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Abstract 

Expansion of oil palm plantations drives substantial tropical deforestation, greenhouse gas 

emissions and biodiversity loss, but global demand for vegetable oils is increasing. I studied the 

consequences of recent interventions to reduce the negative environmental impacts of oil palm 

expansion, because their success is not well understood. I conducted fieldwork to quantify the 

benefits of conservation set-asides for carbon stocks in certified-sustainable oil palm plantations. 

Aboveground carbon stocks of forest set-asides in Sabah (Malaysian Borneo) were >1.5-fold 

greater than those of oil palm, and co-benefitted plant diversity, but were considerably lower 

than those of intact primary forest. Thus, conservation set-asides help reduce environmental 

impacts of oil palm agriculture, but are not a substitute for intact forest. I examined the global 

potential for zero-deforestation commitments to displace oil palm expansion and associated 

biodiversity loss into alternative natural habitats which also support unique biodiversity. Under 

zero-deforestation commitments, >50% of climatically-suitable locations for oil palm expansion 

are in tropical grassy and dry forest biomes, suggesting high potential for leakage of biodiversity 

loss. However, the need for further land-use change to meet rising vegetable oil demand could 

potentially be reduced by improving yields on current plantations, so I examined evidence for 

yield gaps on current plantations. Analysis of yield data from industrial plantations in Malaysia 

showed that factors associated with management accounted for >50% of the observed variation 

in yield, with only minor effects of climate (temperature and rainfall), suggesting substantial 

opportunities for yield improvement by improving management practices. I conclude that 

current interventions to reduce the negative environmental impacts of oil palm expansion are 

beneficial but need improving. Addressing multiple potential pathways for leakage, and 

supporting improved management practices to increase yields, are likely to be key 

improvements for reducing the environmental impacts of oil palm expansion. 
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1.1 Abstract 

Global agricultural production has risen rapidly since the 1960s, and continues to do so in 

response to growing demand resulting from the rising global human population, and increasing 

wealth and consumption. However, most agricultural expansion is currently in the tropics, where 

it drives extensive land-use change, is a key source of greenhouse gas (GHG) emissions, and 

causes substantial biodiversity loss. Oil palm is the most productive vegetable oil crop, and has 

rapidly expanded globally over recent decades, currently supplying one third of global vegetable 

oil. Recent expansion of oil palm plantations in Southeast Asia has driven some of the highest 

rates of deforestation seen globally, resulting in substantial GHG emissions and biodiversity loss 

in a biodiversity hotspot. Oil palm agriculture represents a prime example of a highly productive 

agricultural system required to meet global demands, with considerable negative environmental 

consequences. Thus, it provides an opportunity to study how the environmental impacts of a key 

agricultural commodity could be reduced. In this general introduction chapter, I outline 

environmental issues of tropical agriculture; the environmental impacts of recent oil palm 

expansion, focusing on the biodiversity loss and GHG emissions; and recent interventions to 

reduce its environmental impacts. I also consider how climate change may affect oil palm yield 

and hence impact future palm oil production. These topics provide the background to the main 

aims of my thesis to examine the consequences of current oil palm sustainability interventions 

for biodiversity and carbon storage, and to examine the potential for yield improvement in 

existing plantations. The overall aim of my thesis is to provide new information that helps make 

progress in reducing the land-use impacts of oil palm agriculture. 

1.2 The need for environmentally sustainable tropical agriculture 

In recent decades, global agricultural expansion has shifted from temperate regions to the 

tropics (Hoekstra et al., 2005; Meyfroidt et al., 2013; Wilting et al., 2017; Creutzig et al., 2019), 

where it has disproportionately negative environmental impacts, driving substantial biodiversity 

loss and greenhouse gas (GHG) emissions (Myers et al., 2000; Stork et al., 2009; West et al., 

2010; Wilting et al., 2017; IUCN, 2020b). Between 2000 and 2010, most cropland expansion 

occurred in tropical rainforest and grassy biomes in Latin America, Sub-Saharan Africa and 

Southeast Asia; and cropland area in many developed countries declined while imports 

increased (Dinerstein et al., 2017; Creutzig et al., 2019). Thus, the environmental impacts of high 

consumption in temperate regions are increasingly being displaced to the tropics (Meyfroidt et 

al., 2013; Wilting et al., 2017). However, the tropics support disproportionately high biodiversity 

(species richness, endemism and small-range species, among other measures) (Myers et al., 

2000; Stork et al., 2009; IUCN, 2020b), and are thus undergoing substantial biodiversity loss from 
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agricultural expansion (Newbold et al., 2015; Tilman et al., 2017), which is a key cause of the 

sixth ‘mass extinction’ event that we appear to be entering (Barnosky et al., 2011; Pimm et al., 

2014). Expansion of agriculture in the tropics is also a key driver of global warming, because 

tropical habitats often have high exceptionally high carbon storage (Tubiello et al., 2015; Curtis 

et al., 2018; Santoro et al., 2018a). Owing to the increasingly globalized markets for agricultural 

commodities, tropical deforestation is increasing with urban population growth and agricultural 

commodity exports, and has now become uncoupled from local population growth (Rudel et al., 

2009; Defries et al., 2010). Thus, as global population, wealth and consumption increase over 

coming decades, demand for agricultural commodities is expected to increase substantially, by 

at least ~60% by 2050 (compared to 2005 levels), furthering the negative environmental impacts 

of tropical land-use change (Tilman et al., 2011; Valin et al., 2014; United Nations, 2015b). 

Alongside the growing demand for food, demand for biofuels is currently increasing rapidly. 

Consequently, there is a rapidly growing demand for ‘switch’ crops, which can be used for either 

food or biofuel, such as soy and oil palm (Hasegawa et al., 2018; Van Meijl et al., 2018; Doelman 

et al., 2019). Current food production is sufficient to meet the nutritional needs of a human 

population of 9.7 bn, as projected for 2050, if access to the global food supply is improved, and 

widespread replacement of animal products with plant-based alternatives occurs (which avoids 

feeding human-edible crops to livestock) (Cassidy et al., 2013; Berners-Lee et al., 2018). 

However, mitigation of climate change to minimise global temperature increase depends partly 

on increasing biofuel production in order to reduce fossil fuel consumption (Correa et al., 2019; 

Roe et al., 2019; Lane, 2020), which is likely to lead to substantial increases in crop demand 

(Hasegawa et al., 2018; Van Meijl et al., 2018; Doelman et al., 2019). Thus, even with substantial 

shifts in dietary preference, demand for food and feed crops that can produce ‘first-generation’ 

biofuels, such as vegetable oil and bioethanol, is highly likely to increase. Between 2000 and 

2010, biofuel production emerged as a novel driver of land-use change, accounting for 

approximately half of cropland expansion globally (Creutzig et al., 2019); and global biodiesel 

consumption increased 32-fold between 2001 and 2016 (Chain Reaction Research, 2019). Sixty-

four countries, spanning all continents, now have targets or mandates to increase biofuel 

consumption in place of fossil fuels, and this number is likely to increase in coming years (Lane, 

2020). However, the degree of increase in global biofuel production is a critical limitation to 

future food crop productivity, because competition for land between crops for food and biofuel 

will intensify as biofuel production increases, threatening future food security (Hasegawa et al., 

2018; Van Meijl et al., 2018; Doelman et al., 2019). Like food crops, expansion of biofuel crops is 

also a key driver of biodiversity loss, and can result in substantial GHG emissions if replacing 

natural habitat (Danielsen et al., 2009). Thus, there is an urgent need to understand how best to 
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simultaneously increase agricultural production, particularly of ‘switch’ crops, while substantially 

improving the environmental sustainability of tropical agriculture. 

Improving agricultural productivity must occur either through cropland expansion or by 

improving yields, yet each of these has negative environmental impacts, so the goal of increasing 

agricultural productivity while simultaneously improving its sustainability includes a number of 

trade-offs (Lipper, DeFries and Bizikova, 2020). On one hand, cropland expansion drives loss of 

natural habitat, directly resulting in biodiversity loss and GHG emissions (Phalan et al., 2011; 

Carlson et al., 2017). Expansion of cropland into areas of degraded habitat or fallow lands also 

drives biodiversity loss, by preventing habitat regeneration or restoration in these locations, and 

thus reducing the potential for biodiversity and carbon stock recovery in the long-term (Chazdon 

et al., 2016; Dinerstein et al., 2017, 2019). Restoration and/or regeneration are required in over 

half of all terrestrial ecoregions in order to protect at least 50% of their natural habitat, 

considered crucial for successfully conserving biodiversity (Noss et al., 2012; Dinerstein et al., 

2017); and increasing carbon sequestration is considered essential for restricting global warming 

to within 1.5° C, in line with the Paris Agreement (United Nations, 2015a; Rogelj et al., 2018). 

Thus, minimising conversion of degraded habitat and fallow lands to cropland is essential for 

reducing global biodiversity loss and GHG emissions. On the other hand, yield improvement is 

typically realised through intensification, exacerbating the environmental impacts of industrial 

agriculture, such as GHG emissions from nitrogen fertilisation, loss of soil fertility and pollution 

of water courses (among other impacts) (Zhang et al., 2015; Borrelli et al., 2017; FAO, 2019; 

Searchinger et al., 2019). While recent increases in global agricultural productivity have largely 

occurred through yield improvements (FAO, 2020a; Lipper, DeFries and Bizikova, 2020), partly 

because most suitable locations for agriculture are already cultivated (Ramankutty et al., 2002), 

this is not the case for the tropics, where recent, rapid agricultural expansion has had substantial 

negative environmental consequences. Thus, current global agriculture is increasing in 

productivity at the expense of environmental sustainability, with substantial negative 

consequences for tropical biodiversity. To ensure that global agriculture becomes more 

environmentally sustainable, we must address the sustainability of tropical land-use change, in 

the context of increasing demand for tropical commodities. Thus, my thesis examines how the 

environmental impacts of industrial oil palm agriculture can be reduced, which is a prime 

example of a highly productive tropical crop, used as both a food and biofuel, that has 

substantial negative environmental impacts. 
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1.3 Oil palm: a key vegetable oil crop 

Oil palm Elaeis guineensis (Jacq.) is native to Africa (fig. 1.1) (Blach-Overgaard et al., 2010; Tinker 

and Corley, 2015), where it is widely cultivated by smallholders, often in mixed cropping systems 

(Vermeulen and Goad, 2006; Tinker and Corley, 2015). Botanical evidence suggests that oil palm 

has been cultivated for ~5,000 years in Africa, and a jar of oil in an Egyptian tomb from 5,000 

years ago may have been palm oil (Tinker and Corley, 2015). Oil palm is now cultivated 

throughout the humid tropics, where most lowland locations meet its bioclimatic requirements 

of high average temperatures and year-round rainfall (fig. 1.1) (Pirker and Mosnier, 2015; Tinker 

and Corley, 2015).  

 

Figure 1.1. Global map of areas under oil palm cultivation in each country (colours), and distribution 

records of oil palm native to Africa (black points). Data on the area of oil palm cultivation are for 2018, 

and were obtained from (FAO, 2020c); note that country-level values include reported values and 

estimates, and data are incomplete. Data of the native oil palm distribution are from (Gilles et al., 2016), 

and exclude cultivated oil palm. 

The majority of global palm oil production currently takes place in commercial plantations in 

Southeast Asia: in 2017, Indonesia accounted for 58% of global palm oil production, and 

Malaysia 26% (USDA, 2020). Industrial oil palm cultivation has rapidly expanded in Indonesia and 

Malaysia over recent decades (fig. 1.2) (Vijay et al., 2016), which has driven substantial 

deforestation and biodiversity loss (see section 1.4), while increasing Gross Domestic Product 
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and the incomes of farmers, including many smallholders (Sheil et al., 2009; Rist, Feintrenie and 

Levang, 2010; Drescher et al., 2016; Purnomo et al., 2020). Whilst the majority of production is 

by industrial or government-managed plantations in these countries, independent smallholders 

(family-based enterprises with less than 50 ha of land) also have a crucial role, accounting for 35-

40% of the total area under oil palm cultivation in Indonesia and Malaysia, and roughly one-third 

of total production (Vermeulen and Goad, 2006). As all crude palm oil is extracted in industrial 

mills in these countries, smallholders tend either to be associated with industrial plantations, 

such as in ‘plasma schemes’ (governmental schemes in Indonesia, where industrial plantations 

support smallholders in establishing and cultivating oil palm, and purchase the crop at a fixed 

price), or to sell their fresh fruit bunches to nearby mills (Vermeulen and Goad, 2006). 

However, oil palm cultivation is also rapidly expanding outside Southeast Asia, particularly in 

Latin America and Africa (fig. 1.1) (Vijay et al., 2016; Furumo and Aide, 2017; Ordway, Asner and 

Lambin, 2017; Ordway et al., 2019). The vast majority of oil palm-producer countries (i.e. across 

the tropics; see fig. 1.1) are currently expanding the area under oil palm cultivation (FAO, 2020c), 

and Latin America and Africa had greater relative oil palm expansion than either Indonesia or 

Malaysia between 2003 and 2013 (Vijay et al., 2016). It is therefore highly likely that the relative 

importance of Latin America and Africa for global oil palm production will increase as potential 

locations for expansion in Southeast Asia become increasingly limited (Vijay et al., 2016). Since 

2001, oil palm production in Latin America has doubled, with particularly rapid increases in 

Colombia (currently the fourth-largest producer of palm oil) and Ecuador, partly in response to 

biofuel mandates (Furumo and Aide, 2017; USDA, 2020). Oil palm cultivation in Africa is already 

extensive: Nigeria is the fifth-largest producer of palm oil globally (USDA, 2020); and one-quarter 

of the total area under oil palm cultivation globally is in sub-Saharan Africa (Ordway et al., 2019). 

Oil palm is a traditional crop in Africa, and widely cultivated by smallholders for domestic 

consumption (Vermeulen and Goad, 2006; Tinker and Corley, 2015), so expansion is driven by 

both proliferation of smallholder production and informal mills (Ordway et al., 2019), and 

increasing industrial production, often funded by foreign investment (Feintrenie, 2014; Ordway, 

Asner and Lambin, 2017). 

The products derived from oil palm cultivation have diverse uses (Tinker and Corley, 2015). Oil 

(triacylglycerols) is extracted from both the palm oil fruitlets, harvested in fresh fruit bunches 

(fig. 1.2), producing crude palm oil, and from the seeds within these fruitlets, producing palm 

kernel oil (Tinker and Corley, 2015). Most crude palm oil is used in food products and as a biofuel 

(Tinker and Corley, 2015); and in Africa it is consumed widely without refining, and is a key 

source of vitamin A (Barcelos et al., 2015). Most palm kernel oil is used in non-edible industrial 

and agricultural products, such as detergents, plastics, surfactants, cosmetics and herbicides, 
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although it is also used as a protein meal in animal feed (Wahid, Abdullah and Henson, 2005; 

Tinker and Corley, 2015; USDA, 2020). 

 

Figure 1.2. Industrial oil palm production in Malaysia. (a) Plantation and mill; (b) recently-harvested fresh 

fruit bunches being prepared for milling; (c) industrial plantation, with mature oil palm in the foreground 

and on the left, and newly-replanted oil palm on the right; (d) fresh fruit bunch close-up. Photo credits: (a, 

b) Robin Hayward, (c) Emily Waddell, (d) Jiří Tůma. 

Global palm oil production is greater than that of any other vegetable oil, accounting for 

approximately one third of total global vegetable oil production, and approximately 60% of 

vegetable oil exports (USDA, 2020). The yield of oil palm plantations is roughly six-fold greater 

than rapeseed, the next most productive vegetable oil crop (Yan, 2017), so only approximately 

7% of total land area under vegetable oil crop cultivation is oil palm plantations (FAO, 2020b). 

Currently, India is the single largest importer of palm oil (accounting for ~19% of imports), 

followed by China (~14%), and the EU (~13%) (USDA, 2020). Between the 1960s and 2000s, 

global palm oil production increased (mostly in Indonesia and Malaysia) in response to the rapid 

increase in consumption of vegetable oils as a foodstuff: vegetable oil consumption doubled in 

developing countries and tripled in developed countries between 1963 and 2003 (Kearney, 2010; 

Wilcove and Koh, 2010). However, more recent increases in palm oil production have been in 

response to growing global demands for biofuels; and palm oil accounted for 31% of feedstock 

used for biofuel in 2017 (Chain Reaction Research, 2019). Given growing global demands for 
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vegetable oils as both a foodstuff and biofuel, it is highly likely that palm oil consumption will 

continue to increase over coming years. 

1.4 Environmental impacts of oil palm expansion 

1.4.1 Environmental consequences of recent oil palm expansion in Southeast Asia 

Oil palm agriculture is considered the greatest threat to the highly biodiverse flora and fauna of 

Southeast Asia, because it has driven extensive deforestation, fragmentation of remaining forest 

habitat, and pollution (Fitzherbert et al., 2008; Sodhi et al., 2010; Wilcove and Koh, 2010). In 

Insular Southeast Asia between 2000 and 2010, forest cover declined at an annual rate of 1%, 

faster than in any other tropical region, largely owing to the expansion of industrial oil palm 

plantations (Sodhi et al., 2010; Miettinen, Shi and Liew, 2011; Curtis et al., 2018). Consequently, 

the extent of anthropogenic impacts on the environment are greater in Southeast Asia than 

other tropical forest regions (Venter et al., 2016; Austin et al., 2017). Roughly half of oil palm 

plantations in Southeast Asia have expanded into areas that were forested in 1989 (53.8% of 

plantations in Indonesia, and 39.6% in Malaysia), including both primary and logged forests 

(Sodhi et al., 2010; Vijay et al., 2016). On Borneo, oil palm plantations expanded by 7.9 Mha (60-

fold increase) between 1973 and 2015, three-quarters of which were planted in previously 

forested areas, and nearly half of which (47%) were established within five years of 

deforestation (i.e. the likely driver of deforestation) (Gaveau et al., 2018). In Kalimantan 

(Indonesian Borneo, a key oil palm-producing region), 90% of oil palm expansion between 1990 

and 2010 replaced forest, over half of which was old-growth forest and thus highly valuable for 

biodiversity and carbon storage (Gibson et al., 2011; Carlson et al., 2013; Asner et al., 2018). 

Southeast Asia supports exceptionally high biodiversity, but the recent, rapid deforestation from 

oil palm expansion has driven substantial biodiversity loss. The exceptionally high diversity of 

Southeast Asia has arisen over geological time from a series of tectonic plate collisions, which 

brought diverse evolutionary lineages into the region, and from historical fluctuations in sea-

level in the insular landscape, causing alternating periods of inter-island migration and 

population isolation (Hall, 2012). Owing to high rates of endemism coupled with rapid habitat 

loss, the region now largely comprises the two biodiversity hotspots (regions of exceptional 

endemic diversity that is being rapidly lost) of Sundaland and Wallacea (Myers et al., 2000; Sodhi 

et al., 2010). Oil palm plantations support substantially lower biodiversity than rainforest, for 

almost all taxa studied (Fitzherbert et al., 2008; Foster et al., 2011; Drescher et al., 2016). This 

biodiversity loss occurs because the florally diverse rainforest canopy and overstorey are 

replaced by palm monoculture, resulting in the loss of species dependent on rainforest flora 

(McNeely and Schroth, 2006; Bhagwat et al., 2008). Oil palm monoculture also supports fewer 



22 
 

species because it is structurally simpler than rainforest, with uniform vegetation structure, 

lower canopy height, sparse undergrowth, and substantial levels of human disturbance 

(McNeely and Schroth, 2006; Bhagwat et al., 2008; Fitzherbert et al., 2008). Furthermore, 

remnant forest patches can boost biodiversity in nearby oil palm plantations, but industrial oil 

palm tends to be cultivated in highly homogeneous landscapes of extensive oil palm 

monoculture (Koh, 2008; Azhar et al., 2015). On average, only 15% of species that occur in 

primary forest persist in oil palm plantations; and other crops in Southeast Asia (e.g. cocoa, 

rubber, coffee and Acacia plantations) tend to support higher levels of forest biodiversity, 

because of greater structural complexity, retention of rainforest plant species resulting in 

greater overstorey and understorey diversity, and greater heterogeneity of habitats in the 

surrounding landscape (Bhagwat et al., 2008; Fitzherbert et al., 2008; Rembold et al., 2017). 

Conversion of forest to oil palm results in declines in both species richness and abundance of 

most animal taxa (Foster et al., 2011), with declines of ~50% in insect density and total biomass 

(Barnes et al., 2014). Most remaining areas of forest in Southeast Asia have now been selectively 

logged (Gaveau et al., 2016), resulting in the loss of slow-growing, canopy tree species and 

dependent taxa (Sodhi et al., 2004; Tabarelli, Peres and Melo, 2012), and altering ecosystem 

processes such as the recruitment of dipterocarps, which are the dominant canopy trees in 

Southeast Asian rainforest (Curran et al., 1999). Nevertheless, conversion of selectively-logged 

forest to oil palm also results in substantial biodiversity loss, because disturbed forest supports 

substantially greater biodiversity than oil palm in Southeast Asia (Berry et al., 2010; Brühl & Eltz, 

2010; Chazdon et al., 2009; Dunn, 2004; Edwards et al., 2014; Fitzherbert et al., 2008). 

Preventing further conversion of logged or primary forests to oil palm is therefore considered 

imperative for conserving the region’s biodiversity (Wilcove et al., 2013). 

Owing to extensive expansion into areas of rainforest, and peat soils, recent oil palm expansion 

in Southeast Asia has driven substantial GHG emissions of ‘irrecoverable carbon’ stored in these 

habitats (Carlson et al., 2013; Pendrill et al., 2019; Goldstein et al., 2020). Oil palm plantations 

have substantially lower aboveground carbon stocks (AGC) than both old-growth and most 

disturbed forests in Southeast Asia (Kho and Jepsen, 2015; Asner et al., 2018). Oil palm AGC 

ranges between 2 and 60 Mg ha-1, depending on the stage of the planting cycle (oil palm is a 

perennial crop, replanted on a 25-30 year cycle when the palms become too tall for efficient 

harvesting) (Kho and Jepsen, 2015; Tinker and Corley, 2015). In contrast, the AGC of Southeast 

Asian forest is high in comparison to that of other tropical rainforest regions (Sullivan et al., 

2017), generally over 200 Mg ha-1 (and up to 500 Mg ha-1) in intact forests, and 60-140 Mg ha-1 in 

disturbed forests (Asner et al., 2018), resulting in substantial AGC losses during conversion to oil 

palm. Similarly, oil palm plantations support substantially lower belowground carbon stocks than 

rainforest, on both mineral and peat soils (Drescher et al., 2016). Although oil palm has greater 
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net primary productivity than Southeast Asian rainforest (33 Mg ha-1yr-1 for oil palm and 24 Mg 

ha-1yr-1 for forest), its high fruit yields (and thus harvesting of primary production) mean that 

inputs of organic matter to soils are substantially lower than in forest. Thus, soil organic matter 

and carbon content decline by approximately 50% following the conversion of forest on mineral 

soils to oil palm (Kotowska et al., 2015; van Straaten et al., 2015; Guillaume et al., 2018). 

Moreover, recent oil palm expansion in Southeast Asia has disproportionately occurred on 

peatlands (Koh, Butler and Bradshaw, 2009; Miettinen, Shi and Liew, 2011), in spite of requiring 

drainage prior to planting, because these tend to be located in accessible lowlands (Laurance et 

al., 2010), driving substantial GHG emissions owing to peat oxidation and loss of ‘irrecoverable’ 

belowground carbon (Koh et al., 2011; Goldstein et al., 2020). Over 25 years following 

conversion of peat to oil palm plantation in Indonesia, 420 Mg ha-1 of carbon stored in peat were 

lost, accounting for roughly two-thirds of the total GHG emissions from conversion (Hergoualc’h 

and Verchot, 2011). Between 1990 and 2010, 13% of oil palm expansion in Kalimantan was on 

peatlands, but this accounted for roughly one-third of GHG emissions from oil palm expansion 

(Carlson et al., 2013). 

Expansion of oil palm plantations has resulted in extensive fragmentation of the remaining forest 

in Southeast Asia (Sodhi et al., 2009), driving further biodiversity loss and GHG emissions, in 

addition to those from habitat loss alone. Smaller fragments support fewer species, because 

small habitat patches contain only a fraction of the species present in the original community, 

particularly in tropical forests, where the majority of species are rare and beta diversity is high 

(Laurance et al., 2018). In addition, smaller habitat patches support fewer viable populations of 

species of any taxon, resulting in local extinctions following fragmentation (Prugh et al., 2008; 

Haddad et al., 2015; Hanski, 2015; Laurance et al., 2018). As well as the negative impacts of 

these ‘area effects’ on biodiversity, isolation of fragments increases biodiversity loss, because 

recolonization rates of locally-extinct species are lower in more isolated fragments and 

extinction rates are higher (Haddad et al., 2015; Hanski, 2015). Biodiversity loss increases with 

time since fragmentation, due to ‘extinction debts’, whereby populations that are no longer 

viable in the fragment become functionally, and then locally extinct (Haddad et al., 2015). 

Smaller, more isolated forest fragments in oil palm landscapes have been found to support lower 

richness of ants, birds, butterflies and tree seedlings, suggesting that regeneration of forest in 

fragments will be low (Benedick et al., 2006; Brühl, Eltz, & Linsenmair, 2003; Edwards et al., 

2010; Stride et al., 2018). In addition, oil palm acts as a barrier to the dispersal of forest 

butterflies, which potentially isolates populations and increases risk of extinction in small forest 

fragments (Scriven et al., 2017). Nevertheless, larger fragments can support relatively high 

species richness and are therefore recommended to be prioritised for conservation within oil 
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palm plantations (see section 1.6) (Lucey et al., 2017). However, the value of forest fragments in 

oil palm plantations for AGC is not known, and I examine this in chapter 2. 

The creation of habitat edges during fragmentation (i.e. the boundary between the forest and oil 

palm planted area) also has substantial impacts on biodiversity and ecosystem functioning, by 

generating a hotter, drier, windier and higher-light microclimate, elevating tree mortality, and 

favouring disturbance-tolerant species (Laurance et al., 2011). In tropical forests, the largest, 

oldest trees (canopy and emergent trees) tend to be most negatively edge-affected (i.e. 

experience greatest mortality near forest edges) (Laurance et al., 2000). These edge effects have 

substantial negative implications for forest regeneration and carbon uptake and storage, 

because the largest trees account for the majority of seed and seedling production, and the 

majority of primary productivity and AGC stocks (Laurance et al., 2000). On Borneo, rainforest 

AGC within 100 m of forest edge are 22% lower than those of the forest interior (Ordway and 

Asner, 2020), highlighting indirect impacts of oil palm expansion on carbon storage of remaining 

forests. 

In addition to driving substantial loss of GHG emissions, conversion of rainforest to oil palm 

plantations results in a reduction in ecosystem functions and services; and the only service which 

increases is goods provisioning (i.e. palm oil harvest) and associated revenue (Dislich et al., 

2017). Oil palm plantations have high water requirements compared to Southeast Asian 

rainforests, and therefore alter water cycling and increase risk of water shortage during drought 

periods (Manoli et al., 2018). Substantial soil erosion occurs during plantation establishment and 

replanting (Henson, 2003), resulting in changes to the soil fungal community, including a 

reduction in symbiotrophs, implying loss of nutrient provisioning and an increased need for 

chemical fertilisation (Brinkmann et al., 2019). Deforestation for oil palm expansion results in the 

loss of climate, soil and water regulation performed by forests, and of forest resources (including 

food and medicine provisioning) (Obidzinski et al., 2012; Dislich et al., 2017). However, oil palm 

expansion has increased the income of many smallholder farmers in Indonesia and Malaysia, 

ameliorating rural poverty (Wilcove and Koh, 2010; Drescher et al., 2016; Dislich et al., 2017). In 

Jambi, Sumatra, oil palm cultivation has also increased the access of migrant smallholders to 

education (Drescher et al., 2016). Oil palm is more productive per unit labour than rubber, the 

main alternative smallholder crop, so is highly favourable for smallholders who are limited by 

labour (Drescher et al., 2016). However, oil palm expansion in Southeast Asia often results loss 

of land rights or access for traditional landowners (e.g. indigenous communities), stimulating 

land conflicts (Koh & Wilcove, 2007; Obidzinski et al., 2012). 
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1.4.2 Potential environmental impacts of oil palm expansion in other regions 

There is currently considerable concern that increasing oil palm expansion in Africa and Latin 

America could drive similar biodiversity loss to that in Southeast Asia (Butler & Laurance, 2009; 

Vargas et al., 2015; Wich et al., 2014). Oil palm plantations in the Amazon support considerably 

lower mammal richness and abundance than primary forest, suggesting that oil palm has the 

potential to drive considerable loss of mammal diversity in the Amazon region, like in Southeast 

Asia (Yue et al., 2015; Mendes-Oliveira et al., 2017). There is substantial overlap between the 

ranges of African great apes and locations suitable for industrial oil palm cultivation, suggesting 

considerable potential for the range loss of great apes from oil palm expansion, as for orangutan 

in Southeast Asia (Wich et al., 2014). 

However, current rates of deforestation from oil palm expansion in Latin America and Africa are 

variable, suggesting that the impacts on biodiversity will depend on local context. Vijay et al. 

(2016) estimated that 31% of oil palm plantations established in 2013 had driven deforestation 

in South America, but only 2% and 7% in Mesoamerica and Africa respectively, compared with 

45% in Southeast Asia. Furumo & Aide (2017) estimated that 80% of industrial oil palm 

expansion in Latin America replaced previous anthropogenic land-uses, which were mostly 

pastures, but also croplands and banana plantations. Expansion of oil palm on degraded 

pastures in Colombia does not result in a net change to ecosystem carbon storage, thereby 

avoiding GHG emissions from land-use change (Quezada et al., 2019), and is unlikely to drive 

substantial biodiversity loss (Garcia-Ulloa et al., 2012; Gilroy et al., 2015; Ocampo-Peñuela et al., 

2018). However, large expanses of Latin America are suitable for oil palm cultivation, including 

most of the Amazon region, which would undergo considerable biodiversity loss in the face of 

extensive oil palm expansion (Butler & Laurance, 2009; Pirker & Mosnier, 2015). Moreover, oil 

palm is increasingly expanding in high forest-cover countries in Africa, such as Cameroon and 

Gabon (Feintrenie, 2014; Ordway, Asner and Lambin, 2017; Ordway et al., 2019); and two-thirds 

of oil palm expansion between 2000 and 2015 in Cameroon replaced forest, although this was 

mostly through proliferation of low-efficiency, informal mills rather than industrial expansion 

(Ordway et al., 2019). Rates of deforestation from oil palm expansion in sub-Saharan Africa have 

historically been low, but 81% of foreign investment in countries identified as most at risk from 

commodity-driven deforestation is in oil palm production, suggesting considerable potential for 

rapid expansion of industrial oil palm, and high associated deforestation, in the region in the 

near future (Ordway, Asner and Lambin, 2017). Thus, industrial oil palm expansion in Latin 

America and Africa could result in substantial biodiversity loss, but the likely trajectories of oil 

palm development in the regions are unclear. It is therefore crucial to develop guidance for 

sustainable development of industrial oil palm cultivation in these regions. To date, the potential 
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for oil palm to expand into grassy biomes in these regions, with consequences for biodiversity 

loss outside tropical rainforest, has not yet been addressed, and I examine this in chapter 3. 

1.5 Impacts of climate change on oil palm agriculture 

In order to improve the environmental sustainability of oil palm agriculture, it is essential to 

understand how it may be impacted by climate change over coming decades. Global GHG 

emissions currently appear to follow the Representative Concentration Pathway (RCP) 8.5 

scenario, suggesting that ~4.5 °C of global warming will occur by 2100 (Schwalm, Glendon and 

Duffy, 2020), substantially beyond the target 1.5-2 °C limit of the Paris Agreement (United 

Nations, 2015a). Global warming has already occurred, and 2019 was 1.15 °C warmer than pre-

industrial temperatures (1880-1990) (NOAA, 2020). Concurrent impacts of climate change on 

extreme rainfall patterns have also occurred, with intensification of both drought and extreme 

rainfall events since 1950 in many locations (Bonfils et al., 2020). Climate change is expected to 

affect oil palm cultivation by altering both the distribution of areas suitable for growing oil palm 

and the yields of current oil palm-growing locations (Paterson et al., 2015; Tinker and Corley, 

2015; Brodie, 2016). In this section, I outline the climatic requirements of oil palm (which I also 

discuss in greater detail in chapter 4), followed by the potential impacts of climate change on 

suitable locations for oil palm cultivation, and yield of current oil palm-growing areas. 

Oil palm growth and yield is optimal under high temperatures (>~22°C mean minimum 

temperature), high year-round rainfall (>~2000 mm per year, with >100 mm each month), and 

high photosynthetically-active radiation or sunshine hours (>~7 hours per day) (Tinker and 

Corley, 2015; Hoffmann et al., 2017; FAO, 2020b). However, oil palm tolerates climate conditions 

outside these ranges, and is frequently cultivated in locations with low minimum temperatures 

or a prolonged dry season, particularly under traditional cultivation in Africa, where native oil 

palm grows in a wide range of climatic conditions (see fig. 1.1) (Blach-Overgaard et al., 2010; 

Tinker and Corley, 2015). Oil palm typically tolerates temperatures between 15°C and 36-38°C, 

outside of which it experiences cold or heat stress, although cold tolerant varieties may 

withstand temperatures of 12°C (Mantel, Wösten and Verhagen, 2007; Pirker and Mosnier, 

2015; Tinker and Corley, 2015). Soil moisture determines the length of the oil palm growing 

season, so the length and intensity of dry seasons is a key determinant of growth and yield 

(Mantel, Wösten and Verhagen, 2007; Pirker and Mosnier, 2015; Tinker and Corley, 2015). Much 

of Southeast Asia has consistently high year-round rainfall, and therefore typically higher yields 

than those of West and Central Africa (Tinker and Corley, 2015). The ongoing increase in global 

temperatures, accompanied by changes in rainfall and increased frequency of extreme climatic 
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events, will drive substantial climatic changes in the tropics, where oil palm is currently 

cultivated and expanding. 

Climatic changes across the tropics are expected to shift the locations that are suitable for oil 

palm cultivation and thus expansion, provided that oil palm expansion continues, as expected 

from rising demands (Corley, 2009; Van Meijl et al., 2018). Areas at higher altitude and latitude 

than current locations suitable for oil palm cultivation are generally limited by cold, so are likely 

to become suitable for oil palm cultivation as global temperatures increase (Corley & Tinker 

2015; Paterson et al. 2015, 2017). Thus, oil palm is likely to expand increasingly at higher 

elevation, which could drive loss of additional natural habitats, such as upland areas important 

for providing species with cool refugia (remaining areas of suitable habitat and temperature) 

under climate change (Struebig et al., 2015). Across the tropics, locations of relatively high 

latitude, such as northern Argentina, the southern coastal states of Brazil, South Africa, 

Madagascar and Bangladesh, are projected to become newly suitable for oil palm cultivation 

under climate change, largely from increasing temperatures, potentially facilitating habitat loss 

of areas which are currently unsuitable for oil palm expansion (Paterson et al., 2017). 

Conversely, some current oil palm plantations may become less climatically-suitable for oil palm 

and undergo decreased yields, putting these areas at risk of abandonment, which could 

stimulate expansion of oil palm into newly-suitable locations to compensate (Paterson et al. 

2017). Climate change in Indonesia and Malaysia is likely to increase suitable areas for oil palm 

by 2070 (Paterson et al., 2015); and future oil palm expansion into newly suitable areas at high 

elevation could reduce mammal ranges by 47-67% by 2070, considerably increasing the number 

of threatened mammal species on Borneo (Struebig et al., 2015; Brodie, 2016). However, climate 

change during the 21st century is also likely to reduce the extent of highly suitable locations for 

oil palm (i.e. areas likely to have the highest yield) by ~10% in Indonesia and Malaysia (Paterson 

et al., 2015), and up to 100,000 ha of oil palm plantations in the coastal lowlands of Malaysia 

could be inundated as a result of sea level rise (Siwar, Ahmed and Begum, 2013). Globally, the 

most suitable areas for oil palm cultivation are projected to decrease by 76% during the 21st 

century (Paterson et al., 2017), highlighting the urgent need for mitigation of climate change, 

alongside adaptation of oil palm cultivation, in order to avoid detrimental impacts of climate 

change on the oil palm industry.  

However, the expected impacts of different aspects of climate change on oil palm yield of 

current plantations are contrasting, and the overall net expected impact is therefore unclear, 

although it is highly likely that current plantations will experience periods of low yield in 

response to extreme climatic events. The strong relationship between water availability and oil 

palm yield globally means that an increase in the frequency and intensity of dry periods, as 

projected for most tropical regions (either seasonally or following ENSO events), is highly likely 
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to cause reductions in yield (Al-Amin et al., 2010; Siwar, Ahmed and Begum, 2013). Temperature 

increase appears less likely to impact yield in the near future, because oil palm tolerates 

temperatures up to approximately 38°C, although some heat stress has been predicted for 

Southeast Asia in 2100 (Corley & Tinker 2015; Paterson et al. 2015). Nevertheless, it is likely that 

future heatwaves will have temperatures exceeding those previously experienced by oil palm 

(Barros et al., 2014), so our understanding of the likely impacts of increasing temperatures on oil 

palm yield is poor. Increasing atmospheric carbon dioxide concentrations could drive yield 

increases through improved water-use efficiency and thus drought tolerance of oil palm (Tinker 

and Corley, 2015). However, evidence from forests suggests that changes in temperature and 

rainfall, and possibly the increasing frequency and intensity of fires, are driving a net decrease in 

vegetation growth and water use efficiency (Feeley et al., 2007; Mitchard, 2018; Bauters et al., 

2020). Overall, we have limited understanding of how the contrasting impacts of different 

aspects of climate change (e.g. positive expected impacts of carbon dioxide increase, negative 

expected impacts of increasing drought periods) will interact to affect crop yield (Long et al., 

2006). It is therefore important to improve our understanding of the current importance of 

climate for harvested oil palm yield, which I address in chapter 4. 

1.6 Recent interventions to reduce the environmental impacts of oil palm expansion 

Various tools and interventions have been suggested to reduce the loss of natural habitat, 

biodiversity and GHG emissions from oil palm expansion (Wilcove and Koh, 2010). There are no 

established management practises that substantially improve biodiversity and broaden 

ecosystem services within the oil palm planted area (Dislich et al., 2017; Fitzherbert et al., 2008; 

Koh, 2008), so interventions to date have focused on reducing deforestation and peat 

conversion for the establishment of oil palm plantations, particularly in Southeast Asia (Curtis et 

al., 2018; Koh & Wilcove, 2008; Wilcove & Koh, 2010). These interventions are largely 

implemented through voluntary sustainability certification, primarily by the Roundtable on 

Sustainable Palm Oil (RSPO), and ‘zero-deforestation commitments’ (ZDCs). 

The RSPO was established in 2004 as a non-profit, industry-led voluntary certification scheme for 

oil palm growers (Laurance et al., 2010), and has the vision of “transforming markets to make 

sustainable palm oil the norm” (RSPO, 2020a). The RSPO established its first Principles and 

Criteria for sustainable palm oil production in 2005, and began certification in 2008 (Laurance et 

al., 2010). The 2005 Principles and Criteria required that plantation development (or replanting) 

had replaced neither primary forest nor habitat supporting ‘high conservation values’ (HCVs) 

since 2005 (RSPO, 2005). However, HCVs were not clearly defined, and initial identification of 

locations with HCVs was neither rigorous nor systematic (Edwards, Fisher, & Wilcove, 2012). 
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Thus, the 2005 RSPO Principles and Criteria left secondary and disturbed forests vulnerable to 

conversion (Greenpeace, 2007), in spite of their high value for carbon and biodiversity compared 

to oil palm plantations in Southeast Asia (Berry et al., 2010; Brühl & Eltz, 2010; Chazdon et al., 

2009; Dunn, 2004; Edwards et al., 2014; Fitzherbert et al., 2008). In 2013, the Principles and 

Criteria were revised, to include no conversion of habitat supporting primary forest, rare, 

threatened, or endangered species, or HCVs, according to a more comprehensive definition 

(RSPO, 2013). HCVs comprised six categories of environmental and social conservation value: 

species diversity, landscape-level ecosystems and mosaics, ecosystems and habitats, critical 

ecosystem services, community needs, and cultural values (RSPO, 2013); so natural habitat was 

more comprehensively protected from certified oil palm expansion. Thus, certified plantations 

were required to ‘maintain and enhance’ HCV conservation set-asides within the plantations (fig. 

1.3) (RSPO, 2013), which I address in detail in chapter 2. However, conservation of HCVs did not 

prevent deforestation under all circumstances (Senior et al., 2015), which critics argued 

undermined the value of RSPO certification, stimulating corporations to make ‘zero-

deforestation commitments’ independently of RSPO membership (see following paragraphs in 

this section, pages 30-31). Moreover, the value of HCV areas is uncertain, particularly given their 

fragmented nature; and I examine their value for conserving AGC in chapter 2. In 2018, the RSPO 

adopted a ‘No Deforestation, No Peat, No Exploitation’ (NDPE) policy, which requires all land to 

undergo a HCV-High Carbon Stock Approach (HCV-HCSA) assessment prior to conversion (RSPO, 

2018), in order to designate all forest areas, and other natural habitat with HCVs, for 

conservation. This approach uses a decision-tree process to designate forest habitat for 

protection, based on the vegetation structure of rainforest in Southeast Asia, in addition to 

protecting habitat supporting HCVs. The HCV-HCSA protects both relatively disturbed forest 

vegetation (‘young regenerating forest’), as well as more mature forest habitat, in order to 

support regeneration of degraded habitats where possible (Brown & Senior, 2014; Rosoman et 

al., 2017). I describe this approach in more detail in chapter 3. 
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Figure 1.3. High Conservation Value forest patches conserved within RSPO plantations in Sabah, 

Malaysia. (a) Small HCV area surrounded by recently-replanted oil palm. (b) Mixed landscape of oil palm 

and conserved forest areas. I sampled the vegetation in these HCV sites during fieldwork presented in 

chapter 2. Photo credits: (a) Susannah Fleiss; (b) Robin Hayward. 

There is concern that RSPO certification does not provide additionality in the reduction of 

negative environmental impacts of oil palm agriculture, because it does not stimulate behaviour 

change, but simply certifies the subset of companies that happen to have complied with the 

criteria (e.g. companies which planted on previously converted agricultural land) (Garrett et al., 

2016). The RSPO Principles and Criteria are substantially more stringent in terms of protection of 

natural vegetation than national policies of palm oil producer countries (Garrett et al., 2016), but 

currently only cover 19% of global palm oil production, and roughly 12% of global oil palm 

plantation area (3.2 Mha of 27.1 Mha) (Harris, Goldman, & Gibbes, 2019; RSPO, 2020b). The 

majority of the global palm oil market is therefore outside RSPO, so most palm oil continues to 
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drive deforestation. In Indonesia, RSPO-certified plantations were generally established in the 

1980s and 1990s (i.e. prior to the formation of the RSPO), in areas of lower forest cover than 

non-certified plantations; and no plantation established after 2008 (i.e. when the RSPO began 

certification) was certified by 2017 (Carlson et al., 2018). This suggests that certification has not 

incentivised avoidance of deforestation within plantations, but has largely been taken up by 

plantations with low forest cover prior to planting. Moreover, the historic failure of the RSPO to 

target smallholders means that RSPO certification has not yet reached some of the growers with 

the highest opportunity costs for avoiding deforestation (Garrett et al., 2016). However, in 2019, 

the RSPO adopted an ‘Independent Smallholder Standard’ with the aim of simplifying the 

Principles and Criteria for application by smallholders (RSPO, 2019b), so the additionality of 

RSPO certification could increase over coming years given the large number of smallholder oil 

palm growers. There is also concern that enforcement of RSPO Principles and Criteria is weak 

and without independent evaluation (EIA and grassroots, 2019). In Kalimantan, Indonesia, RSPO 

certification has reduced deforestation within oil palm plantations, but not fire or peatland 

clearance; and has not reduced the rate of decline of populations of orangutans, an iconic 

protected species (Carlson et al., 2018; Morgans et al., 2018). It is therefore unclear if RSPO 

certification can effectively reduce natural habitat loss driven by oil palm expansion. 

Over the last decade, numerous corporations have adopted ‘zero-deforestation commitments’ 

(ZDCs) across their supply chains (Haupt et al., 2018), in light of the potential for RSPO-certified 

palm oil to drive deforestation prior to 2018 (when the RSPO adopted the NDPE policy), and the 

weak enforcement of the Principles and Criteria (EIA and grassroots, 2019). These ZDCs were 

partly adopted in response to consumer pressure (Haupt et al., 2018), and are considered the 

strongest private instrument to reduce commodity-driven deforestation (Chain Reaction 

Research, 2020). In 2018, roughly two-thirds of palm oil production and one-third of oil palm 

land area were covered by ZDCs, which was considerably greater coverage than for other key 

deforestation-risk commodities (e.g. beef, soy and pulp and paper) (Haupt et al., 2018), 

highlighting the wide reach of ZDCs and their potential to have greater impact in reducing oil 

palm-driven deforestation than current RSPO certification (which covers 19% of global palm oil 

production, see above; note that RSPO certification has included ‘no-deforestation’ since 2018 

and is therefore a subset of the oil palm industry under ZDCs). ZDCs may incentivise oil palm 

growers to develop plantations in non-forest locations, but have little impact on growers outside 

these commitments, and thus provide limited additionality in reducing the loss of natural 

habitats from oil palm expansion. In chapter 3, I examine the potential for ZDCs to drive leakage 

of oil palm expansion and biodiversity loss into tropical grassy and dry-forest biomes, which are 

not comprehensively protected under current ZDCs. 
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In addition to the RSPO and corporate ZDCs, Indonesia and Malaysia have each developed 

national oil palm certification schemes, which are now mandatory for all oil palm growers in the 

relevant country, and therefore provide the national legal standards for oil palm cultivation. The 

Malaysian Sustainable Palm Oil (MSPO) and Indonesian Sustainable Palm Oil (ISPO) certification 

schemes were developed in response to the complexities of obtaining RSPO certification for 

smallholders (prior to the Independent Smallholder Standard in 2019), and in order to maintain 

competitiveness of Indonesian and Malaysian palm oil in global markets (Higgins and Richards, 

2019). Obtaining MSPO and ISPO certification is therefore less bureaucratic than for RSPO, and 

more accessible for smallholders, but these schemes have received criticism for their 

comparatively weaker requirements for environmental protection (Higgins and Richards, 2019; 

Earthsight, 2020). Neither of these schemes fully protect forest or peatlands from conversion 

(MPOCC, 2013; Earthsight, 2020), but they provide a legal framework in which further levels of 

environmental protection could be incorporated, highlighting the need for robust understanding 

of the impacts of more stringent schemes, such as RSPO certification, to guide future 

improvements to wider-reaching standards for oil palm cultivation. 

In 2019, the EU issued the Renewable Energy Directive II, stating it will phase palm oil out of 

biofuels by 2030 (excluding palm oil sustainably produced by smallholders), in order to reduce 

the biodiversity loss and GHG emissions driven by oil palm expansion in tropical countries. In 

addition, at the time of writing (in 2020), a new Environmental Bill is under consultation in the 

UK, which proposes requiring ‘due diligence’ of larger businesses to demonstrate that key 

deforestation-risk commodities (including palm oil) in their supply chains were produced 

following local laws to protect forests and other natural ecosystems (i.e. without illegal 

deforestation) (DEFRA, 2020). Thus, legislation to reduce the loss of natural habitats driven by 

palm oil expansion is under ongoing development in both consumer and producer nations, 

highlighting the importance of understanding the success of recent interventions to improve the 

environmental sustainability of oil palm cultivation, to help guide future developments. 

1.7 Thesis aims and rationale 

In this thesis, I examine how the impacts of oil palm expansion on tropical biodiversity and 

carbon storage can be reduced, in order to provide new information to help reduce the land-use 

impacts of oil palm agriculture. In chapters 2 and 3, I examine the degree to which sustainability 

certification helps reduce the impacts of oil palm expansion on carbon and biodiversity, both 

locally (chapter 2), and globally (chapter 3). From the findings in these chapters, I conclude that 

further expansion of oil palm plantations should be avoided where possible. To reduce the need 

for land-use change, and consequent biodiversity loss and greenhouse gas (GHG) emissions, oil 
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palm production could be increased by improving the yield on current plantations. Therefore in 

chapter 4, I examine drivers of industrial oil palm yield in Malaysia, focusing on the role of 

climate, in order to understand how yield is likely to change in future, and whether there is 

potential to increase palm oil production without further expansion, through intensification. In 

chapter 5, I synthesise my findings and discuss the degree to which recent interventions to 

reduce the environmental impacts of oil palm expansion have been successful, and how these 

impacts could be further reduced. I describe the key aims of each of these chapters below. 

Chapter 2: Conservation set-asides improve carbon storage and support associated plant 

diversity in certified sustainable oil palm plantations 

In this chapter, I examine the conservation value of set-asides (mostly HCV areas) in RSPO-

certified oil palm plantations for supporting AGC and associated plant diversity, using data 

collected during fieldwork in Sabah, Malaysian Borneo. 

Key hypotheses: 

(1) Forest conservation set-asides support more AGC than oil palm plantations, but less than 

continuous forest (primary and selectively-logged). 

(2) Conservation set-asides with high AGC also support high plant diversity. 

(3) Landscape-scale forest fragmentation, local topography and soil parameters are 

important predictors of AGC in set-asides. 

Chapter 3: Zero-deforestation palm oil could threaten tropical grassy and dry forest biomes 

In this chapter, I map locations of natural habitat that is climatically-suitable for oil palm 

expansion (both rainfed and under irrigation), in order to examine the potential for ZDCs to drive 

leakage of oil palm expansion (and hence biodiversity loss) from tropical rainforest to grassy and 

dry forest biomes. 

Key hypotheses:  

(1) ZDCs have the potential to drive leakage of oil palm expansion from tropical rainforest to 

tropical grassy and dry forest biomes, because most locations suitable for oil palm in the 

tropical rainforest biome would be protected under ZDCs. 

(2) Irrigation could increase the total area suitable for oil palm cultivation under ZDCs, and 

the expected yields. 

(3) ZDCs steer oil palm expansion into high-biodiversity locations within tropical grassy and 

dry forest biomes, whilst protecting the high-biodiversity locations within tropical 

rainforest. 
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Chapter 4: Climate has limited but varied impacts on oil palm yields in industrial plantations 

In this chapter, I examine the role of climate in determining recent oil palm yield in industrial 

plantations in Malaysia, in order to understand yield gaps on current plantations, and how 

climate change might affect oil palm yield. 

Key hypotheses: 

(1) Climate (temperature and rainfall) is a key driver of variation in monthly oil palm yield. 

(2) Monthly yield is positively related to both temperature and rainfall, with the strongest 

relationships at timelags corresponding to key stages of oil palm fruit development. 
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2.1 Highlights 

• Conservation set-asides boost aboveground carbon stocks of oil palm plantations 

• Set-asides co-benefit carbon and plant diversity compared to oil palm alone 

• Fewer seedlings in set-asides than primary forest may reduce tree regeneration 

• Management of set-asides could improve their regeneration and plant diversity 

2.2 Abstract 

Maintaining forest conservation set-asides is a key criterion of sustainability certification of 

many crops that drive tropical deforestation, but their value for carbon storage and associated 

biodiversity is unclear. We conducted vegetation measurements to examine the benefits of set-

asides for aboveground carbon stocks (AGC) in certified oil palm plantations on Borneo, and 

whether their AGC is positively associated with plant diversity. The mean estimated AGC of live 

trees and palms ≥10 cm diameter in set-asides in certified oil palm plantations (52.8 Mg ha-1) 

was more than 1.5-times that of oil palm (30.3 Mg ha-1), with some plots supporting similar AGC 

to primary forest. For lowland Borneo, we estimate that the average AGC of oil palm plantations 

with 10% coverage of set-asides is up to 20% greater than the average AGC of oil palm 

plantations without set-asides, newly demonstrating carbon storage as a benefit of conservation 

set-asides. We found positive relationships between AGC and plant diversity, highlighting the 

carbon–biodiversity co-benefits of set-asides. However, set-asides had a lower density of tree 

seedlings than continuous primary forest, indicating potential suppression of future tree 

regeneration and AGC. Our findings support the application of zero-deforestation during 

agricultural development to conserve areas of remaining forest with high AGC and high 

biodiversity. We recommend management practices that boost regeneration in existing set-

asides (e.g. enrichment planting), which would be most effective in larger set-asides, and could 

substantially increase the AGC of agricultural landscapes without removing land from 

production, and help conserve forest-dependent biodiversity. 

2.3. Introduction 

If global food demand continues to increase without substantial shifts in diet and food 

distribution, global crop production will need to double by 2050, causing large-scale land-use 

change (Ray et al., 2013; Shepon et al., 2018). This risks considerable environmental damage 

because land-use change for commodity production is the largest driver of forest loss globally, 

mostly occurring in the tropics (Curtis et al., 2018), where forests harbour exceptional 

biodiversity and contribute critically to global carbon cycling (Gibson et al., 2011; Baccini et al., 

2012). Moreover, reducing greenhouse gas (GHG) emissions from tropical agriculture and 
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associated deforestation is fundamental to limiting climate change in line with the Paris 

Agreement (United Nations, 2015a; Griscom et al., 2020), because global land-use accounts for 

nearly a quarter of recent anthropogenic GHG emissions, primarily through agriculture and 

deforestation (IPCC, 2019). 

To reduce the environmental impacts of tropical agriculture, many corporations have made 

commitments to reduce deforestation in their supply chains, and ‘zero-deforestation’ 

commitments now cover two-thirds of global palm oil production (Haupt et al., 2018). If 

successfully implemented, such commitments have the potential to considerably reduce the 

negative environmental impacts of oil palm agriculture, given the high GHG emissions and 

biodiversity loss from extensive deforestation associated with recent oil palm expansion in 

Southeast Asia (Wilcove et al., 2013; Haupt et al., 2018; Pendrill et al., 2019). ‘Zero-

deforestation’ commitments are frequently put into effect through voluntary certification 

schemes for sustainable commodity production, such as the Roundtable on Sustainable Palm Oil 

(RSPO) (Chagas et al., 2018). A key criterion of many of these schemes is the maintenance of 

conservation set-asides of natural habitat within agricultural landscapes (Senior et al., 2015; 

RSPO, 2018). Since its inception in 2005, RSPO certification has required natural habitat (largely 

primary or logged forest) with ‘High Conservation Values’ (HCVs) to be set-aside for conservation 

within oil palm concessions (RSPO, 2018). These HCV set-aside sites are identified according to 

their value for biodiversity, ecosystem services and local communities (Brown et al., 2013; Senior 

et al., 2015). Oil palm plantations developed before 2005, and certified subsequently, also 

contain HCV set-asides identified retrospectively, such as remaining areas of natural habitat with 

low suitability for oil palm cultivation. More recently in 2018, the RSPO strengthened their 

criteria for sustainability and adopted a ‘no deforestation’ policy, to align with ‘zero-

deforestation’ commitments of consumer-goods corporations. These commitments require new 

planted areas to follow a combined HCV-High Carbon Stock Approach (HCV-HCSA) to identify 

forest areas for protection, based on vegetation structure (such as carbon stocks and tree 

density) in addition to HCVs (Rosoman et al., 2017; RSPO, 2018). The HCV-HCSA includes 

protection of low-AGC forest, enabling regeneration of set-aside trees and aboveground carbon 

stocks (AGC) (Rosoman et al., 2017). By protecting forest set-asides, the RSPO aims to increase 

the extent of forest within certified oil palm plantations, and minimize biodiversity loss and 

carbon emissions from land-use change (Rosoman et al., 2017; RSPO, 2018). 4.2 M ha of oil palm 

plantations are currently RSPO-certified globally (RSPO, 2020b), so the recent requirements for 

set-aside conservation could have considerable implications for AGC and biodiversity. To better 

understand these implications, it is therefore important to examine the benefits of existing 

conservation set-asides in oil palm. 
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The benefits of maintaining conservation set-asides for ecosystem services and biodiversity are 

not well established (Edwards & Laurance, 2012; Senior et al., 2015). Forest set-asides in 

Southeast Asian oil palm landscapes can support 60-70% of primary forest biodiversity and high 

seedling survival rates, but this depends on their size (Yeong, Reynolds and Hill, 2016; Lucey et 

al., 2017). The fragmented nature of many set-asides (Scriven et al., 2019) is likely to negatively 

impact their biodiversity and carbon storage capacity (Laurance et al., 2011). For example, within 

100 m of the forest edge, elevated tree mortality substantially reduces AGC, favouring 

regeneration of pioneer species with low wood density (Laurance et al., 2011; Qie et al., 2017; 

Ordway and Asner, 2020), and these negative edge-effects on AGC can extend up to 1.5 km from 

the forest edge (Chaplin-Kramer et al., 2015). In addition to edge-effects associated with 

fragmentation, set-asides have frequently undergone commercial selective logging prior to 

plantation development, like much of the remaining forest in Southeast Asia (Flint, 1994; Gaveau 

et al., 2016). Selective logging reduces AGC through timber extraction, and is likely to cause long-

term impacts in set-asides through reduced tree regeneration, particularly under additional 

disturbances such as drought and increasing temperatures (Jucker et al., 2018; Pillay et al., 2018; 

Qie et al., 2019). Nevertheless, recent studies based on LiDAR surveys of AGC in Malaysian 

Borneo found that selectively logged forests contain 60-140 Mg AGC ha−1, which decreases to c. 

40-100 Mg ha−1 at forest edges (Asner et al., 2018; Ordway and Asner, 2020), suggesting that 

conservation set-asides of logged forest fragments could still substantially improve the AGC of 

plantations, given that the AGC of oil palm is c. 30 Mg ha−1 (Kho and Jepsen, 2015). However, the 

AGC of set-asides is likely to vary substantially with local context such as disturbance history 

(Austin et al., 2017), soil and topography (Quesada et al., 2012; Jucker et al., 2018). It is also 

unclear whether set-aside AGC contributes to the conservation of biodiversity, because 

relationships between AGC and biodiversity in tropical forests are frequently found to be 

positive but are variable and scale-dependent (Deere et al., 2018; Strassburg et al., 2010; 

Sullivan et al., 2017). At large spatial scales, the ‘land-sharing’ approach of retaining 

conservation set-asides within agricultural landscapes may be less effective for conserving AGC 

and biodiversity than the ‘land-sparing’ approach of conserving continuous tracts of forest, 

because the conservation value of continuous primary forest for biodiversity and AGC is 

unparalleled (Gibson et al., 2011; Watson et al., 2018). 

In this study, we collect new field data on vegetation in forest conservation set-asides in oil palm 

plantations on Borneo, to establish the value of set-asides for increasing plantation AGC, and 

whether conservation of AGC in set-asides can have co-benefits for plant diversity. We compare 

plot-level AGC in set-asides with that of continuous forest (logged and primary sites) and the oil 

palm planted area, and compare differences in their vegetation structure, including assessing 

regeneration potential by examining variation in seedling density. We examine potential drivers 
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of variation in set-aside AGC (topography, degree of fragmentation, and soil parameters), and 

relationships between AGC and plant diversity. We scale up our estimates of set-aside AGC to 

predict average AGC of oil palm plantations, and use our findings to make policy 

recommendations on the establishment and management of set-asides for optimizing AGC 

storage and conserving biodiversity. 

2.4. Materials and methods 

Study sites 

We undertook vegetation surveys in Sabah, Malaysian Borneo, between July and November 

2017, in conservation set-asides within RSPO-certified oil palm plantations (n = 14 sites) across 

Eastern Sabah, and within a single, large tract of continuous forest for comparison (n = 4 sites; 

fig. 2.1a), part of a network of forest reserves between East Sabah and the central Borneo 

highlands (Asner et al., 2018). The majority of set-asides (12 of 14) were in oil palm plantations 

planted prior to the establishment of the RSPO in 2005, so were generally in locations unsuitable 

for planting, and had subsequently been classified for conservation under RSPO Principles and 

Criteria (RSPO, 2018). Whilst these set-asides were not all initially conserved specifically for AGC 

or biodiversity value, they provided variation in degree of forest fragmentation (from isolated 

fragments to sites contiguous with forest outside the plantation, such as state forest reserves; 

see section below “Degree of forest fragmentation in the landscape”), set-aside age (oil palm 

plantations aged 8-26 years since first planting), and vegetation structure representative of the 

likely variation in conservation set-asides designated during plantation development (e.g. under 

the RSPO’s 2018 ‘no deforestation’ policy (RSPO, 2018)). We sampled in fully-protected primary 

continuous forest (n = 2 sites), which has never been selectively logged. We also sampled sites in 

once-logged (n = 1 site, logged in 1988) and twice-logged (n = 1 site, logged in mid-1980s and 

2005/6) continuous forest, to include sites spanning a range of commercial selective logging 

intensities likely to represent logging in set-asides prior to plantation development (Reynolds et 

al., 2011). All sites were ≥1.5 km apart to minimise issues of spatial autocorrelation and 

pseudoreplication in our analyses. The dominant soil types across our sites were orthic acrisols 

and dystric cambisols, which are common across lowland Sabah (Land Resources Division, 1974). 
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Figure 2.1. (a) Map of the sampling sites across Sabah, Malaysian Borneo (N = 18 sites). 14 of the sites 

were in set-asides in RSPO-certified oil palm plantations, and four sites were in a large tract of continuous 

forest (Danum Valley and Malua Forest Reserves). Forest cover and industrial oil palm plantation maps 

were obtained from CIFOR (Gaveau et al., 2014, 2016). (b) Transect design (shown for a set-aside site). We 

placed two or three circular plots 100 m apart, with the first plot boundary 25 m from the nearest forest 

edge, and the boundaries of subsequent plots at least 25 m from any forest edge. (c) Nested plot design 

for vegetation sampling. In the main plot of 30 m radius, we recorded live trees and palms ≥25 cm dbh; in 

the subplot of 20 m radius, we recorded live trees and palms ≥10 cm and <25 cm dbh; and in the subplot 

of 5 m radius, we recorded live trees ≥2 cm and <10 cm dbh. We sampled seedlings (<2 cm dbh) rooted 

within eight 1x1 m quadrats, on random bearings 25 m from the plot centre. 

Vegetation surveys 

In each of the 18 sites (14 set-asides and 4 continuous sites) we estimated aboveground biomass 

and AGC in 2-3 circular plots (depending on set-aside size) of 30 m radius (plot size 0.28 ha; N = 

49 plots in total). In set-asides, we placed the first plot boundary 25 m from the nearest forest 

edge to include edge effects, and subsequent plots 100m apart and ≥25 m from any edge (fig. 

2.1b). We defined forest edge as the boundary of continuous woody vegetation over 2m height 

and canopy closure >20%, in line with HCSA guidelines, although boundaries between set-asides 

and oil palm were usually well-defined along minor plantation roads (Rosoman et al., 2017). We 
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used a nested survey design for live trees and palms (fig. 2.1c), following standard protocols 

(Marthews et al., 2014; Phillips et al., 2016). We identified live trees ≥2 cm dbh to genus, and to 

species when known, in the field, and identified remaining specimens and all seedlings at the 

herbaria at Danum Valley and Forest Research Centre, Sepilok. We also surveyed lianas and 

deadwood but these contributed only 6% of the variation in total AGC, so we do not include 

them in the main article (Supplementary Information 1.2). 

Estimating tree height for tree biomass estimation 

One person (AJ) estimated tree height by eye (in m; ‘eye estimates’) for a subset of trees ≥10 cm 

dbh in each plot (30.9% of stems, spanning 10-130 cm dbh), stratified by dbh, and for all palm 

stems, to improve the accuracy of our AGC estimates (Chave et al., 2014). Eye estimates and 

clinometer height estimates (‘tangent method’) (Larjavaara and Muller-Landau, 2013) were 

closely correlated (r = 0.754, df = 48, p <0.001, based on 5% of stems with eye estimates), giving 

us confidence in our eye estimates (fig. S1.1). Both of these methods are subject to error, so we 

did not systematically correct eye estimates according to the clinometer estimates; thus we used 

the eye-estimates to predict height for all remaining stems (Larjavaara and Muller-Landau, 

2013). We selected a second-order log-log model to predict remaining tree heights from the eye 

estimates, which had the lowest relative standard error of the four candidate models we 

compared using the function ‘modelHD’ in the BIOMASS package in R (table S1.1) (Réjou-

Méchain et al., 2017). We compared our field-based estimates of tree height, and resulting AGC 

estimates, to height and AGC estimates derived from established allometric equations, and 

found that the method for estimating heights did not alter our conclusions (Supplementary 

Information 1.1). Here, we present AGC estimates derived from field-based height estimates 

because these have previously been found to outperform regional and pan-tropical allometric 

estimates of tree height (Sullivan et al., 2018). 

Plant diversity and carbon stock estimation for study plots 

For seedlings (<2 cm diameter), saplings (≥2 cm and <10 cm dbh) and adult trees (≥10 cm dbh), 

we calculated genus richness, and Fisher’s alpha (based on genera; a measure of diversity robust 

to differences in stem density), per plot. We estimated the biomass of live tree stems ≥10 cm 

dbh using a pantropical allometric equation (Chave et al., 2014) in the R BIOMASS package 

(Réjou-Méchain et al., 2017), which outperforms regional models for Bornean forest 

(Rutishauser et al., 2013). We checked all tree identifications against a database of plant 

taxonomy (The Plant List, 2013), and assigned wood density values at the finest taxonomic level 

available, from the Global Wood Density Database (Chave et al., 2009; Zanne et al., 2009). For 

trees ≥10cm dbh, we assigned wood density to 20.5% of stems by species, 78.2% by genus, 

1.25% by family, and 0.032% by plot-level mean wood density (a single unidentified individual). 
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We used a mixed-species model to estimate palm biomass, to cover the multiple palm species in 

our surveys, based on dry mass fraction (which we assumed to be 0.37, the mean value for 

multiple species), diameter and stem height (Goodman et al., 2013). We assumed a carbon 

content of 47.1% for all biomass (Thomas and Martin, 2012).  

Estimation of oil palm AGC 

Since oil palm is replanted in a regular 25-30 year cycle, we estimated time-averaged AGC stocks 

of oil palm (mean and 95% confidence intervals (CIs) for a 30-year planting cycle) from oil palm 

age-AGC functions which model carbon sequestration during oil palm growth (Carlson et al., 

2012, 2013). We used mean value theorem to calculate average oil palm AGC (average height of 

curve) for the oil palm growth curves between 0 and 30 years, providing us with mean and 95% 

CI estimates of time-averaged oil palm AGC for a 30-year planting cycle. We did not estimate oil 

palm AGC for the ages of the plantations specific to the set-asides in this study, but for 

unspecified industrial plantations under a 30-year planting cycle, in order to maintain general 

relevance of our results for the oil palm industry. To include oil palm in our statistical model 

comparing AGC of forest types (continuous primary, continuous logged, and set-aside) and oil 

palm, we simulated oil palm AGC data points following a Normal distribution with the mean and 

standard deviation of the time-averaged oil palm AGC (n = 15, following number of data points 

used to derive the oil palm growth curves in Carlson et al. (2013, 2012)). 

Topographic measurements 

To examine the influence of topography on variation in set-aside AGC, we measured slope (°) 

and elevation (m above sea level) in each plot. We took the maximum absolute value of four 

slope measurements in the cardinal directions from the plot centre as our measure of plot slope. 

We obtained elevation measurements from the barometric altimeter of a handheld GPS (Garmin 

64s), which we had calibrated at sea level.  

Degree of forest fragmentation in the landscape 

To examine whether the degree of forest fragmentation surrounding plots in set-asides affected 

their AGC, we used UAV imagery provided by an oil palm company to determine surrounding 

land cover (forest or oil palm). Within a 1 km radius from the centre of each plot, we calculated 

total forest area (km2) and edge index (number of 5 m-resolution grid cells containing forest–oil 

palm boundary, divided by total forest area; higher values signify that a greater proportion of 

forest is adjacent to oil palm). For each plot, we also quantified straight-line distance (m) to 

nearest forest–oil palm edge, and time since fragmentation (years since first adjacent oil palm 

establishment, obtained from the oil palm company; see fig. S1.7 for boxplots of these 
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predictors, and scatterplots with AGC). These four variables (surrounding forest area, edge 

index, distance to forest, time since fragmentation) were correlated (absolute r values ranged 

0.39-0.82; fig. S1.8), so we combined them using principal components analysis (PCA). We 

extracted the first principal component (PC1; which explained 68% of total variation) as a 

‘fragmentation index’, with higher values representing greater forest fragmentation (fig. S1.9; 

table S1.4). We tested the impact of varying the buffer size for calculating forest area and edge 

index on our results (for buffers of 0.2-2 km), but it did not affect our conclusions (table S1.6). 

Soil parameters 

We used seven soil parameters (moisture, pH, available P, total P, total N, organic C and C:N 

ratio) to test the influence of soil properties and nutrients on AGC in set-asides (see fig. S1.10 for 

boxplots of these variables, and scatterplots with AGC). In each plot, we collected, bulked and 

subsampled five topsoil cores (0-20 cm depth; see Supplementary Information 1.3 for details of 

soil analyses, which were conducted at the Forest Research Centre, Sepilok). Because these 

seven parameters were correlated (fig. S1.11), we combined them by PCA and extracted the first 

two PCs (which explained 55% and 21% of the variation) as major gradients in soil nutrients and 

moisture (fig. S1.12; table S1.5). 

Statistical analyses 

We conducted all analyses in R version 3.6.2 (R Core Team, 2017). We compared plot-level AGC 

between set-asides (n = 37 plots), continuous forest (logged forest, n = 6; primary forest, n = 6) 

and oil palm (simulated data points, n = 15), using a Bayesian linear mixed effects model (LMM). 

We fitted site as a random intercept (15 simulated oil palm sites and 18 field sites) with an 

uninformative gamma prior for the random effect variance, using the blmer function in the R 

package ‘blme’ (Dorie, 2011). We found that model convergence was more robust under our low 

random effect replication using Bayesian parameter estimation than using conventional 

methods for parameter estimation (which was also the case for the Bayesian models described 

below). We expect that convergence was poor with parametric modelling because of the large 

variation in set-aside AGC with a relatively small sample size (37 set-aside plots). The model 

structure sufficiently accounted for spatial autocorrelation as the residuals were not spatially 

autocorrelated (Moran’s I of residuals = -0.19, p = 0.20). We conducted post-hoc Tukey pairwise 

comparisons on the LMM using the glht function in the R package ‘multcomp’ (Hothorn, Bretz 

and Westfall, 2008). 

We assessed differences in vegetation structure among forest types, including to obtain an 

indication of regeneration potential from seedlings and saplings in set-asides (from abundance, 

measured as stem density; and mean wood density, which indicates the likely wood density of 
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larger trees in future, and thus the potential for AGC regeneration). We fitted three Bayesian 

LMMs with each of stem density, mean dbh and wood density as response variables, forest type 

and tree size class as fixed effects with an interaction term, and site as a random intercept with 

an uninformative gamma prior for its variance. We log-transformed stem density and mean dbh 

to remove heteroscedasticity of residuals. For models with significant main effects, we 

conducted post-hoc Tukey pairwise comparisons on a single categorical predictor of all pairwise 

combinations of forest type and size class. 

To assess potential drivers of variation in AGC within set-asides, we ran generalized additive 

mixed models (GAMMs) using the R package ‘gamm4’ (Wood & Scheipl, 2017), with AGC in set-

aside plots (n = 37) as the response variable, and a Gaussian family and identity link. We included 

the ‘fragmentation index’ (fragmentation PC1), two soil variables (soil PC1 and PC2) and slope as 

main effects; site as a random intercept; and elevation as a penalized cubic regression spline. We 

initially included both slope and elevation as splines, because the relationships between these 

and AGC can be non-linear (Jucker et al., 2018), but we fitted slope as a main effect owing to 

insufficient variation for model computation. 

To test the relationship between plant diversity and AGC, we conducted Bayesian general linear 

mixed effects models (GLMMs), with total AGC and size class fitted as fixed effects with an 

interaction term, and site as a random intercept, using the function ‘bglmer’ in the R package 

‘blme’ (Dorie, 2011). We fitted the model explaining Fisher’s alpha with a Gamma family and 

identity link, excluding four data points (three seedling and one sapling) because their Fisher’s 

alpha values were over seven orders of magnitude greater than the other data, owing to a small 

number of stems of unique genera in those plots. We fitted the model explaining genus richness 

with a Poisson family and log link. 

Extrapolating our AGC estimates to oil palm plantations 

To examine the benefits of set-asides for AGC at the plantation scale, we estimated the average 

AGC of oil palm plantations (average carbon stocks in Mg ha-1 across a plantation of unspecified 

size) without set asides, and with set-asides (for varying set-aside coverage; 1-100% of the 

plantations), as well as of continuous forest sites for comparison. We define oil palm plantations 

as containing oil palm monoculture and set-aside forest patches (or oil palm monoculture alone), 

as in many industrial oil palm plantations in Southeast Asia (Wicke et al., 2011; Gaveau et al., 

2014). We calculated total AGC mean and 95% PIs (prediction intervals) for each of the three 

land-use types (oil palm, set-aside and continuous forest) to determine average landscape-scale 

AGC (for plantations with and without set-asides, and continuous forest). We derived the 95% 

PIs for time-averaged oil palm AGC from the mean and 95% CIs for oil palm described above. We 

derived the mean and 95% PIs for set-aside and continuous forest sites from site-level estimates 
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of set-aside AGC (N = 18, mean AGC of all plots at a site). We combined continuous primary and 

logged forest for this analysis because their plot-level AGC did not differ significantly (fig. 2.2). 

We estimated the average AGC of oil palm plantations with set-asides as the sum of the 

proportion of the plantation occupied by each land-use type (oil palm and set-aside) multiplied 

by the AGC (mean, lower 95% PI and upper 95% PI). We did not incorporate any effect of forest 

fragmentation on expected set-aside AGC (i.e. our estimates of AGC of oil palm plantations with 

set-asides assume that set-aside AGC is directly proportional to set-aside coverage) because we 

found no effect of fragmentation on set-aside AGC in this study (fig. S1.13; table S1.6). To 

compare the average AGC of oil palm plantations with set-asides for different values of AGC 

stored in set-asides, we also calculated the average AGC of oil palm plantations with set-asides 

for set-aside AGC of 2.5th and 97.5th percentiles of our set-aside sites (and mean oil palm AGC; 

for 1-100% of the plantation occupied by set-asides). It is unlikely that variation in topographic 

and soil parameters was sufficient to limit set-aside AGC in this study, particularly because set-

asides had undergone selective logging (Quesada et al., 2012; Asner et al., 2018); therefore we 

assume that set-aside AGC could be ‘improved’ to the 97.5th percentile value for sites in this 

study. 

2.5 Results 

Across 49 0.28-ha plots in 18 sites, we measured 3120 live tree stems (10-140 cm dbh), 33 live 

palm stems (11-47.2 cm dbh), 989 saplings (2-9.8 cm dbh) and 1,076 seedlings (<2cm dbh). 

Comparison of plot-level AGC between set-asides, continuous forest and oil palm 

The mean plot-level AGC of live trees and palms in set-asides (52.8 Mg ha-1) was more than 1.5-

times the mean simulated time-averaged AGC of oil palm (30.3 Mg ha-1), about half the mean 

AGC of continuous logged forest (101 Mg ha-1), and considerably lower than that of continuous 

primary forest (126 Mg ha-1; fig. 2.2; table S1.2). AGC of plots in set-asides was highly variable 

(7.8-115 Mg ha-1), spanning values lower than the time-averaged AGC of oil palm to values 

greater than some continuous forest plots (68.4-207 Mg ha-1). The variation of AGC within forest 

types arises from considerable variation both within and between sites (fig. S1.5). 
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Figure 2.2. Estimated plot-level AGC by land-use type (mean ±95% CI), for all study plots (n = 49, closed 

circles), and estimated time-averaged AGC of oil palm (n = 15 simulated data points derived from 

Carlson et al. (2013, 2012), open circles). Estimates of AGC for field plots comprise AGC of live trees and 

palms ≥10 cm dbh. Model χ2= 38.4, p <0.001 in comparison to null model (site as random intercept only). 

Different letters (A, B, C) denote significant difference between the land-use types at p <0.05, derived 

from post-hoc Tukey pairwise comparisons (table S1.2); where two land-use types have the same letter, 

their estimated AGC is not significantly different. See fig. S1.3 for a comparison of this model using 

different methods of tree height estimation; and fig. S1.4 for AGC values including deadwood and lianas. 

Comparison of vegetation structure among forest types 

The mean dbh of the largest tree size class (medium-large trees, ≥25 cm dbh) was significantly 

lower in set-asides (mean 34.7 cm) than in continuous forest (logged forest: 41.7 cm; primary 

forest: 48.7 cm), but there were no differences in stem density or mean wood density for size 

classes included in AGC estimates (small trees and medium-large trees) (fig. S1.6; table S1.3). 

However, mean seedling density was significantly lower in set-asides (1.63 m-1) than primary 

continuous forest (5.83 m-1). 

Drivers of variation in set-aside AGC 

Variation in set-aside AGC was partly explained by elevation, but we found no effect of 

fragmentation, soil or slope (table S1.6, fig. S1.13). Our final model included elevation alone (F = 

0.14, p = 0.039) and explained 15% of variation in AGC (adjusted R2). 
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Relationship between set-aside AGC and diversity 

Genus richness of seedlings, saplings and adult trees were positively associated with AGC in set-

asides (fig. 2.3; AGC χ2 = 22.9, p <0.001). Fisher’s alpha was positively associated with AGC for 

saplings and trees, implying that the positive relationship between diversity and AGC is 

independent of stem density for these size classes. In contrast, there was a weak negative 

association between Fisher’s alpha and AGC for seedlings (fig. 2.3; size class-AGC interaction 

term χ2 = 6.18, p = 0.046). 

 

Figure 2.3. Results of Bayesian GLMMs modelling the relationship between plot-level AGC and plant 

diversity in set-asides, for seedlings (<2cm diameter), saplings (≥2cm and <10cm dbh) and adult trees 

(≥10cm dbh). (a-c) Fisher’s alpha was significantly predicted by the full model (Gamma GLMM, identity 

link) including the AGC-size class interaction term (χ2 = 6.18, p = 0.046 for inclusion of the interaction 

term). (d-f) Genus richness was significantly predicted by AGC and size class (Poisson GLMM, log link; χ2 = 

22.9, p <0.001 for inclusion of AGC; χ2 = 318.9, p <0.001 for inclusion of size class), but including the AGC-

size class interaction term did not improve model fit (χ2 = 0.94, p = 0.62). Dashed lines denote 95% 

confidence intervals. Note variation in y axes. 
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Impact of set-asides on oil palm plantation AGC 

Our estimates of average site-level AGC in set-asides (mean AGC of all plots at a site) range from 

28.1 to 96.6 Mg ha-1. For each additional 10% coverage of set-asides in an oil palm plantation, 

average plantation AGC increases by 2.34 Mg ha-1, when set-aside AGC is estimated as the 

average site-level AGC of set-asides in this study (53.8 Mg ha-1; fig. 2.4). When set-aside AGC is at 

the 97.5th percentile of site-level set-aside AGC (91.6 Mg ha-1), each additional 10% coverage of 

set-asides increases average plantation AGC by 6.13 Mg ha-1. Thus a plantation with 10% set-

aside cover and average set-aside AGC has 7.7% greater AGC than a plantation without set-

asides, and a plantation with 10% set-aside cover and 97.5th percentile set-aside AGC has 20.2% 

greater AGC than a plantation without set-asides. 

For a plantation with existing set-asides, improving the AGC of all set-asides can substantially 

increase average plantation AGC, although the degree for potential improvement depends on 

current AGC in the set-asides (fig. 2.4). For example, in a plantation with 10% set-aside cover, 

increasing the set-aside AGC from mean set-aside AGC to the 97.5th percentile would increase 

average plantation AGC by 3.8 Mg ha-1 (11.6%), whereas increasing the set-aside AGC from the 

2.5th percentile to the 97.5th percentile would increase average plantation AGC by 6.3 Mg ha-1 

(20.7%). 
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Figure 2.4. Predicted average AGC for oil palm plantations with set-asides (grey solid line and shading; 

mean ±95% PI), based on estimates of AGC of set-aside sites (n = 14). We also show the predicted 

average AGC (mean ±95% PI) for plantations without set-asides (i.e. oil palm monoculture only; brown 

point and error bars; derived from Carlson et al. (2013, 2012)) and in continuous forest landscapes (green 

point and error bars; based on estimates of AGC in continuous forest sites (n = 4)) for comparison. We 

assume that plantations comprise only oil palm and forest set-asides (when present; i.e. no water bodies, 

infrastructure, open areas, etc.), and that average plantation AGC increases in direct proportion to the 

percentage cover of set-asides. Upper and lower dashed lines are predicted AGC when the set-aside AGC 

is the 97.5th and 2.5th percentiles of the site-level set-aside AGC, rather than the mean (solid line). 

2.6 Discussion 

Value of set-asides for increasing the AGC of oil palm plantations 

Mean plot-level AGC of set-asides in lowland Sabah was more than 1.5-times that of oil palm (fig. 

2.2), with upper values roughly equivalent to those in continuous forest. We estimate that 

plantations with 10% cover of set-asides support up to ~20% more AGC than oil palm plantations 

without such set-asides (fig. 2.4). Globally, the 4.2 Mha of RSPO-certified plantations would 

support 137 Tg (137 x 10-12 g) AGC if they contained 10% coverage of forest set-asides similar to 

those in this study, which is ~10 Tg greater than the time-averaged AGC of oil palm alone for the 

same plantation area, assuming no set-aside coverage (127 Tg). Thus set-asides contribute 

substantially to carbon storage, in addition to supporting biodiversity (Lucey et al., 2017), 

connectivity (Scriven et al., 2019), and water quality (Luke et al., 2017), and can therefore 

contribute to mitigating the GHG emissions of oil palm agriculture (Burton et al., 2017). We 

highlight the importance of conserving the largest trees for AGC, as shown previously (Slik et al., 

Continuous 
forest Oil palm  

(set-asides 
absent) 
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2013), because the mean diameter of the largest tree size class in set-asides was significantly 

smaller than that in continuous forest, resulting in significantly lower AGC in set-asides. Positive 

relationships between AGC and genus richness of seedlings, saplings and adult trees in set-asides 

demonstrate co-benefits of conserving set-asides for high AGC and plant diversity (fig. 2.3), 

which we expect to hold true for other taxonomic groups (Ferreira et al., 2018). The positive 

value of set-asides for improving AGC of oil palm plantations is likely to hold in other croplands, 

because oil palm has unusually high AGC for a crop (Bonini et al., 2018). However, the value of 

set-asides for plantation-scale AGC is likely to vary between crop types; for example, negative 

edge effects on AGC may be stronger for perennial crops (e.g. soy) than oil palm, because of a 

greater contrast in vegetation structure and microclimate at edges (Laurance et al., 2011), 

creating a more hostile environment for tree growth and recruitment. 

Unparalleled value of continuous forest for AGC 

Mean AGC in continuous forest plots was over double that of set-asides, highlighting the 

unparalleled importance of continuous forest for AGC storage (Asner et al., 2018), as for 

biodiversity (Gibson et al., 2011). Furthermore, it is likely that we under-estimated the AGC of 

continuous forest (Tangki and Chappell, 2008; Asner et al., 2018) because our small plot size 

(0.28 ha) likely under-sampled the largest stems (Clark and Clark, 2000), and our continuous 

forest AGC values are low for the region (e.g. Asner et al., 2018), although some previous 

estimates are similar (Berry et al., 2010, using 1 ha plots; Saner et al., 2012, using 0.25 ha 

transects). Our continuous forest sampling design was pseudoreplicated at the spatial scale of 

our forest types (all continuous forest plots were spatially clustered in comparison to the spread 

of set-asides across Eastern Sabah), although we did not detect spatial autocorrelation in our 

statistical model residuals. Therefore we may have under-sampled variation for continuous 

forest AGC across Eastern Sabah (Ramage et al., 2013). However, an improved sampling design 

with less clustering would not likely alter our conclusion that continuous forest has unparalleled 

AGC value in comparison to set-asides, because this holds true for previous estimates of 

continuous forest AGC in Sabah, collected using both field and LiDAR sampling (Kho and Jepsen, 

2015; Asner et al., 2018).  

Substantial variation in set-aside AGC 

AGC in plots in set-asides varied substantially (7.8-115 Mg ha-1), with values ranging from less 

than the time-averaged AGC of oil palm (mean 30.3 Mg ha-1) to greater than some continuous 

forest plots (68.4-207 Mg ha-1). This variation in set-aside AGC is similar to existing estimates of 

the variation in AGC of logged (continuous and fragmented) forests across Sabah (mostly 20-120 

Mg ha-1; Asner et al., 2018). Elevation accounted for some variation in set-aside AGC, but we 
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were unable to explain most of the variation. The high variability of AGC in tropical primary 

forests is driven by multiple factors such as rainfall, soil, elevation and local plant diversity 

(Poorter et al., 2015; Asner et al., 2018), and it is likely that these also contribute to variation in 

the AGC of logged forest. However, we expect that variation in forest disturbance prior to or 

during plantation development (e.g. from commercial selective logging) is the primary driver of 

variation in set-aside AGC. All the set-aside sites in this study were logged at least once during 

plantation development, and it is highly likely that logging intensities would have varied 

considerably across study plots (e.g. variation in the volumes of timber extracted, and 

techniques used) (Putz et al., 2001; Reynolds et al., 2011), depending on the volume of 

commercial timber present, accessibility, and regulations implemented during logging 

operations. Negative edge effects on AGC in Sabah vary with topography and soil type, and are 

correlated with edge effects on other aspects of ecosystem functioning, such as foliar 

phosphorus content, canopy gap area, and leaf mass per area (Ordway and Asner, 2020). Given 

that our sample size in set-asides was relatively small (37 plots in 14 sites), variation in local 

disturbance and ecosystem functioning may have masked any effects of fragmentation and edge 

effects on set-aside AGC in this study which have been found in other studies in the region 

(Ordway & Asner, 2020). Much of the existing literature on forest fragmentation does not 

address the impacts of additional disturbances such as logging (e.g. Laurance et al., 2011), even 

though most forests across the tropics have been selectively logged as well as fragmented (Asner 

et al., 2009). Understanding the combined effects of multiple disturbances on the carbon 

storage, dynamics, biodiversity and potential for recovery of forest set-aside areas would 

provide insight into the potential conservation value of set-asides in the long-term, and should 

be a priority for future studies. 

Regeneration of trees and AGC in set-asides 

Set-asides had fewer seedlings than continuous primary forest, suggesting that without 

management intervention (see below), regeneration of trees and thus future AGC may be 

reduced in set-asides. The relationships between Fisher’s alpha (i.e. diversity accounting for 

abundance) and genus richness (i.e. diversity not accounting for abundance) for seedlings with 

set-aside AGC were contrasting, suggesting that seedling abundance is positively correlated with 

set-aside AGC, driving this pattern. The reduced seedling abundance in plots with low AGC may 

have reduced the negative density-dependence acting on seedling recruitment, resulting in 

slightly higher seedling Fisher’s alpha-values in set-asides with low AGC (LaManna et al., 2017). 

This recruitment of more diverse seedlings in set-asides with low AGC could enhance AGC in 

these set-asides in future (Poorter et al., 2015), although the relationship was weak so the effect 

may be minimal. Furthermore, the seedling genus richness in set-aside plots with the lowest AGC 
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was very low (~5 genera), suggesting reduced resilience of seedlings to disturbances such as 

drought, which are poorly buffered in forest fragments (Ewers and Banks-Leite, 2013). 

Therefore, we expect that the overall reduced seedling abundance in set-asides (and particularly 

in those with low AGC, as suggested by the diversity relationships) will have a greater negative 

impact on AGC regeneration in the medium-term than any positive impact of increased seedling 

diversity. 

Relevance of findings to current conservation policy 

Within the first seven months of RSPO implementation of the HCV-HCSA, over 300,000 ha of 

conservation set-asides were identified within 1.6 M ha of land-holdings proposing new land 

clearance (RSPO, 2019a, p. 39), indicating that conservation set-asides will be an increasingly 

significant component of certified oil palm plantations. All the set-asides in this study were in 

RSPO-certified oil palm plantations, but were formed prior to the adoption of the HCV-HCSA by 

the RSPO (RSPO, 2018). Our set-aside site-level AGC (mean of all plots in a site; 28.1-96.6 Mg ha-

1) ranged from below the lower threshold for protection under the HCV-HCSA to much higher 

quality forest. It is therefore likely that set-asides in new plantations developed under the HCV-

HCSA will span a similar or greater range of AGC than in our study sites. Thus, many set-asides 

designed under HCV-HCSA are likely to require management to improve their AGC and 

biodiversity benefits (see below). 

Designing sustainable oil palm landscapes to conserve carbon 

Our findings contribute new evidence to support the design of set-asides for AGC in line with the 

HCV-HCSA (Rosoman et al., 2017; RSPO, 2018): 

(a) Maximising set-aside area where possible. We estimate that plantations with greater 

cover of set-asides have higher AGC. Although we found no effect of fragmentation on set-

aside AGC, fragmentation often negatively affects AGC and biodiversity, particularly in the 

tropics and specifically in this region (Laurance et al., 2011; Lucey et al., 2017; Qie et al., 2017; 

Betts et al., 2019; Ordway and Asner, 2020); thus we recommend maintaining large forest 

patches where possible (>200 ha ‘core area’, habitat at least 100 m from the forest edge, is 

recommended by Lucey et al. (2017)) and designing set-asides to minimise edge effects. 

(b) Prioritising forest with the highest AGC for conservation (alongside other conservation 

values). We estimate that set-asides with the highest AGC (and therefore a high density of the 

largest trees, ≥25 cm diameter) confer over double the benefit to average plantation AGC as the 

same area of set-asides with average AGC, and that set-asides with higher AGC support greater 

plant diversity. Given the trade-off between total area of set-asides and cultivated area, 
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prioritising high-AGC forest for conservation is preferable for minimising loss of crop area, as 

recommended for Gabon (Burton et al., 2017). 

(c) Protecting low AGC sites. The majority of our set-aside sites fall within the lowest AGC 

category of HCSA (‘Young Regenerating Forest’) (Rosoman et al., 2017), considerably below the 

maximum AGC of set-aside sites (97 Mg ha-1, corresponding to HCSA ‘Medium Density Forest’). 

Nonetheless, these low-AGC set-asides provide considerable opportunity for increasing 

plantation AGC through management for regeneration (see below). 

Management of set-asides for improved carbon stocks and plant diversity 

Low seedling density in set-asides highlights the potential need for management to support tree 

regeneration and maintain or improve set-aside AGC and plant diversity in the long-term. Forest 

restoration such as enrichment planting (Yeong, Reynolds and Hill, 2016) and liana cutting 

(Marshall et al., 2016) may accelerate AGC gains in set-asides, and planting fruiting trees may 

attract seed dispersing birds and mammals, further enhancing forest regeneration (Meijaard et 

al., 2005) and benefitting forest biodiversity. Focusing management on larger set-asides would 

likely produce greater increases in AGC and biodiversity because restoration is more likely to be 

successful (Crouzeilles et al., 2016), and because larger sites can support greater total AGC and 

biodiversity. 

2.7 Conclusion 

Conservation set-asides in oil palm plantations can support high AGC stocks, and improve the 

average AGC of oil palm plantations, thereby helping to mitigate GHG emissions from oil palm 

agriculture. Set-aside AGC and plant diversity are positively associated, so conserving set-asides 

for high AGC has co-benefits for conserving high plant diversity. Our findings support the HCV-

HCSA guidelines for set-aside conservation, such as prioritising conservation of locations which 

are large in size and/or support high AGC, as well as conserving forest areas of relatively low AGC 

to enable future regeneration of AGC and biodiversity. We recommend management of set-

asides to improve tree and AGC regeneration, which would increase the AGC of oil palm 

plantations without removing land from crop production, and prevent future declines in AGC 

and tree diversity due to poor regeneration from the current low abundance of seedlings in set-

asides. 

 

 

 



54 
 

Chapter 3 

Zero-deforestation palm oil could threaten 

tropical grassy and dry forest biomes 
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3.1 Abstract 

Many companies have committed to ‘zero-deforestation’ supply chains, to reduce carbon 

emissions and biodiversity loss from tropical commodities. We examine the potential for zero-

deforestation commitments (ZDCs) to drive leakage of land-use change from tropical rainforest 

to lower-carbon habitats, which support distinct biodiversity, using the example of commercial 

oil palm, which is increasingly expanding outside the tropical rainforest biome. Tropical grassy 

and dry forest biomes contain >50% of climatically-suitable land (outside urban areas and 

cropland) for expansion of oil palm agriculture under ZDCs, equivalent to a four-fold (rainfed 

cultivation) to seven-fold (including irrigated cultivation) greater area than current global oil 

palm plantations. Within these biomes, ZDCs fail to protect areas of high vertebrate richness 

from expansion, although some locations are likely to have low environmental costs of 

conversion to oil palm. Thus, to prevent unintended consequences of ZDCs and guide oil palm 

expansion into locations with the least environmental impact, policies and governance for 

sustainable development and conservation must expand focus from rainforests to all relevant 

biomes. 

3.2 Introduction 

Agriculture has driven almost three-quarters of tropical deforestation (Hosonuma et al., 2012), 

causing substantial biodiversity loss (Laurance, Sayer and Cassman, 2014) and greenhouse gas 

emissions (Pendrill et al., 2019), yet continues to expand, due to the growing global population, 

wealth and consumption (Rudel et al., 2009; Defries et al., 2010). Many corporations have 

therefore voluntarily committed to ‘zero-deforestation’ supply chains for commodities such as 

palm oil and pulp and paper (Haupt et al., 2018). Zero-deforestation commitments (ZDCs) 

protect the majority of remaining tropical rainforest from agricultural expansion (Leijten et al., 

2020), although their success depends on widespread uptake (Garrett et al., 2019). However, 

expansion to meet growing demands could consequently be displaced to tropical grassy biomes 

(grasslands, savannas and shrublands (Lehmann and Parr, 2016)) and dry forests (closed-canopy 

forests with highly seasonal rainfall (Miles et al., 2006)). While some highly degraded pastures in 

these biomes incur minimal environmental costs from conversion to agriculture (Gilroy et al., 

2015; Quezada et al., 2019), natural grassy and dry forest habitatss often lack protection, despite 

supporting distinct biota and potentially high carbon stocks (Sanchez-Azofeifa et al., 2005; Miles 

et al., 2006; Ratnam et al., 2011; Parr et al., 2014; Aleman, Blarquez and Staver, 2016; Espírito-

Santo et al., 2016). Without robust guidance to identify and protect high-biodiversity areas, 

leakage of agricultural expansion, and consequent biodiversity loss, into these biomes under 

ZDCs could undermine benefits of ZDCs for rainforest biodiversity, further threatening poorly-
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protected biomes vulnerable to conversion, over-exploitation and climate change (Aleman et al., 

2016; Dinerstein et al., 2017; Espírito-Santo et al., 2016; Miles et al., 2006; Murphy, Andersen, & 

Parr, 2016; Parr et al., 2014; Ryan et al., 2016). 

Palm oil is a key deforestation-risk commodity (Vijay et al., 2016), and ZDCs now cover roughly 

two-thirds of global palm oil production volume (Haupt et al., 2018). Palm oil ZDCs are chiefly 

implemented through Roundtable on Sustainable Palm Oil (RSPO) certification (Haupt et al., 

2018), although other mechanisms are under development (e.g. near-real-time satellite 

monitoring (Weisse et al., 2019)). RSPO certification requires oil palm expansion to follow the 

High Conservation Value-High Carbon Stock Approach (HCV-HCSA) (RSPO, 2018), a methodology 

also applied to other commodities (Rosoman et al., 2017). Within agricultural concessions, the 

HCV-HCSA conserves: aboveground carbon stocks and woody vegetation structure (‘HCS’); 

biodiversity, ecosystem services and social/cultural values (‘HCVs’); riparian habitat; and peat 

soils (Rosoman et al., 2017). However, the HCV-HCSA and its national-level interpretations (for 

country-specific application: https://hcvnetwork.org/) were largely developed in response to oil 

palm-driven deforestation in Southeast Asia (Vijay et al., 2016), so focus on tropical rainforest, 

with limited guidance for other habitats and geographical regions (HCV Resource Network, 2017; 

Rosoman et al., 2017). Tropical grassy and dry forest biomes differ in structure and function to 

rainforest, leading to frequent misidentification and mis-management (Miles et al., 2006; 

Ratnam et al., 2011; Parr et al., 2014); and HCV-HCSA guidance is currently insufficient to 

prevent conversion of valuable habitat areas in these biomes during agricultural development 

(HCV Resource Network, 2017; Rosoman et al., 2017). Commercial oil palm is expanding in Latin 

America and Africa, which support extensive grassy and dry forest biomes, including in dry 

locations under irrigation (Woittiez et al., 2017), and non-forested areas (Vijay et al., 2016; 

Furumo and Aide, 2017); indeed, the largest RSPO-certified plantation in Africa was developed 

entirely on savanna (Hoyle et al., 2017). Thus, we urgently need to understand the potential for 

ZDCs to drive leakage of oil palm expansion, and consequent biodiversity loss, into biomes 

outside tropical rainforest. 

Here, we map climatically-suitable areas for rainfed and irrigated oil palm expansion, accounting 

for protection under ZDCs. We find that >50% of areas climatically-suitable for oil palm 

expansion under ZDCs are in tropical grassy biomes and dry forests. Using ZDCs to locate new 

plantations fails to protect areas of high vertebrate richness from oil palm expansion within 

these biomes, where oil palm expansion under ZDCs could drive range reduction in 9% of 

threatened terrestrial vertebrate species, unless HCV-HCSA guidance is improved. Thus, we 

argue that to avoid unintended detrimental consequences for tropical biodiversity, policies 

addressing land-use change should incorporate all relevant biomes; in particular, comprehensive 

https://hcvnetwork.org/
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guidelines to identify and manage ‘high conservation values’ specific to tropical grassy and dry 

forest biomes must be developed. 

3.3 Results 

Potential areas for oil palm expansion under ZDCs 

Globally, we estimate that 1,198 Mha of non-cultivated land (including primary vegetation, 

secondary vegetation, and both current and abandoned pasture, but excluding current cropland, 

tree plantations and urban areas), outside IUCN class I and II protected areas, are climatically-

suitable for rainfed oil palm expansion in total (fig. 3.1). ZDCs protect up to 86% of this 1,198 

Mha, assuming that locations ≥35 Mg ha-1 above-ground carbon and ≥30% canopy closure, 

and/or peat soils, are protected under ZDCs, in line with the HCSA (although in practice, 

protection depends on the local context, such as identification of additional ‘HCVs’; see 

Methods). Thus, 167 Mha of non-cultivated, climatically-suitable land is potentially available for 

expansion under ZDCs, which represents a possible 6-fold expansion in global oil palm 

cultivation, and a potential ~4-fold global expansion in grassy and dry forest biomes alone 

(compared with the current planted area of 27 Mha), highlighting considerable potential for 

continued expansion under ZDCs. 

Current criteria for ZDCs protect a considerably higher percentage of the area climatically-

suitable for oil palm expansion in moist forest (93.2%) than grassy biomes (43.4%) or dry forest 

(53.1%) (fig. 3.2), demonstrating that ZDCs achieve their aim of protecting extensive areas of 

tropical moist forest from conversion to agriculture. Consequently, 95.4 Mha of the climatically-

suitable 167 Mha potentially available for expansion under ZDCs is in tropical grassy and dry 

forest biomes, the majority (86.5%) in the Neotropics and Afrotropics (fig. 3.1). This 95.4 Mha 

includes both highly degraded areas and ancient habitats supporting high biodiversity. Thus, our 

findings emphasize the need for sustainable development guidelines for identification and 

protection of high-biodiversity habitats specific to these biomes and regions. Nevertheless, just 

under half (69.4 Mha) of the potential area for oil palm expansion under ZDCs is in highly 

degraded tropical moist forest (given that its aboveground carbon and canopy closure fall below 

the ZDC protection thresholds). Our estimates of the extent of areas suitable for expansion are 

sensitive to model thresholding of oil palm presence/absence, and somewhat sensitive to 

thresholds of habitat protection under ZDCs in line with the HCSA, but this variation does not 

affect our conclusion that tropical grassy and dry forest biomes, especially in the Neotropics and 

Afrotropics, are most vulnerable to future expansion under ZDCs (Supplementary Information 

2.3). 
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Figure 3.1. Map of climatically-suitable locations for rainfed oil palm expansion under zero-

deforestation commitments (ZDCs), according to biome for (a) Neotropics, (b) tropical Africa and (c) 

tropical Asia and Australasia. Inset (b): East coast of Africa and in Madagascar; inset (c): South Pacific. We 

modelled oil palm suitability using species distribution modelling, thresholded by Minimal Predicted Area99 

(see Methods). Areas not available for expansion include: converted habitat (urban areas, cropland or tree 
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plantations; light grey); existing protected areas of IUCN class I and II (dark grey); and locations protected 

under ZDCs (≥35 Mg ha-1 aboveground carbon and ≥30% canopy closure, and/or peat soil, in line with the 

High Carbon Stock Approach; mid-grey). Thus, locations potentially available for expansion are non-

cultivated land (including primary vegetation, secondary vegetation, and both current and abandoned 

pasture). Colours show locations of non-cultivated land which are not protected under ZDCs, and 

therefore potentially available for oil palm expansion, by biome; ‘Other’ biome refers to locations largely 

in Neotropical ‘xeric shrublands’ with relatively high rainfall. The coverage excludes permanent water 

bodies and mangroves. See Supplementary Information 2.3 for comparison of suitable areas under 

different thresholds of habitat protection and model suitability classification. 

Figure 3.2. Protection of climatically-suitable areas for rainfed oil palm expansion under zero-

deforestation commitments (ZDCs), according to the High Carbon Stock Approach (HCSA). Data are 

plotted as a percentage of the total climatically-suitable area by biome, excluding protected areas (IUCN 

class I and II) and urban and agricultural areas, but including primary vegetation, secondary vegetation, 

and both current and abandoned pasture (see fig. 3.1). 

Yield in locations for potential expansion under ZDCs 

Overall, 97% of locations suitable for expansion under ZDCs are likely to have low yields (~10 tha-

1 fresh fruit bunches annually; 6.2-16.5 tha-1 inter-quartile range) under rainfed, high-fertiliser 

input cultivation, highlighting trade-offs between productivity and environmental impacts of 

cultivation, and suggesting that new oil palm plantations developed under ZDCs may need to be 

large to obtain high total oil production (fig. 3.3a; see Supplementary Information 2.1 for 

obtaining expected yield values from modelled climatic suitability values). This low expected 

yield particularly applies to climatically-suitable locations in grassy biomes (where 99.8% of all of 

climatically-suitable locations for expansion under ZDCs have low expected yield) and dry forests 
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(99.1%), but also tropical moist forests (92.2%). Assuming a conversion factor of 20% from fresh 

fruit bunch yield to crude palm oil production (Tinker and Corley, 2015), we expect these low-

yield locations to have annual oil yields of ~2 tha-1, approximately half that of existing 

plantations with estimated oil yields of ~4 tha-1. Overall, the vast majority of suitable locations 

for expansion have low projected suitability, regardless of ZDCs (fig. S2.11), which could reflect 

that the most suitable locations for expansion (e.g. in Southeast Asia) are already converted to 

cropland. 

Opportunities for improved yield under irrigation 

Our projections of climatically-suitable areas for oil palm expansion under ZDCs presented above 

are based on rainfed production, but under irrigation up to 108 Mha could additionally become 

suitable (65% increase compared with rainfed cultivation: a potential 10-fold total increase in 

the current planted area; fig. 3.3b, pale colours). This is based on new monthly water availability 

data (see Methods), assuming that surplus available water (from freshwater lakes, rivers and 

renewable groundwater) irrigates the crop in dry months. Thus, irrigation could enable 

considerably greater oil palm expansion under ZDCs than rainfed cultivation alone, particularly in 

grassy biomes (up to additional 78.6 Mha or 101% increase) and dry forests (up to additional 

16.4 Mha or 94% increase) in the Neotropics and Afrotropics (fig. S2.13; total suitable area 

increase in these biomes alone represents a 7-fold potential increase in the current planted 

area). Whilst we expect 97% of these areas requiring irrigation to have low yield (fig. 3.3b, pale 

colours), irrigation could increase yields in areas suitable for rainfed expansion, because the 

climatically-suitable area for expansion under ZDCs with fair or high expected yield (17.2-17.7 

tha-1 median annual fresh fruit bunch yield under high fertiliser input) increases more than five-

fold under irrigation compared with rainfed cultivation alone (fig. 3.3). 

Potential for ecoregion-level habitat loss 

Oil palm expansion under ZDCs could drive biodiversity loss in tropical dry forests and grassy 

biomes in particular, because the percentage of remaining non-cultivated land of individual 

ecoregions that is suitable for rainfed expansion under ZDCs is greater for tropical dry forests 

(median 23% of remaining ecoregion habitat) and grassy biomes (16%) than for moist forests 

(6%) (fig. 3.4d; fig. S2.21). Ecoregions represent unique ecosystems supporting distinct ecological 

assemblages, at a finer scale than biomes, so habitat loss within an ecoregion represents loss of 

distinctive biodiversity. Expansion under ZDCs could drive considerable biodiversity loss in a 

number of ecoregions with the largest suitable areas (i.e. where expansion is most likely to occur 

globally), because these potential expansion locations comprise a high percentage of the 

remaining non-cultivated area in these ecoregions (table 3.1). Thus, the biodiversity of 
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ecoregions such as the Llanos in Colombia (~80% of non-cultivated land suitable for expansion 

under ZDCs), Beni savanna in northern Boliva (~70%), and Guinean savanna in West Africa 

(~53%), among others, appears particularly vulnerable to encroachment from oil palm expansion 

under ZDCs. However, these estimates of areas suitable for expansion are also likely to include 

some degraded pastures, which could facilitate oil palm expansion with low environmental costs 

(see Discussion). 

 

Figure 3.3. Total areas of non-cultivated land climatically-suitable for oil palm expansion under ZDCs, 

classified according to suitability (and expected annual fresh fruit bunch yield), by biome. (a) Under 

rainfed cultivation; (b) under irrigation, where dark colours represent the expected yield of locations 

which are also suitable if rainfed (i.e. those shown in (a)), but under irrigation; and pale colours 

represent locations only suitable under irrigation. We simulated the impacts of irrigation on yield by 

assuming that up to 100% of surplus available water (from freshwater bodies, rivers and renewable 

groundwater) could supplement rainfall in dry months (months where precipitation < potential 

evapotranspiration), in locations where surplus water was sufficient to remove a critical water deficit (see 

Methods; see Supplementary Information 2.4 sensitivity analysis to surplus available water). We 

determined the suitability classes by Minimal Predicted Area (MPA) thresholding, based on the 

distribution of projected suitability values at locations of oil palm mills, and extracted estimated values of 

oil palm yield for these classes (Supplementary Information 2.1; see Supplementary Information 2.3 and 

2.4 for examination of sensitivity of findings to different thresholds for determining suitability for 

cultivation, and to different thresholds of habitat protection under zero-deforestation commitments). The 

dashed line in ‘Low Yield’ panels shows the current area of oil palm plantations globally, which is outside 

the axis range of the other yield classes. Note differences in y-axis values for the oil palm suitability 

classes. 
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Threats to vertebrate richness 

We estimate that ZDCs successfully mitigate vertebrate (mammal, bird and amphibian) richness 

loss from oil palm expansion in rainforests, by protecting locations with the highest richness 

within the moist forest biome, and thus globally, from expansion (fig. 3.4a). However, ZDCs fail 

to protect locations of high vertebrate richness from expansion within tropical grassy and dry 

forest biomes in all continents (fig. 3.4a, fig. S2.18). In Africa, where the contrast among biomes 

is greatest, expansion under ZDCs in the moist forest biome would result in substantially less 

vertebrate richness loss if converted to oil palm (median 185 species lost per 10-km grid-cell) 

than expansion in locations protected by ZDCs (median 223 species),, whereas within grassy 

biomes, ZDCs do not effectively prevent vertebrate richness loss, because locations available for 

expansion under ZDCs would undergo greater richness loss (median 201 species) compared to 

locations protected by ZDCs (median 166 species; fig 3.4a). Thus, ZDCs could drive considerable 

biodiversity loss outside the tropical moist forest biome, despite successfully protecting 

rainforest biodiversity, highlighting the importance of comprehensive local biodiversity 

assessments prior to planting.  

Range reduction of IUCN threatened vertebrates 

Oil palm expansion under ZDCs could have negative impacts on biodiversity in all biomes by 

decreasing the range size of threatened vertebrates, unless areas supporting such species are 

consistently identified and protected (e.g. as HCVs under the HCV-HCSA, which requires 

protection of threatened species but is not yet well-developed outside tropical moist forest). In 

total, 27% (879 of 3,258 species) of threatened terrestrial vertebrate species could undergo 

range reduction from oil palm expansion under ZDCs, because these species’ ranges overlap with 

potential expansion areas but they cannot persist in plantations (fig. 3.4b). This value rises to 

33% of threatened species (1,071 species) that could undergo range reduction when including 

locations requiring irrigation (fig. S2.19). As expected, the majority of these threatened species 

occur in tropical moist forest (817 species; 25.1% of threatened terrestrial vertebrates), although 

expansion under in grassy biomes and dry forests could reduce ranges of 189 threatened 

vertebrate species (5.8% of all threatened vertebrates for both biomes combined, increasing to 

9.4% when including locations requiring irrigation). Thus, expansion under ZDCs could have 

negative impacts on threatened species in all three biomes, but the threat is generally small 

(median overlap with areas suitable for rainfed expansion under ZDCs is 3.8% of species’ total 

global range, spanning 0.01-100%; fig. 3.4c). Thus, there are likely opportunities for expansion 

without significant negative impacts on threatened species, but the consequences of range 

reduction will be species-specific. 
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Figure 3.4. Potential biodiversity impacts of rainfed oil palm expansion under ZDCs. (a) Potential 

vertebrate species richness loss, from conversion of non-cultivated habitat to oil palm, by protection 

under ZDCs (locations of ≥35 Mg ha-1 and ≥30% canopy closure, and/or peat soil are protected), within 

each biome and continent. We estimated vertebrate ranges by refining range maps according to the 

habitat types suitable for each species; and calculated potential richness loss as the difference between 

the number of species that occur in undisturbed habitat in ~10 km grid-cells, and the number of species 

that can persist in plantations. Boxplots show potential richness loss for all grid-cells; white circles show 

the expected richness loss after accounting for spatial autocorrelation (non-spatial parameters of 

simultaneous autoregressive error models), and brackets denote significant differences (p <0.05) between 

these (* p <0.05, ** p <0.01, *** p <0.001; see table S2.7). We excluded groups with insufficient sample 

size (n <30) from the models, so some locations in dry forest and all ‘other’ biomes are not displayed. (b) 

Number of threatened terrestrial vertebrate species (from a global total of N = 3,258 threatened species 

following refinement of range maps by potential non-cultivated habitat; see Methods) whose ranges 

overlap with locations that are climatically-suitable for rainfed oil palm expansion under ZDCs. (c) 

Percentage of threatened species’ global range which overlaps with locations that are climatically-

suitable for rainfed oil palm expansion under ZDCs (for n = 879 species with ranges overlapping suitable 

locations and which can’t persist in oil palm). For both (b) and (c), note that a species can occur in more 

than one biome. (d) Boxplots of the percentage of non-cultivated land that is climatically-suitable for 

rainfed oil palm expansion under ZDCs in individual ecoregions. See Supplementary Information 2.5 for 

sensitivity of these results to thresholds of habitat protection under ZDCs, and inclusion of locations 

suitable for irrigated oil palm expansion. 
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Table 3.1. Areas of individual ecoregions suitable for oil palm expansion under ZDCs, for the 20 

ecoregions with the largest suitable area (in km2), for suitability for (a) rainfed, and (b) both rainfed and 

irrigated cultivation. Rows with grey shading represent ecoregions which occur in both (a) and (b), i.e. 

which rank in the top 20 ecoregions with the largest suitable are for both rainfed-only and rainfed or 

irrigated oil palm expansion under ZDCs. 

 

 

(a) Rainfed cultivation (b) Irrigated and rainfed cultivation 

Ecoregion Realm Biome 

Suitable 

area for oil 

palm 

expansion 

under ZDCs: 

1000 km2  

(% of total 

non-

cultivated 

land) 

Ecoregion Realm Biome 

Suitable 

area for oil 

palm 

expansion 

under ZDCs: 

1000 km2  

(% of total 

non-

cultivated 

land) 

1 Llanos Neotropic Grassy 

biome 
274 

(79.7%) Llanos Neotropic 
Grassy 

biome 

279 

(81.1%) 

2 
Western Congolian 

forest-savanna Afrotropic Grassy 

biome 
109 

(29.3%) Cerrado Neotropic 
Grassy 

biome 

245 

(16.1%) 

3 
Guinean forest-

savanna Afrotropic Grassy 

biome 
93.7 

(18.0%) 
Guinean forest-

savanna 
Afrotropic 

Grassy 

biome 

132 

(25.4%) 

4 Beni savanna Neotropic Grassy 

biome 
77.1 

(70.3%) 
Western Congolian 

forest-savanna 
Afrotropic 

Grassy 

biome 

131 

(35.2%) 

5 

Southern 

Congolian forest-

savanna 
Afrotropic Grassy 

biome 
59.6 

(10.6%) 
Southern Congolian 

forest-savanna 
Afrotropic 

Grassy 

biome 

112 

(19.8%) 

6 Guianan savanna Neotropic Grassy 

biome 
56.7 

(53.2%) Caatinga Neotropic 
Dry 

forest 

82.3 

(11.6%) 

7 

Magdalena-

Urabá moist 

forests 
Neotropic Moist 

forest 
45.7 

(64.3%) Beni savanna Neotropic 
Grassy 

biome 

77.7 

(70.9%) 

8 
Eastern Guinean 

forests Afrotropic Moist 

forest 
44.2 

(24.7%) 
Mato Grosso 

tropical dry forests 
Neotropic 

Dry 

forest 

76.2 

(20.2%) 

9 
Tocantins/Pindare 

moist forests Neotropic Moist 

forest 
41.3 

(22.5%) 
Northern Congolian 

Forest-Savanna 
Afrotropic 

Grassy 

biome 

72.0 

(10.3%) 

10 

Xingu-Tocantins- 

Araguaia moist 

forests 
Neotropic Moist 

forest 
40.9 

(14.9%) Guianan savanna Neotropic 
Grassy 

biome 

56.7 

(53.2%) 

11 
Maranhão Babaçu 

forests Neotropic Dry 

forest 
36.2 

26.3%) 
Sudd flooded 

grasslands 
Afrotropic 

Grassy 

biome 

52.0 

(27.5%) 

12 
Apure-Villavicencio 

dry forests Neotropic Dry 

forest 
35.9 

(64.0%) 
Madeira-Tapajós 

moist forests 
Neotropic 

Moist 

forest 

50.6 

(7.1%) 

13 
Madeira-Tapajós 

moist forests Neotropic Moist 

forest 
31.5 

(4.4%) 
Xingu-Tocantins-

Araguaia moist 

forests 

Neotropic 
Moist 

forest 

49.9 

(18.2%) 

14 
Bahia coastal 

forests Neotropic Moist 

forest 
30.4 

(30.9%) 
Sahelian Acacia 

savanna 
Afrotropic 

Grassy 

biome 

48.5 

(1.4%) 
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15 
Mato Grosso 

tropical dry forests Neotropic Dry 

forest 
27.6 

(7.3%) 
Magdalena-

Urabá moist forests 
Neotropic 

Moist 

forest 

45.7 

(64.3%) 

16 

Northeast 

Congolian lowland 

forests 
Afrotropic Moist 

forest 
26.6 

(5.2%) 
Eastern Guinean 

forests 
Afrotropic 

Moist 

forest 

44.7 

(25.0%) 

17 
Western Guinean 

lowland forests Afrotropic Moist 

forest 
24.9 

(12.3%) 
East Sudanian 

savanna 
Afrotropic 

Grassy 

biome 

43.8 

(4.9%) 

18 
Hispaniolan moist 

forests Neotropic Moist 

forest 
22.6 

(53.5%) 
Tocantins/Pindare 

moist forests 
Neotropic 

Moist 

forest 

43.4 

(23.7%) 

19 
Nigerian lowland 

forests Afrotropic Moist 

forest 
19.6 

(31.4%) 
Maranhão Babaçu 

forests 
Neotropic 

Dry 

forest 

42.4 

(30.7%) 

20 
Northern Swahili 

coastal forests Afrotropic Moist 

forest 
18.9 

(14.6%) 
Victoria Basin 

forest-savanna 
Afrotropic 

Grassy 

biome 

40.5 

(54.4%) 

3.4 Discussion 

ZDCs threaten tropical grassy and dry forest biomes 

We found that the majority of non-cultivated land that is climatically-suitable for oil palm 

expansion under ZDCs is in tropical grassy and dry forest biomes in Latin America and Africa, 

which support unique ecosystems and biodiversity (Olson et al., 2001; Parr et al., 2014). This 

demonstrates the high potential for leakage of land-use change and biodiversity loss from 

tropical rainforest to these biomes under ZDCs, as occurred following the moratorium on soy 

expansion in the Brazilian Amazon (Arima et al., 2011; Gibbs et al., 2015). Whilst our study 

focuses on oil palm, tropical grassy and dry forest biomes are also suitable for other tropical 

commodities covered by ZDCs (e.g. soy, cattle/pasture) (Fischer et al., 2012; Haupt et al., 2018), 

so our discussion of their conservation under ZDCs is relevant to multiple commodities. In order 

to avoid considerable loss of biodiversity in tropical grassy and dry forest biomes as a 

consequence of efforts to reduce biodiversity loss in tropical rainforest, interventions addressing 

land-use change must address all relevant biomes, and guidelines for sustainable agricultural 

development specific to all these biomes must be developed. 

Our results highlight that under ZDCs, oil palm expansion is likely to drive greater biodiversity 

loss in tropical grassy and dry forest biomes than in tropical moist forest. ZDCs steer expansion 

into locations with high potential vertebrate richness loss within tropical grassy and dry forest 

biomes, particularly in Africa; and larger proportions of their individual ecoregions are suitable 

for expansion, signifying greater potential for loss of individual units of biodiversity (Dinerstein et 

al., 2017). Moreover, we have likely underestimated the potential for leakage of expansion into 

tropical grassy and dry forest biomes under ZDCs, although this depends on the degree of uptake 

of ZDCs across the oil palm sector (Garrett et al., 2019). Firstly, we note that some ecoregion 

boundaries appear erroneous, in line with frequent mis-classification of tropical grassy biomes 
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and dry forests (Sanchez-Azofeifa et al., 2005; Miles et al., 2006; Ratnam et al., 2011; Parr et al., 

2014) which has reduced our estimate of the total area of tropical grassy and dry forest habitat 

suitable for oil palm expansion under ZDCs (e.g. Northeast Congolian lowland forests extend into 

an area of savanna; a ‘finger’ of savanna in southern Gabon is mispositioned and classified as 

moist forest in our analyses). In addition, we have not accounted for protection of areas of high 

biodiversity in line with the HCV-HCSA for ZDCs (HCV Resource Network, 2017), which are likely 

to protect more areas in tropical moist forest than in the other biomes under current guidelines 

(e.g. through more consistent identification of species present), because these are not well-

developed outside tropical moist forest (HCV Resource Network, 2017; Rosoman et al., 2017). 

Thus, the total area of tropical moist forest protected under these ZDC guidelines is likely to 

considerably exceed our estimates, further exacerbating the potential for leakage into other 

biomes. 

We also expect that we have underestimated the impacts of expansion under ZDCs on the 

biodiversity of tropical grassy and dry forest biomes. We have not examined potential loss of 

plant or invertebrate biodiversity from expansion, but these can have high endemism and 

richness in grassy biomes, comparable to those of tropical rainforest in certain ecoregions 

(Murphy et al., 2016), such as the exceptional floral diversity of the Cerrado (Klink and Machado, 

2005), the second-most suitable ecoregion for expansion under ZDCs when accounting for 

irrigation. Additionally, woody vegetation cover is unrelated to biodiversity in grassy biomes 

(Veldman et al., 2015), and the above-ground carbon thresholds for protection under ZDCs are 

too high to protect dry forests (fig. S2.8). Thus, the areas we identify as suitable for expansion 

under ZDCs in tropical grassy and dry forest biomes include areas of degraded habitat (where 

expansion could occur with low carbon emissions and reduced biodiversity loss (Gilroy et al., 

2015; Prescott et al., 2016b, 2016a; López-Ricaurte et al., 2017; Ocampo-Peñuela et al., 2018; 

Quezada et al., 2019)), as well as unique, ancient habitats which support considerably greater 

diversity than highly-degraded tropical moist forest (Veldman and Putz, 2011). We estimated 

vertebrate occurrence by assuming that habitat was intact, so we likely systematically 

overestimated the vertebrate richness loss from expansion under ZDCs in tropical moist forest, 

where no locations suitable for expansion under ZDCs are likely to be intact, in comparison to 

grassy biomes and dry forests, where some suitable locations are highly likely to be intact. 

Therefore, we expect that agricultural expansion under ZDCs could have substantial negative 

impacts on biodiversity in tropical grassy and dry forest biomes, further highlighting the need for 

robust guidance for sustainable agricultural development in these biomes. 
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Gaps in current guidance and key recommendations 

While global conservation efforts have typically focused on rainforests, other tropical biomes are 

also subject to multiple threats and are less well-protected, with ~50% of tropical dry forests 

already converted to other land-uses (Aleman et al., 2016; Dinerstein et al., 2017; Espírito-Santo 

et al., 2016; Hoekstra et al., 2005; Miles et al., 2006; Overbeck et al., 2015; Parr et al., 2014; 

Ryan et al., 2016). In line with this, current ZDC implementation includes comprehensive 

guidance for sustainable agricultural development in tropical moist forests (HCV Resource 

Network, 2017; Rosoman et al., 2017), and is highly effective in protecting the vast majority of 

tropical moist forest locations from conversion to oil palm (fig. 3.2), as well as effectively 

reducing vertebrate richness loss from conversion in this biome (fig. 3.4a). Given the 

exceptionally high biodiversity value and carbon storage of tropical moist forests (Gibson et al., 

2011; Sullivan et al., 2017; Watson et al., 2018), ZDCs therefore have the potential to effectively 

reduce biodiversity loss and carbon emissions driven by oil palm expansion globally. However, 

the current guidance does not currently recognise a number of fundamental differences 

between tropical moist forest and tropical grassy and dry forest biomes. Without modification, 

current guidance (“Annex 2. Grasslands in HCVs” in (HCV Resource Network, 2017)) could lead to 

misidentification and/or mis-management of grassy and dry forest biomes during agricultural 

development, threatening their biodiversity and undermining benefits of ZDCs for rainforests. 

Tropical grassy and dry forest biomes are frequently misidentified as ‘degraded’, low-biodiversity 

habitat, because of superficial similarity of vegetation structure to degraded moist forest, and/or 

misunderstanding around ecological history (e.g. failure to recognise that grassy systems were 

the original habitat, and not derived) (Ratnam et al., 2011; Veldman and Putz, 2011; Parr et al., 

2014), but they are not comprehensively defined in the ZDC guidance (HCV Resource Network, 

2017; Rosoman et al., 2017). Moreover, tropical grassy biomes are characterised by frequent 

disturbance events (e.g. fire, grazing), and can vary temporally and spatially in vegetation type 

and cover, often comprising a mosaic of woody and open vegetation (Ratnam et al., 2011; Parr 

et al., 2014). Without acknowledging this variation and ecological dynamism, impact 

assessments could fail to identify the importance of these habitats due to disturbance events or 

mosaic habitat structure, and plant species which are only visible seasonally or after disturbance 

events could be omitted from field inventories. Tropical grassy biomes can store exceptionally 

high below-ground carbon (as can moist forests) (Batlle-Bayer, Batjes and Bindraban, 2010), 

which is not currently included in the HCV-HCSA (beyond protection of peat soil). Thus, current 

guidance may fail to recognise and conserve the biodiversity and carbon value of these biomes 

during agricultural development. 
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Furthermore, human livelihoods and ecological functioning of grassy biomes and dry forests are 

often tightly linked, and unlike in tropical moist forest, human activity in grassy biomes does not 

always indicate habitat degradation (Sanchez-Azofeifa et al., 2005; Parr et al., 2014; Lehmann 

and Parr, 2016). Activities such as burning and grazing are fundamental disturbances for 

ecological functioning in grassy biomes, which in turn provide livelihoods for one fifth of the 

world’s population (Parr et al., 2014), including many of the world’s poorest people (Djoudi et 

al., 2015). If irrigation is required to boost oil palm yield in these areas, it could increase water 

scarcity, particularly in dry periods, potentially with substantial negative consequences for local 

communities and biodiversity. Whilst the HCV-HCSA requires the free, prior and informed 

consent of local communities for prior to development (Rosoman et al., 2017), this is not 

guaranteed practice owing to insufficient due diligence practices (Forest Peoples Programme, 

2020), so there is urgent need to incorporate local community requirements into agricultural 

development to aid conservation efforts (Garnett et al., 2018). 

To identify and protect 'high conservation values' in tropical grassy and dry forest biomes, and 

thereby avoid negative impacts of ZDCs for biodiversity, we recommend that the existing HCV-

HCSA framework incorporates the following: 

• Comprehensive definitions of different habitat types; and indicators to distinguish 

ancient, high-biodiversity grassy and dry forest biomes from degraded rainforest, such as 

fire-adapted flora in grassy biomes (and supporting the ongoing development of these 

indicators) (Sanchez-Azofeifa et al., 2005; Ratnam et al., 2011; Veldman and Putz, 2011; 

Veldman et al., 2015; Zaloumis and Bond, 2016). Floral biodiversity surveys require 

expert knowledge and are key in identifying habitat intactness (Veldman et al., 2015), so 

building this capacity in all relevant locations is crucial. 

• Recognition of potential habitat dynamism and disturbance in grassy biomes: requiring 

identification of disturbance regimes and management which support these, recognising 

that some human disturbances can also drive biodiversity loss (e.g. over-grazing, use of 

inorganic fertilizers), and ensuring that appropriate fire and grazing of grasslands is 

permitted (this may require extensive discussion with local communities) (Parr et al., 

2014). 

• Biodiversity survey design to reflect disturbance regimes (e.g. by conducting repeat plant 

surveys before and after disturbance events), and landscape-scale factors (e.g. large 

vertebrate migration routes).  

• Below-ground carbon storage of natural vegetation and soils, for improved estimates of 

greenhouse-gas emissions from conversion to agriculture, where data are available. 
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• Requirements and impacts of irrigation on local hydrology, and consequences for local 

communities and biodiversity. 

Sustainably increasing palm oil production 

We found considerable potential for oil palm expansion under ZDCs, even though extensive 

areas are protected from expansion, suggesting that palm oil production under ZDCs can 

continue increasing as demand increases (Corley, 2009). However, the actual suitable area for 

expansion under ZDCs will likely be much lower than our estimates, because we could not 

account for availability of land for conversion, or exclude HCV areas (HCV Resource Network, 

2017). Some additional oil palm expansion could also occur by replacing existing cropland or tree 

plantations (Rosoman et al., 2017), which we excluded because these comprise a small 

proportion of recent oil palm expansion (Furumo and Aide, 2017), but this could in turn displace 

existing croplands to other natural habitat. Studies based in the Llanos, Colombia, have found 

that conversion of highly degraded pastures (not native savanna vegetation) to oil palm has 

limited negative impacts on biodiversity for all taxa examined, and is carbon neutral six decades 

after conversion (Gilroy et al., 2015; Prescott et al., 2016b, 2016a; López-Ricaurte et al., 2017; 

Ocampo-Peñuela et al., 2018; Quezada et al., 2019). Thus, locating new oil palm plantations in 

degraded habitats appears key to minimizing the environmental impacts of oil palm, and 

examining the impacts of expansion in degraded areas in other ecosystems and biogeographic 

regions should be a key research priority. However, the potential avoidance of biodiversity loss 

and high carbon emissions from expansion in degraded habitat (Gibbs et al., 2008; Ocampo-

Peñuela et al., 2018; Quezada et al., 2019) depends on correct identification of grassy biomes 

and dry forests (Sanchez-Azofeifa et al., 2005; Miles et al., 2006; Ratnam et al., 2011; Parr et al., 

2014), highlighting the urgent need for development of guidance to identify and protect valuable 

habitats within these biomes. Prioritising expansion in degraded areas prevents their 

regeneration, which can provide low-cost carbon capture and biodiversity benefits (Gilroy et al., 

2014), and would thereby hinder achieving global conservation goals (e.g. ‘Half Earth, protecting 

half the area of all ecoregions, and the Bonn Challenge, restoring 350 Mha of degraded habitat 

by 2030) (Dinerstein et al., 2017; IUCN, 2020a). Moreover, targeting degraded areas must avoid 

the unintended consequence of incentivising active habitat degradation to facilitate expansion. 

Given the trade-offs of ongoing expansion with biodiversity protection and carbon storage (even 

when targeting expansion in highly degraded areas), and the possible limits to the area available 

for expansion, improving yields of existing plantations is integral to increasing production with 

minimal environmental impacts. Labour shortage for harvesting is a key cause of yield gaps 

(Murphy, 2014), and there is considerable potential to increase global productivity without 

further expansion or fossil fuel- or fertiliser-based inputs.  
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However, increasing current plantation yield does not remove economic incentives for 

expansion elsewhere (Villoria et al., 2013); and we expect that the low yields we projected will 

not deter expansion under ZDCs. We projected oil yield of ~2 tha-1 in most locations, roughly 

equivalent to the maximum of other oilcrops (Fischer et al., 2012), and similar to the yield of 

Southeast Asian smallholders in terms of fresh fruit bunches (~10 tha-1) (Lee et al., 2014), 

suggesting that oil palm would be economically viable, and preferable to cultivating other oil 

crops, in these locations. Moreover, in addition to irrigation, yield in these locations could be 

increased by implementing best management practices, and/or planting oil palm varieties which 

tolerate varied climatic conditions (Giam, Koh, & Wilcove, 2014; Murphy, 2014). Thus there is a 

strong need for both internationally-coordinated governance to reduce the negative impacts of 

land-use change by protecting natural habitats, and for reduction of demand growth for 

vegetable oils, reducing economic incentives for expansion (Koh & Lee, 2012). 

3.5 Conclusion 

Oil palm expansion which complies with ZDCs is most likely to take place in tropical grassy and 

dry forest biomes, so there is urgent need for new guidance to identify and protect biodiversity 

and ecological values in these biomes. Well-governed international policies which recognise and 

conserve all natural habitat types are thus imperative for achieving sustainable tropical 

agriculture. 

3.6 Methods 

Overview 

We mapped suitability for rainfed oil palm using the species distribution model Maxent, 

incorporating locations of current oil palm cultivation (a global dataset of oil palm mills (World 

Resources Institute et al., 2018)) and climate data (Fick and Hijmans, 2017). We mapped 

suitability for irrigated oil palm by supplementing monthly rainfall with a recent hydrological 

dataset of monthly surplus available freshwater (Sutanudjaja et al., 2018). We quantified the 

areas of land suitable for oil palm cultivation (areas which have not been transformed to 

cropland, urban areas or tree plantations, subsequently termed ‘non-cultivated land’), whether 

these areas would be protected under ZDCs, and their biome type, using six global spatial 

datasets: land cover (Buchhorn et al., 2019; Copernicus et al., 2019), tree plantations (Harris et 

al., 2019), aboveground biomass (Santoro et al., 2018b, 2018a), canopy closure (Hansen et al., 

2013), peatlands (Gumbricht et al., 2017), and terrestrial ecoregions (Dinerstein et al., 2017). We 

compared our findings to an estimate of current global oil palm area derived from Harris et al. 

(2019). To assess the impacts of oil palm expansion on vertebrates, we estimated the potential 
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vertebrate richness of locations we deemed to be climatically-suitable for oil palm by refining 

vertebrate range maps (BirdLife International and Handbook of the Birds of the World, 2016; 

IUCN, 2018) according to habitat types suitable for each species. We ran all models and analyses 

at 5’ grid-cell resolution (~10 km at the Equator), the finest possible from component datasets; 

where data were provided at finer resolution, we aggregated them before use. We conducted all 

models and analyses across all tropical regions (between 23.5° N and 23.5° S) using R version 

3.5.2 (R Core Team, 2017) and ArcGIS Pro version 2.2.0. 

Current occurrence of oil palm cultivation 

To train our species distribution models of oil palm suitability, we used a global dataset of oil 

palm mills, collected from major palm oil supply chains and therefore representing occurrence of 

industrial oil palm cultivation (World Resources Institute et al., 2018) (and additionally 

smallholder oil palm cultivation where it is associated with industrial plantations, such as in 

Southeast Asia). Oil palm fresh fruit bunches require processing soon after harvest (Tinker and 

Corley, 2015), so mills are generally adjacent to plantations (Harris et al., 2019). We excluded 

mills in locations likely to be irrigated (and thus cultivated under artificially-altered climatic 

conditions). We used a global dataset of water withdrawal for irrigation in 2014 (Sutanudjaja et 

al., 2018) to determine locations of potential irrigation, excluding all mills within 10 km of non-

zero water withdrawal for irrigation. Additionally, we excluded mills in regions described as 

having widespread irrigation of oil palm (Silalertruksa et al., 2017). Our final dataset for the 

locations of cultivation of rainfed oil palm therefore comprised N = 1021 oil palm mills 

(occupying separate 5’ grid-cells of the climate data). We assumed that each mill within a 

separate pixel represented one known ‘presence’ datapoint for oil palm cultivation. 

This dataset of rainfed oil palm occurrence exhibited considerable spatial bias, reflecting spatial 

bias in locations of oil palm cultivation (88.4% of the mills were in Indonesia and Malaysia), but 

not the extent of global suitability for oil palm, which includes large areas in all tropical regions, 

including Latin America and Africa (Tinker and Corley, 2015; Pirker et al., 2016). To reduce spatial 

bias, we systematically subsampled the mills to one mill per 1°-resolution grid-cell (111 km 

resolution at the Equator; n = 194 mills, 68.0% in Indonesia and Malaysia) (Fourcade et al., 

2014), and found that this considerably improved model predictive performance by reducing the 

dominance of the climate values at Asian mills in the overall distribution of climate values at mill 

locations (fig. S2.1; Supplementary Information 2.1). In comparison with models trained on the 

full mill dataset, models for the subsampled mills had consistently higher Boyce Index values and 

spatial cross-validation performance (see ‘SDM evaluation’ and Supplementary Information 2.1). 
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Climatic predictors of suitability for oil palm 

We derived all climatic predictors from WorldClim version 2: global gridded climate data 

averaged for 1970-2000, at 5’ grid-cell resolution (Fick and Hijmans, 2017). We initially selected 

five climatic predictors known to correlate with oil palm growth and yield (Tinker and Corley, 

2015): mean annual temperature (°C), minimum temperature of the coldest month (Tmin, °C), 

mean annual precipitation (mm), an annual moisture index, and maximum water deficit (MWD, 

mm) (see Supplementary Information 2.1 for details). Some of these predictors were inter-

correlated (table S2.1), and so we ran models with two uncorrelated predictors, Tmin and MWD, 

which represent the most strongly limiting climatic factors for oil palm growth and yield (Tinker 

and Corley, 2015). 

We did not include soil parameters as predictors of suitability for oil palm, because oil palm can 

be cultivated on the majority of tropical soil types, without substantial impacts on yield under 

appropriate management (Tinker and Corley, 2015), and previous estimates suggest few 

locations in the tropics have unsuitable soil for oil palm cultivation (Pirker et al., 2016). However, 

we removed areas of mangrove from our projections of climatically-suitable locations for 

planting (see below), thereby removing areas of saline soils which limit oil palm yield (Tinker and 

Corley, 2015). 

Running species distribution models (SDMs) 

We ran SDMs of oil palm suitability using the R package biomod2 (Thuiller et al., 2016), using the 

SDM Maxent, because it is robust to incomplete datasets (Hernandez et al., 2006; Merow et al., 

2013; Phillips, Anderson, & Schapire, 2006), and our oil palm mill locations do not represent all 

locations suitable for oil palm cultivation across the tropics. SDMs have previously been used to 

model climatic suitability for crops at large spatial scales (Estes et al., 2013; Liu et al., 2015; Singh 

et al., 2017), and Maxent outputs have successfully projected yield when trained on high-yield 

locations (Estes et al., 2013) such as the majority of oil palm mill locations (industrial mills 

supplying global traders) (World Resources Institute et al., 2018). When running Maxent, we 

permitted linear and quadratic relationships with the two climate variables (Tinker and Corley, 

2015) but otherwise maintained default settings. We projected all models across the entire 

tropics for the current climate. 

Maxent requires randomly-sampled ‘background’ climate data to contrast with the distribution 

of climatic predictors at ‘presence’ (oil palm mill) locations. We randomly sampled eight sets of 

50,000 background points for inclusion in models (within seven buffer distances from the 

presence data, spanning 200-2000 km, and additionally with no buffer), weighted by latitude to 

account for the variation in cell area in the unprojected climate grids, to find the optimal buffer 



73 
 

size for model performance (VanDerWal et al., 2009)). We therefore calibrated models with 16 

sets of presence and background locations (2 x presence datasets, full and subsampled oil palm 

mills; and 8 x background datasets). We selected the optimum combination of presence and 

background datasets based on model evaluation metrics (VanDerWal et al., 2009), and we found 

that an intermediate background buffer size was optimal (Supplementary Information 2.1). 

We classified the continuous suitability projections (0-1) of the SDM outputs into suitable (which 

we further classified; see section ‘Classifying expected oil palm yield’) and unsuitable locations, 

using Minimal Predicted Area thresholding based on projected values at the oil palm mill 

locations (Engler, Guisan and Rechsteiner, 2004; Hirzel et al., 2006) (Supplementary Information 

2.1). 

SDM evaluation 

To examine the robustness of SDMs to spatial prediction, we conducted leave-one-out cross-

validation for each model (continuous suitability output) on three spatially distinct portions of 

the data (Americas, Africa and Asia/Australasia), which we evaluated using the moving window 

Continuous Boyce Index (Hirzel et al., 2006). To examine full model accuracy (i.e. where models 

were trained with all three spatially-distinct portions of the data), we calculated the moving 

window Continuous Boyce Index (Hirzel et al., 2006) by testing the continuous suitability 

projections on a largely-independent dataset of oil palm plantations (a map of global tree 

plantations compiled from mixed sources, largely from remote sensing, with a small subset of oil 

palm plantations verified against the oil palm mills dataset used to train the models) (Harris et 

al., 2019), with 50,000 randomly selected testing background points. We selected the single best 

model based on these full-model and cross-validation scores, alongside relative variable 

importance, for use in our analyses (Supplementary Information 2.1). Our best model included 

spatially-subsampled oil palm mills, and background points in a 500 km-buffer, selected primarily 

for its high transferability to novel locations. 

To examine the sensitivity of our model outputs to the threshold used to determine oil palm 

suitability, we compared the performance of the best model classified into suitable and 

unsuitable locations at three different Minimal Predicted Area thresholds (Supplementary 

Information 2.1). To compare these classifications, we tested our projections for each 

classification on the largely-independent dataset of oil palm plantations (Harris et al., 2019) (see 

above) using the True Skill Statistic to measure predictive accuracy (Allouche, Tsoar and Kadmon, 

2006), and we compared our projections with an agro-ecological model of oil palm suitability 

(Pirker et al., 2016). We found that the mid-range suitability classification of the three we tested 

(Minimal Predicted Area99) gave high values for both of the evaluation metrics (fig. S2.5, S2.6), so 

we present this classification in the results in the main article. 
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Classifying expected oil palm yield 

We classified the continuous suitability outputs of the suitable locations of the best SDM (i.e. 

excluding unsuitable areas) into three suitability classes for oil palm cultivation (low, medium, 

high), using Minimal Predicted Area thresholding (as we used for classifying suitable and 

unsuitable areas), where each suitability class contained one-third of the oil palm mills used to 

train the model (excluding any that fell below the suitability threshold; Supplementary 

Information 2.1). We obtained expected yield values for each of these classes from global maps 

of oil palm yield for the year 2010 (International Food Policy Research Institute, 2019) by 

comparing SDM outputs with all grid-cells where actual yield >0 tha-1 (Supplementary 

Information 2.1). For comparison, we also extracted 2010 yield values (International Food Policy 

Research Institute, 2019) at locations of oil palm mills (i.e. current industrial plantations) used as 

‘presence’ locations in the SDMs. 

Modelling climatically-suitable locations under irrigation 

To simulate locations suitable for oil palm under irrigation, we projected our best SDM to an 

altered climate, and we simulated MWD under potential irrigation (Tmin was unaltered). To 

calculate ‘irrigated’ MWD, we assumed that months with sufficient surplus available water to 

remove a critical annual MWD were ‘irrigated’. We calculated monthly surplus available water as 

the difference between monthly gross water demand (m3, incorporating demand from 

households, industry, livestock and irrigation) and total renewable supply (m3, incorporating 

unused desalinated water, renewable groundwater, and runoff from rivers, reservoirs and lakes), 

averaged for each month for 2005-2009 (Sutanudjaja et al., 2018; Hofste et al., 2019) (the most 

recent available data), and we converted this to mm by dividing by grid-cell area in m2. To 

simulate irrigation, we assumed a critical cumulative water deficit (at which oil palm begins to 

suffer water stress) of 100 mm, which corresponds to empirical values of critical deficit (Tinker 

and Corley, 2015) and average monthly evapotranspiration (Yusop et al., 2008) for oil palm, 

driving a ~10% decrease in yield (Carr, 2011). For locations requiring irrigation (i.e. with annual 

MWD >100 mm), we supplemented rainfall with surplus available water in the months with a 

moisture deficit (i.e. where rainfall < PET). Where monthly surplus available water was sufficient 

to reduce the annual MWD to <100 mm, we assumed that irrigation would be applied, because 

it could successfully remove the critical water deficit. Where monthly surplus available water 

was insufficient to reduce MWD to <100 mm, we assumed that irrigation would not be applied, 

and used MWD based on rainfall alone (as in the SDMs representing suitability for rainfed 

cultivation). We tested the sensitivity of our estimates of suitability for irrigated oil palm 

cultivation to the monthly surplus available water, and found that using 100% of surplus 

available water increases the area of non-cultivated land suitable for irrigated-only oil palm 
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expansion by ~50% compared to using 50% of surplus available water (Supplementary 

Information 2.4). 

Mapping non-cultivated land 

We determined terrestrial non-cultivated land using Copernicus 2015 high-accuracy global land-

cover data (Buchhorn et al., 2019; Copernicus et al., 2019), excluding all permanent water bodies 

(Buchhorn et al., 2019; Copernicus et al., 2019) and mangrove habitats (Dinerstein et al., 2017). 

We assumed that areas of non-cultivated land represent land-cover types most likely to support 

native biodiversity, as many species cannot persist in cropland, tree plantations or urban areas 

(IUCN, 2018), and that non-cultivated land are most likely to be converted to oil palm (Vijay et 

al., 2016). We therefore used the global land-cover map (Buchhorn et al., 2019; Copernicus et 

al., 2019) to exclude locations of cropland and urban areas, and a comprehensive database of 

global tree plantations (including oil palm plantations) (Harris et al., 2019) to exclude locations of 

existing tree plantations. Our areas of non-cultivated land therefore include all primary and 

secondary vegetation (including undisturbed natural habitat, degraded areas and improved 

pasture): habitats potentially available for conversion to agriculture. Nevertheless, we 

acknowledge the differing biodiversity values of these habitats (intact, disturbed and improved 

pasture), and we address the implications of this for our findings in the Discussion (see section 

“ZDCs threaten tropical grassy and dry forest biomes”). 

Mapping current protected areas 

We used the Protected Planet World Database on Protected Areas (UNEP-WCMC and IUCN, 

2020) to identify areas that are protected from conversion to industrial agriculture. We included 

all terrestrial protected areas of IUCN classes I and II, which are most strictly protected and 

therefore least likely to undergo conversion (Dudley, 2008). For a subset of protected areas 

without a shapefile, we estimated protected area coverage as circles centred on point 

coordinates, corresponding to the reported size of the protected area (km2) (UNEP-WCMC, 

2017). 

Determining protection under ZDCs 

During impact assessments for development of zero-deforestation oil palm plantations, HCSA 

guidance designates all locations with vegetation dominated by trees >30cm diameter at breast 

height, with >50% canopy closure and aboveground carbon of approximately >75 Mg ha-1 (‘low 

density forest’) for conservation; and all locations dominated by trees 10-30cm diameter at 

breast height, with 30-40% canopy closure and aboveground carbon of approximately 35-75 Mg 

ha-1 (‘young regenerating forest’) are considered ‘potential’ areas for conservation (Rosoman et 
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al., 2017). If areas of ‘young regenerating forest’ support additional conservation values 

identified in the ‘High Conservation Value’ assessment (conducted in tandem with the High 

Carbon Stocks Approach), or represent a significant habitat area in the landscape, they are 

designated for protection (Rosoman et al., 2017). This vegetation stratification is based on the 

structure of moist forest in Southeast Asia, where oil palm has recently driven extensive 

deforestation (Vijay et al., 2016). We therefore computed two scenarios to represent likely 

habitat protection under this scheme: in which all locations corresponding to (i) ‘low density 

forest’ are protected, and (ii) all ‘young regenerating forest’ are additionally protected. We 

mapped these scenarios using global datasets of canopy closure (Hansen et al., 2013) and 

aboveground biomass (‘GlobBiomass’) (Santoro et al., 2018b, 2018a), assuming that 50% of 

aboveground biomass is carbon (Chave et al., 2005). For both scenarios, we included all locations 

with peat soils as protected from cultivation (Gumbricht et al., 2017). Vegetation thresholds for 

determining protection are currently only developed for lowland rainforests in Southeast Asia, 

and thresholds in different continents and habitat types are currently under development 

(Rosoman et al., 2017), so we applied the same thresholds of aboveground carbon and canopy 

closure across the tropics, regardless of continent or biome. We found that the two HCSA 

scenarios for habitat protection give similar patterns of relative oil palm suitability across biomes 

and continents; therefore we present the ‘young regenerating forest’ scenario (protecting of ≥35 

Mg ha-1 and ≥30% canopy closure) in the main article, and ‘low density forest’ (≥75 Mg ha-1 and 

≥50% canopy closure) in Supplementary Information 2.3-2.5. 

In addition to HCSA assessments, HCVs are also identified for protection prior to oil palm 

development (Rosoman et al., 2017). However, we did not attempt to map these additional 

conservation values (e.g. presence of rare species in local habitat patch, conservation of cultural 

values) because they cannot be captured reliably through global mapping, and require local 

case-by-case identification, based on on-the-ground data and stakeholder consultation. 

Furthermore, many of the national interpretations for HCVs were originally developed for 

forestry, and have not subsequently been developed for habitats other than tropical moist forest 

(Rayden et al., 2006; Mbolo and Mimbimi Esono, 2008; Stewart and Rayden, 2008). Tropical 

grassy biomes are fundamentally different in biota and functioning to forests and therefore 

require separate criteria to identify areas with HCVs (Parr et al., 2014).  

Biome and biogeographic realm classification 

We based our biome classification on the most recent map of Terrestrial Ecoregions of the 

World (Dinerstein et al., 2017). We reclassified the biome assigned to 25 of 391 non-mangrove 

ecoregions, using ecological literature, expert knowledge of these habitats and the classification 

used in Murphy et al. (2016), mostly ensuring that grassland, savanna, shrubland and woodland 
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ecoregions with a continuous grassy understorey were identified as ‘tropical grassy biome’ 

(Lehmann and Parr, 2016) (table S2.3). For our analyses, we then grouped ‘tropical & subtropical 

moist broadleaf forest’ ecoregions as tropical moist forest; ‘tropical & subtropical dry broadleaf 

forest’ ecoregions as tropical dry forest; we grouped ecoregions classified as ‘tropical and 

subtropical grasslands, savannas and shrublands’, ‘montane grasslands and shrublands’ and 

‘flooded grasslands and savannahs’ as tropical grassy biomes; and we grouped ecoregions 

classified as ‘deserts and xeric shrublands’ and ‘tropical and subtropical coniferous forests’ as 

‘other’ biomes.  

We also used the map of global ecoregions (Dinerstein et al., 2017) to classify locations by 

biogeographic realm. Because our region of interest is the tropics, we reclassified the realm of 

eight ecoregions in North Africa and the Arabian Peninsula, which had small suitable areas 

(median 161 km2 under suitability threshold MPA100) to ‘Afrotropic’ from ‘Palearctic’. 

Impacts of oil palm expansion on vertebrates 

Following Beyer et al. (2020) and Jetz, Wilcove, & Dobson (2007), we estimated potential 

vertebrate richness loss from oil palm expansion as the difference between current ‘potential’ 

richness (total number of species occurring in a grid-cell) of non-cultivated land, and richness of 

oil palm plantations (i.e. species which could persist in plantations). To estimate species’ 

occurrence, we refined global range maps for three well-documented taxa (mammals, birds and 

amphibians) (BirdLife International and Handbook of the Birds of the World, 2016; IUCN, 2018) 

according to Terrestrial Ecoregions of the World biome classification (Dinerstein et al., 2017), 

and locations of cropland, urban areas (Buchhorn et al., 2019; Copernicus et al., 2019) and tree 

plantations (Harris et al., 2019). We considered a species as ‘present’ in a given grid-cell if its 

original range map contained the grid-cell centre, and if the biome or transformed habitat type 

(cropland, urban, tree plantation) of the grid-cell was listed as suitable for the species, following 

matching in table S2.6. Because we assumed that locations of non-cultivated land were 

undisturbed, our estimates of richness prior to conversion to oil palm therefore represent 

maximal ‘potential’ richness for grid cells of non-cultivated land. However, the locations of non-

cultivated land include both degraded and undisturbed habitat (partly depending on the biome), 

leading us to overestimate vertebrate richness loss from conversion to oil palm in many 

locations, which we address in the Discussion (see section “ZDCs threaten tropical grassy and dry 

forest biomes”). We considered that species remained ‘present’ in a grid-cell following 

conversion to oil palm if its list of suitable habitats included ‘plantation’. We also used these 

refined range maps to examine the overlap of locations suitable for oil palm expansion and 

threatened species’ ranges (vulnerable, endangered or critically endangered in the IUCN Red 
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List). See fig. S2.17 for maps of species richness in current land-cover, plantations, and richness 

loss from conversion. 

Statistical models of potential richness loss 

To test whether ZDCs consistently protect locations of high species richness loss across biomes 

and continents, we conducted spatial simultaneous autoregressive error models, comparing 

total vertebrate species richness loss across locations of non-cultivated land that we projected as 

climatically suitable for oil palm expansion. We fitted protection under ZDCs (protected or not 

protected), and biome (moist forest, grassy biome or dry forest) as categorical predictors in the 

models, with separate models for each continent (Latin America, Africa and Asia/Oceania 

combined) to facilitate convergence and avoid the need for a three-way interaction between 

protection, biome and continent in statistical analyses. Owing to limitations of computational 

efficiency, we spatially thinned the values of our species richness loss maps by extracting the 

values of every 16th grid-cell (nearest-neighbour resampling by a factor of 4), which facilitated 

model fit. We excluded groups (combinations of continent, biome and protection under zero-

deforestation) which represented <0.33 % of the full data (n<30 after thinning) from the analysis, 

to enable model convergence and avoid inaccurate parameter estimation. We calculated effect 

sizes of each predictor, and of protection within each biome and continent, by comparing the full 

model to models in which each effect had been removed in turn. 
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Chapter 4 

Climate has limited but varied impacts on 

oil palm yield in industrial plantations 
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4.1 Abstract 

Background Vegetable oil yields need to increase to meet rising global demands with minimal 

conversion of natural habitat. Existing oil palm plantations present substantial opportunities for 

sustainable intensification, but the potential for yield improvement depends on the roles of 

multiple aspects of climate and management in determining yield. 

Methods We determine the relative importance of climate for variation in oil palm yield during 

2006-2017, in comparison to management (among-site variation), in 12 industrial plantations in 

Peninsular and East Malaysia (Borneo), where the climate is highly-suitable for oil palm 

cultivation. We quantify relationships between climate (monthly temperature and rainfall) and 

yield for lag times up to 36 months prior to harvest, which correspond to key stages in oil palm 

fruit development, for both raw and anomalised variables (without seasonal and spatial 

variation). 

Results Over half of the explained variation in yield arose from differences among plantations 

(median annual fresh fruit bunch yield 16.4 – 31.6 tha-1), suggesting opportunities for improved 

management. In contrast, climate explained <1% of variation in yield. Maximum monthly 

temperature during inflorescence development was the main climatic driver of yield 

(Spearman’s Rho = 0.30), suggesting that insufficient solar radiation (a correlate of maximum 

temperature, generally highly important for yield) is the main climatic constraint to yield in our 

study sites. In addition, we found positive impacts of rainfall anomalies during key stages of fruit 

development (inflorescence abortion and sex determination; Spearman’s Rho 0.06 and 0.08 with 

yield anomalies respectively), suggesting minor effects of water-limitation on yield at these sites; 

and a negative impact of maximum temperature anomaly during month of harvest (Spearman’s 

Rho -0.14), suggesting possible heat stress impacts on workers. 

Conclusions Our findings imply substantial yield gaps in some industrial plantations in Malaysia 

(possibly up to ~50%), although some differences in yield could be driven by factors such as oil 

palm cultivar, soil and topography. The role of climate is relatively minor, so improving 

management practices could improve yield considerably, enabling substantial increases in oil 

palm production in Malaysia without encroachment on natural habitat. 

4.2 Background 

The global agricultural system is currently responsible for up to one third of all greenhouse gas 

(GHG) emissions (Vermeulen, Campbell and Ingram, 2012) and is the single largest driver of 

tropical deforestation (Curtis et al., 2018). Current global agriculture thus transgresses most 

relevant planetary boundaries, with greater use of land, phosphorus and nitrogen fertilisers, and 
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GHG emissions than is sustainable, leading to global environmental degradation (Conijn et al., 

2018). However, by 2050, the increase in global human population, wealth and consumption 

could result in total demand for agricultural increasing by ~60-100% compared to 2005 (Tilman 

et al., 2011; Valin et al., 2014), unless substantial changes to consumption patterns and dietary 

preferences occur, such as reduced consumption of animal products and reduced wastage of 

food (Valin et al., 2014; Erb et al., 2016; Berners-Lee et al., 2018). Even if consumption patterns 

are sufficiently altered to curb the increase in food demand (Cassidy et al., 2013; Berners-Lee et 

al., 2018), demand for biofuels is rapidly increasing, and is likely to continue to do so, as a key 

route to reducing global GHG emissions and minimizing climate change (Correa et al., 2019; Roe 

et al., 2019; Lane, 2020). Demand for ‘switch’ crops such as soy and oil palm, which can be used 

for either food or biofuel, is rapidly increasing (Hasegawa et al., 2018; Van Meijl et al., 2018; 

Creutzig et al., 2019; Doelman et al., 2019), but expansion of these is a key driver of tropical 

deforestation, biodiversity loss and GHG emissions (Gibson et al., 2011; Carlson et al., 2012; 

Hosonuma et al., 2012; Newbold et al., 2015; Curtis et al., 2018; Creutzig et al., 2019). In order to 

reduce rapid declines in global biodiversity, and minimize competition for land between biofuels, 

agriculture and nature, cropland expansion should be avoided where possible (Van Meijl et al., 

2018; Doelman et al., 2019; IPBES, 2019). Thus, it is imperative that agricultural systems, 

particularly vegetable oil crops, undergo a transformation of ‘sustainable intensification’, 

increasing production while reducing negative environmental impacts, to provide food security 

over coming decades, and reduce climate change and biodiversity loss (McKenzie and Williams, 

2015; Conijn et al., 2018; Springmann et al., 2018). 

Crop yield increase is a key component of sustainable intensification, because it enables 

production to increase without the negative environmental impacts of cropland expansion 

(McKenzie and Williams, 2015; Conijn et al., 2018; Springmann et al., 2018; Pastor et al., 2019). 

In practice, intensification alone does not generally directly reduce cropland expansion, because 

expansion is driven by market growth, such as urban demand (Defries et al., 2010; Byerlee, 

Stevenson and Villoria, 2014). Thus, improving yields of current cropland is one of a number of 

changes required to achieve sustainable agricultural production, which also include reduction in 

consumer demand and increased environmental protection (Erb et al., 2016; Hunter et al., 2017; 

Conijn et al., 2018; Springmann et al., 2018; IPBES, 2019). Sustainable intensification can support 

biodiversity protection, because ‘land-sparing’ (where agricultural areas have high yields with 

low biodiversity, and separate areas of intact natural habitat support high biodiversity), is 

generally preferable for total agricultural production and biodiversity protection compared with 

‘land-sharing’ (extensive lower-intensity, higher-biodiversity agricultural systems, leaving less 

intact natural habitat for nature alone) (Phalan et al., 2011). Furthermore, many regulating 

ecosystem services that underpin agricultural production (e.g. pollination, pest control, water 
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resource and climate regulation) are largely dependent on areas of natural habitat, so 

minimizing natural habitat loss can also help conserve ecosystem services and so support 

agricultural production in the long-term (Zhang et al., 2007; McKenzie and Williams, 2015). 

Oil palm presents substantial opportunities for sustainable intensification of vegetable oil 

production, because it has substantially higher yields than other vegetable oil crops, but 

plantations often have high yield gaps, and recent increases in palm oil production have 

occurred through plantation expansion rather than intensification (Basiron, 2007; Carter et al., 

2007; de Vries et al., 2010; Jackson et al., 2019; Basri & Arif, 2009; Murphy, 2014; Woittiez et al., 

2017). Oil palm can be cultivated across much of the humid and semi-humid tropics (Fischer et 

al., 2012; Pirker et al., 2016), with lower long-term production costs than soy, the main 

alternative tropical vegetable oil crop (Yui and Yeh, 2013); and the vast majority of oil palm-

producing countries are currently expanding their area of oil palm agriculture (FAO, 2020c). The 

yield of oil palm plantations is roughly six-fold greater than rapeseed, the next most productive 

vegetable oil crop (Yan, 2017). Thus, oil palm can provide substantial opportunities to minimise 

the total land area required to produce a given quantity of oil (Jackson et al., 2019). In addition, 

the high yield of oil palm means that its impacts on biodiversity per tonne of oil produced tend 

to be lower than for alternative oil crops across the moist tropics (Beyer et al., 2020), in spite of 

high rates of deforestation and biodiversity loss associated with oil palm expansion (Fitzherbert 

et al., 2008; Vijay et al., 2016; Curtis et al., 2018). 

To improve oil palm yield where possible, and maintain high productivity under expected climate 

change, it is essential that we understand the factors that determine oil palm yield, which 

primarily comprise climate and management practices (Woittiez et al., 2017). Optimal climatic 

conditions for oil palm are high temperature and high year-round rainfall (Woittiez et al., 2017), 

although the precise relationships between climate and yield vary according to the stage of oil 

palm fruit development, which begins approximately three years prior to harvest (Tinker & 

Corley, 2015; see table 4.1 for relationships between climate and yield identified in existing 

studies, according to stages of oil palm fruit development). The difference between actual crop 

yield and the potential yield which could be obtained if management practices were optimal is 

termed a yield gap (Woittiez et al., 2017). Management practises to minimise yield gaps of oil 

palm include effective control of weeds, pests and diseases; optimal planting density; and 

effective frond pruning and regular fruit harvesting regimes (Woittiez et al., 2017). Additionally, 

some environmental factors which limit yield can partially be mitigated by management, such as 

water and nutrient supply (which depend on rainfall and soil properties, but can be managed 

through irrigation or drainage, and fertilisation), and fruit set due to pollinator activity (Woittiez 

et al., 2017). Oil palm yield also varies depending on the cultivar; currently, the most productive 

cultivars are clones of high-yielding individuals, which can produce ~20-30% greater yields than 
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standard cultivars (Kushairi et al., 2010), but the long crop rotation period of oil palm (25-30 

years) means there are likely to be delays in planting new cultivars with improved yield (Woittiez 

et al., 2017). 

In many areas of Indonesia and Malaysia, which account for over 80% of global palm oil 

production, climatic conditions are near-optimal for oil palm growth (Pirker and Mosnier, 2015; 

Tinker and Corley, 2015; FAO, 2020b). Annual fresh fruit bunch (FFB) yields in 2011, compiled 

from 12 oil palm companies in Malaysia, ranged from 16.5 to 25.4 tha-1 (average per company) 

(ERE Consulting Group and RSPO, 2012), but leading plantation groups in Southeast Asia have 

achieved annual fresh fruit bunch (FFB) yields of c. 27 tha-1 (6 tha-1 oil yield) (Donough, Witt and 

Fairhurst, 2009). Yield gaps are as low as 11% in some industrial plantations, although in many 

instances, yield gaps are often substantial, and national-level yield growth has stagnated in 

recent years (Hoffmann et al., 2017; Murphy, 2014; Woittiez et al., 2017). Potential oil palm yield 

(i.e. maximum possible yield under ideal management) in these countries is largely dependent 

on solar radiation (Hoffmann et al., 2014; Woittiez et al., 2017), although some existing studies 

have also found that water availability is limiting (table 4.1). In order to understand the extent to 

which yield improvements are feasible under ongoing climate change (Barros et al., 2014), it is 

therefore essential to understand the influence of climate and management practices on yield. 

In this study, we quantify the relative importance of variation among plantations (likely to arise 

from variation in management) and climate for determining monthly fresh fruit bunch (FFB) yield 

of 83 oil palm fields across 12 industrial plantations in Malaysia, which belong to a single, large 

company; and we determine the relationships between climate (monthly temperature and 

rainfall) and yield. We test the relationships between climate and yield for timelags up to 36 

months prior to harvest (see table 4.1); and we conduct analyses on both raw yield and climate 

values (whilst controlling for variation and autocorrelation through space and time), and on 

climate and yield anomalies for each month (i.e. removing spatial variation and regular seasonal 

cycles from all variables prior to analysis), in order to maximise the sensitivity of our analyses for 

revealing relationships between climate and yield. Although Malaysia (Peninsular Malaysia and 

Borneo) is considered broadly ‘aseasonal’, it is affected by both the Northeast and Southwest 

monsoons; and both yield and climate show regular seasonal fluctuations in Malaysia (Tang, 

2019). Yield seasonality is likely primarily driven by seasonality in climatic conditions, although 

oil palm physiology drives alternating periods of low and high fruiting activity, and can therefore 

exacerbate existing seasonal cycles (Tinker and Corley, 2015). Relationships between oil palm 

yield and climatic variables could therefore be spurious correlations, particularly when 

incorporating timelags (Tinker and Corley, 2015), emphasising the importance of analysing 

anomalised data. We examine the robustness of the relationships between raw yield and 

climatic variables whilst avoiding this issue by analysing anomalised yield and climatic variables, 
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from which we removed regular seasonal variation. Moreover, the climate anomalies allow us to 

detect relationships between climate and yield at additional timelags to the raw analyses, where 

lags of climatic variables 12 months apart are highly correlated. Thus, we address the following 

hypotheses: 

1. Variation in yield arises from both differences among the 12 oil palm plantations, and 

from variation in climate. 

2. Relationships between climate and yield are strongest at timelags prior to harvest which 

correspond to key stages of fruit development, such as sex determination, inflorescence 

development, and abortion (table 4.1). 

3. Maximum temperature has the strongest (positive) relationship with yield (comparing 

rainfall, minimum temperature, maximum temperature), indicating that solar radiation is 

the strongest climatic constraint on yield. 

4. Yield is positively related to rainfall, and this relationship is stronger at higher 

temperatures, when oil palm is more likely to be under drought stress. 

5. The relationships between climate and yield are consistent for analyses of raw and 

anomalised data; and we are able to detect additional patterns (for different climatic 

variables and/or time-lags) by analysing the anomalised data. 

 

Table 4.1. Summary of studies which detected effects of climate on yield, with timelags corresponding 

to each developmental stage of oil palm fruit development. The generalised timescale and stages of fruit 

development follow Tinker & Corley (2015). An inflorescence develops in the axis of each frond (leaf), and 

some are later aborted; oil palm is harvested as fresh fruit bunches (FFB), which comprise multiple 

spikelets of female inflorescences. FFB yield is a function of both fruit bunch number (i.e. how many 

bunches are harvested in a month), determined by sex determination and abortion; and average fruit 

bunch weight, determined by inflorescence development, pollination and ripening. 

Months 

before 

fruit 

bunch 

ripens 

Stage Effects of climate on yield with corresponding lag 

time 

Reference(s) 

36 Frond 

initiated 

Hypothesized: positive impact of temperature and 

rainfall 

 

33 Inflorescence 

initiated 

Negative effect of photoperiod 33-34 months prior to 

harvest (Indonesia) (note that this is intercorrelated 

with the same effect at 9-10 months), although it is 

unclear whether oil palm is sufficiently sensitive to 

(Legros et al., 

2009a) 
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photoperiod to justify this effect (Tinker and Corley, 

2015). 

~22-28 Sex 

determination 

Positive effect of useful radiation (adjusted for water 

deficit) anomaly 24-25 months prior to harvest (Ivory 

Coast). 

 

Positive effect of drought (simulated fraction of 

transpirable soil water) 26-27 months prior to harvest 

respectively (Indonesia). 

 

Positive effect of drought (simulated fraction of 

transpirable soil water) and photoperiod combined at 

29 months prior to harvest (Indonesia). 

 

Positive effect of monthly rainfall 20-24 months prior 

to harvest (Malaysia). 

(Dufour et al., 

1998) 

 

(Legros et al., 

2009a) 

 

 

(Legros et al., 

2009a) 

 

 

(Chow, 1992) 

~12-19 Inflorescence 

development: 

number of 

spikelets and 

number of 

flowers per 

spikelet 

determined 

Negative effect of water deficit anomaly 7-13 months 

prior to harvest (Ivory Coast). 

 

Positive effect of temperature anomaly 13 months 

prior to harvest (Malaysia). 

 

Negative effect of monthly rainfall 13 months prior to 

harvest (Malaysia), although this was unexplained. 

(Dufour et al., 

1998) 

 

(Shanmuganathan 

and Narayanan, 

2012) 

(Chow, 1992) 

9-10 Inflorescence 

abortion 

Negative effect of water deficit anomaly 7-13 months 

prior to harvest (Ivory Coast). 

 

Negative effect of photoperiod 9-10 months prior to 

harvest (Indonesia) (note that this is intercorrelated 

with the same effect at 33-34 months), although it is 

unclear whether oil palm is sufficiently sensitive to 

photoperiod to justify this effect (Tinker and Corley, 

2015). 

 

Negative effect of cumulative water balance (monthly 

rainfall – potential evapotranspiration) 10 months 

prior to harvest (Indonesia) 

 

Positive effect of monthly rainfall 10-11 months prior 

to harvest (Malaysia). 

(Dufour et al., 

1998) 

 

(Legros et al., 

2009a) 

 

 

 

 

 

(Legros et al., 

2009b) 
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(Chow, 1992) 

5-6 Flowering 

(pollination 

required) 

Negative effect of monthly rainfall, and positive effect 

of sunshine hours, 6 months prior to harvest: indicates 

impacts of climate on pollinator activity (Sabah, 

Malaysia). 

(Hoong and 

Donough, 1998) 

0-5 Fruit 

development 

(ripening) 

Positive effect of monthly rainfall and temperature 

with lag of 3 and 4-5 months prior to harvest 

respectively (Sabah, Malaysia). 

 

Negative effect of monthly rainfall, and positive effect 

of sunshine hours, on oil to bunch ratio 0-1 months 

prior to harvest (Sabah, Malaysia). 

(Puah and Sidik, 

2011) 

 

 

(Hoong and 

Donough, 1998) 

4.3 Methods 

Study plantations 

In this study, we analyse data for 12 oil palm plantations in Malaysia, which belong to a single, 

large industrial oil palm company. We obtained these data under confidential agreement with 

the oil palm company, which requires that its name is withheld. Eleven of the plantations are 

located in Peninsular Malaysia, spanning from the North (Kedah) to the South (Johor), and one is 

located in East Malaysia (Sabah) (fig. 4.1, table 4.2). The median elevation of plantations ranges 

9 – 86 m above sea level (masl) (median = 39 masl; table 4.2). All plantations in this study are 

subject to the same company- and country-level management directives (e.g. pesticide and 

fertilizer application, replanting and harvesting schedules); and all oil palm varieties included in 

this study are therefore also likely to be related. Thus, we do not expect substantial differences 

in management practices among plantations if management is imposed company-wide, although 

some differences in yield could arise due to variation in soil type, local climate, plantation-level 

management (e.g. effectiveness of management; availability of workers to harvest the crop), and 

the specific cultivar of oil palm planted. The data associated with the study sites include date of 

planting of each oil palm field, but we do not have other information on cultivation or 

management.  

Oil palm yield data 

We obtained data on monthly oil palm fresh fruit bunch yield (t FFB ha-1) as a time series for 

each of 83 oil palm ‘fields’ (the finest-scale level of management within a plantation; individual 

field size ranges 2.5 – 159 ha, median = 70.2 ha) across the 12 study plantations (data for 2 – 14 

fields per plantation, median = 6 fields). The yield data were collected as the harvesting records 

of the oil palm fields, at the study plantations. These time-series of monthly yield data span 
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roughly one decade (timespans per field range from 4 years 1 month to 11 years 11 months, 

median = 10 years 11 months), starting in July 2006 at the earliest and finishing in June 2017 at 

the latest (fig. S3.1). All yield data are for oil palms at least four years old, representing the 

regularly harvestable phases of production (Woittiez et al., 2017). 

 

 

Figure 4.1. Industrial oil palm cultivation in Malaysia, and locations of plantations in this study. (a) Oil 

palm plantation in Sabah (photo credit Robin Hayward): terraces prepared for replanting in the 

foreground, mature oil palm fields in the middle ground, and remnant forest in the background. (b) 

Plantation worker harvesting fresh fruit bunches (FFB) in a plantation in Sabah, using a sickle on an 

extendable pole (photo credit Ahmad bin Jelling). (c) Locations of the 83 oil palm fields (in 12 plantations) 

in this study, aggregated to presence/absence in 0.5 degree (55 km)-resolution grid cells for visualisation 

(note that we obtained the locations as point coordinates). Grid cells for which we have data are shaded 

grey, and the states for which we have data are labelled. The grid cells in this map match those of the CRU 

TS temperature data used in this study (Harris et al., 2020). 
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Climate data for predictors of oil palm yield 

We examine monthly rainfall, minimum temperature (Tmin) and maximum temperature (Tmax) 

as the climatic predictors for oil palm yield in this study, because these are known to drive 

variation in oil palm yield, including in Southeast Asia (table 4.1). Low rainfall reduces oil palm 

yield by causing dry stress, and oil palm appears particularly sensitive to this during sex 

determination and inflorescence abortion. However, high rainfall can also have negative impacts 

on yield, owing to increased cloud cover, and negative impacts on pollination (table 4.1). Yield 

increases with temperature, because temperature both directly increases photosynthesis, and 

because temperature is positively correlated with solar radiation, which also directly increases 

photosynthesis. Thus, temperature impacts all stages of fruit development, although its effects 

are most apparent at certain key stages such as inflorescence development and fruit ripening 

(table 4.1). 

We obtained monthly rainfall data (mm month-1) from all of the oil palm plantations in this 

study, alongside the yield data. Rainfall was measured at rain gauges on the plantations, and 

provided at the management level of oil palm ‘division’ (groups of oil palm fields within a 

plantation, ranging 1 – 6 fields per division, median = 3 fields). The rainfall data encompass the 

full timespan of the yield data, and generally two decades beforehand. 

We obtained monthly temperature data from the Climatic Research Unit gridded Time Series 

(CRU TS) version 4.04 (Harris et al., 2020), which are interpolated from meteorological stations 

at 0.5 degree (55 km) resolution. We downloaded monthly Tmin and Tmax (°C; mean of each 

daily minimum and maximum temperature for a month respectively) as candidate predictors of 

oil palm yield. 

Calculating anomalies of yield and climatic variables 

We analyse raw yield data (t ha-1), but to improve the sensitivity of our analyses to relationships 

of yield with temperature and rainfall, and to assess the reliability of the relationships we 

detected for the raw variables, we also calculated standardised monthly anomalies for each of 

the variables (yield, rainfall, Tmax and Tmin) in our analyses. Using 56 time series of oil palm 

yield data which spanned one decade, from July 2007 to June 2017 (i.e. data per oil palm field; 

excluding the 27 time series which were shorter than this), we computed anomalies for each 

variable (yield, rainfall, Tmax and Tmin). We calculated anomalies as the difference between 

each value and the mean of all values for that month for each oil palm field, scaled by the 

standard deviation of all values for each month and field (i.e. anomalised per time series of oil 

palm yield data) (see Supplementary Information 3.1 for details of anomaly calculations). The 

computed anomaly timeseries were therefore centred at zero and did not incorporate 
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differences in yield mean or variation between spatial locations (oil palm fields or plantations) or 

months of the year (i.e. regular seasonal effect removed), enabling us to analyse relationships 

between ‘unexpected’ variation in climate and yield, given the month of the year and oil palm 

field. 

Determining timelags of climatic predictors of oil palm yield for inclusion in models 

To identify the most important candidate climatic predictors (i.e. climatic variable at a specific 

timelag) of oil palm yield for inclusion in our statistical models, we assessed the Spearman rank 

correlations between each of our candidate climatic variables (rainfall, Tmax and Tmin) and oil 

palm yield, for timelags of 0-36 months prior to harvest (see results section “Correlations 

between climatic predictors and oil palm yield at different lags prior to harvest”). We selected 

candidate climatic predictors with high correlations with yield relative to other timelags, at 

timelags which correspond to key stages of oil palm fruit development, whilst avoiding inclusion 

of inter-correlated predictors in the models (table 4.1, fig. 4.3; see Supplementary Information 

3.2 for details). We selected Tmax and rainfall at a 14 month timelag (Spearman’s Rho 

correlation with raw yield = 0.30 and -0.15 respectively), corresponding to oil palm inflorescence 

development, and rainfall at a 10 month timelag (Spearman’s Rho correlation with raw yield = 

0.08), corresponding to inflorescence abortion, as candidate climatic predictors of raw oil palm 

yield (fig. 4.3). As candidate predictors of yield anomalies, we included the anomalies of these 

three predictors (Tmax and rainfall at a 14 month timelag, and rainfall at a 10 month timelag), to 

test the robustness of their relationships with yield to the removal of regular seasonal 

fluctuations from the data. We also included three climatic anomaly predictors which suggested 

additional relationships between climate and yield: Tmax anomalies at the month of harvest 

(Spearman’s Rho with yield anomalies = -0.14), suggesting impacts of temperature on 

harvesting; and rainfall and Tmin anomalies at 29 months prior to harvest (Spearman’s Rho with 

yield anomalies = 0.08 and 0.12 respectively), corresponding to sex determination (fig. 4.3; 

Supplementary Information 3.2). 

Modelling the impacts of spatial variation and climatic variables on oil palm yield 

To quantify the degree of spatial variation in oil palm yield (among- and within plantations), and 

the relationships between raw climatic predictors and oil palm yield, we fitted Generalized 

Additive Mixed Models (GAMMs) using the ‘gamm’ function in the R package mgcv version 1.8-

31 (Wood, 2011). We conducted this analysis on our full dataset (excluding two outliers; see 

Supplementary Information 3.1), of monthly data for 83 oil palm fields, amounting to 9,731 data 

points in total. To quantify among-plantation differences in oil palm yield, we fitted plantation as 

a random effect, and tested the importance of this for model fit, as well as the impact of 
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additionally including a random effect for ‘field within plantation’. To quantify relationships 

between raw climate and yield, we fitted both linear and quadratic terms for all three candidate 

climatic predictors of yield (Tmax at a 14 month lag, rainfall at a 14 month lag, and rainfall at a 

10 month lag) in our initial full model, because yield is likely to peak at particular values of each 

predictor (Tinker and Corley, 2015), and exploratory analyses suggested that the relationships of 

these with yield were non-linear (fig. S3.7). We included an interaction term between Tmax and 

rainfall, with a 14 month lag, to test for changing water relations under different temperatures. 

In addition, we fitted smoothers to control for oil palm age and seasonality (cyclic smoothers of 

months of the year); and we fitted an autoregression-moving average error structure to account 

for temporal autocorrelation between data points from the same yield time series (i.e. in the 

same oil palm field). To obtain homoscedasticity and normality of residuals, we found that we 

needed to square-root transform the response variable (yield); we then proceeded with 

selection of the optimal model for GAMMs of square-root yield with a Gaussian error function 

and identity link. In total, we fitted 51 model permutations to find the optimal error structure 

(autoregression-moving average parameters and random effects of plantation/field), and 44 

permutations to find the optimal fixed effects (age, seasonality, and climatic variables) (see 

Supplementary Information 3.3 for details of raw oil palm yield model specification and 

selection). 

To quantify the relationships between climate and yield anomalies, we fitted Generalized 

Additive Models (GAMs), also using the ‘gamm’ function in the R package mgcv (Wood, 2011). 

We conducted this analysis on the full anomaly dataset of monthly 56 oil palm fields spanning 

one decade, with a total of 6,719 datapoints. These models were similar to the GAMMs of raw 

yield but did not include effects to account for spatial variation or seasonality, because these had 

been removed from the anomalised data, and only allowed for linear relationships between 

climatic predictors and yield anomalies (see Supplementary Information 3.4 for details of oil 

palm yield anomaly model specification and selection). 

4.4 Results 

Summary of oil palm yield in the study plantations 

All of the plantations in this study had median annual yield >16 t FFB ha-1 and all but one had 

maximum annual yields >25 t FFB ha-1, which are values typical of commercial plantations but 

probably not close to optimal yield, which is ~36 t FFB ha-1 in many coastal plain areas in 

Malaysia (although in practice, potential yield could vary substantially among the plantations in 

this study) (Hoffmann et al., 2017; Woittiez et al., 2017) (fig. 4.2; table 4.2). The highest mean 

annual yield of a plantation (31.6 t FFB ha-1) was roughly double that of the lowest (16.4 t FFB ha-
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1), highlighting substantial variation in yield among plantations (table 4.2, fig. 4.2). This variation 

among plantations accounted for the majority of spatial variation in modelled monthly yield, 

because median monthly yield values were generally similar among oil palm fields within each 

plantation (generally within ~0.3 t FFB ha-1 of each other; fig. S3.11), and including a random 

intercept for oil palm field in addition to plantation did not improve model fit (Supplementary 

Information 3.3). Whilst our final GAMM of raw oil palm yield included a strong effect of oil palm 

age (increasing sharply from four-year-old palms to a peak at 8-9 years, followed by a gradual 

decline; fig. S3.12), median oil palm age was generally similar across the plantations and 

therefore does not appear to be a major driver of the differences in yield among plantations 

(table 4.2). 

Monthly oil palm yield varied among months of the year, and the final GAMM of raw oil palm 

yield included seasonal fluctuations (cyclic cubic regression spline across months of the year) for 

11 of the 12 plantations (one plantation was fitted with no seasonal variation), which differed 

among the plantations (fig. 4.2). All fitted splines included a single peak in yield across the year, 

which was generally between July and September, corresponding to the observed distributions 

of yield values through the year for each plantation (fig. 4.2). The mean proportion of annual 

yield that was harvested in the peak yield month ranged 11.9 – 14.6% across all plantations, 

which indicates some seasonality in yield in each plantation (values above 8.33% indicate greater 

seasonal variation, i.e. more than one-twelfth of yield is obtained in the most productive month; 

table 4.2), although the degree of seasonality varies among plantations, and appears to relate 

partly to their location (table 4.2). 

Relative importance of management and climate for explaining variation in oil palm yield 

The final GAMM of raw climatic variables and oil palm yield explained almost 40% of variation in 

the monthly yield values (approximate R2 of 0.384; table S3.9). Compared to the full final model, 

a model without any plantation terms had less than half of the variation explained (approximate 

R2 = 0.18; table S3.9), highlighting that differences among oil palm plantations accounted for the 

majority of variation in oil palm yield. In contrast, excluding climatic predictors reduced the 

variation explained by less than 1%, but smoothers for seasonal fluctuations (cyclic pattern 

across months of the year) per plantation and for oil palm age had slightly greater importance 

(reduction in variation explained of ~7-9% compared to full model; table S3.9). In line with these 

findings, the final GAM of climate and yield anomalies explained only 9% of variation in the 

monthly yield anomalies (approximate R2 of 0.09; table S3.9), of which the climate anomaly 

predictors accounted for 5%, highlighting that only a small fraction of ‘unexpected’ variation in 

oil palm yield (for a given month at a given oil palm field: the anomaly values) was due to 

‘unexpected’ variation in climate. Thus, whilst we detected effects of climate on oil palm yield, 
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the differences in yield among plantations substantially outweigh the importance of climate for 

determining yield. While temperature varied among months and plantations in this study, 

rainfall showed less variation (fig. S3.2), which may have constrained the sensitivity of our 

analyses of the impacts of climate on yield (although we did detect minor effects of both 

temperature and rainfall on yield; see sections below “Effects of temperature on oil palm yield” 

and “Effects of rainfall on oil palm yield, and its interaction with temperature”). 

 

Table 4.2. Summary data for the 12 oil palm plantations included in this study, ranked by median annual 

yield. N fields: number of oil palm fields for which we have data; median elevation: extracted from 

elevation data at 30 arc-second resolution, aggregated from the Shuttle Radar Topography Mission 90 m-

resolution data (Jarvis et al., 2008); median annual yield: median total annual yield for all fields at a 

plantation, for years for which we had data for all months in an oil palm field; median palm age: median 

age of oil palm for all yield datapoints included in annual yield values; % yield in peak month: mean 

percentage of the annual yield which is harvested in the peak yield month; random intercept: random 

intercept fitted for the plantation, in the final GAMM of raw oil palm yield and climatic variables; monthly 

Tmax, Tmin and rainfall: mean and range (minimum - maximum) of all values at the timepoints of oil palm 

yield data for that plantation. 
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1 

Negeri 

Sembilan 5 82 16.4 8 29.6 13.8 

30.6  

(29.0-31.9) 

22.5  

(21.5-23.7) 

143  

(0-539) 

2 Johor 3 74 18.9 9 27.2 13.6 

31.2  

(29.3-32.6) 

23.8  

(22.7-25.0) 

150  

(3-582) 

3 Perak 10 38 20.0 10 32.7 12.4 

30.0  

(27.4-32.4) 

23.0  

(20.8-25.0) 

223  

(0-811) 

4 Johor 2 70 20.6 9 28.3 13.2 

31.0  

(29.0-32.5) 

23.8  

(22.8-25.1) 

222  

(0-949) 

5 

Negeri 

Sembilan 11 40 21.1 10 24.4 13.6 

31.1  

(29.3-32.5) 

23.3 

(22.3-24.6) 

135  

(0-549) 

6 Melaka 3 48 22.2 10 32.3 14.0 

31.3  

(29.9-32.7) 

23.3  

(22.2-24.6) 

146  

(0-580) 

7 Kedah 5 23 22.2 11 30.5 14.6 

30.8  

(29.2-33.2) 

22.3  

(20.9-24.1) 

184  

(4-1070) 

8 Sabah 10 24 25.3 10 43.1 11.9 

30.6  

(28.0-32.2) 

23.1  

(21.8-24.4) 

166  

(0-568) 
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9 Perak 8 86 26.2 11 32.5 13.3 

28.7  

(27.2-30.0) 

19.9  

(19.0-21.4) 

144  

(0-920) 

10 Selangor 14 9 28.8 10 36.4 12.1 

32.6  

(30.7-34.2) 

23.5  

(22.5-24.6) 

160  

(0-543) 

11 Perak 5 22 29.6 11 37.9 12.7 

30.7  

(28.5-32.5) 

23.55  

(22.5-25.3) 

146  

(0-615) 

12 Selangor 7 10 31.6 9 38.2 12.1 

32.4  

(29.3-34.2) 

23.5  

(22.3-24.6) 

168  

(0-1338) 

 

 

 

Figure 4.2. Variation in oil palm yield among study plantations, with plantations ranked by median 

annual yield. (a) Boxplots of annual yield for each full year of harvest in each oil palm field, by 

plantation. The dashed line represents the maximum potential yield in many coastal plains of Malaysia, 

after Hoffmann et al. (2014). (b) Monthly oil palm yield in each plantation, including regular seasonal 

fluctuations. Solid and dashed black lines show predicted monthly yield values from the final GAMM of 

raw yield and climatic variables (mean and 95% confidence intervals). The predictions incorporate both 

cyclic cubic regression splines of seasonality fitted across months per plantation, and random intercepts 

fitted for each plantation, with all other numeric predictors held at the median value, and were back-

transformed from a square-root transformation for plotting purposes. Grey violin plots show distribution 

of actual monthly yield data for each month in each plantation. 
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Correlations between climatic predictors and oil palm yield at different lags prior to harvest 

Raw yield was positively correlated with both Tmax (Spearman’s Rho 0.05 – 0.30) and Tmin (0.0 

– 0.25) for all timelags up to 36 months prior to harvest (fig. 4.3a), suggesting that increasing 

temperature (or an intercorrelate such as solar radiation) is a key climatic driver of yield 

increases at the plantations in this study. In contrast, the correlations between raw yield and 

rainfall vary between positive and negative values (-0.15 – 0.08), depending on the timelag (fig. 

4.3a), suggesting that the plant-water relations at plantations in this study vary depending on 

the stage of development of the oil palm fruit. However, the correlations of all three of these 

raw climatic variables with yield showed substantial fluctuations around a cycle of approximately 

12 months, highlighting the high degree of autocorrelation from regular seasonal fluctuations in 

each of the predictors (fig. S3.3), which means that interpretation of correlations at different lag 

times for the raw variables is not straightforward. The strongest correlation coefficients between 

raw climate and yield nevertheless corresponded to key stages of oil palm fruit development: a 

positive correlation of rainfall at lags of 10-11 months suggests that water availability reduces 

inflorescence abortion; a positive correlation of Tmax and negative correlation of rainfall at a 14 

month timelag suggests that insufficient temperature and/or solar radiation is limiting to 

inflorescence development; and a positive correlation of Tmin at a timelag of 28 months 

suggests that temperature influences sex differentiation (the ratio of female to male 

inflorescences, which corresponds to number of fruit bunches produced).  

All correlations between climate and yield anomalies were weaker than those for the raw 

variables, suggesting that the main influence of climate on yield at the plantations in this study is 

through regular seasonal variation. However, the calculation of anomalies could have introduced 

some noise into climate-yield relationships because a single anomaly value can correspond to a 

range of raw climate or yield values (fig. S3.9); and we used fewer data points in the anomaly 

analyses than the raw variables, which could have resulted in weaker relationships. The relative 

strength of correlations between climate and yield anomalies did not follow the same pattern as 

for the raw variables across the timelags of 0-36 months, owing to the removal of seasonal 

autocorrelation, so analyses of the anomalies allowed us to investigate effects of climate which 

were not detectable in the raw variables. The correlations between temperature and yield 

anomalies varied from weak negative to weak positive values (Tmax Spearman’s Rho -0.14 – 

0.04, Tmin -0.12 – 0.12), suggesting that variation in temperature does not have a consistently 

positive relationship with yield at all timelags (fig. 4.3b), and that this is not detectable from the 

raw variables owing to seasonal autocorrelation. For example, the strongest correlation of 

climate and yield anomalies was for Tmax at the month of harvest, suggesting that hotter 

temperatures reduce harvesting efficiency. Similarly, some of the strongest correlation 

coefficients between rainfall and yield anomalies suggest relationships which were undetectable 
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from the raw variables, such as a positive relationship of rainfall with yield during sex 

determination at a timelag of 29 months, which coincides with a strong positive correlation 

between yield and Tmin, suggesting that sex determination is also dependent on temperature. 

 

Figure 4.3. Correlations between climatic variables and oil palm yield for timelags of 0-36 months prior 

to harvest, with corresponding stages of fruit development. (a) Correlations between raw climatic 

variables and raw oil palm yield; (b) correlations between climatic variable anomalies and yield 

anomalies. Crosses denote climatic predictors (i.e. climatic variables at a specific timelag) included in the 

models. We selected climatic predictors for inclusion in the models from their high correlations with yield 

relative to other timelags, at timelags which correspond to key stages of oil palm fruit development, but 

avoided inclusion of inter-correlated predictors in the models (see Supplementary Information 3.2 for 

details). Stages of fruit development are after Tinker & Corley (2015). See table 4.1 for summary of 

existing studies which have detected effects of climate at stages of oil palm fruit development. 

Effects of temperature on oil palm yield 

We found that Tmax, with a timelag of 14 months prior to harvest, was the most important 

climatic predictor of raw oil palm yield, based on changes to the final model R2 when each 

predictor was removed (table S3.9). As temperature showed greater seasonal and spatial 

(among-plantation) variation than rainfall, it is unsurprising that it was more important in 

explaining variation in raw oil palm yield (fig. S3.2). The fitted relationship between raw yield and 
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Tmax was positive and quadratic, with yield increasing as Tmax increased, but at a slowing rate 

of increase (fig. 4.4a). With the other predictors held at median values, a 1 °C increase in Tmax 

from 28 °C to 29 °C drives a 9.2% increase in yield, but a 1 °C increase in Tmax from 33 °C to 34 

°C drives only a 2.2% increase in yield. This positive relationship suggests that increasing Tmax, 

or a correlate such as solar energy, increases photosynthesis during the period of inflorescence 

development when the number of spikelets and number of flowers per spikelet are determined, 

and determines yield by affecting FFB weight (table 4.1, fig. 4.3). The curved shape of the 

relationship suggests that yield reaches a plateau as Tmax increases, which could indicate either 

that the conditions are approaching optimal, or that another climatic factor (e.g. water 

availability) becomes more important for yield. This positive relationship is robust to the removal 

of seasonal autocorrelation, because we also found a positive relationship between Tmax 

anomalies and yield anomalies at the same timelag (fig. S3.13). However, other climatic anomaly 

predictors were more important than Tmax with a lag of 14 months in explaining yield anomalies 

(see below), suggesting either that the primary role of Tmax with a lag of 14 months is driving 

seasonal variation in yield, or that its importance for yield is artificially inflated in analyses of raw 

variables because its seasonal fluctuations happen to correlate with yield seasonality. The 

seasonal fluctuations in Tmax peak in July in many plantations (fig. S3.2), which corresponds to 

14 months prior to the peak in yield (generally September; fig. 4.2). 

In contrast to the analyses of raw climate and yield, the most important predictors of yield 

anomalies were Tmin anomaly with a lag of 29 months, followed by Tmax at the month of 

harvest (according to effect sizes, as we were unable to compare changes to the final model R2 

when each predictor was removed; see tables S3.8, S3.9, fig. S3.13). Thus, temperature also 

appears to influence yield by affecting sex determination (affecting the proportion of female 

inflorescences and thus fruit bunch number) and harvest efficiency, which may be lower when 

temperatures are higher (fig. 4.3). 
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Figure 4.4. Expected yield values and 95% confidence intervals for the main effects of the three climatic 

predictors in the final GAMM modelling raw yield: (a) Tmax at a 14-month timelag prior to harvest; (b) 

rainfall at a 10-month timelag; (c) rainfall at a 14-month timelag. The yield values in these plots were 

predicted with all other numeric predictors in the model (the two other climatic predictors and oil palm 

age) held at the median value in the dataset. Yield values and 95% confidence CIs were back-transformed 

from the square-root scale for plotting. These were fitted with a GAMM which also included smoothers for 

seasonality per plantation and oil palm age (figs. 4.2, S3.12), plantation as a random intercept, and an 

autocorrelation-moving average error structure of order p = 4, q = 4 (table S3.5). See fig. S3.13 for the 

modelled relationships between climate and yield anomalies, including at these timelags. 

Effects of rainfall on oil palm yield, and its interaction with temperature 

We detected weak positive effects of rainfall on oil palm yield in both the raw yield and anomaly 

analyses, suggesting that water availability is sub-optimal at our study sites at certain key stages 

of oil palm fruit development. Rainfall at a timelag of 10 months prior to harvest was the second-

most important climatic predictor of raw oil palm yield (table S3.9), with a weak quadratic 

relationship with yield. The fitted relationship between rainfall at a 10 month lag and yield 

predicts an optimum monthly rainfall of 460 mm, so that an increase from 0 mm to 460 mm 

month-1 in rainfall 10 months prior to harvest drives a 4.5% increase in yield, when the other 

predictors are at median value (fig. 4.4b). This positive effect of rainfall on yield is supported by 

the anomaly analyses for timelags of both 10 months prior to harvest, when fruit are aborted, 

and additionally for a lag of 29 months prior to harvest, when inflorescence sex is determined, 

which correspond to the two stages of fruit development responsible for determining total 

number of fruit bunches (figs. 4.3, S3.13, table 4.1). 

However, the relationship between yield and rainfall at a 14 month lag prior to harvest is linear 

and negative, with each increase in rainfall of 500 mm month-1 conferring a decrease in yield of 

8-9% (back-transformed from square-root yield, as fitted in the model) (fig. 4.1c). This weak 

negative relationship was also true for rainfall and yield anomalies at this timelag (14 months 

prior to harvest; fig. S3.13). Thus high rainfall, or a correlate such as cloud cover, appears to 

reduce the number of spikelets and/or the number of flowers which develop per spikelet (table 
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4.1, fig. 4.3). Given the strong positive relationship between raw yield and Tmax at this timelag, 

it is therefore likely that yield is limited by insufficient solar radiation at this stage, which is 

positively correlated with Tmax and negatively correlated with rainfall. Moreover, the 

interaction between rainfall and Tmax at this lag period (14 months prior to harvest) predicts the 

highest yield from the driest, hottest months (fig. 4.5), highlighting that insufficient temperature, 

or a correlate such as solar radiation, is limiting to this stage of inflorescence development, but 

that water availability is sufficient at this lag time. For low values of rainfall, the relationship 

between Tmax and yield is more curved (i.e. appears to approach a plateau) than for high values 

of rainfall (fig. 4.5b), which could suggest that climatic conditions are close to optimal when 

rainfall is low and Tmax is high. When Tmax is hotter, the negative effect of rainfall on yield is 

greater (steeper relationship), suggesting that high rainfall, or an intercorrelate such as cloud 

cover, increasingly reduces yield at higher temperatures (fig. 4.5b). However, the interaction 

between Tmax and rainfall anomalies 14 months prior to harvest does not follow these patterns, 

because the negative relationship between rainfall and yield anomalies is steepest at colder 

values of Tmax (fig. S3.14). Thus, the anomaly relationships suggest that negative impacts of high 

rainfall anomalies (or high cloud cover) on inflorescence development are less pronounced at 

hotter temperatures, possibly because the water requirements of oil palm are greater, and the 

positive impact of increased water availability from high rainfall anomalies partly offsets its 

negative effect on yield anomalies. 
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Figure 4.5. Expected yield values and 95% confidence intervals for the interaction of Tmax and rainfall at 

14-month timelags prior to harvest, in the final GAMM modelling raw yield. The yield values in these 

plots were predicted with all other numeric predictors in the model (the two other climatic predictors and 

oil palm age) held at the median value in the dataset. Yield values and 95% confidence CIs were back-

transformed from the square-root scale for plotting. These were fitted with a GAMM which also included 

smoothers for seasonality per plantation and oil palm age (fig. S3.12), plantation as a random intercept, 

and an autocorrelation-moving average error structure of order p = 4, q = 4 (table S3.5). See fig. S3.14 for 

the modelled interaction between Tmax and rainfall anomalies at this timelag. 

4.5 Discussion 

Oil palm yield varied substantially among the 12 industrial oil palm plantations in this study, with 

only minor effects of climate. Nevertheless, we detected varied impacts of both temperature 

and rainfall on yield at timelags corresponding to key stages of fruit development, with a greater 

effect of temperature than rainfall in our analyses of both raw and anomalised yield. In light of 

our findings, we discuss the potential drivers of differences in yield among plantations, likely 

impacts of climate change on yield, and the potential for sustainable intensification of industrial 

oil palm production in Malaysia. 

Variation in oil palm yield among plantations 

We found that the majority of variation in yield that we could explain was due to differences 

among plantations. We expect that management is the main driver of this among-plantation 

variation, even though the plantations in this study were all owned by a single company, 

because previous studies have identified management as the main determinant of differences in 

yield among plantations and/or fields, rather than soil type or other environmental factors (Euler 
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et al., 2016; Hoffmann et al., 2017). Frequency of harvesting is a key determinant of yield, 

because overly long harvesting intervals reduce the total ripe fruit harvested by allowing some 

to rot (Donough, Witt and Fairhurst, 2009; Cock et al., 2016; Euler et al., 2016). Yield gaps in 

Malaysia are largely attributed to labour shortages preventing optimal harvest cycles, and 

Sarawak (East Malaysia) has reported 15% yield losses owing to rotting of unharvested fruits 

(Murphy, 2014). We therefore expect that variation in labour availability and the harvest 

frequency is probably the main driver of variation in yield among plantations in this study. 

Nevertheless, some degree of among-plantation variation could also arise through a number of 

environmental factors, and how effectively they are managed (Woittiez et al., 2017). These 

factors include: 

i. Presence and abundance of pests and pathogens of oil palm, such as the pathogenic 

fungus Ganoderma, which causes basal stem rot and mortality of all infected palms, and 

the rhinoceros beetle Oryctes rhinoceros, which are both prevalent in Malaysia (Barcelos 

et al., 2015; Murphy, 2014). 

ii. Soil type, nutrient contents, permeability and water-holding capacity (among other 

properties) (Tinker and Corley, 2015; Woittiez et al., 2017). The dominant soil types 

across much of Malaysia are acrisols and ferralsols (Hengl et al., 2017; ISRIC, 2017), 

which are highly weathered soils with low nutrient contents, and require careful 

management for optimal yields, such as cover crop establishment, mulching with empty 

fruit bunches, and fertilisation (Pirker and Mosnier, 2015). 

iii. Local topography, because steep slopes increase surface run-off, reducing water 

availability and increasing soil erosion and fertiliser loss (Woittiez et al., 2017). 

iv. Pollination efficiency, and thus variation in fruit set, which is low in some areas of 

Southeast Asia (Teo, 2015). 

In this study, we neither had access to data for these four potential sources of variation in yield, 

nor to data relating to the labour capacity and harvesting schedules of our study plantations. We 

therefore suggest that investigating the roles of labour availability, harvesting schedules and 

these other potential drivers of yield should be a key priority for future research. 

Importance of climatic variation for oil palm yield in Malaysia 

We identified a number of impacts of climate on oil palm yield, at timelags corresponding to key 

stages of fruit development, although the effects of climate on yield were negligible in 

comparison to among-plantation variation (likely due to management). Existing literature 

suggests that solar radiation is the most important climatic variable for oil palm yield in 
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Southeast Asia (Hoffmann et al., 2014; Woittiez et al., 2017), and our finding that maximum 

temperature was the most important climatic variable for raw oil palm yield is in line with this, 

because maximum temperature is correlated with solar radiation (Harris et al., 2020; Tinker & 

Corley, 2015). Similarly, we found negative relationships between rainfall (raw and/or 

anomalies) and yield at timelags corresponding to determination of the number of FFB produced 

(sex determination and inflorescence abortion), previously identified as sensitive to water 

availability in Southeast Asia (Dufour et al., 1998; Legros et al., 2009a,b). Thus our findings 

support previous research suggesting that water stress reduces photosynthesis and thus the 

carbohydrates available for fruit development, triggering a high ratio of male inflorescences 

initiation and/or high abortion rates, possibly with selective abortion of female inflorescences 

(Tinker and Corley, 2015). We also found a positive effect of Tmin anomaly during sex 

determination, which is a probable correlate of ‘useful radiation’ previously identified as having 

a positive effect at this developmental stage (Dufour et al., 1998; see table 4.1), representing 

increasing capacity for photosynthesis.  

However, we also identified some effects of climate on yield which we are not explained in 

existing literature. We found that anomalised Tmax at month of harvest was the strongest 

climatic predictor of yield anomalies, which we did not expect, because oil palm fruit continue 

ripening until the point of harvest, and ripening is positively affected by temperature and solar 

radiation (Hoong & Donough, 1998; Tinker & Corley, 2015; see table 4.1). Harvesting of FFB, 

which generally weigh 15-20 kg, is reliant on manual labour (fig. 4.1; Donough et al., 2009; 

Murphy, 2014). We therefore expect that this negative relationship between Tmax and yield 

anomalies at month of harvest is a result of reduced efficiency of workers performing the 

harvest under hotter temperatures, further highlighting limitations to oil palm yield from 

difficulties of harvesting (Murphy, 2014). In addition, we are not aware of an explanation for the 

negative relationship between rainfall and yield during inflorescence development, although it 

has previously been identified for oil palm yield in Malaysia (Chow, 1992). The contrast between 

the direction of this relationship and those between yield and rainfall during sex determination 

and abortion highlights contrasting responses of oil palm to water availability depending on the 

stage of fruit development, and suggests that during inflorescence development, yield is more 

dependent on solar radiation than water availability. Oil palm stomatal conductance depends on 

air humidity, which is positively related to rainfall, and stomatal closure occurs even under 

conditions of high soil moisture when air is dry (Henson & Harun, 2005; Tinker & Corley, 2015). 

We thus surmise that air humidity at our study sites was generally high, and therefore less 

limiting to inflorescence development than insufficient solar radiation, resulting in a weak 

negative relationship between rainfall and yield during inflorescence development, owing to 

increased cloud cover and decreased solar radiation. 
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Overall, the relative importance of different lag times of climate for yield anomalies was in-line 

with previous research findings, suggesting that (i) management (worker efficiency) at the stage 

of harvest is highly important for yield (although we have not come across the specific negative 

effect of Tmax for yield during harvest in existing literature); (ii) developmental stages that 

determine number of FFB are highly important for yield (sex determination and inflorescence 

abortion; fig. 4.3); and (iii) climate during developmental stages affecting FFB weight is 

important for yield (inflorescence development), but less so than climate during determination 

of FFB number (Donough, Witt and Fairhurst, 2009; Tinker and Corley, 2015). In contrast, our 

analyses of raw yield suggested that climate during inflorescence development and 

determination of FFB weight was more important than climate during stages affecting FFB 

number, which contradicts previous findings that the majority of FFB yield variation is 

determined by FFB number; and that yield seasonality is largely driven by variation in FFB 

number (Donough, Witt and Fairhurst, 2009; Tinker and Corley, 2015). This suggests either that 

the importance of Tmax with a timelag of 14 months is artificially inflated in our analyses of raw 

yield, because its seasonal peak coincides with 14 months prior to the seasonal peak in yield; or 

that Tmax primarily drives the seasonality at our study sites, owing to high year-round rainfall 

but stronger seasonal variation in temperature, in contrast to patterns in locations with more 

seasonal rainfall (Tinker and Corley, 2015). 

Expected changes to yield in Malaysia under climate change 

Climate change is expected to drive substantial temperature increase in Southeast Asia, with 

increases in extreme wet precipitation events and drought events associated with the El Niño 

Southern Oscillation (ENSO) (Barros et al., 2014; Cai et al., 2014; Tangang et al., 2017). These 

changes are likely to have multiple impacts on oil palm cultivation, growth and yield (Paterson et 

al., 2015; Tinker & Corley, 2015). 

Under a rapid economic growth scenario with mid-century reductions in fossil fuel consumption, 

mean temperature in Southeast Asia is predicted to increase by 3.5°C at the end of this century 

(Barros et al., 2014). Our finding that raw yield is positively related to Tmax suggests that 

increasing temperatures will benefit yield, although our study only encompasses a limited range 

of Tmax (~27-34°C), well below the heat stress threshold of ~38°C (Tinker and Corley, 2015). 

Paterson et al. (2015) estimated that a substantial area of western Peninsular Malaysia would 

exceed the oil palm heat stress threshold by 2100, although this will not be exceeded in central, 

eastern and southern Peninsular Malaysia, nor in Malaysian Borneo. Thus the impacts of future 

temperature increase on oil palm yield in Malaysia do not seem substantial, but future projected 

temperatures (particularly during heat waves) will be considerably greater than those currently 

experienced by oil palm in Southeast Asia (Barros et al., 2014), so it is possible that negative 
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impacts have been overlooked. For example, we found that the strongest relationship between 

yield anomalies and climate anomalies was a negative relationship with Tmax at the month of 

harvest. This suggests that high temperatures reduce harvesting efficiency, possibly owing to 

more difficult conditions for workers, because harvesting is reliant on manual labour to harvest 

the FFB, which generally weigh 15-20 kg (fig. 4.1; Donough et al., 2009; Murphy, 2014). Although 

we did not identify a negative impact of temperature on yield per se, this relationship suggests 

that increasing temperatures, and particularly extreme high temperatures during heatwaves, 

could have severe negative consequences for the oil palm industry, through reduced worker 

efficiency and increased risk of heat stress in workers. 

Although annual precipitation has increased in eastern Peninsular Malaysia during 1971-2010 

(Mayowa et al., 2015), mean annual precipitation is projected to undergo minimal change in 

Southeast Asia over the coming century, but uncertainty around precipitation projections is high 

(Barros et al., 2014). We did not find conclusive evidence that oil palm has higher water 

requirements at hotter temperatures for the climatic range in this study (fig. 4.5), suggesting 

that oil palm in Malaysia is therefore unlikely to experience substantially greater drought stress 

on average under future climate change than currently. However, we found negative 

relationships between rainfall and yield relating to sex determination and inflorescence 

abortion, and water requirements of oil palm are likely to be greater at hotter temperatures 

(Tinker and Corley, 2015), although we did not find conclusive evidence for an interaction 

between these in this study, suggesting that future increases in temperatures could result in 

yield reductions through increased proportion of male inflorescences and increased 

inflorescence abortion. Nevertheless, increasing atmospheric carbon dioxide concentration is 

projected to increase oil palm water-use efficiency, so overall impacts of climate change on 

plant-water relations and oil palm yield are unclear (Wang et al., 2012; Tinker and Corley, 2015). 

Whilst changes to average annual (and quarterly) rainfall in Malaysia are expected to be 

negligible, the patterns of extreme rainfall events are likely to change, with consequences for oil 

palm yield, although we did not address the impacts of rainfall extremes on yield in this study. 

Both extreme wet precipitation events and ENSO droughts are expected to increase in Malaysia 

over the coming century, although uncertainty around these estimates is high (e.g. Spinoni et al. 

(2020) project decreases in drought in SE Asia by 2080) (Barros et al., 2014; Cai et al., 2014; 

Tangang et al., 2017). Previous studies have identified water deficit as a key driver of yield (table 

4.1), and oil palm yield is typically lower in regions with a regular dry season, through impacts of 

drought stress on inflorescence abortion and sex determination (Tinker and Corley, 2015). Low 

rainfall and high temperatures associated with ENSO droughts have caused reductions in annual 

oil palm yield in Malaysia (Oettli, Behera and Yamagata, 2018), although we did not detect 

conclusive evidence of greater water stress under higher temperatures in this study. Thus the 
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increasing intensity of ENSO events and associated droughts is likely to cause periods of low oil 

palm yield in Malaysia, corresponding with ENSO cycles every ~2-7 years (Caliman and 

Southworth, 1998; Tangang et al., 2017). Similarly, the projected increase in frequency and 

intensity of extreme heavy rainfall events in Malaysia is likely to drive concurrent periods of low 

oil palm yield over the coming century. Flooding substantially limits the potential for harvesting, 

resulting in yield reductions (Murphy, 2014); severe waterlogging has direct negative impacts on 

yield by causing palm mortality (Abram et al., 2014); and heavy rainfall has negative impacts on 

pollinator populations and fruit set (Hoong and Donough, 1998). In addition to changes in 

temperature and rainfall, multiple factors associated with climate change are likely to impact oil 

palm yield, which are likely to interact, making inferences about future oil palm yield highly 

uncertain. Increasing carbon dioxide concentrations could support high future productivity 

through increased photosynthetic efficiency (Ibrahim et al., 2010), but in natural forests, tree 

growth and water use efficiency have decreased due to the negative impacts of fire and drought 

outweighing any benefits of increasing carbon dioxide concentrations (Feeley et al., 2007; 

Mitchard, 2018; Bauters et al., 2020). Many coastal plantations in Malaysia are at increasing risk 

of inundation and/or salinification from sea level rise (Siwar, Ahmed and Begum, 2013). Climate 

change is also likely to increase impacts of oil palm pests and diseases, because increasing stress 

of palms is likely to increase their vulnerability to infection (Paterson, Sariah, & Lima, 2013). 

Thus, the net impacts of climate change on oil palm production are highly uncertain, and our 

detected effect of a negative impact of temperature during harvest may suggest that negative 

impacts of climate change on workers could outweigh any increases in productivity from rising 

temperatures and carbon dioxide concentrations. 

Current yield gaps 

We found that differences in yield among plantations were the primary source of variation in oil 

palm yield, likely caused by differences in management, suggesting that improving management 

could result in substantial yield improvements in many plantations. Hoffmann et al. (2014) 

estimated that the potential annual FFB yield of coastal areas was generally 36 t FFB ha-1, which 

is over double the lowest plantation annual yield in this study, and suggests that only ~60% of 

the potential yield is achieved in the majority of plantations in this study, and possibly as low as 

50% in the least-productive plantation. However, estimated potential yield varies substantially 

across Malaysia (9 – 48 t FFB ha-1) (Hoffmann et al., 2014), so it is possible that the actual yield 

gap in the plantations in this study is considerably lower (or higher). The plantations in this study 

are owned and managed by a single, large-scale company, and we surmise that lack of labour 

availability and other management constraints may be greater in smaller-scale plantations, 

suggesting that many plantations in Malaysia achieve less than ~60% of their potential yield. This 
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is in line with previous estimates of 44-63% of potential yield achieved for the whole of Malaysia 

(depending on potential yield estimation) (Fischer et al., 2014), but greater than 67-89%, 

estimated for four plantations in Malaysia and Indonesia (Hoffmann et al., 2017). Overall, yield 

gaps for oil palm in Malaysia appear substantial, and in combination with relatively weak 

expected impacts of climate change on average oil palm yield, suggest that there is considerable 

potential to improve oil palm yield in Malaysia in existing plantations. 

Potential for sustainable intensification of oil palm in Malaysia 

To increase crop production whilst reducing the environmental impacts of agriculture, it is 

essential that targets for both of these are set and addressed simultaneously (Cunningham et al., 

2013; Hunter et al., 2017). Whilst there is substantial theoretical potential for higher productivity 

of Malaysian oil palm, the degree to which this is possible in practice, and whether it would be 

sustainable, are less clear. 

Closing the current substantial yield gaps in Malaysia appears to depend largely on improving 

harvesting frequency, and thus either procuring more labourers for harvesting, or mechanising 

the process (Kushairi et al., 2018; Kushairi, Singh, & Ong-Abdullah, 2017; Murphy, 2014). 

Currently, the majority of oil palm workers in Malaysia are migrant labourers from Indonesia, but 

recent economic changes in Indonesia, including expansion of oil palm plantations, are reducing 

incentives for migration; and Malaysian policies to restrict the number of migrant labourers 

granted visas further reduce overall worker availability (Murphy, 2014). Tools for harvesting 

from young- and intermediate-aged palms (up to 5 m height) have recently been developed, but 

efficient mechanisation of harvesting older, taller palms (requiring 10-13 m working height) is 

more challenging (Shuib, Khalid and Deraman, 2011). Moreover, extensive rollout of new 

technologies would be expensive and require additional natural resources for machinery 

production and energy provision. Development of oil palm varieties with altered architecture, 

such as dwarfism or long fruit stalks, could also help improve harvesting efficiency, although oil 

palm breeding and replanting cycles are relatively slow (replanting every ~25 years), so this does 

not provide a short-term solution (Kushairi et al., 2017; Murphy, 2014; Woittiez et al., 2017). 

If yield of existing plantations in Malaysia were increased substantially, rising demands for 

vegetable oils could be met with less need for further encroachment of natural habitat (Byerlee, 

Stevenson and Villoria, 2014). In theory, such yield improvements could help conserve Southeast 

Asian rainforest, which has recently undergone extensive habitat loss (Wilcove et al., 2013), as 

well as natural habitats in other regions which are currently expanding oil palm production, such 

as West Africa and South and Central America (Greenpeace, 2012; Castiblanco, Etter and Aide, 

2013; Vijay et al., 2016). However, improving crop yields can lead to greater incentives for 

expansion, owing to higher returns from land-use change (Byerlee, Stevenson and Villoria, 2014; 
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Carrasco et al., 2014); and if markets are elastic (i.e. respond to changes in demand) then 

increasing productivity does not reduce pressure for land-use change (Hertel, 2012). Villoria, 

Golub, Byerlee, & Stevenson (2013) found that increasing the productivity of oil palm in Malaysia 

and Indonesia most effectively saves forest, both in Southeast Asia and globally, when alongside 

increased productivity of other crops, owing to reduced food prices and lower returns for oil 

palm producers. Given that global demand for vegetable oils is increasing, and prices are 

forecast to remain relatively stable over coming years (OECD and FAO, 2019), effective 

governance and incentives to preserve natural habitat are essential for reducing land-use change 

driven by oil palm expansion, alongside improving productivity. Certification schemes such as 

the Roundtable on Sustainable Palm Oil (RSPO) could therefore play a substantial role in 

simultaneously reducing natural habitat loss, by implementing recent ‘zero-deforestation’ 

commitments alongside supporting best management practices to close yield gaps (Haupt et al., 

2018; RSPO, 2018). Whilst RSPO certification has been voluntary to date, and thus has the 

potential to drive leakage of deforestation (Heilmayr, Carlson and Benedict, 2020), several sub-

national jurisdictions, including the East Malaysian state of Sabah, are currently developing 

implementation of a ‘jurisdictional’ approach for state-wide certification (RSPO, 2019c), which 

should increase overall uptake of the scheme and thus the potential for reducing habitat loss 

(Byerlee, Stevenson and Villoria, 2014). 

If harvesting is done manually, increasing its frequency to improve oil palm productivity incurs 

no substantial environmental costs, but other management aspects of maintaining and/or 

improving productivity increase the environmental footprint associated with oil palm 

production. Over time, soil is increasingly degraded in oil palm plantations, decreasing in carbon 

content (Guillaume et al., 2016), and replanting results in substantial soil biodiversity loss 

(Ashton-Butt et al., 2019). In addition, use of chemical fertilisers for oil palm is widespread, 

which are a key source of global GHG emissions (Tian et al., 2020) and soil degradation (Osman, 

2014). There is therefore a strong need for the development of more sustainable soil 

management techniques in oil palm, such as mulching with empty fruit bunches, which can 

improve yield and soil organic carbon (Tao et al., 2017). 

4.6 Conclusions 

We found that variation in oil palm yield in industrial plantations in Malaysia is largely due to 

differences between plantations, which we attribute to differences in management, likely 

reflecting availability of workers for harvesting. Weak impacts of climate on yield suggest that 

productivity is greater at higher temperatures, and has varied responses to rainfall depending on 

the stage of fruit development. 
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Our findings suggest that yield gaps in industrial oil palm plantations in Malaysia are substantial, 

highlighting the considerable potential for increased palm oil production in current plantations. 

We expect that the yield gaps are largely driven by limited availability of labourers for harvesting 

fresh fruit bunches, highlighting the need for improving the socio-economic conditions and 

incentives for working in the industry, which would enable yield improvements with no 

additional environmental costs, and/or mechanising harvesting. The relationships that we 

detected between yield and climate were weak and do not suggest substantial impacts of 

climate change on oil palm yield in Malaysia, although future projected climatic conditions are 

outside the range of those in this study. We therefore conclude that oil palm production in 

Malaysia can increase substantially without additional land-use change, and high average yields 

(improved from current yields where feasible) should be supported in future decades, although 

strong regulation of land management and incentives to minimize deforestation are necessary to 

prevent additional expansion. 
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Chapter 5 

General discussion 
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5.1 Abstract 

In this general discussion, I summarise my thesis findings in relation to the specific chapter aims 

and the overall thesis aim of understanding how to reduce the land use impacts of oil palm 

cultivation on carbon and biodiversity. I synthesize the findings from the data chapters and 

discuss the degree to which recent interventions to reduce the environmental impacts of oil 

palm expansion have been successful. I conclude that sustainability certification and voluntary 

zero-deforestation commitments are helpful in reducing environmental impacts but currently 

insufficient, and that the future success of these sustainability criteria depend on addressing a 

number of pathways for leakage of environmental impacts. I discuss where oil palm expansion 

could take place with minimal negative environmental impacts, concluding that avoiding 

expansion where possible is preferable for minimising carbon emissions and biodiversity loss. I 

discuss how oil palm production could sustainably meet future needs, concluding that exploring 

alternative management practises for oil palm is critical to ensuring future sustainable 

production under high global demands for vegetable oils, alongside strong governance and 

regulation of practises such as expansion, and efforts to reduce global palm oil demand.  

5.2 Summary of thesis findings 

In this thesis, I examined the degree to which sustainability certification helps reduce the 

impacts of oil palm expansion on carbon and biodiversity. I conducted fieldwork in Sabah, 

Malaysian Borneo, to quantify the value of conservation set-asides in certified oil palm 

plantations for aboveground carbon stocks (AGC) and associated plant diversity. I found that 

conservation set-asides boost AGC and plant diversity of oil palm plantations, but do not replace 

the conservation value of continuous primary forest. I then examined the global potential for 

zero-deforestation commitments (ZDCs) to drive leakage of oil palm expansion, and associated 

biodiversity loss, from tropical rainforest into tropical grassy and dry forest biomes. I found that 

the majority of locations of natural habitat that I projected to be climatically-suitable for oil palm 

expansion under ZDCs are in tropical grassy and dry forest biomes, where ZDCs could steer oil 

palm expansion into locations that would result in high vertebrate richness loss. I concluded that 

there is considerable potential for leakage of natural habitat and biodiversity loss under ZDCs, 

and an urgent need for improved guidance to protect grassy and dry forest biomes. To reduce 

the need for land-use change, and consequent biodiversity loss and greenhouse gas (GHG) 

emissions, oil palm production could be increased by improving the yield of current plantations. I 

therefore examined the role of climate in determining oil palm yield in industrial plantations in 

Malaysia. I found that climate has a minor role in explaining variation in yield compared to 

between-plantation variation, indicating that differences in management were the main cause of 
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yield variation. I concluded that there is substantial scope to improve yield in current oil palm 

plantations, even in relatively high-yield locations, through improvements in management 

practices. I outline the findings of each of these three chapters in more detail below. 

Chapter 2: Conservation set-asides improve carbon storage and support associated plant 

diversity in certified sustainable oil palm plantations 

Main objectives: 

(1) Quantify the value of conservation set-asides in Roundtable on Sustainable Palm Oil 

(RSPO)-certified oil palm plantations for conserving aboveground carbon stocks (AGC), in 

comparison to both the oil palm crop and continuous forest (selectively logged and 

primary). 

(2) Compare vegetation structure between conservation set-asides and continuous forest, 

to understand the drivers of differences in AGC, and the potential for regeneration in 

set-asides, using seedling density as an indicator of regeneration potential. 

(3) Examine how landscape-scale forest fragmentation, local topography, and soil 

parameters influence set-aside AGC. 

(4) Examine whether conserving AGC in set-asides has co-benefits for diversity of trees, 

saplings and seedlings. 

(5) Scale-up AGC estimates to predict the average AGC of oil palm plantations with different 

coverage of set-asides. 

In this chapter, I concluded that maintaining conservation set-asides within oil palm plantations 

benefits AGC, because I found that set-asides supported more than 1.5-times the AGC of oil palm 

plantations on average. I also concluded that conserving AGC in set-asides has co-benefits for 

plant diversity, because the plant diversity of set-asides was positively related to their AGC. 

However, I found that average set-aside AGC was less than half that of continuous forest, owing 

to reduced numbers of the largest trees in set-asides, highlighting the unparalleled conservation 

value of continuous forest. I found that there was considerable variation in the AGC of plots in 

set-asides (7.8–115 Mg ha−1 in live trees and palms), ranging from below that of oil palm to 

equivalent to some continuous forest plots. Landscape-scale fragmentation did not explain this 

variation in set-aside AGC, suggesting that disturbances that I was unable to account for (such as 

site-specific history of selective logging) were important for explaining set-aside AGC; and that 

the AGC of some set-aside plots could be considerably improved. In addition, I found that the 

density of seedlings in set-asides was substantially lower than that of continuous forest, 

suggesting that the potential for ongoing tree regeneration in set-asides is low. I therefore 

concluded that conservation set-asides in oil palm plantations could benefit from management 
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such as enrichment planting, to boost regeneration and thus support future AGC and 

biodiversity. 

Chapter 3: Zero-deforestation palm oil could threaten tropical grassy and dry forest biomes 

Main objectives: 

(1) Map locations of natural habitat that are climatically-suitable for oil palm expansion 

(both rainfed and under irrigation), in order to assess the potential for zero-

deforestation commitments (ZDCs) to drive leakage of oil palm expansion from tropical 

rainforest to grassy and dry forest biomes. 

(2) Compare the proportion of non-agricultural land remaining in individual ecoregions that 

could potentially be converted to oil palm in tropical rainforest, grassy and dry forest 

biomes under ZDCs. 

(3) Examine the likely yield of oil palm in these grassy and dry forest biome locations, in 

comparison to current plantations, and assess the potential role of irrigation in 

improving yields. 

(4) Examine the impacts of oil palm expansion under ZDCs on biodiversity:  

a. assess the potential for loss of unique ecosystems and biological communities;  

b. examine whether ZDCs protect locations of high species richness;  

c. quantify the potential for reduction of vertebrate ranges in each biome. 

In this chapter, I concluded that there is considerable potential for ZDCs to drive leakage of oil 

palm expansion from tropical rainforest to other biomes, because the majority of natural habitat 

that is climatically-suitable for oil palm expansion is in grassy and dry forest biomes, owing to 

extensive protection of remaining tropical rainforest by ZDCs. Whereas ZDCs protect locations 

with high vertebrate richness from conversion in the tropical rainforest biome, the opposite is 

true for tropical grassy and dry forest biomes, where ZDCs steer oil palm expansion into areas of 

high vertebrate richness. Moreover, in tropical dry forest and grassy biomes, there is high 

potential for expansion under ZDCs to drive loss of unique ecological communities, because high 

proportions of the remaining habitat of individual ecoregions are suitable for expansion. Thus, I 

concluded that there is considerable potential for oil palm expansion to drive biodiversity loss 

under ZDCs, mostly in tropical grassy and dry forest biomes. In addition, I found that irrigation 

could improve yields in many locations in dry forest and grassy biomes, which could increase the 

risk of water scarcity. Thus, by shifting oil palm agriculture away from the wettest locations in 

the tropics, an unintended consequence of ZDCs is that they could cause environmental issues 

not typically associated with oil palm agriculture currently. However, I found that the potential 
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for reductions in vertebrate ranges from oil palm expansion was generally small, which suggests 

that some oil palm expansion could occur without substantial negative impacts on biodiversity. 

Overall, I concluded that there is an urgent need for improved guidance on sustainability criteria 

for oil palm cultivation specific to tropical grassy and dry forest biomes, in order to avoid 

substantial negative environmental consequences of ZDCs. 

Chapter 4: Climate has limited but varied impacts on oil palm yields in industrial plantations 

Main objectives: 

(1) Quantify the relative importance of climate (temperature and rainfall) and management 

(between-plantation variation) for oil palm yields in industrial plantations in Malaysia. 

(2) Quantify the relationships between climatic variables (temperature and rainfall) and 

yield during oil palm fruit development (up to 36 months prior to harvest), in order to 

understand how climate affects yield, and the potential impacts of future climate change 

on yield. 

(3) Examine relationships between climate and yield anomalies (values normalised per 

month and location, to remove seasonal and spatial variation), in order to test the 

robustness of my findings and improve the sensitivity of my analyses. 

In this chapter, I concluded that management is the main driver of variation in yield in industrial 

plantations in Malaysia, because I found that the role of climate in explaining variation in yield 

was negligible in comparison with between-plantation variation. I therefore concluded that 

there is considerable potential to improve yields on current oil palm plantations, which would 

increase oil palm production without further land-use change. I found that maximum monthly 

temperature was the most important climatic driver of increased yield, suggesting that impacts 

of future climate warming may not have negative consequences on yield, although the impacts 

of warming outside the temperature range of my data are unclear. However, I also found 

positive relationships between rainfall and yield for key periods of oil palm fruit development 

(inflorescence abortion and sex determination), which suggested that the expected increase in 

drought periods in Southeast Asia are likely to cause periodic reductions in yield. 

5.3 Have recent interventions to reduce the negative impacts of oil palm expansion been 

successful? 

In chapters 2 and 3, I examined the success of recent interventions to improve the 

environmental sustainability of oil palm agriculture. Over the last 15 years, sustainability 

certification of palm oil, principally by the Roundtable on Sustainable Palm Oil (RSPO), has been 

developed to reduce the GHG emissions and biodiversity loss from oil palm expansion; and 19% 
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of palm oil is now RSPO-certified (RSPO, 2005, 2013, 2018, 2020b). However, RSPO certification 

only recently adopted ‘no deforestation’ commitments into its Principles & Criteria in 2018, and 

the enforcement of RSPO guidelines is currently poor (RSPO, 2018; EIA and grassroots, 2019). 

Many corporations have voluntarily committed to ‘zero-deforestation’ in their palm oil supply 

chains, which now cover two-thirds of global palm oil production and one-third of plantation 

area, and are primarily implemented through RSPO certification (Haupt et al., 2018). Therefore, 

the degree to which certification and ZDCs can reduce the negative environmental impacts of oil 

palm cultivation is of key importance for improving its sustainability. 

In both chapters 2 and 3, I found positive effects of RSPO certification and ZDCs for reducing the 

biodiversity loss and GHG emissions associated with expansion of oil palm plantations in tropical 

rainforest. In chapter 2, I found that certification can help improve the AGC and plant diversity 

within oil palm plantations, due to the conservation of set-asides of rainforest. In chapter 3, I 

found that ZDCs would protect the vast majority of tropical rainforest from oil palm expansion, 

preventing loss of biodiversity and GHG emissions in this biome. Within the tropical rainforest 

biome, I found that ZDCs protect the locations of highest vertebrate richness, and so my results 

suggest that sustainability certification and ZDCs could help reduce the ongoing loss of global 

biodiversity and GHG emissions associated with tropical deforestation (Curtis et al., 2018; Gibbs 

et al., 2010; Hoekstra et al., 2005; Pendrill et al., 2019). 

However, I also identified some issues with certification and ZDCs. In chapter 3, I found that 

there is considerable potential for ZDCs (of which RSPO certification is currently the principal 

means of implementation) to drive leakage of oil palm expansion into tropical grassy and dry 

forest biomes, because of the current focus of habitat protection on tropical rainforest, at the 

expense of other biomes. If oil palm expansion drives habitat loss in these biomes, locations with 

high carbon stocks (particularly when accounting for both aboveground and belowground 

carbon) and unique biodiversity could be lost, with potentially substantial consequences for local 

people (Grace et al., 2006; Miles et al., 2006; Batlle-Bayer, Batjes and Bindraban, 2010; Lehmann 

and Parr, 2016). Thus, ongoing oil palm expansion into grassy and dry forest biomes as a 

consequence of ZDCs could undermine the benefits of ZDCs for protecting rainforest biodiversity 

and carbon stocks, because ZDCs would displace biodiversity loss between biomes rather than 

reduce it globally. My results highlight the urgent need for guidance to identify and protect ‘high 

conservation values’ in tropical grassy and dry forest biomes, in addition to the existing guidance 

for tropical rainforests, in order to steer oil palm expansion into locations with minimal negative 

environmental impacts in these biomes. 

Moreover, the extensive protection of tropical moist forests by ZDCs and RSPO certification, 

which I identified in chapter 3, could result in some companies becoming disincentivized to 
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commit to ZDCs or RSPO certification, in order to continue oil palm expansion in rainforest 

locations, where the most suitable conditions for oil palm cultivation are located (see chapter 3). 

Without high uptake of ZDCs across the oil palm sector, accompanied by strong governance and 

enforcement, there is considerable potential for leakage to undermine potential benefits of ZDCs 

and certification (Garrett et al., 2019), because the net global deforestation from oil palm would 

not decrease, but be carried out by a subset of companies. Previous studies have identified that 

both industrial plantations and smallholders that expand on non-forest land are most likely to 

become certified (Carlson et al., 2018; Slingerland, 2018), suggesting that the impact of RSPO 

certification in reducing deforestation is limited. Nevertheless, the proportion of oil palm 

expansion in Indonesia that occurs at the expense of forests is decreasing, so ZDCs and 

certification could help accelerate this current trend (Austin et al., 2017). Given that RSPO 

certification and ZDCs are a relatively recent intervention to reduce the environmental impacts 

of oil palm expansion, assessing the extent to which these are having a net positive impact 

should be a key priority for ongoing research. To reduce the potential for between-company 

leakage, policy measures should be put in place to enforce ZDCs and certification, and increase 

the proportion of the oil palm sector covered by such commitments. Pressure from consumers 

to reduce the biodiversity loss associated with oil palm expansion can stimulate sustainable 

sourcing policies of companies, potentially banning imports of oil palm grown at the expense of 

forests (and ideally other natural habitats), and boosting the market for sustainable palm oil. 

Localities that produce oil palm could ban conversion of natural habitats, in order to prevent 

between-company leakage within each locality; and the jurisdictional approach for certification 

currently under pilot by the RSPO is an example of a potential intervention which could thus 

minimize between-company leakage within sub-national jurisdictions (RSPO, 2019c). However, 

national and international coordination of stringent habitat protection policies is essential to 

avoid stimulating a ‘race to the bottom’, where expansion at the expense of natural habitats 

leaks into least-regulated localities. 

If the potential for leakage of oil palm expansion between biomes and between corporations 

were successfully minimized, my findings that ZDCs and RSPO certification protect extensive 

areas of tropical rainforest appear positive, particularly given that I found that even highly 

disturbed forest conservation set-asides are valuable for AGC and plant diversity (chapter 2). 

However, in chapter 2, I also found that the potential for regeneration of trees and AGC in 

conservation set-asides is uncertain, because the density of seedlings in set-asides was 

substantially lower than in continuous forest, suggesting that the conservation value of patches 

of forest within RSPO-certified plantations could decline over time. This finding is in line with 

previous studies identifying reduced regeneration and recruitment in fragmented forests in 

Borneo, suggesting that small forest patches have extinction debts that are likely to result in 
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future reductions in tree diversity and changes in community composition (Stride et al., 2018, 

2019). Thus, the future conservation value of set-asides for AGC and tree diversity is uncertain, 

as found for fragmented forest patches in other tropical forest landscapes (Benítez-Malvido and 

Martínez-Ramos, 2003). However, I estimated that improving forest regeneration and set-aside 

AGC could substantially boost the AGC of oil palm plantations, with co-benefits for plant 

diversity, and probably for other forest taxa (Labrière et al., 2016; Deere et al., 2018). Thus, 

understanding how to ensure successful regeneration in set-aside patches of natural habitat 

within agricultural landscapes should be a key priority for future research, particularly in light of 

the need to minimize cropland removed from production (Hertel, 2011) whilst boosting carbon 

uptake by natural ecosystems where possible (Dinerstein et al., 2020). 

Overall, I conclude that ZDCs and RSPO certification can help reduce the environmental impacts 

of oil palm expansion, but that they are currently insufficient to drive a net global reduction in 

GHG emissions and biodiversity loss associated with oil palm expansion. Without coordinated 

national and international interventions to regulate oil palm expansion, steering expansion into 

locations with minimal environmental impacts in all biomes, there is considerable potential for 

leakage of expansion between biomes, oil palm companies, and locations with different levels of 

regulation. In this thesis, I have addressed the environmental impacts of oil palm expansion, but 

there are many tropical agricultural commodities that drive deforestation, including soy, beef, 

maize, cocoa, rubber, pulp and paper, timber, sugar cane, coffee and cotton (Ahrends et al., 

2015; Trase, 2018; Pendrill et al., 2019; Jayathilake et al., 2020). Most of these other key drivers 

of deforestation can also be cultivated across the tropics, including in locations in grassy and dry 

forest biomes (Fischer et al., 2002; Leijten et al., 2020), so coordinated regulation to prevent 

leakage of expansion from one crop to another is also essential to minimize biodiversity loss and 

GHG emissions globally. Whilst certification and ZDCs have helped set out preliminary measures 

to reduce oil palm-driven deforestation, these interventions will need to be substantially 

strengthened in order to have an overall positive impact and avoid leakage effects. 

5.4 Where could industrial oil palm expand with minimal negative environmental impacts? 

If regulations were to protect all locations of ‘high conservation value’ successfully (including 

rare and/or diverse species, natural habitats, and ecosystems; locations critical for ecosystem 

services; and locations of importance for local communities) (Senior et al., 2015), a key question 

is where can oil palm plantations expand? The two typically-cited locations for sustainable 

cropland expansion are existing croplands (i.e. replacing other crops) and degraded natural 

habitats (e.g. Rosoman et al., 2017). However, there are issues with both of these, which I 

outline below. 
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If industrial oil palm were to replace areas of existing cropland, there would be high potential for 

leakage of the displaced crops to other locations, which could result in net loss of natural 

habitats, biodiversity and GHG emissions. Currently, this is particularly likely because ZDCs cover 

a greater proportion of the oil palm sector than other key deforestation-risk commodities (Haupt 

et al., 2018), highlighting the need for strong national and international regulation of land-use to 

avoid between-crop leakage. Whilst oil palm has considerably higher yield than other oil crops 

(Basiron, 2007), so can theoretically facilitate vegetable oil production with lower environmental 

costs (Beyer et al., 2020), replacement of other cropping systems with oil palm monoculture 

could lead to loss of diverse cropping systems and food sovereignty, potentially jeopardising the 

food security of local communities (Rosset, 2011; Pingali, 2012). 

Corley (2009) estimated that there is sufficient area of derived savanna (anthropogenic grassland 

with low biodiversity value) and fallow land across the tropics to enable oil palm expansion 

without loss of valuable natural habitats, even under scenarios of high future consumption. 

Research in Colombia has found that oil palm expansion on degraded pastures has limited or no 

negative impacts on faunal diversity and carbon, although bird occupancy of plantations is 

influenced by the configuration of surrounding natural habitat (e.g. mosaic forest) (Gilroy et al., 

2015; Prescott et al., 2016b, 2016a; Quezada et al., 2019). Thus, given the large extent of 

pasturage in the Neotropics (FAO, 2020b), there appear to be substantial opportunities for the 

expansion of oil palm with minimal environmental costs. Oil palm expansion in degraded 

pastures could also provide economic benefits, such as employment and income generation, 

provided that workers’ rights are respected (Boron et al., 2016), although targeting expansion on 

degraded habitats could stimulate land conflict, because degradation has occurred due to past 

human activity, and local communities are therefore likely to have stakes in degraded areas 

(Corley, 2009; Lehmann and Parr, 2016). However, as I discuss in chapter 3, the success of oil 

palm expansion with low environmental impacts depends on correct identification of higher-

biodiversity ecosystems, but current guidance for sustainable oil palm expansion is insufficient to 

distinguish high-biodiversity, old-growth grassy biomes, where oil palm expansion would drive 

considerable biodiversity loss (López-Ricaurte et al., 2017), and low-biodiversity, derived 

savannas (Veldman and Putz, 2011; Parr et al., 2014). Thus, without improved guidance, 

supporting oil palm expansion into grasslands is risks driving considerable tropical biodiversity 

loss. Recommending oil palm expansion into degraded habitats more generally could also result 

in the loss of irreplaceable ecosystems, because tropical dry forests have undergone such 

extensive degradation that there is no remaining ‘primary’ habitat (Dinerstein et al., 2017; 

Hoekstra et al., 2005; Miles et al., 2006), further highlighting the need for appropriate guidance 

for sustainable development of oil palm plantations, specific to the relevant habitat. In general, 

expansion of oil palm into degraded habitats and fallow land would prevent regeneration of 
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these habitats, which is crucial for halting biodiversity loss in many ecoregions (Dinerstein et al., 

2017), and could risk incentivizing habitat degradation to obtain permissions for conversion to 

oil palm. Natural regeneration of highly degraded habitats can provide substantial carbon 

sequestration and biodiversity benefits at low cost (Gilroy et al., 2014; Chazdon et al., 2016), so 

oil palm expansion at the expense of regeneration would incur long-term carbon and 

biodiversity costs. There is also a risk that expansion of oil palm plantations in degraded habitats 

would drive leakage of other commodities, particularly cattle grazing (given that degraded 

pastures are cited as a potential location for sustainable oil palm expansion), into other natural 

habitats, thereby failing to reduce net natural habitat and biodiversity loss (Garcia-Ulloa et al., 

2012; Gilroy et al., 2015). 

Thus, I conclude that oil palm expansion should be targeted on degraded lands, and avoided 

elsewhere, provided that guidance to correctly distinguish low-biodiversity areas from higher-

biodiversity savannas and dry forests is in place. To reduce biodiversity loss and GHG emissions, 

expansion should be minimised where possible, in order to allow regeneration of habitats that 

are currently degraded. This would require strong, coordinated governance, across multiple 

regions and for all land-use types, in order to avoid leakage effects. 

5.5 Future oil palm production within planetary boundaries 

Demand for vegetable oils as a foodstuff, biofuel and for other uses is increasing, and is expected 

to continue to do so over coming decades (Corley, 2009; Doelman et al., 2019; Pastor et al., 

2019; Searchinger et al., 2019). Given its high yield compared to other vegetable oil crops 

(Basiron, 2007), oil palm cultivation is highly profitable across much of the tropics (Carrasco et 

al., 2014; Koh & Wilcove, 2007). Global oil palm production will therefore continue to increase in 

response to growing demand over coming decades (Corley, 2009; Carrasco et al., 2014). In this 

section, I discuss how oil palm production could increase sustainably, including under expected 

climate change. 

To meet increasing demand for vegetable oil, global palm oil production could either increase by 

improving the yield of existing plantations (intensification) or by expanding the area of oil palm 

cultivation. In the previous sections of this discussion, I have concluded that oil palm expansion 

should be avoided where possible, to minimize further biodiversity loss and GHG emissions. This 

is in line with the general paradigm that land sparing (retaining extensive areas of natural 

habitat) is preferable to land sharing for conserving forest biodiversity (Phalan et al., 2011). 

Thus, to reduce the competition for land between crops and nature conservation (Smith et al., 

2010), crop yield gaps should be minimized (Hunter et al., 2017; Searchinger et al., 2019). 

However, most of the increase in global palm oil production to date has occurred through 
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expansion of plantations, rather than yield improvements, and there are substantial yield gaps in 

oil palm cultivation globally, including in industrial plantations (Carter et al., 2007; Basri & Arif, 

2009), as I found in chapter 4. Nearly 10% of plantation area in Malaysia consists of oil palm 

stands over 25 years of age, with consequently reduced yield and high costs of harvesting (Basri 

& Arif, 2009). Widespread replanting of old oil palm stands would help improve yields (albeit 

with an initial period of reduced yields from very young palms) without further loss of natural 

habitat, particularly if improved cultivars were used as the new planting material (Kushairi et al., 

2010). Other costs of oil palm production, including fertiliser and labour costs, have been 

increasing over recent decades, disincentivizing oil palm growers from intensifying production 

(Basri & Arif, 2009). However, intensifying production by increasing harvesting frequency would 

substantially increase yields, such as by increasing labour supply or mechanising harvesting, 

although this would increase plantation management costs (Murphy, 2014). Increased 

harvesting would likely have some trade-offs for biodiversity and ecosystem functioning, such as 

by decreasing organic matter inputs to soils (Kotowska et al., 2015; van Straaten et al., 2015; 

Guillaume et al., 2018), but alternative management practises, such as mulching with empty fruit 

bunches, could offset this (Tao et al., 2017). In contrast, intensification by increasing chemical 

fertiliser inputs is likely to have severe negative impacts on soils, GHG emissions and aquatic 

ecosystems (Conijn et al., 2018; MacDonald et al. 2011; Zhang et al., 2015). Thus, there is an 

urgent need to develop and encourage management practises which support biodiversity, 

ecosystem functioning and services in plantations, while also supporting high yields (i.e. win-win 

land-sparing, or sustainable intensification). Overall, there appear to be limited incentives for oil 

palm growers to intensify production, because of high intensification costs, and because the high 

yield of oil palm provides high financial returns even when yield gaps are substantial. Thus, to 

intensify oil palm production, incentives to reduce yield gaps may be necessary, such as 

increased premium prices for oil palm produced from plantations with low yield gaps. To 

develop such incentives, there would need to be substantial endorsement from consumers and 

oil palm buyers, to provide financial incentives to increase sustainable palm oil intensification. 

Moreover, intensifying oil palm production on existing plantations would not necessarily reduce 

the financial incentives to continue oil palm expansion (Villoria et al., 2013), again highlighting 

the need for strong regulation of expansion to improve the sustainability of oil palm agriculture. 

Currently, industrial oil palm plantations support very low biodiversity (Fitzherbert et al., 2008; 

Foster et al., 2011; Barnes et al., 2014; Drescher et al., 2016); and in chapter 2, I demonstrated 

that conservation set-asides within plantations can help improve AGC and plant diversity in 

plantations. While the land sparing–land sharing paradigm suggests that there is a strong trade-

off between agricultural productivity and biodiversity value of the planted area (Phalan et al., 

2011), there is increasing evidence that diversifying crop systems generally improves both yield 
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and biodiversity and ecosystem functioning, although some trade-offs exist in particular contexts 

(Tamburini et al., 2020). If there are some trade-offs between biodiversity and ecosystem 

functioning of the oil palm planted area and yield, I expect that both yield and biodiversity could 

nevertheless increase in many plantations from current levels, because plantations are managed 

as monocultures with little biodiversity (Fitzherbert et al., 2008; Foster et al., 2011; Barnes et al., 

2014; Drescher et al., 2016), yet have substantial yield gaps, largely owing to insufficient 

harvesting (Murphy, 2014). There is currently limited application of practices to improve the 

biodiversity of the planted area (i.e. land sharing), but there are ongoing efforts to develop such 

practises, which could have multiple benefits for biodiversity and ecosystem services, including 

improved carbon storage, increased organic matter inputs to soils, reduced soil erosion, 

increased diversity of food and timber products, and improved income stability of smallholder 

farmers (Bhagwat and Willis, 2009; De Beenhouwer, Aerts and Honnay, 2013; Budiadi et al., 

2019). A recent experiment planting patches of timber and fruit trees among oil palms in 

Sumatra has found that the ‘tree islands’ of oil palm agroforestry improve structural complexity, 

with likely positive impacts for biodiversity, and also boost oil palm yields, suggesting that there 

could be substantial potential for boosting the biodiversity of plantations without reductions in 

yield (Gérard et al., 2017; Zemp et al., 2019; Tamburini et al., 2020). Crop modelling suggests 

that intercropping of oil palm with cocoa would improve groundwater replenishment and total 

productivity in comparison to oil palm monoculture, with greater labour efficiency, and 

improved income security for growers as revenue is not solely dependent on palm oil price 

(Khasanah et al., 2020). Diversifying the oil palm monoculture would reduce the financial 

impacts of oil palm pest and disease outbreaks, which are expected to increase over coming 

years (Paterson et al., 2013), while also reducing the likelihood of outbreaks (Ratnadass et al., 

2012). It is also highly likely that incorporating native forest trees in the oil palm planted area 

would improve its permeability to forest species, facilitating their dispersal and thus improving 

the connectivity of adjacent forest patches (Bhagwat et al., 2008). Thus, there appears to be 

substantial potential to diversify plantations, with multiple benefits for environmental 

sustainability and potential positive impacts on yield. Ongoing development of management 

practises to increase biodiversity and ecosystem functioning within the oil palm planted area, 

and their impacts on yield, should be a key research priority. 

Over coming decades, climate change will have increasing impacts on oil palm productivity, 

although the net effects of combined changes in climate are uncertain, as I outlined in chapter 1, 

and the direct response of oil palm yield to heat stress is unclear, as I found in chapter 4. 

However, my findings in chapter 4 suggest that increasing drought across many tropical regions 

is likely to have negative impacts on yield (Barros et al., 2014). In chapter 3, I found that 

irrigation could be important for improving oil palm yields in partially water-limited locations, 
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where oil palm is likely to expand under ZDCs. Therefore, it appears highly likely that irrigation 

will become increasingly important for oil palm production over coming years; and it is already 

widely used in Thailand, South India, and parts of Latin America (do Amaral Teles et al., 2016; 

Rao, 2013; Silalertruksa et al., 2017). However, irrigation is the primary cause of freshwater 

consumption globally (Wada et al., 2011), including unsustainable groundwater depletion (Dalin 

et al., 2017); and many regions face water-scarcity (Wada et al., 2011). Oil palm would require 

irrigation during periods of low rainfall, coinciding with peak water scarcity (see chapter 3), so 

regulation of oil palm irrigation is imperative for ensuring that it is sustainable. This would 

require incorporation of irrigation into environmental impact assessments prior to planting, with 

particular focus on ensuring the water needs of local communities are not jeopardized, as I 

discuss in chapter 3. In particular, if oil palm expands into degraded pasture areas such as in the 

Neotropics, which are typically drier than moist forest regions, and projected to have increasing 

droughts in future (Barros et al., 2014), irrigation may become increasingly important for 

maintaining productivity under climate change. There are technologies to improve the 

sustainability of water withdrawal for irrigation, such as inter-basin water transfers, and to 

prevent negative impacts of irrigation on soil (such as salinization and waterlogging) and 

pollution of freshwater courses, but these all incur high costs (Liu et al., 2017; Wichelns & Oster, 

2006). Given that irrigation is likely to play a key role in food security of many semi-arid regions 

over coming decades (Liu et al., 2017), water withdrawal for irrigation may be most sustainably 

used on staple crops, rather than oil palm. The development of national and international 

protocols for water withdrawal for all crops should be a high priority for improving both food 

security and agricultural sustainability. 

Global demand for food, and particularly for vegetable oils, has risen rapidly over recent 

decades, and is expected to continue to do so without interventions to reduce consumption (Koh 

and Lee, 2012; Valin et al., 2014; McKenzie and Williams, 2015; Berners-Lee et al., 2018). 

However, reducing consumption is critical to ensuring that the global food system can remain 

within planetary boundaries by 2050 (Cassidy et al., 2013; Bajželj et al., 2014; Berners-Lee et al., 

2018). Similarly, reducing consumption of palm oil directly reduces the incentive for oil palm 

expansion, and consequent biodiversity loss and GHG emissions from land-use change (Koh and 

Lee, 2012). I conclude that oil palm expansion should be avoided wherever possible (sections 5.3 

and 5.4), but improving the yield of existing plantations would not necessarily reduce incentives 

to continue oil palm expansion (Villoria et al., 2013), so measures to reduce consumption of 

palm oil, focused on regions of high per-capita oil consumption, are imperative for ensuring 

future sustainability. This would require shifting consumer and corporate perspectives towards 

long-term sustainability at the expense of some individual consumption and corporate profits, 

and could be part of wider changes towards more sustainable diets. 
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5.6 Conclusions 

Zero-deforestation commitments and sustainability certification to reduce the environmental 

impacts of oil palm expansion are helping to conserve AGC and biodiversity in some contexts, 

and could therefore inform the development of similar commitments for other tropical 

commodities, but are currently insufficient to drive a net reduction in the habitat and 

biodiversity loss from oil palm expansion globally. Crucially, there are a number of pathways for 

leakage of oil palm expansion and natural habitat loss (between biomes, companies, localities, 

and commodities), which require strong, coordinated regulation, and are crucial for the validity 

of certified-sustainable palm oil. In light of the high potential for leakage, and the importance of 

regeneration of degraded natural habitat for future biodiversity and AGC, avoiding further oil 

palm expansion is preferable where possible. Thus, the future sustainability of oil palm 

agriculture requires improving oil palm yield in existing plantations, alongside regulation to steer 

oil palm expansion into the least-valuable areas for conservation, as well as a reduction in the 

growing demand for vegetable oils. Within plantations, conservation set-asides should be 

managed and monitored to ensure successful habitat regeneration and thus long-term benefits 

for biodiversity and carbon storage; and practises to enhance the biodiversity and ecosystem 

functioning of the planted area should be applied where possible, particularly when such 

practises do not present a trade-off with yield. Palm oil sustainability certification and zero-

deforestation commitments have developed rapidly, in recent years; and through further 

coordinated efforts of industry, governments and consumers, the detrimental environmental 

impacts of oil palm could be substantially reduced over coming decades. 
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Appendix 1  

Conservation set-asides improve carbon 

storage and support associated plant 

diversity in certified sustainable oil palm 

plantations: Supplementary information 
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Supplementary Information 1.1. Comparison of methods to estimate tree height 

To examine potential error introduced by field-derived estimates of tree height (log-log model 

used to estimate tree height for all stems without an eye estimate of height, from relationship of 

eye estimates to dbh), and implications for AGC stock values, we compared the field-based 

estimates of tree height to estimates of tree height using established allometric equations. We 

estimated the height of all tree stems (i) using a climatic model, based on dbh and a bioclimatic 

variable representing environmental stress (Chave et al., 2014); and (ii) using a regional model 

for Southeast Asia, based on dbh (Feldpausch et al. 2012), in addition to (iii) the field-derived 

estimates of tree height using a second-order log-log model (selected because it had the lowest 

relative standard error of four candidate models relating field-estimated height to dbh; table 

S1.1). In comparison to the log-log model based on field data, we found that the established 

allometric models for tree height (climatic and regional) estimated greater tree height values at 

lower dbh values and considerably lower height values at greater dbh values, in line with existing 

comparisons of models of tree height for lowland dipterocarp forest in Sabah (fig. S1.2; see plot 

IDs 49 and 63 in fig. S2 of Sullivan et al. (2018a)) (Sullivan et al., 2018a, 2018b). This resulted in 

slightly higher estimations of AGC in set-asides from allometric models (mean set-aside AGC = 

69.1 Mgha-1 for climatic height model; 68.4 Mgha-1 for regional height model) than the log-log 

model (mean set-aside AGC = 52.8 Mgha-1), because of the relatively high density of smaller 

trees in set-asides, although correlation between total plot-level AGC for different methods of 

tree height estimation was high (r = 0.964-0.993; fig. S1.3). 

 

Figure S1.1. Scatterplot of tree height estimates by trigonometry (‘tangent method’) and by eye (N = 

50). The dotted line represents equal values for both estimations. The Pearson product-moment 

correlation of the two estimates is high (r = 0.754, df = 48, p <0.001). 
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Table S1.1. Candidate models predicting tree height estimated by eye (H) from diameter (DBH), and 

their residual standard error (RSE). All models and metrics were computed and evaluated using the 

modelHD function in R package BIOMASS (Réjou-Méchain et al., 2017). We selected the second order log-

log model as the top model because it has the lowest relative standard error (RSE). The log-log models 

include the Baskerville correction to remove bias from back-transformation (Baskerville, 1972). 

Model Formula RSE 

First order log-log ln(H) = 0.543 + 0.694*ln(DBH) 5.55 

Second order log-log ln(H) = 2.34 - 0.427*ln(DBH) + 0.170*ln(DBH)2 5.38 

Weibull H = 6621*(1-exp(-(DBH/855931)0.796)) 5.44 

Michaelis-Menten H = (147*DBH) / (203 + DBH) 5.55 

 

 

Figure S1.2. Models estimating tree height from dbh. Points show tree height estimated by eye in the 

field (n = 964, 30.9% of all stems), from which the best dbh-height model was a second order log-log 

model (table S1.1), which we used to predict the height of all remaining stems (shown in blue). For 

comparison, we show tree height estimated using a climatic model, equation (6) in Chave et al. (2014), 

based on dbh and a measure of environmental stress at study site coordinates (E, where sites in this study 

have values of E between -0.17 and -0.034; the variation in the height predictions from this model arises 

from differences in E between study sites) (shown in red). We also show tree height estimated from dbh 

using a regional model for Southeast Asia, developed by Feldpausch et al. (2012) (shown in black). 
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Figure S1.3. Comparison of different methods for estimating tree height (second order log-log model 

derived from field estimates of tree height by eye, climatic model (Chave et al., 2014) and Southeast 

Asian regional model (Feldpausch et al., 2012)). (a, b, c) Scatterplots for pairwise comparison of total 

estimated AGC at each plot using different methods of estimating tree height. Plots are labelled with 

pairwise correlations (Pearson product’s moment correlation coefficient). Dashed line is y = x. (d, e, f) 

Estimated plot-level AGC by land-use type (mean ±95% CI), for all study plots (n = 49, closed circles), and 

estimated time-averaged AGC of oil palm (n = 15 simulated data points derived from Carlson et al. 

(2013, 2012), open circles). Estimates of AGC for field plots comprise AGC of live trees and palms ≥10 cm 

dbh. Note that (d) is identical to fig. 2.2 in the main article. Different letters (A, B, C) denote significant 

difference between the land-use types at p <0.05, derived from post-hoc Tukey pairwise comparisons 

(table S1.2); where two land-use types have the same letter, their estimated AGC is not significantly 

different. 

Supplementary Information 1.2. Carbon stocks of deadwood and lianas 

In addition to live trees and palms, we surveyed coarse woody debris (CWD, deadwood ≥10 cm 

diameter) and lianas ≥2 cm dbh and estimated their AGC. These data are not presented in the 

main text because they contributed only 6.3% of the variation in total AGC (AGC summed for live 

trees and palms, CWD and lianas) (estimated as the marginal R-squared of a linear mixed-effects 

model with CWD and liana AGC as a predictor, total AGC as the response, and site as a random 

effect). Inclusion of CWD and liana AGC in our comparison of AGC in oil palm, set-asides and 
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continuous forest types does not affect our conclusions that set-asides support higher AGC than 

oil palm, and lower AGC than continuous forest (fig. S1.4; table S1.2). 

We surveyed CWD in line with the nested subplot design for live trees and palms (fig. 2.1 main 

article): in the main plot of 30 m radius, we recorded CWD ≥25 cm diameter; and in the subplot 

of 20 m radius, we recorded CWD ≥10 cm and <25 cm diameter, following the protocol of Pfeifer 

et al., (2015), including estimating the height of all standing deadwood by eye (as for living 

trees). We measured liana dbh of individuals ≥2 cm dbh that entered crowns of live trees 

recorded in the 20 m and 30 m subplots (i.e. ≥10 cm dbh) following a standard protocol (Gerwing 

et al., 2006). 

We estimated biomass of CWD by multiplying volume and wood density for each item of CWD. 

We calculated the volume of each piece of CWD as a frustrum of a cone, after estimating the end 

diameter of standing and hanging CWD using a taper function (Chambers et al., 2000), and we 

assigned wood density values by state of decay on a five-point scale from Pfeifer et al., (2015). 

We estimated dead palm biomass in the same way as living palm biomass because palm wood 

density fluctuates during the first two years of decomposition (Barbosa et al., 2017) (see main 

article). We estimated liana biomass using a pantropical allometric equation based on dbh 

(Schnitzer, DeWalt and Chave, 2006). As for live trees and palms, we assumed a carbon content 

of 47.1% for CWD and liana biomass (Thomas and Martin, 2012). 
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Figure S1.4. Estimated total plot-level AGC by land-use type (mean ±95% CI), for all study plots (n = 49, 

closed circles), and estimated time-averaged AGC of oil palm (n = 15 simulated data points derived from 

Carlson et al. (2013, 2012), open circles). Estimates of AGC for field plots comprise AGC of live trees, 

palms, CWD and lianas. Different letters (A, B, C) denote significant difference between the land-use types 

at p <0.05, derived from post-hoc Tukey pairwise comparisons (table S1.2); where two land-use types have 

the same letter, their estimated AGC is not significantly different. 
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Supplementary Information 1.3. Methods for soil analysis 

We collected five topsoil cores in each plot (0-20 cm depth; one core at the plot centre, and four 

cores 15 m from the centre, in each cardinal direction). We weighed the soil samples before 

drying (at 50° C) until the weight stabilised; and we calculated gravimetric soil moisture content 

as the difference between wet and dry weight, divided by the dry weight (from which we 

calculated the mean of all samples in a plot). After drying, we bulked and thoroughly mixed all 

five samples for each plot, which we subsampled for analysis at plot level. All soil chemical 

analyses were conducted at the Forest Research Centre, Sepilok, Sabah. Prior to chemical 

analysis, we removed stones and root material was removed from the samples, and passed the 

soil was passed through a 2-mm sieve. We measured pH with a combination of glass-calomel 

electrode in a 1:2:5 ratio of soil to deionised water. We used water to extract available P, while 

total P was extracted using the sulphuric acid-hydrogen peroxide procedure described in Allen 

(1989); and we measured P contents in the extracts and digests using the molybdenum-blue 

method (Anderson and Ingram, 1993) and read these at 880nm on a spectrophotometer. We 

further ground the samples through a 0.425-mm sieve for carbon and nitrogen analyses. We 

measured organic C using the Walkley-Black method, determined total N by dry combustion at 

900° C. We calculated the C:N ratio as organic C divided by total N. 
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Supplementary Information 1.4. Supplementary material for comparison of plot-level AGC 

between set-asides, continuous forest and oil palm 

Table S1.2. Results of post-hoc Tukey pairwise comparisons, following Bayesian linear mixed-effects 

models of differences in AGC between land-use types. z-values and associated p-values for pairwise 

comparison of live tree and palm AGC between land-use types, for tree heights estimated using (a) 

second-order log-log model from field data, as presented in the main article, (b) climatic model (Chave et 

al., 2014), (c) regional model for Southeast Asia (Feldpausch et al., 2012); and for (d) total AGC (including 

lianas and CWD, as well as live trees and palms) with tree heights estimated using the second-order log-

log model. The final linear mixed-effects models included land-use type as fixed term and site as random 

intercept term. * p <0.05; ** p <0.01; *** p <0.001 

(a) Log-log model 
(from field estimates) 

Oil palm Set-aside Logged forest Primary forest 

Oil palm  z = 2.75, p = 0.028* z = 5.23, p 
<0.001*** 

z = 7.15, p 
<0.001*** 

Set-aside   z = 3.82, p 
<0.001*** 

z = 5.88, p 
<0.001*** 

Logged forest    z = 1.57, p = 0.384 

Primary forest     
 

(b) Climatic model Oil palm Set-aside Logged forest Primary forest 

Oil palm  z = 4.60, p 
<0.001*** 

z = 5.18, p 
<0.001*** 

z = 6.15, p 
<0.001*** 

Set-aside   z = 2.59, p = 
0.0444* 

z = 3.62, p = 
0.0015** 

Logged forest    z = 0.783, p = 0.855 

Primary forest     
 

(c) Regional model Oil palm Set-aside Logged forest Primary forest 

Oil palm  z = 4.43, p 
<0.001*** 

z = 5.80, p 
<0.001*** 

z = 6.79, p 
<0.001*** 

Set-aside   z = 3.35, p = 
0.0047** 

z = 4.40, p 
<0.001*** 

Logged forest    z = 0.804, p = 0.845 

Primary forest     
 

(d) Total AGC 
(including lianas and 
CWD) 

Oil palm Set-aside Logged forest Primary forest 

Oil palm  z = 4.25, p 
<0.001*** 

z = 5.99, p 
<0.001*** 

z = 8.25, p 
<0.001*** 

Set-aside   z = 3.66, p = 
0.0013** 

z = 6.08, p 
<0.001*** 

Logged forest    z = 1.84, p = 0.243 

Primary forest     
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Figure S1.5. Site-level variation in estimated AGC of all study plots. Site codes (Fx) are followed by 

number of plots in each site on the x axis labels; set-aside sites with only two plots are on the left. Boxplot 

central bars show the median; lower and upper hinges show the first and third quartiles respectively, and 

whiskers extend to the maximum and minimum values. 
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Supplementary Information 1.5. Supplementary material for comparison of vegetation 

structure among forest types 

Table S1.3. Results of post-hoc Tukey pairwise comparisons, following linear mixed-effects models of 

differences in vegetation structure between forest types. Forest type significantly predicted log-

transformed mean dbh (final model fixed effects were forest type and size class with interaction term; χ2 = 

654.5, p <0.001) and log-transformed stem density (final model fixed effects were forest type and size 

class with interaction term; χ2 = 564.5, p <0.001) but not mean wood density (final model fixed effect was 

size class; χ2= 41.2, p <0.001). For stem density we conducted the log-transformation on n+1 stems ha-1 to 

include a single zero value. We conducted post-hoc Tukey pairwise comparisons for the models in which 

forest type was significant only (mean dbh and stem density), on models fitted with a single categorical 

predictor formed from combining levels of forest type and size class. 

 

 

 

 Mean dbh (cm) 

Set-aside Logged forest Primary forest 

Saplings Set-aside  z = -2.02, p = 0.498 z = 0.943, p = 0.989 

Logged forest   z = 2.26, p = 0.339 

Primary forest    

Medium 

trees 

Set-aside  z = -0.670, p = 0.999 z = 0.485, p = 1.00 

Logged forest   z = 0.879, p = 0.993 

Primary forest    

Large 

trees 

Set-aside  z = 4.12, p = 0.0012 ** z = 7.61, p <0.001 *** 

Logged forest   z = 2.66, p = 0.143 

Primary forest    

 Stem density (n ha-1) 

Set-aside Logged forest Primary forest 

Seedlings Set-aside  z = 2.15, p = 0.536 z = 4.52, p <0.001 *** 

Logged forest   z = 1.80, p = 0.748 

Primary 

forest 

   

Saplings Set-aside  z = 0.840, p = 0.999 z = 0.767, p = 0.999 

Logged forest   z = 0.056, p = 1.00 

Primary 

forest 
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Figure S1.6. Comparison of mean dbh, stem density and mean wood density between forest types (set-

asides, continuous logged forest and continuous primary forest), for seedlings (<2 cm dbh), saplings (≥2 

cm and <10 cm dbh), small trees (≥10 cm and <25 cm dbh) and medium-large trees (≥25 cm dbh), for all 

study plots (N = 49). Forest type significantly predicted log-transformed mean dbh (final model fixed 

effects were forest type and size class with interaction term; χ2 = 654.5, p <0.001) and log-transformed 

stem density (final model fixed effects were forest type and size class with interaction term; χ2 = 564.5, p 

<0.001) but not mean wood density (final model fixed effect was size class; χ2= 41.2, p <0.001). We have 

back-transformed model predictions for plotting, when variables were log-transformed in the LMEs. Note 

differences in y axes among size classes for mean dbh and stem density plots. Significance bars denote 

results of post-hoc Tukey pairwise comparisons (table S1.3). ** p <0.01; *** p <0.001 

Medium 

trees 

Set-aside  z = -0.820, p = 0.999 z = -2.16, p = 0.530 

Logged forest   z = -1.02, p = 0.996 

Primary 

forest 

   

Large 

trees 

Set-aside  z = 1.93, p = 0.700 z = 0.667, p = 0.999 

Logged forest   z = -0.958, p = 0.998 

Primary 

forest 
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Supplementary Information 1.6. Supplementary material for analysis of the drivers of variation 

in set-aside AGC 

 

Figure S1.7. Predictors for assessing the effects of degree of forest fragmentation on AGC in set-asides: 

(a-d) boxplots of values for all plots in set-asides; (e-h) scatterplots with AGC in live trees and palms for 

all plots in set-asides. Forest area and forest edge index are shown for buffer sizes of 1 km from the plot 

centre (although we ran models with a range of buffer sizes), and total forest area is expressed as a 

proportion. These four predictors were intercorrelated so we combined them in a principal components 

analysis (figs. S1.8, S1.9; table S1.4). Boxplot central bars show the median; lower and upper hinges show 

the first and third quartiles respectively, and whiskers extend to the maximum and minimum values within 

1.5*IQR of the hinges; outliers greater than 1.5*IQR from the hinges are plotted as individual points. 
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Figure S1.8. Pairwise scatterplots and Pearson correlation coefficients of predictors for assessing the 

effects of degree of forest fragmentation on AGC in set-asides. We calculated forest area as the 

proportion of landscape within 1 km buffer which is forest; and forest edge index as the number of 5 m-

resolution grid cells containing forest–oil palm boundary, divided by total forest area; greater values 

indicate more edge, i.e. a greater proportion of the forest is adjacent to oil palm. Owing to high 

intercorrelation between these predictors (note that whilst we would expect forest area, edge index and 

distance to nearest edge to be intercorrelated, fragment age was negatively correlated with forest area 

owing to the field sites available for sampling), we combined them using principal components analysis 

and extracted the first principle component as a ‘fragmentation index’ (fig. S1.9). 
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Figure S1.9. Scatterplot of PC1 and PC2 (scaled to sum of squares = 1) for the PCA of landscape 

characteristics for set-asides, with correlations of component variables. We conducted this PCA using 

buffer sizes of 0.2 - 2 km for forest area and forest edge index; the ordination for buffer sizes of 1 km are 

shown in this plot. We use PC1 as a ‘fragmentation index’, where higher values represent a greater degree 

of forest fragmentation (table S1.4). 

 

Table S1.4. PCAs of the effects of degree of forest fragmentation (where we extracted PC1 as a 

fragmentation index). We conducted this analysis for a range of buffer sizes for total forest area and edge 

index, to demonstrate that varying the buffer size does not affect the results and hence our conclusions. 

Buffer 

size 

(m) 

Proportion of 

variance 

explained by 

PC1 

Correlation of PC1 and components 

Total forest 

area in 

buffer 

Edge 

index in 

buffer 

Nearest 

edge 

Years since 

fragmentation 

200 0.693 -0.566 0.565 -0.517 0.306 

500 0.698 -0.562 0.543 -0.483 0.395 

1000 0.680 -0.567 0.527 -0.415 0.479 

1500 0.653 -0.560 0.524 -0.384 0.513 

2000 0.635 -0.565 0.519 -0.362 0.529 
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Figure S1.10. Predictors for assessing the effects of soil parameters on AGC in set-asides: (a-d) boxplots 

of values for all plots in set-asides; (e-h) scatterplots with AGC in live trees and palms for all plots in set-

asides. These seven predictors were intercorrelated so we combined them in a principal components 

analysis (figs. S1.11, S1.12; table S1.5). Boxplot central bars show the median; lower and upper hinges 

show the first and third quartiles respectively, and whiskers extend to the maximum and minimum values 

within 1.5*IQR of the hinges; outliers greater than 1.5*IQR from the hinges are plotted as individual 

points. 
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Figure S1.11. Pairwise scatterplots and Pearson correlation coefficients of predictors for assessing the 

effects of soil parameters on AGC in set-asides. Owing to intercorrelation between these predictors, we 

combined them using principal components analysis and extracted the first and second principle 

components as major gradients in soil nutrients and moisture (fig. S1.12). 
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Figure S1.12. Scatterplot of PC1 and PC2 (scaled to sum of squares = 1) for the PCA of soil parameters of 

plots in set-asides, with correlations of component variables. We use PC1 and PC2 as major gradients in 

soil nutrients and moisture (table S1.5). 

 

 

Table S1.5. Correlation of individual soil parameters and soil PC1 and PC2. 

Principle 

component (PC) 

Correlation of PC and components 

pH Total P Available 

P 

Total N Organic C C:N Moisture 

PC1 (explained 

55% variance) 

0.355 0.335 0.382 0.476 0.453 -0.346 0.251 

PC2 (explained 

21% variance) 

-0.475 -0.453 -0.164 0.229 0.193 -0.053 0.671 
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Table S1.6. Results of GAMMs of drivers of variation in set-aside AGC. We compared the impact of using 

5 different buffer sizes for calculating the fragmentation index, and removed all non-significant terms to 

derive the final model (which does not include fragmentation). All variables were scaled for model 

computation. All models included site as a random effect. * p < 0.05 

Full model, 200 m buffer size used for calculating fragmentation index 

Adjusted R2 = 0.151; log likelihood (LMM) = -153.5 (df = 8) 

Fixed effects Estimate Standard error t-value P (>|t|) 

Fragmentation index (200 m) 7.29 4.40 1.66 0.108 

Soil PC1 -5.06 4.46 -1.13 0.267 

Soil PC2 3.09 4.15 0.75 0.461 

Slope -1.37 4.31 -0.32 0.754 

Smoother  Effective d.f. F p 

Elevation  0.768 0.096 0.102 

     

Full model, 500 m buffer size used for calculating fragmentation index 

Adjusted R2 = 0.112; log likelihood (LMM) = -167.2 (df = 8) 

Fixed effects Estimate Standard error t-value P (>|t|) 

Fragmentation index (500 m) 8.43 4.41 1.91 0.416 

Soil PC1 -5.07 4.56 -1.11 0.275 

Soil PC2 3.22 4.12 0.781 0.441 

Slope -0.538 4.36 -0.12 0.90 

Smoother  Effective d.f. F p 

Elevation  1.05 0.123 0.0531 

     

Full model, 1000 m buffer size used for calculating fragmentation index  

Adjusted R2 = 0.118; log likelihood (LMM) = -167.5 (df = 8) 

Fixed effects Estimate Standard error t-value P (>|t|) 

Fragmentation index (1000 m) 6.58 4.30 1.53 0.136 

Soil PC1 -5.07 4.56 -1.11 0.275 

Soil PC2 3.22 4.12 0.781 0.441 

Slope -0.538 4.36 -0.12 0.90 

Smoother  Effective d.f. F p 

Elevation  1.05 0.123 0.0531 

     



140 
 

Full model, 1500 m buffer size used for calculating fragmentation index 

Adjusted R2 = 0.104; log likelihood (LMM) = -167.9 (df = 8) 

Fixed effects Estimate Standard error t-value P (>|t|) 

Fragmentation index (1500 m) 4.91 4.31 1.14 0.264 

Soil PC1 -4.10 4.57 -0.90 0.376 

Soil PC2 3.53 4.23 0.84 0.410 

Slope -0.80 4.42 -0.18 0.858 

Smoother  Effective d.f. F p 

Elevation  1.16 0.135 0.043 * 

     

Full model, 2000 m buffer size used for calculating fragmentation index 

Adjusted R2 = 0.099; log likelihood (LMM) = -168.1 (df = 8) 

Fixed effects Estimate Standard error t-value P (>|t|) 

Fragmentation index (2000 m) 4.20 4.32 0.97 0.338 

Soil PC1 -3.70 4.56 -0.81 0.423 

Soil PC2 3.58 4.28 0.84 0.409 

Slope -0.89 4.45 -0.20 0.843 

Smoother  Effective d.f. F p 

Elevation  1.21 0.139 0.042 * 

     

Final model (non-significant terms removed at p >0.05) 

Adjusted R2 = 0.15; log likelihood (LMM) = -169.2 (df = 4) 

Fixed effects Estimate Standard error t-value P (>|t|) 

- - - - - 

Smoother  Effective d.f. F p 

Elevation  1.25 0.14 0.0385 * 
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Figure S1.13. GAMM results testing drivers of variation in live tree and palm AGC in plots in set-asides. 

(a, b, c, d) Fixed effects (fragmentation index, soil PCs and slope). (e) Elevation smoother fitted with a 

penalized cubic spline. Live tree and palm AGC estimates (solid lines) ± 95% CIs (dashed lines) are shown 

for elevation, which was the only term included in the final model as the other variables were not 

significant (table S1.6). 
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Zero-deforestation palm oil could threaten 

tropical grassy and dry forest biomes: 
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Overview 

This document provides the supplementary information for the methods and results presented 

in chapter 3 ‘Zero-deforestation palm oil could threaten tropical grassy and dry forest biomes’. In 

Supplementary Information 2.1, we present methodological details of modelling oil palm 

suitability (selection of predictors, model evaluation, selection and thresholding of oil palm 

suitability models, and deriving estimates of oil palm yield from model outputs), to support the 

main text Methods (it is expected that the main text Methods would be read prior to this 

document). In Supplementary Information 2.2, we present methodological details of biome 

classification and a comparison of biome vegetation structure, also to support the main text 

Methods. In Supplementary Information 2.3 and 2.4, we present sensitivity analyses of our 

rainfed and irrigated oil palm suitability projections respectively, to the choice of oil palm 

suitability threshold, and to the choice of thresholds of woody vegetation structure determining 

protection under zero-deforestation commitments. These sections thus explore uncertainties 

around our results of suitable areas for oil palm expansion under zero-deforestation 

commitments that are presented in the main article. In Supplementary Information 2.5, we 

present sensitivity analyses of the results of the potential impacts of zero-deforestation oil palm 

expansion on biodiversity (ecoregion-level suitability for expansion and impacts on vertebrates) 

presented in the main article, to suitability for irrigated oil palm (as opposed to rainfed, which is 

presented in the main article) and to the choice of thresholds of woody vegetation structure 

determining protection under zero-deforestation commitments. 

Supplementary Information 2.1: additional methodological details for oil palm suitability 

models 

Selection of climatic predictors of oil palm suitability 

We selected five climatic predictors known to correlate with oil palm growth and yield (Tinker 

and Corley, 2015): mean annual temperature (MAT, °C), minimum temperature of the coldest 

month (Tmin, °C), mean annual precipitation (MAP, mm), an annual moisture index (AMI), and 

maximum water deficit (MWD, mm). We downloaded three of these (MAT, Tmin and MAP) from 

WorldClim, calculated AMI as the ratio of mean annual precipitation to mean annual potential 

evapotranspiration (PET, calculated according to the Hargreaves Equation (Hargreaves and Allen, 

2003; Zomer et al., 2008), and we calculated MWD as the greatest cumulative deficit in mean 

monthly rainfall, where a deficit is a month with rainfall < monthly PET, representing the length 

and severity of dry season (Platts et al., 2010). Some of these predictors were inter-correlated 

(table S2.1), so we ran models with two uncorrelated predictors, Tmin and MWD, which 
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represent the most strongly limiting climatic factors for oil palm growth and yield (Tinker and 

Corley, 2015). 

Table S1. Inter-correlation of the five climatic predictors, calculated using Spearman’s Rho, with r > 0.7 

(shown in bold) indicating high inter-correlation. The inter-correlation shown are for the dataset used in 

the final model (see below), but were similar across all datasets used in model calibration. 

 MAT Tmin MAP MWD AMI 

MAT 1     

Tmin 0.862 1    

MAP 0.164 0.394 1   

MWD 0.038 -0.230 -0.811 1  

AMI 0.0857 0.352 0.972 -0.812 1 

Evaluation of oil palm suitability models 

To obtain a measure of model transferability, indicating model accuracy during spatial 

prediction, we calculated the moving-window Continuous Boyce Index (Hirzel et al., 2006) for 

cross-validation, using the function ecospat.boyce in the R package ‘ecospat’ version 3, by 

training each model on two out of three spatially distinct portions of the data (Americas, Africa 

and Asia/Australasia), and testing it on the remaining portion. As rainfall and temperature 

distributions differ between these continents (see fig. S2.1 for distribution of climate values at 

oil palm mills in each continent), this provides a test of model performance when predicted to 

novel climatic environments from the training data. 

For evaluation of the full models, we compared our model predictions to a largely-independent 

dataset of oil palm plantations in 23 countries (Harris, Goldman and Gibbes, 2019). We 

rasterised these polygons of oil palm plantations to the resolution of our model outputs (5’) 

before converting to points, and removed potentially irrigated locations in using the same 

methods as for the training data of oil palm mills (we excluded all locations within 10km of non-

zero water withdrawal for irrigation (Sutanudjaja et al., 2018) and in regions with widespread 

irrigation of oil palm (Silalertruksa et al., 2017); see Methods for oil palm presence locations in 

main article). To assess unclassified (i.e. continuous model outputs) full model performance, we 

calculated the moving window Continuous Boyce Index (Hirzel et al., 2006) as for the cross-

validation, testing our continuous suitability predictions against these oil palm plantations 

(Harris, Goldman and Gibbes, 2019) and 50,000 randomly selected background points. The 

Continuous Boyce Index represents the correlation between the ratio of predicted to expected 

presence points (for a given suitability value or bin, the ratio of presences predicted by the 

model to the number of points expected to have the suitability value given chance alone, i.e. 
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based on the relative area of habitat that has the suitability value of interest) and the projected 

suitability values (Hirzel et al., 2006). For low projected suitability values, a good model has a low 

ratio of predicted to expected presence points; and for high projected suitability values, a good 

model has a high ratio of predicted to expected presence points; and so the relationship 

between these provides a measure of model performance. The Continuous Boyce Index can 

have values ranging from -1 to 1 (where negative values indicate an incorrect model, that tends 

to predict absences in locations of testing presence data; 0 indicates a model similar to chance 

alone; and positive values indicate a good model, that predicts presences in locations of testing 

presence data), and is highly correlated with metrics for evaluating species distribution models 

that incorporate both presence and absence data, such as Area Under the Curve (AUC) of false-

positive to true-positive ratios (Hirzel et al., 2006). 

 

Figure S2.1. Distribution of temperature and rainfall values for (a) full oil palm mill dataset and (b) 

systematically resampled oil palm mill dataset (reducing spatial autocorrelation by resampling at a coarse 

grid-cell resolution of 1°, or ~111 km at the Equator). Climate values at oil palm mill locations in 

Asia/Australasia dominate the overall distribution, owing to the high number of mills in Indonesia and 

Malaysia. Grid resampling reduces this, which leads to better model predictive power for (see below). 

Selection of best model 

We selected the top model using the following criteria: high full model performance (high 

continuous Boyce Index score); high transferability to new environments (consistently high 
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continuous Boyce Index scores when trained and tested on spatially distinct portions of the 

data); and relatively high importance of both climatic predictors (to avoid domination of the 

model by a single predictor) (VanDerWal et al., 2009). 

We found that all models accurately predicted suitability for oil palm (full-model continuous 

Boyce Index 0.762-0.914 when tested with largely-independent oil palm plantation locations 

(Harris, Goldman and Gibbes, 2019)), but that models tended to vary in their transferability 

(cross-validation Boyce Index 0.004-0.919) and relative variable importance (fig. S2.2). Models 

with correction for spatial autocorrelation (by grid resampling the training data) had higher 

transferability (cross-validation continuous Boyce Index) than models without the correction, 

and higher full model accuracy (full model continuous Boyce Index). Of the models with 

correction for spatial autocorrelation, smaller background buffer sizes conferred greater 

transferability, with the highest transferability for the model with 500 km background buffer 

size, and smaller background buffer sizes also conferred greater full model performance (fig. 

S2.2). We therefore selected the model with 500 km background buffer size and correction for 

spatial autocorrelation as the best model, which has a high full-model score (continuous Boyce 

Index, 0.900), the highest transferability (continuous Boyce Index 0.546-0.892 for cross-

validation), and is not dominated by a single climatic predictor (fig. S2.2).  

Whilst the lowest cross-validation continuous Boyce Index score for our selected best model is 

relatively low (0.546), we expect this score to represent a conservative estimate of full model 

transferability, because the most highly-scoring cross-validations for this model were trained on 

data which spanned a range of climate space close to that of the full model (fig. S2.3; also see 

fig. S2.1 for differences in distributions of climate values at mill locations in each continent). We 

therefore expect the full model to have transferability similar to its higher cross-validation scores 

(0.846, 0.892). 
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Figure S2.2. Evaluation scores for metrics assessing prediction accuracy of full oil palm suitability 

models, for varying background point selection method: for models using full oil palm mills dataset, and 

correcting for spatial autocorrelation by resampling at a coarse grid-cell resolution (1°, or ~111 km at the 

Equator). (a) Full model evaluation (continuous Boyce Index), where all models were trained on oil palm 

mills (World Resources Institute et al., 2018), and tested on global plantations data (Harris, Goldman and 

Gibbes, 2019) (see Methods in main text) using the continuous Boyce Index, where 1 indicates a perfect 

score (the distribution of predicted presences follows that of the testing presences) (Hirzel et al., 2006). 

(b) Continental cross-validation scores (continuous Boyce Index), where each model was trained on data 

for two continents only and tested on data for the third withheld continent. Consistent high scores 

indicate transferability of a model into new environments. (c) Variable importance for the two climatic 

predictors used to train the model (Tmin: minimum temperature of the coldest month, in °C; MWD: 

maximum water deficit, in mm). The best model is displayed in green, which we selected because of its 

high full model accuracy, transferability (cross-validation scores), and variable importance not dominated 

by a single predictor. 
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Figure S2.3. Cross-validation continuous Boyce index scores, in comparison to the proportion of the full 

climatic range of training data encompassed by each subset, for each cross-validation run of the best 

model. Labels correspond to the continents which were used to train each run (Latin America, Africa and 

Asia/Australasia); the remaining continent was used for testing. The cross-validation runs which most 

accurately predicted suitability for oil palm (continuous Boyce index) are those which were trained on data 

spanning a high proportion of the climatic range occupied by the full training data, suggesting that the full 

model (trained on the full climatic range) has high transferability. We calculated climatic range as the 

minimum convex polygon for scaled climatic variables (Tmin and MWD). 

Thresholding of oil palm suitability models 

We used Minimal Predicted Area thresholding (Engler, Guisan and Rechsteiner, 2004; Hirzel et 

al., 2006) to classify the continuous suitability projections of our best model (0-1), based on the 

distribution of continuous projected suitability values at oil palm mill (i.e. ‘presence’) locations 

used to train the model (table S2.2, fig. S2.4). To test the sensitivity of our projected climatically 

suitable area to the threshold used to determine suitability, we used three Minimal Predicted 

Area thresholds to classify our best model. We classified locations as ‘suitable’ where the 

predicted suitability value was greater than the minimum predicted suitability for a given 

percentile of the oil palm mills used to train the model (thresholds for suitability ranged 0.018 – 

0.152; fig. S2.4), and all other locations as ‘unsuitable’. Additionally, we classified the suitable 

locations into three classes of expected productivity, with equal percentiles of predicted values 

at the oil palm mill locations used to train the models (table S2.2). 

We compared the performance of the three different classifications of our best model using the 

True Skill Statistic (TSS) (Allouche, Tsoar and Kadmon, 2006) and the Jaccard coefficient, to 
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compare our predicted suitable area to that of an agro-ecological model of suitability for oil 

palm. We calculated TSS using oil palm plantations that are largely-independent of the oil palm 

mills dataset used to train the models (a map of global tree plantations compiled from mixed 

sources, largely from remote sensing, with a small subset of oil palm plantations verified against 

the oil palm mills dataset used to train the models) (Harris, Goldman and Gibbes, 2019) as 

testing presence locations, and randomly sampled points outside these plantations as testing 

pseudo-absence points, in equal number to the testing presence locations. We calculated the 

Jaccard coefficient for comparison of our classified model with an agro-ecological model of 

suitability for oil palm cultivation, in which suitability for oil palm cultivation was determined by 

expert knowledge of suitable ranges of a large number biophysical variables for cultivation 

(Pirker et al., 2016). This model incorporated many more biophysical variables for oil palm 

suitability than we could examine (because intercorrelation of variables did not present issues 

for the methodology), so thus provided a suitability model for comparison with our results that 

was based on highly contrasting methods. Because the suitability predictions of the agro-

ecological model (Pirker et al., 2016) were available at a resolution of 25.3’ (~47 km at the 

Equator), we aggregated our binary suitability predictions to this resolution before conducting 

the calculations. 

We found that TSS is highest for the model classified using MPA95 (i.e. with the smallest total 

predicted area), whereas the Jaccard coefficient is highest for the model classified using MPA100 

(i.e. with the largest total predicted area) (fig. S2.5, fig. S2.6). Because TSS incorporates both 

sensitivity and specificity, and all three of our final model classifications have high sensitivity 

(0.996-1.00), the TSS scores of our final model classifications are penalized by their specificity 

(0.613-0.798). However, our randomly sampled pseudo-absence points used to test the model 

could be suitable for oil palm cultivation in practice, but not planted with oil palm for a variety of 

reasons. Our TSS scores are therefore likely to underestimate the performance of our models. 

Nevertheless, our model thresholded at MPA100 appears to overestimate the area suitable for oil 

palm cultivation in comparison to the agro-ecological model (fig. S2.6c). We therefore present 

figures in the main text using the model thresholded at MPA99, at which the two validation 

measures (TSS and Jaccard coefficient) are most closely equalised, and present uncertainty of 

results from model thresholding in Supplementary Information 2.3 and 2.4. 
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Table S2.2. Percentiles of predicted values at presence locations used to classify the continuous best 

model outputs (0-1) into suitable and unsuitable locations, with three classes of expected productivity, 

according to Minimal Predicted Area thresholding. 

Minimal Predicted 

Area threshold for 

suitability 

Relative area 

predicted as 

suitable 

Unsuitable  Suitable: expected productivity 

Low Medium High 

MPA95 Smallest ≤P95 >P95 and ≤P63.3 >P63.3 and ≤P31.7 >P31.7 

MPA99 Medium ≤P99 >P99 and ≤P66 >P66 and ≤P33 >P33 

MPA100 Largest ≤P100 (minimum) >P100 and ≤P66.7 >P66.7 and ≤P33.3 >P33.3 

Figure S2.4. Cumulative density of continuous predicted suitability values of the best model, at presence 

points (oil palm mills) used to train the model (dotted line), and for all grid cells in the tropics (solid line); 

with the three MPA thresholds used to classify the output into suitable/unsuitable. Cumulative density 

refers to number of oil palm mills for the presence points used to train the model; and to number of grid 

cells (in WGS 1984 unprojected coordinate system) for all predicted values. 
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Figure S2.5. Evaluation metrics to compare three Minimal Predicted Area thresholds for classifying the 

continuous suitability predictions of the best model into suitable and unsuitable locations for oil palm 

cultivation. We calculated TSS using largely-independent oil palm plantations (Harris, Goldman and 

Gibbes, 2019) as testing presence locations, and random pseudo-absence points. We calculated the 

Jaccard coefficient for comparison of our classified model with an agro-ecological model (Pirker et al., 

2016). 

 

 

Figure S2.6. Comparison of areas predicted as suitable for oil palm cultivation, between an agro-

ecological model and the species distribution model presented in this manuscript. (a) For the species 

distribution model thresholded at MPA95; (b) for the species distribution model thresholded at MPA99; (c) 

for the species distribution model thresholded at MPA100. See (Pirker et al., 2016) for details of the agro-

ecological model. 
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Estimating oil palm yield from projected suitability values 

Our oil palm suitability projections represented expected suitability for oil palm cultivation, from 

which we were able to derive values of expected oil palm yield for each of the three suitable 

classes for oil palm cultivation (low, medium and high; see table S2.2). We overlaid our maps of 

the three suitability classes with maps of estimated oil palm yield for the year 2010 

(International Food Policy Research Institute, 2019), which were produced by spatial allocation 

of reported crop production statistics from global administrative units. We compared our SDM 

outputs with all grid-cells of oil palm yield, where actual yield >0 tha-1 (i.e. production was 

occurring; fig. S2.7). 

 

Figure S2.7. Oil palm yield values for each projected suitability class, shown for low and high fertiliser 

input cultivation and for each of the three thresholds used to classify the best model (MPA95, MPA99, 

MPA100; see table S2.2). Boxplots of global rainfed oil palm annual yield data are from (International Food 

Policy Research Institute, 2019). Note that results for MPA99 are reported in the main article. Central bars 

show the median, lower and upper hinges show the first and third quartiles respectively, whiskers extend 

to the maximum and minimum values within 1.5*inter-quartile range, outliers are plotted individually, and 

boxplot width relates to sample size within each group (proportional to the square-root of the within-

group sample size). N = 103,163 5-arc minute grid cells for all groups; smallest n = 71 for low input, high 

expected productivity, all model thresholds; largest n = 21,429 for high input, low expected productivity, 

MPA100. We excluded all grid-cells with outlying yield >50 tha-1 (n = 576) as these appear to be 

overestimates (Tinker and Corley, 2015). 
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Supplementary Information 2.2: biome classification and woody vegetation structure 

To ensure that grassland, savanna, shrubland and woodland ecoregions with a continuous grassy 

understorey were identified as ‘tropical grassy biome’ (Lehmann and Parr, 2016), we reclassified 

25 of 391 non-mangrove ecoregions which occur in the tropics in Terrestrial Ecoregions of the 

World (Dinerstein et al., 2017) (table S2.3). These changes were based on expert knowledge and 

the classification used in Murphy et al. 2016 (Murphy, Andersen and Parr, 2016). 

We compared the woody vegetation structure (canopy closure and aboveground carbon stocks, 

both used to determine thresholds of habitat protection under the High Carbon Stock Approach 

for zero-deforestation commitments across the four biomes in our analyses (tropical moist 

forest, tropical grassy biome, tropical dry forest biome, and other), and found that the vast 

majority of tropical grassy and dry forest habitat falls below protection thresholds for 

aboveground carbon stocks (fig. S2.8). 

Table S2.3. Biome classification for the 25 tropical ecoregions which we reclassified from the original 

Terrestrial Ecoregions of the World dataset (Dinerstein et al., 2017), based on our knowledge of these 

habitats, and of the classification used in a previous study(Murphy, Andersen and Parr, 2016). We retained 

the original classification for all other ecoregions. In the main text, we refer to ‘tropical & subtropical 

moist broadleaf forests’ as ‘tropical moist forests’, ‘tropical & subtropical dry broadleaf forests’ as ‘dry 

forests’, ‘tropical & subtropical grasslands, savannas & shrublands’ as ‘tropical grassy biomes’, and 

remaining biome types as ‘other’. ECO_ID refers to the unique identifier assigned each ecoregion in the 

original dataset. 

Ecoregion name ECO_ID Biogeographic 

realm 

Original biome Reclassified biome 

Mato Grosso 

tropical dry forests 

481 Neotropic Tropical & Subtropical 

Moist Broadleaf Forests 

Tropical & Subtropical Dry 

Broadleaf Forests 

Bahamian 

pineyards 

552 Neotropic Tropical & Subtropical 

Coniferous Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Central Deccan 

Plateau dry 

deciduous forests 

290 Indomalayan Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Central Indochina 

dry forests 

291 Indomalayan Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Chhota-Nagpur dry 

deciduous forests 

292 Indomalayan Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Chiquitano dry 

forests 

529 Neotropic Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 
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Cuban pine forests 554 Neotropic Tropical & Subtropical 

Coniferous Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Hispaniolan pine 

forests 

555 Neotropic Tropical & Subtropical 

Coniferous Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Irrawaddy dry 

forests 

294 Indomalayan Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Khathiar-Gir dry 

deciduous forests 

295 Indomalayan Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Luzon tropical pine 

forests 

303 Indomalayan Tropical & Subtropical 

Coniferous Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Narmada Valley dry 

deciduous forests 

296 Indomalayan Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

North Deccan dry 

deciduous forests 

297 Indomalayan Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

South Deccan 

Plateau dry 

deciduous forests 

298 Indomalayan Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Southeast 

Indochina dry 

evergreen forests 

299 Indomalayan Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Southern Vietnam 

lowland dry forests 

300 Indomalayan Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Timor and Wetar 

deciduous forests 

166 Australasia Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Angolan montane 

forest-grassland 

77 Afrotropic Montane Grasslands & 

Shrublands 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Deccan thorn scrub 

forests 

315 Indomalayan Deserts & Xeric 

Shrublands 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Fiji tropical dry 

forests 

635 Oceania Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Hawai'i tropical dry 

forests 

636 Oceania Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Sri Lanka dry-zone 

dry evergreen 

forests 

301 Indomalayan Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Sumba deciduous 

forests 

165 Australasia Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 
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Zambezian 

evergreen dry 

forests 

33 Afrotropic Tropical & Subtropical 

Dry Broadleaf Forests 

Tropical & Subtropical 

Grasslands, Savannas & 

Shrublands 

Godavari-Krishna 

mangroves 

316 Indomalayan Deserts & Xeric 

Shrublands 

Mangroves 

 

 

 

Figure S2.8. Boxplots of aboveground carbon stock and canopy closure for all natural habitat in the 

tropics (including primary vegetation, secondary vegetation and pasture, and excluding cropland, urban 

areas and tree plantations) for each biome. Central bars show the median, lower and upper hinges show 

the first and third quartiles respectively, whiskers extend to the maximum and minimum values within 

1.5*inter-quartile range, and outliers are plotted individually. Total areas of natural habitat of each biome 

(across the tropics) are labelled on the x axis. Dashed lines represent the two sets of protection thresholds 

for zero-deforestation under the High Carbon Stock Approach (see main text Methods). 

 

Supplementary Information 2.3: sensitivity analyses of suitability for rainfed oil palm 

cultivation 

We found that our model estimates of total suitable area for oil palm cultivation, and hence total 

suitable area potentially available for expansion under zero-deforestation commitments, are 

highly sensitive to the model threshold (MPA95, MPA99, MPA100) for determining suitability (table 

S2.4; fig. S2.9; fig. S2.10). For each thresholded model, we also found that applying the threshold 

for compulsory habitat protection under zero-deforestation (following the High Carbon Stock 

Approach, where all natural habitat of ≥75 Mg ha-1 and ≥50% canopy closure is protected) 

increases our estimates of total suitable area for oil palm potentially available for expansion 

under zero-deforestation commitments, in comparison to applying the threshold for potential 
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protection (where all natural habitat of of ≥35 Mg ha-1 and ≥30% canopy closure is protected, as 

presented in the main article) (table S2.4). Nevertheless, the relative area of habitat potentially 

suitable for zero-deforestation oil palm expansion remains similar between biomes and 

biogeographic realms under the different thresholds of suitability for oil palm and habitat 

protection (fig. S2.9; fig. S2.10). The majority of the variation in total suitable area is within areas 

of low expected productivity, which comprise 87.4% - 97.4% of the total suitable area (natural 

habitat outside existing protected areas) in all models (fig. S2.11). 

We found that the absolute difference in the area of moist forest potentially suitable for zero-

deforestation oil palm expansion (i.e. not protected by zero-deforestation commitments) 

between habitat protection thresholds (potential and compulsory protection) is greater than 

that for other biomes, when comparing protection thresholds within a given threshold of model 

suitability (fig. S2.9; fig. S2.10; fig. S2.11). Thus, the area of degraded tropical moist forest 

available for zero-deforestation oil palm expansion appears highly sensitive to the choice of 

threshold for protection under zero-deforestation, which in turn depends on local identification 

of additional conservation values (as areas designated for potential protection under the High 

Carbon Stock Approach are protected depending on identification of additional conservation 

values). 

Table S2.4. Estimates of total climatically suitable area for rainfed oil palm cultivation, across the three 

thresholds for suitability (see above). Results for MPA99 are presented in the main text. Natural habitat 

includes primary vegetation, secondary vegetation and pasture, and excludes cropland, urban areas and 

tree plantations. Protected areas refer to IUCN class I and II protected areas. We estimated protection 

under zero-deforestation following HCSA (High Carbon Stocks Approach) thresholds: for compulsory 

protection, locations with aboveground carbon stocks of ≥75 Mg ha-1 and ≥50% canopy closure, and/or 

peat soil are protected; for potential protection (where in practice, protection of low-carbon areas can 

depend on additional conservation values), locations with aboveground carbon stocks of ≥35 Mg ha-1 and 

≥30% canopy closure, and/or peat soil are protected. 

Threshold 

for 

suitability 

Areal estimate (Mha) 

Total 

suitable 

area 

Total 

suitable 

natural 

habitat 

Total suitable 

natural 

habitat 

outside 

protected 

areas 

Total suitable natural 

habitat not protected 

by zero-deforestation 

(compulsory 

protection) 

Total suitable natural 

habitat not 

protected by zero-

deforestation 

(potential 

protection) 

MPA95 960 889 840 169 69.8 

MPA99 1,368 1,264 1,198 358 167 

MPA100 1,860 1,674 1,594 694 375 
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Figure S2.9. Area of natural habitat climatically-suitable for rainfed oil palm cultivation, compared 

between thresholds for oil palm suitability and thresholds of habitat protection under zero-

deforestation commitments. (a) Globally, compared between thresholds of habitat protection under zero-

deforestation commitments (potential, compulsory), and between model thresholds for suitability 

(MPA95, MPA99, MPA100; see table S2.2). (b-g) By biogeographic realm, for potential protection under 

zero-deforestation commitments (b,d,f), and for compulsory protection under zero-deforestation 

commitments (c,e,g); for suitability threshold MPA95 (b,c), MPA99 (d,e) and MPA100 (f,g). For compulsory 

protection, locations with aboveground carbon stocks of ≥75 Mg ha-1 and ≥50% canopy closure, and/or 

peat soil are protected; for potential protection (where in practice, protection of low-carbon areas can 

depend on additional conservation values), locations with aboveground carbon stocks of ≥35 Mg ha-1 and 

≥30% canopy closure, and/or peat soil are protected. Locations of cropland, urban areas and tree 

plantations are excluded; as are all IUCN class I/II protected areas. Note that results for MPA99 under 

potential protection are presented in the main article. 
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Figure S2.10. Maps of natural habitat climatically-suitable for rainfed oil palm cultivation under zero-

deforestation commitments, compared between thresholds for oil palm suitability (MPA95, MPA99, 

MPA100; see table S2.2) and thresholds of habitat protection under zero-deforestation commitments 

(compulsory, potential). These maps correspond to coloured areas in fig. S2.9. For compulsory protection, 

locations with aboveground carbon stocks of ≥75 Mg ha-1 and ≥50% canopy closure, and/or peat soil are 

protected; for potential protection (where in practice, protection of low-carbon areas can depend on 

additional conservation values), locations with aboveground carbon stocks of ≥35 Mg ha-1 and ≥30% 

canopy closure, and/or peat soil are protected. Locations of cropland, urban areas and tree plantations are 

excluded; as are all IUCN class I/II protected areas. Note that results for MPA99 under potential protection 

are presented in the main article. 
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Figure S2.11. Area of natural habitat climatically-suitable for rainfed oil palm cultivation, for each of the 

three classes of suitability classes, compared between model thresholds for suitability (MPA95, MPA99, 

MPA100; see table S2.2) and thresholds of habitat protection under zero-deforestation commitments 

(potential, compulsory). For compulsory protection, locations with aboveground carbon stocks of ≥75 Mg 

ha-1 and ≥50% canopy closure, and/or peat soil are protected; for potential protection (where in practice, 

protection of low-carbon areas can depend on additional conservation values), locations with 

aboveground carbon stocks of ≥35 Mg ha-1 and ≥30% canopy closure, and/or peat soil are protected. 

Locations of cropland, urban areas and tree plantations are excluded; as are all IUCN class I/II protected 

areas. Values in (c) under potential protection correspond to those presented in main article figure 3.3. 
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Supplementary Information 2.4: sensitivity analyses of suitability for irrigated oil palm 

cultivation 

Excluding locations suitable for rainfed oil palm cultivation, we estimate that irrigation could 

allow an additional 63-138 Mha of land to be climatically suitable for cultivation (table S2.5). We 

found that these estimates of total additional suitable area (i.e. area requiring irrigation) are 

sensitive to water availability, as using up to 100% of surplus available water consistently 

renders a greater area suitable than using only 50% surplus available water (table S2.5, fig. 

S2.12). These total areal estimates are somewhat sensitive to thresholds of model suitability 

threshold (MPA95, MPA99, MPA100) and habitat protection under zero-deforestation 

commitments (compulsory potential), but less so than the sensitivity of areas suitable for rainfed 

cultivation overall (table S2.5, fig. S2.12; see table S2.4 for estimates of rainfed suitability). 

Because we excluded locations suitable for rainfed cultivation from our estimates of locations 

suitable for irrigation-only, we found that the locations predicted as suitable alter with model 

suitability threshold, although the areal estimates are broadly similar (table S2.5, fig. S2.13, fig. 

S2.14). Moreover, the majority of locations suitable for irrigated-only cultivation are not in areas 

which fall under protection by zero-deforestation commitments (fig. S2.12; fig. S2.16). Thus, as 

for rainfed cultivation, the distribution of areas suitable for oil palm under irrigation-only 

remains similar between biomes for different model permutations (fig. S2.12). As for rainfed 

suitability, the majority of the variation in suitable areas requiring irrigation is within areas of 

low expected productivity, which comprises 91.8% - 98.3% of the total suitable natural habitat 

requiring irrigation for all model permutations (fig. S2.15; fig. S2.16). 

 

 

 

 

 

 

 

 

 

 



161 
 

Table S2.5. Estimates of total climatically-suitable area for irrigated-only oil palm cultivation, across the 

three thresholds for suitability, and two levels of water use for irrigation. We have excluded locations 

suitable for rainfed oil palm cultivation for each model, so that some models with greater total rainfed 

extent (e.g. MPA100) have smaller additional suitable areas under irrigation than other models (see table 

S2.4 for rainfed areas). Results for MPA99 are presented in the main text. We simulated irrigation for in 

locations where annual cumulative water deficit > 100mm, by using either 50% or 100% of surplus 

available water to supplement rainfall. As above (see table S2.4 for results for rainfed cultivation only), 

natural habitat includes primary vegetation, secondary vegetation and pasture, and excludes cropland, 

urban areas and tree plantations. Protected areas refer to IUCN class I and II protected areas. We 

estimated protection under zero-deforestation commitments following HCSA (High Carbon Stocks 

Approach) thresholds: for compulsory protection, locations with aboveground carbon stocks of ≥75 Mg ha-

1 and ≥50% canopy closure, and/or peat soil are protected; for potential protection (where in practice, 

protection of low-carbon areas depends on additional conservation values), locations with aboveground 

carbon stocks of ≥35 Mg ha-1 and ≥30% canopy closure, and/or peat soil are protected. 

Surplus 

available 

water 

used for 

irrigation 

Threshold 

for 

suitability 

Areal estimate (Mha) 

Total 

suitable 

area 

Total 

suitable 

natural 

habitat 

Total 

suitable 

natural 

habitat 

outside 

protected 

areas 

Total suitable 

natural 

habitat not 

protected by 

zero-

deforestation 

(compulsory 

protection) 

Total suitable 

natural 

habitat not 

protected by 

zero-

deforestation 

(potential 

protection) 

50% MPA95 147 128 125 90.7 63.0 

MPA99 123 84.4 83.0 80.0 64.4 

MPA100 110 66.4 65.3 64.8 57.6 

100% MPA95 228 197 193 137 92.5 

MPA99 206 148 145 138 108 

MPA100 179 114 112 111 95.7 
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Figure S2.12. Area of natural habitat climatically-suitable for irrigated-only oil palm cultivation, 

compared between the two levels of water use for irrigation (50% and 100% of surplus available water), 

the two thresholds for protection under zero-deforestation (potential, compulsory), and the three 

thresholds of suitability: (a) MPA95 threshold for suitability; (b) MPA99 threshold for suitability; (c) 

MPA100 threshold for suitability. We simulated irrigation for in locations where annual cumulative water 

deficit >100mm, by using either 50% or 100% of surplus available water (‘av. water’) to supplement 

rainfall. For compulsory protection, locations with aboveground carbon stocks of ≥75 Mg ha-1 and ≥50% 

canopy closure, and/or peat soil are protected; for potential protection (where in practice, protection of 

low-carbon areas can depend on additional conservation values), locations with aboveground carbon 

stocks of ≥35 Mg ha-1 and ≥30% canopy closure, and/or peat soil are protected. Locations of cropland, 

urban areas and tree plantations are excluded; as are all IUCN class I/II protected areas. We have excluded 

locations suitable for rainfed oil palm cultivation for each model, so that some models with greater total 

rainfed extent (e.g. MPA100) have smaller additional suitable areas under irrigation than other models. 

Results for MPA99 under potential protection and using 100% of surplus available water are presented in 

the main article. 
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Figure S2.13. Maps of climatically-suitable habitat for irrigated-only oil palm cultivation, assuming all 

locations potentially protected under zero-deforestation commitments are unavailable. Maps are 

compared between model thresholds for suitability (MPA95, MPA99, MPA100; see table S2.2) and 

percentage of surplus available water (‘av. water’) applied as irrigation (in locations where annual 

cumulative water deficit > 100mm; up to either 50% or 100% surplus available water used for irrigation). 

For potential protection under zero-deforestation commitments, locations with aboveground carbon 

stocks of ≥35 Mg ha-1 and ≥30% canopy closure, and/or peat soil are protected from expansion. Locations 

of cropland, urban areas and tree plantations are excluded; as are all IUCN class I/II protected areas. 

Locations suitable for rainfed cultivation are not shown (see fig. S2.10); note that some locations 

estimated as suitable under irrigation in models with low suitability thresholds are estimated as suitable if 

rainfed in models with higher suitability thresholds. Areas of (c,d) are presented in the main article fig. 3. 
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Figure S2.14. Maps of climatically-suitable habitat for irrigated-only oil palm cultivation, 

assuming all locations under ‘compulsory’ protection from zero-deforestation commitments 

are unavailable. Maps are compared between model thresholds for suitability (MPA95, MPA99, 

MPA100; see table S2.2) and percentage of surplus available water (‘av. water’) applied as 

irrigation (in locations where annual cumulative water deficit > 100mm; up to either 50% or 

100% surplus available water used for irrigation). For compulsory protection under zero-

deforestation commitments, locations with aboveground carbon stocks of ≥75 Mg ha-1 and ≥50% 

canopy closure, and/or peat soil are protected. Locations of cropland, urban areas and tree 

plantations are excluded; as are all IUCN class I/II protected areas.  
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Figure S2.15. Total areas of non-cultivated land climatically-suitable for oil palm expansion under zero-

deforestation commitments, classified according to suitability (and expected yield), by biome. (a) Under 

rainfed cultivation, (b) under irrigation, using 50% available water, (c) under irrigation, using 100% 

available water. The suitability and classes are for MPA99 (see table S2.2): this is a replicate of fig. 3 (main 

article) but also includes irrigation estimated using 50% water availability (only (a) and (c) are shown in 

main article). The dashed line in ‘Low Yield’ panels shows the current area of oil palm plantations globally, 

which is outside the axis range of the other yield classes. Note differences in y axes. For the (b) and (c), 

dark colours represent the expected yield of locations which are also suitable if rainfed (i.e. those shown 

in (a)), but under irrigation; and pale colours represent locations only suitable under irrigation. 
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Figure S2.16. Area of non-cultivated land climatically-suitable for rainfed oil palm cultivation, for each of 

the three classes of suitability classes, compared between three model thresholds for suitability (a) 

MPA95, (b) MPA99, (c) MPA100 (see table S2.2); two thresholds of habitat protection under zero-

deforestation commitments (potential, compulsory); and two thresholds percentage of surplus available 

water applied as irrigation (in locations where annual cumulative water deficit > 100mm; up to either 50% 

or 100% surplus available water used for irrigation). We have excluded locations suitable for rainfed oil 

palm cultivation for each model, so that some models with greater total rainfed extent (e.g. MPA100) have 

smaller additional suitable areas under irrigation than other models. For compulsory protection, locations 

with aboveground carbon stocks of ≥75 Mg ha-1 and ≥50% canopy closure, and/or peat soil are protected; 

for potential protection (where in practice, protection of low-carbon areas can depend on additional 

conservation values), locations with aboveground carbon stocks of ≥35 Mg ha-1 and ≥30% canopy closure, 

and/or peat soil are protected. Locations of cropland, urban areas and tree plantations are excluded; as 

are all IUCN class I/II protected areas. Note differences in y axes. Values in (c) under potential protection 

and up to 100% available water use correspond to those presented in main article figure 3.3. 
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Supplementary Information 2.5: potential impacts of oil palm expansion on vertebrate 

diversity, including under irrigation 

We refined range maps of terrestrial vertebrates according to non-cultivated and transformed 

habitat types in which each species could persist (see main article Methods) according to the 

matching in table S2.6, and estimated potential vertebrate species richness loss from conversion 

of non-cultivated habitat to oil palm plantation (fig. S2.17). Our results that zero-deforestation 

commitments could exacerbate richness loss from oil palm expansion in grassy and dry forest 

biomes, by prioritising locations of greater potential richness loss for conversion, held true 

across all model permutations that we tested (including locations suitable for both irrigated and 

rainfed expansion, compared to rainfed alone; and classifying protection under zero-

deforestation commitments according to potential or compulsory thresholds; fig. S2.18). We 

found that the number of threatened vertebrate species that could undergo range loss from 

zero-deforestation oil palm expansion was considerably greater for compulsory protection under 

zero-deforestation commitments (protection of locations with aboveground carbon stocks of 

≥75 Mg ha-1 and ≥50% canopy closure; 1273 threatened species could undergo range loss in 

total) than for potential protection (protection of locations with aboveground carbon stocks of 

≥35 Mg ha-1 and ≥30% canopy closure; 879 threatened species could undergo range loss in 

total) (fig. S2.19). Including locations suitable for irrigated oil palm expansion increased the 

number of threatened vertebrates that could undergo range loss (1071 species) compared to 

rainfed expansion alone (879 species), although the impact of this was less than that of the 

thresholds for habitat protection under zero-deforestation commitments (fig. S2.19). 

Compulsory protection under zero-deforestation commitments allowed considerably greater 

range loss for these species than potential protection, although this largely impacted the tropical 

moist forest biome; whereas including irrigated oil palm expansion had little impact on the 

percentage of range that could be lost (fig. S2.19). Of moist forest, grassy biome and dry forest, 

the percentage of remaining non-cultivated habitat of individual ecoregions suitable for zero-

deforestation oil palm expansion is highest for dry forest in all permutations (compulsory vs 

potential habitat protection under zero-deforestation commitments, and rainfed-only expansion 

or also including locations requiring irrigation) (fig. S2.20). Reducing protection under zero-

deforestation commitments from potential to compulsory (i.e. less area protected) increases the 

percentage of tropical moist and dry forest ecoregions suitable for oil palm expansion more than 

for the other biomes, highlighting the sensitivity of potential biodiversity impacts of expansion in 

these biomes to the precise habitat protection applied in the field (fig. S2.20). 
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Table S2.6. Matching IUCN Red List habitat classifications (BirdLife International and Handbook of the 

Birds of the World, 2016; IUCN, 2018) with habitat classes of Terrestrial Ecoregions of the World 

(Dinerstein et al., 2017) and global spatial data on locations of cropland, urban areas (Buchhorn et al., 

2019; Copernicus et al., 2019) and tree plantations (Harris, Goldman and Gibbes, 2019). We considered a 

species as present in a given grid-cell (5 arc-minute resolution) if its range contained the grid cell centre, 

and if the habitat type (habitat according to Terrestrial Ecoregions of the World, masked by cropland, 

urban areas and tree plantations) was listed as a suitable habitat, according to this matching table. 

IUCN Terrestrial ecoregions 2017 

Boreal forest Boreal forests/taiga 

Subarctic forest; Subantarctic forest Boreal forests/taiga; Tundra 

Temperate forest Temperate broadleaf and mixed forests; temperate conifer forests 

Subtropical/tropical dry forest 

Tropical and subtropical dry broadleaf forests; tropical and 

subtropical coniferous forests 

Subtropical/tropical moist lowland 

forest; subtropical/tropical swamp 

forest; subtropical/tropical moist 

montane forest 

Tropical and subtropical moist broadleaf forests; tropical and 

subtropical coniferous forests 

 Subtropical/tropical mangrove 

forest vegetation Mangroves 

Dry savanna 

Tropical and subtropical grasslands, savannas and shrublands; 

temperate grasslands, savannas and shrublands; montane 

grasslands and shrublands 

Moist savanna  

Tropical and subtropical grasslands, savannas and shrublands; 

temperate grasslands, savannas and shrublands; flooded 

grasslands and shrublands; montane grasslands and shrublands 

Subarctic shrubland; subantarctic 

shrubland; boreal shrubland; tundra; 

subarctic grassland; subantarctic 

grassland Tundra 

Temperate shrubland; temperate 

grassland 

Temperate grasslands, savannas and shrublands; montane 

grasslands and shrublands 

Subtropical/tropical dry shrubland; 

subtropical/tropical moist shrubland 

Tropical and subtropical grasslands, savannas and shrublands; 

montane grasslands and shrublands; flooded grasslands and 

savannas 

Subtropical/tropical high altitude 

shrubland Montane grasslands and shrublands 

Mediterranean-type shrubby 

vegetation Mediterranean forests, woodland and scrub 

Subtropical/tropical dry lowland 

grassland Tropical and subtropical grasslands, savannas and shrublands 

Subtropical/tropical wet/flooded 

lowland grassland 

Tropical and subtropical grasslands, savannas and shrublands; 

flooded grasslands and savannas 

Subtropical/tropical high altitude 

grassland 

Tropical and subtropical grasslands, savannas and shrublands; 

Montane grasslands and shrublands 

Wetlands (inland) Flooded grasslands and savannas 
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Inland rocky areas  
Caves & subterranean habitats  
Desert (hot desert, temperate 

desert, cold desert) Deserts and xeric shrublands; tundra 

 Copernicus landcover map 

Arable land Cropland 

Urban areas Urban 

 Spatial Database of Planted Trees 

Plantations Tree plantations (including oil palm) 

 

 

Figure S2.17. Global maps of estimated vertebrate species richness, from refined range maps. (a) Total 

richness in current landcover (assuming land outside cropland, urban areas and tree plantations is non-

cultivated land); (b) potential richness of tree plantations (including oil palm plantations); (c) potential 

richness loss from conversion of non-cultivated land to oil palm plantation (i.e. the difference between (b) 

and (a)). 
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Figure S2.18. Potential impacts of zero-deforestation oil palm expansion on vertebrate richness, 

compared for rainfed and both rainfed and irrigated expansion, and for different habitat protection 

thresholds under zero-deforestation commitments (compulsory, potential). (a) Rainfed oil palm 

expansion, potential protection; (b) both rainfed and irrigated oil palm expansion, potential protection; (c) 

rainfed oil palm expansion, compulsory protection only; (d) both rainfed and irrigated oil palm expansion, 

compulsory protection only. For compulsory protection, locations with aboveground carbon stocks of ≥75 

Mg ha-1 and ≥50% canopy closure, and/or peat soil are protected; for potential protection (where in 

practice, protection of low-carbon areas can depend on additional conservation values), locations with 

aboveground carbon stocks of ≥35 Mg ha-1 and ≥30% canopy closure, and/or peat soil are protected. 

Locations of cropland, urban areas and tree plantations are excluded; as are all IUCN class I/II protected 

areas. All estimates of irrigated expansion assume up to 100% of surplus available water could be applied 

for irrigation. Boxplots show potential richness loss for all grid-cells; white circles show the expected 

richness loss after accounting for spatial autocorrelation (non-spatial parameters of simultaneous 

autoregressive error models), and brackets denote significant differences (p <0.05) between these (* p 

<0.05, ** p <0.01, *** p <0.001). We conducted simultaneous autoregressive models on a systematic 

subset of all 5 arc-minute grid cells of non-cultivated land potentially suitable for oil palm expansion (every 
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16th grid-cell is included in the models). We excluded groups with insufficient sample size (n <30) from the 

models, so some locations in dry forest, grassy biome, and all ‘other’ biomes are not displayed. 

 

Figure S2.19. Comparison of potential impacts of zero-deforestation oil palm expansion on threatened 

vertebrates for rainfed and irrigated expansion, and for different habitat protection thresholds. (a) 

Number of threatened vertebrate species (of a global total of N = 4,895, excluding marine mammals) with 

overlapping ranges with locations climatically-suitable for zero-deforestation oil palm expansion. (b) 

Percentage of threatened species’ ranges which overlap with locations climatically-suitable for zero-

deforestation oil palm expansion. (b) excludes zero values (i.e. where a species does not occur in 

climatically-suitable, unprotected locations in a given biome). For compulsory protection, locations with 

aboveground carbon stocks of ≥75 Mg ha-1 and ≥50% canopy closure, and/or peat soil are protected; for 

potential protection (where in practice, protection of low-carbon areas can depend on additional 

conservation values), locations with aboveground carbon stocks of ≥35 Mg ha-1 and ≥30% canopy closure, 

and/or peat soil are protected. Locations of cropland, urban areas and tree plantations are excluded; as 

are all IUCN class I/II protected areas. Results for rainfed cultivation and potential habitat protection under 

zero-deforestation commitments are shown in figure 3.4 of the main article. Here we assume that up to 

100% of surplus available water is used for irrigation; panels for ‘irrigation’ also include suitability for 

rainfed oil palm. 
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Figure S2.20 Percentages of remaining non-cultivated land per-ecoregion, suitable for oil palm 

expansion under zero-deforestation commitments, by biome, compared for rainfed and irrigated 

expansion, and for different thresholds of protection under zero-deforestation commitments (compulsory, 

potential). For compulsory protection, locations with aboveground carbon stocks of ≥75 Mg ha-1 and ≥50% 

canopy closure, and/or peat soil are protected; for potential protection (where in practice, protection of 

low-carbon areas can depend on additional conservation values), locations with aboveground carbon 

stocks of ≥35 Mg ha-1 and ≥30% canopy closure, and/or peat soil are protected. Locations of cropland, 

urban areas and tree plantations are excluded; as are all IUCN class I/II protected areas. Results for rainfed 

cultivation and potential habitat protection under zero-deforestation commitments are shown in figure 

3.4 of the main article. Here we assume that up to 100% of surplus available water is used for irrigation; 

panels for ‘irrigation’ also include suitability for rainfed oil palm. 
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Table S2.7. Results of spatial Simultaneous Autoregressive (SAR) error models, examining the potential 

species richness loss from oil palm expansion, for rainfed expansion and potential protection under 

zero-deforestation commitments (as presented in the main article). We conducted a separate model for 

each continental region (Latin America, Africa, Asia/Oceania), for a systematic subset of all 5 arc-minute 

grid cells of non-cultivated land potentially suitable for oil palm expansion (every 16th grid-cell is included 

in the models). We obtained estimates of parameter significance (likelihood ratio and p-value) by 

comparing models without the given parameter to the full model, so significant parameters have a higher 

AIC value than the full model. All full models were fitted with biome, protection under zero-deforestation 

commitments (ZDC-protection) and the interaction between these. We excluded groups with insufficient 

sample size (n <30) from the models, so some combinations of biome and continent are not displayed 

(including all ‘other’ biome; see fig. S2.18). 

Latin America full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.957 

Spatial error term: lambda = 0.984, likelihood ratio = 11637, p-value <0.001 

Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 48239 -24111  8  

Biome * ZDC-protection interaction 48468 -24228 233.7 6 <0.001 

Biome 53720 -26856 5489.3 4 <0.001 

ZDC-protection 48467 -24229 234.4 5 <0.001 

       ZDC-protection (moist forest) 48309 -24148 72.4 7 <0.001 

       ZDC-protection (grassy biome) 48241 -24113 4.00 7 0.045 

       ZDC-protection (dry forest) 48378 -24182 141.3 7 <0.001 

 

Africa full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.828 

Spatial error term: lambda = 0.924, likelihood ratio = 3316, p-value <0.001 

Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 18356 -9172  6  

Biome * ZDC-protection interaction 18608 -9299 253.5 5 <0.001 

Biome 18619 -9306 266.7 4 <0.001 

ZDC-protection 18608 -9300 255.2 4 <0.001 

       ZDC-protection (moist forest) 18453 -9222 98.7 5 <0.001 

       ZDC-protection (grassy biome) 18483 -9236 128 5 <0.001 
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Asia/Australasia full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.726 

Spatial error term: lambda = 0.876, likelihood ratio = 1914, p-value <0.001 

Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 15308 -7648  6  

Biome * ZDC-protection interaction 15328 -7659 22.2 5 <0.001 

Biome 15353 -7673 49.3 4 <0.001 

ZDC-protection 15350 -7671 45.7 4 <0.001 

       ZDC-protection (moist forest) 15345 -7668 39.1 5 <0.001 

       ZDC-protection (grassy biome) 15313 -7651 6.8 5 0.009 

 

Table S2.8 Results of spatial Simultaneous Autoregressive (SAR) error models, examining the potential 

species richness loss from oil palm expansion, for rainfed expansion and compulsory-only protection 

under zero-deforestation commitments. See table S2.7 legend for details. 

Latin America full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.955 

Spatial error term: lambda = 0.985, likelihood ratio = 10677, p-value <0.001 

Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 43786 -21887  6  

Biome * ZDC-protection interaction 44295 -22142 511 5 <0.001 

Biome 48510 -24251 4728 4 <0.001 

ZDC-protection 44302 -22147 520 4 <0.001 

       ZDC-protection (moist forest) 43822 -21906 34.9 5 <0.001 

       ZDC-protection (dry forest) 44223 -22107 439 5 <0.001 

 

Africa full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.830 

Spatial error term: lambda = 0.924, likelihood ratio = 3364, p-value <0.001 

Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 18324 -9156  6  
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Biome * ZDC-protection interaction 18609 -9300 287.1 5 <0.001 

Biome 18620 -9306 266.7 4 <0.001 

ZDC-protection 18608 -9300 287.5 4 <0.001 

       ZDC-protection (moist forest) 18430 -9210 107.9 5 <0.001 

       ZDC-protection (grassy biome) 18467 -9229 145 5 <0.001 

 

Asia/Australasia full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.725 

Spatial error term: lambda = 0.879, likelihood ratio = 1792, p-value <0.001 

Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 14539 -7266  4  

ZDC-protection (moist forest only) 14593 -7294 56.1 3 <0.001 

 

Table S2.9. Results of spatial Simultaneous Autoregressive (SAR) error models, examining the potential 

species richness loss from oil palm expansion, for both rainfed and irrigated expansion and potential 

protection under zero-deforestation commitments. See table S2.7 legend for details. 

Latin America full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.951 

Spatial error term: lambda = 0.968, likelihood ratio = 11177, p-value <0.001 

Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 54163 -27074  8  

Biome * ZDC-protection interaction 54339 -27164 180 6 <0.001 

Biome 59216 -29604 5061.1 4 <0.001 

ZDC-protection 54338 -27164 180.6 5 <0.001 

       ZDC-protection (moist forest) 54238 -27112 77.0 7 <0.001 

       ZDC-protection (grassy biome) 54183 -27085 22.1 7 0.045 

       ZDC-protection (dry forest) 54232 -27109 70.6 7 <0.001 

 

Africa full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.741 

Spatial error term: lambda = 0.860, likelihood ratio = 3198, p-value <0.001 
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Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 24631 -12309  6  

Biome * ZDC-protection interaction 24851 -12421 223 5 <0.001 

Biome 24924 -12458 297.4 4 <0.001 

ZDC-protection 24851 -12421 223.9 4 <0.001 

       ZDC-protection (moist forest) 24747 -12368 118.3 5 <0.001 

       ZDC-protection (grassy biome) 24717 -12354 88.7 5 <0.001 

 

Asia/Australasia full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.660 

Spatial error term: lambda = 0.823, likelihood ratio = 1646, p-value <0.001 

Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 16269 -8129  6  

Biome * ZDC-protection interaction 16300 -8145 32.3 5 <0.001 

Biome 16320 -8156 54.9 4 <0.001 

ZDC-protection 16308 -8150 42.4 4 <0.001 

       ZDC-protection (moist forest) 16294 -8142 27.1 5 <0.001 

       ZDC-protection (grassy biome) 16283 -8136 15.6 5 0.009 

 

Table S2.10 Results of spatial Simultaneous Autoregressive (SAR) error models, examining the potential 

species richness loss from oil palm expansion, for both rainfed and irrigated expansion and compulsory-

only protection under zero-deforestation commitments. See table S2.7 legend for details. 

Latin America full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.956 

Spatial error term: lambda = 0.979, likelihood ratio = 10497, p-value <0.001 

Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 46559 -23273  6  

Biome * ZDC-protection interaction 46977 -23484 421 5 <0.001 

Biome 51300 -25646 4745 4 <0.001 

ZDC-protection 46983 -23488 429 4 <0.001 
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       ZDC-protection (moist forest) 46594 -23292 37.4 5 <0.001 

       ZDC-protection (dry forest) 46911 -23451 354.4 5 <0.001 

 

Africa full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.865 

Spatial error term: lambda = 0.865, likelihood ratio = 3362, p-value <0.001 

Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 24549 -12269  6  

Biome * ZDC-protection interaction 24853 -12421 305 5 <0.001 

Biome 24928 -12460 382 4 <0.001 

ZDC-protection 24851 -12421 305 4 <0.001 

       ZDC-protection (moist forest) 24667 -12328 119.3 5 <0.001 

       ZDC-protection (grassy biome) 24699 -12345 152 5 <0.001 

 

Asia/Australasia full model 

Full (final) model: Nagelkerke pseudo-R2 = 0.653 

Spatial error term: lambda = 0.827, likelihood ratio = 1521, p-value <0.001 

Effect removed AIC Log 

likelihood 

Likelihood 

ratio 

Degrees of 

freedom 

p-value 

None (full model) 15322 -7657  4  

ZDC-protection (moist forest only) 15350 -7672 30.8 3 <0.001 
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Appendix 3 

Climate has limited but varied impacts on 

oil palm yield in industrial plantations: 

Supplementary information 
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Supplementary Information 3.1. Calculating anomalies of yield and climate variables 

To improve the sensitivity of our analyses to relationships of yield with temperature and rainfall, 

and to assess the reliability of the relationships we detected for the raw variables, we calculated 

standardised monthly anomalies for each of the variables (yield, rainfall, Tmax and Tmin) in our 

analyses. Our analyses of the relationships between raw climate and yield variables incorporated 

substantial seasonal fluctuations in the climatic predictors of yield (main article fig. 4.2, fig. S3.2), 

and could therefore result in spurious correlations between the yield and climate variables, 

which both have regular seasonal cycles (Tinker and Corley, 2015). Additionally, the high 

autocorrelation among timelags of the raw climatic predictors (fig. S3.3) means that potentially 

important effects at different timelags could have been masked by the effect at the strongest 

lag; and we could not include multiple lags of temperature in the same model because of their 

autocorrelation. We therefore removed regular seasonal patterns from each variable by 

computing anomalies, enabling us to analyse relationships between ‘unexpected’ variation in 

climate and yield for a given month of the year at each oil palm field (see fig. S3.4 for example 

timeseries of raw and anomalised oil palm yield). 

We computed anomalies for each variable (yield, rainfall, Tmax and Tmin) as the difference 

between each value and the mean of all values for that month for each oil palm field, scaled by 

the standard deviation of all values for each month and field (i.e. anomalised per time series of 

oil palm yield data) (equation S3.1).  

𝑎𝑛𝑜𝑚𝑖,𝑗,𝑘 = 
𝑥𝑖,𝑗,𝑘 − 𝑥 𝑖,𝑗

𝜎𝑖,𝑗
 

Equation S3.1. Calculation of anomalies for month i in field j and year k. 

The computed anomaly timeseries were therefore centred at zero and did not incorporate 

differences in yield mean or variation between spatial locations (oil palm fields or plantations) 

(see fig. S3.4, S3.9). To ensure that the anomalies were comparable, we only used time series 

(i.e. data per oil palm field) of a length of one decade, from July 2007 to June 2017, in this 

analysis, therefore using data from a total of 56 oil palm fields across 12 plantations, and 

excluding any months for which we had data outside this range. 

Supplementary Information 3.2. Determining timelags of climatic predictors of oil palm yield 

for inclusion in models  

For the raw climatic predictors, we found that the strongest absolute correlations of raw yield 

with Tmax and rainfall occurred at a lag of 14 months (Spearman’s Rho of 0.30 with Tmax, and -

0.15 with rainfall), and the strongest absolute correlation with Tmin occurred at a lag of 28 
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months (Spearman’s Rho of 0.247) (main text fig. 4.3). Because Tmax and Tmin had high 

autocorrelation through time (fig. S3.3), and were strongly intercorrelated with each other (table 

S3.1), including between Tmax at a 14 month lag and Tmin at a 28 month lag (fig. S3.5), we 

selected the single lag period with the highest absolute correlation with yield from both of these 

variables: Tmax at a 14 month lag. Our choice of Tmax over Tmin as a predictor of yield was 

supported by the consistently higher correlation coefficients of Tmax with yield than those for 

Tmin (main text fig. 3). In addition, we found that yield had the strongest positive correlation 

with rainfall at a lag of 10 months (Spearman’s Rho of 0.082), which appears to be unrelated to 

the negative correlation at a lag of 14 months because the autocorrelation of rainfall between 

time periods 4 months apart is very low (Spearman’s Rho of 0.025; figs. S3.3, S3.5). We therefore 

included Tmax and rainfall at a 14 month lag, corresponding to inflorescence development and 

determination of the number of spikelets per infloresence, and rainfall at a 10 month lag, 

corresponding to the inflorescence abortion period, as candidate predictors of raw oil palm yield 

(main text table 4.1, fig. 4.3).  

For the anomalised climatic predictors, we found that the correlation coefficients for the climatic 

predictors of raw yield (climatic variables at specific timelags) were in the same direction as for 

the raw variables, but considerably weaker (Spearman’s Rho of 0.037, -0.075 and 0.062 for Tmax 

at a 14 month lag, rainfall at a 14 month lag and rainfall at a 10 month lag respectively; main text 

fig. 4.3). We therefore included the anomalised versions of all three climatic predictors of raw 

yield as candidate predictors of anomalised yield (Tmax at a 14 month lag, rainfall at a 14 month 

lag, and rainfall at a 10 month lag), in order to test the robustness of the relationships we 

derived for raw climate and yield when regular seasonal cycles were removed from the 

variables. In addition, we found relatively high correlation coefficients of climatic variables at 

other timelags important for fruit development, suggesting potential additional relationships 

between climate and yield which we were unable to detect in the analysis of raw climate and 

yield: Tmax at the month of harvest (Spearman’s Rho -0.138), suggesting potential impacts of 

climate on the harvest itself; Tmin at a 6 month lag (-0.117), corresponding to fruit ripening and 

pollination, and both Tmin and rainfall at a 29 month lag (0.121 and 0.080 respectively), 

corresponding to sex determination (main text table 4.1, fig. 4.2). However, Tmin at a 6 month 

lag was positively correlated with both Tmax at the month of harvest and Tmax at a 14 month 

lag (Spearman’s Rho = 0.327 and 0.304), which could have been driven by high autocorrelation 

between Tmin lags of up to ~10 months apart, and high correlation between Tmin and Tmax in 

the same month (figs. S3.3, S3.6, table S3.1). Therefore, we did not include Tmin at a 6 month lag 

in the models, but included the other six candidate anomalised predictors (Tmax at month of 

harvest, rainfall at a 10 month lag, Tmax and rainfall at a 14 month lag, and Tmin and rainfall at a 

29 month lag). 
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Supplementary Information 3.3. Specification and selection of optimal model for raw climatic 

variables and yield 

We fitted the initial ‘full model’ of raw oil palm yield with the following terms: random intercept 

for plantation; linear and quadratic effects for the three climatic predictors (Tmax at a 14 month 

lag, rainfall at a 14 month lag, and rainfall at a 10 month lag), and an interaction between Tmax 

and rainfall at a 14 month lag; a thin plate regression spline for oil palm age (Wood, 2003), to 

control for the expected non-linear relationship between age and yield (Woittiez et al., 2017); 

cyclic cubic regression splines for months of the year in each plantation, to account for regular 

seasonal fluctuations in oil palm yield, with differences in seasonality between plantations. We 

restricted the basis dimension of each cyclic seasonality spline to a value of 5 (representing 

wiggliness, corresponding to a maximum of two peaks or troughs per year) to allow for the 

potential influence of two monsoon seasons (i.e. two peaks within a year) but avoid overfitting 

(Tang, 2019). 

We followed the model selection approach of (i) finding an initial ‘full’ model which met 

statistical assumptions and contained all plausible fixed effects, followed by (ii) selection of the 

optimal error structure (random and autocorrelation terms) fitted with Restricted Maximum 

Likelihood (REML), and finally (iii) the selection of the optimal fixed effect structure (climatic 

predictors and smoothers fitted to month and oil palm age) fitted with Maximum Likelihood 

(ML) (Zuur, Ieno and Smith, 2007). We describe our decisions during model fitting and selection 

following this approach. 

To obtain an initial model with Gaussian, homoscedastic residuals, we found that yield required 

a square-root transformation (fig. S3.8). During initial model fitting, we identified two outliers of 

zero-values for yield (interspersed among otherwise positive values), which we removed from 

subsequent analyses, leaving a dataset of N = 9,731 data points. We proceeded to fit the 

GAMMs of square-root yield with a Gaussian error function and identity link. 

To find the optimal error structure accounting for temporal autocorrelation within the time-

series of yield per oil palm field, we compared the AIC values of models fitted with an 

autocorrelation-moving average structure, for varying orders of autoregressive parameters p 

and moving average parameters q (i.e. varying in the number of adjacent months that each 

process operates over). We fitted 49 models with all combinations of p and q of orders 0-6, and 

found that the model with the lowest AIC had p of order 4 and q of order 4 (table S3.2). We 

proceeded to optimize the error structure of the model with p = 4, q = 4, by testing for the 

optimal random intercept term to account for spatial clustering of the study sites. We found that 

including a random intercept for plantation (AIC = -4701, fitted with REML) gave a substantially 

better model fit than with no random intercept term (AIC = -4634), but that including a random 



182 
 

intercept for oil palm field within plantation (AIC = -4695) did not improve the model fit 

compared to plantation alone, so we proceeded with a random intercept of plantation only. 

To find the optimal climatic predictor terms, we compared the AIC of models fitted with all 

combinations of the climatic predictors, on the conditions that (i) we only included quadratic 

terms when the first-order term was also included and (ii) we fitted interactions for all orders of 

the interacting terms, and did not separate them to allow interactions for some orders of a term 

only. Including a model with no climatic predictors, we therefore ran a total of 39 models to find 

the optimal climatic predictors. All models also included smoothers for seasonality per 

plantation, and oil palm age, a random intercept for plantation, and an autocorrelation-moving 

average structure of order p = 4, q = 4. Because the approximated p-values of the oil palm age 

smoother and the majority (9 of 12) of seasonality smoothers were very low (p < 0.001), and 

these terms were controlling for sources of variation which were likely to be highly important for 

oil palm yield, we did not test the importance of these smoother terms by dropping them from 

the model in combination with the climatic predictors; instead, we verified their importance 

after finding the optimal set of climatic predictors. We found that the optimal climatic predictor 

terms were a linear term for rainfall with a 14 month lag, a quadratic term for Tmax at a 14 

month lag, and a quadratic term for rainfall at a 10 month lag, with an interaction term between 

rainfall and Tmax at 14 month lag periods (table S3.3). With these climatic predictors, the 

smoothers for seasonality per plantation and oil palm age were still highly significant (p < 0.001 

for oil palm age and 9 of 12 seasonality smoothers); and model fit was considerably better when 

including these smoothers, and fitting the seasonality smoothers per plantation rather than 

using a single universal smoother (table S3.4). We therefore proceeded with the final model of 

square-root oil palm yield predicted by rainfall with a 14 month lag, Tmax at a 14 month lag, 

rainfall at a 10 month lag, smoothers for seasonality per plantation and oil palm age, a random 

intercept for plantation and an autocorrelation-moving average error structure of order p = 4, q 

= 4 (table S3.5). 

Supplementary Information 3.4. Selection of optimal model for climate and yield anomalies 

We fitted the initial ‘full model’ of oil palm yield anomalies with the following terms: linear and 

effects for the six climatic anomaly predictors (Tmax and rainfall at a 14 month lag, rainfall at a 

10 month lag, Tmax at a 0 month lag, and Tmin and rainfall at a 29 month lag), and interaction 

terms between the two pairs of temperature and rainfall variables at the same timelag (Tmax 

and rainfall at a 14 month lag, and Tmin and rainfall at a 29 month lag); and a thin plate 

regression spline for oil palm age (Wood, 2003), to control for the expected non-linear 

relationship between age and yield (Woittiez et al., 2017). We did not include quadratic terms 
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for the climatic anomaly predictors because each anomaly value could correspond to a range of 

actual climatic values (fig. S3.9), so the optimal value (i.e. expected peak of a quadratic curve) for 

each predictor would have different anomaly values depending on the oil palm field and month. 

As for the model of raw climate and yield, we fitted an autoregression-moving average error 

structure to account for temporal autocorrelation between data points from the same yield time 

series (i.e. in the same oil palm field). We proceeded with selection of the optimal error 

structure and fixed effects for GAMs of anomalised yield using a Gaussian error function and 

identity link, which met model assumptions (fig. S3.10), following the procedure outlined for the 

models of raw yield (i.e. finding optimal error structure, then finding optimal fixed effects 

structure; see Supplementary Information 3.3). 

To find the optimal error structure accounting for temporal autocorrelation within the time-

series of anomalised yield per oil palm field, we compared AIC values of 49 models with all 

combinations of p and q (autoregressive and moving-average parameters respectively) of orders 

0-6, as for the models of raw oil palm yield (see above). We found that the model with the 

lowest AIC had p of order 6 and q of order 3 (table S3.6).  

As for the models of raw oil palm yield, we selected the optimal climatic predictor terms by 

comparing the AIC of models with different predictor combinations, on the condition that 

interaction terms were only included when the main effects of the component predictors were 

also present. We found that the optimal climatic predictor terms were Tmax at a 0 month lag 

(month of harvest), rainfall at a 10 month lag, Tmax and rainfall at a 14 month lag, and Tmin and 

rainfall at a 29 month lag; including an interaction term for rainfall and Tmax at a 14 month lag 

(but not for Tmin and rainfall at a 29 month lag; table S3.7). As during selection of climatic 

predictors of raw oil palm yield, we maintained the smoother for oil palm age as a fixed effect 

throughout anomalised climatic predictor selection, as its approximated p-value was very low in 

the model with full climatic predictor terms (p <0.001). For the optimal climatic predictor terms, 

we then tested the impact of dropping the smoother for age, and found that model fit was 

substantially better when the age term was included (AIC = 16936 without age, and AIC = 16779 

with age), so we retained it in the model. We therefore proceeded with the final model of 

anomalised oil palm yield predicted by anomalised Tmax at a 0 month lag, rainfall at a 10 month 

lag, rainfall at a 14 month lag, Tmax at a 14 month lag, rainfall at a 29 month lag and Tmin at a 

29 month lag, with a smoother for oil palm age, and an autocorrelation-moving average error 

structure of order p = 6, q = 3 (table S3.8). 
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Supplementary Information 3.5. Supplementary figures and tables

 

Figure S3.1. Availability of yield data through time for each of the 83 oil palm fields across the 12 

plantations. x axis labels refer to the plantation codes (see main article table 4.2) and colours for each 

plantation alternate between grey and black. The analysis of yield anomalies included data for July 2007 to 

June 2017 only, so we excluded oil palm fields which did not span this range, giving N = 56. 
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Figure S3.2. Boxplots of monthly values climatic predictors, for the 12 oil palm plantations by month: (a) 

Tmax; (b) Tmin; (c) rainfall. The plantations are ranked by mean annual yield; note that Plantation 8 is in 

Sabah whereas the others are all in Peninsular Malaysia (see main article table 4.2). 
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Figure S3.3. Spearman’s Rho of autocorrelation of each climatic variable, between the climatic variable 

and a lagged version of itself, for lags of 0-36 months prior to harvest. (a) raw climatic variables; (b) 

anomalised climatic variables. 

 

Figure S3.4. Example timeseries of monthly oil palm yield data for a single oil palm field, July 2007 to 

June 2017. Solid line: raw oil palm yield; dashed line: anomalised oil palm yield. 

Table S3.1. Spearman’s Rho values for intercorrelation of climatic predictors (without timelags) of oil 

palm yield. Correlations given in the upper right of the table in normal font are for raw climate variables; 

correlations given in the lower left of the table in italic font are for anomalised climatic variables. Highly 

intercorrelated predictors (Spearman’s Rho >|0.6|) are given in bold text. Rainfall data were obtained 

from the oil palm company alongside yield data; Tmax and Tmin were obtained from CRU TS v. 4.04 

(Harris et al., 2020). 

 
Rainfall Tmax Tmin 

Rainfall - -0.138 -0.050 

Tmax -0.133 - 0.618 

Tmin -0.0212 0.680 - 
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Figure S3.5. Pairwise plot of the four climatic predictors of raw oil palm yield with high correlations with 

yield (maximum temperature with a lag of 14 months, minimum temperature with a lag of 28 months, 

rainfall with a lag of 14 months, and rainfall with a lag of 10 months), showing (i) Spearman’s Rho 

correlation coefficients for each pair of predictors; (ii) histograms of each predictor; and (iii) scatterplots of 

each pair of predictors. We did not include minimum temperature with a lag of 28 months in the GAMM 

of raw oil palm yield because of its high correlation with maximum temperature at a lag of 14 months. 
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Figure S3.6. Pairwise plot of the seven candidate climatic anomaly predictors of oil palm yield anomalies 

(maximum temperature with a lag of 0 months, minimum temperature with a lag of 6 months, rainfall 

with a lag of 10 months, maximum temperature with a lag of 14 months, rainfall with a lag of 14 

months, minimum temperature with a lag of 2 months, and rainfall with a lag of 29 months), showing (i) 

Spearman’s Rho correlation coefficients for each pair of predictors; (ii) histograms of each predictor; and 

(iii) scatterplots of each pair of predictors. We did not include minimum temperature with a lag of 6 

months in the GAM of anomalised oil palm yield because of its correlations with maximum temperature at 

lags of 0 and 14 months, which correspond to the autocorrelation between timesteps of the temperature 

variables ~6-8 months apart (fig. S3.3). 
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Figure S3.7. Scatterplots of raw oil palm yield and each of its candidate climatic predictors, with 

smoothing splines (blue lines, cubic spline with shrinkage) and 95% confidence intervals (shading) to 

indicate the potential shapes of relationships between these. 

 

 

Figure S3.8. Diagnostic plots for checking that error distribution meets model assumptions (of 

homogeneity of variance, and approximate Normality), for model of raw climate and square-root yield. 

(a) Histogram of final model residuals (Normalized to account for the fitted error structure); (b) scatterplot 

of quantiles of the Normalized residuals compared to a theoretical Normal distribution; (c) scatterplot of 

final model residuals (also Normalized) and fitted values. 
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Table S3.2. AIC values of full models of raw oil palm yield, fitted with autoregressive-moving average 

correlation structures of varying orders, using REML. p represents the order of autoregressive parameters 

and q represents the order of moving average parameters. NC: No Convergence following 600 iterations of 

the mixed-effects model optimization algorithm. The best-fitting error structure (i.e. with the lowest AIC) 

has orders p = 4, q = 4 and is given in bold. All models included full candidate climatic predictors, 

smoothing splines for oil palm age and seasonality, and a random intercept for plantation. 

  
q 

  
0 1 2 3 4 5 6 

p 0 -1461 -2784 -3654 -4044 -4199 -4268 -4303 

1 -3603 -4142 -4279 -4265 -4249 NC NC 

2 -4241 -4250 -4317 -4286 NC NC NC 

3 -4254 -4260 -4318 -4314 NC -4316 -4305 

4 -4271 -4282 -4425 -4699 -4701 NC NC 

5 -4286 -4287 -4503 NC -4696 NC NC 

6 -4292 -4290 -4657 -4500 -4438 NC NC 
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Table S3.3. Comparison of model AIC for all combinations of candidate climatic predictors, for the model 

of raw oil palm yield, by ascending AIC score fitted by ML. We fitted models with an autoregressive-

moving average correlation structure of p = 4, q = 4, plantation as a random intercept, and smoothing 

terms for oil palm age and for seasonality per plantation. Rain14: rainfall with 14 month timelag; Tmax14: 

Tmax with 14 month timelag; Rain10: rainfall with a 10 month timelag. * represents an interaction and + is 

additive effects. Of the 39 different combinations of climatic predictors, five models did not converge 

following 1500 iterations of the mixed-effects model optimization algorithm, these are listed at the end 

(‘NC’ no convergence). The best model (first row) and all models nested within this are given in bold text. 

Climatic predictors 

Degrees of 

freedom AIC 

Rain14 * (Tmax14 + Tmax14
2) + (Rain10 + Rain10

2) 32 -4679.5 

(Rain14 + Rain14
2) * Tmax14 + (Rain10 + Rain10

2) 32 -4670.9 

(Rain14 + Rain14
2) + Tmax14 + Rain10 29 -4670.9 

(Rain14 + Rain14
2) * (Tmax14 + Tmax14

2) + Rain10 34 -4669.4 

Rain14 * (Tmax14 + Tmax14
2) 30 -4666.9 

(Rain14 + Rain14
2) * Tmax14 30 -4666.4 

(Rain14 + Rain14
2) + (Tmax14 + Tmax14

2) + Rain10 30 -4666.1 

(Rain14 + Rain14
2) + (Tmax14 + Tmax14

2) 29 -4666.1 

Rain14 * Tmax14 + Rain10 29 -4663.2 

(Rain14 + Rain14
2) + Tmax14 28 -4656.3 

Rain14 + Tmax14 27 -4654.5 

Tmax14 + (Rain10 + Rain10
2) 28 -4642.0 

(Tmax14 + Tmax14
2) + Rain10  28 -4638.8 

(Tmax14 + Tmax14
2) 27 -4636.6 

Tmax14 26 -4636.5 

(Rain14 + Rain14
2) 27 -4592.6 

(Rain14 + Rain14
2) + Rain10 28 -4587.0 

Rain14 26 -4578.1 

Rain14 + (Rain10 + Rain10
2) 28 -4575.9 

Rain10 26 -4544.0 

(Rain10 + Rain10
2) 27 -4530.4 

(Rain14 + Rain14
2) * (Tmax14 + Tmax14

2) + (Rain10 + Rain10
2) 35 -4436.5 

(Rain14 + Rain14
2) + (Tmax14 + Tmax14

2) + (Rain10 + Rain10
2) 31 -4434.4 

(Rain14 + Rain14
2) * Tmax14 + Rain10 31 -4427.7 

Rain14 * (Tmax14 + Tmax14
2) + Rain10 31 -4426.1 

Rain14 + (Tmax14 + Tmax14
2) + (Rain10 + Rain10

2) 30 -4423.2 

Rain14 + (Tmax14 + Tmax14
2) + Rain10 29 -4419.0 

(Tmax14 + Tmax14
2) + (Rain10 + Rain10

2) 29 -4404.7 

Tmax14 + Rain10  27 -4400.5 

(Rain14 + Rain14
2) + (Rain10 + Rain10

2) 29 -4384.8 

Rain14 + Rain10 27 -4367.3 

Rain14 + Tmax14 + (Rain10 + Rain10
2) 28 -4283.7 

Rain14 + Tmax14 + Rain10 28 -4272.3 

- 25 -4169.5 

Rain14 * Tmax14 + (Rain10 + Rain10
2) NC NC 
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(Rain14 + Rain14
2) * (Tmax14 + Tmax14

2) NC NC 

Rain14 + (Tmax14 + Tmax14
2) NC NC 

(Rain14 + Rain14
2) + Tmax14 + (Rain10 + Rain10

2) NC NC 

Rain14 * Tmax14 NC NC 

  

Table S3.4. Comparison of model AIC for models excluding smoothing terms, for the model of raw oil 

palm yield, by ascending AIC score fitted by ML. The age smoother was a thin plate regression spline; and 

the seasonality smoother was a cyclic cubic regression spline fitted over months, with basis dimension 

restricted to a value of 5, fitted either per plantation (12 separate smoothers) or with a single universal 

smoother. We fitted models with the best climatic predictor terms (table S3.3, and first model in this 

table), with an autoregressive-moving average correlation structure of p = 4, q = 4, and plantation as a 

random intercept. NC: models did not converge following 1500 iterations of the mixed-effects model 

optimization algorithm. 

Smoothed predictors 

Degrees of 

freedom AIC 

Age + seasonality (per plantation) 32 -4679.5 

Age + seasonality (universal) 21 -4565.6 

Seasonality (per plantation) 30 -4504.3 

Age 20 -4473.8 

Seasonality (universal) NC NC 

- NC NC 
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Table S3.5. Fitted effects for final GAMM explaining raw oil palm yield (fitted with square-root yield as 

the response). We do not provide p-values for the effects as accurate p-values are not currently available 

for GAMMs. Quadratic terms were fitted using orthogonal polynomials. Rain14: rainfall with 14 month 

timelag; Tmax14: Tmax with 14 month timelag; Rain10: rainfall with a 10 month timelag; φi: autoregressive 

term of order i; θi: moving-average term of order i. The interaction between two terms is represented by a 

colon (:). 

 

Parametric fixed effects 

Term Estimated effect value Standard error 

Intercept 1.37 0.038 

Rain14 -0.01 0.002 

Tmax14 5.32 0.56 

Tmax14
2 -0.96 0.36 

Rain10 0.64 0.20 

Rain10
2 -0.49 0.18 

Rain14 : Tmax14 -0.65 0.22 

Rain14 : Tmax14
2 0.33 0.19 

 

Smooth terms 

Term Estimated degrees of freedom 

Age 7.62 

Seasonality (Plantation 1) 2.90 

Seasonality (Plantation 2) 2.75 

Seasonality (Plantation 3) 0.00 

Seasonality (Plantation 4) 2.83 

Seasonality (Plantation 5) 2.01 

Seasonality (Plantation 6) 2.85 

Seasonality (Plantation 7) 2.87 

Seasonality (Plantation 8) 2.75 

Seasonality (Plantation 9) 2.90 

Seasonality (Plantation 10) 1.95 

Seasonality (Plantation 11) 2.73 

Seasonality (Plantation 12) 2.03 
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Random intercept (plantation) 

Fitted intercepts Standard deviation 

See table S3.1 0.375 

 

Autoregression-moving average error structure 

Term Fitted parameter estimate 

φ1 2.14 

φ2 -1.22 

φ3 -0.32 

φ4 0.40 

θ1 -1.85 

θ2 0.93 

θ3 0.22 

θ4 -0.26 
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Figure S3.9. Comparison of raw and anomalised values of yield and the three climatic variables. Lines 

connect points within the same month and same oil palm field (the resolution of anomaly calculations). 

Points are translucent and therefore darker where data overlap. There are fewer lines for temperature 

than yield and rainfall because temperature data was at a lower spatial resolution and therefore repeated 

between some oil palm fields (see main text Methods and fig. 4.1). 

 

Figure S3.10. Diagnostic plots for checking that error distribution meets model assumptions (of 

homogeneity of variance, and approximate Normality), for model of anomalised climate and yield. (a) 

Histogram of final model residuals (Normalized to account for the fitted error structure); (b) scatterplot of 

quantiles of the Normalized residuals compared to a theoretical Normal distribution; (c) scatterplot of final 

model residuals (also Normalized) and fitted values. 
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Table S3.6. AIC values of full models of anomalised oil palm yield, fitted with autoregressive-moving 

average correlation structures of varying orders, using REML. p represents the order of autoregressive 

parameters and q represents the order of moving average parameters. NC: No Convergence following 600 

iterations of the mixed-effects model optimization algorithm. The best-fitting error structure (i.e. with the 

lowest AIC) has orders p = 6, q = 3 and is given in bold. All models included full candidate climatic 

predictors, smoothing splines for oil palm age and seasonality, and a random intercept for plantation. 

  
q 

  
0 1 2 3 4 5 6 

p 0 17840 17543 17197 17047 17022 17021 17023 

1 17401 17163 17056 17033 NC 17023 17025 

2 17073 17066 17015 17025 17025 17027 NC 

3 17060 17055 17002 17003 NC 17011 NC 

4 17039 17015 17002 16930 16909 NC 17002 

5 17014 17009 16909 16925 16901 16914 NC 

6 17009 17010 16907 16842 NC 16903 NC 
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Table S3.7. Comparison of model AIC for all combinations of predictors, for the model of oil palm yield 

anomalies, by ascending AIC score fitted by ML. We fitted models with an autoregressive-moving average 

correlation structure of p = 6, q = 3; and varied the combinations of the predictors of anomalised climatic 

variables at specified lags, and a smoother for oil palm age. Tmax0: Tmax with 0 month timelag (at month 

of harvest); Rain10: rainfall with a 10 month timelag; Rain14: rainfall with 14 month timelag; Tmax14: Tmax 

with 14 month timelag; Tmin29: Tmin with 29 month timelag; Rain29: rainfall with 29 month timelag; * 

represents an interaction and + is additive effects. Of the 200 possible combinations of climatic predictors, 

only 48 models converged following 1500 iterations of the mixed-effects model optimization algorithm, 

and only these are included in the table. The best model (first row) and all models nested within this are 

given in bold text. 

Climatic predictors Degrees of freedom AIC 

Tmax0 + Rain10 + Rain14 * Tmax14 + Rain29 * Tmin29 21 16779.0 

Tmax0 + Rain10 + Rain14 * Tmax14 + Rain29 + Tmin29 20 16780.7 

Tmax0 + Rain10 + Tmax14 + Rain29 * Tmin29 19 16786.7 

Tmax0 + Rain10 + Rain14 + Rain29 * Tmin29 19 16791.7 

Tmax0 + Rain10 + Rain14 + Rain29 + Tmin29 18 16794.3 

Tmax0 + Rain14 * Tmax14 + Rain29 + Tmin29 19 16798.9 

Tmax0 + Rain10 + Rain29 * Tmin29 18 16804.0 

Tmax0 + Tmax14 + Rain29 + Tmin29 17 16805.0 

Tmax0 + Rain10 + Rain14 + Tmax14 + Tmin29 18 16808.6 

Tmax0 + Rain14 + Rain29 * Tmin29 18 16810.4 

Tmax0 + Rain14 + Rain29 + Tmin29 17 16812.1 

Tmax0 + Rain14 + Tmin29 16 16837.5 

Rain10 + Rain14 * Tmax14 + Rain29 * Tmin29 20 16845.7 

Rain10 + Tmax14 + Rain29 * Tmin29 18 16852.7 

Rain10 + Rain14 + Rain29 * Tmin29 18 16863.2 

Tmax14 + Rain29 + Tmin29 16 16866.2 

Rain10 + Rain14 + Tmax14 + Tmin29 17 16874.8 

Rain10 + Rain14 * Tmax14 + Tmin29 18 16875.5 

Rain14 + Rain29 * Tmin29 17 16876.9 

Rain10 + Tmax14 + Tmin29 16 16885.8 

Rain14 * Tmax14 + Tmin29 17 16888.0 

Rain29 + Tmin29 15 16889.2 

Tmax0 + Rain10 + Rain14 + Tmax14 + Rain29 18 16910.6 

Tmax0 + Rain10 + Rain14 * Tmax14 + Rain29 19 16912.3 

Tmax0 + Rain10 + Rain14 + Tmax14 17 16932.1 

Tmax0 + Rain14 * Tmax14 + Rain29 18 16933.5 

Tmax0 + Rain10 + Rain14 * Tmax14 18 16933.9 

Tmax0 + Rain14 + Rain29 16 16937.6 

Tmax0 + Rain10 + Rain14 16 16937.6 

Tmax0 + Rain10 15 16952.4 

Tmax0 + Rain14 + Tmax14 16 16952.6 

Rain10 + Rain14 + Tmax14 + Rain29 17 16987.1 

Tmax0 + Rain10 + Tmax14 + Rain29 17 16989.2 

Rain10 + Tmax14 + Rain29 16 16995.1 
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Rain10 + Rain14 + Rain29 16 16996.1 

Rain14 * Tmax14 + Rain29 17 17005.1 

Tmax0 + Rain10 + Tmax14 16 17007.7 

Tmax0 + Rain14 + Tmax14 + Rain29 17 17007.9 

Rain10 + Rain14 + Tmax14 16 17008.9 

Tmax14 + Rain29 15 17009.6 

Tmax0 + Tmax14 + Rain29 16 17010.0 

Rain10 + Rain14 * Tmax14 17 17010.9 

Rain14 + Rain29 15 17011.5 

Rain10 + Rain14 15 17017.0 

Rain29 14 17021.6 

Rain14 + Tmax14 15 17024.2 

Tmax0 + Rain29 15 17024.8 

Rain14 * Tmax14 16 17026.1 

Rain10 14 17032.3 

Tmax14 14 17033.3 

Tmax0 14 17041.7 
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Table S3.8. Fitted effects for final GAM explaining oil palm yield anomalies. We do not provide p-values 

for the effects as accurate p-values are not currently available for models fitted with this R function (see 

main text Methods). All climatic variables are anomalised. Tmax0: Tmax with 0 month timelag (at month of 

harvest); Rain10: rainfall with a 10 month timelag; Rain14: rainfall with 14 month timelag; Tmax14: Tmax 

with 14 month timelag; Tmin29: Tmin with 29 month timelag; Rain29: rainfall with 29 month timelag; φi: 

autoregressive term of order i; θi: moving-average term of order i. The interaction between two terms is 

represented by a colon (:). 

 

 

 

 

 

 

 

 

 

 

Parametric fixed effects 

Term Estimated effect value Standard error 

Intercept -0.00548 0.0201 

Tmax0 -0.105 0.0126 

Rain10 0.0487 0.0108 

Rain14 -0.0343 0.0110 

Tmax14 0.0492 0.0125 

Rain29 0.0601 0.0109 

Tmin29 0.152 0.0126 

Rain14 : Tmax14 0.0153 0.0104 

 

Smooth terms 

Term Estimated degrees of freedom 

Age 7.47 

 

Autoregression-moving average error structure 

Term Fitted parameter estimate 

φ1 1.009 

φ2 0.974 

φ3 -1.13 

φ4 -0.185 

φ5 0.158 

φ6 0.107 

θ1 -0.815 

θ2 -0.937 

θ3 0.878 
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Figure S3.11. Boxplots of monthly yield values for the 12 oil palm plantations, ranked by mean annual 

yield (see main text table 4.2). (a) All monthly yield values for a plantation; (b) Monthly yield values are 

shown by oil palm field (smallest level of management, at which we have one oil palm yield value per 

month) within each plantation. 

 

 

Figure S3.12. Relationship of oil palm age with yield (expected values and 95% confidence intervals). (a) 

Predicted raw yield values for oil palm age from the final GAMM of raw climatic variables and raw yield, 

with all other numeric predictors held at median value. (b) Predicted yield anomaly values for oil palm age 

from the final GAM of yield and climate anomalies, with all anomalised climate predictors held at 0. In 

both models, oil palm age was fitted by a thin plate regression spline smoother. 
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Table S3.9. Approximate R2 values (proportion of variation explained) of the final models of climate and 

yield, and the change in R2 when predictors are dropped from the model (ΔR2), for (a) raw yield and 

climate variables, and (b) yield and climate anomalies. Negative ΔR2 values of high magnitude indicate 

that predictors explain a substantial proportion of the total variation explained. We calculated R2 as the 

squared correlation between the response variable and the predicted values (including the effect of the 

random intercept in predictions when stated), so it is therefore an approximation of the proportion of 

variance explained by the model, and does not incorporate the multiple levels of variance structure in the 

models (fixed effects, random intercept and autoregressive-moving average error structure). Whilst some 

very small, positive ΔR2 values suggest that certain predictors do not improve model fit to the data, all 

predictors improved model AIC and we therefore retained them in the model for improved predictive 

accuracy (Supplementary Information 3.3, 3.4). RI(Plantation): random intercept term for plantation; 

s(Month): cyclic smoother for months of the year, representing regular seasonal fluctuations in yield; 

s(Age): smoother for oil palm age. NC: model convergence not achieved. 

(a) Model of raw climatic variables and raw oil palm yield 

Predictor removed Predictors in model R2 

(approx.) 

ΔR2 

None (full model) Rain14 * (Tmax14 + Tmax14
2) + (Rain10 + Rain10

2) + 

s(Month) * Plantation + s(Age) + RI(Plantation) 

0.384  

All climatic variables s(Month) * Plantation + s(Age) + RI(Plantation) 0.383 -0.001 

Tmax14 Rain14 + (Rain10 + Rain10
2) +  

s(Month) * Plantation + s(Age) + RI(Plantation) 

0.370 -0.014 

Rain14 (Tmax14 + Tmax14
2) + (Rain10 + Rain10

2) +  

s(Month) * Plantation + s(Age) + RI(Plantation) 

0.389 0.005 

Rain10 Rain14 * (Tmax14 + Tmax14
2) + 

s(Month) * Plantation + s(Age) + RI(Plantation) 

0.383 -0.001 

Rain14 * Tmax14 

interaction 

Rain14 + (Tmax14 + Tmax14
2) + (Rain10 + Rain10

2) + 

s(Month) * Plantation + s(Age) + RI(Plantation) 

0.391 0.007 

Plantation (all terms) Rain14 * (Tmax14 + Tmax14
2) + (Rain10 + Rain10

2) + 

s(Month) + s(Age) 

0.177 -0.207 

Plantation 

(interaction with 

Month only) 

Rain14 * (Tmax14 + Tmax14
2) + (Rain10 + Rain10

2) + 

s(Month) + s(Age) + RI(Plantation) 

0.343 -0.041 
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Plantation (random 

intercept only) 

Rain14 * (Tmax14 + Tmax14
2) + (Rain10 + Rain10

2) + 

s(Month) * Plantation + s(Age) 

0.213 -0.171 

Age Rain14 * (Tmax14 + Tmax14
2) + (Rain10 + Rain10

2) + 

s(Month) * Plantation + RI(Plantation) 

0.325 -0.059 

Month Rain14 * (Tmax14 + Tmax14
2) + (Rain10 + Rain10

2) + 

s(Age) + RI(Plantation) 

0.308 -0.076 

(b) Model of climatic anomalies and oil palm yield anomalies 

Predictor removed Predictors in model R2 ΔR2 

None (full model) Tmax0 + Rain10 + Rain14 * Tmax14 + Rain29 + Tmin29 + 

s(Age) 

0.090  

All climatic variables s(Age) NC NC 

Tmax0 Rain10 + Rain14 * Tmax14 + Rain29 + Tmin29 + s(Age) NC NC 

Rain10 Tmax0 + Rain14 * Tmax14 + Rain29 + Tmin29 + s(Age) 0.087 -0.003 

Tmax14 Tmax0 + Rain10 + Rain14 + Rain29 + Tmin29 + s(Age) 0.084 -0.006 

Rain14 Tmax0 + Rain10 + Tmax14 + Rain29 + Tmin29 + s(Age) NC NC 

Rain14 * Tmax14 

interaction 

Tmax0 + Rain10 + Rain14 + Tmax14 + Rain29 + Tmin29 + 

s(Age) 

NC NC 

Tmin29 Tmax0 + Rain10 + Rain14 * Tmax14 + Rain29 + s(Age) 0.062 -0.028 

Rain29 Tmax0 + Rain10 + Rain14 * Tmax14 + Rain29 + Tmin29 + 

s(Age) 

NC NC 

Age Tmax0 + Rain10 + Rain14 * Tmax14 + Rain29 + Tmin29  0.053 -0.037 
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Figure S3.13. Expected yield anomaly values and 95% confidence intervals for the main effects of the six 

climatic anomaly predictors in the final GAM modelling yield anomalies: (a, b, c) predictors which were 

also included in the final GAMM modelling raw oil palm yield, as raw climatic variables; (d, e, f) 

predictors which were only included in the anomaly analyses. The yield anomaly values in these plots 

were predicted with all other climate anomaly predictors held at zero, and oil palm age held at the median 

value in the dataset. See table S3.8 for final model coefficients; and see fig. S3.12 for the fitted smoother 

of oil palm age and yield anomalies. 
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Figure S3.14. Expected yield anomaly values and 95% confidence intervals for the interaction of Tmax 

and rainfall at 14-month timelags prior to harvest, in the final GAM modelling yield anomalies. (a) 

Relationship of Tmax and yield anomalies for different values of rainfall anomaly (increasingly wet from 

left to right); (b) Relationship of rainfall and yield anomalies for different values of Tmax anomaly 

(increasingly hot from left to right. The yield anomaly values in these plots were predicted with all other 

climate anomaly predictors held at zero, and oil palm age held at the median value in the dataset. See 

table S3.8 for final model coefficients; and see fig. S3.12 for the fitted smoother of oil palm age and yield 

anomalies. 
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