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Abstract

Weft knit strain sensors are textile sensors that measure motion at the

joints of a human body. These sensors are formed by the weft knitting

of conductive yarn and can be implemented as wearable devices that

resemble normal clothing. The conductive yarn is a tactile yarn with

electrical properties formed from a composite of stainless steel and

polyester filaments. Although, it can be mechanically manipulated to

create a woven or knitted fabric that measures strain, weft knitting is

the optimal method because of its elastic structure. Due to the novelty

of this research area, there are a lot of gaps that prevent the wide-scale

adoption of this sensing mechanism. This thesis aims to address two

of these gaps. Firstly, the lack of a model that accurately simulates

the electromechanical behaviour of structural variations of a weft knit

strain sensor. Secondly, the lack of a wearable device framework that

illustrates the design of the sensor, its implementation in a wearable

device and the processing of its acquired data using machine learning

algorithms.

Firstly, an electromechanical model that simulates the behaviour of

plain knit sensor with only conductive yarn is proposed. The length

resistance are obtained from the loop and interlocking angles of the

conductive loops in the sensor and the contact resistance is derived

using a novel algorithm. The model was validated by a tensile test

performed on sensors with the simulated knitting parameters. It was

shown that the simulation results agreed with the experimental re-

sults. In particular, the proposed model has a lower percentage error

in comparison to previous studies. Furthermore, the effect of changes



in the loop and interlocking angles on the piezoresistivity of the sensor

is simulated.

Thereafter, this model is applied on a novel sensor configuration com-

prising of a conductive yarn and a non-conductive elastomeric yarn.

The simulation results provide a very accurate representation of the

empirical piezoresistivity of the sensor. Subsequently, we create a

wholly textile data glove by knitting its support structure and its weft

knit strain sensor in a single manufacturing process using WholeGar-

ment technology. The data glove measures motion at the interpha-

langeal joints in a human hand. The consistency of the glove is verified

and classical machine learning algorithms are applied to classify the

data acquired using a robotic hand.

In addition, deep learning is evaluated in a grasp classification using

the weft knit data glove on human participants. A convolutional

neural network (CNN) algorithm is proposed to classify the grasp

type from the acquired data. Classical machine algorithms are also

used to classify the data to provide a comparative performance. The

results illustrate that the CNN algorithm achieved a higher accuracy

than the classical machine algorithms in the classification scenarios.

Finally, the effect of miss and tuck stitches on the piezoresistivity

of the sensors is investigated. Miss and tuck stitches affect struc-

tural properties such as the length, width and extension of a knit

fabric and therefore, may affect the piezoresistivity of a weft knit

strain sensor. By adapting the electromechanical model to geometri-

cal properties of miss and tuck stitches, several sensor configurations

comprising of varying amounts of tuck or miss stitches are simulated.

Subsequently, a tensile test is performed on knitted sensors with the

simulated properties. The simulation results generally agree with the

experimental results. Moreover, it is observed that increases in miss

and tuck stitches decrease the initial and mean resistance of the sen-

sor. In addition, the results show that increasing the percentage of



tuck stitches in the sensor increases the linearity of a weft knit strain

sensor.
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Chapter 1

Introduction

1.1 Introduction

Human motion capture (HMC) involves the measurement of movement at specific

joints in the human body. It is a broad research field that stems across several

industries including sport science, medical rehabilitation, and human-computer

interaction [1, 2]. There are two research approaches in the capture of human

motion. The first approach involves the use of computer vision in which cameras

are used to record motion which is then analysed using different image processing

techniques to generate the required information [3]. However, there are disad-

vantages with this approach. Firstly, in the current geopolitical climate, users

are apathetic in using such devices due to the fear of intrusion of their privacy

[4]. In addition, the use of a stationary camera limits the movement of the users

to within the camera’s viewpoint. This restricts applications that require the

continuous monitoring of user while they perform their regular activities. Fur-

thermore, camera-based approaches utilise substantial computational resources

as a result of the pre-processing required in segmenting features from the image

data.

The second approach involves the use of wearable motion capture devices.

These devices when worn by their users are capable of monitoring the users’

activities without restricting their movements. A popular example of a commer-

cial wearable device is the Apple watch. Although, this device has a silhouette

of a watch, its main features are tracking the health of its users through its
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1.2 Motivation and Problem Statement

configuration of various sensors; and its telecommunication features that enable

users access the internet, make phone calls and send text messages. In 2019

alone, 31 million Apple watch devices were sold [5]. Furthermore, according to

an industry-led review [6] published by the government of the United Kingdom,

wearable technologies are expected to add $70 billion to the world’s economy by

2024.

For wearables used strictly for the capture of human motion, it is imperative

that they are located as close to the joint as possible for accurate measurement.

This requirement leads to size and weight constraints on the wearable device.

Traditionally, these motion-capture wearables were designed by integrating con-

ventional electronic sensors into textile support structures. However, this has

resulted in a bulky design that has reduced the commercial adaptation of these

devices.

Due to this challenge, a new research area comprising of E-textiles has emerged.

E-textiles are textiles with inbuilt electrical properties. They have the advantage

of the feel and comfortability of clothing while retaining electrical capabilities.

The applications of E-textiles include displays, transistors, antennas, strain sen-

sors among others [7, 8, 9, 10]. Particularly, by using E-textiles as strain sensors,

human motion capture systems can be designed to be lightweight, unobtrusive

and accurate. Weft knitting provides an optimal approach in creating textile

strain sensors because a weft knit fabric has an elastic structure regardless of the

elasticity of the yarn used in knitting the fabric [11, 12]. This enables the use of

inelastic conductive yarns in creating electrical strain sensors.

1.2 Motivation and Problem Statement

The potential of weft knit strain sensors to replace conventional strain sensors in

wearable devices is very promising. They can be easily integrated into the pop-

ular knit garments (e.g. gloves, sweaters, socks etc.) without being conspicuous.

Particularly, they can be implemented as lightweight wearable clothing that con-

tinuously monitor the progress of rehabilitation patients. In addition, weft knit

strain sensors can become invaluable in the sports science industry. Functional
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1.2 Motivation and Problem Statement

clothing embedded with weft knit strain sensors can replace current motion cap-

ture devices for athletes. These clothing such as a wearable device in the form of

socks can provide valuable data that can be utilised in boosting the performance

of the athlete.

However, the commercial adaption of weft knit strain sensors is limited by

some factors. Firstly, there is no complete framework that illustrates the design

of a weft sensor, its implementation in a wearable device and the processing of

its data using machine learning techniques. In addition, theoretical models that

can aid the design of weft knit strain sensors are very limited. There have been

interesting experimental studies on some weft knit strain sensor configurations

that characterise the piezoresistivity of weft knit strain sensors but there have

been very few studies that illustrate models that justify the electrical behaviour

of the sensor. The few models [13, 14] that exist have significant errors between

their simulation and experimental results.

In addition, drift can adversely affect the output of a piezoresistive strain sen-

sor’s output. Drift occurs when the output of the weft knit strain sensor changes

independently of the sensor’s extension. Although, researchers have observed the

presence of drift in a weft knit strain sensor’s output [15], there has been no

investigation on its effect in classification applications.

Furthermore, there have been very few wearable device prototypes that have

integrated weft knit sensors into conventional textile garments. The few studies

that exist are limited to the design of these devices. Particularly, the use of these

devices in classification applications is very rare and are restricted to classical ma-

chine learning algorithms. Moreover, no deep learning approach has been applied

in classifying the data obtained from a weft knit strain sensor. Lastly, most stud-

ies on weft knit strain sensors are limited to the characterisation and application

of the sensing mechanism of a specific knit architecture, thereby neglecting the

potential of other knit architectures in creating optimal weft knit strain sensors.

Therefore, this research aims to develop a framework for the application of

weft knit strain sensors in a human motion capture system. This framework

shown in Figure 1.1 begins with the design of an electromechanical model that

accurately simulates the sensing mechanism of the proposed sensor. Subsequently,

the simulation of the model is validated empirically by a tensile test. The sensor
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Figure 1.1: Development framework of a weft knit wearable device.

is then implemented in a wearable device and the data captured from the motion

at the human joint is processed using machine learning techniques. In this study,

the wearable device is a lightweight textile data glove that is optimal in weight-

sensitive applications such as the progress measurements in recovering stroke and

rheumatoid arthritis patients. However, this framework can be employed in the

creation of other wearables that capture the motion of any joint in the human

body. In addition, we present the characterisation and electromechanical models

of several sensors with varying knit architectures. These architectures can help to

improve the linearity of the sensor and consequently, the accuracy of the applied

classifiers.

1.3 Contribution and Thesis Organisation

This thesis illustrates the results of a multi-disciplinary research that spans over

several research areas. The research areas are illustrated in Figure 1.2.
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In Chapter 2, the fabrication methods, sensing mechanisms and performance

metrics of textile strain sensors are discussed. Thereafter, the knitting terminolo-

gies that will be encountered in this thesis are outlined. The base knitting struc-

tures are also described in this chapter. In addition, the relevant past studies on

weft knit strain sensors are reviewed. In particular, the current electromechanical

models of weft knit strain sensors are explored. Moreover, the effect of knitting

parameters on the electrical behaviour of the sensors are reviewed. Finally, the

current applications of weft knit strain sensors in human motion capture systems

are explored.

In Chapter 3, a novel electromechanical model of a plain knit sensor is pre-

sented. The length resistances are derived from Postle’s geometrical model [16].

An algorithm that derives the contact resistance from the equivalent resistance

is developed. The simulation results are validated experimentally by fabricating

sensors with the same numerical parameters used in the simulation and perform-

ing a tensile experiment on the sensors. The results show that my proposed model

is more representative of the sensor’s electromechanical behaviour than previous

studies. Furthermore, the effect of loop and interlocking angles on piezoresistiv-
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ity of the sensor are investigated in a parametric study. Under width and length

jamming constraints, it is observed that changes in the interlocking angles have

a bigger impact on the sensor’s piezoresistivity than changes in the loop angle.

In Chapter 4, a more flexible sensor configuration that combines an elastic

non-conductive yarn and an inelastic conductive yarn is presented. The model

implemented in Chapter 3 is expanded to simulate this sensor’s electromechanical

behaviour. A tensile test was also performed on the sensors knitted with the new

configuration. The simulation results illustrate a more accurate representation

of the sensor’s piezoresistivity observed empirically. In addition, this sensor con-

figuration is utilised in designing a data glove that measures the flexion at the

interphalangeal joints in the hand. The performance of the glove is validated in a

repeatability experiment using a robotic hand. It was observed that the sensor’s

output was consistent, especially after a simple filter was implemented to remove

the noise. Subsequently, the effect of drift on the performance of machine learning

algorithms is evaluated in a data glove classification scenario. It was observed

that drift reduces the accuracy of linear classifiers.

In Chapter 5, a deep learning approach in a real-world classification appli-

cation with human participants is explored. Data is acquired by participants

grasping objects of different shapes with the data glove. Thereafter, a convolu-

tional neural network (CNN) is employed to classify the data and recognise the

grasp type of objects grasped by the participants. Moreover, popular machine

learning techniques are utilised to perform the same tasks and compare their

performance to our CNN algorithm. It was observed that our CNN algorithm is

more accurate than the comparative machine learning techniques.

In Chapter 6, the impact of miss and tuck stitches on the piezoresistivity of a

weft knit strain sensor is explored. These stitches alter the architecture of the sen-

sor geometrically, therefore it was imperative to understand the effect that they

may have on the sensor’s electrical behaviour. Several sensors having varying

percentages of miss or tuck stitches are designed. The respective electromechan-

ical models of the sensors are developed based on the model implemented in

Chapters 3 and 4. The sensor configurations are also knitted using the numerical

parameters in the models and undergo a tensile test. The simulation results are

compared with the empirical results obtained in a tensile tests and are shown
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to mostly agree. It was also observed that increases in the percentage of tuck

stitches in the sensor increase the linearity of the sensor.

Chapter 7 describes the conclusions of the study and proposes ideas for further

research on the use of weft knit strain sensors in HMC applications.

1.4 Publications and Awards

1.4.1 Awards and Nominations

The research in this thesis has led to the following awards and nominations:

• Digital Innovation Challenge 2019 (£2,500 award).

• University of Leeds postgraduate researcher of the year 2019 nominee.

• EPSRC Connected Nation Pioneers 2018 semi-finalist.

• Future Engineers’ Leadership and Innovation Academy (Nanjing, 2018).

1.4.2 Publications

• Emmanuel Ayodele, Syed Ali Raza Zaidi, Jane Scott, Zhiqiang Zhang,

Maryam Hafeez, Des McLernon,“Effect of Tuck and Miss Stitches on a

Weft Knit Sensor”, Sensors, 21(2), 358, 2021.

• Emmanuel Ayodele, Syed Ali Raza Zaidi, Jane Scott, Zhiqiang Zhang, Des

McLernon, “A Review of Deep Learning Approaches in Glove-Based Ges-

ture Classification” in Machine Learning, Big Data and IoT for Medical

Informatics, P. Kumar, Ed; Elsevier, 2021 (accepted for publication).

• Emmanuel Ayodele, Bao Tianzhe, Syed Ali Raza Zaidi, Jane Scott, Zhiqiang

Zhang, Ali Hayajneh, Des McLernon, “Grasp Classification with Weft-knit

Data Glove using Convolutional Neural Networks”, IEEE Sensors Journal,

2021 (accepted for publication).
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Chapter 2

Literature Review

This chapter provides a thorough review of textile strain sensors, their fabrica-

tion methods and the metrics employed in evaluating their strain sensing per-

formances. Furthermore, we describe the various knitting structures and termi-

nologies that are used in this study to enable a clear understanding of the thesis.

Subsequently, a comprehensive review of weft knit strain sensors is presented. In

particular, we describe the sensor characterisation results illustrated in past stud-

ies alongside the undertaken experimental and simulation methodologies. Finally,

we conclude the chapter with the few applications of weft knit strain sensors in

wearable devices.

2.1 Textile Strain Sensors

Strain sensors are devices that measure mechanical deformation by converting

the changes in their electrical properties due to deformation into an output signal

[17]. Strain sensors are popular for their applications in damage detection and

health monitoring of civil structures [18]. However, they are also employed in

monitoring the movement at different joints in the human body. Textile strain

sensors are optimal for monitoring the motion at human joints because they

are lightweight, stretchable and can be seamlessly integrated into clothing to

create unobtrusive textile wearable devices. In this section, we review current

textile sensors. In particular, we describe their fabrication techniques, sensing

mechanisms and performance metrics.
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2.1.1 Fabrication Techniques

Textile sensors are usually fabricated by embedding conductive nanomaterials on

textile polymers. These nanomaterials include carbons (e.g carbon nanotubes

(CNT) and graphene), nanowires (NWs) and nanoparticles (NPs). Their com-

bination with flexible polymers (e.g. polydimethylsiloxane (PDMS)) creates a

sensitive textile strain sensor that is human-friendly and durable. In this sec-

tion, we provide a review of the various techniques in which textile sensors are

manufactured with nanomaterials.

Coating

Textile strain sensors are typically fabricated by coating a textile substrate. The

non-conductive textile substrate is either a fibre, yarn or fabric. The various coat-

ing techniques include chemical and vapor polymerisation approaches, spray, dip,

roller and rod coating techniques [19]. Particularly, chemical polymerisation was

employed in fabricating a strain sensor by coating a lycra fabric with polypyrrole

(PPy) [20]. This technique involved soaking the fabric in a mixture of a monomer,

an oxidant and a dopant. The fabricated sensor could detect strain up to 60%.

Furthermore, a textile strain sensor that could sense strain of up to 6.2% was

created by spray coating a fabric with ZnONW [21]. This coating mechanism is

illustrated in Figure 2.1.

Strain sensors have also being developed by coating yarn and fibres. Notably,

textile sensors were formed by coating spandex and silk fibres with graphite flakes

with a Meyer rod [22]. The sensing range was 18% for spandex and 15% for

silk fibres. It was also observed that the silk fibre strain sensor displayed high

stability, low drift and hysteresis. Furthermore, a strain sensor was developed by

coating a Polyurethane (PU) yarn in a negatively charged cellulose nanocrystals

and then dipping it in a positively charged chitosan solution [23]. Subsequently,

the coated yarn was placed in a PDMS matrix. The strain sensor could detect

minute strains as low as 0.1% but was inaccurate for strains > 5%.

In summary, coating is a simple method for fabricating textile strain sensors.

However, for HMC applications, coated textile strain sensors need to be robust

enough to withstand bodily fluids such as sweat that may degrade their accuracy.
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2.1 Textile Strain Sensors

Figure 2.1: Fabrication of ZnONW coated textile strain sensor [21].

Intrinsic Conductive Textile Structures

This section reviews textile strain sensors which are made directly from conduc-

tive materials. Although fibres, yarns and fabrics of conductive materials are

usually inelastic, they still display piezoresistivity within their limited elasticity.

Particularly, carbon fibres were illustrated to detect strains of up to 1.2% [24].

CNT yarns measured strain of up to 3.6% and were relatively stable during the

cycle test with a low hysteresis[25]. In addition, when CNT yarns were directly

attached to an elastic substrate (Ecoflex substrate), they could measure strains

of up to 440%, although at a lower gauge factor that pure CNT yarns. The CNT

yarns were encapsulated in the Ecoflex substrate as they were dry spun due to

van der Waals interactions [26].

These conductive yarns are usually created by chemical vapor deposition

(CVD) [27]. CVD ensures that the conductive material can be grown in a pre-

determined shape and orientation. Particularly, a graphene woven textile sensor

was created by growing graphene on a copper wafer that depicts the architecture
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2.1 Textile Strain Sensors

Figure 2.2: Graphen woven fabric sensor [28].

Figure 2.3: Wet-spining fabrication process for coaxial fibre sensor [29].

of a woven fabric [28]. This causes the graphene to grow in the architecture of a

woven fabric. Subsequently, the metal wafer is separated from the graphene as

illustrated in Figure 2.2. This graphene woven sensor could measure strains of

up to 12%. However, significant hysteresis was observed during a cycle test.

Carbonisation of non-conductive textile can convert them to conductive ma-

terials. Carbonisation is the heating of a material at high temperatures in the

absense of oxygen. A textile strain sensor was created by carbonising silk fabric

at 950◦c. The carbonised silk sensor when embedded in an Ecoflex substrate was

observed to sense strain of up to 500% [30].

Coaxial Fibres

Strain sensors can also be created by employing core-shell structures. These

structures comprise a conductive core wrapped by an elastic shell. It is necessary
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for the conductive core to be endure high amounts of strain, therefore liquid

metals, ionic liquids and elastomeric carbon composites are suitable candidates. A

strain sensing coaxial fibre was developed by depositing eutectic indium-gallium-

tin (EGaInSn) liquid metal into a PDMS fibre shell [31]. The strain sensor could

sense strain from 0.3% to 140%. In addition, a strain sensor was developed by

filling a hollow PDMS fibre with an ionic liquid (1-ethyl-3-methylimidazolium

tetrafluoroborate, EMIMBF4) [32]. The sensor could measure strain of up to

100% and endure extensions of 230%.

A core-shell strain sensor was also fabricated using wet spinning. Wet spinning

involves depositing the sheath polymer and the conductive filler in a suitable

solvent and subsequently placing the formulation in a coagulation bath. The

fabrication process shown in Figure 2.3 was employed in producing an elastomeric

multi-wall CNT (MWCNT) strain sensor [29]. Although, it was able to detect

strain of up to 330%, a significant level of non-linearity was observed during strain

tests thereby limiting its potential HMC applications.

Knitting

Textile strain sensors are also manufactured by knitting conductive yarn. It is the

most preferred method for fabricating textile strain sensors because of its elastic

structure. The conductive yarn could be an intrinsic multifilament comprising of

conductive fibres and traditional textile fibres or a textile yarn coated with nano-

materials [13, 33]. In particular, initial studies manufactured knit strain sensors

with carbon and steel fibres [14, 34]. These sensors exhibited high sensitivity

but were limited to an extension of 20%. In addition, sensors knitted with car-

bon fibres could withstand temperatures of up to 200◦C without any significant

changes in its piezoresistivity. Recent studies have improved the extensibility of

knitted sensors by adding elastic yarns such as Lycra or Spandex [35]. Notably,

a textile sensor with extensibility of 160% was created by knitting PEDOT:PSS

filaments and Spandex yarns [36]. Furthermore, several studies have shown that

different knitting structures or loop configurations result in different sensing be-

haviours of knitted strain sensors [37, 38]. In addition, embedding knitted strain
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sensors in wearable applications is more streamlined that other fabrication meth-

ods. WholeGarmentTM technology ensures that clothing comprising textile strain

sensors can be knitted in a single manufacturing process thus eliminating the use

of external attachments. The characterisation, modelling and application of knit

strain sensors are further discussed in Section 2.3.

2.1.2 Sensing Mechanisms

In Section 2.1.1, we have illustrated the fabrication techniques of textile strain

sensors. Therefore, it is relevant to understand the strain sensing mechanisms of

these sensors. Their strain sensing mechanisms can be described as one or more

of the following:

Geometrical Effect

According to Poisson’s ratio, when a material is stretched in one direction, it

tends to contract in the transverse direction. This geometrical effect is important

in understanding the sensing mechanisms of most textile strain sensors as it differs

across fibres, yarns and fabrics. In conductive yarn/fibre, the change in resistance,

R, occurs as a result of the change in the length, L and cross-sectional area, Ar

, provided the resistivity, ρ, of the sensor is constant as seen below:

R =
ρL

Ar
. (2.1)

Notably, this sensing mechanism was observed in a coaxial fibre as its electri-

cal resistance was proportional to the square of its length [31]. In contrast, the

geometrical effect on resistive fabrics can be more complex and comprise multiple

sensing mechanisms. For knit sensors, the piezoresistivity occurs as a result of

changes in the contact resistance [13, 14], however it is possible that the piezore-

sistivity of the fabric may be affected by geometrical changes in the conductive

yarn itself.

In addition, the change in capacitance,Ca, of textile capacitive sensors that

consist of two electrodes and an insulating dielectric between them is dependent

on the geometrical changes of the area of the two electrodes, Ar and the distance

between them (thickness of the dielectric), d0.
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2.1 Textile Strain Sensors

Ca =
ε0εrAr
d0

, (2.2)

where ε0 and εr are the permittivity of vacuum and the relative permittivity of

the dielectric constant.

Disconnection Mechanism

Some strain sensors comprise of thin conductive films of nanomaterials within

rubber composites thereby creating an overlap between the nanomaterials that

allows the flow of electrons in a percolation network. When these sensors are

stretched, there are some disconnections in the conductive film that cause an

increase in the electrical resistance. This strain sensing mechanism has been

employed using nanomaterials such as graphene flakes, and PDMS composites

of silver and zinc oxide nanowires (AgNWs-PDMS and ZnONWs-PDMS respec-

tively) [39, 40, 41, 42].

Tunneling Effect

Tunneling occurs when electrons cross a thin non-conductive barrier placed be-

tween conductive nanomaterials. Although, the non-conductive barrier prevents

a direct electric contact, a tunneling junction occurs because the electrons pass

through the barrier. Consequently, a tunneling resistance occurs and can be

calculated using Simmons’ theory [43, 44]:

Rtunnel =
V

AcrJ
=

h2
pldn

Acre2
c

√
2meλeb

exp

(
4πdn
hpl

√
2meλeb

)
, (2.3)

where Rtunnel is the tunneling resistance, V is the electrical potential difference,

Acr is the tunneling junction’s cross-sectional area, J is the current density, hpl is

the Plank’s constant, dn is the distance between the conductive nano-materials,

ec and me are the charge and mass of a single electron respectively and λeb is the

energy barrier’s height.

The tunneling effect was observed to be the main strain sensing mechanism in

CNT or graphene polymer nanocomposites [45, 46]. The hexagonal honeycomb

structure of CNT and graphene causes them to entangle and fold in their polymer

15



2.1 Textile Strain Sensors

nanocomposites. Therefore, when strain is applied, the tunneling distance and

consequently, tunneling resistance change as the graphene or CNT flakes unfold.

Crack Propagation

Strain sensors have also been developed by coating flexible substrates with nano-

materials such as CNT, gold nanowire (AuNW), silver nanoparticle (AgNP) and

graphene [47, 48]. When strain is applied on these sensors, micro-cracks occur on

the thin films of nanomaterials. Increased amounts of strain enlarge the cracks

and causes a decrease in the electrical conduction and consequently, an increase

in the electrical resistance. Furthermore, the removal of the applied strain was

observed to diminish the size of the cracks as depicted in Figure 2.4 such that

the electrical resistance recovered to its initial steady-state values [49].

Figure 2.4: Micro-crack propagation and recovery during strain test on graphene

PDMS composite [49].

2.1.3 Performance Metrics

The performance of a textile strain sensor can be evaluated by the following

metrics. These metrics aid in the characterisation of the sensors and their imple-

mentation in HMC applications.
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Linearity

The linearity of a strain sensor is very important because non-linearity will com-

plicate the calibration process. The linearity is calculated by the R2 value of

a linear fit of the plot of sensor’s electrical output and its mechanical deforma-

tion. A sensor with a perfect linearity will have a R2 value of 1. However, most

textile strain sensors exhibit a relatively non-linear response to applied strain.

In particular, it was observed that the non-linearity of the textile sensors was a

result of changes in the micro-structure or percolation network of nanomaterials

[39, 50]. A trade-off relationship can be observed among the linearity, sensitivity

and stretchability of a textile sensor. Capacitive textile sensors tend to display a

high linearity and a low sensitivity while CNT-hybrid sensors depict low stretch-

abilty but high linearity and sensitivity [51].

Stretchability

HMC applications require wearable devices to endure up to 50% strain [52].

Therefore, it is imperative that sensors in wearable devices must endure high

level of strain without permanent deformation. Unlike metallic strain gauges

that have a maximum stretchability of 5%, a key advantage of textile strain

sensors is that they can typically achieve high levels of stretchability. Notably,

CNT-PDMS composites have been shown to endure strain of up to 280% while

graphene-rubber composites can be extended for up to 800% strain [53].

Sensitivity

The sensitivity of strain sensors is measured by its Gauge factor (GF). The GF

is calculated as:

GF =
∆ep
ep0ε

, (2.4)

where ∆ep represents the change in an electrical property (e.g. resistance or ca-

pacitance) and ep0 is the initial value of the electrical property. The sensitivity of

textile strain sensors varies based on the sensing mechanism. Particularly, sensors

whose sensing mechanism is based on crack propagation and disconnection mech-

anism were seen to have ultrahigh sensitivity (GF ≥ 1000) [43, 49]. In contrast,
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capacitive sensors such as AgNW-elastomer (silver nanowires) composites exhibit

a very low sensitivity because theoretically, their maximum gauge factor is 1 [51].

Hysteresis

Hysteresis occurs when there is a significant difference between the electrical prop-

erty of the sensor during extension and its contraction to its initial length. For

sensors fabricated with nanomaterials fillers, a feasible explanation for hysteresis

is that the nanomaterials do not contract as fast as they expanded thereby caus-

ing the measured resistance/capacitance values during contraction to lag behind

the measured values during extension [54].

Drift

Drift occurs when the resistance or capacitance of the sensor fluctuates at a fixed

strain. It is dependent on the response time it take for the sensors to reach their

steady-state value. Piezoresistive sensors have a response time of up to 332 ms

while capacitive sensors have a shorter response time of <100 ms [55, 56]. The

larger response time in piezoresistive sensors such as CNT-Ecoflex composites

may have occurred because the flexibility of the Ecoflex does not generate enough

force to rapidly restore the CNT’s percolation network.

Durability

A textile strain sensor must be durable as it will undergo several strain cycles

in its application. It is important that the sensor exhibits consistency in its me-

chanical and electrical properties after multiple cycles of tension and compression.

Therefore, the durability of sensors are tested in a cyclical test, where they are

extended and released several times while their electrical output and mechanical

durability are measured [37].

2.2 Knitting Technology

Knitting is the manufacture of textile fabric by interlocking succeeding loops

of yarn that are bound by the same yarn passing from one loop to another.
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There are two major knitting methods and they are weft knitting and warp

knitting. These two methods differ in their knitting direction, loop formation

and fabric structure [57, 58]. Notably, in warp knitting, loops are interlocked

vertically while in weft knitting, loops are interlocked horizontally. This occurs

because in weft knitting, loop formation occurs at the needle bed sequentially.

In contrast, loop formation in warp knitting occurs when all the needles in the

needle bed are knitting simultaneously. Consequently, warp knit fabrics are more

structurally stable while weft knit fabrics are more elastic [59]. Therefore, due to

its elastic structure, weft knitting is the preferred method in the creation of knit

sensors. The rest of this section describes the knitting terminologies, structures

and operating principles that will aid in understanding the work undertaken in

this thesis.

2.2.1 Knitting Terminologies

• Yarn: A yarn is an aggregation of a fibres or filaments with or without twist

[60].

• Fibres: These are the raw materials that are used in the manufacture of

yarns. They occur naturally (e.g.wool from animals or cotton from plants)

or are manufactured artificially (e.g. polyester).

• Needle loop: A needle loop is the most popular type of knitted stitch. It

consists of a head and two legs. The foot of each leg interlocks the head

of the previous knitting cycle’s loop. As the yarn moves from one foot of a

loop into the next foot of another loop, it creates a sinker loop. For most

geometrical models of a weft knit structure, the length of yarn in a sinker

loop is assumed to be equal to the length of yarn in the head in an adjacent

needle loop.

• Courses and Wales: A course is a horizontal row of knitted loops while

a vertical column of loops is called a wale. Courses are more prominent

to observe on the technical back while wales are easier to detect on the

technical face.
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a)
b)

a course 

of loops

a wale of loops

New loop

Old loop

New loop

Old loop

c) d)

Loop head

Loop Legs

Figure 2.5: a) A wale of loops b) A course of loops c) A reverse loop d) A face

loop.

• Stitch density and stitch length: Stitch density is the sum of all loops in a

determined fabric area while stitch (/loop) length is the span of a yarn in

a loop (including both halves of the sinker loop on each side). The stitch

density, Sd, can be calculated as :

Sd = CnWn, (2.5)

where Cn and Wn are the number of courses and wales respectively.

• Face and and reverse loops: A face loop can be identified as the side of a

stitch where loop legs appear to approach the observer as it interlocks the

head of an old loop. In contrast, the reverse loop can also be identified

as the side of a stitch where the loop legs appear to move away from the
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2.2 Knitting Technology

observer as it interlocks an old loop’s head. A face loop and a reverse loop

are shown in Figure 2.5.

• Technical face and back: The technical face of a fabric illustrates the face

loops while the reverse loops are shown on the technical back of the fabric.

• Linear density: The linear density of a yarn or filament is its mass per unit

length. The most popular unit of measurement of a yarn’s linear density

is the tex system where the linear density of a yarn is represented by the

weight in grams for 1 kilometre of the yarn [61]. For example, if the weight

of 1 kilometre of a yarn is 50 grams, then its linear density is 50 tex or 500

dtex (decitex).

• Input tension: This is the tension on the yarn prior to loop formation. It

can be mechanically controlled by the knitting machine and is known to

affect the loop length of the fabric [62].

2.2.2 Base Structures

There are four base structures that form the foundation of all weft knitted fabrics

[57]. These structures depicted in Figure 2.6 are formed by the changes in the

arrangement of the needle bed. These base knitting structures are:

Plain knit

This is the simplest form of weft knitting and it consists of single set of needles

that knit loops in the direction of its technical face. The technical face of a plain

knit fabric comprise of wale loops resembling the “v” shape and its technical

back consists of wales resembling semi-circles formed by the interlocking of the

loops head and corresponding sinker loops. Notably, the contact points in a plain

knit fabric occur between the loops along the course. Furthermore, plain knitted

fabrics are known to endure strain of up to 40% even with non-elastic yarn. This

illustrates the advantage of plain knit fabrics in strain sensing applications as its

structure enhances elasticity with non-elastic yarns.
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2.2 Knitting Technology

a) c)b)

Figure 2.6: a) Technical face (same as technical back) of a 1x1 rib knit fabric b)

Technical face of an interlock fabric with its hidden technical back. c) 1x1 Purl

knit fabric illustrating both face and back loops on a single side. Adapted from

[57].

Rib knit

A rib knit fabric is produced by using two sets of opposite-facing needles. An

offset is created between each opposite facing needle to prevent collisions between

the two sets of needles. The two sets of needles knit the technical face and back

of the fabric. A 1x1 rib knitted fabric is the most elementary form of rib knitting

and has both sides of the fabric resembling a plain knitted fabric’s technical face.

Theoretically, the structure of a 1x1 rib fabric causes its thickness and width to

be double and half that of a plain knit fabric respectively.

Interlock knit

Similar to rib knit, interlock knit employs two sets of opposite facing needles.

However, unlike in rib knit, there is no offset between the two sets of needles.

Collisions are prevented by ensuring that only one set of needles operates at a

time. Both sides of an interlock fabric depict the technical face of a plain fabric.

Moreover, reverse meshed loops are hidden in the fabric because wales produced

by opposite needles are interlocked. Consequently, interlock fabrics are thicker

than rib and plain knit fabrics.
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a) c)b)

Figure 2.7: a) Knitted loop stitch b) Tuck stitch c) Miss stitch

Purl Knit

A purl fabric is the only weft knit base structure in which both face and reverse

loops occur on each side of the fabric. This is achieved because loops are trans-

ferred between two sets of opposite needle beds. The simplest purl structure

occurs in a 1x1 purl fabric in which a course of face loops is accompanied by a

course of reverse loops. A 1x1 purl fabric is estimated to have double the elas-

ticity wale-wise (vertically) of a plain fabric knitted with a similar stitch density

and stitch length.

2.2.3 Types of Stitches

A stitch is the fundamental basic unit of a knit structure. There are three main

stitches and they are knitted loop stitch, miss (/float) stitch and tuck stitch as

shown in Figure 2.7. The knitted loop stitch is the most common form of knitting.

It comprises of three or more interlocked needle loops. A knitted loop stitch is

produced when a needle hook pulls a new loop by its loop head through a previous

loop. Simultaneously, the old loops are dropped by the needles, causing the heads

of the old loops to interlock the feet of the new loops [57].

In a tuck stitch, the old loops are not dropped when a new loop is added

thereby causing the hook of the needle to accrue two or more loops. A miss

stitch, also known as a float stitch occurs when one or more needles are skipped
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during the knitting process. This causes the yarn to float over the unused needles.

Consequently, miss stitches reduces the number of contact points in a fabric while

tuck stitches increases the contact pressure between intermeshed loops in a fabric.

2.2.4 Geometrical Modelling of a Weft Knit Loop

In this section, we analyse the popular geometrical models of a plain knit loop that

have been used in describing the electromechanical properties of weft knit strain

sensors. The most relevant parameter is the knit loop length which comprises of

the lengths of the loop head, loop sinker and 2 loop legs. These lengths are then

used to calculate the various length resistances. The resistance of each loop leg

is usually calculated as:

Rl =
Llρ

Ar
, (2.6)

while the resistance of the loop head is calculated as:

Rh =
Lhρ

Ar
, (2.7)

where ρ and Ar are the resistivity and the cross-sectional area of the conductive

yarn respectively; and Ll and Lh are the lengths of the loop leg and loop head

respectively.

Usually, the length of the loop head and the loop sinkers are assumed to be

equal. Therefore, the resistance of the loop sinker is calculated as:

Rs = Rh. (2.8)

Peirce’s loop model

This is the most popular geometrical model used in simulating the length resis-

tances in a weft knit strain sensor. In Peirce’s study [63], he proposed that the

length of a knit loop could be determined based on the diameter of the yarn, d.

Based on geometrical model illustrated in Figure 2.8, the succeeding calculations

were made: The height between of the loop, C, also known as the course spacing

was calculated as:

C =
√

(4d)2 − (2d)2 = 3.46d. (2.9)
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Figure 2.8: Pierce’s geometrical model. (a) The yarn’s central axis pathway. (b)

Model of the knit loop [13].

The length of a loop leg, Ll, was then calculated using Pythagoras theorem

as:

Ll =
√
d2 + C2 = 3.6d. (2.10)

Furthermore, the length of the loop head is calculated as the circumference of

a semi-circle:

Lh = πrh, (2.11)

where rh is the radius of the loop head and is determined as:

rh = 01M +MN = d+ 0.5d = 1.5d. (2.12)

Kurbak’s model

Kurbak’s geometrical model is illustrated in Figure 2.9. Particularly, the header

and the sinker are considered as elliptical curves and the legs of the loops are con-

sidered to be helical shapes that encase hypothetical elliptical cylinders parallel

to the y axis [64, 65].

The length of the loop head is calculated as:

Lh = d(
w

2d
+ dc)(E(π/2, cos−1 eh), (2.13)
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Figure 2.9: Kurbak’s geometrical model of a knit loop [65].

where dc is the diameter of the hypothetical elliptical cylinder, eh is the eccen-

tricity of the elliptical curve (one-half of the header) and E(π/2, cos−1(eh)) is the

complete elliptical integral of the second order.

The length of a loop leg is calculated as:

Ll =

d2

√
1 + d2

2 − d1

√
1 + d1

2 + ln
d2+
√

1+d2
2

d1+
√

1+d1
2

2a1

 , (2.14)

where d1 = tanα1, d2 = tanα2 and a1 = d2
2−d12
2c

. c is the course spacing, α2 is

the inclination angle of the loop leg to the x-axis and α1 is the loop angle.

Postle’s model

In postle’s model [16], the length of a knit loop is determined by its interlocking

and loop angles. The loop angle, α, is the angle between the loop’s tangent and

the y-axis at the centre locus of the loop while the interlocking angle, β, is the
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angle at the interlocking locus between the loop’s tangent and the y-axis. The

loop leg is considered to be a bent beam while the loop head is considered to be

two equal segments of a circle.

The length of each loop leg is calculated as:

Ll =
p√

2(sinα + sin β)
f(k, γ), (2.15)

where the p is the course spacing and f(k, γ) is the difference between the com-

plete and incomplete elliptical integrals. This difference was calculated as:

f(k, γ) = I(k,
π

2
)− I(k, γ), (2.16)

where I(k, π/2) and I(k, γ), the complete and incomplete elliptical integrals re-

spectively are defined as:

I(k,
π

2
) =

∫ π
2

0

dγ√
1− k2 sin2 γ

, (2.17)

I(k, γ) =

∫ γ

0

dγ√
1− k2 sin2 γ

, (2.18)

and parameters k and γ are calculated as:

k = sin(
π

4
+
α

2
), (2.19)

γ = sin−1

(
1

k
√

2

(
cos

β

2
− sin

β

2

))
. (2.20)

The length of the loop head was calculated as:

Lh =
p(π

2
− β)

2(sinα + sin β)
. (2.21)

Kawabata’s model:

The loop length is calculated based on the inclination angle, and the wale and

course spacings [66]. The loop length is calculated as:

Ll = w +
2p

sin θ
+ πd, (2.22)
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Figure 2.10: Combined knit loop model of Postle and Kawabata models.

where θ is the inclination angle of the loop on the X-axis, the wale spacing,w, is

the width of a knit loop and the course spacing, p, is the height of the knit loop.

It is important to note that the length of the loop legs and heads were not

specified. Therefore, in order to determine these sectional lengths, this model will

have to be combined with other geometrical models [67]. Furthermore, it can be

observed in the geometrical model in Figure 2.10, that the relationship between

the inclination angle and the loop angle proposed in the Postle and Kawabata

models can be determined as

α + θ = 90◦. (2.23)

Others:

Other prominent models include Munden’s [68], Leaf [69], Leaf and Gaskin [70].

The application of these models presents a fertile research area as they could

provide more accurate simulations of a weft knit strain sensor’s electromechanical

behaviour.
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2.3 Weft Knit Strain Sensors

2.3 Weft Knit Strain Sensors

A weft-knit strain sensor is formed by weft knitting conductive yarn. Conductive

yarn can be either a textile yarn (e.g. cotton or polyester) that is coated with

nanomaterials [13] or a multifilament yarn consisting of metallic and textile fibres

[14, 33]. The sensing mechanism of the sensor is dependent on the contact points

between the interlocked loops. Specifically, a contact resistance occurs between

interlocked conductive loops. The contact resistance can be calculated using

Holm’s contact theory as:

Rc =
ρ

2

√
πH

nPr
, (2.24)

where Rc is the contact resistance, ρ is the electrical resistivity, H is the hardness

of the material used, n is the number of contact points and Pr is the contact

pressure between the conducting materials. Typically, the material hardness and

the electrical resistivity are constant based on the properties of conductive yarn

used, while the number of contact points is subject to the sensor’s design. There-

fore, the changes to the contact resistance is dependent on changes to the contact

pressure between the loops.

2.3.1 Sensor Characterisation

In [14], a plain knit sensor was knitted with a stainless steel multifilament yarn.

The resistance of the sensor was observed to reduce during the extension of the

sensor in a strain test. Although the R2 value was not stated, the resistance-

extension relationship of the sensor was seen to be relatively linear. In addition,

the resistance of the sensor was also observed to reduce exponentially as the load

applied on the sensor increased. A 1x1 rib knit sensor was knitted using stainless

steel fibres [71]. Results from the strain test performed on the sensors illustrated

an inverse linear relationship between the sensor’s extension and its resistance.

The piezoresistive behaviour lasted up to extensions of ≈ 85%.

Plain and interlock knitted sensors were created with silver-plated yarns and

stainless steel multifilament yarns [15]. Subsequently, a strain test was performed

on the sensors and the average results were computed. The authors measured the

strain sensing mechanism by comparing the change in resistance (∆R
Ro

) to the strain
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Configuration Piezoresistivity Maximum

sensing %

R2 References

Plain knit Exponential

(inverse)

25 N/A [14]

Rib knit Linear (inverse) 85 N/A [71]

Plain knit Linear (inverse) 20 0.731 [15]

Elastic plain knit

host fabric

Linear 100 0.6652 [15]

Interlock knit Linear (inverse) 60 0.731 [15]

Elastic interlock

knit host fabric

Linear 100 0.831 [15]

Table 2.1: Characterisation of weft knit strain sensors.

of the sensor. It was observed that plain knit sensors showed an inversely linear

relationship between the change in resistance and the sensor’s strain between

0% and 20% strain. The average R2 value was calculated to be 0.7847. For

strain > 20%, the relationship between the change in resistance and the strain

was non-linear. However, no reasons were given for this non-linear piezoresistive

behaviour. Furthermore, elastic plain knit sensors were fabricated by knitting

single courses of conductive yarn into a host elastomeric plain knit fabric and

underwent a strain test. It was observed that a linear relationship between the

strain and the change in resistance was observed up to 100%. This occurred

because the elastic host fabric increased contact between the heads and sinkers

of the individual loops without the intermeshing of these loops. The average R2

value was calculated to be 0.6652.

A strain test was also performed on the interlock knit sensors. It was observed

that the sensors displayed an inversely linear relationship between the strain and

its change in resistance up to 60%. A non-linear relationship was observed in

further increases in strain. The R2 value in the linear phase (0% - 60%) was

calculated to be 0.731. In addition, five elastic interlock knit sensors were created

by knitting single courses of conductive yarn into an elastomeric host interlock

fabric. A strain test was performed on these sensors and their average results

were calculated. It was observed that a linear relationship was observed between
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the strain and the change in resistance of the sensors for up to 100% strain.

Particularly, the R2 value was calculated as 0.816. The increase in the percentage

of strain in the linear phase of the interlock knit sensors as compared to the plain

knit sensors was deduced to occur as a result of the increase in binding regions in

the interlock structure. Based on the R2 value and the range of the linear phase,

the elastic interlock knit sensor was selected as the optimal sensor configuration.

2.3.2 Electrical Modelling

Zhang’s Model

The pioneering electrical modelling of a weft knit strain sensor was proposed by

Zhang et al. [14]. The authors postulated that a plain knit sensor can be mod-

elled as a resistive circuit because of the contact resistances between intermeshed

loops and the length resistance of the yarn itself. The length resistances were

categorised into resistances of the loop legs, Rl, and resistances of the loop heads,

Rh. The stitch length of a loop head was assumed to be equal to the stitch length

of a sinker loop. Therefore, Rh was also used in modelling the resistance of the

sinker loop. In a simplified model, the length resistances were assumed to be

negligible to the contact resistances and were eliminated.

The simplified model of a single conductive loop is illustrated in Figure 2.11b.

V and i1 - i3 represent the voltage and hypothetical currents in the circuit respec-

tively. By employing Kirchoff and ohm’s laws, the matrix expression was derived

as:

v = iR, (2.25)

where

i = [i1, i2, i3]T , (2.26)

v = [0, 0, V ]T , (2.27)

and

R =

 R1,2 +R2,1 +R1,1 −R2,1 −R1,1

−R2,1 −(R2,1 +R3,2 +R3,1) −R3,1

−R1,1 −R3,1 R1,1 +R3,1

 . (2.28)
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a)

b) c)

Figure 2.11: a) Electromechanical model of a weft knit strain sensor. b) Resistive

model of a single knit loop. c) Simulation and experimental model of strain test.

Adapted from [14].

However, the conductive sensor is modelled as a uniform conductive body.

Therefore, all contact resistances are equal across the sensor. Consequently, the

circuit was modelled as: 0
0
V

 =

 3Rc −Rc −Rc

−Rc −3Rc −Rc

−Rc −Rc 2Rc

 i1
i2
i3

 , (2.29)

and the equivalent resistance, Req, was calculated as

Req =
V

i3
. (2.30)

The contact resistance, Rc, was derived empirically from the contact force,

Fn, as:

Rc = 4.14 + 7.59 exp− Fn
0.0679 . (2.31)

As shown in Figure 2.11c, the simulated result depicted a similar slope to the

experimental result but there was a significant distance between the two curves.
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Moreover, the percentage error rate was not specified. However, using a graph-

to-data software and Matlab, the percentage error between the simulated and

experimental results was calculated to be ≈ 26.47%. Furthermore, this study

postulated that the relationship between the contact resistance, Rc, and the total

resistance, Req of the sensor can be derived as:

Req = Rc · Cv, (2.32)

where Cv is a coefficient that varies based on the design of the sensor.

Wang’s Model

Another electrical model of a plain knit sensor was proffered by Wang et al. [67].

This model was based on only the length resistance of the conductive loops. Par-

ticularly, the contact resistances were neglected to reduce the computation time

of the model. This study was purely theoretical and there was no experimental

validation.

In Figure 2.12, a sensor comprising of 2 courses and 1 wale was modelled

utilising only the length resistances. Kirchoff laws and Ohm’s laws were employed

in analysing the circuit. The equations below represent the outcome of the circuit

analysis:

v = iR, (2.33)

where,

i = [I1, I2, I3, I4]T , (2.34)

v = [V, 0, 0, 0]T , (2.35)

and

R =


2(Rh +Rl) −(0.5Rh +Rl) −(0.5Rh +Rl) −Rh

−(0.5Rh +Rl) Rh +Rl 0 0
−(0.5Rh +Rl) 0 Rh +Rl 0

−Rh 0 0 2(Rh +Rl)

 . (2.36)

The equivalent resistance was calculated as:

Req =
V

I1

. (2.37)
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Figure 2.12: Resistive model of a weft knit strain sensor comprising of 2 courses

and 1 wale. [67]

Using Matlab, the equivalent resistance was derived as:

Req =
Rh(Rh + 2Rl)

Rh +Rl

. (2.38)

The resistance of the loop head, Rh, and resistance of the loop leg, were

derived using Peirce’s and Kawabata’s models as:

Rh =
ρπw(1 + ε)

4
, (2.39)

and

Rl =
ρ[2l − πw(1 + ε)]

4
, (2.40)

where w is the width of a knit loop and ρ is the resistivity of the conductive yarn.

Furthermore, this model was implemented in a parametric study [72]. A com-

puter program was developed to simulate the theoretical model. The equivalent

resistance was determined directly from the sensor’s knitting parameters using the

program. The simulation results generally agreed with the experimental results

and validated the accuracy of the model.
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Figure 2.13: Resistive model for an interlock knit sensor [13].

Atalay’s model

Atalay et al. [13] proposed an electrical model for an interlock knit fabric imple-

mented in a heart rate monitoring system. Notably, the contact resistances and

length resistances were depicted in this model as shown in Figure 2.13. However,

the author postulates that the contact pressure at the head of the loops differs

from the contact pressure at the sinker loop. This was as a result of experimen-

tal observation on microscopic images on the knit sensor during a tensile test as

illustrated in Figure 2.14a. Particularly, the conductive loops at the header were

observed to separate completely at 20% strain while the conductive loops at the

sinker loop were observed to separate completely at 55% strain. This observation

has only been recorded in the study while every other study assumes that the

conductive pressure is uniform across the sensor. Perhaps, this was as a result of

the structure used, as Atalay et al.’s study is the only study that has used the

interlock structure.

Similar to Zhang’s and Wang’s models, Kirchoff’s and Ohm’s laws were em-

ployed in analysing the circuit. For a sensor of 8 courses and 21 wales, the matrix

expression was derived from the circuit analysis:
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a) b)

Figure 2.14: a) Contact between interlocked loops during tensile test. b) Simu-

lation and experimental results of tensile test. Adapted from [13].


V
0
0
0
. . .
0

 =


Rs Rcs 0 0 Rs 0 . . . 0
0 −Rcs Rh +Rl Rl 0 0 . . . 0
0 0 0 −Rl −Rs Rch . . . 0
0 0 0 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 . . . Rh +Rl




i1
i2
i3
i4
. . .
i21

 ,
(2.41)

where Rch and Rcs are the contact resistances of the loop head and sinker respec-

tively. Rs,Rh and Rl are the length resistances of the sinker, head and legs of the

knit loop.

The equivalent resistance of the sensor was derived as:

Req =
V

i1
. (2.42)

The length resistances were calculated using Postle’s model. Therefore:

Rh = Rs = ρLo(1 + ε), (2.43)

Rl = ρ
lf − 2Lo(1 + ε)

2
, (2.44)

where lf and Lo are the length of the knit loop and the steady-state length of the

loop head.

36



2.3 Weft Knit Strain Sensors

Although, the paper explains that the contact resistance occurs as a result of

Holm’s contact theory, the parameters used in simulating the contact resistance

are vaguely explained. Furthermore, the percentage error was not reported but

it can be observed in Figure 2.14b that the simulation and experimental results

generally agree.

2.3.3 Effect of Knitting Parameters

Effect of Mechanical preconditioning:

Christina et al. [33] studied the impact of preconditioning on the piezoresistivity

of the sensor. In this study, 4 samples of sensors with knitted with 3 samples

having less than 50% combination of miss and tuck stitches and the last sample

having only knit loop stitches. The last sample served as the control sample.

These samples were preconditioned by performing 250 stretch-recovery cycles

to 16% extension along its course direction. This experiment was repeated at

different elongation rates of 9.6mm/s and 12mm/s, and at different currents.

It was observed that the peak-to-peak span of the sensor’s resistance increased

rapidly in the first few cycles till it got to its maximum value and then reduced

till it got to a settling time after which its peak-to-peak span was relatively

constant. This experiment was repeated after a rest interval. It was observed

that mechanical preconditioning, reduced the maximum peak-to-peak span and

also the settling time of each sensor. Figure 2.15 illustrates the experimental

results for one of the samples. It can be observed that after the preconditioning

that occurred in the first session, the settling time for the second session, Ts2, is

far lower than the settling time for the first first session, Ts1.

Effect of elastomeric yarn input tension

In [37], the effect of elastomeric yarn input tension was studied. The weft knit

strain sensors were knitted by embedding a course of conductive yarn in a host

fabric knitted in an interlock structure with an elastomeric yarn. Sensors were

knitted with the same yarns and number of course and wales. However, the

input tension of the elastomeric yarn was varied to observe its effect on the
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2.3 Weft Knit Strain Sensors

Figure 2.15: Impact of mechanical preconditioning on a weft knit strain sensor

[33]

sensor’s electrical behaviour. It was observed that the steady-state resistance of

the sample group with the higher input tension of the elastomeric yarn was lower

than the sample group with a lower input tension. This occurred because the

higher input tension of the elastomeric yarn increased pressure at the contact

points in the sensor. Consequently, in accordance with Holm’s contact theory

[73], the contact resistance reduces due to the increased contact pressure which

then reduces the equivalent resistance of the sensor. In addition, it was observed

that the gauge factor and the R2 values, which are indicators of the accuracy of

the sensor for linear strain measurements were higher in the sample of sensors

with the higher elastomeric yarn input tension.

Effect of elastomeric yarn type

In order to observe the effect of elastomeric type, different sensors were fabri-

cated with elastomeric yarns of varying densities. The sensors were also created

by embedding a course of conductive yarn in a host fabric knitted in an inter-

lock structure with an elastomeric yarn. All other parameters such as the input
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2.3 Weft Knit Strain Sensors

tension of the elastomeric yarn and the number of courses and wales were kept

constant so that only the impact of the different elastomeric yarns would be ob-

served [38]. Subsequently, the sensors were stretched to 40% strain during the

strain test. It was observed that sensors whose elastomeric yarn had the highest

densities produced the highest R2 values. Furthermore, the results showed that

the increases in the linear density of the elastomeric yarn caused an increase in the

gauge factor of the sensor. These phenomenon occurred because of the increased

thickness of the elastomeric yarn. From these results, we can summarise that an

increase in the contact pressure at the contact points, regardless of whether it is

caused by an increase in the density or the input tension of the elastomeric yarn

leads to a more linear sensor. It is likely that this phenomenon occurs because

a larger starting contact area leads to a longer period for contact between con-

ductive loops to exist during extension. During the period where contact occurs

the resistance of the sensor is relatively linear to its extension. Therefore, a lower

starting contact area or pressure will lead to a lower linear phase of extension

and thus a lower linearity of the sensor.

Effect of conductive yarn input tension

Weft knit strain sensors were fabricated using the same methodology in previous

sections by embedding a course of conductive yarn in a host fabric. The host

fabric was knitted in an interlock structure with an elastomeric yarn. The input

tension of the conductive yarn was varied among the sensors while other knitting

parameters were kept constant [38]. Contrary to the effect of elastomeric yarn

input tension, increases in the conductive yarn input tension resulted in an in-

crease in the initial electrical resistance of the sensor. This occurred as a result of

the interlock structure used in the sensor. Particularly, the increase in the input

tension of the conductive yarn led to a lower stitch length used in the interlock

structure. Consequently, this led to a lower contact pressure at the contact points

and therefore a higher contact resistance and equivalent resistance of the sensor.

However, the higher input tension led to a reduced gauge factor and R2. This

confirms our observation that a lower contact pressure/area leads to lower gauge

factor and R2 value which are representatives of the sensor’s accuracy.
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2.3 Weft Knit Strain Sensors

Effect of number of courses and wales

The effect of changes in the number of courses and wales on a weft knit strain

sensor was investigated by Li et al. [74]. Weft knit strain sensors were fabricated

with varying amount of wales and courses. The results of the study showed that

for a sensor comprising of a small number of wales and a large number of courses,

increases in the number of of wales led to a decrease in the sensor’s resistances and

increases in the number of courses led to an increase in the sensor’s resistance. In

contrast, for sensors consisting of a small number of courses and a large number of

wales, increases in the number of courses caused a decrease in the resistance of the

sensor while increases in the number of wales cause an increase in the sensor’s

resistance. The reason for this phenomena was not explained in this study as

the authors were more concerned about producing an accurate electromechanical

model. However, this phenomena demonstrates the impact of asymmetry on the

resistance of the sensor as an increase in its asymmetry caused an increase in its

resistance while a decrease in its asymmetry caused a decrease in its resistance.

The effect of changes in number of wales and course was also illustrated in

[72]. It was observed that at each percentage of strain, increases in the number

of courses caused a decrease in the electrical resistance while increases in the

number of wales caused an increase in the electrical resistance.

2.3.4 Applications

Although, the use of weft knit strain sensors in HMC applications is nascent, this

section provides a comprehensive review of the few HMC applications utilising

weft knit strain sensors. In particular, Atalay et al. employed an interlock knit

sensor in creating a respiration monitoring system [13]. This system was a belt

that was to be worn on the abdomen (belly). Breathing was measured by the

strain on the knit sensor caused by the expansion and contraction of the abdomen.

Fast fourier transform (FFT) analysis was used to classify data obtained during

various activities such as walking, running, sitting and standing.

A wireless knee sleeve was fabricated by knitting PU/PEDOT:PSS fibres

which were created in a wet spinning process [36]. The knee sleeve was used
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2.3 Weft Knit Strain Sensors

a)

e)d)

b)

c)

Figure 2.16: Human motion sensing applications using weft knit strain sensors. a)

Respiration monitoring band with rib knit sensor [75]. b) Respiration monitoring

belt with interlock knit sensor [13]. c) Running tights with embedded weft knit

strain sensor [76]. d) Multi-use sensing band [77]. e) Wireless knee sleeve [36].

to monitor movements at the knee joint during rehabilitation activites. The col-

lected data was transfered to a PC for further processing using a Shimmer wireless

sensor. Furthermore, a graphene-coated knitted band was created for multiple

sensing applications [77]. It consisted of a knitted polyester fabric coated with

graphene. The sensing band was employed in detecting motion in different parts

of the body including at the throat, finger, wrist and cheeks.

A knee sensing sleeve was manufactured by integrating weft knit strain sen-

sors into running tights [76]. The weft knit strain sensors were knitted using

silver-plated conductive yarn and a elastic spandex yarn. The sensing system

was employed to detect the activities performed by the user and classify them

into running, walking, descending steps and climbing. In addition, another clas-

sification scenario was implemented to recognise whether the user was walking,

sitting or squatting. The gait motion recognition method was based on the de-

cision tree algorithm and it utilised the maximum, variance, median and average
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resistances as selected features.

Furthermore, a 1x1 rib knit sensor was implemented in a respiration sensing

belt [75]. The respiration data obtained from the belt was used in detecting the

standing, sitting and reading posture of the 20 participants. Subsequently, the

authors examined the effect of participant’s weight, height, gender and ethnicity

on the respiration rate (RR) and cycle (RC). Although, the implementation of

a rib knit sensor in this wearable was interesting, the results of the experiments

are speculative. Particularly, Asian male participants were observed to have

higher respiration indices than the African male participants while African female

participants were observed to have higher respiration values than their Asian

female counterparts.

2.4 Chapter Summary

2.4.1 Research Gaps in Textile Strain Sensors

Although research in textile strain sensors is very promising, most studies have

focused on the nanomaterials used to fabricate these sensors. In particular, the

various textiles structures such as knitting and weaving have been largely ne-

glected. Most studies have only focused on the elasticity of the structures and

have neglected the impact of these structures on the piezoresistivity of the sen-

sors. Therefore, investigating the impact of the textile structures on the sensors

creates a novel research gap as there are several textile structures already em-

ployed in traditional textile applications that can be used in creating a strain

sensor. Moreover, the electromechanical behaviour of textile strain sensors is

poorly understood. Current studies are limited to the behaviour of the metallic

materials in the sensor. Therefore, investigating the electromechanical model of

the sensor in terms of the textile structure presents a novel research gap. Ge-

ometrical models of these structures can be adapted to accurately simulate the

piezoresistivity of the sensors.

In addition, textile sensors are known to have high elasticity, but they also tend

to have a low linearity, a high hysteresis and a high drift. Therefore, designing

a sensor configuration that has a high linearity, a low hysteresis and low drift
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while still maintaining the high elasticity will increase its performance in HMC

applications. Furthermore, the use of machine learning to classify the output of

textile sensors is underutilised. Machine learning algorithms may still accurately

classify the output of the sensors in spite of the drift and hysteresis. In particular,

the use of machine learning in the classification of the output of textile sensors

can aid the adoption of textile strain sensors in HMC applications.

Finally, there are very few HMC applications that comprise of textile strain

sensors. Although, textile sensors have the potential to disrupt wearable technol-

ogy because of their inherent advantages, there are very few studies to illustrate

this potential in HMC applications. Therefore, a research framework is needed

to illustrate the incorporation of textile sensors in a wearable device.

2.4.2 Conclusion

In this chapter, a comprehensive review of textile strain sensors has been provided.

Thereafter, knitting terminologies were described to aid the understanding of this

thesis. Furthermore, an exhaustive overview of research on weft knit strain sensors

was presented. All relevant studies on the characterisation, modelling, simulation

and application of weft knit strain sensors were discussed in this chapter.
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Chapter 3

Electromechanical Model of a

Weft Knit Strain Sensor:

Influence of Loop and

Interlocking Angles.

In this chapter, a novel electromechanical model of a weft knit strain sensor is

proposed. This model comprises of length resistances derived by Postle’s geomet-

rical model and contact resistances derived from the equivalent resistance. The

accuracy of this model is validated experimentally. In addition, a parametric

study is simulated to investigate the effect of changes in the interlocking and loop

angles on the piezoresistivity of the sensor.

3.1 Introduction

Research into the use of weft knitting to create textile sensors has rapidly ad-

vanced due to their potential to create wearable devices (wearables) which are

wholly textile [78]. Additionally, these wearables are less obtrusive than conven-

tional alternatives and have a higher chance of commercial adoption especially in

motion capture applications. Particularly, they can serve as a more comfortable

and less intrusive progress monitor and an input device for AR/VR rehabilitation

exercises.
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3.1 Introduction

Although the potential applications of weft knit strain sensors in wearables

are remarkable, most studies are purely experimental and do not provide enough

theoretical background that may guide design choices in applications. However,

there are a few studies that have presented a theoretical analysis of the electrome-

chanical properties of weft knit strain sensors. In particular, Zhang et al. [14]

proposed a model based on the hexagon model derived by Wu et al. [79] to simu-

late the electromechanical properties of a weft knit fabric made from conductive

yarn. Furthermore, the model was based on a plain knit, a base structure of weft

knit and the conductive yarn was modelled as a perfect intrinsic conductor. How-

ever, the model attempted to simulate the relationship between the resistance of

the fabric and the load applied but neglected to justify the relationship between

the fabrics resistance and its extension. Moreover, the model overlooks the effect

of length resistances (i.e. resistances of the heads and legs of the loops) on the

total resistance of the fabric.

Additionally, Wang et al. [67] proffered a hexagon electromechanical model of

a weft knit strain sensor created from conductive yarn. The total loop length was

calculated using the Kawabata model [66], while the Peirce loop model [80] was

used to determine the length of the head and legs of the loop. In a subsequent

study [72], an optimised model was developed by simulating the tensions in the

legs and heads of the loops using Popper model [81] to determine the force applied

on the sensor. However, both studies only modelled the resistance of the sensor

on the length resistances and failed to consider the contact resistance between

the conductive loops.

Conversely, Atalay et al. [13] postulated the electromechanical model of a weft

knit strain sensor which was based on the interlock knit, another base structure of

weft knitting. Furthermore, this model simulated both the contact resistances and

the length resistances. The length resistances were also calculated with Peirce’s

model.

Although, the various electromechanical models used in these studies pro-

vide a reasonable accurate simulation of the sensor’s piezoresistivity, they do not

illustrate how knitting parameters might affect the sensor’s resistive behaviour.

In contrast, there are experimental studies that have investigated how knitting

parameters affect the sensor’s piezoresistivity. Particularly, Atalay et al. [37]
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[38] investigated the effect of the input tension and the linear density of the

elastomeric yarn, and the input tension of the conductive yarn. It was observed

that increasing the input tension of the elastomeric yarn decreased the electrical

resistance of the sensor while increasing the input tension of the conductive yarn

increased the electrical resistance of the sensor. Furthermore, increasing the

linear density of the conductive yarn decreased the electrical resistance of the

sensor. These phenomena occurred because the input tension and linear density

affected the contact pressure between the interlocking loops. Additionally, the

effect of mechanical preconditioning was investigated in [33]. It was observed

that preconditioning reduced the peak-to-peak span of the sensor’s resistance till

it reached a stabilised value. These studies although yielding interesting results

do not provide a theoretical model to analyse the cause of these effects.

It is clear that in order to design a weft knit strain sensor, a concise analy-

sis of how knitting geometrical parameters affect the sensor’s resistive behaviour

must be understood. In this chapter, an electromechanical model of the sen-

sor’s behaviour is proposed using two major knitting parameters, the loop and

interlocking angles. The accuracy of this model is verified experimentally. Fur-

thermore, a parametric study of the impact of loop and interlocking angles on

the sensor’s piezoresistivity is performed.

3.2 Methodology

3.2.1 Electromechanical Model of a Weft Knit Strain Sen-

sor

The electromechanical model of a weft knit strain sensor can be best described

by a resistive hexagonal model illustrated in Figure 3.1. This model comprises

of the length resistances and the contact resistances. The loop resistances are

the resistances across the loop head and loop leg which are represented by Rh

and Rl respectively while the contact resistance, Rc, is the resistance between the

interlocking loops. Additionally, the basic assumptions in this model are:

1. Perfect contact occurs between interlocking loops.
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3.2 Methodology

Figure 3.1: Geometrical model and Equivalent Resistive Model of a Weft Knit

Strain Sensor. α is the loop angle, β is the interlocking angle and p is the course

spacing.

2. All respective lengths of the loop heads and loop legs are equal throughout

the sensor.

The resistive model of a weft knit strain sensor with three wales and three

courses is illustrated in in Figure 3.2. A circuit analysis is shown below to depict

how the equivalent resistance is calculated.

In represents the hypothetical currents in n mesh of the circuit. Using Kir-

choff’s voltage law and Ohm’s law, the hypothetical currents are calculated as:

i = R−1v, (3.1)

where

i =


I1

I2

. . .
I14

 , (3.2)
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Figure 3.2: Resistive circuit model of a weft knit strain sensor with 3 courses and

3 wales.

R =



RRLC −Rh 0 −Rc 0 0 0 0 0 0 0 0 0 −(Rl +Rh)
−Rh RRLC −Rh −Rl −Rc 0 0 0 0 0 0 0 0 0

0 −Rh RRLC 0 −Rl 0 0 0 0 0 0 0 0 0
−Rc −Rl 0 RRLC −Rh −Rc −Rl 0 0 0 0 0 0 −Rh

0 −Rc −Rl −Rh RRLC 0 −Rc −Rl 0 0 0 0 0 0
0 0 0 −Rc 0 RRLC −Rh 0 −Rc 0 0 0 0 −(Rh + 2Rl)
0 0 0 −Rl −Rc −Rh RRLC −Rh −Rl −Rc 0 0 0 0
0 0 0 0 −Rl 0 −Rh RRLC −Rl 0 0 0 0
0 0 0 0 0 −Rc −Rl 0 RRLC −Rh −Rc −Rl 0 −Rh

0 0 0 0 0 0 −Rc −Rl −Rh RRLC 0 −Rc −Rl 0
0 0 0 0 0 0 0 0 −Rc 0 RRLC −Rh 0 −(Rl +Rh)
0 0 0 0 0 0 0 0 −Rl −Rc −Rh RRLC −Rh 0
0 0 0 0 0 0 0 0 0 −Rl 0 −Rh RRLC 0

−(Rl +Rh) 0 0 −Rh 0 −(Rh + 2Rl) 0 0 −Rh 0 −(Rl +Rh) 0 0 5Rh + 4Rl



, (3.3)

RRLC = 2(Rc +Rl +Rh), (3.4)

v =


0
0
. . .
V

 . (3.5)

The equivalent resistance is then calculated as:

Req =
V

I14

. (3.6)
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3.2.2 Determination of Length Resistances

The length of the loop head and legs are derived using the Postle model [16]. In

this study, the loop length of the head and legs can be derived from the loop angle

and the interlocking angles. The loop angle, α, is the angle between the loop’s

tangent and the vertical at the centre locus of the loop while the interlocking

angle, β, is the angle at the interlocking locus between the loop’s tangent and

the vertical.

To derive the length of the loop leg, it is considered as a bent beam. The

difference between the complete and incomplete elliptical integral is first obtained

as:

f(k, γ) = I(k,
π

2
)− I(k, γ), (3.7)

where I(k, π/2) and I(k, γ), the complete and incomplete elliptical integrals re-

spectively are defined as:

I(k,
π

2
) =

∫ π
2

0

dγ√
1− k2 sin2 γ

, (3.8)

I(k, γ) =

∫ γ

0

dγ√
1− k2 sin2 γ

, (3.9)

and parameters k and γ are calculated as:

k = sin

(
π

4
+
α

2

)
, (3.10)

γ = sin−1

(
1

k
√

2

(
cos

β

2
− sin

β

2

))
, (3.11)

The length of the loop leg is then calculated as:

Ll =
p√

2(sinα + sin β)
f(k, γ), (3.12)

where p is the course spacing.

To determine the length of the loop head, Lh, the loop head is considered to

be two equal segments of a circle with a diameter, d. The length of each segment,

lseg is defined as:

lseg =
(π

2
− β)d

2
, (3.13)
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where the diameter, d, is defined as:

d =
p

2(sinα + sin β)
. (3.14)

Hence, the length of the loop head,Lh is calculated as:

Lh =
p(π

2
− β)

2(sinα + sin β)
. (3.15)

Rl and Rh are length resistances based on the resistivity of the conductive

yarn and the loop length of the fabric and are described as:

Rl =
ρ · Ll
Ar

, (3.16)

Rh =
ρ · Lh
Ar

, (3.17)

where ρ is the resistivity of the conductive yarn and Ar is the cross-sectional area

of the conductive yarn.

3.2.3 Determination of Contact Resistance

The contact resistance is usually determined using Holm’s contact theory which

postulates that a contact resistance exists when there is sufficient contact between

two conductors. This theory was applied to the weft knit strain sensor because of

the conductive properties of its conductive yarn. Therefore, the contact resistance

can be calculated as:

Rc =
ρ

2

√
πH

nPr
, (3.18)

where, Rc is the contact resistance, ρ is the electrical resistivity, H is the hardness

of the material used, n is the number of contact points and Pr is the contact

pressure between the conducting materials.

Typically, the material hardness and the electrical resistivity are constant

based on the properties of conductive yarn used, while the number of contact

points is subject to the sensor’s design. Therefore, the changes to the contact

resistance is dependent on changes to the contact pressure between the loops.
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Consequently, the weft knit strain sensor is a piezoresistive sensor because its

contact pressure varies based on the strain applied to the sensor. However, the

geometrical complexity of a weft knit strain sensor has prevented the researchers

from predicting or measuring the contact pressure between interlocking loops.

Therefore, alternative methods such as measuring the contact force experimen-

tally during tensile strain have been proposed to determine the contact resistance

[14] [13].

Furthermore, Zhang et al. [14] proposed from empirical observations that the

contact resistance of the sensor can be determined from the equivalent resistance

of the sensor. This relationship was presented as:

Req = Rc · C, (3.19)

where C is a variable coefficient based on the number of courses and wales. By

observing the calculation of the equivalent resistance from the circuit analysis in

equations (3.1)-(3.6). We derive that:

R−1
end = Req, (3.20)

where R−1
end is the last element in the inverse matrix of the resistance matrix, R.

Therefore,

R−1
end = K ·Rc, (3.21)

where K is the coefficient of the contact resistance in R−1
end and can also be

represented as a function of the length resistances.

K = f(Rh, Rl). (3.22)

This method is satisfactory for simulating fabrics with a small amount of

courses and wales but it is very computationally intensive to simulate relatively

large fabrics (>15 wales and >15 courses). Therefore, we propose a method that

determines the contact resistance from the experimental equivalent resistance in

a less computationally demanding control algorithm. This method is illustrated

in Algorithm 1. By initialising K with any positive value, the contact resistance

can be determined from the experimental equivalent resistance. Subsequently,
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the algorithm optimises the contact resistance by comparing the current simu-

lated resistance to its previous value. The algorithm stops updating the contact

resistance when the difference between the current contact resistance and the pre-

vious value is less than 3% of the current contact resistance. This threshold was

selected because the difference in the accuracy of the model becomes insignificant

below the threshold.

Algorithm 1 Contact Resistance solution

1: Initialise :

2: Rsim ← 0

3: K ← 0 < K < inf

4: Loop:

5: Rc = Rexp/K

6: Input Rc into modelled circuit to determine Rsim

7: if |Rsim(n) −Rsim(n−1)| > (0.03 ·Rsim(n)) then

8: K = Rsim(n)/Rc

9: goto Loop

10: else

Return Rc

11: end if

. Rsim and Rexp are the simulated and experimental equivalent

resistances respectively

3.2.4 Model Simulation and Validation

The model proposed above is simulated using Matlab and LTspice with parame-

ters shown in Table 3.1. Additionally, the proposed model was validated exper-

imentally by fabricating a sensor plain knitted with a conductive multifilament

yarn. The conductive yarn was a Schoeller multifilament yarn comprising 80%

polyester and 20% stainless steel and was purchased from Uppingham Yarns Ltd.

The yarn is fairly inelastic although it is stated to have a maximum extension of

5.5% according to its specification sheet. Its yarn count and linear density were

also stated as 2/50Nm and 400 dtex respectively.
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(a) (b)

Figure 3.3: (a) Experimental setup with Instron 3369 and multimeter, (b) Weft

knit strain sensor.

The sensor illustrated in Figure 3.3 was fabricated with Shima Seiki Mach2s

and dry relaxed for 48 hours to ensure it reached its stable-equilibrium state. It

was then subjected to a tensile test in the wale-wise direction using an Instron

3369 tensile machine at a speed of 10mm per minute till the sensor reached its

breaking point while its resistance was measured simultaneously with a multi-

meter. The experimental setup is also depicted in Figure 3.3. Subsequently, the

percentage error between the results of the proposed model and the experimental

results was determined.

In addition, we investigate the impact of changes in the loop and interlocking

angles on the piezoresistivity of the weft knit strain sensor. In particular, we per-

form a parametric study by creating varying simulation cases with different loop

and interlocking angles to observe their effect. Furthermore, the range of angles

selected in the simulation cases are based on geometrical limitations imposed by

width and length jamming [16].
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Table 3.1: Numerical Parameters for Simulation and Experimental Validation.

Parameters Values

Number of courses 72

Number of wales 72

α(◦) 24.75

β(◦) 10.85

ρ(ohm ·mm) 300

Loop spacing (mm) 3

Yarn Diameter (mm) 0.4

3.3 Results

3.3.1 Model Simulation and Validation

Figure 3.4 shows the simulation and the experimental results while Figure 3.5

shows the percentage error between the two results. It can be observed that

the resistance curves between extension span of 2% and 14.6% are very similar.

During this span, the mean percentage error was 10.4%. However, Between the

0%-2% span, there was a significant disparity between the simulated and exper-

imental results. This is likely as a result of the 2-dimensional limitations of the

proposed model because in reality the sensor is 3-dimensional.

Another factor for this disparity might be the lack of mechanical precondi-

tioning which was intentionally avoided as it was outside the scope of this study.

Particularly, mechanical preconditioning would have led to a reduced initial re-

sistance as a result of stabilisation. Furthermore between the ranges 14.6%-16%,

the disparity is also significant. This occurred because the sensor was close to

its breaking point. Although the sensor is modelled in ideal conditions where

contact across all loops are equal, it was observed that loops at the middle break

contact before other loops. Nevertheless, the mean percentage error between the

simulated and experimental results along the entire tensile range was 16.63%.

Another empirical observation was the minor instability in the sensor’s resistive

behaviour under tensile strain. This was caused by sensory noise common to

analog sensors and can be smoothened using conventional filtering techniques.
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Figure 3.4: Simulated and experimental results of a weft knit strain sensor during

tensile test.

3.3.2 Effect of Loop and Interlocking Angles on the Piezo-

resistivity of a Weft Knit Strain Sensor

The impact of changes in the loop angle is illustrated in Figure 3.6. The inter-

locking angle and other parameters were kept constant so that only the effect of

changes in the loop angle will be observed. As a result of geometrical limitations

caused by width and length jamming, only values between 23.7◦ - 25.8◦ were sim-

ulated as the loop angle. It was observed that although increases in the loop angle

were directly proportional to the increases in the initial resistance, the change in

the initial resistance between the maximum and minimum loop angles was only

2.27%. This was as a result of the small range of 2.1◦ between the maximum and

minimum loop angles.

The effect of changes in the interlocking angle was also investigated. The loop

angle and other parameters were kept constant while the interlocking angle was

varied between 3.7◦ - 18◦. This range was also selected due to the geometrical

limitations caused by width and length jamming. It was observed in Figure 3.7
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Figure 3.5: Percentage error between the simulated and experimental results.

that increases in the interlocking angle caused the initial resistance to decrease.

Particularly, the change in initial resistance between the minimum and maximum

interlocking angles was 25.5%. Additionally, the mean resistance across the tensile

test reduced as the interlocking angle increased. The decrease in mean resistance

was calculated to be 22.2% between the lowest and highest interlocking angles.

This occurred because increases in the interlocking angle decreased the lengths of

the loop head and the loop legs, which then reduces their respective resistances

and thus the equivalent resistance of the sensor.

Furthermore, it was observed that the loop and interlocking angles did not

affect the overall exponential relationship between the sensor’s resistance and

its extension. This is because the loop and interlocking angles only affect the

length resistances and not the contact resistance which represents the shape of

the sensor’s resistance-extension curve.
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Figure 3.6: Effect of Loop angle on weft knit strain sensor (β = 10.85, Cn =

72,Wn = 72)
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Figure 3.7: Effect of Interlocking angle on weft knit strain sensor (α =

24.75, Cn = 72,Wn = 72)
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3.4 Conclusion

In this study, we have presented a resistive model of a weft knit strain sensor

based on its loop and interlocking angles. Particularly, we have ensured that

the length resistances and the contact resistances were considered. Moreover,

we simulated this model using Matlab and LTspice software and verified the

results experimentally. The mean percentage error between the simulated and

experimental results was calculated as 16.63%. Furthermore, a parametric study

was performed to investigate the impact of the loop and interlocking angles on the

sensor’s piezoresistivity. It was observed that increases in the loop angle caused

proportional increases in the initial resistance of the sensor up to a maximum

increase of 2.27% while increases in the interlocking angle caused a decrease in

the initial and mean resistance of the sensor up to a maximum decrease of 25.5%

and 22.2% respectively.
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Chapter 4

Weft Knit Data Glove

In this chapter, we design a weft knit strain sensor with a novel configuration

of conductive yarn and elastomeric yarn to improve the extensibility of the sen-

sor. Thereafter, we simulate the piezoresistivity of the sensor and validate it

experimentally using the methodology established in Chapter 3. A lightweight

textile glove embedded with these weft knit strain sensors was manufactured us-

ing WholeGarment technology. This eliminated the use of an external attachment

between the sensors and the rest of the glove as seen in traditional data gloves.

Furthermore, the reliability of the glove is verified experimentally and classical

machine learning algorithms are implemented in classifying the glove’s data.

4.1 Introduction

Stroke is one of the major causes of disabilities in adults. A major challenge most

stroke survivors face is the loss of their motor skills, especially the individual

finger movements in the hand [82, 83]. Although only 15% fully recover, a large

majority will relearn some of their motor skills by performing repetitive tasks in

therapy [84]. A key factor in improving rehabilitation is progress measurement.

Progress measurement involves collecting the data on the relearning rate of the

affected joint and the patient’s recovery in general. Furthermore, 45% of post-

stroke patients return home and still need ongoing therapy to recover their motor

skills [85]. Therefore, only patients who can afford private therapists who visit to

take measurements have chances of a full recovery. Even with a private therapist,
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there is a chance that their visits might not coincide with rare occurrences that

are important to the patient’s progress measurement [86].

Therefore, an approach is needed that enables the collection of data from the

patient’s hand without the need to schedule a therapist’s appointment. There are

two major methods in measuring the flexion of finger joints and they are camera-

based and data glove approaches. Camera-based approach involves the use of

a camera and markers in which images acquired are processed to calculate the

flexion at the joints [87, 88]. Although the accuracy of this approach has been

improved by the use of more novel and complex image processing techniques,

they are not commercially feasible in remote monitoring due to privacy concerns

as these cameras can be vulnerable to attacks and could be used to record the

private lives of the patients. Furthermore, the use of stationary cameras deprives

the patient of free movement as they have to be stationary for the camera to

accurately capture the fingers motion. Multiple cameras such as in [89] could

alleviate this problem but this increases cost and may be higher than the cost of

multiple therapist home visits.

In contrast, data gloves provide a cheaper and more efficient alternative as the

patient can wear it while performing their daily activities. However, the conven-

tional design of data gloves prevent their large scale adoption in the rehabilitation

industry. Particularly, the conventional design comprises of an external attach-

ment that adheres the sensors to the support structure. The support structure is

usually a textile glove that places the sensors at the phalangeal joints. This design

causes the data glove to be bulky and produce inconsistent results progressively

with the degradation of the attachment. Table 4.1 illustrates a summarised review

of different data gloves, highlighting their sensors and the method of attachment.

Fabric padding is the most common method of attachment in data gloves. It

involves placing strain sensors such as fibre-optic and flex sensors in between

multiple layers of fabric in a textile glove. Popular commercial data gloves such

as Cyberglove and 5DT 5 Ultra have utilised this method [90, 91, 92, 93]. How-

ever, this leads to at least three layers of sensor and support structure which

causes a bulky data glove and might impede the progress of patients in sensitive

applications.
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Table 4.1: A Comparison of Data Gloves.

Type of Sensor Attachment Method Reference

Conductive elastomer composites Ink printing [94]

Fibre optical sensors (5DT 5 Ultra) Fabric padding [90, 91, 93]

Hall effect sensors Fabric padding [95]

Piezo-resistive sensors (Cyberglove) Fabric padding [92]

Magnetic sensing coils Electrical wires [96]

Flex sensors Fabric padding [97, 98, 99,

100, 101]

Accelerometers (KHU-1) Hook-and-loop fasteners [102]

Flex sensors Cyanoacrilic glue [103]

Bend sensors and IMUs Fabric padding [104]

Conductive polymer (PEDOT:PSS)

ink

Ink jet printing [105]

IMUs and force sensors Cable ties [106]

IMUs Hook-and-loop fasteners [107, 108]

Soft sensor Silicon rubber curing [109]

IMUs Textile cables [110]

Metalized fabric conductors Sewing and fabric

padding

[111]

Bend sensors (Shadow glove) Plastic sheath padding [112]

Semi-Conducting scotch tape Fabric padding [113]

Ink printing is a great lightweight alternative to the fabric padding method as

it involves printing conductive ink on a textile glove at phalanx joint locations.

This ensures that the glove is not as bulky as the number of layers are limited to

one in most places and two in the phalanx joints [94][105]. However, conductive

inks are vulnerable to environmental degradation which will lead to inconsistent

results when the data gloves are not used in the optimal environmental condi-

tions. Other chemical methods of attachment such as silicon rubber curing and

cyanoacrilic glue are also degradable and will eventually lead to distorted results.

In contrast, weft knit strain sensors present a unique potential in the design

of wearable devices as the sensors and the support structure can be created in a
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single knitting process. Particularly, knee sleeves and respiration belts have been

developed using weft knit strain sensors [13, 36, 76]. However, there has been no

data glove created with weft knit strain sensors.

Therefore, this chapter presents a weft knit smart data glove capable of mea-

suring the finger flexion at the interphalangeal joints is proposed. Furthermore,

this glove utilises WholeGarment technology to fabricate the sensors and the

support structure in a single manufacturing process thus eliminating the need for

an external attachment. This ensures that the glove is unobtrusive, lightweight

and accurate. Additionally, the glove is commercially feasible because custom-

sized data gloves can be manufactured easily as we depart from a one-size-fits-all

philosophy.

In addition, a novel loop configuration comprising of an elastomeric yarn and a

conductive yarn is knitted in a plain structure to create the sensor. Moreover, the

electromechanical behaviour of this sensor is modelled using Postle’s geometrical

model [16] and validated experimentally. The advantage of using Postle’s model is

that it enables the modelling of the length of the loop legs and head based on the

loop’s interlocking and loop angles. Finally, the weft knit data glove is validated

in terms of its consistency and the performance of some classical machine learning

algorithms on the application of the glove in a classification scenario is evaluated.

4.1.1 Related Work

Weft knitting is one of the most popular knitting techniques and it involves

interlocking loops of yarn in a horizontal direction such that the feet of the loop

legs lock with the head of the previous knitting cycle’s loops [57]. Therefore,

when conductive yarn is weft knitted, contact resistances occur because of the

interlocking of conductive loops. The contact resistance is dependent on the

contact pressure between the interlocked loops which varies based on the load

applied on the sensor [74, 114, 115].

Consequently, the weft knit strain sensor is classified as a piezoresistive sensor

due to the changes in the resistance of the sensor caused by the applied load.

The conductive yarn could be a yarn coated with conductive ink or a multifila-

ment yarn comprising of stainless steel fibres. Multifilament conductive yarns are
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preferable to silver-coated yarns in the creation of wearable sensors because they

are more environmentally stable [78]. Furthermore, the behaviour of the sensor

is dependent on the sensor’s knit structure and its knitting parameters.

The strain sensing properties of weft knit fabric knitted with conductive yarn

was investigated in [14]. The sensor was knitted in a plain knit structure with

a stainless steel multifilament conductive yarn and tested experimentally to ob-

serve the sensor’s piezo-resistivity. It was observed that the resistance of the

sensor reduced exponentially as the load applied increased. This occurred be-

cause the contact resistance formed by the contact between the interlocked loops

of conductive yarns varied due to the change in contact pressure caused by the

load applied.

Furthermore, the effect of mechanical preconditioning was investigated in [33].

Different sensors were knitted in a plain knit structure but with different loop

configurations and were experimentally tested. Subsequently, it was observed

that mechanical preconditioning caused the resistance of the sensors to reduce

till it reached a stabilised value.

In addition, Atalay et al. [37, 38] investigated the effect of the conductive

yarn’s input tension and linear density on the sensor’s piezo-resistivity. In con-

trast, the sensor was knitted in an interlock structure. It was observed that the

electrical resistance of the sensor increased when the input tension or the linear

density was decreased. This effect materialised because the input tension and the

linear density affected the contact pressure between the intermeshed loops.

Despite the breakthroughs in these investigations, there have been few studies

illustrating the application of weft knit strain sensors in motion capture. Particu-

larly, a heart monitoring belt was developed using an interlock knit strain sensor

[13]. The belt measured heart rate from the expansion and contraction of the ab-

dominal area. Moreover, the sensor’s electromechanical model was derived from

the Peirce’s [63] geometrical model. This model derived the lengths of the loop

head and legs from the diameter of the yarn used. Additionally, the sensor was

knitted with conductive yarn made by coating non-conductive yarn with silver.

Conventionally, the creation of knitted garments followed the design method-

ology of current data gloves. It involved knitting the different parts of the gar-

ment separately and then attaching them by sewing. However, the introduction
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of WholeGarment technology has facilitated the fabrication of entire knitted gar-

ments in a single process. This is relevant in the creation of textile sensors because

it enables the creation of both the sensors and the non-conductive support struc-

ture in the same fabrication process. Additionally, in applications which might

require a complex design of the sensor such as for progress measurement in the

knee or ankle, it enables the creation of the sensor in a single process. This is

advantageous because sewing different parts of the sensor together will impact

the extensibility and the piezoresistive behaviour of the sensor.

4.1.2 Contributions

The main contributions of this chapter are as follows:

1. We propose a novel sensor configuration comprising conductive yarn and

elastomeric yarn to increase the flexibility of a weft knit strain sensor. In

addition, we modify the electromechanical model in Chapter 3 to simu-

late the piezoresistivity of the sensor configuration. The accuracy of the

simulated model is verified experimentally in a tensile test.

2. We design a novel textile data glove comprising of weft knit strain sensors

with no external attachment between the sensors and the support structure.

The configuration of the sensors are novel and we observe their repeatability

in a flexion-extension experiment.

3. We investigate the effect of drift in the sensor’s output on the performance

of machine learning algorithms in a classification scenario. Notably, it is

the first time machine learning algorithms have been utilised in classifying

data from a weft knit strain sensor.

4.2 Weft Knit Strain Sensor

The weft knit strain sensor was designed with a novel combination of conductive

and elastomeric yarn knitted in a plain knit structure. The design is illustrated

64



4.2 Weft Knit Strain Sensor

Conductive 

course

Elastomeric 

course

Conductive 

cross-cover

Contact point

Elastomeric 

cross-over

𝛼

𝛽

Loop head
Loop legs

Loop sinker

p

Figure 4.1: Design of the weft knit strain sensor. α is the loop angle, β is the

interlocking angle and a course represents a horizontal row of knitted loops.

in Figure 4.1. Unlike in Chapter 3 where the sensor was knitted with only con-

ductive yarn, we integrated an elastomeric yarn to create a more elastic sensor.

Particularly, we achieve this by knitting 50% of the courses with elastomeric yarn

in a pattern where a course of conductive yarn courses is succeeded by a course

of elastomeric yarn loops and is repeated till the last course of the sensor. The

elastomeric yarn is a double covered yarn comprising of 82.76% Nylon and 17.24%

Lycra. It has a maximum extension of 320% and was purchased from Stretch-

line UK. In addition, a plain knit structure was selected ahead of an interlock

structure because interlock knitted fabrics are less extensible than plain knitted

fabrics.

4.2.1 Electromechanical Model

The circuit in this sensor differs from the sensor shown in the Chapter 3 because

of the addition of a non-conductive elastomer. However, the methodology used to

derive the length and contact resistances in Chapter 3 is utilised in the electrome-

chanical model of this sensor. Moreover, the same conductive yarn is used in the

fabrication of this sensor. It is a multifilament yarn comprising of 80% polyester

and 20% stainless steel. Due to its metallic properties, its length resistances of
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Figure 4.2: Circuit model of the weft knit strain sensor. (Z − 1) is the number

of wales in the sensor.

the loop head and legs were modelled as Rh and Rl while the contact resistances

between interlocking conductive yarn loops were modelled as Rc. The model also

follows the basic assumption that the geometry of each loop is constant across

the sensor.

As a result of the knitting action of the cam box in a knitting machine, when

two yarns are used interchangeably across different courses, there is a crossover

at the edge of the fabric between the previous and the current course knitted by

the same yarn. In this sensor, the crossover between the conductive courses is

modelled as Rco. The combination of the resistances in a conductive course and its

respective crossover is termed as a conductive section. The equivalent resistance

of each n conductive section is modelled as Rn
s . Therefore, the circuit of the sensor

represented in Figure 4.2 represents a series network of conductive sections and

the number of conductive sections is equal to the number of conductive courses

in the sensor.

V n
s represents the voltage across each conductive section. Due to the afore-

mentioned modelling assumption stating that the geometry of each conductive

loop is constant across the sensor, the equivalent resistances of the conductive sec-

tions are equal. Thus, the voltage across each conductive section, V n
s is calculated

as:
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V n
s =

V

n
, (4.1)

where V is the voltage across the sensor. Let I1 - IZ represent the hypothetical

currents flowing in the meshes of the circuit (as shown in Figure 4.2) and are

solved using Kirchoff voltage law and Ohm’s law as:

i = R−1v, (4.2)

where in a sensor with 72 courses (36 conductive courses) and 36 wales (i.e.

Z=37),

i = [I1, I2, . . . , I36, I37]T , (4.3)

v = [V n
s , 0, . . . , 0, 0︸ ︷︷ ︸

36zeros

]T , (4.4)

R =


18(Rc +Rh) +Rco −Rc −Rh . . . −Rh

−Rc Rc +Rh + 2Rl −Rl . . . 0
−Rh −Rl Rc +Rh + 2Rl . . . 0
−Rc 0 −Rl . . . 0
. . . . . . . . . . . . . . .
−Rc 0 0 . . . Rc +Rh + 2Rl

 . (4.5)

The equivalent resistance of each conductive section is calculated as:

Rn
s =

V n
s

I1

. (4.6)

4.2.2 Determination of Length Resistances

The length resistances are derived from the Postle’s geometrical model of a weft

knit loop [16]. This model determines the length of the loop legs and head from

the loop and interlocking angles of the loop. The loop angle, α, is the angle

between the loop’s tangent and the vertical at the centre locus of the loop while

the interlocking angle, β, is the angle at the interlocking locus between the loop’s

tangent and the vertical.

By considering the loop leg as a bent beam, its length was derived as:

Ll =
p√

2(sin(α) + sin(β))
f(k, γ), (4.7)
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where p is the course spacing. f(k, γ) is the difference between the complete and

incomplete integrals and can be calculated as:

f(k, γ) =

∫ π
2

0

dγ√
1− k2 sin2(γ)

−
∫ γ

0

dγ√
1− k2 sin2(γ)

, (4.8)

and parameters k and γ are calculated as:

k = sin
(π

4
+
α

2

)
, (4.9)

γ = sin−1

(
1

k
√

2

(
cos

(
β

2

)
− sin

(
β

2

)))
. (4.10)

The length of the loop head was considered to be the sum of two equal seg-

ments of a circle and is derived as:

Lh =
p(π

2
− β)

2(sin (α) + sin (β))
. (4.11)

The resistances of the held loop’s legs and head are then calculated as:

Rl =
ρLl
Ar

, (4.12)

Rh =
ρLh
Ar

, (4.13)

where Ar is the cross-sectional area of the conductive yarn. The length of the

crossover was empirically observed to be twice the course spacing, p. Therefore,

the resistance of the conductive crossover is calculated as:

Rco =
2p · ρ
Ar

. (4.14)

4.2.3 Determination of Contact Resistance

Contact resistance only occurs when there is contact between two conductors.

Particularly, it occurs at the contact between the conductive loop legs as illus-

trated in the enlarged frame in Figure 4.1. According to Holm’s contact theory,

the contact resistance can be calculated as:
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Rc =
ρ

2

√
πH

nPr
, (4.15)

where, Rc is the contact resistance, ρ is the electrical resistivity, H is the hardness

of the material used, n is the number of contact points and Pr is the contact

pressure between the conducting materials.

Typically, the material hardness and the electrical resistivity are constant

based on the properties of conductive yarn used, while the number of contact

points is subject to the sensor’s design. Therefore, the changes to the contact

resistance is dependent on changes to the contact pressure between the loops.

However, simulating or predicting the contact pressure between the interlock-

ing loops has proven cumbersome due to the geometrical complexity of a weft

knit strain sensor. Therefore, alternative methods such as obtaining the contact

resistance empirically from the contact force have been proposed [13]. However,

Zhang et al. [14] suggested from experimental observations that the relationship

between the contact and equivalent resistances can be depicted as:

Req = RcD, (4.16)

where D is a variable coefficient based on the sensor design.

By using a control algorithm illustrated in Algorithm 2, we determine the

contact resistance from the equivalent resistance. The algorithm is initialised

with any positive value as D. Subsequently, the algorithm employs a control

feedback by inputting the calculated contact resistance into the modelled circuit.

The output equivalent resistance termed asRsim is then used to determine the new

coefficient, D. The optimised contact resistance is produced when the difference

between the previous simulated equivalent resistance and its current value is

less than 3% of the current value. This threshold was chosen empirically as no

significant change in accuracy of the model was detected below the threshold.

4.2.4 Model Validation

This model was verified by fabricating sensors with the aforementioned sensor

design and the knitting parameters enumerated in Table 4.2. Subsequently, the

sensors were dry relaxed for 48 hours to remove any excess strain between the
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Algorithm 2 Contact Resistance Solution

1: Initialise :

2: Rsim ← 0

3: D ← 0 < D < inf

4: Loop:

5: Rc = Rexp/D

6: Input Rc into modelled circuit to determine Rsim

7: if |Rsim(n) −Rsim(n−1)| > (0.03 ·Rsim(n)) then

8: D = Rsim(n)/Rc

9: goto Loop

10: else

Return Rc

11: end if

. Rsim and Rexp are the simulated and experimental equivalent

resistances respectively.

loops as a result of the knitting process. The sensors were then put through

a tensile test in an Instron3369 tensile machine where it was extended till 35%

extension while its resistance was measured with a digital multimeter. The loop

configuration of the sensor and the experimental setup are shown in Figure 4.3.

Furthermore, a simulation of the model was also performed using Matlab and

LTspice with the same numerical parameters.

4.3 Data Glove

The weft knit data glove was designed using Shima Seiki’s sds one apex3 apparel

CAD software such that the weft knit strain sensors were located at the distal and

proximal interphalangeal joints while the rest of the glove was knitted with the

same elastomeric yarn used in the sensors. Particularly, the sensors were knitted

to wrap around the joints to maximise its sensitivity. The elastomeric yarn was

selected for the rest of the glove because it provides a tight and flexible fit that

is optimal for sensing applications while also providing a comfortable experience

for the user. WholeGarment technology enabled the knitting of all sensors and
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(a) (b)

Figure 4.3: (a) Experimental setup with Instron 3369 and Multimeter. (b) Image

of sensor’s loop configuration.

the support structure of the glove in a single manufacturing process without any

external attachment. The glove design and the fabricated glove are illustrated in

Figure 4.4. The glove was knitted with Shima Seiki Mach2s which is equipped

with WholeGarment technology. Furthermore, the dimensions used in knitting

the glove were selected based on the main author’s hand size. This illustrates

its commercial feasibility as several data gloves can be fabricated based on sizes

similar to the creation of conventional fabrics.

4.3.1 Data Acquisition

A data acquisition system is embedded in the glove to transmit data to a com-

puter. Particularly, it consists of a microprocessor and a set of resistors that

form a voltage divider circuit with the ADCs (analog-digital converter) of the

microprocessor. The microprocessor used was an Arduino lilypad and it was se-

lected because of its 6 analog inputs which can be connected to the sensors via
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Table 4.2: Numerical parameters for Simulation and Experimental Validation

Parameters Values

Number of conductive courses 36

Number of elastomeric courses 36

Number of wales 36

α 24.75◦

β 10.85◦

Course spacing 3mm

Yarn diameter 0.4mm

Resistivity 300(ohm·mm)

Data upload

Power

Wholegarment 

knitting 

technology

Measurement 

setup

Design

Knitted

Data glove

Data glove with its 

embedded 

acquisition system

Figure 4.4: Block diagram illustrating the design and implementation of the weft

knit Data glove.

sewing. Particularly, the sensors at the PIP (proximal interphalangeal) joints

are connected to the analog inputs of the microprocessor by sewing conductive

thread in front of the glove. Furthermore, the sensors were also connected to the

negative pin of the microprocessor at the back of the glove to prevent a short

circuit between the positive and negative threads. These analog inputs have in-

dividual ADCs that convert analog voltages between 0 and 3.3volts to digital

values between 0 and 1023. This allows the microprocessor to read the data of all

fingers in parallel. The microprocessor was programmed to transmit data from

the sensor at a frequency of 20 Hertz. However, the analog output of weft knit

strain sensors is electrical resistance, therefore a voltage divider circuit is required
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(a) (b)

Figure 4.5: Robotic hand used for glove evaluation. (a) Side view (b) Front view

illustrating its motors.

to convert the sensor’s resistance to voltage. The sensor voltage is obtained as:

Vsensor = Vinput ·
Rsensor

Rfixed +Rsensor

, (4.17)

where Vsensor is the calculated sensor’s voltage, Vinput is the input voltage, Rfixed is

a fixed resistor value and Rsensor is the variable resistance of the weft knit strain

sensor. Furthermore, the computer also provides power to the microprocessor

although a coin-cell battery can be embedded in the glove to enable it store data

for upload at a later date.

4.3.2 Glove Evaluation

The robotic hand shown in Figure 4.5 was applied as an emulation tool in eval-

uating the glove’s sensor. Its joint angle was set accurately without constraints

such as fatigue and stability that may plague human participants when instructed

to maintain a posture for a considerable period. The robot was obtained com-

mercially and consists of stepper motors that control the joints at each finger. All

evaluations were performed with the proximal interphalangeal joint of the middle

finger of the robot.
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4.4 Results and Discussion

Flexion and Extension

The first experiment consists of the opening (extension) and closing (flexion) of

the hand. This test simulates one of the prominent hand motions and depicts

the repeatability of the sensor. The robot was programmed to perform this at a

frequency of one oscillation every 9 seconds.

Drift

Weft knit strain sensors are known to observe phenomena such as hysteresis and

drift that negatively impact the sensor’s output [37]. Drift occurs when the

sensor’s output stray away from the original measurement when the extension of

the sensor is constant.

A second experiment was performed to visualise the drift in the sensor and

illustrate the use of machine learning in reducing the impact of this phenomenon

in a classification scenario. In this scenario, the sensor’s output was recorded

when the joint was held at 0◦, 15◦, 30◦, 45◦, 60◦ and 75◦ for 90 seconds. The first

15 seconds and the last 15 seconds were eliminated to remove the noise caused

by the impact of switching to the next angle. Subsequently, classical machine

learning algorithms such as Support vector machines (SVM), Linear Regression

and näıve Bayes were used to classify the sensor’s output.

4.4 Results and Discussion

4.4.1 Model Validation

The average experimental and simulation results of the strain test are illustrated

in Figure 4.6. The sensor exhibits an exponential relationship between its resis-

tance and extension. The piezoresistivity plot of the sensor can be divided into

three phases. In the first two phases, the sensor resistance decreases linearly as

the sensor is extended but the slope of decrease varies between the two phases. In

the third phase, the sensor’s resistance is relatively constant. This occurs because

at this level of extension, the contact resistances between certain conductive loops
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Figure 4.6: Experimental and simulation results of strain test.

in the sensor are negligible. The first linear phase occurs between 0% and 6% ex-

tension, the second linear phase occurs between 6% and 25%, and the third phase

occurs after 25% extension. Our simulation results largely agree with the experi-

mental results. Particularly, the average percentage error between the simulation

and experimental for the entire range of extension was 11.47%. However, the

error was lower when excluding the third phase. The average percentage error in

the linear phases was 7.33% while the average percentage error in the third phase

was 21.66%. The increase in the error in the third phase ensued because of the

difficulty in simulating the specific loops whose contact resistances are negligible

when the sensor is extended beyond 25%. Particularly, our simulation assumes

uniform behaviour across all knit loops in the sensor but in reality, this is not the

case especially as the sensor approaches its breaking point.

In addition, we illustrate the relationship between the derived contact resis-

tance and the simulated equivalent resistance at each level of strain in Figure

4.7. We observed that the change in contact resistance between the conduc-

tive loops is directly proportional to the change in the equivalent resistance of

the sensor. Moreover, the R2 value of its linear fit was calculated to be 0.9742,

thereby showing a high linearity of the relationship between the contact resistance
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Figure 4.7: Relationship between the contact resistance between the conductive

loops and the equivalent resistance of the sensor.

and the equivalent resistance. This is important because it can simplify future

simulations of the electromechanical behaviour of weft knit strain sensors. Fur-

thermore, this relationship explains the contact between the loops as the sensor is

stretched. From equation 4.15, we observe that the contact pressure is inversely

proportional to the contact resistance. Therefore, since the equivalent resistance

is directly proportional to the contact resistance, we assume that the equivalent

resistance is inversely proportional to the contact pressure. Furthermore, by ob-

serving the relationship between the equivalent resistance and the extension of

the sensor in Fig 4.6, we derive that the contact pressure between the conductive

loops increases exponentially as the sensor is extended.

4.4.2 Glove Evaluation

Flexion and Extension

Figure 4.8 shows the result of the flexion and extension at the robot’s joint. It

was observed that the sensor’s output was noisy particularly at the peaks and
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troughs of the signal. Therefore, a Savitzky-Golay filter (polynomial order of 5

and window length of 85) was applied on the output. Savitzky-Golay was selected

because of its advantage in removing noise while still preserving the shape of the

signal. In addition, it has been deployed in the filtering of the output of weft

knit strain sensors [33]. The selection of its configuration was chosen empirically

by varying the polynomial order and its window length till an optimal result

was observed. The filter removes most of the noise that was present in the raw

signal and illustrates the repeatability of the sinusoidal oscillations in the sensor’s

output. However, there are still minor distortions in the filtered signal. These

distortions represent the hysteresis and drift common in weft knit strain sensors.

Drift

The sensor’s output at each angle threshold in the drifting experiment is shown

in Figure 4.9. This figure provides a preliminary visualisation of the experiment’s

results. The mean and median values illustrate the skew of the data. We observed

that the output of the sensor reduced as the angle increased for most of the

experiment. However, changes in the angles at the beginning and end of the

experiment opposed this observation. This was expected as prior experimental

results from the tensile test had shown instability and non-linearity in the sensor’s

output at the beginning and end of its extension respectively.

A detailed visualisation of the data is illustrated in Figure 4.10 with an his-

togram plot and its probability distribution fit. As illustrated in the histogram

plots, the sensor’s output fluctuates despite the fixed angle of the robot’s joint.

However, we observe that the most of the data were within a limited range dur-

ing these fluctuations. Particularly, we observe that the data at each angle were

mostly distributed into two classes. Therefore, we implemented a mixed Gaus-

sian distribution (MGD) using expected maximisation (EM) algorithm [116] to

provide an accurate fit of the data. We also limited the number of classes to two

based on our empirical observations to prevent overfitting. From the MGD fits,

we observed that one class was significantly smaller than the other class in terms

of the density. We hypothesise that the smaller class is noise and the bigger class
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Figure 4.8: Flexion and extension experimental result.
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Figure 4.9: Data plot of drift experimental result. Mean and median are shown

to illustrate skew of data.
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Figure 4.11: Mixed gaussian distribution fits of the sensor’s output at various

angles.

is the real signal. However, we did not eliminate the noise to prevent biasing the

results of the classifiers.

Furthermore, we plot the MGD fits of all angles in Figure 4.11. This depicts a

comprehensive view of the effect of drift on the sensor’s output. We observed that

drift causes the distribution fits of some angles to overlap each other. Particularly,

the drift in the sensor’s output at 0◦ and 75◦ may reduce the accuracy of a linear

classifier. Therefore, although drift occurs at every angle in the experiment, the

impact on classification is worse when considering the instability and non-linearity

of the sensor’s output at specific sections of its extension.

Subsequently, we evaluate the performance of three classifiers in accurately

classifying the sensor’s data. These classifiers are SVM, Linear Regression and

näıve Bayes algorithms [117, 118]. Particularly, each classifier is evaluated on its

performance in classifying the data of a specific angle from all other angles. The

performance metric for evaluating the classifiers is the area under the receiver

operating curve. Firstly, a confusion matrix comprising of the true positive rate

(TPR) and the false positive rate (FPR) of the classifier is computed. The TPR is

the proportion of correctly identified data values while the FPR is the proportion
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Figure 4.12: Area under the ROC for the different classifiers at the various angles.

of incorrectly identified data values. The TPR and FPR for each classifier is

plotted as a receiver operating curve (ROC). The area under the ROC (AUC) is

then calculated using the trapezoidal rule.

The classification results are shown in Figure 4.13 and Figure 4.12. We ob-

served that näıve Bayes classifier performed better than other classifiers with an

average AUC of 0.9327 while linear regression and SVM had an average AUC

of 0.7667 and 0.6557 respectively. Linear regression under-performed because as

observed in the visualisation of the data, the overlap of data from different angles

complicate the linear classification of the data. Moreover, this also explains why

SVM under-performed because of the difficulty of its linear kernel in classifying

the data. It is likely that if a non-linear kernel such as the Gaussian kernel is

implemented, it would improve its performance. However, näıve Bayes classifier

performed adequately because it assumed the independence of each feature in

deriving the probability of the feature vectors.
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4.5 Conclusion

4.5 Conclusion

In this chapter, we have proposed a wholly textile data glove capable of measur-

ing the joint angles of the interphalangeal joints. We achieved this by creating

its novel weft knit strain sensors and its textile support structure in a single fab-

rication process. Additionally, we presented the electromechanical model of its

sensors and verified it experimentally. Moreover, we evaluate the repeatability of

the glove in a flexion and extension experiment. The results show that when a

filter is applied to remove the noise, the consistency of the glove is verified. Fur-

thermore, we evaluate three machine learning algorithms in classifying the output

of the data. We observe that the drift in the sensor limits the performance of

linear classification algorithms. However, the performance of näıve Bayes clas-

sifier illustrates that a non-linear classifier can perform excellently in classifying

the glove’s output.

Future work will investigate the performance of deep learning algorithms in a

real-world classification scenario such as grasp or gesture recognition.
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Chapter 5

Grasp Classification with

Weft-knit Data Glove using

Convolutional Neural Networks

Deep learning algorithms have been shown to classify data more accurately than

classical machine learning algorithms. In this chapter, we apply a deep learning

algorithm, a convolutional neural network (CNN), to classify data acquired from

human participants using the data glove in two grasp classification scenarios. In

addition, we compare the classification accuracy of CNN with classical machine

learning algorithms applied on the data set. The results show that the simple

CNN algorithm outperforms these classical machine learning algorithms.

5.1 Introduction

The use of weft knit strain sensors in wearable devices provides a substantial

potential in designing textile wearable devices that are light weight, flexible and

accurate [14]. Wearable devices that comprise of weft knit strain sensors include a

knee sleeve and a respiration belt [13, 76]. In Chapter 4, we designed a lightweight

textile data glove whose sensors and support structure are wholly textile. The

entire glove is fabricated in a single manufacturing process thus eliminating the

need for an external attachment between the support structure and the strain

sensors. We achieved this by weft knitting conductive yarn and an elastomeric
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5.1 Introduction

yarn into weft knit strain sensors and weft knitting the rest of the glove with the

elastomeric yarn using WholeGarmentTM technology. Consequently, our data

glove provides the feel and appearance of normal clothing while being capable of

sensing strain.

Classification of the acquired data into comprehensible information is vital for

the increased adoption of wearable devices as it is impractical for physiotherapists

to understand the raw data. The use of machine learning in conjunction with

a data glove to classify acquired data into various sign languages is quite popu-

lar [119, 120, 121]. However, only a few studies have utilised machine learning

techniques in classifying the grasps performed with a data glove. Particularly,

Bernardin et al. [122] employed HMM to classify gestures made with a sensor

fusion of tactile sensors and Cyberglove. The gestures were classified using Ka-

makura taxonomy into four major categories: power, intermediate, precision and

thumbless grips. Classification accuracy was an average of 85.25% for the single-

user system and 91.5% for the multiple-user system. In addition, Heumer et al.

[123] compared 28 different classifiers categorised into Lazy, function approxi-

mators, Tree-based and Rules-based and Bayes classifiers in the classification of

grasps performed using a Cyberglove. It was observed that on average, function

approximating classifiers performed best with a minimum and maximum accu-

racy of 81.41% and 86.8% respectively. Although, the results of these classical

machine learning algorithms are quite promising, they are limited by the selection

of their hand-crafted features. The performances of these algorithms are limited

because they rely on the manual selection of features that best represent the data.

In contrast, deep neural networks (DNN) extract optimal features directly

from the data by its layer-by-layer processing and in-model feature transforma-

tion. This has enabled DNN to outperform classical machine learning techniques

in various applications such as computer vision, speech recognition and disease de-

tection [124, 125, 126, 127, 128, 129, 130]. Convolutional neural networks (CNNs)

are the most popular DNN algorithms. Typically, they comprise of stacked con-

volutional filters, activation and pooling layers that enable its optimal selection

of discriminative features in a time-series data. CNN algorithms have been very

successful across several fields particularly in the field of rehabilitation using elec-

trocardiography (ECG) and electromyography (EMG) data [131, 132, 133, 134].
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Furthermore, CNN algorithms have been employed in grasp classification,

albeit using a camera-based method. Notably, images of 500 objects were clas-

sified into four categories: pinch, tripod, palmar wrist neutral and palmar wrist

pronated. In an offline test, the CNN algorithm performed at an accuracy of 85%

for seen objects and an accuracy of 75% for unseen objects [135]. Seen objects

were objects used for the algorithm’s validation that were included in the training

data while unseen objects were validation objects that were not included in the

training data and were therefore novel to the algorithm.

In addition, CNNs have been utilised successfully in other glove-based gesture

classification. The taxonomies in these studies include sign languages and custom

taxonomies[136, 137, 138]. In particular, CNN was used to classify hand poses

acquired with a data glove [139]. The classification accuracy was computed to be

89.4%. However, the study was limited to only one participant.

Although CNN algorithms have performed excellently across several classifica-

tion applications, to the best of our knowledge, they have not been implemented

in grasp classification using a data glove. Therefore, in this chapter, we propose

applying CNN in classifying grasps performed with the weft knit data glove. We

compare the results with popular classical machine learning algorithms. Our re-

sults show that the simple CNN architecture outperforms the classical machine

learning algorithms.

5.2 Materials and Methods

5.2.1 Data Glove

In this study, we utilise the data glove illustrated in Chapter 4. As shown in

Figure 5.1, it is a wholly knitted textile glove with no external attachment be-

tween the support structure and the strain sensors. This was achieved by knit-

ting the sensors and the support structure in a single fabrication process using

WholeGarmentTM technology. Data is transmitted by sewing conductive thread

from the sensors in the data glove to the analog-digital converters (ADC) located

in the microprocessor (Arduino Lilypad). A voltage divider circuit enables the
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ADC to convert the resistance of the weft knit strain sensors to digital values be-

tween 0 and 1023. The microprocessor is connected to a computer (Intel I7-8750H,

16GB RAM, Nvidia GTX1060) for offline processing on MATLAB R2019. The

USB port of the computer also powers the microprocessor. Furthermore, positive

and negative connections are prevented from creating a short circuit by sewing

the negative connections at the back of the glove and positive connections at the

front of the glove. The measurement setup is depicted in Figure 5.1(b) and (c).

(a) (c)(b)

Support 

structure

Weft Knit 

sensors

Figure 5.1: (a) Fabricated weft knit data glove, (b) Front view of the data glove

and its embedded measurement setup, and (c) Back view illustrating connection

with conductive thread.

5.2.2 Experimental Setup

This study was approved by the Faculty Research Ethics Committee of University

of Leeds, UK (reference: MEEC 19-006). There were five healthy participants

in this study including three males and two females. All participants signed an

informed consent form. The ethical approval of this study and the consent form

is shown in Appendix A.

The Schlesinger taxonomy [140, 141] was used in this study for selecting the

grasp types. This taxonomy is widely known to be the earliest study to accurately
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Table 5.1: Objects used in the experiment and their grasp types

Grasp Type Objects

Cylindrical Water bottle, flask, coffee cup, can, plastic bottle.

Hook Mug, bag strap, headphones, kettle, back pack.

Lateral Key, CD, ruler, id card, spoon.

Palmar breadboard, phone, match box, multimeter, plastic case.

Spherical Lemon, orange, apple, mouse, onion.

Tip Pen, pencil, chopstick, stylus, ball pen.

Cylindrical Hook SphericalPalmarLateral Tip

Figure 5.2: Grasp types of objects used in the study (Schlesinger taxonomy).

categorise the different grasps of a human hand [142]. We selected this taxon-

omy as a research constraint that acts as a base in which more patient-tailored

taxonomies can be built upon.

For each grasp type shown in Figure 5.2, 5 objects were selected for the

experiment. These objects and their corresponding grasp type are enumerated in

Table 5.1. The participants performed five grasps per object thereby providing a

total of 750 samples (5 participants x 5 grasps x 30 objects). Each grasp was for

30 seconds and participants were allowed to take breaks during the experiment

to prevent fatigue.
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5.2.3 Data Pre-processing

Data was recorded by the glove at a frequency of 20 hertz from the five sensors

located at the distal interphalangeal joints. For each 30 seconds grasp of an

object, 3000 (600 x 5 sensors) data values were recorded. This data obtained in

the time series represents the signal features. As CNN requires a 3d image as an

input, each grasp is represented as a 600x5x1 array. A short transition time was

implemented between each new grasp to facilitate the collection of data. This

transition time was later removed from the data to ensure that only the grasping

period was recorded from the glove. In addition, this eliminated the complexities

that involve the starting position of the grasping hand.

We perform no feature extraction or filtering of the data for CNN or the

classical machine learning algorithms as this study aims to show the performance

of algorithms in classifying raw data from weft knit strain sensors. Particularly,

as research on classification using weft knit strain sensors is still nascent, it would

be impractical to extract features manually.

5.2.4 CNN Algorithm

Convolutional Neural Networks are feed forward deep neural networks consisting

of stacks of convolutional and pooling layers and then one or more fully connected

layers [143, 144]. The convolutional layers employ convolution in extracting the

features from the input data. Particularly, feature maps are generated by con-

volving the input signal with filters (kernels) consisting of neurons with learnable

weights and biases. The convolution operation of the g-th feature map on the

f -th convolutional layer located at position (a, b) can be described as:

va,bf,g = σ

bf,g +
∑
i

Xf−1∑
x=0

Yf−1∑
y=0

wx,yf,g,iv
a+x,b+y
f−1,i

 , (5.1)

where bf,g is the feature map’s bias, wx,yf,g,i is from the weight matrix, X and Y

are the kernel’s height and width respectively, and σ(·) is a non-linear activa-

tion function such as Rectified Linear Unit (RELU), Sigmod or Tanh. In our

architecture we use a RELU non-linear function and it can be represented as:

σ(k) = max(0, k). (5.2)
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A pooling layer is added between convolutional layers to increase the invari-

ance of the feature maps to minor changes in the input. It achieves this by

aggregating the neighbouring outputs as a representative of the spatial region.

In earlier studies, average pooling was the standard. However, maximum pooling

has become the benchmark in state-of-the-art CNN approaches [143]. Similar to

traditional neural networks, the fully-connected (FC) layer(s) classifies the input

signal based on the extracted features obtained from previous layers.

5.2.5 CNN Architecture

An ablation study was performed to determine the optimal CNN configuration.

Four parameters (i.e. the number of convolutional blocks, the number and size

of convolutional filters, and the dropout layer’s probability) were varied to create

16 CNN configurations. These parameters are known to significantly impact

the performance of a CNN [145]. The configurations and their parameters are

shown in Table 5.2. All other parameters were constant for all configurations.

In particular, each convolutional block had a rectified unit layer (RELU) acting

as a nonlinear activation function, a downsampling pooling layer with filters of

size 2x1 and a dropout layer to reduce overfitting. The last convolutional block

was connected to a fully-connected layer with 6 hidden units representing the 6

grasp types, a softmax layer which employs a cross entropy loss function and a

classification layer. Moreover, the networks were trained at a dynamic learning

rate using stochastic gradient descent. The initial learning rates were 0.001 and

were reduced by 95% after every 10 epochs. The batch sizes were fixed at 16 and

the number of epochs was 36.

These configurations were utilised in classifying the data in two experiments.

In the first experiment, one grasp was used as the validation data while the re-

maining 4 grasps were used as the training data i.e (80% training data and 20%

validation data). Thereafter, cross validation was performed by repeating the

experiment 5 times where each grasp was utilised as the validation data. In the

second experiment, the CNN configurations were trained with 4 out of 5 objects

with the remaining object as the validation data i.e (80% training data and 20%
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Figure 5.3: CNN architecture (C15) for grasp classification.

validation data). Cross validation was also performed by repeating the experi-

ment 5 times where each object was used as the validation data. The average

accuracy of each CNN classifier in both experiments was calculated. These exper-

iments were performed on Participant 1’s data with the aim of utilising the best

CNN configuration in terms of classification accuracy on an expanded experiment

comprising of all participants.

The results of this study are also shown in Table 5.2. It was observed that

CNN configurations with two convolution blocks had a higher accuracy than

similar configurations with only one convolutional block. However, the higher ac-

curacy occurred at a computation cost as observed in the increased run times seen

in configurations with two convolutional blocks. In particular, configurations with

two convolutional blocks had run times that were on average 1.5 seconds longer

than similar configurations. However, the aim of this ablation study was to se-

lect the optimal CNN configuration in terms of its accuracy. Therefore, classifier

C15 illustrated in Figure 5.3 was seen to achieve the highest average classifica-

tion accuracy and was selected as the optimal CNN configuration. Moreover, in

comparison with configurations with two convolutional blocks, the computation

time of C15 was relatively low. No further optimisation of C15 was performed

in its implementation on the expanded experiment. This study was important in

ensuring that the optimal parameters were selected for the CNN algorithm.
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Table 5.2: CNN configurations and their respective parameters.

Config. Conv.

Filter

size

Number

of Conv.

Filters

Number

of Conv.

blocks

Dropout

Proba-

bility

Accuracy Run

time

C1 3x2 32 1 0.1 81.00 4.5s

C2 3x2 32 1 0.2 82.67 4.4s

C3 3x2 32 2 0.1 83.67 6.0s

C4 3x2 32 2 0.2 82.00 6.1s

C5 3x2 64 1 0.1 79.67 5.0s

C6 3x2 64 1 0.2 76.33 5.0s

C7 3x2 64 2 0.1 83.67 6.7s

C8 3x2 64 2 0.2 81.00 6.9s

C9 3x3 32 1 0.1 78.67 4.7s

C10 3x3 32 1 0.2 80.67 5.0s

C11 3x3 32 2 0.1 83.67 6.3s

C12 3x3 32 2 0.2 82.00 6.1s

C13 3x3 64 1 0.1 81.00 5.1s

C14 3x3 64 1 0.2 78.33 5.1s

C15 3x3 64 2 0.1 86.00 6.2s

C16 3x3 64 2 0.2 82.34 6.3s

5.2.6 Classification Scenarios

In this study, we evaluate the performance of the selected CNN (C15) and other

algorithms on the following classification scenarios. These scenarios are:

Object Seen

This scenario exemplifies applications where the validation objects are known.

That is, the objects in the validation data are part of the training data. Tradi-

tionally, classifiers will achieve high accuracy in this scenario but because weft

knit strain sensors experience hysteresis and drift, the performance of the classi-

fiers will be adversely affected. In this scenario, the classifiers were trained with

4 out of 5 grasps of an object and validated with the last grasp of the object (i.e.
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120 images for training and 30 images for validation per participant). Cross val-

idation was performed by repeating this experiment 5 times where each grasp of

an object was selected as the validation data and computing the average accuracy.

Furthermore, this was repeated for all participants and the average accuracy was

recorded.

Object Unseen

This scenario illustrates applications where the objects grasped by the patient

are unknown. It ensures that the therapist is provided with some information

about the grasp type despite the object being held by the patient is not part of

the training data set. In these experiments, the classifiers were trained with 4

out of the 5 objects in each grasp type and were validated with the last object

(120 images for training and 30 images for validation per participant). Similar

to the object seen experiment, cross validation was performed by repeating the

experiment 5 times where each object was selected as the validation data and the

average accuracy was computed. In addition, the experiment was repeated for

all participants.

5.2.7 Comparative Machine Learning Techniques

In this study, popular machine learning techniques were implemented to compare

their performance with the CNN in the various applications. These techniques

include k-nearest neighbours (k-nn), Support Vector machine (SVM) and Decision

Trees (trees) [108, 146, 147, 148, 149]. The default parameters in Matlab R2019’s

Machine Learning Toolbox were selected for the various configurations of these

techniques. As there are no classification studies with weft knit strain sensors,

these parameters were chosen from a popular and reliable toolbox to provide a

verifiable comparative study.

k-nearest neighbours (k-nn)

k-nn is a probabilistic pattern recognition technique that classifies a signal output

based on the most common class of its k nearest neighbours in the training data

[150]. The most common class (also referred to as the similarity function) can
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be computed as a distance or correlation metric. In this study, we select the

Euclidean distance as the similarity function as it is the most commonly used

metric in k-nn. The number of k-neighbours was varied to be 1, 10 and 100 for

fine, medium and coarse k-nn techniques respectively. The probability density

function p(M, cj) of the output data M belonging to a class cj with jth training

categories can be computed as:

p(M, cj) =
∑
nzεknn

d(M, nz)V (nz, cj), (5.3)

where nz is a neighbour in the training set, V (nz, cj). The Euclidean distance

d(M, nz) of output data M and neighbour nz can be calculated as:

d(M, nz) =

√√√√ k∑
z=1

(Mz − nz)2. (5.4)

Gaussian SVM

Traditionally, support vector machines (SVM) is a supervised learning method

used for performing linear classification. However, the data obtained during ex-

periment cannot be separated using linear hyperplanes because of the close re-

semblance of some grasp types and the hysteresis and drift that occur in a weft

knit strain sensor [151]. In order to use SVMs for non-linear classification, we ap-

ply Gaussian kernels which can map the data into an unlimited dimension space.

Three variations of Gaussian SVM were implemented by selecting 7.9, 32, and

130 on the kernel scale for fine, medium and coarse Gaussian SVM respectively.

The decision function for Gaussian SVM classification of pattern data u can be

represented as:

f(u) = sign

( h∑
k=1

λkck exp
(−‖uk − u‖2

2σ2

)
+ t

)
, (5.5)

where ck is the class label for the k-th support vector uk, λk is the Lagrange

multiplier, and t is the bias.
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Decision Tree

Decision tree is a supervised learning technique that aims to split classification

into a set of decisions that determine the class of the signal [152]. The output of

the algorithm is a tree whose decision nodes have multiple branches and its leaf

nodes deciding the classes. Three configurations of the Decision tree algorithm

were implemented by varying the maximum number of splits as 100, 20 and 4 for

fine, medium and coarse Decision tree respectively.

5.3 Results

5.3.1 Object Seen

Figure 5.4 illustrates the accuracy of the classifiers when the object to be grasped

is known. CNN outperforms all the classical classifiers with an average accuracy

of 88.27%. This accuracy is slightly lower than results obtained by commercial

data gloves in other classification scenarios. This is caused by the drift that occurs

in weft knit strain sensors. Drift causes the output of the sensor to stray despite

the absence of change in its extension.

Figure 5.5 illustrates the confusion matrix of the average results of all par-

ticipants in the object seen scenario. The confusion matrix shows that grasps

of Hook, Lateral, Spherical and Tip are classified excellently at 87.2%, 92.8%,

92% and 92.8% respectively. In contrast, the average classification accuracy of

Cylindirical and Palmar grasps were significantly lower at 80% and 84.8% respec-

tively.

Figure 5.6 depicts a detailed view of the average classifier class performance

on each participant. CNN outperforms all classifier classes for each participant in

terms of its mean accuracy. In particular, it outperforms other classifier classes

by an average of 21% in terms of its mean classification accuracy. Moreover,

CNN achieves an accuracy of 99.33% for Participant 5 (P5) because the glove

was manufactured to fit the hand size of this participant.
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Figure 5.4: Object seen. Bars represent mean accuracy of the classifier and

error-bars illustrate the standard deviation.

Figure 5.5: Confusion matrix depicting the average results of the object seen

scenario.
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Figure 5.6: Detailed results of object seen. Bars represent mean accuracy of

the classifier class performance for each participant and error-bars illustrate the

standard deviation.

5.3.2 Object Unseen

Figure 5.7 depicts the accuracy of the classifiers when the validation object is

unknown. This exemplifies applications where the glove may be used to grasp

objects not within the training data. It was observed that the accuracy of the

classifiers in this scenario were lower than the accuracy seen in object seen sce-

nario. This was expected as it is common in glove-based gesture classification

because the validation objects are not part of the training data (i.e., they are un-

known). Nonetheless, CNN outperforms the classical machine learning methods

with an average accuracy of 75.73%.

Figure 5.8 illustrates an expanded view of the performance of each classifier

class on the participants. CNN outperforms other classifier classes in each par-

ticipant in terms of its mean accuracy. Particularly, for P5, it outperforms the

next best classifier class by 23.8%.
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Table 5.3: Accuracy of CNN classifier for each participant in the two classifica-

tion scenarios
Participants Object seen Object unseen

Mean Std. Mean Std.

P1 91.33 2.66 76.00 4.90

P2 87.33 9.29 74.00 13.40

P3 80.67 4.90 69.33 12.54

P4 82.67 6.80 66.67 8.69

P5 99.33 1.33 92.67 9.98

Average 88.27 5.00 75.73 9.90

Figure 5.9 depicts the confusion matrix of the average results of all participants

in the object unseen scenario. Similar to the results obtained in the object seen

scenario, the algorithm struggled with classifying Cylindrical and Palmar objects

with classification accuracy of 63.2% and 68.8% respectively. In contrast, higher

classification accuracy were achieved in Hook, Lateral, Spherical and Tip objects

with accuracy of 72.8%, 84%, 79.2% and 86.4% respectively.

5.4 Discussion

In the last decade, the implementation of convolutional neural networks in sev-

eral applications has been very popular. These applications include image and

text classification, disease recognition and gait classification. In these applica-

tions, CNN has outperformed popular machine learning algorithms because of its

ability to automatically extract features from the data set. In contrast, machine

learning algorithms require manual feature extraction techniques such principal

component analysis or dimensionality reduction to produce accurate classifica-

tion accuracy. However, despite its popularity, there has been no research on

its application to grasp classification from data obtained with a piezoresistive

data glove. Therefore, this study aims to bridge that gap by implementing a

CNN architecture that outperforms classical machine learning algorithms in this

application.
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Figure 5.7: Object unseen. Bars represent mean accuracy of the classifier and

error-bars illustrate the standard deviation.

Our results show that a simple CNN architecture outperforms k-nn, Gaussian

SVM and Decision Tree algorithms in both classification scenarios. Moreover,

the simplicity of our CNN architecture is intentional. Particularly, the absence

of research illustrating the implementation of CNNs in this application caused

us to investigate the performance of a simple architecture before applying more

complex CNN architectures.

In addition, the results in Table 5.3 illustrate that the accuracy of all algo-

rithms are higher for P5 (participant 5) than for other participants. This tran-

spired because the data glove was created to fit the hand size of this participant.

This illustrates the potential of textile wearables, as the one-size-fits-all con-

straints can be eliminated by fabricating these devices alongside the conventional

size measurements (for example: XS-extra small, S-small, M-medium, L-large

etc.) that have been used in the clothing industry for several decades. Therefore,

by utilising weft knit strain sensors, higher classification accuracy can be achieved

by creating perfectly fitting wearables based on the user’s physical dimensions.
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Figure 5.8: Detailed results of object unseen. Bars represent mean accuracy of

the classifier class performance for each participant and error-bars illustrate the

standard deviation.

Furthermore, the results of this study in Table 5.4 show that the average

accuracy of most classifiers reduced in the second classification scenario. This

scenario depicted an application of the glove where the grasp type of the ob-

ject is unknown. Consequently, the validation data set comprises objects not

in the training data set. Therefore, it is a more difficult classification problem

for the algorithms. However, despite this difficulty, CNN still outperforms other

classifiers.

Although, CNN outperforms other classifiers, its average accuracy among the

participants is less than 90%. However, we have shown that for participants

for whom the glove is specifically designed for, then the average accuracy was

much higher (>99% for seen objects and >92% for unseen objects) regardless of

whether the validation object was part of the training set. This is remarkable

for classification using weft knit strain sensors as they are still technologically

immature and struggle with hysteresis and drift. This is a fertile area for further
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Figure 5.9: Confusion matrix depicting the average results of the object unseen

scenario.

Table 5.4: Accuracy of the classifiers in the two classification scenarios. The

best classifier is highlighted with a bold font.

Classifier Object seen Object unseen

Mean Std. Mean Std.

Fine k-nn 83.87 10.30 69.47 14.63

Medium k-nn 77.07 8.65 69.07 8.93

Coarse k-nn 32.53 7.53 30.80 6.72

Fine SVM 39.60 6.79 27.07 5.88

Medium SVM 82.80 8.13 70.53 10.52

Coarse SVM 79.20 8.81 70.27 11.82

Fine tree 68.13 10.06 58.40 12.42

Medium tree 68.13 10.06 58.40 12.42

Coarse tree 57.47 7.72 53.47 8.24

CNN 88.27 5.00 75.73 9.90
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research as more deep learning architectures such as LSTM (long short-term

memory) or CNN-LSTM can be applied in the classification of their raw data.

Recently, a study illustrated the use of LSTM on grasp classification using a

knitted glove [153]. It will be interesting to compare the performance of CNN

to LSTM in grasp classification from data acquired with a knitted data glove.

Although the memory properties of LSTM should provide an advantage over CNN

[138], CNN has also been seen to outperform LSTM [136]. Therefore, it will be

interesting to see if more complex deep learning algorithms improve the accuracy

of grasp classification using data gloves. Higher performances (>95% average

accuracy) in this application may rapidly increase the commercial adoption of

data gloves in rehabilitation.

In addition, a data glove can measure the progress of stroke patients by cal-

culating their range of motion and the force produced by the finger muscles.

Progress in the patient’s rehabilitation can be observed if there are significant

increases in the range of motion and the muscular force. The weft knit data

glove can be used to measure their range of joints by utilising the exponential

correlation between the change in resistance of the sensor and the angle shown in

Chapter 4. In addition, the speed at which the change in resistance occurs can

be correlated with the muscular force at the fingers. Although, this application

is outside the scope of the thesis, it provides a good research area that may also

aid the commercial adoption of this device in rehabilitation.

5.5 Conclusion

In this chapter, we have pioneered the use of convolutional neural networks on

grasp classification using a piezoresistive data glove. Using our fabricated weft-

knit data glove, we observed that our simple CNN architecture outperformed

classical machine learning techniques in the two classification scenarios. Notably,

the average classification accuracy of our CNN was 88.27% and 75.73% in the

object seen and object unseen scenarios respectively. Future work will involve the

application of more robust deep learning approaches to improve the classification

accuracy.

102



Chapter 6

Effect of Miss and Tuck Stitches

on a Weft Knit Strain Sensor

Miss stitches reduce the width and length of a fabric while tuck stitches increase

the width of a fabric but decrease its length. These structural changes should

affect the contact points in the sensor and consequently, the piezoresistivity of the

sensor. Therefore, this chapter investigates the impact of incorporating miss and

tuck stitches on the piezoresistivity of a weft knit strain sensor. Particularly, the

electromechanical models of a tuck stitch and a miss stitch in a weft knit strain

sensor are proposed. These models were used to develop loop configurations of

sensors consisting of various percentages of miss or tuck stitches. Finally, the

developed loop configurations were simulated and verified experimentally in a

tensile test. The results show that changes in the percentage of tuck or miss

stitches significantly affect the piezoresistivity of the sensor.

6.1 Introduction

In the last decade, the application of knit fabrics has expanded from the tra-

ditional textile applications to their use in the creation of wearable electronics.

From the use of warp knit to create textile antennas to the use of weft knit to

create strain sensors, the application of knitting to create conventional electronics

is being adopted rapidly [10, 13]. In particular, conductive weft knitted fabrics
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have been utilised as strain sensors because of their elastic structure and piezore-

sistivity [14]. The piezoresistivity of the sensor is the behaviour of the sensor’s

electrical resistance when load is applied or the sensor is extended.

In recent past, several studies have investigated the impact of loop architecture

on the piezoresistivity of the sensor. Notably, the impact of knitting parameters

on a weft knit strain sensor’s piezoresistivity was intensively studied by Atalay et

al. [37, 38]. The sensors were created by knitting double covered elastomeric and

silver-coated conductive nylon yarns in an interlock knit. Particularly, courses of

the conductive nylon yarns were embedded on a host fabric. The host fabric was

knitted in an interlock structure with elastomeric yarn. This sensor configuration

was selected empirically by the authors for its high gauge factor and linearity.

Subsequently, the effect of changes in i) the input tension and linear density

of the elastomeric yarn, and ii) the input tension of the conductive yarn were

explored. It was observed that a decrease in the elastomeric yarn’s input ten-

sion or its linear density caused the electrical resistance to increase significantly.

This was because they affect the number of contact points which in turn affects

the contact resistance. Moreover, the results showed that sensors knitted with

a lower elastomeric yarn input tension exhibited a longer linear working range.

Furthermore, the study illustrated that increases in the input tension of the con-

ductive yarn caused an increase in the electrical resistance of the sensor. This

occurred because an increase in the conductive yarn’s input tension reduced the

stitch length. Due to the interlock structure of the host fabric, a reduced stitch

length decreases the contact areas between the conductive loops. Consequently,

the reduced contact areas increased the electrical resistance of the sensor. This

phenomenon is consistent with Holm’s contact theory [73].

In a subsequent study, the effect of the addition of elastomer was investigated

by Atalay et al. [15]. Two samples of sensors were manufactured in a plain knit.

A sample of sensors was knitted with conductive yarn while the other sample of

sensors was knitted in a structure that comprised of elastomer and conductive

yarn. It was observed that the sample knitted with only conductive yarn showed

an inversely proportional relationship between its change in resistance and its

extension, while the second sample with an elastic structure showed a directly

proportional relationship between its change in resistance and its extension. This
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difference in piezoresistive behaviour occurred because their electric circuits are

fundamentally different. A major factor in the piezoresistive behaviour of a weft

knit strain sensor is the contact resistance that occurs between two conductors.

Particularly, in the sensor without the elastomer, contact resistance occurs at the

intermeshing of one conductive loop with another conductive loop. Conversely, in

the sensor with the elastomer, the interlocking of a conductive loop with a non-

conductive loop does not create a contact resistance. However, contact resistance

still occurs in the sensor with the elastomer because the elastomer increases the

tightness of the fabric such that the legs of the same conductive yarn loop make

contact.

In summary, changes in the knitting parameters have affected the piezoresis-

tivity of a weft knit strain sensor. However, all the previous studies mentioned

have been implemented using only a knitted loop stitch. In contrast, there are

two other types of stitches, and they are the miss and tuck stitches. These three

stitches are shown in Figure 6.1. The tuck stitch occurs when a needle accrues

more than one stitch thus tucking the extra stitch behind the first stitch. The

extra stitch is the tuck stitch and it changes the structure of the fabric because its

legs are not connected to the head of a previous loop. A miss stitch materialises

when a needle does not a collect a yarn, thus allowing the yarn to float behind

the needle and connecting the loops on either side of it [57]. These stitches can

be combined with a knitted loop stitch to create different sensor configurations

that may have different piezoresistive behaviour.

Therefore, in this study, we aim to investigate the effect of miss and tuck

stitches on the piezoresistivity of a weft knit strain sensor. Particularly, we achieve

this by proposing for the first time, detailed electro-mechanical models of miss and

tuck stitches. These models are then simulated for loop configurations comprising

of varying percentage of miss stitches or tuck stitches to observe their impact on

the sensor’s piezoresistive behaviour. In particular, we ensure that the effect of

either miss or tuck stitches are observed separately by ensuring that the loop

configurations have only miss stitches or tuck stitches. Thereafter, the predicted

behaviour is validated experimentally by tensile testing sensors knitted with the

same loop configurations.
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a) b) c)

Figure 6.1: Types of loop stitches. a) Tuck loop stitch, b) Miss stitch, c) Knitted

loop stitch. The held loop is the knitted loop stitch tucked by a tuck stitch. p is

the course spacing, α and β are the loop and interlocking angles respectively.

6.2 Related Work

The effect of miss and tuck stitches on a weft knit strain sensor was described in

the patent application [154]. Notably, the author describes a series of experiments

where the effect of miss and tuck stitches were studied on determining the opti-

mal configuration for different applications. For these experiments, 4 samples of

sensors were created by knitting conductive yarn in different percentages of miss

and tuck stitches combined with a constant percentage of knitted loop stitches.

A control sample was also knitted with only knitted loop stitches. The constant

percentage of knitted loop stitches in each sample was 50%. The percentage ratio

of miss stitches to tuck stitches (M2T) were (5:45), (10:40), (45:5) and (40:10).

The first experiment was implemented to determine the optimal structure for

use in a resistive strain sensor. The parameters measured were the mean electrical

resistance (MER), the dynamic range i.e. maximum extension and the effect of

fabric thickness and optical porosity on the MER. The observations drawn from

the experiment were:

1. The samples with M2T of (40:10) and (10:40) showed the largest dynamic

range. This is excellent for strain applications because the sensor can absorb

the strain due to its flexibility.
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2. The variation of resistance values was more stable in the four samples than

in the control sample. This allows for more accurate measurements in strain

sensing applications. The samples with the most stable resistance values

were samples with M2T of (10:40) and (45:5).

3. Samples with a higher fabric thickness had a lower MER while samples with

a lower optical porosity had a lower MER. A lower MER is needed for an

optimal regulation of the contact resistance and this is achieved because

a higher fabric thickness and lower optical porosity increase the contact

area between the yarns. It was observed that all four samples had a lower

MER compared to the control sample with samples with M2T of (10:40)

and (45:5) being the lowest.

Therefore, a strain sensor would be optimised if it is made with samples that

show a large dynamic range and less variation in MER; and have a high fabric

thickness and a low optical porosity. The sample which fits this criterion is the

sample with 10% miss stitches and 40% tuck stitches.

The second experiment involved placing two specific weights (150gm and

400gm) on the samples and measuring the resistance of the sensor. This was

then plotted with the baseline resistance before any weights were added. The

plots show the linear fits of the resistances of the samples at the various weights

(0, 150 and 400gm) with varying negative gradients. The sensor with the highest

coefficient of determination, R2, was chosen as the optimal sample. The samples

with the highest tuck stitches (M2T of (10:40) and (5:45)) were seen to have the

highest R2 value. It was assumed that this occurred because the tuck stitches

increased the contact area and thus could regulate the contact resistance.

The third experiment involved human subjects of different weights placing

their weights on the samples by standing with only one foot on the samples. The

aim was to demonstrate the response of the sensor to the pressure from human

concentrated weight in order to simulate what will happen in an application such

as socks that measure pressure of the feet. The experiment was only performed on

samples with M2T of (5:45) and (10:40). The resistance was measured relative

to the weight of each subject at different positions in the sensor and plotted

alongside the baseline resistance. The locations chosen to measure the resistance
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on the sensor were the points adjacent to the ankle and ball of the foot. The plot

of the resistance relative to the weight provided a logarithmic response unlike the

linear response that was obtained in the previous experiment. The optimal fabric

was chosen on the basis of its gradient as a small gradient is favoured because it

illustrates a larger response to weight applied. The sensor with 10% miss stitches

and 40% tuck stitches was found to have the smaller gradient and was chosen as

the optimal sensor.

Other experiments used a larger variation of M2Ts in the samples and in one

of them, samples were tested to deduce how resistance behaves relative to pressure

applied in the wale and course directions. It was observed that when pressure was

applied in the course direction, there was no visible change in resistance. But in

the wale direction, there was a visible change in the resistance when pressure was

exerted. The author also notes that the sensors with 10% miss stitches and 40%

tuck stitches exhibit a solid inverse linear relationship between the resistance and

load. This was attributed to the high percentage of tuck stitches as it increases the

number of contact points. Another experiment sought to find out the relationship

between the resistance of sensors with miss and tuck stitches and temperature

changes. It was observed that sensor displayed a linear relationship between its

resistance and changes in its surrounding temperature. It was also observed that

the samples with a higher number of tuck stitches had a better linear fit than

other samples.

The experiments in this patent aim to ascertain if the addition of miss and tuck

stitches will optimise the resistance of the fabric for specific applications. This

patent does an excellent job in illustrating how miss and tuck stitches can optimise

a sensor for different applications. However, the conclusions are purely empirical

and there is no theoretical model that describes the impact of the addition of miss

and tuck stitches. Additionally, the rationale behind the choice of percentage of

miss and tuck stitches in each loop configuration is not illustrated. Furthermore,

combining miss and tuck stitches makes it more difficult to understand their

separate impact on the piezoresistive behaviour of the sensor.

In contrast, the effect of miss and tuck stitches on a conductive weft knit fabric

were investigated separately [155]. Samples were knitted with knit stitches and

different percentages of either miss or tuck stitches. Subsequently, their resistance
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was measured and it was observed that the increases in the percentage of tuck

or miss stitches caused a decrease in the resistance of the sensor. However, this

study is only experimental as there is no theoretical model to explain the cause

of the impact. In addition, this study was limited to the impact of miss and tuck

stitches on the initial resistance of the sensor. It did not investigate the impact

of miss and tuck stitches on the sensor’s piezoresistivity.

Furthermore, the impact of consecutive miss stitches on the overall resistance

of a conductive weft knit fabric was also investigated by Liu et al. [156]. Sam-

ples of the fabric were knitted in a plain base structure with a course containing

one knitted loop and varying numbers of consecutive miss stitches. It was ob-

served that as the number of consecutive miss stitches increased, the resistance

of the fabric decreased. This effect materialised because of the reduced contact

resistance caused by the miss stitches. However, this study only investigates the

impact on the initial resistance of the sensor and not its behaviour when the

sensor is extended.

This chapter addresses the research gap neglected in previous studies. No-

tably, we investigate the effect of miss and tuck stitches on a weft knit strain

sensor separately. Furthermore, unlike previous studies, we do not limit our

study to only the initial resistance of the sensor. We also investigate the piezore-

sistivity of the sensors as they are extended. Particularly, the mean resistance,

the linear and quadratic R2 values of the sensor’s piezoresistivity. In addition,

we do not restrict this study to only experimental observations. In contrast, we

propose electromechanical models that explain the behaviour of the sensors.

6.3 Materials and Methods

6.3.1 Electromechanical Model of a Tuck stitch

This section describes a novel resistive model of a tuck stitch in a weft knit strain

sensor. The basic assumptions used to formulate this model are:

• The conductive yarn used is a perfect intrinsic conductor.
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Figure 6.2: Resistive model of a tuck stitch in a weft knit strain sensor.

• The lengths of the head of a tuck stitch and the head of its held knitted

loop stitch are equal.

• The head and sinker of a knitted loop stitch are of equal lengths.

Figure 6.2 illustrates the theoretical model of a tuck stitch knitted with con-

ductive yarn. In this model, we postulate that a tuck stitch adds length resis-

tances as a result of its legs and heads. Furthermore, we claim that it changes the

contact resistance between the loops because of the contact pressure it adds to

the fabric, especially at the location of the tuck stitches. Particularly, plain knit

fabrics with tuck stitches are known to be less extensible than plain knit fabrics

without tuck stitches because the tucked loops add an extra layer of pressure at

the junctions where the intermeshing of loops occur [57]. Therefore, by repre-

senting its geometrical parameters with equivalent resistive values, we model the

tuck stitch as a resistive circuit.

Using Postle model [16], we consider the loop leg, Ll, as a bent beam and

derive its length as:

Ll =
p√

2(sinα + sin β)
f(k, γ), (6.1)

where f(k, γ) is the difference between the complete and incomplete integrals and

can be calculated as:

f(k, γ) =

∫ π
2

0

dγ√
1− k2 sin2 γ

−
∫ γ

0

dγ√
1− k2 sin2 γ

, (6.2)
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and parameters k and γ are calculated as:

k = sin

(
π

4
+
α

2

)
, (6.3)

γ = sin−1

(
1

k
√

2

(
cos

β

2
− sin

β

2

))
. (6.4)

The length of the loop head, Lh, is also calculated using Postle model. By

considering it to be two equal segments of a circle we derive it as:

Lh =
p(π

2
− β)

2(sinα + sin β)
, (6.5)

The resistance of the held loop’s legs and header is then calculated as:

Rl =
ρLl
Ar

, (6.6)

Rh =
ρLh
Ar

, (6.7)

where Ar is the cross-sectional area of the conductive yarn.

As mentioned in the earlier assumption, we model the length of tuck stitch

head to be equal to the length of the held loop head. Therefore, the resistances

of tuck and held loop heads are the same. Consequently, a parallel connection of

resistors is formed. The combination of this resistances at the head of the tuck

stitch is calculated as:

Rht =
Rh

2
. (6.8)

Using Kurbak model [157], the total length of a tuck stitch, Ltt can be calculated:

Ltt = Lt − 4d, (6.9)

where d is the diameter of the yarn. Furthermore, from the Munden model [68],

the length of a stitch is:

Ltt = 2(Lht + Llt), (6.10)

Therefore since the loop length of the held loop head is equal to the tuck loop

head, the length of the tuck loop leg is:

Llt = Ll − 2d, (6.11)
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and its resistance is

Rlt =
ρLlt
Ar

. (6.12)

The contact resistance in the tucked loop is determined by assuming that the

contact pressure is twice the contact pressure at a knit loop because both the tuck

yarn and the held yarn interlock the previous loop. Therefore by combining this

assumption with Holm’s contact theory, the contact resistance at a tuck yarn,

Rct, is derived as:

Rct =
ρ

2

√
πH

2nPr
, (6.13)

where Pr is the contact pressure between the loops, n is the number of contact

points, H is the material hardness and ρ is the resistivity.

Therefore, the contact resistance at a tuck loop can be related to the contact

resistance at a knit loop as:

Rct = 0.707 ∗Rc. (6.14)

6.3.2 Electromechanical Model of a Miss stitch

A novel resistive model of a weft knit strain sensor with a miss stitches is illus-

trated in Figure 6.3. To model this sensor, it was assumed that the miss stitch is

split across 3 equal lengths as it floats from one interlocked loop to another.

In modelling a miss stitch, the contact resistance present in a knitted loop

is removed because there are no interlocking loops. However, the resistance of a

miss stitch can be modelled as a length resistance. Therefore, we propose that

the length of a miss stitch is the sum of all wale spacings of all loops it floats

across. Therefore, for a miss stitch that floats across one loop, its length, Lm,

can be described as:

Lm = Ws, (6.15)

where Ws is the average wale spacing of the fabric.

Furthermore, based on the assumption that length of a miss stitch is split

equally in three lengths as it extends from one interlocked loop to another, we

introduce a parameter Rm to represent the resistance of one-third of the miss

stitch. Therefore, the resistance parameter, Rm was calculated as:
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Figure 6.3: Resistive model of a miss stitch in a weft knit strain sensor

Rm =
ρWs

3Ar
. (6.16)

6.3.3 Circuit Analysis

A circuit analysis is undertaken to determine the equivalent resistance of a weft

knit strain sensor with tuck stitches or miss stitches. To achieve this, two sensors

with 3 wales and 3 courses are illustrated in Figure 6.4, where a miss stitch and a

tuck stitch are located in the middle of the sensors. Kirchoff current and voltage

laws were employed to derive the equivalent resistance in the sensors.

To derive the equivalent resistance in the sensor with the miss stitch, we add

a voltage source and use the hypothetical currents (Im1 − Im14) to determine the

equivalent resistance.

(Im1 − Im2)(Rh +Rl) + (Im1 − Im5)Rh+

(Im1 − Im7)(2Rl +Rh) + (Im1 − Im10)Rh+

(Im1 − Im12)(Rh +Rl) = 0,

(6.17)

(Im2 − Im1)(Rh +Rl) + Im2(Rc +Rl)+

(Im2 − Im3)Rh + (Im2 − Im5)Rc = 0,
(6.18)
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a) b)

Figure 6.4: Resistive circuits of a) a Miss stitch, and b) a tuck stitch in a weft

knit strain sensor

(Im3 − Im5)Rl + (Im3 − Im2)Rh + Im3(Rc +Rl)+

(Im3 − Im4)Rh + (Im3 − Im6)Rc = 0,
(6.19)

(Im4 − Im6)Rl + (Im4 − Im3)Rh+

Im4(2Rc +Rl +Rh) = 0,
(6.20)

(Im5 − Im6)Rm + (Im5 − Im8)Rl+

(Im5 − Im7)Rc + (Im5 − Im1)Rh+

(Im5 − Im2)Rc + (Im5 − Im3)Rl = 0,

(6.21)

Im6(Rh) + (Im6 − Im9)Rl + (Im6 − Im5)Rm+

(Im6 − Im3)Rc + (Im6 − Im4)Rl = 0,
(6.22)

(Im7 − Im1)(Rh + 2Rl) + (Im7 − Im5)Rc+

(Im7 − Im8)Rh + (Im7 − Im10)Rc = 0,
(6.23)

(Im8 − Im7)Rh + (Im8 − Im5)Rl+

(Im8 − Im9)Rm + (Im8 − Im10)Rl = 0,
(6.24)

(Im9 − Im11)Rl + (Im9 − Im8)Rm+

(Im9 − Im6)Rl + Im9(Rh + 2Rc) = 0,
(6.25)

(Im10 − Im13)Rl + (Im10 − Im12)Rc+

(Im10 − Im1)Rh + (I10 − Im7)Rc+

(Im10 − Im8)Rl + (Im10 − Im11)Rm = 0,

(6.26)
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Im11(Rh) + (Im11 − Im14)Rl+

(Im11 − Im13)Rc + (Im11 − Im10)Rm+

(Im11 − Im9)Rl = 0,

(6.27)

(Im12 − Im1)(Rh +Rl) + (Im12 − Im10)Rc+

(Im12 − Im13)Rh + Im12(Rc +Rl) = 0,
(6.28)

(Im13 − Im10)Rl + (Im13 − Im11)Rc+

(Im13 − Im14)Rh + Im13(Rc +Rl)+

(Im13 − Im12)Rh = 0,

(6.29)

(Im14 − Im11)Rl + Im4(2Rc +Rl +Rh)+

(Im14 − Im13)Rh = 0.
(6.30)

The hypothetical currents were calculated as

i = R−1v, (6.31)

where,

i =


Im1

Im2

. . .
Im14

 ,v =


Vm
0
. . .
0


and

R =



5Rh + 4Rl . . . 0
−(Rh +Rl) . . . 0

. . . . . . . . .
0 . . . 0

−2Rl +Rh . . . −Rh

0 . . . Rm +Rh + 2Rl

0 . . . −Rm

. . . . . . . . .
0 . . . 0

0 . . . 0
0 . . . 0
. . . . . . . . .
−Rl . . . 0

0 . . . 0
−Rm . . . 0

2Rl + 2Rc +Rm +Rh . . . 0
. . . . . . . . .
0 . . . 2(Rc +Rh +Rl)


. (6.32)

The equivalent resistance was then calculated as:

Rm(eq) =
Vm
Im1

. (6.33)

To derive the equivalent resistance in the sensor with the tuck stitch, we

employ the same methodology in determining the equivalent resistance. The
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hypothetical currents Itn were derived using (6.31) but resulted in a different

resistance matrix. The resistance matrix derived for the sensor with a tuck stitch

was calculated as:

R =



5Rh + 4Rl . . . −Rh

−(Rh +Rl) . . . −Rc

. . . . . . . . .
−Rh . . . 3Rl + 3Rc +Rh +Rlt

0 . . . −Rlt

−(2Rl +Rh) . . . −Rc

0 . . . −2Rl

. . . . . . . . .
0 . . . 0

. . . 0 . . . 0

. . . 0 . . . 0

. . . . . . . . . . . .

. . . −2Rl . . . 0

. . . 0 . . . 0

. . . −Rh . . . 0

. . . 4Rl + 2Rct + 1.5Rh . . . 0

. . . . . . . . . . . .

. . . 0 . . . 2(Rc +Rh +Rl)


, (6.34)

and the equivalent resistance was calculated as:

Rt(eq) =
Vt
It1
. (6.35)

6.3.4 Determination of Contact Resistance

The conductive yarn used in the simulation and fabrication of the sensor is a

multifilament yarn consisting of 20% stainless steel and 80% polyester filaments.

Consequently, the stainless steel component ensures that the sensor complies to

Holm’s contact theory which postulates that the contact resistance between two

conductors can be calculated as:

Rc =
ρ

2

√
πH

nPr
, (6.36)

where, Rc is the contact resistance, ρ is the electrical resistivity, H is the hardness

of the material used, n is the number of contact points and Pr is the contact

pressure between the conducting materials.

Typically, the material hardness and the electrical resistivity are constant

based on the properties of conductive yarn used, while the number of contact

points is subject to the sensor’s design. Therefore, the changes to the contact

resistance is dependent on changes to the contact pressure between the loops. The

changes in the contact pressure occur as a result of changes to the strain applied

on the sensor, thus causing the weft knit strain sensor to exhibit piezoresistivity.

However, the contact pressure between the interlocking loops has proven difficult

to measure or predict. Therefore, researchers have found alternative methods to
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determine the contact resistance accurately by measuring the contacting force

[13].

However, Zhang et al. [14] proposed from empirical observations that the

correlation between the contact resistance, Rc, and equivalent resistance, Req, of

the sensor can be derived as:

Req = Rc ·K, (6.37)

where K is a variable coefficient based on the sensor’s structural design.

From equations 6.31 and 6.33, we derive that

R−1
1,1 = Req, (6.38)

where R−1
1,1 is the first element of the inverse matrix of the resistance matrix R

of the sensor. Therefore,

R−1
1,1 = D ·Rc. (6.39)

where D is the coefficient of Rc in R−1
1,1.

However, this method is computationally intensive. Therefore, we propose a

less computationally intensive method in Algorithm 3. Algorithm 3 is a control

algorithm that calculates the contact resistance from the equivalent resistance

with an initial random positive value as D. Subsequently, a control feedback is

used to calculate the optimised value of D. A threshold was set to stop the algo-

rithm when the percentage change in the input contact resistance to its previous

value was less than 3%. This was selected empirically as the accuracy of the

model was not significantly improved below this threshold.

6.3.5 Simulation Parameters

To determine the effect of miss and tuck stitches on a plain weft knit strain sen-

sor, different loop configurations of a sensor with varying percentages of tuck

stitches and miss stitches within the sensor were designed. The loop configura-

tions depicted in Table 6.2 and Table 6.3 were then simulated using the postulated

models. The unit circuit diagram of the loop configurations are shown in Figures

6.5 and 6.6. It can be observed in the circuit diagram of sensors with 6.25% and

8.33% tuck stitches that the length resistances of the sinker loops of the held
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Algorithm 3 Contact Resistance solution

1: Initialise :

2: Rsim ← 0

3: D ← 0 < D < inf

4: Loop:

5: Rc = Rexp/D

6: Input Rc into modelled circuit to determine Rsim

7: if |Rsim(n) −Rsim(n−1)| > (0.03 ·Rsim(n)) then

8: D = Rsim(n)/Rc

9: goto Loop

10: else

Return Rc

11: end if

. Rsim and Rexp are the simulated and experimental equivalent

resistances respectively

loop were neglected. It was initially assumed that their lengths were equal to the

lengths of the sinker loop of other knit stitches. However, it was observed that

this assumption negatively affected the expected results. In contrast, neglecting

it improved significantly the simulation results of the model in terms of its cor-

relation with experimental results. A feasible explanation for this occurrence is

that the lengths of the sinker loops of the held loop are negligible because they

have transferred to the lengths of the loop legs of the held loop thus resulting in

the longer loop legs of a held loop than other knitted loop stitches.

Moreover, the loop configurations were designed to prevent consecutive tuck

or miss stitches either in the course or wale direction to reduce the complexity

in modelling. These loop configurations were simulated with LTspice using the

numerical variables shown in Table 6.1.
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a) b)

c) d)

Figure 6.5: Unit circuit diagram of samples with tuck stitches. a) 6.25% tuck

stitches b) 8.33% tuck stitches c) 16.67% tuck stitches d) 25% tuck stitches.

a) b)

c) d)

Figure 6.6: Unit circuit diagram of samples with miss stitches. a) 6.25% miss

stitches b) 8.33% miss stitches c) 16.67% miss stitches d) 25% miss stitches.
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Table 6.1: Numerical Parameters for Simulation.
Parameters Values

Number of courses 72

Number of wales 72

α(◦) 24.75

β(◦) 10.85

Course spacing (mm) 3

Wale spacing (mm) 2

ρ(ohms.mm) 300

Yarn’s Diameter (mm) 0.4

6.3.6 Experimental Validation

Sample Preparation.

Eight samples of weft knit strain sensors were knitted using a Shima Seiki Mach2s

12-gauge knitting machine with the loop configurations shown in Tables 6.2 and

6.3. All sensors were knitted with conductive yarn as a 72 courses by 72 wales

plain knit fabric with a digital cam setting of 30. The cam setting is a dimension-

less value representing the stitch length that will be attempted by the knitting

machine. The conductive yarn used in knitting the samples was a Schoeller mul-

tifilament conductive yarn commercially available from Uppingham Yarns Ltd.

According to its specification sheet, it can be stretched up to 5.5% extension

and its yarn count and linear density were 2/50Nm and 400 dtex respectively.

Notably, as seen in Table 6.1, our simulation parameter for resistivity was chosen

as 300Ωmm after a preliminary measurement of a relaxed sample of the yarn.

Furthermore, the yarn consists of 80% polyester and 20% stainless steel filaments

which provide an advantage of being an intrinsic conductor as opposed to yarns

coated with conductive ink. Particularly, a multifilament conductive yarn is more

environmentally stable than a coated conductive yarn because the conductive inks

used in coating yarns are very sensitive to environmental changes such as tem-

perature [78].

The knitted samples are illustrated in Figures 6.7 and 6.8 and their respective

parameters are shown in Table 6.4. Tuck stitches reduce the length of a fabric and
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Table 6.2: Loop Configuration for Tuck stitches simulation. ”X” represents a

knitted loop stitch and ”·” represents a tuck stitch.

% of Tuck stitches Loop configuration

6.25%

8.33%

16.67%

25%

increase the width of a fabric. This is illustrated in Table 6.4 where the reduced

length and increased width caused a larger number of courses/cm and a smaller

number of wales/cm as the percentage of tuck stitches in the sensor increased.

The reduced length and increased width occur because the tension of tuck stitches

pull down their held loops, thereby decreasing their length but expanding their

width [57]. In contrast, miss stitches reduce the width of the fabric because the

wales are more drawn together by the miss stitches. As depicted in the changes

in the wales/cm, this phenomenon is observed in all sensor configurations with

miss stitches except the sensor comprising of 6.25% miss stitches. The exception

is likely a result of the location of the miss stitches. In addition, miss stitches

also reduce the length of the fabric as illustrated by the increase in courses/cm

of the sensors as the percentage of miss stitch increased. This occurred because
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Table 6.3: Loop Configuration for Miss stitches simulation. ”X” represents a

knitted loop stitch and ” ” represents a miss stitch.

% of Miss stitches Loop Configuration

6.25%

8.33%

16.67%

25%

in a miss stitch, the loop height is replaced by the diameter of the yarn which in

most cases, is considerably smaller than the loop height.

Experimental Procedure.

The samples were dry relaxed for 48 hours to remove any existing strains from the

knitting process. Thereafter, a tensile test was performed using an Instron3369

tensile machine. Particularly, the steel clamps were lined with insulated rubber

pads to prevent any conductance between the tensile machine and the sensors.

The testing procedure consisted of stretching the sensors in the course-wise di-

rection at a speed of 10 millimeter per minute till the sensors were extended to

25% extension while the sensor’s resistance was measured by a digital multimeter
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(a)

(c) (d)

(b)

Figure 6.7: Knitted samples with miss stitches. a) 6.25% miss stitches b) 8.33%

miss stitches c) 16.67% miss stitches d) 25% miss stitches.
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Table 6.4: Fabric parameters of the knitted sensors.

Configuration Wales/cm Courses/cm Stitch density

6.25% Miss 5.00 5.39 26.95

8.33% Miss 4.56 5.43 24.76

16.67% Miss 4.97 5.50 27.34

25% Miss 5.04 6.05 30.49

6.25% Tuck 4.11 5.48 22.52

8.33% Tuck 4.07 5.63 22.91

16.67% Tuck 3.60 6.49 23.64

25% Tuck 3.16 7.24 22.88

(TENMA 72-7770a).

6.4 Results and Discussion

6.4.1 Effect of Tuck Stitches on a Weft Knit Strain Sensor

The raw experimental results of the tensile experiment with sensors consisting

of tuck stitches is shown in part (a) of Figure 6.9. A Savitzky-Golay filter of

polynomial order N = 5 and window length of 9 was applied to reduce the analog

noise from the data. The filtered data is illustrated in part (b) of Figure 6.9.

Observing these results, it is difficult to ascertain if the sensor piezoresistive

behaviour can be characterised as a polynomial of the 1st-order (linear) or a poly-

nomial of the 2nd-order (quadratic). Therefore, we plot the R2 value, coefficient

of determination, of both polynomial fits for each configuration of tuck stitches

in the sensor. As shown in figure 6.11, the R2 values of both polynomial fits were

both higher than 0.8 but the results show that the quadratic polynomial is a bet-

ter fit. However, we observe that as the percentage of tuck stitches in the sensor

increases, the R2 value of the 1st-order polynomial fit increases. In simple terms,

this means that the increase in tuck stitches led to a more linear piezoresistive

behaviour in the sensor. Particularly, the sensor with 25% tuck stitches exhibited

a higher R2 value in its linear fit than the quadratic fit. This effect occurred

because as illustrated in equation 6.14, the addition of tuck stitches increases the
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(a)

(c) (d)

(b)

Figure 6.8: Knitted samples with tuck stitches. a) 6.25% tuck stitches b) 8.33%

tuck stitches c) 16.67% tuck stitches d) 25% tuck stitches.

contact pressure at the contact points. Increased pressure at the contact point has

been observed to cause a higher linear piezoresistive behaviour in weft knit strain

sensors [37]. This phenomenon occurs because the larger initial contact pressure

increases the extension range for the intermesh between the loops to disintegrate

during extension thereby preserving the linear decrease of the contact area as the

sensor is extended. Furthermore, it can be observed that our simulation results

closely agree with the experimental results.

The initial and mean resistances are shown in Figure 6.12. It was observed

that increases in the tuck stitches led to a decrease in the initial resistance of

the sensor. This occurred because an increase in the percentage of tuck stitches

causes an increased initial contact pressure. As mentioned earlier, this increase

in contact pressure reduces the contact and equivalent resistances. The mean
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Figure 6.9: Experimental results of tensile test on sensors with tuck stitches. a)

Pre-filtered results, b) Post-filtered results.
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Figure 6.10: Comparison of simulation and experimental results for sensors with

tuck stitches.
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Figure 6.11: Polynomial fit of the piezoresistive behaviour of sensors with tuck

stitches.
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Figure 6.12: Initial and mean resistances of sensors with tuck stitches.

resistance across the extension is also depicted in Figure 6.12. There was a

reduction in the mean resistance as the percentage of tuck stitches in the sensor

increases with the exception of the sensor with 16.67% tuck stitches where the

mean resistance slightly increased. It is believed that this exception is as a result

of the limitations of the loop configuration and that a different loop configuration

with the same percentage of tuck stitches will have a lower mean resistance during

extension than sensors with lower percentage of tuck stitches. In addition, Figure

6.10 shows that our simulation results generally agree with these experimental

results.

6.4.2 Effect of Miss Stitches on a Weft Knit Strain Sensor

The experimental results of the tensile test on sensors with miss stitches is shown

in part (a) of Figure 6.13. The Savitzky-Golay filter of polynomial order N = 5

and window length of 9 was also applied on the data to remove analog noise and

the filtered results are shown in part (b) of Figure 6.13.

Similar to the methodology used in analysing the experimental results of sen-

sors consisting of tuck stitches, we plot the R2 values, coefficient of determination,
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Figure 6.13: Experimental results of tensile test on sensors with miss stitches. a)

Pre-filtered results, b) Post-filtered results.
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of both polynomial fits for each configuration of miss stitches in the sensor. We

observe in Figure 6.15 that these plots exhibit a similar shape but the polynomial

fit of the 2nd-order is better than the fit of the 1st order in terms of the R2 value

for every loop configuration consisting of miss stitches. However, we were unable

to draw any consistent relationship between the changes in the miss stitches and

the changes in the R2 values of the sensors. This erratic behaviour is not well-

modelled by our simulation results because the presence of miss stitches cause

the behaviour to be largely dependent on the floating stitch of the conductive

yarn and not the weft knit structure of the sensor.
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Figure 6.14: Comparison of simulation and experimental results for sensors with

miss stitches.

Figure 6.16 depict the initial and mean resistance of the sensors during the

experiment. It was shown that the initial resistance and the mean resistance

reduces as the percentage of miss stitches increased. This occurred because miss

stitches do not interlock with other loops leading to a lack of contact resistances

at the locations of the missed stitches. Therefore, the increase in miss stitches

reduces the contact resistances present in the sensor and thus the equivalent re-

sistance of the sensor. In terms of the initial and mean resistances, our simulation
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Figure 6.15: Polynomial fit of the piezoresistive behaviour of sensors with miss

stitches.

5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 6.16: Initial and mean resistances of sensors with miss stitches.
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results generally agree with the experimental results. Figure 6.14 illustrates the

simulated and experimental results. The difference in the magnitude of the effect

of miss stitches on the sensor between the simulation and experimental results is

as a result of the limitations of the modelling assumptions in comparison to real

working conditions.

6.5 Conclusion

In this chapter, we have proposed two electromechanical models depicting a miss

stitch and a tuck stitch in weft knit strain sensors. Subsequently, we expanded

these models to simulate various loop configurations consisting of varying percent-

ages of tuck or miss stitches in a weft knit strain sensor. The simulated results

were then validated by tensile testing sensors knitted with the same simulated

loop configurations and numerical parameters. It was observed that increases

in the percentage of miss stitches or tuck stitches in a weft knit strain sensor

decreased the initial resistance, mean and median resistances. However, the sen-

sor consisting of 16.67% tuck stitches did not agree with the simulated result in

terms of the decrease of the mean and median resistance. It is believed that this

occurred as a result of the limitations of the selected loop configuration.

Additionally, we observed that a quadratic polynomial best characterises the

piezo-resistive behaviour of a weft knit strain sensor consisting of miss or tuck

stitches. However, it was observed that increases in percentage of tuck stitches

in the sensor increased the R2 value of the linear fit of its piezoresistivity. This

is usually seen as a strong determinant of a weft knit strain sensor’s accuracy. In

contrast, increases in the percentage of miss stitches did not lead to a consistent

change in the R2 value of the sensor’s piezoresistivity.

This chapter will provide researchers with fundamental knowledge on how to

effectively model weft knit strain sensors with tuck or miss stitches. Moreover, the

observations from the simulated and experimental results will direct the design

and application of tuck or miss stitches on a weft knit strain sensor.
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Chapter 7

Conclusion and Future Work

In this chapter, I present the main results and the most relevant contributions of

this thesis. In addition, I discuss potential extensions of the work undertaken in

this thesis.

7.1 Summary and Conclusions

In chapter 3, a novel electromechanical model of a plain knit sensor is presented.

This model was designed to simulate the piezoresistivity of a plain knit sensor.

Notably, it was based on the loop and interlocking angles of the knitted stitches

in the sensor. The model was presented for sensors that are knitted with only

non-elastic conductive yarn. Furthermore, it was based on the assumption that

the conductive yarn is a perfect intrinsic conductor and that the contact pressure

between each intermeshed stitch is constant throughout the sensor. In addition,

the model assumes that the interlocking and loop angles are limited by width and

length jamming. The interlocking and loop angles were used in calculating the

length of the legs, head and sinker of the stitches. Moreover, the length of the

head and sinker of the loops were assumed to be equal. These computed lengths

were utilised to calculate the length resistances in the model. The contact re-

sistance for each intermeshed loop was derived using a novel algorithm from the

total (/equivalent) resistance of the sensor during the experimental tensile test.

The model was validated by a tensile test performed on sensors knitted with the
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simulation parameters. The simulation results generally agreed with the experi-

mental results. Particularly, the average percentage error between 2% strain and

14.6% strain was 10.4% and the overall percentage error across the tensile range

was 16.63% which is significantly smaller than previous studies. Furthermore, a

parametric study was performed to simulate the influence of changes in the loop

or interlocking angles on the piezoresistivity of the sensor. It was observed that

changes in the loop angle caused a 2.27% change in the initial resistance of the

sensor while changes in the interlocking angle caused a change of up to 25.5%

and 22.2% in the initial and mean resistance of the sensor respectively.

In chapter 4, the model presented in chapter 3 was expanded to simulate

the behaviour of a sensor knitted with 50% non-elastic conductive yarn and 50%

elastic non-conductive yarn. This configuration was selected to increase the ex-

tensibility of the sensor. The simulation results were very similar to the experi-

mental results with an average percentage error of 11.47% which was significantly

smaller than the error obtained in the previous configuration. The new sensor

configuration was then employed in designing a knitted data glove. Particularly,

the sensors were placed at the distal and proximal interphalangeal joints and the

entire glove was knitted in a single fabrication process using WholeGarment tech-

nology. This ensured that the glove was lightweight and wholly textile with no

external attachments between the support structure and the sensors. The glove’s

sensors were validated using a robotic hand to simulate the opening and closing

of a human fist. The results illustrated the repeatability of the sensor especially

when a simple filter is applied to remove some of the analog noise. In addition,

a classification scenario was developed to investigate the effect of drift on the

sensor. The robotic hand was used to hold the sensor for a minute at specific

angles between 0◦ and 75◦ which is the typical range of an interphalangeal joint in

the human hand. Subsequently, three classical machine learning classifiers were

employed in classifying the data. The results showed that the drift in the sensor’s

output reduces the accuracy of linear classifiers.

In chapter 5, a deep learning approach was evaluated on a real-world classi-

fication scenario using the data glove and human participants. Notably, this is

a pioneering study on the use of deep learning and a piezoresistive data glove.

Moreover, this study pioneers the use of deep learning on any human motion
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capture system that comprises of weft knit strain sensors. In this study, I eval-

uated convolutional neural networks (CNN) in a grasp classification application.

In this application, human participants were asked to grasp objects of different

shapes while wearing the data glove. The CNN algorithm was then employed

to accurately classify the data accurately. I evaluated the algorithm in two sce-

narios. Firstly, when the validation object was part of the training data set and

secondly, when the validation object was not part of the training data set. I

observed that although the validation object was part of the training data set in

the first scenario, the drift in the sensor’s output contributed to a lower accuracy

than expected. In addition, I observed that the accuracy of the algorithm in

the second scenario was lower than the first scenario, particularly because it was

a more difficult classification task as the validation object was not part of the

training data set. Furthermore, I explored the performance of the algorithm for

each of the participants and I observed that the accuracy of the algorithm was

much higher in Participant 5 than in other participants. This occurred because

the glove was designed for the hand size of this participant. However, the elas-

ticity of the glove still ensured that the performance of the algorithm was also

relatively high in classifying the data of other participants. Furthermore, this

observation reinforces the advantage of weft knit strain sensors in human motion

capture applications, as they can be designed for different human sizes and are

not constrained to the one-size-fits-all design of other strain sensors. In addition,

the performance of the CNN algorithm was compared to popular machine learn-

ing techniques. It was observed that our simple CNN architecture performed

better than comparable machine learning techniques.

In chapter 6, I investigated the effect of miss and tuck stitches on the piezore-

sistivity of a weft knit strain sensor. Firstly, using the mature electromechanical

model developed in Chapters 3 and 4, I developed an electromechanical model

for a 3x3 (3 courses and 3 wales) plain knit sensor consisting of a tuck stitch

and another 3x3 sensor consisting of a miss stitch. Subsequently, this model was

expanded to several models of 72x72 (72 courses and 72 wales) sensors consisting

of 6.25%, 8.33%, 16.67% and 25% miss stitches and 6.25%, 8.33%, 16.67% and

25% tuck stitches. These various configurations of sensors were knitted and put

through a tensile test. The simulation and experimental results generally agreed
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for most of the configurations. Furthermore, it was observed that increases in miss

stitches or tuck stitches reduced the initial and mean resistances of the sensors.

Notably, it was observed that increases in the amount of tuck stitches increase

the linearity of the sensor’s piezoresistivity. The increase in linearity as a result

of an increase in percentage of tuck stitches occurs because of the increase in con-

tact pressure in the tuck loop. This observation is very significant because high

linearity is a characteristic of an accurate strain sensor. Moreover, it can be used

in guiding the design of weft knit strain sensors that increase the performance

of linear classifiers and reduce the need for complex algorithms in classification

scenarios.

In summary, the chapters in these thesis can be decribed as the following:

• In Chapter 3, the modelling of a basic configuration of a weft knit sensor is

presented and evaluated.

• In Chapter 4, a more flexible sensor is proposed and used in creating a data

glove. The data glove is then evaluated using a robotic hand and linear

machine learning algorithms.

• In Chapter 5, the data glove is evaluated with human participants and

non-linear machine learning algorithms.

• In Chapter 6, different configurations of weft knit sensors are modelled and

evaluated experimentally.

7.2 Future Work

7.2.1 Wireless Data Glove

A wireless prototype of the weft knit data glove was the winner of the Digital

Innovation Challenge 2019. We utilised traditional electronic components to pro-

vide wireless transmission and portable power supply. In a subsequent study, we

will replace these components with a textile antenna to wireless transmit data

and utilise wireless backscatter technology to passively power the glove. This will

bring us closer to our goal of providing a wholly-textile commercial data glove.
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7.2.2 Influence of Knitting Parameters

In this thesis, I have investigated the influence of loop angles, interlocking angles,

miss stitches, tuck stitches on the piezoresistivity of the sensor. However, there

are still a number of knitting parameters and structures that were not investigated

due to the limited scope of this research. Particularly, the piezoresistivity of other

base structures such as Purl and Rib base structures have hardly been studied.

Moreover, hybrid weft knit strain sensors comprising of multiple base structures

have not been investigated in any form. Research into these structures may lead

to a more optimal weft knit strain sensor.

7.2.3 Impact of Human Parameters

The impact of human parameters such as sweat and body temperature on weft

knit strain sensors have not been studied. In order to develop a commercial

wearable device that utilises weft knit strain sensors, the investigation of the

impact of these factors on weft knit strain sensors is crucial as they determine

the feasibility of regular human use of the device.

7.2.4 Other Deep Learning Approaches

In Chapter 5, I utilised a simple deep learning algorithm to accurately classify

data from human participants. However, there are more complex CNN architec-

tures and other deep learning approaches that have performed better than our

architecture in other research fields such as in medical imaging and sEMG. There-

fore, it would be interesting to investigate the performances of these techniques

on different data glove classification applications.
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Appendix A

Ethical Review (MEEC 19-006)

Due to the experiments carried out with human participants in Chapter 5, an

ethical review application was submitted. The ethical review application and its

approval are shown below. In addition, the participant consent and information

forms are also illustrated below.
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The Secretariat 
University of Leeds 
Leeds, LS2 9JT 
Tel:  0113 3431642 
Email: MEECResearchEthics@leeds.ac.uk 

 
 

Engineering and Physical Sciences joint Faculty Research Ethics Committee 
(EPS FREC) 

Mr Emmanuel Ayodele 
PhD Candidate (PGR Student) 
School of Electronic and Electrical Engineering (IRASS) 
Room 2.73, Faculty of Engineering 
University of Leeds 
LEEDS LS2 9JT 
 
24th October 2019 
 
Dear Emmanuel 
 
Title of study Activity Classification via Weft Knit Data Glove 

Ethics reference MEEC 19-006 

 
I am pleased to inform you that the application listed above has been reviewed by the 
MaPS and Engineering joint Faculty Research Ethics Committee (MEEC FREC) and 
following receipt of your response to the Committee’s initial comments, I can confirm 
a favourable ethical opinion as of the date of this letter. The following documentation 
was considered: 
 

Document    Version Date 

Ethical_Review_Form_Emmanuel_Ayodele_version_1.1_23 08 19 1.1 23/08/2019 

Participant_consent_form_Emmanuel_Ayodele_Version1.3_24 10 19 1.3 24/10/2019 

Participant_information_sheet_Emmanuel_Ayodele_Version 1.4_24 10 
19 

1.4 24/10/2019 

Recruitment_email_Emmanuel_Ayodele_version1.1_23 08 19 1.1 23/08/2019 

GateKeeper permission_Emmanuel_Ayodele_Version1.1_23 08 19 1.1 23/08/2019 

 
Please notify the committee if you intend to make any amendments to the information 
in your ethics application as submitted at date of this approval as all changes must 
receive ethical approval prior to implementation. The amendment form is available at 
http://ris.leeds.ac.uk/EthicsAmendment.  
 
Please note: You are expected to keep a record of all your approved documentation 
and other documents relating to the study, including any risk assessments. This 
should be kept in your study file, which should be readily available for audit purposes. 
You will be given a two week notice period if your project is to be audited. There is a 
checklist listing examples of documents to be kept which is available at 
http://ris.leeds.ac.uk/EthicsAudits.  
 
We welcome feedback on your experience of the ethical review process and 
suggestions for improvement. Please email any comments to 
MEECResearchEthics@leeds.ac.uk.  
 
Yours sincerely 
 
 
 
Rachel E de Souza, Research Ethics & Governance Administrator, The Secretariat 
On behalf of Dr Ray Holt, Acting Chair, MEEC FREC 
 
CC Student supervisor 

A.1 Ethical Review Approval

A.1 Ethical Review Approval
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 School of Electronic and Electrical Engineering, Faculty of Engineering   

Project title: Activity Classification via Weft 

Knit Data Glove. 

Document type Version # Date 

Consent form 

template 

1.3 24/10/2019 

 

 

 

Consent to take part in “Activity Classification via Weft Knit Data Glove.” 

 

 Please add 
your initials 
next to the 
statements 
you agree 

with  

I confirm that I have read and understand the information sheet/ letter dated 
____________ explaining the above research project and I have had the 
opportunity to ask questions about the project. 

 

I agree for the data collected from me to be stored on a secure University of 
Leeds server for back up in a pseudonymised form.  

 

I consent for my anonymised data to be used for future research.  

I understand that relevant sections of the data collected during the study, 
may be looked at by auditors from the University of Leeds or from regulatory 
authorities where it is relevant to my taking part in this research. I give 
permission for these individuals to have access to my records. 

 

I consent to the disclosure of experiment data and results in institutional 
repository, academic meetings, journals and other publication types. 

 

I agree to take part in the above research project.  

 

 

Name of participant  

Withdrawal of the experiment data (To be kept 
blank unless acquired data is to be withdrawn. 
A signature is then required). 

 

Name of lead researcher   

Signature of the lead researcher  

Signature of participant  

Date*  

 

*To be signed and dated in the presence of the participant.  

 

Once this has been signed by all parties the participant should receive a copy of the signed 

and dated participant consent form, the letter/ pre-written script/ information sheet and any 

other written information provided to the participants. A copy of the signed and dated consent 

will be kept in a secure location. The code number of the participant will be stored in a separate 

password protected document on a secure University of Leeds server.  

A.2 Participant Consent Form

A.2 Participant Consent Form
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UNIVERSITY OF LEEDS RESEARCH ETHICS COMMITTEE APPLICATION FORM 1 

 
 
 
Please read each question carefully, taking note of instructions and completing all parts. If a question is not applicable 
please indicate so. The superscripted numbers (eg8) refer to sections of the guidance notes, available at 
http://ris.leeds.ac.uk/UoLEthicsApplication. Where a question asks for information which you have previously provided 
in answer to another question, please just refer to your earlier answer rather than repeating information.  
Information about research ethics training courses: http://ris.leeds.ac.uk/EthicsTraining.  
 
To help us process your application enter the following reference numbers, if known and if applicable: 

Ethics reference number: MEEC 19-006 

Student number and/ or grant reference: 200991840 

 

PART A: Summary 

 

A.1 Which Faculty Research Ethics Committee would you like to consider this application?2  

Arts, Humanities and Cultures (AHC)

Biological Sciences (BIOSCI)
 

Social Sciences/ Environment/ LUBS (AREA)
 

MaPS and Engineering (MEEC)
 

Medicine and Health (Please specify a subcommittee):
 

School of Dentistry (DREC)
 

School of Healthcare (SHREC)
 

School of Medicine (SoMREC)
 

School of Psychology (SoPREC)
 

 

A.2 Title of the research3  
 
Activity Classification via Weft Knit Data Glove. 

 

A.3  Principal investigator’s contact details4 

Name (Title, first name, surname) Mr Emmanuel Ayodele 

Position PhD Candidate (PGR Student) 

Department/ School/ Institute School of Electronic and Electrical Engineering (IRASS) 

Faculty Faculty of Engineering 

Work address (including postcode) 2.73, School of Electronic and Electrical Engineering, University of 
Leeds. Ls2 9JT. 

Telephone number +44(0)7931776779 

University of Leeds email address El15eoa@leeds.ac.uk 

 

A.3 Application for Ethical Approval

A.3 Application for Ethical Approval
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A.4 Purpose of the research:5 (Tick as appropriate) 

 Research 

 Educational qualification:  Please specify: _______________________ 

 Educational Research & Evaluation6 

 Medical Audit or Health Service Evaluation7 

 Other
 

 

 

A.5 Select from the list below to describe your research: (You may select more than one) 

 Research on or with human participants 

 Research which has potential adverse environmental impact.8  If yes, please give details: 

  

 Research working with data of human participants 

 New data collected by qualitative methods 

 New data collected by quantitative methods 

 New data collected from observing individuals or populations 

 Routinely collected data or secondary data 

 Research working with aggregated or population data 

 Research using already published data or data in the public domain 

 Research working with human tissue samples (Please inform the relevant Persons Designate if the 

research will involve human tissue)9
 

 

 

A.6 Will the research involve NHS staff recruited as potential research participants (by virtue of their 
professional role) or NHS premises/ facilities? 

Yes       No         

If yes, ethical approval must be sought from the University of Leeds. Note that approval from the NHS Health 
Research Authority may also be needed, please contact FMHUniEthics@leeds.ac.uk for advice. 

 

A.7 Will the research involve any of the following:10 (You may select more than one) 
 

If your project is classified as research rather than service evaluation or audit and involves any of the following an 
application must be made to the NHS Health Research Authority via IRAS www.myresearchproject.org.uk as NHS 
ethics approval will be required. There is no need to complete any more of this form. Further information is 
available at http://ris.leeds.ac.uk/NHSethicalreview and at http://ris.leeds.ac.uk/HRAapproval.  
You may also contact governance-ethics@leeds.ac.uk for advice. 

 Patients and users of the NHS (including NHS patients treated in the private sector)11 

 Individuals identified as potential participants because of their status as relatives or carers of  
patients and users of the NHS 

 Research involving adults in Scotland, Wales or England who lack the capacity to consent for 

themselves12 

 A prison or a young offender institution in England and Wales (and is health related)14 

 Clinical trial of a medicinal product or medical device15 

 Access to data, organs or other bodily material of past and present NHS patients9 

 Use of human tissue (including non-NHS sources) where the collection is not covered by a Human 
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Tissue Authority licence9 

 Foetal material and IVF involving NHS patients 

 The recently deceased under NHS care
 

 None of the above 
You must inform the Research Ethics Administrator of your NHS REC reference and approval date 
once approval has been obtained. 

 

The HRA decision tool to help determine the type of approval required is available at http://www.hra-
decisiontools.org.uk/ethics. If the University of Leeds is not the Lead Institution, or approval has been granted 
elsewhere (e.g. NHS) then you should contact the local Research Ethics Committee for guidance. The UoL Ethics 
Committee needs to be assured that any relevant local ethical issues have been addressed.  

 

 
A.8 Will the participants be from any of the following groups? (Tick as appropriate) 

 Children under 1616       Specify age group: ___________________________________ 

 Adults with learning disabilities12 

 Adults with other forms of mental incapacity or mental illness 

 Adults in emergency situations 

 Prisoners or young offenders14 

 Those who could be considered to have a particularly dependent relationship with the investigator, 

eg members of staff, students17 

 Other vulnerable groups 

 No participants from any of the above groups 

Please justify the inclusion of the above groups, explaining why the research cannot be conducted on non-
vulnerable groups. 
Fellow PhD researchers are preferred as participants as they generally understand the importance of research and 
are likely to participate because of interest without any financial benefit. Additionally, it is believed that the average 
phd researcher falls under the age group necessary for the study. 

It is the researcher’s responsibility to check whether a DBS check (or equivalent) is required and to obtain 
one if it is needed. See also http://ris.leeds.ac.uk/healthandsafetyadvice and http://www.homeoffice.gov.uk/agencies-
public-bodies/dbs. 

 

A.9 Give a short summary of the research18  

This section must be completed in language comprehensible to the lay person.  Do not simply reproduce or refer to 
the protocol, although the protocol can also be submitted to provide any technical information that you think the ethics 
committee may require. This section should cover the main parts of the proposal. 

Remote progress measurement can help to drastically reduce the cost of rehabilitation of patients who cannot afford 
to employ therapists for home visits to follow-up on their progress. It also allows therapist and other healthcare 
professionals to remotely monitor the progress of several patients within the travel time it takes to meet one patient.  
 
In this project, we have developed a novel internet of things (IoT) data glove that can measure the joint angles of 
fingers in the hand. However, it will be more useful if the data obtained can be classified into respective activities (i.e. 
what the patient is doing) such as making a fist, holding a pen etc. Therefore, several healthy participants are asked to 
perform non-strenuous grasping activity of holding different objects such as a pen, key, computer mouse etc. while 
wearing the glove. The obtained data is then used to train a classifier (algorithm) such that when the glove is worn by 
a new participant, it can accurately say what they are holding. This algorithm can then be applied in the future to 
determine specifically what activity the patient can perform to his/her therapist/doctor. The doctor/therapist can 
evaluate from the results how much progress the patient has made. 
 
It is worth noting, that we have disabled the IoT capability of the glove for the experiment to ensure that the data of the 
participant is fully within our control and is not subject to the risk associated with involving 3rd parties. 



MEEC 19-006 Version 1.0 Page 4 of 13 

 

A.10 What are the main ethical issues with the research and how will these be addressed?19 

Indicate any issues on which you would welcome advice from the ethics committee. 
Although, I as a phd student have no authority over other phd students that will participate in this research, I 
acknowledge that some of the participants are fellow colleagues who might not want to say no as they might need me 
in their own experiments in the future. Therefore, I am using a gatekeeper outside of the research team to approach 
them via a mass email. Furthermore, the information sheet makes it clear that participants reserve the right to say no. 
 
There may be concerns about the data glove in terms of health and safety. However, the data glove is extremely light 
(lighter than current commercial gloves) because it is wholly textile. Furthermore, the transmission setup (i.e. that 
connects the glove to the pc) is made up of commercial wearable devices with no recorded safety issues. Therefore, 
the data glove has no potential health and safety issues. 
 

 

PART B: About the research team 

 

B.1  To be completed by students only20 

Qualification working towards (eg 
Masters, PhD) 

PhD 

Supervisor’s name (Title, first name, 
surname) 

Dr Syed Ali Raza Zaidi 

Department/ School/ Institute 
School of Electronic and Electrical Engineering 
Institute of Robotics, Autonomous Systems and Sensing 

Faculty Faculty of Engineering  

Work address (including postcode) 1.70, School of Electronic and Electrical Engineering, University of Leeds. 
Ls2 JT. 

Supervisor’s telephone number +44(0)113 343 5241  

Supervisor’s email address S.A.Zaidi@leeds.ac.uk 

Module name and number (if applicable)  

 

B.2  Other members of the research team (eg co-investigators, co-supervisors) 21 

Name (Title, first name, surname) Dr Zhiqiang Zhang 

Position University Academic Fellow 

Department/ School/ Institute School of Electronic and Electrical Engineering 
Institute of Robotics, Autonomous Systems and Sensing 

Faculty Faculty of Engineering 

Work address (including postcode) 1.69 School of Electronic and Electrical Engineering, University of Leeds. 
Ls2 JT. 

Telephone number +44(0)113 343 0289 

Email address Z.Zhang3@leeds.ac.uk 

 

Name (Title, first name, surname) Jane Scott 

Position Senior Teaching Fellow 

Department/ School/ Institute School of Design 

Faculty Faculty Of Arts, Humanities And Cultures 

Work address (including postcode) 1.03, Clothworkers South, University of Leeds, Ls2 9JT. 

Telephone number +44(0)113 343 3777 
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Email address J.C.Scott@leeds.ac.uk 

 

Name (Title, first name, surname) Dr Des McLernon 

Position Reader 

Department/ School/ Institute 
School of Electronic and Electrical Engineering 
Institute of Robotics, Autonomous Systems and Sensing 

Faculty Faculty of Engineering 

Work address (including postcode) 2.66 School of Electronic and Electrical Engineering, University of Leeds. 
Ls2 JT. 

Telephone number +44(0)113 343 2050 

Email address D.C.McLernon@leeds.ac.uk 

 

Part C: The research 

 

C.1 What are the aims of the study?22 (Must be in language comprehensible to a lay person.) 

The aim of this study is to collect data from the participants performing simple grasping activities and use this data to 
train the algorithm in our novel glove so that the glove can say what activities are performed by any user. Therefore, 
when a patient wears the glove in the future, the therapist can know what the patient is doing without being there.  

 

C.2 Describe the design of the research. Qualitative methods as well as quantitative methods should be 
included. (Must be in language comprehensible to a lay person.) 

It is important that the study can provide information about the aims that it intends to address. If a study cannot 
answer the questions/ add to the knowledge base that it intends to, due to the way that it is designed, then wasting 
participants’ time could be an ethical issue. 

10 participants will be selected for the study. The data collected in the experiments will be divided into training and 
testing. The training set will be used to “teach” the algorithm in the glove while the testing set will be used to test the 
accuracy of the algorithm in predicting what activities where performed by the testing set.  

 

C.3 What will participants be asked to do in the study?23 
(e.g. number of visits, time, travel required, interviews) 

 
Each participant will be asked to grasp objects of different shapes. The 6 shapes are, cylindrical, hook, lateral, palmar, 
spherical and tip. There will be 3 objects in each shape category. Example of objects include a key, a computer 
mouse, an ID card etc. These objects are very light and it is expected that the entire experiments for each person will 
take less than 30 minutes. The experiments will be scheduled in batches of 1 so as not to waste the time of the 
participants waiting for one person to finish. Additionally, this ensures that the identity of each participant is not 
disclosed to other participants. 

 

C.4 Does the research involve an international collaborator or research conducted overseas?24 

Yes       No 
If yes, describe any ethical review procedures that you will need to comply with in that country: 
 
 
 
Describe the measures you have taken to comply with these: 
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Include copies of any ethical approval letters/ certificates with your application. 

 

C.5 Proposed study dates and duration  

Research start date (DD/MM/YY): __1/10/2019______   Research end date (DD/MM/YY): _1/12/2019__ 
 
Fieldwork start date (DD/MM/YY): _________________   Fieldwork end date (DD/MM/YY): _________________ 
 

 

C.6. Where will the research be undertaken? (i.e. in the street, on UoL premises, in schools)25 

 
The research will be conducted in the Intelligent Robotics lab 1.53 in the school of electronic and electrical 
engineering. 

 
RECRUITMENT & CONSENT PROCESSES 
 

 

C.7 How will potential participants in the study be identified, approached and recruited?26 

How will you ensure an appropriately convened sample group in order to meet the aims of the research? Give details 
for subgroups separately, if appropriate. How will any potential pitfalls, for example dual roles or potential for coercion, 
be addressed?  
 
Potential participants are those who have no serious injuries in their hand or fingers. Additionally, they should be 
between 20 and 35 as statistically, people in this age range are known to have fully developed bones and have not 
been impacted by diseases such as stroke or rheumatoid arthritis which might affect joints in the hand. 
 
As the department of electrical and electronic engineering has a lot of research students between the age of 20 and 
35 and understand the importance of research and its impact on the society, they form the ideal candidates to 
participate in this study. As gender, race, religion and sexual orientation are irrelevant in this study, we will not be 
accessing any sources of identifiable personal information. However, since age and disability are excluding factors in 
this study, we will ensure that those who fall outside the requirements don’t bother applying so that we don’t obtain 
any personal information from them. We achieve this by clearly stating our exclusion criteria in our mass email and 
information sheet. 
 
A mass email will be sent out to PhD students in the department of electrical and electronic engineering by a 
gatekeeper. We have selected the school administrator (Clair Atkinson) as the gate keeper. She has the authority to 
send out mass emails to PhD candidates in the school. We have also attached the mass email to be sent as a 
supporting document. 

 

C.8 Will you be excluding any groups of people, and if so what is the rationale for that?27 

Excluding certain groups of people, intentionally or unintentionally may be unethical in some circumstances.  It may be 
wholly appropriate to exclude groups of people in other cases 
 
Only participants with healthy joints in their hand can participate in this study. Healthy participants will form a good 
baseline to study the accuracy of the algorithm in classifying activities while participants with injuries will skew the 
results. We have added an age criteria excluding those younger than 20 because their bones are not fully developed 
and we have excluded people older than 35 as they are more likely to have diseases that may impact the joints in their 
hand. 
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C.9 How many participants will be recruited and how was the number decided upon?28 

It is important to ensure that enough participants are recruited to be able to answer the aims of the research. 
 
The number of participants was selected based on the prevalence in recent published papers. Data will be collected 
from 10 healthy participants. A dataset of 10 healthy participants is large enough to train the algorithm to classify new 
data into accurate activities. 
 
 
Remember to include all advertising material (posters, emails etc) as part of your application 

 

C10 Will the research involve any element of deception?29  

If yes, please describe why this is necessary and whether participants will be informed at the end of the study. 
 
No! 

  

C.11 Will informed consent be obtained from the research participants?30  

Yes       No 
If yes, give details of how it will be done. Give details of any particular steps to provide information (in 
addition to a written information sheet) e.g. videos, interactive material. If you are not going to be obtaining 
informed consent you will need to justify this.  
 
Participants will be informed about the aims, procedure and impact of the study in the information sheet that will be 
attached in the mass email. If they are interested in participating, they will be asked to sign a consent form. The 
consent form illustrates a written consent to participate in the study. 
Furthermore, I will answer any questions they may have and explain verbally the procedure once again before the 
experiment begins.  
 
 
 
 
 
 
 
 
If participants are to be recruited from any of potentially vulnerable groups, give details of extra steps taken 
to assure their protection. Describe any arrangements to be made for obtaining consent from a legal 
representative. 
 
Since, potential participants are fellow PGR students, a gate keeper has been chosen to approach potential 
participants to prevent any form of coercion from the research team. We have also made it explicitly clear in the 
information sheet that potential participants have the right to say no. 
 
 
 
 
Will research participants be provided with a copy of the Privacy Notice for Research? If not, explain why not. 
Guidance is available at https://dataprotection.leeds.ac.uk/information-for-researchers. 

Yes       No 
 
 
 

Copies of any written consent form, written information and all other explanatory material should accompany 
this application. The information sheet should make explicit that participants can withdraw from the research at any 
time, if the research design permits. Remember to use meaningful file names and version control to make it easier to 
keep track of your documents.  
Sample information sheets and consent forms are available from the University ethical review webpage at 
http://ris.leeds.ac.uk/InvolvingResearchParticipants.  
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C.12 Describe whether participants will be able to withdraw from the study, and up to what point (eg if data is 
to be anonymised). If withdrawal is not possible, explain why not. 
Any limits to withdrawal, eg once the results have been written up or published, should be made clear to participants 
in advance, preferably by specifying a date after which withdrawal would not be possible. Make sure that the 
information provided to participants (eg information sheets, consent forms) is consistent with the answer to C12. 
 
Participants can withdraw from the study at ANY time they wish to do so. There is a section on the consent form that 
needs to be filled if participants want to withdraw their data. When this section is filled alongside a signature from the 
participant, the data is destroyed/deleted in the presence of the participant.  

 

C.13 How long will the participant have to decide whether to take part in the research?31 

It may be appropriate to recruit participants on the spot for low risk research; however consideration is usually 
necessary for riskier projects. 
 
A deadline of a week will be given in the mass email. Although, this project is a low risk, we are giving sufficient time 
to allow enough participants to signify interest in the project. 

 

C.14 What arrangements have been made for participants who might have difficulties understanding verbal 
explanations or written information, or who have particular communication needs that should be taken into 

account to facilitate their involvement in the research?32 Different populations will have different information 

needs, different communication abilities and different levels of understanding of the research topic. Reasonable efforts 
should be made to include potential participants who could otherwise be prevented from participating due to 
disabilities or language barriers. 
 
As the preferred target group are PhD researchers in the school of electrical and electronic engineering, it is expected 
that their written and oral communication skills will be sufficient to understand the aim, objectives and procedures of 
the study. However, if there are any participants who find it difficult to understand some sentences, google translate 
will be used to translate the sentences to their native languages. 

 

C.15 Will individual or group interviews/ questionnaires discuss any topics or issues that might be sensitive, 
embarrassing or upsetting, or is it possible that criminal or other disclosures requiring action could take 
place during the study (e.g. during interviews or group discussions)?33 The information sheet should explain 
under what circumstances action may be taken. 

Yes       No                 If yes, give details of procedures in place to deal with these issues.  
 
 

 

C.16 Will individual research participants receive any payments, fees, reimbursement of expenses or any 
other incentives or benefits for taking part in this research?34 

Yes       No 
If Yes, please describe the amount, number and size of incentives and on what basis this was decided. 
 
 
 

 
RISKS OF THE STUDY 
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C.17 What are the potential benefits and/ or risks for research participants in both the short and medium-

term?35  

 
Potential risks for the participants include light fatigue due to performing grasping activities for less than 30 minutes. 
However, we mitigate this by advising/ensuring that participants perform a light warm up of their fingers before the 
experiments and we will take breaks if we notice or the user says that they are tired. We will advise the user to inform 
the research team if they need a break at any point in the experiment. 
 
There are also potential risks to the storage of the data but we have mitigated these scenarios in later sections of this 
application. 
 

 

C.18 Does the research involve any risks to the researchers themselves, or people not directly involved in the 

research? Eg lone working36  

Yes       No 
 

If yes, please describe: __________________________________________________ 
 
Is a risk assessment necessary for this research?  
If you are unsure whether a risk assessment is required visit http://ris.leeds.ac.uk/HealthAndSafetyAdvice or contact 
your Faculty Health and Safety Manager for advice. 

Yes       No         If yes, please include a copy of your risk assessment form with your application.  

 
RESEARCH DATA 
 

C.19 Explain what measures will be put in place to protect personal data.  E.g. anonymisation procedures, 
secure storage and coding of data.  Any potential for re-identification should be made clear to participants in 

advance.37 Please note that research data which appears in reports or other publications is not confidential, even if it 

is fully anonymised. For a fuller explanation see http://ris.leeds.ac.uk/ConfidentialityAnonymisation. Further guidance 
is available at http://ris.leeds.ac.uk/ResearchDataManagement.  
 
The identity of the participants is pseudonymized using code numbers. The data of each participant is identified with a 
chosen code number. The code number is written on the consent form and is only known by the participant and the 
research team. This method was selected so that the data of each participant can be recognised if the participant 
wants to withdraw their data. It is worth noting that the data itself does not have any recognisable traits that can be 
linked to the participant.  
 
The data and the consent form are stored in separate folders on the researcher’s University pc and the university 
assigned OneDrive backup. Furthermore, different folders are used for different participants i.e. each participant will 
have 2 folders, one for their data and one for their consent form. These folders will be secured with strong and unique 
passwords. 
 
Non-members of the research team will not have access to the PC or OneDrive account and thus their data or 
consent forms. 
 
Additionally, during experiments. Non-members of the research team are not allowed into the labs. 
 
Data or consent forms will not be stored on the personal devices of the research team. 
 

 

C.20 How will you make your research data available to others in line with: the University’s, funding bodies’ 
and publishers’ policies on making the results of publically funded research publically available.  Explain the 
extent to which anonymity will be maintained. (max 200 words)   Refer to 
http://ris.leeds.ac.uk/ConfidentialityAnonymisation and http://ris.leeds.ac.uk/ResearchDataManagement for guidance. 
 
This research is privately funded so there is no need to share the research data to funding bodies. However, if the 
research data is made available to others such as the university or journals, it will be made available only with the 
code numbers and not the real identity of the participants. As earlier mentioned, it is impossible to identify participants 
directly or indirectly from the data collected. 
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C.21 Will the research involve any of the following activities at any stage (including identification of potential 
research participants)? (Tick as appropriate) 

 Examination of personal records by those who would not normally have access 

 Access to research data on individuals by people from outside the research team 

 Electronic surveys, please specify survey tool: _______________________________ (further guidance) 

 Other electronic transfer of data 

 Use of personal addresses, postcodes, faxes, e-mails or telephone numbers 

 Use of audio/ visual recording devices (NB this should usually be mentioned in the information for 
participants)  

 FLASH memory or other portable storage devices 

 Storage of personal data on, or including, any of the following:
 

 University approved cloud computing services  

 Other cloud computing services 

 Manual files  

 Private company computers 

 Laptop computers 

Home or other personal computers (not recommended; data should be stored on a University of 
Leeds server such as your M: or N: drive where it is secure and backed up regularly: 
http://ris.leeds.ac.uk/ResearchDataManagement.)  

 

Unclassified and Confidential University data must be kept on the University servers or in approved cloud services 
such as Office 365 (SharePoint or OneDrive). The N: Drive or Office 365 should be used for the storage of data that 
needs to be shared. If Highly Confidential information is kept in these shared storage areas it must be encrypted. 
Highly Confidential data that is not to be shared should be kept on the M: Drive. The use of non‐University approved 
cloud services for the storage of any University data, including that which is unclassified, is forbidden without formal 
approval from IT. Further guidance is available via http://ris.leeds.ac.uk/ResearchDataManagement.  

 

C.22 How do you intend to share the research data? (Indicate with an ‘X) Refer to 
http://library.leeds.ac.uk/research-data-deposit for guidance. 

 Exporting data outside the European Union 

 Sharing data with other organisations 

 Publication of direct quotations from respondents 

 Publication of data that might allow identification of individuals to be identified 

 Submitting to a journal to support a publication 

 Depositing in a self-archiving system or an institutional repository 

 Dissemination via a project or institutional website 

 Informal peer-to-peer exchange 

 Depositing in a specialist data centre or archive 

 Other, please state: _____________________________________________. 

 No plans to report or disseminate the data 
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C.23 How do you intend to report and disseminate the results of the study? (Indicate with an ‘X) Refer to 
http://ris.leeds.ac.uk/ResearchDissemination and http://ris.leeds.ac.uk/Publication for guidance.  

 Conference presentation  

 Peer reviewed journals 

 Publication as an eThesis in the Institutional repository 

 Publication on website 

 Other publication or report, please state: _______________________________ 

 Submission to regulatory authorities 

 Other, please state: _______________________________________________. 

 No plans to report or disseminate the results  
 

 

C.24 For how long will data from the study be stored? Please explain why this length of time has been 
chosen.38     Refer to the RCUK Common Principles on Data Policy and 
http://ris.leeds.ac.uk/info/71/good_research_practice/106/research_data_guidance/5.  
Students: It would be reasonable to retain data for at least 2 years after publication or three years after the end of 
data collection, whichever is longer. 
 

__3______ years, _____0___ months.  

As this is a PhD study, the data will be retained for 3 years after the end of the data collection and will be discarded 
securely afterwards. This time period allows for any investigation into any allegation of academic fraud. The data will 
be discarded by utilising the university’s IT department tool in deleting sensitive data. 

 
 
CONFLICTS OF INTEREST 
 

C.25 Will any of the researchers or their institutions receive any other benefits or incentives for taking part in 
this research over and above normal salary or the costs of undertaking the research?39  

Yes       No 
If yes, indicate how much and on what basis this has been decided 
___________________________________________________________________________ 
 

 

C.26 Is there scope for any other conflict of interest?40 For example, could the research findings affect the any 

ongoing relationship between any of the individuals or organisations involved and the researcher(s)? Will the research 
funder have control of publication of research findings? Refer to http://ris.leeds.ac.uk/ConflictsOfInterest.  

Yes       No         
If so, please describe this potential conflict of interest, and outline what measures will be taken to address 
any ethical issues that might arise from the research.  
 

 

C.27 Does the research involve external funding? (Tick as appropriate) 

Yes       No        If yes, what is the source of this funding? ___________________________________ 
 

NB: If this research will be financially supported by the US Department of Health and Human Services or any of its 
divisions, agencies or programmes please ensure the additional funder requirements are complied with. Further 
guidance is available at http://ris.leeds.ac.uk/FWAcompliance and you may also contact your FRIO for advice.  
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PART D: Declarations 

 

Declaration by Principal Investigators 
 

1. The information in this form is accurate to the best of my knowledge and belief and I take full responsibility for 
it.  

2. I undertake to abide by the University's ethical and health & safety guidelines, and the ethical principles 
underlying good practice guidelines appropriate to my discipline. 

3. If the research is approved I undertake to adhere to the study protocol, the terms of this application and any 
conditions set out by the Research Ethics Committee (REC). 

4. I undertake to seek an ethical opinion from the REC before implementing substantial amendments to the 
protocol. 

5. I undertake to submit progress reports if required. 

6. I am aware of my responsibility to be up to date and comply with the requirements of the law and relevant 
guidelines relating to security and confidentiality of patient or other personal data, including the need to 
register when necessary with the University’s Data Protection Controller (further information available via 
http://ris.leeds.ac.uk/ResearchDataManagement).  

7. I understand that research records/ data may be subject to inspection for audit purposes if required in future. 

8. I understand that personal data about me as a researcher in this application will be held by the relevant RECs 
and that this will be managed according to the principles established in the Data Protection Act. 

9. I understand that the REC may choose to audit this project at any point after approval. 

 
Sharing information for training purposes: Optional – please tick as appropriate: 

 

I would be content for members of other Research Ethics Committees to have access to the information 
in the application in confidence for training purposes. All personal identifiers and references to 
researchers, funders and research units would be removed. 

 
Principal Investigator: 
 
 
Signature of Principal Investigator: ................................................................  
(This needs to be an actual signature rather than just typed. Electronic signatures are acceptable)  
 
 
Print name: ......Emmanuel Ayodele...........................    Date: (dd/mm/yyyy): ....19/08/2019........................... 
 
 
Supervisor of student research:  
 
I have read, edited and agree with the form above. 
 
 
Supervisor’s signature: ................................................................  
(This needs to be an actual signature rather than just typed. Electronic signatures are acceptable)  
 
 
Print name: ..Dr Syed Ali Raza Zaidi..    Date: (dd/mm/yyyy): 19/08/2019..... 
 

 
Please submit your form by email to the FREC or School REC’s mailbox. 
 
Remember to include any supporting material such as your participant information sheet, consent form, interview 
questions and recruitment material with your application.  
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To help speed up the review of your application: 
 

❑ Answer the questions in plain English, avoid using overly technical terms and acronyms not in 
common use.  

❑ Answer all the questions on the form, including those with several parts (refer to the guidance if 
you’re not sure how to answer a question or how much detail is required). 

❑ Include any relevant supplementary materials such as  

❑ Recruitment material (posters, emails etc) 

❑ Sample participant information sheet  

❑ Sample consent form. Include different versions for different groups of participants eg for 
children and adults, clearly indicating which is which. 

❑ Signed risk assessment (If you are unsure whether a risk assessment is required visit 
http://ris.leeds.ac.uk/HealthAndSafetyAdvice or contact your Faculty Health and Safety 
Manager for advice). 

Remember to include use version control and meaningful file names for the documents.  

❑ If you are not going to be using participant information sheets or consent forms explain why not and 
how informed consent will be otherwise obtained. 

❑ If you are a student it is essential that you discuss your application with your supervisor. 

❑ Submit a signed copy of the application, preferably electronically. Students’ applications need to be 
signed by their supervisors as well.  



School of Electronic and Electrical Engineering, Faculty of Engineering 

 

Project title: Activity Classification via Weft Knit Data 

Glove. 

Document type Version # Date 

Consent form template 1.4 24/10/2019 

 

 

PARTICIPANT INFORMATION SHEET 

 

RESEARCH PROJECT: Activity Classification via Weft Knit Data Glove 

You are invited to participate in the research project titled: Activity classification via weft knit data 

glove. If you have had any injuries to your fingers or hand, please decline to participate in this project 

without giving any reason. If you have had no injuries to your fingers and are between the ages of 20-

35 and you wish to continue, please read the information below. 

 

Purpose of the project 

Data gloves can provide a cheap method of monitoring patients remotely. This can enable healthcare 

professionals to monitor several patients in the time it takes to visit one. However, the output data of 

the glove will not make sense to the healthcare professional unless it is converted to something 

meaningful. The aim of this project is to train and validate a classifier (an algorithm) with the data 

from healthy participants to enable it accurately predict the activities performed when a new user 

wears the glove. This algorithm will help to convert the data from the glove to meaningful 

information that healthcare professionals can easily understand. This study is undertaken as part of the 

lead researcher’s PhD. 

 

Selection of Participants 

This research focuses on training the algorithm with healthy participants to ensure consistency in the 

data and processed results. Therefore, participants with injuries on their fingers are excluded. 

 

What do I have to do? 

The participant is required to wear the data glove and grasp light objects of different shapes. Objects 

include a coffee mug, ID card, pen, small box etc. The entire experiment will take only 20 minutes 

and will take place within one visit.  

 

What are the possible disadvantages and risks of taking part 

Participants will be required to sit for a short period during the experiment. There may be a risk of 

slight fatigue so it is advised that participants perform some grasping exercises for a few seconds to 

warm up the necessary joints. However, there are no health and safety risks that might require 

emergency prevention. 

 

What are the possible benefits of taking part? 

There are no financial benefits in taking part in this project. However, you are participating in 

research that has a potential for making the world a better place for people with disabilities.  

A.4 Participant Information sheet

A.4 Participant Information sheet
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School of Electronic and Electrical Engineering, Faculty of Engineering 

 

Project title: Activity Classification via Weft Knit Data 

Glove. 

Document type Version # Date 

Consent form template 1.4 24/10/2019 

 

 

 

Can I say NO? 

Yes, YOU CAN! Please feel free to say no for whatsoever reason you may have. But if you do decide 

to participate, you will be given this information sheet to keep and you will be required to sign a 

consent form. Furthermore, you can withdraw your consent data unconditionally with no required 

reason. 

 

How confidential is my data? 

Your data will be fully pseudonymised. This means that your data will only be stored with the code 

number assigned to it. The consent form containing your code number and your name is only stored to 

allow identification of your data if you plan on withdrawing consent, so that it can be destroyed. 

Furthermore, the consent form will only be disclosed to the researcher and no one else. Any access to 

your data in publications (in form of results of the study) such as journals will only be in its 

pseudonymised form. 

In addition, your data will be stored on a secure University of Leeds server in folders protected with 

strong passwords. 

Can I WITHDRAW my data? 

Yes! You can withdraw your data up to 3 weeks after the study and you don’t have to give a reason.  

The limit of 3 weeks post-experiment is given because the data will be analysed and submitted for 

publications at which point withdrawal is impossible.  

How is the research being funded/organised? 

This research is part of the lead researcher’s PhD project and there is no current available funding. 

Contact information for complaints 

Clare Skinner, Head of Research Integrity and Governance, Secretariat. c.e.skinner@leeds.ac.uk   

Privacy Notice for Research 

Please take some time to read this document. It is important to read this before participating in this 

study. Privacy Notice for Research. Hard copy versions will be printed if requested. 

 

Contact for further information 

The contact details of researcher: 

Name (title, first name, last name) Emmanuel Ayodele 

Department/ School/ Institute Faculty of Engineering  

School of Electronic and Electrical Engineering 



School of Electronic and Electrical Engineering, Faculty of Engineering 

 

Project title: Activity Classification via Weft Knit Data 

Glove. 

Document type Version # Date 

Consent form template 1.4 24/10/2019 

 

Institute of Robotics, Autonomous Systems and Sensing 

Telephone number +44(0)7931776779 

University of Leeds email address el15eoa@leeds.ac.uk 

 

The contact details of main supervisor: 

 

Name (title, first name, last name) Dr Syed Ali Raza Zaidi 

Department/ School/ Institute Faculty of Engineering  

School of Electronic and Electrical Engineering 

Institute of Robotics, Autonomous Systems and Sensing 

Telephone number +44(0)113 343 5241 

University of Leeds email address S.A.Zaidi@leeds.ac.uk 
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[18] B. Glǐsić, Y. Yao, S.-T. E. Tung, S. Wagner, J. C. Sturm, and N. Verma,

“Strain sensing sheets for structural health monitoring based on large-area

electronics and integrated circuits,” Proceedings of the IEEE, vol. 104, no. 8,

pp. 1513–1528, 2016. 9

[19] S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen, X. Wang, and J. M.

Razal, “Textile strain sensors: a review of the fabrication technologies,

performance evaluation and applications,” Materials Horizons, vol. 6, no. 2,

pp. 219–249, 2019. 10

[20] J. Wu, D. Zhou, C. O. Too, and G. G. Wallace, “Conducting polymer

coated lycra,” Synthetic Metals, vol. 155, no. 3, pp. 698–701, 2005. 10

[21] T. Lee, W. Lee, S.-W. Kim, J. J. Kim, and B.-S. Kim, “Flexible textile

strain wireless sensor functionalized with hybrid carbon nanomaterials sup-

ported zno nanowires with controlled aspect ratio,” Advanced Functional

Materials, vol. 26, no. 34, pp. 6206–6214, 2016. 10, 11

[22] M. Zhang, C. Wang, Q. Wang, M. Jian, and Y. Zhang, “Sheath–core

graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sen-

sors,” ACS applied materials & interfaces, vol. 8, no. 32, pp. 20 894–20 899,

2016. 10

159



REFERENCES

[23] X. Wu, Y. Han, X. Zhang, and C. Lu, “Highly sensitive, stretchable,

and wash-durable strain sensor based on ultrathin conductive layer@

polyurethane yarn for tiny motion monitoring,” ACS applied materials &

interfaces, vol. 8, no. 15, pp. 9936–9945, 2016. 10

[24] X. Wang, X. Fu, and D. Chung, “Strain sensing using carbon fiber,” Journal

of Materials Research, vol. 14, no. 3, pp. 790–802, 1999. 11

[25] A. Lekawa-Raus, K. K. Koziol, and A. H. Windle, “Piezoresistive effect in

carbon nanotube fibers,” ACS nano, vol. 8, no. 11, pp. 11 214–11 224, 2014.

11

[26] S. Ryu, P. Lee, J. B. Chou, R. Xu, R. Zhao, A. J. Hart, and S.-G. Kim,

“Extremely elastic wearable carbon nanotube fiber strain sensor for mon-

itoring of human motion,” ACS nano, vol. 9, no. 6, pp. 5929–5936, 2015.

11

[27] Y.-L. Li, I. A. Kinloch, and A. H. Windle, “Direct spinning of carbon

nanotube fibers from chemical vapor deposition synthesis,” Science, vol.

304, no. 5668, pp. 276–278, 2004. 11

[28] X. Li, P. Sun, L. Fan, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu,

Y. Cheng, and H. Zhu, “Multifunctional graphene woven fabrics,” Scientific

reports, vol. 2, p. 395, 2012. 12

[29] Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen, Y. Wang, and B. Li, “Highly

stretchable core–sheath fibers via wet-spinning for wearable strain sensors,”

ACS applied materials & interfaces, vol. 10, no. 7, pp. 6624–6635, 2018. 12,

13

[30] C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren, and

Y. Zhang, “Carbonized silk fabric for ultrastretchable, highly sensitive, and

wearable strain sensors,” Advanced materials, vol. 28, no. 31, pp. 6640–6648,

2016. 12

160



REFERENCES

[31] Y.-h. Wu, R.-m. Zhen, H.-z. Liu, S.-q. Liu, Z.-f. Deng, P.-p. Wang, S. Chen,

and L. Liu, “Liquid metal fiber composed of a tubular channel as a high-

performance strain sensor,” Journal of Materials Chemistry C, vol. 5,

no. 47, pp. 12 483–12 491, 2017. 13, 14

[32] S. Chen, H. Liu, S. Liu, P. Wang, S. Zeng, L. Sun, and L. Liu, “Transparent

and waterproof ionic liquid-based fibers for highly durable multifunctional

sensors and strain-insensitive stretchable conductors,” ACS applied mate-

rials & interfaces, vol. 10, no. 4, pp. 4305–4314, 2018. 13

[33] C. Isaia, D. S. McNally, S. A. McMaster, and D. T. Branson, “Effect of me-

chanical preconditioning on the electrical properties of knitted conductive

textiles during cyclic loading,” Textile Research Journal, vol. 89, no. 3, pp.

445–460, 2019. 13, 29, 37, 38, 46, 63, 77

[34] H. Zhang, X. Tao, T. Yu, and S. Wang, “Conductive knitted fabric as large-

strain gauge under high temperature,” Sensors and Actuators A: Physical,

vol. 126, no. 1, pp. 129–140, 2006. 13

[35] J. Foroughi, G. M. Spinks, S. Aziz, A. Mirabedini, A. Jeiranikhameneh,

G. G. Wallace, M. E. Kozlov, and R. H. Baughman, “Knitted carbon-

nanotube-sheath/spandex-core elastomeric yarns for artificial muscles and

strain sensing,” ACS nano, vol. 10, no. 10, pp. 9129–9135, 2016. 13

[36] S. Seyedin, J. M. Razal, P. C. Innis, A. Jeiranikhameneh, S. Beirne, and

G. G. Wallace, “Knitted strain sensor textiles of highly conductive all-

polymeric fibers,” ACS applied materials & interfaces, vol. 7, no. 38, pp.

21 150–21 158, 2015. 13, 40, 41, 62

[37] O. Atalay, W. R. Kennon, and M. D. Husain, “Textile-based weft knitted

strain sensors: Effect of fabric parameters on sensor properties,” Sensors,

vol. 13, no. 8, pp. 11 114–11 127, 2013. 13, 18, 37, 45, 63, 74, 104, 125

[38] O. Atalay and W. Kennon, “Knitted strain sensors: Impact of design pa-

rameters on sensing properties,” Sensors, vol. 14, no. 3, pp. 4712–4730,

2014. 13, 39, 46, 63, 104

161



REFERENCES

[39] M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly

stretchable and sensitive strain sensor based on silver nanowire–elastomer

nanocomposite,” ACS nano, vol. 8, no. 5, pp. 5154–5163, 2014. 15, 17

[40] X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong,

H. Han, J. Zhou, and Z. L. Wang, “High-strain sensors based on

zno nanowire/polystyrene hybridized flexible films,” Advanced materials,

vol. 23, no. 45, pp. 5440–5444, 2011. 15

[41] M. Hempel, D. Nezich, J. Kong, and M. Hofmann, “A novel class of strain

gauges based on layered percolative films of 2d materials,” Nano letters,

vol. 12, no. 11, pp. 5714–5718, 2012. 15

[42] J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, and O. O. Park, “Highly

stretchable and wearable graphene strain sensors with controllable sensi-

tivity for human motion monitoring,” ACS applied materials & interfaces,

vol. 7, no. 11, pp. 6317–6324, 2015. 15

[43] W. Obitayo and T. Liu, “A review: Carbon nanotube-based piezoresistive

strain sensors,” Journal of Sensors, vol. 2012, 2012. 15, 17

[44] N. Hu, H. Fukunaga, S. Atobe, Y. Liu, J. Li et al., “Piezoresistive strain

sensors made from carbon nanotubes based polymer nanocomposites,” Sen-

sors, vol. 11, no. 11, pp. 10 691–10 723, 2011. 15

[45] C. Li, E. T. Thostenson, and T.-W. Chou, “Dominant role of tunneling

resistance in the electrical conductivity of carbon nanotube–based compos-

ites,” Applied Physics Letters, vol. 91, no. 22, p. 223114, 2007. 15

[46] A. Oskouyi, U. Sundararaj, and P. Mertiny, “Tunneling conductivity and

piezoresistivity of composites containing randomly dispersed conductive

nano-platelets,” Materials, vol. 7, no. 4, pp. 2501–2521, 2014. 15

[47] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-

Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube

strain sensor for human-motion detection,” Nature nanotechnology, vol. 6,

no. 5, p. 296, 2011. 16

162



REFERENCES

[48] Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, and

H. Zhu, “Wearable and highly sensitive graphene strain sensors for human

motion monitoring,” Advanced Functional Materials, vol. 24, no. 29, pp.

4666–4670, 2014. 16

[49] X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng,

Q. Zheng et al., “Stretchable and highly sensitive graphene-on-polymer

strain sensors,” Scientific reports, vol. 2, p. 870, 2012. 16, 17

[50] S. Tadakaluru, W. Thongsuwan, and P. Singjai, “Stretchable and flexible

high-strain sensors made using carbon nanotubes and graphite films on

natural rubber,” Sensors, vol. 14, no. 1, pp. 868–876, 2014. 17

[51] M. Amjadi, K.-U. Kyung, I. Park, and M. Sitti, “Stretchable, skin-

mountable, and wearable strain sensors and their potential applications:

a review,” Advanced Functional Materials, vol. 26, no. 11, pp. 1678–1698,

2016. 17, 18

[52] C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee,

and P. S. Lee, “Highly stretchable piezoresistive graphene–nanocellulose

nanopaper for strain sensors,” Advanced materials, vol. 26, no. 13, pp. 2022–

2027, 2014. 17

[53] C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane,

R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton et al., “Sensitive, high-strain,

high-rate bodily motion sensors based on graphene–rubber composites,”

ACS nano, vol. 8, no. 9, pp. 8819–8830, 2014. 17

[54] Y. R. Jeong, H. Park, S. W. Jin, S. Y. Hong, S.-S. Lee, and J. S. Ha, “Highly

stretchable and sensitive strain sensors using fragmentized graphene foam,”

Advanced Functional Materials, vol. 25, no. 27, pp. 4228–4236, 2015. 18

[55] M. Amjadi, Y. J. Yoon, and I. Park, “Ultra-stretchable and skin-mountable

strain sensors using carbon nanotubes–ecoflex nanocomposites,” Nanotech-

nology, vol. 26, no. 37, p. 375501, 2015. 18

163



REFERENCES

[56] L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang, Q. Gao, D. Zhao, X. Zhang,

M. Tu, F. Yang et al., “Super-stretchable, transparent carbon nanotube-

based capacitive strain sensors for human motion detection,” Scientific re-

ports, vol. 3, no. 1, pp. 1–9, 2013. 18

[57] D. J. Spencer, Knitting technology: a comprehensive handbook and practical

guide. CRC press, 2001, vol. 16. 19, 21, 22, 23, 62, 105, 110, 121

[58] V. Schrank, M. Beer, M. Beckers, and T. Gries, “Polymer-optical fibre

(pof) integration into textile fabric structures,” in Polymer optical fibres.

Elsevier, 2017, pp. 337–348. 19

[59] B. Gupta and J. Edwards, “Textile materials and structures for topical

management of wounds,” in Advanced Textiles for Wound Care. Elsevier,

2019, pp. 55–104. 19

[60] M. J. Denton and P. N. Daniels, Textile terms and definitions. Textile

Institute, 2002. 19

[61] K. Gandhi, Woven textiles: Principles, technologies and applications.

Woodhead Publishing, 2019. 21

[62] H. Hu and Q. He, “Knitting of basalt filament yarn,” Textile research jour-

nal, vol. 81, no. 7, pp. 690–697, 2011. 21

[63] F. T. Peirce, “Geometrical principles applicable to the design of functional

fabrics,” Textile Research Journal, vol. 17, no. 3, pp. 123–147, 1947. 24, 63

[64] A. Kurbak, “Plain knitted fabric dimensions (part ii),” Textile Asia, vol. 78,

pp. 36–44, 1998. 25

[65] A. Kurbak and O. Ekmen, “Basic studies for modeling complex weft knitted

fabric structures part i: A geometrical model for widthwise curlings of plain

knitted fabrics,” Textile Research Journal, vol. 78, no. 3, pp. 198–208, 2008.

25, 26

164



REFERENCES

[66] S. Kawabata, “Nonlinear mechanics of woven and knitted materials,” in

Textile structural composites, W. B. Kleijn and K. K. Paliwal, Eds. Ams-

terdam: Elsevier, 1989, ch. 3. 27, 45

[67] J. Wang, H. Long, S. Soltanian, P. Servati, and F. Ko, “Electromechanical

properties of knitted wearable sensors: Part 1–theory,” Textile Research

Journal, vol. 84, no. 1, pp. 3–15, 2014. 28, 33, 34, 45

[68] D. Munden, “26—the geometry and dimensional properties of plain-knit

fabrics,” Journal of the Textile Institute Transactions, vol. 50, no. 7, pp.

T448–T471, 1959. 28, 111

[69] G. Leaf, “4—models of the plain-knitted loop,” Journal of the Textile In-

stitute Transactions, vol. 51, no. 2, pp. T49–T58, 1960. 28

[70] G. Leaf and A. Glaskin, “43—the geometry of a plain knitted loop,” Journal

of the Textile Institute Transactions, vol. 46, no. 9, pp. T587–T605, 1955.

28

[71] K. Yang, G.-l. Song, L. Zhang, and L.-w. Li, “Modelling the electrical prop-

erty of 1× 1 rib knitted fabrics made from conductive yarns,” in Information

and Computing Science, 2009. ICIC’09. Second International Conference

on, vol. 4. IEEE, 2009, pp. 382–385. 29, 30

[72] J. Wang, H. Long, S. Soltanian, P. Servati, and F. Ko, “Electro-mechanical

properties of knitted wearable sensors: Part 2–parametric study and exper-

imental verification,” Textile Research Journal, vol. 84, no. 2, pp. 200–213,

2014. 34, 40, 45

[73] R. Holm, Electric contacts: theory and application. Springer Science &

Business Media, 2013. 38, 104

[74] L. Li, W. M. Au, K. M. Wan, S. H. Wan, W. Y. Chung, and K. S. Wong, “A

resistive network model for conductive knitting stitches,” Textile research

journal, vol. 80, no. 10, pp. 935–947, 2010. 40, 62

165



REFERENCES

[75] R. K. Raji, X. Miao, A. Wan, L. Niu, Y. Li, and A. Boakye, “Knitted

piezoresistive smart chest band and its application for respiration pat-

terns assessment,” Journal of Engineered Fibers and Fabrics, vol. 14, p.

1558925019868474, 2019. 41, 42

[76] Y. Li, X. Miao, and R. K. Raji, “Flexible knitted sensing device for identi-

fying knee joint motion patterns,” Smart Materials and Structures, vol. 28,

no. 11, p. 115042, 2019. 41, 62, 84

[77] R. Reddy K, S. Gandla, and D. Gupta, “Highly sensitive, rugged, and wear-

able fabric strain sensor based on graphene clad polyester knitted elastic

band for human motion monitoring,” Advanced Materials Interfaces, vol. 6,

no. 16, p. 1900409, 2019. 41

[78] H. Zhang and X. Tao, “From wearable to aware: Intrinsically conductive

electrotextiles for human strain/stress sensing,” in Biomedical and Health

Informatics (BHI), 2012 IEEE-EMBS International Conference on. IEEE,

2012, pp. 468–471. 44, 63, 120

[79] W.-L. Wu, H. Hamada, and Z.-i. Maekawa, “Computer simulation of the

deformation of weft-knitted fabrics for composite materials,” Journal of the

Textile Institute, vol. 85, no. 2, pp. 198–214, 1994. 45

[80] F. T. Peirce, “5—the geometry of cloth structure,” Journal of the Textile

Institute Transactions, vol. 28, no. 3, pp. T45–T96, 1937. 45

[81] P. Popper, “The theoretical behavior of a knitted fabric subjected to biaxial

stresses,” Textile Research Journal, vol. 36, no. 2, pp. 148–157, 1966. 45

[82] N. J. Seo, W. Z. Rymer, and D. G. Kamper, “Delays in grip initiation

and termination in persons with stroke: effects of arm support and active

muscle stretch exercise,” Journal of neurophysiology, vol. 101, no. 6, pp.

3108–3115, 2009. 59

[83] M. H. Schieber, C. Lang, K. Reilly, P. McNulty, and A. Sirigu, “Selective

activation of human finger muscles after stroke or amputation,” in Progress

in Motor Control. Springer, 2009, pp. 559–575. 59

166



REFERENCES

[84] C.-y. Park, J.-h. Bae, and I. Moon, “Development of wireless data glove

for unrestricted upper-extremity rehabilitation system,” in ICCAS-SICE,

2009. IEEE, 2009, pp. 790–793. 59

[85] R. V. Aroca, R. S. Inoue, L. M. Pedro, G. A. Caurin, and D. V. Magalhaes,

“Towards a battery-free wireless smart glove for rehabilitation applications

based on rfid,” in RFID, 2015 IEEE Brasil. IEEE, 2015, pp. 1–5. 59

[86] C. OQuigley, M. Sabourin, S. Coyle, J. Connolly, J. Condall, K. Curran,

B. Corcoran, and D. Diamond, “Characteristics of a piezo-resistive fabric

stretch sensor glove for home-monitoring of rheumatoid arthritis,” in Wear-

able and Implantable Body Sensor Networks Workshops (BSN Workshops),

2014 11th International Conference on. IEEE, 2014, pp. 23–26. 60

[87] G. S. Rash, P. P. Belliappa, M. P. Wachowiak, N. N. Somia, and A. Gupta,

“A demonstration of the validity of a 3-d video motion analysis method for

measuring finger flexion and extension,” Journal of Biomechanics, vol. 32,

no. 12, pp. 1337–1341, 1999. 60
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