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Abstract 

A major bottleneck in the transition from chemistry research at lab scale 

to process development is a lack of quantitative chemical synthesis information. 

Critical aspects of this information include knowing the correct reaction model 

and precise kinetic parameters. If this information is available, classical reaction 

engineering principles may be utilised to shorten process development times and 

lower costs. 

Identifying the correct reaction model for a particular process, however, 

can be challenging and time-consuming, particularly for physical-organic 

chemists and kinetics experts that may be busy with other aspects of process 

development. The work presented herein describes computational approaches 

that automatically determine the most likely kinetic model and associated 

parameters based on the experimental data supplied, without expert chemical 

intuition. 

The concept for these methodologies involves a comprehensive model 

evaluation tool. The experimental data and the species involved in the process 

are inputted. Based on mass balance, all mass-balance-allowed transformations 

between these species are identified. All possible models are then compiled from 

this list of transformations, featuring unique combinations of these model terms. 

Every model is then evaluated using ordinary differential equation (ODE) solvers 

and optimisation algorithms to maximise the convergence of simulated reaction 

progression with the experimental data, thereby identifying the kinetic 

parameters. Each model is then statistically evaluated to determine which model 

is the most likely to be correct. 

Using these methodologies allows any chemist to automatically determine 

a reaction model and kinetic constants for a particular system, by performing all 

kinetic analysis autonomously. Their most expensive resource, time, can then be 

focussed on other tasks that cannot be automated. 

 

 

 

 

 

  



4 
 

Table of Contents 

Acknowledgements ..................................................................................... 2 

Abstract ........................................................................................................ 3 

Table of Contents ......................................................................................... 4 

List of Schemes ........................................................................................... 7 

List of Figures .............................................................................................. 9 

List of Tables .............................................................................................. 14 

List of Abbreviations ................................................................................. 17 

Chapter 1 : Introduction ............................................................................ 19 

1.1 Continuous flow chemistry .............................................................. 19 

1.1.1 Batch and flow reactions ....................................................... 19 

1.1.2 Reactions in flow ................................................................... 24 

1.1.3 Reaction analysis .................................................................. 33 

1.1.4 Continuous flow chemistry summary ..................................... 40 

1.2 Kinetic methodologies .................................................................... 40 

1.2.1 Conventional methodologies ................................................. 41 

1.2.2 Visual kinetic analysis ........................................................... 49 

1.2.3 Kinetic methodologies summary ........................................... 56 

1.3 Optimisation ................................................................................... 56 

1.3.1 Local algorithms .................................................................... 59 

1.3.2 Global .................................................................................... 63 

1.3.3 Optimisation summary .......................................................... 68 

1.4 Research aim ................................................................................. 69 

Chapter 2 : Development of the computational approach to kinetic 
model determination ......................................................................... 70 

2.1 Introduction ..................................................................................... 70 

2.2 Development of the approach ........................................................ 73 

2.2.1 Kinetic model generation ....................................................... 74 

2.2.2 Kinetic model fitting ............................................................... 79 

2.2.3 Statistical analysis ................................................................. 85 

2.2.4 Other considerations ............................................................. 86 

2.2.5 Overview ............................................................................... 87 

2.3 Simulated verification of the approach............................................ 89 

2.3.1 Case study: Benzoic acid alkylation ...................................... 90 

2.3.2 Case study: Nitrile hydrolysis ................................................ 93 



5 
 

2.3.3 Case study: SNAr kinetics ...................................................... 97 

2.4 Conclusion .................................................................................... 102 

Chapter 3 : Experimental applications of the computational approach to 
kinetic model and parameter determination ................................. 103 

3.1 Introduction ................................................................................... 103 

3.2 Experimental setup ....................................................................... 112 

3.3 Case study: Phenyl acetate .......................................................... 115 

3.4 Case study: Paracetamol ............................................................. 118 

3.5 Case study: Metoprolol ................................................................. 121 

3.6 Conclusion .................................................................................... 125 

Chapter 4 : The development of an improved computational approach 
to kinetic model determination....................................................... 126 

4.1 Introduction ................................................................................... 126 

4.2 Methodology advancement .......................................................... 127 

4.2.1 Capabilities.......................................................................... 127 

4.2.2 Rules ................................................................................... 131 

4.2.3 Overview ............................................................................. 136 

4.3 Simulated verifications of the approach ........................................ 138 

4.3.1 Case study: SNAr kinetics .................................................... 138 

4.3.2 Case study: Pentyne kinetics .............................................. 145 

4.3.3 Case study: Ytterbium catalysis .......................................... 149 

4.4 Conclusion .................................................................................... 152 

Chapter 5 : Experimental applications of the new approach ............... 153 

5.1 Introduction ................................................................................... 153 

5.2 Case study: SNAr kinetics ............................................................. 154 

5.3 Case study: PfBr .......................................................................... 157 

5.4 Case study: Maleic acid ................................................................ 162 

5.5 Conclusion .................................................................................... 166 

Chapter 6 : Conclusion & future work .................................................... 167 

Chapter 7 : Appendix ............................................................................... 168 

7.1 Chapter 1 ...................................................................................... 168 

7.2 Chapter 2 ...................................................................................... 168 

7.2.1 Generated data set for case study: benzoic acid alkylation 169 

7.2.2 Generated data set for case study: nitrile hydrolysis ........... 170 

7.2.3 Generated data set for the case study: SNAr kinetics .......... 171 

7.3 Chapter 3 ...................................................................................... 173 



6 
 

7.3.1 Phenyl acetate .................................................................... 173 

7.3.2 Paracetamol ........................................................................ 178 

7.3.3 Metoprolol ........................................................................... 187 

7.4 Chapter 4 ...................................................................................... 193 

7.4.1 Generated data set for the case study: SNAr kinetics .......... 193 

7.4.2 Generated data set for the case study: Pentyne ................. 195 

7.4.3 Generated data set for the case study: Ytterbium catalysis 197 

7.5 Chapter 5 ...................................................................................... 198 

7.5.1 SNAr kinetics ....................................................................... 198 

7.5.2 PfBr ..................................................................................... 206 

7.5.3 Maleic acid .......................................................................... 211 

7.6 Computational setup..................................................................... 214 

7.6.1 Chapter 2 - 3 ....................................................................... 214 

7.6.2 Chapter 4 - 5 ....................................................................... 214 

Chapter 8 : References ............................................................................ 214 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

List of Schemes 

Chapter 1 

Scheme 1.1: The conversion of hexanol, 1.1, to hexene, 1.2, in a continuous flow setup.[19]

..................................................................................................................................... 21 

Scheme 1.2: The flow synthesis of the adduct, 1.5, via a Michael addition between the 

dicarbonyl, 1.3, and the alkyne, 1.4.[20] ....................................................................... 22 

Scheme 1.3: The multistep continuous flow synthesis of ibuprofen, 1.8. ............................ 23 

Scheme 1.4: The temperature-accelerated SNAr reaction of 1.9 with 1.10 to form 1.11, in 

THF (boiling point: 66 °C), under flow conditions.[51] ................................................... 26 

Scheme 1.5: The Fischer Indole synthesis of 1.14, from the hydrazine, 1.12, and 

dihydrofuran, 1.13, in methanol (boiling point: 65 °C) using a flow setup.[52] .............. 26 

Scheme 1.6: The hydrogenation of isophorone, 1.15, to TMCH, 1.16.[65] ............................ 27 

Scheme 1.7: The [2 + 2] photocycloaddition of malemide, 1.17, with 1-hexyne to produce 

the cyclic product 1.18.[74]............................................................................................ 29 

Scheme 1.8: An electrochemical facilitated nucleophilic substitution reaction to afford the 

product, 1.21.[78] .......................................................................................................... 29 

Scheme 1.9: An enzyme catalysed continuous cyanohydrin formation forming 1.23.[84] ..... 30 

Scheme 1.10: Multiple enzymatic catalysed continuous process to form UDP galactose, 

1.25.[85] Individual enzymes stated. ............................................................................. 30 

Scheme 1.11: The multi-step flow synthesis of 1.27, from coupling o-dibromobenzene, 1.26, 

with varying electrophiles via sequential halogen-lithium exchange reactions.[87] ...... 31 

Scheme 1.12: A multi-step flow synthesis of ibuprofen, 1.8, involving an in-line purification 

step.[89] ......................................................................................................................... 33 

Scheme 1.13: A reaction scheme showing the formation of benzyne, 1.32, which was 

followed by analysis via mass spectrometry.[108] ......................................................... 35 

Scheme 1.14: A reaction scheme showing the thermal isomerization of 1.33a to 1.33b, 

which was followed by analysis via HPLC.[111] ............................................................ 36 

Scheme 1.15: A reaction scheme showing a fluorination reaction yielding 1.36, which was 

followed by analysis via in-line IR.[112] ......................................................................... 37 

Scheme 1.16: The Grignard reaction that was tracked by on-line NMR.[123] ....................... 38 

Scheme 1.17: A Heck coupling of an aryl bromide, 1.40, with 1.41 to form the adduct 1.42. 

This case study showed no indication of product inhibition or catalyst deactivation. . 50 

Scheme 1.18: The epoxide opening of 1.43 to form 1.44 using a catalytic system. This case 

study indicates some product inhibition or catalyst deactivation. ............................... 51 

Scheme 1.19: A nickel-catalysed alkylation reaction of chalcone, 1.45, with Et2Zn, 1.46, to 

form the adduct 1.47. .................................................................................................. 53 

 Chapter 2 

Scheme 2.1: An example esterification reaction. ................................................................. 75 

Scheme 2.2: The reaction of benzoic acid with iodomethane to form methyl benzoate. 

Modelled as a second order reaction. ......................................................................... 91 



8 
 

Scheme 2.3: The reaction of a nitrile with hydroxide to form the corresponding amide, which 

is susceptible to further hydrolysis to form the carboxylic acid. Modelled as sequential 

second order reactions. ............................................................................................... 94 

Scheme 2.4: The reaction of 2,4-dichloropyrimidine, 2.10, with morpholine, 2.11, to form the 

4-substituted product, 2.12, and the 2-substituted product, 2.13, and the subsequent 

bis-substituted product, 2.14. ...................................................................................... 98 

 Chapter 3 

Scheme 3.1: The base catalysed Knoevenagel condensation between benzaldehyde and 

ethyl cyanoacetate to form 3.4. ................................................................................. 109 

Scheme 3.2: The Paal-Knorr reaction of 2,5-hexanedione, 3.5, and ethanolamine, 3.6, to 

yield 3.7, to show how the kinetics of a process can be observed by using a controlled 

ramp technique.......................................................................................................... 111 

Scheme 3.3: The reaction of phenol, 3.8, with acetyl chloride, 3.9, to form phenyl acetate, 

3.10, and hydrochloric acid, 3.11. ............................................................................. 115 

Scheme 3.4: The reaction of 4-aminophenol with acetic anhydride to form paracetamol in 

step one, followed by a further reaction with acetic anhydride to form diacetamate in 

step two. .................................................................................................................... 118 

Scheme 3.5: The reaction of the epoxide starting material with isopropylamine to form 

metoprolol, as well as the overreaction to form the bis-substituted product. ............ 122 

 Chapter 4 

Scheme 4.1: The self-catalysed reaction of maleic acid, 4.1, and methanol, 4.2, to form the 

mono-product, 4.3, and the di-product, 4.4.[237] ......................................................... 132 

Scheme 4.2: The reaction of 2,4-difluoronitrobenzene, 4.5, with pyrrolidine, 4.6, to form the 

ortho-substituted product, 4.7, and the para-substituted product, 4.8. Consecutive 

reactions then occur to form the bis-substituted product, 4.9. In each reaction, 

hydrofluoric acid, 4.10, is formed.[222] ........................................................................ 139 

Scheme 4.3: The reaction of the starting material, 4.11, with the spirodiene, 4.12, to form 

the product, 4.13, and LiBr, 4.14.[238]......................................................................... 146 

Scheme 4.4: The reaction of the starting material, 4.15, with diphenylphosphine, 4.16, in the 

presence of the ytterbium catalyst, 4.17, to form the product, 4.18, where [Yb]: Yb(η2-

Ph2CNPh)(hmpa)3.[239] ............................................................................................... 149 

 Chapter 5 

Scheme 5.1: The reaction of 2,4,6-trichloropyrimidine (SM), 5.1, with ethyl 4-

aminobutanoate, 5.2, to form the major 2-substituted SNAr product, 5.3, and the minor 

4-substituted SNAr product, 5.4. ................................................................................ 154 

Scheme 5.2: The reaction of alanine methyl ester (Al-Me), 5.6, with PfBr, 5.7, to form the 

protected amino acid, 5.8. Hydrobromic acid, 5.9, is also generated as a side product.

................................................................................................................................... 158 

Scheme 5.3: The retrosynthetic methodology of the transformation of L-alanine to (S)-

eleagnine via the Pf-protected alanine methyl ester (Pf-Al-Me).[244] ......................... 158 

Scheme 5.4: The synthetic route from cheap starting materials: bromobenzene, 5.10, and 

fluorene, 5.11, to the intermediate PfOH, 5.12, and finally the desired PfBr material, 

5.8. ............................................................................................................................ 159 



9 
 

Scheme 5.5: The reaction of maleic acid, 5.13, and methanol, 5.14, to form the mono-

product, 5.15, and the di-product, 5.16. .................................................................... 163 

List of Figures 

Chapter 1 

Figure 1.1: An annotated picture of an in-line liquid-liquid separator, developed by Zaiput 

Flow Technologies. ..................................................................................................... 33 

Figure 1.2: The response surface showing temperature and residence time effects on the 

thermal isomerisation of 1.33a.[108] Reproduced with permission. .............................. 36 

Figure 1.3: An IR absorption showing the detailed rise of the C-F bond peak over time, 

indicating the extent of reaction completion.[109] Reproduced with permission. .......... 37 

Figure 1. 4: The on-line NMR analysis in the aromatic region of the Grignard reaction 

shown in Scheme 1.16 at different time intervals.[120] Reproduced with permission. .. 38 

Figure 1.5: A graphical representation of generated time-series data for a first order 

reaction shown in eqn. 1.1. The data is log-transformed to give a linear fit where the 

gradient is equal to the rate constant multiplied by -1................................................. 42 

Figure 1.6: A graphical representation of generated time-series data for a zero order 

reaction shown in eqn. 1.1. This data does not need to be transformed as the linear fit 

is equal to the rate constant multiplied by -1. .............................................................. 43 

Figure 1.7: A graphical representation of generated time-series data for a second order 

reaction shown in eqn. 1.1. This data is plotted as the reciprocal of the concentration 

vs. time and the gradient of the linear fit to this data is the rate constant. .................. 43 

Figure 1.8: A graphical representation of generated time-series data for a second order 

reaction shown in eqn. 1.8, where: [A] = ▲, [B] = ●. This data is plotted as a log-

transformed concentration fraction vs. time. The gradient of the linear fit to this data is 

the rate constant multiplied by the initial concentration of B minus the initial 

concentration of A. ...................................................................................................... 45 

Figure 1.9: A representation of Michaelis-Menten kinetics, where the initial reaction rate of 

individual experiments with differing substrate concentrations, x, is plotted. This plot is 

then used to determine the kinetic parameters: Vmax and KM. .................................... 48 

Figure 1.10: A representation of the Lineweaver-Burk equation, where the inverse of the 

initial reaction rate of individual experiments with differing substrate concentrations, x, 

is plotted. This plot is then used to determine the kinetic parameters: Vmax and KM. .. 49 

Figure 1.11: An overlay of two experimental datasets with the same ‘excess’ of reactant 

concentration, for the reaction shown in Scheme 1.17. This overlap indicates no 

product inhibition or catalyst deactivation. Reproduced with permission.................... 51 

Figure 1.12: As there is no overlay in the two experimental datasets with the same ‘excess’ 

of reactant concentration, in the reaction system shown in Scheme 1.18, this indicates 

some product inhibition or catalyst deactivation. A further experiment is necessary to 

determine what is occurring. Reproduced with permission. ....................................... 52 



10 
 

Figure 1.13: Graphical rate equations for the alkylation reaction shown in Scheme 1.19. a) 

Standard graphical rate equation. b) Using the RPKA methodology to observe any 

overlap in the ‘different excess’ reaction curves. This overlap indicates that the 

reaction order of Et2Zn is 1. Reproduced with permission. ......................................... 53 

Figure 1.14: A time shift of the profiles of two reactions to observe overlaying plots. This 

allows the comparison of two profiles with the same starting material concentrations, 

but different product concentrations, therefore identifying signs of product inhibition or 

catalyst deactivation. Reproduced with permission. ................................................... 54 

Figure 1.15: A summary of the use of RPKA and VTNA. a) catalyst deactivation or product 

inhibition, b) catalyst order, c) reagent order, d) catalyst deactivation or product 

inhibition, e) catalyst order, f) reagent order. Reproduced with permission. .............. 56 

Figure 1.16: Some different classes of optimisation problem, where variable n is an input 

variable and the function evaluation is a measure of how the function is minimised 

with the changing variable. a) Linear optimisation problem. b) Convex optimisation 

problem. c) Non-linear optimisation problem. ............................................................. 59 

Figure 1.17: A representation of a steepest-descent algorithm minimising a 2-dimensional 

contoured parameter space, where о indicates a measurement. Where red areas are 

function maxima and blue areas are function minima................................................. 60 

Figure 1.18: A representation of a simplex optimisation for a 2-dimensional contoured 

parameter space, where the numbered vertices of each polyhedron indicate a 

measurement. Where red areas are function maxima and blue areas are function 

minima. ........................................................................................................................ 61 

Figure 1.19: The different geometric transformations of the Nelder-Mead simplex: inside 

contraction (XIC), multiple contraction (MC), outside contraction (XOC), reflection (XR) 

and expansion (XE)...................................................................................................... 62 

Figure 1.20: A 1-dimensional optimisation using an interior-point method. The approximate 

objective function is minimised for the starting trust region, t0. ................................... 63 

Figure 1.21: A 1-dimensional optimisation using an interior-point method. The approximate 

objective function is minimised for the sequential trust regions until the overall function 

is minimised. The path that the algorithm can take can be described as the algorithm 

path or the central path towards the optimum. ............................................................ 63 

Figure 1.22: A depiction of the flow of a simple genetic algorithm....................................... 64 

Figure 1.23: A depiction of one iteration of a simple genetic algorithm. Figure adapted from 

works reported by Boyd & Vandenberghe.[155] ............................................................ 65 

Figure 1.24: The Bayesian optimisation of f(x), where (i) - (viii) represent the sequential 

iterations of the minimisation. The acquisition function is shown in red, measurements 

are shown as red dots and the current estimated surrogate model is shown in blue 

with its corresponding 95 % confidence interval. The maximum of the acquisition 

function indicates the next measurement to be taken................................................. 67 

Figure 1.25: A graphical method to solving ILP problems, where C1 - 4 indicate the linear 

constraints, the green area indicates the feasible region, f shows the objective 

function, red dots represent the integer values of the inputs and P1 and P2 indicate 

two feasible potential maxima to the problem. Figure adapted from works reported by 

Boyd & Vandenberghe.[155] .......................................................................................... 68 

Chapter 2 



11 
 

Figure 2.1: The Mass Matrix inputted into the approach, assigning mass to each of the 

species. ....................................................................................................................... 75 

Figure 2.2: The stoichiometric matrices for the reaction model shown in Scheme 2.1, as 

well as the overall stoichiometry matrix, S. ................................................................. 76 

Figure 2.3: The ILP optimisation identifying a feasible solution to the objective function, 

hence identifying a mass-balance-allowed reaction. Where X1 = A, X2 = B, X3 = C, X4 

= D. .............................................................................................................................. 76 

Figure 2.4: A visual representation of all of the possible reaction models when given five 

mass-balance-allowed sample reactions, each shown as a different coloured block. 

When i = 1, each reaction is in itself a model, and when i > 1, each reaction behaves 

as a model fragment. These fragments when combined in different ways provide full 

and unique reaction models, each of which are to be assessed for their validity with 

respect to experimental data. ...................................................................................... 78 

Figure 2.5: A schematic summarising how the model generation stage of the approach 

progresses. Where the participating species are inputted, and sorted ODE functions 

that describe all possible mass-balance-allowed reactions are outputted. ................. 79 

Figure 2.6: The iterations of an optimisation algorithm with respect to the convergence of 

simulated ODEs with sample data - this occurs via the minimisation of the SSE 

output. ......................................................................................................................... 81 

Figure 2.7: An outline of the stages of the computational approach. .................................. 88 

Figure 2.8: An example showing the generation of a simulated data set from the literature. 

a) An ODE is simulated for a particular model with a set of kinetic parameters, in this 

case A → B, where: — = A, — = B.  b) Particular time points are taken from this ODE 

to represent individual measurements, where x = A, x = B. c) Up to 5 % relative 

random error is added to these measurements to more closely resemble real 

experimental data. ....................................................................................................... 90 

Figure 2.9: The fit of the identified model and kinetic parameters to the generated 

experimental data with starting concentrations of 0.1 M benzoic acid and 0.11 M 

iodomethane. Where: x = benzoic acid, x = iodomethane, x = methyl benzoate, — = 

benzoic acid (ODE), — = iodomethane (ODE), — = methyl benzoate (ODE) . ......... 93 

Figure 2.10: The fit of the identified model and kinetic parameters to the generated 

experimental data with starting concentrations of 1 M nitrile and 2 M hydroxide at 90 

°C. Where: x = nitrile, x = amide, x = carboxylic acid, — = nitrile (ODE), — = amide 

(ODE), — = carboxylic acid (ODE) . ........................................................................... 97 

Figure 2.11: The fit of the identified model and kinetic parameters to the generated 

experimental data with starting concentrations of 1 M 2,4-dichloropyrimidine and 2.2 

M morpholine at 90 °C. Where: x = 2,4-dichloropyrimidine, x = 4-substituted product, x 

= 2-substituted product, x = bis-substituted product, — = 2,4-dichloropyrimidine 

(ODE), — = 4-substituted product (ODE), — = 2-substituted product (ODE), — = bis-

substituted product. Graph is only shown to 260 minutes to show curvature of the 

initial data points........................................................................................................ 102 

Chapter 3 

Figure 3.1: A diagram to show the direction and flows within a flow regime, where: a) 

laminar flow, b) turbulent flow. .................................................................................. 104 



12 
 

Figure 3.2: A plug flow reactor model, where there is perfect mixing in the radial direction 

but no forward or backward mixing in the axial direction. Plugs 1 and 2 are examples 

of the infinitely short plugs existing within this reactor model. .................................. 105 

Figure 3.3: A depiction of how a kinetic experiment can be run utilising a step change in 

flow rates between two steady-states (I and II), allowing time-series data to be plotted 

from transient data. Figure adapted from Mozharov et al.[93] .................................... 107 

Figure 3.4: A kinetic profile generated from the Knoevenagel condensation shown in 

Scheme 3.1, where kinetic information was obtained by measuring conversation at 

given residence times at steady-state, at two temperatures. Steady-state markers, x, 

are shown as part of the ‘A Model’. Reproduced with permission. ........................... 109 

Figure 3.5: A kinetic profile generated from the Knoevenagel condensation shown in 

Scheme 3.1, where kinetic information was obtained using a flow rate step-change, at 

two temperatures. Steady-state markers, x, are shown as part of the ‘A Model’, where 

step-change markers, o, are shown as part of the ‘B Model’. Reproduced with 

permission. ................................................................................................................ 110 

Figure 3.6: A depiction of how a continuous flow reactor may be described as a series of 

sequential pseudo-batch reactors, where the colour represents the extent of 

conversion from low (green) to high (red). Q represents the total flow rate, ti 

represents the initial time of each pseudo-batch reactor entering the reactor, tf 

represents the final time, tm is the time at which the concentration is actually 

measured by the IR probe. Reproduced with permission. ........................................ 110 

Figure 3.7: A combination of the kinetic models for the reaction yielding 3.7 in Scheme 3.2, 

where the differing colours represent different values of S, where S is a corrective 

residence time multiplier to show the reproducibility of the controlled flow ramp 

methodology. S = 1/4 (blue), S = 1/3 (red), S = 1/2 (green), S= 2/3 (orange), steady-

state experiments = x. Reproduced with permission. ............................................... 111 

Figure 3.8: A photograph of the automated continuous flow reactor used for this work. .. 113 

Figure 3.9: A mathematically correct representation of how linear gradient flow ramps can 

be utilised to sample with a high data density on the initial curvature of the kinetic plot. 

Where: ♦ = data point, Tn = experiment temperature, Q = total flow rate, Time = time 

the reaction has been running, τ = residence time that the reaction mixture 

experiences. .............................................................................................................. 114 

Figure 3.10: Kinetic profiles for two flow ramp experiments at 65 °C and 75 °C, where: x = 

phenol, x = phenyl acetate, — = phenol (ODE), — = phenyl acetate (ODE). ........... 117 

Figure 3.11: Graphs showing the agreement between steady-state and flow ramp 

measurements for the reaction of phenol with acetyl chloride, where curves are fitted 

to the steady-state data. Where: ● = phenol (steady-state), x = phenol (flow ramp) ■ = 

phenyl acetate (steady-state), x = phenyl acetate (flow ramp). ................................ 118 

Figure 3.12: Kinetic profiles for four flow ramp experiments at 30 °C, 60 °C, 160 °C and 180 

°C, where: x = 4-aminophenol, x = paracetamol, x = diacetamate, — = 4-aminophenol 

(ODE), — = paracetamol (ODE), — = diacetamate (ODE). See Chapter 7.3.2 for full 

experimental conditions and raw data....................................................................... 120 

Figure 3.13: Kinetic profiles for the flow ramp experiments at 130 °C, 150 °C, 190 °C and 

210 °C, where: x = starting material, x = Metoprolol, x = bis-substituted product, — = 

starting material (ODE), — = Metoprolol (ODE), — = bis-substituted product (ODE). 

See Chapter 7.3.3 for full experimental conditions and raw data. ............................ 123 



13 
 

Chapter 4 

Figure 4.1: An illustration of how the ‘inflation’ step takes all mass-balance-allowed 

transformations sequentially, then deduces all allowed integer and non-integer orders 

and generates corresponding rate laws for these transformations. If catalytic reactions 

are to be explored also, rate laws for these catalytic dependencies are also 

generated. These transformations are all then saved, from which full reaction models 

can be constructed. ................................................................................................... 130 

Figure 4.2: An overview of the updated computational approach to kinetic model and 

parameter determination. .......................................................................................... 137 

Figure 4.3: The fit of the identified model and kinetic parameters to the generated 

experimental data with starting concentrations of 1.2 M 2,4-difluoronitrobenzene and 3 

M pyrrolidine at 30 °C. Where: x = 2,4-difluoronitrobenzene, x = ortho-substituted 

product, x = para-substituted product, x = bis-substituted product, — = 2,4-

difluoronitrobenzene (ODE), — = ortho-substituted product (ODE), — = para-

substituted product (ODE), — = bis-substituted product. Plot only shown to 500 

minutes to the show curvature of the initial data points. ........................................... 145 

Figure 4.4: The fit of the identified model and kinetic parameters to the generated 

experimental data with starting concentrations of 1 M starting material and 0.8 M 

spirodiene at -78 °C. Where: x = starting material, x = spirodiene, x = product, — = 

starting material (ODE), — = spirodiene (ODE), — = product (ODE). ...................... 149 

Figure 4.5: The fit of the identified model and kinetic parameters to the generated 

experimental data with starting concentrations of 1.5 M starting material, 2 M 

diphenylphosphine and 0.1 M ytterbium catalyst at 22 °C. Where: x = starting 

material, x = diphenylphosphine, x = product, — = starting material (ODE), — = 

diphenylphosphine (ODE), — = product (ODE). ....................................................... 152 

 Chapter 5 

Figure 5.1: The distinctive proton peaks, shown in red, that are monitored via NMR as time 

progresses in the SNAr case study. ........................................................................... 155 

Figure 5.2: Kinetic profiles for four kinetic experiments at -25 °C, 0 °C, 25 °C and 50 °C, 

where: ● = starting material, ● = 2-substituted product, ● = 4-substituted product, — = 

starting material (ODE), — = 2-substituted product (ODE), — = 4-substituted product 

(ODE). See Chapter 7.5.1 for full experimental conditions and raw data. ................ 156 

Figure 5.3: The batch setup for experimentation in the PfBr case study, where the 

temperature probe is submerged in the reaction medium that is heated via a heater 

stirrer. ........................................................................................................................ 160 

Figure 5.4: Kinetic profiles for three kinetic experiments at 30 °C, 35 °C and 40 °C, where 

red plots indicate PfBr concentrations and blue plots indicate Pf-Al-Me concentrations. 

At 30 °C: ■ = experimental data, — = ODE. At 35 °C: ▲ = experimental data, - - - = 

ODE. At 40 °C: ● = experimental data, ······ = ODE. See Chapter 7.5.2 for full 

experimental conditions and raw data....................................................................... 161 

Figure 5.5: Kinetic profiles for two kinetic experiments at 50 °C, with the initial concentration 

of maleic acid at 0.4 M and 0.8 M. At 0.4 M: ● = maleic acid, — = maleic acid (ODE), 

■ = mono-product, — = mono-product (ODE), ▲ = di-product, — = di-product (ODE). 

At 0.8 M: ○ = maleic acid, - - - = maleic acid (ODE), □ = mono-product, - - - = mono-

product (ODE), △ = di-product, - - - = di-product (ODE). See Chapter 7.5.3 for full 

experimental conditions and raw data....................................................................... 165 



14 
 

Chapter 7.3 

Figure 7.3.1: The flow reactor setup for the phenyl acetate case study experiments. ...... 174 

Figure 7.3.2: An example HPLC chromatogram in the phenyl acetate case study at 254 nm.

................................................................................................................................... 175 

Figure 7.3.3: The reactor setup for the paracetamol flow ramp experiment at 30 °C. ....... 179 

Figure 7.3.4: The reactor setup for the paracetamol flow ramp experiment at 60 °C. ....... 180 

Figure 7.3.5: The reactor setup for the paracetamol flow ramp experiment at 160 °C. ..... 180 

Figure 7.3.6: The reactor setup for the paracetamol flow ramp experiment at 180 °C. ..... 180 

Figure 7.3.7: An example HPLC chromatogram from the paracetamol case study, showing 

the separation of all reaction components at 254 nm. .............................................. 181 

Figure 7.3.8: A photograph of the automated flow system at AstraZeneca. ...................... 188 

Figure 7.3.9: The reactor setup for the metoprolol flow ramp experiments at 190/210 °C in 

Leeds. ........................................................................................................................ 189 

Figure 7.3.10: The reactor setup for the metoprolol flow ramp experiments at 130/150 °C at 

AstraZeneca. ............................................................................................................. 190 

Figure 7.3.11: An example HPLC chromatogram during a kinetic experiment in the 

metoprolol case study at 220 nm. ............................................................................. 190 

Chapter 7.5 

Figure 7.5.1: The dedicated NMR spectrometer used for kinetic experiments in the SNAr 

kinetics case study. ................................................................................................... 199 

Figure 7.5.2: ‘Stacked’ NMR spectrum showing several NMR spectra over time in the 25 °C 

experiment. ................................................................................................................ 200 

Figure 7.5.3: A 13C NMR confirming the presence of the PfBr material, compared to 

literature values to identify the material.[246] .............................................................. 207 

Figure 7.5.4: IR analysis of the PfBr material, showing the absence of a hydroxy peak from 

any residual PfOH. .................................................................................................... 208 

Figure 7.5.5: HPLC analysis of the PfBr material at 254 nm, indicating that a pure product is 

present. ..................................................................................................................... 208 

Figure 7.5.6: An example HPLC chromatogram at 230 nm during a kinetic experiment in the 

PfBr case study. ........................................................................................................ 210 

Figure 7.5.7: An example NMR spectrum from the maleic acid case study. ..................... 212 

List of Tables 

Chapter 1 

Table 1.1: A table summarising reaction analysis techniques in flow systems, adapted from 

Houben and Lapkin.[121] ............................................................................................... 39 

Chapter 2 



15 
 

Table 2.1: A table showing the optimised k values for the identified models in the benzoic 

acid alkylation case study, alongside each model’s SSE and AICC............................ 92 

Table 2.2: A table showing the top three ranked models for the nitrile hydrolysis case study. 

The kinetic parameters for each reaction within the model is shown, as well as the 

SSE and AICC evaluation. ........................................................................................... 95 

Table 2.3: A table showing the top three ranked models for the SNAr case study. The kinetic 

parameters for each reaction within the model is shown, as well as the SSE and AICC 

evaluation. ................................................................................................................. 100 

Chapter 3 

Table 3.1: Evaluation of the feasibility of each reaction model for the phenyl acetate study.

................................................................................................................................... 116 

Table 3.2: Evaluation of the feasibility of each reaction model for the paracetamol study. 120 

Table 3.3: Evaluation of the feasibility of each reaction model for the metoprolol study. .. 124 

Chapter 4 

Table 4.1: A table showing examples of allowed and disallowed models according to Rule 

#4. ............................................................................................................................. 134 

Table 4.2: A table showing the top five ranked models for the SNAr case study as identified 

by the old approach. The kinetic parameters for each reaction within the model are 

shown, as well as the SSE and AICC evaluation. ..................................................... 142 

Table 4.3: A table showing the top five ranked models for the SNAr case study as identified 

by the new approach. The kinetic parameters for each reaction within the model are 

shown, as well as the SSE and AICC evaluation. α denotes a variable molar 

dependence within the kinetic parameter units, depending on the rate law. ............ 143 

Table 4.4: A table showing the top five ranked models for the pentyne case study as 

identified by the new approach. The kinetic parameters for each reaction within the 

model are shown, as well as the SSE and AICC evaluation. α denotes a variable molar 

dependence within the kinetic parameter units, depending on the rate law. ............ 147 

Table 4.5: A table showing the top five ranked models for the ytterbium catalysis case study 

as identified by the new approach. The kinetic parameters for each reaction within the 

model are shown, as well as the SSE and AICC evaluation. α denotes a variable molar 

dependence within the kinetic parameter units, depending on the rate law. ............ 150 

Chapter 5 

Table 5.1: Evaluation of the feasibility of each reaction model for the SNAr case study, 

where α is variable for each model depending on the overall model order. ............. 156 

Table 5.2: Evaluation of the feasibility of each reaction model for the PfBr case study, where 

α is variable for each model depending on the overall model order. ........................ 161 

Table 5.3: Evaluation of the feasibility of each reaction model for the maleic acid case 

study, where α is variable for each model depending on the overall model order. ... 165 

 

 

 



16 
 

 

 

 



17 
 

List of Abbreviations 

A Pre-exponential factor 

Ac Acetyl 

AIC Akaike's information criterion 

AICC Corrected Akaike's information criterion 

API  Active pharmaceutical ingredient 

Aq Aqueous 

Bn Benzyl 

bp Boiling point 

Bu Butyl 

cm Centimetre 

CSTR Continuous stirred tank reactor 

CRN Chemical reaction network 

DCM Dichloromethane 

Ea Activation energy 

Equiv Equivalents 

Et Ethyl 

g Gram 

GA Genetic algorithm 

GC Gas chromatography 

h Hour 

HPLC High performance liquid chromatography 

Hz Hertz 

ID Inner diameter 

ILP Integer linear programming 

IR Infrared 

k Rate constant 

K Kelvin 

kref Reference rate constant 



18 
 

L Litre 

m Metre 

M  Molar 

Me Methyl 

MILP Mixed integer linear programming 

min Minute 

mL Millilitre 

MM Mass matrix 

mmol Millimole 

mol Mole 

MS Mass spectrometry 

NMR Nuclear magnetic resonance 

OD Outer diameter 

ODE Ordinary differential equation 

PFR Plug flow reactor 

Ph Phenyl 

R Ideal gas constant 

Re Reynolds number 

S Stoichiometry 

SNAr Nucleophilic aromatic substitution 

SSE Sum of squared error 

T Temperature 

TFA Target factor analysis 

tR Residence time 

Tref Reference temperature 

tRes Residence time 

V Volume 

 



19 
 

Chapter 1 : Introduction 

The main aim of this project is to develop and advance methodologies for 

kinetic model determination and parameter estimation. The acquisition of the 

experimental data necessary for these studies is flexible and can be obtained by 

any means. However, given the numerous advantages of continuous flow 

chemistry and the availability of a flow chemistry platform, many chemistries 

were performed using this regime. For this reason, continuous flow chemistry is 

broadly covered in this introduction, as well as a comprehensive look at methods 

of obtaining kinetic data in Chapter 3.1. 

Current methodologies of obtaining kinetic information are herein broadly 

covered and critically analysed. However, in-depth discussions about the 

relevant literature to the kinetic methodologies developed during this project are 

highlighted in Chapter 2.1. Furthermore, as these kinetic methodologies feature 

significant use of optimisation algorithms, discussions regarding optimisation 

problems and common algorithms are also found in this introductory chapter. 

This coverage depicts the general relevancy of different types of algorithm to 

particular circumstances, with specific kinetic fitting algorithm discussions 

featured in Chapter 2.2.2.2. 

1.1 Continuous flow chemistry 

Continuous flow chemistry is rapidly becoming the optimum way to conduct 

a wide variety of different chemical reactions. This section introduces the concept 

of flow chemistry, featuring a discussion of the advantages and disadvantages, 

as well as when to adopt this methodology. This broad introduction also covers 

different reports from the literature pertaining to different classes of reaction in 

flow, as well as how these reactions can be analysed and optimised; either on-

line or off-line. 

1.1.1 Batch and flow reactions 

To discuss flow chemistry, it is first important to understand the 

differences between this methodology and traditional batch chemistry. Batch 

reactions are still the ‘normal’ bench practice today after being standardised 200 

years ago in the time of Friedrich Wӧhler, as there are still advantages to 
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conducting synthesis this way. This batch reaction approach to synthesis, 

whereby the chemistry is conducted essentially in a vessel, is historically the 

most fruitful and rewarding approach in terms of discoveries. Suzuki couplings,[1] 

Sonogashira couplings[2] and the Wittig reaction[3] among hundreds of other 

ground breaking mechanisms were all discovered via batch reactions. A flow 

chemistry regime differs in that there is no bulk reaction medium in a vessel. By 

using pumps, tubing and differing flow reactors, small volumes of reaction 

medium are constantly flowing and reacting to provide a continuous outlet stream 

of reacted material. Although this flow methodology has been known for a 

relatively long time, the historic uptake in synthetic laboratories has been low.[4] 

However, as flow technology improves and becomes easier to adopt in the 

laboratory,[5] it is increasingly important to evaluate whether a particular chemical 

process would be most efficient in batch or flow regimes, in terms of product 

output or otherwise. 

For example when considering exploratory synthesis, in contrast to batch; 

using flow chemistry, consisting of tubing and microreactors, to attempt to 

discover new syntheses by exploring discrete options is not typically a good 

application.[6, 7] This is because the main strengths of flow processes come 

mainly from already existing reaction pathways where optimising product output 

is the focus, and to construct a flow system to conduct a purely exploratory 

reaction is a traditionally inefficient use of time whereas batch can be 

implemented much faster. In recent years, however, high throughput flow 

systems have been developed for automated discovery.[8, 9] Unfortunately 

though, as the equipment for this type of discovery is specialist and can be 

expensive, it can still be argued that simple exploratory benchtop batch reactions 

are still much more efficient in terms of time and cost. 

There are other general instances where batch is often still favourable for 

chemical transformations, for example when precipitation drives reaction 

completion.[7] In batch this isn’t an issue, however when using a flow setup this 

will frequently result in channel, mixer or pressure regulator clogging - this is also 

true when using high viscous liquids.[10] As a general rule, precipitation, 

suspensions and other instances where solids are used can lead to 

complications in the process - this can be mitigated through reaction dilution but 

may then suffer from low productivity. The introduction, however, of standardised 
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laboratory equipment (such as miniaturised CSTRs: Freactors) for continuous 

flow can then facilitate such multiphase processes to allow maintained 

efficiency.[11, 12] 

Despite some of these limitations, there are significant benefits to 

continuous flow processes which have become apparent alongside the 

tremendous practical advances in recent years; many of which have been 

utilised in actually transferring batch processes into flow, as more and more 

batch procedures are superseded.[13-15] Reduction of reaction times[16, 17] and 

increases in conversion and selectivity may be observed by transferring to flow 

processes.[18] This may be for a number of reasons, but is likely due to the 

increased mass transfer that can be expected from flow systems, as well as the 

ability to increase the temperature of the reaction medium further past the boiling 

point of the solvent, which is discussed further in Chapter 1.1.2.1. This will lead 

to an overall increase in both the reaction rate and productivity. Two examples 

are shown herein where increased conversion was observed. Scheme 1.1 

reports the synthesis of hexene from hexanol in flow by Wilson and McCreedy,[19] 

with a conversion of around 90 %, whereas in conventional batch reactors this 

reaction conversion does not exceed 60 %. Most notably, there was no 

degradation of the performance after three days of continuous use, which may 

be expected from a fixed bed catalyst. Scheme 1.2 shows another direct 

comparison of conversion in flow and batch by Wiles et al.,[20] where the Michael 

addition is completed in 20 minutes with 100 % conversion in flow, compared to 

the reaction completion in 24 hours with 89 % conversion in batch. 

 

Scheme 1.1: The conversion of hexanol, 1.1, to hexene, 1.2, in a continuous flow setup.[19] 
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Scheme 1.2: The flow synthesis of the adduct, 1.5, via a Michael addition between the 

dicarbonyl, 1.3, and the alkyne, 1.4.[20] 

A main advantage to using flow chemistry setups to perform reactions 

arises from the equipment featured within the setups themselves - namely the 

pumps. Pump flow rates can be set to very precise flows, which can very 

accurately deliver particular ratios of reagents at given points along the flow 

setup.[21-23] This ensures that the correct stoichiometry of the reagents is present 

in the reaction, and these exact stoichiometries can be delivered continuously 

and with minimal error.[21, 24] This allows for optimisation and kinetics studies with 

precise reagent additions that would otherwise be troublesome for an 

experimenter to consistently and dependably deliver. These same flow rates also 

ensure that the residence time is exact and consistent, meaning sampling points 

are reliably accurate in sampling the reaction medium after a specific reaction 

time.[25, 26] This point, however, is highly dependent on the mixing regime present, 

which is discussed further in Chapter 3.1. 

Another noteworthy advantage to flow processes is that a large number 

of reactions can be executed, and hence a large amount of data can be obtained, 

using only minimal quantities of a reagent in flow. This is because much less 

reagent is required for reaction and subsequent on-line analysis in a microreactor 

compared to bench scale batch setups. This is a particularly desirable attribute 

of a system if you have an expensive material, or a material that is synthesised 

by a time consuming process, where you need to be conservative with its use 

but still obtain lots of experimental data.[24] 

One example of a reaction that has been successfully transferred from 

batch to flow is a multi-step synthesis of ibuprofen, 1.8, conducted by Bogdan et 

al.[27] This synthesis demonstrates that even flow processes with multiple steps 

can be achieved, without intermediate purification steps, in a streamlined and 

efficient manner. This is provided as long as care in the reaction chronology has 

been undertaken ensuring excess reagents and byproducts from previous steps 

are compatible with downstream processes, shown in Scheme 1.3. This 

efficiency is important when creating complex molecules because although the 

stepwise batch reactor processes are effective, they are also very wasteful, 

particularly when they involve consecutive work-up procedures. An example of 

this is in the pharmaceutical industry where, in general, 25 - 100 kg of waste is 
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produced for every 1 kg of complex molecule.[28] However, to facilitate reaction 

compatibility, expensive or atom-inefficient transformations may be necessary, 

such as the use of phenyl-iodine(III) diacetate and TMOF to incur a chemical 

rearrangement in the reported ibuprofen synthesis below. This may require a 

careful balance to achieve green metrics in product manufacturing. Further 

discussion on reaction telescoping is provided in Chapter 1.1.2.6. 

 

Scheme 1.3: The multistep continuous flow synthesis of ibuprofen, 1.8. 

In large scale batch reactor design used in industry the most significant 

problems to be overcome are the heating and agitation of the system, and it has 

even been reported that processes cannot be scaled up further due to 

temperature and mixing gradients.[29] This problem relates to the fact that it is 

difficult to effectively heat and agitate a large mass completely uniformly, which 

can lead to different reactivities present at different points within the vessel - this 

can result in decreased product yield due to an increased rate of side reactions, 

or more seriously, a runaway reaction when exothermic processes are 

involved.[30, 31] 

By contrast, mesoscale flow systems (channel diameter: 1 - 10 mm) and 

in particular miniaturised flow reactors (channel diameter: 50 - 1000 µm) are 

excellent at efficiently heating and mixing reactants.[32] Rapid heating of reaction 

microchannels through the walls of a preheated reactor ensures the reaction 

mixture is thoroughly and uniformly heated and mixed, which is attributed to the 
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large surface area to volume ratios of the microchannels.[18, 33] This heating can 

be achieved by oil baths, conventional ovens or even microwave heating; all of 

which achieve the same goal which is precise temperature control, with 

increased safety.[34-36] The high molecular diffusion across the relatively narrow 

microchannels allows assumptions of perfect cross-sectional mixing in a ‘plug 

flow’ regime[37] (see Chapter 3.1) and mass transfer can further be improved 

through the use of static mixers[38] or CSTRs.[39] 

This increased safety in flow reactors is attributed to only a small amount 

of reaction material present in the reactor at any one time, enclosed within a 

tubular vessel. Therefore, although the chemical exposure is the same during 

reservoir preparation, the experimenter is not exposed to any harmful material 

during experimentation, as long as all inlets and waste streams are properly 

contained. The is advantageous especially in processes where there are highly 

exothermic steps, alongside even the possibility of scale-up of formerly non-

scalable reactions.[36, 40] This scalability can be achieved simply by running one 

flow reactor for a long period of time, or several identical flow reactors in parallel 

in a process called ‘numbering’ - any number of flow reactors can be ‘numbered 

up’ to achieve the required throughput.[41-43] 

1.1.2 Reactions in flow 

Alongside the aforementioned general advantages that flow processes 

have over batch, there are several distinct reaction niches which have specific 

facets whereby translation to flow has distinct benefits. There are many different 

areas where continuous processes have helped to transform research, as well 

as industrial processes that may branch from them. This literature review will 

focus only on the most common types of reaction in flow in which most reactions 

are likely to encompassed. Also refer to flow chemistry reviews on polymer 

chemistry[44], the use of extreme temperature[45] and slurry reactors.[46] 

1.1.2.1 Temperature-accelerated reactions 

Temperature-accelerated reactions are the most basic and most common 

use of flow setups, whereby reactants are fed into a heated microreactor to 

perform a chemical transformation. The use of flow enables access to higher 

temperatures in a system with excellent safety, which means that reactions can 

be performed which would otherwise be too slow or unobtainable in other 
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systems. Temperature-accelerated reactions in a traditional batch setup are 

often limited by the laboratory equipment and the boiling point of the solvent, and 

having to switch to different, higher-boiling solvents can lead to complications in 

both the reaction and the purification.[47, 48] High-pressure batch vessels can be 

used to facilitate these higher temperature reactions (such as Parr reactors or 

autoclaves),[49] but additional equipment and safety considerations must be 

made in these cases. 

However, in flow setups there is no need to give significant consideration 

to changing the solvent as the boiling of the solvent can be suppressed in most 

cases by the use of a back-pressure regulator.[50] Therefore, when conducting 

these reactions, where higher temperatures can be accessed in flow setups, the 

reaction rates are also generally higher.[14] This alongside the aforementioned 

increased associated safety in using flow setups, can make flow a desirable and 

convenient option for temperature-accelerated reactions. Scheme 1.4 and 

Scheme 1.5 show examples of temperature-accelerated reactions that have 

been conducted in flow, where in both cases the temperature of the reaction was 

conducted at a higher temperature than the boiling point of the solvent, leading 

to decreased reaction times. [51, 52] It is also worth noting that unless explicitly 

stated, a back pressure regulator will have been used in all schemes in this 

literature review if the temperature of the reaction exceeds the boiling point of 

the solvent used. 
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Scheme 1.4: The temperature-accelerated SNAr reaction of 1.9 with 1.10 to form 1.11, in THF 

(boiling point: 66 °C), under flow conditions.[51] 

 

Scheme 1.5: The Fischer Indole synthesis of 1.14, from the hydrazine, 1.12, and dihydrofuran, 

1.13, in methanol (boiling point: 65 °C) using a flow setup.[52] 

 

1.1.2.2 Supercritical fluid 

The use of supercritical fluids (SCFs) as solvents in flow processes have 

attracted attention in the past 30 years mainly motivated by the prospect of 

replacing toxic industrial solvents.[53] For example, the environmental interest of 

using supercritical CO2 or H2O ushers in opportunities for greener chemical 

processes by replacing some of the more harmful solvent systems.[54-56] This is 

an admirable objective for process chemists and can lead to cleaner and more 

sustainable reactions.[57] 

Whilst the green aspects of using SCFs are attractive, perhaps the 

greatest quality they possess are their physiochemical “hybrid” properties; an 

intermediary between liquids and gases whereby properties can be finely tuned 

by marginal variations in temperature and pressure. As a result, SCFs exhibit 

gas-like viscosities as well as no surface tension which are objectively 

advantageous in processes involving interface and surface chemistry.[58-60] 

Furthermore, the liquid-like densities allow for substantial dissolution of 

precursors within the SCF and diffusion coefficients are generally at least 100 

times greater in SCFs than in liquids. All of these factors contribute towards 

processes whereby the reaction conversion is significantly improved as a direct 

effect of using SCFs.[53, 61-63] However, the compatibility of these supercritical 

solvents must still be tested with the process of interest (as with any solvent), as 

there may be solubility or reactivity issues. 
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Supercritical CO2 (scCO2) is a common solvent in the realm of SCFs 

because of its easily obtained critical parameters at bench scale; it is also 

extracted easily with high purity as a byproduct from many processes, as well as 

being non-toxic and non-flammable.[64] One of the most notable industrial scale 

applications using scCO2 is the hydrogenation of isophorone, 1.15, shown in 

Scheme 1.6 which obtains 1.16 in a sufficiently pure state without any 

downstream purification.[65] Another common process developed from the use of 

scCO2, by taking advantage of the non-toxicity of the solvent, is the 

decaffeination of coffee beans, which has since become one of the most popular 

decaffeination methods.[66, 67] 

 

Scheme 1.6: The hydrogenation of isophorone, 1.15, to TMCH, 1.16.[65] 

One major problem with using scCO2 in flow processes however is its 

incompatibility with primary and secondary amines due to carbamate formation, 

which can precipitate out of solution and therefore block any microchannels in 

the system.[68] Other supercritical solvents can be used in these cases such as 

scNH3, although this presents a problem in itself that it cannot be used with 

aqueous solutions because of ammonium hydroxide formation - nonetheless, 

supercritical ethane and propane have been used as direct replacements for 

scCO2 due to similar critical parameters.[69] 

Using continuous reactors for SCFs have the advantage over batch 

reactors that they do not require depressurisation to add further material to the 

process or recover products. Also a predominant advantage to using continuous 

reactors is that reaction parameters such as temperature, flow rate and pressure 

can all be changed almost independently of each other. In context, this ability 

allows the properties of the SCF to be altered in real time when optimising 

reactions which cannot be done easily in batch reactors - this versatility of 

continuous reactors makes it the favourable choice when working with SCFs.[70] 

1.1.2.3 Photochemical reactions 
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The use of photons at given wavelengths to provide sufficient energy to 

overcome activation energy barriers is the basis of photochemical reactions; 

complex molecular structures can be achieved via these unique reaction 

pathways that are otherwise unobtainable via thermochemical or electrochemical 

methods.[71, 72] Implementing photochemical reactions is also beneficial as a 

photon is a “green” reagent which is traceless and thus doesn’t require 

removal/recycling in the same way many other reagents do.  

Photochemistry is not regarded only as a unique and novel pathway to 

molecules with exotic structures, however - one example of where 

photochemistry is used extensively in industry is in the Toray process to attain 

caprolactam, which is used to manufacture Nylon 6.[73] Photochemical reactions 

have also been found to benefit from continuous flow systems, where large-scale 

photochemical synthesis is significantly more effective when compared to their 

corresponding batch approaches.[74] This is due to problems regarding 

penetration into the bulk reaction medium, which is an important boundary that 

has to be overcome. Most of the photochemical synthesis occurs within a short 

radius of the lamp, meaning the reaction conversion is scale dependant. The 

small tubular diameters in flow systems take advantage of this by exposing the 

entire reaction medium to the light source as it passes through the reactor.[75] 

One example where a photochemical reaction has been implemented into 

a flow process is reported in the continuous [2 + 2] photocycloaddition producing 

the cyclic product 1.18, shown in Scheme 1.7. [74] In this reaction, the conversion 

is quoted at 83 % and because the reaction conversion is scale independent, the 

continuous process can be run indefinitely to produce over 500 g per 24 hour 

period. This process can then be scaled up further, as in any continuous flow 

process, by numbering up. 
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Scheme 1.7: The [2 + 2] photocycloaddition of malemide, 1.17, with 1-hexyne to produce the 

cyclic product 1.18.[74] 

1.1.2.4 Electrochemical reactions 

Electrochemistry is another clean and efficient reaction method in the 

realm of organic synthesis, where the electricity supplied to the reaction system 

induces the formation of the reactive intermediates from neutral substrates. This 

method of reaction has significant advantages to conventional batch processes, 

one of which being that harmful oxidising and reducing agents can be substituted 

using electrochemistry. By applying precisely controlled current between two 

electrodes, reactions can be achieved by using milder reagents. This method 

allows milder reagents as electrons can be added/removed without the need for 

chemical reducing/oxidising agents which could complicate the reaction, 

especially in flow systems where downstream processes can be highly affected 

by excess chemical reagents.[76] Also as the electrons are the “reagent” in these 

reactions, as well as being widely and readily available, electrochemical reaction 

pathways become cheaper and less labour-intensive as alternative, costly 

reagents don’t need to be used.[77] 

One example of where electrochemical synthesis in flow has been 

observed is in the anodic substitution reaction by Horii et al., [78] shown in scheme 

1.8, with yields of up to 74%. In flow processes such as this, the laminar flow 

regime is used as an advantage - two inlets of separate flows join together in the 

reaction vessel, where their respective microchannel sidewalls are anodic and 

cathodic opposite to one another. This ensures the dominant oxidation of the 

substrate, 1.19, to form a cationic intermediate whilst the nucleophile, 1.20, 

diffuses across the tubular diameter to react to afford 1.21. [79] Laminar flow and 

other mixing regimes are discussed further in Chapter 3.1. 

 

Scheme 1.8: An electrochemical facilitated nucleophilic substitution reaction to afford the 

product, 1.21.[78] 

1.1.2.5 Enzymatic reactions 
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Biocatalytic processes are also an area in which research is continuously 

progressing in order to develop alternative process routes to the synthesis of fine 

chemicals. The main issues, however, arise from enzymes only being able to 

operate efficiently in narrow pH and temperature ranges with many organic 

substrates having poor solubility in water. However, implementation of enzymes 

whilst using non-aqueous solvents can dramatically improve their applicability.[80, 

81] Within biochemical processes, this niche can be important in achieving 

reaction optimisation despite given limitations with using biocatalysts. 

The use of immobilised active enzymes in the column of a flow system is 

very attractive and there are many reports in the literature of applied 

processes.[82, 83] An example of this is the continuous process of chiral 

cyanohydrin formation, shown in Scheme 1.9, where a column is packed with 

defatted almond meal.[84] There are also examples where multiple columns with 

different immobilised enzymes are used as a multistep continuous process in 

order to reach the desired product - one example is reported where 7 separate 

columns with differing enzymes achieve the synthesis of UDP-galactose from 

inexpensive starting materials.[85] This is shown in Scheme 1.10 as a simplified 

one column synthesis with multiple enzymes. This also shows how 

advantageous immobilised biocatalysis can be in multistep synthesis, as there 

are no catalysts or harmful reagents that can affect downstream processes. 

 

Scheme 1.9: An enzyme catalysed continuous cyanohydrin formation forming 1.23.[84] 

 

Scheme 1.10: Multiple enzymatic catalysed continuous process to form UDP galactose, 

1.25.[85] Individual enzymes stated.  

1.1.2.6 Telescoped reactions 
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When considering a total synthesis for a pharmaceutical ingredient or 

otherwise, it would be ideal to limit the number of steps and hence the amount 

of waste, time and resources. This can be achieved in one way by reaction 

telescoping.[24] Reaction telescoping is essentially performing multiple chemical 

transformations to a molecule sequentially without the need for the purification 

of intermediates or removal of waste, for example the ‘one-pot’ synthesis of 

pyridine and quinoline derivatives in batch reported by Kobayashi et al.[86]  

There are further advantages, however, to reaction telescoping in flow, 

that are not observed in batch. Using a flow system allows the introduction of 

reagents in exact stoichiometries at specific points in the reaction cycle simply 

by addition via inlets further down the line within the system. Pairing these 

additions with differing fixed-temperature reaction vessels also allow for isolated 

reaction optimisation for each step along the flow setup in a multi-step synthesis. 

An example of a multi-step reaction where the success of the synthesis is 

attributed to the effective residence time and temperature control of each step is 

shown in Scheme 1.11, in the synthesis of 1.27.[87] 

 

Scheme 1.11: The multi-step flow synthesis of 1.27, from coupling o-dibromobenzene, 1.26, 

with varying electrophiles via sequential halogen-lithium exchange reactions.[87] 

The main drawback of reaction telescoping is that downstream 

transformations have to be compatible with side products and waste from 

upstream reactions, as any incompatibility leads to a lesser conversion of any 

intermediates. This serves as a hindrance to the other transformations down the 

line, hence leading to poor conversion for the overall process. Therefore when 

considering reaction telescoping, great care must be taken into account for 

reagent compatibility and reaction chronology. 

A further advantage to using a flow system, however, is the opportunity of 

in-line purification which can solve reagent compatibility issues - this gives 
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greater accessibility to a variety of different reactions that can all be 

accomplished in a single process. This in-line purification is made possible by an 

in-line liquid-liquid separator, such as the separator reported by Zaiput Flow 

Technologies, that allows immiscible liquids to be separated into two streams, 

one organic and one aqueous, via filtration using a hydrophobic membrane.[88] 

This separator is shown in Figure 1.1. An example where a membrane 

separation has been used, shown in Scheme 1.12, is in an ibuprofen multi-step 

synthesis where Snead and Jamison improved on previous work aforementioned 

by Bogdan et al.[27, 89] This in-line separation avoided the need for triflic acid and 

increased the yield to 98 % by incorporating this aspect within the process. 

 

Flow in. 

Two separated flows out. 
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Figure 1.1: An annotated picture of an in-line liquid-liquid separator, developed by Zaiput Flow 

Technologies. 

 

Scheme 1.12: A multi-step flow synthesis of ibuprofen, 1.8, involving an in-line purification 

step.[89] 

There are also several other methods of in-line purification that can be 

considered, alongside or instead of liquid-liquid separation. Gas-liquid 

separation[90], micro-distillation[91], solid-supported scavenging[50] and gravity-

based separation[92] have all been reported in the literature, but have not be 

covered in detail as these methods are not well established. 

1.1.3 Reaction analysis 

Reaction analysis in benchtop batch processes are relatively time-

consuming and labour-intensive, as samples must often be removed by hand 

from the reaction mixture to determine reagent conversion, product composition 

etc. Therefore the elimination of these practices and adoption of their respective 

flow processes has many potential cost benefits, particularly in fine chemical and 

pharmaceutical production.[93] 

On the other hand, for these same methods of analysis, the sampling 

process can be fully automated by the use of sampling valves. A sample valve 
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is a device attached to the line of a flow system, where the reaction mixture 

passes through undisturbed as if it was an extension of the tubing; however there 

is a ‘switching’ mechanism whereby the flow is diverged from its path into a 

separate flow system, instantaneously, then the original flow is restored 

milliseconds later. This diverted flow then leads to an analytical system (HPLC, 

mass spectrometer etc.) and has much thinner tubing with a constant mobile 

phase flowing, ready to carry the injected sample to the analytical equipment. 

This sampling is termed ‘on-line’ as the flow is rerouted from the flow along the 

reactor. ‘In-line’ therefore refers to sampling without the need to divert reaction 

material and is typically non-destructive. In all cases, great care must be taken 

in calibrating the machine to chemistries of interest, as quantitative analysis can 

often only be performed by calibrating the response of the equipment to known 

standard concentrations of each chemical species. 

This section will report on reaction analysis in flow by the use of well-

established and common techniques, such as mass spectrometry and high-

performance liquid chromatography (HPLC), as well as fast developing and high 

interest areas such as NMR and IR. In each case, the system is assumed to be 

at ‘steady-state’ in which the flow output is consistent - this is explained in detail 

in Chapter 3.1. Also refer to specific papers covering on/in-line analysis by UV[94, 

95], Raman[96], fluorescence[97], GC[98, 99], XAFS[100] and NIR[101-103]. 

1.1.3.1 Mass spectrometry 

The use of mass spectrometry in reaction analysis is a common technique 

and when coupled with flow systems, on-line mass analysis can be employed to 

qualitatively and quantitatively monitor reactions for the identification of products 

and intermediates, as well as analysis of relative composition.[104-106] All of this 

can be performed in real-time due to the short method times, and is ideal in the 

context of reaction monitoring as lots of information can be gained from the mass 

spectrometer with little need for data manipulation.[107] 

An example where mass spectrometry has been used for on-line analysis 

in order to monitor reactive intermediates in flow is in the formation of benzyne, 

1.32, shown in Scheme 1.13.[108] This experiment was conducted to show how 

mass spectrometers are ideally suited to on-line analysis applications, although 
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they are rarely used in this way as traditional mass spectrometry instruments are 

too large and bulky to be conveniently coupled to flow systems.  

 

Scheme 1.13: A reaction scheme showing the formation of benzyne, 1.32, which was followed 

by analysis via mass spectrometry.[108] 

1.1.3.2 HPLC 

HPLC can also give very good qualitative and quantitative analysis of a 

reaction mixture - however, the advantage that HPLC has over mass 

spectrometry is that it is typically easier to quantify the individual components of 

a mixture.[109] This is a particularly useful characteristic for modelling the kinetics 

of a reaction as the relative abundancies of products from a reaction can be 

measured precisely by their peak areas in the chromatograph at different 

times,[110] as well the ability to differentiate molecules with the same mass and 

even different isomers of the same mass. 

An example where the kinetics of a reaction were studied using the coupling 

of a flow system with on-line HPLC, is in the thermal isomerization of the endo 

molecule, 1.33a, to its exo counterpart, 1.33b, shown in Scheme 1.14.[111] This 

example shows how combining on-line HPLC with an automated flow system 

with varying pump flow rates and temperature, can lead to an understanding of 

the factors influencing yield and purity of a process, with the ability to provide 

useful data to be utilised for generating response surfaces, shown in Figure 1.2. 
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Scheme 1.14: A reaction scheme showing the thermal isomerization of 1.33a to 1.33b, which 

was followed by analysis via HPLC.[111] 

 

Figure 1.2: The response surface showing temperature and residence time effects on the 

thermal isomerisation of 1.33a.[111] Reproduced with permission. 

1.1.3.3 IR 

The use of in-line IR analysis in flow systems is different as it is not 

quantitative in the same respect as mass spectrometry or HPLC. IR rather 

detects the relative abundancies of particular species by monitoring individual 

peak signals. The advantage to in-line IR is that key, identifiable peaks from 

functional groups in an IR spectrum (O-H bonds, C=O bonds, etc.) can be 

tracked over time as disappearance or appearance of peaks can serve as an 

indicator of reaction completion.[112-114] IR analysis is fundamentally non-

destructive, which in the context of a flow system, means that in-line IR analysis 

has been developed and integrated into systems which do not require samples 

to be removed from the flow: a truly continuous, non-interrupted stream but still 

continuously analysed by IR.[115-117] 

An example of where in-line IR analysis has been used to monitor the 

completion of a reaction is in the fluorination reaction to yield 1.36 shown in 

Scheme 1.15.[112] The in-line probe brand used was the ReactIR. In this reaction, 

the region where C-F bonds are expected to absorb was monitored during the 

reaction, in order to establish a reaction completion trend based on the intensity 

of the peak produced - this is shown in Figure 1.3. 
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Scheme 1.15: A reaction scheme showing a fluorination reaction yielding 1.36, which was 

followed by analysis via in-line IR.[112] 

 

Figure 1.3: An IR absorption showing the detailed rise of the C-F bond peak over time, 

indicating the extent of reaction completion.[112] Reproduced with permission. 

1.1.3.4 NMR 

The use of on-line NMR is also a good quantitative option for flow system 

analytics. The potential to incorporate high resolution NMR systems into a flow 

system to show both structural and conformational changes in chemical 

transformations is a desirable potential analytical technique. At current, generally 

only small, low-field systems have been developed to be conveniently coupled 

with flow systems. However, this technique thus far has led to the increased 

value of using NMR spectroscopy as a non-invasive method as more process 

development applications are available.[118] Although there are some reports of 

using high resolution on-line NMR[119, 120], most cases generally utilise low field 

NMR systems. The low resolution analytical technique is unlike traditional NMR 

analysis in a high resolution system (> 300 MHz), as low-field systems tend to 
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analyse the relaxation times and relaxation weighted signals to identify product. 

[121] 

The main downside to this technique, is that as the resolution is often too 

low for accurate interpretation of NMR spectra because of small differences in 

chemical shifts, therefore it is difficult to use for multi-component reaction 

analysis.[122] However, there are examples where this technique has been useful. 

In a report by Goldbach et al.,[123] low field on-line NMR was used to monitor the 

reagent and product concentrations of the Grignard reaction shown in Scheme 

1.16. This reaction conversion was monitored by peak areas in the aromatic 

region over time, shown in Figure 1.4, where over 90% conversion was reported 

by the examination of peak appearance and disappearance. 

 

Scheme 1.16: The Grignard reaction that was tracked by on-line NMR.[123] 

 

Figure 1. 4: The on-line NMR analysis in the aromatic region of the Grignard reaction shown in 

Scheme 1.16 at different time intervals.[123] Reproduced with permission. 

1.1.3.5 Summary 

There is no best method of flow reaction analysis, as each individual case 

would benefit from an independent examination of the necessary results to be 

generated. This is because different reactions and outcomes would be more 

suited to different analytical systems. A table summarising these main analytical 

methods, as well as other methods, with their respective sensitivities, acquisition 

speeds and limitations are shown in Table 1.1.[124] 
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Table 1.1: A table summarising reaction analysis techniques in flow systems, adapted from 

Houben and Lapkin.[124] 

 

Technique 
Type of 

information 

Sensitivity 

/mol% 

Typical 

speed of 

acquisition 

/s 

Limitations 

Mid-IR 

Chemical 

identity, 

concentration 

~10-1 ~1 

Steps have to be 

taken to tolerate 

water within the 

system 

Near-IR 

Chemical 

identity, 

concentration 

~10-1 ~1 
Less information 

than Mid-IR 

Raman 

Chemical 

identity, 

concentration, 

crystal structure 

~10-1 ~1-100 

Fluorescence 

masking Raman 

signal 

UV-vis 

Chemical 

identity, 

concentration 

~10-4 <1 
Limited number of 

species 

NMR 

Molecular 

structure, 

concentration 

~10-3 ~10 

Flow method is 

currently limited in 

sensitivity and 

resolution 

GC Concentration ~10-6 10-1500 

Typically slow, 

cannot identify 

unknown compounds 

HPLC Concentration ~10-6 200-1500 

Long method times, 

must be combined 

with mass spec. for 

proof of molecular 

identity 

Mass spec. 

Chemical 

identity, 

concentration 

~10-8 ~5-20 

Requires 

chemoinformatics 

expertise 
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1.1.4 Continuous flow chemistry summary 

Flow chemistry is a powerful methodology that can be employed to obtain 

enhanced reaction control over similar batch processes: increased heat and 

mass transfer, accurate residence times and precise continuous addition of 

reagents. These advantages, alongside automated sampling procedures, mean 

that this regime is an ideal methodology for generating time-series data for the 

purposes of this project. As kinetic studies benefit from this additional control, as 

well as further hardware-manipulation techniques discussed in Chapter 3.1 that 

are not possible in batch, continuous flow will be used when possible. However, 

not all of the identified niches of flow will be exploited for this project, such as 

SCF usage, electrochemistry etc. and have been covered as a holistic overview 

of the field. 

Flow chemistry is not the answer to every case study and it’s likely that 

there will be instances where chemistry is better suited to batch conditions, 

however. Each chemistry must be evaluated to see if the study would more 

appropriate for a flow or a batch regime. For totally homogenous systems, or for 

very fast reactions, it is likely that a flow system would be used for the generation 

of kinetic data. For experimental case studies that require sampling of a 

suspension in a reaction medium, it is likely that a batch system would be more 

appropriate. In any case, the availability of an automated flow system is very 

useful (Chapter 3.2) and unlocks powerful reaction control that can be difficult to 

obtain in batch, but batch systems must be employed if the chemistry requires it. 

1.2 Kinetic methodologies 

The kinetic methodologies applied in this project are computational, which 

utilise ordinary differential equations (ODEs) to describe kinetic models, as well 

as optimisation algorithms to maximise the convergence of these ODE curves to 

the experimental data - this is described in detail in Chapter 2.2.2. This differs 

from traditional analytical techniques used more generally in chemistry, as well 

as specific applied methods in determining reaction order, described herein. 

These methods, although useful, are difficult to scale as they require user input 

and at times qualitative analysis, which are not suitable for automatic kinetic 

information determination. Furthermore, these methods may struggle with 
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complex reaction systems or systems with loss of mass balance. For these 

reasons, these methods are covered to describe common kinetic analysis 

techniques, but are not utilised in this project. 

1.2.1 Conventional methodologies 

There are several conventional, but considered outdated, methodologies 

to determining kinetic information that are still employed. The most basic 

analytical solutions for simple reactions can still be powerful in identifying 

reaction order and rate constants.[125, 126] Consider the first order reaction of 

species A reacting to form species B, shown in eqn. 1.1. The change in the 

concentration of A as time progresses can be described as a differential 

equation, eqn. 1.2, which can then be integrated to give the integrated rate 

equation, eqn. 1.3. This integrated rate equation can then be used to determine 

the concentration of A at any reaction time, and a plot of ln[A] vs. time allows the 

determination of the rate constant, as shown in Figure 1.5. This method also 

allows qualitative confirmation of the reaction order, as the experimental data 

points should fit to a linear line. 

Where: 

• A = starting material 

• B = product 

• k = rate constant  

• [A] = concentration of A 

• t = time 

• [A]t = concentration of A at time t 

• [A]0 = initial concentration of A at t = 0 

 

 

 

𝐴
𝑘
→𝐵 eqn. 1.1 

𝑑[𝐴]

𝑑𝑡
= −𝑘[𝐴] eqn. 1.2 

ln[𝐴]𝑡 = −𝑘𝑡 + ln[𝐴]0 eqn. 1.3 
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Figure 1.5: A graphical representation of generated time-series data for a first order reaction 

shown in eqn. 1.1. The data is log-transformed to give a linear fit where the gradient is 

equal to the rate constant multiplied by -1. 

If the plot of ln[A] vs. time does not produce a linear fit, then it is likely that 

the reaction order is not 1 with respect to A, and may be zero order, second order 

or even another non-integer order. To deduce if the reaction is zero order, the 

reaction can still be viewed as eqn. 1.1, but the rate of change of A must be 

described differently as the zero order reaction is not dependant on the 

concentration of A at any time. Therefore, this differential equation can be 

described as eqn. 1.4, which can then be integrated to give the integrated rate 

equation, eqn. 1.5. A simple plot of [A] vs. time deduces if the reaction is zero 

order, as a linear fit indicates this, where the rate constant can also be identified, 

as shown in Figure 1.6. 

 

 

𝑑[𝐴]

𝑑𝑡
= −𝑘 eqn. 1.4 

[𝐴]𝑡 = −𝑘𝑡 + [𝐴]0 eqn. 1.5 
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Figure 1.6: A graphical representation of generated time-series data for a zero order reaction 

shown in eqn. 1.1. This data does not need to be transformed as the linear fit is equal to 

the rate constant multiplied by -1. 

If the reaction is second order with respect to A, the rate of change of A 

must be described as in eqn. 1.6, which when integrated gives the integrated 

rate equation shown in eqn. 1.7. A plot of 1/[A] vs. time then allows the chemist 

to deduce that the reaction is second order, if a linear fit is obtained. The gradient 

of this linear fit can then be ascribed as the rate constant, as shown in Figure 

1.7. 

 

 

Figure 1.7: A graphical representation of generated time-series data for a second order 

reaction shown in eqn. 1.1. This data is plotted as the reciprocal of the concentration vs. 

time and the gradient of the linear fit to this data is the rate constant. 

If the reaction is more complex and features bimolecular reactions of 

different species, such as the reaction shown in eqn. 1.8, then there are two 

possible scenarios that may be considered to determine the rate constant and 

confirm the reaction order. The first scenario is where the initial concentrations 

of species A and species B are the same. In this case, the rate of change of A 

can be written as eqn. 1.9. However, at any time, [A] = [B], meaning that the 

scenario mimics the second order reaction illustrated in eqn. 1.6, and kinetic 

information can be identified by using the corresponding aforementioned 

methodology. 

𝑑[𝐴]

𝑑𝑡
= −𝑘[𝐴]2 eqn. 1.6 

1

[𝐴]
𝑡

=  𝑘𝑡 +
1

[𝐴]
0

 eqn. 1.7 
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 The second possible scenario is where the initial concentrations of A and 

B are not equal. In this case, it is useful to define a term, x, where this relates to 

the concentration of each of the species that have reacted at a particular time, t. 

The expression of the rate law then becomes eqn. 1.10, which can be rearranged 

to eqn. 1.11: 

If eqn. 1.11 is then integrated between time zero, and t, the time of interest: 

Then integrating by using the method of partial fractions, eqn. 1.12 becomes: 

Substituting [A] for [A]0 - x and [B] for [B]0 - x, eqn. 1.13 simplifies to: 

Therefore resulting in the overall integrated rate equation: 

Which can be rearranged to obtain: 

 This obtained integrated rate equation, shown as eqn. 1.16, can then be 

used to determine the rate constant. A plot of ln
[𝐵][𝐴]0

[𝐴][𝐵]0
 vs. time confirms a first 

order dependence on both species in the bimolecular reaction if a linear fit is 

𝐴 + 𝐵 
𝑘
→ 𝐶 eqn. 1.8 

𝑑[𝐴]

𝑑𝑡
= −𝑘[𝐴][𝐵] =  −𝑘[𝐴]2 eqn. 1.9 

−
𝑑𝑥

𝑑𝑡
= −𝑘([𝐴]0 − 𝑥)([𝐵]0 − 𝑥) eqn. 1.10 

𝑑𝑥

([𝐴]0 − 𝑥)([𝐵]0 − 𝑥)
= 𝑘 𝑑𝑡 eqn. 1.11 

∫
𝑑𝑥

([𝐴]0 − 𝑥)([𝐵]0 − 𝑥)

𝑥

0

= 𝑘 ∫ 𝑑𝑡
𝑡

0

 eqn. 1.12 

∫
𝑑𝑥

([𝐴]0 − 𝑥)([𝐵]0 − 𝑥)

𝑥

0

=
1

[𝐵]0 − [𝐴]0
(ln

[𝐴]0
[𝐴]0 − 𝑥

− ln
[𝐵]0

[𝐵]0 − 𝑥
) eqn. 1.13 

∫
𝑑𝑥

([𝐴]0 − 𝑥)([𝐵]0 − 𝑥)

𝑥

0

=
1

[𝐵]0 − [𝐴]0
(ln
[𝐵][𝐴]0
[𝐴][𝐵]0

) eqn. 1.14 

1

[𝐵]0 − [𝐴]0
(ln
[𝐵][𝐴]0
[𝐴][𝐵]0

) = 𝑘𝑡 eqn. 1.15 

ln
[𝐵][𝐴]0
[𝐴][𝐵]0

= 𝑘([𝐵]0 − [𝐴]0)𝑡 eqn. 1.16 
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observed, as shown in Figure 1.8, where the gradient can be used to calculate 

the rate constant. If a bimolecular reaction is known to occur but this graphing 

indicates curvature, then it’s possible that one or more of the species may have 

a reaction order not equal to one. Under these circumstances, other techniques 

must be used to confirm reaction order, such as computational approaches to 

fitting differential equations, which is further described in Chapter 2.2.2. 

 

Figure 1.8: A graphical representation of generated time-series data for a second order 

reaction shown in eqn. 1.8, where: [A] = ▲, [B] = ●. This data is plotted as a log-

transformed concentration fraction vs. time. The gradient of the linear fit to this data is the 

rate constant multiplied by the initial concentration of B minus the initial concentration of 

A. 

 For kinetic studies involving either biological (enzymatic) or chemical 

catalysts, the reaction system can still be described by elementary reaction steps 

and their respective differential equations. If we look at one of the simplest 

catalytic systems, where an enzyme, E, binds with a substrate, S. This is a 

reversible binding step, where the forward reaction step is k1 and the backward 

reaction step is k-1, in which the enzyme-substrate complex, ES, is formed. This 

complex can then react to form the product, P, as well as regenerating the 

enzyme catalyst, E. This reaction is shown in eqn. 1.17, and as before, the 

differential equations with respect to each of these species are described in eqn. 

1.18 - 1.21. 

𝐸 + 𝑆 
𝑘1
⇌
𝑘−1

𝐸𝑆
 𝑘2
→ 𝐸 + 𝑃 eqn. 1.17 

𝑑[𝑆]

𝑑𝑡
= −𝑘1[𝐸][𝑆] + 𝑘−1[𝐸𝑆] eqn. 1.18 
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 However, although this system can be described in this way, it is more 

commonly described as approximated models, as simple assumptions can 

derive a model known as Michaelis-Menten kinetics.[127, 128] This provides a more 

simplistic method of catalytic modelling and prediction, by relating the catalyst 

concentration to the rate enhancement of a reaction in a different way. Michaelis-

Menten kinetics employ the steady-state approximation with respect to the 

enzyme-substrate complex, ES. This means that it is assumed that this complex 

will rapidly approach a state where it is generated at the same rate that is 

consumed. This means that the overall rate of change, as described in eqn. 1.22, 

is zero - this allows a new relationship to be derived between the enzyme, 

substrate and complex, as shown in eqn. 1.23. 

 In order to describe the system as an overall equation relating to the rate 

of the reaction, we must be able to determine the rate of product formation, 

shown in eqn. 1.20. However, as it is unknown what the free enzyme 

concentration is at any point after the reaction has progressed, it is more 

appropriate to describe the free enzyme, E, as the total concentration of all 

enzyme, ET, minus the complex concentration: [E] = [ET] - [ES]. This substitution 

into the steady-state approximation derived equation, eqn. 1.23, allows the 

complex concentration to be described by other concentrations: 

Followed by expansion: 

Then rearrangement and factorisation: 

𝑑[𝐸]

𝑑𝑡
= −𝑘1[𝐸][𝑆] + 𝑘−1[𝐸𝑆] + 𝑘2[𝐸𝑆] eqn. 1.19 

𝑑[𝑃]

𝑑𝑡
= 𝑘2[𝐸𝑆] eqn. 1.20 

𝑑[𝐸𝑆]

𝑑𝑡
= 𝑘1[𝐸][𝑆] − 𝑘−1[𝐸𝑆] − 𝑘2[𝐸𝑆] eqn. 1.21 

𝑑[𝐸𝑆]

𝑑𝑡
= 𝑘1[𝐸][𝑆] − (𝑘−1 + 𝑘2)[𝐸𝑆] = 0 eqn. 1.22 

𝑘1[𝐸][𝑆] = (𝑘−1 + 𝑘2)[𝐸𝑆] eqn. 1.23 

𝑘1([𝐸𝑇] − [𝐸𝑆])[𝑆] = (𝑘−1 + 𝑘2)[𝐸𝑆] eqn. 1.24 

𝑘1[𝐸𝑇][𝑆] − 𝑘1[𝐸𝑆][𝑆] = (𝑘−1 + 𝑘2)[𝐸𝑆] eqn. 1.25 
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Then a final rearrangement allows the overall relationship to be described as: 

Therefore, substitution of this relationship into the product formation step in eqn. 

1.20, where v is the rate of the reaction, relates the overall rate with only the total 

enzyme concentration, substrate concentration and kinetic rate constants, 

shown as eqn. 1.29: 

To now arrive at the familiar form of the Michaelis-Menten equation, final 

substitutions are made for Vmax and KM, shown in eqn. 130, producing the overall 

equation shown in eqn. 1.31: 

 These terms used in the Michaelis-Menten equation, Vmax and KM, are 

different indicators to what are typically found in other areas of kinetics. Vmax 

relates to the maximum velocity of the reaction, which is independent of substrate 

concentration. KM is a ratio measure of the breakdown of the enzyme-substrate 

complex with relation to the its corresponding formation. Different enzymes have 

different KM values and can be affected by a range of conditions, such as pH and 

temperature. This equation, and other variations when the reaction model differs 

(such as enzyme catalysed bimolecular reactions), are commonly used when 

studying catalytic kinetics to predict how a system will behave upon changing 

concentrations.  

This model is also useful as the apparent reaction order of the system can 

be easily described. When the concentration of substrate, [S], is very low in 

comparison to KM, this means that the substrate concentration is deemed to be 

𝑘1[𝐸𝑇][𝑆] = (𝑘−1 + 𝑘2)[𝐸𝑆] + 𝑘1[𝐸𝑆][𝑆] eqn. 1.26 

𝑘1[𝐸𝑇][𝑆] = [𝐸𝑆]((𝑘−1 + 𝑘2) + 𝑘1[𝑆]) eqn. 1.27 

[𝐸𝑆] =
𝑘1[𝐸𝑇][𝑆]

(𝑘−1 + 𝑘2) + 𝑘1[𝑆]
=

[𝐸𝑇][𝑆]

(
𝑘−1 + 𝑘2
𝑘1

) + [𝑆]
 

eqn. 1.28 

𝑣 = 𝑘2[𝐸𝑆]  =
𝑘2[𝐸𝑇][𝑆]

(
𝑘−1 + 𝑘2
𝑘1

) + [𝑆]
 

eqn. 1.29 

𝑉𝑚𝑎𝑥 = 𝑘2[𝐸𝑇]; 𝐾𝑀 =
𝑘−1 + 𝑘2
𝑘1

 eqn. 1.30 

𝑣 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀 + [𝑆]
 eqn. 1.31 
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negligible, leading to a direct proportionality between the rate and [S]. This 

means the reaction appropriates first order kinetics, as shown in eqn. 1.32. When 

[S] is very large in comparison to KM, this means that KM is deemed to be 

negligible, meaning that the equation cancels any occurrence of [S], leading to 

overall zero order kinetics. This is shown in eqn. 1.33. 

 Vmax and KM can be determined experimentally, by measuring the initial 

rates of reaction at varying substrate concentrations. After these rates are 

determined, the graph of reaction rate vs. substrate concentration can be plotted, 

where Vmax is the reaction rate that the curve tends to. KM is found via plotting 

the relationship of reaction rate to substrate concentration, indicated by a curve, 

whereby KM is equal to the substrate concentration (x axis) when the reaction 

rate is half of Vmax (y axis). The experimental determination of these constants is 

shown in Figure 1.9. 

 

Figure 1.9: A representation of Michaelis-Menten kinetics, where the initial reaction rate of 

individual experiments with differing substrate concentrations, x, is plotted. This plot is 

then used to determine the kinetic parameters: Vmax and KM. 

 Further development in these Michaelis-Menten kinetic plots then 

linearised and simplified this technique, leading to a simpler interpretation of the 

kinetics, as well as easier adoption in determining kinetic parameters. This form 

of the Michaelis-Menten equation, known as the Lineweaver-Burk equation 

shown in eqn. 1.34, is simply the double-reciprocal form of eqn. 1.31.[129] This 

𝑣 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀
 eqn. 1.32 

𝑣 = 𝑉𝑚𝑎𝑥 eqn. 1.33 
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allows less complex plotting methods to determine Vmax and KM, as shown in 

Figure 1.10. 

 

Figure 1.10: A representation of the Lineweaver-Burk equation, where the inverse of the initial 

reaction rate of individual experiments with differing substrate concentrations, x, is 

plotted. This plot is then used to determine the kinetic parameters: Vmax and KM. 

1.2.2 Visual kinetic analysis 

In order to identify catalytic reaction behaviour and the order of the 

species in these processes, different methodologies with the theme of visual, 

qualitative analysis were developed to allow many scientists to easily extract 

kinetic information from their reactions. Although the root of these analyses are 

still highly mathematical, visual kinetic analyses depend on the subjective 

analysis of the scientist. Therefore, precise kinetic parameters cannot be 

elucidated; however, the plots required are simple to construct and easy to 

interpret, allowing easy determination of the order of the catalyst/reagents or of 

product inhibition/catalyst deactivation.[130] 

Reaction progress kinetic analysis (RPKA) employs a checklist to visually 

determine this kinetic information efficiently with very few reactions.[131] These 

reactions, which feature in situ measurements, are combined with mathematical 

manipulations to construct graphical rate equations where kinetic information can 

be identified. This methodology comprises three different analyses for three sets 

of experiments. These experiments identify: product inhibition/catalyst 

deactivation, the order in the catalyst and the order in any of the other 

components of the reaction. 
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For a product inhibition/catalyst deactivation probing study, curves of 

reaction rate vs. substrate concentration are compared for reactions that are 

started at different points - one with higher concentrations (reaction 1) and one 

with lower (reaction 2). This means that although the initial starting material 

concentrations are different, both reactions at some point will have the same 

concentration of all of the starting materials as the other reaction. This is true as 

long as both experiments have the same difference in the concentration of 

reactants, referred to as ‘same excess’ experiments. Consequently, at these 

points in the reaction where there are the same concentrations of starting 

materials, the reaction with the greater initial concentrations (reaction 1) will have 

a greater concentration of product, as well as a greater number of catalytic 

turnovers. This means that there are two sets of experimental data, where the 

reaction profiles should overlay to indicate the lack of product inhibition and 

catalyst deactivation. A case study where there was shown to be no indication of 

inhibition/deactivation is shown in Scheme 1.17 and Figure 1.11.[132] 

 

Scheme 1.17: A Heck coupling of an aryl bromide, 1.40, with 1.41 to form the adduct 1.42. 

This case study showed no indication of product inhibition or catalyst deactivation. 
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Figure 1.11: An overlay of two experimental datasets with the same ‘excess’ of reactant 

concentration, for the reaction shown in Scheme 1.17. This overlap indicates no product 

inhibition or catalyst deactivation. Reproduced with permission. 

If these curves don’t overlay, it can be inferred that product inhibition or 

catalyst deactivation is occurring. An example of this is shown in Scheme 1.18 

and Figure 1.12.[133] To discern between these two possibilities, a third 

experiment is required where there is more product added. This experiment 

should feature the same initial concentrations as the experiment initiated at lower 

concentrations (reaction 2), but the reaction should also feature the same 

product concentration as generated by the other reaction until this point. This 

results in two reactions that are identical in stoichiometric composition, but vary 

in the number of turnovers completed by the catalyst. Therefore, overlay of these 

two reaction profiles indicate product inhibition, whilst no overlay indicates 

catalyst deactivation. 

 

Scheme 1.18: The epoxide opening of 1.43 to form 1.44 using a catalytic system. This case 

study indicates some product inhibition or catalyst deactivation. 
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Figure 1.12: As there is no overlay in the two experimental datasets with the same ‘excess’ of 

reactant concentration, in the reaction system shown in Scheme 1.18, this indicates 

some product inhibition or catalyst deactivation. A further experiment is necessary to 

determine what is occurring. Reproduced with permission. 

 To then use RPKA to elucidate the order in catalyst, the datasets of 

different reactions run with different catalyst concentrations are plotted as 

rate/[cat]γ vs. substrate concentration. The value of γ is changed until all of the 

curves overlay - this value is then the correct order in the catalyst. Similarly for 

determining the order in a given reactant “B”, the datasets of ‘different excess’ 

reactions are obtained i.e. where all concentrations are constant apart from the 

specific substrate of interest, in this case reactant B. The profiles are plotted as 

rate/[B]β vs. [A], and the value of β is altered until the curves overlay. This value 

of β then indicates the correct order for reactant B. A reported example of an 

alkylation reaction, shown in Scheme 1.19, was analysed in this manner to 

determine the order with respect to Et2Zn, 1.46, by performing ‘different excess’ 

experiments, as shown in Figure 1.13a. This data was then plotted using this 

methodology in Figure 1.13b to confirm the reaction order of this species to be 

1.[131] 
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Scheme 1.19: A nickel-catalysed alkylation reaction of chalcone, 1.45, with Et2Zn, 1.46, to form 

the adduct 1.47.  

 

Figure 1.13: Graphical rate equations for the alkylation reaction shown in Scheme 1.19. a) 

Standard graphical rate equation. b) Using the RPKA methodology to observe any 

overlap in the ‘different excess’ reaction curves. This overlap indicates that the reaction 

order of Et2Zn is 1. Reproduced with permission. 

 Another form of visual kinetic analysis, Variable Time Normalisation 

Analysis (VTNA) has also been reported to determine this same information by 

utilising exclusively concentration-time reaction profiles.[134, 135] This technique 

may be preferential to RPKA as this data is typically more readily available from 
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the use of almost any reaction monitoring technique, when compared to the data 

handling necessary to extract rate information. 

To identify product inhibition or catalyst deactivation, the reaction profiles 

of two or more reactions are examined, where the reactions have different 

starting concentrations - these datasets are both plotted together. The profile of 

the reaction with the lower initial concentration of starting materials is then shifted 

on the time axis, until the first data point overlaps with the second (higher initial 

concentrations of starting materials) reaction profile. If there is an overlay of the 

two concentration profiles at this point, this suggests that there is no product 

inhibition or catalyst deactivation present in the system. This procedure is 

highlighted in Figure 1.14.[130]  However, a lack of overlay indicates that one of 

these scenarios is present and a third experiment must be conducted to 

determine the cause of this lack of overlay. This third experiment must contain 

added product, in the same way as previously mentioned for the RPKA 

methodology, where an overlay of this new curve with existing data indicates 

product inhibition, and the converse outcome indicates catalyst deactivation.  

 

Figure 1.14: A time shift of the profiles of two reactions to observe overlaying plots. This allows 

the comparison of two profiles with the same starting material concentrations, but 

different product concentrations, therefore identifying signs of product inhibition or 

catalyst deactivation. Reproduced with permission. 

To then elucidate the order in any of the species present, two reactions or 

more are run with different initial concentrations of this species, S, but with the 

same initial concentrations of all other species. The time scale of these reactions 

are then replaced with Σ[S]γΔt - this expression is shown in eqn. 1.34.[136, 137] A 

plot of concentration of S vs. Σ[S]γΔt is then graphed, where the value of γ that 

produces an overlay of the reaction profiles is the order in species S, in a similar 
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manner to RPKA plotting methods. This plotting method can be used for 

identifying both the order in catalysts and reactants in a chemical system. 

Where: 

• n = number of experiments 

• i = current experiment 

• γ = order of reaction 

• t = time of measurement 

These visual kinetic analysis methods may be used in different 

circumstances for the simple determination of reactant/catalyst orders, as well 

as to identify any occurrences of product inhibition or catalyst deactivation. 

Where reaction rate information is available, RPKA may be used, and where 

concentration-time data is available, VTNA can be used. There are many 

applications reported by academic and industrial research groups in a wide 

range of catalytic reactions, using both RPKA[138-140] and VTNA.[141-143] Figure 

1.15 shows a summary of the analysis of these techniques, with the information 

that each technique provides given the particular experimental protocol.[130] 

 

∑(
[𝑆]𝑖 + [𝑆]𝑖−1

2
)

𝛾

(𝑡𝑖 − 𝑡𝑖−1)

𝑛

𝑖=1

 eqn. 1.34 
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Figure 1.15: A summary of the use of RPKA and VTNA. a) catalyst deactivation or product 

inhibition, b) catalyst order, c) reagent order, d) catalyst deactivation or product 

inhibition, e) catalyst order, f) reagent order. Reproduced with permission. 

1.2.3 Kinetic methodologies summary 

Herein reported are several methodologies to determine kinetic 

information, all of which have become convention to varying degrees and 

adopted by many experts and non-experts alike. It is because of the large 

adoption of these techniques that is why these particular methods have been 

covered in this introduction, although the usage of them within the context of this 

project will be minimal. There are many other more complex methodologies 

peripheral to this project that, although are very powerful in particular 

circumstances, are not widely adopted by research groups. For this reason, the 

concepts of these methodologies are not introduced, but for further reading there 

are reports to be found on: model-based design of experiments (mbDoE),[144-146] 

hybrid modelling[147] and soft modelling,[148-150] as well as other more niche 

techniques that can be found in the literature.[151-153]  

 These introduced methodologies are unlikely to be used in the context of 

this project, as many require qualitative assessments or data manipulation by a 

user that is difficult to automate. Furthermore, the analysis of complex reaction 

models may become more and more difficult with increasing model terms, 

meaning that precise kinetic parameters may also be more difficult to determine. 

These factors produce tough challenges in the context of the main aims of the 

project (described further in Chapter 1.4), as the identification of kinetic models 

and parameters cannot be scaled effectively or automated. Therefore, other 

procedures are utilised in answering the challenge of creating a fully autonomous 

kinetic model and parameter determination methodology, which are introduced 

in detail in Chapter 2.2. 

1.3 Optimisation 

When searching for the optimum solution(s) to a particular optimisation 

problem, the best approach in gaining the most amount of information possible 

would be to simply measure the response of the optimisation function at every 

combination of input parameters at infinitesimally small variations. This would 

give a complete and perfect insight into the impact of the input parameters on 
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the response, meaning that it would be easy for a user to even qualitatively 

identify the optimum. However, as function evaluations can be expensive 

(computationally and otherwise), performing this resource- and time-intensive 

optimisation is not feasible.[154, 155] Approximations of this approach can be 

performed in some circumstances by applying grid search methodology,[156] but 

for many applications, the number of function evaluations necessary to explore 

such a large number of parameter combinations means that this approach is not 

viable. Due to the fixed-space exploration of these approaches, parameter 

estimations may also be imprecise. 

For both efficient and accurate determination of optimum parameter inputs 

for a given function, it is often appropriate to use an optimisation algorithm. These 

algorithms heavily vary in their approaches to identifying optimised outputs, but 

a major criteria that they attempt to fulfil is to obtain this information in an efficient 

manner - specifically saving computational time and memory. The choice of 

algorithm can then depend on the nature of the problem, specifically the type of 

optimisation (local or global) as well as the nature of the optimisation problem. 

An algorithm can still generally achieve optimality in many circumstances, 

however, specific algorithms have been found to perform more efficiently in 

different situations. [157] 

Many algorithms can be broadly described as either a local or a global 

optimiser. Local optimisers are fast, can handle large-scale problems and are 

widely applicable to many scenarios. For this reason, they are employed 

extensively in a variety of circumstances. However, in local optimisation, the 

compromise is to accept that the identified optimum may only be locally optimal, 

which does not guarantee a result that is globally optimal, i.e. a better function 

evaluation than all other feasible points.[158] These optimisers also require a 

starting point, which is a critical difference between local and global optimisers, 

as this can affect the objective value of the local solution that is found. 

In global optimisation, by contrast, the true global optimum of the system is 

found. The compromise, however, is often efficiency. Global optimisation 

algorithms are commonly used where the computational cost of the function 

evaluations is not critical. This is because the number of function evaluations is 

traditionally very high, which can also lead to very large computational times.[158] 

Therefore, the choice to use a global optimisation algorithm may be made in 
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circumstances where the value of certifying the true global optimum outweighs 

the computational cost to arrive at this identification. Careful considerations must 

therefore be made in selecting the optimal algorithm based on what is desired in 

each scenario. 

The nature of the optimisation problem itself can also be a large factor in 

the choice of algorithm used, as some algorithms can identify optima more 

efficiently based on the type of problem present.[159] Some common optimisation 

problems are highlighted in Figure 1.16. Specific classes of algorithms can then 

be utilised in different scenarios. Some classes of these algorithms include: 

linear programming (LP),[160] mixed integer linear programming (MILP),[161] 

nonlinear programming (NLP),[162] convex programming (CP),[163] quadratic 

programming (QP)[164] and more.[158] These algorithm classes can then also be 

further separated into discrete and continuous algorithms, then further still in 

many ways. 
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Figure 1.16: Some different classes of optimisation problem, where variable n is an input 

variable and the function evaluation is a measure of how the function is minimised with 

the changing variable. a) Linear optimisation problem. b) Convex optimisation problem. 

c) Non-linear optimisation problem. 

As it is beyond the scope of this project to compare and discuss classes of 

optimisation algorithms, classifications are made only on their local/global 

nature. Commonly utilised local and global algorithms are qualitatively reported, 

with reference to further reading for mathematical proofs. As this project also 

involves heavy use of specific optimisation algorithms (in a black box manner), 

those utilised are also introduced qualitatively. 

1.3.1 Local algorithms 

Many local optimisation algorithms typically iterate towards an optimum 

by using gradients in the response or approximating the local response surface 

around the measurements. One of the most intuitive and simplest form of 

gradient-based algorithm is the steepest descent algorithm, that iterates by 

performing measurements along the trajectory of ‘steepest-descent’ towards the 

minimum.[165] An example steepest-descent representation is shown in Figure 

1.17. Shown are two variables on the x and y axes respectively: X1 and X2, where 

the blue contoured area represents a minimum in the response and the red area 

represents a maximum in the response. A steepest-descent algorithm initially 

takes a guess of the inputs to measure the response. The algorithm then runs 

exploratory measurements in each direction from the initial guess and calculates 

the change in the response for each direction. The most favourable direction in 

n-dimensional space is identified, and measurements continue along this 

trajectory towards the minimum, until a decrease in the response is observed. 

The most favourable direction is then identified again, until the measurements 

can no longer observe a favourable change in the output. This terminates the 

algorithm as it has converged on a local minimum.[166] 
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Figure 1.17: A representation of a steepest-descent algorithm minimising a 2-dimensional 

contoured parameter space, where о indicates a measurement. Where red areas are 

function maxima and blue areas are function minima. 

Another intuitive gradient-based optimisation algorithm is the simplex 

algorithm.[167] This method uses convex polyhedra formed of n + 1 vertices 

(where n is the number of variables) - an individual polyhedron is referred to as 

a simplex. The algorithm begins by conducting either user-defined or random 

measurements of the response function at particular inputs, as shown in Figure 

1.18 in 2-dimensional space, where each vertex of the initial simplex represents 

a function evaluation measurement. The worst performing vertex is then 

replaced upon each iteration of the algorithm via a reflection, resulting in a new 

simplex that explores a new area of parameter space. This approach locates 

areas with a more optimal response and hence successive simplex iteration 

converge on a local optima at point.  
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Figure 1.18: A representation of a simplex optimisation for a 2-dimensional contoured 

parameter space, where the numbered vertices of each polyhedron indicate a 

measurement. Where red areas are function maxima and blue areas are function 

minima. 

As shown in Figure 1.18, the initial simplex, comprising of the 

measurements 1 - 3, is evaluated via the response function at each vertex. The 

worst vertex, measurement 2, is then replaced via reflection to evaluate the 

response function at measurement 4. Similarly, measurement 3 is then replaced 

by measurement 5 in a further simplex iteration. The optimisation typically stops 

when a better response function evaluation cannot be found, indicating that a 

local optimum has been identified - this is illustrated by measurement 11. Further 

modifications have also been adapted from this methodology, notably the 

Nelder-Mead simplex algorithm,[168] that allows further geometric transformations 

as well as just reflections. These transformations are highlighted in Figure 1.19. 

Because of the efficient and intuitive nature of these simplex algorithms, 

particularly the adapted Nelder-Mead variation, their use in applications in the 

literature are vast: the original Nelder-Mead report has over 30,000 citations. 
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Figure 1.19: The different geometric transformations of the Nelder-Mead simplex: inside 

contraction (XIC), multiple contraction (MC), outside contraction (XOC), reflection (XR) and 

expansion (XE). 

Another notable form of local optimisation methodology is the interior-

point method. The interior-point method is a class of algorithm that is very 

effective at solving both nonlinear and convex problems, by approximating local 

regions around measurements as a ‘trust region’.[157] An initial trust region, t0, is 

identified around the starting point, shown as x0 in Figure X.Y, where the trust 

region has an approximated objective function to minimise. The gradient of the 

trust region determines both how the region is approximated, as either linear or 

quadratic, and also the steps necessary in minimising the approximated 

objective function. This optimisation is shown as a 1-dimensional minimisation in 

Figure 1.20, where the x-axis is the magnitude of the variable and the y-axis is 

the measure of the approximated objective function. 
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Figure 1.20: A 1-dimensional optimisation using an interior-point method. The approximate 

objective function is minimised for the starting trust region, t0. 

When this initial trust region objective function is minimised, a new trust 

region around this minimum is then approximated, shown as t1 in Figure 1.21. 

This new approximated objective function is then also minimised. The algorithm 

continues to iterate via trust regions along what can be described holistically as 

the ‘central path’ towards the optimum for the true objective function, where no 

further improvements can be made. This central path can be viewed as an 

averaged direction based on the actual, algorithm path taken. In this example, 

the is objective function was minimised in the fourth trust region, t3, finding the 

optimum xbest. More detailed algorithmic and mathematical discussions of this 

optimisation technique can be found in some of the more relatively recent 

reports.[169, 170]  

 

Figure 1.21: A 1-dimensional optimisation using an interior-point method. The approximate 

objective function is minimised for the sequential trust regions until the overall function is 

minimised. The path that the algorithm can take can be described as the algorithm path 

or the central path towards the optimum. 

1.3.2 Global 

There is much variation in the methodologies applied by global 

optimisation algorithms, but one of the most common techniques relates to what 

can broadly be described as a genetic algorithm.[171] Genetics algorithms perform 

computations to search for a global optimum, utilising techniques inspired by 
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Darwinian evolutionary biology. Although there are many forms of genetic 

algorithms, the methodology of a simple genetic algorithm (SGA) is qualitatively 

introduced herein. The six stages of SGA can be categorised as: initialisation, 

evaluation, selection, crossover, mutation and replacement. After initialisation, 

the other stages of SGA are repeatedly iterated until the optimum has been 

found, which leads to termination of the algorithm. The optimum is typically 

assumed to be found if the evaluation stage does not produce a better function 

evaluation (fitness value) for the given objective function (fitness function).[158] 

The workflow of the algorithm is depicted in Figure 1.22. 

 

Figure 1.22: A depiction of the flow of a simple genetic algorithm. 

 The selection stage aims to find the best parents from the current 

population to generate the next population, where a population is a collection of 

all of the sets of inputs for the given variables, and a parent is one potential set 

of inputs from this population. The parents are often selected simply based on 

their fitness value. In the crossover stage, each individual variable input value 

(chromosome) from each parent has a probability of 0.5 to exist in the resulting 

children set. Each of the children in the following population then have another 

given probability of a random chromosome mutating in the mutation stage. This 

stage prevents a genetic algorithm from becoming stuck in a local minima. After 

this cycle has occurred, this represents one iteration of the algorithm which then 

successively occurs until the optimum has been reached. This SGA methodology 

is highlighted in the adapted simple example shown in Figure 1.23, whereby a 

fitness function (the sum of all inputs) is maximised by the input of integer 

chromosomes.[158] The ability of genetic algorithms to obtain an optimised result 
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for a given function is very desirable, even with a very large number of input 

variables. Despite the high computational expenditure to this methodology 

requires, it’s reliability has resulted in high adoption in the general literature for 

many applications. 

 

Figure 1.23: A depiction of one iteration of a simple genetic algorithm. Figure adapted from 

works reported by Boyd & Vandenberghe.[158] 

 Bayesian optimisation is another category of global optimisation methods 

that generally proceed in a more efficient manner than genetic algorithms, by 

utilising approximated (surrogate) models to optimise expensive-to-evaluate 

objective functions.[166] Random evaluated data points are initially conducted, 

then a surrogate model is built to fit these data points as well as a corresponding 

acquisition function. Bayesian optimisation methods obtain their efficiency from 

their use of these acquisition functions, which balance exploration of the 

parameter space and exploitation of already known high-performing regions of 

parameter space.[172] This acquisition function is maximised after each iteration 

of the algorithm to determine the optimum measurement point to evaluate next, 

in order to explore parameter space but also attempt to gain a better evaluation. 

 Iterations of a Bayesian optimisation for the minimisation of an arbitrary 

function, f(x), with respect to the 1-dimensional optimisation of variable x is 

shown in Figure 1.24.[166] Two initial measurements are inputted, shown as red 

dots in the first iteration, (i). The surrogate model is fitted in blue, where the blue 

area indicates the uncertainty in the model. The  acquisition function is shown in 

red, with a vertical red line indicating the next parameter measurement to be 

evaluated - this evaluation is shown specifically in (i) as another red dot. From 

the second iteration, (ii), there is now enough data to fit 95 % confidence intervals 

to the surrogate model, indicating the regions of highest uncertainty. The 
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maximum of the acquisition function again determines the next parameter 

measurement. As aforementioned, this parameter measurement is made based 

on the compromise of exploring known regions of high performance, and regions 

where these confidence intervals are the largest. As further measurements are 

made in the iterations thereafter, (iii) - (viii), the confidence intervals shrink 

around areas richer with measurements and the surrogate model gains 

confidence in its predictions. Therefore, as the algorithm gains confidence in the 

model, this means that the algorithm also gains confidence that it has achieved 

the global optimum for the particular function. 
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Figure 1.24: The Bayesian optimisation of f(x), where (i) - (viii) represent the sequential 

iterations of the minimisation. The acquisition function is shown in red, measurements 

are shown as red dots and the current estimated surrogate model is shown in blue with 

its corresponding 95 % confidence interval. The maximum of the acquisition function 

indicates the next measurement to be taken. 

 Integer linear programming (ILP) is a class of methodologies that are 

concerned with variables that can only take the form of integers, and although is 

not classically a type of global optimisation algorithm, is still a mathematical 

optimisation that is useful in specific cases and is utilised in this project. An ILP 

problem is in general very difficult to solve, and many solvers have attempted to 

simplify the procedure by utilising a much simpler linear programming (LP) 

approach, then rounding down the values to the nearest integer - this is known 

as LP relaxation, but may not always be effective in identifying the optimum 

solution, so other techniques must be used.[158] In ILP optimisations, it is also 

common to have multiple linear constraints, which define a feasible region that 

the optimum can be found. 

 Although ILP algorithms may proceed using different methodologies, the 

most intuitive introduction would be a 2-dimensional problem with a graphical 

method. The function to be maximised, f, shown as eqn. 1.35, is bound by 4 

linear constraints, C1 - 4, shown as eqn. 1.36 - 1.39: 

As the problem consists of two variables, x and y, it can be illustrated by a 2-

dimensional graphical plane, where each linear constraint is a straight line 

forming a closed, feasible region - this is indicated in Figure 1.25.[158] Therefore, 

all feasible solutions to this problem must be an integer in x and y within the 

bounds of this feasible region. The objective function, f, is represented as a 

straight line with given inputs of x and y that indicates its current position. This 

function, however, can be viewed as a dynamic line that moves in parallel with 

respect to different values of x and y. Therefore, in order to obtain the maximum 

feasible evaluation of f, the line is moved from its current location in the figure 

𝑓 = 12𝑥 + 7𝑦 eqn. 1.35 

𝐶1 = 2𝑥 − 3𝑦 ≤ 6 eqn. 1.36 

𝐶2 = 7𝑥 + 4𝑦 ≤ 28 eqn. 1.37 

𝐶3 = −𝑥 + 𝑦 ≤ 2 eqn. 1.38 

𝐶4 = −2𝑥 − 𝑦 ≤ 2 eqn. 1.39 
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until it intersects with the allowed two integer-valued inputs within the feasible 

region for the first time. All integer-valued input combinations within the feasible 

region are marked with a red dot, where the first intersecting point would be either 

point 1 (2,3) or point 2 (3,1), indicated as P1 and P2 respectively. These points 

can be evaluated mathematically by the objective function to determinine the true 

maximum, where P1 = 43 and P2 = 45. Although this specific example is 2-

dimensional and this intuitive graphical method cannot be easily performed in 3-

dimensions and is impossible in further dimensions, many computational ILP 

algorithms proceed using this generalised concept to identify optimum inputs for 

a given function. 

 

Figure 1.25: A graphical method to solving ILP problems, where C1 - 4 indicate the linear 

constraints, the green area indicates the feasible region, f shows the objective function, 

red dots represent the integer values of the inputs and P1 and P2 indicate two feasible 

potential maxima to the problem. Figure adapted from works reported by Boyd & 

Vandenberghe.[158] 

1.3.3 Optimisation summary 

There are many methodologies that optimisation algorithms utilise, 

meaning that there are several classes of algorithm that are available and then 
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multiple subclasses thereafter. There are specific cases where a particular 

algorithm class is necessary to solve a problem, but also cases where many 

algorithms may be suitable; it is then necessary to decide which algorithm to use 

in this instance based on other factors such as computational efficiency. In this 

project, these decisions will be explored as optimisation algorithms must be used 

in multiple unique scenarios. This is because other methodologies such as grid 

search are too inefficient and imprecise, especially as many input variables (for 

example, kinetic parameters to be optimised) must be determined in an 

appropriate length of time and with high precision. 

1.4 Research aim 

The aim of this project is to develop and advance an automated methodology 

to kinetic model and parameter determination. The basis of this project arises 

from a methodology reported by Tsu et al.[173] that provides a framework to a 

technique that achieves this, by evaluating all possible reaction models. This 

reported framework, however, has limited simulated examples and no real 

experimental examples that prove its efficiency. This methodology can represent 

a positive change in the laboratory, where physical-organic chemists can make 

use of their human resource on other tasks instead of determining a reaction 

model and kinetic parameters, which can be assigned to a computer. This is the 

advantage to exploring this automated methodology that this project is 

predicated on, which leads the specific project goals herein described: 

• To build this automated computational approach to kinetic model and 

parameter determination, based on the framework aforementioned, as 

well as to test the effectiveness of the approach in simulated/literature 

case studies. (Chapter 2) 

• To prove the effectiveness of the approach in real experimental case 

studies. This approach will be coupled with automated kinetic profile 

generation by flow rate manipulation in a continuous flow chemistry 

experimental setup. (Chapter 3) 

Although methodology described is very powerful for many chemical 

scenarios, there are also instances where this technique does not work. 

Specifically, this approach is not designed for applications where the reaction 
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order can be a non-integer, or where particular species may be catalytic in 

nature. Therefore, further specific project goals are described: 

• To further develop this automated approach to kinetic model and 

parameter determination, to include chemistries that may proceed via a 

catalytic route or have non-integer orders with respect to one or more 

species in the reaction model. The effectiveness of this new approach 

must also be proven in a simulated/literature case study(s). (Chapter 4) 

• To prove the effectiveness of this new approach in real experimental case 

studies to achieve kinetic information. (Chapter 5) 

This project will ultimately lead to a tool that any chemist can utilise, by 

plugging time-series data and chemical species into the automated approach, 

then observing the output in the form of the most likely kinetic model and 

associated parameters. Without kinetic expertise, any chemist will be able to use 

this approach and interpret the output in order to obtain scalable process 

understanding. 

Chapter 2 : Development of the computational approach to 

kinetic model determination 

2.1 Introduction 

 A chemical system can be seen as a cascading, dynamic reaction 

scheme, where molecules can orientate themselves in a particular way and with 

a particular energy to allow a reaction to occur. This reaction of course will follow 

a particular reaction mechanism. These mechanisms can give a deep 

understanding of the underlying chemistry that we merely observe as a 

transformation, and can give real-world benefits as it then becomes clearer and 

easier to control and understand chemical reactivity.[174, 175]  

 For the development of a chemical process, however, one of the greater 

concerns is to mathematically characterise the transformation from the starting 

materials to products - this can be complex and occur over many reaction steps, 

and involve many measurable and immeasurable intermediates. This allows 

quantitative information to be gained regarding the chemical synthesis, allowing 
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for classical reaction engineering principles to be applied to shorten process 

development times and lower costs.[173] Therefore, the objective is to develop 

stoichiometric and kinetic descriptions of the individual transformations, rather 

than detailed mechanistic insights and rationales.[176] Where stoichiometry refers 

to the stoichiometric coefficient of a particular species in a reaction, and kinetic 

descriptions refer to the kinetic parameters involved in the rate equations for a 

process. For a system with multiple reactions, this is referred to as a chemical 

reaction network (CRN).  

 The basis for many stoichiometric and kinetic modelling studies, with the 

specific aim of CRN determination, is the data-driven work reported by Aris and 

Mah.[177] This work is an early example of using computation to evaluate aspects 

of a CRN, specifically how many independent reactions can be shown to account 

for changes in experimental data, providing that all chemical species are 

measured. Bonvin and Rippin[178] later reported tar 

get factor analysis (TFA), which was shown to derive approximate stoichiometric 

models for complex systems as well as to test user-inputted stoichiometries for 

their suitability to experimental (simulated) data. TFA has been used and 

advanced to verify proposed reaction stoichiometry in a select few reported 

works.[179, 180]  

TFA was then used as the basis for further work reported by Brendel et 

al.[181] and Bhatt et al.[182], whereby an incremental identification method was 

proposed. This is a step-wise method, where the stoichiometry is initially verified 

using TFA, then other model identification strategies are utilised to identify the 

structure and parameters of the rate laws within the ODE models. However, TFA 

initially requires a CRN to be at least postulated by a user before it can be used. 

This requires a high degree of chemical intuition, but may also be incorrect as 

there are many possible forms in which the CRN can exist, especially when 

dealing with a system with a large number of chemical species. 

  An alternative step-wise method was also reported by Burnham et al.[183], 

in which a global ODE model structure was generated, which is capable of 

representing an entire set of possible chemical reactions. As this global ODE 

model structure represents an over-trained model, model terms are sequentially 

removed using statistical measures until all insignificant terms are removed, 
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giving the final CRN. As this features several optimisations of models with many 

kinetic parameters in order to identify insignificant terms, this optimisation can be 

very slow and also suffer from local optima. This is also the case with the 

determination of insignificant terms, as the identified optimum model itself may 

be non-global. 

Willis and von Stosch[176] then reported the use of mixed integer linear 

programming (MILP) to determine the model structure as well as its associated 

kinetic parameters. This was because previously reported step-wise 

identification approaches fail to consistently predict the underlying network 

structure.[184-186] In this work, a global CRN structure was reported, but MILP was 

used to dismiss all non-mass-balancing reactions from the structure. 

Decomposition of the global structure then occurs by statistical means, and 

although the global structure is now much smaller in this work, termination at 

local optima may still be an issue.  

Tsu et al.[173] then reported an improvement upon this method where ILP 

initially identifies all mass-balancing reactions, then builds every possible 

reaction model. It is this approach that will be focussed on in this chapter, and 

further description and discussion is provided in Chapter 2.2. Every model is then 

fitted and statistically evaluated, which avoids the potential pitfall of local optima 

when determining the correct model. However, this can be computationally 

demanding as there are many more models to evaluate than in any previously 

reported work. 

Other works in the literature include more algorithmic approaches to CRN 

identification. Differential evolution[187], genetic programming[188] and multi-

objective genetic algorithms[189] have all been used as global optimisers to 

attempt to determine the CRN. These specific global optimisers, which focus on 

mimicking real-life Darwinian evolution, are attractive as the CRN is identified 

with minimal human interaction or expertise. However, this optimisation method 

can still encounter problems due to local optima and take a very long time to 

compute due to the number of iterations necessary for convergence upon the 

optimum. 

 The main assumption that is universal among these approaches to CRN 

determination is that all reaction kinetics follow the law of mass action. This 
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states that the rate of reaction of an elementary reaction is directly proportional 

to the product of the concentrations of the reactants, raised to the power of their 

stoichiometric coefficients.[190] For the reaction shown in eqn. 1, based on the 

law of mass action, the reaction rate can be described by eqn. 2 and therefore 

eqn. 3. The kinetic rate constant, k, therefore determines the speed of the 

reaction as well as the reactant concentrations.  

Where: 

• α, β, γ = stoichiometric coefficients 

• x1-3 = chemical species 

• k = kinetic rate constant 

• rate = rate of reaction 

The law of mass action is applicable in most cases, however there are 

particular cases where it is not accurate to describe a process using mass action 

kinetics, where these approaches are not applicable. Such processes typically 

occur when concentrations of particular substrates are very low.[191] 

2.2 Development of the approach 

 The computational approach was developed using MATLAB, by loosely 

following the approach outlined by Tsu et al.[173] The approach contains two main, 

sequential stages: kinetic model generation and kinetic model fitting. Firstly, all 

mass-balance-allowed reactions are identified from the inputted species (starting 

materials, intermediates and products). Then, all of the feasible reaction models 

i.e. all possible combinations of these allowed reactions, are compiled and stored 

in a model database. 

 After the model database has been generated for the particular process, 

the kinetic model fitting stage then evaluates the fit of the ordinary differential 

equations (ODEs) for that particular model to the experimental data provided. 

The MATLAB ODE solvers can be used to in such a way to allow an assessment 

𝛼𝑥1 + 𝛽𝑥2
𝑘
→ 𝛾𝑥3 eqn. 2.1 

𝑟𝑎𝑡𝑒 ∝ [𝑥1]
𝛼[𝑥2]

𝛽 eqn. 2.2 

𝑟𝑎𝑡𝑒 = 𝑘[𝑥1]
𝛼[𝑥2]

𝛽 eqn. 2.3 
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of how the concentration of a species changes over time when given particular k 

values. Therefore, optimising the k values for a given reaction model, by 

maximising the convergence of the ODEs with the experimental data, provides 

an indirect route to their identification. The convergence metric, which is the sum 

of squared error (SSE) between the simulated ODEs and the data, as well as the 

k values for each model are then stored. 

 Statistical analysis is then applied to each of the models. Corrected 

Akaike’s Information Criterion (AICC) is used as a measure to identify the models 

that best balance model simplicity and convergence to the data, and hence, 

identify the most valid models. When these models have been identified, it is 

then possible to run Monte Carlo simulations if the error of the experimental data 

is known. These simulations assume that the error is normally distributed around 

the data point, and compile both the error in experimental data and error in the 

kinetic fitting of the ODE to obtain an uncertainty prediction in the identified k 

values for the process. 

2.2.1 Kinetic model generation 

 In order to generate the kinetic models for evaluation, the first step is to 

input all of the known species of a chemical process into the system. The species 

can be identified by any means, typically by experimentation, where all starting 

materials, intermediates and products are identified. These species are inputted 

based on their respective number of differing atoms, i.e. number of carbon 

atoms, number of oxygen atoms etc., which is known as a Mass Matrix (MM).  

 For example, if you take the known reaction model of A + B ⇌ C + D 

shown in Scheme 2.1, you could visualise initially inputting these four species 

into a mass matrix, shown in Figure 2.1. 
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Scheme 2.1: An example esterification reaction. 

 

Figure 2.1: The Mass Matrix inputted into the approach, assigning mass to each of the 

species. 

 It is also possible to describe the reactions (forward and backward) shown 

in Scheme 2.1 in terms of the stoichiometry of reactants used (SR) and the 

products formed (SP), as a set of matrices in Figure 2.2. When describing these 

matrices, a 0 represents that the species does not participate, a 1 represents 

that the species does participate with a kinetic order of 1, and 2 represents that 

the species participates with a reaction order of 2. For example, in the forward 

reaction, both species A and B participate as a reactant with reaction order 1, 

meaning that they are represented by ‘1’, whereas C and D do not participate as 

reactants, so are represented by ‘0’. These stoichiometric matrices are then 

combined to form an overall stoichiometry, S, where S = SP - SR. This overall 

stoichiometry for an unknown model would otherwise be identified using an 

Integer Linear Programming (ILP) optimisation, and is necessary to identify all 

feasible mass-balanced reactions. 
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Figure 2.2: The stoichiometric matrices for the reaction model shown in Scheme 2.1, as well 

as the overall stoichiometry matrix, S.  

 The ILP optimisation proceeds by finding every feasible stoichiometry that 

satisfies the objective function of MM·S = 0, where S is the transposed vector of 

a single reaction with values for each of the species present. Therefore, as there 

are four species in the esterification process shown in Scheme 2.1, the ILP 

optimisation will proceed using the known Mass Matrix to identify the values of 

X1-4 that satisfy the objective function, shown in Figure 2.3. The optimised 

solution is then the resulting stoichiometric vector which relates to a particular 

feasible reaction. The upper bound for the number of reactants in a stoichiometric 

vector is 2, as it is very rare to encounter third order reactions as a single reaction 

step. When an optimised solution is found, the solution is saved, then successive 

constraints are added to the ILP optimisation to guarantee that the same 

combination of binary variables (and hence stoichiometry) are not obtained when 

the optimisation problem is solved again. The optimisation then ceases when 

there are no more solutions to be found, and hence all feasible mass-balance-

allowed transformations are identified. 

 

Figure 2.3: The ILP optimisation identifying a feasible solution to the objective function, hence 

identifying a mass-balance-allowed reaction. Where X1 = A, X2 = B, X3 = C, X4 = D. 

 After all feasible reactions are identified, these standalone reactions are 

themselves potential models. There are also other possibilites for reaction 

models where there are any combinations of two of the possible reactions, or 

any combinations of three of the reactions etc. The total number of possible 

models (η) is equal to the sum of the binomial coefficients (or all combinations) 
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for every number of reactions in the model up to the total number of possible, 

identified reactions (δ) - this is shown in eqn 2.4. All of these combinations are 

then generated and saved to a model database, which will be accessed in the 

next stage of the approach. For example, if the ILP optimisation identifies 5 

possible reactions (δ = 5), the summation of all combinations gives η equal to 

31. This example can be shown in a model representation in Figure 2.4, where 

this could be any appropriate reaction where: SM = starting material, Int1 = 

intermediate 1, Int2 = intermediate 2, P = product and Imp = impurity. It should 

also be noted that as all of these forward reactions are mass-balanced, all 

backward reactions would also be plausible, but are omitted from the 

representation for concisiveness. 

Where:  

• η = total number of models 

• δ = number of possible reactions 

• i = iterative number of reactions considered for the model 

 

𝜂 = ∑   
𝛿!

𝑖! (𝛿 − 𝑖)!

𝛿

𝑖=1,2,3,…,𝛿

 eqn. 2.4 
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Figure 2.4: A visual representation of all of the possible reaction models when given five mass-

balance-allowed sample reactions, each shown as a different coloured block. When i = 1, 

each reaction is in itself a model, and when i > 1, each reaction behaves as a model 

fragment. These fragments when combined in different ways provide full and unique 

reaction models, each of which are to be assessed for their validity with respect to 

experimental data. 

 After every possible model has been saved into the model database, each 

of these models are then automatically transformed into their respective ODEs, 

which is a form that can be readily used in the kinetic model fitting stage of the 

approach. The individual stoichiometric reactions that make up each model are 

compiled into a set of differential equations for each model, where each of the 

participating species have their own differential equation to show how their 

concentration changes over time. Figure 2.5 summarises the model generation 

section of the approach, by using the esterification reaction as an example. This 

shows how the initial input of the species is first used to identify the feasible 

mass-balance-allowed reactions, then how these reactions can be ordered into 

every possible reaction model, then subsequently how these models are 

transformed into sets of differential equations for use in the kinetic model fitting 

stage of the approach. 
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Figure 2.5: A schematic summarising how the model generation stage of the approach 

progresses. Where the participating species are inputted, and sorted ODE functions that 

describe all possible mass-balance-allowed reactions are outputted. 

 

2.2.2 Kinetic model fitting 

 After the model generation stage of the approach is completed and there 

is a sorted database with all possible models compiled with their respective ODE 

functions, the next stage of the approach can begin: kinetic model fitting. This 
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stage proceeds by sequentially loading individual models from the database, 

then attempting to optimise the kinetic constants for each of the reactions within 

the model. These optimisations progress based on the simulated ODE results’ 

convergence with experimental data, where more suitable models exhibit a 

favourable change in ODE convergence based on the kinetic constants provided 

by the optimiser. Where models do not accurately describe the chemistry taking 

place in the experimental dataset, the optimiser typically ceases very quickly as 

there is no way to incur a favourable change in the ODE results as it iterates. 

After the fitting of a particular model is complete, the kinetic constants (optimised 

results) as well as the minimised error metric of the ODE convergence (sum of 

squared error or SSE) are assigned to the model and saved for statistical 

analysis. 

2.2.2.1 The objective function 

 When a model is initially selected for kinetic fitting, the objective is to use 

an optimisation algorithm to minimise the SSE between the simulated ODE 

results and the experimental results. This is shown in Figure 2.6, with a set of 

time-series data showing a first-order decrease in the concentration of A. The 

first iteration of the algorithm is shown, where a guess of k = 0.4 is applied to the 

ODE solver. The ‘difference’ between the experimental result of data point Ex, 

and the simulated ODE of data point Sx, is shown as Dx. This value is squared 

to make the value positive, and summed with all other differences, to give one 

SSE value: this is shown mathematically in eqn 2.5. 

𝑆𝑆𝐸 = ∑ (𝐸𝑥 − 𝑆𝑥)
2

𝑥=1,2,3,…

 eqn. 2.5 

Where: 

• SSE = sum of squared error 

• Ex = experimental data point 

• Sx = simulated ODE data point 

As the algorithm iterates, the aim is to decrease the SSE output by varying 

the input k values. In this example optimisation shown in Figure 2.6, the optimiser 

(and hence SSE) reaches a minimum at iteration 11, as the ODE converges very 

well with the experimental data. This method serves as an indirect route to 
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identifying kinetic constants, as in this case the k values are the optimised inputs 

for the optimisation algorithm. 

 

Figure 2.6: The iterations of an optimisation algorithm with respect to the convergence of 

simulated ODEs with sample data - this occurs via the minimisation of the SSE output. 

 For each iteration of the algorithm, the inputted k values are used 

alongside the ODE equations for the current model. The ODE solver simulates 

how each of the specified initial species’ concentrations change over time, given 
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the reaction rate calculated from the k values, the species concentration at that 

moment and the reaction model. The ODE solver used for this approach is the 

MATLAB solver ‘ode15s’. This is a stiff ODE solver, meaning that it can be used 

to solve ‘stiff’ ODEs. An ODE is stiff when the integration must be completed in 

unreasonably small increments by typical solvers, that could require millions of 

evaluations leading to a solver failure. As there are many reaction models that 

are to be evaluated, it isn’t clear which ODEs would present themselves as stiff 

problems. Therefore, ode15s was used which can approach curve solutions for 

both stiff and non-stiff ODEs, as opposed to a non-stiff solver which would be 

able to solve non-stiff ODEs faster, but fail when stiff ODEs were to be evaluated. 

Depending on the nature of the experimental data, different inputs for the 

optimisation algorithm may also be used. If there is only one data set, or all data 

sets are at the same temperature, then k values can be optimised. If there are 

multiple data sets at different temperatures, however, it is often better to optimise 

directly for the activation energy and reference k value. This is because there are 

fewer variables for the algorithm to optimise, meaning there is a greater chance 

of convergence on a global optimum and not a local one, this is discussed further 

in Chapter 2.2.2.2.  

The reference k value is at a particular reference temperature, typically 

the midpoint of the temperatures explored experimentally. This is to ensure that 

there are no weightings in the fittings of parameters towards the extremes of the 

temperatures explored. This reference k value and activation energy value for 

each of the transformations are optimised, as these inputs generate the k values 

for each transformation using the re-parameterised Arrhenius equation shown 

as eqn. 2.6, where the general Arrhenius equation is shown as eqn. 2.7.  

𝑘 = 𝑘𝑟𝑒𝑓𝑒
[
−𝐸𝑎
𝑅
(
1
𝑇
−
1
𝑇𝑟𝑒𝑓

)]
 eqn. 2.6 

𝑘 = 𝐴 𝑒
−𝐸𝑎
𝑅𝑇  eqn. 2.7 

Where: 

• k = rate constant 

• kref = reference rate constant at a particular temperature 

• Ea = activation energy /kJ mol-1 

• A = pre-exponential factor 
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• T = temperature of reaction /K 

• Tref = reference temperature for the reference rate constant /K 

• R = ideal gas constant /J mol-1 K-1 

The re-parameterised Arrhenius equation is used for kinetic fitting as there 

is only one optimum for the reference k and activation energy values, regardless 

of the kinetic model. This means that the output of the algorithm can be assumed 

to be at a discrete, optimised point. This is not the case if optimising for set of 

values for a pre-exponential factor and activation energy, due to the high 

correlation between these values.[192, 193] This means that there are several sets 

of values that can all combine to obtain the same rate constant, which can be 

avoided when using the re-parameterised equation to fit kinetic parameters to 

data sets that include multiple temperatures. 

 The final consideration when compiling the objective function, is the 

method of measuring the convergence of the simulated ODEs to the 

experimental data. For all simulated and experimental case studies herein 

reported, the SSE metric has provided good convergence to time-series data for 

all species. This could present a problem, however, in cases where particular 

species occur in only small quantities and SSE does not provide a good fit to the 

data. This is because the SSE metric reduces the overall error, hence giving a 

biased fit to species that are present in larger concentrations. This could be 

prevented by using a different error metric - such as a weighted sum of squared 

error (WSE) or a relative sum of squared error (RSE). Both of these error metrics 

serve to normalise the errors in convergence between species present in higher 

and lower concentrations, and can be used in this approach if the experimental 

data suggests that it would be appropriate.  

2.2.2.2 The optimisation algorithm 

 When fitting kinetics using this approach, the algorithm used to minimise 

the error metric described in Chapter 2.2.2.1, and hence maximise the 

convergence of the simulated ODE with experimental data, is the MATLAB 

function fmincon. fmincon utilises an interior point algorithm, which is described 

in detail in Chapter 1.3.1. This function has been reported extensively in the 

literature for the nonlinear optimisation of dynamic models, including 

considerable uses in the fitting of kinetic parameters to reaction models.[194-196] 
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 fmincon is a local optimisation tool, that leads to fast and accurate 

convergence on local optima. As the given error metric, SSE, reports a value 

based on the residuals that is correlated to the magnitude of the concentrations 

involved, it is not clear based on this value whether true convergence has 

occurred. However, due to the nature of the problem, it is simple to plot the 

experimental data and simulated ODE after kinetic fitting, to visually confirm that 

convergence has occurred. Based on the convergence to the experimental data, 

it can then be assumed that the optimum found is the global optimum for that 

model. If non-convergence occurs, then it is either because the given model does 

not accurately represent the chemistry in the system, or the algorithm became 

trapped in a local optimum. The likelihood of these scenarios depends on the 

non-linearity of the data and the number of variables to be optimised. 

 Generally speaking in these scenarios, it is assumed that when non-

convergence occurs, it is because the model does not accurately represent the 

chemistry. This is because of two reasons. The first is that most kinetic data does 

not feature sharp inflexions or cliff-edges in which concentration-time data 

deviates from an otherwise smoothed curvature. It is this curvature in the data 

that makes local solvers such as fmincon very effective at identifying kinetic 

parameters, as large aspects of their methodologies involve gradient-based 

calculations. Therefore, the path that the optimiser takes towards the optimum 

typically iteratively improves as the optimiser progresses, and with a smoothed 

parameter space this means that the iterative improvement is unlikely to reach a 

local optimum. The second reason is that when fitting kinetics, typically the 

number of variables to be optimised is low, as many models feature chemistry 

that has fewer than 10 model terms. This means that it is unlikely that fmincon 

will encounter local optima when optimising and will only find the globally 

optimum solution.  

 There is not a discrete reported number of variables to be optimised that 

means that fmincon will start to encounter local optima issues. Kinetic studies 

are reported routinely where ~15 or more parameters are optimised using 

fmincon, both isothermally and across different temperatures, without issues.[197, 

198] However, it cannot be assumed a priori with certainty that these issues will 

not occur. Therefore, in cases where there are more than 10 model terms to be 

optimised, a form of global optimisation called multi-start fmincon (ms-fmincon) 
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will be used. This methodology employs fmincon, but with multiple starting points 

from which the optimisation starts. Using ms-fmincon, with 5 randomised starting 

points, means that from those 5 optimisations the global optimum is very likely 

to be found when more than 10 parameters are to be optimised. This approach 

utilises ms-fmincon because it has been proven to be effective in optimising even 

large scale systems. A recent example of this was reported where 383 

parameters were optimised accurately for a large kinetic model.[199] 

2.2.3 Statistical analysis 

After the kinetic parameters are optimised for each model and the error 

metric (SSE) recorded, statistical analysis can then be performed to determine 

the most likely model that describes the experimental data. Akaike’s Information 

Criterion (AIC), eqn. 2.8, provides a relative evaluation of a model for a particular 

set of data.[200] 

𝐴𝐼𝐶 = 𝑛 ln (
𝑆𝑆𝐸

𝑛
) + 2𝑘 eqn. 2.8 

Where: 

• AIC = Akaike’s Information Criterion 

• n = number of observations 

• SSE = sum of squared error 

• k = number of model terms 

This calculation provides a relative evaluation of balancing the goodness-

of-fit of the model to the experimental data, with having as few model terms as 

possible, where a minimised value is optimal. Therefore, models are more 

favourable if they only contain terms that have a significant effect on the fit to the 

data inputted. This means that the optimum model that AIC selects is less likely 

to be over-trained, as all model terms contribute a significant amount towards 

the fit of the data. 

In the context of this approach, an AIC evaluation can inform the 

experimenter which reaction model is the most likely to be correct, in relation to 

other models considered. This model should only contain reactions that 

significantly contribute towards the convergence of the simulated ODEs with 

experimental data points. As AIC assumes that the amount of data is sufficiently 

large in relation to the number of model parameters, it is also beneficial for the 
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purposes of this approach to use a corrected AIC value to compensate for the 

reduced sample sizes.  

The Corrected Akaike’s Information Criterion (AICC), eqn. 2.9, both 

converges to AIC for large sample sizes, but gives a more accurate answer for 

smaller sample sizes as a greater weighting is placed on the number of model 

terms.[201] Reported data suggests that an uncorrected AIC value is appropriate 

only when the ratio of n:k is greater than 40, otherwise an AICC evaluation should 

be used.[202] However, as the model penalisation aspect of AICC is favourable to 

differentiate models with similar SSE values and many of the ‘observations’ in 

the context of a kinetic profile can be highly correlated, if the ratio of n:k is less 

than 40 then the number of observations should be the number of individual 

experiments rather than individual data points. This is also true where several 

experiments are used in fitting to contribute towards one SSE value, where each 

experiment has a vastly different number of measurements within them. 

𝐴𝐼𝐶𝐶 =  𝐴𝐼𝐶 + 
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 2
+ 𝑛 ∙ ln(2𝜋) + 𝑛 

eqn. 2.9 

Where: 

• AIC = Akaike’s Information Criterion 

• AICC = Corrected Akaike’s Information Criterion 

• n = number of observations 

• k = number of model terms 

2.2.4 Other considerations 

There may be some instances where there are intermediates or products 

formed that cannot be identified. This occurrence can be chemistry-dependant, 

but it is common that the quantitative analysis of a process can show total mass 

balance losses as a reaction progresses. This can indicate that either the species 

calibrations are inaccurate, or there is a real loss of mass/concentration that is 

unaccounted for. If calibrations are correct with certainty and there is still a loss 

of mass that is unaccounted for, it can also be beneficial to input an additional 

species into the system. This will force the approach to identify a new pathway 

to an unknown species, which can be assigned the total mass loss of the process 

as the time-series data progresses. Due to the nature of the AICC evaluation, it 

can then be determined statistically if this loss of mass contributes significantly 
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enough towards the fitting of the data to suggest that there is a chemical pathway 

occurring that is not described by the user’s inputted species. This pathway will 

be a grouped reaction description with an observed rate constant, kobs. This is 

because if another pathway is shown to occur, then it is not possible to know 

how many routes that mass is lost by. Chemical considerations must then be 

undertaken to identify missing species and the approach must be re-run. 

When running the approach, the model generation aspect is very fast, 

whilst the kinetic fitting stage is significantly slower due to the many optimisations 

that must be conducted. The kinetic fitting stage is considerably accelerated by 

utilising parallel computing. This means that each optimisation operation is 

conducted on a single computer core, meaning that separate tasks can be sent 

to separate cores within the computer. This means that optimisations are 

conducted in parallel, as the process speed scales directly with the amount of 

computer cores available. The time taken for each optimisation is heavily 

dependent on the model it is fitting and the number of ODE evaluations to be 

conducted. A typical range for a single optimisation can take from 10 - 120 

seconds on a standard Intel i5-2310 processor, however, many optimisations 

take less than 1 second if the model does not describe the experimental data 

accurately.    

2.2.5 Overview 

This computational approach to kinetic model selection and parameter 

identification was developed in MATLAB by loosely following the methodology 

reported by Tsu et al.[173] The approach first identifies all possible reactions that 

can happen based on mass balance alone, from the species inputted by the user. 

All plausible models are then compiled by taking every combination of these 

reactions, and sequentially optimising the kinetic parameters for each of these 

models. Each model is then statistically evaluated and ranked, highlighting the 

most likely model based on the experimental data supplied. The approach outline 

is summarised in Figure 2.7. 
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Figure 2.7: An outline of the stages of the computational approach. 

This method serves as a comprehensive model evaluator where chemical 

intuition is removed, thereby removing a chemist’s bias and considering a 

number of possible models that may otherwise not have been considered. It is, 

however, not the role of this approach to remove all necessity for a physical-

organic chemist to supervise the discovery of a kinetic model. This approach is 

to be used as a complementary tool, whereby all models are evaluated without 

human effort or interaction, but final considerations are still made by the chemist 

when the ranked model list is generated. This is because there may be reactions 

present in the most likely model that describe chemistry that is unlikely or unable 

to occur, but still give a good fit to the experimental data. It may also be possible 

that many models give very similar AICC evaluations, so many models may be 

competing.  

The benefits to this tool are clear. All models are generated based on 

logical transformations of the species inputted, and every possibility is 

comprehensively evaluated without the need for a chemist’s or statistician’s most 

important resource: time. Typically a chemist would evaluate a select few models 

based on chemical intuition, and remove certain chemical possibilities a priori, 

then further refine the model until it is satisfactory. When all possibilities are 

considered, by an approach that automatically evaluates them, this allows the 

chemist to work on other projects including more important aspects of laboratory 

work or theory that cannot be assigned to a machine. However, although 
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powerful, this tool ultimately is data-driven, and must be used in conjunction with 

real chemical intuition by an end user to determine that the models identified as 

most likely are accurate and consistent with the science. 

2.3 Simulated verification of the approach 

Before any real experimentation takes place, it is important to first verify 

that the approach works as a means of identifying the correct reaction model and 

kinetic parameters. Therefore, several simulated case studies were conducted 

with varying goals to show the adaptability of the approach to different 

circumstances. These simulated case studies feature reactions from the 

literature, where the model and kinetic parameters are already identified. 

Simulated experimental data is generated from this information and used as the 

basis for verifying the approach. 

To simulate the data, first the true model and kinetic parameters reported 

in a given literature source are inputted into MATLAB. The experiment is then 

simulated at a particular temperature and set of initial concentrations, by using 

an ODE solver to evaluate the change in species concentrations over a given 

experimental timeframe. Individual data points from this timeframe are then 

extracted, which serve as the experimental data points for the particular 

simulated case study. To then make the case study more robust, up to 5 % 

relative error in each measurement is added, to approximate this simulated data 

more closely to real experimental data. This generation of simulated data is 

summarised in Figure 2.8. 



90 
 

 

Figure 2.8: An example showing the generation of a simulated data set from the literature. a) 

An ODE is simulated for a particular model with a set of kinetic parameters, in this case A 

→ B, where: — = A, — = B.  b) Particular time points are taken from this ODE to 

represent individual measurements, where x = A, x = B. c) Up to 5 % relative random 

error is added to these measurements to more closely resemble real experimental data. 

2.3.1 Case study: Benzoic acid alkylation 

The first simulated case study was a very basic system, where there are 

only three species to be considered.[203] The reaction system was benzoic acid, 

2.1, reacting with iodomethane, 2.2, in the presence of the base, 1,8-bis-

(tetramethylguanidino)naphthalene (TMGN), to form the methyl benzoate 

product, 2.3, and hydroiodic acid, 2.4. This reaction is shown in Scheme 2.2. 

TMGN was present at one equivalent with respect to benzoic acid, and was 

assumed to deprotonate the benzoic acid so that all of the starting material is in 

the carboxylate form. There were no rates reported by the authors for this 

deprotonation, but they indicated that modelling this system as a simple second 

order reaction under these conditions yielded accurate results. 
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Scheme 2.2: The reaction of benzoic acid with iodomethane to form methyl benzoate. 

Modelled as a second order reaction. 

2.3.1.1 Data acquisition 

The second order reaction model reported by Gholamipour-Shirazi[203] 

was used to generate the ODEs shown in eqn. 2.10 - 2.13. Three isothermal 

simulated data sets were generated using these ODEs, with the k value of 0.57 

M-1 s-1, with the following initial concentrations: 

• 0.1 M benzoic acid, 2.1, 0.08 M iodomethane, 2.2, 0 M methyl benzoate, 

2.3, 0 M hydroiodic acid, 2.4. 

• 0.1 M benzoic acid, 2.1, 0.11 M iodomethane, 2.2, 0 M methyl benzoate, 

2.3, 0 M hydroiodic acid, 2.4. 

• 0.1 M benzoic acid, 2.1, 0.15 M iodomethane, 2.2, 0 M methyl benzoate, 

2.3, 0 M hydroiodic acid, 2.4. 

𝑑[𝟐. 𝟏]

𝑑𝑡
=  −𝑘 [𝟐. 𝟏][𝟐. 𝟐] eqn. 2.10 

𝑑[𝟐. 𝟐]

𝑑𝑡
=  −𝑘 [𝟐. 𝟏][𝟐. 𝟐] eqn. 2.11 

𝑑[𝟐. 𝟑]

𝑑𝑡
=  𝑘 [𝟐. 𝟏][𝟐. 𝟐] eqn. 2.12 

𝑑[𝟐. 𝟒]

𝑑𝑡
=  𝑘 [𝟐. 𝟏][𝟐. 𝟐] eqn. 2.13 

 5 % relative error was then added to these simulated data sets, then used 

as the inputted experimental data for the computational approach. These data 

sets can be found in Chapter 7.2.1. 

2.3.1.2 Results and discussion 

Based on the inputs of the molecular weights for this system, there were 

two mass-balance-allowed reactions, shown in eqn. 2.14 and eqn. 2.15, which 

are two of the three possible models that can be generated. The third model, 
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shown in eqn. 2.16, is the combination of these two allowed reactions, resulting 

in an equilibrium reaction model. 

Forward: 2.1 + 2.2 → 2.3 + 2.4 eqn. 2.14 

Backward: 2.3 + 2.4 → 2.1 + 2.2 eqn. 2.15 

Equilibrium: 2.1 + 2.2 ⇌ 2.3 + 2.4 eqn. 2.16 

These three models were then each evaluated based on how well the 

simulated ODE curves converge to the experimental data inputted. The kinetic 

parameters, kx, were optimised for each model, and the SSE was recorded. 

These results are tabulated in Table 2.1. The concentrations of HI were assumed 

to not be measured during the kinetic fitting, and were instead inferred. 

Table 2.1: A table showing the optimised k values for the identified models in the benzoic acid 

alkylation case study, alongside each model’s SSE and AICC. 

 

The computational approach reveals that the reaction model containing 

solely the forward reaction gives the minimum overall error and the best (lowest) 

AICC evaluation when assessing the experimental data, indicating that this is the 

most likely reaction model. For the backward reaction, the minimisation algorithm 

could not optimise a k value to give a better fit than the initial guess of 1 x 10-3 

M-1 s-1, indicating that the reaction model is in complete disagreement with the 

experimental data. For the equilibrium model, the error is as low as the forward 

reaction model alone as the optimiser assigns a small k value to the reverse 

reaction, to attempt to fit to the noise of the system. Although this model fits the 

data equally well, there is the added complexity of a second model term; as this 

term adds no value in terms of lowering the SSE, it is an unfavourable addition 

in terms of an AICC evaluation which prefers simplistic models, and is therefore 

considered a less appropriate model than the forward reaction term alone. 

 This case study has shown that it is possible to use this computational 

approach to identify the correct model and kinetic parameters for a simple 

Reaction kx /M-1 s-1 SSE /M AICC 

Forward 0.5807 0.8101 -6.55 

Backward - 1.0185 -1.74 

Equilibrium 0.5817, 0.0009 0.8101 -4.10 
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system, by simply inputting the participating species and their respective 

changes in time-series data. The k value identified is very similar to the one used 

for the generation of the simulated data, and varies only because of the 5 % 

noise added to the system. The fit of the identified model and k value for the data 

supplied is shown in Figure 2.9, where the data set shown is the middle 

experiment where the starting concentrations were 0.1 M benzoic acid and 0.11 

M iodomethane. 

 

Figure 2.9: The fit of the identified model and kinetic parameters to the generated experimental 

data with starting concentrations of 0.1 M benzoic acid and 0.11 M iodomethane. Where: 

x = benzoic acid, x = iodomethane, x = methyl benzoate, — = benzoic acid (ODE), — = 

iodomethane (ODE), — = methyl benzoate (ODE) . 

2.3.2 Case study: Nitrile hydrolysis 

This case study features a slightly larger system, where there are 5 

species to consider in the hydrolysis of a nitrile.[204] The nitrile of interest, 2.5, is 

hydrolysed by hydroxide, 2.6, to form the amide, 2.7. This amide is then further 

hydrolysed to form the carboxylic acid, 2.8, and ammonia, 2.9. This reaction is 

shown in Scheme 2.3. As in many acid/base reactions, there are a lot of fast 

proton transfer steps, the mass of species 2.6 is therefore added to the system 
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as water, H2O, rather than hydroxide, OH-, in order to preserve mass balance. 

This allows appropriate reaction models to be generated. 

 

Scheme 2.3: The reaction of a nitrile with hydroxide to form the corresponding amide, which is 

susceptible to further hydrolysis to form the carboxylic acid. Modelled as sequential 

second order reactions. 

2.3.2.1 Data acquisition 

The sequential second order reaction model reported by Niemeier et 

al.[204] was used to generate the ODEs shown in eqn. 2.17 - 2.21. The reported 

kinetic constants for the two steps were: 

• Step one: k75 °c = 9.27 x 10-3 M-1 s-1, Ea = 87.1 kJ mol-1 

• Step two: k75 °c = 3.63 x 10-5 M-1 s-1, Ea = 74.5 kJ mol-1 

Four simulated data sets were generated at four separate temperatures, by using 

eqn. 2.6 to calculate k values, with the following initial concentrations: 

• 0.8 M nitrile, 2.5, 1.8 M hydroxide, 2.6, 0 M amide, 2.7, 0 M carboxylic 

acid, 2.8, 0 M ammonia, 2.9, 60 °C. 

• 0.8 M nitrile, 2.5, 1.8 M hydroxide, 2.6, 0 M amide, 2.7, 0 M carboxylic 

acid, 2.8, 0 M ammonia, 2.9, 70 °C. 

• 1 M nitrile, 2.5, 2 M hydroxide, 2.6, 0 M amide, 2.7, 0 M carboxylic acid, 

2.8, 0 M ammonia, 2.9, 80 °C. 

• 1 M nitrile, 2.5, 2 M hydroxide, 2.6, 0 M amide, 2.7, 0 M carboxylic acid, 

2.8, 0 M ammonia, 2.9, 90 °C. 

𝑑[𝟐. 𝟓]

𝑑𝑡
=  −𝑘1[𝟐. 𝟓][𝟐. 𝟔] eqn. 2.17 
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𝑑[𝟐. 𝟔]

𝑑𝑡
=  −𝑘1[𝟐. 𝟓][𝟐. 𝟔] − 𝑘2[𝟐. 𝟕][𝟐. 𝟔] eqn. 2.18 

𝑑[𝟐. 𝟕]

𝑑𝑡
=  𝑘1[𝟐. 𝟓][𝟐. 𝟔] − 𝑘2[𝟐. 𝟕][𝟐. 𝟔] eqn. 2.19 

𝑑[𝟐. 𝟖]

𝑑𝑡
=  𝑘2[𝟐. 𝟕][𝟐. 𝟔] eqn. 2.20 

𝑑[𝟐. 𝟗]

𝑑𝑡
=  𝑘2[𝟐. 𝟕][𝟐. 𝟔] eqn. 2.21 

5 % relative error was then added to these simulated data sets, then used 

as the inputted experimental data for the computational approach. These data 

sets can be found in Chapter 7.2.2. 

2.3.2.2 Results and discussion 

Based on the inputs of the molecular weights for this system, there were 

four mass-balance-allowed reactions, shown in eqn. 2.22 - 2.25. All possible 

models were then compiled, subject to eqn. 2.4, resulting in 15 models. 

2.5 + 2.6 → 2.7 eqn. 2.22 

2.7 → 2.5 + 2.6 eqn. 2.23 

 2.6 + 2.7 → 2.8 + 2.9 eqn. 2.24 

2.8 + 2.9 → 2.6 + 2.7 eqn. 2.25 

 All 15 models were evaluated sequentially, then ranked based on their 

AICC. It was found that the highest ranked model was the correct model, with 

kinetic parameters optimised to be very close to the real values. As artificial error 

was added to the results, this optimisation is assumed to be correct as the 

relative error in the kinetic parameters is negligible. The top three performing 

models are shown in Table 2.2, where the reference k values at 75 °C are shown, 

as well as the activation energy, SSE and AICC. 

Table 2.2: A table showing the top three ranked models for the nitrile hydrolysis case study. 

The kinetic parameters for each reaction within the model is shown, as well as the SSE 

and AICC evaluation. 

Model 

rank 
Model 

kx,75 °C /M-1 s-1 

or s-1 

Ea /kJ 

mol-1 
SSE /M AICC 

1 2.5 + 2.6 → 2.7 9.23 x 10-3 86.7 0.0179 -162.3 
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2.6 + 2.7 → 2.8 + 2.9 4.49 x 10-5 71.6 

2 

2.5 + 2.6 → 2.7 

2.6 + 2.7 → 2.8 + 2.9 

2.8 + 2.9 → 2.6 + 2.7 

9.28 x 10-3 

4.30 x 10-5 

1.94 x 10-4 

86.7 

75.5 

26.3 

0.0179 -156.7 

3 

2.5 + 2.6 → 2.7 

2.7 → 2.5 + 2.6 

2.6 + 2.7 → 2.8 + 2.9 

9.32 x 10-3 

3.63 x 10-5 

4.20 x 10-5 

86.5 

37.3 

74.8 

0.0180 -156.6 

 

This case study has shown that it is possible to identify the correct model 

and kinetic parameters for a multistep chemical system using the computational 

approach. Interestingly, this study has shown again that the overall error is very 

similar in the top-ranked competing models, meaning that the deciding factor 

then becomes the number of model terms, due to the AICC evaluation. The data 

inputted was at different temperatures and the kinetic parameter optimisation 

proceeded smoothly when optimising reference k values and activation energies 

directly. An example kinetic plot showing the fit of the identified model to the 

experimental data is shown in Figure 2.10 - this is the fourth experiment where 

the starting concentrations were 1 M nitrile and 2 M hydroxide at 90 °C. 
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Figure 2.10: The fit of the identified model and kinetic parameters to the generated 

experimental data with starting concentrations of 1 M nitrile and 2 M hydroxide at 90 °C. 

Where: x = nitrile, x = amide, x = carboxylic acid, — = nitrile (ODE), — = amide (ODE), — 

= carboxylic acid (ODE) . 

2.3.3 Case study: SNAr kinetics  

The final simulated case study involves a larger scale multistep system, 

where there are 6 species in a SNAr chemical setting. 2,4-dichloropyrimidine 

(starting material, SM), 2.10, reacts with morpholine, 2.11, to form either the 4-

substituted product, 2.12, or the 2-substituted product, 2.13. These products can 

then further react with another equivalent of morpholine to produce the bis-

substituted product, 2.14. Each of these reactions form hydrochloric acid, 2.15, 

as a byproduct that is neutralised by an excess of base. This system is shown in 

Scheme 2.4. 
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Scheme 2.4: The reaction of 2,4-dichloropyrimidine, 2.10, with morpholine, 2.11, to form the 4-

substituted product, 2.12, and the 2-substituted product, 2.13, and the subsequent bis-

substituted product, 2.14. 

2.3.3.1 Data acquisition 

The multistep SNAr reaction model reported by Reizman and Jensen consists 

of 4 second-order reactions. These reactions were used to generate the ODEs 

shown in eqn. 2.26 - 2.31. The reported kinetic constants for these three steps 

were: 

• Step one: log(A) = 3.4 M-1 s-1, Ea = 27.0 kJ mol-1 

• Step two: log(A) = 3.5 M-1 s-1, Ea = 32.1 kJ mol-1 

• Step three: log(A) = 4.9 M-1 s-1, Ea = 60.0 kJ mol-1 

• Step four: log(A) = 3.0 M-1 s-1, Ea = 45.0 kJ mol-1 

Three simulated data sets were generated at 90 °C, by using eqn. 2.7 to calculate 

k values, with the following initial concentrations: 

• 1 M SM, 2.10, 2.2 M morpholine, 2.11, 0 M 4-substituted product, 2.12, 0 

M 2-substituted product, 2.13, 0 M bis-substituted product, 2.14, and 0 M 

hydrochloric acid, 2.15. 

• 1.2 M SM, 2.10, 2.8 M morpholine, 2.11, 0 M 4-substituted product, 2.12, 

0 M 2-substituted product, 2.13, 0 M bis-substituted product, 2.14, and 0 

M hydrochloric acid, 2.15. 

• 0.9 M SM, 2.10, 3.2 M morpholine, 2.11, 0 M 4-substituted product, 2.12, 

0 M 2-substituted product, 2.13, 0 M bis-substituted product, 2.14, and 0 

M hydrochloric acid, 2.15. 
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𝑑[𝟐. 𝟏𝟎]

𝑑𝑡
=  −𝑘1[𝟐. 𝟏𝟎][𝟐. 𝟏𝟏] − 𝑘2[𝟐. 𝟏𝟎][𝟐. 𝟏𝟏] eqn. 2.26 

𝑑[𝟐. 𝟏𝟏]

𝑑𝑡
=  −𝑘1[𝟐. 𝟏𝟎][𝟐. 𝟏𝟏] − 𝑘2[𝟐. 𝟏𝟎][𝟐. 𝟏𝟏]

− 𝑘3[𝟐. 𝟏𝟐][𝟐. 𝟏𝟏] − 𝑘4[𝟐. 𝟏𝟑][𝟐. 𝟏𝟏] 

eqn. 2.27 

𝑑[𝟐. 𝟏𝟐]

𝑑𝑡
=  𝑘1[𝟐. 𝟏𝟎][𝟐. 𝟏𝟏] − 𝑘3[𝟐. 𝟏𝟐][𝟐. 𝟏𝟏] eqn. 2.28 

𝑑[𝟐. 𝟏𝟑]

𝑑𝑡
=  𝑘2[𝟐. 𝟏𝟎][𝟐. 𝟏𝟏] − 𝑘4[𝟐. 𝟏𝟑][𝟐. 𝟏𝟏] eqn. 2.29 

𝑑[𝟐. 𝟏𝟒]

𝑑𝑡
=  𝑘3[𝟐. 𝟏𝟐][𝟐. 𝟏𝟏] + 𝑘4[𝟐. 𝟏𝟑][𝟐. 𝟏𝟏] eqn. 2.30 

𝑑[𝟐. 𝟏𝟓]

𝑑𝑡
=  𝑘1[𝟐. 𝟏𝟎][𝟐. 𝟏𝟏] + 𝑘2[𝟐. 𝟏𝟎][𝟐. 𝟏𝟏] 

+𝑘3[𝟐. 𝟏𝟐][𝟐. 𝟏𝟏] + 𝑘4[𝟐. 𝟏𝟑][𝟐. 𝟏𝟏] 

eqn. 2.31 

2 % relative error was then added to these simulated data sets, then used 

as the inputted experimental data for the computational approach. These data 

sets can be found in Chapter 7.2.3. 

2.3.3.2 Results and discussion 

From these 6 species, there are 16 mass-balance-allowed reactions that can 

be identified, shown in eqn. 2.32 - 2.47. All possible reaction models were 

generated, subject to eqn. 2.4, which resulted in 65535 unique models to be 

evaluated by the approach. 

2.13 → 2.12 eqn. 2.32 

2.12 → 2.13 eqn. 2.33 

 2.10 + 2.11 → 2.12 + 2.15 eqn. 2.34 

2.12 + 2.15 → 2.10 + 2.11 eqn. 2.35 

2.10 + 2.14 → 2.12 + 2.12 eqn. 2.36 

2.10 + 2.11 → 2.13 + 2.15 eqn. 2.37 

2.11 + 2.12 → 2.14 + 2.15 eqn. 2.38 
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2.12 + 2.12 → 2.10 + 2.14 eqn. 2.39 

2.14 + 2.15 → 2.11 + 2.13 eqn. 2.40 

2.13 + 2.15 → 2.10 + 2.11 eqn. 2.41 

2.11 + 2.13 → 2.14 + 2.15 eqn. 2.42 

2.10 + 2.14 → 2.12 + 2.13 eqn. 2.43 

2.10 + 2.14 → 2.13 + 2.13 eqn. 2.44 

2.14 + 2.15 → 2.11 + 2.12 eqn. 2.45 

2.12 + 2.13 → 2.10 + 2.14 eqn. 2.46 

2.13 + 2.13 → 2.10 + 2.14 eqn. 2.47 

All 65535 models were evaluated by the computational approach, which 

incurred a computation time of 52 hours (see Chapter 7.6.1 for details on 

computer specifications). Each of these models were ranked based on their 

AICC, and it was found that the highest ranked model was also the correct model, 

with kinetic parameters optimised to values that were very close to the generated 

values. As in the nitrile hydrolysis case study, Chapter 2.3.2, this optimisation is 

assumed to be correct as the error in the fitted parameters is negligible, 

considering that artificial error was added to the dataset. The top three 

performing models are shown in Table 2.3, where the optimised k values are 

shown, as well as their corresponding SSE and AICC values. 

Table 2.3: A table showing the top three ranked models for the SNAr case study. The kinetic 

parameters for each reaction within the model is shown, as well as the SSE and AICC 

evaluation. 

Model 

rank 
Model kx /M-1 s-1 SSE /M AICC 

1 

2.10 + 2.11 → 2.12 + 2.15 

2.10 + 2.11 → 2.13 + 2.15 

2.11+ 2.12 → 2.14 + 2.15 

2.11 + 2.13 → 2.14 + 2.15 

0.32945 

0.07686 

0.00018 

0.00037 

0.0024 -211.2 

2 

2.10 + 2.11 → 2.12 + 2.15 

2.10 + 2.11 → 2.13 + 2.15 

2.11+ 2.12 → 2.14 + 2.15 

0.32948 

0.07679 

0.00018 

0.0024 -208.6 
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2.11 + 2.13 → 2.14 + 2.15 

2.13 + 2.15 → 2.10 + 2.11 

0.00033 

0.00004 

3 

2.10 + 2.11 → 2.12 + 2.15 

2.10 + 2.11 → 2.13 + 2.15 

2.11+ 2.12 → 2.14 + 2.15 

2.11 + 2.13 → 2.14 + 2.15 

2.10 + 2.14 → 2.13 + 2.13 

0.32949 

0.07672 

0.00018 

0.00036 

0.15890 

0.0024 -208.5 

 

This final simulated case study has shown that it is still possible to identify 

the correct reaction model and kinetic parameters for a more complicated 

multistep chemical system, even when there are several thousand models to 

consider. Many of these models are very similar and the top-ranked competing 

models contain the four model terms that are appropriate, as well as typically 

one other model. These models are top-ranking because the additional terms 

are optimised by the algorithms to either have a negligible effect on the output, 

or to minimise the error in the kinetic fitting to a certain extent. It is then the role 

of the AICC evaluation to determine whether these additional model terms are 

producing a significant effect in order for their consideration in the correct 

reaction model. In this case, the SSE value was unchanged among the top-

ranked competing models, meaning that the deciding factor then became the 

number of model terms. An example kinetic plot showing the fit of the identified 

model to the experimental data is shown in Figure 2.11 - this is the first 

experiment where the starting concentrations were 1 M 2,4-dichloropyrimidine 

and 2.2 M morpholine at 90 °C. 
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Figure 2.11: The fit of the identified model and kinetic parameters to the generated 

experimental data with starting concentrations of 1 M 2,4-dichloropyrimidine and 2.2 M 

morpholine at 90 °C. Where: x = 2,4-dichloropyrimidine, x = 4-substituted product, x = 2-

substituted product, x = bis-substituted product, — = 2,4-dichloropyrimidine (ODE), — = 

4-substituted product (ODE), — = 2-substituted product (ODE), — = bis-substituted 

product. Graph is only shown to 260 minutes to show curvature of the initial data points. 

2.4 Conclusion 

It has been shown that a computational approach to kinetic modelling, 

loosely based on work by Tsu et al., can be programmed in MATLAB. This 

approach takes chemical species information, as well as experimental datasets, 

to identify both the correct reaction model and kinetic parameters for the 

chemical process by utilising optimisation algorithms and statistical analysis. 

This approach has been proven to work successfully for three simulated case 

studies of varying optimisation difficulty, with different sets of experimental data 

inputs with varying artificial errors. The success shown from these studies 

inspires confidence that the approach can be implemented with real 

experimental data, and be used as an effective tool in process development to 

automatically identify the correct model and kinetic parameters of various 
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chemical systems. The next step is to prove the efficiency of this approach 

alongside real experimentation. 

Chapter 3 : Experimental applications of the computational 

approach to kinetic model and parameter determination 

3.1 Introduction 

With the development of the computational approach completed and 

verified with multiple simulated case studies, the viability of the approach on real 

experimental data must also be tested. This experimental application can utilise 

data from any source to determine the most likely reaction model and kinetic 

parameters, but for reasons that shall be discussed further, all experimentation 

for this chapter was conducted using an automated continuous flow reactor 

platform. 

There is a long history of conducting and analysing chemical and enzymatic 

kinetics using flow techniques, with the first reported case published around 100 

years ago by Hartridge et al. as a means to study very fast reactions.[205] During 

this time, many different processes, analytical methods and experimental setups 

have been reported, here citing only a few.[206-209] A widely regarded essential 

requirement for kinetic experiments, however, is for the reaction system to 

operate in a turbulent flow regime.[210] Turbulent flow leads to fast, continuous 

mixing and can be predicted by calculating the Reynolds number, Re, in eqn. 

3.1. 

Where: 

• Re = Reynolds number 

• ν = average flow velocity 

• d = tube diameter 

• ρ = fluid density 

• η = fluid viscosity 

𝑅𝑒 =  
𝜈𝑑𝜌

𝜂
 eqn. 3.1 



104 
 

Using the unitless Reynolds number, the flow regime can be predicted to be 

turbulent[210] when Re exceeds 2000, or laminar[211] when Re is less than 2000. 

These regimes are illustrated in Figure 3.1a and 3.1b respectively. Under laminar 

flow conditions, there is a parabolic velocity profile - meaning that the flow 

velocity at the centre of the tube is double the average velocity due to friction on 

the walls of the tubing known as dispersion. This dispersion was originally 

thought to blur the time axis leading to a substantial distortion of the observed 

kinetics, and hence meaningful kinetic experiments under these conditions might 

be impossible.[212]  

 

Figure 3.1: A diagram to show the direction and flows within a flow regime, where: a) laminar 

flow, b) turbulent flow. 

Interestingly, these assumptions remained untested until a number of 

reported kinetics works from the Douglas group showed that accurate kinetic 

experiments could be conducted under laminar flow conditions.[213-215] The 

Reynolds numbers for the experiments conducted ranged between 2.8 and 8.5, 

implying laminar flow. However, the kinetics monitored in these systems agreed 

very well with results obtained conventionally by stopped-flow methods. Further 

work suggests that molecular diffusion has a very significant role, and under 

certain circumstances it can be a good approximation to neglect the effects of 

laminar flow i.e. for particular flow velocities with given internal diameters.[212, 216] 

With this approximation, the kinetics can then be analysed as if the tubular flow 

was homogeneous, which can lead to accurate kinetic studies even in laminar 

flow regimes. 



105 
 

In many continuous flow settings for micro- or meso-flow volumes, it is 

typically simpler to adopt an idealised plug flow reactor model. This model states 

that each infinitely thin section of flow, known as a plug, travels in the axial 

direction of the reactor and is perfectly mixed in the radial direction only, where 

a uniform distribution of the reactor concentrations occurs. This means that the 

residence time of the plug is a direct function of the length of the tubular reactor 

and the velocity of the fluid. This is shown in Figure 3.2. This model is commonly 

employed to simplify tubular mixing and remains an accurate approximation for 

kinetic measurements.[37] All kinetic experiments by other authors covered in this 

introduction employ this model, and further experimentation as part of this project 

also utilises this model - this is discussed further in Chapter 3.2. 

 

Figure 3.2: A plug flow reactor model, where there is perfect mixing in the radial direction but 

no forward or backward mixing in the axial direction. Plugs 1 and 2 are examples of the 

infinitely short plugs existing within this reactor model. 

Many of the advantages of continuous flow chemistry, as previously 

stated in Chapter 1.1, are also particularly attractive for running kinetic 

experiments. Increased heat and mass transfer[217, 218] ensures that the reaction 

is well controlled, meaning that it can be asserted with confidence that the 

experimental conditions applied to it are truly experienced by the reaction 

medium. Precise reagent control arises out of utilising flow chemistry, as specific 

flow rates allow accurate addition of chemicals at various points within the reactor 

system[22, 23, 35] - this is very important when deducing the order of the species 
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within a system, as reagent stoichiometry is present in exact quantities. Coupling 

of flow reactor platforms with quantitative analysis, such as UV, HPLC or GC, 

also unlocks automation capabilities,[6, 219] where multiple experiments can be 

queued for the system to run autonomously. The increased safety,[220] the 

efficiency of operating at reaction temperatures above the boiling point of the 

solvent[221, 222] and the ability to run and analyse extremely fast reactions,[223, 224] 

means that flow experiments can be run that would otherwise be very difficult or 

impossible to run in a batch system. For these reasons, it is more desirable in 

particular circumstances to run kinetic experiments in flow, rather than more 

traditional batch kinetic experiments, whereby sampling occurs throughout the 

progression of a single reaction. These advantages will be exploited throughout 

these experimental acquisitions of data. 

 The main disadvantage to kinetic modelling in flow systems, however, is 

the necessity of the system to reach ‘steady-state’. Steady-state simply refers to 

the state in which the reactor is in, where the responses from the system are a 

direct consequence of the conditions applied to it. This is an important distinction 

because as the reaction parameters are changed, a certain amount of time is 

then required for those reaction parameters to be applied to the system to 

achieve a consistent output.[225] This can be very wasteful, as a system typically 

needs approximately 1.5 - 3 reactor volumes of reagent in the acclimation to 

steady-state, prior to each measurement.[226] This wastes a lot of precious 

reaction material, as well as time, as the time taken to reach steady-state is in 

direct relation to the residence time required i.e. a 15 minute residence time 

results in up to a 45 minute wait for steady-state.  

 Kinetic experiments in flow have been performed in this way for a long 

time, as the advantageous properties of continuous flow chemistry were worth 

the wastage from the steady-state measurements. However, in recent years 

deviations from these conventional techniques have become more popular, that 

take advantage of the transitionary period between two steady-state 

measurements. This is because during this period, transient reaction information 

is available but is otherwise lost because of traditional sampling methods. 

However, if the pump flow rates are manipulated to structure this transient data 

in a way that can be translated to regular time-series data, an entire reaction 

profile can be mapped very quickly and efficiently. This then negates the need 
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for multiple steady-state measurements and rectifies this flow chemistry 

disadvantage, as kinetic profiles can be obtained with minimal material. 

 The first transient flow method reported by Mozharov et al.[96] is an 

instantaneous step change in the flow rates, where the reaction initially takes 

place at a low flow rate, F1, and then the flow rate is increased by an order or 

magnitude to F2. This high flow rate then pushes out the transient data profile of 

the reaction medium, whilst the liquid is monitored by an in-line analysis 

technique sensitive enough to detect a change in product concentration, for 

example Raman spectroscopy as reported by the authors. Using this in-line 

technique, many measurements are taken in short time intervals to generate a 

reaction profile, from which kinetic information can be derived. This is possible 

as the magnitude of F2, the experimental times of the analytical measurements 

(tn) and the dimensions of the flow path in the system are known, therefore the 

reaction profile along the microreactor capillary can be recreated and plotted. 

This concept is depicted in Figure 3.3, with the corresponding equation shown in 

eqn. 3.2 to convert the species concentration in experimental time to the species 

concentration in residence time. This conversion then maps the kinetic profile of 

the chemical process, between the calculated residence times. 

 

Figure 3.3: A depiction of how a kinetic experiment can be run utilising a step change in flow 

rates between two steady-states (I and II), allowing time-series data to be plotted from 

transient data. Figure adapted from Mozharov et al.[96] 

 

𝜏 = 𝑡2
𝐹2
𝐹1
− 𝑡
𝐹2 − 𝐹1
𝐹1

 eqn. 3.2 
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Where: 

• τ = residence time of the reaction medium 

• t = experimental time experienced by the reactor 

• t2 = experimental time taken to reach steady-state 

• F1 = initial flow rate 

• F2 = higher flow rate that the pumps are instantaneously changed to 

This concept was also used experimentally as a means to test the 

accuracy of the technique in relation to conventional steady-state 

measurements. The base catalysed Knoevenagel condensation between 

benzaldehyde, 3.1, and ethyl cyanoacetate, 3.2, alongside the base, 3.3, to form 

the corresponding adduct, 3.4, is shown in Scheme 3.1. The corresponding 

kinetic profiles were generated by conventional, sequential steady-state 

measurements in Figure 3.4, and by the described step-change methodology in 

Figure 3.5, where the reaction proceeded at a low flow rate before a sudden step 

change to a higher flow rate. It is shown that the two sets of time-series data are 

very comparable, however, the step-change methodology has many 

advantages. This technique can determine a kinetic profile from only one 

experiment, with a much lower consumption of reagents and significantly 

reduced experimental time. 

 



109 
 

Scheme 3.1: The base catalysed Knoevenagel condensation between benzaldehyde and ethyl 

cyanoacetate to form 3.4. 

 

Figure 3.4: A kinetic profile generated from the Knoevenagel condensation shown in Scheme 

3.1, where kinetic information was obtained by measuring conversation at given 

residence times at steady-state, at two temperatures. Steady-state markers, x, are 

shown as part of the ‘A Model’. Reproduced with permission. 
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Figure 3.5: A kinetic profile generated from the Knoevenagel condensation shown in Scheme 

3.1, where kinetic information was obtained using a flow rate step-change, at two 

temperatures. Steady-state markers, x, are shown as part of the ‘A Model’, where step-

change markers, o, are shown as part of the ‘B Model’. Reproduced with permission. 

The main critique of this technique, as stated in the original publication, is 

that the step increase in flow rate is never perfect as the system always needs 

time to speed up to the higher flow rate, therefore the exact function F(τ) during 

this transitional period is uncertain.[96] This non-ideality is caused by several 

experimental factors, such as non-rigidity of the tubing walls and the syringe, 

preventing an immediate change in both the flow rates and the pressure profile 

throughout the system.[227] 

Moore and Jensen[227] then reported a new concept that involves a 

controlled ramp instead of a step change, which leads to less uncertainty in the 

determination of the residence times, leading to greater accuracy in the time-

series data. This therefore also leads to greater accuracy in the kinetic 

parameters obtained from the experiment. This report introduced the concept of 

“pseudo-batch” reactors, referring to each fluid element passing through the flow 

reactor in a time that is unique, which can be thought of as many successive 

pseudo-batch reactions. This concept is shown in Figure 3.6.  

 

Figure 3.6: A depiction of how a continuous flow reactor may be described as a series of 

sequential pseudo-batch reactors, where the colour represents the extent of conversion 

from low (green) to high (red). Q represents the total flow rate, ti represents the initial 

time of each pseudo-batch reactor entering the reactor, tf represents the final time, tm is 

the time at which the concentration is actually measured by the IR probe. Reproduced 

with permission. 

This controlled ramp method results in a more predictable and accurate 

residence time profile when compared to the step change method as the 

residence time uncertainty decreases, as well as a greater sampling rate with a 

data density 10-fold higher than previously reported in Mozharov et al.’s 

technique. This was shown experimentally in Scheme 3.2, in the Paal-Knorr 

reaction of 2,5-hexanedione, 3.5, and ethanolamine, 3.6, generating 3.7 whilst 

constantly monitored by an in-line IR probe. This greater data density also 

reduces the error within the kinetic profiles generated, whilst still agreeing with 
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kinetic profiles generated purely from steady-state measurements, as shown in 

Figure 3.7, where these datasets are shown to be very precise and reproducible.  

 

Scheme 3.2: The Paal-Knorr reaction of 2,5-hexanedione, 3.5, and ethanolamine, 3.6, to yield 

3.7, to show how the kinetics of a process can be observed by using a controlled ramp 

technique. 

 

Figure 3.7: A combination of the kinetic models for the reaction yielding 3.7 in Scheme 3.2, 

where the differing colours represent different values of S, where S is a corrective 

residence time multiplier to show the reproducibility of the controlled flow ramp 

methodology. S = 1/4 (blue), S = 1/3 (red), S = 1/2 (green), S= 2/3 (orange), steady-state 

experiments = x. Reproduced with permission. 

 Controlled ramps have now been reported many times because of the 

experimental advantages that they possess.[225, 228] They feature all of the 

advantages of conventional flow chemistry, as reported earlier in this 

introduction, without the disadvantages that arise from typical steady-state 

sampling. This allows users to generate accurate, data-rich kinetic information 

from a process whilst using minimal material and time. This methodology will 
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feature heavily in the data acquisition portions of this chapter, as we opted to use 

controlled ramps for all of our experimentation to exploit these advantages. 

 More recently, further efficiency has also been realised by the 

combination of temperature gradients[229] with controlled flow ramps.[146, 230-232] 

This allows for the fitting of kinetic parameters, including activation energies, to 

a non-isothermal dataset obtained from one flow experiment. This methodology 

therefore results in even less material and time consumption as all kinetic 

parameters can be determined from one flow experiment. Although this relatively 

new technique has only been reported for very simple systems, it represents an 

advancement in performing exceptionally efficient kinetic experiments using 

continuous flow. 

3.2 Experimental setup 

All flow experiments were conducted using a tubular reaction vessel built 

in-house, consisting of a 1/16” OD (1/32” ID) stainless steel tubing coiled around 

a cylindrical aluminium heated block. Reagents were pumped using JASCO 

PU980 dual piston HPLC pumps and flow streams were mixed using Swagelok 

SS-100-3 tee-pieces. Sampling was conducted by using a VICI Valco EUDA-

CI4W.5 sample loop with a 0.5 µL aliquot volume. This results in small aliquots 

of reaction mixture automatically transferring to the HPLC for on-line analysis. 

The reaction system was maintained under a fixed back pressure using an 

Upchurch Scientific 1000 PSI back pressure regulator. Quantitative analysis was 

performed using an Agilent 1100 series HPLC instrument fitted with a Sigma 

Ascentis Express C18 reverse phase column (5cm x 4.6mm, 2.7 µm). In all 

experiments biphenyl was added to one reservoir as an internal standard. This 

experimental setup is shown in Figure 3.8. 
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Figure 3.8: A photograph of the automated continuous flow reactor used for this work. 

Previous work using this experimental setup has shown that transient flow 

experiments show an error of less than 4 % in the observed rate constants due 

to dispersion, whilst steady-state experiments show an absolute error of 0.5 % 

and a relative error of 0.24 %.[233, 234] Therefore, when considering the kinetic 

simulations in these studies, a plug flow model was adopted. If we consider the 

general axial dispersion plug flow reactor model[235] in eqn. 3.3: 

Erstwhile studies by Hone[225] on our reactor platform, and similar investigations 

by Jensen[230, 236, 237] using a comparable system, have found that dispersion only 

introduces a small deviation from plug flow. Given this, eqn. 3.3 can be simplified 

to ignore the second order term, to give eqn. 3.4 - 3.6. This plug flow reactor 

design equation can be utilised to model each species in the reaction with 

respect to residence time. 

Where: 

• DR = axial dispersion coefficient 

𝐷𝑅
𝑑2𝐶𝑖
𝑑𝑧2

− 𝑢
𝑑𝐶𝑖
𝑑𝑧
+ 𝑟𝑖 = 0 eqn. 3.3 

𝑢
𝑑𝐶𝑖
𝑑𝑧
= 𝑟𝑖 eqn. 3.4 

𝜏 =
𝑧

𝑢
 eqn. 3.5 

𝑑𝐶𝑖
𝑑𝜏
= 𝑟𝑖 eqn. 3.6 
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• Ci = molar concentration of species i 

• z = the length along the reactor 

• u = superficial velocity 

• ri = rate of reaction of species i 

For each chemical process, concentration-time data is collected by using 

linear flow ramp gradients with on-line HPLC analysis. Steady-state is initially 

achieved within the system, then sampling begins during the controlled ramping 

to the next steady-state condition, capturing the transitory information. This is 

shown in Figure 3.9. At least two flow ramp experiments at different temperatures 

are conducted, with HPLC sampling every 2 - 4 minutes, depending on the length 

of the HPLC method. The residence time is then calculated for each sampling 

point using eqn. 3.7 to translate this transient data to a time-series dataset. 

 

Figure 3.9: A mathematically correct representation of how linear gradient flow ramps can be 

utilised to sample with a high data density on the initial curvature of the kinetic plot. 

Where: ♦ = data point, Tn = experiment temperature, Q = total flow rate, Time = time the 

reaction has been running, τ = residence time that the reaction mixture experiences. 

Where: 

• τ = residence time 

• α = deceleration of flow rate 

𝜏 =  
𝑎 ∙ 𝑡 − 𝜇0 +√(𝜇0 − 𝑎 ∙ 𝑡)2 + 2 ∙ 𝐿 ∙ 𝑎

𝑎
 eqn. 3.7 
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• μ0 = initial flow rate 

• t = experiment time 

• L = reactor volume 

3.3 Case study: Phenyl acetate 

The first reaction system explored using the computational approach was 

the presupposed model of the reaction of phenol, 3.8, with acetyl chloride, 3.9, 

to form phenyl acetate, 3.10, and hydrochloric acid, 3.11, shown in Scheme 3.3. 

This first experimental verification of the approach was a final validation of the 

approach by selecting a simple example with few chemical species. The goal of 

this study was to confirm the presupposed model, shown in Scheme 3.3, as well 

as identify the kinetic parameters for this process. The validity of the controlled 

ramp method would also be determined based on comparisons of the 

experimental data with steady-state measurements. Full experimental details 

including the preparation of the feed solutions, experimental setup, flow ramping 

rates, HPLC analysis and raw data can be found in Chapter 7.3.1. 

 

Scheme 3.3: The reaction of phenol, 3.8, with acetyl chloride, 3.9, to form phenyl acetate, 3.10, 

and hydrochloric acid, 3.11. 

 The kinetic data was obtained using the controlled ramp methodology at 

two temperatures, 65 °C and 75 °C, and the four participating species were 

inputted into the computational approach. Based on these four species, only two 

reactions were calculated to be possible based on mass balance - these are 

shown as the forward reaction, eqn. 3.8, and the backward reaction, eqn. 3.9, 

which are two of the three possible models that were generated. The third model, 

shown as eqn. 3.10, is the combination of these two allowed reactions, resulting 

in an equilibrium reaction model. 

Forward: 3.8 + 3.9 → 3.10 + 3.11 eqn. 3.8 
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Backward: 3.10 + 3.11 → 3.8 + 3.9 eqn. 3.9 

Equilibrium: 3.8 + 3.9 ⇌ 3.10 + 3.11 eqn. 3.10 

These three models were then each evaluated automatically by the 

approach, based on how well the simulated ODE curves converge to the time-

series data obtained from the controlled ramps. The k values, SSE error metric 

and the AICC evaluation for each of the models is shown in Table 3.1. This data 

represents a similar scenario to the simulated benzoic acid esterification case 

study shown in Chapter 2.3.1, where the identified most likely model has a similar 

error to another model but with more model terms. The forward reaction model 

fits both temperature datasets very well, whilst the backward reaction model 

does not fit to the experimental data at all, as there is no direction in the 

parameter space from the initial guess that the optimisation algorithm can travel 

to make a favourable change in the convergence to the data. The equilibrium 

model fits the data equally as well as the forward model, as it sets the backward 

rate constant to be negligible, leading to a low SSE. However, as this second 

term adds no value in further lowering the SSE, it is an unfavourable addition in 

terms of the AICC evaluation which prefers more simplistic models, and is 

therefore considered a less appropriate model than the forward reaction term 

alone.  

Table 3.1: Evaluation of the feasibility of each reaction model for the phenyl acetate study. 

  

 By only inputting the species involved in the reaction, then running two 

controlled flow ramps with the automated computational approach described, the 

intuitive reaction model was confirmed and the kinetic parameters were 

determined as k75 °C = 10.45 x 10-3 ± 0.42 x 10-3 M-1 s-1, Ea = 69.3 ± 7.8 kJ mol-1. 

This combination of the correct reaction model and kinetic parameters allowed a 

Reaction Model 

k Values / x 10-3 M-1 s-1 

SSE /M AICC Evaluation 

65 °C 75 °C 

Forward 5.15 10.45 0.019 1.36 

Backward - - 0.532 8.03 

Forward + 

Backward 

5.15 

0 

10.45 

0 
0.019 16.36 
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fit to the experimental data with an average residual of less than 3 x 10-3 M, and 

is shown in Figure 3.10; where the colours of the data and fitted ODEs mimic the 

colours shown in Scheme 3.3. This study has shown that the transition from 

simulated to real experimental data does not affect the accuracy of the approach, 

and that the approach can be applied to experimental data with confidence that 

the correct reaction model is to be identified. 

 

Figure 3.10: Kinetic profiles for two flow ramp experiments at 65 °C and 75 °C, where: x = 

phenol, x = phenyl acetate, — = phenol (ODE), — = phenyl acetate (ODE). 

 The equivalent temperature and residence time kinetic profiles were also 

mapped by performing a series of conventional steady-state experiments, to 

ensure that a transient-flow regime remained accurate in model and parameter 

determination. Results showed excellent agreement in plotted curvature and 

confirmed the same reaction model to be the most likely, whilst identifying very 

comparable kinetic constants. Figure 3.11 shows a comparison of the two 

sampling methodologies for this particular reaction. See Chapter 7.3.1.5 for 

further details. 
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Figure 3.11: Graphs showing the agreement between steady-state and flow ramp 

measurements for the reaction of phenol with acetyl chloride, where curves are fitted to 

the steady-state data. Where: ● = phenol (steady-state), x = phenol (flow ramp) ■ = 

phenyl acetate (steady-state), x = phenyl acetate (flow ramp). 

3.4 Case study: Paracetamol 

The next reaction system that was explored was the chemical system 

producing paracetamol, whereby 4-aminophenol, 3.12, reacts with acetic 

anhydride, 3.13, to form paracetamol, 3.14, and the over-reacted diacetamate 

impurity, 3.15, shown in Scheme 3.4 as the intuitive sequential reaction. This 

reaction system serves as the first real experimental multistep reaction that is 

studied by this approach in order to determine the correct reaction model and 

kinetic parameters. However, as there is a large disparity between the reaction 

kinetics of step one and two, quantitative kinetic analysis of both processes 

simultaneously, i.e. during a single ramp, was not possible. Therefore, two sets 

of differing temperature ramps were performed to investigate independently the 

formation of paracetamol and diacetamate, at 30/60 °C and 160/180 °C 

respectively. Each of these ramps differ in reactor size and hence residence 

times, as well as starting concentrations of acetic anhydride. This was performed 

to illustrate the capability of the approach to handle data from a variety of sources 

whilst still accurately determining the kinetic properties of a process. 

 

Scheme 3.4: The reaction of 4-aminophenol with acetic anhydride to form paracetamol in step 

one, followed by a further reaction with acetic anhydride to form diacetamate in step two. 

Based on the five species identified, including the acetic acid, 3.16, 

formed with each reaction of acetic anhydride, there were six reactions that were 

calculated to be possible based on mass balance. These reactions are shown 

as eqn. 3.11 - 3.16: 

3.12 + 3.13 → 3.14 + 3.16 eqn. 3.11 
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3.14 + 3.16 → 3.12 + 3.13 eqn. 3.12 

3.14 + 3.13 → 3.15 + 3.16 eqn. 3.13 

3.15 + 3.16 → 3.14 + 3.13 eqn. 3.14 

3.12 + 3.15 → 3.14 + 3.14 eqn. 3.15 

3.14 + 3.14 → 3.12 + 3.15 eqn. 3.16 

Interestingly, some of the mass-balance-allowed reactions identified by 

the ILP optimisation seem very unlikely to happen based on chemical intuition. 

The reaction of 4-aminophenol with diacetamate shown in eqn. 3.15, for 

example, suggests that it is possible for this starting material to react with the 

over-reacted product, to form two equivalents of the desired product. We know 

from intuition that the ester bond is too strong to break and react without a 

chemical stimulus, so we may have initial speculations on the feasibility of this 

reaction. However, it can never be stated with certainty that this reaction cannot 

happen until its feasibility is studied, and therefore all possible models are still 

generated to be evaluated. This is a major advantage of this approach, that 

reactions and models that may otherwise be discarded due to chemical bias are 

automatically evaluated without a chemist’s input. This could lead to unexpected 

(but statistically and chemically accurate) models that describe time-series data, 

which can lead to better process efficiency and even discover new reactions. 

63 potential models were identified from the five reactions, and the 

reaction model shown in Scheme 3.4 was determined to be the most likely 

representation of the system by AICC. The approach also determined the kinetic 

parameters of step one: k60 °C = 6.45 ± 0.26 M-1 s-1, Ea = 3.2 ± 1.2 kJ mol-1 and 

step two: k180 °C = 4.27 x 10-2 ± 0.17 x 10-2 M-1 s-1, Ea = 97.9 ± 6.5 kJ mol-1, by 

fitting k values to each dataset in the kinetic fitting stage of the approach. These 

values us to assert that step one will likely be very fast at a wide range of 

temperature ranges, and that step two has a higher sensitivity to changes in 

temperature when the energy of the system increases. This identified model 

alongside the identified kinetic parameters fits to the experimental data very 

accurately, with an average residual of less than 1 x 10-4 M, and is shown in 

Figure 3.12. The top 5 ranked models are shown in Table 3.2, with their 

respective SSE error metric and AICC evaluation.  
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Figure 3.12: Kinetic profiles for four flow ramp experiments at 30 °C, 60 °C, 160 °C and 180 

°C, where: x = 4-aminophenol, x = paracetamol, x = diacetamate, — = 4-aminophenol 

(ODE), — = paracetamol (ODE), — = diacetamate (ODE). See Chapter 7.3.2 for full 

experimental conditions and raw data. 

Table 3.2: Evaluation of the feasibility of each reaction model for the paracetamol study. 

Rank Reaction Model 

k values /s-1 or /M-1 s-1 SSE / 

x103 M 

AICC 

Evaluation 30 °C 60 °C 160 °C 180 °C 

1 
3.12 + 3.13 → 3.14 + 3.16 

3.14 + 3.13 → 3.15 + 3.16 

5.9082 

- 

6.4471 

- 

- 

0.0129 

- 

0.0427 
0.295 12.92 

2 

3.14 + 3.16 → 3.12 + 3.13 

3.12 + 3.13 → 3.14 + 3.16 

3.14 + 3.13 → 3.15 + 3.16  

0.1599 

5.9509 

- 

0.9120 

6.7519 

- 

- 

- 

0.0125 

- 

- 

0.0427 

0.293 36.90 

3 

3.12 + 3.13 → 3.14 + 3.16 

3.12 + 3.15 → 3.14 + 3.14 

3.14 + 3.13 → 3.15 + 3.16 

5.9067 

3.8065 

- 

6.4348 

3.5719 

- 

- 

- 

0.0129 

- 

- 

0.0428 

0.295 36.92 

4 

3.15 + 3.16 → 3.14 + 3.13 

3.12 + 3.13 → 3.14 + 3.16 

3.14 + 3.13 → 3.15 + 3.16 

2.3783 

5.9188 

- 

2.7076 

6.4641 

- 

0.0210 

- 

0.0130 

0.0022 

- 

0.0430 

0.295 36.92 
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5 

3.14 + 3.14 → 3.12 + 3.15 

3.12 + 3.13 → 3.14 + 3.16 

3.14 + 3.13 → 3.15 + 3.16 

0.0799 

5.9258 

- 

0.2270 

6.4833 

- 

- 

- 

0.0127 

- 

- 

0.0425 

0.295 36.92 

 

Interestingly, there are many reaction models that were found to have a 

lower SSE error metric than the identified most likely model. This is again where 

the AICC ranking metric is used to great effect to balance the convergence to 

experimental data as well as the simplicity of the model. It is in these cases that 

models that contain transformations discussed previously as very unlikely, such 

as in the rank 3 model, that the terms are likely being used by the optimisation 

algorithm to fit experimental noise. For this reason, this approach cannot be 

completely autonomous and must require evaluation by a chemist when 

observing the top rated models, to be certain that the quality of the data assures 

correct model determination - this was discussed in Chapter 2.2.5.  

This paracetamol study has shown that the approach can correctly identify 

the reaction model and kinetic parameters for a multistep reaction using real 

experimental data from different temperature flow ramps, by inputted only the 

observed species and time-series data. As a side note - interestingly, contrary to 

common undergraduate laboratory experiment scripts,[238] the over-reacted 

diacetamate will not form in any measurable quantities in a conventional 

undergraduate experiment. Assuming that the reaction is similar in water to 

acetonitrile, the reaction doesn’t need refluxing and will go to full conversion of 

paracetamol within seconds at room temperature. Furthermore, using the kinetic 

parameters in this study and the recommended reflux temperature of common 

laboratory manuals, 100 °C, and a typical 0.2 M reaction mixture of paracetamol 

and acetic anhydride, it would take approximately 12 years for the reaction to 

achieve complete conversion to diacetamate. 

3.5 Case study: Metoprolol 

The final experimental case study that was explored was the chemical 

system producing metoprolol, whereby the epoxide starting material, 3.17, reacts 

with isopropylamine, 3.18, to form metoprolol, 3.19, which can further react to 

form the bis-substituted impurity, 3.20, shown in Scheme 3.5. Metoprolol is a 
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cardioselective beta-blocker commonly used for the treatment of hypertension, 

for which kinetic information would help in the process development stage of 

manufacture at AstraZeneca. This reaction system serves as the first real 

experimental multistep reaction that is studied by this approach, where parallel 

reactions occur in tandem, leading to a more difficult system for which to optimise 

kinetic parameters and identify the correct reaction model. 

 

Scheme 3.5: The reaction of the epoxide starting material with isopropylamine to form 

metoprolol, as well as the overreaction to form the bis-substituted product. 

Two sets of two-temperature flow ramps were run on parallelised flow 

reactor platforms, one set in our lab in Leeds (190/210 °C) and one set at 

AstraZeneca’s lab in Macclesfield (130/150 °C). The two reactor platforms differ 

in equipment specification and reactor volume, and the two experimental sets 

differ in temperatures and starting concentrations. This parallelisation of 

experiments on different systems was performed to further confirm the 

reproducibility of this flow ramp methodology, as corroborating data can be 

achieved by an operator on separate reactor systems in different locations. The 

experimental results were then combined and the computational approach was 

applied. Full details of experimentation can be found in Chapter 7.3.3.1. 

Based on the four species identified, there were six reactions that were 

calculated to be possible based on mass balance. These reactions are shown 

as eqn. 3.17 - 3.22. 

3.17 + 3.18 → 3.19 eqn. 3.17 

3.19 → 3.17 + 3.18 eqn. 3.18 

3.19 + 3.17 → 3.20 eqn. 3.19 

3.20 → 3.19 + 3.17 eqn. 3.20 
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3.19 + 3.19 → 3.18 + 3.20 eqn. 3.21 

3.18 + 3.20 → 3.19 + 3.19 eqn. 3.22 

63 reaction models were generated, which correspond to every possible 

combination of these allowed reactions, and each of them were evaluated 

sequentially by the approach. The reaction model shown in Scheme 3.5 was 

identified as the most likely representation of the system by AICC, and the kinetic 

parameters for the formation of metoprolol were found to be: k170 °C = 0.286 ± 

0.012 M-1 min-1, Ea = 72.4 ± 2.9 kJ mol-1 and for the formation of the bis-

substituted product: k170 °C = 0.019 ± 0.001 M-1 min-1, Ea = 75.0 ± 3.0 kJ mol-1. 

This identified model alongside the kinetic parameters fit to the experimental data 

very accurately, with an average residual of less than 2 x 10-3 M, and is shown 

in Figure 3.13. The top 5 ranked models are shown in Table 3.3, with their 

respective SSE error metric and AICC evaluation.  

 

Figure 3.13: Kinetic profiles for the flow ramp experiments at 130 °C, 150 °C, 190 °C and 210 

°C, where: x = starting material, x = Metoprolol, x = bis-substituted product, — = starting 

material (ODE), — = Metoprolol (ODE), — = bis-substituted product (ODE). See Chapter 

7.3.3 for full experimental conditions and raw data. 
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Table 3.3: Evaluation of the feasibility of each reaction model for the metoprolol study. 

Rank Reaction Model 

Kinetic parameters 
SSE / 

x10 M 

AICC 

Evaluation 
k170 °C /min-1 or 

M-1 min-1 
Ea /kJ mol-1 

1 
3.17 + 3.18 → 3.19 

3.19 + 3.17 → 3.20 

0.2857 

0.0191 

72.42 

75.00 

0.1212 -311.45 

2 
3.17 + 3.18 → 3.19 

3.19 → 3.18 + 3.20 

0.3065 

0.0260 

75.69 

65.52 

0.1252 -309.61 

3 

3.17 + 3.18 → 3.19 

3.19 → 3.17 + 3.18 

3.17 + 3.19 → 3.20 

0.3008 

0.0043 

0.0188 

74.63 

53.79 

75.57 

0.1188 -307.68 

4 

3.17 + 3.18 → 3.19 

3.19 + 3.17 → 3.20 

3.20 → 3.19 + 3.17 

0.2858 

0.0202 

0.0158 

72.45 

82.16 

49.20 

0.1209 -306.69 

5 

3.17 + 3.18 → 3.19 

3.19 + 3.17 → 3.20 

3.18 + 3.20 → 3.19 + 3.19 

0.2857 

0.0191 

0.0003 

72.42 

75.08 

48.98 

0.1212 -306.53 

 

The reference k values and activation energies were fitted directly in the 

kinetic fitting stage of the approach, and the experimental dataset was adjusted 

to incorporate an artificial-zero time point, which is a common practice when 

fitting kinetics in order to assert an experimental ‘start time’ when concentrations 

are known. This can fix any fitting discrepancies that may occur as the first 

measured time point may not be accurate - it is assumed however, that all time 

points following this first measurement are correct with respect to the first 

measurement. This is assumed only for the fitting of the kinetic parameters, as 

the parameters are likely to be more accurate. In the case of this experiment, 

small deviations in asserting the time of the initial measurement may occur from 

thermal expansion of the solvent because of the very high temperatures, or from 

pump flow rate errors. 

It has been shown in this study that it is possible to deconvolute reaction 

pathways that are happening simultaneously using this computational approach. 

Differing-temperature experimental datasets were collected from different 
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experimental systems and collated to show that the correct model could be 

identified even with data from different sources. Kinetic parameters are also 

identified from this approach that gives an excellent fit to the experimental data.  

This kinetic information can then be used to optimise this process between 

given limits for temperature, chemical equivalents and reaction time. Using 

current pricing for the starting material used in this work,[239] other standard 

industrial optimisation techniques would have been significantly more expensive 

to implement. When comparing this kinetic approach to other optimisation 

methods, steady-state kinetic measurements would have cost 24 % more in 

terms of material consumption, and a screening and full factorial design of 

experiments (DoE) optimisation would have cost 106 % more - see Chapter 

7.3.3.6 for more details. Then of course factoring in the cost of the time of the 

chemist running the experiments (which hereby would be automated) and the 

time for interpretation of the data and kinetics (which the approach elucidates), 

this results in a significant reduction in labour, time and overall cost, which also 

results in a more comprehensive overview of the possible kinetic models at play. 

3.6 Conclusion 

It has been shown in this work that when real experimental time-series data 

for a chemical process is available, total process understanding can be achieved 

without the need for high-level chemical intuition or human interference. When 

participating species are known or inferred, complete sets of kinetic information 

can be obtained via construction of all possible reaction models and identification 

of their respective kinetic parameters. This was undertaken by coupling an 

automated flow reactor platform with a computational approach to deduce and 

evaluate each kinetic model, utilising optimisation algorithms. After post-reaction 

statistical analysis indicates which models are the most likely to be true based 

on the experimental data provided, which can be from batch or flow, this 

information can then be interpreted by a trained chemist to further differentiate 

reaction pathways based on what should and should not be chemically possible. 

This approach has been proven to be powerful in determining the reaction 

model and kinetic parameters in a variety of experimental circumstances. The 

approach will be particularly powerful in situations where the reaction model is 
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not completely understood, for example when there are competing reaction 

pathways. The approach can be computationally expensive depending on the 

number of possible reaction models, although all of the optimisations carried out 

by the approach on the work described was evaluated in less than 5 minutes on 

a standard 4-core Intel i5-2310 processor. However, the added computational 

cost is minimal compared to the reduction of time and experimental cost with 

regards to kinetic evaluation. Furthermore, this approach can be run 

automatically as bench scientists use their human resource for more challenging 

tasks that cannot be automated. 

This work is the first implementation of the approach on experimental 

time-series data and has been proven to efficiently interpret kinetic information 

using minimal amounts of material to generate sufficient experimental data to 

enable accurate model determination. Using this methodology can considerably 

outweigh the cost of further experimentation to discriminate speculated kinetic 

models and can greatly reduce the time and cost barriers to full process 

understanding.  

Chapter 4 : The development of an improved computational 

approach to kinetic model determination 

4.1 Introduction 

 The aforementioned computational approach to kinetic model and 

parameter determination, as described in Chapter 2 and Chapter 3, is a powerful 

tool for many experimental applications. However, there are two major limitations 

to this tool. The first limitation is in the reaction orders of the particular species 

that are available - these orders are constrained to two integer orders: 1 and 2. 

There are instances, however, where reactions can feature zero order reactions, 

or even have non-integer orders, for which this approach currently cannot 

facilitate and identify. The second limitation is the inability of the approach to 

model catalytic reactions and hence determine the reaction order of species 

within a catalytic reaction. As catalytic reactions are common in research, 

manufacturing and process development, there are many applications where this 

approach could ideally be utilised but is not currently applicable. 
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 Further development of the computational approach to rectify these 

limitations can therefore increase its applicability greatly, which further increases 

the scope of the tool for chemical applications. As the comprehensive model 

evaluation aspect of this methodology has been proven to be effective for 

determining correct reaction models, the skeleton of the approach remains 

unchanged. This includes the two major steps of the approach, model generation 

and kinetic parameter fitting, as well as the statistical measurements involved i.e. 

AICC. However, although the basis for the approach remains the same, many 

structural changes of the programmed tool are necessary for the incorporation 

of these new applications: non-integer order models and catalytic models. The 

advancement of the approach to incorporate these changes makes it applicable 

in almost all chemical processes, which is the final step in answering the overall 

research aim of the project: to build an automated methodology to kinetic model 

discrimination and parameter determination. 

4.2 Methodology advancement 

4.2.1 Capabilities 

When mass-balance-allowed reactions are identified by the approach, 

these reactions can then be compiled into a number of models that feature them, 

as discussed in Chapter 2.2. However, there is a difference between an allowed 

reaction based on the mass balance of the reactants and products, and the rate 

laws that govern the way that these species react. All models are currently 

compiled in a way that assumes a first order dependence on all species that are 

featured. Therefore, for the mass-balance-allowed transformation of A to B as 

shown in eqn. 4.1, the rate law for the change in B is shown in eqn. 4.2: 

A fundamental change to this methodology explores the same 

transformation but using different reactivities, by also investigating different 

orders of the reacting species. To explore different reaction orders, including 

non-integer reaction orders, the rate law of the elementary reaction can be 

described with differing powers of α, shown in eqn. 4.3, where α = 0, 0.5 or 1: 

𝐴
𝑘
→𝐵 eqn. 4.1 

𝑑[𝐵]

𝑑𝑡
= 𝑘[𝐴] eqn. 4.2 
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This allows multiple chemical pathways to be explored that describe the 

chemistry in different ways, which were not available previously using this 

methodology. Each of the newly identified reactions are then treated as 

‘available’ reactions, from which reaction models can be constructed in the same 

way as described in Chapter 2.2. Therefore, for each mass-balance-allowed 

reaction identified by the approach that is ‘unimolecular’, there are 3 

corresponding reaction orders possible and therefore 3 reactions that are added 

to the pool of available reactions for kinetic model generation. In the context of 

this approach, the transformation of a single mass-balance-allowed reaction to 

every variant of its corresponding rate law is termed ‘inflation’. 

 For ‘bimolecular’ reactions identified by the approach as mass-balancing, 

similar chemical descriptions can be written as with the ‘unimolecular’ reactions. 

For the reaction of A and B to form C, there are multiple potential combinations 

of the species orders α and β in the potential rate laws, shown in eqn. 4.4 and 

4.5: 

These values of α and β can take the form of: 0, 0.5, 1, as before. However, it is 

extremely rare for two chemical species to react with a zero order dependence 

on both species. Therefore, in an effort to lower the number of ‘available’ 

reactions and hence lower the number of kinetic model evaluations necessary, 

these particular reactions are seen as unfeasible and are therefore not included 

in the model generation stage. This is also true of a zero order/0.5 order 

bimolecular reaction. Therefore, for every ‘bimolecular’ mass-balance-allowed 

transformation identified by the approach, there are 5 corresponding reactions 

that are added to the pool of available reactions for kinetic model generation. 

 This approach has also been modified to include catalytic reactions in the 

model generation, if the user selects the option to do so. The user can select to 

either include catalytic reactions, or exclusively look at catalytic reactions (i.e. no 

reactions can occur without a catalyst). As before, all mass-balance-allowed 

𝑑[𝐵]

𝑑𝑡
= 𝑘[𝐴]𝛼 eqn. 4.3 

𝐴 + 𝐵
𝑘
→ 𝐶 eqn. 4.4 

𝑑[𝐶]

𝑑𝑡
= 𝑘[𝐴]𝛼[𝐵]𝛽;  𝛼 + 𝛽 ≥ 1; 𝛼 = 𝛽 ≠ 0.5;  𝛼, 𝛽 ∈ {0, 0.5, 1 eqn. 4.5 
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transformations are identified, then for the reaction of A and B to form C, all 

combinations of integer and non-integer catalytic reactions are generated within 

the inflation step. At this point, the species that is user-selected to behave 

catalytically is then incorporated into the rate laws. For each mass-balance-

allowed (inflated) transformation, the catalytic species can take the order of: 0.5, 

1 or 2, and each of these rate law variations are constructed and added to the 

pool of available reactions for kinetic model generation. Note also that in these 

catalytic reactions, the dependence of the orders become empirical to a greater 

extent, whereby individual species are used and regenerated, as opposed to 

referring specifically to molecularity (i.e. number of species reacting together at 

once). When catalytic reactions are included in model generation with the 

selected catalytic species ‘Cat’, eqn. 4.4 becomes eqn. 4.6, and the general rate 

law shown in eqn. 4.5 becomes eqn. 4.7, where γ = order of catalyst: 

All combinations of catalytic and non-catalytic reactions are generated. For each 

mass-balance-allowed ‘bimolecular’ reaction, where catalytic variants are also 

generated, there are 15 possible corresponding reactions that are added to the 

pool of available reactions for kinetic model generation. This inflation step is 

summarised qualitatively in Figure 4.1, showing how individual mass-balance-

allowed reactions can generate multiple transformations that are dependent on 

different rate laws.  

𝐴 + 𝐵 + 𝐶𝑎𝑡
𝑘
→ 𝐶 + 𝐶𝑎𝑡 eqn. 4.6 

𝑑[𝐶]

𝑑𝑡
= 𝑘[𝐴]𝛼[𝐵]𝛽[𝐶𝑎𝑡]𝛾; 𝛼 + 𝛽 ≥ 1;  𝛼 = 𝛽 ≠ 0.5;  𝛼, 𝛽

∈ {0, 0.5, 1};  𝛾 ∈ {0.5,1,2} 

eqn. 4.7 
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Figure 4.1: An illustration of how the ‘inflation’ step takes all mass-balance-allowed 

transformations sequentially, then deduces all allowed integer and non-integer orders 

and generates corresponding rate laws for these transformations. If catalytic reactions 

are to be explored also, rate laws for these catalytic dependencies are also generated. 

These transformations are all then saved, from which full reaction models can be 

constructed. 

These new capabilities incorporated into the overall computational 

approach allow kinetic model determination for more complex chemical systems, 

for catalytic/non-catalytic processes with integer or non-integer orders. This 

approach can then be used as before, whereby the chemical species and 

experimental datasets are uploaded and the program runs an extensive kinetic 

model evaluation loop, followed by statistical analysis to determine the most 

likely model. However, the major disadvantage to evaluating all possible models 

generated after the newly incorporated inflation step is the huge computational 

cost. As the pool of available reactions is expanded greatly, from simple mass-

balance-allowed reactions to all rate laws possibly governing these reactions, 

the number of possible models to be generated from these reactions grows 
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exponentially. It is therefore not feasible, with current technology, to evaluate 

every possible model. However, many of these possible models are also 

unfeasible due to their inability to occur anyway. Upon generation of a reaction 

model, the fitness of the model can be determined by employing simple and 

appropriate logical and chemical constraints, or rules. These rules ensure that 

generated models with an infeasibility to occur are identified and discarded, 

without the need for further evaluation and consumption of computational 

resources.  

4.2.2 Rules 

In order to evaluate only the models that are feasible, a priori logical and 

chemical rules must be applied to the available models to discard large numbers 

of them, as many models may feature redundant or impossible model terms 

within them. To postulate such rules requires logical, yet simplistic, 

rationalisations of how reactions occur - rationalisations that seem obvious upon 

realisation but are seldom taught or reported in the literature. 

To show the importance of these rules when running this approach, 

Scheme 4.1 shows a model reaction of maleic acid, 4.1, reacting with methanol, 

4.2, to form the mono-product, 4.3, and the di-product, 4.4, which can be used 

to show the number of models to be evaluated.[240] In this reaction, the maleic 

acid is self-catalytic, so this species behaves as both a starting material and a 

catalyst. Using these 5 species, there are 6 possible mass-balance-allowed 

reactions. From these 6 reactions, after inflation steps to look at all integer and 

non-integer species dependencies and all catalytic and non-catalytic reactions, 

the total number of models to evaluate is >1,854,900,872. A specific number 

cannot be quoted, as just compiling this number of reaction models takes over 

110 GB of memory and so an accurate estimate cannot be achieved with the 

equipment available. The evaluation of this number of models would likely take 

several years to complete, even when using high-performance computing 

clusters. It is therefore imperative that these rules drastically reduce the number 

of models to evaluate, to enable this methodology as a practical process 

development application. 
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Scheme 4.1: The self-catalysed reaction of maleic acid, 4.1, and methanol, 4.2, to form the 

mono-product, 4.3, and the di-product, 4.4.[240] 

Rule #1: One variant of each reaction 

There are many variations of the same elementary transformations to be 

considered when building models for evaluation. Examples of these variations 

could be: 

• A + B → C 

• A + B0 → C 

• A0.5 + B → C 

• etc. 

It is very unlikely, however, that the same reactants will undergo the same 

chemical transformation to products with many different rate laws. It would not 

be expected that an elementary step would proceed in numerous ways, in both 

an overall second order and an overall first order manner to result in the same 

product, for example. Therefore, when compiling reaction models for evaluation, 

only one variant of each elementary reaction can be present in a single model. 

This also reduces the maximum number of model terms in a single model to the 

total number of elementary reactions, which in this example is 6. When this rule 

is enforced during model generation for the model chemical system, the total 

number of models for evaluation is: 8,156,735. 

Rule #2: Iterative model evaluations  

Although it cannot be known what the ‘average’ number of model terms 

in a ‘general’ model is, the assumption can be made that the user is investigating 

a single synthetic step in a chemical process. With a single synthetic step, there 

may be consecutive reactions and impurities formed, but it would undoubtedly 

be regarded as unlikely if any model was proposed with 30 model terms, for 

example. In accepting this postulation, it must therefore also be true that there is 

a continuum of likelihood whereby a model will contain a certain number of model 
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terms, especially when evaluated by AICC. Therefore, there must also exist a 

limit of model terms that once reached, it can be regarded that the corresponding 

model is too unlikely to occur to be treated as a serious model candidate. Without 

a vast literature study, it is not possible to know what this number should be, and 

this prospective study extends past the scope of this project - this discussion is 

highlighted to simply introduce the concept of the existence of this upper limit of 

model terms. 

Although this upper limit is unknown, it is possible to start at a prospective 

number of model terms, then the user can decide if this number should be 

increased based on the responses observed. From chemical intuition based on 

the findings of AICC values thus far in the project, much of the data can be fitted 

effectively with ≤ 4 model terms and adding further model terms in general leads 

to diminishing model evaluations. This is, of course, a biased generalisation 

based on the chemical systems that have been studied within the project. 

However, using an initial upper limit of 4 model terms in the model generation 

stage may be generally appropriate for single-step chemical systems - if this limit 

does not give a satisfactory model that fits the supplied experimental data, it can 

be iteratively increased to 5 model terms, then 6, etc. As there are many models 

that would require computationally expensive evaluations with over 4 model 

terms, this rule allows the user to determine if further evaluations with larger 

models are necessary, which could otherwise potentially waste computational 

resources and more importantly, time. When this rule is enforced during model 

generation in the model chemical system, as well as the previous Rule #1, the 

total number of models for evaluation is: 668,735. 

Rule #3: Catalytic reactions considered only 

In order to reduce the number of available reactions from which to build 

models, and hence reduce the number of unnecessary model evaluations, it is 

assumed from the user’s input of a catalytic species that all mass-balance-

allowed reactions present will proceed only with a catalyst. This is assumed due 

to the available lower energy pathways in the presence of the catalyst. This can 

then be changed by user input if a suitable model is not found, where the model 

generation is re-run to incorporate reactions that both do and do not proceed 

using the specified catalyst. When this rule is enforced during model generation, 
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as well as each previous rule, the total number of models for evaluation in the 

model chemical system is 173,711. 

Rule #4: There must be at least one reaction from starting materials to products 

As the starting concentrations are initially inputted into the system, it can 

be deduced which of the species are ‘starting materials’. In some instances, there 

may be species that are considered by the user to be the products of the reaction 

at the first time point, but in the context of this rule are also considered to be a 

starting material. For clarity, this definition of ‘starting material’ refers only to 

species that have mass in the initial concentrations. The rule states that there 

must be at least one term in the model that describes a decrease in the 

concentration of one of the identified starting materials. This logic-based rule 

ensures with certainty that the models that are evaluated feature terms that 

exhibit a change in concentrations. Although seemingly obvious, this rule is 

necessary to remove these commonly occurring models that would only lead to 

wasted computational resources. 

For example, if there are four species in a chemical system (A, B, C, D) 

and their initial concentrations are 1 M, 0 M, 0 M and 0 M respectively, the only 

starting material identified is A. Many models that are feasible according to mass 

balance may not be feasible according to this rule, as they may not exhibit a 

change in concentration. Table 4.1 shows some examples of allowed models 

based on these starting concentrations that will progress onto the kinetic fitting 

stage of the approach, as well as disallowed models that will be discarded. As 

shown, entries 3 and 4 will both feature a change in concentrations, whereas 

entries 1 and 2 will not, and are hence discarded. When this rule is enforced, as 

well as each previous rule, the total number of models for evaluation in the model 

chemical system is 121,836. 

Table 4.1: A table showing examples of allowed and disallowed models according to Rule #4. 

Entry 1 2 3 4 

Model 
B → C 

B + B → D 

B + B → D 

D → A 

A → D 

B → C 

A → B + B 

B → C 

Allowed? ✘ ✘  ✓  ✓ 
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Rule #5: New ‘starting materials’ available from products 

As an extension of Rule #4, relating to identifying ‘starting materials’ from 

initial concentrations, further starting materials can also be identified from the 

products of these earlier reactions. For example, in entry 4 in Table 4.1, B is not 

initially identified as a starting material. However, as A is a starting material 

forming B as a product, there is certain to be some concentration of B as time 

progresses, meaning that B can also be viewed as a starting material at some 

point. Therefore, as starting materials in entry 4 are A and B, both reactions in 

this model are allowed because they both feature a change in concentration from 

a starting material to another species. 

Under Rule #5, models that feature model terms incurring a decrease in 

concentration from these newly identified starting materials only can be allowed. 

Therefore, entry 4 will be a model that is progressed onto the model evaluation 

stage. However, in entry 3 in Table 4.1, it can be noted that the initially identified 

starting material (A) forms D as a product, meaning that the starting materials in 

this model are A and D. The second model term features a reaction of B to form 

C, but this logic-based rule highlights that there is no possible scenario where B 

will be formed in order to further react. If this model were to progress onto model 

evaluation, it would certainly be an over-trained model and would rank lowly 

according to an AICC evaluation, as the second model term will not provide a 

benefit to the model over just having the first model term alone. Therefore, under 

Rule #5, entry 3 would be disallowed and not progress onto the model evaluation 

stage, thereby saving computational resources on this redundant model. When 

all rules are enforced, including Rule #5, the total number of evaluations for the 

model system is 98,725. 

Final considerations for model generation 

Other considerations were also made when compiling models in the 

model generation stage, specifically referring to the allowed orders of particular 

species. For catalytic species, the allowed orders were determined to be: 0.5, 1 

and 2. This is because the order in a catalytic species of a system being greater 

than >2 or =1.5 are too rare to warrant serious consideration and would incur a 

significantly greater computational expense to evaluate all of the generated 

models.  
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Much thought was exercised as to whether a zero-order dependence on 

a catalyst is possible, as this discussion is missing from the literature and general 

teaching. It can be postulated that since the presence of a catalyst allows a more 

favourable lower energy pathway, there must therefore be some dependence on 

the concentration of the catalyst for this lower energy pathway to progress. This 

rationalisation infers that it is not possible for a zero-order dependence of 

catalyst, but there may always be selected cases where this can be empirically 

true. In any case, if a zero-order dependence of catalyst is possible, it is too 

unlikely to warrant serious consideration as this would generate many more 

models to be evaluated. 

For non-catalytic systems, this approach attempts to build reaction 

models from base-level elementary reactions (where the both the stoichiometry 

and order of participating species are 1, for each occurrence of the species in 

the reaction scheme). However, there are two notable exceptions: 0 and 0.5 

orders, which are inherently more empirical in nature. A zero-order dependence 

on a particular species in this approach will still have a stoichiometry of 1, 

whereby one molecule of this species is consumed in the reaction, but the 

reaction rate does not depend upon its concentration. A 0.5 order dependence 

will have both a stoichiometry of 0.5 and an order of 0.5. There are many other 

integer and non-integer empirical dependencies of varying stoichiometry and 

order that are possible in complex chemical reaction networks (CRNs). However, 

these dependencies are very rare and not common enough to warrant serious 

consideration for this computational approach as this would generate many more 

models to proceed into model evaluation, resulting in a much higher 

computational expense. Therefore, reactions are only considered for model 

generation with species that have orders in the rate laws of: 0, 0.5 or 1. 

4.2.3 Overview 

This updated computational approach to kinetic model selection and 

parameter identification was developed in MATLAB by adjusting the previously 

developed tool reported in Chapter 2 and Chapter 3. Firstly, the user inputs 

experimental data and the participating species into the system. The approach 

identifies all possible reactions that can happen based on mass balance, then 

generates all conceivable rate laws subject to basic chemical intuition in the 

inflation step (and subject to the user defining a catalytic species). Every 
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combination of these rate laws are then compiled into different reaction models, 

followed by logical rule enforcements to remove vast numbers of redundant or 

wasteful models. All remaining models are sequentially loaded, then kinetic 

parameters are optimised to increase convergence of ordinary differential 

equation (ODE) curves to the experimental data. Finally, each model is then 

statistically evaluated and ranked, highlighting the most likely model based on 

the experimental data supplied. The approach overview is highlighted in Figure 

4.2. 

 

Figure 4.2: An overview of the updated computational approach to kinetic model and 

parameter determination. 

This updated methodology represents a significantly improved, automatic 

tool for process development, by comprehensively evaluating every possible 

model without the need for chemical intuition, or more importantly: chemists’ 

time. This approach has been upgraded to allow both catalytic reactions and 

reactions with non-integer orders to be identified, therefore vastly expanding its 

scope. However, it is still important to note that although this tool is powerful, it 

is ultimately data-driven and subsequently must only be used as a 

complementary tool. Therefore, after all model evaluations, the tool must still be 
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used in conjunction with real chemical intuition by an end user to determine that 

the models identified as most likely are accurate and consistent with the science. 

4.3 Simulated verifications of the approach 

In the same manner as the previous methodology, it is first important to 

verify that the approach identifies the correct models and kinetic parameters 

before conducting any real experimentation. Several simulated case studies 

were conducted that feature different true kinetic models, showing how this 

methodology has been adapted to identify catalytic species’ orders as well as 

non-integer and zero order species dependencies in chemical systems. These 

case studies feature reactions from the literature, whereby simulated 

experimental data is generated from known models and kinetic parameters. 

To simulate the experimental data, as shown in Chapter 2.3, the true 

model and kinetic parameters reported in the literature source are inputted into 

MATLAB. The experiments are then simulated at particular temperatures and 

initial sets of concentrations, by using an ODE solver to evaluate the change in 

species concentrations over a given experimental timeframe. Individual data 

points are then extracted from this timeframe, which then represent experimental 

data points for the simulated case study. Up to ± 2 % relative error is then added 

to each measurement, to approximate this simulated data more closely to real 

experimental data.  

4.3.1 Case study: SNAr kinetics 

The first simulated case study was the SNAr reaction described in Scheme 

4.2, where 2,4-difluoronitrobenzene (starting material, SM), 4.5, reacts with 

pyrrolidine, 4.6, to form either the ortho-substituted product, 4.7, or the para-

substituted product, 4.8 - both of which can then react further with pyrrolidine to 

form the bis-substituted product, 4.9, and form hydrofluoric acid, 4.10, as a 

byproduct in each step.[225] This case study features ‘simple’ elementary 

reactions in the true model as there are no non-integer or zero order 

dependencies. However, this scenario is still important to study, as the new 

approach must still be able to correctly identify model structures and kinetic 

parameters of systems that feature only these elementary reactions. In this case, 

both the old approach and the new approach were run in order to determine if 
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they both arrive at the same identified model, as they should. This should confirm 

that even in a multicomponent process, the new approach will still identify the 

correct elementary reactions instead of substituting non-integer or zero order 

rate laws. 

 

Scheme 4.2: The reaction of 2,4-difluoronitrobenzene, 4.5, with pyrrolidine, 4.6, to form the 

ortho-substituted product, 4.7, and the para-substituted product, 4.8. Consecutive 

reactions then occur to form the bis-substituted product, 4.9. In each reaction, 

hydrofluoric acid, 4.10, is formed.[225] 

4.3.1.1 Data acquisition 

The multistep SNAr reaction model reported by Hone et al. consists of 4 

second-order reactions. These reactions were used to generate the ODEs 

shown in eqn. 4.1 - 4.6. The reported kinetic constants for these three steps 

were: 

• Step one: k90 °C = 0.579 M-1 s-1, Ea = 33.3 kJ mol-1 

• Step two: k90 °C = 0.027 M-1 s-1, Ea = 35.3 kJ mol-1 

• Step three: k90 °C = 0.009 M-1 s-1, Ea = 38.9 kJ mol-1 

• Step four: k90 °C = 0.016 M-1 s-1, Ea = 44.8 kJ mol-1 

Five simulated data sets were generated at 30 °C, by using eqn. 2.7 to calculate 

k values, with the following initial concentrations: 

• 1 M SM, 4.5, 1.1 M pyrrolidine, 4.6, 0 M ortho-substituted product, 4.7, 0 

M para-substituted product, 4.8, 0 M bis-substituted product, 4.9 and 0 M 

hydrofluoric acid, 4.10. 
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• 0.8 M SM, 4.5, 1.5 M pyrrolidine, 4.6, 0 M ortho-substituted product, 4.7, 

0 M para-substituted product, 4.8, 0 M bis-substituted product, 4.9 and 0 

M hydrofluoric acid, 4.10. 

• 1 M SM, 4.5, 2 M pyrrolidine, 4.6, 0 M ortho-substituted product, 4.7, 0 M 

para-substituted product, 4.8, 0 M bis-substituted product, 4.9 and 0 M 

hydrofluoric acid, 4.10. 

• 1 M SM, 4.5, 2.5 M pyrrolidine, 4.6, 0 M ortho-substituted product, 4.7, 0 

M para-substituted product, 4.8, 0 M bis-substituted product, 4.9 and 0 M 

hydrofluoric acid, 4.10. 

• 1.2 M SM, 4.5, 3 M pyrrolidine, 4.6, 0 M ortho-substituted product, 4.7, 0 

M para-substituted product, 4.8, 0 M bis-substituted product, 4.9 and 0 M 

hydrofluoric acid, 4.10. 

𝑑[𝟒. 𝟓]

𝑑𝑡
=  −𝑘1[𝟒. 𝟓][𝟒. 𝟔] − 𝑘2[𝟒. 𝟓][𝟒. 𝟔] eqn. 4.1 

𝑑[𝟒. 𝟔]

𝑑𝑡
=  −𝑘1[𝟒. 𝟓][𝟒. 𝟔] − 𝑘2[𝟒. 𝟓][𝟒. 𝟔] − 𝑘3[𝟒. 𝟕][𝟒. 𝟔]

− 𝑘4[𝟒. 𝟖][𝟒. 𝟔] 

eqn. 4.2 

𝑑[𝟒. 𝟕]

𝑑𝑡
=  𝑘1[𝟒. 𝟓][𝟒. 𝟔] − 𝑘3[𝟒. 𝟕][𝟒. 𝟔] eqn. 4.3 

𝑑[𝟒. 𝟖]

𝑑𝑡
=  𝑘2[𝟒. 𝟓][𝟒. 𝟔] − 𝑘4[𝟒. 𝟖][𝟒. 𝟔] eqn. 4.4 

𝑑[𝟒. 𝟗]

𝑑𝑡
=  𝑘3[𝟒. 𝟕][𝟒. 𝟔] + 𝑘4[𝟒. 𝟖][𝟒. 𝟔] eqn. 4.5 

𝑑[𝟒. 𝟏𝟎]

𝑑𝑡
=  𝑘1[𝟒. 𝟓][𝟒. 𝟔] + 𝑘2[𝟒. 𝟓][𝟒. 𝟔] 

+𝑘3[𝟒. 𝟕][𝟒. 𝟔] + 𝑘4[𝟒. 𝟖][𝟒. 𝟔] 

eqn. 4.6 

2 % relative error was then added to each data point in these simulated 

data sets, then used as the inputted experimental data for both the old and new 

computational approach. These data sets can be found in Chapter 7.4.1. 

4.3.1.2 Results and discussion 

 As the initial ILP optimisation proceeds in the same manner for both the 

old and new approaches, the mass-balance-allowed reactions identified in each 

case are the same. It is only the subsequent rate laws and models that differ in 
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the model generation steps between the old and new approaches. From the 6 

species inputted, there are 16 mass-balance-allowed reactions that were 

identified, shown in eqn. 4.7 - 4.22: 

4.8 → 4.7 eqn. 4.7 

4.7 → 4.8 eqn. 4.8 

 4.5 + 4.6 → 4.7 + 4.10 eqn. 4.9 

4.7 + 4.10 → 4.5 + 4.6 eqn. 4.10 

4.5 + 4.9 → 4.7 + 4.7 eqn. 4.11 

4.5 + 4.6 → 4.8 + 4.10 eqn. 4.12 

4.6 + 4.7 → 4.9 + 4.10 eqn. 4.13 

4.7 + 4.7 → 4.5 + 4.9 eqn. 4.14 

4.9 + 4.10 → 4.6 + 4.8 eqn. 4.15 

4.8 + 4.10 → 4.5 + 4.6 eqn. 4.16 

4.6 + 4.8 → 4.9 + 4.10 eqn. 4.17 

4.5 + 4.9 → 4.7 + 4.8 eqn. 4.18 

4.5 + 4.9 → 4.8 + 4.8 eqn. 4.19 

4.9 + 4.10 → 4.6 + 4.7 eqn. 4.20 

4.7 + 4.8 → 4.5 + 4.9 eqn. 4.21 

4.8 + 4.8 → 4.5 + 4.9 eqn. 4.22 

Old approach 

When running the old approach, every combination of the 16 identified 

mass-balance-allowed transformations was constructed, resulting in 65535 

unique models to be evaluated. All of these resulting models were evaluated by 

the approach, which incurred a computation time of 13 hours (see Chapter 7.6.2 

for details on computer specifications).  

Each of these models were ranked based on their AICC evaluation and it 

was found that the highest ranked model was also the correct model, with kinetic 

parameters optimised to values that were very close to the literature values used 

to generate the data. As with previous simulations described in Chapter 2.3, the 
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optimisation is assumed to be correct as the error in the fitted parameters is 

negligible, considering that artificial error was added to the data set. The top five 

performing models are shown in Table 4.2, where the optimised k values are 

shown, as well as their corresponding SSE and AICC values. 

Table 4.2: A table showing the top five ranked models for the SNAr case study as identified by 

the old approach. The kinetic parameters for each reaction within the model are shown, 

as well as the SSE and AICC evaluation. 

Model 

rank 
Model kx /M-1 min-1 SSE /M AICC 

1 

4.5 + 4.6 → 4.7 + 4.10 

4.5 + 4.6 → 4.8 + 4.10 

4.7 + 4.6 → 4.9 + 4.10 

4.8 + 4.6 → 4.9 + 4.10 

0.0656 

0.0026 

0.0007 

0.0008 

0.0040 -306.27 

2 

4.5 + 4.6 → 4.7 + 4.10 

4.5 + 4.6 → 4.8 + 4.10 

4.7 + 4.6 → 4.9 + 4.10 

4.8 + 4.6 → 4.9 + 4.10 

4.5 + 4.9 → 4.7 + 4.8 

4.9 + 4.10 → 4.6 + 4.8 

0.0657 

0.0026 

0.0007 

0.0010 

0.0065 

<0.0001 

0.0039 -301.25 

3 

4.5 + 4.6 → 4.7 + 4.10 

4.5 + 4.6 → 4.8 + 4.10 

4.7 + 4.6 → 4.9 + 4.10 

4.8 + 4.8 → 4.9 + 4.5 

0.0657 

0.0027 

0.0007 

0.0174 

0.0044 -300.97 

4 

4.5 + 4.6 → 4.7 + 4.10 

4.5 + 4.6 → 4.8 + 4.10 

4.7 + 4.6 → 4.9 + 4.10 

4.8 + 4.6 → 4.9 + 4.10 

4.5 + 4.9 → 4.7 + 4.8 

0.0663 

0.0028 

0.0007 

0.0010 

0.0026 

0.0042 -300.53 

5 

4.5 + 4.6 → 4.7 + 4.10 

4.5 + 4.6 → 4.8 + 4.10 

4.7 + 4.6 → 4.9 + 4.10 

4.8 + 4.6 → 4.9 + 4.10 

0.0655 

0.0026 

0.0007 

0.0009 

0.0041 -299.46 
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4.5 + 4.9 → 4.7 + 4.7 

4.5 + 4.9 → 4.8 + 4.8 

0.0143 

0.0065 

 

New approach 

When running the new approach, all allowed combinations of the mass-

balance-allowed reactions and corresponding non-integer and zero order rate 

laws were compiled, subject to the rules described earlier in Chapter 4.2.2. This 

model generation resulted in 141,505 unique models to be evaluated by the 

approach, which incurred a 28 hour computation time (see Chapter 7.6.2 for 

details on computer specifications). 

Each of these models were ranked based on their AICC, and it was found 

that the highest ranked model was also the correct model, with kinetic 

parameters optimised to values that were very close to the literature values that 

were used to generate the data. As highlighted in the old approach section, the 

optimisation is assumed to be correct as the error in the fitted parameters is 

negligible, considering that artificial error was added to the dataset. The top five 

performing models from this new approach are shown in Table 4.3, where the 

optimised k values are shown, as well as their corresponding SSE and AICC 

values. 

Table 4.3: A table showing the top five ranked models for the SNAr case study as identified by 

the new approach. The kinetic parameters for each reaction within the model are shown, 

as well as the SSE and AICC evaluation. α denotes a variable molar dependence within 

the kinetic parameter units, depending on the rate law. 

Model 

rank 
Model kx /Mα min-1 SSE /M AICC 

1 

4.5 + 4.6 → 4.7 + 4.10 

4.5 + 4.6 → 4.8 + 4.10 

4.7 + 4.6 → 4.9 + 4.10 

4.8 + 4.6 → 4.9 + 4.10 

0.0656 

0.0026 

0.0007 

0.0008 

0.0040 -306.27 

2 

4.5 + 4.6 → 4.7 + 4.10 

4.6 + 4.7 → 4.9 + 4.10 

4.80 → 4.7 

4.7 → 4.8 

0.0680 

0.0007 

0.0501 

0.0394 

0.0042 -303.33 
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3 

4.5 + 4.6 → 4.7 + 4.10 

4.5 + 4.6 → 4.8 + 4.10 

4.7 + 4.6 → 4.9 + 4.10 

4.8 + 4.8 → 4.9 + 4.5 

0.0657 

0.0027 

0.0007 

0.0174 

0.0044 -300.97 

4 

4.5 + 4.6 → 4.7 + 4.10 

4.5 + 4.6 → 4.8 + 4.10 

4.7 + 4.6 → 4.9 + 4.10 

4.8 + 4.100.5 → 4.5 + 4.6 

0.0640 

0.0024 

0.0007 

0.0008 

0.0061 -285.21 

5 

4.5 + 4.6 → 4.7 + 4.10 

4.7 + 4.6 → 4.9 + 4.10 

4.7 → 4.8 

4.8 → 4.7 

0.0670 

0.0007 

0.0041 

0.0997 

0.0065 -282.76 

 

Discussion 

This initial simulated case study has shown that it is still possible to identify 

the correct reaction model and kinetic parameters with this new approach for a 

‘simple’ reaction system featuring a first-order dependencies on all species. The 

most-likely identified model, and corresponding SSE/AICC values, were the 

same in this instance for both the old and new approach which is to be expected 

if the new approach is functioning correctly. As shown in the old approach, there 

are models that have a greater convergence to the experimental data (and hence 

a lower SSE), but the statistical analysis correctly assigns these models an 

unfavourable AICC based on their extra (insignificant) model terms. However, as 

the initial limit of 4 terms in a model is enforced in the new approach, it can be 

determined by the user that compiling and evaluating the 5-term-models is not 

required based on the marginal possible SSE benefits. These small benefits are 

very unlikely to warrant extra terms based on AICC evaluation, as the 

convergence to experimental data is already excellent, meaning that the model 

identified is very likely to be correct. An example kinetic plot showing the fit of 

the identified model to the experimental data is shown in Figure 4.3 - this is the 

fifth simulated experiment where the starting concentrations were 1.2 M 2,4-

difluoronitrobenzene and 3 M pyrrolidine at 30 °C. 
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Figure 4.3: The fit of the identified model and kinetic parameters to the generated experimental 

data with starting concentrations of 1.2 M 2,4-difluoronitrobenzene and 3 M pyrrolidine at 

30 °C. Where: x = 2,4-difluoronitrobenzene, x = ortho-substituted product, x = para-

substituted product, x = bis-substituted product, — = 2,4-difluoronitrobenzene (ODE), — 

= ortho-substituted product (ODE), — = para-substituted product (ODE), — = bis-

substituted product. Plot only shown to 500 minutes to the show curvature of the initial 

data points. 

It has been shown that the new approach can identify the correct model 

and kinetic parameters for a multistep process with first-order dependencies on 

all species, with the same accuracy as expected from the old approach. 

Therefore, it is now possible to confidently move on to simulated case studies 

where rate laws are more complex, featuring catalytic reactions and orders that 

are non-integer or zero. 

4.3.2 Case study: Pentyne kinetics 

This simulated case study features a chemical system that reacts with a zero-

order dependence on one of the species.[241] The starting material, 4.11, reacts 

with the spirodiene, 4.12, to form the product, 4.13, and LiBr, 4.14, as shown in 

Scheme 4.3. The true rate law, however, shows a first-order dependence on the 

starting material, and a zero-order dependence on the spirodiene. Interestingly, 

this reaction order has been used as evidence for the existence of a pentyne 

species, as this order suggests an initial reaction of the starting material to form 
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a much more reactive species, leading to the zero-order dependence on the 

spirodiene. 

 

 

Scheme 4.3: The reaction of the starting material, 4.11, with the spirodiene, 4.12, to form the 

product, 4.13, and LiBr, 4.14.[241] 

4.3.2.1 Data acquisition 

The overall first-order reaction model reported by Gilbert et al.[241] was used 

to generate the ODEs shown in eqn. 4.23 - 4.26. Three isothermal simulated 

data sets were generated using these ODEs with the k value of 0.00846 min-1 at 

-78 °C, with the following initial concentrations: 

• 1 M 2-bromocyclopentenyl lithium (starting material), 4.11, 0.8 M 

spirodiene, 4.12, 0 M product, 4.13, 0 M LiBr, 4.14. 

• 1.2 M 2-bromocyclopentenyl lithium (starting material), 4.11, 1.5 M 

spirodiene, 4.12, 0 M product, 4.13, 0 M LiBr, 4.14. 

• 1 M 2-bromocyclopentenyl lithium (starting material), 4.11, 1 M 

spirodiene, 4.12, 0 M product, 4.13, 0 M LiBr, 4.14. 

𝑑[𝟒. 𝟏𝟏]

𝑑𝑡
=  −𝑘1[𝟒. 𝟏𝟏] eqn. 4.23 

𝑑[𝟒. 𝟏𝟐]

𝑑𝑡
=  −𝑘1[𝟒. 𝟏𝟏] eqn. 4.24 

𝑑[𝟒. 𝟏𝟑]

𝑑𝑡
=  𝑘1[𝟒. 𝟏𝟏] eqn. 4.25 

𝑑[𝟒. 𝟏𝟒]

𝑑𝑡
=  𝑘1[𝟒. 𝟏𝟏] eqn. 4.26 

2 % relative error was then added to these simulated data sets, then used 

as the inputted experimental data for the computational approach. These data 

sets can be found in Chapter 7.4.2. 

4.3.2.2 Results and discussion 
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From these 3 species, there are 2 mass-balance-allowed reactions that 

can be identified, shown in eqn. 4.27 and eqn. 4.28. From these two reactions, 

the corresponding rate laws were generated and all models were compiled, 

subject to the rules defined in Chapter 4.2.2 - this resulted in 30 unique models 

to be evaluated by the approach. 

4.11 + 4.12 → 4.13 + 4.14 eqn. 4.27 

4.13 + 4.14 → 4.11 + 4.12 eqn. 4.28 

 All 30 models were evaluated by the computational approach, incurring a 

computation time of around <1 minute (see Chapter 7.6.1 for details on computer 

specifications). Each of these models were ranked based on their AICC, and it 

was found that the highest ranked model was also the correct model, with kinetic 

parameters optimised to values that were very close to the generated values. 

The top five performing models are shown in Table 4.4, where the optimised k 

values are shown, as well as their corresponding SSE and AICC values. 

Table 4.4: A table showing the top five ranked models for the pentyne case study as identified 

by the new approach. The kinetic parameters for each reaction within the model are 

shown, as well as the SSE and AICC evaluation. α denotes a variable molar dependence 

within the kinetic parameter units, depending on the rate law. 

Model 

rank 
Model kx /Mα min-1 SSE /M AICC 

1 4.11 + 4.120 → 4.13 + 4.14 0.0085 0.0046 -134.903 

2 
4.11 + 4.120 → 4.13 + 4.14 

4.13 + 4.14 → 4.11 + 4.12 

0.0085 

<0.0001 
0.0046 -132.515 

3 
4.11 + 4.120 → 4.13 + 4.14 

4.13 + 4.140.5 → 4.11 + 4.12 

0.0085 

<0.0001 
0.0046 -132.515 

4 
4.11 + 4.120 → 4.13 + 4.14 

4.130 + 4.14 → 4.11 + 4.12 

0.0085 

<0.0001 
0.0046 -132.514 

5 
4.11 + 4.120 → 4.13 + 4.14 

4.13 + 4.140 → 4.11 + 4.12 

0.0085 

<0.0001 
0.0046 -132.514 

 

Interestingly, all five of these top-ranked models all have the same SSE 

values and ranks 2 - 5 all have very similar AICC evaluations. It is clear from 

these models that the primary reason that they score highly is due to the 
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presence of the true model term: 4.11 + 4.120 → 4.13 + 4.14. One extra model 

term is present that is rendered negligible, but as the algorithm is forced to fit it, 

it is fitted with a value <0.0001. In the old approach, these negligible reactions 

could be found but not repeated, whereas in the new approach, every variation 

of the rate law of a particular negligible reaction can be repeated and score highly 

according to AICC. 

 Nonetheless, the highest ranked model according to the approach is the 

true kinetic model and the corresponding k value was also identified correctly. 

This case study shows that it is possible for the approach to identify models that 

feature reactions that do not have typical species order dependencies of 1, 

therefore also that it can be used for real experimentation featuring zero or non-

integer order model terms. An example kinetic plot showing the fit of the identified 

model to the simulated experimental data is shown in Figure 4.4 - this is the first 

experiment where the starting concentrations were 1 M starting material and 0.8 

M spirodiene at -78 °C. 
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Figure 4.4: The fit of the identified model and kinetic parameters to the generated experimental 

data with starting concentrations of 1 M starting material and 0.8 M spirodiene at -78 °C. 

Where: x = starting material, x = spirodiene, x = product, — = starting material (ODE), — 

= spirodiene (ODE), — = product (ODE). 

4.3.3 Case study: Ytterbium catalysis 

The final simulated case study involves a ytterbium catalysed reaction 

with ‘non-normal’ empirical rate laws.[242] 1-Phenyl-2-trimethylsilylacetylene 

(starting material), 4.15, reacts with diphenylphosphine, 4.16, in the presence of 

a ytterbium catalyst ([Yb(η2-Ph2CNPh)(hmpa)3]), 4.17, to form the product, 4.18, 

as shown in Scheme 4.4. 

 

Scheme 4.4: The reaction of the starting material, 4.15, with diphenylphosphine, 4.16, in the 

presence of the ytterbium catalyst, 4.17, to form the product, 4.18, where [Yb]: Yb(η2-

Ph2CNPh)(hmpa)3.[242] 

4.3.3.1 Data acquisition 

The complex order dependencies for the reaction model reported by Takaki 

et al.[242] consists of 1 reaction that was used to generate the ODEs shown in 

eqn. 4.29 - 4.32. In the true empirical rate law, the order in the starting material 

is 1, the order in diphenylphosphine is 0 and the order of the ytterbium catalyst 

is 2. Four isothermal simulated data sets were generated at 25 °C using these 

ODEs, with the k value of 9.324 M2 h-1, with the following initial concentrations: 

• 2 M starting material, 4.15, 2 M diphenylphosphine, 4.16, 0.2 M ytterbium 

catalyst, 4.17, 0 M product, 4.18. 

• 1.5 M starting material, 4.15, 2 M diphenylphosphine, 4.16, 0.1 M 

ytterbium catalyst, 4.17, 0 M product, 4.18. 

• 1.4 M starting material, 4.15, 1.8 M diphenylphosphine, 4.16, 0.3 M 

ytterbium catalyst, 4.17, 0 M product, 4.18. 

• 2.2 M starting material, 4.15, 1.6 M diphenylphosphine, 4.16, 0.25 M 

ytterbium catalyst, 4.17, 0 M product, 4.18. 

𝑑[𝟒. 𝟏𝟓]

𝑑𝑡
=  −𝑘 [𝟒. 𝟏𝟓][𝟒. 𝟏𝟕]2 eqn. 4.29 
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𝑑[𝟒. 𝟏𝟔]

𝑑𝑡
=  −𝑘 [𝟒. 𝟏𝟓][𝟒. 𝟏𝟕]2 eqn. 4.30 

𝑑[𝟒. 𝟏𝟕]

𝑑𝑡
=  −2𝑘 [𝟒. 𝟏𝟓][𝟒. 𝟏𝟕]2 + 2𝑘 [𝟒. 𝟏𝟓][𝟒. 𝟏𝟕]2 eqn. 4.31 

𝑑[𝟒. 𝟏𝟖]

𝑑𝑡
=  𝑘 [𝟒. 𝟏𝟓][𝟒. 𝟏𝟕]2 eqn. 4.32 

2 % relative error was then added to these simulated data sets, then 

used as the inputted experimental data for the computational approach. These 

data sets can be found in Chapter 7.2.1. 

4.3.3.2 Results and discussion 

Based on the inputs of the molecular weights for this system, there are 

two mass-balance-allowed reactions. However, as it is known that this is a 

catalytic system, these two reactions must be facilitated by the user-defined 

ytterbium catalyst, 4.17, shown in eqn. 4.33 and 4.34. It is then the role of the 

approach to identify all combinations of allowed reactions and rate laws to 

determine which is the most likely model. 

4.15 + 4.16 
𝟒.𝟏𝟕
→   4.18 eqn. 4.33 

4.15 + 4.16 
𝟒.𝟏𝟕
→   4.18 eqn. 4.34 

After the model generation stage, 105 models were identified and 

evaluated by the computational approach, incurring a time of around 1 minute 

(see Chapter 7.6.2 for details on computer specifications). Each of these models 

were ranked based on their AICC, and it was found that the highest ranked model 

was also the correct model, with the k value optimised to a value that was very 

close to the value used for data generation. The top five performing models are 

shown in Table 4.5, where the optimised k values are shown, as well as their 

corresponding SSE and AICC values. 

Table 4.5: A table showing the top five ranked models for the ytterbium catalysis case study as 

identified by the new approach. The kinetic parameters for each reaction within the 

model are shown, as well as the SSE and AICC evaluation. α denotes a variable molar 

dependence within the kinetic parameter units, depending on the rate law. 

Model 

rank 
Model kx /Mα h-1 SSE /M AICC 

1 4.15 + 4.160  
4.172

→     4.18 9.3191 9.28 x 10-4 -241.38 
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2 

4.15 + 4.160  
4.172

→     4.18 

4.18  
4.170.5

→      4.15 + 4.16 

9.3191 

<0.0001 
9.28 x 10-4 -239.10 

3 

4.15 + 4.160  
4.172

→     4.18 

4.18  
4.171

→     4.15 + 4.16 

9.3191 

<0.0001 
9.28 x 10-4 -239.10 

4 

4.15 + 4.160  
4.172

→     4.18 

4.18  
4.172

→     4.15 + 4.16 

9.3191 

<0.0001 
9.28 x 10-4 -239.10 

5 4.15 + 4.16  
4.172

→     4.18 8.0784 1.1549 -13.35 

 

As in the previous pentyne case study, four of these top-ranked models 

all have the same SSE values and ranks 2 - 4 all have very similar AICC 

evaluations. The reasoning for this appears to be the same as previously 

discussed, where the primary reason that they score highly is due to the 

presence of the true model term: 4.15 + 4.160 
4.172

→    4.18. One extra model term 

is present in ranks 2 - 4 that the algorithm is forced to fit although it does not 

provide any significance to the model, hence it is fitted with a value <0.0001. 

Nonetheless, the highest ranked model according to the approach is the 

true kinetic model and the corresponding k value was also identified correctly. 

This case study shows not only that it is possible to identify models that feature 

catalytic species, but also that the orders of the catalytic and non-catalytic 

species can be identified. As a ‘typical’ catalytic example is more likely to be first-

order with respect to all species, the ability that the approach has shown to 

identify non-normal order dependencies in the rate law for multiple species 

inspires confidence that the approach will be successful in its use in real 

experimentation. An example kinetic plot showing the fit of the identified model 

to the simulated experimental data is shown in Figure 4.5 - this is the second 

experiment where the starting concentrations were 1.5 M starting material, 2 M 

diphenylphosphine and 0.1 M ytterbium catalyst at 22 °C. 
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Figure 4.5: The fit of the identified model and kinetic parameters to the generated experimental 

data with starting concentrations of 1.5 M starting material, 2 M diphenylphosphine and 

0.1 M ytterbium catalyst at 22 °C. Where: x = starting material, x = diphenylphosphine, x 

= product, — = starting material (ODE), — = diphenylphosphine (ODE), — = product 

(ODE). 

4.4 Conclusion 

It has been shown that the previously built computational approach to 

kinetic modelling can be adapted to catalytic systems and rate laws with non-

normal order dependencies. This new approach has been proven to work 

successfully for three simulated case studies featuring different modelling 

criteria, with sets of experimental data inputs with artificial errors. The success 

shown from these studies inspires confidence that the approach can be 

implemented with real experimental data. 

The scope of the approach has increased substantially following the 

improvements in this work and can now be used for many more chemical 

applications. However, due to the comprehensive nature of the approach, the 

computational expense has also increased as there are many more reactions 

that must be considered when building reaction models. This computational 

stress, as before, can be reduced by replacing existing computer hardware with 

more computer logical cores - this is because the code is highly parallelised and 
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the speed of the approach is directly proportional to the number of computer 

cores available. Although the approach is very powerful, this computational 

expense may still be cumbersome for desktop computers depending on the 

number of species involved in a particular chemical system. However, as time 

passes, processing technology consistently improves and there will undoubtedly 

be a time where millions of models can be evaluated at a desk in a matter of 

hours via comprehensive methodologies such as this. 

This comprehensive approach to kinetic model and parameter 

determination has been shown to be successful in simulated case studies - the 

next step is to prove the efficiency of this methodology with real experimental 

case studies. The aim of these case studies is to show that this approach can 

correctly identify models of various-complexity chemical processes, thereby 

realising the main aim of this project in developing an automated kinetic analysis 

tool with a wide scope for process development. 

Chapter 5 : Experimental applications of the new approach 

5.1 Introduction 

With the development of the new computational approach complete and 

verified with multiple simulated case studies, the viability of the approach for real 

experimental data must also be tested. Real experimental case studies are to be 

conducted to measure the ability of this new and final computational approach. 

As the scope of this new approach has been broadened to include 

catalytic reactions and species order dependencies of zero or 0.5, it is important 

to study chemical systems that may exhibit these properties to prove that the 

new approach can identify these models. It is also important that the approach 

can continue to identify more ‘simple’ models that have species order 

dependencies of 1, as well as utilise kinetic data from any means. This is 

because the kinetic motifs often cannot be determined a priori and the beneficial 

feature of this methodology is that models are identified and ranked according to 

statistical measures. This removes bias and therefore considers all rate laws for 

every possible model, meaning that the approach does not know initially if a 
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model is supposed to contain a zero order term or not, for example, and will only 

determine this after the comprehensive model evaluations. 

Experimental case studies from any reaction process (batch, flow, etc.) 

and analytical technique (HPLC, NMR, etc.) will be used in these final 

experimental verifications. These case studies will prove that the approach can 

identify models including ‘normal’, zero or 0.5 species order dependencies for 

both catalytic and non-catalytic processes. The research project aim will thereby 

be realised, by ultimately developing a powerful, automated methodology to be 

used in process development for the modelling of real chemical systems. 

5.2 Case study: SNAr kinetics 

The first reaction system explored using the new computational approach 

was the presupposed model of the reaction of 2,4,6-trichloropyrimidine (SM), 5.1, 

with ethyl 4-aminobutanoate, 5.2, to form the major 2-substituted SNAr product, 

5.3, and the minor 4-substituted SNAr product, 5.4, as shown in Scheme 5.1. As 

the ethyl 4-aminobutanoate is present in its hydrochloride salt, the hydrochloric 

acid present (and generated from subsequent SNAr reactions as 5.5) is 

neutralised by an excess of triethylamine. 

 

Scheme 5.1: The reaction of 2,4,6-trichloropyrimidine (SM), 5.1, with ethyl 4-aminobutanoate, 

5.2, to form the major 2-substituted SNAr product, 5.3, and the minor 4-substituted SNAr 

product, 5.4. 

 As the desired major product from this reaction can be further reacted to 

synthesise bioactive derivatives of pharmaceuticals,[243, 244] this initial 

transformation is of interest in the process development of these molecules. A 

collaborator in the Spring group at Cambridge University, Hikaru Seki, has a 

particular interest in these bioactive molecules for his research project and 
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wanted to maximise the synthetic yield of the 2-substituted SNAr product, 5.3, by 

obtaining kinetic understanding of the system. Therefore, all practical 

experimental work in this case study was conducted by Hikaru Seki at Cambridge 

University, then the results were forwarded to Leeds for kinetic analysis. 

Four kinetic experiments were conducted, at -25 °C, 0 °C, 25 °C and 50 

°C, with three replicate experiments at 25 °C. Each experiment was conducted 

in batch in an NMR tube within a 500 MHz NMR spectrometer, which allowed 

continuous NMR acquisition at a rate of approximately one sample per 80 

seconds. This continuous reaction monitoring generates a large data density for 

the subsequent kinetic analysis using the new computational approach, by 

monitoring the proton peaks of the individual species, shown in Figure 5.1. Full 

experimental details can be found in Chapter 7.5.1. 

 

Figure 5.1: The distinctive proton peaks, shown in red, that are monitored via NMR as time 

progresses in the SNAr case study. 

Based on the five species identified, there were six reactions that were 

calculated to be possible based on mass balance - these reactions are shown 

as eqn. 5.1 - 5.6. From these reactions, all corresponding rate laws were 

generated and all models were compiled, subject to the rules defined in Chapter 

4.2.2. This resulted in 3320 unique models to be evaluated by the approach. 

5.3 → 5.4 eqn. 5.1 

5.4 → 5.3 eqn. 5.2 

5.1 + 5.2 → 5.3 + 5.5 eqn. 5.3 

5.3 + 5.5 → 5.1 + 5.2 eqn. 5.4 

5.1 + 5.2 → 5.4 + 5.5 eqn. 5.5 

5.4 + 5.5 → 5.1 + 5.2 eqn. 5.6 

All 3320 models were evaluated by the computational approach, incurring 

a computation time of around 9 hours (see Chapter 7.6.1 for details on computer 
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specifications). Each of these models were then ranked based on their AICC 

evaluation, and it was found that the most likely representation of the system is 

the model shown in Scheme 5.1 with ‘typical’ first-order species dependencies 

in the rate laws. The approach also determined the kinetic parameters of the 

transformation to the major product: k25 °C = 0.499 ± 0.006 M-1 min-1, Ea = 44.19 

± 0.57 kJ mol-1 and to the minor product: k25 °C = 0.384 ± 0.009 M-1 min-1, Ea = 

36.57 ± 0.88 kJ mol-1. This model and the corresponding kinetic parameters 

allowed a fit to the experimental data with an average residual of less than 2.6 x 

10-4 M and is shown in Figure 5.2. The top 5 ranked models are shown in Table 

5.1, with their respective SSE error metric and AICC evaluation. 

 

Figure 5.2: Kinetic profiles for four kinetic experiments at -25 °C, 0 °C, 25 °C and 50 °C, where: 

● = starting material, ● = 2-substituted product, ● = 4-substituted product, — = starting 

material (ODE), — = 2-substituted product (ODE), — = 4-substituted product (ODE). See 

Chapter 7.5.1 for full experimental conditions and raw data. 

Table 5.1: Evaluation of the feasibility of each reaction model for the SNAr case study, where α 

is variable for each model depending on the overall model order. 

Rank Reaction Model 

Kinetic parameters 

SSE 

/103 M 
AICC k25 °C /Mα 

min-1 
Ea /kJ mol-1 

1 5.1 + 5.2 → 5.3 + 5.5 0.499 44.19 1.614 -51.91 
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5.1 + 5.2 → 5.4 + 5.5 0.384 36.57 

2 
5.1 + 5.2 → 5.3 + 5.5 

5.1 + 5.20.5 → 5.4 + 5.5 

0.407 

0.073 

40.61 

31.01 
3.723 -48.57 

3 
5.1 + 5.2 → 5.3 + 5.5 

5.10 + 5.2 → 5.4 + 5.5 

0.466 

0.017 

42.25 

27.56 
3.777 -48.51 

4 
5.1 + 5.2 → 5.3 + 5.5 

5.1 + 5.20 → 5.4 + 5.5 

0.466 

0.017 

42.25 

27.56 
3.777 -47.29 

5 
5.1 + 5.20.5 → 5.3 + 5.5 

5.1 + 5.2 → 5.4 + 5.5 

0.092 

0.298 

38.06 

32.27 
5.127 -46.64 

 

It is clear from the kinetic plots that the fit of the ODEs to the experimental 

data do not result in normally-distributed residuals. This could be for one of many 

reasons, but is most likely due to either errors in producing the correct 

concentration of amine, 5.2, or NMR integrations errors, or evaporation of solvent 

(CD3OD) into the headspace at higher temperatures. This must be considered 

by a trained chemist upon completion of the computational approach and this is 

an example showing that this methodology must be used in conjunction with 

chemical expertise to confirm the approach output. In this case, however, the 

residuals are only a small consideration and it can be observed that the model 

still fits the experimental data well, so the identified model is still valid. 

This first experimental case study has shown that the new approach can 

correctly identify the reaction model and kinetic parameters, even when 

considering a multitude of differing rate laws. In this case, it was found that each 

the rate laws featured first-order dependencies on each of the species, which is 

common in chemical processes. This kinetic information can then be used to 

optimise this process for the highest yields of the 2-substituted (major) product, 

5.3, for our collaborator’s research project which can then be used as a building 

block for bioactive materials. 

5.3 Case study: PfBr 

The next case study that was explored was a chemical system featuring 

a protection of an amino acid for further functionalisation, where alanine methyl 
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ester (Al-Me), 5.6, reacts with 9-bromo-9-phenylfluorene (PfBr), 5.7, to form the 

protected amino acid (Pf-Al-Me), 5.8, and hydrobromic acid, 5.9, as a side-

product, as shown in Scheme 5.2. The alanine methyl ester is present in its 

hydrochloride salt form, so this hydrochloric acid and the formation of 

hydrobromic acid are both neutralised by an excess of suspended potassium 

phosphate. 

 

Scheme 5.2: The reaction of alanine methyl ester (Al-Me), 5.6, with PfBr, 5.7, to form the 

protected amino acid, 5.8. Hydrobromic acid, 5.9, is also generated as a side product. 

PfBr is the reagent to introduce the 9-phenylfluorene (Pf) protecting group 

in a synthesis. Pf is a pharmaceutically relevant and bulky protecting group, that 

can be introduced as a more acid stable alternative to the more commonly used 

trityl protecting group.[245, 246] The chemical system of interest is the protection 

step in the total synthesis of (S)-eleagnine from L-alanine, as shown in Scheme 

5.3 as a retrosynthetic methodology.[247] Understanding this transformation, by 

performing kinetic analysis, would therefore accelerate process development 

when scaling up this process. 

 

Scheme 5.3: The retrosynthetic methodology of the transformation of L-alanine to (S)-

eleagnine via the Pf-protected alanine methyl ester (Pf-Al-Me).[247]  

Due to the high cost of PfBr as a starting material (£137 for 5 g),[248] PfBr 

was synthesised from cheaper materials as it was unknown how much would be 

necessary for kinetic analysis. Bromobenzene, 5.10, was initially treated with 

magnesium, then reacted with fluorenone, 5.11, to make the intermediate PfOH, 

5.12. PfOH was then isolated and reacted with hydrobromic acid to form the 

desired PfBr product, as shown in Scheme 5.4.[249] The most expensive material 
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in the synthesis of this PfBr product is fluorenone, costing £76 for 500 g, resulting 

in a much cheaper method to obtaining this desired material.[250] This reaction 

was carried out on a 40 g scale, and full experimental details can be found in 

Chapter 7.5.2.1. As there was an absence of an OH peak from the IR spectrum 

of PfBr, the PfBr material was analysed by HPLC and the purity was determined 

to be >99 %. With pure PfBr as a starting material, the kinetic case study was 

then possible to begin. 

 

Scheme 5.4: The synthetic route from cheap starting materials: bromobenzene, 5.10, and 

fluorene, 5.11, to the intermediate PfOH, 5.12, and finally the desired PfBr material, 5.8. 

Three experiments were conducted in a three-neck round bottomed flask, 

at 30 °C, 35 °C and 40 °C. Samples (0.5 mL) were extracted manually from the 

bulk reaction medium with a syringe, followed by syringing approximately 0.3 mL 

of water and shaking the syringe - this dissolves the suspended potassium 

phosphate and allows injection into the sample loop for analysis via HPLC. The 

batch setup for experimentation is shown in Figure 5.3. 
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Figure 5.3: The batch setup for experimentation in the PfBr case study, where the temperature 

probe is submerged in the reaction medium that is heated via a heater stirrer. 

After all experiments were run, the experimental data and the identified 

species were inputted into the new approach. Based on these four species, there 

were two feasible reactions calculated - these reactions are shown as eqn. 5.7 

and eqn. 5.8. From these reactions, all corresponding rate laws were generated 

and all models were compiled, subject to the rules defined in Chapter 4.2.2. This 

resulted in 30 unique models to be evaluated by the approach. 

5.6 + 5.7 → 5.8 + 5.9 eqn. 5.7 

5.8 + 5.9 → 5.6 + 5.7 eqn. 5.8 

All 30 models were evaluated by the new computational approach, 

incurring a computation time of less than 2 minutes (see Chapter 7.6.1 for details 

on computer specifications). Each of these models were then ranked based on 

their AICC evaluation, and it was found that the most likely representation of the 

system is the model shown in Scheme 5.2, but with a zero-order dependence on 

the alanine methyl ester in the rate law. This makes sense chemically as the 

bulky aromatic rings would stabilise the cation formed if the reaction were to 

proceed via a traditional SN1 mechanism; this means that the rate-determining-
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step is likely to be the loss of the bromide ion, followed by a fast reaction with the 

alanine methyl ester. The approach also determined the kinetic parameters of 

this transformation as k35 °C = 1.06 x 10-2 ± 0.01 x 10-2 min-1, Ea = 62.91 ± 0.23 

kJ mol-1. This model and the corresponding kinetic parameters allowed a fit to 

the experimental data with an average residual of 2.6 x 10-4 M and is shown in 

Figure 5.4 in a combined plot. The top 5 ranked models are shown in Table 5.2, 

with their respective SSE error metrics and AICC evaluations. 

 

Figure 5.4: Kinetic profiles for three kinetic experiments at 30 °C, 35 °C and 40 °C, where red 

plots indicate PfBr concentrations and blue plots indicate Pf-Al-Me concentrations. At 30 

°C: ■ = experimental data, — = ODE. At 35 °C: ▲ = experimental data, - - - = ODE. At 

40 °C: ● = experimental data, ······ = ODE. See Chapter 7.5.2 for full experimental 

conditions and raw data. 

Table 5.2: Evaluation of the feasibility of each reaction model for the PfBr case study, where α 

is variable for each model depending on the overall model order. 

Rank Reaction Model 

Kinetic parameters 

SSE 

/10-5 M 
AICC k35 °C /Mα min-

1 

Ea /kJ mol-

1 

1 5.60 + 5.7 → 5.8 + 5.9 0.0106 62.91 3.51 -238.15 

2 
5.60 + 5.7 → 5.8 + 5.9 

5.8 + 5.90.5 → 5.6 + 5.7 

0.0115 

0.0144 

67.09 

70.00 
2.76 -238.05 

3 
5.60 + 5.7 → 5.8 + 5.9 

5.8 + 5.90 → 5.6 + 5.7 

0.0129 

0.0034 

65.27 

70.00 
2.76 -238.04 

4 5.60 + 5.7 → 5.8 + 5.9 0.0128 65.71 2.81 -237.64 
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5.80 + 5.9 → 5.6 + 5.7 0.0057 70.00 

5 
5.60 + 5.7 → 5.8 + 5.9 

5.80.5 + 5.9 → 5.6 + 5.7 

0.0112 

0.0167 

66.06 

70.00 
2.95 -236.54 

 

Interestingly, the top 5 ranked models all feature the main ‘important’ 

model term of 5.60 + 5.7 → 5.8 + 5.9, with models 2 - 5 also featuring some 

variant of the reversible reaction. This is a similar outcome to the simulated 

pentyne kinetics case study in Chapter 4.3.2. In this experimental case, however, 

the reversible reaction should be very unlikely as the hydrobromic acid is 

removed by the excess potassium phosphate present. It can be concluded 

therefore that these extra model terms are just fitting to the experimental noise, 

especially as the magnitude of the SSE metrics are so low. 

It has been shown in this case study that the new computational approach 

can correctly identify the reaction model and kinetic parameters of a system 

where there is a zero-order dependency on one of the species. This is the first 

instance of an identified model featuring non-first-order rate laws in a real 

chemical process and further proves the broadened applicability of the new 

approach as a kinetic analysis tool. This kinetic information can then be used to 

shorten process development times and lower costs if (S)-eleagnine was 

synthesised using this route. 

5.4 Case study: Maleic acid 

The final experimental case study that was explored was the chemical 

system involving maleic acid, 5.13, reacting with methanol, 5.14, to form the 

monomethylated maleic acid ester (mono-product), 5.15, and the dimethylated 

maleic acid ester (di-product), 5.16, shown in Scheme 5.5. Each reaction also 

liberates a molecule of water, 5.17. 
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Scheme 5.5: The reaction of maleic acid, 5.13, and methanol, 5.14, to form the mono-product, 

5.15, and the di-product, 5.16. 

Our collaborators at AstraZeneca were interested in this reaction following 

the contamination of a batch of an API maleate salt with the corresponding 

monomethyl maleate salt, as this contamination could be mitigated if the impurity 

formation was well understood. Kinetic experiments were run and the findings 

were published, as it was found that the reaction forming the mono-product was 

autocatalytic.[240] In this case, the reaction was found to be catalytic with an order 

of 0.5, meaning that the overall order with respect to the maleic acid was 1.5 in 

forming the mono-product. The consecutive reaction forming the di-product is 

also catalytic with respect to the maleic acid with a 0.5 order dependence. 

Although this information is now known and reported, it took several months for 

physical-organic chemists at AstraZeneca to decipher this reaction model as this 

model is not immediately intuitive. Therefore, this case study was run to 

retrospectively show the efficiency of this approach in elucidating non-intuitive 

reaction models, and how this methodology can serve as a viable substitute for 

many hours spent on a project by experts that could be working on other aspects 

of process development.  

All experimental data was obtained from our collaborators at AstraZeneca 

and was collected using batch experimentation and 1H NMR sampling. Five 

experiments were conducted at differing starting concentrations and 

temperatures in the range of 40 - 60 °C. This experimental data was inputted into 

the computational approach as well as the identified species. Based on these 

five species, there were six feasible reactions identified - these reactions are 

shown as eqn. 5.9 - 5.14: 

5.13 + 5.14 → 5.15 + 5.17 eqn. 5.9 

5.15 + 5.17 → 5.13 + 5.14 eqn. 5.10 

5.15 + 5.14 → 5.16 + 5.17 eqn. 5.11 

5.16 + 5.17 → 5.15 + 5.14 eqn. 5.12 

5.15 + 5.15 → 5.13 + 5.16 eqn. 5.13 

5.13 + 5.16 → 5.15 + 5.15 eqn. 5.14 

As the experiments were ran with methanol as a solvent, this exhibits an 

effective methanol concentration of ~24 M, which is far greater than the maleic 
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acid concentration, that had a maximum concentration of 0.8 M. As the methanol 

is in such a high concentration, its concentration remains effectively unchanged 

throughout the reaction, meaning that the rate law would approximate pseudo-

first-order kinetics. Therefore, after all rate laws were compiled using these 

mass-balance-allowed reactions, all rate laws pertaining to non-zero-order with 

respect to methanol concentration were removed. As the methanol concentration 

would be effectively unchanged, it would be very difficult to differentiate between 

models with differing order dependencies on the methanol - this would likely lead 

to many models tied for ‘most likely’ with exactly equivalent SSE values. 

After the subsequent rate laws were compiled, the models were 

generated, subject to the rules defined in Chapter 4.2.2 and with the maleic acid 

defined as a catalyst. This resulted in 5086 unique models to be evaluated by 

the approach, which incurred a computation time around 17 hours (see Chapter 

7.6.1 for details on computer specifications). Each of these models were then 

ranked based on their AICC evaluation, and it was found that the most likely 

representation of the system is the reaction model shown in Scheme 5.5, but 

each step is catalysed by maleic acid with a species order dependence of 0.5 - 

these are the same findings that our collaborators made during their kinetic 

analysis. The approach also determined the kinetic parameters of this 

transformation to be: kmono 50 °C = 3.85 x 10-3 ± 0.01 x 10-3 M-0.5 min-1, Ea = 72.61 

± 0.12 kJ mol-1 and kdi 50 °C = 4.66 x 10-4 ± 0.01 x 10-4 M-0.5 min-1, Ea = 69.74 ± 

0.10 kJ mol-1. These parameters were again very similar to those obtained by 

our collaborators, although our collaborators reported the kinetic parameters as 

Arrhenius constants and activation energies. This model and the corresponding 

kinetic parameters allowed a fit to the experimental data with an average residual 

of 1.1 x 10-3 M and two experimental fittings at 50 °C (with initial concentrations 

of 0.8 M and 0.4 M) are shown in Figure 5.5. The top 5 ranked models are shown 

in Table 5.3, with their respective SSE error metrics and AICC evaluations. 
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Figure 5.5: Kinetic profiles for two kinetic experiments at 50 °C, with the initial concentration of 

maleic acid at 0.4 M and 0.8 M. At 0.4 M: ● = maleic acid, — = maleic acid (ODE), ■ = 

mono-product, — = mono-product (ODE), ▲ = di-product, — = di-product (ODE). At 0.8 

M: ○ = maleic acid, - - - = maleic acid (ODE), □ = mono-product, - - - = mono-product 

(ODE), △ = di-product, - - - = di-product (ODE). See Chapter 7.5.3 for full experimental 

conditions and raw data. 

Table 5.3: Evaluation of the feasibility of each reaction model for the maleic acid case study, 

where α is variable for each model depending on the overall model order. 

Rank Reaction Model 

Kinetic parameters 

SSE 

/10-2 M 
AICC k50 °C /10-3 Mα 

min-1 
Ea /kJ mol-1 

1 

5.131.5 + 5.140 → 5.15 

+ 5.130.5 + 5.17 

5.130.5 + 5.15 + 5.140 

→ 5.16 + 5.130.5
 + 5.17 

3.85 

0.47 

72.61 

69.74 
0.28 -49.68 

2 

5.131.5 + 5.140 → 5.15 

+ 5.130.5 + 5.17 

5.13 + 5.152 → 5.132 + 

5.16 

4.08 

1.92 

78.32 

79.77 
0.33 -49.08 

3 

5.131.5 + 5.140 → 5.15 

+ 5.130.5 + 5.17 

5.13 + 5.15 + 5.140 → 

5.16 + 5.13 + 5.17 

3.91 

1.03 

74.19 

79.95 
0.33 -49.02 
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4 

5.131.5 + 5.140 → 5.15 

+ 5.130.5 + 5.17 

5.130.5 + 5.152 → 

5.131.5 + 5.16 

3.97 

0.76 

76.52 

73.06 
0.42 -48.06 

5 

5.132 + 5.140 → 5.15 + 

5.13 + 5.17 

5.13 + 5.15 + 5.140 → 

5.16 + 5.13 + 5.17 

5.60 

0.78 

79.98 

79.36 
0.53 -47.15 

 

As in previous case studies, the top ranked models all feature the main 

‘important’ model term that describes the convergence to experimental data in 

the best way, with models 1 - 4 featuring this term: 5.131.5 + 5.140 → 5.15 + 

5.130.5 + 5.17. This is because the SSE metric is a measure of the total error in 

the fit to the data and as this model term features the transformation of 5.13 to 

5.15, which are the species present in the highest concentrations, this model 

term therefore has the highest impact on minimising the SSE. 

It has been shown in this case study that the new computational approach 

can correctly identify the reaction model and kinetic parameters of a real 

chemical system where there are both catalytic species and species with non-

integer order dependencies. This is the first instance of an identified model 

featuring a catalytic species and non-integer-order rate laws using real 

experimental data. As the model was already identified by our collaborators, this 

methodology has corroborated their findings and shown that process 

understanding can be accelerated using this approach. This approach 

automatically identified the correct reaction model in ~17 hours, whereas our 

collaborators using more traditional ‘trial and error’ approaches arrived at the 

correct model in months. Retrospectively, this would have allowed faster 

implementation of measures to reduce the amount of monomethyl maleate salt 

impurity in their API maleate salt, thereby proceeding with process development 

and cutting costs. 

5.5 Conclusion 
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It has been shown that using this new computational approach, total 

process understanding can be automatically achieved without the need for high-

level chemical intuition. The widened scope of this new approach has been 

proven to be effective in three experimental case studies, each with differing rate 

laws and kinetic structural motifs. The approach has been proven to be effective 

and applicable for ‘normal’ kinetic models where each species has a first-order 

dependence, for zero-order and non-integer rate laws and for catalytic species 

of variable integer- and non-integer-order. 

It has also been shown from these case studies that using this 

methodology can greatly accelerate process development and reduce the 

workload of kinetic analysis for the physical-organic chemists. After 

experimentation, all kinetic analysis can be automated whilst experts focus on 

other aspects of process development. Then, after the computational approach 

has finished running, they can work in conjunction with the approach to identify 

which models are the most likely to be both statistically and scientifically correct. 

Chapter 6 : Conclusion & future work 

The project aim, to develop and advance an automated methodology to 

kinetic model and parameter determination, has been answered in the thesis 

chapters herein. The computational approach should be used in conjunction with 

experts to automate the comprehensive kinetic analysis that is otherwise not 

feasible using traditional means. The approach takes experimental data and the 

identified species, then identifies every possible mass-balance-allowed 

transformation between these species. Each of these reactions are then 

compiled into every possible unique reaction model, with each feasible 

corresponding rate law. These models are then evaluated based on their fit to 

experimental data, by combining the use of ordinary differential equation (ODE) 

solvers and optimisation algorithms. The models are then statistically ranked 

based on their convergence to experimental data and the number of model terms 

in the model, thereby identifying the most likely model and its corresponding 

kinetic parameters. 
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The original structure of this comprehensive methodology was originally 

reported by Tsu et al.,[173] which was then replicated, improved and utilised for 

real experimentation in Chapters 2 - 3. The approach was used in tandem with 

an automated flow reactor platform, by exploiting flow rate manipulations to 

obtain full reaction profiles followed by implementation of the approach. The 

methodology was then further improved, and the scope was widened in Chapter 

4, as catalytic systems and differing-/non-integer order species dependencies in 

the rate laws were also explored. This improved methodology was then proven 

to be effective in real experimental systems in Chapter 5, as batch 

experimentation ran at Leeds and by collaborators showed the wide applicability 

of the approach to different types of reactions. This approach can be used as a 

tool for process development by anyone, as expert chemical intuition is removed 

from the kinetic analysis. Therefore, the project aim has been answered in the 

work described herein, as any chemist can use this approach and interpret the 

output in order to obtain total process understanding. 

Further work on the use and development of this approach for metal-

catalysed processes would be beneficial. Metal-catalysed processes are very 

important in industry, but catalytic cycles can be complex meaning that it is not 

immediately obvious how to automate a tool to explore these potential models. 

In some cases it may be sufficient to describe a reaction based on empirical rate 

laws and this can currently be implemented using the approach developed. 

However, another research project on the development of a tool to identify these 

kinetic models and catalytic cycles may be warranted. As a suggestion, this could 

be performed by inputting many known catalytic cycles into a training set, then 

using machine learning techniques to build a neural network to identify trends in 

experimental data to attribute particular catalytic cycles to chemical processes. 

Chapter 7 : Appendix 

7.1 Chapter 1 

No appendix data for Chapter 1. 

7.2 Chapter 2 
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7.2.1 Generated data set for case study: benzoic acid alkylation 

Experiment 1 

Time /s 2.1 /M 2.2 /M 2.3 /M 

0 0.1 0.8 0 

4.75 0.081361 0.060964 0.017126 

10.24 0.069511 0.04901 0.031805 

20.15 0.054394 0.03336 0.044477 

29.5 0.044695 0.027749 0.051252 

43.2 0.038039 0.019903 0.062653 

60 0.032285 0.013536 0.065719 

 

Experiment 2 

Time /s 2.1 /M 2.2 /M 2.3 /M 

0 0.1 0.11 0 

4.68 0.07631 0.084741 0.023482 

10.27 0.057707 0.069104 0.040456 

20 0.04138 0.054662 0.056759 

30.2 0.034101 0.04059 0.067659 

47.6 0.023686 0.031161 0.075772 

60 0.018377 0.027305 0.083761 

 

Experiment 3 

Time /s 2.1 /M 2.2 /M 2.3 /M 

0 1 0.15 0 

5 0.069767 0.121755 0.032513 

10.5 0.047199 0.098611 0.05277 

21.63 0.027758 0.077627 0.072909 

30.54 0.019626 0.069013 0.079639 

45.78 0.011357 0.059865 0.091724 
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60 0.006574 0.05691 0.093444 

 

7.2.2 Generated data set for case study: nitrile hydrolysis 

Experiment 1, 60 °C 

Time /s 2.5 /M 2.7 /M 2.8 /M 

0 0.8 0 0 

5.235363 0.814005 0.01713 1.00E-06 

32.47861 0.67236 0.106334 3.39E-05 

67.19836 0.634071 0.199701 0.000124 

145.6155 0.463323 0.34173 0.000516 

289.9323 0.27438 0.528037 0.001536 

368.7175 0.220788 0.551639 0.00212 

486.8495 0.162216 0.630518 0.003131 

600 0.124203 0.705371 0.004112 

 

Experiment 2, 70 °C 

Time /s 2.5 /M 2.7 /M 2.8 /M 

0 0.8 0 0 

6.133417 0.761239 0.049487 6.83E-06 

26.89 0.588801 0.199668 1.15E-04 

68.70925 0.426543 0.363734 0.000585 

150.1538 0.21105 0.573179 0.00192 

297.041 0.079934 0.705184 0.004502 

356.4911 0.05351 0.757795 0.005854 

486.7485 0.024103 0.789235 0.008408 

600 0.013094 0.752509 0.010127 

 

Experiment 3, 80 °C 

Time /s 2.5 /M 2.7 /M 2.8 /M 
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0 1 0 0 

5.817383 0.852929 0.15263 4.28E-05 

24.71834 0.568389 0.476974 5.89E-04 

71.4048 0.218624 0.778816 0.002633 

154.3583 0.060192 0.89969 0.006685 

303.8829 0.006754 0.944201 0.014173 

372.0244 0.002737 0.9556 0.01819 

476.5104 0.000608 1.009417 0.023157 

600 0.000113 0.9467 0.028902 

 

Experiment 4, 90 °C 

Time /s 2.5 /M 2.7 /M 2.8 /M 

0 1 0 0 

5.910759 0.711158 0.281532 1.72E-04 

24.20962 0.30002 0.70196 1.71E-03 

68.78985 0.060896 0.961462 0.006075 

142.5421 0.005202 1.023471 0.013823 

288.1599 5.55E-05 0.935542 0.027497 

364.4764 5.21E-06 0.970668 0.036328 

478.0807 1.43E-07 0.95015 0.045819 

600 1.79E-07 0.89561 0.059331 

7.2.3 Generated data set for the case study: SNAr kinetics 

Experiment 1 

Time 2.10 /M 2.12 /M 2.13 /M 2.14 /M 

0 1 0 0 0 

0.114724 0.916317 0.078593 0.018182 2.49E-06 

1.03049 0.464119 0.448791 0.104213 0.000125 

2.141533 0.226584 0.624128 0.146157 0.000376 

3.643057 0.102715 0.737636 0.171082 0.000744 
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7.743801 0.012971 0.788209 0.187458 0.001768 

12.16477 0.001476 0.805589 0.18666 0.002965 

44.03067 0 0.816998 0.186517 0.010796 

107.2065 0 0.801824 0.178389 0.026607 

255.1342 0 0.78187 0.172065 0.061291 

435.1342 0 0.744149 0.156488 0.102055 

600 0 0.702123 0.148841 0.135997 

 

Experiment 2 

Time 2.10 /M 2.12 /M 2.13 /M 2.14 /M 

0 1.2 0 0 0 

0.088864 1.073662 0.091451 0.0213 2.94E-06 

0.254455 0.913278 0.236597 0.053222 2.17E-05 

1.152788 0.407456 0.638051 0.147144 0.000266 

3.171611 0.093893 0.900254 0.2064 0.001032 

9.39048 0.001601 0.959144 0.228044 0.003623 

40.41694 0 0.97195 0.21939 0.016209 

195.366 0 0.911133 0.206891 0.075681 

311.2192 0 0.891022 0.190707 0.118451 

431.2192 0 0.869047 0.184739 0.15486 

491.2192 0 0.861757 0.175374 0.176878 

600 0 0.839806 0.165531 0.209888 

 

Experiment 3 

Time 2.10 /M 2.12 /M 2.13 /M 2.14 /M 

0 0.9 0 0 0 

0.091037 0.797548 0.079495 0.018563 3.13E-06 

0.259823 0.653654 0.198581 0.046012 2.19E-05 

1.158987 0.239387 0.538734 0.122398 0.000279 
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4.175397 0.013188 0.712848 0.169522 0.001555 

6.793661 0.001174 0.728233 0.166388 0.002729 

9.757783 0 0.717645 0.170752 0.003931 

44.49079 0 0.719684 0.164371 0.019044 

195.6282 0 0.666457 0.14927 0.080022 

315.6282 0 0.644589 0.131672 0.126933 

495.6282 0 0.600784 0.117343 0.185606 

600 0 0.578163 0.107537 0.221849 

 

7.3 Chapter 3 

7.3.1 Phenyl acetate 

7.3.1.1 Preparation of feed solutions 

Three feeds were used for this work, and desired reservoir solutions were 

prepared by dissolving the desired reagents in acetonitrile under stirring at 

ambient conditions. The first feed consisted of phenol (13.2 mL, 0.15 mol, 0.5 

mol dm-3) and biphenyl (1.15 g, 7.5 mmol, 0.025 mol dm-3) in acetonitrile (300 

mL); the second feed contained acetyl chloride (22.5 mL, 0.32 mol, 1.05 mol dm-

3); the third feed was a 1:1 mixture of acetonitrile and water for dilution. 

7.3.1.2 Flow ramp experiments 

Linear gradient flow ramps allowed the generation of a complete reaction 

profile from a single transient experiment. To obtain transient data, each of the 

three pumps were initially set at the maximum flow rate to be investigated: 1.75 

mL min-1. Steady-state was established in the 3.5 mL reactor, and the flow rate 

for each pump decreased at a constant rate of 0.0181 mL min-1 for 92 minutes. 

Samples of reactor effluent were injected for HPLC analysis at 2 minute intervals, 

thus achieving a large data density. The reactor setup schematic is shown in 

Figure 7.3.1. 
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Figure 7.3.1: The flow reactor setup for the phenyl acetate case study experiments. 

7.3.1.3 HPLC Analysis 

All HPLC analysis was conducted using an Agilent 1100 series HPLC 

instrument fitted with a Sigma Ascentis Express C18 reverse phase column (5cm 

x 4.6mm, 2.7 µm). Biphenyl was used as an internal standard. The column 

temperature was 70 °C and the HPLC method is shown: 

Time /min 
%A (water, 0.1 % 

TFA) 

%B (acetonitrile, 

0.1 % TFA) 
Flow rate /mL min-1 

0.00 50 50 2 

1.50 20 80 2 

1.51 50 50 2 

 

An example HPLC chromatogram during a kinetic experiment is shown in 

Figure 7.3.2: 
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Figure 7.3.2: An example HPLC chromatogram in the phenyl acetate case study at 254 nm. 

7.3.1.4 Validation with steady-state measurements 

Steady-state measurements were taken at: 1, 3, 5, 7, 9, 11, 13 and 15 

minutes, at both 65 °C and 75 °C. Using the identified most likely reaction model 

from the flow ramps, the k values for the steady-state experiments were found to 

be: kSS-65 °C = 4.72 x 10-3 ± 0.01 x 10-3 M-1 s-1; kSS-75 °C = 9.29 x 10-3 ± 0.03 x 10-3 

M-1 s-1. These k values give the steady-state kinetic parameters as: kSS-65 °C = 

4.72 x 10-3 ± 0.01 x 10-3 M-1 s-1, Ea-SS = 66.3 ± 0.5 kJ mol-1 which are very 

comparable to the flow ramp evaluation of the kinetic parameters: kR-65 °C = 

0.0052 ± 0.0002 M-1 s-1, Ea-R = 69.3 ± 7.8 kJ mol-1. As the steady-state 

measurements were taken without a dilution pump, the concentrations are 

different to that of the ramps, hence the steady-state time-series concentration 

data was normalised to match the concentrations from the ramps to show the 

agreement in their nature in Figure 3.11. 

7.3.1.5 Raw data 

Flow ramp experiments 

Flow ramp 

measurements 
65 °C 75 °C 

τ /min 3.8 /M 3.10 /M 3.8 /M 3.10 /M 

1.02 0.1493 0.0072 0.1346 0.0262 

1.04 0.1461 0.0095 0.1297 0.0269 

1.06 0.1436 0.0104 0.1284 0.0260 

1.08 0.1459 0.0119 0.1300 0.0262 

1.11 0.1433 0.0121 0.1268 0.0287 

1.14 0.1394 0.0128 0.1244 0.0304 

1.16 0.1398 0.0135 0.1251 0.0310 

1.19 0.1428 0.0144 0.1200 0.0322 

1.22 0.1410 0.0150 0.1176 0.0340 

1.25 0.1397 0.0142 0.1249 0.0304 

1.29 0.1358 0.0140 0.1204 0.0334 

1.32 0.1388 0.0168 0.1188 0.0369 
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1.36 0.1382 0.0166 0.1190 0.0405 

1.40 0.1365 0.0170 0.1204 0.0315 

1.44 0.1358 0.0182 0.1174 0.0408 

1.49 0.1324 0.0173 0.1142 0.0392 

1.53 0.1338 0.0188 0.1170 0.0383 

1.58 0.1360 0.0194 0.1148 0.0395 

1.64 0.1334 0.0204 0.1134 0.0426 

1.70 0.1320 0.0213 0.1132 0.0406 

1.76 0.1333 0.0223 0.1113 0.0430 

1.82 0.1315 0.0232 0.1121 0.0456 

1.89 0.1319 0.0220 0.1095 0.0445 

1.97 0.1278 0.0228 0.1029 0.0523 

2.05 0.1285 0.0260 0.1072 0.0501 

2.14 0.1280 0.0334 0.1021 0.0554 

2.24 0.1267 0.0287 0.1065 0.0524 

2.35 0.1248 0.0305 0.0996 0.0603 

2.47 0.1253 0.0309 0.0984 0.0566 

2.60 0.1214 0.0338 0.0974 0.0575 

2.74 0.1217 0.0297 0.0914 0.0661 

2.90 0.1195 0.0360 0.0914 0.0620 

3.08 0.1196 0.0379 0.0900 0.0654 

3.28 0.1162 0.0408 0.0830 0.0762 

3.51 0.1111 0.0444 0.0790 0.0774 

3.77 0.1114 0.0452 0.0848 0.0739 

4.06 0.1017 0.0527 0.0737 0.0722 

4.41 0.1033 0.0536 0.0705 0.0843 

4.81 0.0986 0.0559 0.0618 0.0981 

5.28 0.0955 0.0598 0.0564 0.0962 

5.83 0.0908 0.0678 0.0599 0.0985 

6.49 0.0807 0.0704 0.0576 0.1039 
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7.29 0.0781 0.0770 0.0488 0.1150 

8.24 0.0705 0.0835 0.0421 0.1160 

9.40 0.0662 0.0921 0.0360 0.1223 

10.79 0.0587 0.0981 0.0249 0.1358 

 

Steady state experiments 

Steady-state 

measurements 
65 °C 75 °C 

τ /min 3.8 /M 3.10 /M 3.8 /M 3.10 /M 

1.02 0.1771 0.0177 0.1591 0.0387 

3.08 0.1461 0.0470 0.1183 0.0824 

4.81 0.1214 0.0736 0.0858 0.1123 

6.49 0.1050 0.0940 0.0625 0.1370 

9.00 0.0844 0.1155 0.0419 0.1567 

11.01 0.0717 0.1263 0.0297 0.1715 

13.01 0.0559 0.1384 0.0218 0.1822 

15.02 0.0512 0.1488 0.0177 0.1886 

 

Normalised steady state experiments 

Steady-state 

measurements 

(normalised) 

65 °C 75 °C 

τ /min 3.8 /M 3.10 /M 3.8 /M 3.10 /M 

1.02 0.1417 0.0142 0.1273 0.0310 

3.08 0.1169 0.0377 0.0947 0.0660 

4.81 0.0971 0.0590 0.0686 0.0898 

6.49 0.0840 0.0753 0.0500 0.1096 

9.00 0.0675 0.0926 0.0335 0.1253 

11.01 0.0573 0.1012 0.0238 0.1372 
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13.01 0.0447 0.1109 0.0174 0.1458 

15.02 0.0409 0.1192 0.0142 0.1509 

 

7.3.2 Paracetamol 

7.3.2.1 Preparation of feed solutions 

For the work at the temperature of 30 °C, two feeds were used, and 

desired reservoir solutions were prepared by dissolving the desired reagents in 

acetonitrile under stirring at ambient conditions. The first feed consisted of 4-

aminophenol (0.58 mL, 6 mmol, 0.02 mol dm-3) and biphenyl (1.15 g, 7.5 mmol, 

0.025 mol dm-3) in acetonitrile (300 mL); the second feed contained acetic 

anhydride (0.85 mL, 9 mmol, 0.03 mol dm-3) in acetonitrile (300 mL). 

For the work at the temperature of 60 °C, two feeds were used, and 

desired reservoir solutions were prepared by dissolving the desired reagents in 

acetonitrile under stirring at ambient conditions. The first feed consisted of 4-

aminophenol (0.44 mL, 4.5 mmol, 0.015 mol dm-3) and biphenyl (1.15 g, 7.5 

mmol, 0.025 mol dm-3) in acetonitrile (300 mL); the second feed contained acetic 

anhydride (0.85 mL, 9 mmol, 0.03 mol dm-3) in acetonitrile (300 mL). 

For the work at the temperature of 160 °C, two feeds were used, and 

desired reservoir solutions were prepared by dissolving the desired reagents in 

acetonitrile under stirring at ambient conditions. The first feed consisted of 4-

aminophenol (1.01 mL, 10.5 mmol, 0.035 mol dm-3) and biphenyl (1.15 g, 7.5 

mmol, 0.025 mol dm-3) in acetonitrile (300 mL); the second feed contained acetic 

anhydride (2.98 mL, 31.5 mmol, 0.105 mol dm-3) in acetonitrile (300 mL). 

For the work at the temperature of 180 °C, two feeds were used, and 

desired reservoir solutions were prepared by dissolving the desired reagents in 

acetonitrile under stirring at ambient conditions. The first feed consisted of 4-

aminophenol (2.61 mL, 27 mmol, 0.09 mol dm-3) and biphenyl (1.15 g, 7.5 mmol, 

0.025 mol dm-3) in acetonitrile (300 mL); the second feed contained acetic 

anhydride (5.33 mL, 56.4 mmol, 0.19 mol dm-3) in acetonitrile (300 mL). 

7.3.2.2 Flow ramp experiments 

For the work at the temperature of 30 °C, a 0.25 mL reactor was used. 

For the work at the temperature of 60 °C, a 0.5 mL reactor was used. For the 
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work at the temperatures of 160 °C and 180 °C, a 3.5 mL reactor was used. 

Linear gradient flow ramps allowed the generation of complete reaction profiles 

from a single transient experiment. To obtain transient data, each of the two 

pumps were initially set at the maximum flow rate to be investigated: 1.75 mL 

min-1. Steady-state was established and the flow rate for each pump decreased 

at a constant rate of 0.0181 mL min-1 for 92 minutes. Samples of reactor effluent 

were injected for HPLC analysis at 2 minute intervals, thus achieving a large data 

density. The reactor setups for each of these 4 reactions are shown in Figures 

7.3.3 - 7.3.6. For the higher temperature reactions, 160 °C and 180 °C, 4-

aminophenol is used and assumed to react instantaneously to form paracetamol, 

based on the kinetics observed at lower temperatures. 

 

Figure 7.3.3: The reactor setup for the paracetamol flow ramp experiment at 30 °C. 
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Figure 7.3.4: The reactor setup for the paracetamol flow ramp experiment at 60 °C. 

 

Figure 7.3.5: The reactor setup for the paracetamol flow ramp experiment at 160 °C. 

 

Figure 7.3.6: The reactor setup for the paracetamol flow ramp experiment at 180 °C. 

7.3.2.3 HPLC analysis 

All HPLC analysis was conducted using an Agilent 1100 series HPLC 

instrument fitted with a Sigma Ascentis Express C18 reverse phase column (5cm 

x 4.6mm, 2.7 µm). Biphenyl was used as an internal standard. The column 

temperature was 70 °C and the HPLC method is shown: 

Time /min 
%A (water, 0.1 % 

TFA) 

%B (acetonitrile, 

0.1 % TFA) 
Flow rate /mL min-1 

0.00 50 50 2 

1.50 20 80 2 

1.51 50 50 2 

 

An example HPLC chromatogram showing the separation and analysis of 

all components at once - these species were each added to the same solution 

for method development. 



181 
 

 

Figure 7.3.7: An example HPLC chromatogram from the paracetamol case study, showing the 

separation of all reaction components at 254 nm. 

 

7.3.2.4 Raw data 

Flow ramp experiment 1, 30 °C 

τ /s 3.12 /M 3.14 /M 3.15 /M 

4.28 0.00698 0.00267 0 

4.37 0.00722 0.00266 0 

4.47 0.00766 0.00284 0 

4.57 0.00716 0.00287 0 

4.67 0.00688 0.00278 0 

4.78 0.00749 0.00306 0 

4.89 0.00717 0.00299 0 

5.01 0.00715 0.00317 0 

5.13 0.00685 0.00273 0 

5.26 0.00727 0.00320 0 

5.40 0.00622 0.00296 0 

5.55 0.00635 0.00337 0 

5.70 0.00643 0.00374 0 

5.86 0.00639 0.00446 0 

6.03 0.00623 0.00401 0 
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6.21 0.00643 0.00391 0 

6.40 0.00600 0.00385 0 

6.45 0.00654 0.00378 0 

6.83 0.00613 0.00368 0 

7.06 0.00519 0.00376 0 

7.31 0.00592 0.00455 0 

7.58 0.00585 0.00481 0 

7.87 0.00554 0.00410 0 

8.18 0.00564 0.00432 0 

8.51 0.00503 0.00429 0 

8.88 0.00568 0.00493 0 

9.27 0.00441 0.00444 0 

9.71 0.00444 0.00506 0 

10.19 0.00416 0.00513 0 

10.71 0.00446 0.00556 0 

11.29 0.00413 0.00575 0 

11.94 0.00440 0.00546 0 

12.67 0.00483 0.00566 0 

13.49 0.00452 0.00564 0 

14.43 0.00353 0.00601 0 

15.50 0.00276 0.00588 0 

16.75 0.00370 0.00654 0 

18.20 0.00325 0.00720 0 

19.94 0.00229 0.00676 0 

22.02 0.00214 0.00686 0 

24.59 0.00239 0.00770 0 

27.81 0.00178 0.00878 0 

31.97 0.00221 0.00826 0 

39.00 0.00171 0.00848 0 

45.18 0.00145 0.00871 0 
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Flow ramp experiment 2, 60 °C 

τ /s 3.12 /M 3.14 /M 3.15 /M 

8.75 0.003048 0.004234 0 

8.94 0.003702 0.003846 0 

9.13 0.003852 0.003772 0 

9.55 0.003402 0.003918 0 

9.78 0.003071 0.003860 0 

10.02 0.002944 0.004318 0 

10.27 0.003195 0.004243 0 

10.53 0.003084 0.004111 0 

10.80 0.003046 0.004262 0 

11.09 0.003112 0.004330 0 

11.40 0.002925 0.004253 0 

11.72 0.002919 0.004464 0 

12.06 0.002921 0.004562 0 

12.43 0.002741 0.004796 0 

12.81 0.002612 0.004906 0 

12.90 0.002480 0.004399 0 

13.66 0.002481 0.004597 0 

14.12 0.002545 0.004952 0 

14.62 0.002325 0.004951 0 

15.16 0.002416 0.004964 0 

15.73 0.002407 0.005149 0 

16.35 0.002401 0.005027 0 

17.02 0.002710 0.004966 0 

17.75 0.002157 0.005196 0 

18.55 0.002382 0.005121 0 

19.42 0.002037 0.005228 0 
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20.37 0.002221 0.005387 0 

21.42 0.001760 0.005411 0 

22.59 0.001446 0.005728 0 

23.89 0.001541 0.005809 0 

25.34 0.001507 0.005924 0 

26.99 0.001471 0.005553 0 

28.86 0.001147 0.005686 0 

31.00 0.001304 0.006117 0 

33.49 0.001168 0.005719 0 

36.41 0.001018 0.006181 0 

39.87 0.000916 0.006444 0 

44.05 0.000976 0.006104 0 

49.18 0.001025 0.006840 0 

 

Flow ramp experiment 3, 160 °C 

τ /min 3.12 /M 3.14 /M 3.15 /M 

1.25 0 0.01766 0.00056 

1.29 0 0.01737 0.00054 

1.32 0 0.01786 0.00038 

1.36 0 0.01789 0.00042 

1.40 0 0.01722 0.00061 

1.44 0 0.01738 0.00055 

1.49 0 0.01779 0.00059 

1.53 0 0.01807 0.00068 

1.58 0 0.01794 0.00064 

1.64 0 0.01722 0.00067 

1.70 0 0.01734 0.00072 

1.76 0 0.01792 0.00077 
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1.82 0 0.01738 0.00076 

1.89 0 0.01755 0.00081 

1.97 0 0.01738 0.00074 

2.05 0 0.01785 0.00102 

2.14 0 0.01762 0.00086 

2.24 0 0.01801 0.00105 

2.35 0 0.01753 0.00111 

2.47 0 0.01793 0.00102 

2.60 0 0.01763 0.00123 

2.74 0 0.01672 0.00118 

3.08 0 0.01736 0.00124 

3.28 0 0.01728 0.00160 

3.51 0 0.01635 0.00153 

3.77 0 0.01696 0.00174 

4.06 0 0.01670 0.00199 

4.41 0 0.01536 0.00187 

4.81 0 0.01590 0.00222 

5.28 0 0.01614 0.00263 

5.83 0 0.01482 0.00258 

6.49 0 0.01454 0.00317 

7.29 0 0.01474 0.00331 

8.24 0 0.01407 0.00355 

9.40 0 0.01315 0.00386 

10.79 0 0.01292 0.00412 

 

Flow ramp experiment 4, 180 °C 

τ /min 3.12 /M 3.14 /M 3.15 /M 

1.04 0 0.03703 0.00456 
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1.06 0 0.03829 0.00519 

1.08 0 0.03746 0.00652 

1.11 0 0.03910 0.00557 

1.14 0 0.03812 0.00656 

1.16 0 0.03894 0.00592 

1.19 0 0.03622 0.00877 

1.22 0 0.03941 0.00625 

1.25 0 0.03733 0.00754 

1.29 0 0.03798 0.00713 

1.32 0 0.03861 0.00717 

1.36 0 0.03606 0.00930 

1.40 0 0.03615 0.00890 

1.44 0 0.03655 0.00870 

1.49 0 0.03584 0.00854 

1.53 0 0.03765 0.00893 

1.58 0 0.03480 0.01017 

1.64 0 0.03459 0.01078 

1.70 0 0.03522 0.01035 

1.76 0 0.03357 0.01114 

1.82 0 0.03407 0.01127 

1.89 0 0.03598 0.00927 

1.97 0 0.03491 0.00963 

2.05 0 0.03546 0.01197 

2.14 0 0.03307 0.01152 

2.24 0 0.03586 0.01004 

2.35 0 0.03600 0.01103 

2.47 0 0.03364 0.01246 

2.60 0 0.03717 0.00943 
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2.74 0 0.03256 0.01202 

2.90 0 0.03278 0.01151 

3.08 0 0.03298 0.01160 

3.28 0 0.03304 0.01311 

3.51 0 0.03179 0.01295 

3.77 0 0.03002 0.01227 

4.06 0 0.03024 0.01543 

4.41 0 0.03117 0.01338 

4.81 0 0.03076 0.01426 

5.28 0 0.02431 0.01748 

5.83 0 0.02326 0.01784 

6.49 0 0.02665 0.01973 

7.29 0 0.02265 0.01803 

8.24 0 0.01960 0.02426 

9.40 0 0.01780 0.02347 

10.79 0 0.01594 0.02903 

 

7.3.3 Metoprolol 

7.3.3.1 AstraZeneca experimental setup 

All AstraZeneca experiments were conducted using a tubular reaction vessel 

(Polar Bear Plus) using PTFE tubing (1 mm ID). Reagents were pumped using 

JASCO PU-4180 dual piston HPLC pumps and flow streams were mixed using 

Swagelok SS-100-3 tee-pieces. Sampling was conducted by using a VICI Valco 

EUDA-CI4W.5 sample loop with a 0.06 µL aliquot volume. The reaction system 

was maintained under a fixed back pressure using an Upchurch Scientific 150 

psi back pressure regulator. Quantitative analysis was performed using an 

Agilent 1100 series HPLC instrument fitted with an Acquity C18 reverse phase 

column (3 cm x 4.6 mm, 1.7 µm). This setup is shown in Figure 6.3.8. In all 

experiments biphenyl was added to one reservoir as an internal standard.  
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Figure 7.3.8: A photograph of the automated flow system at AstraZeneca. 

7.3.3.2 Preparation of feed solutions 

For the Leeds experiments, two feeds were used for the flow ramps, and 

desired reservoir solutions were prepared by dissolving the desired reagents in 

acetonitrile under stirring at ambient conditions. The first feed consisted of 2-((4-

(2-methoxyethyl)phenoxy)methyl)oxirane (SM) (56.76 mL, 0.3 mol, 1 mol dm-3) 

and biphenyl (1.15 g, 7.5 mmol, 0.025 mol dm-3) in acetonitrile (300 mL); the 

second feed contained isopropylamine (15.46 mL, 0.18 mol, 0.6 mol dm-3) in 

acetonitrile (300 mL). 

For the AstraZeneca experiments, two feeds were used for the flow 

ramps, and desired reservoir solutions were prepared by dissolving the desired 

reagents in acetonitrile under stirring at ambient conditions. The first feed 

consisted of 2-((4-(2-methoxyethyl)phenoxy)methyl)oxirane (SM) (56.76 mL, 0.3 

mol, 1 mol dm-3) and biphenyl (1.15 g, 7.5 mmol, 0.025 mol dm-3) in acetonitrile 

(300 mL); the second feed contained isopropylamine (51.53 mL, 0.9 mol, 3 mol 

dm-3) in acetonitrile (300 mL). 

7.3.3.3 Flow ramp experiments 
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For the Leeds experiments, a 3.5 mL reactor was used. Linear gradient 

flow ramps allowed the generation of complete reaction profiles from a single 

transient experiment. To obtain transient data, each of the two pumps were 

initially set at the maximum flow rate to be investigated: 1.75 mL min-1. Steady-

state was established and the flow rate for each pump decreased at a constant 

rate of 0.0181 mL min-1 for 92 minutes. Samples of reactor effluent were injected 

for HPLC analysis at 4 minute intervals, thus achieving a large data density. This 

reactor setup is shown in Figure 7.3.9. 

 

Figure 7.3.9: The reactor setup for the metoprolol flow ramp experiments at 190/210 °C in 

Leeds. 

For the AstraZeneca experiments, a 5 mL reactor was used. Linear gradient flow 

ramps allowed the generation of complete reaction profiles from a single 

transient experiment. To obtain transient data, each of the two pumps were 

initially set at the maximum flow rate to be investigated: 1.25 mL min-1. Steady-

state was established and the flow rate for each pump decreased at a constant 

rate of 0.0125 mL min-1 for 96 minutes. Samples of reactor effluent were injected 

for HPLC analysis at 6 minute intervals, thus achieving a large data density. This 

reactor setup is shown in Figure 7.3.10. 
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Figure 7.3.10: The reactor setup for the metoprolol flow ramp experiments at 130/150 °C at 

AstraZeneca. 

7.3.3.4 HPLC analysis 

All HPLC analysis was conducted using an Agilent 1100 series HPLC 

instrument fitted with a Sigma Ascentis Express C18 reverse phase column (5cm 

x 4.6mm, 2.7 µm). Biphenyl was used as an internal standard. The column 

temperature was 40 °C and the HPLC method is shown: 

Time /min 
%A (water, 0.1 % 

TFA) 

%B (acetonitrile, 

0.1 % TFA) 
Flow rate /mL min-1 

0.00 77 23 2 

3.00 10 90 2 

4.00 10 90 2 

4.10 77 23 2 

 

An example HPLC chromatogram during a kinetic experiment is shown in 

Figure 7.3.11: 

 

Figure 7.3.11: An example HPLC chromatogram during a kinetic experiment in the metoprolol 

case study at 220 nm. 

7.3.3.5 Cost evaluation 

Using the Leeds experimental setup, outlined in Chapter 3.2, and current 

pricing for the starting material used in the Metoprolol work (£807/25 g),[239] it has 

been shown that this kinetic approach used less material and was cheaper to 

implement than other standard industrial optimisation techniques. 

As the starting material is the most expensive reaction component by a 

large margin, this was the only factor taken into consideration - other costs were 

not considered e.g. solvent, isopropylamine, energy etc. It is assumed that a 1 

M solution of starting material is used, and so the cost associated for every 1 mL 

of this solution used (0.208 g ,1 mmol) is: £6.71. It is also assumed that 2 reactor 

volumes are consumed prior to all steady-state reactions, and all reactions were 
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conducted using a 3.5 mL reactor. The addition of skilled labour and time have 

not been considered, but would incur significantly higher costs for these other 

techniques, as this technique only requires the initial setup of the reservoirs and 

reactor because everything else is automated. 

Technique What is required 
Solution 

usage /mL 
Cost /£ 

Flow ramps 

4 x linearly decreasing flow ramps, from  

1.75 mL min-1, decreasing at a rate of 

0.0181 mL min-1 for 92 minutes. 

340 £2281 

Steady-state 

kinetics 
4 sets of 16 steady-state experiments. 420 £2818 

Design of 

Experiments 

study 

One screening design (19 steady-state 

experiments) and one optimisation design 

(81 steady-state experiments) to consider 

the factors of: temperature, residence time, 

starting material equivalents and 

isopropylamine equivalents. 

700 £4697 

 

7.3.3.6 Raw data 

Flow ramp experiment 1, 130 °C 

τ /min 3.17 /M 3.19 /M 3.20 /M 

2.10 0.435 0.053 0.000 

2.24 0.427 0.056 0.000 

2.40 0.423 0.060 0.000 

2.58 0.417 0.064 0.000 

3.71 0.381 0.102 0.000 

4.16 0.397 0.088 0.000 

4.72 0.383 0.099 0.000 

5.45 0.369 0.110 0.000 

6.41 0.362 0.123 0.000 

7.73 0.347 0.146 0.001 

9.61 0.286 0.206 0.002 

 

Flow ramp experiment 2, 150 °C 
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τ /min 3.17 /M 3.19 /M 3.20 /M 

2.00 0.358 0.116 0.000 

2.10 0.357 0.125 0.000 

2.24 0.350 0.135 0.001 

2.40 0.347 0.144 0.001 

2.58 0.340 0.153 0.001 

2.80 0.333 0.166 0.001 

3.05 0.311 0.178 0.002 

3.35 0.299 0.193 0.002 

3.71 0.269 0.207 0.002 

4.16 0.259 0.234 0.003 

4.72 0.233 0.251 0.003 

5.45 0.208 0.287 0.004 

6.41 0.169 0.284 0.005 

7.73 0.144 0.327 0.006 

 

Flow ramp experiment 3, 190 °C 

τ /min 3.17 /M 3.19 /M 3.20 /M 

2.55 0.340 0.117 0.004 

2.69 0.328 0.121 0.005 

2.84 0.321 0.126 0.006 

3.02 0.320 0.132 0.006 

3.21 0.309 0.138 0.007 

3.43 0.307 0.137 0.007 

3.68 0.305 0.150 0.008 

3.97 0.299 0.152 0.009 

4.30 0.294 0.161 0.010 

4.70 0.284 0.171 0.012 

5.17 0.270 0.176 0.014 

5.73 0.261 0.183 0.016 

6.43 0.254 0.186 0.018 

7.30 0.246 0.190 0.021 

8.42 0.232 0.211 0.025 

9.86 0.213 0.217 0.028 

 

Flow ramp experiment 4, 210 °C 

τ /min 3.17 /M 3.19 /M 3.20 /M 

2.50 0.305 0.166 0.012 
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2.63 0.299 0.165 0.013 

2.78 0.294 0.172 0.014 

2.95 0.294 0.172 0.015 

3.14 0.282 0.182 0.017 

3.35 0.279 0.186 0.019 

3.60 0.269 0.190 0.021 

3.88 0.272 0.201 0.023 

4.21 0.247 0.221 0.030 

4.60 0.236 0.218 0.028 

5.06 0.230 0.219 0.032 

5.62 0.218 0.222 0.038 

6.30 0.231 0.211 0.042 

7.16 0.201 0.235 0.045 

8.25 0.188 0.235 0.051 

9.68 0.182 0.239 0.058 

 

7.4 Chapter 4 

7.4.1 Generated data set for the case study: SNAr kinetics 

Experiment 1 

Time /s 4.5 /M 4.7 /M 4.8 /M 4.9 /M 

0 1 0 0 0 

1.04232 0.912548 0.068648 0.002878 2.79E-05 

5.078096 0.715174 0.266199 0.011023 0.000485 

14.75526 0.464384 0.521723 0.020875 0.002315 

33.31443 0.269972 0.708549 0.02876 0.006042 

56.28294 0.168854 0.80687 0.031878 0.009439 

90.17797 0.099139 0.856211 0.03494 0.013887 

210.8206 0.032979 0.88963 0.036126 0.024236 

332.8275 0.015074 0.929082 0.036808 0.03211 

438.2468 0.008534 0.933212 0.036452 0.037487 

600 0.004209 0.921486 0.036363 0.043389 
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Experiment 2 

Time /s 4.5 /M 4.7 /M 4.8 /M 4.9 /M 

0 0.8 0 0 0 

1.302612 0.703325 0.092533 0.003854 6.27E-05 

5.712155 0.478466 0.312694 0.012573 0.000883 

10.84263 0.329335 0.44882 0.018183 0.002403 

20.64908 0.176938 0.596415 0.023908 0.005922 

69.41793 0.014924 0.723646 0.029388 0.023796 

151.6461 0.000354 0.725866 0.029244 0.051839 

300.9398 3.80E-07 0.66851 0.026369 0.099546 

515.3318 0 0.621532 0.024249 0.155196 

925.3113 0 0.545081 0.019839 0.239656 

1200 0 0.506326 0.018372 0.288136 

Experiment 3 

Time /s 4.5 /M 4.7 /M 4.8 /M 4.9 /M 

0 1 0 0 0 

0.962483 0.873362 0.112646 0.004695 7.80E-05 

10.02158 0.342803 0.632465 0.025508 0.004215 

21.06925 0.138132 0.817645 0.033569 0.01147 

60.78714 0.008667 0.899281 0.037403 0.036358 

101.0498 0.000643 0.895452 0.03658 0.061674 

172.7609 7.14E-06 0.851082 0.034174 0.101391 

308.2939 0 0.806696 0.030438 0.17491 

562.1972 0 0.69294 0.025835 0.270209 

904.0341 0 0.598858 0.021781 0.384583 

1600 0 0.457229 0.015241 0.527733 

 

Experiment 4 

Time /s 4.5 /M 4.7 /M 4.8 /M 4.9 /M 
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0 1 0 0 0 

1.044725 0.854673 0.149213 0.006087 0.000139 

5.09551 0.460925 0.515756 0.020548 0.002257 

21.32233 0.072138 0.877848 0.035074 0.017175 

47.14859 0.005208 0.917717 0.036551 0.041614 

69.31167 0.0006 0.887854 0.035809 0.061604 

128.0495 2.25E-06 0.86418 0.033593 0.115427 

288.6839 0 0.741762 0.02754 0.232766 

736.8751 0 0.519088 0.018297 0.455041 

1222.483 0 0.381306 0.012248 0.60453 

1800 0 0.274267 0.007936 0.705143 

 

Experiment 5 

Time /s 4.5 /M 4.7 /M 4.8 /M 4.9 /M 

0 1.2 0 0 0 

0.849478 0.999855 0.175423 0.007178 0.000158 

5.548213 0.466871 0.712408 0.028769 0.004137 

11.81201 0.191904 0.969199 0.039345 0.012093 

35.00272 0.010569 1.10712 0.045047 0.044862 

91.1267 1.47E-05 1.038677 0.040673 0.119288 

123.7999 6.90E-07 1.005138 0.040148 0.158185 

195.3324 0 0.920941 0.03614 0.234604 

483.1808 0 0.709117 0.024989 0.478645 

632.278 0 0.609582 0.021143 0.562277 

900 0 0.502989 0.016122 0.680497 

7.4.2 Generated data set for the case study: Pentyne 

Experiment 1 

Time /min 4.11 /M 4.12 /M 4.13 /M 

0 1 0.8 0 
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1.293971 0.973192 0.803545 0.011085 

3.972297 0.958388 0.766506 0.033251 

18.43854 0.857109 0.663378 0.141812 

32.90479 0.770748 0.54892 0.246498 

56.90479 0.629294 0.416498 0.388829 

92.90479 0.449379 0.25987 0.548273 

120 0.369111 0.164188 0.644284 

 

Experiment 2 

Time /min 4.11 /M 4.12 /M 4.13 /M 

0 1.2 1.5 0 

1.205027 1.199383 1.460822 0.012139 

3.721389 1.157799 1.439238 0.037013 

18.02628 1.036602 1.347405 0.171608 

50.33117 0.77347 1.092225 0.421136 

86.33117 0.582851 0.871663 0.614124 

140.3312 0.359291 0.678145 0.833511 

180 0.259447 0.551321 0.936175 

 

Experiment 3 

Time /min 4.11 /M 4.12 /M 4.13 /M 

0 1 1 0 

1.293971 0.994904 0.974041 0.010778 

3.972297 0.975053 0.966892 0.033053 

18.43854 0.86422 0.871237 0.145646 

32.90479 0.750116 0.752064 0.246904 

80.90479 0.508082 0.506177 0.504648 

152.9048 0.276204 0.271468 0.72687 

240 0.129659 0.132753 0.856012 
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7.4.3 Generated data set for the case study: Ytterbium catalysis 

Experiment 1 

Time /h 4.15 /M 4.16 /M 4.18 /M 

0 2 2 0 

0.054397 1.950736 1.962883 0.040294 

0.386129 1.737689 1.725949 0.26888 

0.701874 1.545843 1.542334 0.459994 

1.901874 0.986091 0.979723 1.020241 

3.101874 0.631223 0.628196 1.36402 

4.301874 0.40357 0.400764 1.596431 

6 0.213539 0.212908 1.784115 

 

Experiment 2 

Time /h 4.15 /M 4.16 /M 4.18 /M 

0 1.5 2 0 

0.029722 1.499822 2.000933 0.004169 

0.2413 1.470961 1.962226 0.033316 

0.911826 1.373396 1.881085 0.122394 

1.511826 1.302576 1.805505 0.196746 

2.711826 1.164105 1.659122 0.336104 

3.911826 1.042952 1.535555 0.457449 

6 0.85898 1.357163 0.642853 

 

Experiment 3 

Time /h 4.15 /M 4.16 /M 4.18 /M 

0 1.4 1.8 0 

0.027487 1.370804 1.774104 0.03184 

0.106977 1.284762 1.675632 0.12038 

0.249912 1.14023 1.539842 0.264912 
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0.92138 0.646932 1.043942 0.752256 

1.52138 0.389843 0.794653 1.012081 

2.12138 0.235788 0.635663 1.164374 

3 0.112972 0.511689 1.287393 

 

Experiment 4 

Time /h 4.15 /M 4.16 /M 4.18 /M 

0 2.2 1.6 0 

0.043551 2.153819 1.53798 0.05486 

0.241672 1.906782 1.311278 0.288655 

0.439793 1.706777 1.105476 0.49592 

0.839793 1.351856 0.751683 0.854071 

1.239793 1.066839 0.466383 1.129747 

1.639793 0.846621 0.246217 1.354339 

2 0.682943 0.085826 1.509085 

 

7.5 Chapter 5 

7.5.1 SNAr kinetics 

7.5.1.1 Experimental equipment 

All experiments were run in an NMR tube using a dedicated 500 MHz 

NMR spectrometer at The University of Cambridge, as shown in Figure 7.5.1. 
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Figure 7.5.1: The dedicated NMR spectrometer used for kinetic experiments in the SNAr 

kinetics case study. 

7.5.1.2 Kinetic experiments 

In each experiment, 2,4,6-trichloropyrimidine (700 µL, 200 mM in CD3OD) 

was warmed/cooled to the required temperature in the 500 MHz NMR 

spectrometer. The NMR was then locked onto the solvent, then the probe was 

tuned and matched to the 1H nuclei, then shimming ensued. The spectrum of the 

200 mM solution of 2,4,6-trichloropyrimidine was acquired. 

To this NMR tube, a pre-cooled/warmed solution of CD3OD containing 

200 mM ethyl 4-aminobutyrate hydrochloride and 600 mM Et3N (700 µL) was 

added and mixed thoroughly by shaking the NMR tube. This gave the desired 

reaction concentration of 100 mM pyrimidine, 100 mM amine and 300 mM Et3N. 

Spectra were acquired every ~80 seconds. The software was used in each case 

to obtain absolute integrals for each peak, which were then converted to 
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concentrations based on the 2,4,6-trichloropyrimidine solution of known 

concentration.  

7.5.1.3 Example NMR spectra 

An example ‘stacked’ NMR spectrum is shown in Figure 7.5.2, showing 

the appearance/disappearance of peaks over time in the 25 °C experiment. 

Where the peak at 7.80 ppm corresponds to 2,4,6-trichloropyrimidine, 6.66 ppm 

corresponds to the 2-substituted product and 6.41 corresponds to the 4-substited 

product. 

 

Figure 7.5.2: ‘Stacked’ NMR spectrum showing several NMR spectra over time in the 25 °C 

experiment. 

7.5.1.4 Raw data 

Experiment 1, -25 °C 

Time /min 5.1 /M 5.3 /M 5.4 /M 

14.55 0.088818 0.004156 0.004562 

15.91667 0.088538 0.004229 0.004611 

17.26667 0.088465 0.004295 0.004727 

18.63333 0.088063 0.004362 0.004842 

19.98333 0.08805 0.004577 0.004908 
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21.33333 0.087811 0.004609 0.004962 

22.7 0.087412 0.004713 0.005096 

24.05 0.087133 0.004827 0.005202 

25.41667 0.086922 0.004901 0.005268 

26.76667 0.08667 0.004993 0.005345 

28.13333 0.086501 0.005049 0.005407 

29.48333 0.086142 0.005142 0.005518 

30.83333 0.085983 0.005268 0.005704 

32.2 0.085639 0.005412 0.005803 

33.55 0.085286 0.005468 0.005826 

34.91667 0.085108 0.005589 0.00596 

36.26667 0.084887 0.005646 0.005947 

37.63333 0.084482 0.005781 0.006102 

38.98333 0.084308 0.005902 0.006179 

40.35 0.083927 0.005914 0.00626 

41.7 0.083758 0.006021 0.00639 

43.06667 0.083386 0.006157 0.006496 

44.41667 0.083205 0.006154 0.006574 

45.76667 0.083093 0.006298 0.006627 

47.13333 0.08282 0.006377 0.006689 

48.48333 0.082663 0.006475 0.006751 

49.85 0.082501 0.006492 0.006786 

51.2 0.082273 0.00655 0.006939 

52.56667 0.08206 0.006658 0.006902 

53.91667 0.08186 0.006786 0.007038 

55.26667 0.081225 0.006729 0.007105 

 

Experiment 2, 0 °C 

Time /min 5.1 /M 5.3 /M 5.4 /M 
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7.333333 0.072103 0.007607 0.008513 

8.8 0.070344 0.008018 0.008965 

10.16667 0.068594 0.008452 0.009462 

11.51667 0.068423 0.008887 0.009854 

12.88333 0.066803 0.009266 0.01028 

14.23333 0.065829 0.009635 0.010682 

15.6 0.064594 0.010002 0.011061 

16.95 0.063823 0.010341 0.011471 

18.31667 0.062319 0.010702 0.011804 

19.66667 0.061394 0.010984 0.012177 

21.01667 0.060906 0.011342 0.012486 

22.38333 0.059741 0.011585 0.012806 

23.73333 0.058765 0.01182 0.013095 

25.1 0.058315 0.012151 0.013445 

26.45 0.057463 0.01241 0.013671 

27.8 0.056496 0.012685 0.013978 

29.16667 0.056066 0.0129 0.014287 

30.51667 0.055037 0.013136 0.01449 

31.88333 0.054482 0.013382 0.014789 

33.23333 0.053852 0.013629 0.015023 

34.58333 0.053151 0.013804 0.015225 

35.95 0.052684 0.014054 0.01548 

37.3 0.052192 0.014261 0.015707 

38.66667 0.05156 0.014409 0.01589 

40.01667 0.051008 0.014613 0.016133 

41.36667 0.050399 0.014842 0.016311 

42.73333 0.049812 0.015017 0.016498 

44.08333 0.049557 0.015136 0.016666 

45.45 0.048743 0.015301 0.016861 

46.8 0.048366 0.015482 0.017042 
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48.16667 0.047763 0.015635 0.01723 

49.51667 0.047326 0.015831 0.017433 

50.86667 0.046947 0.015973 0.017573 

52.23333 0.046384 0.016088 0.017747 

53.58333 0.045991 0.016243 0.017903 

54.95 0.045672 0.016393 0.018043 

56.3 0.045107 0.016496 0.018225 

57.66667 0.044674 0.016691 0.018395 

59.01667 0.044423 0.016839 0.018509 

60.36667 0.044113 0.016972 0.018683 

61.73333 0.043619 0.017086 0.01884 

 

Experiment 3, 25 °C 

Time /min 5.1 /M 5.3 /M 5.4 /M 

3.366667 0.064314 0.009652 0.009883 

4.8 0.057052 0.012118 0.012863 

6.15 0.051792 0.013813 0.014922 

7.5 0.047939 0.015186 0.016476 

8.866667 0.044748 0.016215 0.017819 

10.21667 0.041922 0.017079 0.018798 

11.58333 0.039664 0.017878 0.019678 

12.93333 0.037598 0.018491 0.020463 

14.28333 0.035777 0.019052 0.021122 

15.65 0.034195 0.019558 0.021718 

17 0.032928 0.019875 0.022181 

18.36667 0.031709 0.020362 0.022676 

19.71667 0.030632 0.020622 0.023126 

21.06667 0.029623 0.020886 0.023404 

22.43333 0.028668 0.02128 0.023818 
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23.78333 0.027704 0.021452 0.02409 

25.15 0.026937 0.021641 0.024389 

26.5 0.026303 0.021884 0.024635 

27.86667 0.025572 0.022112 0.024925 

29.21667 0.024988 0.022265 0.025126 

30.56667 0.024358 0.022417 0.025261 

31.93333 0.023747 0.022601 0.025533 

33.28333 0.023156 0.022788 0.025713 

34.63333 0.022678 0.022896 0.025943 

36 0.022158 0.022984 0.026042 

37.35 0.021731 0.023193 0.026254 

38.71667 0.021252 0.023299 0.026356 

40.06667 0.020811 0.023542 0.026561 

41.43333 0.020451 0.023635 0.026706 

42.78333 0.019954 0.023675 0.026824 

44.13333 0.01972 0.023743 0.026953 

45.5 0.019374 0.023807 0.027033 

46.85 0.019129 0.023925 0.027167 

48.21667 0.018686 0.024057 0.027249 

49.56667 0.018359 0.024079 0.027301 

50.93333 0.018011 0.024171 0.027439 

52.28333 0.017894 0.024265 0.027549 

53.63333 0.017535 0.024319 0.027649 

55 0.017377 0.024477 0.027784 

56.35 0.01712 0.024351 0.027716 

57.71667 0.016878 0.024502 0.027857 

 

Experiment 4, 50 °C 

Time /min 5.1 /M 5.3 /M 5.4 /M 
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3.35 0.044859 0.017049 0.028158 

5.066667 0.033058 0.020402 0.034142 

6.416667 0.028533 0.021812 0.036713 

7.766667 0.025543 0.022842 0.038521 

9.133333 0.022916 0.0235 0.039813 

10.5 0.021041 0.024107 0.04121 

11.85 0.019498 0.024602 0.041829 

13.2 0.018156 0.025096 0.042681 

14.56667 0.016918 0.025264 0.043145 

15.91667 0.015895 0.025503 0.043496 

17.28333 0.015031 0.025778 0.043978 

18.63333 0.014386 0.025935 0.044504 

20 0.013754 0.026166 0.044669 

21.35 0.013006 0.026135 0.045027 

22.7 0.012731 0.02645 0.04525 

24.06667 0.012071 0.026529 0.045439 

25.41667 0.011723 0.026593 0.045892 

26.78333 0.011273 0.026724 0.046128 

28.13333 0.01075 0.026737 0.04605 

29.5 0.010443 0.026863 0.046276 

30.85 0.010126 0.026964 0.046178 

32.21667 0.009967 0.027158 0.046613 

33.56667 0.009483 0.0272 0.046695 

34.93333 0.009351 0.027183 0.047223 

36.28333 0.009066 0.027134 0.047014 

37.63333 0.008787 0.027312 0.047229 

39 0.008496 0.027291 0.047245 

40.35 0.00833 0.027346 0.047363 

41.71667 0.00802 0.027313 0.047267 

43.06667 0.007943 0.027459 0.047585 
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44.43333 0.007797 0.027504 0.047612 

45.78333 0.007612 0.027442 0.047469 

47.13333 0.007363 0.027731 0.047777 

48.5 0.007162 0.027549 0.047689 

49.85 0.007122 0.027588 0.047921 

51.2 0.006956 0.027672 0.048034 

52.56667 0.006869 0.027621 0.047948 

53.91667 0.006654 0.02781 0.048184 

55.28333 0.006511 0.027703 0.048181 

56.63333 0.006367 0.027739 0.048193 

57.98333 0.006367 0.027751 0.048241 

 

7.5.2 PfBr 

7.5.2.1 Synthesis of PfBr material 

To synthesise the PfBr material, the synthesis reported by Tian and 

Menard was approximately followed.[249] To a suspension of magnesium turnings 

(9.2 g, 382 mmol) in anhydrous THF (5 mL) in a nitrogen atmosphere, was added 

0.5 mL of bromobenzene at room temperature to initiate the reaction. The 

reaction vessel was cooled to 0 °C using an ice bath and a solution of 

bromobenzene in THF (1.2 M, 270 mL) was added dropwise at 0 °C. The reaction 

medium was allowed to reach room temperature and stirred vigorously for 2 

hours. To this solution was added 9-fluorenone (30.1 g, 186 mmol) in small 

portions left to stir at room temperature for 1 hour. The reaction was quenched 

with dropwise addition of hydrochloric acid (1 M, 100 mL) at 0 °C. The solution 

was extracted with Et2O (3 x 150 mL), and the combined organic layer was 

washed with brine, dried over MgSO4, filtered and concentrated under reduced 

pressure to yield PfOH (42.6 g, 89 %). NMR, IR and mass spectroscopy analysis 

confirmed the identity of the material. 

To prepare PfBr, PfOH (36.1 g, 140 mmol) was dissolved in toluene (150 

mL) and aqueous HBr (48 % w/w, 50 mL) was added at room temperature. This 

suspension was stirred vigorously at room temperature for 48 hours, with the 

vessel wrapped in foil to reduce light. The mixture was extracted with toluene (3 
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x 100 mL) then the combined organic layer was washed with brine, dried over 

MgSO4, filtered and concentrated under reduced pressure to afford the crude 

product. The product was then recrystallised with hexane to afford PfBr (39 g, 87 

%). 13C NMR, IR and HPLC analysis confirmed the identity and purity of the 

material, as shown in Figure 7.5.3, Figure 7.5.4 and Figure 7.5.5 respectively. 

 

Figure 7.5.3: A 13C NMR confirming the presence of the PfBr material, compared to literature 

values to identify the material.[249] 
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Figure 7.5.4: IR analysis of the PfBr material, showing the absence of a hydroxy peak from any 

residual PfOH. 

 

 

Figure 7.5.5: HPLC analysis of the PfBr material at 254 nm, indicating that a pure product is 

present. 

 

7.5.2.2 Kinetic experiments 

Three kinetic experiments were run at different temperatures: 30 °C, 35 

°C and 40 °C. For the first experiment at 30 °C, alanine methyl ester 

hydrochloride (0.940 g, 0.007 mol), biphenyl (0.195 g, 0.001 mol) and potassium 

phosphate (3.5 g, 0.017 mol) were added to 50:50 acetonitrile/dichloromethane 

(37.5 mL) in a vessel. A solution was then prepared of PfBr (0.958 g, 0.003 mol) 

in 50:50 acetonitrile/dichloromethane (37.5 mL) and added to the reaction 

vessel. A sample was then immediately taken via HPLC, then the stopwatch was 

started to track the time of each injection. This first HPLC serves as the artificial 
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zero time point, then each subsequent HPLC injection followed every ~10 

minutes thereafter. 

For the second experiment at 35 °C, alanine methyl ester hydrochloride 

(0.977 g, 0.007 mol), biphenyl (0.199 g, 0.001 mol) and potassium phosphate 

(3.5 g, 0.017 mol) were added to 50:50 acetonitrile/dichloromethane (37.5 mL) 

in a vessel. A solution was then prepared of PfBr (1.017 g, 0.003 mol) in 50:50 

acetonitrile/dichloromethane (37.5 mL) and added to the reaction vessel. A 

sample was then immediately taken via HPLC, then the stopwatch was started 

to track the time of each injection. This first HPLC serves as the artificial zero 

time point, then each subsequent HPLC injection followed every ~10 minutes 

thereafter. 

For the third experiment at 40 °C, alanine methyl ester hydrochloride 

(0.841 g, 0.006 mol), biphenyl (0.219 g, 0.001 mol) and potassium phosphate 

(3.5 g, 0.017 mol) were added to 50:50 acetonitrile/dichloromethane (37.5 mL) 

in a vessel. A solution was then prepared of PfBr (1.064 g, 0.003 mol) in 50:50 

acetonitrile/dichloromethane (37.5 mL) and added to the reaction vessel. A 

sample was then immediately taken via HPLC, then the stopwatch was started 

to track the time of each injection. This first HPLC serves as the artificial zero 

time point, then each subsequent HPLC injection followed every ~10 minutes 

thereafter. 

7.5.2.3 HPLC analysis 

All HPLC analysis was conducted using an Agilent 1100 series HPLC 

instrument fitted with a Sigma Ascentis Express C18 reverse phase column (5cm 

x 4.6mm, 2.7 µm). Biphenyl was used as an internal standard. The column 

temperature was 40 °C and the HPLC method is shown: 

Time /min 
%A (water, 0.1 % 

TFA) 

%B (acetonitrile, 

0.1 % TFA) 
Flow rate /mL min-1 

0.00 80 20 1 

7.00 15 85 1 

8.00 15 85 1 

8.10 80 20 1 
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An example HPLC chromatogram during a kinetic experiment is shown in 

Figure 7.5.6: 

 

Figure 7.5.6: An example HPLC chromatogram at 230 nm during a kinetic experiment in the 

PfBr case study. 

7.5.2.4 Raw data 

Experiment 1, 30 °C 

Time /min 5.7 /M 5.8 /M 

0 0.029401 0.009756 

9.5 0.028029 0.011516 

19.5 0.026429 0.013131 

29 0.024664 0.014922 

40 0.022779 0.016856 

50 0.021252 0.019153 

60.5 0.019363 0.020372 

71 0.017813 0.022065 

83 0.01612 0.023823 

 

Experiment 2, 35 °C 

Time /min 5.7 /M 5.8 /M 

0 0.036314 0.006684 

9.5 0.030494 0.011469 

20 0.028083 0.01372 

31.5 0.025271 0.016536 

41 0.023355 0.018562 
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51 0.021259 0.020741 

62.5 0.017572 0.023705 

 

Experiment 3, 40 °C 

Time /min 5.7 /M 5.8 /M 

0 0.037032 0.005772 

10.5 0.029931 0.013994 

20.5 0.026302 0.017446 

30.5 0.022947 0.02101 

40 0.020038 0.023665 

50.5 0.017687 0.025741 

60.5 0.016003 0.027979 

 

7.5.3 Maleic acid 

7.5.3.1 Example NMR 

An example NMR spectrum is shown in Figure 7.5.4, where the peaks of 

each species are highlighted. 
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Figure 7.5.7: An example NMR spectrum from the maleic acid case study. 

7.5.3.2 Raw data 

Experiment 1, 40 °C 

Time /min 5.13 /M 5.15 /M 5.16 /M 

0 0.761 0 0 

120 0.66207 0.097408 0.002283 

240 0.554769 0.201665 0.004947 

360 0.485518 0.265589 0.009893 

 

Experiment 2, 50 °C 

Time /min 5.13 /M 5.15 /M 5.16 /M 

0 0.404344 0.003268 0 

32.5 0.364451 0.037657 1.86E-05 

60.5 0.346181 0.071026 0.000373 

87.5 0.319523 0.095447 0.001659 

122.5 0.299017 0.113343 0.003225 

217.5 0.234143 0.1661 0.006264 

288.5 0.204502 0.198537 0.009507 

417.5 0.15883 0.230601 0.015846 

687.5 0.107378 0.276833 0.028336 

1342.5 0.052198 0.313931 0.053689 

1782.5 0.033649 0.310389 0.063196 

2837.5 0.01799 0.307033 0.083516 

 

Experiment 3, 50 °C 

Time /min 5.13 /M 5.15 /M 5.16 /M 

0 0.787537 0.007088 0 

28 0.706604 0.088537 5.65E-04 

60 0.625073 0.164707 0.002563 
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95 0.556919 0.226165 0.006126 

118 0.530477 0.271021 0.007904 

148 0.480567 0.308812 0.011678 

178 0.426661 0.316753 0.01425 

208 0.405376 0.35592 0.020026 

242 0.384453 0.382377 0.021991 

298 0.344452 0.431289 0.029072 

358 0.299951 0.456885 0.034314 

613 0.205957 0.541791 0.061416 

1306 0.092916 0.582232 0.105274 

1549 0.076529 0.596801 0.119691 

1768 0.063259 0.597105 0.130915 

 

Experiment 4, 55 °C 

Time /min 5.13 /M 5.15 /M 5.16 /M 

0 0.687045 0.103644 0.000811 

30 0.597449 0.19108 2.97E-03 

60 0.531145 0.252908 0.007448 

90 0.479052 0.301502 0.010947 

168 0.365378 0.402913 0.023209 

228 0.31788 0.443385 0.030235 

283 0.28467 0.469404 0.037426 

348 0.221288 0.520375 0.049837 

408 0.200913 0.533579 0.057007 

 

Experiment 4, 60 °C 

Time /min 5.13 /M 5.15 /M 5.16 /M 

0 0.738693 0.014307 0 

60 0.442764 0.296682 1.36E-02 
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120 0.335085 0.389301 0.029367 

180 0.265809 0.447282 0.040662 

240 0.224394 0.475143 0.053463 

360 0.117468 0.551196 0.084336 

480 0.070029 0.575292 0.107679 

1320 0.015813 0.538395 0.198792 

 

7.6 Computational setup 

7.6.1 Chapter 2 - 3 

For all computation in Chapter 2 - 3, MATLAB 2018a was used on a 

desktop computer with a 4-core Intel i5-2310 processor. 

7.6.2 Chapter 4 - 5 

For all computation in Chapter 4 - 5, MATLAB 2020a was used on a 

custom built laptop with an 8-core AMD Ryzen 7 4800H processor. 
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