := s′.update(orders)
8: else
9: c := COconflict; CF2.add(c). // Coupling order collision in g

10: end if
11: end for

Algorithm 5 focuses on the coupling order propagation through each g ∈ G3

that may contain some trips with fixed coupling orders assigned at the platform

stage. Let define fixedL as the fixed-order trip list for a g ∈ G3. For a trip i ∈
fixedL, considering i as a divider, the trips within g can be split into two sorted

lists. One includes the trips earlier than i, called earlier trip list and denoted by

eLi; the other contains the trips later than i, called later trip list and denoted

by lLi. Starting from i, two directions coupling order propagation search will

be launched, as shown in Figure 6.8, to further assign coupling order and detect

coupling order collision. Trip i can be the first trip, the last trip, or any other trip,

corresponding to one of those three different tracking methods of coupling order

propagation that have been analyzed in section 6.3. The backwardSearch(eLi)

and forwardSearch(lLi) start with either Oori
i or Odest

i . It is possible that the
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Figure 6.8: Backward and forward search within a g ∈ G3

platform stage assigns two incompatible orders to the origin and destination of

trip i such that this g is claimed as a coupling order conflict directly. Otherwise,

the coupling order of trip i at certain location will be propagated to other trips

in g and compared to their coupling orders that may have been assigned at the

platform stage. If the propagated order and the assigned order of each trip in g

are compatible, g is claimed as conflict-free. The coupling orders of trips in g are

finalized and updated to s′′. Otherwise, all the linkages related to the trips in g

will be collected as a coupling order collision to be stored in CF2 for the further

resolution. Let use M , Q, R to represent |G3|, |eLi|, and |lLi|. The complexity

of Algorithm 5 is O(M ∗ (Q+R)).

Flexible timings

The time available for unit blocks moving from arrivals to departures are limited,

which is rigidly constrained by the timetable. Within this limited time range, a

series of time-consuming operations must be accomplished at the corresponding

stations such as coupling, decoupling, re-platforming, shunting to depot/siding,

cleaning, equipment inspection etc. Suppose that a unit block u arrives with trip

i at platform h and finishes all necessary operations which consume time of tph

and later leaves from h to another platform h′ to serve trip j. A dummy trip ũ(i,j)

from h to h′ is generated and its departure time dt(ũ) and arrival time at(ũ) are

flexible. However, the duration time of dummy trip u is restricted by the clock

time of timetable such that time boundaries for the departure and arrival times of



140 CHAPTER 6. STATION LEVEL RESOLUTION

dummy trips must be considered to ensure no blockage caused at inappropriate

time. Normally, ũ can be moved away from h after the necessary operations

are finished but it must be shunted away before the next arriving trip, and its

departure time range is shown in expression (6.10). Besides, ũ must arrive at h′

earlier than the departure time of trip j minus necessary departure operations

and later than the last departure trip at h′, and its arrival time range is shown

in expression (6.11).

at(i) + pth < dt(ũ) < at(i+ 1), ∀ũ (6.10)

dt(j − 1) < at(ũ) < dt(j)− pth′ , ∀ũ (6.11)

Figure 6.9 shows a simple example of avoiding blockage by manipulating flexible

time boundaries together with coupling order decision. Suppose that h1 and h4

are dead-end platforms and h3 is a through platform and the directions of T3

and T4 are the same. T1 is a re-platforming trip from h2 to h1 The following two

procedures explain what time boundary is feasible.

Figure 6.9: Avoid blockage by manipulating the flexible timings boundaries

Procedure 1. at(T2) < at(ũ1) < dt(T3) − tph1 → Oori
3 = [XY ] → Odest

3 =

Rev(Oori
3 ) = [Y X] → Oori

4 = [Y X] → Odest
4 = Rev2(Oori

4 ) = [Y X] → u1 blocks

the departure of u2 → infeasible time boundaries.

Procedure 2. at(ũ1) < at(T2) → Oori
3 = [Y X] → Odest

3 = Rev(Oori
3 ) = [XY ] →

Oori
4 = [XY ] → Odest

4 = Rev2(Oori
4 ) = [XY ] → Oori

4 = [Y ] and Oori
4 = [X] →

feasible time boundaries.
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6.4.2 Conflicts resolving

The station-level resolution includes two main parts: coupling order assignment

and conflict detection, and conflicts resolving. The first part is very important

because it is the basis for the second part. If the first part claims a conflict-free

solution, there is no need to launch the second part anymore. These two parts are

complementary to each other. After the conflicts are detected by the first part,

the second part converts these conflicts into linear constraints and feeds new

constrains to RS-Opt. The method to form new constraints of eliminating the

solutions that contain conflicts is described in the mathematical model part, seen

in section 4.2.3 constraints C6. However, generating the full conflict set of Z1 or Z2

in an original full DAG is very complicated as numerous arc/flow combinations.

Through the proposed adaptive approach, the complexity of generating Z1 or

Z2 can be avoided, and we only need to detect the conflicts existing in a Phase

I solution. According to the observation on the Phase I solution, the potential

conflicts at the station level are sparse, thus, the complexity of automatically

assigning coupling orders and detecting potential conflicts is much smaller than

that of generating the full conflict set Z1 or Z2 in an original DAG. The method of

assigning feasible coupling order and detecting conflict have been systematically

designed in section 6.4.1. Given a solution from Phase I, the detected conflicts

are stored in CF1 and CF2 such that the constraints introduced in expressions

(4.27) and (4.33) can be converted as expressions (6.12) and (6.13), defined as

valid cuts. ∑
a∈Ā

ya ≤| Ā | −1, ∀Ā ∈ CF1 ∪ CF2 (Arc selection) (6.12)

∑
B

(1− xqa) +
∑
Q

xqa ≥ 1, ∀Ă ∈ CF1 ∪ CF2 (Type flow) (6.13)

Figure 6.10 shows the logistic of feeding valid cuts to the solver (RS-Opt) of

Phase I. RS-Opt considers the original DAG G = (N ,A) as input and gives a

tentative solution G∗ = (N ,A∗). The station level attempts to assign feasible

coupling orders to G∗ and finalizes tentative linkages. During this process, the

conflicts are detected at the platform stage and the network stage. Note that

some conflicts at the platform stage can be locally resolved, which will not be
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recorded in CF2. Three strategies are introduced to resolve local conflicts, includ-

ing swapping part of the unit diagrams for the same type of train units, inserting

extra station shunting movements within the bearable time of corresponding link-

ages, manipulating the flexible timing of re-platforming/depot-return train units.

The resolved platform-based results will be passed to the network-based stage to

assign further coupling orders and detect coupling order conflict stored in CF2.

The conflict in CF1 and CF2 will be formed as valid cuts to be added to RS-Opt.

RS-Opt will be launched again with detected valid cuts to deliver a new solution

G∗ = (N ,A∗). The working mechanism of the valid cuts is to eliminate all the

solutions containing the conflicts formed in the valid cuts. Thus, RS-Opt with

added valid cuts will not consider a solution which contains any conflict that has

been constrained in RS-Opt as a feasible solution. For a given schedule, if and

only if no conflicts or only local resolvable conflicts are detected, the schedule will

be reported as the final conflict-free schedule with assigned coupling order and

finalized linkages.

Figure 6.10: Logistic of feeding valid cuts to Phase I
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6.5 Dataset description

The main goals in this part are to assign feasible coupling orders and finalize

tentative linkages and the conflicts will be detected if the goals fail. In this

research, coupling order assignment at the platform, coupling order propagation

on the network, flexible times for re-platforming connections, and also reversal

en-route are all featured. Real-world datasets may not contain all the features at

the same time in a single dataset, or some of the features may not be present in

every real-world dataset. However, these features are significant to be considered

because there would be some severe consequences affecting the entire network

operation when one of these cases occur, even though they may be infrequent.

On the other hand, RS-Opt hardly delivers solutions for real-world datasets while

considering the fixed-charge variables. However, the coupling order and linkage

finalization are significant to be resolved at the station level to ensure an operable

solution for the TUSO problem in practice. Thus, we design small but complex

artificial datasets to capture all the features we considered in this Chapter.

6.5.1 Artificial datasets

For proof of concepts and verifying the correctness of the results, the experiments

are firstly conducted based on a relatively small size artificial station-level struc-

ture, shown in Figure 6.11. This structure contains three terminating stations

which are S1, S4, and S8, and their platform information are indicated in Fig-

ure 6.11. The other stations are intermediate stations where the coupling order

Figure 6.11: Station-level structure
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reversal en-route may occur. {up} and {down} directions for each platform are

marked to notify the relative approaching and leaving directions of unit blocks.

Only one direction is available for dead-end platform, but two directions are us-

able for through platform. One depot connects with the down direction of two

platforms of station S4, which means the units shunt to depot at this station

can only leave their platforms through the down direction. For the purpose of

manually verifying the correctness of solutions given by the approach proposed in

this part which are claimed as conflict-free solutions, four small artificial datasets,

containing trips running between all three O-D pair (S1-S4, S1-S8, S4-S8), are

well designed for different purposes for instance coupling order assignment, con-

flict detection, conflict resolution, etc. Table 6.3 gives a summary of these four

testing datasets. Datasets D3 and D4 have the same timetable such that they

Table 6.3: Summary of artificial data sets

Dataset DAG Unit types Unit compatibility Fleet size

D1 (17, 73) X,Y Yes 2X,4Y
D2 (25, 111) X,Y Yes 2X,5Y
D3 (21, 91) X,Y Yes 5X,5Y
D4 (21, 91) X,Y Yes 5X,5Y

have the same number of generated arcs. However, some trips in this timetable

have different passenger demands, thus, their solutions could be different as well.

Two types of compatible units are used on the network to satisfy diverse passenger

demands.

6.5.2 Real-world datasets

The real-world datasets used in this research are derived from TransPennine Ex-

press (TPE), which is a British train operating company owned by FirstGroup

that operates the TransPennine Express franchise. TPE runs regional and in-

tercity rail services between the major cities of Northern England and Scotland,

as shown in the map in Figure 6.12 [3]. Usually, TPE has a daily timetable of

around 500 trips. RS-Opt is set as the full model containing the arc-selection vari-

ables (ya), which struggles to deliver a solution for even small instances. Thus,
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three sub-datasets are derived from the complete timetable as shown in Table

6.4, which is divided based on locations. Class 185 and Class 350 are usually not

coupled together in real-life scheduling, but we consider them can be coupled for

testing the coupling orders as the train unit sequence is much more significant

when two different types of train units are coupled.

Figure 6.12: Rail map of TPE
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Table 6.4: Summary of real-world data sets

Dataset DAG Unit types Unit compatibility Fleet size Stations

Sub1 (97, 2671) c185, c350 Yes 20, 21 9
Sub2 (126, 1913) c185, c350 Yes 11, 17 7
Sub3 (65, 569) c185, c350 Yes 6, 12 4

6.6 Experimental results

The experiments are applied by the station-level constraints C5a taking use of

the fixed-charge variables (ya) because C5b is very hard to be implemented in the

existing RS-Opt. Phase I solver, RS-Opt, is written in FICO Xpress-MP 8.5 with

Mosel, and the coupling order assignment and linkage finalization at Phase II are

coded in C#. The experiments are conducted on a 64-bit workstation with 64G

and an Intel Core i7-6700HQ CPU.

6.6.1 Results of artificial datasets

The solution of dataset D1 from RS-Opt without any station-level constraints is

conflict-free. The solution graph with assigned feasible coupling orders is shown in

Figure 6.13. The coupling orders for T1, T8, and T10 are fixed at the platform-

based stage, marked as red in Figure 6.13. The coupling order of T7 is semi-

fixed by the platform-based stage [Y {XY }], which means unit Y is the front

but the sequence of {XY } can not be assigned at the platform-based stage.

Based on the results of the platform-based stage, the network-based stage further

assigns the coupling orders for another 2 trips including T7 through coupling

order propagation, marked as green in Figure 6.13. Trip T14 is formed by a

coupling operation of two units in different types and unit Y served T6 involves

a re-platforming operation. As T14 is the last trip served by unit block {XY },
its feasible coupling order can be either [XY ] or [Y X]. The time of arriving at

the departure platform of T14 is flexible but just early enough to complete the

coupling operation with unit X from T12 at station S4 platform P2 to be ready

to serve T14.

Dataset D2 runs three iterations to find a conflict-free solution, and detailed
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Figure 6.13: Solution graph with assigned feasible coupling order for D1

running information is shown in Table 6.5. We can notice that the solution fleet

size of each iteration is the same and the objective function has a slight increase

as we expected for compromising of producing a conflict-free schedule. In this

process, 4 conflicts are detected during the platform-based stage, in which 2

of them are locally resolvable. Hence, only 2 station-level constraints (crossing

linkages) are added back to Phase I which are shown in the fifth column in Table

6.5. Since all the conflicts are detected during the platform-based stage, the arc

and flow changing through two iterations are visualized in Figure 6.14 where the

red arrows represent crossing linkages. The conflicts are resolved by some arc and

unit type changes for T14 and T20.

The experimenting information for dataset D3 is shown in Table 6.6 and the

corresponding iterative solution graphs are presented in Figure 6.15. As shown in
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Table 6.5: Information on each iteration for D2

Iteration Objective Fleet Time Conflicts New constraint arc set

1 8.09951 4X,4Y 10.1s 0 No
2 8.09954 4X,4Y 11.3s 2 {80,85}
3 8.10041 4X,4Y 9.4s 2 {83,85}

Figure 6.14: Station-level arc-flow changing

Table 6.6: Information on each iteration for D3

Iteration Objective Fleet Time Conflicts New constraint arc set

1 6.08601 3X,3Y 11.5s 0 No
2 6.08603 3X,3Y 10.9s 1 {20,27,38,40,47,48}
3 7.08598 3X,4Y 207.1s 1 {34,43,51,52,61,62}
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Figure 6.15: Iterative solution graphs for D3

Table 6.6, the fleet size used in the final solution has increased by one unit Y . It is

because the problem size is small and there is not a lot of other feasible solutions

with the same fleet size. For the real-world dataset, increasing some units to find

a feasible solution at the station level would not be frequent since there would

have more feasible solutions corresponding to the minimum number of train unit.

For the solution from Phase I of each iteration, there is no conflict detected

at the platform-based stage but one conflict is detected at the network-based

stage, which has been marked as red arrows in Figure 6.15. In the first solution,

a coupling order collision is located in the arc set {20, 27, 38, 40, 47, 48}, which

is converted as constraint (6.14) such that all the solutions that contain these

arcs are eliminated. With constraint (6.14), RS-Opt deliveries a new solution

as shown in the second graph in Figure 6.15. However, the second solution still

contains a coupling order collision in the arc set {34, 43, 51, 52, 61, 62}, converted

as constraint (6.15). RS-Opt has been launched again with constraints (6.14) and

(6.14) to deliver another solution which is finalized as conflict-free with assigned

coupling orders seen in the third solution graph in Figure 6.15.

y20 + y27 + y38 + y40 + y47 + y48 ≤ 5 (6.14)
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y34 + y43 + y51 + y52 + y61 + y62 ≤ 5 (6.15)

For dataset D4, two individual conflicts are detected for the solution without

any station-level constraints and two new constraints are added through the first

Phase II iteration. However, the new solution turns out two overlapping conflicts

and the conflict arc sets are {20,27,38,39,47,48} and {34,39,51,52}. As it is seen

here, arc 39 belongs to two conflicts. Hence, two strategies have been taken to

tackle this type of overlapping conflicts. One is to treat them as two constraints

since no matter which set of arcs are selected simultaneously will definitely in-

valid the solution. Two more iterations are needed to find a feasible solution.

The other is to consider them as an integrated constraint since it is possible to

have a feasible solution if the flows on any detected incompatible arc set have a

slight change. The experiment results show the solution following this strategy

is conflict-free directly after adding this integrated constraint. This experiment

shows that two strategies can produce feasible results but the second strategy

gives more flexibility in terms of arc selection, which means the second strategy

is not as over-tight as the first strategy. Compare to the first-strategy solution,

this solution has higher unit-usage efficiency in terms of fleet size, besides, the

solution graph is much simpler. We also tried to combine these two strategies,

but the results are still not as efficient as the second strategy.

Table 6.7 shows the information of arc selection of all datasets, where Arcs(1)

represent the number of arcs selected in the solution without station-level con-

straints and Arcs(2) is on behalf of the number of arcs chosen in the final conflict-

free solution. The arc overlapping percentage between Arcs(1) and Arcs(2) are

Table 6.7: Information on arc selection for D1, D2, D3 and D4

Dataset Arcs(1) Arcs(2) Overlapping(%) Total conflicts Iterations

D1 24 24 100% 0 1
D2 31 31 87.1% 4 3
D3 27 28 85.2% 2 3

D4-strategy 1 27 28 85.2% 4 5
D4-strategy 2 27 31 92.6% 8 3

very high. Considering the solution structure, we notice that the conflict-free
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solution only changes a small portion of arcs around detected arcs and tries to

reserve most of the other low cost arcs. The conflict-free optimal solution is al-

ways found within reasonable time and iterations. Besides, the feasible coupling

orders and flexible timings can be determined simultaneously.

6.6.2 Results of real-world datasets

The experiments on the artificial datasets endorse the correctness and effective-

ness for the proposed method. The artificial datasets are purposed designed to

capture all the features described in this method and there are only very limited

number of feasible solutions corresponding to the optimal number of train units.

These two reasons lead the artificial datasets to be more complicated to solve

and obtain a conflict-free solution at the station level. In other words, real-world

datasets may be easier (less iterations) to be solved.

Table 6.8 gives a summary of the results of datasets Sub1 and Sub2. These

two datasets do not involve any coupling or decoupling operations, thus, there

is no coupling order conflict detected at the network propagation process. As

Table 6.8: Information on each iteration for Sub1 and Sub2

Data Iteration Objective Fleet size Time (s) Conflicts

Sub1
1 31.839 20, 21 16 3
2 32.2474 20, 21 26696 4

Sub2 1 34.0061 11, 17 39 3

we can see, the conflict-free solution schedule of Sub1 needs two iterations to be

finalized, and the details of each iteration are shown in Table 6.9. At the first

iteration, three platform conflicts are detected, in which the first two conflicts at

the platform 1 of MNCRIAP (Manchester Airport station) are locally resolvable

by taking advantage of the interchangeability between the same type of train

unit. However, the third platform conflict at the platform 1 of LVRPLSH (Liver-

pool Lime Street station) is unresolvable, marked as bold and underlined. Thus,

this conflict is converted as a new constraint (6.16) added to RS-Opt to seek an-

other solution. In the new iteration, RS-Opt gives a solution with the same fleet
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Table 6.9: Iterative conflicts of Sub1

Iteration Location Arc ID Remark Local resolvable

1
MNCRIAP 1 {467,525}

Crossing linkages
Yes

MNCRIAP 1 {655,667} Yes
LVRPLSH 1 {314,357,430} No

2

NWCSTLE 2 {123,351,154}
Crossing linkages

Yes
NWCSTLE 2 {556,590} Yes
NWCSTLE 2 {220,293} Yes
LVRPLSH 1 {605,665} Yes

size but slightly higher objective function value. At Phase II, another four plat-

form conflicts (located at NWCSTLE 2 and LVRPLSH 1) are detected. As all of

them are locally resolvable, the locally resolved solution is the final conflict-free

schedule.

y314 + y357 + y430 ≤ 2 (6.16)

However, the solution of Sub2 obtained at the first iteration can be finalized

directly because only three local-resolvable platform conflicts located at MN-

CRIAP 1 are detected, seen in Table 6.10 that can be resolved by using inter-

changeability.

Table 6.10: Platform conflicts of Sub1

Iteration Location Arc ID Remark Local resolvable

1
MNCRIAP 1 {501,558}

Crossing linkages
Yes

MNCRIAP 1 {1511,1542} Yes
MNCRIAP 1 {1603,1628} Yes

The solution of Sub3 from the network level is finalized as conflict-free at the

station level, where three coupling operations are assigned with feasible coupling

orders, as shown in Figure 6.16 and Figure 6.17. The coupling operation in Fig-

ure 6.16 is operated at Edinburgh Waverley station. The coupling order in this

Figure is not significant because of the interchangeability between the same type

of train unit. Figure 6.17 contains one coupling operation and one decoupling

operation, operated at GLGC (Glasgow Central Station). The coupling order
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Figure 6.16: Coupling operation at Edinburgh Waverley station

of trip 1M96FP at its origin is [c350, c185], formed by the coupling operation

between the train units serving trips 1S35LP and 1S35LL. The coupling order of

trip 1S71LP at its destination is [c185, c350], requested by the decoupling opera-

tion involving 1M94FA and 1M94LL. As 1M96FP and 1S71LP have no reversal

en-route, the assigned coupling orders is the same during the whole journeys.

The coupling orders between 1M96FP and 1S71LP are compatible as this arc

Figure 6.17: Coupling order propagation

is operated at a dead-end platform of MNCRIAP (Manchester Airport station)

such that there must be a reversal operation. Besides, the solution has five re-

platforming operations that do not involve any coupling/decoupling operations.

Therefore, they are fixed by assigning the same platforms to the involved trips.

6.7 Discussions

The network-flow model has the limitation of ignoring station level constraints,

which leads to an incomplete solution. This defect restricts the operability when



154 CHAPTER 6. STATION LEVEL RESOLUTION

it is implemented at the station level because of a set of undecided factors, for

instance, the coupling orders impacted by station layouts, timings, and unit move-

ment directions. This research scrutinizes the potential problems in a solution

from the network level. A multi-commodity fixed-charge integer linear program-

ming including station-level conflict elimination is proposed. Based on the re-

search on the network level of TUSO, an adaptive approach is proposed to selec-

tively consider detected station-level constraints to efficiently produce a complete

and operable conflict-free solution with assigned feasible coupling orders and fi-

nalized linkages. The experiments on the artificial and real-world datasets show

the correctness and efficiency of the proposed method. Although we have already

discussed that the proposed method is hardly stuck in a dead loop (seen in the

third paragraph of section 6.4), we still discuss a potential backup method that

can avoid a dead loop. Taking advantage of SLIM, a set of ranked near-optimal

solutions can be initially generated as tentative solutions to be feed to Phase II

to assign conflict-free solutions, and Phase II picks up the best conflict-free solu-

tion as its output if there is any. In theory, this process can be repeated until a

conflict-free solution is found, or the (good-enough) candidate solutions in Phase

I are all checked by Phase II.
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Conclusions and future work

7.1 Conclusions

This research contributed a major step forward in deriving fully operable op-

timized train unit schedules, which started new research to follow on from the

network level to the station level scheduling. This research provided a strong

basis for future research in this area. Moreover, a novel approach for evaluating

the effectiveness of objective function designs is extended from the research of

train unit scheduling optimization.

In this thesis, the train unit scheduling optimization (TUSO) problem, par-

ticularly for the UK railway industry, has been studied focusing on the effective-

ness of alternative objective function designs and station-level resolution. To the

best of the author’s knowledge, the studies of these two aspects of TUSO are

very scarce in the literature. Conventionally, the network-level and station-level

problems of TUSO are researched separately. For the network-level problem,

the researchers from the Netherlands and Italy have achieved fruitful outcomes.

The station-level problem, defined as a shunting problem within a large sta-

tion/depot, has been studied by the Netherlands and Denmark research groups.

The differences between TUSO studied in this thesis and other similar problems

are discussed in chapter 2 and chapter 3. Before this research, there is no study

considering the feasibility of a network-level solution when it needs to be imple-

mented at the station level. As far as the author is aware, there is no known

155
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successful commercial software optimizing TUSO even at the network level only

in real-life scheduling, in contrast with the bus/train crew scheduling and the

flight scheduling. A solver automatically solving TUSO at the network (RS-Opt)

is proposed and developed by Lin and Kwan [57]. However, there are still some

parts left open to be further finalized. On this basis, this research aims to bring

the station level into the big picture and produce a more operable solution. This

research is carried out with close collaborations with a software company (Tracsis

Pcl) and two UK railway operators (GWR and TPE). They provided valuable

suggestions based on their experience of real-world train unit scheduling, and ex-

perimental datasets. Besides, this research is also benefited from the interactive

unit diagramming software TRACS-RS, supported by Tracsis plc, particularly in

the visualization of schedule results. This chapter summarises the research in this

thesis as follows.

7.1.1 Problem description

To the author’s knowledge, there is no previous literature available for the TUSO

problem combining the network level with the station level. This thesis gives

a detailed description of TUSO at both levels. As the network level has been

described thoroughly in literature [56, 57], this thesis mainly focuses on the con-

cerns that need to be resolved and finalized at the station level containing the

following aspects: coupling order formation, coupling order network propagation,

coupling order reversal en-route, sufficient slack time, crossing linkages, platform

type and capacity, re-platforming shunting, and interchangeability between the

same type of train unit. Besides, using customized objective function designs to

improve solution quality is discussed.

7.1.2 Modeling

The original DAG, generated based on a timetable as well as some basic con-

straints, is firstly described on which decision variables are defined. The arc usage

cost assigned according to the type of arc and the slack time cost calculated based

on the arc time gap are introduced. A novel multi-commodity fixed-charge inte-

ger linear programming for TUSO is proposed, covering the constraints at both
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the network and the station levels. The optimization criteria are formulated one

by one for the convenience of evaluating the effectiveness of alternative objective

functions considering different terms. There is an optimization hierarchy among

the optimization criteria such that the weights can be accordingly assigned to

maintain this hierarchy. The station-level constraints prevent the solution from

choosing any conflicts, referring to ArcSelection conflicts or TypeF low conflicts.

This model does not assign coupling orders directly, but the station-level con-

straints can be used to eliminate the arc/flow combination that carries infeasible

coupling orders if they can be captured in advance.

7.1.3 Objective function evaluation

Inspired by the investigation on the experimental results from RS-Opt [57] and

SLIM [26], a generalized methodology to establish confidence in the effectiveness

of alternative objective function designs, where different optimization criteria

are considered, is proposed. Firstly, a detailed description of this problem is

given that is different from the multi-criteria optimization and automatic meth-

ods for algorithm parameter control. The proposed methodology contains three

stages: design alternative objective functions, obtain solutions and their features,

evaluate objective function effectiveness. The optimization criteria are firstly

investigated for a specific scheduling problem, and they are converted into math-

ematical terms formed into alternative objective functions. The second stage

relies on two algorithms to obtain solutions. One is an exact method, and the

other is a hybrid method with a heuristic wrapper iteratively launching the ex-

act method. Then, the features indicating the effectiveness of objective function

are analyzed, including quantified values of optimization criteria, schedule struc-

ture, the number of different solutions obtained during the iteration of the hy-

brid heuristic method, the comparisons between the converged objective function

values obtained through two solvers. Those features are considered into the inte-

grated evaluating system designed based on the analytical hierarchy process [72].

The experiments carried out by TUSO instances support the effectiveness of this

methodology. The criterion of slack time plays an important role in improving

the effectiveness of the objective function. On the contrary, the term of mileage
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may have a negative impact on objective function effectiveness.

7.1.4 Station-level resolution

Chapter 6 proposes an adaptive approach to solve TUSO at both the network and

the station levels. Phase I is the network-level problem, and RS-Opt [57] is used

as the base solver producing the network solution. Phase II tackles the concerns

left in the solution given by Phase I. The main features handled in Phase II are

summarised as follows.

– The features relevant to the coupling order are formally defined: coupling

order definition, coupling/decoupling operation, coupling order network

propagation, coupling order reversal en-route.

– Locally feasible coupling orders are assignment based on the coupling and

decoupling operations together with the timings and moving directions at

the operating station (platform) of involved trips. When these locally feasi-

ble coupling orders propagate through the network, more feasible coupling

orders can be assigned.

– Conflicts are detected through two steams. One is to detect coupling order

conflict through the coupling order propagating process. The other is to

detect conflicts during the platform operating including crossing linkages,

platform capacity violation, shortage of operational time.

– The detected conflicts are classified into two types: local resolvable conflicts,

and un-resolvable conflicts. The un-resolvable conflicts are converted into

new constraints added to Phase I to seek a new solution. While there are

no any un-resolvable conflicts detected, the complete conflict-free solution

will be delivered.

The experiments are carried out with artificial datasets and real-world datasets.

Artificial datasets are designed to cover all features that need to be considered

and small at the same time to verify the correctness of the proposed method.

The real-world datasets results show the proposed method can efficiently assign

coupling orders and produce more operable solution at the station level.
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7.2 Future work

Although the work of this thesis has achieved some novel and useful results that

improve the existing solver for TUSO (RS-Opt) performance and more station-

level features are captured as well, the research on the TUSO problem at both

the network and the station levels in the UK is still far from being mature. Here,

a series of aspects that would be worth exploring to improve the established

research are summarised as follows.

7.2.1 A heuristic for TUSO at the network level

This part introduces a heuristic method to construct a feasible solution for TUSO

at the network level based on the original DAG generated in advance, seen in

section 4.1.1. The solution graph is a sub-graph of the original DAG, and the flow

on it should be all integers, which are the train unit combinations. This method

firstly generates all the feasible train unit combinations for each trip, defined as

candidates, thereafter, constructs connections among these candidates.

Candidate generation

For each trip, we need to consider five hard constraints, including passenger

demands, unit coupling upper bound, carriage upper bound, permitted train unit

types, and compatibility between types. Based on these constraints, all feasible

candidates of train unit combinations for each trip can be obtained in advance.

A fix-size array with integer values is defined to represent a candidate. The array

size is the total number of train unit types used in the given timetable. Each

index of this array indicates a specific unit type, and the element value at each

position is the number of the corresponding train unit type used in the candidate.

If one unit type is not allowed to serve a trip, its element value in the arrays of

all candidates for this trip will be always zero. Besides, if some unit types are not

compatible to be coupled together, the candidates containing these types at the

same time will not be generated. For instance, there are three unit types (X, Y, Z)

used in a timetable, and their information is as seen in Table 7.1. Type X and

Z are not compatible, i.e., they are not allowed to be coupled together. Suppose
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Table 7.1: Information of different unit types

Type Seats Cars Can serve Not compatible with

X 122 2 t1, t2 Z
Y 147 3 t1, t2, t3 –
Z 160 3 t2, t3 X

that the train unit coupling upper bound is 3, and the carriage upper bound is 6.

The seat demands of trips t1, t2, and t3 are 244, 269, and 307 respectively. The

feasible candidates for these trips are listed in Table 7.2.

Table 7.2: Feasible candidate train unit combinations for each trip

Trip Demands Unit combinations

t1 244 [2,0,0] [1,1,0] [0,2,0] [3,0,0]
t2 269 [1,1,0] [0,2,0] [0,1,1] [0,0,2] [3,0,0]
t3 307 [0,1,1] [0,0,2]

Notations

The notations and remarks used to illustrate the heuristic are presented in Table

7.3. The feasible candidates for each trip is denoted as Vi, i ∈ N , where N is

the trip set. The passenger demand for each trip is denoted as di. Similar to the

definition in the DAG described in section 4, Aini and Aouti are defined as get-in

and get-out arc sets of trip i respectively. S is used to store the constructed arcs

and flows. The others are the lists used in the arc-constructing process.

Heuristic for arc construction

Based on the generated candidates for each trip, this part introduces a heuristic

method to construct the arcs among candidates according to a set of optimization

criteria. This method starts with the first trip of a working day, to which a

desirable candidate is firstly assigned. A directed arc connects two trips where

the trip starts the arc is defined as the tail trip and the trip ends the arc is defined

as the head trip. At each step, one arc connecting a candidate en (en ∈ Vi) of the
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Table 7.3: Notations

Notations Remarks

Vi Set of candidates for trip i, ∀i ∈ N
di Passenger demands of trip i, ∀i ∈ N
Aini Get-in arc set of trip i, ∀i ∈ N
Aouti Get-out arc set for trip i, ∀i ∈ N
S List to store constructed arcs flows
FB List of flow-balanced trips
UE List of unexplored trips sorted by departure times

EUSF List of explored trips that have not been satisfied nor flowed
ESUF List of explored and satisfied trips that have not been flowed
EFUS List of explored and flowed trips that have not been satisfied

tail trip (i) to a candidate em (em ∈ Vj) of the head trip (j) is constructed, until

all trips are assigned with appropriate candidates.

Algorithm 6 gives the main logic of the heuristic of constructing a feasible so-

lution, which requires the original DAG G, candidates Vi and passenger demands

di for each trip as input to ensure a feasible integer solution (S) as output. At

the beginning of this algorithm, no trip has been assigned any candidate thus

UE is initialized as N . In the algorithm, the elements in UE will be gradually

removed, and it will be an empty list at the end of this algorithm. The other

lists are initialized as empty, but temporarily store trips at different statuses.

EUSF , ESUF , EFUS will be empty again when the algorithm finishes. For

a trip in EUSF , a priority for ’satisfying train unit’ is given over ’flowing away

train unit’, i.e., get-in arcs have the priority to be constructed. FB = N is

the stopping criterion. For a trip i which has been assigned a feasible candi-

date, there are four statuses during the arc constructing process: 1○ the flow

of this candidate is satisfied by the flows from the get-in arcs, 2○ the flow of

this candidate is partially satisfied by the flows from the get-in arcs, 3○ the flow

of this candidate is completely flowed out through the get-out arcs, 4○ the flow

of this candidate is partially flowed out through the get-out arcs. These four

statuses are denoted as usComb, sComb, ufComb, fComb respectively. When

the condition i.usComb + i.sComb = i.ufComb + i.fComb = i.comb is hold,
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Algorithm 6 Arc-constructing heuristic

Require: G(N ,A), Vi, di (∀i ∈ N)
Ensure: S

1: UE := N ; EUSF,ESUF,EFUS, FB, S := emptyList
2: repeat
3: if (EUSF = EFUS = ESUF = emptyList) then
4: i = UE.firstTrip
5: i.comb = MostF itComb(Vi)
6: update i.usComb, i.sComb, i.ufComb, i.fComb
7: UE.Remove(i); EUSF.Add(i)
8: else if (EUSF.count 6= 0 or EFUS.count 6= 0) then
9: for all i in EUSF ∪ EFUS do

10: BackwardConstruct(i)
11: end for
12: else if (ESUF.count 6= 0) then
13: for all i in ESUF do
14: ForwardConstruct(i)
15: end for
16: end if
17: until FB = N

the flow on i is balanced. If i.sComb 6= i.comb and i.fComb 6= i.comb, i is

stored in EUSF ; If i.sComb = i.comb and i.fComb 6= i.comb, i is stored in

ESUF ; If i.sComb 6= i.comb and i.fComb = i.comb, i is stored in EFUS; If

i.sComb = i.comb and i.fComb = i.comb, i is stored in FB. If lists EUSF ,

ESUF , EFUS are all empty, the trip i in UE with the earliest departure time

will be chosen as the start trip and the method MostF itComb(Vi) assigns the

candidate with the lowest seat over-provision to i, where i.usComb and i.ufComb

are updated as i.comb. Thus, i is removed from UE and added to EUSF . This

step triggers the arc-constructing process. For every trip in EUSF and EFUS,

a BackwardConstruct() method is designed to construct the get-in arcs, seen in

the algorithm 7. For each trip in ESUF , a ForwardConstruct() method is de-

signed to construct get-out arcs. A trip whose flow on its get-in and get-out arcs

are balanced with the assigned candidate will be added into FB. The algorithm

will stop when all trips are satisfied by appropriate candidates, i.e., FB = N . If

UE.firstTrip is used more than once, this means the solution contains multiple
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independent fully connected sub-graphs if the arc direction, sign-on and sign-off

arcs are ignored.

The BackwardConstruct(i) method in algorithm 7 constructs get-in arcs for

the given trip i where the candidate of trip i has been fixed. This algorithm

takes A as input and ensures the arc, arc flow, and a candidate for the tail node

Algorithm 7 BackwardConstruct(i)

Require: A
Ensure: aji, aji.comb, j.comb

1: repeat
2: aji = ShortestArc(Aini )
3: if (aji is a sign-on arc) then
4: aji.comb = i.usComb
5: else if ((j in EUSF ∪ ESUF ) and Intersection(i.usComb, j.ufcomb) 6=

∅) then
6: aji.comb = Intersection(i.usComb, j.ufcomb)
7: else if ((j in UE) then
8: j.comb = MostF itComb(Vj, i.usComb)
9: if Intersection(i.usComb, j.comb) 6= ∅ then

10: aji.comb = Intersection(i.usComb, j.comb)
11: end if
12: else
13: Aini = Aini .Delete(aji); A

out
j = Aoutj .Delete(aji)

14: go to line 3
15: end if
16: S.Add(aji, aji.comb)
17: update i.sComb, i.usComb, j.fComb, j.ufComb
18: Aini = Aini .Delete(aji); A

out
j = Aoutj .Delete(aji)

19: until i.sComb = i.comb
20: update UE, EUSF , ESUF , EFUS, FB

of the constructed arc aji as output. Only one get-in arc is constructed at each

iteration. If the main loop is operated more than once to satisfy trip i, i needs

coupling operations. At each iteration, the arc aji with the shortest slack time

is chosen by the ShortestArc() method because a compact graph is preferred by

real-world scheduling. Besides, short arcs have the advantage of encouraging a

train unit to cover more trips that decreases the total number of train units in

the solution.
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The tail node j may be at three statuses stored in different lists or the source.

If aji is a sign-on arc, we will assign i.usComb to aji.comb directly as we assume

the source node can provide any candidate. If j is in lists EUSF or ESUF , j

has been explored by some arcs and its candidate has been assigned. Therefore,

the new constructed arc aji is feasible if the intersection between j.ufComb and

i.usComb is not empty, and the flow on arc aji is the intersection value. While

j is in list UE, the candidate of j is not assigned yet. The MostF itComb()

method taking two parameters is called to find the most appropriate candidate

for j from Vj to suit i.usComb. For each pair (em, i.usComb), ∀em ∈ Vj, a value

indication how the suitness between em and i.usComb is calculated by expression

(7.1), where w1, w2 are the weights for the corresponding terms.

pm = w1xm + w2ym,∀m ∈ |Vj| (7.1)

The first term (xm) is the cost of using the train units in em to serve i.usComb,

classified into three categories: (i) if em = i.usComb, there will be no decou-

pling operation for j, therefore, cost 1 can be used; (ii) if em ⊂ i.usComb

(i.usComb ⊂ em), this connection is associated with at least one coupling op-

eration for i (decoupling operation for j), thus, cost 2 can be assigned; (iii) if

em ∩ i.usComb 6= ∅ and the former two conditions are not satisfied, this connec-

tion indicates at least one decoupling for j and one coupling for i such that a cost

of 3 can be used. The second term is the over-provision of seats if use em to serve

trip j. If the first three conditions in BackwardConstruct(i) do not suit to aji, a

new shortest arc will be sought until an arc is successfully constructed to S. At

each iteration, i.sComb, i.usComb, j.fComb, j.ufComb will be updated. Also,

aji needs to be removed from the associated arc lists. After trip i is satisfied,

involved lists will be updated according to the attributes values of trip i and

trip j. The ForwardConstruct(i) method constructing get-out arcs for trip i is

similar to the BackwardConstruct(i) process.

Discussion

A heuristic constructing a feasible integer solution for TUSO at the network level

is proposed. Constraints considered in this method include passenger demands,
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permitted type, train unit type compatibility, unit coupling upper bound, and

carriage upper bound. Based on the feasible candidates for each trip, solution arcs

and flows are constructed one by one. This part discusses some potential advan-

tages of this method. TUSO is hard to solve because of its combinatorial nature.

RS-Opt needs a relatively long time to solve some complicated instances or might

even fail. This heuristic aims at generating a good-quality feasible solution in a

short time to provide a quick reference for the scheduler. Currently, RS-Opt uses

two simple methods to generate initial potential paths, and the BB-tree upper

bound is unknown until the first integer feasible solution is found. Potentially, we

can use the heuristic solution, a feasible integer solution, as a better starting point

for RS-Opt and give a better upper bound for the BB tree from the beginning to

reduce the computing time of RS-Opt. Besides, it is not very hard to consider

the station-level constraints in the heuristic: the station-level resolution method

proposed in chapter 6 can be called whenever an arc is constructed, to check if

it is compatible with the other constructed arcs. However, the above analysis is

still preliminary lack of deep thinking and experiment support due to the time

limitation. These could be future research directions.

7.2.2 A multi-graph flow model

The connection-arc graph representation described in Chapter 4 contains a set of

nodes and arcs, in which nodes represent trips as well as the source and sink, and

arcs represent potential connections between two nodes that can be consecutively

served by the same train unit block. The flows on arcs are associated with the

quantity of each type of train unit, defined as decision variables. This way of

modeling does not consider coupling orders that are affected by specific station

layouts. This part presents a multi-graph to capture the coupling order feature of

TUSO, defined as permutation-arc multi-graph representation. This presentation

shares some similarities with the connection-arc graph representation but takes

a relatively different method to define the nodes and arcs.
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Permutation-arc multi-graph

We use an example to illustrate the permutation-arc multi-graph. Table 7.4 gives

a timetable of five trips, whose permitted train unit types are X and Y . Types

X and Y have 100 and 200 passenger seats. In this table, the origin, destination,

departure time, and arrival time of each trip are presented. Let T denote all the

trips in the given timetable.

Table 7.4: Timetable of 5 trips

Trip Origin Destination Departure time Arrival time Demand

i S1 S3 07:00 10:30 200
j S2 S3 09:00 10:40 300
l S3 S4 10:50 12:30 500
m S4 S1 10:55 12:00 300
n S4 S5 10:55 12:00 200

Firstly, we define the nodes of the permutation-arc multi-graph representation.

Suppose the source node (0) can provide any train unit permutation to any trip,

and any train unit permutation can be terminated in the sink node (∞). The

nodes for trips in this representation are similar to the candidates defined in

section 7.2.1 with the extra consideration of coupling order such that a train unit

combination may correspond to multiple train unit permutations. Therefore,

there is a set of permutation candidates for each trip, denoted as Nt, ∀t ∈ T .

The set of all the permutation candidates of all trips is denoted as N =
⋃|T |
t=1Nt.

Thus, the node-set in this representation is defined as N = N ∪{0,∞}. Suppose

the maximum number of coupled train units is 3. Therefore, trip l in Table

7.4 for instance can be served by 4 train unit permutations: [XY Y ], [Y Y X],

[Y XY ], [Y Y Y ], which are the permutation candidates for trip l. Let use K to

represent the set of train unit types, and qki , i ∈ N , k ∈ K to represent the train

unit quantities of type k. A cost (ci, i ∈ N) is assigned to each permutation

candidate, which is an integrated cost of train unit type preference and seat over-

provision. In the solution, only one permutation candidate for each trip can be

used.

Each permutation candidate can derive more than one potential sub train unit
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permutation, defined as sub-element, to serve another permutation candidate.

Let use Ei, i ∈ N to represent the set of sub-elements derived from permutation

candidate i. The arcs are generated based on the three conditions. (i) The

destination of i is the same as the origin of j. (ii) The arrival time of i is earlier

than the departure time of j, and the time gap must be larger than the basic

turnaround time. (iii) i and j must contain some same sub-element. Using a

sub-element from i to serve j constructs a permutation-arc connection such that

a set of connections from i to j based on using common sub-elements, denoted as

Aij. Figure 7.1 gives an example of all the potential permutation-arc connections

between i and j with train unit permutations of [XY ] and [XY Y ]. Node i can

Figure 7.1: Potential permutation-arc connections between two nodes

provide four alternative sub-elements, which are the flows on the corresponding

arcs, to serve node j. Let us use A to denote the arc set between any two

permutation candidates, defined as permutation arcs. Similar to the connection-

arc graph presentation, the arcs get out from the source node are called sign-up

arcs, denoted as A0; the arcs go into the sink node are defined as sign-off arcs,

represented as A∞. The arc set for the permutation-arc multi-graph is a union of

permutation arcs, sign-on arcs, and sign-off arcs, denoted byA = A∪A0∪A∞. Let

us use qka , a ∈ A, k ∈ K, to represent the number of train units of type k, k ∈ K.

A cost (ca, a ∈ A) is assigned to each arc, based on the cost of generating the

corresponding sub-element from i to serve j.

Based on the definition of nodes and arcs, Figure 7.2 gives an example DAG

of the permutation-arc multi-graph representation according to the trips in Table

7.4. Every trip is represented as a rectangular in which every node is a permu-

tation candidate with a specific number of train units of each type and coupling

order. The arcs stand for the potential permutation connections between two
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consecutive nodes.

Figure 7.2: Permutation-arc multi-graph representation

A binary linear formulation

Based on the permutation-arc multi-graph representation, the train unit distri-

bution can be captured through a binary linear formulation by assigning each

node and arc a binary variable, defined as two types of binary decision variables.

(i) Node-selection variables: xi, ∀i ∈ N , representing if a node is selected. (ii)

Arc-selection variables: ya, ∀a ∈ A, representing if an arc is selected. Thus,

the train unit scheduling with the coupling order problem can be formulated as

follows.

xi =

1, if node i is selected

0, otherwise.
(7.2)

ya =

1, if arc a is selected

0, otherwise.
(7.3)

Expression 7.4 is the objective function of minimizing the general operational

costs. The first term is the total number of train units used to cover all trips.
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The second and third terms are node costs and arc costs.

min
∑
a∈A0

(ya ·
∑
k∈K

qka) +
∑
i∈N

cixi +
∑
a∈A

caya (7.4)

Constraints (7.5) ensure that only one permutation candidate can be selected

for each trip. Constraints (7.6) ensure only one sub-element between two nodes

can be selected. ∑
i∈Nt

xi = 1,∀t ∈ T (7.5)

∑
a∈Aij

ya = 1,∀i ∈ N ,∀j ∈ N (7.6)

Expression (7.7) represents the node flow balance constraints, where Aini and

Aouti are the sets of get-in and get-out arcs of node i. For each permutation

candidate, the get-in flow of each train unit type must be equal to that on the

get-out arcs. ∑
a∈Ain

i

yaq
k
a =

∑
a∈Aout

i

yaq
k
a ,∀k ∈ K,∀i ∈ N (7.7)

A railway network may contain a set of locations where the coupling and

decoupling are forbidden. Expression (7.8) and (7.9) are used to present these

constraints, where N b
dep and N b

arr are the set of nodes whose corresponding trips

are banned on coupling/decoupling operations at the departure station and arrival

station respectively. ∑
a∈Ain

i

ya = xi, ∀i ∈ N b
dep (7.8)

∑
a∈Aout

i

ya = xi,∀i ∈ N b
arr (7.9)

Constraints (7.10) ensure that the time consumed by coupling/decoupling

will not invalid the time allowance (ζij) available to operate coupling/decoupling

operations of arc a = (i, j).

τdcpl(
∑
a∈Aout

i

ya − 1) + τcpl(
∑
a∈Ain

j

ya − 1) ≤ ζij,∀a ∈ A (7.10)
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Constraints 7.11 prevent that there will be no conflict combinations of the

permutation arcs selected in the final solution. Ā represents a permutation-arc

set that is not operable at the station layouts. Z3 denotes a set of Ā.∑
a∈Ā

ya ≤ |Ā| − 1,∀Ā ∈ Z3 (7.11)

The domain of the decision variables are given where they are defined.

Discussion

Compared to the connection-arc graph representation, this permutation-arc multi-

graph representation has some advantages and disadvantages. Firstly, we talk

about the advantages. The permutation-arc formulation can cover the feature

of the coupling order that cannot be realized by the connection-arc graph repre-

sentation. In the permutation-arc multi-graph representation, the permutation

on each node and arc are pre-generated in advance. Station layouts can be con-

sidered in the arc cost while generating the elements on arcs. Consider the four

permutation arcs presented in Figure 7.1 as an example. Suppose the operating

platform is dead-end. Table 7.5 shows how to construct the arc costs between two

nodes considering platform type and moving directions. Let us use the departure

Table 7.5: Arc costs for the example connection in Figure 7.1

Use depDir as the reference depDir 6= arrDir

Tail node i Gen cost Element Form cost Head node j

[XY ]

Decoupling [X] Coupling

[XY Y ]
Decoupling [Y ] Coupling

Reversal [XY ] Coupling
None [Y X] Reversal+Coupling

direction of the head node j (depDir in Table 7.5) as a reference. If [XY ] only

generates [X] or [Y ] to form [XY Y ], both coupling and decoupling operations

are in need. On the other hand, if i uses [XY ] or [Y X] to form [XY Y ], reversal

shunting and coupling operation are necessary. Based on these essential station

shunting movements and their time consumptions, arc costs can be assigned ac-
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cordingly. The conflict preventing constraints (7.11) are specific on a particular

permutation-arc combination, referring to train unit flows. However, the conflict

preventing constraints 4.27 based on the connection-arc graph presentation de-

scribed in Chapter 4 cannot be specific on the flows on a particular arc structure,

resulting in over-tight. Constraints 4.33 can be specific on the flow combina-

tion, however, they need to introduce another type of binary variable making the

problem very hard to solve.

Secondly, we discuss some challenges of the permutation-arc multi-graph rep-

resentation. Although the candidate permutations for each trip and permutation

arcs can be enumerated in advance, they make the original DAG for the latter

representation much larger than that of the former for the same timetable. The

size of the original DAG is a significant indicator of the problem complexity.

That means the latter model may take a much longer time to solve for the same

instance. On the other hand, considering station layouts and coupling orders

increase the challenges for generating the initial permutation-arc multi-graph.

Besides, the latter representation is no longer an ordinary network flow problem

due to the irregular “flow balance” constraints because the decision variables xi

are not the real flow amount but only an indicator of selection. This also brings

challenges in how to design appropriate solution approaches.

Due to the time limitation, it is difficult to make more insightful compar-

isons between these two representations without further theoretical analysis and

computational experiments. Besides, the special graph structure and problem

definition make the permutation-arc multi-graph representation a unique net-

work flow problem. The solution approaches may need special requirements that

need further investigation in future research.

7.2.3 Other potential directions

RS-Opt without fixed-charge variables, as a solver for TUSO at the network level,

currently can solve small to medium size instances. With fixed-charge variables,

it struggles to solve even small size instances. To deal with large scale prob-

lem instances, SLIM [26] is developed with three methods of forming compact

graphs from the original DAG as inputs for RS-Opt. However, the experimental
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results show these methods are not effective to extract good subgraphs. Thus,

one future research direction would be to develop more efficient and accurate

methods to extract better subgraphs to feed RS-Opt, where slack time and prob-

ability may be useful to be considered. Combining the research in this thesis and

literature [56, 57, 58, 54, 55, 59], most issues in TUSO have been finalized, includ-

ing the train unit block for each trip, the coupling order for each multi-unit train

unit block, and connections between arrivals and departures, coupling/decoupling

operations, and some necessary station movements for example re-platforming.

However, the specific shunting plans within each station are still left open to be

finalized. In the future, developing the method of how an arrival train unit to

be shunted at the specific station infrastructure and to be a departure train unit

will be considered. In terms of the objective function evaluation, a potential re-

search direction is how to evaluate the objective function effectiveness if there is

no practical exact solver available but only a heuristic solver available. It would

be worth considering a dynamic benchmark that can be updated once a better

solution is found until no improvement can be achieved.
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[31] P.-J. Fioole, L. Kroon, G. Maróti, and A. Schrijver. A rolling stock circula-

tion model for combining and splitting of passenger trains. European Journal

of Operational Research, 174(2):1281–1297, 2006.

[32] R. Freling, R. M. Lentink, L. G. Kroon, and D. Huisman. Shunting of

passenger train units in a railway station. Transportation Science, 39(2):261–

272, 2005.

[33] M. R. Gary and D. S. Johnson. Computers and intractability: A guide to

the theory of np-completeness, 1979.

[34] K. Ghoseiri, F. Szidarovszky, and M. J. Asgharpour. A multi-objective train

scheduling model and solution. Transportation research part B: Methodolog-

ical, 38(10):927–952, 2004.

[35] M. C. Golumbic. Algorithmic graph theory and perfect graphs, volume 57.

Elsevier, 2004.

[36] J. Haahr and R. M. Lusby. Integrating rolling stock scheduling with train

unit shunting. European Journal of Operational Research, 259(2):452–468,

2017.

[37] J. T. Haahr, R. M. Lusby, J. Larsen, and D. Pisinger. A branch-and-price

framework for railway rolling stock rescheduling during disruptions. 2014.

[38] Y. Haimes. On a bicriterion formulation of the problems of integrated system

identification and system optimization. IEEE transactions on systems, man,

and cybernetics, 1(3):296–297, 1971.

[39] D. Huisman, L. G. Kroon, R. M. Lentink, and M. J. C. M. Vromans. Oper-

ations research in passenger railway transportation. Statistica Neerlandica,

59(4):467–497, 2005.

[40] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based opti-

mization for general algorithm configuration. In International conference on

learning and intelligent optimization, pages 507–523. Springer, 2011.



BIBLIOGRAPHY 177

[41] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: an auto-
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