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Abstract

Bacteria commonly live in diverse and dense communities interacting through physical con-
tact and through the exchange of biochemical metabolites. Studying these interactions is of
paramount importance not only to harvest the full metabolic potential of the microbial world
but also to deepen our understanding and treatment of infectious disease.

While common co-culturing methods can be adapted to the study of bacterial interactions,
they typically operate within bulk cultures and do not provide physical separation between
different bacterial species. This limits the ability to study spatial and temporal differences in
bacterial interactions at the single cell level, prevents the optimization of growth conditions
for each species in the bacterial community and masks heterogeneity within the bacterial
community.

This thesis discusses the potential of microfluidic devices to study chemical interactions be-
tween different bacterial species individually cultured in independent growth chambers sepa-
rated by hydrogel membranes. Two PDMS microfluidic platforms for culturing of individual
bacterial species have been fabricated using Direct Laser Writing as lithography technique,
and tested by inoculating with Escherichia coli. Bacterial growth within the microfluidic
device was monitored using optical microscopy and an image processing algorithm developed
to quantify bacterial growth at the single cell level. Bacterial growth within the device was
confirmed over a 12-hour period albeit at an extremely slow growth rate.

It was observed that successful inoculation of the culture chamber was critically dependent
on the geometry of the microfluidic device. Computational models were performed using
COMSOL to better understand fluid flow within the devices and subsequently used to optimise
the design of a double-layer PDMS microfluidic bacterial culture system. This double-layer
microfluidic module could ultimately be fabricated in an array format in which adjacent
chambers are connected via a permeable hydrogel to enable co-culturing of mixed bacterial
species.
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Chapter 1

Introduction and aims

1.1 Background

The term microbe groups together all unicellular organisms with microscopic dimensions such
as bacteria, fungi and protozoa but it also includes viruses, entities at the extreme border of
the living world. Microbes, also called microorganisms, have been documented as the earli-
est life forms that appeared on Earth, around four billion years ago. Since then, they have
proliferated in all environments, from ocean trenches and polar caps, to our homes and body.
Although primarily known as causes of diseases, even lethal, if microbes did not exist human
beings would become extinct in a short time. In fact, most of the time, our contact with them
is not only harmless, but indeed also beneficial.

Microbiology is the branch of biology that guides the main research questions of the cur-
rent work. Microbiology studies microorganisms with particular attention to their physical-
chemical characteristics and the interactions that microbes have with the environment and
with each other. Since the early years of the discipline, it was clear that microbes are highly
social organisms that typically live in dense and heterogeneous communities [1], cooperating
or competing to preserve and promote their growth in the group [2], [3]. This gives rise to a
complex and dense network of interactions between bacteria and between the community and
the environment. Understanding these interactions is critical not only for managing infectious
disease but also more broadly e.g. green chemical processing and environmental remediation.

Most of the infections that affect humans are polymicrobial. For example, pulmonary infec-
tions in Cystic Fibrosis adult patients are typically associated with two principal bacterial
strains: Staphylococcus Aureus and Pseudomonas aeruginosa. It has been observed that
when these are detected together, the health consequences for the host are more severe [4].
Critically, these bacterial species have acquired a strong resistance to antibiotics and current
therapies could soon become ineffective. Co-culture experiments confirmed a link between
resistance to antibiotics and interactions between the two strains [5]–[7]. As a result, inter-
national scientific attention is focusing increasingly on cystic fibrosis not only because it is
the most common genetic disease affecting Caucasian populations, currently affecting in the
United Kingdom alone more than 10,500 people [8], but also because in 2017 the World Health
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Organization (WHO) prioritised the development of alternative therapies for the treatment
of Pseudomonas aeruginosa and Staphylococcus aureus infections respectively [9].

One of the challenges facing the development of alternative treatments is the lack of species-
independent, standard co-culture protocols that are able to map interactions between bacterial
species.

In laboratories, bacterial strains are typically grown and observed at the macro scale; bacteria
are suspended in liquid medium inside a test tube or deposited on solid growth medium in
a Petri dish. Since these techniques are simple and well documented, to date most of the
attempts of realising a co-culture system have consisted of integrating them with modern
analytical techniques. In this sense, common approaches include mixed co-cultures in tubes
followed by genotyping or analytical phenotypic measurements to evaluate relative species
abundance and growth [10], phenotypic observation of bacterial colonies cultivated on agar
plates [11] or conditioned medium experiments [12]. A conditioned medium is a liquid medium
where first a bacterial species is cultured, then it is filtered out from the microorganisms, en-
riched with additional nutrients and cultured with a second new species. While stable, these
methods limit the possibility to access high resolution spatial or temporal information within
an individual strain and eventually about individual bacteria or the nano-sized secondary
metabolites exchanged as chemical signals [13]. Moreover, controlling the spatial organisation
at the microorganism scale level may be needed to recreate the micro-patterned communi-
ties that bacteria form in natural environments [14], [15], for example to avoid any physical
contacts which could result in undesired interactions between bacteria that may be difficult
to trace, when characterising chemical interactions between strains. Furthermore, the growth
conditions, such as carbon source, oxygen concentration, pH and temperature, are uniform
across the entire culture. This is severely limiting in co-culture experiments where optimal
conditions for each bacteria often differ. For example, a common issue in artificial co-cultures
occurs when the faster growing species consumes the available nutrients with a rate that
makes it impossible to monitor the growth of the other species.

Microfluidics is a discipline that stems from micro-fabrication to enable control over small
volumes of liquid, generally less than a millilitre, inside small structures whose dimensions
generally do not exceed tens of millimetres and where a series of tasks such as transport, mix
and separate fluids can be fulfilled. Since the emergence of microfluidics in the early eighties,
biologists, scientists that work mainly with liquid samples, have starting moving, when pos-
sible, experimental procedures and assays from lab benches into small portable microfluidic
devices. The immediate benefits of this change are obvious: these devices occupy little space
in the laboratory so are easy to store and working with small volumes of liquid means reducing
the amount of reagents and analytes needed for the experiments with a consequent limita-
tion of costs. Furthermore, at the micro-scale, fluids behave in a substantially different way
compared to the macro-scale. In fact at this scale flow is governed by viscous forces and the
effects of the momentum have little importance. A key consequence of this phenomena, widely
exploited in microbiological studies, is that mixing between fluids can happen only through
diffusion without physical intermixing of fluids. This allows to precisely control chemical gra-
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dients at bacteria scale level and thus deepen the study of the ability of bacteria to respond
to chemical stimuli revealing mechanisms impossible to observe with macro-scale experiments.

Moreover, microfluidics is increasingly providing microbiologists the possibility to isolate, so
directly observe and manage, single bacteria within a culture. When microfluidic platforms
are combined with tools such as membranes, hydrogels or nano-slits, they enable culturing of
multiple strains that are physically separated while free to interact via molecular diffusion.
These systems have already given access to information previously inaccessible. For example,
the ichip [16], an array of microwells separated by a permeable membrane, allows the obser-
vation of bacteria strains otherwise uncultivable. A review of the main microfluidic culture
systems is given in chapter 2.

1.2 Goals of the project

From the previous section it has emerged that new systems for artificial mixed bacterial
communities are of critical interest to overcome the main limitations associated with bulk
culturing procedures. Specifically, in order to control and monitor interspecies communica-
tion while allowing quantitative analysis of single species proliferation in a community, it is
essential to develop a co-culture system to mimic the niche growth condition for each bacterial
strain.

This project originates from the clinical interest in deepening the knowledge of polymicrobial
infections affecting cystic fibrosis patients’ airways. Such bacterial infections can seriously
damage the lungs and develop high antimicrobial resistance. This condition can worsen, and
in most cases, leads to respiratory failure and early death.

Our solution consisted of a Polydimethylsiloxane (PDMS) microfluidic platform capable of
physically separating Pseudomonas aeruginosa and Staphylococcus aureus, allowing them to
grow independently but exchange molecules. We aimed to design, build and characterise the
platform starting from the hypothesis that chemical signalling between the two species could
be affected by changes in the external conditions such as temperature and antibiotic adminis-
tration and that this interaction would be reflected in the alteration of species growth rates.
Nano-channel connection between independent cultures defined either through lithographic
approaches or the use of hydrogels, have been proposed as possible solutions. The operating
principles of both platforms are shown in figure 1.1. Briefly, bacteria, whose dimensions are
in the range of few micrometers, are not expected to migrate through a channel less than
1µm wide or the network structure of an hydrogel, on the other hand nano or sub-nano sized
particles should diffuse through both a nano slit and a block of hydrogel.

Research focussed initially on confirming that, after inoculating the microfluidic platform, the
bacteria could survive and proliferate with a rate sufficient to monitor their growth. Once
optimised growth conditions were ensured, differences between cultures performed in the
PDMS platform and those performed following typical macro-scale techniques were compared.
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(a) nano-slit separating
culture chambers

(b) hydrogel separating
culture chambers

Figure 1.1: Microfluidic platform operating principles: 3D scheme. Two independent bacteria culturing
chambers in PDMS separated by a nanoslit (a) and by an hydrogel (b). Working principles are the same
in (a) and (b): only nano and sub-nano sized particles can diffuse from one chamber to the other. Bacteria
species are respectively represented as purple and green rods, the yellow and red circles are metabolites.
Colours are not real and the overall proportions do not replicate the real ones.

To evaluate the growth rate, individual bacteria were counted with image processing tech-
niques from still images acquired with a bright-field camera mounted on a phase contrast
inverted microscope. In order to be compatible with this imaging system, the microfluidic
platform must:

� include a specific and well-confined area where bacteria can be cultured and observed;

� force bacteria to grow in monolayers.

In this way we are sure to focus the microscope in the correct area of the device and that one
bacterium in a picture actually coincides with one bacterium only and it is not hiding others
behind it. Thus, data collected from different experiments carried out in the same device, or
in its identical reproductions, are comparable.

According to the project plan, conceived at the beginning of the academic year, once a device
for culturing a single bacterial species was built and optimised, this would be integrated in
a co-culture system in which two bacterial species would communicate exclusively via the
diffusion of small signalling molecules. This would be achieved using a nano-slit connection
or an hydrogel block and a limited number of experiments were performed. In the final system
it would then have been necessary to observe whether and how the bacterial growth rates had
changed by altering external conditions. At this point, based on the time left, there was also
the prospect of thinking about a possible way of sensing the metabolites.

The outbreak of the COVID-19 pandemic and the lock-down measures taken in the United
Kingdom since March 23, 2020 completely stopped all laboratory activities at the University
of York. This project has been severely affected and what is presented in this thesis is the
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result of an effective laboratory research period of six months, instead of the full one year
period. As a result of this significantly reduced experimental research, the project aims were
refocussed and this report presents experimental data collected before the lock-down, coupled
with COMSOL simulations and MATLAB code for cell counting.

Therefore, a prototype of a microfluidic platform for bacterial culture remains the main out-
come of this work. As a proof of its operating principles, it has been inoculated with a
non-pathogenic Escherichia coli strain, widely used in the microbiological research, diluted
in its medium. Bacteria were cultured in the PDMS platform, at room temperature, without
supplying additional nutrient and monitored over a period of 12 hours.

We believe our results lay the groundwork for the design of a more complex co-culture device
consisting of one replica of the culturing module for each strain to include in the study, and
hydrogels to achieve the physical but not chemical separation among strains.
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Chapter 2

Literature Review

2.1 Introduction

In the late 1800’s, Robert Koch first highlighted the existence of a cause-effect connection
between the presence of bacteria in the body and specific diseases. The observation of indi-
vidual bacterial strains in pure cultures has since become a key procedure in microbiology
and great efforts have been made over the past 150 years to isolate and study as many strains
as possible. Despite this, since the early years of the discipline, it was clear that bacteria were
social organisms that preferably live in communities [17]. The dense network of interactions
between bacterial species and strains holds key information for numerous application areas,
notably in healthcare, as in the case of polymicrobial pulmonary infections in Cystic fibrosis
patients. For this reason, since the beginning of the 21st century, engineers, physicists and
biologists have been working together to develop co-culture systems able to provide different
kinds of separation between multiple species.

Lisa Goers et al. [18] have briefly listed in a review the most popular innovative methods for
observing interactions between bacteria. They divide these new systems in two groups:

� microfluidic systems;

� solid support systems.

For the current literature review, I have focused on microfluidic systems as the best solution
to overcome the most common problems related to conventional approaches.

2.1.1 Importance of microbiota and microbial communities study

Microbes are part of our daily life. For example, many foods and beverages widely consumed
in Europe are produced or preserved through fermentation processes which are possible thanks
to the action of yeasts (microorganisms that belong to fungus kingdom), or bacteria. For ex-
ample, a 125-gram pot of yogurt contains around a billion live bacteria (1 × 109). Wine,
beer, bread and chocolate are all products that would not exist as we know them, without
microorganisms.

14



In addition to being present in the food we eat, microorganisms also proliferate in the oceans,
the soil, in our houses, on our desks, on our skin, and even inside our body. Given their
pervasiveness and diversity [19], in 2001 the term microbiota appeared, for the first time, to
indicate the whole of microorganisms that live in a specific environment [20]. This must be
intended not only as a natural habitat but also include a multicellular host organism such as
plants, animals and humans.

When the multicellular host is a human, we address to the set of microbes that live in symbio-
sis with the host as human microbiota. Again, in this case, numbers are incredibly high; the
human body is estimated to host, on average, about 1013 − 1015 bacteria. Therefore, inside
our body, microbes are likely to be more numerous than human cells themselves [21]. This
may sound alarming since many diseases are caused by viral, bacteria, fungal and protozoan
infections. In reality, especially when it comes to bacteria, many strains permanently living
inside our body are not only harmless, but actually cooperate with us to boost our immune
system to fight pathogens and contribute to a proper performance of host basic metabolic
cycles [22].

The close link between a human host and its associated microbiota has been confirmed by the
Human Microbiome Project (HMP); a multidisciplinary consortium of researchers assembled
in 2007 with the aim of mapping the microbiome living in and on healthy human bodies
[23]. Between 2007 and 2012 scientists have been able to identify more than 10,000 species of
microbial cells located in different body sites, mainly skin, mouth, nose, lower intestine and
vagina [24]. This has been possible thank to the emerging techniques in the fields of DNA
sequencing, big data storage and data analysis, tested with great success only a few years
earlier by the Human Genome Project [25].

An outcome of the HMP research initiative has been the discovery that the healthy human
microbial makeup includes potentially pathogenic microorganisms and that many infectious
diseases are characterised by “dysbiosis” within the microbiome [22], [26], [27]. Dysbiosis
means microbial disequilibrium, namely an alteration of numerical ratio between different mi-
crobial strains, in respect to the microbiota composition of a healthy host. It may take place at
any body site and includes colonisation of commonly sterile areas. Generally, microorganisms
involved in the transition from a healthy to an infected host are referred to as opportunistic
[27]. These species, commonly harmless, can take advantage of unusual circumstances, such
as a weakened immune system, to attack and infect the host. In this sense, an in-depth
study of the human microbiota is not only important to understand its role in maintain-
ing human life, but also to gain knowledge about potentially harmful microorganisms. Such
knowledge can then become key information to synthesise new and more effective drugs with
interest in infections caused by bacteria with a high rate of virulence and antibiotic resistance.

Starting from the second phase of the HMP, launched in 2012, the microbiologist community
began to study changes in human microbiota in relation to three host unhealthy conditions:
inflammatory bowel diseases [28], type 2 diabetes [29] and premature births [30], [31]. The
following years have marked important milestones in finding relations between microbial dy-
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namics and diseases status. Many studies have focused on gene sequencing of microbial com-
position in healthy and diseased individuals, calling their differences for attention to pursue
the studies in this field [21], [22], [32]. Nevertheless, as pointed out by Verónica Lloréns-rico
and Jeroen Raes [32], to date, the actual outcomes in clinical research and drugs synthesis
have not had the same impact.

A factor that is slowing down and complicating research in this field is the microorganisms
ability to rapidly respond to habitat perturbations. Our microbiota is an extremely dynamic
community and it is thus challenging to differentiate between changes in its composition due
to disease rather from changes due to diet, host lifestyle and antibiotic usage [21], [22], [32].
However, this dynamism can also benefit some aspects of medical research. The rapidity with
which microbial genomes can mutate and the microorganisms ability to increase or decrease
the expression of specific genes, make the microbiota a pool of efficient biomarkers for differ-
ent type of diseases [21], [22] from metabolic ones [33] to autoimmune ones [34] and even for
tumours [35].

When studying a community of organisms, a key step is the analysis of the interactions tak-
ing place between constituent species and strains. Among microbes this aspect is particularly
relevant within the kingdom of bacteria. Bacteria synthesise a large number of metabolites
as chemical signals to enable communication with the other organisms in the community and
with the host [36]. To classify an interaction between organisms, its net consequences for all
the populations involved must be considered. Consequences can bring advantage, disadvan-
tage or be neutral and, with this scheme, up to few hundred different interactions states can
be combined with just three species involved, as showed by Tobias Großkopf and Orkun S
Soyer [37]. Therefore, the large numbers of different bacteria typical of the human microbiota,
make this field of study intrinsically complicated. Each change within the microbiome must
be conceived as a combined action between populations that compete or cooperate to preserve
and promote their own growth in the community [2], [3].

In addition, when a pathogen invades a specific body site, it is very likely that it meets the
specific microbiota where it can potentially disrupt the normally benign or symbiotic com-
munity. Under these conditions, the invasion can result in a polymicrobial infection where
microbial species interact in different ways and potentially change their behaviour when the
close microbial composition changes [38]. Nowadays, resources in drug research are mainly
invested in developing means to attack the opportunistic pathogen mostly involved during a
specific infection, ignoring the dense network of interactions with the surrounding microor-
ganisms. Although less present or less aggressive for the host, these organisms could help
the main opportunistic pathogen succeed in the invasion. The possibility of cross-protection
between bacterial strains capable of synthesising enzymes to inhibit the action of specific an-
tibiotics has already been demonstrated [12], [39].

Hence, also in the fight against antibiotic resistance, with the final aim of contributing to
the synthesis of innovative and effective drugs, it is essential to study microbes within the
ecological communities of which they are part.
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2.1.2 Need for co-culture systems

An artificial co-culture is a laboratory system in which multiple organisms are grown simul-
taneously while free to interact with each-other.
Especially when studying bacteria with the aim of drug discovery, co-cultures have a funda-
mental advantage in respect to standard mono-cultures; the presence of more than one species
in the same culture system may activate genes in the bacterial genome that are silent if such
microorganisms are cultured independently and thus do not interact with different species.
In this sense, access to key information in the characterisation of polymicrobial infections is
not the only contribution provided by a co-culture system in the drugs research field. In fact,
culturing bacteria in a community can also push microbes to produce secondary metabolites
that can turn out to be bioactive compounds to be exploited for the synthesis of new drugs
[40].
In reality, studying natural or synthetic cell to cell interactions is not the only purpose of
co-cultures systems. In synthetic biology these technologies are widely used to investigate
microbial interactions that are not commonly observed in nature. In this way it is possible
to construct and observe bacterial communities capable of fulfilling functions that individual
species are unable to perform with possible applications in the environmental, industrial and
medical fields [18], [41].
Moreover, as already mentioned in the section 1.1, growing one bacterial species together with
others can offer more favourable conditions for the proliferation of the individual species [16],
[18] therefore allowing laboratory culture of species that otherwise can not be grown.
Figure 2.1, adapted from Lisa Goers et al. [18], visually summarises main reasons for carrying
out a culture experiment instead of a standard monoculture.

Figure 2.1: Main motivations for co-culture experiments. Frome left to right: three main motivations for
carrying out a co-culture experiment. 1: Studying bacterial interactions happening in nature; 2: Success-
fully culturing species that need products of other bacteria metabolism to proliferate; 3: Allowing microbial
interactions that are not possible in nature. Figure adapted from Lisa Gores et al. [18].
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2.2 Microfluidics: technology for microbial co-culture

systems

As already mentioned, microfluidics is the discipline that studies sub-millimetre liquid volumes
(down to the femtolitres) confined in dimensions that generally do not exceed few millime-
tres. A microfluidic chip or platform consists of a set of micro-channels connected together
in order to achieve the purpose for which the platform itself was designed. The development
of microfluidics was underpinned by fabrication techniques developed for the microelectron-
ics industry. In fact, it has been only 20 years since one of the oldest microfluidic chip
ancestors [42], that innovative materials and manufacturing process, exclusively developed
for microfluidic applications, started spreading. By the late 1980’s, polymers replaced semi-
conductors and so soft-lithography was born to work these materials which are not easy to
handle with standard photolithography techniques [43]. In this scenario the silicone elastomer
poly(dimethylsiloxane), commonly called PDMS, has become established as particularly suit-
able for microfluidic applications. In respect to silicon, PDMS is less expensive, transparent
so easier to couple with optical microscopy and gas permeable. This latter characteristic is
an advantage also if compared to glass, the other material widely used in the field until then,
and it is fundamental for biological and medical applications [43].

The context that gave birth to microfluidics was the desire to revolutionise biology and chem-
istry research by following the direction that electronics and computation had taken with the
integrated circuit revolution [44]. In the fields of biology and chemistry, being able to reduce
the size/volume at which experiments are performed brings immediate advantages such as
the practicality of handling, transport and storage as well as the reduction of the volume of
reagents with consequent reduction of overall cost. The possibility to integrate the microflu-
idic chip itself with sensors, pumps, micro valves and imaging made it possible to design real
“lab-on-chip” devices.

Manoeuvring liquids at the micro-scale changes the physics of their behaviour in respect to
what we observe at the macro-scale [44]. At the micro-scale, viscous phenomena prevail over
inertial ones. This practically means that velocity-related motions, such as vortices, do not
occur and the dominant viscous phenomena tend to keep the individual fluid streamlines con-
stituting the flow field, parallel to each other. This type of fluid flow is known as laminar as
opposed to the turbulent flow that occurs most commonly at macroscopic scale. As a result,
in microfluidic chips mass transport occurs mainly by diffusion. Intermixing phenomena, hap-
pening exclusively through diffusion mechanisms, are rare and so experiments can be more
easily controlled. Moreover, since devices exhibit a higher surface area to volume ratio, mass
and heat transport can occur faster. This intrinsic facility to control fluid composition and
temperature is of great interest in microbiology studies. In particular, considering that the
scale of microfluidics devices are comparable to the size of a single bacterium and, more gen-
erally of a microorganism, this control can take place at the individual bacterium scale level.
Observing the growth of a bacterial colony, individual by individual, is typically challenging
with standard, macro-scale culture methods.
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2.2.1 Bacterial culture in microfluidic platforms

In order to observe any microbial community, the first prerequisite that must be met is to
have a system where bacteria can be inoculated and proliferate. This aspect has been widely
studied and there are many examples, including review articles, in the scientific literature.
Among these works, Wenting Zhou et al. [45] have recently written a review explaining recent
innovations in the use of microfluidics for the study of fungi and bacteria. Zhou et al. [45]
divide microfluidic devices into three large groups, according to their structure:

� devices for micro-channel culture;

� devices for micro-chamber culture;

� devices for droplet-based culture.

Microfluidic devices for micro-channel culture

Micro channel culture is probably the most common method among the aforementioned
groups, largely because microfluidic channels are easy to fabricate and simple to integrate
with peripheral devices for real time bacterial growth rate monitoring [45]. The basic module
of a microfluidic device where bacteria are cultured in a microchannel is shown in figure 2.2.

Figure 2.2: Microfluidic device for channel culture: working principle. Basic design of a device for bacteria
culture in a micro-channel: bacteria are diluted in their medium and then inoculated in the channel through
the inlet. Green arrow indicates the channel depth: tunable parameter to change fluid flow inside the channel.

PDMS micro-channels integrated with bacterial growth monitoring by phase contrast mi-
croscopy have been proposed as a fast tool for evaluating antimicrobial susceptibility [46].
Thanks to a high surface to volume ratio and consequent high oxygenation compared to
common approaches of broth dilution and disk diffusion, Chia Hsiang Chen et al. [46] demon-
strated antimicrobial susceptibility testing in just two hours instead of few days needed for
standard protocols. Related results are summarised in figure 2.3. This work, as well as being
an example of a successful bacterial culture experiment in microfluidic channels, demonstrates
the possibility of controlling the bacterial growth rate exclusively by modifying the microflu-
idic channel aspect ratio (figure 2.3). Hence microfluidic approach is demonstrated to be more
effective than traditional ones (e.g. Petri dish) whose small surface to volume ratio causes
the oxygen flux to be only enough for low initial concentrations.
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Figure 2.3: Bacterial micro-channel culture for antimicrobial susceptibility testing. a) Scheme of the device
used by Chia Hsiang Chen et al.[46] for the experiments, two different channel depths are illustrated with
oxygen level relatively low associated to the largest one. b) Data show a faster bacterial growth rate when
microbes are cultured in microfluidic channels rather then with standard approaches. c) Graph shows an
increasing in bacterial growth rate with the increasing in the surface-to-volume ratio until saturation level
reach with a ratio around 60cm−1. d) Results of the Ampicillin susceptibility test on E.coli strain. Adapted
with permission from [46]. Copyright 2010 American Chemical Society.

If the growth channel is reduced to the size of a single bacterium, E. coli can be constricted
to grow only in the micro-channel direction. This principle is used in the device known as
mother-machine. This was first introduced in 2010 [47] to allow bacterial division to be mon-
itored at the single microorganism level. It is commonly used for rod shaped bacteria and is
composed of a series of parallel, dead-end growth channels where the so called pole mother
cell is localised. This design, shown in figure 2.4, can be used for a series of single cell studies
such as cell growth and division observation or genetic analysis [48].

The mother machine is a clear example of the ability of microfluidic platforms to impose
confinement to a bacterial colony to overcome the limits of common culturing approaches.
For example, the exponential growth on agarose pads leads to complete covering by bacteria,
making it hard if not impossible to extract the growth rate of a single microbe and gene
expression information. This can be overcome by micro patterning the pad as shown in figure
2.5 [49]. A mother-machine like design, addressed as the single cell chemostat, allowed Jeffrey
R. Moffitt et al. [49] to address innovative biological questions at the single bacterium level,
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within a community, coupling the agarose pad culture together with a time-lapse imaging.
Thanks to the micro pattern, bacteria are forced to grow in monolayers in an environment
where nutrient consumption can be controlled.

Figure 2.4: Mother machine microfluidic chip. Mother machine design and working principle: the mother
cell divides and pushes daughter cells along the dead-end microchannels: once the open end is reached, the
daughter cells end up in a wider channel to be “washed” away. Medium is flushed through the central channel.
B shows Phase-contrast images of one microchannel over time during and experiment carried out by Lydia
Rober et al. [50]. A and B adapted from [50]. Reprinted with permission from AAAS.

Figure 2.5: Micro-patterned agarose pad. Top row: schematic representation of what happens if bacteria
are cultured in a common agarose pad, because of multiple bacterial layers, nutrient consumption and not
uniform growth, the data collected after 8 generation are not useful; Middle row: micro-pattern agarose pad
overcomes main limitation of the more common straight pad so measurements can be carried out without
time limits; bottom line: phase contrast images of E. coli cultured in a micro-patterned agarose pad, scale
bar are 10µm. Figure adapted from [49].
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Microfluidic devices for micro-chamber culture

Culturing bacteria in a micro-chamber gives more stability to the experiments [45]. In a
basic design (figure 2.6), a micro-chamber is generally connected to the fresh medium source
through micro-channels. This changing in shape from the inlet to the chamber causes fluid
flow to slow down where the minimum flow velocity is reached inside the chamber. In a device
having a shape like the one shown in figure 2.6, the considerable lowering of flow velocity in
the central chamber, with respect to the remaining parts of the device, makes it preferential
for bacteria to settle, proliferate and give rise to colonies in this zone.

Figure 2.6: Microfluidic device for chamber culture: working principle. Basic design of a device for bacteria
culture in a micro-chamber: bacteria are diluted in their medium and then inoculated in the chamber through
the inlet. The micro-chamber is connected to the inlet through a narrow micro-channel.

Specific designs can further help to maintain the average flow rate in the bacterial culture
chamber. For example Xiao-Yan Zhang et al. [51] used a microfluidic device consisting of
an octagonal chamber surrounded by a microfluidic ring to study real-time initial biofilm
formation and the effect of antibiotic on the process. The interposing of a ring-shaped mi-
crochannel around the chamber (see figure 2.7) permits biofilm growth to be studied under
constant flow without altering steady culture conditions in the chamber. Flow is needed to
supply nutrients and wash away both metabolites and bacteria that do not adhere to the
glass substrate underneath the PDMS device. In this design, the fluid flow velocity can be
changed and the consequent biofilm formation process studied in relation to this variation [51].

The characterisation of the biofilm formation process at the microscopic level and in real
time is a key step to fully understand some serious infections, however common macro-scale
approaches, such as shake flakes, are unable to address such questions. This is particularly
challenging with those microorganisms, such as E. coli, whose natural ease of propulsion
prevents their adhesion to a substrate. Large microfluidic chip area helps bacteria to adhere
to the walls allowing for easier biofilm formation [51].
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Figure 2.7: Bacterial micro-chamber culture for biofilm formation analysis. Microfluidic chambers for biofilm
study. A: Schematic design of the device used by Xiao-Yan Zhang et al. [51]; little circles inside the octagonal
chamber are PDMS micro pillars to prevent gas bubbles from entering in the device. B and C shows respec-
tively schematic drawings and real acquired pictures from inverse microscope to explain biofilm formation
process. Stage 1: bacteria poorly adhere on the glass substrate, stage 2: bacteria irreversible adhere to the
glass substrate, stage 3: monolayer biofilm formation and secretion of substances for biofilm structure, stage
4: biofilm is formed and mature. E.coli is the bacterial species under investigation. Figure from [51].

Generally, when designing a device similar to the one shown in figure 2.6, the first requirement
to meet it is that bacteria preferably colonise and proliferate in the central culture chamber.
With motile organisms this means reducing the potential for bacteria to swim out of the
chamber once bacteria are inoculated through the inlet. This can be achieved by taking ad-
vantage of gravity; if the culture chamber is lower than the inlet-outlet connection, gravity
pulls the bacteria to the bottom of the well, making it more likely they will remain located
within the well. One way to achieve this difference in heights is by fabricating the device
from two layers of PDMS, one above the other. In this case the top part should include a
channel for inoculating bacteria and supplying media, and the bottom should include the
culture chamber as shown in figure 2.8. Commonly, in this case, the culture chambers are
addressed as culture wells.
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Figure 2.8: PDMS double layer microfluidic device for chamber culture: working principle. Schematic design
of a double height microfluidic device for bacteria culture in wells: two layers of PDMS are positioned one
above the other. A: top view of a device with 4 culture wells; B: cross section view of one well. Top PDMS
layer is represented in yellow, bottom PDMS layer represented in pink. A adapted from [52]: supplementary
information.

Xiaofei Yuan et al. [52] used a two layer PDMS microfluidic device to build a culturing plat-
form to study the effect of 532 − nm laser irradiation at the single bacterial cell level. In
fact, this wavelength belongs to the range used in Raman spectroscopy, an emerging label-
free technique that use vibrational microspectroscopy as a rapid method for structurally and
molecularly characterising a biological sample. Generally, it is considered a non destructive
technique but laser irradiation could have effects on bacterial cells. In the aforementioned
work [52] these effects are evaluated at the single cell level thanks to a microfluidic device
specifically designed for the purpose and based on two layer PDMS culturing wells structure
shown in figure 2.9. The device allowed changes in the growth rate at the single bacterial
cell level to be monitored while increasing the irradiation dose revealing that bacteria stop
dividing beyond a specific value. Such value of irradiation dose is indicated as “destruction
threshold” and it is different for different bacterial strains. Thus, Raman spectroscopy should
be ideally conducted below this threshold finding a good compromise between a good signal-
to-noise ratio of the Raman signal and the effect of radiations on bacterial cells. Such effects
increase if the irradiation dose increases and include the reduction of the growth rate and the
extension of the lag time [52]. This experiment is impossible using common bacteria culture
systems where the overall growth of the bacterial colonies hides the proliferation trend of the
individual bacterium preventing a dynamic and real time study.

As for microchannel culture devices, the dimensions of a microfluidic chamber can also be
reduced to few micrometres in order to match the single bacteria scale. By taking advantage
of this possibility Fabai Wu et al. [53] could study how the expression of specific membrane
proteins varies when bacteria, while growing, are forced to change their shape, adapting to
that of the micro-chambers (see figure 2.10).
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Figure 2.9: Bacterial micro-wells culture in a two layer PDMS device. Schematic design of the device used
by Xiaofei Yuan et al. [52]: yellow PDMS is the top layer where the two channels are imprinted, the central
green part is the lower PDMS layer used for bacterial culture (a). Top and cross-section view of the device
(b). Figure reported from [52].

Figure 2.10: Single bacterium micro-chamber culture. Schematic structure of the device for single bacterial
cells culture (left): microscope cover-glass (bottom), PDMS micro-chambers (middle) and an agarose pad
(top). Right: fluorescence images of bacteria growing into defined shapes. Adapted by permission from [53],
Copyright ©2015 Springer Nature.
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Microfluidic devices for droplet-based culture

Using microfluidic channels and taking advantage of physical properties at the interface of
two immiscible liquids, it is now possible to encapsulate single or few bacteria in a single fluid
droplet [45]. Performing this type of culture allows the design of very high-throughput devices
in which cells can be interrogated one at a time. For example, specific drug molecules can
be incubated with individual bacteria to specifically observe how their phenotype and gene
expression change. In general, compared to micro-channel or micro-chamber culture devices,
droplet-based microfluidic systems require a more complex fabrication protocol. In addition
to standard steps, it is necessary to establish which method of droplet formation is the most
suitable and how to handle the single droplet for the specific application. In droplet-based
microfluidic cell culture, nutrients availability is intrinsically limited by the maximum volume
contained in a single drop. Moreover, with the final aim of studying microbial interactions,
this type of microfluidic culture technique does not give easy access to information about
the local micro-environment. For all these reasons, a droplet-based microfluidic device is not
strictly necessary and, indeed, is not suitable for the purpose of the current work so a more
traditional and standardised design has been adopted. Please refer to the review written by
Minjeong Jang et al. [54] and the specific application of James Q. Boedicker [55] for additional
information regarding this topic.

2.2.2 Microfluidic co-culture systems

When designing a microfluidic device for mixed bacteria co-culture there are two key decisions
to take before starting its fabrication process:

1. which bacterial culture module is the most appropriate for the study;

2. how to separate the bacterial culture modules to answer the main research questions.

The previous section provided an overview of the most common approaches to culture bac-
teria in a microfluidic device. The next sections will review the methods most documented
in literature to accomplish separation between species when cultured together in the same
overall co-culture system.

Figure 2.11 gives a schematic overview of the main solutions to integrate a co-culture method
in a microfluidic device. All the methods illustrated in figure 2.11 are based on dimensional
filtering. Unlike bacteria whose size is in the range of a few micrometers, chemical signalling
between microbes happens via diffusion of small metabolites whose dimensions do not exceed
hundreds of nanometres and which can flow through nano-sized channels or the nano-sized
links of a net.
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Figure 2.11: Common approaches for microfluidic co-culture systems: review. Considering a micro-chamber
bacterial culture (populated by red rod-shaped bacteria in figure), in a mixed culture system consisting of two
microbial species, it can be separated from the additional microfluidic culture module through: a membrane
(left), a nano-slit connection (right), a hydrogel (bottom). Adapted with permission, from [56]; permission
conveyed through Copyright Clearance Center, Inc.

Fluid channel connection between compartments

Starting from a microfluidic culture module, either based on a micro-channel or on a micro-
chamber, the most immediate way to convert it in a co-culture system is to include a second
microfluidic culture module separated by a slit of a size small enough to prevent the passage
of bacteria. This solution is described as “the most immediate” because the concept itself is
easy to design and should not require additional instrumentation compared to what is needed
for mono-microbial culture. In reality, as shown in chapter 4, when working with nano-metric
dimensions we often operate close to the resolution limit of the machines used to fabricate
the devices as well as in a range where material responses to physical manipulations (such
as photoresist light-sensitivity) may not reflect our expectations. Probably for this reason
this co-culture system is more commonly used for mixed culture of eukaryotic cells. In fact,
their bigger dimensions (10− 100µm), their inclination to adhere to the substrate instead of
swimming in liquid medium and their poor ability to adapt to hostile environments make it
easier to keep them out of a specific microfluidic compartment simply introducing a narrowing
in the device.

These properties of eukaryotic cells have allowed Jean-Philippe Frimat et al. [57] to build a
microfluidic array of cell traps for the simultaneous co-culture of single cells that is based on
the principle of two microfluidic compartments separated by a narrow channel. Once the cells
have been suspended and inoculated into the microfluidic device, shown in part 1 of figure
2.12, the fluid flow can take two different paths, both, in principle, connected with the rest
of the device; one straight path along which cell traps (device narrowings) are positioned and
one serpentine path free from traps. Naturally, liquids take the path with the lowest resistance
to the flow (step A of part 2 in figure 2.12). In this case, this is the straight channel. Hence,
flowing through the linear path, the suspended spherical cell (purple dot in the part 2 of figure
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2.12) is trapped at the first device narrowing (step B of part 2 in figure 2.12). At this point
the cell adheres to the substrate, flattening (lilac in part 2 of figure 2.12 ) and lowering again
the resistance to the fluid flow in the linear path (step C of part 2 in figure 2.12). Hence,
when other suspended spherical cells are inoculated from the opposite side of the device, the
differences in resistance to the fluid are similar to the initial ones. This second group of cells
will behave like those inoculated first, and for any path narrowings, at this point a single cell
co-culture should have settled (step D of part 2 in figure 2.12).

Figure 2.12: Microfluidic array with cellular valves for single cell co-culture. 1) SEM image of the overall
serpentine device; 2) Device working principle: schematic representation and SEM (A) or phase contrast
images (B-D) of the respective step. Step A: initial empty device configuration; Step B: spherical suspended
cells (in purple) are, inoculated. Step C: cells in traps flatten (in lilac); Step D: second spherical cells are
introduced through flow reversal to settle a single cell coupling. Adapted from [57].

In the aforementioned example, narrowing the channel to create a cup shape (part 2 in figure
2.12) with a diameter from 1 to 2.5 times the cells diameter is sufficient to trap cells and
prevent them from moving forward. Then, a small aperture (smaller than the cell diameter)
at the tip of the trap allows contact with a cell coming from the opposite side of the aperture
(part 2 in figure 2.12). Operating this type of device between two bacterial cells would be
difficult and there are two main reasons for this:

1. bacterial adhesion to a substrate may not alter their shape sufficiently to reverse the
resistances to fluid flow in the path;

2. bacterial capability to change their shape to adapt to the most extreme habitats (see
figure 2.10 and reference [53]) allows them to swim or proliferate through very small
gaps.

Regarding this second point, it has been demonstrated [58] that E.coli do not undergo any
changes in motility when swimming in a microchannel wider than 1.1µm, only 0.8µm bigger
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than bacterial diameter. Hence, to physically isolate two bacterial species, a trap of the
same dimensions of the cells may not be small enough in the case of bacteria. To study
motility and growth of a pair of bacterial species, representative for Gram-positive and Gram-
negative bacteria, respectively Eschericia coli and Bacillus subtilis, Jaan Männik et al. [58]
designed a rigid microfluidic device in which a “loading channel” is connected to a “feeding
channel” through parallel paths. In each path micro-chambers alternate with micro-channels
of decreasing width, starting from 3µm (figure 2.13).

Figure 2.13: Microfluidic device to study bacterial behaviour in sub-micron channels. Schematic representation
and SEM image of the silicon device used for study bacterial mobility and growth in sub-micron constrictions.
Adapted from [58].

They showed that, considering D as the average bacteria diameter, directly calculated as a
part of the experiment, and W as the channel width, normal flagellar-induced motility is still
possible for W/D ∼ 1.25, around 25− 40% wider than bacteria diameter for both species (re-
sults for E.coli shown in figure 2.14). For lower W to D ratios, the behaviours of Eschericia
coli and Bacillus subtilis differ, probably due to differences in membrane composition and
thickness. For ratios down to W/D ∼ 0.5, E. coli showed the ability to enter rigid sub-micron
sized channels by subsequent cellular divisions starting from the channel entrance and greatly
changing their shape (figure 2.14 panels D-L), while B. subtilis could not proliferate in micro-
constrictions for ratios lower than W/D ∼ 1.

Therefore, preventing physical contact between bacterial species while allowing chemical com-
munication via metabolite diffusion within a co-culture device, is feasible only provided that
the nano-slit is smaller and thinner than the bacterial diameter. In reality, as widely illus-
trated, within a limit, bacterium may still be able to overcome the separation by proliferating
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within the nano-channel. Nevertheless it is worth noticing that this ability depends on bac-
terial species involved, is a fairly slow process (5 hours to proliferate through a 50µm long
channel) and furthermore it is not certain that it will be exercised without adequate stimulus
(in the example [58] given by the difference in concentration of nutrients).

Figure 2.14: Bacterial behaviour in sub-micron constriction. A: E.coli bacterium (pointed by the white
arrow) swimming in a channel 1.2µm wide from left to right chamber. B: Bacterium swimming velocity
versus bacterium distance along the channel (from left to right chamber: see x coordinates at the bottom
panel in A). Velocity remain stable and comparable to the one in the chambers. C: Average swimming velocity
versus channel width. D: E.coli bacteria showing abnormal shapes after growing in a 0.6µm channel for 5
hours. Figures adapted from [58].

While possible in principle, examples of bacterial co-culture devices using this design are few
in number. Among these the study conducted by Simon van Vliet et al. [59] starting from
the results previously illustrated [58] showed that when two identical, but differentially and
neutrally labelled, E. coli strains invade and colonise a micro-patterned habitat from oppo-
site sides, their progress within the device and the collision between them are regulated by
chemical interactions, among other factors, rather than physical interaction. In fact, in one of
the 5 versions of the device, all contributing to the observation of the same phenomena, they
inoculated the two strains into independent paths connected exclusively by small channels
200nm × 15µm × 15µm. Giving the fact that channels depth (200µm) is less than half of
the E. coli average diameter, no bacteria were able to swim through them. Figure 2.15 shows
that the two bacterial fronts avoid to get too close even if physically separated, just like in
all other devices where physical contact is instead allowed.
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(a) Devices type 1 and type 2: physically connected colonisation fronts

(b) Device type 3: physically separated colonisation fronts

Figure 2.15: Colonisation of structured habitats by competing bacterial populations. Panel (a): Device type
1 (top schematic representation) and device type 2 (bottom schematic representation) for studying bacterial
colonisation phenomena. Enlargement shows the structure of three central patches (squares with side 100µm).
Area fraction calculated for green and red labelled strains, colonisation wave collision at t = 6h in device
type 1 (E), Kymograph of fluorescence intensity for the collision shown in E (F) and its enlargement (G).
Panel (b): device type 3 for studying bacterial colonisation phenomena (top-left schematic representation).
As shown in the enlargement patches are connected through nano-sized channels where bacteria are too big
to flow through. Area fraction calculated for green (bottom) and red (top) labelled strains (E) , Kymograph
of fluorescence intensity for the collision shown in E (f). In both panel (a) and panel (b) Kymograph of
fluorescence intensity shows the two opposite fronts avoid overtaking each other after the collision. This
demonstrates that this behaviour is due to chemical signalling between strains, unique type of interaction
possible in the device shown in panel (b). Figures adapted from [59].

Compartments separated by hydrogels

Hydrogels are colloids composed of polymer chains dispersed in water. Water content in
hydrogels account for up to 99% of their composition making them perfect substitutes for
living tissue and they are used widely for growing cell cultures in laboratories as well as
for tissue engineering. Moreover, starting from 1960s, thanks to their high biocompatibility,
hydrogels have been widely used in the medical field in soft contact lenses, breast implants
and specific treatments of burns and wounds. Chemical or physical cross-linking between
polymers of hydrophilic monomers, gives hydrogels the ability to swell and incorporate such
a big amount of water. In figure 2.16 the hydrogel structure resulting from different types of
cross linking, and the cross linking process itself are briefly illustrated.
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Figure 2.16: Hydrogel synthesis: from a hydrophobic polymer to a hydrogel. Polar groups are added to hy-
drophobic polymer chains through hydrolysis, oxidation, sulphonation or other process so resulting chains are
water soluble. Cross linking can then be induced chemically or physically. In chemical hydrogels, also called
permanent, cross-linking between polymer chains happens through covalent bonding and chemical reactions
while in physical or reversible gels temporary connections are physically induced through ionic interaction,
hydrogen bonding, thermo-induced gelation, complementary binding and hydrophobic interactions. In chem-
ical hydrogel the final network is easier to control in term of mesh size of the net due to its more regular
structure. Figures adapted from [60].

The network structure associated with hydrogels (see figure 2.16) can be used to selectively
filter substances. For example, a hydrogel can allow diffusion of nanometre metabolites while
preventing movement of micrometre bacteria. Thanks to their composition and working
principles, hydrogels can be easily integrated in a microfluidic device. In fact, they can be
inoculated in a microfluidic chip while still at the initial liquid phase and they can be cross
linked once already inside the device. The great advantage of such procedure is that to in-
clude hydrogels in a microfluidic platform, the main device fabrication steps are not altered
in respect to common protocols.

The use of hydrogel barriers in co-culture microfluidic platforms is a common practice in
eukaryotic cell studies. Eukaryotic cells can exchange nutrients and molecules by diffusion
through collagen, which simulates extracellular matrices, making it necessary to have this
protein inside the channel used as a separation between two microfluidic compartments for
cell culture. Collagen gel can constitute an extra physical separation between culturing com-
partments in the microfluidic device. This is, indeed, the case of the device designed by Jung
Woo Hong [61] in which collagen gel is not only an extra separation component but, thanks
to its presence, passive valves are established to separate a central bacterial culturing channel
from two eukaryotic cell culturing chambers (panel (a) in figure 2.17). Results showed the
tendency of facultative anaerobic bacteria, free to swim in the canal, to preferentially head
towards the exit of the collagen connection to the chamber where cancer cells are located.
Hence, this experiment demonstrated the possibility to target cancer cells using facultative
anaerobic bacteria that move by chemotaxis towards biochemical compounds produced by
cancer cell metabolism (panel (b) in figure 2.17).
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(a) System for investigation of bacterial can-
cer targeting: device design

(b) System for investigation of bacte-
rial cancer targeting: working princi-
ple

Figure 2.17: Microfluidic co-culture system for investigation of bacterial cancer targeting. Microfluidic device
design: 4 independent cell cultures compartments connected through small channel filled with collagen to
a central channel where bacteria are inoculated (a). Device working principle: in separated microfluidic
compartments normal cells and cancer cells are respectively cultured, molecules produced by the cells. Bacteria
are free to swim in the channel: experiments show that they tent to preferentially accumulate in the exit of
the chamber where cancer cells are cultured. Figures adapted from [61].

Collagen gel is an example of natural hydrogels whose main drawback is the lack of repro-
ducibility [60]. This is intrinsically due to their natural origin, mainly from animal organs.
On the other side synthetic hydrogels are cheaper and easier to control but are not always bio-
compatible and harder to synthesise. Among natural hydrogels it is worth citing agar, widely
used as cell culture substrate in laboratories, but also materials such as alginates studied as
possible means for the delivery of small chemical drugs, wound dressing and human tissue
regeneration [62]. While the most common synthetic hydrogels are PVA (polyvinyl alcohol)
and PVP (polyvinylpyrrolidone).

A common method to trigger polymerisation in a hydrogel is through UV light. Here, a
photo-initiator is added to the initial solution from which the hydrogel will originate. In this
way when the solution is exposed to a source of light in a specific wavelength range, bonding
between photo-initiator and polymer chains is modified and the formation of free radicals
starts the cross linking process. Photo-polymerisation can easily be performed directly inside
a microfluidic device in which two compartments for bacterial culture are designed to be sep-
arated by a hydrogel barrier. All that is needed is a precursor solution, a UV lamp and a
region of the device intended for the insertion of the hydrogel “in situ”.

Dipali Patel et al. [63] have demonstrated a two-layer co-culture microfluidic device (see
figure 2.18, A and B) in which a central micro-channel filled with a photo-polymerised
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poly(ethyleneglycol) (PEG) hydrogel is used as physical barrier between two groups of melanoma
cells (figure 2.18, B); drug resistance melanoma cells and drug sensitive melanoma cells.

Figure 2.18: Microfluidic co-culture system: compartments separated by PEG hydrogel barrier. (A) schematic
representation of the microfluidic device composed by a double layer of PDMS: the bottom layer is composed
by 10µm high grooves that separate the cells culture chambers from the central PEG channel, the top
layer comprised 2 chambers 8 × 1.8 × 0.075mm(length × width × height) (in purple) and a central channel
8 × 0.1 × 0.075mm(length × width × height) (in green); (B) cross sectional schematic representation of the
device and its working principle whit two types of melanoma cells in close proximity. (C) Brightfield image
of two different types of cells cultured after day 1. Scale bar is set at 100µm. (D) Same types of cells of
panel B labelled in green and in blue after being seeded in different chambers, image acquired after 48h.
Phenotypically the two cell group are identical except for vemurafenib resistance. Reproduced from [63];
permission conveyed through Copyright Clearance Center, Inc.

The chip (figure 2.18) aimed to study the role of cell cross-talk and paracrine exchange in the
context of tumour cells resistance to treatments. The design overcomes some of the issues
commonly faced when using transwell systems and conditioned medium co-culture systems,
such as the large quantity of medium volume needed, and the consequent high dilution of
secreted metabolites.

Furthermore, the central channel with the hydrogel was added to a previous design in which
the connection between the two compartments for cell culture was conceived exclusively
through microchannels that should have allowed only the diffusion of small metabolites but
that could not prevent the passage of highly migratory melanoma cells.

In addition to photo-polymerisation, methods for gel–microfluidics integration include also
soft-lithography and flow-solidification techniques. Particularly, this latter overcomes the
limitations occurring when sealing hydrogel with other materials, for example features col-
lapsing or the lack of tightness that can cause leaking when inoculating the device [64].
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The automatic microturbidostat for bacterial culture built by Xianjia Luo et al. [65] is a device
that successfully integrates a hydrogel in a microfluidic platform through flow-solidification.
The overall system (shown in panel a of figure 2.19) constituted a two layer PDMS bacterial
culture device that includes pneumatic valves and a hydrogel filter (shown in panel b of
figure 2.19), an inverted microscope and a PC connected to the valves controllers and a CDC
camera. Here, the hydrogel is used to confine bacteria within the chamber. By dividing the
nutrient channel from the bacterial culture chamber, the bacteria move from the inlet port to
the areas with the highest nutrient concentration and thus settle in the chamber. Critically,
the hydrogel prevents bacteria from entering the nutrient channel but allows the nutrients to
diffuse from the nutrients channel to the culture chamber.

(a) Microturbidostat for bacterial culture: microfluidic chip
scheme

(b) Microturbidostat for bacterial cul-
ture: overall system design

Figure 2.19: Gel integration for microfluidic application: microturbidostat for bacterial culture. Microfluidic
chip schematic design (a). Left panel (a):two layer PDMS device. The bottom layer (red) includes the
bacteria culturing chamber and the nutrient channel, the top layer (blue) includes the pneumatic valves
channels. Central panel (a): zoom on culture chamber left and right connections. Right panel (a): three
dimensional structure of the culture chamber and its connections. Overall microturbidostat system design
(b): the signal from the fluorescent labelled bacteria in the culture chamber is collected by the CDC camera
and analysed by a MATLAB program that give the order to the valve controllers; ultimately the valves control
the switch of the input-output bacterial channel. Figures adapted with permission from [65].

The work reported by Xianjia Luo et al. [65] is interesting for the techniques used to integrate
the hydrogel filter in the microfluidic chip. To successfully complete such integration, whose
main steps are listed below and briefly summarised in figure 2.20, the connection channel
between the nutrients channel, through which the gel-solution is inoculated, and the culture
chamber must have a specific conformation. Specifically, its width must decrease with a
specific ratio to allow the flow resistance to stop the agarose solution. In this specific example
[65], the width of this connection channel changes from 50µm to 30µm and at the chamber
entrance it has an aperture of 20µm. The main steps followed by Xianjia Luo et al. [65] to
complete the flow-solidification are the following (see figure 2.20):
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1. the PDMS device is left at room temperature for few days to render the surface hy-
drophobic;

2. the agarose solution at 80◦C is inoculated inside the device through the nutrients chan-
nel;

3. the agarose solution stops in the middle of the connection channel due to flow resistance;

4. air is injected in the nutrients channel to remove agarose solution;

5. the device is left at room temperature for 10 minutes to allow the hydrogel to solidify;

6. filtered deionised water is inoculated in the device through the nutrient channel to
hydrate the hydrogel.

Figure 2.20: Microturbidostat for bacterial culture: agarose flow-solidification. (a) Agarose solution is in-
oculated at 80◦C in the nutrient channel; (b) Agarose solution stops in the part of the connection channel
with the intermediate width value (30µm); (c) Agarose solution is removed from the nutrient channel by
air inoculation but it remains in the connection channel where, after cooling down to room temperature, a
hydrogel filter is formed. Figure reproduced with permission from [65].

In general, there are numerous examples in the literature of microfluidic devices that use
hydrogel barriers to study cancer biology, cancer immunology and cancer therapy [66]. In
contrast, this type of microfluidic system for co-culture of bacterial communities is less well
developed. Even the example just described [65] does not use a hydrogel as a barrier between
two bacterial species. Despite this, it remains an important confirmation of the ability of these
gels to allow the diffusion of nano-metric molecules and prevent the passage of microorganisms.

By exploiting the change in flow resistance inside a PDMS device, whose surface is hydropho-
bic, hydrogels can be integrated in a wide range of microfluidic platforms. Generally, small
channels are connected to a wider central channel through which the hydrogel is inoculated
in the device. Therefore, thanks to a change in the resistance to the fluid flow, a fish-bone
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hydrogel structure (see figure 2.21) is created. In order to strictly confine the hydrogel in
such a structure, the parameter to control is the difference between fluid pressure inside the
main channel, where the hydrogel is inserted, and that in its branches, where the hydrogel
is supposed to stop flowing. The height and the width (w1 in panel e of figure 2.21) of the
main channel, the height and the width (w1 in panel e of figure 2.21) of the small branches
and the surface tension of the hydrogel are therefore critical parameters to tune. Refer to
figure 2.21 for an example of the aforementioned type of gel-microfluidics integration. In the
device shown in figure 2.21 the gel barrier separates a central cell culture chamber from two
lateral sensing channels where bead-based biosensors can be used to detect specific molecules
secreted by the cells in the adjacent culture chamber [67]. In the device shown in figure 2.21
the hydrogel, after being confined into the microfluidic platform, has been exposed, together
with the entire chip, to UV light in order to be polymerised.

Scientific literature confirms that many hydrogels are not toxic to cells, that nutrients and
growth factors can easily diffuse through hydrogels and that, thanks to their optical trans-
parency, it is also possible to observe the diffusion of fluorescent molecules inside the gels.
Moreover, hydrogels are relatively easy to obtain, inexpensive and their high malleability
makes them adaptable to different designs. As evidence of this last statement, in the mi-
crofluidic device shown and briefly described in figure 2.22, a hydrogel is inoculated both
inside U-shaped channels and inside straight channels and perform both the function of bar-
rier between different cell cultures and between the nutrient channels and the cell culture
chambers themselves [68].
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Figure 2.21: Hydrophobic surface to confined gel area: example. Picture of the overall design of the device
built by Kyung Jin Son et al. [67]: red area includes the inlet-outlet ports for the cells and the central cell
culture chamber, green area includes the sensing channel for the bead-based biosensors (a). Microscopic image
of the central part of the device built by Kyung Jin Son et al. [67]. Scale bar = 500µm(b). Bright field
image of the hydrogel barrier (c). Fluorescent image of the hydrogel barrier; green arrows point the hydrogel-
air interface (d). Merged bright field and fluorescent image of the hydrogel barrier; w1 and w2 respectively
indicate the main channel width and the small branches width: parameters to be tuned to confined the
hydrogel exclusively between the chamber and the channel. Figures adapted from [67].
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Figure 2.22: Hydrogel malleability: a microfluidic co-culture device to simulate bladder cancer micro-
environment. Overall schematic design of the device (a). Magnification of the central area of the device:
the external medium channel supplies nutrients to the four cell chambers (A,B,C,D), each chamber has its
inlet and outlet port to inoculate the cells, yellow U-shape structure and central cross indicates the areas filled
with the hydrogel. The structures filled with gel permit the diffusion of small molecule between different com-
partments of the device thanks to a set of micro-channels (b). Microfluidic device connected to the perfusion
equipment (c). Microscopic image of the device filled with food colouring (d). Figures reported from [67].

Compartments separated by membrane

The term membrane can be interchanged with semi-permeable barrier and this definition
immediately clarifies their function. A membrane is generally positioned between two homo-
geneous phases allowing the diffusion of specific molecules or particles between them. This
passage is generally driven by some kind of force such as concentration gradient, pressure dif-
ference, changes in temperature, electric force and so on [69]. Depending on their morphology,
membranes can be divided in two different types:

� dense membranes;

� porous membranes.

The main difference between the two groups is the size of the molecules that they are in-
tended to separate. The first group potentially includes all dense materials when they are
used to separate small molecules (e.g. ions). Such molecules are so small that they can pass
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through the material itself. Thus, as highlighted in the review written by J. de Jong, RGH
Lammertink and M. Wessling [70], all materials can act as membranes, but what often makes
them unusable for this purpose is their low permeability or selectivity. On the other side, when
using porous membranes, mass diffusion between the opposite sides of a membrane happens
through openings in the structure called pores through which bigger and complex molecules
(e.g. signalling molecules exchanged between bacterial cells) can pass. For the purpose of this
literature review, each time reference is made to a membrane, unless otherwise specified, it is
meant a porous membrane.

The entire previous section (section 2.2.2) has been dedicated to a specific type of membranes
of particular interest for the completing of the current work: hydrogel membranes.

When integrated in microfluidic platform, membranes are mainly used for chemical reagents
detection, gas detection, cell culture, drug screening and the design of microreactors. Despite
their widespread use, especially for chemical and biological applications, their integration
with microfluidic devices still presents some difficulties. A membrane can either be purchased
individually and subsequently integrated into a microfluidic platform, it can be fabricated
during the general manufacturing process of the device, it can be prepared in situ or the
whole chip, depending on the material it is made of, can work as a membrane. For example,
one can think of PDMS as being a dense membrane that allows the diffusion of oxygen into
microfluidic devices.

If the membrane serves as a barrier in a device for the co-culture of different bacterial species,
it should ideally allow the diffusion of nano-metric molecules and prevent the passage of
micro-metric bacteria, therefore the diameter of the pores must be in the order of hundreds
of nanometres. This dimensional range complicates the fabrication of the membrane itself
and requires expensive lithography instrumentation. Therefore, commercially available mem-
branes, already tested and functioning, can be purchased. In the literature, porous polymers
are frequently reported as components of membranes used for mass transport.

When the specific design requires two or more compartments separated by a semi-permeable
membrane, the most common way to manufacture the microfluidic platform is to stratify
and separate several layers of PDMS with a membrane. Figure 2.23 shows a scheme of a
typical stratified PDMS device with two compartments for bacteria culture separated by a
semipermeable membrane. This design, typical not only for co-culture devices but also for
organ on chips, requires:

� precise alignment of PDMS layers;

� reliable bonding between layers i.e. different membrane materials, PDMS and glass
parts of the device.
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(a) (b)

Figure 2.23: Bacterial culture microfluidic chambers separated by membrane: design. Schematic (a) and cross-
sectional schematic (b) illustration of a two layers device for bacterial co-culture: two culturing chambers are
separated by a semi-permeable membrane. In panel b spatial arrangement of the bacteria in the device is also
shown and red arrows indicate the inlet and outlet ports of the device.

A microfluidic device that allows growth of different bacterial species with communication
through the exchange of molecules through a semi-permeable membrane, has been demon-
strated by a design such of that of Hyun Jung Kim e al. [41]. Here, a single upper PDMS
layer containing isolated culture wells is separated from a bottom channel by a polycarbonate
membrane allowing chemical communication. The overall design and working principles are
briefly illustrated in figure 2.24.

Figure 2.24: Microfluidic compartments separated by membrane: synthetic community of three bacteria
species. Cross sectional view of the device designed by Hyun Jung Kim e al. [41]. In the device three
wild-type soil bacterial species are co-cultured: Bacillus licheniformis (Bl), Azotobacter vinelandii (Av) and
Paenibacillus curdlanolyticus (Pc). The micro-environment is maintained stable by imposing spatial structure:
three culture wells in the top layer and a chemical communication channel in the bottom layer. Figure reported
from [41].

In the device (figure 2.24) three soil bacteria species, between which there is no evidence of
reciprocal interaction in nature, are forced to grow in close proximity but without physical
contact [41]. The results, in terms of living bacteria after culture, are summarised in figure
2.25.
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(a) Synthetic community with and without communi-
cation among the species

(b) Synthetic community at different degree of separation

Figure 2.25: Microfluidic compartments separated by a membrane for the study of a synthetic community
of three bacteria species: results. Panel (a). Living bacteria are marked in green and dead bacteria are
marked in red. Top line shows that no living bacteria are detected after 36 hours when the three species are
grown in a mixed culture. Second, third and bottom line compare results in term of living cells after a 36
hours cultivation inside the device in condition of single isolated species (same species in all the wells) and of
connected community (different species in different wells). Both experiments are conducted in condition of
poor nutrient medium and under antibiotic pressure. Scale bars are at 50µm. Graphs compare the number of
live bacteria over time in devices containing all three species: isolated species (closed triangles) and connected
community (closed triangles). As visible from the graphs only when the three species are let communicate
through molecules diffusion bacterial populations in individual wells do not decrease. Panel (b) shows that
when cultivated as a connected community, populations growth over time is visible only for specific values of
distance between culturing wells. Figures adapted from [41].
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The experiment demonstrated that only when all the three species are cultured together, the
population (number of living cells) of each species grows continuously over 36 hours in low
nutrient medium conditions and under antibiotic pressure. These experimental results were
used subsequently to build a mathematical model linking the degree of separation between
the wells and bacterial proliferation in the device.

The most common application of membrane based microfluidic culture systems are those
used for the design of organ on chip devices that aim to simulate the function of the basal
membrane. Figure 2.26 shows the chip built by Jacquelyn A. Brown et al. [71] that reproduces
the complex structure of the Blood Brain Barrier; the structure that drives the exchange of
nutrients between capillaries and the brain.

Figure 2.26: Microfluidic compartments separated by a membrane: recreating blood-brain barrier physiology.
A: schematic view of the device and cell disposition in the chip. Bottom layer recreates the vascular lumen
(vascular space) and its endothelial tissue, middle layer simulates the brain compartment: astrocytes and
pericytes directly on the other side of the filter membrane and neurons in the upper part. (B) three pho-
toglyphography masks used for the device fabrication. (C) Real picture of the assembled device. (D) Chip
and its perfusion system on a incubated microscope stage. Reprinted from [71], with the permission of AIP
Publishing.

In general, the design of the chips reflects that shown in panel a of figure 2.23, the prin-
cipal challenge in the fabrication process is the method used to integrate the membrane, a
step widely discussed by the scientific community [72], [73]. The lack of a standard protocol
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means that there is a real chance of failure with any of the techniques known today. For ex-
ample, plasma oxidation and thermal bonding may leave small cracks upon integration that
can cause leaks through the membrane while the use of PDMS prepolymer layer to glue the
membrane into the device can cause the erroneous occlusion of features. Any changes made
to the most common procedures in order to improve their performance can be taken into
account depending on the application of the final device but, overall, they add steps to the
manufacturing process.

As a common rule, we try to avoid complicating the fabrication of the device, for this reason
the use of a membrane has not been taken into consideration in constructing the device
which is the object of the current work. With the ultimate goal of sensing specific secondary
metabolites, known to be exchanged between the bacterial species making up the community
to be studied (see previous chapter 1), the difficulty of integrating any type of sensor to detect
the passage of molecules through a membrane that is no more than a few tens of micrometers
thick makes culture systems based on hydrogel barriers (section 2.2.2) or on connection via
nano-slits (section 2.2.2) more appropriate for this study.

2.3 Conclusions

During the current century, the massive presence of microorganisms on our planet and inside
our body has been fully confirmed. Starting from this discovery microbiologists could proved
that microbes occupy their habitats maintaining a high population density thus constituting
communities in which different species interact with each other.

Studying and decoding such interactions is important not only to fully harvest the potential
enclosed in the microbial world but also to better understand the evolution of many dan-
gerous infections known to be poly-microbial. This can lead, in the end, to the synthesis of
new effective drugs capable of overcoming major shortcoming of today’s common treatments.
First of all antibiotic resistance, a major issue, for example, in the treatment of poly-microbial
infections of cystic fibrosis patient lungs.

When studying microbes you are forced to deal with a micro-metre dimensional range, dif-
ficult to directly access with traditional bacterial culture protocols followed in laboratories.
Particularly, if observing different species at the same time, a stable coexistence and a defined
micro-spatial control are needed. The birth of microfluidics has responded to these needs.
This discipline, by definition, operates with micro, nano or even pico-litre volumes of liquids,
suitable the observation of individual bacteria.

While microbiology has been strongly revolutionised by the use of PDMS microfluidic de-
vices for bacteria culturing, the scientific literature lacks examples of co-culture microfluidic
systems for the study of bacterial. In terms of microfluidic platforms for microbial cultur-
ing, PDMS-based monolayer growth chambers allow control of the micro-environment with a
single-cell resolution keeping an appropriate fluid dynamics. To convert the aforementioned
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growth chamber into a co-culture microfluidic system, other identical culturing modules can
be added to the overall design. Each module can host a different bacterial species composing
the community under investigation. According to the degree of contact required between
different species, culture chamber modules can be separated through a nano-slit, a block of
hydrogel or a semipermeable porous membrane. All these technologies permit the exchange
of metabolites between bacterial species but prevent physical contact.

Table 2.1 briefly compares these approaches. As already mentioned, porous semipermeable
membranes have not be considered as possible barriers between the microfluidic culture com-
partments for our application. This choice is mainly due to the complexity of their integration
in microfluidic devices. In fact, from a first analysis, given the fabrication techniques used,
described in the next chapter, the construction of nano-channels and above all the use of
hydrogels has been evaluated more appropriate techniques.

Microfluidic
co-culture system

Pros Cons

Compartments
separated by nano-slits

� Small molecules diffusion;
� no additional fabrication steps;
� easy to design;
� no additional materials;
� easy sensors integration;
� no toxic for cells.

� sub-micron features;
� high-resolution
fabrication;
� high fluid flow
resistance;
� bacteria can swim
trough nano-openings.

Compartments
separated by hydrogels

� Small molecules diffusion;
� gel optical clearness;
� malleable gel integration;
� precise gel integration;
� easy in-situ polymerisation;
� relatively inexpensive;
� possible gel functionalization;
� easy sensors integration;
� no toxic for cells.

� gel polymerisation;
� diffusion assessment
often needed beforehand;
� rare use for
bacterial co-culture;
� cells may get trapped.

Compartments
separated by membranes

� Small molecules diffusion;
� relatively inexpensive;
� commercial membranes variety;
� possible membrane
functionalization.

� complex “in situ”
fabrication methods;
� complex integration
of commercial membranes;
� complex integration
of sensors.

Table 2.1: List of advantages and disadvantages of different microfluidic co-culture systems. With membranes
we intend porous membrane.
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Chapter 3

Materials and methods

This chapter describes the protocol followed to build the microfluidic platform for the co-
culture of two physically separated bacterial species. As already mentioned in chapter 1, the
final outcome, in terms of fully completed devices, is a module for single bacterial species
culture. To obtain a chip that meets our requirements, several designs were tried. For each
attempt, referred to as “strategy”, fabrication steps are described below along with optimised
parameters. I note, optimisation of these parameters is described in chapter 4. To fabricate a
single device, a silicon substrate covered with micro-metre scale photoresist features, defined
with a Direct Laser Writing (DLW) lithography process served as the mould for PDMS cast-
ing. After the casting step, the PDMS is cured at 60 ◦C over the mould in a plastic Petri
dish overnight. Once cured, the PDMS block is cut and bonded to a glass slide to enclose the
imprinted design. The final microfluidic device looks like the bottom panel in figure 3.1.

Figure 3.1 visually summarises the fabrication process which can be divided in two main
parts:

1. Mould preparation (substrate preparation, spin-coating, exposure, development in
figure 3.1);

2. PDMS replication moulding (PDMS pouring, PDMS peeling-off, PDMS cutting,
PDMS-glass bonding in figure 3.1).

The next section gives an overview of the process followed to fabricate a sealed microfluidic
device made of PDMS that incorporates microstructures.

Since most of the optimisation was focussed on the first part of the fabrication procedure
and especially the “exposure step”, before proceeding with the technical details, strategy by
strategy the exposure technique applied is described.

The final sections of the chapter are dedicated to the preparation of the bacterial culture and
the experimental setup.
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Figure 3.1: PDMS device fabrication: flow chart. The process starts from a silicon substrate (top left) and
ends with the complete final device in PDMS (bottom left). The flow chart refers to a fabrication protocol
that uses a negative photoresist and DLW lithography as exposure technique. Steps in brackets are not
always required and my protocol only includes them with one of the two photoresist used. The Right column:
real pictures of the spinning coater and a coated Si wafer, DLW system used for the exposure, clean room
environment where the main fabrication steps are carried out and a final assembled device.
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3.1 Fabrication of a sealed microfluidic PDMS device

The first big part of the fabrication process is the fabrication of a master containing the
features to be reproduced in the final PDMS device. As master I used a flat silicon surface
covered with patterned negative photoresist.

A photoresist is a light-sensitive material that can be degraded (positive photoresist) or
strengthened (negative photoresist) when exposed to light in a specific range of wavelengths.
Such range varies according to the photoresist used. Upon the exposure, the desired features
are obtained by applying a solvent (developer) on the surface. In the case of negative pho-
toresists, the developer dissolves the not-exposed, thus not-strengthened, regions, while in
the case of positive photoresists, it dissolves the exposed, thus degraded, regions. I used two
different negative-tone photoresists: K-CL (KLOE SA) that is photosensitive for wavelengths
between 325nm and 405nm and SU-8 (MicroChem Corp.) whose photosensitive is maximum
for a 365nm wavelength.

K-CL photoresists are resins obtained by sol-gel processing from organo-mineral precursors.
Their organic network gives them photosensitive properties while the mineral network im-
proves their mechanical and thermal properties. After the first attempts to fabricate a mould
made of K-CL, having encountered issues in its adhesion to the silicon substrate (see section
4.1.1), I changed photoresist, opting for a mould made of SU-8 whose use for microfluidic
applications is widely documented.

SU-8 photoresists are obtained by dissolving A Novolac epoxy in an organic solvent, commonly
gamma-butyrolactone or cyclopentanone, with the addition of a specific photo-initiator that,
when exposed to UV light, triggers the formation of an acid that protonates some epoxy
rings, causing their opening. Upon a post exposure baking (PEB) that sufficiently heats the
photoresist, the protonated epoxy rings react with the neutral ones and thus start the cross-
linking process which makes the exposed regions less soluble when treated with the developer.
The PEB (marked between step 3 and step 4 in figure 3.1) is not required with K-CL pho-
toresists since their cross-linking is completed at room temperature.

Both K-CL and SU-8 photoresists are composed by an organic solvent dissolving an epoxy
resin and their solvent content is a fundamental parameter to tune the thickness of the final
photoresist layer. Aiming to build a microfluidic device suitable for a bacterial monolayer
culture, the thickness of the photoresist layer must be controlled to assure it is thinner than
1 µm. As indicated at step 2 of figure 3.1, the photoresist is deposited by spin coating: a
drop of photoresist is applied with a 1 ml syringe at the centre of the silicon substrate that is
then rotated in the spin coater at specific speed. Therefore, the photoresist is spread thanks
to centrifugal force. The final thickness of the photoresist layer is related to:

1. the spinning speed;

2. the viscosity of the photoresist.
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Overall, the photoresist layer is thinner for higher spinning speeds and lower viscosities that
are in turn proportional to the solvent content of the mixture of the photoresist. K-CL 010
is the less viscous K-CL available for sale. With K-CL 010 a layer down to 2µm thick can
be fabricated for spinning speeds higher than 2500 rpm. Lower viscosities can be achieved
further diluting the mixture with ethanol (ETH). Also SU-8 photoresists are available for sale
at different degrees of viscosity. SU-8 2050 and SU-8 2000.5 were respectively the most and
the least viscosity mixtures available in the lab but intermediate viscosities were achieved by
mixing.

With both photoresists, for a successful exposure, it is crucial to evaporate most of the solvent
content right after the spin-coating step (soft baking step marked between step 2 and 3 in
figure 3.1) and, to be sure to remove extra solvent pockets, a final optional hard-baking step
can be added after the development. The hard-baking ensures total cross-linking, improves
resist adhesion with the silicon surface and increases the thermal, chemical and physical sta-
bility of the structures.

After the hard-baking step, the mould is ready so the PDMS mixture can be prepared to
start the second big part of the fabrication protocol: the PDMS replica moulding. PDMS is a
silicon-based organic polymer that thanks to its biocompatibility, permeability to oxygen, low
cost, mechanical and optical proprieties is widely used for the prototyping of microfluidic de-
vices. Furthermore, PDMS is relatively easy to fabricate. Liquid PDMS prepolymer is mixed
with a curing agent whose percentage in the mixture can be varied to tuned the mechanical
properties of the final PDMS layer. Overall, the stiffness of the PDMS device increases with
higher percentages of curing agent.

The liquid PDMS mixture is poured onto the mould and then cured at 60◦C overnight. Once
solidified, the PDMS is peeled off from the mould (step 6 in figure 3.1) and inlet/outlet ports
are punched through the polymer block. The PDMS device can now be sealed to an appro-
priate substrate such as a cleaned glass slide.

A strong permanent bonding between the PDMS layer and the glass slide can be achieved
by plasma bonding. Treating PDMS surface with an oxygen plasma causes its oxidation
by generating silanol terminations that, upon contact with the glass surface and with the
application of a light pressure, enable the formation of irreversible covalent bonds between
oxygen and silicon.

3.2 Experimental techniques: Direct Laser Writing

When performing lithography by DLW, a collimated then focussed laser beam at a specific
wavelength is directed by a set of lenses and mirrors towards a substrate coated with a
negative-tone or positive-tone photoresist. The laser beam is appropriately corrected through
a sequence of wave-plate, polariser and beam splitter. At the end, a quarter-wave plate is
placed before an objective lens with high numerical aperture. Focusing the beam using such
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objective lens, the intensity at the focal plane can reach values up to a few orders of magnitude
higher than the nominal laser beam power at that point. If the focal plane is located inside
the photoresist layer, this high intensity causes chemical changes in a small volume confined
by an iso-intensity level where a chemical threshold for a photo-polymerisation reaction is
exceeded. During the polymerisation process, monomers are linked together to form long
polymer chains that are then in turn linked with each other to form macro structures. Hence,
the wavelength of the laser source must be compatible with the processing wavelength range
of the photoresist. After positioning the focal plane at an appropriate depth inside the
photoresist, an exposure by DLW consists of the movement of the stage holding the sample.
Here, the sample position is scanned in respect to the focusing spot while the laser turns on
and off and remains immobile. The desired pattern is therefore imprinted in the photoresist.
Figure 3.2 shows a schematic representation of the lithography writing process carried out via
DLW.

Figure 3.2: Lithography process by DLW. Schematic of the lithography writing process carried out by DLW.
Detail of the laser beam focusing inside the sample after being corrected and collimated by optic components
along the path. Figure adapted from [74].

For the fabrication process described in the current work, the all-in-one equipment used to
perform DLW lithography is the Dilase 650 system by KLOE SA. The overall system and
its main components are represented in figure 3.3. Table 3.1 summarizes the characteristic of
the lithography setup components.

In addition to the physical equipment, the system is provided with two integrated software:
KloeDesign to draw or import the design file and DilaseSoft that directly communicates with
the Dilase 650 equipment. For the experiments described in chapter 4 the models for the
exposures were all created using KloeDesign. Refer to appendix A for more details on the
overall Dilase 650 system for DLW lithography.
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Figure 3.3: Overall Dilase 650 system for DLW. The system is shown as it appears to the user. Cover elements
are visible in all the panels from left to right: protective metallic cover boxes and glasses, control display,
mouse and keyboard connected to the computer station. Electronic controller and amplifier are visible in the
central panel. Lithography setup is indicated in the central and right panel. Figure adapted from [75].

Motorised Stage
Travel range 100mm× 100mm to 150mm× 150mm
Type Linear motor
Maximum writing speed 500mm/s

2 UV laser sources
Type Diode laser
Laser wavelength 375nm
Nominal power 70mW

Laser optical line 1 - 0.5µm optical tube
Laser spot size after focusing 0.5µm to 2µm(±250nm)

Laser optical line 2 - 10µm optical tube
Laser spot size after focusing 10µm to 100µm (±250nm)

Table 3.1: Dilase-650 specifications.

3.2.1 Focusing height and dynamic lithography parameters

Each “*.LWO” file imported to the DilaseSoft software requires the user to indicate three pa-
rameters for the exposure (see figure A.3 in appendix A). The tuning of these parameters and
their optimisation is fundamental to have a satisfactory match between the designed pattern
and its realisation in the photoresist.

The parameters are:
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1. dynamic lithography parameters including writing speed and laser power (re-
ferred to as “modulation” in the DilaseSoft interface) whose optimisation is important
to avoid to over or under exposure of the photoresist. Refer to table 3.2 for a brief
physical description of the lithography parameters;

2. focusing height whose optimisation is important to obtain the smallest possible laser
width and the best quality of pattern transfer. At the optimum focusing height, the
photoresist layer is imprinted by parallel laser beam rays so the pattern resulting is
straight and the nominal size correspond to an actual optical line. Refer to table 3.2
and figure 3.5 for a brief physical description.

DLW: over-exposure and under-exposure

The combination of the values of writing speed and laser power is critical to evaluate the
total dose of UV radiation incident on the photoresist when exposed by DLW lithography.
Specifically, dose is the product of UV light intensity (laser power per unit area) and exposure
time (time taken to expose a certain photoresist area at a certain writing speed). The dose
of radiation required for the correct transfer of the designed pattern varies according to
the photoresist composition and the thickness of its layer on top of the substrate. Overall,
without changing the photoresist, the dose required for a correct exposure is higher for thicker
photoresist layers. The physics of the exposure can also affect the realisation of the pattern.
For example, changes in the lithography setup or in the optical properties of the substrate
underneath the photoresist may alter the actual dose received by the photoresist. With
an highly reflective substrate the total dose received by the photoresist is generally higher
compare to the dose received with the same lithography setting, by the same thickness of the
same photoresist lying on an absorptive substrate. In fact, in the first case, the photoresist may
also be exposed by additional reflected radiation. Generally the regions that are particularly
altered when exposed to non-finely optimized doses are the edges of the pattern. In fact, when
the dose is too high (over-exposure), light scattered and diffracted in the photoresist layer may
be enough to expose the side of the edge that in the original pattern is supposed to remain
“dark”. In negative photoresists, the cross-linking process may be triggered in regions that
should be dissolved after development, resulting in structures larger than desired and a loss of
sharpness of corners thus preventing the realization of small features (see figure 3.4). Instead,
if a negative photoresist is severely under-exposed the cross-linking may not be trigger at all
and the pattern may not be transferred or, in less severe cases, structures may result thinner
than desired (see figure 3.4). Frequently, with negative photoresists, under-exposed small
features are so thin and mechanically unstable that, before the hard-baking step, they can
be partially moved (example in figure 3.4). From strategy to strategy, the optimization of
the radiation dose was carried out by varying the lithography parameters (writing speed and
laser power), adjusted, from time to time, after confronting the exposed pattern, observed
under the optical microscope, with the designed one.
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Figure 3.4: Over and under-exposure of negative photoresist. Comparison between lithography exposures of
the same pattern in a negative photoresist at different radiation doses. The three schematic representations
show how features appear on the photoresist after development. Only the central representation reproduces
correctly the desired pattern so the associated exposure is marked as “correct”. When the pattern is exposed
with doses of radiation lower than that associated with the “correct exposure”, it appears as in the left
representation; when the pattern is exposed with doses of radiation higher than that associated with the
“correct exposure”, it appears as in the right representation.

Variable
Physical

significance
Given as

Range for
laser

stability

Very low
value

Very high
value

Modulation

beam power at
focusing lens
output
directly
proportional to
radiation dose

percentage
of

total power
(100% = 70 mW)

close to
50%

underexposure overexposure

Speed

writing speed
inversely
proportional to
radiation dose

stage speed
[mm/s]

lowest
values

� overexposure;
� long exposure.

underexposure

Focusing
height

distance
focusing head

-
sample plane

focusing head
z coordinate
z=0: maximum
distance [mm]

NA

� focus below
sample plane;
� converging
beam hitting
the sample;
� bad quality.

� focus above
sample plane;
� diverging
beam hitting
the sample;
� bad quality.

Table 3.2: Dynamic litography parameters and focusing height description. Their optimisation is a key step
for the success of the exposure.
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Protocol to optimise the focusing height

The focusing height (figure 3.5) must be optimised for every substrate using a standard pro-
tocol that includes writing an array of identical files while varying the dynamic lithography
settings.

(a) (b) (c)

Figure 3.5: Focusing height optimisation. Schematic representation of a DLW beam correctly focused inside
the photoresist (a). Focusing height smaller than the optimal: laser beam is propagated with convergent rays
through the photoresist, the imprinted pattern is wider than the nominal one and it is not straight (left of
panel (b)). Focusing height bigger than the optimal: laser beam is propagated with divergent rays through
the photoresist, the imprinted pattern is wider than the nominal one and it is not straight (right of panel (b)).
At the optimal focus height laser beam is propagated with parallel rays: the imprinted pattern is straight and
its size correspond to the nominal one (middle of panel (b)). Example of microscope observation of a DLW
test for focusing height optimisation: same pattern is exposed at fixed power and writing speed while the z
coordinate od the focusing head is varied. Only the pattern in the red circle is well focused and correctly
reproduces the cross design (c). Panel (c) adapted from [76].

As long as the lithography dynamic settings (laser power and writing speed) does not change,
and unless the lithography setup is substantially modified, the optimisation protocol remains
valid and should not need to be repeated, so even the optimal focusing height should not
vary. After loading the sample, the display system (see figure A.1 in appendix A) and the
visualisation panel in the DilaseSoft user interface (see figure A.3 in appendix A) are used
to focus the objective lens on top of the photoresist. When a satisfactory focus is reached,
the z coordinate of the focusing head in this condition is noted. So the optimisation protocol
starts from this value that at each exposure it is modified by a value indicated as ∆z until
the imprinted pattern best reproduce the design one. Once the optimised height is found,
all the exposures with the same conditions can be completed inserting as “focusing head z
coordinate” (see figure A.3 in appendix A) a value corresponding to:

zfocusingHead = ztopPhotoresist + ∆zoptimised

In the previous equation, the value ztopPhotoresist, that corresponds to the z coordinate at
which the focusing head provides the best focus the objective lens on top of the photoresist,
must be found for each new exposure but generally it should not change substantially, while
the value ∆zoptimised once optimised is left unchanged for exposures with the same conditions
(same photoresist, laser power and writing speed). Panel (c) in figure 3.5 shows a microscopic
representation of a ∆z optimisation test.
In the following sections the optimised ∆z has been indicated for each strategy.
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3.3 Mould preparation

The photoresist used here were the K-CL 010 by KLOE SA, SU-8 2000.5 from MicroChem
Corp. and SU-8 2050 by MicroChem Corp. Both K-CL and SU-8 are negative-tone photore-
sists with a near UV processing wavelength. To obtain a layer of photoresist of the desired
height it was necessary to dilute the KC-L with ethanol or, for some strategies, to mix the
two SU-8 2000.5 and SU-8 2050. The dilution ratios are indicated each time.

3.3.1 Silicon substrate preparation

A 0.5mm thick Silicon (Si) wafer has been used as substrate for all the strategies described
below. Wafer dimensions never exceed 2 cm×2 cm. Steps for their preparation were identical
for all the strategies and are listed below.

1. Piranha Cleaning: 10min immersion in a solution of sulphuric acid and hydrogen
peroxide with a 7 : 3 ratio (H2(SO)4 : H2O2), after the immersion the Si wafer is rinsed
in deionised water;

2. Sonication in Acetone: rinsing for few minutes in Acetone (ACE) in an ultrasonic
bath at 50 kHz;

3. Sonication in Isopropyl alcohol: rinsing for few minutes in Isopropyl alcohol (IPA)
in an ultrasonic bath at 50 kHz;

3.3.2 Coating and exposure

Following the substrate preparation step, for all the strategies listed below, the photoresist is
spun on top of the pretreated Si wafer. A strategy indicates a specific photoresist used at a
specific height.

Photoresist height was confirmed using a DektakXT Stylus Profiler provided by Bruker Cor-
poration. The photoresist profile was checked by running the stylus of the profiler above
areas of discontinuity of the photoresist layer, using the top of the photoresist and the bare
silicon wafer surface as reference levels. This operation is performed indistinctly by running
the stylus over a scratch on the surface of the photoresist which reaches the surface of the
silicon wafer, or across an area of the wafer left uncoated. This latter procedure requires part
of the silicon wafer to remain uncoated with photoresist. This was achieved by covering part
of the wafer with tape before the spin coating step. The profiling technique is summarised
schematically in figure 3.6.
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(a) Photoresist profiling: method 1

(b) Photoresist profiling: method 2

Figure 3.6: Photoresist profiling. Method 1: after the spin coating step, the photoresist layer is scratched
until the bare wafer is revealed and the stylus scans across the scratch (a). Method 2: an area of the silicon
wafer is left uncoated and the stylus scans across such area. Violet dotted arrow points towards the direction
of the stylus scanning (top right and bottom right images).

When the spinning protocol for a specific photoresist height was not available, the photoresist
film thickness at various spinning speeds was evaluated using the DektakXT Stylus Profiler
and the relative graphs (thickness versus spinning speed) are shown in the next chapter (chap-
ter 4).

For the exposure step with all the strategies the following setup and parameters are left
unchanged as stated below.

� Filling parameters in KloeDesign (see figure A.2 in appendix A):

1. spot size of 0.5µm;

2. overlap rate of 0%;

� Neutral density filter mounted on Kloe 650 : NE513A provided by Thorlabs, Inc.
(Optical Density: 1.3, Transmission: 5%);

� Focusing objective lens mounted on Kloe 650 : UPLFLN40X provided by Olym-
pus corporation (magnification: 40X, Numerical Aperture: 0.75, Working distance
0.51mm);

� Optical line: 0.5µm laser spot.

56



Strategy 1: 500 nm high K-CL

To obtain a ' 500nm (0.5µm) high K-CL layer, K-CL 010 photoresist was diluted with
ethanol (ETH) following the volume ratio KCL : ETH → 1 : 2. Table 3.3 lists the parameters
used to fabricate a ' 500nm high K-CL mould imprinted by Dilase 650 system for DLW
lithography.

Spin Pre Exp. Exposure Post Exp.
Dev.

Hard
Coating Bake Mod. Speed ∆z Bake Bake

2500 rpm - 1min 60◦C - 5min 95%
10

mm/s
+5
µm

NA
2min

in Butanol
rinse in Butanol

NA

Table 3.3: Fabrication parameters for a ' 500nm high K-CL photoresist layer. For the KCL post exposire
baking and hard baking are not required.

Strategy 2: 2 µm high SU-8

To obtain a ' 2µm high SU-8 layer, SU-8 2050 photoresist was diluted with SU-8 2000.5
following the weight ratio SU8 2050 : SU8 2000.5→ 2 : 7. Table 3.4 lists the parameters used
to fabricate a ' 2µm high SU-8 mould imprinted by Dilase 650 system for DLW lithography.

Spin Pre Exp. Exposure Post Exp.
Dev.

Hard
Coating Bake Mod. Speed ∆z Bake Bake

500 rpm - 10 s
1500 rpm - 10 s
3000 rpm - 1min

65◦C - 2min
95◦C - 6min
65◦C - 2min

70%
0.5

mm/s
+2
µm

65◦C - 2min
95◦C - 6min
65◦C - 2min

2min
in EC solvent
rinse in IPA

180◦C
> 2h

Table 3.4: Fabrication parameters for a ' 2µm high SU-CL photoresist layer. The three steps indicated for
the “Spin Coating”, “Pre Exposure Bake” and “Post Exposure Bake” are sequential.

Strategy 3: 10 µm high SU-8

To obtain a ' 10µm high SU-8 layer, SU-8 2050 photoresist was diluted with SU-8 2000.5
following the weight ratio SU8 2050 : SU8 2000.5 → 6 : 2. Table 3.5 lists the parameters
used to fabricate a ' 10µm high SU-8 mould imprinted by Dilase 650 system for DLW
lithography.

Spin Pre Exp. Exposure Post Exp.
Dev.

Hard
Coating Bake Mod. Speed ∆z Bake Bake

500 rpm - 10 s
3000 rpm - 1min

65◦C - 2min
95◦C - 6min
65◦C - 2min

83%
3

mm/s
+2
µm

65◦C - 2min
95◦C - 6min
65◦C - 2min

6min
in EC solvent
rinse in IPA

180◦C
> 2h

Table 3.5: Fabrication parameters for a ' 10µm high SU-CL photoresist layer. Steps indicated for the “Spin
Coating”, “Pre Exposure Bake” and “Post Exposure Bake” are sequential.

57



Strategy 4: double layer SU-8

To obtain a double layer of SU-8 photoresist, two SU-8 moulds were fabricated sequentially
one on top of the other. The bottom layer is a ' 800nm (0.8µm) high SU-8 layer obtained
by spin coating and DLW SU-8 2000.5 photoresist following parameters in table 3.6.

Spin Pre Exp. Exposure Post Exp.
Dev.

Hard
Coating Bake Mod. Speed ∆z Bake Bake

500 rpm - 15 s
6000 rpm - 30 s

65◦C - 2min
95◦C - 6min
65◦C - 2min

40%
1.5

mm/s
+1
µm

65◦C - 2min
95◦C - 6min
65◦C - 2min

2min
in EC solvent
rinse in IPA

180◦C
> 2h

Table 3.6: Fabrication parameters for a ' 800nm high SU-CL photoresist layer. Steps indicated for the “Spin
Coating”, “Pre Exposure Bake” and “Post Exposure Bake” are sequential.

To precisely align the two layers, when imprinting the bottom one by DLW, three crosses that
act as alignment markers were exposed in addition to the desired pattern. The crosses were
respectively positioned at the bottom left corner of the sample, at the top left corner of the
sample and on the bottom right corner of the sample, centred at points of known coordinates
with respect to the sides of the silicon wafer. Coordinates are known from the KloeDesign
software. Before exposing the second layer, translation and angular compensation can be
applied with respect of the three markers completing a “three point alignment” procedure.

The top layer is a ' 20µm high SU-8 layer obtained by spin coating and DLW SU-8 2050
photoresist following parameters in table 3.7.

Spin Pre Exp. Exposure Post Exp.
Dev.

Hard
Coating Bake Mod. Speed ∆z Bake Bake

500 rpm - 10 s
2000 rpm - 30 s
5000 rpm - 1min

65◦C - 3min
95◦C - 9min
65◦C - 3min

50%
4

mm/s
+15
µm

65◦C - 2min
95◦C - 10min
65◦C - 2min

6min
in EC solvent
rinse in IPA

180◦C
> 2h

Table 3.7: Fabrication parameters for a ' 20µm high SU-CL photoresist layer. Steps indicated for the “Spin
Coating”, “Pre Exposure Bake” and “Post Exposure Bake” are sequential.
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3.4 PDMS replication moulding, PDMS cutting and

PDMS-glass bonding

Once the mould is ready, PDMS is prepared in order to be poured on top of the silicon-
photoresist mould. The entire replication moulding process from the PDMS preparation to
the PDMS-glass bonding step (figure 3.1) is described below.

1. PDMS prepolymer and curing agent (Sylgard 184, Dow Corning Co.,UK) are mixed
following the volume ratio PDMSprepolymer : curing agent→ 10 : 1.3 or
PDMSprepolymer : curing agent → 7 : 1. Increasing the curing agent content in the
mixture contributes to increase the stiffness of the final PDMS device, so the ratio was
first changed from 10 : 1.3 to 7 : 1 to prevent the collapse of small PDMS features after
their enclosure at the PDMS-glass bonding step. In the end, this issue was fixed changing
the priming procedure (see chapter 4 for reference) and it has been observed that the
two different ratios PDMSprepolymer : curing agent can be used indiscriminately;

2. the PDMS mixture is stirred for few minutes, until opaque;

3. the PDMS mixture is degassed for ' 20− 25min under slight vacuum (10mbar), until
bubbles disappear;

4. the mould is placed in a Petri dish (diameter: ' 60mm, height: ' 15mm) and the
PDMS mixture is poured in it to create a layer just under 1 cm high;

5. the PDMS mixture is left at 60◦C for at least 6hours;

6. the PDMS slab is carefully peeled off from the mould and cut into a single chip with a
scalpel;

7. inlets and outlets are punched with a 2mm diameter hole-puncher;

8. the PDMS chip and a glass microscope slide are cleaned:

� PDMS: 5min sonication in IPA at 50 kHz, 5min sonication in DI water at 50 kHz;

� glass slide: 10min immersion in piranha solution ((H2(SO)4 : H2O2) → 7 : 3),
rinsing in DI water,5min sonication in ACE at 50 kHz, 5min sonication in IPA
at 50 kHz;

9. oxygen plasma bonding:

(a) glass slide plasma oxidation: Power = 20W,Time = 2min, oxygenflowrate =
5 sccm);

(b) PDMS plasma oxidation: Power = 100W,Time = 2 sec, oxygenflowrate =
5 sccm);

(c) PDMS chip is placed onto the glass slide.

10. the PDMS-glass device is left at 60◦C for at lest 4h.
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3.5 Double layer PDMS device

Following the protocol reported by Xiaofei Yuan et al [52], a two layer PDMS device has been
also attempted to build a micro-well for bacterial culturing. To fabricate a micro well as the
one shown in figure 2.8 we started without changing the dimensions for the bottom layer of
the device used by Xiaofei Yuan et. al [52] and using a protocol already tested for the top layer

To fabricate the bottom PDMS layer the first three steps listed in previous section 3.4 are
repeated. Then to obtain a 250µm high PDMS layer, the PDMS mixture is spun on top of a
2 cm × 2 cm Si wafer at 380 rpm for 30 s. After this the PDMS is cured at 60◦C for at least
6hours and after this time the thin layer is peeled of from the Si wafer. After peeling it, it
is punched to create the culturing well using a 1mm diameter hole-puncher. Once punched
the PDMS is cleaned following step 8 of section 3.4 and bounded to a glass microscope slide
by Oxygen plasma treatment followed by thermal bonding (step 9 and 10 section 3.4).

For the top layer, a ' 20µm high PDMS chamber has been fabricated through replica mould-
ing process of a SU-8 2050 mould coated and imprinted by DLW lithography using parameters
listed in table 3.7. Then the mould has been used for PDMS replica moulding repeating steps
from 1 to 8 (only the one concerning the PDMS treatment) illustrated in section 3.4. The
top layer was subsequently bounded to the bottom layer (thin PDMS layer-glass) by oxygen
plasma followed by thermal bonding (steps 8-9 section 3.4).

3.6 Sample preparation, device loading, experimental

setup and post-processing

Materials and protocols listed in the current section are kept identical for all the experiments
summarised in chapter 4. Two bacterial strains were alternated during the experiments: E.coli
w3110 and E.coli Mg1655. With the final aim of testing a microfluidic device for bacterial
culture the use of one strain rather than the other does not make any difference.

Preparation of the Bacterial Culture

From an agar plate containing the living desired bacteria strain, one colony is inoculated
into 5ml of Lysogeny broth (sterilised solution of Tryptone : 10 g/l and NaCl : 10 g/l and
Y east extract : 5 g/l in DI water) in a 50ml tube and incubated overnight at 37◦C in static
conditions. The following day the desired concentration of bacteria to be inoculated into the
microfluidic device is transferred in a smaller tube (generally a 1.5ml tube). With the strains
used, the initial optical density at 600nm (OD600), measured with a spectrometer, is kept
between 0.5 and 1.

Device priming and seeding of Bacterial Cells

The device priming step consists in the filling of the device with the medium (Lysogeny broth)
necessary for the competition of the bacterial growth experiment inside the microfluidic device.
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To prime the device the inlet is connected through a microfluidic plastic tube (inner diameter:
0.8mm, outer diameter: 2.4mm, wall thickness: 0.8mm) to a syringe-pump loaded with a
1ml syringe containing Lysogeny broth. Connection between the syringe and the tube is
guaranteed by 1 − 100µl standard Eppendorf pipette tip. The Lysogeny broth is flushed
into the device at 10µl/min for few minutes, the process is checked in real time under a
microscope. The device filled with Lysogeny broth is loaded with 10µl bacteria solution
(OD600 = 0.5 − 1). Bacteria solution is inoculated with a micro-pipette directly inside the
device, once bacteria are distributed within the device it is left to settle for ' 20min before
starting the observation.

Experimental setup

Once inoculated the device is observed for 12h with Nikon Ti2-U phase contrast and inverted
microscope using a 20× objective. The microscope is provided by a motorised stage (Thorlabs,
Inc.) to hold the sample. Images are collected every 3min by a bright field camera mounted
on the microscope system (Point Grey blackfly USB3). The overall setup is connected to
a computer system where the main parameters for the acquisition are controlled by Micro-
menager software.

Image processing and modelling

Image processing on the acquired pictures is completed using MATLAB programming lan-
guage (version: MATLAB 9.7 - R2019b) by MathWorks with a custom-written script. Physi-
cal modelling of the microfluidic devices was perfromed using COMSOL Multiphysics 5.5 and
mainly consisted of simulations of the fluid flow in geometries reproducing the actual designs
tested with considerations on possible optimisation of the bacterial culture module.
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Chapter 4

Preliminary results and discussion

This chapter presents the results of experimental research into the fabrication and charac-
terisation of a microfluidic device for bacterial culturing. As stated in chapter 1, the period
of experimental work was severely curtailed (to c. 6 months) due to access restrictions as a
result of the COVID-19 pandemic. This chapter includes a discussion on:

1. Optimised protocols for fabrication of PDMS microfluidic devices using mask-less lithog-
raphy technique;

2. The successful growth of a single strain of bacteria inoculated in the PDMS microfluidic
system, for a period of 12 hours;

3. A simple but generic MATLAB script to automate cell counting within a microfluidic
culturing device.

Informed by these initial experiments, the chapter concludes with the presentation of an
optimised prototype microfluidic device capable of bacterial culture.

4.1 Microfluidic compartments separated by nano-channel

Initial research focussed on a microfluidic device for bacterial mixed co-culture consisting
of two culturing compartments connected through a channel that was sufficiently small to
prevent bacteria from moving between compartments but large enough to allow metabolite
exchange via diffusion (panel a of figure 1.1). From the scientific literature, it is known that
such physical but not chemical separation is possible if the channel between culture chambers
is sufficiently smaller than the diameter of the bacteria involved (see section 2.2.2). The
diameter of most bacteria, including E. coli, P. Aeruginosa and S. Aureus is generally larger
than 0.5µm. This is equivalent to the resolution limit of the Dilase 650 system used for Direct
Laser Writing (DLW) (figure 3.5). Research thus focussed initially on optimising the protocol
for fabrication of a 0.5µm wide channel. This was achieved via a dose trial in which an array
of repeating patterns was exposed while the exposure parameters (laser power, writing speed
and focusing head position) were varied. In this case a single laser trajectory line was chosen
as the design to be repeated with different lithography parameters.
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4.1.1 K-CL: DLW parameters optimisation

Research started initially with the K-CL photoresist, that has been designed specifically for
use with the Dilase 650. The protocol summarised in table 3.3 was developed for use with a
K-CL layer of ' 500nm thick. The thickness of the K-CL layer was confirmed by the profile
of the photoresist analysed with the DektakXT Stylus Profiler. The resulting profile is shown
in figure 4.1.
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Figure 4.1: 0.5µm thick K-CL layer: stylus profile. Exported data from the DektakXT Stylus Profiler: the
0µm value for the “Total profile” corresponds to the top surface of the photoresist layer, near the scratch the
profile shows an accumulation of material (positive peak), the negative peak corresponds to the surface of the
silicon wafer. The absolute value of the negative peak is representative of the height of the photoresist layer.
Bigger negative peak is marked in the graph (point at ' −0.5µm).

After confirming a layer thickness of 500nm, the deposition parameters (spin speed, time
and pre-bake) were left unchanged for all subsequent lithography optimisation tests. I note, a
500nm high PDMS chamber generated from such a K-CL mould would ultimately be suitable
as a monolayer growth chamber for bacterial culturing.

The dose trial was performed using a Laser power = 95% while the writing speeds var-
ied as Writing speed between [10 − 15 − 20]mm/s. The ∆z was also varied between
[-10 − -5 − 0 − +5 − +10]µm to be sure to expose as close to the focus plane. The value
of the z coordinate of the focusing head, before the ∆z adjustment during exposure was
zfocusing head = 5.3476± 0.0026mm.

From the dose trial, a single line was observed with dimensions comparable to the designed
line (figure 4.2). The parameters used for the exposure shown in figure 4.2 are the given in
table 3.3.
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Figure 4.2: 500nm high K-CL: lithography parameters optimisation. The figure shows a microscopic image
of a 500nm high K-CL mould patterned by DLW with Dilase 650 at Laser power = 95%, Writing speed =
10mm/s, ∆z = +5nm. The imprinted pattern reproduces a feature attributable to a ' 500nm wide line
slightly underexposed underdeveloped. The red arrow points to the imprinted feature.

I note, this line (figure 4.2) remains slightly underexposed/ underdeveloped and further opti-
misation of the lithography would be required to improve the fidelity of this feature. However,
following further dose trials, it was observed that the photoresist adhered poorly to the silicon
wafer, in fact a slight pressure with metal tweezers was sufficient to detach the photoresist
from the silicon substrate, and thus it is unsuitable for subsequent replication moulding steps.
Poor adhesion was observed even following the inclusion of a hard baking step at 100◦C rec-
ommended as “optional” in the K-CL data-sheet. For this reason it was decided to change the
photoresist and start working with SU-8, widely used in microfluidic applications including
the fabrication of PDMS devices via replica moulding.

4.1.2 SU-8: DLW parameters optimisation

To optimise the parameters for the exposure of a ' 500nm wide line into a SU-8 layer, I
started by testing the feasibility of a stable exposure close to the nominal smallest laser size
spot. A coating protocol for a ' 2µm thick SU-8 layer was followed (table 3.4). The height of
the photoresist layer was checked with the DektakXT Stylus Profiler, following method N◦1
of figure 3.6. The resulting profile is shown in figure 4.3.

Optimisation of the lithography parameters was carried out by exposing single lines 100µm
long using the 500nm wide laser line. Four values of laser power were combined with three
values of writing speed and five values of ∆z. The values are listed below.

� Laser power: 50% − 60% − 70% − 80 %;

� Writing speed: 0.5mm/s − 1mm/s − 1.5mm/s;

� ∆z: -2µm − -1µm − 0 µm − +1µm − +2µm.

The value of the z coordinate of the focusing head, before the ∆z adjustment was zfocusing head =
5.3431± 0.0023mm.
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Figure 4.3: 2µm thick SU-8 layer: stylus profile. Exported data from the DektakXT Stylus Profiler: the
0µm value for the “Total profile” corresponds to the top surface of the photoresist layer, near the scratch the
profile shows an accumulation of material (positive peak),the negative peak corresponds to the surface of the
silicon wafer. The absolute value of the negative peak is representative of the height of the photoresist layer.
Bigger negative peak is marked in the graph (point at ' −2µm).

Features written at minimum laser power (Laser Power = 50%) and maximum writing speed
(Writing Speed = 1.5mm/s,), corresponding to the lowest dose, did not appear after the
development. Features written at the maximum laser power (Laser Power = 80%) and
minimum speed (Writing Speed = 0.5mm/s,) were all evident after development however
showing an overall instability; the lines do not appear straight but wavy. Table 4.1 summarises
the results of the optimisation test.

Laser Power
50% 60% 70% 80%

Writing
Speed
[mm/s]

1.5
No

features
Not all
features

Not all
features

Not all
features

1
Under-exposed

wavy
Under-exposed

wavy
Under-exposed

wavy
All features
but wavy

0.5
All features
but wavy

All features
but wavy

All features
but wavy

All features
but wavy

Table 4.1: Results of the tests for the optimisation of the DLW lithography parameters for a 2µm thick
SU-8 photoresist layer. Each box summarises the results for all the ∆z values at that specific combination
of “Laser Power” and “Writing Speed”. For higher speed values all the tests appeared highly under-exposed
with some features not even imprinted (red boxes), for intermediate speed values features were imprinted
but sometimes appeared highly underexposed (yellow boxes) while for lower speed values all the tests showed
imprinted features. Overall, all the tests showed wavy features instead of straight lines.
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Figure 4.4 compares a heavily underexposed feature and a properly exposed one. Both ex-
posures correspond to a single laser line at 500nm size spot, when the dose is far below the
threshold needed to imprint the photoresist the exposed pattern does not appear after devel-
opment.

(a) Power: 50%, Speed: 1 mm/s, ∆z: +2 µm

(b) Power: 80%, Speed: 0.5 mm/s , ∆z: +2 µm

Figure 4.4: Nominally 500nm wide line on a 2µm high SU-8 layer (actual width 1µm). Microscopic images
of a 2µm high SU-8 mould imprinted by DLW with Dilase 650 : two exposures with the same ∆z at low dose
(a) and sufficient dose (b). As already mentioned, even when imprinted with a sufficient dose, features appear
wavy rather than straight. The red arrow in panel a points toward the feature.

The optimised exposure conditions corresponded to a Laser Power = 70%, Writing Speed =
0.5mm/s and ∆z = +2µm (figure 4.5). Therefore these parameters constitute a good pro-
tocol for the exposures of 2µm high SU-8 layers. However, even at these optimal conditions,
none of the features had a width smaller than 1µm.

For all the following exposures with the same substrate conditions, this set of lithography
parameters was used and it confirmed to be a good combination. Nevertheless, SEM images
of the pattern exposed with such lithography parameters (figure 4.5) confirmed that a line of
width less than 1µm is hard or even impossible to define.
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(a) Microscopic Image

(b) SEM image: length marker

(c) SEM image: width marker in point N◦1

(d) SEM image: zoom and width marker in point N◦2

Figure 4.5: 500nm wide line on a 2µm high SU-8 layer: optimised lithography parameters. Microscopic image
of the pattern after development (a). SEM images of the pattern exposed at Laser Power: 70%, Writing Speed:
0.5 mm/s and ∆z: +2 µm. Representation of the whole pattern (b), zoom on one end of the line and width
indication (c). Panel d shows a zoom on a wavy portion of the line (red box in panel c) with relative width
indication.
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As already mentioned the result of this optimisation process is not fully satisfactory for two
main reasons:

1. the smallest line width was twice the nominal focal spot of the Dilase 650 Laser optical
line 1 (table 3.1);

2. lines appear wavy instead of straight as designed.

The first issue is mainly due to the intrinsic difficulty in exposing a pattern whose dimensions
are close to the resolution limit of the Dilase 650 DLW system. The Dilase 650 manufacturer
recommends that such dimensions can generally be reached by exposing the speciality K-CL
photoresist, however adhesion problems inhibited the use of this resist (section 4.1.1). In any
case, the closer the design gets to the resolution limit, the more precise the optical alignment
must be. Even with perfect alignment, There are a number of other factors that need to be
optimised and controlled precisely in order to reach the resolution limit. For example, the
uniformity of the photoresist layer can not be easily controlled while spin-coating the SU-8 on
top of the silicon wafer. In such circumstances, exposing only few nanometres above or below
the focusing plane can strongly impact the exposure. High aspect ratios also play a crucial
role in determining the smallest possible feature, but with UV exposure of SU-8, aspect ratios
up to 20 have already been achieved in 2002 [77] so imprinting a 0.5µm wide line in a 2µm
high SU-8 layer should be possible.

The undulations of the imprinted SU-8 lines may be related to a combination of factors
including the structural stability of such a thin, long feature and the instability of the direct
laser writer, potentially at the level of the stage holding the sample. While shortening the
line would have not compromised the operating principle of the final device, time limitations
prevented research to confirm this.

4.2 Microfluidic module for bacterial culture

While studying the best solution to separate two bacterial culture compartments within a
microfluidic device, I also started working on the design of a simple device consisting of a
single growth chamber to investigate bacterial culturing in a microfluidic device. Specifically,
this investigation would confirm whether it was possible to inoculate a single bacterial species
into a microfabricated PDMS microfluidic device and to culture the bacteria for a period of
time long enough to permit the analysis of the growth rate.

4.2.1 First design: back-pressure and priming difficulties

Initial devices were fabricated using the optimised protocol for a 2µm high SU-8 mould that
in the end means having PDMS features 2µm high. Although this height is not small enough
to allow a monolayer growth of the bacteria, it was decided to postpone the optimisation
of new spinning and exposure protocols for a lower SU-8 layer in favour of confirming that
bacterial growth was not severely compromised inside the microfluidic device.
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The first design attempted is shown in figure 4.6. This consists of a central 2µm high culture
chamber with a diameter of 200µm that is connected to fluidic input and output ports through
two channels 10µm wide, 2µm high and 1.4mm long. The protocol used to fabricate the
SU-8 mould for this platform is summarised in table 3.4.

Figure 4.6: Platform for bacterial culture: design N◦ 1. Top: schematic structure of the platform design and
relative dimensions (left), schematic 3D representation of the PDMS device (right). Two heights are indicated
since the experiment has been attempted twice increasing the height to promote platform priming. Bottom:
microscopic image of the central chamber in the PDMS device.

Before employing the protocol described in chapter 3, a range of other priming methods where
attempted without success; including (in chronological order):

1. direct syringe injection;

2. direct micropipette injection;

3. direct syringe injection applying pressure at the outlet with an absorbing pad;

4. direct micropipette injection in combination with an absorbing pad at the outlet port;

A possible explanation for the failure of each of these approaches is that the constriction
between the inlet port and channel results in a significant drop in pressure leading to a
reduced rate flow. In order to reduce this pressure drop, I firstly investigated increasing the
height of the channel and growth chamber. A device of identical geometry was fabricated but
now using a ' 10µm deep channel, as shown in figure 4.6. The following subsection discusses
the optimisation of the spinning protocol for a 10 µm thick SU-8 layer.
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10 µm thick SU-8 layer: spin-coating optimisation

After mixing and magnetically stirring overnight two parts of SU-8 2000.5 with six of SU-
8 2050, a range of spin speeds from 3000 rpm to 5000 rpm were tested. The thickness of
each SU8 layer was measured using a Dektak Stylus Profiler following method 2 of figure
3.6. Results of the spin-coating process are summarised in the graph of figure 4.7. Based
on these results, a spin speed of 3000 rpm was found to result in an SU8 layer of thickness
9.91± 0.04µm.
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Figure 4.7: 10 µm thick SU-8: spin curves for different spin speeds. The higher the spin speed, the thinner
the film, as expected. Each test consists of two spinning steps: the first is kept at the same speed for all the
tests while values in the graph refer to the second spinning step. First step is at 500 rpm for 10 s for all the
tests. The duration of the second step is 1 min for all the tests. Error bars refer to the standard error over
five different locations across the sample being scanned by the stylus profiler.

While a microfluidic device with increased channel height was successfully fabricated, it was
again not possible to flood the device with Lysogeny broth.

4.2.2 Second design: back-pressure and priming difficulties

Keeping in mind that the issue with the priming may be caused by a high back-pressure
preventing the liquid from entering the channel, I next tried to resolve the problem again
using 10µm high channels but with an alternative geometry at the input/ output ports.
Specifically, rather than an abrupt change in width at the interface between the input/output
ports and the flow channels, a device was fabricated that gradually reduced the physical
channel size as shown in the schematic of figure 4.8. Here, the diameter of the inlet and outlet
ports (2mm) was tapered symmetrically at a rate of ' 60µm/µm until it matched the 10µm
width of the channel.
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Figure 4.8: Platform for bacterial culture: design N◦ 2. Top: schematic structure of the platform design
and relative dimensions (left), schematic 3D representation of the PDMS device (right). This design as been
tested only with 10µm heigh structures. Bottom: microscopic image of the outlet/inlet structure in the
PDMS device.

Unfortunately, again the design shown in figure 4.8 could still not be primed with Lysogeny
broth.

At this point, instead of further raising the height of the microfluidic structure, which ideally
must be reduced to achieve a mono-layer bacterial culture, the geometry of the design was
further modified to reduce the pressure drop between the inlet/outlet ports and the connection
channel to the culture chamber.

4.2.3 Third design: clogging and difficulties in the specific locali-
sation of bacteria within the device

The third design attempted for the bacterial culture microfluidic module is shown in figure
4.9. To minimise the resistance to the fluid flow from the inlet through the channel, the
channel dimensions have been increased. The channel is 2mm wide and 2.5mm long before
again tapering to the central culturing chamber where it enters with an aperture of ' 10µm.

Research focused initially on a device with a channel height of 10µm that was successfully
primed with Lysogeny broth through a direct syringe injection method. Having demonstrated
priming, a second device of identical geometry but with a reduced channel height (2µm)
was also fabricated, that is more suitable for culturing of a bacterial monolayer. Again, this
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reduced thickness device was successfully primed with Lysogeny broth through a direct syringe
injection method, allowing inoculation with E.coli w3110.

Figure 4.9: Platform for bacterial culture: design N◦ 3. Top: schematic structure of the platform design
and relative dimensions (left), three dimensional schematic representation of the PDMS device (right). Two
heights are indicated since the experiment has been attempted twice: once successfully primed the 10µm
high platform the height has been reduced to 2µm to verify that the priming issue was effectively solved
exclusively by the design change. Bottom: microscopic image of the central chamber in the PDMS device.

Bacterial culturing experiments

The inoculated device (2µm heigh design shown in figure 4.9) was mounted on an inverted
optical microscope which was focussed manually onto bacteria visible within the microfluidic
device. Images were subsequently collected every three minutes for a total of 12 hours. Mi-
croscopic images at the time of bacteria inoculation and after the 12 hours of recording are
shown in figure 4.10.

From a simple visual comparison (figure 4.10), it is possible to confirm an increase in the
number of bacteria over time, testifying the growth of the population occurred in a microfluidic
device. In itself this is already a first important result: we are able to grow bacteria in a PDMS
device. Quantification of bacterial growth is discussed in chapter 4.3.
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(a) Few min since bacteria inoculation

(b) 12 h since bacteria inoculation

Figure 4.10: Platform for bacterial culture: design N◦ 3 after bacteria inoculation. Panel (a) and panel (b)
show two subsequent microscopic images of the same area inside the platform. As visible, the total number
of bacteria has increased over 12 hours. The red circle enlightens a zone where the bacteria growth can be
easily observed. Image was taken after 10 minutes since the device seeding with bacteria.

I note, following inoculation, the PDMS structure was found to have collapsed onto the sur-
face. This is believed to be due to mechanical stresses following insertion of a pipette tip
mounted on a 1ml syringe in the device inlet port. As evidence of this statement, when
the platform is primed with Lysogeny Broth using a syringe pump and a constant flow rate
(protocol described in chapter 3) no collapse was observed allowing flow to continue.

Therefore, the fabricated single chamber PDMS devices were primed, prior to inoculation,
with Lysogeny broth by means of a syringe pump while the priming was monitored using an
optical microscope. The overall setup is shown in figure 4.11.
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Figure 4.11: Setup for device priming. To prime the device with Lysogeny broth the inlet is connected
through a microfluidic tube to a syringe mounted on a syringe pump while the outlet is connected through a
microfluidic tube to a reservoir. Difference in heights between the device plane, the pump and the reservoir
are chosen to speed up the priming process that is real time controlled from a monitor connected to a camera
mounted on a microscope pointing the device.

After priming with Lysogeny Broth (priming setup shown in figure 4.11) the device was seeded
with bacteria as described in chapter 3. Preventing PDMS structures from collapsing allows
motile bacteria to swim into the central culturing chamber as shown in figure 4.12.

Figure 4.12: Platform for bacterial culture: design N◦ 3 - bacteria in the culture chamber. Microscopic picture
acquired during a test of a microfluidic device for single bacteria culture. The image shows we were able so
insert bacteria in the device and that they reached the central culture chamber. Right red arrow points a
bacteria colony growing in the central chamber while left red arrow points to a big clog of bacteria that makes
it difficult for others to reach the culturing chamber.
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While using this design I had successfully demonstrated bacterial growth, there are still two
main problems to be addressed to obtain a functional microfluidic platform:

� bacteria should preferentially be located within the specific culturing region in order to
have reproducible experiments for comparative experiments;

� bacteria were found to aggregate at the narrowing between the channel and the culture
chamber preventing bacteria from accessing the culture chamber.

I propose two solutions to address these problems:

1. coating the culture chamber with Poly-L-Lysine to promote bacterial adhesion;

2. further modification of the device geometry to direct bacteria in a specific zone of the
culturing platform.

The following sections are dedicated to the designs explored to “force” bacteria to locate in
a specific area of the microfluidic platform.

4.2.4 Double height culturing device

At the end of section 2.2.1 it has been described how microfluidic culture wells use gravity
to confine bacteria in specific “deeper” areas (wells) of the device. Therefore, informed by an
example found in literature [52], I investigated a microfluidic bacteria culture module with
multiple heights. Following the protocol presented in [52] a double layer PDMS device was
initially attempted. However, due to the difficulty in creating a thin (< 1µm) bottom layer
of PDMS and in precisely sealing two PDMS layers, I decided instead to fabricate a platform
composed by a single block of PDMS in which the difference in heights is generated at the
SU-8 mould level

Double layer SU-8 mould

While I initially designed and fabricated a double-layer SU8 mould, as a result of the national
UK lockdown, I was unable to fabricate the complete PDMS device. The following fabri-
cation steps, starting with the data collection for the mould profile (panel b of figure 4.17)
were kindly completed by my colleague Kalum Thurgood-Parkes following the reopening of
laboratories and under my remote guidance.

Given the difficulties in assembling a two-layer PDMS device, the difference in height has
been recreated at the mould fabrication level. Figure 4.13 schematically shows the structure
of the mould while the fabrication protocol is described in “strategy 4” of chapter 3.

The bottom layer consists of a square culture chamber 200µm × 200µm × 0.5µm. The
cross-sectional area of this chamber is large and is thus prone to collapsing onto the substrate
surface. To prevent this, an array of circular pillars was included within the chamber to
provide mechanical stability. These pillars (which in the mould are actually “holes”) are
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20µm diameter and are spaced 40µm from the edges of the chamber and 30µm from each
other.

Figure 4.13: Double layer SU-8 mould: schematic design. From left to right: design of the bottom SU-8
mould and relative dimensions, design of the top SU-8 mould and relative dimensions, final complete design
with bottom and top designs assembled together as they should appear after development. White circles are
areas left unexposed (holes in the mould). The bottom layer is ' 0.5nm high and the top one is 20µ.

0.5 µm thick SU-8 layer: spin-coating optimisation

The first step for the fabrication of the bottom SU8 layer of the mould was the optimisation
of a spinning protocol; the height of this layer is critical to ensure a single bacterial mono-
layer. Results of the optimisation are summarised in the graph of figure 4.14. It was found
that at a spin speed of 6000 rpm, the resulting SU-8 layer was around 0.78 µm thick which
is sufficiently thin to allow for monolayer bacterial growth. I note, 6000 rpm is close to the
maximum spin speed of the machine and while working close to the smallest height declared
for the SU-8 2000.5, the photoresist final profile varies imperceptibly even with a substantial
increase in spinning speed.
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Figure 4.14: 0.5 µm thick SU-8: spin curves for different spin speeds. The higher the spin speed, the thinner
the film, as expected. Each test consists of two spinning steps: the first is kept at the same speed for all the
tests while values in the graph refer to the second spinning step. First step is at 500 rpm for 15 s for all the
tests. The duration of the second step is 30 s for all the tests. Error bars refer to the standard error over five
different locations across the sample being scanned by the stylus profiler.

0.5 µm thick SU-8 layer: exposure optimisation

When fabricating a mould as the one shown in figure 4.13 it is important to finely optimise
the exposure parameters for the bottom layer. If the photoresist layer is globally overexposed,
the “holes” in the mould may appear partially or completely closed after development. The
lithography optimisation protocol for the 0.5 µm thick SU-8 layer consisted in repeating the
exposure of the mould varying the DLW parameters as follow:

� Laser power: 40%− 45%;

� Writing speed:

1. Test N◦1: 1mm/s− 1.5mm/s− 2mm/s− 2.5mm/s;

2. Test N◦2 (to confirm the results): 0.5mm/s− 1mm/s− 1.5mm/s;

� ∆z : +1µm.

Microscopic images resulting from the optimisation tests are shown in figure 4.15. The opti-
mised protocol in table 3.6 is the result of this test: Laser Power = 40%, Writing speed =
1.5mm/s and ∆z = +1µm.

The exposure of the bottom layer also includes three markers to complete a three point
alignment of the upper SU8 layer as explained in chapter 3. These markers were positioned
close to the bottom left, bottom right and top left corners of the silicon wafer, and centred
2.5mm the die edge. Each arm of the crosses are 100µm long and 10µm thick and were
written with a laser power of 80% and a writing speed to 0.5 mm/s.
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(a) Exposure optimisation Test N◦1

(b) Exposure optimisation Test N◦2

Figure 4.15: 0.5µm high SU-8 layer: lithography parameter optimisation. Microscopic images resulting after
baking, exposure and development of a mould reproducing the bottom layer of the mould for the bacterial
culturing device. From the first test (panel a) the exposure at 40% laser power (Mod.) and 1.5 mm/s writing
speed appeared the one receiving the most appropriate dose. Results of the second test (panel b) confirm this
result. Value of ∆z (∆z = +1µm) is left unchanged between the test.

Top layer and final mould

For the upper SU-8 layer the optimisation of the lithography parameters is less critical and
after a crude dose trial, the exposure parameters detailed in table 3.7 were used. The heigh
of this photoresist layer was measured with the DektakXT Stylus Profiler following method
N◦2 described in figure 3.6. The resulting profile is shown in figure 4.16.
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Figure 4.16: 20µm thick SU-8 layer: stylus profile. Exported data from the DektakXT Stylus Profiler: the
0µm value for the “Total profile” corresponds to the top surface of the Silicon Wafer; passing from the bare
silicon wafer to the SU-8 surface the profile shows a positive peak due to the edge bead. The total profile
flattens in proximity of the centre of the sample with an average value of ' 20µm (marked in the graph) that
corresponds to the heigh of the photoresist layer.

The resulting complete mould is shown in panel a of figure 4.17. I note, while the upper
channels are aligned with the culture chamber, the alignment is not perfect.

(a) Microscopic Image
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Scan across the center of the mould

(b) Mould profile

Figure 4.17: Double layer SU-8 mould. Microscopic images of the mould shows an inaccurate alignment of
the two layers (a) but the profile of the mould confirms that the overlap is enough to permit a correct replica
moulding (b).
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The profile of the mould (obtained using the DektakXT Stylus Profiler and scanning across
the top channels and bottom chamber) is shown in panel b of figure 4.17. Both layers are
slightly thinner than expected (upper SU8 layer measured ' 17µm, expected ' 20µm; lower
SU-8 layer measured ' 500nm, expected ' 800nm). I believe this is likely due to the hard
baking step that, completing the photoresist cross-linking process it may also causes a slightly
shrinkage of the exposed features I note this does not compromise the eventual success of the
experiment. Having a thinner bottom layer is, indeed, more favourable for bacterial mono-
layer growth.

Following the protocol described in section 3.4, a PDMS replica of the two-layer SU8 mould
was prepared, as shown in picture 4.18. Unfortunately, following multiple attempts at bonding
the PDMS to the glass substrate, it was found that the culture chamber repeatedly collapsed.
This was probably due to the large cross sectional area of the culture chamber that is not well
compensated by the 9 pillars either because they are too few/ too small to support the whole
bottom chamber or by the incomplete opening of the holes in the mould exposure step. While
it would have been desirable to optimise the geometry and fabrication of the SU8 mould, the
impossibility of returning to the laboratory in person meant the research had to be halted.

Figure 4.18: Double layer SU-8 mould: PDMS replica. Microscopic images of the PDMS replica before
PDMS-glass bounding step.

4.3 Bacterial cell counting

At this point data collected for the first two experiments are enough to develop and test a
MATLAB algorithm able to process microscope images for automated counting of bacteria
inside the device. Two images from the dataset used to develop this algorithm are shown in
figure 4.9. The full dataset comprises 240 images of the same area of the device taken every
3 minutes for a period of 12 hours following inoculation of the device.

4.3.1 Binary image creation

To accurately count discrete objects (here, bacteria) within a microscope image, it is funda-
mental to precisely distinguish relevant objects from the background. Here, this was achieved
by developing an algorithm in MATLAB consisting of multiple steps that were applied to
each individual image as detailed below.
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1. Image acquisition and cropping: image is acquired in its original “*.tif” format and
cropped to the area of interest. Sizes for the cropped image are established manually
for the first image of the dataset (t=0) and kept the same for all subsequent images;

2. Binary mask creation: from the cropped image, a black and white image is created
following Otsu’s method for the threshold identification. Briefly, this defines a global
intensity threshold to assign to each pixel in the image either a black colour (intensity =
0) or white colour (intensity = 1). The threshold is chosen to maximise the inter-class
variance or to minimise the intra-class variance. A mask is then obtained from the
binary image where white pixels correspond to the areas enclosed in the microfluidic
device;

3. Extraction of region of interest: the mask is used to filter the original cropped image
to effectively “crop” the pixels outside the area of interest, where it is not necessary to
complete the subsequent operations (here, regions outside of the microfluidic channel).
In addition, an image is created from the binary mask that only shows the edges of the
area of interest i.e. the walls of the fluidic channel. This region of interest image is used
in all subsequent steps;

4. Pixels value inversion: values of the pixels are inverted to have white objects on a
dark background. This step simplifies following operations;

5. Background non-uniformity correction: is achieved through operation of the “tophat”
function. This requires the following inputs.

� Grey-scale image to correct for non-uniformity;

� Structural element this is a logical matrix where the elements ascribed a num-
ber 1 form a specific shape laying on elements marked with the number 0 (the
background). This shape must be similar to the one of the objects (elements in
foreground) in the original image. For our case, where bacteria are the objects, a
circular shape of 6-pixels radius was found to be the most appropriate.

The Top-hat function returns an image containing those objects (bacteria in our exam-
ple) that are smaller than the structural element and brighter than their surrounding,
performing the following two consecutive operations on the input image.

(a) Aperture to estimate the background. It consists of an erosion operation followed
by a dilation. The erosion removes from the image all the elements having a
dimension smaller than the structural element, the subsequent [dilation] “dilates”
the feature that are left in the image to better approximate the background close
to the removed objects (bacteria);

(b) subtraction of the background estimate (opened image resulting from the previous
step) from the original image.

6. Binary image creation: after background correction, the procedure of step N◦ 2 is
repeated on the image. From the resulting binary image, the edges extracted during
step N◦ 3 are subtracted.
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7. Binary image correction: after the creation of the binary image, there are white
features that are too small to be attributable to a bacterium. Therefore, all the white
areas smaller than a minimum value of pixels (Min. areaip) are deleted. After repeating
this step with different values of Min. areaip, on the the basis of visual comparison
between the binary images and the corresponding original images of the dataset, its
value was set to be Min. areaip = 20 pixels. All white areas smaller than Min. areaip =
20 pixels are thus deleted. Min. areaip corresponds to a unique value for a specific
dataset.

Steps from 1 to 7 and respective results in term of images obtained are summarised in figure
4.20 while step 7 is briefly explained in figure 4.19.

(a) Binary image before correction

(b) Binary image after correction

Figure 4.19: Image processing algorithm: binary image correction. Red circles in panel (a) highlight white
pixels areas too small to be attributable to a bacterium. Panel (b) shows the final binary image obtained after
the “deletion” of white area smaller than 20 pixels (Min. areaip = 20 pixels). All the white areas potentially
attributable to bacteria are still visible in panel (b). The choice of Min. areaip is extremely important for
the success of the counting algorithm.
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Figure 4.20: Image processing algorithm: flow chart and results. Results shown step after step. Mask of
step N◦ 2 is used to extract the “Region of interest” from the original cropped image. In step N◦ 5 image
resulting from the “Opening” is subtracted from image resulting from step N◦ 4 and to obtain the “Final
binary image”, “Channel edges” extracted in step N◦ 2 are subtracted after “Background correction”.
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4.3.2 Bacterium area estimate and bacteria counting

In the final binary image (see bottom panel of figure 4.20) only bacteria appear as white pixels
and the number of individuals is estimated as follow.

N◦ bacteria =
N◦white pixelsbinary image

Single bacteriumarea

Where Single bacterium area is the number of white pixels that forms a bacterium. Strategy
developed to calculate the average area of a bacterium is described in the following section.

Area estimate

As a first evaluation, the average area of one bacterium was calculated by manually cropping
a single bacterium for some of the final binary images resulting from the dataset and counting
the white pixels composing the cropped shape. For each image, 10 bacterium were selected.
Where possible, for each image a different bacterium was selected. Given the tendency of
bacteria to form dense colonies, the identification of a single microorganism in the images is
not always immediate. For this reason the area of a single bacterium was found to be highly
variable, even within the same image. Once extracted, the average of the ten single bacterium
areas is calculated for each image. The overall average area of a single bacterium is estimated
as the global average of the values previously calculated for each image. The raw data used
for this calculation are shown in graph of figure 4.21.
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Figure 4.21: Single bacterium area estimate: first evaluation. Each point in the graph represents the average
value of the single bacterium areas calculated for each selected image. A bacterium is manually cropped
after visual evaluation, 10 times for each image. Error bars show a rather high variability. Red horizontal
line marks the global average calculated over the points and considered as the global average area of a single
bacterium.
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As shown in figure 4.21, the global average area used to estimate the area of a single bacterium
corresponds to an area of 35.36 ± 8.15 pixels, approximately 14.83µm2 ± 3.39µm2. This is
the area of a circle with radius ∼ 2µm that is a fair approximation of the projection of a
bacterium on the glass slide lying at the bottom of the microfluidic device. In fact, bacteria
cells are typically oval or spherical in shape with a length of 0.5− 5µm whose projection is a
circle or an ellipse with radius or the axes of few micrometers.

To optimise the estimate of the single bacterium area so as the procedure becomes faster and
adaptable to subsequent experiments, the results shown in figure 4.21 was also assessed using
the built-in MATLAB function regionprop. This function identifies all objects consisting of
8-connected pixels in a binary image i.e. all the white areas consisting of at least 8 neigh-
bouring pixels are counted as a single object and their areas are returned.

Ideally the “objects” in our images dataset are only bacteria but identifying a single bac-
terium is hard with regionprop function. Specifically, colonies of bacteria are returned as
individual “objects” so the output areas can not be directly associated with that of a single
bacterium. The average value of the areas returned using this function for each image, is al-
ways around twice the global mean value estimated when manually cropping single bacterium
(corresponding to 97.07 ± 6.00 pixels). The graph shown in figure 4.22 visually summarises
these results.
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Figure 4.22: Single bacterium area estimate with regionprop function: average values. Green points are the
average value of the the areas identified by the regionprop function for each image. The global average over
these values is shown as a blue horizontal line. The red horizontal line indicates average area of a single
bacterium obtain from previous evaluation (“manually croped single bacterium”).

The smallest area returned by regionprop is generally not attributable to a bacterium. In
fact, for most of the images the smallest object size was found to be equal or close to 20 pixels
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(figure 4.23). These objects are “artefacts” introduced at “step 7” of the image processing
protocol described in section 4.3.1 and figure 4.19.
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Figure 4.23: Single bacterium area estimate with regionprop function: minimum values. Orange points are the
minimum values of area identified by the regionprop function for each image. The global average over these
values is shown as a blue horizontal line. The red horizontal line indicates average area of a single bacterium
obtain from previous “manual” evaluation (“manually croped single bacterium”).

My solution to improve the evaluation of the area of a single bacterium follow these steps for
each binary image of the sequence:

1. regionprop function is run on a single image;

2. the minimum value among the returned areas is calculated (Min. arearp);

3. the minimum value is compared with the minimum value imposed at “step 7” of the
image processing protocol in section 4.3.1 (Min. areaip):

� if Min. arearp ≥ Min. areaip + (0.5 × Min. areaip) → regionprop is not run on
following images and the area of a single bacterium is estimated as follow:

Areabacterium = Min. arearp

� if Min. arearp < Min. areaip + (0.5×Min. areaip) → the average of the returned
areas is calculated and stored, steps 1, 2, 3 are repeated for subsequent images.

If the condition at the first point of step N◦3 is never satisfied, the area of a single bacterium
is estimated as follow:

Areabacterium =
Arearp

2
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where Arearp is the global average value calculated over the average areas returned for each
image.

This algorithm in based upon the implementation of the build-in Matlab function regionprop
to limit user intervention and thus systematic errors. In most of the images collected during
the bacterial culture experiment in the microfluidic device (eg figure 4.10), the majority of
the bacteria are very close to each other. Therefore, when these images are given as inputs
to the regionprof function, after being converted into binary images, the objects returned by
regionprop are colonies rather than single bacteria (see figure 4.22). Assuming that bacteria
are all similar, the algorithm further investigates only the minimum area value returned by
regionprop which, in the case of having at least one isolated bacterium in the device, should
be a good estimation of the area of a single bacterium. However, I observed that the mini-
mum area value often derives from an artefact introduced during previous image processing
operations (see figure 4.23).

In fact, when creating the binary (black and white) images to be given as inputs to regionprop,
all white regions composed of a number of pixels lower than a certain threshold are “deleted”
to ensure that white objects correspond to bacteria and not to pixels introduced by any kind
of noise (eg white “dots” introduced by uneven lighting)(see section 4.3.1). Such threshold
is chosen by creating the same binary image for different threshold values and visually con-
fronting them with the related image from the experimental dataset. This forces the smallest
“white object” to be composed of a number of pixels equal to, or slightly higher, than the
threshold itself, thus not been significant in the estimation of the area of a single bacterium.
For this reason, the minimum area returned by regionprop is selected as the area of a bac-
terium only if it is sufficiently larger than the threshold value chosen when creating the binary
image. The minimum area returned by regionprop is confronted with a threshold chosen by
taking into account the entity of the artefact previously introduced and the estimation of the
area of a bacterium based on the results in figure 4.21. Only if bigger than this threshold,
the minimum area returned by regionprop is chosen as the area of a single bacterium, thus
avoiding the risk that its value is affected by the aforementioned artefact. If this condition is
not met for any images in the dataset, given the tendency of the bacteria to form groups of
few cells (generally up to 10), the half of the average of the areas returned by regionprop for
the entire dataset is chosen as best approximation of the area of a single bacterium.

In our case the condition is satisfied at image N◦ 40 (see graph in figure 4.23):

� Min. areaip = 20 (see “step 7” in section 4.3.1);

� Min. areaip + 0.5×Min. areaip = 30;

� Min. arearp = 33 at the image N◦ 40;

� Single bacterium area = 33 pixels and the regionprop function is stopped
running at image N◦ 40.
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As shown in figure 4.24 (first two bars), the area of a single bacterium estimated automatically
compares well with the area calculated manually (figure 4.21).

To further verify the accuracy and generality of the method for bacterium area calculation, the
algorithm was also tested on datasets obtained from different bacterial culture experiments;
results are shown in figure 4.24.
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Figure 4.24: Single bacterium area: manual and automatic estimate comparison. The numbers in the vertical
axis correspond to the total number of white pixels composing the shape of a bacterium in the binary image.
First couple of bars refer to my experiments while the rest of the bars refer to experiments carried out by
Fatima Yendybayeva as stated in the text. Each experiment constitutes a unique dataset.

The set of images used to extract the data of figure 4.24, were collected by Fatima Yendy-
bayeva, a BSc student in the biology department of the University of York (academic year
2019-2020). These data were collected using E. coli cultured in a mother machine fabricated
on an agarose substrate (see section 2.2.1 and figure 2.4 for further information). Binary
images were generated adapting the procedure described in section 4.3.1. An important pa-
rameter to change when changing dataset is the value of Min.areaip set at “step 7” in the
protocol described in the section 4.3.1. The manual estimate of the area of a single bacteria
was calculated following the same procedure used to obtain the graph in figure 4.21 and the
average value is represented in figure 4.24 with the respective error bar showing the standard
deviation over all the measures.

Except for the experiment N◦4 in figure 4.24, the area of a single bacterium returned by
the algorithm falls within the confidence interval of the manually estimated areas. In all the
experiments the difference between the average value of the manual estimate and the algorithm
estimate never exceeds the 15% of the respective estimates. Hence the performances of the
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manual estimate and the algorithm one are comparable but this latter is preferred because it
is automated and less time consuming.

Bacterial cell counting

Once the number of white pixels composing a single bacterium has been estimated (single bac-
terium area), for each image the total number of bacteria can be extracted. Before proceeding
with the analysis of the bacterial growth rate inside the microfluidic device, the performance
of the cell counting algorithm was evaluated by comparing cell count obtained automatically
with those calculated manually. This comparison was performed using 13 images within the
data set, corresponding to one image per hour, in which bacteria were counted manually 5
times. Results from the comparison are shown on the bar plot of figure 4.25

Taking into account counting errors, the difference between the number of bacteria counted
manually and automatically was less than 100 for each image. The general trend is bacterial
counting is also maintained over time: the number of bacteria counted manually is consistently
around 70 more than the number of cells calculated automatically. This is likely due to
the presence of a bacteria colony growing extremely close to the channel walls that can
be “deleted” during the image processing procedure. In fact, changing the dataset, this
difference decreases and the overall trend of having an almost constant difference between the
two counting methods does not repeat systematically (figure 4.28).
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Figure 4.25: Manual and automatic counting comparison.

As already visible from figure 4.25, over the whole 12 hour period bacterial growth is observed
but is slow. Graph in figure 4.26 visually summarises the overall growth of the population
in the device. The red line shows a polynomial curve fitting of second degree which helps
to visualise the trend. The number of bacteria counted in the final image (12 hours after
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priming) compared with the number counted on the first image (right after priming) shows
that the population has increased less than 50% in respect to the initial number of bacteria.
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Figure 4.26: Experimental results: E. coli W3110 growth in the device. Increase in the number of bacteria
counted by the algorithm compared to those counted immediately after incubation.

When bacteria are cultivated in a batch culture (closed system), as generally happens in
laboratory, their typical growth curve looks like the one in figure 4.27.

Figure 4.27: Bacterial reference growth curve in batch culture. When inoculated in a fresh culture, bacteria,
after an initial phase needed to adjust to the new environment (lag phase), start diving via binary fission
(exponential phase) and continue dividing as long as nutrients are available. Once the waste products outweigh
the nutrients or the space available for population growth becomes limited or the accumulation of harmful
metabolites, population growth stops (stationary phase), eventually secondary metabolites are produced in
this phase. If the incubation continues after this phase the population declines (death phase).

Analysing the graph in figure 4.26 we can affirm that bacterial growth in the device, never
reached the exponential phase. In fact, as reported by Micha Peleg and Maria G. Corradini
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[78] commonly the lag phase (see figure 4.27) is considered concluded when the growth reaches
50% or 100% from the starting number of bacteria. It is excluded that bacteria may have
been inoculated into the device with a concentration such as to have already reached the
death phase. In fact, the concentration chosen for the incubation of E.coli (OD600 = 0.5−1)
is, by protocol, associated with the exponential phase. A lag phase longer than 12 hours is
anomalous in a closed system with optimal growth conditions.

From an initial analysis the cause of the behaviour in the device is attributed to the temper-
ature of the room where the device is located, at least ten degrees below the 37◦C, optimal
for E. coli growth. Furthermore, as the channel collapsed on the glass substrate, the volume
of the device is not known and it is thus not possible to estimate the bacterial concentration
in the area of the device captured by the processed images.

While an attempt to repeat bacterial growth at 37◦C was attempted (see figure 4.12), a dense
colony of bacteria blocked the entrance to the central culture chamber, where the objective of
the microscope for the acquisition was focussed. Furthermore, images show a high bacterial
mobility rather than a colonisation of the device.

To confirm that the performances of the counting algorithm do not depend on the dataset, the
comparison between manual and algorithm counting was repeated using different datasets.
Results from these comparisons are shown in figure 4.28, the set of images used is the same
used to extract data in figure 4.24. Data in figure 4.28 were extracted following the same
procedure for the ones in figure 4.25 and confirm that, taking in consideration the confidence
intervals of manual counting data, the number of bacteria returned by the the manual and
the automated counting almost coincides. Without taking in consideration the confidence
interval, the average difference corresponds to the 13% of the relative estimates and only for
image N◦2 in panel a of figure 4.28 and image N◦2 in panel f of figure 4.28 the difference
reaches the 50% of the relative estimates.

When the cell counting algorithm is needed to evaluate the bacterial growth inside a mi-
crofluidic device, the consistency of the results is important while an absolute accuracy is
preferred but not required. This is clear when analysing results in figure 4.26; here, data
distribution correctly shows an overall increase in the number of bacteria but the presence of
outliers indicates that the number of “counted bacteria” is not exact. However, this does not
prevent a satisfactory estimate of growth rate. The area of a single bacterium is estimated
once for the entire dataset and its estimate is generally based on the processing of some if not
all the images within the dataset. For this reason, the evaluation of bacterial growth rate is
not substantially compromised by the specific value of the single bacterium area. It should
be noted, changes in the the binary images over time (e.g. a change in the illumination)
will introduce additional white pixels in the respective binary image leading to errors in the
estimation of growth rate.
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Figure 4.28: Manual and automatic counting comparison on additional datasets. Experiments related to the
data shown were carried out by Fatima Yendybayeva as previously stated. Each experiment constitutes a
dataset that is composed by images obtained using the same parameters at the binary image creation step.
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Before proceeding with the section dedicated to COMSOL simulations I list below the main
steps of the overall protocol developed for the fabrication of a single bacterial species culture
microfluidic platform integrated with growth monitoring at the single cell level.

1. PDMS device fabrication: replica moulding with DLW as lithography technique;

2. device priming and bacteria loading: in a device primed with liquid medium bac-
teria are seeded after being appropriately cultured and diluted;

3. bacterial culture in the device and image acquisition over time: an inverted
microscope is focused toward a specific area of the device and a connected bright field
camera is set to acquire subsequent pictures over time;

4. image processing and bacteria counting: the acquired images are converted in
binary images where the average area of a white bacterium is estimated and used to
count how many bacteria does the total of white pixels of each image correspond to.
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Chapter 5

COMSOL simulations

This section provides a deeper look into fluid-dynamics inside microfluidic devices proposed
as platforms for bacterial culture. This is achieved using computational models to model
the key fluid-dynamic phenomena that take place within microfluidic devices. First, I give
a physical explanation to the difficulties encountered in priming some of the proposed chip
designs, including a comparison between the design shown in figure 4.6 and that in figure
4.9). Secondly, I show a simulation of the fluid flow within the successfully primed design
(figure 4.9) and in the “double-height” device of figure 4.18. The models were implemented in
COMSOL Multiphysics 5.5 considering water instead of Lysogeny Broth. In fact, giving the
concentrations of the powders dissolved in water to formulate the broth (see last section of
chapter 3), the viscosity of the latter can be considered in first approximation equal to that
of water.

The COMSOL computation flow dynamics (CFD) package solves the Navier-Stokes equations
for mass and momentum conservation that has the following form:

ρ

(
∂u

∂t
+ u · ∇u

)
︸ ︷︷ ︸

inertial

= −∇p︸ ︷︷ ︸
pressure

+ η∇2u︸ ︷︷ ︸
viscous

+ F︸︷︷︸
external

where ρ is the density and η the viscosity of the fluid, u is the velocity vector, p is pressure and
F is a force vector. The finite element COMSOL software solves the equation for ux(y, z)x̂
with the fluid flowing in x direction, z indicating the direction vertical to the flow and y the
transversal direction to the flow.

5.1 Priming difficulties and channel dimension: back-

pressure

As briefly summarised in figure 5.1, I established COMSOL models to observe how the velocity
field and the distribution of pressures in two of the microfluidic devices vary as the ratio
between the width of the channel and the diameter of the inlet changes.
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Figure 5.1: Device inlet modelling: geometry and setup. The simulation was run sweeping the value of
the channel width, reproducing the solutions adopted in the laboratory to overcome the priming difficulties
encountered with the “first design” and solved with the “last design”. The study focused on the first channel
tract, close to the discontinuity introduced by the narrowing between inlet and channel. The outlet was
positioned on the vertical free face of the channel.

At the top face of the inlet port, the flow rate was set to be Qinlet = 10µl/min, as used in ex-
periment, and the pressure at the outlet was set to a null value. Simulation results are shown
in figure 5.2. When the liquid flows from the inlet into the channel, the fluid velocity increases
while static pressure decreases following Bernoulli’s principle. This effect is more evident for
smaller channel widths and translates into a pressure drop between the channel entrance and
the device output. Such a pressure differential generates a high resistance to the flow that
increases as the channel reduces in cross sectional area. This resistance is generally referred
to as “back-pressure”. In fact, pressure is a scalar quantity and the term “back-pressure”
is thus a misnomer, however, it gives the correct idea of restricting the flow in the desired
direction.

Considering constant inlet dimensions and channel height, as in the “first design” in figure
5.1 and the “last design” in figure 5.1, the ratio Wchannel

Dinlet
plays a critical role for the success of

the device priming procedure.

As shown in figure 5.3, the pressure drop between inlet and outlet reduces as this ratio
approaches 1 and so the resistance to flow also reduces. I believe that in the case of the “first
design” in figure 5.1 this ratio is so small that the liquid can not flow into the channel.
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(a) Velocity - vertical and horizontal cross-sections

(b) Pressure - longitudinal cross-section

Figure 5.2: Device inlet modelling: COMSOL simulation results. Confronting images in the left column with
images in the right column, it can be noticed that downstream effect of the constriction is greater for channel
much smaller than the inlet. In left column panels, higher speeds are reached (a) and the pressure at the
constriction (b) is higher in respect to the right panels. This translates into a more consistent load loss for
the devices in the left panels. To help the visualisation the case of the first tested device (Wchannel

Dinlet
= 0.005)

is not shown. Left panels show simulation results for the ratio Wchannel

Dinlet
= 0.2, right panels show simulation

results for the ratio Wchannel

Dinlet
= 1
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Figure 5.3: Device inlet modelling: pressure drop versus Wchannel

Dinlet
. The graph shows how the log10 of the

pressure drop changes in relation to the ratio Wchannel

Dinlet
. Pressure drop values are calculated as the difference

in Pascal between the pressure at the channel entrance section and the pressure at the outlet (null pressure).
Data are extracted from COMSOL simulations. The higher is the pressure drop the higher is the resistance
to the flow. As marked in the graph the drop related to the first design tested is 4 order of magnitude grater
than the drop related to the last design successfully primed.

5.2 Device design and bacteria confinement

As discussed at the end of section 4.2.3, the third solution proposed for the bacteria culture
module (figure 4.9), even if successfully primed and seeded with bacteria, is not yet optimised.
Experimentally, it was observed that many colonies form at the entrance to the culture cham-
ber, obstructing fluid flow, and those bacteria that do enter the chamber continue moving
towards the outlet.

Figure 5.4 shows the velocity field returned by a COMSOL simulation in a 3D model reproduc-
ing the experimental geometry. Stream-lines and velocity magnitude at the plane z = 1µm
(half of the total channel height), reveal much higher velocities inside the chamber than in
the rest of the device. In the section separating the channel from the chamber, velocity mag-
nitudes are low except for the areas closest to the walls and so only few lateral streamlines
cross the chamber. Assuming that the bacteria, in the loading phase, are carried by the fluid
flow, this distribution of velocities explains why many bacteria aggregate at the entrance of
the chamber (zone at almost null velocity) and why those that enter the chamber continue to
flow towards the outlet.

As described in section 4.2.4, to overcome those problems I started the fabrication of a double
height device based on a two-layer SU-8 photoresist mould whose design is shown in figure
4.13. Although fabrication of device has not been completed, I have simulated its working
principle and make some deductions about its effectiveness in terms of bacteria confinement
in the central, thin chamber.
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Figure 5.4: Microfluidic bacterial culture device modelling: velocities field. Magenta arrow indicates the
direction of the flow. The two subsequent zooms on the area close to the central culture chamber, show
how the velocity, in the flow direction, increases, then decreases abruptly to increases again once inside the
chamber. The 2D plot shows the section at the intersection channel-chamber. Specular behaviour is observed
at the chamber exit.

Results of the simulation of the double layer device (panel a of figure 5.5), show the flow
velocity in the chamber is much lower than in the main fluid channel. This causes the stream-
lines to avoid the chamber with most of the fluid flowing in the channel directly connecting
the inlet and outlet ports. Fabricating a higher culture chamber could eventually help the
fluid to flow inside the chamber but this is not a viable solution since it may preclude the
monolayer bacterial growth. I note, the fluid flow at the entrance to the culture chamber is
low which may allow motile bacteria that enter this region to actively swim into and colonise
the chamber however given the fluid in this region would not be replenished, growth could
soon stagnate.

An alternative design is shown in panel (b) of figure 5.5. It has a modified top layer designed
to force fluid to flow through the chamber. Simulation results in panel b of figure 5.5, show
a maximised number of stream-lines crossing the chamber. With the assumption of bacteria
following the flow during the inoculation phase this should help them to enter the central
chamber. However, the three orders of magnitude difference between the velocity values of
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the first solution (panel a in figure 5.5) and the one of the second solution (panel b in figure
5.5) may result again in the difficulty of preventing bacteria from escaping from the chamber.
Definitive answers can only be provided by experiments, but I expect that, once inside the
chamber, the difference in height with the exit channel will limit their escape.

(a) First implemented design

(b) Second modified design

Figure 5.5: Double-height device for bacterial culture: COMSOL simulation results. In the 3D plots magenta
arrows indicate the flow direction. In panel (a) the stream-lines in the 3D plot hardly cross the central
chamber, likely resulting in bacteria not entering in the culture chamber and the 2D plot shows a very-low
velocity zone in the culture chamber. In panel (b) all the stream lines in the 3D plot cross the central camber,
likely resulting in bacteria easily entering in the culture chamber and the 2D plot shows a high velocity zone
in the culture chamber. Note the difference of the scales.
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Chapter 6

Conclusion and future prospective

Studying bacteria in mixed co-culture systems is of paramount importance to harvest the
full metabolic potential of the microbial world. Often, pathogenic microorganisms infect
our body by combining into poly-microbial infections, interacting, mostly via metabolite ex-
change, between different species. A thorough understanding of such interactions can open
new possibilities for the treatment of infectious diseases. To this end, traditional bacterial
bulk cultures techniques only provide limited information regarding bacterial communication
unless integrated with complex and expensive sequencing or phenotyping techniques. The
main obstacle that microfluidic devices aim to overcome is the impossibility of recreating
the microscopic spatial organisation, typical of bacteria natural environment. In addition, in
micro-volumetric cultures, all the average effects of bulk cultures are avoided and single cell
resolution can be achieved.

This work aimed to optimise the fabrication procedure of a microfluidic platform for the
study of chemical interactions between two bacterial species while avoiding any physical con-
tacts and, ultimately, provide experimental approaches to study bacterial communication.
Microfluidic devices for culturing single bacterial species are numerous in the literature. In
contrast, microfluidic co-culture systems are still rare and mostly focused on Eukaryotic cells.

The outcome of my work is a simple microfluidic device and associated image processing to
quantify bacterial growth at the single cell level. This is only the first step towards a full mixed
species platform where the entire protocol can be replicated for multiple species cultured
in individual chambers separated by hydrogel barriers. Two devices have been completely
fabricated and successfully primed and seeded with E.coli strains. Images acquired from
bacteria inoculated in the device allowed me to count bacteria, for each image, and confirm
an extremely slow growth rate over a 12 hour period. The low growth rate is likely partly
due to the low temperature in the laboratory.
The experimental approach can return useful information about the bacterial growth rate
only if the two following conditions are met:

� Bacteria must grow in monolayers to accurately account every bacteria. In mono-
layer growth chambers micro-environments are defined and single cell resolution can be
achieved;
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� bacterial growth should preferentially be confined in a specific area to be able
to take microscopic images in a specific zone of known volume.

For the device fabrication step, I employed Direct Laser Writing (DLW) lithography for cre-
ation of the photoresist mould to be replicated in PDMS. The spinning of a thin layer of SU8
suitable for a bacterial monolayer culture chamber, has been achieved whose compatibility
with DLW has also been demonstrated. When applicable in terms of smallest desired feature,
DLW is easier to implement than e-beam lithography and in contrast to standard UV lithog-
raphy, does not require a photomask.

Confinement in a specific growth chamber was not achieved in the simple, single layer PDMS
device but a solution to this was proposed based on a double layer device that has been stud-
ied by computational modelling. DLW has been used to fabricate a double-layer SU-8 mould
however the dimensions of the culture chamber needs to be optimised to prevent collapse.
Particular attention is needed in the design of the connection between the fluid inlet/ outlet
ports and the growth chamber to recreate a favourable pressure distribution that avoids high
pressure drops that prevent priming and inoculation of the device.

In addition to integrating the single species microfluidic modules for bacterial culture in a
mixed species co-culture device, the approaches demonstrated here can be used to dynamically
monitor microorganism growth as a function of external conditions such as ph, temperature
or drug administration.

6.1 Toward a mixed-species co-culturing device

Once the proposed double-layer microfluidic platform has been fabricated and tested, this
could be integrated with other identical modules to build a co-culture system with access
to real time single bacteria growth information. This requires that multiple chambers are
connected such that metabolites can still be exchanged between species. I propose this would
be could achieved using a semi-permeable membrane to provide separation between growth
chambers. The alternative is to fabricate a nanometre-scale connection between chambers
to allow metabolites exchange while preventing physical contact between bacterial species.
Although protocols to develop such structures have been already developed, this typically
requires e-beam lithography. I thus conclude that a membrane synthesised from a hydrogel
would be the simplest solution.

Preliminary experiments to study how to insert a sodium alginate hydrogel within a PDMS
device have been performed. As proof of principle, I demonstrated the integration of a hy-
drogel by punching a 6mm diameter hole in a microfluidic channel connecting two culturing
chambers. This aperture was then injected with a 1% wt/vol solution of sodium alginate and
the curing agent (5% wt/vol CaCl2 solution in water) with a 1:1 volume ratio. While it was
possible to insert the hydrogel into the aperture within the PDMS, the protocol needs to be
improved to optimise the sodium alginate viscosity and porosity. Subsequent experiments will
have to be the fabrication of a PDMS channel divided by a hydrogel barrier where solutions
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of different compounds can be flushed to test porosity. Testing bacteria behaviour in the
channel should be the final fundamental experiment.

In order to have a device composed of two independent, double-layer culture chambers, I would
have tried to insert the hydrogel in the lower layer in a microfluidic structure that combining
the right dimensions with the hydrophobicity of the PDMS could prevent the hydrogel from
entering in the culture chambers (figure 6.1). The scientific literature is full of examples of
this technique, which can be integrated into the developed protocol.

Figure 6.1: Device for bacterial co-culture in monolayer chambers: proposed design. Lower layer is indicated
in blue, higher layer is indicated in green. The hydrogel is integrated in the lower layer and its polymerisation
is triggered by UV light.
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Figure 6.1 shows a potential design of a microfluidic platform for the co-culture of two bacterial
species consisting of two, double-layer culturing microfluidic modules for bacterial monolayer
growth separated by a hydrogel barrier. Here, the hydrogel is integrated in the lower layer in
a fish bone structure, reproducing the fabrication implemented by Kyung Jin Son et al. [67].
Each chamber reproduces the structure simulated in COMSOL (see figure 5.5). To prevent
bacteria from escaping from the chambers, the lower layer is coated with Poly-L-Lysine that
promotes bacterial adhesion. Inlet and outlet ports in figure 6.1 have been designed following
the simulation results described in section 5.1.
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Appendix A

Dilase 650 for DLW lithography

A.1 Physical equipment

(a) Dilase 650 lithography setup: overview (b) Dilase 650 lithography setup: line switching

Figure A.1: Dilase 650 system for DLW: lithography setup. Main optical components and relative position in
the overall lithography setup consisting in two lasers sources (a) that can be directed towards two different
optical lines (a) through two consecutive switching mirrors along the path (b). The first mirror introduces
the laser to one of the two optical tubes defining the optical line, at the exit of the tube the second mirror
switches the beam to the focusing head provided with connectors for microscope objectives (a). The display
system includes the CMOS camera and the LEDs illumination (a). An absorbing filter can be mounted on
the Iris diaphragms on the extremities of the optical tube. Figures adapted from [76].
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A.2 Software suit

A.2.1 KloeDesign

Figure A.2: KloeDesign user interface: screenshot. The software permits either direct drawing of the design
file, using elementary patterns available in the software library or import and conversion of “*.DXF” and
“*.GDS” files. Figure shows a zoom in on a three line drawing and fillings. Supplementary panel (bottom
right) indicates their dimensions. The lines have been drawn and then filled as three rectangles with same
length and increasing width. Green and red trajectories have been generated by the software as results of
the filling operation and will be exported in a “*LWO” file. To have the 0.5µm, 0.75µm and the 1µm filled
respectively by a one, two and three horizontal trajectories, filling must be completed using a 0.5µm spot-size
and an overlap rate of 50%. The red part of the filling lines will correspond to a laser ignition zone while
the green zone will correspond to a laser shutdown section. The software gives the possibility to export as a
“*.LWO” file the design contours, the design fillings or both.
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A.2.2 DilaseSoft

Figure A.3: DilaseSoft user interface: screenshot. Main panels and their function are indicated. In general the
overall operating procedure follows the panel from top right to bottom left: from the “stage initialisation” to
the “lithography setting choice”. Users can initialise the stage, choose the laser source and the optical line to
use for the exposure, adjust the stage starting position defining a spatial coordination system relative to the
sample, adjust the focusing height and provide the lithography setting such as energy to apply (“modulation”),
“speed” at which the stage holding sample moves to complete the exposure and focal length (bottom right
panel). Thanks to the display system, while using the software, it is always possible to image the sample
through the objective lens. Real time images captured by the CMOS camera can be visualised in the dedicated
panel.
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