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Abstract
In this thesis we study the geometry of symmetry sets and skeletal structures. The

relationship between a symmetry point (skeletal point) and the associated midlocus point

is studied and the impact of the singularity of the radius function on this relationship

is investigated. Moreover, the concept of the centroid set associated to a smooth

submanifold of Rn+1 is introduced and studied. Also, the relationship between the shape

operator of a skeletal structure at a smooth point and the shape operator of its boundary at

the associated point is studied.
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Introduction
The idea of describing objects using the concept of medial axis was suggested by Harry

Blum. Significant developments in describing many biological and physical objects

using medial axis and symmetry set have been seen in the last century. In fact, the

medial axis is a subset of a large set called the symmetry set. The concept of symmetry

set and medial axis has been studied and developed by Peter Giblin, Bruce and others

and a considerable mathematical investigation can be found in [4, 6, 11, 13]. In 2003,

James Damon invented and developed the concept of skeletal structures of an object in an

attempt to create its smooth boundary. A significant part of Damon’s contribution is the

radial shape operator which plays a central role in determining the differential geometry

of the boundary of a skeletal structure [7, 8, 9].

In the real life, the symmetry set and the medial axis play a central role in many

applications such as object recognition, object reconstruction and medical imaging

and some of these applications can be found in [25]. In this thesis we focus only on

the mathematical aspects of symmetry sets, medial axis, skeletal structures and their

boundaries. The impact of the singularities of the radius function on the relationship

between symmetry sets, medial axis, skeletal structures and their boundaries will be

studied in this thesis. This thesis consists of six chapters and before describing those

chapters we give the following definition.

Definition: A map f : Nn −→ Mm is singular at x0 ∈ Nn if the rank of the Jacobian

matrix of f at x0 is less than min (n,m).

Now we give a brief description of each chapter of this thesis. In chapter one we

give some basic definitions and theorems in the field of skeletal structures which will
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be used in subsequent chapters. Chapter two deals with the symmetry set of a smooth

hypersurface in Rn+1. It consists of three parts. The first part deals with the creating of

the symmetry set from its boundary. The second main part of chapter two deals with

the reconstruction of the boundary using the information given by the symmetry set and

the associated radius function. In this part we study the impact of the singularity of

the radius function on the relationship between the symmetry point and its associated

midlocus point. In fact, this study is a generalization of what Peter Giblin pointed out in

the relationship between the normals of a plane curve at tangency points associated to

a smooth point of its symmetry set [16]. The third main part of this chapter deals with

creating the symmetry set from the associated midlocus and radius function and in this

part we generalize what Peter Giblin and Paul Warder did in [16, 32]. Before giving the

main result of this chapter we give the following definition.

Definition B: Let x0 be a non-singular point of the symmetry set of a region Ω in

Rn+1, with smooth boundary X . Let x1 and x2 be the tangency points of the boundary

associated to x0. Then the midlocus point is given by xm = 1
2
(x1 + x2).

The main result of chapter two is the following theorem.

Theorem A: Let S be the symmetry set of a region Ω in Rn+1, with smooth boundary

X . Let x0 be a non-singular point of S. Then x0 and the associated midlocus point xm

coincide if and only if the radius function has a singularity at x0.

In chapter three we introduce the concept of the centroid set associated to a smooth

submanifold M of Rn+1 which is more general than the midlocus and depends on a

multivalued radial vector field defined on M such that each value of the multivalued

radial vector field forms a smooth radial vector field on M and each smooth radial vector
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field has a smooth radius function. This chapter consists of four main parts. In the

first part the centroid set associated to a smooth submanifold of Rn+1 is defined and

the impact of the singularities of the associated radius function is studied. The second

part of this chapter deals with the impact of the singularities of the radius function

on the relationship between a smooth skeletal point and its associated midlocus point.

In the third part of chapter three we define the pre-medial axis in Rn+1 and study the

relationship between the parameters of the boundary of a medial axis at the tangency

points associated to a smooth point of the medial axis. The fourth part of this chapter

deals with the classification of the singularity of the midlocus of a skeletal structures in

R3. The main result of chapter three is the following.

Theorem B: Let M be a smooth stratum of a skeletal structure (S, U) in R3 containing

a smooth point x0 and r be the radius function with a singularity at x0 and λ1 and λ2 be

the eigenvalues of the Hessian of r, and w1 and w2 are the associated eigenvectors such

that λ1 ̸= λ2, and r(x0) = 1
λ1

, λ1 ̸= 0. Then the midlocus at xm associated to x0 is

A-equivalent to the crosscap if and only if

λ1kx0(w1)∇2
w1
∇w2r ̸= 2λ2τg∇3

w1
r,

where kx0(w1) is the normal curvature of M in the direction w1, τg is the geodesic torsion

of M in the direction w1, and ∇wi
r is the directional derivative of the radius function in

the direction wi, i = 1, 2.

The fourth chapter of this thesis deals with the relationship between the radial shape

operator of a skeletal structure and the differential geometric shape operator of the

associated boundary. In [8] James Damon expressed the matrix representing the

differential geometric shape operator in terms of the matrix representing the radial shape

operator. In this chapter we express the matrix representing the radial shape operator

in terms of the matrix representing the differential geometric shape operator of the
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boundary. Also, the relationship between the principal radial curvatures, Gaussian radial

curvature, mean radial curvature of a skeletal structure and the associated principal

curvatures, Gaussian curvature, mean curvature of the boundary is pointed out through

this chapter. The main result of this chapter is the following.

Theorem C: Let (S, U) be a skeletal structure in R3 such that for a choice of smooth value

of U the associated compatibility 1-form ηU vanishes identically on a neighbourhood of

a smooth point x0 of S, and 1
r

is not an eigenvalue of the radial shape operator at x0. Let

x
′
0 = Ψ1(x0) and V

′
be the image of V under dΨ1 for a basis {v1, v2}, then

SXV
′ =

1

r2Kr − 2rHr + 1
(SV − rKrI)

or equivalently

SV =
1

r2K + 2rH + 1
(SXV ′ + rKI).

Here SV is the matrix representing the radial shape operator, Kr (resp. Hr) is the Gaussian

(resp. mean) radial curvature of the skeletal structure, SXV
′ is the matrix representing the

differential geometric shape operator of the boundary and K (resp. H) is the Gaussian

(resp. mean) curvature of the boundary.

The fifth chapter of this thesis is devoted to study the relationship between the shape

operator of skeletal structures and the associated shape operator of the boundary. In

the first main part of this chapter we study the relationship between the curvature of a

skeletal structure and the curvature of its associated boundary in the plane. Also, the

relationship between the curvatures of the boundary at the tangency points associated to a

smooth point of medial axis in the plane has been studied. In second main part of chapter

five we express the matrix representing the shape operator of the medial axis in Rn+1 at

a smooth point in terms of the matrices representing the shape operators of the boundary

at the associated tangency points. The main result of chapter five is given in the following.
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Theorem D: Let (S, U) be a skeletal structure such that for a choice of smooth value of

U the associated compatibility 1-form ηU vanishes identically on a neighbourhood of a

smooth point x0 of S, and 1
r

is not an eigenvalue of the radial shape operator at x0. Let

x0′ = Ψ1(x0), and V
′
be the image of V for a basis {v1, v2, ..., vn}. Then the matrix SXV ′

representing the differential geometric shape operator of the boundary is given by

ST
XV ′ =

1

r
{[I − r(HT

r + ρST
m − 1

ρ
dρdrT I−1

m +
1

ρ
ST
mdrdr

T I−1
m )]

−1

− I},

where Sm is the matrix representing the differential geometric shape operator of S at x0,

Im is the first fundamental form of S at x0 and Hr is the matrix representing the Hessian

radial operator at x0.

The last chapter of this thesis deals with the focal point of the boundary associated to a

skeletal structure. In this chapter we define the radial focal point of a skeletal structure

and we show that this point coincides with the focal point of the boundary. Moreover, the

location of the focal point of the boundary associated to a Blum medial axis in Rn+1 is

investigated through this chapter.
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Chapter 1

Background

Skeletal structures of a smooth boundary has been studied by James Damon in several

papers [7, 8, 9] In this chapter we give some basic definitions and theorems in the field

of Whitney stratifications and skeletal structures which will be used in the subsequent

chapters . Also, the radial and edge shape operators will be reviewed in this chapter.

1.1 Whitney Stratification

Definition 1.1.1 [18] Let S be a closed subset of a smooth manifold M and let S be

decomposed into disjoint smooth submanifolds (possibly with boundary) Si called strata.

Then the decomposition is called a Whitney Stratification if the following conditions are

met

1. Si

∩
Sj ̸= ϕ if and only if Si ⊆ Sj for strata Si, Sj with i ̸= j, this is called the

frontier condition.

2. Whitney condition (a): if xi is a sequence of points in Sa converging to y ∈

Sb and Txi
(Sa) converges to a plane τ (all this considered in the appropriate

Grassmannian), then Ty(Sb) ⊆ τ .
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3. Whitney condition (b): if xi and yi are two sequences in Sa and Sb respectively

converge to y ∈ Sb , li denotes the secant line between xi and yi and li converges to

l then l ⊆ τ .

Remark 1.1.2 Condition b implies condition a. Any Whitney stratified set can be

triangulated (see [7]).

Definition 1.1.3 For a Whitney stratified set S we let

1. Sreg denote the points in the top-dimensional strata and these points are the smooth

points of S.

2. Ssing denote the remaining strata.

3. ∂S denote the subset of Ssing consisting of points of S at which S is locally an n-

manifold with boundary. We refer these points as edge points in order to distinguish

between ∂S and the boundary of the region of the skeletal structure.

4. ∂S denote the closure of ∂S.

Definition 1.1.4 let S be a Whitney stratified set and let x0 ∈ Ssing then we define the

following

1. The complementary local components for x0 are the connected components of

Bε(x0) \ S.

2. The neighbouring local components of x0 are the connected components of

Bε(x0)
∩

Sreg,

where Bε(x0) is a closed ball of radius ε about x0 for sufficiently small ε > 0.



Chapter 1. Background 3

1.2 Skeletal Set and Skeletal Structure

Definition 1.2.1 [7] An n-dimensional Whitney stratified set S ⊆ Rn+1 is a skeletal set if

1. For each local neighbouring component Sα of x0 ∈ Sβ there is a unique limiting

tangent space Tx0Sβ from sequence of points in Sα (by properties of Whitney

stratified set Tx0Sβ ⊂ Tx0Sα ).

2. Locally in a neighbourhood of a singular point x0, S may be expressed as a union

of (smooth) n-manifolds with boundaries and corners Sj , where two such intersect

on boundary facets.

3. If x0 ∈ ∂S then those Sj in 2 meeting ∂S meet it in an (n− 1)-dimensional facet.

Facets means edges or faces in the triangulation of remark 1.1.2.

Definition 1.2.2 [7] An edge coordinate parametrization at an edge point x0 ∈ ∂S

consists of an open neighbourhood W of x0 in S, an open neighbourhood W̃ of 0

in Rn
+ = {(x1, x2, ..., xn) ∈ Rn : xn ≥ 0} and a differentiable homeomorphism

Φ : W̃ → W such that: both Φ|{(x1, x2, ..., xn) ∈ W̃ : xn > 0} and Φ|(W̃
∩

Rn−1)

are diffeomorphisms on to their images.

Definition 1.2.3 Given an n-dimensional set S ⊂ Rn+1, a radial vector field U on S is

nowhere zero multivalued vector satisfying the following conditions.

1. (Behaviour at smooth points) For each x0 ∈ Sreg, there are two values of U which

are on opposite sides of Tx0S i.e., their dot products with a normal vector are non

zero with opposite signs. Moreover, on a neighbourhood of a point of Sreg, the

values of U corresponding to one side form a smooth vector field.
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2. (Behaviour at a non-edge singular point) Let x0 be a non-edge singular point with

Sα a local component of x0. Then both smooth values of U on Sα extend smoothly to

values U(x0) on the stratum of x0. If Sα does not intersect ∂S in a neighbourhood

of x0, then U(x0) does not belong to Tx0S. Conversely to each value of U at a point

x0 ∈ Ssing, there corresponds a local complementary component Ci of S of S at x0

such that the value U(x0) locally points into Ci in the following sense. The value

U(x0) extends smoothly to values U(x) on the local complementary components of

S for x0 in ∂Ci. For a neighbourhood W of x0 and an ε > 0, x + tU(x) ∈ Ci for

0 < t < ε and x ∈ (W
∩
S).

3. (Tangency behaviour at edge points) At edge points x0 ∈ ∂S there is a unique value

for U tangent to the stratum of Sreg containing x0 in the closure which points away

from S.

Definition 1.2.4 Given a skeletal set S and a smooth multivalued radial vector field U ,

the radial flow is defined by

Ψt(x) = x+ tU(x),

where x ∈ S and t ∈ [0, 1].

Definition 1.2.5 A radial vector field U on a skeletal set S satisfies the local initial

conditions if it satisfies the following.

1. (Local separation property) For a local complementary component Ci of a non-edge

point x0 /∈ ∂S, let ∂Ci =
∪
Si denoting the local decomposition of ∂Ci into closed

(in W ) n-manifolds with boundaries and corners. Then the set X = {x + tU(x) :

x ∈
∪

i ∂Si, 0 ≤ t ≤ ε} is an embedded Whitney stratified set such that distinct

int(Si) and int(Sj) lie in separate connected components of the complement of

Ci \X .
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2. (Local edge property) For each edge closure point x0 ∈ ∂S there is a

neighbourhood w of x0 in S and ε > 0 so that for each smooth value of U , the

radial flow Ψ(x, t) = x+ tU is one-one on w × [0, ε].

Definition 1.2.6 For a radial vector field U , we put U = rU1, for a positive multivalued

function r, and a multivalued unit vector field U1 on S. We will call r the radius function.

Now suppose Ci is a local complementary component of a singular point x0. The local

boundary of Ci in a small open neighbourhood can be expressed as a union of n-manifolds

with boundary and corner {Si, i = 1, 2, ..., k}. The abstract boundary of Ci consists of a

copy of Si for each smooth value of U on Si pointing into Ci [7].

Definition 1.2.7 A skeletal structure (S, U) in Rn+1 consists of an n-dimensional skeletal

set and radial vector field U on S satisfying the local initial conditions, such that all

abstract boundaries of local complementary components are homeomorphic to n-disks.

Definition 1.2.8 Given a skeletal structure (S, U), the associated boundary is defined by

X = {x+ U(x) : x ∈ S}, where the definition includes all values of U(x) for a given x.

1.3 Radial Shape Operator

Definition 1.3.1 Given a skeletal structure (S, U) in Rn+1 we define for a regular point

x0 ∈ S and each smooth value of U defined in a neighbourhood of x0 with associated unit

vector field U1, a radial shape operator

Srad(v) = −projU(
∂U1

∂v
), for v ∈ Tx0S, (1.1)

where
∂U1

∂v
means ∇vU1 and projU denotes projection onto Tx0S along U . Also, if

{v1, v2, ..., vn} is a basis for Tx0S then,

∂U1

∂vi
= aiU1 −

n∑
j=1

sjivj (1.2)
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which can be written in the vector form by

∂U1

∂V
= AV .U1 − ST

V V. (1.3)

x0

S

projU
∂U1

∂v

∂U1

∂v U1

Tx0
S

Srad(v)

Figure 1.1: The radial shape operator in 3D. The dashed line denotes projection onto Tx0S

along U

Definition 1.3.2 For x0 ∈ Sreg and a given smooth value of U , we call the eigenvalues

of the associated radial shape operator the principal radial curvatures at x0 and denote

them by κri.

Example 1.3.3 Let (S, U) be a skeletal structure in R3 and let s1(x, y) = (x, y, 1) ⊂ Sreg

such that {(x, y) ∈ R2|x2 + y2 < 1
4
}. Now define the radial vector field on the image of

s1 by

U = (x2 + y2 + 1)
(
−2x,−2y,

√
1− 4(x2 + y2)

)
= rU1,
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where r(x, y) = x2 + y2 + 1 is the radius function and

U1 =
(
−2x,−2y,

√
1− 4(x2 + y2)

)
.

Let v1 = ∂s1
∂x

= (1, 0, 0) and v2 = ∂s1
∂y

= (0, 1, 0), then the unit normal of s1 is N =

(0, 0, 1). It is clear that U1 is a smooth unit vector field on the image of s1 and

U1 = −2xv1 − 2yv2 +
√
1− 4(x2 + y2)N. (1.4)

Now we have

∂U1

∂x
= (−2, 0,

−4x√
1− 4(x2 + y2)

) = −2v1 −
−4x√

1− 4(x2 + y2)
N.

But from equation 1.4 we

N =
1√

1− 4(x2 + y2)
U1 +

2x√
1− 4(x2 + y2)

v1 +
2y√

1− 4(x2 + y2)
v2.

Therefore,

∂U1

∂x
=

−4x

1− 4(x2 + y2)
U1 − (

2− 8y2

1− 4(x2 + y2)
)v1 −

8xy

1− 4(x2 + y2)
v2.

Similarly

∂U1

∂y
=

−4y

1− 4(x2 + y2)
U1 −

8xy

1− 4(x2 + y2)
v1 −

2− 8x2

1− 4(x2 + y2)
v2

Now we can apply definition 1.3.1 to evaluate the radial shape operator, thus the matrix

representing the radial shape operator is given by

SV =

 2−8y2

1−4(x2+y2)
8xy

1−4(x2+y2)

8xy
1−4(x2+y2)

2−8x2

1−4(x2+y2)

 ,

and

AV =

 −4x
1−4(x2+y2)

−4y
1−4(x2+y2)

 .

Now from definition 1.3.2 we have

κri =
1

2
{tr(SV )±

√
tr2(SV )− 4det(SV )}.

After some calculations we get κr1 = 2 and κr2 =
2

1−4(x2+y2)
.
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1.4 Edge Radial Shape Operator

Definition 1.4.1 Let (S, U) be a skeletal structure and let x0 ∈ ∂S and let N be the unit

normal vector field to S in a neighbourhood of x0. Then, the edge shape operator is

defined by

SE(v) = −projU(
∂U1

∂v
), (1.5)

for v ∈ Tx0S and projU denotes projection onto Tx0∂S
⊕

⟨N⟩.

Tx0∂S
⊕

⟨N⟩

N

∂U1

∂v

S

Tx0∂SSE(v)

U

Figure 1.2: The edge shape operator in 3D. The dashed line denotes projection onto

Tx0∂S
⊕

⟨N⟩ along U .

Now given a basis {v1, v2, ..., vn−1} of Tx0∂S we choose a vector vn in the edge coordinate

system at x0 so that {v1, v2, ..., vn} is a basis of Tx0S in the edge coordinate system and

so that vn maps under the edge parametrization map to cU1(x0) where c ≥ 0. Then we

can compute a matrix representation for the edge shape operator. Let N be a unit normal

vector field to S on a neighbourhood w of x0 then we have

∂U1

∂vi
= ai · U1 − ci ·N −

n−1∑
j=1

bjivj. (1.6)
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This equation can be written in vector form by

∂U1

∂V
= AU · U1 − CU ·N −BUV · Ṽ (1.7)

or
∂U1

∂V
= AU · U1 −

(
BUV CU

) Ṽ

N

 (1.8)

or
∂U1

∂V
= AU · U1 − ST

EV

 Ṽ

N

 . (1.9)

Therefore, SEV is a matrix representation of the edge shape operator. Here, AU and CU

are n-dimensional column vectors, BUV is an n× (n− 1)-matrix, and Ṽ is the

(n− 1)-dimensional vector with entries v1, v2, ..., vn−1.

Remark 1.4.2 The basis {v1, v2, ..., vn} of Tx0S in the edge coordinate system is called a

special basis of Tx0S.

Definition 1.4.3 The principal edge curvatures are the generalized eigenvalues of the

pair (SEV , In−1,1) where, In−1,1 denotes the (n× n)-diagonal matrix with 1′s in the first

n− 1 diagonal positions and 0 otherwise.

1.5 Compatibility 1-Form and Compatibility Condition

Definition 1.5.1 Given a skeletal structure (S, U) the compatibility 1-form ηU is defined

by

ηU(v) = v · U1 + dr(v), (1.10)

v is a tangent vector to S.

S satisfies the compatibility condition at x0 ∈ S with smooth value U if ηU ≡ 0 at x0.

The compatibility condition plays a central role in the investigation of the differential
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geometry of the boundary. A radial vector field plays the role of a normal vector of the

boundary when S satisfies the compatibility condition.

Lemma 1.5.2 [7] Let (S, U) be a skeletal structure. Suppose that Sα is a local manifold

component of x0 on which is defined a smooth value of the radial vector field U . Suppose

that either
1

r
is an eigenvalue of the radial shape operator if Sα is a non-edge component

or
1

r
is not a generalized eigenvalue of the pair (SEV , In−1,1 ) if Sα is an edge component.

If the associated compatibility 1-form ηU vanishes at x0 then U(x0) is orthogonal to the

portion of the boundary X (given by Ψ1(Sα)) at Ψ1(x0).

1.6 The Radial Map

Definition 1.6.1 Given a skeletal structure (S, U ) with boundary X then the radial map

is given by:

Ψ1(x) = x+ r(x)U1(x), x ∈ S (1.11)

Example 1.6.2 With the skeletal structure (S, U ) as in example 1.3.3, we will calculate

the boundary of this skeletal structure using the radial map Ψ1; in fact, we see that for

any point x0 ∈ s1 the associated boundary point x1 is given by

x1 = x0 + rU1 = (x, y, 1) + (x2 + y2 + 1)
(
−2x,−2y,

√
1− 4(x2 + y2)

)
,

and after some calculations we obtain

x1 =
(
−2x3 − 2xy2 − x,−2y3 − 2x2y − y, 1 + (x2 + y2 + 1)

√
1− 4(x2 + y2)

)
.

Now we will check the compatibility condition and to do so we have to check the dot

product
∂x1

∂x
· U1 =

∂x1

∂y
· U1 = 0. Now

∂x1

∂x
=

(
−6x2 − 2y2 − 1,−4xy,

−12x3 − 12xy2 − 2x√
1− 4(x2 + y2)

)
,
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and
∂x1

∂y
=

(
−4xy,−6y2 − 2x2 − 1,

−12y3 − 12x2y − 2y√
1− 4(x2 + y2)

)
.

Thus, this boundary is smooth and it is clear that

∂x1

∂x
· U1 =

∂x1

∂y
· U1 = 0.

Therefore, using lemma 1.5.2 the compatibility 1-form vanishes identically in the given

domain.

−0.5

0

0.5

−0.5
0

0.5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4 The boundary

The skeletal set

Figure 1.3: Skeletal set and associated boundary in example 1.5.2.

1.7 The Sufficient Conditions for Smooth Boundary

James Damon Discussed in [7, 8, 9] the sufficient conditions for the skeletal structure

(S, U ) to have a smooth boundary. These conditions are

1. (Radial Curvature Condition) For all points of S off ∂S

r < min{ 1
κri

} for all positive principal radial curvature κri.
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2. (Edge Condition) For all points of of ∂S (closure of ∂S)

r < min{ 1
κEi

} for all positive principal edge curvature κEi.

3. (Compatibility Condition) For all singular points of S (which includes edge points)

ηU = 0.

Theorem 1.7.1 [7] Let (S, U) be a skeletal structure which satisfies the above three

conditions. Then

1. The associated boundary X is an immersed topological manifold which is smooth

at all points except those point corresponding to points of Ssing.

2. At points corresponding to points of Ssing it is weakly C1 (this implies that it is C1

on the points which are in the images of strata of codimension 1).

3. At smooth points, the projection along lines of U will locally map X

diffeomorphically onto the smooth part of S.

4. Also, if there is no nonlocal intersection, X will be an embedded manifold.

1.8 Blum Medial Axis

Definition 1.8.1 Given a region Ω ⊆ Rn+1 with smooth boundary X , then the Blum

medial axis of Ω is the locus of centers of hyperspheres tangent to the boundary X at

least two points or having a single degenerate tangency such that these hypersphers are

contained in Ω.

Definition 1.8.2 [7] The pair (S, U) consisting of the Blum medial axis and associated

multivalued radial vector field is a special case of a skeletal structure which satisfies the

following
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At each smooth point x0, the two values U (1) and U (2) must satisfy ∥U (1)∥ = ∥U (2)∥ and

U (1) − U (2) is orthogonal to Tx0S.

Proposition 1.8.3 [7] If (S, U) is a medial axis and radial vector field of a region Ω ⊂

Rn+1 with generic smooth boundary X , then (S, U) satisfies both the radial curvature

and edge conditions.

6−junction

edge Y−branching fin

Figure 1.4: Local generic structure for Blum medial axis in R3 and the associated radial

vector fields.
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Chapter 2

Symmetry Set in Rn+1

2.1 Introduction

This chapter is focused on the symmetry set of a smooth hypersurface in Rn+1. It is

divided into three main parts. The first part deals with the creating of the symmetry

set using the boundary. In this part, we define the symmetry set in Rn+1 and we study

the smoothness of the symmetry set using the information provided by the principal

curvatures of the boundary (Theorem 2.2.3). Also, the necessary and sufficient condition

for two points on the boundary to form a symmetry point is discussed (Theorem 2.2.4).

In the second part we consider the inverse procedure to that in the first part. In fact,

this part deals with the reconstruction of the boundary using the information given by

the symmetry set and the radius function (Theorem 2.3.1). Furthermore, the impact of

the singularity of the radius function on the relationship between the symmetry set and

the associated midlocus is investigated (Theorem 2.3.4). The last part of this chapter

is focused on the creating of the symmetry set using the information provided by the

midlocus and the radius function.
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2.2 Creating Symmetry Set from the Boundary

The symmetry set and its smooth boundary in R2 and R3 have been studied intensively by

Giblin and others in several papers such as [4, 6, 11, 13, 14, 15]. In this section we define

the symmetry set of a smooth boundary in Rn+1 in the same way as Giblin and then we

generalize some results to the higher dimensions.

Definition 2.2.1 Given a smooth hypersurface X in Rn+1 the symmetry set S is the locus

of centres of hyperspheres, bitangent to X . I.e., if x1 = X(s) and x2 = X(t) are two

points of the tangency with a hypersphere then the corresponding point of the symmetry

set S is given by x0 = x1 + rN1 = x2 + rN2, where r is the radius function, Ni, i = 1, 2

are the unit normals of X at xi, s = (s1, s2, ..., sn) and t = (t1, t2, ..., tn) pointing towards

the centre of the hypersphere.

X2

x2

X1

x1

rN1

rN2

x0

Figure 2.1: The symmetry point.
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Now let X1 and X2 be two pieces of smooth hypersurface X parametrized locally by

s = (s1, s2, ..., sn) and t = (t1, t2, ..., tn) respectively. Define the function

f : R2n+1 −→ Rn+1

by

f(s, t, r) = (X1(s)−X2(t)) + r(N1(s)−N2(t)).

Then f = 0 when a hypersphere of radius r is tangent to X1 and X2. We expect f−1(0)

to be a smooth manifold with dimension n. Define the centre map C by:

C : f−1(0) −→ Rn+1

C(s, t, r) = X2(t) + rN2(t).

Then clearly, C(f−1(0)) is the symmetry set. Hence C projects f−1(0) to Rn+1, therefore

the condition for f−1(0) to project to a smooth hypersurface in Rn+1 is C to be an

immersion. Now since X1 and X2 are oriented, we can choose orthonormal bases for

their tangent spaces using the principal directions.

Proposition 2.2.2 Assume as above, then

1. f−1(0) is a smooth submanifold of R2n+1 parametrized by s = (s1, s2, ..., sn)

provided κi ̸= 1
r
, i = 1, 2, ..., n.

2. f−1(0) is a smooth submanifold of R2n+1 parametrized by t = (t1, t2, ..., tn)

provided λi ̸= 1
r
, i = 1, 2, ..., n, where κi ( resp. λi ) are the principal curvatures

of X2 (resp. X1).

Proof

Let p0 and q0 be tangency points (p0 ∈ X1 and qo ∈ X2) let {vi}, i = 1, 2, ..., n (resp.

{ui}, i = 1, 2, ..., n) be a basis for the tangent space of X2 (resp. X1) formed by the
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principal directions. Now using the fact that differentiating the normal in the principal

direction produces the principal curvature times the principal direction. Therefore, the

Jacobian matrix of f has the following column vectors

−(1− rκi)vi, (1− rλi)ui, and (N1 −N2).

N1−N2 is parallel to p0−q0, thus N1−N2 ̸= 0. Also, N1−N2, u1, u2, ..., un are linearly

independent as well as N1 − N2, v1, v2, ..., vn. Therefore, using the implicit function

theorem the result holds. 2

Now we will give the necessary and sufficient condition for the tangency points to give a

smooth point on the symmetry set.

Theorem 2.2.3 The symmetry set C(f−1(0)) is a smooth hypersurface if κi ̸= 1
r

and

λi ̸= 1
r
, i = 1, 2, ..., n.

Proof

C(s, t, r) = X2 + rN2.

The condition for f−1(0) to project to a smooth hypersurface in Rn+1 is that C is an

immersion, or equivalently the kernel of Df intersects the kernel of DC in zero. Now let

C(s, t, r) = X2 + rN2.

Then the Jacobian matrix of C has the column vectors

(1− rκi)vi, 0 and N2,

and the Jacobian matrix of f has the column vectors

−(1− rκi)vi, (1− rλi)ui and N1 −N2.
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Now consider the following

 (1− rκi)vi (1− rλi)ui N1 −N2

(1− rκi)vi 0 N2




ξ1
...

ξn
...

ξ2n+1


= 0

Therefore, the condition for C to be an immersion implies that ξj = 0,

j = 1, 2, ..., n, n + 1, ..., 2n, 2n + 1. Since N1 ̸= N2, we have ξ2n+1 = 0. From

proposition 2.2.2, we have f−1(0) is smooth provided λi ̸= 1
r

or κi ̸= 1
r
. Now assume

that κi ̸= 1
r
, then

n∑
i=1

ξi(1− rκi)vi = 0.

Now since vi are linearly independent then ξi = 0, (i = 1, 2, ..., n).

Hence, if λi ̸= 1
r

then, ξj = 0 where j = n + 1, n + 2, ..., 2n, and by this the proof is

completed. 2

Now the natural question is: what is the necessary and sufficient condition for two points

x1 and x2 on the boundary with normals N1 and N2 respectively to form a symmetry

point? In [14] this matter has been investigated in the case of the plane curve and to

generalize that result we will take the case when the normals of the boundary (which are

oriented inside the object figure 2.1) intersect each other and this case is a generic. The

answer of this question is given in the following theorem.

Theorem 2.2.4 Let x1 and x2 be two points on the boundary with unit normals N1 and N2

respectively. Suppose that N1 ̸= −N2 and the normal lines intersect. Then a necessary
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and sufficient condition for x1 and x2 to form a symmetry point is that

(x1 − x2) · (N1 +N2) = 0. (2.1)

Proof

First, assume that x1 and x2 form a symmetry point A , then

A = x1 + rN1 = x2 + rN2.

Therefore,

x1 − x2 = −r(N1 −N2).

So,

(x1 − x2) · (N1 +N2) = −r(N1 −N2) · (N1 +N2) = 0.

Second, assume that equation (2.1) holds since N1 ̸= ±N2 and the lines of normals

intersect, then there exist (a, b ∈ R) such that

x1 + aN1 = x2 + bN2.

Therefore

x1 − x2 + aN1 − bN2 = 0.

Hence,

(x1 − x2).(N1 +N2) + (aN1 − bN2).(N1 +N2) = 0.

Now using equation (2.1), we have

(aN1 − bN2).(N1 +N2) = 0

So,

a− b+ aN1 ·N2 − bN1 ·N2 = 0.

Hence

(a− b)(1 +N1 ·N2) = 0.

Since N1 ̸= −N2, we have 1 +N1 ·N2 ̸= 0 therefore, a− b = 0 ⇒ a = b hence x1 and

x2 form a symmetry point and r = |a|. 2
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2.3 Creating the Boundary from the Symmetry Set

In this section we turn to the reconstructing the boundary from its symmetry set, and we

will investigate the relationship between the symmetry set and the associated midlocus.

Furthermore, we will study the radius function and its singularity. Also, the relationship

between the singularity of the radius function and that of the midlocus in the plane will be

investigated. In the rest of this chapter Sreg refers to the set of all smooth points of the the

symmetry set that means the set of all points of type A2
1 (an A2

1 point of the symmetry set

is the centre of a bitangent hypersphere which has ordinary contacts with the boundary).

Theorem 2.3.1 Let S be the symmetry set of a region Ω ∈ Rn+1, with smooth boundary

X and let Sreg ⊆ S. Then for any point x0 ∈ Sreg, the associated tangency points on the

boundary X are given by

Xj = x0 − r∇r ± r

√
1− ∥∇r∥2N, j = 1, 2 (2.2)

such that (1 − ∥∇r∥2 ≥ 0), where N is the unit normal of S at x0 and ∇r is the

Riemannian gradient of r.

Proof

Let S1 be a smooth patch of the symmetry set containing x0, and consider the function

F = ∥X − S1∥2 − r2. (2.3)

Now let {v1, v2, ..., vn} be a basis of Tx0S1, then

∂F

∂vj
= −2vj · (X − S1)− 2rdr(vj).

Therefore, the envelope of hyperspheres centred on S1 is given by

{X ∈ Rn+1 : F =
∂F

∂vj
= 0, j = 1, 2, ..., n}.
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Therefore,

−vj · (X − S1) = rdr(vj). (2.4)

Now since {v1, v2, ..., vn, N}, where N is the unit normal of S1 at x0, is a basis for Rn+1,

every point Z ∈ Rn+1 can be written as

Z =
n∑

i=1

λivi + λn+1N.

Therefore,

X − x0 =
n∑

i=1

λivi + λn+1N,

and from F = 0 we have λn+1 = ±
√
r2 − (

n∑
i=1

λivi)2N , thus

X = x0 +
n∑

i=1

λivi ±

√√√√r2 − (
n∑

i=1

λivi)2N. (2.5)

But from equation (2.4), we have vj ·(X−S1) = −rdr(vj), where dr(vj) is the directional

derivative of r in the direction vj therefore dr(vj) can be written as

dr(vj) = vj ·

(
−1

r

n∑
i=1

λivi

)
.

Since S1 is smooth, then as S1 is a submanifold of Rn+1 so it has a Riemannian structure.

Therefore, dr can be written again as:

dr(vj) = ⟨vj,
−1

r

n∑
i=1

λivi⟩.

Therefore, −1
r

n∑
i=1

λivi is the Riemannian gradient of the radius function r. Let ∇r denotes

the Riemannian gradient of r, then −1
r

n∑
i=1

λivi = ∇r. Therefore,

n∑
i=1

λivi = −r∇r.

Hence by substitution in equation (2.5) the proof is completed. 2
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Definition 2.3.2 Given a smooth hypersurface X in Rn+1 as in definition (2.2.1) the

midlocus M of X is the closure of the set of midpoints of chord joining contact points

of all hyperspheres bitangent to X . Thus if x1 and x2 are two points of tangency then the

corresponding point of the midlocus is xm = 1
2
(x1 + x2).

Now from theorem 2.3.1 we have the following.

Corollary 2.3.3 Assume as in theorem 2.3.1 then, the midlocus point is given by

xm = x0 − r∇r,

where x0 is a smooth point of the symmetry set and ∇r is the Riemannian gradient of the

radius function at x0.

Proof

The proof comes directly from theorem 2.3.1. 2

From corollary 2.3.3 we find that if S is a smooth part of the symmetry set, then the

associated midlocus M is given by

M = S − r∇r.

Peter Giblin pointed out that in the case of 3D if the tangent planes of the boundary

at the tangency points are parallel then the radius function has a singularity [11]. In

fact, the radius function plays a central role in the relationship between the boundary, the

symmetry and the midlocus. Also there is a very complicated relationship between the

differential geometry of the boundary and that of the symmetry set involving the radius

function and its derivatives. The following theorem gives the answer to the question: At

what condition does the symmetry point coincide with the associated midlocus point?
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Theorem 2.3.4 Let S be the symmetry set of a region Ω in Rn+1, with smooth boundary

X . Let x0 ∈ Sreg, then x0 and the associated midlocus point xm coincide if and only if

the radius function has a singularity at x0.

Proof

Let xm = x0, then ∇r = 0 and since ∇r is the Riemannian gradient, it can be written as

∇r = gijdr(vj)vi,

where gij is the inverse of the matrix representing the Riemannian metric, dr(vj) is

the partial derivative of the radius function r and vi is the basis of the tangent space of

the symmetry set S at x0. Therefore, ∇r = 0 ⇒ gijdr(vj)vi = 0, hence dr(vj) = 0.

Conversely assume that the radius function r has a singularity, then ∇r = 0, therefore,

x0 = xm which completes the proof. 2

The above theorem tells us the impact of the singularity of the radius function on the

relationship between a smooth symmetry point and its associated midlocus point. But

what about the relation between a smooth symmetry point and its associated tangency

points on the boundary. Does the singularity of the radius function affect it? The answer

to this question is given in the following proposition.

Proposition 2.3.5 Let S be the symmetry set of a region Ω in Rn+1 with smooth boundary

X . Let x0 ∈ Sreg, then the tangency points associated to x0 are given by:

xj = x0 ± rN, j = 1, 2

if and only if the radius function r has a singularity at x0, where N is the unit normal of

S at x0.

Proof

From theorem 2.3.1 the tangency points associated to x0 are given by

xj = x0 − r∇r ± r

√
1− ∥∇r∥2N, j = 1, 2.
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Now assume that r has a singularity, then ∇r = 0. Therefore, we get

xj = x0 ± rN, j = 1, 2.

Conversely, assume that xj = x0±rN, j = 1, 2. Then, −r∇r = 0 and (1−∥∇r∥2) = 1.

Therefore, ∇r = 0, hence the radius function r has a singularity, and by this the proof is

completed. 2

Lemma 2.3.6 Let S be the symmetry set of a region Ω in Rn+1 with smooth boundary X .

Let x0 be a smooth point in S. Then the Riemannian gradient of the radius function at x0

is given by:

∇r =
1

2
(N1 +N2),

where N1 and N2 are the unit normals of the boundary at the tangency points.

Proof

From definition 2.2.1, we have

x0 = x1 + rN1 = x2 + rN2

and from theorem 2.3.1 we have

x1 = x0 − r∇r + r

√
1− ∥∇r∥2N

and,

x2 = x0 − r∇r − r

√
1− ∥∇r∥2N.

Therefore,

N1 = ∇r −
√
1− ∥∇r∥2N and N2 = ∇r +

√
1− ∥∇r∥2N.

Hence, ∇r = 1
2
(N1 +N2). 2
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Proposition 2.3.7 Assume as in lemma 2.3.6. Then r has a singularity if and only if

N1 = −N2. where N1 and N2 are the unit normals of the boundary at the tangency

points.

Proof

From lemma 2.3.6 we have,

∇r =
1

2
(N1 +N2).

If the radius function has a singularity, then ∇r = 0, and so N1 = −N2. Now if

N1 = −N2 then ∇r = 0 which implies that the radius function has a singularity. 2

Example 2.3.8 Let S(s, t) be the symmetry set of a smooth surface X in R3, and r(s, t)

be the radius function. If x0 = S(s0, t0) be a smooth point, then the associated tangency

points on the boundary X are given by

xj =x0 −
r

∥ϵ1 × ϵ2∥
{(rs∥ϵ2∥2 − rtϵ1.ϵ2)ϵ1 + (rt∥ϵ1∥2 − rsϵ1.ϵ2)ϵ2}

± r

√
1− 1

∥ϵ1 × ϵ2∥2
{(rs∥ϵ2∥2 − rtϵ1.ϵ2)ϵ1 + (rt∥ϵ1∥2 − rsϵ1.ϵ2)ϵ2}2N, j = 1, 2,

where ϵ1 =
∂S
∂s
|(s0,t0) and, ϵ2 = ∂S

∂t
|(s0,t0) and rs =

∂r
∂s

, rt = ∂r
∂t

.

The midlocus point is given by:

xm = x0 −
r

∥ϵ1 × ϵ2∥
{(rs∥ϵ2∥2 − rtϵ1.ϵ2)ϵ1 + (rt∥ϵ1∥2 − rsϵ1.ϵ2)ϵ2}.

In the above example we give a general method to calculate the tangency points and the

midlocus point associated to a smooth point on the symmetry set of a smooth surface

X ⊂ R3. In the following we will present specific examples to illustrate the ideas of the

theorems mentioned in this section.
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Example 2.3.9 Let S(s, t) = (s, t, st) and r(s, t) = s2 + t2 + 1, where −1
4

≤ s ≤ 1
4

and
−1
4

≤ t ≤ 1
4
. Then the midlocus is given by

M(s, t) = −
(
s+ 2s3 − 2st2, t+ 2t3 − 2s2t, 3st

)
.

It is clear that rs(0, 0) = rt(0, 0) = 0, which means that the radius function has a

singularity at (0, 0). Also, it is obvious that S(0, 0) = M(0, 0) = (0, 0, 0).

−0.4
−0.2

0
0.2

0.4
0.6 −0.4

−0.2
0

0.2
0.4−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2 The midlocus

The symmetry set

Figure 2.2: Symmetry set and associated midlocus in example 2.3.9.

Example 2.3.10 Let S(s, t) = (s, t, s2 + t2) and r(s, t) = s2+ t2+1. Then the midlocus

is given by

M(s, t) =

(
2s3 + 2st2 − s

4(s2 + t2) + 1
,
2t3 + 2s2t− t

4(s2 + t2) + 1
,
−3(s2 + t2)

4(s2 + t2) + 1

)
.

It is clear that, r has a singularity at (0, 0) and S(0, 0) = M(0, 0) = (0, 0, 0).
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Figure 2.3: Symmetry set and associated midlocus in example 2.3.10.

Example 2.3.11 Let S be the symmetry set of a plane curve and let S be smooth at x0.

Now parameterize S by the arc-length then the Riemannian gradient of the radius function

is given by

∇r = r′T =
1

2
(N1 +N2).

Therefore,

r′
2
=

1

4
(N1 +N2)

2.

Also,

r′ =
1

2
(T.N1 + T.N2).

Thus

r′ = cos θ,

where θ is the angle between Ni and T , i = 1, 2. If N1 ⊥ N2 then r′2 = 1
2
.

Let γ be a smooth plane curve and suppose that x0 is the centre of a bitangent circle to γ

at x1 and x2. Let γ1 and γ2 be small pieces of γ close to x1 and x2 respectively as shown
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in the figure 2.4. The relation between the arc-lengths of the boundary was studied by

Giblin. Our target is to study the relationship between the arc-lengths of the symmetry set

and that of the boundary.

x1

x2

γ1

γ2
x0

Figure 2.4: The symmetry point and the associated tangency points in the case of curve.

Lemma 2.3.12 Let S be the symmetry set of a plane curve γ and x0 ∈ Sreg and let

x1 ∈ γ1 and x2 ∈ γ2 be the associated tangency points on the boundary. Let s1 and s2 be

the arc-lengths on γ1 and γ2 respectively. Then we have

(1− rκ1)
ds1
ds

= −(1− rκ2)
ds2
ds

where s is the arc-length of a smooth part of S close to x0.

Proof

From definition of symmetry set the part S1 of S associated to γ1 and γ2 is given by

S1(s) = γ1(s1) + r(s1)N1(s1)

= γ2(s2) + r(s2)N2(s2).

Therefore we have

T = T1
ds1
ds

+ r′N1 − rκ1T1
ds1
ds

. (2.6)
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Also, we have

T = T2
ds2
ds

+ r′N2 − rκ2T2
ds2
ds

(2.7)

where T , T1 and T2 are the unit tangents of the symmetry set and the boundary

respectively. Now (2.6)-(2.7) gives the following equation

(1− rκ1)
ds1
ds

T1 − (1− rκ2)
ds2
ds

T2 + r′(N1 −N2) = 0. (2.8)

Now the inner product on both sides of equation 2.8 with T1 − T2 gives the following

(1− rκ1)(1− T1 · T2)
ds1
ds

+ (1− rκ2)(1− T1 · T2)
ds2
ds

= 0.

Since T1 ̸= T2 because of the orientation, then 1− T1 · T2 ̸= 0.

Therefore, (1 − rκ1)
ds1
ds

+ (1 − rκ2)
ds2
ds

= 0. Hence (1 − rκ1)
ds1
ds

= −(1 − rκ2)
ds2
ds

,

which completes the proof. 2

Now we have the following corollary [13, 32].

Corollary 2.3.13 Assume as in lemma 2.3.12. Then

ds2
ds1

= −
(
1− rκ1

1− rκ2

)
.

Proof

The proof of this corollary comes directly from the above lemma. 2

In the next proposition we will give the relationship between the arc-length of the

symmetry set and those on the boundary. First of all we need this lemma.

Lemma 2.3.14 [14] Let S be the symmetry set of a smooth plane curve γ. The tangents

T1 and T2 and normals N1 and N2 of γ at the tangency points associated to a smooth

point x0 ∈ γ are given by

T1 = −
√

1− r′2T − r
′
N,
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T2 =
√

1− r′2T − r
′
N,

N1 = r
′
T −

√
1− r′2N,

and

N2 = r
′
T +

√
1− r′2N

where, T and N are the unit tangent and unit normal of the symmetry set at x0.

Proposition 2.3.15 Let S be the symmetry set of a smooth plane curve γ and s be the

arc-length on Sreg. Then we have

ds1
ds

= −
√
1− r′2

1− rκ1

and
ds2
ds

=

√
1− r′2

1− rκ2

.

Proof

Let S1 be the smooth part of S associated to γ1 and γ2 parametrized by the arc-length s,

thus S1 = γ1 + rN1 which gives that

T = (1− rκ1)
ds1
ds

T1 + r′N1. (2.9)

But from lemma 2.3.14 we have

T1 = −
√

1− r′2T − r′N and N1 = r′T −
√

1− r′2N.

Therefore, substituting in (2.9) we get the following equation

T =

(
−(1− rκ1)

√
1− r′2

ds1
ds

) + r′
2

)
T − r′

(
(1− rκ1)

ds1
ds

+
√

1− r′2
)
N.

Now equating the tangential part we obtain

−(1− rκ1)
√

1− r′2
ds1
ds

+ r′
2
= 1.

Therefore this equation gives
ds1
ds

= −
√
1− r′2

1− rκ1

. (2.10)
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Also, from corollary 2.3.12 we have

(1− rκ1)
ds1
ds

= −(1− rκ2)
ds2
ds

hence from this equation and equation 2.10 we find that

ds2
ds

=

√
1− r′2

1− rκ2

,

and by this the proof is completed. 2

In the following proposition we will turn to the relationship between the singularity of the

radius function and that of the midlocus in the case of plane curve.

Lemma 2.3.16 [13, 32] Given a smooth curve γ with x1 and x2 being points of contact

of bitangent circle, then the midlocus is smooth here provided T1 ̸= −T2 or κ1 + κ2 ̸= 2
r

where, Ti and κi, i = 1, 2 are the tangents and curvatures of γ at x1 and x2.

This lemma tells us conditions for the smoothness of the midlocus. At a smooth point

of the symmetry set the condition T1 ̸= −T2 means that the radius function has no

singularity and this can be obtained from proposition 2.3.5. Thus we can determine the

conditions that allow the midlocus to have a singularity in terms of the singularity of the

radius function.

Proposition 2.3.17 Let S be the symmetry set of a smooth plane curve γ. Let x0 ∈ Sreg.

Then the midlocus is singular at the point associated to x0 if and only if the radius function

has a singularity at x0 and r
′′
(x0) =

1
r(x0)

.

Proof

Let S1 be the smooth part of S close to x0 parametrized by the arc-length s then the

associated midlocus M is given by

M = S1 − rr′T.
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Therefore

M′ = (1− r′
2 − rr

′′
)T − rr′κN.

Now assume that r′
= 0 and r

′′
(x0) =

1
r(x0)

then M′
= 0 which means that the midlocus

is singular. Conversely assume that the midlocus is singular, then the radius function has a

singularity, so from the above equation we have 1−rr
′′
= 0 which implies that r′′

= 1
r
. 2

The above proposition tells us the relationship between the singularity of the radius

function and that of the midlocus. Also, it determines the type of the singularity of the

radius function. Recall that a function f : R −→ R is said to have an A1 singularity at t0

if f ′
(t0) = 0 and f

′′
(t0) ̸= 0.

Corollary 2.3.18 Let S be the symmetry set of a smooth plane curve γ. Let x0 ∈ Sreg. If

the midlocus is singular at the point associated to x0, then the radius function has only

an A1 singularity at x0.

Proof

From proposition 2.3.17 we have if the midlocus is singular then r
′′
= 1

r
and r

′
= 0

which means that the radius function has an A1 singularity. 2

Now we will end this section by calculating the area of the triangle formed by a smooth

symmetry point and its associated tangency points on the boundary.

Let x0 ∈ Sreg, then by theorem 2.3.1 the tangency points are given by

x1 = x0 − r∇r + r

√
1− ∥∇r∥2N,

and,

x2 = x0 − r∇r − r

√
1− ∥∇r∥2N.

Therefore,

x1 − x2 = 2r

√
1− ∥∇r∥2N.



Chapter 2. Symmetry Set in Rn+1 33

This implies

∥x1 − x2∥ = 2r

√
1− ∥∇r∥2.

Also, the height of the triangle in figure 3.2 is given by

h = ∥S −M∥ = r∥∇r∥.

Hence the area of this triangle is given by

A = r2∥∇r∥
√
1− ∥∇r∥2.

x0
xm

x2

r∥∇r∥

x1

r

r

Figure 2.5: Triangle formed by symmetry point and its associated tangency points.

So, we can summarize this in the following proposition.

Proposition 2.3.19 Let S be the symmetry set of a region Ω ⊂ Rn+1 with smooth

boundary X . Let x0 be a smooth point of S, then the area of the triangle formed by

x0 and the associated tangency points is given by:

A = r2∥∇r∥
√
1− ∥∇r∥2.

Corollary 2.3.20 Assume as in proposition 2.3.19. If the radius function has a

singularity, then A = 0.

Proof

If the radius function has a singularity then we have ∇r = 0. This implies that A = 0. 2
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2.4 Singularity of the Radius Function at a Singular

Point of the Symmetry Set

It was pointed out by Giblin that in the case of the plane curve if the symmetry set has a

cusp then the radius function has a singularity. In this section we discuss this phonemena

in the case of higher dimensions and we study the relationship between the singularity of

the radius function and the coincidence of the symmetry point and its associated midlocus

point. Before studying this phonemena we recall that a point x0 of a symmetry set is of

type

• A1A1 = A2
1 if the bitangent hypersphere has an ordinary contact with the boundary

at the associated tangency points, i.e, the hypersphere is not the hypersphere of the

curvature.

• A1Ak≥2 if the bitangent hypersphere has an ordinary contact with the boundary at

one point (A1) and it is the hypersphere of the curvature at the other tangency point

of the boundary (Ak≥2).

• A3 if the hypersphere has a single contact with the boundary. This point is a limiting

case of the two points in the A2
1 case above.

Let S be the symmetry set of a smooth hypersurface X and x1 and x2 be the tangency

points corresponding to x0 ∈ S. Suppose that the contact at x1 is of type A1 and the

contact at x2 is of type Ak≥2 then, the symmetry set is singular at x0. Now we will

investigate the singularity of the radius function. Let X1 ⊂ X and X2 ⊂ X be two pieces

of X around x1 and x2 respectively. Let s = (s1, s2, ..., sn) and t = (t1, t2, ..., tn) be the

local parameters of X1 and X2 since the contact at x1 is of type A1 then using the implicit

function theorem s is a smooth function of t. The part S1 of the symmetry set associated
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to X1 and X2 is given by

S1 = X1 + rN1 = X2 + rN2. (2.11)

From equation 2.11 we have

S1 = X2 + rN2

differentiate this equation with respect to ti we get

∂S1

∂ti
= vi + r

∂N2

∂ti
+

∂r

∂ti
N2, vi =

∂X2

∂ti
.

This equation can be written in vector form

∂S1

∂t
= V − rST

x2
+

∂r

∂t
N2 = (I − rST

x2
)V +

∂r

∂t
N2, (2.12)

where Sx2 is the matrix representation of the shape operator of the boundary at x2,

V =


v1

v2
...

vn

 and
∂r

∂t
=


∂r
∂t1

∂r
∂t2
...
∂r
∂tn

 .

Now applying dot product with N2 to each entry in equation 2.12, we obtain

∂S1

∂t
·N2 =

∂r

∂t
. (2.13)

Also, from equation 2.11 we have

S1 = X1 + rN1. (2.14)

Now differentiate X1 with respect to ti we get

∂X1

∂ti
=

∂X1

∂s1
· ∂s1
∂ti

+
∂X1

∂s2
· ∂s2
∂ti

+ ...+
∂X1

∂sn
· ∂s1
∂ti

=
(

∂s1
∂ti

∂s2
∂ti

· · · ∂sn
∂ti

)


v∗1

v∗2
...

v∗n

 ,
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where v∗i = ∂X1

∂si
. Therefore,

∂X1

∂t
=


∂s1
∂t1

∂s2
∂t1

· · · ∂sn
∂t1

∂s1
∂t2

∂s2
∂t2

· · · ∂sn
∂t2

...
... . . . ...

∂s1
∂tn

∂s2
∂tn

· · · ∂sn
∂tn




v∗1

v∗2
...

v∗n

 = ΓV ∗.

Similarly,
∂N1

∂t
= −ΓST

x1
V ∗,

where Sx1 is the matrix representation of the shape operator of the boundary at x1. Now

differentiating equation 2.14 with respect to t gives

∂S1

∂t
= Γ(I − rST

x1
)V ∗ +

∂r

∂t
N1. (2.15)

Now applying dot product with N1 to each entry in equation 2.15 , we obtain

∂S1

∂t
·N1 =

∂r

∂t
. (2.16)

Therefore, the radius function has a singularity if and only if N1 and N2 are perpendicular

to the set of vectors Θ = ∂S1

∂ti
, i = 1, 2, ..., n.

Therefore, we state the following.

Theorem 2.4.1 Let S be the symmetry set of a smooth hypersurface X ⊆ Rn+1. Let

x0 ∈ S be a singular point of type A1Ak≥2 of the symmetry set. Then the radius function

has a singularity if and only if the unit normals of the tangency points corresponding to

x0 are perpendicular to the tangent space of the symmetry set at x0.

Example 2.4.2 Let γ be a smooth closed curve and S be its symmetry set. Suppose that

x0 ∈ S be an A1A2 point then the symmetry set is a cusp at x0, therefore dS
dt
|x0 = (0, 0)

which is perpendicular to any vector hence the unit normals are perpendicular to this

vector. Thus the radius function has a singularity.



Chapter 2. Symmetry Set in Rn+1 37

Remark 2.4.3 The radius function has no singularity when the symmetry set has an edge

point A3 which is a limiting point of two points of type A1. The normal of the boundary

in this case is tangent the smooth stratum containing A3.

Now we will discuss what happens when the midlocus and the singular point of the

symmetry set coincide.

Proposition 2.4.4 Let S be the symmetry set of a smooth hypersurface X ⊆ Rn+1. Let

x0 ∈ S be a singular point of type A1Ak≥2 of the symmetry set and xm be the associated

midlocus. If x0 and xm coincide then the radius function has a singularity.

Proof

From the definition of the symmetry set we have

x0 = x1 + rN1 = x2 + rN2.

Thus we get

2x0 = x1 + rN1 + x2 + rN2 = 2xm + r(N1 +N2).

Now if x0 = xm, then we have N1 + N2 = 0 and from equations 2.13 and 2.16 we have

2∂r
∂t

= ∂S1

∂t
· (N1 +N2) = 0. Thus ∂r

∂t
= 0. 2

2.5 Creating the Symmetry Set from the Midlocus

In this section we will discuss the possibility of creating the boundary using the

information provided by the midlocus and the radius function. In fact, Peter Giblin and

John Paul Warder [16, 32] created the symmetry set of a plane curve using the midlocus

and radius function. Our task is to generalize this idea to the higher dimensions. Now if

we are given the symmetry set S as a smooth hypersurface parametrized by (x1, x2, ..., xn)
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and let M be the associated smooth midlocus, then from corollary 2.3.3 for each x ∈ S,

the associated midlocus point xm is given by

xm = x+
n∑

i=1

λivi, (2.17)

where vi =
∂S
∂xi

evaluated at x, also, we have

−vj ·

(
n∑

i=1

λivi

)
= rjr, rj =

∂r

∂xj

.

Now from equation 2.17 we have

x− xm = −
n∑

i=1

λivi.

Therefore,

vi · (x− xm) = −vi ·
n∑

i=1

λivi = rir. (2.18)

Now there are a lot of solutions of equation (2.18) i.e., there are many vectors vi ∈ Rn+1

such that the equation holds, but there is only one solution on the form α(x− xm), where

α ∈ R. This solution is of the form:

rir(x− xm)

∥x− xm∥2

provided x ̸= xm. Therefore, we summarize this in the following theorem.

Theorem 2.5.1 Given the midlocus and the radius function (smooth function) describing

the radius of the hypersphere generating each point of the midlocus M of a smooth

hypersurface X in Rn+1. Then the symmetry set associated to this midlocus is a solution

of the PDEs
∂S

∂xi

=
rir(S −M)

∥S −M∥2

provided S ̸= M, where ri =
∂r

∂xi

.
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Now we discuss this theorem in R2 and R3. Now let M(t) = (m1(t),m2(t)) be the

midlocus of a smooth curve in R2 and r(t) be the smooth function describing the radius

of each circle generating each point of M. The above theorem indicates that

dS

dt
=

(
ds1
dt

,
ds2
dt

)
=

rr
′
(S −M)

∥S −M∥2

=

(
rr

′
(s1 −m1)

(s1 −m1)
2 + (s2 −m2)

2 ,
rr

′
(s2 −m2)

(s1 −m1)
2 + (s2 −m2)

2

)
.

Now put X = s1 −m1, Y = s2 −m2 and rr
′
= R, then we have X

′
=

RX

X2 + Y 2
−m

′
1

and Y
′
=

RY

X2 + Y 2
− m

′
2 which are the same ordinary differential equations obtained

by Giblin and Warder [16, 32] and an interesting example can be found in [16]. Now

we discuss this theorem in R3 and we will have partial differential equations instead of

ordinary differential equations. Let M(x, y) = (m1,m2,m3) be the midlocus of a smooth

surface in R3 and r(x, y) be the radius function which is a smooth function describing

the radius of each sphere generating each point of M. Our target is to find the associated

symmetry set S(x, y) = (s1, s2, s3), and from theorem 2.5.1 we can create the partial

differential equations which hold for the symmetry set, thus we have

∂S

∂x
=

rrx(S −M)

∥S −M∥2
and

∂S

∂y
=

rry(S −M)

∥S −M∥2
.

Therefore,

∂si
∂x

=
rrx(si −mi)
3∑

j=1

(sj −mj)
2

and
∂si
∂y

=
rry(si −mi)
3∑

j=1

(sj −mj)
2

, i = 1, 2, 3.

Now put Fi = si −mi, j = 1, 2, 3, then we have

∂Fi

∂x
=

rrxFi

3∑
j=1

F 2
j

− ∂mi

∂x
and

∂Fi

∂y
=

rryFi

3∑
j=1

F 2
j

− ∂mi

∂y
.

After solving these PDEs the required symmetry set is given by

S = F +M = (F1 +m1, F2 +m2, F3 +m3).
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Chapter 3

Centroid Set, Skeletal Structure and the

Singularity of the Radius Function

3.1 Introduction

The symmetry set of a hypersurface X ⊂ Rn+1 and its associated midlocus were

studied in chapter 2 as well as the impact of the singularity of the radius function on

the relationship between them. In this chapter we will study a more general concept

than the midlocus. Precisely this chapter consists of four main parts. In the first part the

centroid set associated to a smooth submanifold M of Rn+1 will be defined. The centroid

set is more general than the midlocus and it depends on a multivalued radial vector field

U defined on M such that each value of U forms a smooth radial vector field on M and

has associated radius function. The impact of the singularity of the radius function on

the relationship between M and the associated centroid set will be studied in this part

(Theorem 3.2.9 and Theorem 3.2.12). Moreover, the condition for the centroid set to

have a singularity when the radius function has a singularity will be studied (Proposition

3.2.10). The second main part of this chapter deals with the skeletal structure and the

singularity of the radius function. In this part the relationship between the singularity of
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the radius function and the orthogonality of the radial vector field on the tangent space of

the skeletal structure will be studied (Proposition 3.3.2). Furthermore, the relationship

between a smooth point of a skeletal structure and its associated midlocus point will be

considered when the radius function has a singularity as well as the relationship between

the tangent spaces of the boundary at the tangency points. The third part of this chapter

deals with the pre-medial axis of a smooth hypersurface. In this part the pre-medial

axis is defined and the relationship between the parameters of a skeletal structure in a

neighbourhood of a smooth point and the parameters of the boundary in a neighbourhood

of the associated point will be studied (Lemma 3.4.2). The main result of this part is

(Proposition 3.4.3) which gives the relationship between the parameters of the boundary

of a Blum medial axis at the tangency points associated to a smooth point. The fourth part

of this chapter deals with the classification of the singularity of the midlocus associated

to a skeletal structure in R3. The impact of the eigenvalues of the Hessian of the radius

function on the corank of the singularity of the midlocus will be studied (Theorem 3.5.6).

The main result of this part is (Theorem 3.5.12) which gives the necessary and sufficient

condition for the midlocus to have a crosscap singularity.

3.2 Centroid Points

Let M be a smooth submanifold of Rn+1 such that on this submanifold we pick a

multivalued vector field U = (u1, u2, ..., ul) such that each Ui forms a smooth vector

field on M . We put ui = riUi where Ui is a smooth unit vector field on M and ri is a

smooth function on M i.e., ri : M → R, and we assume that ri > 0. Now let Tx0M be

the tangent space of M at x0 and v ∈ Tx0M . For each smooth vector field Ui we equip

M with the 1-form

ηi(v) = dri(v) + Ui · v,
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where dri(v) is the directional derivative of ri in the direction of v. Now since M is

a smooth submanifold of Rn+1 it has a Riemannian structure induced from Rn+1 and

the tangent space Tx0M of M at x0 ∈ M is considered to be embedded in the tangent

space Tx0Rn+1 of Rn+1 at x0. Recall that the directional derivative of a smooth function

on a Riemannian manifold in the direction of a tangent vector vj is given by dri(vj) =

⟨∇ri, vj⟩, where ∇ri is the Riemannian gradient of ri, and ⟨, ⟩ is the Euclidean inner

product. Therefore, ηi can be written as

ηi(vj) = ⟨∇ri, vj⟩+ ⟨Ui, vj⟩ = ⟨∇ri + Ui, vj⟩ .

Definition 3.2.1 Let M be a smooth k-dimensional submanifold of Rn+1, then

1. The tangent space to M at x0 ∈ M is the vector subspace Tx0M ⊂ Tx0Rn+1, which

is defined by

Tx0M := dfp({p} × Rk) = dfp(TpRk)

for a parametrization f : U −→ M with f(p) = x0, where U ⊆ Rk is an open

set and df is the differential of f . The vector space Tx0M does not depend on the

choice of f .

2. The normal space to M at x0 ∈ M is the vector subspace Nx0M ⊂ Tx0Rn+1, which

is the orthogonal complement of Tx0M :

Tx0Rn+1 = Tx0M ⊕Nx0M.

Here ⊕ denotes the orthogonal direct sum with respect to the Euclidean inner

product.

Lemma 3.2.2 Let M be a smooth submanifold of Rn+1 as above, then the 1-form ηi

vanishes at x0 ∈ M if and only if ∇ri + Ui ∈ Nx0M , where Nx0M is the normal space

of M at x0.
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Proof

Recall that a vector z ∈ Tx0Rn+1 is a normal vector of a submanifold M at x0 if and only

if ⟨z, vj⟩ = 0 for all vj ∈ Tx0M . Thus, ηi(vj) = ⟨∇ri + Ui, vj⟩ = 0 for all j if and only

if (∇ri + Ui) ∈ Nx0M , where Nx0M is the normal space of M at x0. 2

Remark 3.2.3 Now let Ui = UT
i + UN

i , where UT
i is the tangential component of Ui and

UN
i is the normal component. Then, the 1-form ηi = 0 if and only if UT

i = −∇ri.

Theorem 3.2.4 Let (M,U) be a smooth submanifold of Rn+1 and multivalued vector

field as above such that ηi = 0 at x0 ∈ M . Then

1. ri has a singularity at x0 if and only if Ui(x0) ∈ Nx0M .

2. If ri has a singularity at x0 for all i, then
l∑

i=1

Ui(x0) ∈ Nx0M .

Proof

1. Since ηi = 0, then ∇ri + Ui ∈ NM , by lemma 3.2.2 ri has a singularity if and only if

∇ri = 0 if and only if Ui ∈ NM .

2. Follows trivially from 1. 2

Corollary 3.2.5 Let (M,U) be a smooth submanifold of Rn+1 and multivalued vector

field as above such that ηi = 0 and ri = r for all i, then the following are equivalent

1. r has a singularity at x0.

2.
l∑

i=1

Ui(x0) ∈ Nx0M .
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Proof

(1 ⇔ 2) Since ηi = 0, then (∇r + ui) ∈ NM . Thus (l∇r +
l∑

i=1

Ui) ∈ NM , hence r has

a singularity if and only if ∇r = 0 if and only if
l∑

i=1

Ui ∈ NM . 2

Definition 3.2.6 Let M be a smooth submanifold of Rn+1 such that for each x0 ∈ M

there exist a multivalued vector field U = (u1, u2, ..., ul) such that each ui = riUi forms a

smooth vector field on M , where Ui is a smooth unit vector field on M and ri is a smooth

real valued function on M . We define the centroid point associated to x0 by

xc = x0 +
1

l

l∑
i=1

ri(x0)Ui(x0).

The centroid set of (M,U) is given by

C(M,U) = {y ∈ Rn+1|y = x+
1

l

l∑
i=1

ri(x)Ui(x), for some x ∈ M}.

Example 3.2.7 Let S be the smooth part of the symmetry set of a smooth boundary X ,

and r be the radius function, then for each x0 ∈ S, we can define the multivalued vector

field U = (rU1, rU2) to be U1 = −r∇r + r
√
1− ∥∇r∥2N on one side of S and U2 =

−r∇r − r
√
1− ∥∇r∥2N on the other side as shown in the figure 3.1, where N is the

unit normal of S at x0 and ∇r is the Riemannian gradient of the radius function r. It is

obvious to observe that in this case l = 2, r1 = r2 and the centroid point is nothing but

the midlocus point. An example of l = 3 is the Y-junction in a skeletal structure.
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Y − junction

U1

U3

U2

N
N U1 = −∇r +

√
1− ∥∇r∥2N

U2 = −∇r −
√
1− ∥∇r∥2N

xm = xcx0

S

Figure 3.1: Figure of example 3.2.7.

Now we will give the definition of the centroid set associated to a skeletal set.

Definition 3.2.8 Let (S, U) be a skeletal set and multivalued radial vector field with

stratification of the form S = {Mλ}λ∈Λ for some set Λ, and U = {Uλ}λ∈Λ, then the

centroid set associated to S is defined by

C(S, U) =
∪
λ∈Λ

C(Mλ, Uλ).

Example 3.2.9 Let S = R ⊂ R2 such that S = {(x, 0) | x ∈ R} with stratification S =

{{0},R \ {0}} and uR\{0} = ±(0, 1) and u{0} = {(0, 1), (0,−2)}. Then C({0}, u{0}) =

{(0,−1)} and C(R \ {0}, uR\{0}) = R \ {0}. Thus C(S, U) = R \ {0} ∪ {(0,−1)}.

Observe that C({0}, u{0}) * C(R \ {0}, uR\{0}), where C denotes the closure of C.

C({0}, u{0})

{0}

Figure 3.2: A schematic diagram of example 3.2.9.
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From example 3.2.9 we can see that if the stratum X is in the closure of Y , then

C(X, uX) is not necessarily in the closure of C(Y, uY ).

Now we will study the impact of the singularity of the radius function on the relationship

between a point x0 ∈ M and its associated centroid point. In fact we will assume as in

corollary 3.2.5, i.e., we will have the same radius function and in this case we have 1-form

η on M .

Theorem 3.2.10 Let (M,U) be a smooth submanifold of Rn+1 and multivalued vector

field as in corollary 3.2.5. Let x0 ∈ M and xc be its associated centroid point, then

1. if x0 = xc, then the radius function has a singularity at x0.

2. xc − x0 ∈ Nx0M if and only if the radius function has a singularity at x0.

Proof

1. Assume that x0 = xc, then from the definition of the centroid set we have 1
l

l∑
i=1

riUi =

0, but by our assumption we have ri = r and the 1-form η vanishes in a neighbourhood

of x0. Now for any vj ∈ Tx0M , then r
l

l∑
i=1

Ui · vj = 0. Thus rdr(vj) = 0 and hence the

radius function has a singularity at x0.

2. Since we have the same radius function, then the centroid point xc associated to x0 is

given by

xc = x0 − r∇r +
r

l

l∑
i=1

UN
i .

Thus xc − x0 ∈ Nx0M if and only if ∇r = 0 if and only if r has a singularity at x0. 2

The above theorem is a generalization of proposition 2.4.4. Now let Mk (k indicates the

dimension of M ) be a smooth submanifold of Rn+1. For any point x0 ∈ Mk we put

{v1, v2, ..., vk} as a basis for the tangent space of Mk at x0 and {wN
1 , w

N
2 , ..., w

N
m} is a
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basis for the normal space of Mk. In the following proposition the radius function is the

same for each ui of multivalued radial vector field U = (u1, u2, ..., ul) and the sum of

normal parts of ui is zero, i.e., the centroid point associated to x0 is given by

xc = x0 − r∇r. (3.1)

Moreover, V is the matrix with i-th row entry vi, N is the matrix with i-th row wN
i , Hr

is the Hessian matrix of r, β is the matrix of the normal coefficients of
∂∇r

∂V
, dr(V ) is a

column matrix with i-th entry
∂r

∂vi
, and Vc is the Jacobian matrix of the map

x 7−→ x− r(x)∇r(x), x ∈ Mk and all those terms are evaluated at x0.

Proposition 3.2.11 Let (Mk, U) be a smooth submanifold of Rn+1 and multivalued

vector field such that the radius function is the same for each ui and η = 0, and the

sum of the normal parts of U = (u1, u2, ..., ul) is zero. Then the centroid is singular at xc

associated to a point x0 ∈ Mk if and only if the rank of the matrix

(V − dr(V )∇r − rHT
r V − rβN)

is less than k.

Proof

In this case the centroid point associated to a given point x0 ∈ Mk is given by

xc = x0 − r∇r.

Thus if {v1, v2, ..., vk} is a basis for the tangent space of Mk at x0, then

vcj = vj −
∂r

∂vj
∇r − r

∂∇r

∂vj
, j = i, 2, ..., k.

Here vcj is the directional derivative of the map x 7−→ x − r(x)∇r(x), x ∈ Mk in the

direction of vj . This equation can be written in vector form as the following

Vc = V − dr(V )∇r − rHT
r V − rβN. (3.2)
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Thus the centroid set is singular if and only if the rank of the matrix

V − dr(V )∇r − rHT
r V − rβN is less than k. 2

Corollary 3.2.12 Let (Mk, U) be a smooth submanifold of Rn+1 as in proposition 3.2.11.

If the radius function has a singularity at x0, then the centroid set is singular at xc if and

only if 1
r

is an eigenvalue of Hr.

Proof

If the radius function r has a singularity, then
∂

∂vj
(∇r) ∈ Tx0M

k, thus β = 0. Therefore,

Vc = (I − rHT
r )V.

Now since V is a (k × (n + 1)) matrix with rank k and (I − rHT
r ) is a k × k matrix,

then the rank of Vc is equal to the rank of (I − rHT
r ). Thus the centroid is singular

if and only if the rank of (I−rHT
r ) is less than k if and only if 1

r
is an eigenvalue of Hr. 2

Now using the new set-up of the centroid point the natural question is what is the impact of

the singularity of the radius function on the relationship between a given point x0 ∈ Mk,

and its associated centroid point? The answer of this question is given in the following

theorem which is a generalization of theorem 2.3.4.

Theorem 3.2.13 Let (Mk, U) be a smooth submanifold of Rn+1 and multivalued vector

field as in proposition 3.2.11. Let x0 ∈ Mk be any point and xc its associated centroid

point, then the radius function r has a singularity at x0 if and only if x0, and xc coincide.

Proof

The centroid point xc associated to a point x0 ∈ Mk is given by equation 3.1, thus using

theorem 2.3.4 the result holds. 2
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3.3 The Skeletal Structure and the Singularity of the

Radius Function

In the previous sections of this chapter the concept of the centroid set has been introduced

and its singularity has been discussed in a general case. Also, the impact of the singularity

of the radius function on the singularity of the centroid has been investigated and we

found that the singularity of the radius function occurs when the radial vectors all lie

in the normal space. In this section such a study will be carried out for the case of the

skeletal structure. It is important to note that the centroid in the previous sections does

not have a boundary but in the case of the midlocus associated to a skeletal structure

with a smooth boundary it is subjected to the condition that allows the radial map to be a

diffeomorphism.

Lemma 3.3.1 Let (S, U) be a skeletal structure of a region Ω in Rn+1 with smooth

boundary X and let x0 ∈ S be a non-edge point. Let U be a smooth value (on a non-edge

local manifold component Sα), for which 1
r

is not an eigenvalue of SV at x0. Then the

radius function r has a singularity at x0 if and only if

∂Ψ1

∂vi
· U1 = vi · U1, i = 1, 2, ..., n.

Proof

James Damon pointed out in [7] that if 1
r

is not an eigenvalue of SV at x0, then Ψ1 is a

local diffeomorphism. Therefore, we choose a neighbourhood W of the local manifold

component Sα so that Ψ1 is a diffeomorphism on W . Therefore, for v ∈ Tx0Sα we have

∂Ψ1

∂v
= v + dr(v)U1 + r

∂U1

∂v
.

Therefore,

dr(v) =
∂Ψ1

∂v
· U1 − v · U1.
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Hence dr(v) = 0 if and only if ∂Ψ1

∂v
· U1 = v · U1 which completes the proof. 2

In the following proposition we will study the relationship between the singularity of the

radius function and the orthogonality of the radial vector field on the skeletal structure.

Also, the relationship between the tangent space of the skeletal structure and its associated

tangent space of the boundary will be studied in the case when the radius function has a

singularity.

Proposition 3.3.2 Suppose (S, U) is a skeletal structure and let x0 be a non-edge point.

Let U be a smooth value for which 1
r

is not an eigenvalue of the radial shape operator

and the compatibility 1-form ηU vanishes at x0. Then the following are equivalent.

1. The radius function has a singularity at x0.

2. The radial vector field U is orthogonal to the tangent space Tx0S of S at x0.

3. The space Tx0S is parallel to the associated tangent space of the boundary Tx′X .

Proof

(1⇔ 2) Can be proved directly from theorem 3.2.4.

(1⇔ 3) Assume that 1
r

is not an eigenvalue of SV at x0, then Ψ1 is a local diffeomorphism.

Therefore, we choose a neighbourhood W of the local manifold component Sα so that Ψ1

is a diffeomorphism on W . Let B = {v1, v2, ..., vn} be a basis for the tangent space

Tx0Sα. Then, {v′
1, v

′
2, ..., v

′
n} such that

v
′

i =
∂Ψ1

∂vi
= vi + dr(vi)U1 + r

∂U1

∂vi
(3.3)

is a basis for the tangent space of the boundary. Now the dot product with U1 for both

sides of equation 3.3, gives

v
′

i · U1 =
∂Ψ1

∂vi
· U1 = vi · U1 + dr(vi) = ηU(vi).
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From the definition, the compatibility 1-form vanishes if and only if

ηU(v) = v · U + dr(v) = 0,

which means that the radial vector field is perpendicular to the tangent space of the

boundary. Now assume that the radius function has a singularity at x0, then vi · U1 = 0

for i = 1, 2, ..., n, thus the tangent spaces Tx
′X and Tx0S are parallel. Conversely assume

Tx
′X and Tx0S are parallel, then U1 is perpendicular to Tx0S, and from the compatibility

condition the radius function has a singularity. 2

Corollary 3.3.3 Suppose Ω ⊆ Rn+1 is a region with smooth boundary X and Blum

medial axis and radial vector field (S, U). Let x1 ∈ X be a point for which the projection

on the medial axis along the normal to X is a local diffeomorphism (with x1 mapping to

x0 in S). Then the radius function r has a singularity if and only if U ⊥ Tx0S.

Proof

By the Blum condition we have U ⊥ X and since the projection along normal is a local

diffeomorphism, then its inverse, which is in this case Ψ1, is a local diffeomorphism.

Also, 1
r

is not an eigenvalue of SV . Hence the result comes directly from proposition. 2

Now we will generalize what Peter Giblin pointed out when the radius function has a

singularity in the case of symmetry sets in R3 [11] to skeletal structures in Rn+1. In

general the radius functions need not to be same at the both sides of a skeletal structure on

a neighbourhood of a smooth point. But if we have the same radius function on both sides

of the skeletal structure, does the singularity of the radius function affect the relationship

between the skeletal point and its associated midlocus? Also, what is the relationship

between the tangent spaces of the boundary at the tangency points in the case when the

radius function has a singularity? The answer of these questions is given in the following.
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Proposition 3.3.4 Let (S, U) be a skeletal structure in Rn+1 such 1
r

is not an eigenvalue

of the radial shape operators and the compatibility 1-form vanishes identically on a

neighbourhood of a smooth point x0 ∈ S and suppose that the radius function is the

same for the two sides of S on a neighbourhood of x0. Then the following are equivalent

1. The radius function has a singularity at x0.

2. x0 and the associated midlocus point xm coincide.

3. The tangent spaces of the boundary at the tangency points are parallel.

Proof

(1⇔2) can be proved directly from theorem 3.2.13.

(1⇔3) Let Ψ1 be the radial map on one side of S and Ψ2 be the radial map on the other

side of S. Since 1
r

is not an eigenvalue of the radial shape operator on both sides then Ψ1

and Ψ2 are local diffeomorphisms at x0. Therefore, we can choose a neighbourhood W

of x0 so that Ψ1 and Ψ2 are diffeomorphisms on W . Let B = {v1, v2, ..., vn} be a basis

for Tx0S then, B1 = {v′
1, v

′
2, ..., v

′
n} and B2 = {v′′

1 , v
′′
2 , ..., v

′′
n} are bases for the tangent

spaces of the boundary at the tangency points such that

v
′

i =
∂Ψ1

∂vi
= vi + dr(vi)U1 + r

∂U1

∂vi
,

and

v
′′

i =
∂Ψ2

∂vi
= vi + dr(v)U2 + r

∂U2

∂vi
,

where U1 is the smooth value of the unit radial vector field on one side of S and U2 is the

smooth value of the radial vector field on the other side. Now from proposition 3.3.2 we

have that Tx0S is parallel to the tangent spaces of the boundary at the tangency points,

thus the tangent spaces of the boundary at the tangency points are parallel. 2

From this proposition we can see the impact of the singularity of the radius function on
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the relationship between the radial vector field and the normal of the skeletal structure at

a smooth point (see figure 3.3).

Corollary 3.3.5 Suppose Ω ⊆ Rn+1 is a region with smooth boundary X and Blum

medial axis and radial vector field (S, U). Let x1 and x2 be two points on X for which the

projections onto the medial axis along normals are local diffeomorphisms (with x1 and

x2 mapping to x0 ∈ S). Then the following are equivalent

1. The radius function has a singularity.

2. x0 and the associated midlocus xm coincide.

3. The tangent spaces of the boundary at x1 and x2 are parallel.

Proof

By Blum condition we have U ⊥ X and since the projections along the normals are

local diffeomorphisms. Then, their inverses which are in this case Ψ1 and Ψ2 are local

diffeomorphisms. Thus, 1
r

is neither an eigenvalue of SV1 nor SV2 , where SV1 (resp.

SV2) is the matrix representing the radial shape operator on one side (resp. the matrix

representing the radial shape operator on the other side). Therefore, we can apply

proposition 3.3.4. 2

The radius function has a singularity

N
U1

U2

N = U1

−N = U2−N

Tx0S

x0 Tx0Sx0

Figure 3.3: The case when the radius function has a singularity.
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In proposition 3.3.4 we discussed the effect of the singularity of the radius function

on the relationship between a smooth skeletal point and the associated midlocus. But,

we assume that the radius functions are same for the two sides of the skeletal set in a

neighbourhood of a smooth point. The logical question is : given a smooth skeletal point,

when does this point and its associated midlocus coincide? The answer of this question

is given in the following proposition.

Proposition 3.3.6 Let (S, U) be a skeletal structure and x0 ∈ S be a smooth point. Then,

x0 and the associated midlocus coincide if and only if r1(x0) = r2(x0) and U1(x0) =

−U2(x0).

Proof

In this case the midlocus is nothing but the centroid point, thus

xm = x0 +
1

2
(r1(x0)U1(x0) + r2(x0)U2(x0)).

Now assume that x0 and the associated midlocus coincide, then we have

r1(x0)U1(x0) + r2(x0)U2(x0) = 0.

Therefore, r1U1 = −r2U2 which implies that

| r1U1 |=| −r2U2 | . (3.4)

Now since U1 and U2 are unit vectors and r1 and r2 are positive. Then equation 3.4 holds

when r1 = r2 and U1 = −U2. The converse is obvious. 2

Lemma 3.3.7 Let (S, U) be a skeletal structure such that the compatibility condition

holds on a neighbourhood of a smooth point x0 ∈ S. If the radius function has a

singularity, then AV = 0.
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Proof

Let {v1, v2, ..., vn} be a basis for the tangent space of the skeletal set at x0. James Damon

shows in [7] that AV = ST
V V · U1 and since the compatibility condition holds, then

V · U = −dr(V ), thus AV = −STdr. If the radius function has a singularity we have

AV = 0. 2

Now we will define a function that plays a central role in the relationship between the

matrices representing the radial shape operator and the geometric shape operator of the

skeletal structure. Now let (S, U) be a skeletal structure in Rn+1. Define the function

ρ : S −→ R

by

ρ = U1 ·N, (3.5)

where N is the unit normal of S at x0 (x0 is a non-edge point). Originally this function

was introduced by James Damon [8] and he called it the normal component function for

U1. Let ω = {v1, v2, ..., vn} be a basis for the tangent space of S at x0 (for a non-edge

singular point ω is a basis for the limiting tangent space). Differentiate equation 3.5 with

respect to vi we obtain

∂ρ

∂vi
=

∂U1

∂vi
·N +

∂N

∂vi
· U1, i = 1, 2, ..., n.

This equation can be written in vector form by

∂ρ

∂V
=

∂U1

∂V
·N +

∂N

∂V
· U1

= (AVU1 − ST
V V ) ·N − ST

mV · U1

= AVU1 ·N − ST
mV · U1

= ρAV − ST
mV · U1
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= (ρST
V − ST

m)V · U1,

where SV (resp. Sm) is the matrix representing the radial shape operator (resp. the

differential geometric shape operator) on S and

V =


v1

v2
...

vn

 and dρ(V ) =


dρ(v1)

dρ(v2)
...

dρ(vn)

 .

Therefore, we can summarize this in the following proposition.

Proposition 3.3.8 Let (S, U) be a skeletal structure in Rn+1. Let x0 ∈ S (x0 be a non-

edge point ) and define ρ = U1 ·N where N is the unit normal of S at x0. Then

∂ρ

∂V
= (ρST

V − ST
m)V · U1,

where SV and Sm are the matrices representing the radial shape operator and the

differential geometric shape operator of S at x0 respectively.

Corollary 3.3.9 Let (S, U) be a skeletal structure such that for a choice of smooth value

of the radial vector field U the compatibility 1-form ηU vanishes in a neighbourhood of a

non-edge point x0. Define the function ρ as in proposition 3.3.8, then

∂ρ

∂V
= dρ(V ) = −(ρST

V − ST
m)dr(V ).

Proof

Since the compatibility condition holds, then ηU = 0. Therefore,

0 = dr(vi) + vi · U1, i = 1, 2, ..., n.

Thus

dr(V ) = −V · U1.



Chapter 3. Centroid Set, Skeletal Structure and the Singularity of the Radius Function 57

Hence

dρ(V ) = −(ρST
V − ST

m)dr(V ).

Therefore, the proof is completed. 2

Corollary 3.3.10 Let (S, U) be a skeletal structure as in corollary 3.3.9. If the radius

function has a singularity then ρ has a singularity but the converse is not true.

Proof

If the radius function has a singularity, then it is obvious that ρ has a singularity. The

converse is not true (see example 3.3.12 ). 2

Corollary 3.3.11 Assume as in corollary 3.3.9. If the radius function r has no singularity

and ρ has a singularity at x0, then ρ(x0) is a generalized eigenvalue of the pair (Sm, SV ).

Proof

Recall that a ̸= 0 is a generalized eigenvalue of the pair (A,B) if det(A − aB) = 0.

Now assume that the radius function has no singularity at x0 and the function ρ has a

singularity, then we have

0 = −(ρST
V − ST

m)dr(V )

or

0 = (ρST
V − ST

m)dr(V )

or

0 = (ST
m − ρST

V )dr(V )

and since dr(V ) ̸= 0, then the matrix (Sm − ρSV )
T is not invertible.

i.e., det(Sm − ρSV ) = 0. Thus ρ is a generalized eigenvalue of the pair (Sm, SV ). 2
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Example 3.3.12 Let (S, U) be a skeletal structure in R3 and

s1(x, y) = (x, y,
1

2
κ1x

2 +
1

2
κ2y

2 + h.o.t.) ⊂ Sreg

and let r(x, y) = r0 + ax + 1
2
by2, (a, b ∈ R, s.t a2 < 1) be the radius function we define

the unit radial vector field by

U1 = −∇r +

√
1− ∥∇r∥2N,

where ∇r is the Riemannian gradient of r and N is the unit normal of s1. In this case the

compatibility condition holds. Now at the origin, direct calculations show that

ρ =
√
1− a2, dr =

 a

0

 , dρ =

 0

0

 , ST
m =

 κ1 0

0 κ2

 and

ST
V =

 κ1√
1− a2

0

0 b+ κ2

√
1− a2

 .

Now

−(ρST
V − ST

m)dr = −

 0 0

0 −κ2a
2 + b

√
1− a2

 a

0

 =

 0

0

 = dρ.

It is clear that if a ̸= 0, then the radius function has no singularity, but as shown from the

calculations ρ has a singularity at the origin which means that the singularity of ρ does not

imply the singularity of the radius function and this supports our result in corollary 3.3.10.

Moreover, at the origin ρ is a generalized eigenvalue of the pair (Sm, SV ).

Corollary 3.3.13 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊂ Rn+1 with smooth boundary X . Let x0 ∈ S be a non-edge point then

dρ(V ) = −(ρST
V − ST

m)dr(V ).
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Proof

Since S is a Blum medial axis, then by Blum condition the radial vector field is

perpendicular to the boundary. Therefore, ηU = 0. Thus, dr(V ) = −V · U1 which

implies that

dρ(V ) = −(ρST
V − ST

m)dr(V ).

Thus the proof is completed. 2

3.4 Pre-medial Axis

The pre-symmetry sets of 2D and 3D shapes had been studied by Giblin and Diatta

[10]. In this section we study the relationship between the parameters of the skeletal

structure in a neighbourhood of a smooth point and the parameters of the boundary in

a neighbourhood of the associated point. By this way we are able to transfer to the

relationship between the parameters of the boundary.

Definition 3.4.1 Given a smooth hypersurface X ⊂ Rn+1, the pre-symmetry set is the

closure of the set of pairs of distinct points (p, q) ∈ X × X for which there exists a

hypersphere tangent to X at p and at q.

Lemma 3.4.2 Let (S, U) be a skeletal structure of a region Ω ⊂ Rn+1 with smooth

boundary X such that for a choice of smooth value of U the compatibility condition holds

and 1
r

is not an eigenvalue of the radial shape operator Srad. Let x0 be a smooth point of

S and ε0(x0) ⊂ S be a neighbourhood of x0. Also, let ε1(x1) ⊂ X be a neighbourhood

of x1 = x0 + rU1. If ε0(x0) parametrized by (s1, s2, ..., sn) and ε1(x1) parametrized by

(t1, t2, ..., tn), then the map:

φ : (s1, s2, ..., sn) 7−→ (t1, t2, ..., tn)
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is a local diffeomorphism.

Proof

From the boundary point definition we have x1 = x0+rU1 and since 1
r

is not an eigenvalue

of the radial shape operator Srad, then the radial map is a diffeomorphism. As a notation

let ∂x1

∂si
= ∂ε1

∂s1
|x1 . Therefore, we have

v
′

1 =
∂x1

∂s1
=

∂x1

∂t1

∂t1
∂s1

+
∂x1

∂t2

∂t2
∂s1

+ ...+
∂x1

∂tn

∂tn
∂s1

= v1 +
∂r

∂s1
U1 + r

∂U1

∂s1

or

(
∂t1
∂s1

∂t2
∂s1

. . . ∂tn
∂s1

)


v
′
1

v
′
2

.

.

.

v
′
n


= v1 +

∂r

∂s1
U1 + r

∂U1

∂s1
.

Therefore, 

∂t1
∂s1

∂t2
∂s1

· · · ∂tn
∂s1

∂t1
∂s2

∂t2
∂s2

· · · ∂tn
∂s2...

... . . . ...
∂t1
∂sn

∂t2
∂sn

· · · ∂tn
∂sn




v

′
1

v
′
2

...

v
′
n

 = V + dr(V )U1 + r
∂U1

∂V
.

Now since the radial map is a local diffeomorphism then the matrix

A = ΓV
′
=



∂t1
∂s1

∂t2
∂s1

· · · ∂tn
∂s1

∂t1
∂s2

∂t2
∂s2

· · · ∂tn
∂s2...

... . . . ...
∂t1
∂sn

∂t2
∂sn

· · · ∂tn
∂sn




v

′
1

v
′
2

...

v
′
n


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has a maximal rank, i.e., rank(A) = n. Also, since the boundary X is smooth then the

matrix V
′ has rank n. Therefore, rank(A) = rank(Γ) = n. Hence the map

φ : (s1, s2, ..., sn) 7−→ (t1, t2, ..., tn)

is a local diffeomorphism. 2

Proposition 3.4.3 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊂ Rn+1 with smooth boundary X . Let x0 be a smooth point of S and ε0(x0) ⊂ S be

a neighbourhood of x0. Also, let ε1(x1) ⊂ X be a neighbourhood of x1 = x0 + rU1. If

ε0(x0) parametrized by (s1, s2, ..., sn) and ε1(x1) parametrized by (t1, t2, ..., tn), then the

map:

φ : (s1, s2, ..., sn) 7−→ (t1, t2, ..., tn)

is a local diffeomorphism.

Proof

Since we are in the Blum case the compatibility condition holds and 1
r

is not an eigenvalue

of the radial shape operator. Therefore, we can apply lemma 3.4.2. 2

Lemma 3.4.2 and proposition 3.4.3 give us enough tools to study the relationship between

the boundary parameters at the tangency points associated to a smooth point on the medial

axis.

Proposition 3.4.4 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊂ Rn+1 with smooth boundary X . Let x1 and x2 be the tangency points associated to

a smooth point in x0 ∈ S with neighbourhoods ε1(x1) and ε2(x2) respectively. If ε1(x1)

parametrized by (s1, s2, ..., sn) and ε2(x2) parametrized by (t1, t2, ..., tn), then the map:

φ : (s1, s2, ..., sn) 7−→ (t1, t2, ..., tn)
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is a local diffeomorphism.

Proof

Let ε0(x0) be a neighbourhood of x0 ∈ S parametrized by (z1, z2, ..., zn). Then by

proposition 3.4.3

φ1 : (z1, z2, ..., zn) 7−→ (s1, s2, ..., sn)

and

φ2 : (z1, z2, ..., zn) 7−→ (t1, t2, ..., tn)

are local diffeomorphism. But

φ = φ2 ◦ φ−1
1 .

Therefore, the map

φ : (s1, s2, ..., sn) 7−→ (t1, t2, ..., tn)

is a local diffeomorphism. 2

3.5 Singularity of the Midlocus in the Case of Skeletal

Structure in R3

In the rest of this chapter we focus on the singularity of the midlocus in R3. Precisely

we take a smooth point x0 ∈ Sreg and we take M(x, y) as a local parametrization of the

smooth stratum containing x0 around x0. In fact, we will study corank one singularities

and to do so we need a general form of the midlocus to deal with and lemma 3.5.1 fulfils

this need.
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Note: In this section we are dealing with the case when the radius function is the same for

both sides of M and the compatibility condition holds and in this case the midlocus point

associated to x0 is given by xm = x0 − r(x0)∇r(x0).

Lemma 3.5.1 Let M(x, y) = (x, y, f(x, y)) be a local parametrization of a smooth

stratum of skeletal set around a smooth point x0 ∈ Sreg and r(x, y) be the radius function,

then the midlocus is given by M(x, y) = (g, h, l), where

g =
x+ xf 2

x + xf 2
y − rrx − rrxf

2
y + rryfxfy

1 + f 2
x + f 2

y

,

h =
y + yf 2

x + yf 2
y − rry − rryf

2
x + rrxfxfy

1 + f 2
x + f 2

y

,

and

l =
f + ff 2

x + ff 2
y − rrxfx − rryfy

1 + f 2
x + f 2

y

.

Proof

Let M(x, y) = (x, y, f(x, y)) and r be the radius function, then the midlocus point xm

associated to x0 ∈ M is given by xm = x0 − r∇r, ∇r = drT I−1
m V , where

V =

 v1

v2

 =

 1 0 fx

0 1 fy

 ,

and

Im =

 1 + f 2
x fxfy

fxfy 1 + f 2
y

 .

Thus

I−1
m =


1 + f 2

y

1 + f 2
x + f 2

y

−fxfy
1 + f 2

x + f 2
y

−fxfy
1 + f 2

x + f 2
y

1 + f 2
x

1 + f 2
x + f 2

y

 .

Therefore,

∇r =

(
rx + rxf

2
y − ryfxfy

1 + f 2
x + f 2

y

,
ry + ryf

2
x − rxfxfy

1 + f 2
x + f 2

y

,
rxfx + ryfy
1 + f 2

x + f 2
y

)
.
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Thus, after some calculations the result follows. 2

In the forthcoming results and examples we need some concepts from the theory of

surface in R3, these concepts are given in the following definition.

Definition 3.5.2 Let S be a regular surface parametrized by X(x, y), then

1. The shape operator (or Weingarten map ) at each point p ∈ S is defined by Sp :

TpS → TpS, u 7→ −∇un, where n is the unit normal of the S .

2. The first and the second fundamental forms of S are the quadratic forms on the

tangent plane defined by I(u, v) = u · v and II(u, v) = u · Sp(v) respectively, they

are represented by the matrices I =

 Xx ·Xx Xx ·Xy

Xx ·Xy Xy ·Xy

 =

 E F

F G

 and

II =

 Xxx · n Xxy · n

Xyx · n Xyy · n

 =

 L M

M N

.

3. The normal curvature kp in the tangent direction w = aXx + bXy is defined by

kp(w) =
II(w)

I(w)
=

a2L+ 2abM + b2N

a2E + 2abF + b2G
.

4. The geodesic torsion in the direction of a unit vector w is defined by

τg(w) = II(w,w⊥),

where w⊥ is the unit vector perpendicular to w.

5. If (cos θ, sin θ) is a direction on S with respect to a principal coordinate system (

A principal coordinate system is one where the x-axis and y-axis are always the

principal directions ) then

kp = κ1 cos
2 θ + κ2 sin

2 θ and τg = (κ2 − κ1) sin θ cos θ.



Chapter 3. Centroid Set, Skeletal Structure and the Singularity of the Radius Function 65

Definition 3.5.3 Let f : Rn → Rm be a smooth map, then the k-jet jkf at a point p is the

Taylor expansion about p truncated at degree k.

Definition 3.5.4 Let f : Rn → Rm be a smooth map, then the corank δ of f is defined by

δ = min(n,m)− rank(df), where df is the differential of f .

Example 3.5.5 Consider the f : R2 → R3 such that (x, y) 7→ (x, xy, y2), then the

differential of f is given by df =


1 0

y x

0 2y

.

Theorem 3.5.6 Let M be a smooth stratum of skeletal structure (S, U) in R3 containing

a smooth point x0 ∈ Sreg and r be a radius function with singularity at x0. Let λ1 and λ2

be the eigenvalues of the Hessian of r at x0 with r(x0) =
1

λ1

, λ1 ̸= 0 and let xm be the

associated midlocus point to x0, then

1. The midlocus is parametrized by a corank two singularity at xm if and only if λ1 =

λ2.

2. The midlocus is parametrized by a corank one singularity at xm if and only if λ1 ̸=

λ2.

Proof

Let M be a smooth stratum of skeletal structure (S, U) in R3 containing a smooth point

x0 and r be the radius function with singularity at x0 and r(x0) =
1

λ1

, λ1 ̸= 0 where λ1 is

an eigenvalue of the Hessian of r at x0. Now we parameterize M locally at x0 such that

(0, 0) 7→ x0 = (0, 0, 0) and M is in Monge form i.e., M(x̃, ỹ) = (x̃, ỹ, 1
2
κ1x̃

2 + 1
2
κ2ỹ

2 +

h.o.t) and the radius function is given by

r(x̃, ỹ) = b00 +
1

2
b̃20x̃

2 +
1

2
b̃02ỹ

2 + b̃11x̃ỹ +
1

2
b̃12x̃ỹ

2 +
1

2
b̃21x̃

2ỹ + h.o.t.
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Now we rotate the new coordinates in the source by x̃

ỹ

 =

 cos t sin t

− sin t cos t

 x

y


such that the radius function transforms to r(x, y) = b00 +

1
2
b20x

2 + 1
2
b02y

2 + h.o.t. This

rotation transforms M to

M(x, y) = (x cos t+ y sin t,−x sin t+ y cos t,
1

2
a20x

2 +
1

2
a02y

2 + a11xy + h.o.t),

where a20 = κ1 cos
2 t+κ2 sin

2 t, a0,2 = κ1 sin
2 t+κ2 cos

2 t, and a11 = (κ1−κ2) sin t cos t.

Now we rotate the coordinates in the target around z- axis by
X

Y

Z

 =


cos(−t) sin(−t) 0

− sin(−t) cos(−t) 0

0 0 1




X

Y

Z

 ,

where X , Y , Z are the old coordinates and X , Y , Z are new coordinates. Thus, this

transforms M to M(x, y) = (x, y, 1
2
a20x

2 + 1
2
a02y

2 + a11xy + h.o.t). Now we use

lemma 3.5.1 to find the form of the midlocus, and by using Maple (see the linear parts

of equations A.8, A.9 and A.10 in the appendix), we get

j1M = ((1− b00b20)x, (1− b00b02)y, 0) .

Observe that, corollary 3.2.12 tells us the midlocus is singular when 1
r

is an eigenvalue

of Hr. This description of j1M allows a verification of this result in R3. Now

the Hessian matrix of the radius function is Hr =

 b20 0

0 b02

, without loss of

generality we put λ1 = b02, and λ2 = b20 and since b00 = r(x0) the 1-jet of the

midlocus is now (
λ1 − λ2

λ1

x, 0, 0). Therefore, the Jacobian matrix of the midlocus is

dxm =

 λ1 − λ2

λ1

0 0

0 0 0

. Thus, dxm has rank zero if and only if λ1 = λ2, and has
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rank one if and only if λ1 ̸= λ2, hence the results have been proved. 2

Now in the rest of this section we will study the singularity of the midlocus in R3 in

the case when it has corank one — this means that the eigenvalues of the Hessian of the

radius function are distinct. We will use the finite determinacy to study this singularity.

First of all we state some needed definitions.

Definition 3.5.7 Two map-germs fi : (Rn, 0) → (Rp, 0) (i = 1, 2) are A-equivalent if

there exist germs of C∞-diffeomorphisms ϑ and φ such that φ ◦ f1 = f2 ◦ ϑ holds, where

ϑ : (Rn, 0) → (Rn, 0) and φ : (Rp, 0) → (Rp, 0).

Definition 3.5.8 A map-germ f : (Rn, 0) → (Rp, 0) is k-determined if whenever

jkg(0) = jkf(0), then g is A-equivalent to f .

Definition 3.5.9 The crosscap or Whitney umbrella is a map-germ A-equivalent to

(x, y) 7→ (x, xy, y2) at the origin.

Figure 3.4: Crosscap or Whitney umbrella.

Since we are dealing with finite determinacy we focus on the 2-jet and 3-jet of the

midlocus. First of all, we classify the second jet and for this we need the following

theorem which was proved by Mond in [22].

Theorem 3.5.10 The map-germ (x, y) 7→ (x, xy, y2) is stable and 2-determined.
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Lemma 3.5.11 If the map-germ f : (R2, 0) −→ (R3, 0) has a corank one singularity

with j2f = (x, axy + by2, cxy + dy2), then f is A-equivalent to the crosscap if and only

if ad− cb ̸= 0.

Proof

Assume that ad− cb ̸= 0, then from the Mond classification in [22] (proposition 4.2) j2f

transforms by an appropriate coordinate change to (x, xy, y2) and since the crosscap is

2-determined thus f is A-equivalent to the crosscap. Conversely, assume that ad−cb = 0

and f is A-equivalent to the crosscap. Therefore, j2f is A-equivalent to (x, xy, y2).

But since ad − cb = 0, then from Mond classification j2f transforms to one element of

the set {(x, 0, 0), (x, xy, 0), (x, y2, 0)} and no one of these elements is A-equivalent to

(x, xy, y2) which is a contradiction. Thus, f is A-equivalent to the crosscap if and only if

ad− cb ̸= 0. 2

Now we state a theorem which gives a necessary and sufficient conditions for a midlocus

to be A-equivalent to the crosscap.

Theorem 3.5.12 Let M be a smooth stratum of a skeletal structure (S, U) in R3

containing a smooth point x0 and r be the radius function with a singularity at x0 and

λ1 and λ2 be the eigenvalues of the Hessian of r and w1 and w2 are the associated

eigenvectors such that λ1 ̸= λ2, and r(x0) = 1
λ1

, λ1 ̸= 0, then the midlocus at xm

associated to x0 is A-equivalent to the crosscap if and only if

λ1kx0(w1)∇2
w1
∇w2r ̸= 2λ2τg∇3

w1
r,

where kx0(w1) is the normal curvature of M in the direction w1, τg is the geodesic torsion

of M in the direction w1, and ∇wi
r is the directional derivative of the radius function in

the direction wi, i = 1, 2.
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Proof

We repeat the same procedure of the proof of theorem 3.5.6 and thus we have

r = b00 ++
1

2
b20x

2 +
1

2
b02y

2 +
1

3
b30x

3 +
1

2
b21x

2y +
1

2
b12xy

2 +
1

3
b03y

3 + b40x
4 + b31x

3y

+ b22x
2y2 + b13xy

3 + b04y
4 + h.o.t

and M(x, y) = (x, y, 1
2
a20x

2 + a11xy+
1
2
a02y

2 + h.o.t). As in the proof of theorem 3.5.6

without loss of generality, we put λ1 = b02 and λ2 = b20 and by using lemma 3.5.1 we

find the form of the centroid set and using Maple in calculations ( see equations A.8, A.9

and A.10 in the appendix) we get j2Mc = (p, q, s), where

p = (1− b00b20)x− b00b30x
2 − b00b21xy −

1

2
b00b12y

2,

q = −1

2
b00b21x

2 − b00b12xy − b00b03y
2 and

s =

(
1

2
a20 − b00b20a20

)
x2 − b00b20a11xy −

1

2
a02y

2.

Now consider the parameter change in the source

x = u+
b12

b02−b20

uy +
b30

b02 − b20
u2 +

b12
2(b02 − b20)

y2.

This parameter change transforms j2M (see equations A.11, A.12 and A.13 in the

appendix ) to (p, q, s), where

p =
b02 − b20

b02
u, q = − b21

2b02
u2 − b12

b02
uy − b03

b02
y2,

and

s =
a20(b02 − b20)

2b02
u2 − a11b20

b02
uy − 1

2
a02y

2.

Now consider the coordinate change in the target

X =
b02

b02 − b20
X, Y = Y +

b21
2b02

(
b02

b02 − b20
)
2

X2, Z = Z − a20b02
2(b02 − b20)

X2,

where X , Y , Z are the old coordinates and X , Y , Z are new coordinates. This coordinate

change transforms j2M into

j2M =

(
u,−b12

b02
uy − b03

b02
y2,−a11b20

b02
uy − 1

2
a02y

2

)
.
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Now using lemma 3.5.11 the midlocus is A-equivalent to the crosscap if and only if∣∣∣∣∣∣∣
−b12
b02

−b03
b02

−a11b20
b02

−1

2
a02

∣∣∣∣∣∣∣ ̸= 0

if and only if b02a02b12 − 2b20a11b03 ̸= 0, if and only if b02a02b12 ̸= 2b20a11b03 but

b02 = λ1, b20 = λ2, a02 = κ2 cos
2 t+κ1 sin

2 t = kx0(w1), a11 = (κ1−κ2) sin t cos t = τg,

b12 = ryyx(0, 0) = ∇2
w1
∇w2r, and b03 = ryyy(0, 0) = ∇3

w1
r, thus the result has been

proved. 2

Remark 3.5.13 It is obvious from the above theorem that the conditions are generic and

the geometry of the surface M plays a central role for the centroid to have a crosscap

singularity.

Corollary 3.5.14 Assume as in theorem 3.5.12. If x0 is a planar point, i.e., κ1 = κ2 = 0,

then the midlocus is not A-equivalent to the crosscap.

Proof

If κ1 = κ2 = 0, then kx0(w1) = τg = 0, thus the midlocus is not A-equivalent to the

crosscap. 2

Example 3.5.15 Let M(x, y) = (x, y, y2) and r(x, y) = 1 + x3 + xy2 + 1
2
y2, then the

midlocus is singular at the origin and direct calculation gives

M(x, y) = (p, q, s), where

p = x− (xy4 +
1

2
y2 + 4x3y2 +

3

2
x2y2 + 3x2 + 3x3),

q =
y(7y2 − 4x− 4x4 − 2x3 − 4x2y2 − 4xy2)

2 + 8y2
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and

s =
y2(3y2 − 4x− 4x4 − 2x3 − 4x2y2 − 4xy2 − 1)

2 + 8y2
.

Now we calculate the values of the terms are in the non-inequality of theorem 3.5.12.

It is clear that the Hessian matrix at the origin is given by Hr =

 0 0

0 1

 and its

eigenvalues are λ1 = 1 and λ2 = 0 with associated eigenvectors w1 = t1

 0

1

 and

w2 = t2

 1

0

 respectively. Now we do not need to calculate ∇3
w1r and τg since λ2 = 0.

The tangent vector in the direction of w1 is given by 0.Mx +My = My, thus the normal

curvature in the direction of w1 is given by

k0(w1) =
II(w1)

I(w1)
= 2.

Now we calculate ∇2
w1∇w2r,

∇w2r = (rx, ry) · (1, 0) = rx = 3x2 + y2,

∇w1∇w2r = (6x, 2y) · (0, 1) = 2y and ∇2
w1
∇w2r = 2.

Therefore, λ1kx0(w1)∇2
w1
∇w2r ̸= 2λ2τg∇3

w1
r. That is, the singularity of the midlocus is

a crosscap.
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Figure 3.5: Figure of example 3.5.15.

Example 3.5.16 Let M(x, y) = (x, y, y2) and consider the family of radius functions

r(x, y) = 2
5
+ y2 + µy3 + xy + 1

4
x2. Now we discuss the conditions in theorem 3.5.12

in this example and from the first look at this example someone could ask, " Do we need

y3 in the radius function to allow the midlocus to have a crosscap singularity?" The

answer to this question will be given through the following geometric discussion. The

Hessian matrix of the radius function at the origin is given by Hr =

 1
2

1

1 2

, and the

eigenvalues are λ1 =
5
2

and λ2 = 0 and the associated eigenvectors are w1 = t1

 1

2


and w2 = t2

 −2

1

 respectively. It is clear that r(0, 0) = 1
λ1

and the tangent vector

of M in the direction of w1 is given by w = Mx + 2My, hence k0(w1) =
II(w1)

I(w1)
=

8

5
.

Since λ2 = 0, we do not need to calculate τg and ∇3
w1
r, so in this case the midlocus
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is a crosscap if and only if ∇2
w1
∇w2r ̸= 0. Now direct calculations show that ∇w2r =

(rx, ry)·(−2, 1) = −2y−x+x+2y+3µy2 = 3µy2, ∇w1∇w2r = (0, 6µy)·(1, 2) = 12µy,

and finally ∇2
w1
∇w2r = (0, 12µ) · (1, 2) = 24µ ̸= 0 if and only if µ ̸= 0. Thus, it is vitally

important that the radius function should have a non zero coefficient for the y3 term. Now

take µ = 1, then the midlocus is A−equivalent to the crosscap at the origin and the direct

calculation gives M(x, y) = (g, h, l), where

g =
4

5
x− 1

8
x3 − 3

4
x2y − 2

5
y − 3

2
xy2 − y3 − y4 − 1

2
xy3,

h =
(4y + 40y3 − 24y2 − 8x− 100y4 − 60xy2 − 60y5 − 80y3x− 30x2y − 15x2y2 − 5x3)

20(1 + 4y2)
,

and

l =
−y(6y + 24y2 + 8x+ 100y4 + 60xy2 + 60y5 + 80xy3 + 30x2y + 15x2y2 + 5x3)

10(1 + 4y2)
.

Remark 3.5.17 Example 3.5.16 shows that if r is R-equivalent to r̃, then we do not

necessarily have the midlocus M̃ associated to r̃ is A-equivalent to M.
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Figure 3.6: Figure of example 3.5.16.

Now we will study the singularity of the midlocus when it fails to have a crosscap. First

of all, we state the following theorem.

Theorem 3.5.18 [22] A map germ (R2, 0) → (R3, 0) whose 2-jet is equivalent to

(x, y2, 0) is equivalent to a germ of the form

(x, y) 7→ (x, y2, yP (x, y2))

for smooth P .

Now we state the following theorem which indicates the form of the midlocus when it is

not a crosscap.



Chapter 3. Centroid Set, Skeletal Structure and the Singularity of the Radius Function 75

Theorem 3.5.19 Assume as in theorem 3.5.12 and the midlocus is not A-equivalent to

the crosscap. If kx0(w1) ̸= 0 or ∇3
w1
r ̸= 0, then the midlocus parametrized locally by

(u, v) 7→ (u, v2, vP (u, v2)) for smooth P .

Proof

From the proof of theorem 3.5.12 we have

j2M =

(
u,−b12

b02
uy − b03

b02
y2,−a11b20

b02
uy − 1

2
a02y

2

)
.

Since the midlocus is not A-equivalent to the crosscap, then∣∣∣∣∣∣∣
−b12
b02

−b03
b02

−a11b20
b02

−1

2
a02

∣∣∣∣∣∣∣ = 0.

Now if kx0(w1) = a02 ̸= 0, then we can complete the square in the third component,

and the corresponding change in the v variable then transforms j2M into (u, 0, v2) and

by the coordinate change X = X , Y = Z, Z = Y , we have j2M = (u, v2, 0). Now

if ∇3
w1
r = b0,3 ̸= 0, then we can complete the square in the second component and the

corresponding change in the v variable then transforms j2M into (u, v2, 0). Thus in both

case we apply theorem 3.5.18 and the result holds. 2

Example 3.5.20 Let M(x, y) = (x, y, x2) and r(x, y) = 1+ 1
2
x2 + y3, then the midlocus

is singular at the origin and the direct calculation gives M(x, y) = (g, h, l), where

g =
x(7x2 − 2y3)

2(1 + 4x2)
, h =

−1

2
y(3yx2 + 6y4 + 6y − 3) and l =

x2(3x2 − 2y3 − 1)

1 + 4x2
.
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Figure 3.7: Figure of example 3.5.20.

Theorem 3.5.19 gives the general form of the midlocus under the mentioned conditions.

Now we will study the 3-jet of the midlocus when it fails to have a crosscap singularity

and kx0(w1) ̸= 0. Particularly, we will discuss the conditions for the midlocus to have S±
1

singularity, which is a map-germ A-equivalent to

S±
1 : (x, y) 7→ (x, y2, x2y ± y3)

at the origin. Also, the conditions for the 3-jet of the midlocus to be A-equivalent to the

cuspidal edge will be investigated. A cuspidal edge is a map-germ A-equivalent to

CE : (x, y) 7→ (x, y2, y3)

at the origin.
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Lemma 3.5.21 Let M be a smooth stratum of skeletal structure (S, U) in R3 containing

a smooth point x0 and r be the radius function with a singularity at x0. Let λ1 and

λ2 (λ1 ̸= λ2) be the eigenvalues of the Hessian of r and w1 and w2 be the associated

eigenvectors. Assume that r(x0) =
1
λ1

, λ1 ̸= 0. If the midlocus fails to have a crosscap

singularity and kx0(w1) ̸= 0, then the 3-jet of the midlocus is given by

j3M = (u, v2, w1,2u
2v + w3,0v

3),

where w1,2 and w3,0 are equations B.15 and B.14 respectively in appendix.

Proof

We repeat the same procedure of theorems 3.5.6 and 3.5.12 and after using Maple in

calculations we get j3M = (p, q, s) and we define a parameter change x = x(u, y) such

that this parameter change transforms p into p = λ1−λ2

λ1
u and again we define a parameter

change y = y(u, v) such that this parameter change transforms s into

s = k0,2u
2 + k0,3u

3 − 1

2
a02v

2

and q into

q = w0,2u
2 + w2,0v

2 + w1,1uv + w2,1v
2u+ w1,2u

2v + w3,0v
3 + w0,3u

3.

Now we put j3M = (p, s, q), and we define the coordinate change in the target

X =
λ1

λ1 − λ2

X, Y = Y − λ2
1k0,2

(λ1 − λ2)
2X

2 − λ3
1k0,3

(λ1 − λ2)
3X

3,

Z = Z − λ2
1w0,2

(λ1 − λ2)
2X

2 − λ3
1w0,3

(λ1 − λ2)
3X

3.

This coordinate change transforms j3M into

j3M =

(
u,−1

2
a02v

2, w1,1uv + w2,1uv
2 + w1,2u

2v + w3,0v
3

)
since the midlocus is not A-equivalent to the crosscap, then w1,1 = 0. Now consider the

coordinate change in the target

X̃ = X, Ỹ = − 2

a0,2
Y, Z̃ = Z +

2w2,1

a02
XY,
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where X, Y, Z are the old coordinates and X̃, Ỹ , Z̃ are new coordinates. This coordinate

change transforms j3M into

j3M = (u, v2, w1,2u
2v + w3,0v

3)

and thus the proof is completed. 2

Proposition 3.5.22 Assume as in lemma 3.5.21, then

1. If w1,2 ̸= 0 and w3,0 ̸= 0, then the 3-jet of the midlocus is equivalent to (u, v2, u2v±

v3) and consequently the midlocus is A-equivalent to an S±
1 singularity.

2. If w1,2 = 0 and w3,0 ̸= 0, then j3M = (u, v2, v3).

Proof

1. Assume that w1,2 ̸= 0 and w3,0 ̸= 0, then using the parameter change u =
√

|w3,0

w1,2
|ũ,

thus this transforms the 3-jet into j3M =
(√

|w3,0

w1,2
|ũ, v2, |w3,0|(ũ2v ± v3)

)
. Now consider

the coordinate change in the target

X =

√
|w1,2

w3,0

|X, Y = Y, Z =
1

|w3,0|
Z.

Thus the 3-jet transformed by this to (ũ, v2, ũ2v± v3), and since S±
1 is 3-determined [17]

the result has been proved. The second part is obvious. 2

Now we will give an example when the midlocus is A-equivalent to S±
1 .

Example 3.5.23 Let M(x, y) = (x, y,±y2) and r(x, y) = 1
2
+y2±x2y2 then the centroid

set is A-equivalent to S±
1 singularity at the origin and the direct calculation gives

M(x, y) = (g±, h±, l±), where

g± = −x(±2y4 ± y2 + 2x2y4 − 1), h± =
−y(−2y2 ± x2 ± 4x2y2 + 2x4y2)

1 + 4y2
,
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and

l± =
−y2(2x2 + 8x2y2 ± 4x4y2 ± 1)

1 + 4y2
.

In the case of + the midlocus is equivalent to S−
1 , and in the case of − the midlocus is

equivalent to S+
1 . Also, the direct calculations give that w±

3,0 = 2 and w±
1,2 = ∓1.

Figure 3.8: Figure of example 3.5.23 in the case −, +.
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Chapter 4

Relation Between Radial Geometry of

Skeletal Structure and Differential

Geometry of its Boundary

4.1 Introduction

This chapter deals with the relationship between the radial geometry of the skeletal

structure and the differential geometry of the associated boundary. In fact, James Damon

studied this phenomenon in [8, 9] and he obtained a relationship between SV and SXV
′ .

Moreover, he expressed SXV ′ in terms of SV and found out the link between the principal

radial curvatures of the skeletal structure and the associated principal curvature of the

boundary. In this chapter we express SV in terms of SXV ′ (Proposition 4.2.4). Also,

some algebraic properties between SV and SXV ′ are investigated through out this chapter

(Proposition 4.2.6). Moreover, the relationship between the Gauss radial curvature Kr of

a skeletal structure and its associated Gauss curvature K on the boundary has been studied

as well as the relationship between the mean radial curvature Hr and its associated mean

curvature on the boundary (Proposition 4.2.10). The final part of this chapter deals with
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the situation when Kr and K coincide. We study the relationship between the radial skew

curvature of a skeletal structure and the skew curvature of the boundary in situation when

Kr = K ̸= 0 in the case of skeletal structure in R3.

4.2 Skeletal Structures in Rn+1

Our aim in this section is to express the matrix of the radial shape operator in terms of the

matrix of the differential geometric shape operator of the boundary. First of all, we give

the following theorem which was proved by James Damon.

Theorem 4.2.1 ([8], Theorem 3.2 ) Let (S, U) be a skeletal structure such that for a

choice of smooth value of U the associated compatibility 1-form ηU vanishes identically

on a neighbourhood of a non-edge point x0 of S, and 1
r

is not an eigenvalue of the

radial shape operator at x0. Let x0
′ = Ψ1(x0), and V

′
be the image of V for a basis

{v1, v2, ..., vn}, then

1. The differential geometric shape operator SXV ′ of the boundary X at x
′
0 has a

matrix representation with respect to V
′

given by

SXV ′ = (I − rSV )
−1SV . (4.1)

2. There is a bijection between the principal curvatures κi of X at x
′
0 and the principal

radial curvatures κri of S at x0 (counted with multiplicities) given by

κi =
κri

1− rκri

or equivalently κri =
κi

1 + rκi

. (4.2)

3. The principal radial directions corresponding to κri are mapped by dΨ1 to the

principal directions corresponding to κi.

One of the aims of this chapter is to express SV in terms of SXV
′ and to do so we need

the following lemmas.
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Lemma 4.2.2 Let A be an (n× n) matrix and suppose that 1
α
, (α ̸= 0) is not eigenvalue

of A. If B = (I − αA)−1A, then B = 1
α
[(I − αA)−1 − I], where I is the identity matrix.

Proof

To prove this lemma it is enough to show that

(I − αA)−1A− 1

α
[(I − αA)−1 − I] = 0.

Now

(I − αA)−1A− 1

α
(I − αA)−1 +

1

α
I = (I − αA)−1(A− 1

α
I) +

1

α
I

= − 1

α
(I − αA)−1(I − αA) +

1

α
I

= − 1

α
I +

1

α
I

= 0.

Therefore, the proof is completed. 2

Lemma 4.2.3 Let A be an (n× n) matrix and suppose that 1
α
, (α ̸= 0) is not eigenvalue

of A. If B = (I − αA)−1A, then A = (I + αB)−1B.

Proof

From lemma 4.2.2 we have

B =
1

α
[(I − αA)−1 − I].

Therefore,

A =
1

α
[I − (I + αB)−1]. (4.3)

Now our task is to show that

(I + αB)−1B − A = 0. (4.4)
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Now

(I + αB)−1B − A = (I + αB)−1B − 1

α
[I − (I + αB)−1]

=
1

α
(I + αB)−1(I + αB)− 1

α
I

=
1

α
I − 1

α
I

= 0.

Hence equation 4.4 is satisfied. 2

Now we are in the position to do express SV in terms of SXV ′ . Using the above lemmas

and theorem 4.2.1 we have the following:

Proposition 4.2.4 Let (S, U) be a skeletal structure as in theorem 4.2.1, then the

matrix SV representing the radial shape operator and the matrix SXV ′ representing the

differential geometric shape operator have the following relation

SV = (I + rSXV ′ )−1SXV ′

or equivalently

SV =
1

r
[I − (I + rSXV

′ )−1].

Proof

The proof of this theorem comes directly from theorem 4.2.1 and the above lemmas. 2

This proposition leads to the following corollary.

Corollary 4.2.5 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊂ Rn+1 with smooth boundary X . Let x
′
0 = Ψ1(x0) be the associated boundary

point to a non-edge point x0 ∈ S, and V
′

be the image of V under dΨ1 for a basis

{v1, v2, ..., vn}. Then the matrix SV representing the radial shape operator at x0 and the
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matrix SXV ′ representing the differential geometric shape operator of the boundary at x
′
0

have the following relation

SV = (I + rSXV ′ )−1SXV ′ .

Proof

Since a Blum medial axis is a special case of the skeletal structure for which the

compatibility 1-form vanishes and 1
r

is not an eigenvalue of the radial shape operator

then, we can apply proposition 4.2.4 to get the result. 2

The following proposition gives us two relations between SV and SV X′ under the same

conditions of theorem 4.2.1.

Proposition 4.2.6 Let (S, U) be a skeletal structure as in theorem 4.2.1, then

1. SXV ′ − SV = rSXV ′SV .

2. SXV ′SV = SV SXV ′ , i.e., the operators commute.

Proof

1-From theorem 4.2.1 we have

SXV ′ − SV = (I − rSV )
−1SV − SV

= ((I − rSV )
−1 − I)SV

= rSXV
′SV .

2- From (1) we have

rSXV ′SV = SXV ′ − SV

= SXV ′ − (I + rSXV ′ )−1SXV ′ (by proposition 4.2.5)

= (I − (I + rSXV
′ )−1)SXV

′

= rSV SXV
′ (by proposition 4.2.5).
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Hence from above we have SV SXV ′ = SXV ′SV . 2

Remark 4.2.7 If the SV is invertible then det(SXV ′ ) = det((1− rSV )
−1SV ) ̸= 0 thus

SXV ′ is invertible and vice versa. Thus if SV is invertible then, S−1
V SXV ′ = SXV ′S−1

V and

S−1

XV ′SV = SV S
−1

XV ′ .

Now we will give an example to illustrate the results in proposition 4.2.6.

Example 4.2.8 Let (S, U) be a skeletal structure in R3 and let S1(x, y) = (x, y, 1
2
κm1x

2+

1
2
κm2y

2 + h.o.t) ⊂ Sreg. and r = r0 +
1
2
ax2 + 1

2
by2 be the radius function on S1 such that

1
r0

/∈ {κm1 + a, κm2 + b}. Now we define the unit radial vector field by

U1 = −∇r +

√
1− ∥∇r∥2N,

where ∇r is the Riemannian gradient of the radius function and N is the unit normal of

S1. Direct calculation shows that at the origin we have

SV =

 κm1 + a 0

0 κm2 + b

 , and SXV
′ =


κm1 + a

1− r0(κm1 + a)
0

0
κm2 + b

1− r0(κm2 + b)

 .

It is clear that

SV SXV
′ = SXV

′SV =


(κm1 + a)2

1− r0(κm1 + a)
0

0
(κm2 + b)2

1− r0(κm2 + b)

 .

Now

SXV ′ − SV =


r0(κm1 + a)2

1− r0(κm1 + a)
0

0
r0(κm2 + b)2

1− r0(κm2 + b)

 = r0SV SXV ′ .



Chapter 4. Relation Between Radial Geometry of Skeletal Structure and Differential
Geometry of its Boundary 86

Definition 4.2.9 Let SV be the matrix representation of the radial shape operator of a

skeletal structure and SXV
′ be the matrix representation of the differential geometric

shape operator of the associated boundary, then the Gaussian radial curvature Kr and

the mean radial curvature Hr are given by

Kr = det(SV ) and Hr =
1

n
tr(SV ),

and the Gaussian curvature K and the mean curvature of the boundary are given by

K = det(SXV ′ ) and H =
1

n
tr(SXV ′ ).

The i−th mean radial curvature Kri is defined by

Kri =

(
n

i

)−1 ∑
j1<j2<...<ji

κrj1 . . . .κrji

and the associated i−th mean curvature of the boundary is defined by

Ki =

(
n

i

)−1 ∑
j1<j2<...<ji

κj1 . . . .κji .

Now we will turn to the relation between the Gaussian radial curvature Kr of the skeletal

structure at a non-edge point and the Gaussian curvature K of the boundary at the

associated point. Also, the relation between the mean radial curvature Hr of the skeletal

structure and the associated mean curvature H of the boundary will be investigated. In

fact Anthony Pollitt studied in [24] the relationship between the principal radial curvatures

and the associated principal curvatures on the boundary in the case of medial axis in R3.

In the following proposition we generalize the result obtained by Pollitt to the higher

dimensions in the case of skeletal structure which is more general than medial axis and

we give other results as well.

Proposition 4.2.10 Let (S, U) be a skeletal structure as in theorem 4.2.1, then

1. K =
Kr

1− rnHr +
n−1∑
i=2

(−1)iri
(
n
i

)
Kri + (−1)nrnKr

.
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2. H =

Hr − rnH2
r +

r
n

n∑
i=1

κ2
ri +

n∑
j=3

(−1)j−1rj−1
(
n
j

)
Kri

1− rnHr +
n−1∑
i=2

(−1)iri
(
n
i

)
Kri + (−1)nrnKr

.

3. Kr =
K

1 + rnH +
n−1∑
i=2

ri
(
n
i

)
Ki + rnK

.

4. Hr =

H + rnH − r
n

n∑
i=1

κ2
i +

n∑
j=3

rj−1
(
n
j

)
Kj

1 + rnH +
n−1∑
i=2

ri
(
n
i

)
Ki + rnK

.

5. κrl(1 + rnH +
n−1∑
i=2

ri
(
n
i

)
Ki + rnK) = κl + rnκlH − rκ2

l +
n∑

j=3

(
n
j

)
rj−1Kj .

6. κl(1−rnHr+
n−1∑
i=2

(−1)
i
ri
(
n
i

)
Kri+(−1)

n
rnKr) = κrl−rnκrlHr+rκ2

rl+
n∑

j=3

(−1)
j−1

rj−1Krj .

7. If Kr ̸= 0,then

Hr

Kr
− H

K
=

rnH2
r − r

n

n∑
i=1

κ2
ri −

n∑
j=3

(−1)
j−1

rj−1
(
n
j

)
Krj

Kr
.

Proof

1. From theorem 4.2.1 we have κi =
κri

1− rκri

. Therefore,

K =
n∏

i=1

κri

1− rκri

=
Kr

n∏
i=1

(1− rκri)
. (4.5)

Now from the theory of symmetric polynomials we can expand the denominator of the

above equation to get
n∏

i=1

(1− rκri) = 1− rHr +
n−1∑
i=2

(−1)iri
(
n
i

)
Kri + (−1)nrnKr. Thus

by substituting in equation 4.5 the result is proved.

2. We have

nH =
n∑

i=1

κi =
n∑

i=1

κri

1− rκri

.
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Thus

nH =

κr1

n∏
i=2

(1− rκri) + κr2(1− rκr1)
n∏

i=3

(1− rκri) + ...+ κrn

n−1∏
i=1

(1− rκri)

1− rHr +
n−1∑
i=2

(−1)iri
(
n
i

)
Kri + (−1)nrnKr

.

Now we will simplify the numerator of this equation using the concept of symmetric

polynomial. First of all we have

κr1

n∏
i=2

(1− rκri) = κr1(1− rκr2)(1− rκr3)...(1− rκrn)

= κr1 − rnκr1Hr + rκ2
r1 +

n∑
j=3

(−1)j−1rj−1

(
n

j

)
Krj.

Similarly, we have

κrl(1− rκr1)...(1− rκrl−1)(1− rκrl+1)...(1− rκrn) = κrl − rnκrlHr + rκ2
rl

+
n∑

j=3

(−1)j−1rj−1

(
n

j

)
Krj.

Therefore, after simplification the numerator becomes

n

(
Hr − rnH2

r +
r

n

n∑
i=1

κ2
ri +

n∑
j=3

(−1)j−1rj−1

(
n

j

)
Krj

)
.

Thus

H =

Hr − rnH2
r +

r
n

n∑
i=1

κ2
ri +

n∑
j=3

(−1)j−1rj−1
(
n
j

)
Kri

1− rnHr +
n−1∑
i=2

(−1)iri
(
n
i

)
Kri + (−1)nrnKr

.
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Similarly we can prove 3 and 4.

5- We have

κrl(1 + rnH +
n−1∑
i=2

ri
(
n

i

)
Ki + rnK) = κrl

n∏
i=1

(1 + rκi)

=
κl

1 + rκl

n∏
i=1

(1 + rκi)

= κl(1 + rκ1)...(1 + rκl−1)(1 + rκl+1)...(1 + rκn)

= κl + rnκlH − rκ2
l +

n∑
j=3

(
n

j

)
rj−1Kj.

Similarly we can prove 6.

7. If Kr ̸= 0 then K ̸= 0 and we have

Hr

Kr

− H

K
=

Hr

Kr

−
Hr − rnH2

r +
r
n

n∑
i=1

κ2
ri +

n∑
j=3

(−1)j−1rj−1
(
n
j

)
Kri

Kr

=

rnH2
r − r

n

n∑
i=1

κ2
ri −

n∑
j=3

(−1)j−1rj−1
(
n
j

)
Krj

Kr

.

Thus the proof is completed. 2

If the radius function is a constant on a smooth stratum S1 of the skeletal structure

containing a smooth point x0, then this stratum and its associated boundary are parallel

and the radial vector field becomes the normal of that stratum. Thus if we replace r in

proposition 4.2.10 by a constant, then Kr and Hr is the Gaussian curvature and mean

curvature of S1 at x0 respectively. Thus proposition 4.2.10 indicates that for each smooth

point x0 of the skeletal structure the smooth hypersurface containing x0 and parallel to

the boundary has Gaussian curvature Kr and mean curvature Hr.

James Damon gave a relationship between the matrix representing the radial shape

operator of the skeletal structure and the matrix representing the differential geometric
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shape operator of the skeletal structure (theorem 4.2.1). Our aim in this thesis is to find the

relationship between the radial shape operator of the skeletal structure and the differential

geometric shape operator of the associated boundary and we will look at this relation

when the radius function has a singularity. Now let Srad denotes the radial shape operator

and SBond is the associated shape operator of the boundary, if the radius function has a

singularity then this has strong consequence for the relationship between Srad and SBond.

In particular we have the following.

Proposition 4.2.11 Let (S, U) be a skeletal structure in Rn+1 as in theorem 4.2.1. If the

radius function r has a singularity at x0 then

1. ST
XV ′V

′
= ST

V V ,

2. SBond(v
′
) = Srad(v),

3. V = (I + rSXV
′ )TV

′
.

Proof

1. From equation 1.3 we have

∂U1

∂V
= AVU1 − ST

V V. (4.6)

Also, the Jacobian matrix of the radial map is given by

V
′
=

∂Ψ1

∂V
= (dr(V ) + rAV )U1 + (1− rSV )

TV. (4.7)

Now since the radius function r has a singularity then using lemma 3.3.7 we have AV = 0.

Thus, equation 4.7 becomes

V
′
= (I − rSV )

TV.

Also, since 1
r

is not an eigenvalue of the radial shape operator we can solve for V to get

V = (I − rST
V )

−1
V

′
. (4.8)
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From the proof of the proposition 2.1 in [8] we have

∂U1

∂V
=

∂U1

∂V ′ .

Now substitute in equation (4.6) we have

∂U1

∂V ′ = −ST
V (I − rST

V )
−1
V

′
= −ST

V V.

Now we will show that

ST
V (I − rST

V )
−1

= (I − rST
V )

−1
ST
V .

To do so it is enough to show that

SV (I − rSV )
−1 − 1

r
[(I − rSV )

−1 − I] = 0.

Now

[SV (I − rSV )
−1 − 1

r
[(I − rSV )

−1 − I] = SV (I − rSV )
−1 − 1

r
(I − rSV )

−1 +
1

r
I

= −1

r
I +

1

r
I

= 0.

Therefore,
∂U1

∂V ′ = −(I − rST
V )

−1
ST
V V

′
.

Hence ST
XV ′V

′
= ST

V V .

2. The unit normal of the boundary is U1 and the shape operator SBond of the boundary

is given by −projU1

(
∂U1

∂v′

)
, where projU1

is the projection along U1 to the tangent

space of the boundary. Also, the radial shape operator Srad is given by −projU1

(
∂U1

∂v

)
where projU1

is the projection along U1 to the tangent space of the skeletal structure.

From 1 we have −projU1

(
∂U1

∂V ′

)
= ST

XV
′V

′
= ST

V V = −projU1

(
∂U1

∂V

)
. Thus,

SBond(v
′
) = Srad(v).

3. From equation (4.7) V = (I − rST
V )

−1
V

′ and from proposition 4.2.4 it is easy to

obtain that (I − rST
V )

−1
= (I + rSXV

′ )T . Thus the proof is completed. 2
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Example 4.2.12 Assume as in example 4.2.8, then at the origin the radius function has a

singularity and

V =

 v1

v2

 =

 1 0 0

0 0 1

 and V
′
=

 v
′
1

v
′
2

 =

 1− r0(κm1 + a) 0 0

0 1− r0(κm2 + b) 0

 .

Thus

ST
V V =

 κm1 + a 0

0 κm2 + b

 1 0 0

0 1 0

 =

 κm1 + a 0 0

0 κm2 + b 0

 .

Also,

ST
XV ′V

′
=


κm1 + a

1− r0(κm1 + a)
0

0
κm2 + b

1− r0(κm2 + b)


 1− r0(κm1 + a) 0 0

0 1− r0(κm2 + b) 0


=

 κm1 + a 0 0

0 κm2 + b 0

 .

Therefore,

ST
V V = ST

XV
′V

′
,

Srad(v1) = (κm1 + a, 0, 0) = SBond(v
′

1)

and

Srad(v2) = (0, κm2 + b, 0) = SBond(v
′

2).

Moreover,

(I + r0S
T
XV

′ )V
′
=

 1
1−r0(κm1+a)

0

0 1
1−r0(κm2+b)

 1− r0(κm1 + a) 0 0

0 1− r0(κm2 + b) 0


=

 1 0 0

0 1 0


= V.
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Now we turn to the relationship between the differential geometric shape operator of the

skeletal structure at a smooth point and the differential geometric shape operator of the

boundary at the associated point. First we have the following definition.

Definition 4.2.13 Let (S, U) be a skeletal structure and radial vector field such that the

compatibility holds in a neighbourhood of a smooth x0. We define the radial Hessian

operator by

Hr : Tx0S → Tx0S

such that Hr(v) = −projN

(
∂U1tan

∂v

)
, where projN denotes orthogonal projection onto

Tx0S and U1tan is the tangential component of the unit radial vector field U1.

Proposition 4.2.14 ([8], proposition 4.1) Let (S, U) be a skeletal structure in Rn+1 which

satisfies the compatibility condition on an open set W ⊂ Sreg Let U be a smooth value on

W . Then, on W there is the following relation

Srad = ρSmed +Hr + Z, (4.9)

where Z(v) = ρ−1(
∂U1

∂v
·N)U1tan, N is the unit normal of the skeletal set and U1tan is the

tangential parts of the unit radial vector field U1 and Smed is the differential geometric

shape operator of the skeletal structure.

Damon discusses in [8] that the operator Z is difficult to work with and interpret.

But again when the radius function has a singularity we get a situation with strong

consequences for the various operators.

Proposition 4.2.15 Let (S, U) be a skeletal structure in Rn+1 as in proposition 4.2.14. If

the radius function r has a singularity at x0 then the differential geometric shape operator

Smed of S at x0 and the differential geometric shape operator SBond of the boundary at

x
′
0 = Ψ1(x0) are related by

SBond = Smed +Hr.
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Proof

If the radius function r has a singularity then the unit radial vector field is normal to the

tangent space of the skeletal set. Thus Z = 0 and ρ = N · U1 = 1. From proposition

4.2.11 we have SBond = Srad. Therefore, equation (4.9) becomes

SBond = Smed +Hr,

which completes the proof. 2

This proposition gives the relationship between the geometric shape operator of the

boundary and that of the skeletal structure and it is obvious from this proposition to

obtain that the tangent space of the skeletal structure at x0 is parallel to the tangent space

of the boundary at the associated point. This means that the skeletal structure and the

hypersurface containing x0 and parallel to the boundary have the same tangent space at

x0.

Example 4.2.16 Assume as in example 4.2.8. Then the radius function has a singularity

at the origin and Smed(vi) = κivi, i = 1, 2. Also, Hr(v1) = av1 and Hr(v2) = bv2 and

from example 4.2.12 we have

SBond(v
′

1) = Srad(v1) = (κm1 + a, 0, 0) = κm1v1 + av1 = Smed(v1) +Hr(v1),

and

SBond(v
′

2) = Srad(v2) = (0, κm2 + b, 0) = κ2v2 + bv2 = Smed(v2) +Hr(v2).

4.3 Skeletal Structures in R3

In this section we will give a special form of the shape operator of the boundary in terms

of the radial shape operator of the skeletal structure in R3 and vice versa.
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Theorem 4.3.1 Let (S, U) be a skeletal structure in R3 such that for a choice of

smooth value of U the associated compatibility 1-form ηU vanishes identically on a

neighbourhood of a smooth point x0 of S, and 1
r

is not an eigenvalue of the radial shape

operator at x0. Let x
′
0 = Ψ1(x0) and V

′
be the image of V under dΨ1 for a basis {v1, v2}

then

SXV
′ =

1

r2Kr − 2rHr + 1
(SV − rKrI) (4.10)

or equivalently

SV =
1

r2K + 2rH + 1
(SXV ′ + rKI). (4.11)

Proof

From lemma 4.2.2 we have

SXV
′ =

1

r
[(I − rSV )

−1 − I]. (4.12)

Now let

SV =

 a b

c d

 .

Therefore,

(I − rSV ) =

 1 0

0 1

−

 ra rb

rc rd

 =

 1− ra −rb

−rc 1− rd

 .

Therefore,

det(I − rSV ) = (1− ra)(1− rd)− r2cb

= 1− r(a+ b) + r2(ad− cb)

= 1− 2rHr + r2Kr.

Now

(I − rSV )
−1 =

1

1− 2rHr + r2Kr

 1− rd rb

rc 1− ra

 .
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Thus

(I − rSV )
−1 − I =

1

1− 2rHr + r2Kr

 1− rd rb

rc 1− ra

−

 1 0

0 1

 ,

hence this matrix becomes

1

1− 2rHr + r2Kr

 1− rd− 1 + r(a+ d)− r2Kr rb

rc 1− ra− 1 + r(a+ d)− r2Kr

 ,

which gives the following

(I − rSV )
−1 − I =

r

1− 2rHr + r2Kr

 a− rKr b

c d− rKr


=

r

1− 2rHr + r2Kr

(SV − rKrI).

Now by substituting in equation 4.12 we get

SXV
′ =

1

1− 2rHr + r2Kr

(SV − rKrI).

Similarly, we can prove equation 4.11. 2

Now we have the following corollary from proposition 4.2.10.

Corollary 4.3.2 Let (S, U) be a skeletal structure in R3 as in theorem 4.3.1. Then,

the radial geometric factors ( the principal radial curvatures κri, the Gaussian radial

curvature Kr and mean radial curvature Hr ) of S at x0 and the differential geometric

factors ( the principal curvatures κi, the Gaussian curvature K and the mean curvature

H) of the boundary at x
′
0 satisfy the following

1. K =
Kr

1− 2rHr + r2Kr

.

2. H =
Hr − rKr

1− 2rHr + r2Kr

.
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3. Kr =
K

1 + 2rH + r2K
.

4. Hr =
H + rK

1 + 2rH + r2K
.

5. κrl(1 + 2rH + r2K) = κl + rK, l = 1, 2.

6. κl(1− 2rHr + r2Kr) = κrl − rKr, l = 1, 2.

7. If Kr ̸= 0 then,
Hr

Kr

− H

K
= r.

Proof

The proof of this corollary comes directly from proposition 4.2.10 just by taking n = 2. 2

Example 4.3.3 Assume as in example 4.2.8, then at the origin the principal radial

curvatures, Gaussian radial curvature and mean radial curvature are

κr1 = κm1+a, κr2 = κm2+b, Kr = (κm1+a)(κm2+b) and Hr =
1

2
(κm1+κm2+a+b).

Also the associated the principal curvatures, Gaussian curvature and mean curvature of

the boundary are

κ1 =
κm1 + a

1− r0(κm1 + a)
, κ2 =

κm2 + b

1− r0(κm2 + b)
,

K =
(κm1 + a)(κm2 + b)

1− r0(κm1 + κm2 + a+ b) + r20(κm1 + a)(κm2 + b)

and

H =
1
2
(κm1 + κm2 + a+ b)− r0(κm1 + a)(κm2 + b)

1− r0(κm1 + a+ κm2 + b) + r20(κm1 + a)(κm2 + b)
.
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Thus it is easy to check that this example satisfies relations 1, 2, 3, 4, 5 and 6 in

corollary 4.3.2. Now assume that Kr ̸= 0, then we have

Hr

Kr

− H

K
=

κm1 + κm2 + a+ b

2(κm1 + a)(κm2 + b)
− κm1 + κm2 + a+ b− 2r0(κm1 + a)(κm2 + b)

2(κm1 + a)(κm2 + b)

=
2r0(κm1 + a)(κm2 + b)

2(κm1 + a)(κm2 + b)

= r0.

Proposition 4.3.4 Let (S, U) be a skeletal structure in R3 as in corollary 4.3.2. If Kr ̸= 0

or equivalently K ̸= 0, then

1

Kr

SV − 1

K
SXV ′ = rI.

Proof

From equation 4.10 we have

SXV ′ =
1

r2Kr − 2rHr + 1
(SV − rKrI).

Therefore,

1

Kr

SV − 1

K
SXV ′ =

1

Kr

SV − 1

K
(

1

r2Kr − 2rHr + 1
(SV − rKrI)).

But from corollary 4.3.2 we have

K =
Kr

r2K − 2rHr + 1
.

Hence

1

Kr
SV − 1

K
SXV ′ =

1

Kr
SV − r2Kr − 2rHr + 1

Kr
(

1

r2Kr − 2rHr + 1
SV − rKr

r2Kr − 2rHr + 1
I).

Therefore, we have the following

1

Kr

SV − 1

K
SXV

′ =
1

Kr

SV − 1

Kr

SV + rI = rI.
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Therefore, the proof is completed. 2

Now we will study the answer of the question: what happens if Kr = K?

Proposition 4.3.5 Let (S, U) be a skeletal structure in R3 as in corollary 4.3.2. Then we

have

1. If Kr = K = 0, then

H =
Hr

1− 2rHr

,

or equivalently

Hr =
H

1 + 2rH
.

2. If Kr = K ̸= 0, then H = −Hr =
−r

2
K ̸= 0.

Proof

1-From corollary 4.3.2 we have

H =
Hr − rKr

r2Kr − 2rHr + 1
and Hr =

H + rK

r2K + 2rH + 1
.

Therefore, if Kr = K = 0 we get the result.

2-Assume that Kr = K ̸= 0, then we have 1 + 2rH + r2K = 1 − 2rHr + r2Kr which

gives that r2K + 2rH = 0 and r2Kr − 2rHr = 0 thus the result holds. 2

The second part of proposition 4.3.5 indicates that if Kr = K ̸= 0, then the boundary has

non zero mean curvature.

Example 4.3.6 Assume as in example 4.2.8 such that r0 = 1, κm1 = 2, κm2 = 1
2

and

a = b = 1, then at the origin we have

SV =

 3 0

0 3
2

 and SXV ′ =

 −3
2

0

0 −3

 .
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Thus Kr = K =
9

2
, Hr =

9

4
and H = −9

4
.

In the next theorem we will discuss at what conditions does Kr = K ̸= 0 in the case of

the skeletal structure in R3?

Theorem 4.3.7 Let (S, U) be a skeletal structure in R3 such that for a choice of

smooth value of U the associated compatibility 1-form ηU vanishes identically on a

neighbourhood of a non-edge point x0 of S, and 1
r

is not an eigenvalue of the radial

shape operator at x0. Let ur =
1
2
(κr2 − κr1) =

√
H2

r −Kr is the radial skew curvature.

If x0 is not a radial umbilic point (i.e., κr1 ̸= κr2), then Kr = K if and only if u = ur

where u = 1
2
(κ2 − κ1) =

√
H2 −K.

Proof

Let Kr = K ̸= 0 then from proposition 4.3.5 we have H = −Hr. Therefore,

ur =
√

H2
r −Kr =

√
(−H)2 −K = u.

Conversely, assume that u = ur then

κ2 − κ1 = κr2 − κr1 =
κ2

1 + rκ2

− κ1

1 + rκ1

.

Therefore,

κ2 − κ1 =
κ2 − κ1

r2K + 2rH + 1
.

Since x0 is not a radial umbilic point, then x
′
0 = Ψ1(x0) is not an umbilic point on the

boundary (i.e., κ1 ̸= κ2). Therefore, r2K + 2rH + 1 = 1 which gives that Kr = K. 2

Example 4.3.8 Assume as in example 1.3.3, then the matrix representing the differential

geometric shape operator is given by

SXV
′ =

1

r2Kr − 2rHr + 1
(SV − rKrI),
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and after some calculations and simplifications we get

SXV ′ =
−2

4(x2 + y2)[3(x2 + y2) + 2] + 1

 1 + 2x2 + 6y2 −4xy

−4xy 1 + 6x2 + 2y2

 .

Now the principal curvatures of the boundary are given by

κ1 =
−2

1 + 2x2 + 2y2
and κ2 =

−2

1 + 6x2 + 6y2
.

Thus the Gaussian and mean curvatures of the boundary are given by

K =
4

(1 + 6x2 + 6y2)(1 + 2x2 + 2y2)
and H =

−(2 + 8x2 + 8y2)

(1 + 6x2 + 6y2)(1 + 2x2 + 2y2)
.

From direct calculation we have

Hr

Kr

− H

K
= x2 + y2 + 1 = r.

From this example we can see that the radial curvature condition is not necessary for the

smoothness of the boundary. For instance when the radius function has a singularity we

have κr1 = κr2 = 2 but the radius function r = 1.
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Chapter 5

The Relationship Between the

Differential Geometry of the Skeletal

Structure and that of the Boundary

5.1 Introduction

In chapter 4 we studied the relationship between the radial shape operator of a skeletal

structure and the differential geometric shape operator of its associated boundary. This

chapter focuses on the relationship between the differential geometric shape operator of

a skeletal structure and the differential geometric shape operator of its boundary. To find

out this relationship we first study the relationship between the differential geometric

shape operator of a skeletal structure and its radial shape operator. First we study this

relationship in the case of a skeletal structure in R2 (Theorem 5.2.4). After this we study

the relationship between the curvatures of the boundary at the tangency points associated

to a smooth point of a Blum medial axis in R2 (Theorem 5.2.13). Second we study

the relationship between the radial shape operator of a skeletal structure in Rn+1 and

its differential geometric shape operator (Theorem 5.3.17). This gives us enough tools
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to study the required relationship between the differential geometric shape operator of a

skeletal structure and the differential geometric shape operator of its boundary which is

given in theorem 5.3.23.

5.2 The Differential Geometry of the Skeletal Structure

and its Boundary in the Plane

In this section we will study the relationship between the curvature of the skeletal set and

the curvature of its boundary. Let (S, U) be a skeletal structure in R2 and let x0 ∈ S be a

smooth point such that the compatibility 1-form vanishes identically on a neighbourhood

of x0. Now let γ be the smooth stratum containing x0 parametrized by the arc-length s.

Define the following functions

ρ1 = U1 ·N and ρ2 = U1 · T,

where N and T are the unit normal and the unit tangent such that U1 and N oriented in the

same direction. The smooth choice of the radial vector field is: U1 = −r
′
T +

√
1− r′2N

and in this case ρ1 =
√

1− r′2 and ρ2 = −r
′ . Recall that at a smooth point x0 U1 ̸= T

and if the radius function has no singularity at x0, then the possible positions of U1 are

illustrated in figure 5.1. If the radius has a singularity at x0, then U1 = N .

Remark 5.2.1 Let ρ1 and ρ2 defined as above, then

1. ρ21 + ρ22 = 1;

2. if the radius function has no singularity at x0 then ρ1 has a singularity at x0 if and

only if ρ2 has a singularity at x0.



Chapter 5. The Relationship Between the Differential Geometry of the Skeletal Structure
and that of the Boundary 104

γ

T

U1N

T

N

U1

x0x0 γ

Figure 5.1: The possible positions of the radial vector field when the radius function has

no singularity.

Lemma 5.2.2 Let (S, U) be a skeletal structure in R2 such that for a choice of smooth

value of U , the associated compatibility 1-form vanishes identically on a neighbourhood

of a smooth point x0 ∈ S. If the function ρ1 has a singularity at x0 and the radius function

has no singularity at x0, then

κr =
1

ρ1
κm,

where κr (resp. κm) is the radial curvature of S at x0 (resp. curvature of S at x0).

Proof

Let γ(s) be the smooth stratum containing x0 parametrized by the arc-length s, then

∂U1

∂s
= aU1 − κrT.

Therefore,
∂U1

∂s
· U1 = 0 = a− κrρ2 ⇒ a = κrρ2.

Now the derivative of the function ρ1 = U1 ·N with respect to s is given by

∂ρ1
∂s

=
∂U1

∂s
·N +

∂N

∂s
· U1

= aρ1 − κmρ2.

Now since
∂ρ1
∂s

= 0 this implies aρ1 = κmρ2 or a =
ρ2
ρ1

κm. But a = ρ2κr therefore,

ρ2κr =
ρ2
ρ1

κm which gives κr =
1
ρ1
κm. 2
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The above lemma gives us a good tool to study the relationship between the curvature

of the skeletal structure and the curvature of its boundary. This relation is given in the

following proposition.

Proposition 5.2.3 Let (S, U) be a skeletal structure in R2 such that for a choice of smooth

value of U , the associated compatibility 1-form vanishes identically on a neighbourhood

of a smooth point x0 ∈ S and κr ̸= 1
r
. If the function ρ1 has a singularity at x0 and the

radius function has no singularity, then

κ =
κm

ρ1 − rκm

,

where κm (resp. κ ) is the curvature of S at x0 (resp. curvature of the associated boundary

at x
′
0 = Ψ1(x0)), where Ψ1 is the radial map.

Proof

From lemma 5.2.2 we have κr =
1
ρ1
κm also from theorem 4.2.1 we have

κ =
κr

1− rκr

.

Therefore, replacing κr by 1
ρ1
κm gives the result. 2

The previous proposition tells us the relationship between κm and κr under specific

conditions depend on the singularity of ρ1 when the radius function has no singularity.

The next result gives this relation in general without controlling it by any conditions

regarding to the singularity of ρ1.

Theorem 5.2.4 Let (S, U) be a skeletal structure in R2 such that for a choice of smooth

value of U , the associated compatibility 1-form vanishes identically on a neighbourhood

of a smooth point. Then

κr =
ρ1κm − dρ2

ρ21
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or equivalently

κr =

√
1− r′2κm + r

′′

1− r′2 ,

where κm (resp. κr ) is the curvature of S at x0 (resp. radial curvature of S at x0 ).

Proof

Let γ(s) be the smooth stratum containing x0 parametrized by the arc-length, then we

have

ρ2 = T · U1. (5.1)

Now differentiate equation (5.1) with respect to the arc-length we obtain

dρ2 = ρ1κm + aρ2 − κr.

But from the proof of lemma 5.2.2 we have a = ρ2κr, thus

dρ2 = ρ1κm + aρ2 − κr = ρ1κm + ρ22κr − κr.

Therefore,

κr =
dρ2 − ρ1κm

ρ22 − 1
=

ρ1κm − dρ2
ρ21

or equivalently

κr =

√
1− r′2κm + r

′′

1− r′2 .

Therefore the proof is completed. 2

Corollary 5.2.5 Assume as in theorem 5.2.4. If the radius function has a singularity, then

κr = κm − dρ2 = κm + r
′′
.

Proof

From theorem 5.2.4 we have

κr =
ρ1κm − dρ2

ρ21
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and since the radius function has a singularity then ρ1 = 1 therefore, the above equation

becomes

κr = κm − dρ2 = κm + r
′′

which completes the proof. 2

Corollary 5.2.6 Assume as in theorem 5.2.4. If the radius function has a singularity, then

ρ2 has a singularity if and only if κr = κm.

Proof

The proof comes directly from corollary 5.2.5. 2

Now we will turn to the relationship between the curvature of the skeletal structure and

the curvature of its boundary. Theorem 5.2.4 and theorem 4.2.1 give enough information

to discuss the requested relation in the following theorem.

Theorem 5.2.7 Let (S, U) be a skeletal structure in R2 such that for a choice of smooth

value of U , the associated compatibility 1-form vanishes identically on a neighbourhood

of a smooth point x0 ∈ S and κr ̸= 1
r
. Then the curvature κ of the boundary at x

′
0 =

Ψ1(x0) is given by

κ =
ρ1κm − dρ2

ρ21 + rdρ2 − rρ1κm

(5.2)

or equivalently

κ =

√
1− r′2κm + r

′′

1− r′2 − rr′′ − r
√
1− r′2κm

. (5.3)

Proof

From theorem 4.2.1 we have

κ =
κr

1− rκr

(5.4)
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and from theorem 5.2.4 we have

κr =
ρ1κm − dρ2

ρ21

or equivalently

κr =

√
1− r′2κm + r

′′

1− r′2 .

Now substituting in equation 5.4 the result holds. 2

It can be seen from equation 5.3 that the type of the singularity of the radius function

plays a central role in the relation between κ and κm.

Recall that a function f : R −→ R is said to have an Ak singularity at t0 if

f
′
(t0) = f

′′
(t0) = ... = f (k)(t0) = 0, f (k+1)(t0) ̸= 0.

Corollary 5.2.8 Assume as in theorem 5.2.7.

1. If the radius function has an A1 singularity, then

κ =
κm + r

′′

1− rr′′ − rκm

. (5.5)

2. If the radius function has an A2 singularity, then

κ =
κm

1− rκm

. (5.6)

Proof

The proof of this corollary comes directly from equation 5.3. 2

In the rest of this section we will discuss the relationship between the curvature of the

Blum medial axis and the curvatures κ1 and κ2 of the boundary at tangency points, on

another words if we know the curvatures of the boundary, could we find the curvature of

the Blum medial axis? Also, we will investigate the relationship between κ1 and κ2.
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Proposition 5.2.9 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ R2 with smooth boundary X . Let x0 ∈ S be a smooth point.

1. The radial curvatures κr1 and κr2 are given by

κr1 =

√
1− r′2κm + r

′′

1− r′2 , (5.7)

κr2 =
−
√

1− r′2κm + r
′′

1− r′2 . (5.8)

2. The curvatures κ1 and κ2 of the boundary at the tangency points are given by

κ1 =

√
1− r′2κm + r

′′

1− r′2 − rr′′ − r
√
1− r′2κm

, (5.9)

κ2 =
−
√

1− r′2κm + r
′′

1− r′2 − rr′′ + r
√
1− r′2κm

. (5.10)

Proof

The proof of this proposition comes directly from theorems 5.2.4 and 5.2.7. 2

Corollary 5.2.10 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ R2 with smooth boundary X . Let x0 ∈ S be a smooth point, then

1

2
(κr1 + κr2) =

r
′′

1− r′2 . (5.11)

Proof

This result comes by adding equations 5.7 and 5.8. 2

Proposition 5.2.11 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ R2 with smooth boundary X . Let x0 ∈ S be a smooth point, then the curvature of S

at x0 is given by

κm =
1

2

(
κ1

1 + rκ1

− κ2

1 + rκ2

)√
1− r′2 (5.12)

where κ1 and κ2 are the curvatures of the boundary at tangency points associated to x0.
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Proof

From equations 5.7 and 5.8 we have

κr1 =

√
1− r′2κm + r

′′

1− r′2

and

κr2 =
−
√
1− r′2κm + r

′′

1− r′2 .

Therefore,

κr1 − κr2 = 2

√
1− r′2κm

1− r′2 .

Thus

κm =
1

2
(κr1 − κr2)

√
1− r′2.

But we have

κri =
κi

1 + rκi

, i = 1, 2

and by substituting in the above equation the proof is completed. 2

Corollary 5.2.12 Assume as in proposition 5.2.11. If the radius function has a

singularity, then

κm =
1

2

(
κ1

1 + rκ1

− κ2

1 + rκ2

)
.

Proof

The proof is obvious. 2

Now we are in the position to study the relationship between the curvatures of the

boundary. This relation is given in the following theorem.

Theorem 5.2.13 Let ( S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ R2 with smooth boundary X . Let x0 ∈ S be a smooth point, then the curvatures of
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the boundary at the tangency points associated to x0 are related by the following equation

κ1 =
2r

′′ − κ2(1− r
′2 − 2rr

′′
)

(1− r′2 − 2rr′′) + 2rκ2(1− r′2 − rr′′)
. (5.13)

Proof

From corollary 5.2.10 we have

κr1 + κr2 =
2r

′′

1− r′2

or
κ1

1 + rκ2

+
κ2

1 + rκ2

=
2r

′′

1− r′2 .

Thus
κ1 + 2rκ1κ2 + κ2

1 + rκ1 + rκ2 + r2κ1κ2

=
2r

′′

1− r′2 .

Therefore,

κ1(1 + 2rκ2)(1− r
′2
) + κ2(1− r

′2
) = 2r

′′
+ 2rr

′′
κ1(1 + rκ2) + 2rr

′′
κ2.

Thus

κ1(1 + 2rκ2 − r
′2 − 2rr

′2
κ2 − 2rr

′′ − 2r2r
′′
κ2) = 2r

′′
+ κ2(2rr

′′ − 1 + r
′2
).

Hence

κ1[(1− r
′2 − 2rr

′′
) + 2rκ2(1− r

′2 − rr
′′
)] = 2r

′′ − κ2(1− r
′2 − 2rr

′′
).

Therefore,

κ1 =
2r

′′ − κ2(1− r
′2 − 2rr

′′
)

(1− r′2 − 2rr′′) + 2rκ2(1− r′2 − rr′′)

which completes the proof. 2

Corollary 5.2.14 Assume as in theorem 5.2.13. If r
′′
= 0, then

κ1 =
−κ2

1 + rκ2

.
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Proof

The proof comes directly from equation 5.13. 2

5.3 Shape Operator of the Blum Medial Axis and those

of its Boundary at Tangency Points

In this section we will turn to higher dimensions; in particular we will investigate the

Hessian operator in terms of the radial shape operators of the Blum medial axis and then

we are able to find the the expression of the Hessian operator in terms of the differential

geometric shape operators of the boundary at the tangency points. Moreover, we are going

to find out the relationship between the shape operator of the Blum medial axis and the

the differential geometric shape operators of the boundary at the tangency points. Recall

that for each smooth point x0 ∈ S of skeletal structure we have two values of the radial

vector field U which are on opposite sides of Tx0S. The values of U corresponding to one

side form a smooth vector field. Also, for each side we have a radial shape operator.

Theorem 5.3.1 Let (S, U) be a Blum medial axis and radial vector field of a region Ω ⊆

Rn+1 with smooth boundary X . Let x0 ∈ S be a smooth point and {v1, v2, ..., vn} be a

basis for the tangent space of S at x0, then the radial Hessian operator is given by

Hr(V ) =
1

2
(SV1 + SV2)

T (I − drdrT I−1
m )V, (5.14)

where Im is the matrix representing the first fundamental form of S at x0 and SVi
, i = 1, 2

are the matrices representing the radial shape operators, V is the matrix with i-th row

entry vi and dr is a column matrix with i-row entry dr(vi), where dr(vi) is the directional

derivative of the radius function in the direction of vi.
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Proof

The radial Hessian operator is a map

Hr : Tx0S → Tx0S

such that

Hr(vi) = −∇vi(U1tan) = −projN

(
∂U1tan

∂vi

)
,

where ∇vi is the covariant derivative with respect to the basis of the tangent space of the

Blum medial axis at a smooth point. But we have U1tan = −∇r = 1
2
(U1 + U2) and ∇r is

the Riemannian gradient of the radius function. Therefore,

Hr(vi) = −∇vi(−∇r) = ∇vi(∇r) = projN

(
−1

2

∂

∂vi
(U1 + U2)

)
.

Thus

Hr(vi) =
−1

2
projN

(
∂U1

∂vi
+

∂U2

∂vi

)
.

Now using equation (1.2) we have(
∂U1

∂vi
+

∂U2

∂vi

)
= a1iU1 −

n∑
j=1

s1jivj + a2iU2 −
n∑

j=1

s2jivj.

Now we write this equation in vector notation to get

∂U1

∂V
+

∂U2

∂V
= A1U1 − ST

V 1V + A2U2 − ST
V 2V,

but from the proof of lemma 3.3.7 we have Ai = −ST
V idr, i = 1, 2. Therefore,

∂U1

∂V
+

∂U2

∂V
= −(SV 1 + SV 2)

TV − ST
V 1drU1 − ST

V 2drU2.

But the possible choices for the radial vector fields are

U1 = −∇r +
√

1− ∥∇r∥2N and U2 = −∇r −
√

1− ∥∇r∥2N.

Thus

∂U1

∂V
+
∂U2

∂V
= −(SV 1 + SV 2)

TV+(SV 1 + SV 2)
Tdr∇r−

√
1− ∥∇r∥2(SV 1 − SV 2)

TdrN.
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Now the projection of this equation to the tangent space along the normal is given by

projN

(
∂U1

∂V
+

∂U2

∂V

)
= −(SV 1 + SV 2)

T (V − dr∇r), (5.15)

but the Riemannian gradient of the radius function is given locally by ∇r = drT I−1
m V

where Im is the first fundamental form of the Blum medial axis. Thus equation 5.15

becomes

projN

(
∂U1

∂V
+

∂U2

∂V

)
= −(SV 1 + SV 2)

T (I − drdrT I−1
m )V.

Therefore,

Hr(V ) =
1

2
(SV1 + SV2)

T (I − drdrT I−1
m )V.

Hence by this the proof is completed. 2

Now let Hr be the matrix representing the radial Hessian operator Hr. In the following

corollary we express Hr in terms of SV1 and SV2 .

Corollary 5.3.2 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ Rn+1 with smooth boundary X . Let x0 ∈ S be a smooth point, then the matrix Hr

representing the radial Hessian operator is given by

Hr =
1

2
(SV1 + SV2)

T (I − drdrT I−1
m ). (5.16)

Proof

The proof of this corollary comes directly from equation 5.14. 2

Proposition 5.3.3 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ Rn+1 with smooth boundary X . Let x0 ∈ S be a smooth point. If the radius function

has a singularity at x0, then the matrix Hr representing the radial Hessian operator is

given by

Hr =
1

2
(SV1 + SV2)

T . (5.17)
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Proof

Assume that the radius function has a singularity then equation 5.16 becomes

Hr =
1

2
(SV1 + SV2)

T .

Hence the proof is completed. 2

Now we define the mean Hessian curvature H∗ by

H∗ =
1

n
tr(Hr).

Using this we have the following.

Corollary 5.3.4 Assume as in proposition 5.3.3, then the mean Hessian curvature is given

by

H∗ =
1

2
(Hr1 +Hr2), (5.18)

where Hr1 and Hr2 are the mean radial curvatures of the Blum medial axis.

Proof

If we take the trace for both sides of equation 5.17 we obtain

tr(Hr) =
1

2
(tr(SV1) + tr(SV2)).

Thus equation 5.18 is satisfied. 2

Our task now is to find out the connection between the radial Hessian operator and the

shape operators of the boundary at the tangency points.

Theorem 5.3.5 Let (S, U) be a Blum medial axis and radial vector field of a region Ω ⊆

Rn+1 with smooth boundary X . Let x0 ∈ S be a smooth point. Then the matrix Hr

representing the radial Hessian operator is given by

Hr =
1

2
{(I + rSXV

′
1
)−1SXV

′
1
+ (I + rSXV

′′
2
)−1SXV

′′
2
}T (I − drdrT I−1

m ), (5.19)
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where SXV
′
1

and SXV
′′
2

are the matrices representing the differential geometric shape

operators of the boundary at the tangency points associated to x0.

Proof

From corollary 5.3.2 we have

Hr =
1

2
(SV1 + SV2)

T (I − drdrT I−1
m )

and from proposition 4.2.4 we have

SV1 = (I + rSXV
′
1
)−1SXV

′
1

and SV2 = (I + rSXV
′′
2
)−1SXV

′′
2

and by substituting this in the above equation the proof is completed. 2

Corollary 5.3.6 Assume as in theorem 5.3.5. If the radius function has a singularity at

x0, then

Hr =
1

2
{(I + rSXV

′
1
)−1SXV

′
1
+ (I + rSXV

′′
2
)−1SXV

′′
2
}T .

Proof

The proof of this result comes directly from equation 5.19. 2

Now we will give a special form for the matrix representing the radial Hessian operator

in the case of a Blum medial axis in R3.

Theorem 5.3.7 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ R3 with smooth boundary X . Let x0 ∈ S be a smooth point. Then the matrix

Hr representing the radial Hessian operator is given by

Hr =
1

2
{ 1

r2K1 + 2rH1 + 1
SXV

′
1
− 1

r2K2 + 2rH2 + 1
SXV

′′
2

+

(
rK1

r2K1 + 2rH1 + 1
− rK2

r2K2 + 2rH2 + 1

)
I}T (I − drdrT I−1

m ).
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Proof

From theorem 4.3.1 we have

SV 1 =
1

r2K1 + 2rH1 + 1
SXV

′
1
− rK1

r2K1 + 2rH1 + 1
I,

and

SV 2 =
1

r2K2 + 2rH2 + 1
SXV

′′
2
− rK1

r2K1 + 2rH1 + 1
I.

Now substitute by these in equation 5.16 the result holds. 2

Corollary 5.3.8 Assume as in theorem 5.3.7. If the radius function has a singularity at

x0, then

Hr =
1

2
{ 1

r2K1 + 2rH1 + 1
SXV

′
1
− 1

r2K2 + 2rH2 + 1
SXV

′′
2

+

(
rK1

r2K1 + 2rH1 + 1
− rK2

r2K2 + 2rH2 + 1

)
I}T .

Proof

The proof of this corollary comes directly from theorem 5.3.7. 2

Example 5.3.9 Let (S, U) be a Blum medial axis in R3 and let S1(x, y) = (x, y, 1
2
κm1x

2+

1
2
κm2y

2 + h.o.t) ⊂ Sreg and r = r0 +
1
2
ax2 + 1

2
by2 be the radius function on S1 such that

1
r0

/∈ {κm1 + a, κm2 + b}. Now we define the unit radial vector fields by

U1 = −∇r +

√
1− ∥∇r∥2N and U2 = −∇r −

√
1− ∥∇r∥2N,

where ∇r is the Riemannian gradient of the radius function and N is the unit normal of

S1. The radius function has a singularity at the origin and direct calculations show that

at the origin we have

SV1 =

 κm1 + a 0

0 κm2 + b

 , SV2 =

 a− κm1 0

0 b− κm2

 ,
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SXV1
′ =


κm1 + a

1− r0(κm1 + a)
0

0
κm2 + b

1− r0(κm2 + b)

 ,

SXV2
′ =


a− κm1

1− r0(a− κm1)
0

0
b− κm2

1− r0(b− κm2)

 and Hr =

 a 0

0 b

 .

Now it is easy to check that

Hr =
1

2
(SV1 + SV2)

T =
1

2
{(I + rSXV

′
1
)−1SXV

′
1
+ (I + rSXV

′′
2
)−1SXV

′′
2
}T .

In the rest of this section we will focus on the relationship between the shape operator

of the Blum medial axis and the shape operators of its boundary at tangency points

corresponding to a smooth point on the medial axis. Now let (S, U) be a Blum medial

axis and radial vector field of a region Ω ⊆ Rn+1 with smooth boundary X . Assume

that x1 and x2 are the tangency points associated to a smooth point x0 ∈ S then we

have only two choices for the smooth value of the radial vector field U these choices are

U1 = −∇r+
√

1− ∥∇r∥2N and U2 = −∇r−
√
1− ∥∇r∥2N such that U1 and N have

the same direction and x1 = x0 + rU1 and x2 = x0 + rU2 and ρ =
√
1− ∥∇r∥2. Now it

is clear that

U1 = U2 + 2ρN. (5.20)

Therefore, with this equation we have a good tool to investigate the relation mentioned

above in particularly we have the following results.

Theorem 5.3.10 Let ( S, U ) be a Blum medial axis and radial vector field of a region

Ω ⊆ Rn+1 with smooth boundary X . Let x0 ∈ S be a smooth point and {v1, v2, ..., vn} be

a basis for the tangent space of S at x0. Then the differential geometric shape operator

Smed of S at x0 is given by

Smed(V ) =
1

2ρ
(SV 1 − SV 2)

T (I − drdrT I−1
m )V. (5.21)
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Proof

From equation 5.20 we have

U1 = U2 + 2ρN.

Let {v1, v2, ..., vn} be a basis for the tangent space of S at x0, now differentiate both sides

of the above equation with respect to vi we get

∂U1

∂vi
=

∂U2

∂vi
+ 2

∂ρ

∂vi
N + 2ρ

∂N

∂vi
, i = 1, 2, ..., n.

This equation can be written in vector forms as the following

∂U1

∂V
=

∂U2

∂V
+ 2dρ(V )N + 2ρ

∂N

∂V

or

A1U1 − ST
V 1V = A2U1 − ST

V 2V + 2dρN + 2ρ
∂N

∂V

or

−ST
V 1(I−drdrT I−1

m )V−ρST
V 1drN = −ST

V 2(I−drdrT I−1
m )V+ρST

V 2drN+2dρN+2ρ
∂N

∂V
.

Now apply the projection to the tangent space along normal (−projN ) we obtain the

following

Smed(V ) =
1

2ρ
(SV 1 − SV 2)

T (I − drdrT I−1
m )V

which completes the proof. 2

Corollary 5.3.11 Let ( S, U ) be a Blum medial axis and radial vector field of a region

Ω ⊆ Rn+1 with smooth boundary X . Let x0 ∈ S be a smooth point. Then the matrix

representing the shape operator of the Blum medial axis at x0 is given by

ST
m =

1

2ρ
(SV 1 − SV 2)

T (I − drdrT I−1
m ). (5.22)
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Proof

The proof of this corollary comes directly from equation 5.21. 2

Corollary 5.3.12 Assume as in corollary 5.3.11. If the radius function has a singularity

at x0, then

ST
m =

1

2
(SV 1 − SV 2)

T . (5.23)

Proof

If the radius function has a singularity, then ρ = 1. Therefore, equation 5.22 becomes

ST
m = 1

2
(SV 1 − SV 2)

T which completes the proof. 2

Example 5.3.13 Let (S, U) be a Blum medial axis in R3 and let S1(x, y) = (x, y, y2 −

x2) ⊂ Sreg and r = 0.1+xy+y2 be the radius function on S1 such that x2+4xy+5y2 < 1.

At the origin the radius function has a singularity and we have

Sm =

 −2 0

0 2

 , SV1 =

 −2 1

1 4

 and SV2 =

 2 1

1 0

 .

It is clear that ST
m = 1

2
(SV 1 − SV 2)

T .
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Figure 5.2: The Blum medial axis and associated boundary of example 5.3.13.

Now we will turn to one of the main aims of this chapter which is the relationship

between the differential geometric shape operator of the Blum medial axis and the

differential geometric shape operators of its boundary. In fact, corollary 5.3.11 gives us a

good tool as well as proposition 4.2.4 to investigate this relationship which given in the

following theorem.

Theorem 5.3.14 Let ( S, U ) be a Blum medial axis and radial vector field of a region

Ω ⊆ Rn+1 with smooth boundary X . Let x0 ∈ S be a smooth point.

1. The matrix representation of the shape operator of the Blum medial axis at x0 is
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given by

ST
m =

1

2ρ
{(I + rSXV

′
1
)−1SXV

′
1
− (I + rSXV

′′
2
)−1SXV

′′
2
}T (I−drdrT I−1

m ). (5.24)

2. If the radius function has a singularity at x0, then

ST
m =

1

2
{(I + rSXV

′
1
)−1SXV

′
1
− (I + rSXV

′′
2
)−1SXV

′′
2
}T , (5.25)

where SXV
′
1

and SXV
′′
2

are the matrices representing the differential geometric shape

operators of the boundary at the tangency points associated to x0.

Proof

1. From proposition 4.2.4 we have

SV1 = (I + rSXV
′
1
)−1SXV

′
1

and SV2 = (I + rSXV
′′
2
)−1SXV

′′
2
.

Now substitute by this in equation 5.22 the result holds immediately.

2. The proof is obvious. 2

Example 5.3.15 Let (S, U) be a Blum medial axis in R3 and let S1(x, y) = (x, y, x3 −

y2) ⊂ Sreg and r = 0.1+ y2 be the radius function on S1 such that 4y2 < 1. At the origin

the radius function has a singularity and we have

Sm =

 0 0

0 −2

 , SXV
′
1
=

 0 0

0 0

 and SV2 =

 0 0

0 4

 = (I + r0SXV
′′
2
)−1SXV

′′
2
.

Thus it is clear that ST
m = 1

2
{(I + rSXV

′
1
)−1SXV

′
1
− (I + rSXV

′′
2
)−1SXV

′′
2
}T .
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Figure 5.3: The Blum medial axis and associated boundary of example 5.3.15.

Now we will give a special form for the matrix representing the differential geometric

shape operator in the case of a Blum medial axis in R3.

Theorem 5.3.16 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ R3 with smooth boundary X . Let x0 ∈ S be a smooth point. Then the matrix Sm

representing the differential geometric shape operator is given

ST
m =

1

2ρ
{ 1

r2K1 + 2rH1 + 1
SXV

′
1
− 1

r2K2 + 2rH2 + 1
SXV

′′
2

+

(
rK1

r2K1 + 2rH1 + 1
− rK2

r2K2 + 2rH2 + 1

)
I}T (I − drdrT I−1

m ).
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Proof

The proof of this theorem comes directly by applying theorem 4.3.1 in corollary 5.3.11. 2

In the following we will give the exact relationship between the matrix representing the

radial shape operator of a skeletal structure and the matrix representing the differential

geometric shape operator of the skeletal set and then we will give the exact relationship

between the matrix representing the differential geometric shape operator of the skeletal

set and the matrix representing the differential geometric shape operator of the boundary

at a point associated to a smooth point of the skeletal set. Let (S, U) be a skeletal structure

in Rn+1 such that the compatibility condition holds and let x0 ∈ Sreg be a smooth point

and {v1, v2, ..., vn} be a basis for the tangent space of S at x0. Let r be the radius function,

since x0 is a smooth point and the compatibility condition holds then the unit radial vector

field is given by [8]:

U1 = −∇r +

√
1− ∥∇r∥2N,

where ∇r is the Riemannian gradient of the radius function and N is the unit normal of

the smooth stratum S containing x0. We put ρ =
√
1− ∥∇r∥2, so we have the following

U1 = −∇r + ρN. (5.26)

From this equation we have the following equation

N =
1

ρ
U1 +

1

ρ
∇r. (5.27)

This equation is a useful tool to determine the coefficients of the unit radial vector field in
∂U1

∂vi
. From equation 5.26, we have

∂U1

∂vi
= −∂∇r

∂vi
+

∂ρ

∂vi
N + ρ

∂N

∂vi
. (5.28)

Now we put
∂∇r

∂vi
=

(
∂∇r

∂vi

)T

+

(
∂∇r

∂vi

)N

,
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where
(
∂∇r

∂vi

)T

(resp.
(
∂∇r

∂vi

)N

) is the tangential (resp. normal) part of
∂∇r

∂vi
. Now

since S is a hypersurface, then we put
(
∂∇r

∂vi

)N

= βiN . Now using this together with

equation 5.27, equation 5.28 becomes

∂U1

∂vi
= −

(
∂∇r

∂vi

)T

+
1

ρ

(
∂ρ

∂vi
− βi

)
U1 +

1

ρ

(
∂ρ

∂vi
− βi

)
∇r + ρ

∂N

∂vi
. (5.29)

Now writing this equation in vector form we get

∂U1

∂V
=

1

ρ
(dρ− β)U1 − (HT

r + ρST
m − 1

ρ
(dρ− β)drT I−1

m )V. (5.30)

From equation 1.3 we have
∂U1

∂V
= AVU1 − STV. (5.31)

Now since {U1, v1, v2, ...., vn} is a basis for Rn+1, then from equations 5.30 and 5.31 we

obtain

AV =
1

ρ
(dρ− β) and ST

V = HT
r + ρST

m − 1

ρ
(dρ− β)drT I−1

m , (5.32)

where Hr is the matrix representing the radial Hessian operator, Sm is the matrix

representing the differential geometric shape operator of the skeletal set, dρ is a column

matrix with i-th entry
∂ρ

∂vi
, dr is a column matrix with i-th entry

∂r

∂vi
, β is a column matrix

with i-th entry βi, Im is the first fundamental form of the skeletal set and V is the matrix

with i-th row vi.

Our task now is to find the exact expression of the matrix β. In [7] James Damon pointed

out that AV = ST
V V · U1 and since the compatibility condition holds, then AV = −ST

V dr.

Thus from this and equation 5.32 we have −ST
V dr =

1
ρ
(dρ− β). Thus

β = dρ+ ρST
V dr. (5.33)

Also, from corollary 3.3.9 we have dρ = −(ρST
V − ST

m)dr. Hence we obtain that β =

ST
mdr. Therefore, equation 5.32 can be rewritten as the following

AV =
1

ρ
(dρ− ST

mdr) and ST
V = HT

r + ρST
m − 1

ρ
(dρ− ST

mdr)dr
T I−1

m . (5.34)
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Now we summarize the above discussion in the following theorem.

Theorem 5.3.17 Let (S, U) be a skeletal structure in Rn+1 such the compatibility

condition holds in a neighbourhood of smooth point x0 ∈ S, then

AV =
1

ρ
(dρ− ST

mdr) (5.35)

and

ST
V = HT

r + ρST
m − 1

ρ
dρdrT I−1

m +
1

ρ
ST
mdrdr

T I−1
m . (5.36)

Example 5.3.18 Let (S, U) be a skeletal structure in Rn+1 suppose the image of

s1(x1, x2, ..., xn) = (x1, x2, ..., xn, 1) ⊂ Sreg such that {(x1, x2, ..., xn) ∈ Rn|
n∑

i=1

x2
i <

1
4
}

and let r(x1, x2, ..., xn) = 1+
n∑

i=1

x2
i be the radius function. Now the radial vector field is

given by U1 = −∇r+ρN , where ∇r is the Riemannian gradient, ρ =

√
1− 4

n∑
i=1

x2
i and

N is the unit normal of s1. Now we will apply theorem 5.3.17 to calculate SV and AV .

Since s1 is a hyperplane, then Sm = 0. Also, ∇r = (2x1, 2x2, ..., 2xn, 0) and Hr = 2I ,

where I in the (n× n)−identity matrix. From theorem 5.3.17 we have

ST
V = HT

r − 1

ρ
dρdrT and AV =

1

ρ
dρ.

For each j ∈ {1, 2, ..., n} we have
∂ρ

∂xj

=
−4xj√

1− 4
n∑

i=1

x2
i

. Thus


∂ρ
∂x1

∂ρ
∂x2

...
∂ρ
∂xn

 =
−4√

1− 4
n∑

i=1

x2
i


x1

x2

...

xn

 .
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Therefore,

AV =
−4

1− 4
n∑

i=1

x2
i


x1

x2

...

xn

 .

Also, after simplifying the matrix HT
r − 1

ρ
dρdrT we obtain that

SV = 2

1−4
n∑

i=1
x2
i



1 + 4x2
1 − 4

n∑
i=1

x2
i 4x1x2 4x1x3 · · · 4x1xn

4x1x2 1 + 4x2
2 − 4

n∑
i=1

x2
i 4x2x3 · · · 4x2xn

4x1x3 4x2x3 1 + 4x2
3 − 4

n∑
i=1

x2
i · · · 4x3xn

...
...

...
. . .

...

4x1xn−1 4x2xn−1 4x3xn−1 · · · 4xn−1xn

4x1xn 4x2xn 4x3xn · · · 1 + 4x2
n − 4

n∑
i=1

x2
i


.

It is clear that at (x1, x2, ..., xn) = (0, 0, ..., 0) we have SV = 2I .

In theorem 5.3.17 we expressed the matrix SV representing the radial shape operator of

a skeletal structure in terms of Hr, Sm, dρ and dr. Our task now is to assume that if

x0 ∈ S is a smooth point then the smooth sheet of the skeletal set S say S1 containing x0

is in Monge form i.e., S1 can be parametrized locally by (x1, x2, ..., xn) such that S1 is

given by the graph S1(x1, x2, ..., xn) = (x1, x2, ..., xn,
1
2

n∑
i=1

κmix
2
i + h.o.t). Now let r be

the radius function on S1 i.e., it is a smooth function of (x1, x2, ..., xn). In the following

we will calculate SV at the origin and to do so we just calculate Hr, Sm, dρ at the origin

and substitute in theorem 5.3.17. It is clear that at the origin we have Sm = diag[κmi].

To calculate Hr we will use the definition of Riemannian gradient which is given by

∇r = gij∂jrvi, where gij is the inverse of the matrix representing the Riemannian metric,

∂j is the partial derivative of the radius function and vi is a basis of the tangent space.

Since S1 is a smooth hypersurface in Rn+1, we assume that the matrix Im representing the

first fundamental form is the matrix gij representing the Riemannian metric i.e., Im = gij .
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Now we have

gijgij = gijIm (5.37)

and
∂∇r

∂xl

=
∂gij

∂xl

∂jrvi + gij
∂

∂xl

(∂jr)vi + gij∂jr
∂vi
∂xl

. (5.38)

Now we calculate this at the origin and first of all we calculate the first fundamental form

Im in general. It is clear that

v1 =
∂S1

∂x1

= (1, 0, 0, ..., 0, κm1x1 + h.o.t),

v2 =
∂S1

∂x1

= (0, 1, 0, ..., 0, κm2x2 + h.o.t),

...

vn =
∂S1

∂x1

= (0, 0, 0, ..., 1, κmnxn + h.o.t).

Thus

gij =


1 + κ2

m1x
2
1 + h.o.t. κm1κm2x1x2 + h.o.t. · · · κm1κmnx1xn + h.o.t.

κm1κm2x1x2 + h.o.t. 1 + κ2
m2x

2
2 + h.o.t. · · · κm2κmnx2xn + h.o.t.

...
... . . . ...

κm1κmnx1xn + h.o.t. κm2κmnx2xn + h.o.t. · · · 1 + κ2
mnx

2
n + h.o.t.

 .

At the origin gij = I and hence gij = I . Also, ∂gij = 0 at the origin. In general

∂(gijgij) = (∂gij)gij + gij(∂gij) = ∂I = 0.

Now since gij = I at the origin thus ∂gij = 0 at the origin. Therefore,

∂∇r

∂xl

=
∂

∂xl

(∂ir)vi + ∂ir
∂vi
∂xl

. (5.39)

At the origin is easy to check that

∂vi
∂xl

=

 κmiN if i = l

0 if i ̸= l,
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where N is the unit normal of S1. Thus

Hr =


rx1x1 rx1x2 · · · rx1xn

rx2x1 rx2x2 · · · rx2xn

...
... . . . ...

rxnx1 rxnx2 · · · rxnxn

 ,

where rxixj
=

∂

∂xi

(
∂r

∂xj

)
. This matrix is given by [akl] = [rxkxl

]. Now we will calculate

dρ and to do so we put

ρ2 = 1−∇r · ∇r.

Thus

ρ
∂ρ

∂xl

= −∂∇r

∂xl

· ∇r.

At the origin
∂vi
∂xl

· ∇r = 0 for all l = 1, 2, ..., n. Therefore,

ρ
∂ρ

∂xl

= − ∂

∂xl

(∂ir)vi · ∇r.

Thus

ρdρ = −Hr


v1 · ∇r

v2 · ∇r
...

vn · ∇r

 .

Also, at the origin we have ∇r = (rx1 , rx2 , ..., rxn , 0), vi · ∇r = rxi
and

ρ =

√
1−

n∑
i=1

r2xi
. Hence dρ = −1

ρ
Hrdr and after simplification we get

dρ =
−1√

1−
n∑

i=1

r2xi



n∑
i=1

rxi
rx1xi

n∑
i=1

rxi
rx2xi

...
n∑

i=1

rxi
rxnxi


.
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Now we will calculate AV which is given by AV = 1
ρ
(dρ−ST

mdr) after direct calculation

and simplification we get

AV =
−1

1−
n∑

i=1

r2xi



n∑
i=1

rxi
rx1xi

+ κm1rx1

√
1−

n∑
i=1

r2xi

n∑
i=1

rxi
rx2xi

+ κm2rx2

√
1−

n∑
i=1

r2xi

...
n∑

i=1

rxi
rxnxi

+ κmnrxn

√
1−

n∑
i=1

r2xi


.

Thus AV can be written as [bk1] = −1

1−
n∑

i=1
r2xi

[
n∑

i=1

rxi
rxkxi

+ κmkrxk

√
1−

n∑
i=1

r2xi

]
. Now

after some calculations we get

1

ρ
dρdrT =

−1

1−
n∑

i=1

r2xi



rx1

n∑
i=1

rxi
rx1xi

rx2

n∑
i=1

rxi
rx1xi

· · · rxn

n∑
i=1

rxi
rx1xi

rx1

n∑
i=1

rxi
rx2xi

rx2

n∑
i=1

rxi
rx2xi

· · · rxn

n∑
i=1

rxi
rx2xi

...
... . . . ...

rx1

n∑
i=1

rxi
rxnxi

rx2

n∑
i=1

rxi
rxnxi

· · · rxn

n∑
i=1

rxi
rxnxi


.

This matrix can be given by

[ckl] =

−rxl

n∑
i=1

rxi
rxkxi

1−
n∑

i=1

r2xi

 .

Also,

1

ρ
ST
mdrdr

T =
1√

1−
n∑

i=1

r2xi


κm1r

2
x1

κm1rx1rx2 · · · κm1rx1rxn

κm2rx1rx2 κm2r
2
x2

· · · κm2rx2rxn

...
... . . . ...

κmnrx1rxn κmnrx2rxn · · · κmnr
2
xn

 .

This matrix can be written as

[dkl] =

 κmkrxk
rxl√

1−
n∑

i=1

r2xi

 .
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Now let A = Hr − 1
ρ
dρdrT + 1

ρ
ST
mdrdr

T . Thus A is given by

[αkl] =

rxkxl
(1−

n∑
i=1

r2xi
) + rxl

n∑
i=1

rxi
rxkxi

+ κmkrxk
rxl

√
1−

n∑
i=1

r2xi

1−
n∑

i=1

r2xi

 .

Now we summarize the above discussion in the following.

Proposition 5.3.19 Let (S, U) be a skeletal structure in Rn+1 such that the compatibility

condition holds in a neighbourhood of a smooth point x0 ∈ S. Assume that S1 be the

smooth sheet of S containing x0 as the origin and S1 is given in Monge form i.e., S1 is

given by S1(x1, x2, ..., xn) = (x1, x2, ..., xn,
1
2

n∑
i=1

κmix
2
i + h.o.t), then at x0 AV is given

by the matrix

[bk1] =
−1

1−
n∑

i=1

r2xi

 n∑
i=1

rxi
rxkxi

+ κmkrxk

√√√√1−
n∑

i=1

r2xi


and

ST
V = A+ S∗

m,

where A is given by

[αkl] =

rxkxl
(1−

n∑
i=1

r2xi
) + rxl

n∑
i=1

rxi
rxkxi

+ κmkrxk
rxl

√
1−

n∑
i=1

r2xi

1−
n∑

i=1

r2xi

 ,

and S∗
m = diag

[
κmk

√
1−

n∑
i=1

r2xi

]
.

Corollary 5.3.20 Let (S, U) be a skeletal structure in R3 suppose the image of S1(x, y) =

(x, y, 1
2
κm1x

2 + 1
2
κm2y

2 + h.o.t) ⊂ Sreg and Let r be the radius function. Then

1. SV and AV are given by

AV =
−1

1− r2x − r2y

 rxrxx + ryrxy + κm1rx
√
1− r2x − r2y

rxrxy + ryryy + κm2ry
√
1− r2x − r2y


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and ST
V =

 a b

c d

 where,

a =
rxx(1− r2y) + κm1(1− r2x − r2y)

3
2 + rxryrxy + κm1r

2
x

√
1− r2x − r2y

1− r2x − r2y
,

b =
rxy(1− r2x) + rxryrxx + κm1rxry

√
1− r2x − r2y

1− r2x − r2y
,

c =
rxy(1− r2y) + rxryryy + κm2rxry

√
1− r2x − r2y

1− r2x − r2y

and

d =
ryy(1− r2x) + κm2(1− r2x − r2y)

3
2 + rxryrxy + κm2r

2
y

√
1− r2x − r2y

1− r2x − r2y
.

2. If the radius function has a singularity at the origin then AV = 0 and

ST
V =

 rxx + κm1 rxy

rxy ryy + κm2

 .

Proof

The proof of this corollary comes directly from proposition 5.3.19 just by putting n = 2.

2

Example 5.3.21 Let (S, U) be a skeletal structure in R3 and let s1(x, y) = (x, y, x2) ⊂

Sreg such that {(x, y) ∈ R2| − 0.45 < x < 0.45,−0.45 < y < 0.45} . We define the

positive function r on s1 by r(x, y) = 1
2
x+ 1, and we define the unit vector field U1 on s1

by:

U1 = −∇r +

√
1− ∥∇r∥2N,

where ∇r is the Riemannian gradient of r and N is the unit normal of s1. Thus after some

calculations we obtain that

U1 =

(
−1− 2x

√
3 + 16x2

2(1 + 4x2)
, 0,

−2x+
√
3 + 16x2

2(1 + 4x2)

)
.
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It is clear that the compatibility condition holds and the associated boundary is given by

X(x, y) =

(
x− (x+ 2)(1 + 2x

√
3 + 16x2)

4(1 + 4x2)
, y, x2 +

(x+ 2)(−2x+
√
3 + 16x2)

4(1 + 4x2)

)
.

After some calculations we get

SV =

 8x(1 + 4x2)− 4(1 + 4x2
√
1 + 4x2)

√
3 + 16x2

(1 + 4x2)2(3 + 16x2)
0

0 0


and

AV =

 −4x(1 + 4x2) + 2(1 + 4x2
√
1 + 4x2)

√
3 + 16x2

(1 + 4x2)2(3 + 16x2)

0

 .

The radial principal curvatures are κr1 =
8x(1 + 4x2)− 4(1 + 4x2

√
1 + 4x2)

√
3 + 16x2

(1 + 4x2)2(3 + 16x2)
and κr2 = 0. Thus the Gaussian radial curvature Kr = 0.

−0.6 −0.4 −0.2 0 0.2−0.2
0

0.2

0

0.2

0.4

0.6

0.8

1

The boundary

The skeletal set

Figure 5.4: Skeletal set and associated boundary in example 5.3.21.

Example 5.3.22 Let (S, U) be a skeletal structure in R3 and let s1(x, y) = (x, y, y3 −

x2) ⊂ Sreg and r = 0.1 + y2 be the radius function such that 4y2 < 1. At the origin the
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radius function has a singularity and

AV =

 0

0

 and SV =

 −2 0

0 2

 .

Figure 5.5: Skeletal set and associated boundary in example 5.3.22.

Theorem 5.3.17 gives the relationship between the matrix SV representing the radial

shape operator and the matrix Sm representing the differential geometric shape operator

of the skeletal structure. In proposition 4.2.4 we express the the matrix SV in terms of

the matrix SXV ′ representing the differential geometric shape operator of the boundary.

Thus now we are able to find the exact relationship between Sm and SXV ′ , this relation is
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given in the following theorem.

Theorem 5.3.23 Let (S, U) be a skeletal structure such that for a choice of smooth value

of U the associated compatibility 1-form ηU vanishes identically on a neighbourhood of

a smooth point x0 of S, and 1
r

is not an eigenvalue of the radial shape operator at x0. Let

x0
′ = Ψ1(x0) and V

′
be the image of V for a basis {v1, v2, ..., vn}. Then the matrix SXV

′

representing the differential geometric shape operator of the boundary is given by

ST
XV ′ =

1

r
{[I − r(HT

r + ρST
m − 1

ρ
dρdrT I−1

m +
1

ρ
ST
mdrdr

T I−1
m )]

−1

− I}. (5.40)

Proof

From proposition 4.2.4 we have

ST
V = ST

XV ′ (I + rST
XV ′ )

−1

and from lemma 4.2.3 we have

ST
V = ST

XV
′ (I + rST

XV
′ )

−1
=

1

r
[I − (I + rST

XV
′ )

−1
].

Thus equation 5.36 becomes

1

r
[I − (I + rST

XV ′ )
−1
] = HT

r + ρST
m − 1

ρ
dρdrT I−1

m +
1

ρ
ST
mdrdr

T I−1
m .

After simplifying this equation we obtain

ST
XV ′ =

1

r
{[I − r(HT

r + ρST
m − 1

ρ
dρdrT I−1

m +
1

ρ
ST
mdrdr

T I−1
m )]

−1

− I}.

2

Corollary 5.3.24 Assume as in theorem 5.3.23. If the radius function has a singularity,

then

ST
XV

′ =
1

r
{[I − r(HT

r + ST
m)]

−1 − I}. (5.41)
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Proof

If the radius function has a singularity then, ρ = 1 and dρ = 0. Thus equation 5.40

becomes

ST
XV

′ =
1

r
{[I − r(HT

r + ST
m)]

−1 − I}.

2

5.4 Blum Medial Axis and the Singularity of the

Associated Midlocus

In this section we will study the specific conditions for the midlocus to have a singularity

at a point associated to a smooth point on the medial axis. Also, the impact of this

singularity on the radial shape operators will be investigated. In lemma 2.3.16 Peter

Giblin gave a condition for the midlocus to have a singularity at a point associated to

a smooth point of the symmetry set. In the following theorem we give an equivalent

condition depends on the radial curvatures.

Theorem 5.4.1 Let (S, U) be a Blum medial axis and radial vector field of a region Ω ⊂

R2 with smooth boundary X . Let x0 be a smooth point of S and let xm be the associated

midpoint then, the midlocus M is singular at xm if and only if the radius function r has a

singularity and the radial curvatures satisfy the equation

κr1 + κr2 =
2

r
.

Proof

Let γ be the smooth stratum containing x0 parametrized by the arc-length. The midlocus

associated to γ is given by

M = γ +
r

2
(U1 + U2). (5.42)
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Now the differentiating of the above equation with respect to the arc-length gives

M′
= [1− r

2
(κr1 + κr2)]T +

r
′

2
(1− rκr1)U1 +

r
′

2
(1− rκr2)U2,

where T is the unit tangent of γ at x0. Now assume that r′
= 0 and κr1 + κr2 = 2

r
, then

the midlocus is singular. Conversely, assume that the midlocus is singular, then M′
= 0

and hence r
′
= 0. Therefore, κr1 + κr2 =

2
r
. 2

Now we will study the impact of the singularity of the midlocus on the medial axis in

particular the curvature of the medial axis.

Proposition 5.4.2 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊂ R2 with smooth boundary X . Let x0 ∈ S and xm be the associated midlocus point.

If the midlocus is singular at xm, then κm ̸= 0, where κm is the curvature of S at x0.

Proof

Since the midlocus is singular, then by theorem 5.4.1 we have κr1 + κr2 =
2
r

which gives

κr2 =
2
r
− κr1, and from proposition 5.2.11 we have

κm =
1

2
(κr1 − κr2)

√
1− r′2.

Also, since the midlocus is singular, then the radius function has a singularity i.e., r′
= 0

thus the above equation becomes

κm = 1
2
(κr1 − κr2) =

1
2
(κr1 − 2

r
+ κr1) = κr1 − 1

r
̸= 0. 2

In [13] Peter Giblin and Brassett pointed out that the singularity of the midlocus of

a plane curve is generally a cusp. In the following proposition we give a sufficient

condition for the midlocus to have a cusp singularity. Before stating the result recall that

the criteria for a parametrized plane curve γ : I −→ R2 to have a cusp singularity at t0 is

that
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• γ
′
(t0) = (0, 0),

• γ
′′
(t0) ̸= (0, 0), and

• γ
′′
(t0) and γ

′′′
(t0) are linearly independent.

Proposition 5.4.3 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊂ R2 with smooth boundary X . Let x0 be a smooth point of S. Assume that the

midlocus is singular at xm associated to x0. If at x0

3r4(r
′′′
)
2
κm + 2r3r

′′′
κ

′

m + 2r2κ3
m − 3κm − r3r(4)κm ̸= 0, (5.43)

where κm is the curvature of S at x0, then the singularity of the midlocus is a cusp.

Proof

Let γ be the smooth stratum containing x0 and parametrized by the arc-length. The

associated midlocus is given by

M = γ − rr
′
T,

where T is the unit tangent of γ. Since the midlocus is singular at x0, then the radius

function has a singularity at x0 and r
′′
= 1

r
. Direct calculation shows that at x0 we have

M′′
(x0) = −r(x0)r

′′′
(x0)T (x0)− κm(x0)N(x0),

where N is the unit normal of γ. Since the midlocus is singular at x0, then from

proposition 5.4.2 κm(x0) ̸= 0. Thus M′′
(x0) ̸= 0. Also, at x0 we have

M′′′
(x0) =

(
2κ2

m(x0)−
3

r2(x0)
− r(x0)r

(4)(x0)

)
T (x0)

−
(
3r(x0)r

′′′
(x0)κm(x0) + 2κ

′

m(x0)
)
N(x0).

Now M′′
(x0) and M′′′

(x0) are linearly independent if and only if their vector product is

non-zero vector if and only if

3r4(r
′′′
)
2
κm + 2r3r

′′′
κ

′

m + 2r2κ3
m − 3κm − r3r(4)κm ̸= 0.
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Thus if this condition holds then the midlocus is a cusp. 2

In corollary 3.2.12 we gave the condition for the centroid to have a singularity when

the radius function has a singularity. We found that condition depends on the Hessian

operator. In the following theorem we will give an equivalent condition for the midlocus

to have a singularity when the radius function has a singularity at a smooth point of the

medial axis. This condition depends on the radial shape operators of the medial axis.

Theorem 5.4.4 Let (S, U) be a Blum medial axis and radial vector field of a region Ω ⊂

Rn+1 with smooth boundary X . Let x0 be a smooth point of S and let xm be the associated

midpoint. If the radius function has a singularity at x0 then the midlocus is singular at

xm if and only if 1
r

is an eigenvalue of the matrix

1

2
(SV1 + SV2).

Proof

In corollary 3.2.12 we have that the centroid set has a singularity when the radius has

a singularity if and only if
1

r
is an eigenvalue of the radial Hessian operator. Since the

midlocus is a special case of the centroid set then we can apply this corollary. Also, from

proposition 5.3.3 the matrix representing the radial Hessian operator is given by

Hr =
1

2
(SV1 + SV2),

where SVi
, i = 1, 2 are the matrices representing the radial shape operators. Thus if

the radius function has a singularity at a smooth point of the Blum medial axis, then the

associated midlocus is singular at the associated midlocus point if and only if
1

r
is an

eigenvalue of Hr if and only if 1
r

is an eigenvalue of the matrix 1
2
(SV1 + SV2). 2
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Chapter 6

Radial Focal Point of a Skeletal Set and

Focal Point of the Boundary

6.1 Introduction

In this chapter we will study the focal point of the boundary and give the relation between

the focal point and the radial one. First we will define the radial focal point of a skeletal

structure and then study the relation between it and the associated focal point of the

boundary.

6.2 Location of the Focal Point of the Boundary

Definition 6.2.1 Let φ : M → Rn+1 be a parametrized n-surface, let p ∈ M , and let

β : R → Rn+1 be the normal line given by β(s) = φ(p)+sN(p). Then the focal points of

φ along β are the points β( 1
κi(p)

), where N is the unit normal and κi(p) are the non-zero

principal curvatures of φ at p.
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Now we will define the radial focal point of the skeletal structure using the same way as

the above definition.

Definition 6.2.2 Let (S, U) be a skeletal structure in Rn+1 such that for a choice of

smooth value of the radial vector field U , at x0 ∈ S the associated compatibility 1-form

vanishes and 1
r

is not an eigenvalue of the radial shape operator or the edge radial shape

operator. The radial focal points of S at x0 are defined by

pri = x0 +
1

κri

U1, (6.1)

where κri are the principal radial curvatures if x0 is a non-edge point or edge principal

radial curvatures if x0 is an edge point.

Now we will give a precise relationship between radial focal point and its associated focal

point of the boundary in the following proposition.

Proposition 6.2.3 Let (S, U) be a skeletal structure in Rn+1 such that for a choice of

smooth value of the radial vector field U the compatibility 1-form vanishes identically on

a neighbourhood of a non-edge point x0 ∈ S and 1
r

is not an eigenvalue of the radial

shape operator. Then, the radial focal points of S at x0 and the associated focal points of

the boundary at x
′
0 = Ψ1(x0) coincide.

Proof

From definition, the radial focal points of S at x0 are given by

pri = x0 +
1

κri

U1

and the associated focal points of the boundary at x′
0 = Ψ1(x0) are given by

pXi = x
′

0 +
1

κi

NX ,



Chapter 6. Radial Focal Point of a Skeletal Set and Focal Point of the Boundary 142

where κi are the principal curvatures of the boundary at x′
0 and NX is the unit normal of

the boundary at x′
0. But x′

0 = x0 + rU1 and NX = U1 therefore,

pXi = x
′

0 +
1

κi

NX

= x0 +

(
r +

1

κi

)
U1

= x0 +

(
rκi + 1

κi

)
U1

= x0 +
1

κri

U1 (by equation 4.2)

= pri

2

Corollary 6.2.4 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ Rn+1 with smooth boundary X . Let x0 ∈ S be a non-edge point then, the radial

focal points of S at x0 and the associated focal points of the boundary at x
′
0 = Ψ1(x0)

coincide.

Proof

Since the Blum medial axis satisfies the radial condition and the compatibility condition,

so we can apply proposition 6.2.3 which completes the proof. 2

Our task now is to find the necessary and sufficient condition for the focal point of a

smooth boundary to be in its interior. First of all, we discuss this phenomenon in the case

when the boundary point associated to a non-edge point in the skeletal structure; after that

we will discuss it at a boundary point associated to an edge point.

Lemma 6.2.5 Let (S, U) be a skeletal structure in Rn+1 such that for a choice of smooth

value of the radial vector field U the compatibility 1-form vanishes identically on a



Chapter 6. Radial Focal Point of a Skeletal Set and Focal Point of the Boundary 143

neighbourhood of a non-edge point x0 ∈ S and 1
r

is not an eigenvalue of the radial

shape operator. If there exists κrα < 0 at x0 for some index α such that 1
|κrα| < r, then the

focal point of the boundary associated to κrα is closer to x0 than x
′
0 = x0 + rU1 along

the radial line.

Proof

The boundary point x′
0 and the focal points lie on the radial line and the distance between

the the boundary point x′
0 = x0 + rU1 and x0 along the radial line is r. On the other

hand, the distance between x0 and the focal point prα = x0 +
1

κrα
U1 along the radial line

is 1
|κrα| and by our assumption we have 1

|κrα| < r. Thus the focal point of the boundary

associated to κrα is closer to x0 than x
′
0 = x0 + rU1 along the radial line. 2

This lemma gives us a good tool to examine the location of the focal point and leads us to

the following theorem.

Theorem 6.2.6 Let (S, U) be a Blum medial axis and radial vector field of a region Ω ⊆

Rn+1 with smooth boundary X . Let x0 ∈ S be a smooth point such that there exists a

principal radial curvature κrα < 0 at x0 with 1
|κrα| < r. Then the focal point of the

boundary at x
′
0 = x0 + rU1 associated to κrα is inside the boundary X .

Proof

From lemma 6.2.5 the focal point is closer to x0 than x
′
0 and since we are in the Blum

medial case then the focal point lies on the diameter of the bitangent hypersphere also,

from the definition of the Blum medial axis the bitangent hypersphere lies inside the

boundary X . Hence the proof is completed. 2

Lemma 6.2.7 [9] Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ Rn+1 with smooth boundary X . Let x0 ∈ S be a smooth point with associated
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boundary point x1 ∈ X . Then the principal radial curvatures at x0 have the same sign as

the corresponding principal curvatures of the boundary at x1 and one is zero if and only

if the other is.

Proposition 6.2.8 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ Rn+1 with smooth boundary X . Let x1 ∈ X corresponding to a smooth point of S.

If there exists κα < 0 such that |κα| >
1

2r
, then the focal point associated to κα is inside

the interior of X , where κα is a principal curvature of X at x1.

Proof

From theorem 6.2.6 if there exist a negative radial curvature satisfies the condition
1

|κrα|
< r. Then the boundary has a focal point inside its interior, this focal point is that

associated to κα which is the associated principal curvature of the boundary to κrα . Also,

from lemma 6.2.7 the principal radial curvatures and the associated principal curvatures

of the boundary have the same sign. Therefore,
1 + rκα

|κα|
< r. Thus the result holds. 2

Lemma 6.2.9 Let (S, U) be a Blum medial axis and radial vector field of a region Ω ⊆

Rn+1 with smooth and convex boundary X . Let x1 ∈ X corresponding to a smooth point

of S. Then the corresponding focal points of the boundary associated to positive principal

radial curvatures will be outside the interior of the boundary.

Proof

From corollary 6.2.4 we have the radial focal point of the Blum medial axis at a smooth

point is nothing but the focal point of the boundary at the associated tangency point.

Also, the radial line points from the medial point to the boundary. Now since the Blum

medial axis satisfies The Radial Curvature Condition ( by proposition 1.8.3 ) and the

boundary is convex, then the result holds. 2
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Now we will turn to the relationship between the focal point of the boundary at a point

associated to an edge point in the Blum medial axis and the edge point. First of all, we

prove the following lemma.

Lemma 6.2.10 Let A be an (n × n) matrix. If α ̸= 0 is not a generalized eigenvalue of

the pair (A, In−1,1), where In−1,1 is the (n× n)-diagonal matrix with 1’s in the first

( n− 1 ) diagonal positions and 0 otherwise, then −1
α

is an eigenvalue of the matrix

B = (In−1,1 − αA)−1A.

Proof

Since α is not a generalized eigenvalue of the pair (A, In−1,1), then the matrix (In−1,1 −

αA) is invertible. Now let

B
′
= (In−1,1 − αA)−1A+

1

α
I.

Then,

(In−1,1 − αA)B
′
= A+

1

α
(In−1,1 − αA)I =

1

α
In−1,1.

Therefore, the matrix (In−1,1 − αA)B
′ is not invertible and

det[(In−1,1 − αA)B
′
] = det(In−1,1 − αA)det(B

′
) = 0.

But det(In−1,1 − αA) ̸= 0 hence det(B
′
) = 0 which implies that −1

α
is an eigenvalue of

the matrix B = (In−1,1 − αA)−1A. 2

In the following lemma a crest point on the boundary is a point corresponds to an edge

point of the medial axis.

Lemma 6.2.11 [8] Suppose Ω is a region in Rn+1 with smooth boundary X and Blum

medial axis and radial vector field (S, U). Let x1 be a crest point corresponding to an

edge point x0 ∈ ∂S. We let V be a special basis for Tx0S (as in section 1.4) with V
′
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the corresponding basis for Tx1X . Then the differential geometric shape operator for the

boundary X has a matrix representation with respect to V
′

given by

SXV ′ = (In−1,1 − rSEV )
−1SEV . (6.2)

The principal curvature κi and the principal directions of X at x1 are the eigenvalues and

eigenvectors of RHS of the above equation.

Theorem 6.2.12 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ Rn+1 with smooth boundary X . Then the edge point x0 ∈ ∂S is a focal point of the

boundary.

Proof

From lemma 6.2.11 the matrix representation of the differential geometric shape operator

is given by

SXV ′ = (In−1,1 − rSEV )
−1SEV

and from lemma 6.2.10 we have
−1

r
is an eigenvalue of the differential geometric shape

operator of the boundary at x′
0 = x0 + rU1. Since U is perpendicular to the boundary,

then the focal point of the boundary corresponding to the principal curvature κ =
−1

r
is

given by

p = x
′

0 +
1

κ
NX = x

′

0 +
1

κ
U1 = x

′

0 − rU1.

But x′
0 = x0 + rU1. Therefore,

p = x0 + rU1 − rU1 = x0.

Thus the edge point is a focal point of the boundary. 2

Corollary 6.2.13 Let (S, U) as in theorem 6.2.12. Let x1 ∈ X be a crest point then there

exists at least one focal point of X associated to x1 inside its interior of X .
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Proof

From theorem 6.2.12 we proved that the edge point which is the point corresponding to

the crest point is a focal point of the boundary. Therefore, there exists at least one focal

point of the boundary inside its interior corresponding to the crest point. 2

6.3 Creating the Focal Points of the Boundary from

Skeletal Structures

In this section we will focus on the focal points of a smooth plane curve. In particular,

we are going to create the focal point of a plane curve at a point associated to a smooth

point of a skeletal set, Blum medial axis or symmetry set using only the information

provided by the differential geometry (unit normal, unit tangent and curvature) and the

radius function.

Theorem 6.3.1 Let (S, U) be a skeletal structure in R2 such that for a choice of smooth

value of the radial vector field U , the associated compatibility 1-form vanishes identically

on a neighbourhood of a smooth point x0 of S and 1
r
̸= κr. Then the focal point of the

boundary at a point x
′
0 associated to x0 is given by

p = x0 +
1− r

′2

r′′ +
√
1− r′2κm

(−r
′
T +

√
1− r′2N), (6.3)

where T and N are the unit tangent and unit normal of S at x0 respectively.

Proof

let γ(s) be the smooth stratum containing x0 parametrized by the arc-length s, and T and
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N are the unit tangent and unit normal of γ(s) at x0 respectively. Then from proposition

6.2.3 we have

p = x0 +
1

κr

U1.

But

U1 = −r
′
T +

√
1− r′2N

and

κr =
1− r

′2

r′′ +
√

1− r′2κm

.

Thus the proof is completed. 2

Theorem 6.3.2 Let (S, U) be a Blum medial axis and radial vector field of a region Ω ⊆

R2 with smooth boundary X . Let x0 ∈ S be a smooth point. Then the focal points of the

boundary at x
′
0 and x

′′
0 associated to x0 are given by

p1 = x0 +
1− r

′2

r′′ +
√

1− r′2κm

(−r
′
T +

√
1− r′2N), (6.4)

and

p2 = x0 +
1− r

′2

r′′ −
√

1− r′2κm

(−r
′
T −

√
1− r′2N). (6.5)

Proof

let γ(s) be the smooth stratum containing x0 parametrized by the arc-length s, and T and

N are the unit tangent and unit normal of γ(s) at x0 respectively. Now let x′
0 and x

′′
0 be

the tangency points associated to x0 and p1 and p2 be the focal points of the boundary

associated to x
′
0 and x

′′
0 respectively then from proposition 6.2.3 we have

p1 = x0 +
1

κr1

U1 and p2 = x0 +
1

κr2

U2 (6.6)

and from proposition 5.2.9 we have

κr1 =

√
1− r′2κm + r

′′

1− r′2 and κr2 =
−
√

1− r′2κm + r
′′

1− r′2 .
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Also, we have

U1 = −r
′
T +

√
1− r′2N and U2 = −r

′
T −

√
1− r′2N.

Now substitute by these equations in equation 6.6 the results hold. 2

Now we turn to the relationship between the focal point of a skeletal structure and that

of the boundary. In particularly we will investigate the condition which makes the focal

point of a skeletal structure and the associated focal point of its boundary coincide.

Theorem 6.3.3 Let (S, U) be a skeletal structure in R2 such that for a choice of smooth

value of the radial vector field U , the associated compatibility 1-form vanishes identically

on a neighbourhood of a smooth point x0 of S and 1
r
̸= κr. Then the focal point p0 of

the skeletal structure associated to x0 and the focal point p of the boundary associated to

x
′
0 = Ψ1(x0) coincide if and only if the radius function has an Ak≥2 singularity at x0.

Proof

let γ(s) be the smooth stratum containing x0 parametrized by the arc-length s, and T and

N are the unit tangent and unit normal of γ(s) at x0 respectively. Now the focal point of

γ(s) at x0 is given by

p0 = x0 +
1

κm

N. (6.7)

Also, the focal point of the boundary is given by equation 6.3. Now assume that the focal

point of the skeletal structure and the associated focal point of the boundary coincide then

from equations 6.3 and 6.7 we have

r
′
= 0 and r

′′
+ κm = κm ⇒ r

′′
= 0,

which gives that the radius function has an Ak≥2 singularity at x0. Conversely, assume

that the radius function has an Ak≥2 singularity at x0, then p1 = x0 +
1
κm

N = p0 which

completes the proof. 2
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Proposition 6.3.4 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ R2 with smooth boundary X . Let x0 ∈ S be a smooth point. If the radius function

has an Ak≥2 singularity at x0, then the focal points of the boundary at the tangency points

associated to x0 coincide.

Proof

From theorem 6.3.2 the focal points of the boundary at the tangency points are given by

p1 = x0 +
1− r

′2

r′′ +
√

1− r′2κm

(−r
′
T +

√
1− r′2N),

and

p2 = x0 +
1− r

′2

r′′ −
√

1− r′2κm

(−r
′
T −

√
1− r′2N).

Therefore, if the radius function has an Ak≥2 singularity at x0, then

p1 = x0 +
1

κm

N and p2 = x0 +
1

κm

N.

Thus p1 = p2. 2

Proposition 6.3.5 Let (S, U) be a Blum medial axis and radial vector field of a region

Ω ⊆ R2 with smooth and convex boundary X . Let x0 ∈ S be a smooth point. If the

radius function has an Ak≥2 at x0, then the focal point of the boundary will be outside the

interior of the boundary.

Proof

From corollary 5.2.10, we have κr1 +κr2 =
2r

′′

1− r′2 . Therefore, if the radius has an Ak≥2

singularity at x0, then κr1 = −κr2. Thus κ1 > 0 or κ2 > 0, without loss of generality

assume that κ1 > 0, then from proposition 6.3.4 p1 = p2 and from lemma 6.2.9, the focal

point will be outside the interior of the boundary. 2
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Appendices

A The Maple Code Used in Calculating the 2-jet of the

Midlocus

in Chapter 3

> f:=(1/2)*a[2,0]*xˆ2+(1/2)*a[0,2]*yˆ2+a[1,1]*x*y+a[3,0]*xˆ3

> +a[2,1]*xˆ2*y+a[1,2]*x*yˆ2+a[0,3]*yˆ3;
> r:=b[0,0]+(1/2)*b[2,0]*xˆ2+(1/2)*b[0,2]*yˆ2+(1/3)*b[3,0]*xˆ3

> +(1/2)*b[2,1]*xˆ2*y+(1/2)*b[1,2]*x*yˆ2

> +(1/3)*b[0,3]*yˆ3+b[4,0]*xˆ4+b[3,1]*xˆ3*y+b[1,3]*x*yˆ3

> +b[2,2]*xˆ2*yˆ2+b[0,4]*yˆ4;

> f1 := diff(f, x);

> f2 := diff(f, y);

> r1 := diff(r, x);

> r2 := diff(r, y);

> g:=(x+x*f1ˆ2+x*f2ˆ2-r*r1-r*r1*f2ˆ2+r*r2*f1*f2)/(1+f1ˆ2+f2ˆ2);

> h:=(y+y*f1ˆ2+y*f2ˆ2-r*r2-r*r2*f1ˆ2+r*r1*f1*f2)/(1+f1ˆ2+f2ˆ2);

> l:=(f+f*f1ˆ2+f*f2ˆ2-r*r1*f1-r*r2*f2)/(1+f1ˆ2+f2ˆ2);
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> p := mtaylor(g, x, y, 3);

p := (1− b0,0b2,0)x− b0,0b3,0x
2 − b0,0b2,1yx− 1/2 b0,0b1,2y

2 (A.8)

> q := mtaylor(h, x, y, 3);

q := (1− b0,0b0,2) y − 1/2 b0,0b2,1x
2 − b0,0b1,2yx− b0,0b0,3y

2 (A.9)

> s := mtaylor(l, x, y, 3);

s := (1/2 a2,0 − b0,0b2,0a2,0)x
2 + (−b0,0b0,2a1,1 + a1,1 − b0,0b2,0a1,1) yx+ (1/2 a0,2 − b0,0b0,2a0,2) y

2

(A.10)

> b[0, 0] := 1/b[0, 2];

> x:=u+d[1,1]*u*y+d[2,0]*uˆ2+d[0,2]*yˆ2;

> p := mtaylor(p, u, y, 3);

> z1 := simplify(coeff(p, uˆ2));

> z2 := simplify(coeff(coeff(p,u),y));

> z3 := simplify(coeff(p, yˆ2));

> d[1,1]:=simplify(solve(z2=0,d[1,1]));

> d[2,0]:=simplify(solve(z1=0,d[2,0]));

> p := simplify(p);

p :=
(b0,2 − b2,0)u

b0,2
(A.11)

> q := simplify(mtaylor(q, u, y,3));

q := −1/2
b2,1u

2 + 2 b1,2yu+ 2 b0,3y
2

b0,2
(A.12)

> s := simplify(mtaylor(s, u, y,3));



Appendices 153

s := 1/2
a2,0u

2b0,2 − 2 a2,0u
2b2,0 − 2 b2,0a1,1yu− a0,2y

2b0,2
b0,2

(A.13)
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B The Maple Code Used in Calculating the 3-jet of the

Midlocus

in Chapter 3

> f :=

> (1/2)*a[2,0]*xˆ2+(1/2)*a[0,2]*yˆ2+a[1,1]*x*y

> +a[3,0]*xˆ3+a[2,1]*xˆ2*y+a[1, 2]*x*yˆ2 +a[0, 3]*yˆ3;
> r :=

> b[0,0]+(1/2)*b[2,0]*xˆ2+(1/2)*b[0,2]*yˆ2+(1/3)*b[3,0]*xˆ3

> +(1/2)*b[2,1]*xˆ2*y+(1/2)*b[1,2]*x*yˆ2+(1/3)*b[0,3]*yˆ3

> +b[4,0]*xˆ4+b[3,1]*xˆ3*y+b[1,3]*x*yˆ3 +b[2,2]*xˆ2*yˆ2

> +b[0,4]*yˆ4;

> f1 := diff(f, x);

> f2 := diff(f, y);

> r1 := diff(r, x);

> r2 := diff(r, y);
> g :=

> (x+x*f1ˆ2+x*f2ˆ2-r*r1-r*r1*f2ˆ2+r*r2*f1*f2)/(1+f1ˆ2+f2ˆ2);
> h :=

> (y+y*f1ˆ2+y*f2ˆ2-r*r2-r*r2*f1ˆ2+r*r1*f1*f2)/(1+f1ˆ2+f2ˆ2);
> l :=

> (f+f*f1ˆ2+f*f2ˆ2-r*r1*f1-r*r2*f2)/(1+f1ˆ2+f2ˆ2);

> p := mtaylor(g, x, y, 4);

> q := mtaylor(h, x, y, 4);

> s := mtaylor(l, x, y, 4);
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> b[0, 0] := 1/b[0, 2];
> x:=u+d[1,1]*u*y+d[2,0]*uˆ2+d[0,2]*yˆ2+d[2,1]*uˆ2*y

> +d[1,2]*u*yˆ2+d[3,0]*uˆ3+d[0,3]*yˆ3;

> p := mtaylor(p, u, y, 4);

> z1 := simplify(coeff(p, uˆ2));

> z2 := simplify(coeff(coeff(p, u), y));

> z3 := simplify(coeff(coeff(p, uˆ2), y));

> z4:=simplify(coeff(coeff(p,yˆ2),u));

> z5 := simplify(coeff(p, yˆ2));

> z6 := simplify(coeff(p, uˆ3));

> z7 := simplify(coeff(p, yˆ3));

> d[1,1]:=simplify(solve(z2=0,d[1,1]));

> d[2, 0] := simplify(solve(z1 = 0, d[2,0]));

> d[0, 2] := simplify(solve(z5 = 0, d[0,2]));

> d[2, 1] := simplify(solve(z3 = 0, d[2,1]));

> d[1, 2] := simplify(solve(z4 = 0, d[1,2]));

> d[3, 0] := simplify(solve(z6 = 0, d[3,0]));

> d[0, 3] := simplify(solve(z7 = 0, d[0,3]));

> p := simplify(p);

p :=
(b0,2 − b2,0)u

b0,2
> q := simplify(mtaylor(q, u, y, 4));

> s := simplify(mtaylor(s, u, y, 4));

> y:=v+c[0,1]*u+c[1,1]*u*v+c[2,0]*vˆ2+c[0,2]*uˆ2;

> s := simplify(mtaylor(s, u, v, 4));

> e[1, 1]:=simplify(coeff(coeff(s,u),v));
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> e[2, 1] := simplify(coeff(coeff(s,vˆ2),u));

> e[0, 2] := simplify(coeff(s, uˆ2));

> e[2, 0] := simplify(coeff(s, vˆ2));

> e[1,2]:=simplify(coeff(coeff(s,uˆ2),v));

> c[0, 1] :=simplify(solve(e[1,1]=0,c[0,1]));

> c[2, 0] :=simplify(solve(e[3,0]=0,c[2,0]));

> c[0, 2] :=simplify(solve(e[1,2]=0,c[0,2]));

> s := simplify(mtaylor(s, u, v, 4));

> k[2, 1] := simplify(coeff(coeff(s,vˆ2),u));

k2,1 := 0

> k[1, 2] := simplify(coeff(coeff(s,uˆ2),v));

k1,2 := 0

> k[2, 0] := simplify(coeff(s, vˆ2));

k2,0 := −1/2 a0,2

> k[3, 0] := simplify(coeff(s, vˆ3));

k3,0 := 0

> k[0, 3] := simplify(coeff(s, uˆ3));

> k[0, 2] := simplify(coeff(s, uˆ2));

k0,2 := 1/2
a2,0a0,2b0,2

2 − 2 a2,0a0,2b0,2b2,0 + b2,0
2a1,1

2

a0,2b0,2
2

> q := simplify(mtaylor(q, u, v, 4));

> w[0, 3] := simplify(coeff(q, uˆ3));

> w[3,0] := simplify(coeff(q, vˆ3));
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w3,0 :=
2b0,2

3a0,2
3 − 2a0,2

3b2,0b0,2
2 − a0,2b0,2

5 + a0,2b0,2
4b2,0

2a0,2b0,2
2 (b0,2 − b2,0)

+
−8b0,4b0,2

2a0,2 + 4a0,2b0,2b0,3
2 + 8b0,4b2,0b0,2a0,2

2a0,2b0,2
2 (b0,2 − b2,0)

+
−b1,2

2b0,2a0,2 − 4a0,2b0,3
2b2,0 + 8a0,3b0,2

2b0,3

2a0,2b0,2
2 (b0,2 − b2,0)

+
−8a0,3b0,2b0,3b2,0 + 2a1,1b0,2b0,3b1,2

2a0,2b0,2
2 (b0,2 − b2,0)

(B.14)

> w[2, 1] := simplify(coeff(coeff(q,vˆ2),u));

> w[1,2] := simplify(coeff(coeff(q, uˆ2),v));
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w1,2 :=
−2b2,1

2a0,2
3b0,2

3 + b0,2
5b2,0

2a0,2
3

2b0,2
4a0,23 (b0,2 − b2,0)

+
−4b2,2b0,2

4a0,2
3 − b0,2

6b2,0a0,2
3

2b0,2
4a0,23 (b0,2 − b2,0)

+
2a1,1

2b0,2
5a0,2

3 + 6b2,0a1,1b2,1b1,2a0,2
2b0,2

2

2b0,2
4a0,23 (b0,2 − b2,0)

+
−2b2,0

2a2,0a0,2
4b0,2

3

2b0,2
4a0,23 (b0,2 − b2,0)

+
−8b0,2

4b2,0a1,1
2a0,2

3 − 2b2,0
3a1,1

2a0,2
3b0,2

2

2b0,2
4a0,23 (b0,2 − b2,0)

+
8b2,0

2a1,1
2a0,2

3b0,2
3 + 4b2,2b2,0a0,2

3b0,2
3

2b0,2
4a0,23 (b0,2 − b2,0)

+
−2b3,0b1,2a0,2

3b0,2
3 − 3b0,2

5b2,0
2a1,1

2a0,2

2b0,2
4a0,23 (b0,2 − b2,0)

+
3b0,2

4b2,0
3a1,1

2a0,2 + 2a2,0a0,2
4b0,2

4b2,0

2b0,2
4a0,23 (b0,2 − b2,0)

+
−3b2,0

2a1,1
2b1,2

2a0,2b0,2 + 24b2,0
3a1,1

2b0,4a0,2b0,2

2b0,2
4a0,23 (b0,2 − b2,0)

+
−24b2,0

2a1,1
2b0,4a0,2b0,2

2 + 12b2,0a1,1b1,3a0,2
2b0,2

3

2b0,2
4a0,23 (b0,2 − b2,0)

+
−12b2,0

2a1,1b1,3a0,2
2b0,2

2 + 2a0,2
3b0,2

3b0,3b2,1

2b0,2
4a0,23 (b0,2 − b2,0)

+
−2a0,2

3b0,2
2b1,2

2b2,0 + 2a0,2
2a1,2b0,2

4b1,2

2b0,2
4a0,23 (b0,2 − b2,0)

+
−24a0,2

2a1,1b0,2
2b0,3b1,2b2,0 + 18a0,2

2a1,1b0,2b0,3b1,2b2,0
2

2b0,2
4a0,23 (b0,2 − b2,0)

+
4a0,2

2a2,0b0,2
2b0,3b2,0b2,1

2b0,2
4a0,23 (b0,2 − b2,0)

+
−12a0,2a1,1

2b0,2
2b0,3b2,0b2,1

2b0,2
4a0,23 (b0,2 − b2,0)

+
−12a0,2a1,1a1,2b0,2

3b0,3b2,0

2b0,2
4a0,23 (b0,2 − b2,0)

+
12a0,2a1,1a1,2b0,2b0,3b2,0

3

2b0,2
4a0,23 (b0,2 − b2,0)

+
−12a0,2a0,3a1,1b0,2

3b1,2b2,0

2b0,2
4a0,23 (b0,2 − b2,0)

+
12a0,2a0,3a1,1b0,2

2b1,2b2,0
2

2b0,2
4a0,23 (b0,2 − b2,0)

+
48a0,3a1,1

2b0,2
2b0,3b2,0

2

2b0,2
4a0,23 (b0,2 − b2,0)

+
−48a0,3a1,1

2b0,2b0,3b2,0
3 + 12a1,1

3b0,2b0,3b1,2b2,0
2

2b0,2
4a0,23 (b0,2 − b2,0)

+
2a0,2

3b0,2
3b1,2

2 + 6a0,2
2a1,1b0,2

3b0,3b1,2

2b0,2
4a0,23 (b0,2 − b2,0)

+
−2a0,2

3b0,2
2b0,3b2,0b2,1 + 4a0,2

2a1,1b0,2
3b0,3b3,0

2b0,2
4a0,23 (b0,2 − b2,0)

+
2a0,2

2a1,1b0,2
3b1,2b2,1 − 2a0,2

2a1,2b0,2
2b1,2b2,0

2

2b0,2
4a0,23 (b0,2 − b2,0)

+
8a0,2

2a2,1b0,2
3b0,3b2,0 + a0,2

2a2,0b0,2
2b1,2

2b2,0

2b0,2
4a0,23 (b0,2 − b2,0)

+
−8a0,2

2a2,1b0,2
2b0,3b2,0

2 − 12a0,2a1,1
2b0,2

2b0,3
2b2,0

2b0,2
4a0,23 (b0,2 − b2,0)

+
−3a0,2a1,1

2b0,2
2b1,2

2b2,0 + 36a0,2a1,1
2b0,2b0,3

2b2,0
2

2b0,2
4a0,23 (b0,2 − b2,0)

+
−24a0,2a1,1

2b0,3
2b2,0

3 − 6a0,2a1,1a2,0b0,2b0,3b1,2b2,0
2

2b0,2
4a0,23 (b0,2 − b2,0)

(B.15)
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> w[1, 1] := simplify(coeff(coeff(q, u), v));

w1,1 := −b1,2a0,2b0,2 − 2 b0,3a1,1b2,0

a0,2b0,2
2

> w[0, 2] := simplify(coeff(q, uˆ2));

> w[2, 0] := simplify(coeff(q, vˆ2));



160

Bibliography

[1] H. Blum and R. Negal, Shape descriptions using weighted symmetric axis features,

Pattern Recognition 10 (1978), 167–180.

[2] J. W. Bruce, On singularities, envelopes and elementary differential geometry, Math.

Proc. Cambridge Philo. Soc. 89 (1981), 43 – 48.

[3] J. W. Bruce and P. J. Giblin, What is an envelope?, Math Gazette 65 (1981), 186 –

192.

[4] J. W. Bruce and P. J. Giblin, Growth, motion and one parameter families of symmetry

sets, Proceedings of the Royal Society of Edinburgh Sect. A 104 (1986), 179–204.

[5] J. W. Bruce and P. J. Giblin, Curves and singularities, Cambridge University Press,

1992.

[6] J. W. Bruce, P. J. Giblin, and C. G. Gibson, Symmetry sets, Proc.Roy. Soc. Edinburgh

Sect. A 101 (1985), 163–186.

[7] J. Damon, On the smoothness and geometry of boundaries associated to skeletal

structures I: Sufficient conditions for smoothness, Annales Inst. Fourier 53 (2003),

1941–1985.

[8] J. Damon, On the smoothness and geometry of boundaries associated to skeletal

structures II: Geometry in the blum case, Compositio Mathematica 140 (2004),

1657–1674.



BIBLIOGRAPHY 161

[9] J. Damon, Determining the geometry of boundaries from medial data, International

Journal Of Computer Vision 63 (2005), 45–64.

[10] A. Diatta and P. J. Giblin, Pre-symmetry sets of 3d shapes, DSSCV workshop

proceedings, Lectrue Notes In Computer Science 3753 (2005), 36–48.

[11] P. J. Giblin, Symmetry sets and medial axis in two and three dimensions, In R.

Cipolla and R. Martin, editors. The Mathematics of Surfaces IX, Springer-Verlag

(2000), 306– 321.

[12] P. J. Giblin, Affinely invariant symmetry sets, Geometry and Topology of Caustics -

Caustics ’06, Banach Centre Publications 82 (2008), 71–84.

[13] P. J. Giblin and S. A. Brassett, Local symmetry of plane curves, Amer. Math.

Monthly 92 (1985), 689– 707.

[14] P. J. Giblin and B. B. Kimia, On the intrinsic reconstructions of shape from its

symmetries, IEEE Transactions on Pattern, Analysis and Machine Intelligence 25

(2003), 895–911.

[15] P. J. Giblin and B. B. Kimia, A formal classifications of 3d medial axis points

and their local geometry, IEEE Transactions on Pattern, Analysis and Machine

Intelligence 26 (2004), 238–251.

[16] P. J. Giblin and J. P. Warder, Reconstruction from medial representations, Amer.

Math. Monthly 118 (2011), 712– 725.

[17] C. A. Hobbs and N. P. Kirk, On the classification and bifurcation of multigerms of

maps from surfaces to 3-space, Math. Scand 89 (2001), 57 – 96.

[18] K. Houston, Topology of differentiable mappings, Handbook of Global Analysis,

Ed.D. Krupka and D. Saundes, Elsevier (2008), 493–532.



BIBLIOGRAPHY 162

[19] Wolfgang Kühnel, Differential geometry, curves - surfaces - manifolds, American

Mathematical Society, 2000.

[20] M. Van. Manen, The geometry of confilict sets, Ph.D. Thesis University of Utrecht,

2003.

[21] D. Mond, On the tangent developable of a space curve, Proc. Camb. Phil. Soc. 91

(1982), 351 – 355.

[22] D. Mond, On the classification of germs of maps from R2 to R3, Proc. London Math.

Soc. 50 (1985), 333– 369.

[23] D. Mond, Singularities of the tangent developable surface of a space curve, Quart.

J. Math. Oxford 40 (1989), 79 – 91.

[24] A. Pollitt, Euclidean and affine symmetry sets and medial axes, Ph.D. Thesis

University of Liverpool, 2004.

[25] K. Siddiqi and M. Pizer, Medial representations: Mathematics, algorithms and

applications, Springer ISBN 978-1-4020-8657-1, 2008.

[26] D. Siersma, Properties of conflict sets in the plane, Geometry and Topology Of

Caustics 1998 Banach Center Publ. 50 (1999), 267–276.

[27] J. Sotomayor, D. Siersma, and R. Garcia, Curvatures of conflict surfaces in

Euclidean 3-space, Geometry and Topology of Caustics-Caustics 1998, Banach

Center Publ. 50 (1999), 277–285.

[28] M. Spivak, A comperhensive introduction to differential geometry, vol. I- V, Publish

or Perish Inc., Berkeley, CA, 1975, 1979.

[29] F. Tari, Some applications of singularity theory to the geometry of curves and

surfaces, Ph.D. Thesis University of Liverpool, 1990.



BIBLIOGRAPHY 163

[30] J. A. Thrope, Elementary topics in differential geometry, Springer - Verlag New

York Inc, 1979.

[31] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc.

13 (1981), 481 – 539.

[32] J. P. Warder, Symmetries of curves and surface, Ph.D. Thesis University of

Liverpool, 2009.


