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Abstract

Edge Localized Modes (ELMs) are repetitive eruptions of particles and energy

which occur in many high confinement mode plasmas. The mitigation of ELMs

is one of the important topics in achieving high performance operating mode in

tokamak devices. However, the physical mechanism by which mitigation and sup-

pression is achieved is still not well understood. In the theories of ELMs, the

plasma current and flow shear (include Zonal flow, shear flow and rotation) have

been suggested to have significant influence on ELMs.

In this thesis, the possibility of influencing ELMs by radio wave (ECRH) means is

investigated, by studying the underlying flow generation mechanisms, and the in-

fluence of flows, toroidal rotation and edge current on ELMs. The kink-ballooning

mode is addressed, which can drive ELMs in some peeling-ballooning stable re-

gions in our analytic and numerical work . Then novel 2-fluid cold-ion equations

are developed from the collisional Vlasov equation in a non-inertial rotating frame

for the first time. Implementing these equations into the Hermes cold ion code, the

numerical results revealed that the Zonal flow rate and Geodesic acoustic mode

frequency grows with the increase of toroidal rotation rate. Non-inertial effects

are proven to be important in generation and propagation of GAM and zonal flow.

The non-inertial effects induced by toroidal rotation are proved to be important

to GAM and ZF.

Finally, 4-field reduced-MHD equations were also derived in a non-inertial rotating

frame. Linear and non-linear simulations were performed under BOUT++ elm

code. We find the ELM size can be suppressed by rigid toroidal rotation, when

considering non-inertial effects. Results suggest that velocity shear and pressure

perturbation phase shift , caused by centrifugal and Coriolis effect respectively,

are the key mechanisms in rotation’s effect on ELM mitigation.
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Chapter 1

Introduction

1.1 Basic relevant concepts for fusion

1.1.1 Background

After the industrial revolution, energy has gradually become a fundamental issue

that restricts the development of human society. With the depletion of fossil fuels,

the search for new energy source is urgent. In that situation, it becomes a vital

and emergent issue to develop new and clean alternative energy[1]. Benefiting

from the huge nuclear energy released during the nuclear reaction, nuclear energy

is unanimously considered to be the key to solving the energy crisis[2].

The use of nuclear energy can generally be divided into two ways: nuclear fission

and nuclear fusion. Since the Soviet Union built its first nuclear power plant in

1954, nuclear reactors now are built worldwide and applied widely to commercial

energy supplement . However, nuclear fission is also constrained by factors such as

scarce reaction materials, huge nuclear radiation, intractable nuclear waste, and

controversial safety[3]. Therefore, as a rich, efficient, safe, almost pollution-free

nuclear reaction, the use of nuclear fusion energy are drawing increasing attention.

To obtain a fusion reaction, nuclei must be sufficiently close together. Therefore,

high temperature is required for nuclei to overcome repulsive force[3].

With the gradual deepening of fusion research, scientists found it difficult to

achieve controlled nuclear fusion. Since it requires the maintenance of high-

temperature atoms and high density reactive material for a certain period of time,
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aiming to provide sufficient energy to overcome the barriers between atomic nuclei.

In addition, as a kind of commercial commercial supplement, net energy gain is

also required. In 1957, British scientist Lawson summed up the basic principle

factor for plasma self-sustained combustion and gave criteria for the condition to

achieve fusion[4]:

nTτE > 1021m−3skeV. (1.1)

Where n, T, τE are the density, temperature(keV) and confinement time of react-

ing substance receptively. From the expression of Eq.(1.1), scientists concluded

two approachable ways to meet the criteria: the high density short confinement

time of inertial confinement fusion (ICF), or the low density long confinement of

magnetic controlled fusion (MCF)[4]. ICF is the method of converging reactive

material onto a small fuel target (typically a pellet made of deuterium and tri-

tium) using multiple lasers and X rays. In the process of reaction, material of

the fuel surface evaporates instantaneously and project outwards intensely. Thus

generates a strong reaction force pushing the particles to the center, which make

the fuel reach high temperature and high pressure in a mean short time by particle

inertia . MCF is based on the fact that a charged particle traverses a magnetic

field and is constrained by a Lorentz force, hot plasma is confined in vessel by

magnetic field to meet the Lawson criterion. There is still no definite result that

shows which approach is superior. ICF has a target to reach ignition, while MCF

is more practical and closer to reaching the economical purpose.[4]
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Figure 1.1: The triple product (density, temperature and energy confinement
time, see also Lawson’s criterion) plotted against the centre plasma temrerature.
The yellow arrow shows the progress accomplished in the course of the recent
decade 1989-1998. The open symbols correspond to experiments with deuterium
plasmas, and the solid symbols to plasmas of a mixture of deuterium and tritium.

[5]

The current operating magnetic confinement devices are mainly divided into sev-

eral categories: Stellarator, Reversed field Pinch, Mirror machine, Spherical torus

and tokamak. Among those different types, the Tokamak, as a mainstream device

for magnetic confinement fusion research, has achieved considerable development

in recent years and are continuously approaching the break-even. In the 1960s,

the ”triple product” reached 1015m−3skeV firstly, with more than half century’s

development, the value of ”triple product ” ran up to 1.5 × 1021m−3skeV in re-

cent years. Meanwhile, in the JET and TFTR Tokamak devices, fusion powers

from nuclear reaction achieved 16.1 MW and 10.7 MW respectively. The con-

finement time of the former device also attained 1 second. Currently, the ITER

(International Thermonuclear Experimental Reactor) device , which is studied and

constructed jointly by more than 7 countries and unions, us expected to attain 4

seconds’ energy confinement time with more than 15 keV’s core temperature.
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1.1.2 Tokamaks

Tokamak devices mainly use a magnetic torus to confine charged particles. The

basic structure is shown in Figure 1.2, the toroidal field is generated by external

fields. However, solely toroidal field is not enough to confine plasma, due to the

non-uniformly of the toroidal magnetic field , charged particles are affected by

the curvature and gradient of the magnetic field . This will cause the constrained

particles to be lost continuously on the weak field side and eventually break the

confinement.

Figure 1.2: Schematic of a tokamak.

[6]

In a non-uniform magnetic field, the positive and negative charges drift in opposite

directions. This makes the separation of charges and the forms an electric field

perpendicular to the magnetic field. Under the effect of E×B drift, drift velocities

of charged particles become asymmetric in the cross section. Particles drift out-

ward in the weak field side and drift inward in the strong field side. Therefore, the

tokamak device introduces a poloidal magnetic field besides the toroidal magnetic

field, which makes particle orbit switch between the high field side (HFS) and the

low field side (LFS) periodically, resulting in particle’s average drift tends to zero.



17

Figure 1.3: Charge separation and E×B drift in tokamak.

[7]

Since the existing of both the toroidal and poloidal field. The magnetic field lines

are twisted in a polar magnetic field. Then one can define the safety factor q:

q =
2π

ι
=
dΦ

dΨ
(1.2)

Where ι
2π

is named the rotational transform, which is defined as the number

of poloidal transits per single toroidal transit of a field line on a toroidal flux

surface. Ψ is so-called poloidal magnetic flux function, and Φ is toroidal magnetic

flux. With the assumption of large aspect ratio in circular tokamak (in the other

word, the inverse aspect ratio is small ε = r/R0 << 1), the safty factor can be

approximated by

q(r) =
rBt

RBp

(1.3)

where R and r are major radius and minor radius of tokamak, Bt and Bp are

the toroidal and poloidal field respectively. In the experimental study and mode

analyze of plamsa instability, the safety factor (the expression of mode structure

which aligns to the magnetic field) can also be expressed as:

q(r) =
m

n
(1.4)

Where m and n is poloidal and toroidal number, which represents number of turns

that field line circle back to original point. If both m and n are integers, it indicates
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that the magnetic field lines can be ”closed” after several transit. The magnetic

surface composed of such lines is called rational magnetic surface. On the contrary,

field lines on irrational surface can not close within limited circles. In magnetically

confined plasma, the oscillations of current, pressure. etc can cause resonance with

magnetic field on rational surface . Therefore, the main concentrations on tokamak

instability studies are focused on rational surface physics.

Figure 1.4: Tokamak limiter configuration(a) and Divertor configuration (b)

[8]

In tokamaks, the solid wall facing the plasma inside the vacuum chamber is called

the first wall. Due to the extremely high temperature and density of the plasma,

the first wall is easy to be damaged. Therefore,to avoid heat particles heating

the first wall, the magnetic flux lines of the outermost layer are generally opened

artificially to form a transition layer. The plasma in the vacuum chamber can then

be divided into two regions: the scraping layer SOL (Scrape-off Layer) and the

confined zone . The boundary between them is defined as the last closed magnetic

surface LCFS (Last Closed Flux Surface). In the confined zone, the magnetic

flux is closed, which is the main area that confines the plasma. This area can

be further subdivided into Main Plasma (MP) and Edge Plasma (EP) . In the

SOL, the lines of magnetic force are open, plasma parameters and profiles (ie.

pressure,current and temperature) decrease rapidly from MP to SOL in the radial

direction, providing protection for the first wall.

There are two kinds of shape or configurations of tokamak, the limiter configu-

ration and divertor configuration, shown in Figure 1.4(a) and Figure 1.4(b) re-

spectively. The installation of one or more restricting metal hole bars close to the
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internal edge of the first wall block the magnetic field lines to make field lines open.

The advantage of this approach is easy to control. The divertors configuration is

to introduce one or two independent small-scale annular divertor outside the EP.

The main function of divertor focus on making the magnetic filed on confinement

zone connect to the divertor magnetic field . The critical point of re-connection

is named X-point, the magnetic field lines inside the X-point remain closed, and

the magnetic field lines outside the X-point are introduced into the divertor. The

advantage of this configuration is that most of the particles and heat flow can be

directed to a specific divertor target plate, and limit the impurity generated by

plasma and target panel back to the confinement area effectively.

Experiment results have found that it is still hard to confine the particles in the

tokamak a long time with poloidal fields. This indicates that there is still a strong

radial particle and energy transport process in Tokamaks, which has strong cor-

relation with tokamak operating mode. Since then, it is important to study the

operating modes in tokamak.

1.2 H mode and L-H transition

1.2.1 Intoductions to L and H mode

In the tokamak discharge experiment, based on different discharge conditions and

macroscopic parameter distribution. Scholars divided them into three different

confinement modes: Ohm confinement mode, low confinement mode (L mode),

and high confinement mode (H mode).

In the early experiments, Ohmic heating (transformer produce the changing mag-

netic fields to create high-intensive current and heat plasma through induction

) was the primary method. However, with the increase of plasma temperature,

the resistance of plasma decrease severely, which is inversely proportional to the

3/2 power of the electron temperature. Therefore, the heating efficiency is sig-

nificantly reduced as the temperature increases. This kind of resistance was first

obtained by Spitzer and is named as Spitzer conductivity[9]. With the presence of

Spitzer conductivity, the plasma is far from reaching Lawson criteria with Ohmic

heating alone. In order to raise the constrained plasma temperature T, scientists

have developed a variety of auxiliary heating methods. The main methods include



20

neutral beam heating (NBI), low-hybrid heating (LHRH), ion cyclotron resonance

heating (ICRH), and electron cyclotron resonance heating (ECRH)[10]. However,

in the experiments with with those auxiliary heating, plasma confinement time

decreased significantly with the increase of plasma temperature. That makes the

”triple product” can not reach the minimum required value. This confinement

mode is defined as L-mode.

With the development in the auxiliary heating technique and tokamak, new con-

finement mode is obtained. In the year of 1982, an enhanced confinement mode

is discovered in the experiment of ASDEX when the auxiliary heating power ex-

ceeded a certain threshold at a high density[11]. On the contrary to L-mode, the

energy confinement time in this enhanced mode, does not decrease with plasma

temperature dramatically. In the ASDEX team’s observations, the confinement

time τL ≈ 40ms can be improved up to τH ≈ 150ms from L to H mode. That

makes it approachable to reach and maintain a higher fusion energy gain factor

Q, defined as the ratio of fusion power produced in a nuclear fusion reactor to

the power required to maintain the plasma in steady state. At the same time, in

this mode, the plasma edge region transport coefficient is reduced severely, along

with the increase of plasma density and temperature gradient. And the profile of

density and temperature become steep near the boundary. Since this mode has

much better confinement performance, it is also named as high confinement mode

(H mode). Ion temperature increase but edge density decrease signifantly from L

mode to H mode.

Many MCF device (tokamaks, stellarators etc.) have observed H-modes. In addi-

tion, it has been experimentally proved that various heating methods can achieve

H-modes, such as NBI ( ASDEX, 1982); ECRH (DIII-D, 1988); ICRH (ASDEX,

1987); LHRH (JT-60, 1990). There are even some devices that implement the H

mode in the case of ohmic heating alone, such as DIII-D (1990), ASDEX (1992),

Compass-D (1994) and MAST(1995) .

In the study of L and H mode confinement time, the scaling law is used to reveal the

dependence of confinement time on tokamak variables[12]. The energy confinement

time is defined as a function of the global plasma energy content W , and the

applied total heating power P [13]:

τE,th =
W

P − dW/dt
(1.5)
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It is one of the main figures of merit of magnetically confined plasmas. Since

the heating methods of these devices are different, the discharge patterns are

various, but the H-modes obtained by them all have similar parameter distribution

characteristics(profiles of density, current and pressure, etc). The estimated energy

confinement time is usually obtained from database of tokamaks. The typical

energy confinement scaling, such as IPB98(y,2)[12], has the expression:

τE,thIPB98 = 0.0365I0.97B0.08P−0.63n0.41M0.20R1.93ε0.23κ0.67 (1.6)

Where I(Unit : MA) is the plasma current, B(Unit : T ) denotes the toroidal

magnetic field, n(1019m−3) is the central line averaged density, P (MW ) is the

absorbed power, R(Unit : m) is the major radius, and the dimensionless factor M

, κ and ε are the hydrogen isotope mass, elongation and the inverse aspect ratio

respectively. Fig.1.5 demonstrate the experimental confinement time and energy

confinement scaling of some major devices in the world. From the figure, one can

see that predicted confinement time comes with fine agreement with experimental

results. Therefore, it is possible to estimate ITER’s (International Thermonuclear

Reactor) confinement time, since H mode will be one of its standard baseline

operating scenario[12].

Figure 1.5: H mode measured confinement time (y axis) vs. Predicted con-
finement time in different device.

[14]
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1.2.2 L-H transition

The process of overcoming the power threshold from L mode to H mode is called

L-H transition. To obtain and keep a steady H mode, it is of great importance to

understand the physics and character changes during the process of L-H transition.

From the experiment of JET in Figure.1.6, with the input of auxiliary heating,

one can find out that the Dα signal has a significant decrease around 18.0 seconds,

indicating that the outward transport of the plasma drops sharply. At the same

time of this L-H transition procedure, a large rise occurs in ion temperature Ti,

flow shears also become severe in this process.

Figure 1.6: L-H transition in JET, the above figures are the time evolutions of
(a) Dα , (b) ion temperature, (c)toroidal and (d) poloidal velocities. Different

color indicate the data in different poloidal position.

[15]

In an experiment on DIII-D (Figure.1.7)[16], with the development of the H-mode,

it can be seen that the core density profile is gradually flattened, and the relative

edge-density is rapidly steepened. At the same time, the spatial scale of density

gradient peaking is becoming narrow. After the full development of the H-mode
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(105ms), it is apparent that the density profile is significantly different from the

L-mode. In the experimental measurement of the H mode in different devices,

the density profiles always become steeper in a small interval (0.5-3 cm). This

area is called the edge transport barrier (ETB), also known as the pedestal zone.

The width of the area is defined as the width of the pedestal, and the maximum

value of this area is defined as the height of the pedestal. Besides the critical

improvement of density and temperature’ profile and gradients(shown in Fig.1.7)

, a peak of current also occur in pedestal region(Fig.1.8). The current and current

gradient will induce some instabilities, which will be discussed in section 1.3 and

Chapter 3.

Figure 1.7: The typical pedestal electron density(left) and temperature(right)
of L and H mode in DIII-D.

[16].
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Figure 1.8: The typical current profile of L and H mode, regenerated from
DIII-D’s data.

[16]

Edge transport suppression means the improvement of confinement. Although

the confinement time of H mode also decreases with heating power’s growth, it

is still 2-3 times the energy confinement time of L-mode. On the other hand,

longer energy confinement time also means enhancement of impurity constrain.

This leads to the rapid rise of thermal radiation caused by the impurity particles

, resulting in the aggravating of energy loss. It is impossible to maintain H mode

anymore when impurity’s fraction reaching a high rate. At this time, the H mode

will be converted back to the L mode. Therefore, the pure H mode is actually

difficult to be maintained all the time in the experiment.

Fortunately, experiment on JET revealed that there is a self-regulating mechanism

for H mode, that is, periodic outburst oscillation [17]. This kind of instability is

usually called Edge Localized Mode (ELM)[17, 18]. The oscillating mode causes

the ETB of the H-mode to collapse periodically, while releasing a large amount of

energy and particles. And then ETB will be quickly rebuilt due to the continuous

injection of external particles and heating power. The process of ELM crash is

generally very fast, which takes around 1ms. This process benefits the emission

of impurities and stabilizes the H mode discharge. This kind of H mode with

ELM is usually referred as the ELMy-H mode. At present, most of the devices

are mainly operating with ELMy-H mode. However, the side effect of ELMy-H
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mode is also serious. Since the ELM emits a large amount of energy and in a short

duration, it will bring a huge instantaneous thermal load to the first wall of the

device and the divertor (especially type I ELM). Therefore, the current research

on ELM mechanism and mitigation has become the urgent task of fusion research.

In the process of L-H transition, the flow shears and rotation are believed to play

an important role[15], especially with shear flows[19], in which zonal flow is one

of vital shear flow . The physics of zonal flow will be discussed in section 1.4 and

Chapter 4.

1.3 Edge localized modes(ELMs)

1.3.1 Definition

As it mentioned in the previous section, the H mode is a possible main operating

mode for ITER and future devices. In the ITER plan, the ELM-H mode is one of

the most important operating mode, since it is a possible way of maintaining H

mode (shown in Figure.1.9). With the progress of experiments, the data of ELM

is becoming more and more abundant, which provides a lot of data for further

experimental and theoretical research.
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Figure 1.9: The H-mode and L-mode typical pressure profiles and the effect
of losing plasma energy from the edge plasma as a result of an ELM; not only
is there a reduction in the edge gradients and a lowering of the edge pedestal,
but this leads to a reduction in core confinement, particularly for stiff transport

models

[20]

Generally, ELMs are defined as repetitive eruptions of particles and energy which

occur in some H mode plasma[21]. In the experiment, spikes of Dα trace(emitted

by the interactions between neutral particles and electrons), measured near the

seperatrix region, are widely used to indicate crashes and recovery of ELMs (Fig.1.10).

The eruption itself ELM is a local instability mode originating from MHD instabil-

ity and mainly occurring in the pedestal region. And is now generally considered

to occur when the pressure gradient in the base region reaches a certain thresh-

old. It makes the crashes of ETB on the boundary, and releases some energy and

particles. After ELM crash, the ETB is re-established and goes to next circle. In

Figure.1.11, an intuitive image of discharge are displayed to illustrate ELM crash.
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Figure 1.10: The measurement of Dα traces indicating ELMs

[22]

1.3.2 ELMs in experiments

Figure 1.11: (a) Inter ELM H-mode in MAST. (b) An ELM eruption in MAST

[22] .

In the experimental exploration of ELMs, scholars found that the characteristics of

ELM are not exactly the same. Under normal circumstances, based on relationship

between heating power and ELM burst frequency, ELMs are divided into three

types[23].

Type I ELMs: The burst frequency of this type of ELM grows with heating power.

And its occurrence causes an isolated, sharp outburst on the Dα signal.
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Type II ELMs: If tokamak trangularity keeps growing during type I ELM , then

the characters of type I ELM may change: the frequency increases, and the Dα

signal amplitude decreases. For Type II ELM, there is no obvious dependence of

the burst frequency on the heating power.

Type III ELMs: To the oppsite of type I ELMS, the burst frequency of this type

decreases with the heating power. This type of ELM often occurs at low power and

high collisional plasmas, which is not compatible with high performance operating.

Generally, the type I ELMy-H modes are one of most common modes. In addition,

the physics of type I ELMs are less complicated that the other two. Therefore,

the main focus of this thesis is type I ELMs.

1.3.3 Theoretical reviews of ELMs

Gohil et al simulated the type I ELM discharge in DIII-D using an infinite ideal

ballooning mode [24], and analyzed the ELM mechanism using Magneto hydro

dynamics (MHD) stability methods. They found that the plasma edge pressure

gradient continue to grow until it reaches a certain threshold. Subsequently, the

pedestal crashes and type I ELM occurs. Nevertheless, this conclusion is the

linear result of non-resistive mode. After that, the theory of ballooning mode

was developed, resistive ballooning mode[25] and kinetic ballooning mode[26] is

proposed.

Zohm et al analyzed the type III ELM in ASDEX using a nonlinear calculation

in a free-boundary cylindrical geometry[27]. They found that a turbulent mixture

with a nonlinear resistive exchange mode can induce a distortion instability, under

a sufficiently strong boundary current density gradient and pressure gradient. The

edge profile then crashes and causes intense radial transport. This mode is known

as the peeling mode, where both the boundary plasma current and the pressure

gradient provide energy for this instability.

Concluding previous theoretical studies, Synder et al proposed the coupled peeling-

ballooning mode[28], which predicts operational regimes where pedestal pressure

and bootstrap current lead to peeling unstable or ballooning unstable modes. The

peeling ballooning mode is well accepted and wide used theory in ELMs stud-

ieswhich described the conditions of different types of ELMs qualitatively(Figure.1.12).

The Fig.1.12 gives the threshold spectrum of bootstrap current J and edge pressure
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gradient ∇P of three different types of ELMs. However, Webster and Gimblett

do not agree with this argues that the peeling mode could occur, but its growth

rate can be arbitrarily small near the separatrix[29]. Hence, it is essential to ex-

plore the coupling of the peeling and ballooning modes and other effects leading

to ELMs. We will explore this topic in chapter 3.

Figure 1.12: The image interpretation of the relationship between the boot-
strap current J and the boundary pressure gradient for the three ELM crashes,
the black solid line represents the ideal scraping balloon mode stability zone,

and the dashed line represents the possible trajectory of the ELM burst.

[30]

In addition, the effects of flow shear on different MHD instabilities have been dis-

cussed in numerous analytical studies[31]. Resistive wall modes can be stabilized

by sufficiently fast toroidal rotation; ballooning modes are stabilised by sheared

toroidal flows[32]. Experimental work on KSTAR also suggests stabilization of

pedestal instabilities due to toroidal rotation[33]. In addition, the energy losses of

ELMs have been shown to be reduced by counter current direction NBI heating

in JT-60U [34]and DIII-D [35].

However, all the simulations and analysis work on rotation and flow shear effect

are treat the shear flow as a correction term, which are not self-consistency modes.

Therefore, it is needed to develop a self-consistency on the influences of plasma

rotation and flow shear on ELMs. Related studies will carried out in chapter 5.
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1.3.4 Methods in ELM mitigation

At present, the methods of ELM mitigation can be divided into active and passive

ways. The passive method mainly puff cold plasma or impurity gas in the diver-

tor chamber to generate off-target plasma. This method can significantly reduce

the temperature of the divertor, but neglect the ELM’s influence on plasma. The

positive method mainly focus on directly changing the behavior characteristics of

ELM. The active control methods mainly include Resonant Magnetic Perturba-

tions (RMP), pellets injection, radio frequency (RF) heating and so on.

The method of RMP has achieved relatively successful results on DIII-D, ASDEX-

U, JET and MAST devices[22, 36, 37]. RMP forms a stochastic magnetic field

at the edge of the plasma, enhances particle transport (but has little effect on

energy transport, its mechanism is unclear) The mechanism is to make pedestal

plasma pressure and current under Peeling-Ballooning mode stability threshold.

However, the applying of RMP cause plasma pump-out, leading to weaker energy

constraint.

The method of Pellet ELM Pace Making mitigate ELM by adding pellet on

pedestal to trigger ELMs to reduce the level of ELM crash[38]. But the pellets are

hard to control since large pellet are found to break the plasma confinement[39].

Another method is using Electron Cyclotron Resonance Heating (ECRH) to change

the pedestal pressure gradient to suppress the ELM. which has been achieved in

TCV devices[40](Fig.1.13). By heating the plasma directly in pedestal regions,

the pressure profiles are changed, then the characteristic of ELM will be changed.

Then ECRH can trigger small ELMs more frequent by avoiding large size ELM.

The experiments in ASDEX-U also reveal that edge ECRH can mitigate ELM by

increasing the natural ELM frequency, and decreasing the energy loss per crash[41].

Moreover, ECRH is unparalleled in its degree of localization of the power deposi-

tion. Therefore, ECRH can be a potential method to mitigate ELM. We will also

address short discussions in chapter 4 and appendix A about this idea.
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Figure 1.13: ELM was significantly relieved or even suppressed from 0.8s after
the injection of ECRH. The y axis in each graph (from top to bottom) is Dα,

electron density, energy, β and electron temperature.

[40]

1.3.5 The Quiescent H-mode

Benefiting from the improvement of core transport and impurity control[20], ELMy-

H mode is one of most significant most operating mode in current and further

machines[42]. However, ELMs can also produce significant erosion in the divertor

and the first wall. Due to this intolerable bursty heat loads, ELM becomes one

of the the serious concerns for next generation devices such as ITER[42]. Under

that circumstance, possible solutions are required which still possess good H-mode

confinement and sufficient edge particle transport for impurity exhaust but have

good mitigation of ELMs.

Among the ELMy-free H mode, the Q-H mode is supposed to access higher and

wider pedestal pressure[43, 44], and give rise to a path to the Super H-mode

regime with very high pedestals[44]. Therefore, the Q-H mode is suggested to be

one achievable higher performance H mode in ITER and further devices[45]. In

the
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First discovered on DIII-D[46] and obtained later on other machines like ASDEX-

Upgrade[47], JT-60U[48] and JET [49], Q-H mode is proved can retain good con-

finement and impurity transport as ELM, but avoid impulsive heat load problem.

Under the operation of Q-H mode, the confinement time can reach 4s in DIII-D.

The fusion performance is close to the goal of Q = 10 performance on ITER. In the

experiments of DIII-D, Q-H modes are proved to operate at high pedestal density

and temperature profiles as ELMy-H mode (shown in Fig.1.14 ).

Figure 1.14: Fits of (a) edge electron density, (b) temperature, (c) total pres-
sure and (d) the ion temperature for a QH phase (solid line), shot 3000 ms, and

ELMing phase (dashed line) at 1210 ms (shot 106919)

[50]

First, QH-mode plasmas on DIII-D and other devices were obtained under the

injection of counter-current NBI [51]. Later, Q-H co-current NBI injection was

also observed on DIII-D[52]. Further on, Q-H mode operation was achieved by

both counter-current[53] and co-current rotation shear[54] at low NBI toque, with

the use of non-axisymmetric fields.

In the theoretical researches, the low-toroidal (n) mode number multiple MHD os-

cillation (specifically electrostatic potential), named the edge harmonic oscillation

(EHO), is thought to be the key factor causing Q-H mode[55]. The mechanism of
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EHO induced Q-H mode is mainly considered as the momentum saturation of low

n kink/peeling mode, which mitigates the explosive process of ELM[52]. Varies

simulation work using EFIT[45], M3D-C1[56] and BOUT++[57] believe that large

edge flow shear plays an important role in driving EHO. However, the dynamics

of EHO’s formation is still not fully understood, related studies are planned for

future work.

1.4 Zonal flow and geodesic acoustic mode

1.4.1 Introductions of Zonal flow and geodesic acoustic

mode

The Zonal flow (ZF) is a kind of steady flow along the latitudinal direction, oposed

to meridional flow along longitudinal lines. ZF is a ubiquitous phenomenon in

nature, such as the light and dark strips in Jupiter’s atmosphere (1.15)[58]. These

strips of different colors have different rotational velocities.

Figure 1.15: ZF in Jupiters atmosphere, measured relative to the planets
internal rotation rate. Alternations in wind direction are associated with the

atmospheric band structure.

[58]

There also exists ZF in the plasma. The ZF in the Tokamak plasma is defined

as a flow with symmetrical structure in poloidal direction. The existence of ZF

was predicted from theory and simulation, which closely related to the transport
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phenomenon in magnetic confinement fusion[59]. Also, the presence of the zonal

flow was observed in the experiment[60]. Recent researches show that ZFs can

effectively mitigate the turbulence transport(Figure.1.16), and thus, improve the

confinement of plasma and promote L-H transition[61]. On the other hand, the

geodesic acoustic mode (GAM), the high frequency branch of zonal flows, also

received increasing attention, which also plays a key role in H mode operation[25].

Figure 1.16: a) Voticity of turbulence (eddies) with ZFs b)Vorticity of turbu-
lence without ZFs c)Ion heat transfer coefficient with and without ZFs. From
the figure, it is found that ZFs can reduce the scale of turbulence and improve

the confinement.

[61]

1.4.2 Basic studies for ZFs and GAMs in plasma

The ZF is an electric field oscillation with a finite radial wave number which is

symmetric/approximately symmetric in both toroidal and poloidal directions (n =

0,m ≈ 0)[62]. It can not absorb free energy from plasma or cause radial transport.

There are two types of ZFs, one of them is steady-state, named zero frequence

zonal flow (LFZF) or residual; the other has a finite oscillation frequency, known

as GAM.[62] Normally, the LFZF is called ZF while the high frequence on is called

GAM.

Hasegawa and Mima first proposed the concept of a ZF in the simulation of

the Hasegawa-Mima equation[59], which was originally used to describe the drift

wave turbulence, which later explained the anomalous transport phenomena in the

plasma. Lin et al verified the presence of ZF using the simulations of gyro-kinetic

code[61]. The characters of ZFs were then widely studied, and the machanism
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and damping rates revealed using MHD equations[63–65]. Later, Diamond[62] re-

viewed those works and summarized that ZFs are related to the drift flow, flow

damping and turbulence.

Figure 1.17: A physical image of the interaction between drift waves, turbu-
lence and ZFs.

[62]

The GAM was first discovered theoretically by N. Winsor et al. in 1968 [66]. They

discovered a new mode when studying the confinement properties of the plasma,

and the period of this mode is almost the time required for the sound wave to

rotate around the large torus(≈ (Cs
R

), where Cs is the ion acoustic velocity). This

mode is also accompanied by a large radial electric field. The density perturba-

tion is a single harmonic (m=1) in the poloidal direction. Winsor et al[66] then

derived its dispersion relation. It was found that this mode was caused by the

geodesic curvature of magnetic fields, leading to compression of the poloidal EB

flow. Therefore, this mode is called the geodesic acoustic mode. In magnetic con-

finement fusion experiments, the phenomenon of GAM was first observed in the

German tokamak device TEXT[67]. Since then, it has been observed on many

different devices[32, 68, 69]. Then the damping rate, frequency and propagation

characters have also been studied by many scholars[70, 71], which will reviewed in

chapter 5.

As reviewed in section 1.2, flow shear plays an important role in the L-H transition

and ELMs. As a vital part of shear flow, the study of ZFs and GAMs are necessary.
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It has been found that in a non-rotating system, ZFs are linearly stable and

the GAMs are standing waves[62]. However, it has been suggested that there

exists a critical equilibrium toroidal rotation flow in a tokamak plasma[72].Some

authors have solved the eigen value problem of geodesic acoustic modes in such

toroidally rotating plasmas using fluid models [73, 74]. However, they mainly

studies the effects of rotational correction in non-rotating system, which are not

so self-consistent. Therefore, it is of great interest to investigate the effects of

toroidal flow on ZFs and GAMs, which will be explored in chapter 4.

This thesis will be arranged as follows: the first chapter reviewed relevant plasma

concepts and theories related to this thesis. In chapter 2, we will list and review

the methodologies including FCI method, BOUT++, Corsica and Hermes code. In

the third chapter, the theory of ELMs crashes, especially the Peeling-Ballooning

mode and kink mode are discussed. In this Chapter, we studied the influence

of current profiles on ELM crashes, the kink-ballooning mode are proposed and

verified by simulation. A rigid derivation of Simokav’s cold ion fluid equation is

derived under the condition of uniform toroidal rotation in Chapter 4. In this

chapter, we also modified the Hermes cold ion model to simulation the rotation’s

effects on GAM and ZF. In the Chapter 5, we further derived a reduced MHD

model to simulate toroidal rotation’s effect’s on ELM crashes. The conclusions

and discussion are lay on last chapter.



Chapter 2

Methodology

The main methods of this thesis is analytic and simulation work, trying to explain

experimental and physic problems qualitatively by adding new terms to simulation

codes. The main simulation tools used in this thesis are Elm-pb(chapter 3 and

Chapter 5) and the Hermes-1 cold ion model (chapter 4), both of them are devel-

oped using the BOUT++ framework. The CORSICA tool is also used to generate

equilibrium(chapter 3). The outputs analysis of simulation results were developed

by the author using MATLAB. In this chapter, the BOUT++, CORSICA and

Hermes code will be introduced briefly.

2.1 BOUT++ framework

2.1.1 History and basic functions

The BOUT++ code is an object oriented C++ code. Its predecessor was the

Boundary Turbulence (BOUT) code developed X.Xu and M.Umansky in the 1990s

. The BOUT code is mainly applied to the numerical simulation of the fluid

model of the boundary physics of the plasma in the Tokamak. Developed by Dr.

Benjamin Dudson[75], the main objects of BOUT ++ focus on the physics near

(both inside and outside) the last closed surface in tokamak geometry, including

the physics of the core plasma (not applied for the region near the axis) , scrape-oof

layer and the divertor of tokamak geometry.
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BOUT++ enables users to build and change the physics problems without re-

quiring lots of numerical works of on the underlying code. BOUT++ consists of

routines to handle input/output files, Ordinary Differential Equation (ODE) in-

tegrators, definitions of operators and data types for calculating time derivatives

and so on.

For the users, only two parts need to be developed: physics-init” and physics-

run”. Physics-init is the initialization and specification of grids,variables, data and

operators, which is only executed once when the program is initialized. physics-

run” is used to solve physics models and equations, with choices of derivative and

integration operators.

BOUT++’s physical module requires two input files for initialization, an option

file BOUT.inp and a grid file to provide grid point information for program execu-

tion. The option file BOUT.inp uses the standard text configuration file format,

which has the same format as a windows ini file . It contains various parameters

that control the simulation process and can be easily edited. By specifying the

simulation time, the iteration step number, the solver, the boundary conditions,

and other options of equations in this file, users can open or close some terms

during the simulation to look into the physic problems.

The equilibrium information can be read from the grid file, including the coordi-

nate system used in the simulation. The BOUT++ code itself does not have a

module that calculates the force-balanced equilibrium files. These sort of funci-

tions are usually fulfilled by other codes such as Corsica and EFIT. BOUT++ can

interface to NetCDF or HDFS data file formats, which can be converted from ”a

file” and ”g file” .

The output data of BOUT++ is usually saved into NetCDF files. Due to the

parallel computing method, the data will be allocated to different CPUs. So the

outputs will be stored in different files based on each process. After the simulation

is completed, various numerical analysis tools such as python, IDL and matlab

can be used to collect the data from output files generated by each process.

In the following parts of this chapter, the boundary condition and coordinate

system of BOUT++ will be introduced briefly. I will also give short review on

Corsica and Hermes cold ion mode in last two chapters.
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2.1.2 Boundary conditions

There are numerous predefined boundary conditions, such as Dirichlet(zero value)

and Neumann(zero gradient), which are available for input file and physics models.

Users can also define the position and width of the boundary. Each boundary

conditions of variables should be chosen carefully to meet the needs of variables

and keep the model self consistent. In the x (radial) direction, there are two

boundary cells of each sides of boundary, shown in Fig.2.1. The current density

and electrostatic potential of the boundary have the relations (boundary conditions

of electromagnetic field ):

B · (j + j0) = 0

B · ∇(φ+ φ0) = 0 (2.1)

where j0 and j, φ0 and φ represent equilibrium, perturbed current and potential

separately. And the vorticity U is set to zero for the outer boundary cell.

Figure 2.1: Grid cells of x direction eclosed with inner and outer boundary

[76]

2.1.3 Coordinate system of BOUT++

The field-aligned coordinate system is the main coordinate applied in BOUT++.

All the grids are generated and placed in field-aligned coordinate system. The

expressions for coordinates are:

x = σBθ (ψ − ψ0) y = θ z = σBθ

(
ζ −

∫ θ

θ0

ν (ψ, θ) dθ

)
(2.2)
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where σBθ ≡ Bpol/ |Bpol| is the sign of magnetic field, ζ and θ are toroidal and

poloidal angle, ψ is ploidal flux, hθ denotes the poloidal arc length of field line, ν

is the pitch of field line with [75]:

ν (ψ, θ) =
B · ∇ζ
B · ∇θ

=
Btorhθ
BpolR

= BtorJ/R (2.3)

from the definition, the contra-variant basis vector can be written as[75]:

∇x = σBθ∇ψ ∇y = ∇θ ∇z = σBθ

(
∇ζ −

[∫ θ

θ0

∂ν (ψ, θ)

∂ψ
dθ

]
∇ψ − ν (ψ, θ)∇θ

)
(2.4)

In filed aligned coordinate, the magnetic field is written in Clebsch form:

B = ∇z ×∇x =
1

J
ey. (2.5)

And the contra-variant components of B are therefore:

By =
Bpol

hθ
Bx = Bz = 0 (2.6)

Hence the expressions of field B has the form:

B =
Bpol

hθ
ey (2.7)

where ey is the y component of co-variant vector basis. The Jacobian J in this

coordinate is defined as:

J−1 ≡ (∇x×∇y) · ∇z = Bpol/hθ. (2.8)

The use of Clebsch coordinate systems both benefits some advantages and bring

several shortcomings. The main advantage is to make the numerical computation

more efficient in turbulence and MHD instability models[77]. Since the paral-

lel perturbation often dominates the plasma oscillations when flute assumption

(k|| << k⊥) is applied. And most MHD equations are written into perpendicular
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and parallel directions separately[10]. In Clebsch coordinate systems, the parallel

derivatives can be simplified to be taken along y direction, benefiting less number

of necessary grid points. By aligning a coordinate to the magnetic field, flows

along the magnetic field are not mixed with the perpendicular direction. If this

is not done, then large parallel flows can lead to numerical perpendicular flows

which are bigger than the physical cross-field flows.

Figure 2.2: Field lines in (θ, ζ) (left) and (y, z) (right) space in orthogonal
and Clebsch coordinate separately.

[78]

On the other side, there is no way to refrain from shortcomings of field-aligned

system. One demerit is that the system has difficulties to deal with physics in

complex geometries, such as tokamak poloidal cross section with magnetic nulls

or X -points. Since the singularities of metric tensors are inevitable for multiple

magnetic topologies[79]. To avoid this topological singularity, grids of separatrix

locations are generated independently. However, BOUT++ simulations of ge-

ometry with X-points physics are still susceptible to numerical instabilities[80].

A second disadvantage is field-aligned coordinate system is complicated, makes

transforming from real space to simulation space error-prone.

Although BOUT++ defined its own coordinate system and grids, it still rely on

other codes to calculate equilibrium. Corsica is one of these codes.

2.2 Tokamak equilibrium and Corsica

Grids are also an important input for BOUT++. An equilibrium file is often

required for the BOUT++ model. For tokamaks, the Grad-Shafranov equation is
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a widely used method to generate equilibrium arising from ideal MHD[81]:

δ2Ψ = −µ0R
2p

′ − FF ′ (2.9)

where p is the pressure profile, F relates to Ip/2π the poloidal current contributed

from coils and plasma. The poloidal flux surface Ψ = Ψp is defined as(Fig.2.3):

Ψp =

∫
B · dSp (2.10)

Figure 2.3: Sketch of poloidal flux surface function in torus device

[82]

CORSICA[83] is an advanced modeling tool to generate grids file suitable for

BOUT++ by solving Grad-Shafranov equation. It can generate free boundary

(without the wall of plasma) and fixed boundary(with ideal or conductive tokamak

walls) equilibrium with various radial and poloidal grids. Users can also change

the current and pressure profiles or increase the grids of existing equilibrium by

resolving the Grad-shafranov equation. Therefore, it is self-consistent way to get

the grids for BOUT++ framework. In Chapter 3, we will use Corsica to generate

a new equilibrium for the simulations.
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2.3 Hermes cold ion mode

To study the edge turbulence and ion, momentum, heat transports. A 5-field re-

duced 2-fluid MHD code was developed in the BOUT++ framework[84]. The basic

equations of Hermes follows the equations derived by Simokav[85]. Because of the

increasing complexity and difficulties in numerical simulations for full drift-fluid

model. When the ion ion diamagnetic effects(for example, core region plasma with

little pressure gradients) and ion viscous are not the mains concerns of the study.

Model can be reduced to cold ion model by assuming the ion thermal pressure

pi = eTi = 0. This is a common assumption in fluid turbulence codes such as

STORM[86, 87], ESEL[88], GBS[77]. It simplifies the equations by removing the

ion viscous forces and the difficulties associated with the ion diamagnetic cancella-

tion (the near, but not exact, cancellation between the ion diamagnetic advection,

and ion gyroviscosity terms in the momentum and ion energy equations). The cold

ion assumption neglects the ion diamagnetic effects, which tend to suppress small

scale instabilities, but retains the essential effects required here, including radial

force balance, plasma momentum, the ballooning, peeling and kink instabilities

which cause ELMs. Because the ions do not experience a diamagnetic drift, some

effects are not included, such as the ion pfirsh-schluter flow, although the pfirsch-

schluter current is included through the electron diamagnetic terms. Equations

evolve the of density n, electron pressure pe, vorticity ω and Ohm’s law :
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∂n

∂t
= −∇ · (nVE×B + nVmag)−∇||

(
nev||e

)
+∇ · (Dn∇⊥n)

+Sn − S (2.11)

3

2

∂pe
∂t

= −∇ ·
(

3

2
peVE×B + pe

5

2
Vmag

)
− pe∇ ·VE×B

−5

2
∇||
(
pev||e

)
+ v||e∂||pe +∇||

(
κe||∂||Te

)
+0.71∇||

(
Tej||

)
− 0.71j||∂||Te +

ν

n
j||
(
j|| − j||0

)
+∇ ·

(
3

2
DnTe∇⊥n

)
+∇ · (χn∇⊥Te) + Sp −Q (2.12)

∂ω

∂t
=

{
−∇ · (ωVE×B) [Boussinesq]

−∇ ·
[

1
2

(
ω + n

B
∇2
⊥φ
)

b×∇φ
B

]
+∇⊥ ·

(
1
2
∂ni
∂t

1
B2∇⊥φ

)
+∇||j|| −∇ · (nVmag) +∇ · (µi∇⊥ω) (2.13)

∂

∂t

(
nv||i

)
= −∇ ·

[
nv||i

(
VE×B + bv||i

)]
− ∂||pe

+∇ ·
(
Dnv||i∇⊥n

)
− F (2.14)

∂

∂t

[
me

mi

(
v||e − v||i

)
+

1

2
βeψ

]
= νj||/ne + ∂||φ−

1

ne
∂||pe − 0.71∂||Te

+
me

mi

(
VE×B + bv||i

)
· ∇
(
v||i − v||e

)
(2.15)

where the Sn, Sp, Q and F are the external density, pressure , thermal and force

sources. The parallel current j|| = ∇2
⊥ψ, The value of parallel electron thermal

conduction coefficient in this model is given by κ||e = 3.2nev
2
th,eτe, where vth,e is

electron thermal speed and τe is the electron collision rate. The resistivity is used

as ν = (1.96τemi/me)
−1, D⊥ and χ⊥ represent anomalous particle and thermal

diffusivities coefficients. Derivative notations are have the following definition:

∂||f ≡ b · ∇f ∇||f ≡ ∇ · (bf) (2.16)

the definitions of E×B and dia-magnetic drifts are:

VE×B =
b×∇φ
B

Vmag = −Te∇×
b

B
(2.17)
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For the approximation of Boussinesq (with assuming spatial derivative of density

is zero in vorticity equation), vorticity can be also written as:

ω ' ∇ ·
(

1

B2
∇⊥φ

)
(2.18)

Compared to other BOUT++ model, Hermes is a fully non-linear code that can

simulate parallel asymmetric cases for turbulence including GAM and ZF(will be

discussed in Chapter 4). New solvers and operators, especially for the calculations

of petential φ and E×B flows are also developed to improve the numerical accu-

racy. The Hermes code makes it possible to simulate local and global flux-driven

transport or MHD instability self-consistently driven by density and potential tur-

bulence.

In this thesis, the Hermes and Elm-pb model (will be introduced in chapter 3)

are the main codes in simulation work. Hermes is a 5 field double fluid model

focusing the edge turbulence and transport. While Elm-pb mainly studies the

edge MHD instabilities based on shear-Alfven’s law. Compared to the Elm-pb

mode, Hermes can study physics in the low toroidal mode number n. Since the

Elm-pb model is derived assuming the flute ordering[89], which fails for low n

modes. This is particularly obvious in the Laplacian inversion, plasma potential

is calculated from Eq.(2.18) using Laplacian inversion[90], parallel derivatives are

neglected in the elm-pb and other old version BOUT++ models. Especially for

n=0, the Laplacian inversion causes great numerical errors in elm-pb and other

old versions BOUT++ code. Also, more operators are developed for Hermes

code specified in Parallel derivatives, which makes it possible to study asymmetric

problems.



Chapter 3

The study of coupling effects of

peeling-ballooning mode and

Kink-ballooning mode

In this chapter, the theories about ballooning, peeling and kink modes are re-

viewed. In particular, for the operation of ITER, ELM studies are a very impor-

tant topic[91]. A predictive understanding of the onset of type-1 ELMs has been

gained via the development of the peeling ballooning model[31], in which ELMs

are triggered by instabilities driven by the large pressure gradient (ballooning) and

bootstrap current (peeling) in the edge of the plasma. However, studies of peeling

modes in the presence of an X-point [29] indicate that peeling modes can occur, but

that its growth rate is arbitrarily small in the presence of a separatrix[29]. How-

ever, that paper does not address the question of what happens with a separatrix.

Instead it studies whether high-n kink modes can occur in the pedestal, and their

properties in simple geometries without X-points. Analytic work by Wang[92] et

al proposed that kink instabilities can occur with high toroidal mode numbers in

the pedestal, triggering ELMs[92]. His work also indicates that kink modes in

the pedestal depend on the current shape instead of the geometry of separatrix.

Following his work, we study the kink-ballooning mode plasma instability, which

is driven by internal current close to the plasma boundary and pressure gradient.

The kink mode criteria of plasma current profile is investigated. Caltrans-Corsica

was then used to regenerate the equilibrium, keeping the pressure constant whilst

varying current profiles. Using the BOUT++3-field elm-pb code, then we obtain

the growth rates and mode structures of kink-ballooning mode. We find that
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the kink-ballooning mode has smaller poloidal resonant mode numbers and lower

growth rates at low toroidal mode numbers compared to peeling-ballooning mode.

The main findings of this chapter indicate that the current-driven (peeling) com-

ponents of the peeling-ballooning mode are sensitive to resonances outside the

plasma. This makes it sensitive to the separatrix and resistivity in the SOL. In

contrast, kink modes can in some circumstances be unstable in the pedestal, which

are not sensitive to external resonances or conditions outside the plasma edge, im-

plying that kink-ballooning modes may drive ELMs in some peeling-ballooning

stable regions.

3.1 Ballooning, kink and peeling mode

As reviewed in the previous chapter, most existing theories propose that the ELM

instability is related to two modes: the ballooning mode [93]- a kind of interchange

instability driven by the pressure gradient, which can be stabilized by current gra-

dient ; and the peeling mode[94], which is a current-driven external kink instability

in the boundary. It is believed that the coupling between the peeling and balloon-

ing modes makes the plasma exceed the stability threshold, triggering the ELM

and the crash of pedestal profiles. As shown in Figure.3.1, the operating pro-

files of pressure gradient plasma current are limited in a narrow region by the

peeling-ballooning mode.
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Figure 3.1: Stable operating region of peeling-balloon mode in pressure gra-
dient and edge current space.

[95]

Besides the peeling-ballooning mode, Manickam [94] proposed that the ideal kink

mode can trigger ELMs. They studied this linear mode using a series of ideal

current and pressure profiles, neglecting the plasma resistivity. In those cases, it

was found that the instability of the kink mode is mainly determined by the edge

current density and stabilized by the shear of the plasma current. Thus, a similar

conclusion can be given that the enhanced edge current density will make the kink

mode unstable. In a finite pressure plasma, this mode can lead to two outcomes:

exciting an ELM or extend into the plasma core region with a relatively wide radial

dimension. Therefore, it is still necessary to look into the mechanism of ELMs,

focusing on the relationships between ballooning, peeling and kink mode. Before

exploring their coupling effects, basic theories of these modes are reviewed.

3.1.1 Ideal MHD equation and Energy principle

As mentioned in the first chapter, unstable ideal MHD modes are often dangerous

for the plasma[89]. In order to avoid them, the main equations to study the

characters of fluid plasma are the combination of the ideal MHD equation with

Maxwell equations.[4]:
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Continuity Equation :
dρ

dt
+ ρ∇ · v = 0 (3.1)

Momentum Equation : ρ
dv

dt
= J×B−∇p (3.2)

Energy Conservation Equation :
dp

dt
+ γp∇ · v = 0 (3.3)

Faraday′s Law :
∂B

∂t
= ∇× (v ×B) (3.4)

Ampere′s Law : ∇×B = µ0J (3.5)

∇ ·B = 0 (3.6)

Where ρ is the plasma density , v is the plasma velocity, B and J are magnetic

field and plasma current respectively, and the time derivative operator is defined as
d
dt

= ∂
∂t

+v·∇. These forms of the ideal MHD equations make several assumptions:

1) quasi-neutrality ni = ne, 2) the typical length scales are much larger than

Larmor radius, 3) the frequencies of interest should be much smaller than the

ion cyclotron frequency, 4) electron inertia (me) and hall effect (j × B term in

Ohm’s law) are neglected, 5) high collision rate, no dissipation and no trapped

particles(no neoclassical effects), 6) displacement current is also set to zero in

Maxwell equations.

However, these equations are not so “simple” in analytic study of plasma stability

when including boundary conditions. Therefore, a simple method is required to

avoid instability without studying the details of plasma self-destruction.

In that situation, the energy principle was proposed from the perspective of en-

ergy, which is a powerful method for testing ideal MHD stability in arbitrary 3D

magnetic confinement configurations. The energy principle is applicable to lin-

ear stability analysis. To obtain expressions of a system, one should linearize all

quantities of interest in their equilibrium values[4]:

q(r, t) = q0(r) + q̃1(r, t) (3.7)

q̃1(r, t) = q1(r)e−iωt (3.8)
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where q represents each variable in the equations. ω is the frequency of variable’s

eigenmode. And we can also introduce the plasma displacement vector ξ̃ defined

as ṽ1 = ∂ξ̃
∂t

.

Setting the initial conditions of perturbed variables to zero, one can obtain the

linearized expressions for the ideal MHD equation[96]:

Continuity : ρ̃1 = −∇ · ρ0ξ̃ (3.9)

Momentum : F(ξ̃) = J1 ×B0 + J0 ×B1 +∇
(
ξ̃ · ∇P0 + γp0∇ · ξ̃

)
(3.10)

Energy Conservation Equation : p̃1 = ξ̃ · ∇P0 + γp0∇ · ξ̃ (3.11)

Faraday′s Law : B1 = ∇× (ξ̃ ×B0) (3.12)

Ampere′s Law : µ0J̃1 = ∇× (∇× (ξ̃ ×B0)) (3.13)

Where F(ξ̃) is the force acting on plasma due to virtual displacement. Using the

variational principle, one can obtain an intuitive expression of energy principle

after some manipulation[4]:

δWP =
1

2

∫
dV ×

[ |B1|2

µ0

Field-line bending ≥ 0

+
B2

0

µ0

|∇ · ξ⊥ + 2ξ⊥| Magnetic compression ≥ 0

+γp0|∇ · ξ|2 Plasma Compression ≥ 0

−2 (ξ⊥ · ∇p) (κ · ξ∗⊥) Pressure drive, + or -

−B1 · (ξ⊥ × b) j||] Parallel current drive, + or - (3.14)

From the expressions in the above equation, the first three terms are never less

than zero, that means they stabilize the plasma.[10] However, the last two terms

can be negative and become the source to drive instabilities.

In those terms of Eq. 3.14, |B1|2
µ0

is the energy which goes into bending field-lines.

The perturbed magnetic field B1 is given by

B1 = ∇× (ξ1 ×B).
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In the second term, κ = b · ∇b is magnetic field line curvature. The term

γp0|∇ · ξ|2 represents compression of plasma, its value is zero for an incompress-

ible fluid . The last two terms of Eq. 3.14 can be destabilizing when they are

less than zero. Instabilities driven by these terms are often called pressure-driven

and current-driven modes respectively. Pressure-driven instabilities include inter-

change modes(eg. ballooning mode), whilst external kink (peeling) and internal

kink modes are current-driven instabilities. These instabilities are considered as

the cause of ELMs[89] instabilities.

3.1.2 Ballooning mode

In the Tokamak magnetic configuration, the magnetic field strength decreases

with the major radius, so the magnetic pressure gradient (also known as magnetic

pressure force PB = B2

2µ0)
) is always inwards major radius. The plasma pressure

gradient is always in the minor radius. This radial asymmetry causes the curva-

ture of the magnetic field to be divided into “good curvature” and “bad curvature”

regions (shown in Figure.3.2). Assuming an initial disturbance of a flux surface,

the plasma is shifted outward, thus makes the magnetic field weaker in the LFS.

In the ”bad curvature” side (LFS), the weakening of the magnetic field is accom-

panied by a reduction of the magnetic tension and magnetic pressure. This further

exacerbates the imbalance between magnetic and plasma pressure. The greater

the disturbance, the smaller the resistance force from the field, which makes this

instability grow. On the HFS, the oscillations are suppressed due to the enhance-

ment of the magnetic field HFS strength the stabilizing effect of ”good curvature”.

Figure 3.2: Relationship between magnetic pressure and dynamic pressure in
tokamak.

[91]
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In a further theoretical analysis, the one-dimension ballooning mode equation is

derived from energy principle[93]:

d

dη

[
1 + (sη − αsinη)2

]dF
dη

+ α
[
cosη + sinη(sη − αsinη)

]
F = 0. (3.15)

Where F is function of energy, η is defined as the ballooning angle θ by Fourier

and ballooning transformation:

F (θ, x) =
∑
m

e−imθ
∫ +∞

∞
eimθF (η, x)dη (3.16)

The magnetic shear and pressure gradients are expressed as two dimensionless

quantities s and α respectively. The relationship between those two parameters

are expressed as [31]:

s =
r

q

dq

dr

α = −2µ0Rq
2

B2

dp

dr
(3.17)

Where R and r are major and minor radius respectively, p is pressure and q is

safety factor. Qualitative analysis indicates that the balloon mode has a stable

space at high magnetic shear and low pressure gradient. For a circular cross-

section plasma, the stable region of the ballooning model can be obtained in the

s−α space, shown in Figure.3.3. Consistent with qualitative understanding, as the

pressure gradient increases, the plasma becomes more unstable, requiring stronger

magnetic shear to stabilize the plasma. Since the magnetic shear is the measure

of the magnetic field, the distance between field lines grows with magnetic shear,

thus the instabilities can not entire localized on the unfavorable side, resulting in

destabilizing energy reduced. On the other hand, low shear allows mode structures

to keep almost the same on adjacent field lines, the increasing magnetic shear can

prevent the fast growth of ballooning instability in the radial direction.
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Figure 3.3: The s− α stability diagram for different aspect ratios, the space
enclosed by different curves are the ballooning instability regions for different
aspect ratios(ε = a/R0) respectively. The solid line shows ε = 0, the dash-dot
line ε = 0.025, the dotted line ε = 0.05 and the dashed line ε = 0.1 when q = 3.

[97]

At fixed shear s, when α is small, the ballooning mode is stable (first stable

zone); when the pressure gradient parameter α increases, the ballooning mode

will become unstable. When α continues to increase, the ballooning mode changes

back to stability and enters the so-called second stable zone. The stable space

of the ideal ballooning mode is in the upper left part of Figure.3.3 , which is

the working space for most tokamaks. However, there is also a second stable

region in the case of higher pressure. This region also has a high β, the reason

for stabilization is that the local shear is negative. The possible existence of the

second stable zone is good news for future high-parameter operation, but further

testing is still needed [91]. Unfortunately, it is quite hard to access to the second

instability for circular plasmas [98], but when the plasma is shaped, theoretical

work proved that the increased elongation and triangularity can access to the

second stable region[99]. Nevertheless, there has been a long debate about second

instability. It may be closed by kink/peeling modes. Experiments on DIII-D

[100]and C-MOD[101] report the existence of ”Super-H-mode”, with higher density

and pressure operation than standard H-Mode operation. Theoretically, a model

named EPED[102], with the hypothesis that multi-mechanisms contribute to the

forming of H mode, including kinetic ballooning mode(KBM) and P-B mode,

predicts the H-mode and Super-H-mode performance regions in pedestal(mainly

pedestal height and width). The calculation results come to good agreements
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with some experiments[103]. The EPED model also indicates and proves that

shaping effects play a very important role in accessing Super-H-mode. The strongly

shaped plasma can not only stabilize the ballooning mode, but decouple peeling

and ballooning instability[100]. Therefore, although the shaping effects on ELMs

are not this thesis, it will be studied in future work.

3.1.3 Kink and peeling mode

The last term of Eq.3.14 illustrates that plasma current can lead to ideal MHD

instabilities. This kind of instability was first observed in the ZETA (The Zero

Energy Toroidal Assembly, at Harwell, UK) magnetic confinement device in the

year of 1957[104]. This instability had been predicted theoretically and is driven

by the plasma current[105].

Figure 3.4: Displacements induced by the plasma current profile.

[9]

Due to the current profile and gradient, the magnetic field is compressed in some

places and expanded in others, which makes a small displacement begins to develop

in a column. The magnetic forces on the inside of the kink become larger than

those on the outside (shown in 3.4). At the same time, the magnetic field pressure

acts to enhance the motion, leading to the growth of the perturbation. This kind

of original perturbation is harmonic in the poloidal direction, which makes field

”twist” along the axis. Figure.3.5 shows the perturbations of the field for different

poloidal modes.
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Figure 3.5: Displacements induced by the plasma current profile.

Re-created by author from paper[10]

Generally, kink modes are divided into internal kink modes and external kink

modes[10]. Internal kink modes are typically thought to occur in the case of

n=1,m=1. In the 1970s, Shafranov[106] and Rosenbluth[107] studied the internal

kink mode in cylindrical configurations. They found the ideal internal kink mode

is stable when

q(0) > 1 (3.18)

where q(0) is the value of safety factor on the axis. Following their work, Bussac et

al. theoretically analyzed the kink instability in a circular cross-section tokamak,

he found that the internal kink mode is stable for sufficiently low βp. Edery[108]

then studied the effect of cross-sectional deformation on the internal kink mode,

the analytical result indicates that cylindrical distortions play stabilizing (m=3,4

distortions) and destabilizing(m=2 distortion) role when the symmetries of cylin-

drical pinch are lost.
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In a circular cross-section tokamak with the large aspect ratio assumption. The

variation of the plasma energy can be written as[109]:

δW = (1− 1

n2
)δWc +

1

n2
δWT (3.19)

Where δWc is the potential energy change under the cylindrical configuration,

δWT corresponds to the contribution of the toroidal effect. For a parabolic safety

factor distribution, the corresponding dimensionless potential energy is

δW̃T = 3(1− q0)(
13

144
− β2

p1) (3.20)

Where βp1 = [
∫ r1

0
(p−p1)2rdr]/[(B2

θ1/2µ0)r2
1],p1 = p(r1), Bθ1 = (r1/R)Bθ, r1 is the

minor radius of q=1. Noticing that change of potential energy could be positive

even if q0 < 1, β2
p > 13/144. For monotonic q profile, the region r > r1 can also

keep stable, that means internal kink instability general occurs in core region.

After minimizing the energy expression, the growth rate of the ideal internal kink

instability with toroidal effects is[110]:

γ

ωA
= − 1

r1q
′

π√
3

r2
1

R2
δW̃T (3.21)

Here q
′

= (dq/dr)r1 , ωA = vA/R, vA is the Alfven velocity. In the large aspect

ration assumption, internal kink instabilities are believed to happen when q < 1 ,

this criteria is also named Kruskal-Shafranov limit.

Hastie argued that the ideal internal kink mode can be unstable when q > 1[110],

so that internal kink instabilities do not always happen at the m=1,n=1 surface.

The previous works are based on ideal MHD. Since the plasma has resistivity, in

1976, Coppi studied resistive kink instability and include the effects of plasma

resistivity[111]. Then Hastie systematically reviewed the effect of resistance on

the internal kink instability. In his paper, the growth rate of internal the kink

mode was written as:

γτH = −δWH

1

8

(
γ

γγη

)9/4 Γ
(

(γ/γη)3/2−1

4

)
Γ
(

(γ/γη)3/2+5

4

)
 (3.22)
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γη = τ
−2/3
H τ

−1/3
R (3.23)

Where τH =
[√
µ0ρ/(Bθq

′)
]
q=1

, τR = (µ0r
2/)q=1, τη is the growth rate of resistive

internal kink mode. Γ is the gamma function. In the ideal MHD limit, τR → ∞,

γ = −δWH/τH , and the growth rate is the same as the ideal internal kink mode.

When γWH → 0, γ = γη. When δWH > 0, the kink mode is stable and the growth

rate becomes the m=1 tearing mode. Figure.3.6 shows how the m = 1 mode

growth rate varies with δW , showing that plasma resistivity helps to stabilize the

kink instability.

Figure 3.6: The m = 1 mode growth rate various with δWH . When δWH

changes from negative to positive, the internal kink mode transforms to resistive
kink mode and tearing mode .

[4]

Besides the instability driven by the current and current gradient in the core region,

kink modes can also be triggered by boundary current, named the external kink

mode. The edge current does not always have a destabilizing effect on the external

kink mode, and bad curvature can enhance the distortion of this mode. Since the

distortion driven by edge current makes the resonant surface “peel” from the core

plasma, the external kink mode is also called the “peeling mode”, meaning a mode

driven by parallel currents, which requires the boundary of the plasma to move,

driven unstable by a finite current density at the plasma boundary[112]. More

recently, the term peeling mode has also been used, in a more general sense, to

describe external kink modes that are strongly localized at the edge of the plasma,

driven unstable either by a finite current density or a finite current gradient at the

plasma edge[113]. In the rest of this thesis, we will refer to internal kink modes
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as “kink modes” and external kink modes as “peeling modes”. The mechanism

of the peeling mode is quite similar to the kink mode, it is thought to happen at

m > 1, and unstable modes are aligned with the magnetic field (resonant) just

outside the plasma edge. In the large aspect ratio and free boundary assumption,

kink and peeling modes are often studied using the same methods[112] but using

different current profiles:

j = j0(1− (r/a)2)υ (3.24)

υ = qa/q0

j0 and q0 are the plasma current and safety factor in the core plasma region, a is

the minor radius of the plasma boundary.

The research reviewed above is theoretical analyses that did not consider data from

experiments. In 1984, Troyon used the ERATO code to study the peeling mode

and found that there is a limit to the normalized βN that can be obtained in the

Tokamak device without considering a resistive wall[114]. His work revealed that

there is a limit in normalized β, where β = βN(aBT/I), and this limit is around

2.8, which is now known as the Troyon limit. Ten years later, the world’s major

tokamak devices have verified the existence of the Troyon limit[115, 116]. Wesson

then summarized the conditions for kink and peeling instabilities with different q

profile and current profile[10].

Different from kink mode, wall effects have a great influence on the peeling mode,

requiring the wall is close enough to the plasma. As shown in Figure.3.7, if there is

no wall (the wall is far away) then the flux-surface perturbation goes like δψ ≈ r−m.

An ideal wall is a superconductor that forces the perturbation to zero at the

boundary. This corresponds to a current sheet which pushes back on the mode.

In real machines, the vessel walls always have some finite resistivity. The current

and hence radial magnetic field can diffuse into the wall. We can conclude that

conductivity has an important effect on the peeling mode.
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Figure 3.7: The change of potential with and without wall effects.

[10]

In later studies, it was found that the peeling mode plays an important role on

ELMs[91]. A predictive understanding of the onset of type-1 ELMs has been

gained via the development of the peeling ballooning model[91], in which ELMs

are triggered by instabilities driven by the large pressure gradient (ballooning)

and bootstrap current (peeling) in the edge of the plasma. For general axisym-

metric toroidal geometry without Grad-Shafnov shift, this peeling mode stability

condition is[91]:

√
1− 4DM > 1 +

1

πq′

∮
j||B

R2B3
p

dl (3.25)

where DM is the Mercier index, defined as

DM = −µ0
2r

B2

1

s2

dp

dr
(1− q2) (3.26)

where s is magnetic shear defined in Eq.3.3, j|| is the current density parallel to the

magnetic field B, R is the major radius, Bp is the poloidal magnetic field strength,

dl is a poloidal arc length element on a flux surface.

From the above discussion in this section, we can summarize that both kink and

peeling mode are edge current-driven instablities. Then a question is raised: can

kink mode also trigger ELMs as peeling mode? This question will be studied in

the rest part of this chapter.
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3.1.4 The effects of X-points

As mentioned in subsection 1.1.2, the majority tokamak operates in divertor con-

figuration with X-point and double X-points, which is recognized to play a role

in the formation of transport barrier[117], turbulence mitigation[118] and ELM

stabilization[119]. Specifically, in the studies of edge stability, X-point geometry

is verified to take a major effect in the ELM simulation work. Huysmans finds

that X-point can stabilize peeling mode greatly utilizing CASTOR code[25], with

setting edge current zero. Saarelma’s work reveals that the magnetic shear in the

vicinity of X-point can stabilize peeling mode using ELITE[119]. His simulation

results also suggest the locations of X-point takes effects on ballooning mode: X-

points on low field side can destabilize ballooning mode, while X-points on high

field side has a little improvement on stability. Webster also indicates that peeling

modes can occur, but that its growth rate can be arbitrarily small in the presence

of a separatrix[29]. Further, Analytic work by Wang et al proposed that kink in-

stabilities can occur with high toroidal mode numbers in the pedestal, triggering

ELMs[92]. However, this paper does not address the question of what happens

with a separatrix. Instead, it addresses whether high-n kink modes can occur in

the pedestal and their properties in simple geometries without X-points. His work

also indicates that kink modes in the pedestal rely on the current shape rather

than the geometry of the separatrix. Under that condition, we aim to verify that

whether the kink like instability can drive the ELM crash and the existence of

kink-ballooning mode numerically.

However, as discussed in subsection 2.1.2, BOUT++ simulations of geometry with

X-points physics are still susceptible to numerical instabilities. Since the grid

points are strongly packed near the X-point in the vicinity of separatrix, but not

on surfaces deeper inside the plasma [119] in straight filed line coordinate system.

The coordinate system has a singularity near the X-point and separatrix. This is

particularly a problem for the coordinate system mostly used in BOUT/BOUT++,

which aligns the parallel direction to the poloidal angle. It even harder to simu-

late X-point geometry modified by CORSICA. Large numerical instabilities seems

inevitable even high-resolution was applied(516×256). Therefore, we only present

the work in circular tokamak geometry in this chapter.
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3.2 MHD model for ELMs

3.2.1 Plasma moments and MHD equations

The time evolution of the plasma distribution function is well described by the

collisional Vlasov equation[120]:

∂fα
∂t

+ v · ∇fα +
eα
mα

(E + v ×B) · ∂fα
∂v

= Cα(fα). (3.27)

Where fα(x,v, t) represents the distribution function, α is the species of particles,

the term on right of the equality is the collision operator. The electric and magnetic

field can be written as:

∇ · E(x, t) =
1

ε0
eα

∫∫∫
fα(x,v, t)d3v (3.28)

∇ ·B(x, t) = 0 (3.29)

∇× E(x, t) = −∂B(x, t)

∂t
(3.30)

∇×B(x, t) = µ0

[∑
k=1

eα

∫∫∫
fα(x,v, t)d3v

]
+ µ0ε0

∂E(x, t)

∂t
(3.31)

where eα is electric charge, ε0 is vacuum permittivity and µ0 is vacuum permeabil-

ity. Using the distributions function, one can fully describe the plasma behavior.

However, the Vlasov equations and Maxwells equations are the governing equa-

tions of the Vlasov-Maxwell system, which includes eight unknowns (fe, fi,E,B)

and eight independent equations in a six-dimensional phase space. That makes

it too complex to solve in most situations. Therefore, a practicable way is to

integrate over the velocity spance in collisional Vlasov equation and obtain fluid

equations[120].

Before introducing the fluid equations, we need to define plasma fluid variables.

The number density of the αth species, is defined by

nα(x, t) =

∫∫∫
fa(x,v, t)d

3v (3.32)
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The particle flux of the αth species is :

nα(x, t)V =

∫∫∫
vfa(x,v, t)d

3v (3.33)

The momentum flux of the αth species is:

mαnαVαVα + P(x, t) =

∫∫∫
mαvvfa(x,v, t)d

3v (3.34)

where P(x, t) is the thermal pressure tensor:

P(x, t) =

∫∫∫
mα[v −Vα][v −Vα]fa(x,v, t)d

3v (3.35)

Using these relations, one can apply the zero, first and second moments over the

Eq.3.27 and obtain the fluid equations[121]:

the continuum equation,

∂nα
∂t

+∇ · (nαVα) = Snα (3.36)

the momentum conservation equation,

∂mαnαVα

∂t
+∇pα +∇ · (←→π +mαnαVαVα) =

Zαenα(E + Vα ×B) + Sm
α (3.37)

and the energy conservation equation,

∂

∂t
(
3

2
pα +

1

2
mαnαV

2
α ) +∇ ·Qj =

Wα + Vα · (Rα) + SEα (3.38)

where the Snj ,S
M
j , S

e
j are density, momentum and energy sources for species α,

respectively. The heat-flux tensor Qα(x, t) is a third rank tensor, which is defined

by

Qα(x, t) =

∫∫∫
mα[v −Vα][v −Vα][v −Vα]fa(x,v, t)d

3v (3.39)

and the heat-flux vecctor qα(x, t) is defined by
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qα(x, t) =

∫∫∫
1

2
mα[v −Vα] · [v −Vα][v −Vα]fa(x,v, t)d

3v (3.40)

These fluid equations of the αth species reduce the variables to 6 in 3-dimensional

phase space. Since the main plasma mainly contains electron and ion species,

this description is also named 2-fluid equations[4]. Since the mass of ions is much

bigger than the electron, the ion’s relaxation time is longer, we can merge the

above fluid equations into single species ones:

Continuity Equation :
∂ρ

∂t
+∇ · (ρV) = 0 (3.41)

Momentum Equation : ρ
∂V

∂t
+∇ · (ρVV + P) = J×B (3.42)

Energy Conservation Equation :
3

2

[(
∂

∂t
+ V · ∇

)
p

]
+

3

2
p(∇ ·V) =

−∇ · q + J · (E + V ×B) (3.43)

where the new variables are given below:

Mass density ρ = neme + nimi

Electric Current Density : J = eeneve + einivi

V eloctiy : V = (minivi +meneve)/ρ

Total Pressure : p = pe + pi (3.44)

Eq.3.41 to Eq.3.43 are much simpler than kinetic and 2-fluid descriptions. Some

terms in those equations can be simplified further in specific cases.

3.2.2 Shear Alfven law

Eq.3.41 to Eq.3.43 still have some high order closure terms (such as heat flux

q) with complex terms, making analytic and simulation work difficult. In the

quasi-neutral and adiabatic cases, most terms including heat flux and external

electromagnetic waves can be cancelled (besides those in quasi-neutral phases, such

as Alfven waves). The shear Alfven law is a useful starting point in the analysis

of many common plasma instabilities, and is a fundamental part in the analysis
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which follows[89]. Assuming the density is constant, the single fluid momentum

equation can be written as[4]:

ρ
dV

dt
+∇ ·

←→
Π = −∇P + J×B (3.45)

with
←→
Π denotes the viscous tensor, and the usual convective derivative is:

d

dt
=

∂

∂t
+ V · ∇

Taking the parallel component of the curl of this equation (i.e. apply B · ∇× to

each side)

B · ∇ ×
[
ρ
dV

dt
+∇ · Π

]
= −B · ∇ ×∇P︸ ︷︷ ︸

⇒0

+B · ∇ × (J×B) (3.46)

The J×B term can be written as:

B · ∇ × (J×B) = ∇ · [(J×B)×B] + (J×B) · (∇×B) (3.47)

making using of tensor identities and taking b · ∇× of Eq.3.46, the shear Alfven

Law can be derived[89]:

b · ∇ × f = B2b · ∇
(
J||
B

)
+ 2b× κ · f + 2b× κ · ∇P +O(κ2)

b · [∇× f − 2κ× f ] = B2b · ∇
(
J||
B

)
+ 2b× κ · ∇P (3.48)

where κ is magnetic field line curvature κ = (b · ∇)b, the LHS side of this is

primarily the parallel component of the vorticity ∇×V, so this equation is often

called the vorticity equation.

κ =
µ0

B2
(f +∇P ) +

1

B
∇⊥B

⇒ ∇⊥B2 = 2B2κ− 2µ0 (f +∇P )
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The shear Alfven’s law makes it much easier to study kink and interchange in-

stabilities, assuming parallel spatial frequency is much smaller than perpendicular

one k|| << k⊥.

3.2.3 Models for ELMs in BOUT++

Based on the shear-Alfven law and neglecting viscosity and parallel velocity term,

Hazeltine and Meiss derived a reduced MHD equation suitable for the simulations

of peeling-ballooning mode[89]:

ρ
dU

dt
= B2b · ∇

(
J||
B

)
+ 2b× κ · ∇P (3.49)

∂ψ

∂t
= − 1

B0

∇||φ (3.50)

∂P

∂t
= − 1

B0

B0 ×∇φ · ∇P (3.51)

U =
1

B0

∇2
⊥φ (3.52)

J|| = J||0 −
1

µ0

B0∇2
⊥ψ (3.53)

Where U is the parallel component of fluid vorticity, perturbed vector potential

ψ = A||/B0, φ is electrostatic potential. Linearizing those equations and making

explicit the non-linear terms, we obtain the 3-field Elm-pb model which is solved

using BOUT++[75]:

dω̂

dt̂
= B̂3

0b · ∇̂

(
Ĵ||

B̂0

)
+ 2B̂0b0 × κ̂ · ∇̂P̂ (3.54)

∂Â||

∂t̂
= − 1

B0

∇||φ̂ (3.55)

∂P̂

∂t̂
= − 1

B̂0

b0 × ∇̂φ̂ · ∇̂P̂ (3.56)

∇̂2
⊥Â|| = −

1

2
βx
mi

me

Ĵ|| (3.57)

∇̂2
⊥φ̂ =

ω̂

N̂
(3.58)
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with the full parallel derivative

b · ∇̂ = b0 · ∇̂ −
me

mi

1

B̂0

b0 × ∇̂Â|| · ∇̂

All the variables from Eq.3.54 to Eq.3.58 are normalized, evolving variables can

be normalized using MHD-like normalization. The normalized factors are [75],

a typical length scale L, timescale T and magnetic field B, related by VA
2

=

B
2
/µ0ρm = L

2
/T

2
. The normalized parameters are defined as: t̂ = t

T
, B̂ = B

B
, ∇̂ =

L∇, κ̂ = Lκ. Evolving variables are then normalized as: Û = TU, ψ̂ = ψ

L
, P̂ = 2µ0P

B
2

and auxiliary variables have the following normalized form: Ĵ|| = −µ0L
B0
J||, φ̂ =

φ

VALB0
.

3.3 Simulations of kink-ballooning modes

As discussed in section 3.1, kink modes, or internal kink modes, are driven by the

plasma current. Different from the peeling mode, the kink mode is driven by the

current gradient and pressure gradient inside of the resonant surface. Also, the

edge current does not always have a destabilizing effect on the kink mode.

Generally, peeling and kink modes are driven by the current gradient outside and

inside the resonant surface separately. In previous work, authors have derived the

criteria for peeling[31] and kink mode[92] in the pedestal. The simulation work

here is based on these criteria to explore the ELM mechanism.

It is well recognized that the stability criteria of the peeling mode, in circular

equilibria with large aspect ratio, can be written as [31]:

α

[
r

R
(1− 1

q2
) + s∆

′ − ft
Rs

2r

]
> Rqs

(
jdriven||

B

)
(3.59)

Where ∆
′

is the gradient of the Shafranov shift, s refers to the magnetic shear,

α = −2µ0Rq2

B2
dp
dr

is related to the gradient of β, jdriven|| is the externally driven

current (usually boot-strap current). And ft is the fraction of the trapped particles

(since kinetic particle effects are ignored in the analysis, so this can be important).

Meanwhile, the kink mode stability criterion in Hamada coordinates from the

energy principle can be written as[92]:
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δW =

∫
ada

2R

ε2 + 1

2ε

[(
u

′2 +
(m+ 1)2

a2
u2

)
−Du′

ξm −D
m+ 1

a
uξm

+
(m+ 1)Ru2

χ′

2ε

ε2 + 1

∂J
′

a∂a
−
(
g33

pφ
′′

φ′ +
p
′2

φ′2
ξ2
m

)]
(3.60)

In this equation, a is defined as an average minor radius a = (V/2π2R)1/2, V

is plasma volume, g33 = R2 is the metric tensor in Hamada coordinates, D =
−2
ιε1/2

p
′

φ′
2ε
ε2+1

, ι ≈ 2πRBp
rBt

is the rotational transform. Minimizing δW with respect

to displacement u, the following can be derived:

d

da

(
a
du

da

)
− (m+ 1)2

a
u+

(m+ 1)Ru2

χ′

2ε

ε2 + 1

dj

da

= − d

da

(
aDξm

2

)
+
m+ 1

2
Dξm (3.61)

Integrating the equation across the boundary a0, we get:

λ =
1− 2(a0

b
)2(m+1) − dj[1− (a0

b
)2(m+1)]

(a0

b
)2(m+1) + dj[1− (a0

b
)2(m+1)]

(3.62)

where b is the position of the wall, λ is arbitrary parameter comes from the general

solution of Eq.3.61, then following the steps in the paper[92], the criterion is

obtained:

ι2 <
2

ε2 + 1

[
1+

ε2 − 1

3ε2 + 1

[(1

2
+

3

2
∆

)
−2βp

(
λ

(
1− 1 + λ

4

)
+

ε2 − 1

3ε2 + 1

)]]
(3.63)

From this equation, the conditions for the kink to be stable are

λ <
3−
√

9 + 4Λ

2
, λ >

3 +
√

9 + 4Λ

2
(3.64)

where the expression for Λ is

Λ =
2

βp

[
ι2 − 2

ε2 + 1

ε2 − 1

3ε2 + 1
(
1

2
+

3

2
∆) + 2βp

ε2 − 1

3ε2 + 1

2

ε2 + 1

]
(3.65)



68

The differential of the current can be written as:

δj =
1− λ(a0

b
)2(m+1) − 2(a0

b
)2(m+1)

(1 + λ)[1− (a0

b
)2(m+1)]

(3.66)

Where δj = djinternal
da

− djexternal
da

, jinternal and jexternal is the current density inside

and outside of the boundary. Considering the case in which b is infinite, (a0

b
)2(m+1)

tends to zero. Then

δj =
1

1 + λ
(3.67)

We can further obtain the kink criteria by submitting Eq.3.67 into Eq.3.64:

δj >
2

5−
√

9 + 4Λ
− 1, δj <

2

5 +
√

9 + 4Λ
− 1 (3.68)

After getting the criteria for these two different modes (Eq.3.59 and Eq.3.64),

we use Corsica[71, 83] to generate new current profiles and recalculate equilibria.

The aim is to adjust the current profile to make only one of peeling mode and

kink mode unstable. The plasma volume is calculated in the (ψ, θ, φ) coordinates,

dr3 = J0dψdφdθ. The Jacobian J0 of the coordinate system obeys the equation:

∂J0

∂ψ
= −2

∂

∂ψ
lnBp − 2βp

∂

∂ψ
(µ0P )−

(
Bt

Bp

)2
∂

∂ψ
ln(RBt) (3.69)

The we can obtain the current profiles that meet the crieria of peeling and kink

modes, shown in Fig.3.8
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Figure 3.8: The parallel currents against normalized flux coordinate. The
blue line is peeling unstable, whilst red and green lines are the two solutions of

Eq.3.64, the region between them is the kink-instability area.

From Fig.3.8 it can be seen that the region where kink instability exists is quite

small. Then it is possible to regenerate equilibria which meets special criteria(

Fig.3.9).

Figure 3.9: The current profiles in simulations, the black one makes kink
stable but peeling unstable, on the contrary, the red one is peeling stable but

kink unstable profile.
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3.4 Simulation results

In the simulations of ELM, Eq.3.54 to Eq.3.58 are solved using the BOUT++

framework. First, we scan over different toroidal modes using the equilibria gen-

erated from the “peeling stable” and “kink stable” profiles in Fig.3.9 separately.

The starting equilibrium is one of widely used shifted circular equilibria named

cbm18[122–124], shown in Fig.3.10. Some of the primary plasma parameters are

as follows: minor radius a = 1.2m, major radius R0 = 3.4m, magnetic field on

axis B0 = 1.94T , edge safety factor q ≈ 3. The starting equilibrium pressure, cur-

rent and q profiles are demonstrated in Fig.3.11. Then equilibria are regenerated

applying current profiles in Fig.3.9.

Figure 3.10: The sketch of cbm18 shifted circular equilibrium.

Figure 3.11: The pressure, current profiles(a) and q profiles(b) versus normal-
ized flux coordinate.
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We then use the BOUT++ 3-field reduced MHD model (Eq.3.54 to Eq.3.58) to

study ELM stability[124] in different profiles. The evolving quantities are vorticity,

the parallel component of the vector potential, and the plasma pressure. All

the outer boundary conditions of involving variables are Dirichlet, while inner

boundary conditions are Neumann. The grid resolution is nΨ = 260, ny = 64,

which performed well in previous BOUT++ simulation study on the influence of

different current profiles modified by CORSICA[122].

To distinguish current-driven and pressure-driven instabilities, we carry out simu-

lations by turning off pressure gradient term and current term respectively in RHS

of Eq.3.54, shown in Fig.3.12.

Figure 3.12: The linear growth rates of current-driven and pressure-driven
modes versus toroidal mode number n . The growth rates are normalized by
Alfven frequency. The yellow line labelled with diamonds is the growth rate of
the kink mode, whilst the red square line is the peeling growth rate. The blue

circle line is the growth rate of the pressure-driven instabilities.

From Fig.3.12, it can be concluded that the current-driven modes peak at lower

toroidal model number than pressure-driven instabilities. Moreover, current-driven

(yellow diamond line) instabilities are also triggered in peeling stable equilibria. To

identify the kink and peeling mode further, we then perform the spatial Fourier

transform on perturbed φ in the poloidal direction (y direction in BOUT++),

the mode structures of ‘kink’ (Fig.3.13) and ‘peeling’ (Fig.3.14) modes are then

obtained:
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Figure 3.13: Poloidal resonance mode structures of the equilibrium with re-
generated by peeling stable current profile , the x axis is the normalized flux

coordinate. Toroidal mode number n=10.

Figure 3.14: Poloidal resonance mode structures of the equilibrium with re-
generated by kink stable current profile , the x axis is the normalized flux

coordinate. Toroidal mode number n=10.

After comparing these above two figures, it can be seen that the mode structure in

Fig.3.13 has a lower mode peak resonance number. These poloidal resonance mode

structures are more close to kink mode, while the peeling mode, shown in Fig.3.14,

localized at the edge. In addition, the main resonance flux surface in Fig.3.13 lay

on m = 9, while the major poloidal mode in Fig.3.14 is m = 17. Therefore, kink

mode can trigger pedestal instability instead of peeling mode, with the special

current profiles in our simulation.
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Then we verify our assumption from the aspects of resistivity, because it is rec-

ognized that internal and external current-driven modes are sensitive to plasma

resistivity[25, 110]. When considering the resistive effect, the parallel electric field

Eq.3.57 becomes:
∂ψ

∂t
= − 1

B0

∇||φ+
η

µ0

∇2
⊥ψ (3.70)

where η is the resistivity. In BOUT++, a dimensionless ratio-Lundquist number

denoted by S is used to define the resistivity:

S =
R0vA
η

(3.71)

where R0 is the typical length scale of the MHD system. In BOUT++, two

separate coefficients Score and Sboundary denoted core and boundary Lundquist

numbers , corresponding to the region inside (Ψnor∗ < 1) and outside (Ψnor∗ > 1)

the plasma edge .In the equilibrium with kink unstable but peeling stable profile,

we simulate several cases with different core and boundary Lundquist numbers:

Figure 3.15: The growth rate of ELM versus the core Lundquist number,
toroidal mode number n=10.
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Figure 3.16: The spectrum of growth rate for the kink unstable case versus the
core and boundary Lundquist number, the index of x and y axis is logarithm of
boundary Lundquist number respectively, where toroidal mode number n=10.

Comparing Fig.3.15 with Fig.3.16, it can be seen that the growth rates relate

to core plasma resistivity and do not respond to the resistance of the boundary

plasma. Then, it is verified that, in some cases when peeling modes are stable,

kink mode plays a dominant role in the current driven mode in ELM crashes.

Since this kink mode can also couple to the ballooning mode, we call this kind of

instability the kink-ballooning mode. The current-driven (peeling) component of

the peeling-ballooning mode is sensitive to resonances outside the plasma. This

makes it sensitive to the separatrix and resistivity in the SOL. However, current-

driven (kink) modes in some circumstances are unstable in the pedestal, which is

not sensitive to external resonances or conditions outside the plasma edge.

In further simulations, we then study two different fixed equilibria with two dif-

ferent current profiles (kink and peeling stable), noting that pressure-driven terms

are concluded in simulation, with Lundquist number S = 104, shown in Fig.3.16.
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Figure 3.17: Linear growth rates for different toroidal numbers, the core and
boundary lundquist number Score = Sboundary = 104, the dashed square line
denotes peeling-ballooning mode while solid diamond line is kink-ballooning

mode.

Fig.3.16 shows that the kink-ballooning mode has a lower growth rate than the

peeling-ballooning mode at low toroidal mode numbers, whilst they become similar

at high mode number. The peak growth rates for resistive kink-ballooning mode

(n=15) are lower than peeling-ballooning mode. Presumably at high n both kink

and peeling cases are driven by pressure (ballooning) not current. Current-driven

modes should be mainly at low n.

Figure 3.18: Peak resonance poloidal number for different toroidal num-
bers, core and boundary lundquist number Score = Sboundary = 104, the
dashed-diamond line is peeling-ballooning mode while solid-square line is kink-

ballooning mode.

From Fig.3.18, we could find that kink-ballooning mode has lower resonant poloidal

modes. And the main resonant q surfaces are around but not limited to q=1 profile.
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3.5 Summary and disscussion

In this chapter, the theories of ballooning, peeling and kink modes have been dis-

cussed critically. The general reduced MHD equations were also reviewed. Follow-

ing on the derivation from previous work[92], we propose the kink-ballooning mode

plasma instability which is driven by the current gradient inside the resonance sur-

face and boundary pressure gradient. From the energy principle, we get the kink

mode criteria related to plasma current and current gradient. Then Caltrans-

Corsica is used to generate new equilibria for fixed current profiles. Simulations

of these generated equilibria indicate kink-ballooning mode can drive pedestal in-

stabilities, even if when peeling mode keeps stable, only in special current profiles.

The results also show Kink-ballooning mode has smaller poloidal resonant mode

and lower growth rates at low toroidal mode number. In ITER’s design, peeling

mode is stable for the strong magnetic and current shear in outer boundary[125].

Kink instabilities may be an alternative way for current-driven mode, if some

possible ways were found to achieve the special current profiles.

Limitations of the work in this chapter are also apparent. Due to the inevitable

numerical instabilities, simulations of geometries with X-point are not available.

Recent FCI (Flux Coordinate Independent) method work on BOUT++ make

much better treatments of the geometry with X-point[126]. In future work, we

plan to extend the work in this chapter into X-point regions, by applying FCI

method into BOUT++ ELM simulations. Secondary, although we verified the

existence of kink-ballooning mode in simulation, the edge current profile of kink

mode is a bit unrealistic. One of the possible ways to obtain such current profiles is

current ramp-down. In the ramp-down phase of FTU (Frascati Tokamak Upgrade)

tokamak[127], edge current was found to decrease greatly.Therefore, current ramp

may be one possible way to make the pedestal current profiles close to ones used

in our simulations. In the ITER design, poloidal field (PF) coils are believed to

play a significant role in maintaining and fixing plasma shape and current in ramp-

down phase[128]. In addition, the resonance gap for peeling mode are narrower

in X-point shape. Then current-driven mode can be mixed with peeling and kink

mode, with the operation of PF coils. However, no literature reports edge current

control utilizing current ramps. The possibility of this work’s link to experiments

requires a plenty of further studies.



Chapter 4

Non-inertial effects in plasma and

its roles on flow-shear, GAM and

Zonal Flows

In the study of plasma rotation[129] and GAM (including zonal flow)[130], cen-

trifugal convection has been shown to play a key role due to plasma toroidal

rotation. However, it is not self-consistent to just add some non-inertial convec-

tion terms to the inertial MHD equations[131]. There have been few studies of

Coriolis force effects on GAM and ZF, while Coriolis force effects are believed to

cause parallel asymmetry in transport[132]. In this chapter, we first derive self-

consistent drift-ordered 2-fluid equations from the collisional Vlasov equation in

a non-inertial rotating frame, and modify the Hermes cold ion code to simulate

rotation’s effects on GAM and ZF. The simulation results show that plasma rota-

tion can increase the amplitude of ZF and GAM frequency. Moreover, it is found

that Coriolis convection plays an important role in GAM’s propagation and ZF’s

global structure.

In this chapter, theories of plasma spin-up, GAM and ZFs at first. Then a new

nonlinear drift-fluid 5-field equations are developed in the non-inertial system from

non-inertial collisional Vlasov equation. Simulations are also performed by modi-

fying the Hermes cold ion model to study the centrifugal and Coriolis’ effects on

GAM and Zonal flow. We also derived a simplified analytic model to explain the

results. At last, the preliminary experimental results are listed, aiming to validate

the results.

77



78

4.1 Introduction of plasma poloidal spin-up

As reviewed in Chapter 1, flow shear and plasma rotation play an important

role in suppressing MHD instabilities including ELMs. Therefore, exploration of

the mechanisms of the plasma rotation is also an attractive subject. Generally,

plasma rotation refers to flow on a flux surface[133]. It has been verified that

external torques, such as helical field and NBI[134] can generate plasma rotation.

However, it has been suggested that these methods are not suitable for ITER [135].

In some experiments[136, 137], the observation of spontaneous plasma rotation in

the absence of an external momentum source has led to a renewed interest in

plasma rotation and a focus on rotation measurement. However, the origins of

this spontaneous rotation, especially poloidal rotation, are not fully understood.

It is supposed that E×B flow and dia-magnetic flow contribute to the rotation in

the boundary, but the rotation also occurs in core regions[138]. Other neo-classical

effects such as finite-orbit, residual stress and neo-classic toroidal viscosity in non-

axisymmetric magnetic fields are also proposed to explain the plasma rotation[133],

which are not the focus of this thesis.

Hassam suggested a poloidal plasma rotation mechanism by developing the Stringer

spin-up theory [139]. He pointed out that the injection of NBI or Ion Cyclotron

Resonance Heating(ICRH) can produce an in-out asymmetric density distribution

on a magnetic surface, which may induce a poloidal plasma rotation.
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Figure 4.1: The coupling effects of effective gravity and perturbation flows.

[139]

As shown in Fig.4.1, the in-out asymmetry density generates a parallel (poloidal)

flow. When introducing a perturbation flow uE, which causes the parallel flow shift

along the poloidal direction. These flows causes an enhancement of the density

(N > 0) in the lower half plane and the decrease of density (N < 0) in the

upper half plane. Coupling with the effective gravity, the high density flow moves

outboard while the low density flows inboard. This accelerates the perturbation

flow uE, and the growth of uE is named the stringer spin-up[139]. However, due

to the poloidal pumping, this flow is always damped[133], and an external source

is required.

Later, Liu[129] developed Hassams work based on Hsu’s[140] theory, in this theory,

the magnitude of the poloidal density asymmetry would be significantly enhanced

by the RF wave cyclotron heating because of the resonance localization. This kind

of asymmetry can induce a poloidal electric field, ions will redistribute and form

a poloidally in-homogeneous ion profile acted on by this field, which has the same

effects as the in-out asymmetric density source in Hassams mode. Combining

the poloidal density asymmetry produced by the resonance localization in the

RF wave cyclotron heating with the poloidal plasma spin-up destabilized by the

inout density asymmetry, the poloidal plasma rotation can be actively produced



80

by means of Electron Cyclotron waves. If developed further, this may provide a

way to control ELMs which would be reactor relevant.

The spin-up velocity is based on high order perturbation and the equations are

similar to Hasegawa-Wakatani equation[59](will be reviewed in the next section).

The stringer spin-up later was thought of as a kind of GAM or ZF under the effects

of centrifugal force (effective gravity)[62]. Then the focus of this chapter becomes

the effects of toroidal rotation on GAM and ZF.

4.2 Plasma physics in rotating frame

In the study of meteorology physics, the non-inertial effects comprising centrifugal

and Coriolis force are important and essential concepts due to the rotation of earth.

This deflects the direction of the wind to the right in the northern hemisphere and

to the left in the southern hemisphere. This is why the wind-flow around low and

high-pressure systems circulates in opposing directions in each hemisphere. In the

formation of tornadoes, associated centrifugal and Coriolis forces play important

roles, coupling with the pressure gradients of atmosphere[141].

Figure 4.2: This low-pressure system over Iceland spins counterclockwise due
to balance between the Coriolis force and the pressure gradient force.

[141]
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Historically, the equations of plasma physics have generally been studied using

inertial reference frames, not least because Maxwells equations have their simplest

form in such frames. However, tokamak plasmas often rotate at high velocities [9],

which leads to the changes of equilibrium and plasma profiles when plasma rotation

along the curved field lines[10]. However, the initial tokamak profiles are usually

assumed to be in a stationary state. It is likely that the observed behaviour of such

systems can be better understood in some respects by considering the equations

determining their evolution in suitable non-inertial frames.

A well-known centrifugal force effect due to the impurity toroidal rotation in a

tokamak plasma can push the impurities to accumulate on the outboard side of

the flux surface (in-out asymmetry), which has been pointed out theoretically

by Hinton[142] and Wesson [143] earlier and observed in the tokamak experiments

[144, 145]. On the other hand, the Coriolis force is known to play an important role

in the anomalous momentum transport that leads to spontaneous rotation[72, 146],

and its impact on heat and particle transport[147] has also been studied.

In the study of plasma rotation[129] and GAM (including zonal flow)[130], cen-

trifugal convection has been proven to play a key role due to plasma toroidal

rotation. However, it is not self consistent to just add some non-inertial convec-

tion terms to the inertial MHD equations[131]. Also, the studies of Coriolis force

effects are absent in the study of GAM and ZF, while Coriolis force effects is be-

lieved to cause parallel asymmetry in transport[132]. Peeters[146] first developed a

self-consistent drift kinetic equation in non-inertial system to explore plasma mo-

mentum transport. But a self-consistent drift MHD model in non-inertial frame is

still required, which can benefit the study of centrifugal and Coriolis force effects

on ZF and GAMs.

4.3 Review of theories of GAM and Zonal Flow

4.3.1 Zonal Flow

Before exploring the effect of toroidal rotation, it is necessary to review the origins

and basic theories of GAM and ZF. As reviewed in chapter 1, Zonal flows are a kind

of azimuthally symmetric flow, which can be triggered by a toroidally symmetric

electric field perturbation in toroidal plasma.[62] This flow contributes to plasma
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poloidal rotation and flow shear, the significant role of which is widely recognized in

plasma confinement and L-H transition. Normally, zonal flows (ZF) and geodesic

acoustic modes (GAMs) are present at the structure of n = 0,m = 0, 1, which

were discovered in a theoretical magneto-hydrodynamic (MHD) analysis[148] and

confirmed by several experiments[68, 149].

Instead of interacting with temperature and density gradient directly, ZF and

GAM should often be grouped generically together with drift waves in a non-

linear process. In plane geometry, there are generally two kinds of parametric

drift-wave instability that can trigger ZFs[62]. One of them is the parametric

decay instability, with wavenumber k0 and frequency ω0. This main drift wave

can decay into two further waves with wave vectors q,k1 and frequencies Ω, ω1.

Then the growth rate generated by this kind of instability is[150]:

γ = csρs|k0 × q|

√
Te
Ti

k2
0 − k2

1

q2

eΦe

Te
(4.1)

where the Φe is the electrostatic potential perturbation. The growth rate turns to

zero when k2
0 = k2

i . Therefore, ZF can be driven when parametric decay instability

occurs. The other kind of instability is called parametric modulational instability,

which is driven by other two waves generated by the interactions between ZF and

main drift wave. The growth rate excited by modulational instability has the

following expression[59]:

γ =
√

2|k0⊥ × q|

√
Φ2
e −

k2
0q

4

2|k0 × q|2
(4.2)

In the general geometry and numerical studies, a simple reduced MHD model can

describe mechanism of ZF flows well named Hasegawa-Wakatani (HW) equations[150]:

∂n

∂t
= −κ∇⊥φ+ [n, φ] (4.3)

∂ω

∂t
= [ω, φ] + α(φ− n) + µ∇2n (4.4)
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where the resistive coupling term α = Tek
2
||/(n0e

2ηωci), η is the plasma conduc-

tivity, ωci is the ion cyclotron period, and µ is the ion viscosity coefficient. The

vorticity ω = ∇2φ, and the constant density gradient force term is

κ = −∂ln(n0)

∂x
(4.5)

The bracket [B,A] has the expression:

[B,A] =
1

J
√
gyy

[(gyy
∂B

∂z
− gyz

∂B

∂y
)
∂A

∂x

+(gyz
∂B

∂x
− gxy

∂B

∂z
)
∂A

∂y
+ (gxy

∂B

∂y
− gyy

∂B

∂x
)
∂A

∂z
] (4.6)

Many simulation studies have been based on the HW equations. For example,

Dewhurst[151] demonstrated intuitive images of ZF and drift waves in slab geom-

etry, showing that the interactions and competition between ZFs and drift waves

(Figure.4.3).

Figure 4.3: Electrostatic potential in quasi-stationary in 3 different cases: left
where ZFs are damped, middle where total kinetic energy is balanced between
zonal flows and non-zonal drift wave , and the right figure is the ZF dominant

state.

[151]

In toroidal equilibrium, the space vector of drift wave is similar to ballooning

eigen-function. The growth rates of GAM meet the equation:

γ2 =
2 + η

1.6ε3/2
B2
θ

B2
t

k2
θq

2
rc

2
sρ

2
s|φ0|2 (4.7)
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where ε is inverse aspect ratio, cs is sound speed in plasma.

4.3.2 Geodesic acoustic mode (GAM)

Different from the ZF, the GAM is generally driven by anm = 1 density oscillation,

this oscillation is mainly top and bottom asymmetric. Figure.4.4 illustrates the

mechanism intuitively: since the distributions of potential gradient ∇φ are close

to symmetric along the flux surface, the E × B drift velocity is higher on LFS

than HFS due to the toroidal effects since VE×B ≈ ∇⊥φ
B

, resulting in the density

accumulating on the bottom or top. Benefiting from the diamagetic effects, the

pilling-up of poloidal density or pressure gradient can restore this imbalance due

to momentum compression ∇·(nV). That makes this kind of oscillation propagate

along the radius direction[125].

Figure 4.4: Sketch of a geodesic acoustic mode. Imbalance of zonal ExB flow
on high and low field side, leads to compression or expansion of the plasma
(indicated by the lled and striped areas, respectively). Thus, an up-down anti-
symmetric m = 1 density perturbation arises, which is phase-delayed against

the flow by π/2. This propagates outwards at phase velocity vp.

[125]

The basic GAM dissipation equations can be derived from normal reduced MHD

equation including density evolution. The dispersion relationship for the standard

GAM was given by Winsor in 1968[66].
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ω2
GAM −

2c2
s

R2
− k2

||c
2
s = 0 (4.8)

where the k|| is GAM’s parallel wave number. Assuming k|| = 1
Rq

,we can obtain

the frequency of GAM:

ω2
GAM = 2

2c2
s

R2
(1 +

1

2q2
) (4.9)

And the phase velocity or ’group velocity’ of GAM propagating outwards can be

written as[125]:

vp = ωGAM/kr (4.10)

In the further study, some other kinetic effects such as ITG and TEM have been in-

cluded in the GAM and ZF studies[62], reviewed by Diamond, but the mechanism

does not significantly change.

4.3.3 ZFs and GAMS with plasma rotation

It has been found that in a non-rotating system, ZFs are linearly stable and the

GAMs are standing waves[62]. However, as it is pointed out in section 1, it has been

suggested that there exists a critical equilibrium toroidal rotation flow in a tokamak

plasma[72, 142], this is especially the case in experiments with strong tangential

injection of neutral beams (NBI),to control the internal transport barrier induced

by ZFs [152–155] and Electron Cyclotron Resonance Heating (ECRH)[137]. In

both NBI and ECRH cases[155], the character(frequency, group velocity etc) of

zonal flow and GAMs differ from theoretical results. General theories propose NBI

torque and changes of ion temperature gradient (ITG) influence the frequency of

ZF and GAMs[152]. But McDermott’s experimental studies on ASDEX-U argue

these views and find that the main influence on ZFs of NBI is the change of

toroidal rotation[137]. Similar experiments on T10 verify Mcdermott’s finding

and suggest that the enhancement of electrostatic potential’s asymmetricity is one

of the main factors influencing ZF and GAMs[156]. Therefore, it is of great interest

to investigate the effects of toroidal flow on ZFs and GAMs.

Some authors proposed the centrifugal correction and residual force caused by ro-

tation are the key emergence to cause the changes in GAM and ZFs. The solved the

eigenvalue problem of geodesic acoustic modes in such toroidally rotating plasmas
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using fluid models [130, 157]. Two solutions of fourth order polynomial dispersion

relation are given[130]:

ω2
GAM =

c2
s

2R2
0

(
2 +

1

q2
+ 4M2 +

√
(2 +

1

q2
+ 4M2)2 +

2M4

q2

)
(4.11)

ω2
GAM =

c2
s

2R2
0

(
2 +

1

q2
+ 4M2 −

√
(2 +

1

q2
+ 4M2)2 +

2M4

q2

)
(4.12)

M is the rotation Mach number. However, centrifugal force only exists in the non-

inertial system. It is also worth noting in this context that Camenen et al [147]

finds that the Coriolis force can also have a significant effect on the turbulent

transport of impurity ions, particularly those with low Z/A. Therefore, in the

further study of parallel transport, it is still needed to extend toroidal rotation’s

effects into the non-inertial system with the consideration of all the non-inertial

terms.

In the later sections of this chapter, we will follow Simakov’s[85] methods to derive

cold ion drift-ordered 2-fluid equations from the collisional Vlasov equation in non-

inertial rotating frame. Based on this model, we will modify the Hermes code[84]

and carry out simulations to explore toroidal rotation’s effects, especially the non-

inertial effects on GAMs and ZFs in the following section.

4.4 Drift-ordered fluid equations in a non-inertial

frame

The time evolution of plasma distribution function is well described by the colli-

sional Vlasov equation[9]:

∂fa
∂t

+ v · ∇fa +
ea
ma

(E + v ×B) · ∂fa
∂v

= Ca(fa). (4.13)

Where fa(x, v, t) represents the distribution function, a is the species of particles,

the right term of the equality is the collision operator. With integral and moments

operating on this equation, some standard descriptions of plasma such as the drift

kinetic equation and fluid equations can be obtained. Nevertheless, since this
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Vlasov equation is formulated in an inertial frame, modifications to the equation

are required for rotating systems. Thyagaraja proved that the Vlasov equation has

the same homogenous expression in a rotating systems[131]. However, tokamak

profiles are measured in laboratory coordinate. Therefore, a distribution equation

in non-inertial frame with regard to laboratory’s electrostatic potentials is needed.

When treating fluid plasma in a moving frame, there is a coordinate transformation

from laboratory frame to moving frame q(r,v, t)→ Q(r,v∗, t), where v∗ = v−V∗,

V∗ is the velocity of the moving frame, then derivatives transform is written as:

q = StQ (4.14)

St refers to Lorentz transformation matrix from q to Q.The equality STt = S−1
t is

then obtained, with assuming the transformations between q and Q are reversible.

The derivative of both sides are related by the following expression:

q̇ = ṠtQ + StQ̇ (4.15)

Applying Q = S−1
t q, Eq.(4.15) is rewritten as the following, since StS

−1
t is an

anti-symmetric matrix.

q̇ = ṠtS
−1
t q + StQ̇

= ωωω × q + StQ̇

= St(ωωω ×Q + Q̇) (4.16)

Where ωωω is the eigen-matrix of ṠtS
−1
t . After differentiating in time, we obtain

from Eq.(4.17)

q̈ = St(Q̈ + 2ωωω × Q̇ +ωωω × (ωωω ×Q) + ω̇̇ω̇ω ×Q) (4.17)

Combined with the Newton-Lorentz law, Eq.4.17 can be further rewritten as

Q̈ = −2ωωω × Q̈−ωωω × (ωωω ×Q)− ω̇̇ω̇ω ×Q +
ea
ma

S−1
t (E + v ×B) (4.18)

Supposing a uniformly-rotating frame, where the rotation frequency is Ω0 ,the

Lorentz transformation has the following form from q(ct, R, φ, Z) to Q(ct∗, Rr∗, φ∗, Z∗)[158],
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St =


γ 0 −γβ 0

0 1 0 0

−γβ 0 γ 0

0 0 0 1


where γ = (1 − (rΩ0/c)

2)−1/2 is the Lorentz factor, β = rΩ0/c. In the non-

relativistic limit,the electric and magnetic fields in the laboratory and rotating

frames are related by the expressions [159]

B∗ = B

E∗ = E + (Ω0Ω0Ω0 ×R)×B (4.19)

Ω0Ω0Ω0 is the rotating frequency, defined as Ω0ez in tokamak (R, φ, Z) coordinate [72].

From the definition of the transformation matrix St, it can be seen that ωωω = Ω0Ω0Ω0 the

toroidal rotation rate. Therefore, collisional Vlasov equation in uniformly-rotating

frames is obtained with combing Eq.(4.13), Eq.(4.18) and Eq.(4.19).

∂fa
∂t

+v∗ ·∇fa+
ea
ma

(
E∗ + v∗ ×B− 2

ma

ea
Ω0 × v∗ +

1

2

ma

ea
∇Ω2

0R
2

)
· ∂fa
∂v∗

= Ca(fa∗)

(4.20)

Evidently, the metric tensor should be changed in a different coordinate system.

In order to make it easier in the following integration and simulation, the metric

tensor in this uniformly rotating system should be analyzed. Referring to [160],

the rotating-frame transformation matrix can be expressed as (assuming time in

two coordinate coincide at 0.

(dR∗, R∗dΦ∗, dZ∗, icdt∗) =



1√
1−

R2Ω2
0

c2

0 0 0

0 1√
1−

R2Ω2
0

c2

0
−iRΩ0

c√
1−

R2Ω2
0

c2

0 0 1 0

0 0 0 1√
1−

R2Ω2
0

c2




dR

RdΦ

dZ

icdt
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Multiplying the transformation matrix with its transpose, we obtain the co-variant

tensor

gij =



1√
1−

R2Ω2
0

c2

0 0 0

0 1√
1−

R2Ω2
0

c2

0
RΩ0
c√

1−
R2Ω2

0
c2

0 0 1 0

0
RΩ0
c√

1−
R2Ω2

0
c2

0 −1


Obviously, the contra-variant tensor equals to co-variant one in the non-relativitic

limit gij = gij. We can say metric tensors keep the same in the assumed uniformly

rotating system. The right side of Eq.(4.20) is the Fokker-Planck collision operator,

we assume its form keeps the same in current frame. Following the process in most

plasma textbooks[89], we can obtain fluid equations by integrating zero, first,

second(scalar) moments over Eq.(4.20) for plasma species j, namely the continuity

equation,
∂nj
∂t

+∇ · njVj = Snj (4.21)

the momentum conservation equation,

∂mjnjVj

∂t
+∇pj +∇ · (←→π +mjnjVjVj) = Zjenj(E + Vj ×B)

+2mjnjVj ×Ω0Ω0Ω0 +mjnjRΩ2
0∇R + Rj + Sm

j (4.22)

and the energy conservation equation,

∂

∂t
(
3

2
pj +

1

2
mjnjV

2
j ) +∇ ·Qj = Wj

+Vj · (Rj + ZjenjE +mjnjRΩ2
0∇R) + SEj (4.23)

where the Snj ,S
M
j , S

e
j are density, momentum and energy sources for species j,

respectively.

The viscous stress tensor ←→π is given in Ref.[161], and the friction force between

species Rj has the same expression as in Ref.[85]:

Re = −Ri = ene

(
J||
σ||

+
J⊥
σ⊥

)
− 0.71ne∂||Te +

3ν

2Ωe

neb×∇Te (4.24)

with σ⊥ = 0.51σ|| = e2ne/meνe. The divergence of energy flux is written as the

followings expression,
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∇ ·Qj = ∇ · [(5

2
njTj +

1

2
mjnjV

2
j )Vj +←→π ·Vj + qj]

= ∇ ·
∫∫∫

1

2
mjv

2
∗v∗fad

3v∗ +

∫∫∫
1

2
mjv

2
∗Ca(fa)d

3v∗ (4.25)

where νe is the electron classical collision frequency, Ωe is the gyro-frequency

of electron. Tj and qj represent species’ thermal temperature and heat flux

respectively[85].

qe = −κ||e∂||Te +
5pe

2meΩe

b×∇Te − κ⊥e∇⊥Te

−0.71
TeJ||
e

+
3νe
2Ωe

Teb× J

e
(4.26)

with κ||e = 3.16 pe
meνe

, κ⊥e = 4.66 peνe
meΩ2

e
. Since the derivative remains unchanged in

a uniformly rotation frame, viscosity terms are assumed to be the same as that in

inertial frame[161], assuming the equilibrium distribution remain approximately

Maxwellian. From Eq.(4.23), one can find that the Coriolis force has no contribu-

tion to the fluid energy.

Taking the same ordering and steps as Simakov’s[85] work, we obtain the continuity

equations under the cold ion plasma assumption:

∂n

∂t
+∇ · [n(VE×B + Vmag + V||e + Vpe + VCo−e + VCf−e)] = Sn (4.27)

where V||e is electron parallel velocity, the electron E × B , diamagnetic and

polarization drift velocities are defined by crossing B on Eq.(4.22).

VE×B =
b×∇Φ

B
,Vmag = −b×∇pe

enB
,Vpe =

b× SM
e

enB
. (4.28)

The velocities due to Coriolis and centrifugal forces are given by:

Vco−e = −
2meV||e
eB

Ω0⊥Ω0⊥Ω0⊥,Vcf−e =
meΩ

2
0R

eB
bbb×∇R (4.29)
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Dotting Eq.4.22 with b and dividing by men, we can use the continuity equation

(4.27) to rewrite the electron momentum conservation equation:

∂V||e
∂t

+ Ve · ∇V||e − (
∂b

∂t
+ Ve · ∇b) ·Ve =

− e

me

E|| +
R||e − ∂||pe

men
− b · (∇ ·←→π )

men
+ 2b ·Ve ×Ω0Ω0Ω0 +RΩ2

0b∇R (4.30)

Performing the same operations on Eq.(4.22) for the ion species and neglecting

minVi · ∂b
∂t

and minVi · ∇b ·Vi since they are comparatively small, we obtain ion

parallel momentum equation.

∂

∂t
minV||i +∇ · [minV||i(VE×B + V||i + Vco−i + Vcf−i)] = −∂||pe

−3

2
B3/2∂(

πci
B3/2

) + 2minib ·Vi ×Ω0Ω0Ω0 +miniRΩ2
0b∇R + SM||i + SM||e (4.31)

Where Coriolis and centrifugal drift velocities for ions are given by:

Vco−i =
2miV||i
eB

Ω0⊥Ω0⊥Ω0⊥,Vcf−i = −miΩ
2
0R

eB
b×∇R (4.32)

The parallel viscosity 3
2
B3/2∂( πci

B3/2 ) ≈ −1.28
√
B∂||[

pi
νiB

∂||(
√
BV||i)] [162] ,goes to

zero in the cold ion plasma assumption. At the same time, one can write the

electron and ion fluid velocities in terms of the centre-of-mass velocity[163]

Vi ≈ V +O(me/mi)

Ve ≈ V − J

nee
+O(me/mi) (4.33)

Then, Eqs. (4.30), and (4.33) can be combined to give a modified Ohm’s law:

E|| ≈
R||e − ∂||pe

ene
+

me

e2ne

∂J||
∂t
− me

n2
ee

2
(Vi · ∇)J||

−2
me

e
b ·Ve ×Ω0Ω0Ω0 −

me

e
RΩ2

0b∇R (4.34)

The last two terms are relatively small compared to the other terms (me/mi),

and will be neglected in the following simulation. Further, following from plasma

momentum conservation equation(Eq.(4.22)), we find
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J = J|| +
1

B
b×∇pe + en(Vpi −Vpe)

+en(Vco−i + Vcf−i)− en(Vco−e + Vco−e) (4.35)

Applying this equation into the ambipolarity condition ∇ · J = 0, the vorticity

equation can be obtained using the Boussinesq approximation[164]:

∂ω

∂t
= ∇ · (ωVE×B) +∇||J||

−e∇ · (nVmag − nVco−i − nVcf−i)− e∇ · (nVco−e + nVcf−e) (4.36)

Using the expressions in Eq.(4.23), (4.24) and (4.26), we notice that the conserva-

tive form of electron energy equation can be written below:

∂

∂t

(
3

2
pe

)
+∇ · [5

2
pe(VE×B + V||e + Vco−e + Vcf−e)

−∇ · (κ||e∂||Te)−
0.71Te
e

J||] = −Wi +
J2
||

σ||
−

0.71∂||Te
e

J||

+(VE×B + V||e + Vco−e + Vcf−e) · (∇pe − SMe +menRΩ2
0∇R) + SEe (4.37)

4.5 Simulations and results

To investigate the global parallel momentum transportation under the non-inertial

effects, we carry out the asymmetric simulations using the Hermes cold ion code

under the BOUT++ framework. This code has good performance on the sim-

ulations on the global flux transport and edge turbulence[84]. Using the same

parameters as in Ref.[84] to normalize the continuity equation (4.27), modified

Ohm’s law(parallel)(4.34), vorticity equation (4.36), ion parallel momentum equa-

tion(4.31)and electron energy conservative equation(4.37). Including classical per-

pendicular diffusion, we obtain the modified 5-field reduced 2-fluid plasma equa-

tions.
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∂n

∂t
= −∇ · (nVE×B + nVmag + nVco−e + nVcf−e)

−∇||
(
nv||e

)
+∇ · (Dn∇⊥n) (4.38)

3

2

∂pe
∂t

= −∇ ·
(

3

2
peVE×B + pe

5

2
Vmag + pe

5

2
Vco−e + pe

5

2
Vcf−e

)
−pe∇ ·VE×B −

5

2
∇||
(
pev||e

)
+ v||e∂||pe +∇||

(
κe||∂||Te

)
+0.71∇||

(
Tej||

)
− 0.71j||∂||Te +

ν

n
j||
(
j|| − j||0

)
+∇ ·

(
3

2
DnTe∇⊥n

)
+∇ · (χn∇⊥Te) +

me

mi

nR∇RΩ2
0 ·VE×B +

me

mi

nRΩ2
0∇R · v||e (4.39)

∂ω

∂t
= −∇ · (ωVE×B) +∇||j||

−∇ · (nVmag − nVco−i − nVcf−i) +∇ · (µi∇⊥ω) (4.40)

∂

∂t

(
nv||i

)
= −∇ ·

[
nv||i (VE×B + Vco−i + Vcf−i)

]
+∇ ·

(
Dnv||i∇⊥n

)
−∂||pe + 2nb · [(VE×B + Vco−i + Vcf−i)×Ω0] + nRΩ2

0b · ∇R (4.41)

∂

∂t

[
me

mi

(
v||e − v||i

)
+

1

2
βeψ

]
= νj||/ne + ∂||φ−

1

ne
∂||pe − 0.71∂||Te

+
me

mi

(
VE×B + bv||i + Vco−i + Vcf−i

)
· ∇
(
v||i − v||e

)
(4.42)

A Clebsch coordinate system is used for asymmetric simulations[165]. In terms of

orthogonal toroidal coordinates (ψ, θ, ζ) these are

x = ψ, y = θ, z = ζ −
∫ θ

θ0

Bψhθ
B0R

dθ (4.43)

In the simulations, we neglect the electron inertial effects in corrective terms in

Eq.(4.38), Eq.(4.39) , Eq.(4.40) and electron rotation potential energy in Eq.(4.39)

as the minor effects. All the inner boundary conditions of variables are Neumann,

and the outer boundaries have Dirichlet boundary conditions. The same shifted

circular equilibrium is used as it in section 3.4, evolving only toroidal number

n = 0. Fig.4.5 shows the equilibrium we used for simulation. The grid resolution

is nΨ = 260, ny = 64.
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Figure 4.5: Sketch of shifted-circular equilibrium cbm18. The top and bottom
points are locations where Fig.4.6 data is taken.

Plasma potential, vorticity, density and ion parallel velocity are obtained from

the simulation. Using a new axisymmetric field solver, the resulting evolution of

the parallel velocity (located at normalized ψ = 0.6ψ0) is shown for two poloidal

locations(top and bottom) on the same flux surface in Fig.4.6. Oscillations at the

top and bottom of the plasma are out of phase, they damp with time to a quasi-

steady state around 3 to 4 ms, then keep increasing slowly. The major reason for

the increasing of the electrostatic potential mainly is that electric field is related to

rotation in the non-inertial system(Eq.(4.19). In the later physical analysis section,

an interactive relationship between parallel velocity and electrostatic potential can

be seen from Eq.(4.61). Because the toroidal rotation rate is a constant number,

rotation plays a role as a kind of source, contributing to the growth of velocity

and potential.

From the results of simulation, we also find ZF and GAMs like structure appears

in the presence of uniform toroidal rotation. As it shown in Fig.4.7, at the quasi-

steady state, the parallel velocity changes from a ’frozen’ state into an alternative

structure under the effects of non-inertial force and drift. The amplitude of the

velocity also increase significantly compared to non-rotating simulation. In the

following figures, the velocity is normalized by ion acoustic velocity
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Vcs =

√
γBkB(Ti + Te)

mi

(4.44)

where kB is the Boltzmann constant, γB = 5
3

is the ratio of specific heat capacities.

Figure 4.6: Evolution of the parallel velocity (located at normalized ψ =
0.6ψ0) with axis toroidal rotation velocity R0Ω0 = 0.8 Mach. The red line is

the velocity at the top of poloidal plane, whilst the blue one is bottom

Figure 4.7: Parallel velocity (Units: Mach Number) on quasi-steady state
without(a)and with(b) uniform rotation, the rotation velocity at axis R0Ω0 =

0.8Mach

In addition, the results of simulations reveal parallel flow’ evolution with time.

Radial spatial structure is obtained and the GAM like structure propagate across
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flux surfaces, shown in Fig.4.8. The harmonic oscillations grow from the core area

of the equilibrium and propagate to the boundary regions.This kind of feature is

quite similar to GAMs.

Figure 4.8: Time evolution of parallel flow, the rotation velocity at axis
R0Ω0 = 0.8Mach, units of velocity are Mach number

Comparing the results for different rotation rate, it is obtained that toroidal rota-

tion rate has influence on the poloidal velocity structure, as it shown in Fig.4.9.

Combined with the velocity spatial spectrum in Fig.4.10 we can also conclude that

higher rotation rate decrease the poloidal mode number of parallel flow.
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Figure 4.9: Parallel velocity at 5ms, with the axis toroidal rotation velocity
Ω0 = 0.1 Mach(a) and R0Ω0 = 0.8 Mach(b)

Figure 4.10: Spatial structure of parallel velocity at t=3ms with low and high
toroidal rotation rates, figure (a) is the spectrum with axis toroidal rotation
velocity R0Ω0 = 0.1 Mach, and figure (b) indicates the velocity spectrum with
axis toroidal rotation velocity R0Ω0 = 0.8 Mach. x and y axis represents
poloidal angle and normalized poloidal flux surface grids respectively. The 0

and ψ0 indexes are inner and outer boundary.
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Besides, the mean Mach numbers of parallel velocity grow continuously with the

increase of toroidal rotation(Fig.4.11).

Figure 4.11: The growth of flux average parallel with toroidal rotation in
radial position ψ = 0.6ψ0

However, it is still unknown whether this kind of structure is ZF or GAMs. Here,

we assume these m ≈ 0 and m ≈ 1 modes obtained as zonal-flow and GAM. Since

both of them depend on radial electrostatic fields, we then operate spatial Fourier

transform on electrostatic fields and obtain the m ≈ 0 and m ≈ 1 components,

results are shown in Fig.4.12. From the figure, it can be concluded that the

amplitude of the m = 0 mode is excited but its frequency is damped influenced by

toroidal rotation. On the other hand, for the m = 1 mode, the frequency of the

electrostatic field increases with the influence of non-inertial effects. Therefore, this

shows that ZF and GAMs are triggered in this rotating frame. By doing a further

Fourier transform in time on the above two components, we then further get the

GAM frequency and ZF’s amplitude (Fig.4.13), from the figure, we can conclude

that the velocity of zonal flow and GAMs’ frequency increase with rotation rates,

but GAM damps with time.
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Figure 4.12: Time evolution of ZF m=0(a) and GAM m=1(b) radial electro-
static field

Figure 4.13: Velocity of m = 0 mean flow (a) and the frequency of (b) m = 1
oscillating flow for different rotation rates, MT is the mach number of axis

toroidal rotation velocity.
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Since the formation of GAMs is considered as the phase difference between density

and electrostatic potential[62]. Some experimental methods such as ECRH and

NBI are believed to have effects on ZF and GAMs, which cause the asymmetry of

poloidal density[139]. In appendix A, we developed a simple mode and verified that

ECRH can trigger plasma density in-out asymmetry poloidally. In the following

simulation, we run the cases with the injection of an in-out asymmetric density

source (cosine), shown in Fig.4.14. It is found that asymmetric source can enhance

the amplitude of oscillation but contribute to the mean of parallel flow only with

the existence of toroidal rotation. As discussed in section 4.1, the injections of NBI

and ECRH can induce poloidal asymmetry. Here we suggest that the influence of

NBI and ECRH on ZF and GAMs are not only caused by density asymmetry but

on the change of toroidal velocity profile[137].

Figure 4.14: Parallel velocities (located at normalized ψ = 0.6ψ0) with axis
toroidal rotation velocity R0Ω0 = 0.8Mach with and without asymmetric source
injection. The blue line is the velocity evolution without neither source and
rotation, red line and orange line is the case of source injection and rotation
separately. The green line is the result with both density source injection and

toroidal rotation.

4.6 Physical explanation

To understand the mechanism of simulation results further, we use simple MHD

equations to study non-inertial’s effects analytically. From equations (4.27), (4.31),(4.36),
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we can obtain a simplified reduced MHD mode by eliminating electron momentum

and diffusion terms:

∂n

∂t
= −∇ · [nb×∇φ

B
] (4.45)

∂Ω

∂t
= ∇ · [p∇× (

b

B
)] +∇||j|| +∇ · (enVco−i + enVcf−i) (4.46)

∂nv||
∂t

= −∇ · [nv||(VE×B + Vco−i + Vcf−i)] + ∂||pe

+2nb · (b×∇φ
B

×Ω0Ω0Ω0) + nRΩ2
0b · ∇R (4.47)

A common approach to solving the continuity is to use[89]:

∇× b

B
≈ 2

B
b× κ (4.48)

where κ is curvature term,and to split the E×B advection term into a divergence-

free advection term, and a divergence term:

∂n

∂t
= − 1

B
b×∇φ · ∇n− n∇ · ( 1

B
b×∇φ) (4.49)

then approximate

∇ · ( 1

B
b×∇φ) ≈ 2

B
b× κκκ · ∇φ (4.50)

In Clebsch coordinates the E ×B advection term appears like[89]

1

B
b×∇φ · ∇n =

∂φ

∂x

∂n

∂z
− ∂φ

∂z

∂n

∂x
BtIR

B
(−∂φ

∂y

∂n

∂z
+
∂φ

∂z

∂n

∂y
) +

RBpBt

B2hθ
(
∂φ

∂x

∂n

∂y
− ∂φ

∂y

∂n

∂x
) (4.51)

For axisymmetric flows the z derivatives(toroidal angle) are zero, so this term

vanishes, leaving only the compression term. This leaves

∂n

∂t
= −n 2

B
b× κ · ∇φ (4.52)
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Starting with the density equation, we look for solutions of the form

n = n0 + n1 = n0 + n1,0e
ik⊥x+ik||2y−iωt

φ = φ0 + φ1 = φ0 + φ1,0e
ik⊥x+ik||1y−iwt

v|| = v||0 + v||1 = v||0 + v||1,0e
ik⊥x+ik||2y−iγt (4.53)

Linearising equation (4.52), assuming a simple circular cross-section, large aspect-

ratio, and keeping only the poloidal flow

b× κκκ · ∇ → 1

R
sinθ

∂

∂x
(4.54)

we get

n1,0 = n0
2k⊥
BRω

sinθφ1,0 (4.55)

Then the linearised form of Eq.(4.47) becomes

−iγv||1 =
miR

2Ω2
0BpBt

eB2hθ
(
Bhθ
Bp

ik⊥v||1sinθ −
B

RB2
p

ik||2v||1cosθ)

+
2miv||0k⊥RΩ2

0BpBtφ1

eωB3hθ
(
Bhθ
Bp

ik⊥sin
2θ − B

RB2
p

ik||1sinθcosθ)

−
2imiΩ0k⊥v||0

eB
v||1sinθ −

v||1miΩ
2
0

e
sinθcosθ + eT0

2ik⊥k||1
rBR

φ1sinθ

−
2in0v||0k⊥
BRω

φ1sinθ + 2iΩ0φ1k⊥ sin θ − 2φ1Ω2
0k⊥

Bpω
sin2θ (4.56)

The first two terms of Eq.(4.56) apply Eq.(4.51)’s rule

n
miRΩ2

0

eB
b×∇R · ∇V|| = n

miRΩ2
0

eB

RBpBt

Bhθ
(
∂R

∂x

∂V||
∂y
−
∂V||
∂x

∂R

∂y
) (4.57)

Where
∂R

∂x
= − BR

R2B2
p

dZ

ds
,
∂R

∂y
=
Bhθ
Bp

dR

ds
(4.58)

s is the distance along the field line. Since vorticity is approximately:

Ω =
min0

B2
0

∇2
⊥φ (4.59)
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Then we can rewrite the vorticity equation into a linearized form:

iωk2
⊥
mi

B2
φ1 = 4

ik2
⊥eT0

ωB2R2
φ1sin

2θ +
2k⊥hθmiΩ

2
0

ωRB2
φ1sinθcosθ

+
2mik⊥RΩ2

0Btφ1

ωB2hθ
(−ihθk⊥sin2θ +

1

RBp

ik||1sinθcosθ)

−2
iΩ0mik⊥hθ

B
v||1(BRk⊥sinθ + k||2cosθ) +∇||j|| (4.60)

To remove the parallel current term from the vorticity equation, average over a

flux surface by defining < · >=
∮
·dθ for large aspect ratio. When k1 ≈ 0, k2 ≈ 0,

we obtain a simple equation operating on Eq.(4.56) and Eq.(4.60):

iγv||1 =
hθΩ

2
0k⊥

Bpω
φ1 (4.61)

Eq.(4.61) gives the expression of ZF’s (k1 ≈ 0, k2 ≈ 0) growth rate. When the

perturbation frequencies damps (ω=imaginary values), the parallel velocity can

rise with the electrostatic potential. On the other hand, parallel velocity also con-

tribute to the potential. That helps to explain why the potentials keep increasing

at the end of the simulation instead of becoming horizontal in Fig.4.7. When

k1 ≈ 0, k2 ≈ 1, we obtain GAM component of Eq.(4.60):

ωk2
⊥ < φ1 >

mi

B2
=

2eT0k
2
⊥

ωB2R2
< φ1 > −

miRΩ2
0Btk

2
⊥

ωB2
< φ1 > (4.62)

Most terms cancel, leaving

ω2 =
eT0

mi

2

R2
−RΩ2

0Bt (4.63)

Using the same method, we obtain the equations from Eq.(4.56) and Eq.(4.60)

miR
2Ω2

0BpBt

eB2hθ

Bhθ
Bp

ik⊥v||1,0 exp(−iγt) = −2φ1,0Ω2
0k⊥

Bpω
exp(−iωt)(4.64)

iωk2
⊥
mi

B2
φ1,0 exp(−iωt) = 2

ik2
⊥eT0

ωB2R2
φ1,0 exp (−iωt) +miRΩ0Bk

2
⊥v1,0 exp(−iγt)(4.65)

Applying Eq.(4.64) into Eq.(4.65),we obtain
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v1,0exp(−iγt) =
2ieB

miωBpBtR2
φ1,0 exp(−iωt) (4.66)

ω2 =
eT0

mi

2

R2
+

2eΩ0B
4

miBpBtR
(4.67)

From the equations, we find that centrifugal force and drift contribute to the

growth of parallel velocity and damping of the GAM, this result is qualitatively

similar to Casson’s work[166]. On the other hand, the synergistic effect of cen-

trifugal drift and Coriolis drift increase the frequency of GAM and make this kind

of m = 1 structure propagate in the radial direction. This agree qualitatively with

the results seen in Fig.4.13.

Due to the gradient of the potential perturbation, the density perturbation is

surrounded by an E ×B drift vortex. Since the density is not homogeneous, the

component of the corresponding particle flux parallel to the density gradient has

a divergence leading to an increase of the initial perturbation where VE is anti-

parallel to n and to a decrease where VE and ∇n are parallel. Consequently,

the divergence of the E × B flow leads to a motion of the initial perturbation

perpendicular to the magnetic field and the density gradient. In the absence of

ion pressure gradient, Coriolis drift plays a similar role as ion diamagnetic drift,

which contributes to the radial propagation of GAM[125].

Figure 4.15: a) Density and potential perturbations are phase shifted such
that the maximum of the density perturbation is close to the maximum of the
divergence of the E × B particle flux. Therefore, the initial perturbation is
continuously fed by the E×B flow, centrifugal drift can reduce this phase flow
and Coriolis drift makes perturbations to propagate in radial direction. b) One-
dimensional picture. Density and potential are in phase. The divergence of the
E×B particle flux along with Coriolis velocity causes the potential and density

fluctuations to move.
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4.7 Further discussion and preliminary experi-

ment results

Based on Hsu’s[140] model, the injection of ECW can induce the growth of elec-

trostatic potential, which cause the density perturbation. We obtain permission

to use the data and design experiments on HL-2A. In the shot 31193, the radial

and poloidal potential are measured with the injection of Electron cyclotron waves

(ECW). The deposition point of ECW locates in the 0.6 normalized flux surface;

the data is collected from 0.95 normalized surface. Basic parameters of shot 31193

(Fig.4.16) are as follows: plasma current is about 150MA, line-average electron

density is about 2× 1019m−3, the toroidal magnetic field on axis is about 1.3T .

The injections of RCRH and neutral beam are shown in Fig.4.16(b) where the

curves demonstrate the powers of NBI and ECRH versus time. The power of NBI

and ECW wave are around 800KW and 600KW respectively. The injection time

of NBI exists from 500ms to 1100ms and the 68GHz ECRH is from 700ms to

about 900ms.
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Figure 4.16: (a)The experiment parameters and (b)the injection of eletron
cyclotron resonance wave and neutral beam in shot 31193 of HL-2A

[167]

Langmuir probe is used to detected the poloidal and radial potential on 0.95

normalized flux surface (midplane of LFS). The structure of Langmuir probe is as

illustrated in Fig.4.17.
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Figure 4.17: (a) The configurations of HL-2A in this shot (b) multi-functional
probe array arrangement, which contains: voltage swept probe tip (red), double

probe (blue) and floating potential tips (green).

[168]

In the experiment, we use the blue probes to evaluate the poloidal Electric field,

while the potential difference of green ones is used to calculate radial field[167].

Then the time evolution of poloidal and radial electric field in mid plane is ob-

tained.

Figure 4.18: The change of poloidal potential during the process of ECW
injection (shot 31193)
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Figure 4.19: The change of radial electric field during the process of ECW
injection (shot 31193)

From the data of Fig.4.18 and Fig.4.19, it is obvious that during the injection

process of ECW, both the poloidal and radial potential increase severely during the

process and decrease after the injection of ECW. To obtain the major components

of the oscillations, we do Fourier transform on radial and poloidal electric field,

in the periods of time 500ms− 700ms (before ECRH) and 700ms− 900ms (with

ECRH) respectively. The spectra of electric oscillations are shown in Fig.4.20.
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Figure 4.20: Amplitude frequency diagrams of (a)radial and (b)poloidal elec-
tric oscillations with(solid lines) and without(dashed lines) the injections of

ECRH.

Obtaining from Fig.4.20(a), low frequency components of the radial electric field,

with the frequencies of < 10KHz and ≈ 17KHz, are enhanced significantly by

ECRH. In HL-2A, the typical frequency of LFZF(low frequency zonal flow) is

< 4KHz, and GAM frequency is about 7KHz − 20KHZ[169, 170]. At the same

time, turbulence components (identified as 20KHz−100KHz parts[170]) are mit-

igated slightly. It can be also seen from Fig.4.20(a) that ECRH can increase the

GAM frequency (13KHz without ECRH). Similar results are also reported in

Previous work of other scholars[169, 171]. From Fig.4.20(b), similar effects on

poloidal electric field are obtained: ECRH can cultivate low frequency electric

fields effectively.

Those mentioned above observations in the experimental analysis have agreements

with our simulation results qualitatively. From simulations, we find that the ampli-

tude of ZF and electrostatic potential rise with the toroidal rotation rate. While

ECRH is proved to have great relevance with toroidal rotation rates[129, 137].

Therefore, the non-inertial effects can be one of the possible reasons in the expla-

nations of GAMs and ZFs excited by ECRH.
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The limitation is that only one probe was applied during the experiment, the next

stop of the experiments evolve more probe in different positions with the injection

of ECW, which could obtain the data of plasma velocity and potential difference

in different positions.

From the preliminary experimental results, it may be possible to explore ECRH’s

effect’s on GAM, ZF and rotation in the next step.

4.8 Summary and discussion

To summarize, in this chapter, drift-ordered 2-fluid equations have been devel-

oped from the collisional Vlasov equation in a non-inertial rotating frame, under

the cold ion assumption. Implementing this model into the Hermes code, we per-

formed simulations with setting toroidal mode number n = 0. GAMs and ZF flow

structures are then obtained from the results, under the centrifugal and Coriolis

effects. The harmonic oscillations of momentum are found to grow from the core

area of the equilibrium and propagate to the boundary regions. The results also

indicate that amplitude of ZF and GAM frequency grows with toroidal rotation,

the result is in agreement with Wangs work[13].

We also develop a simple analytic modes to verify the simulation results and

explore the physics of ZF and GAMs in a non-inertial system. It is found that

centrifugal force and drift contribute to the growth of parallel velocity and damping

of the GAM . On the other hand, the synergistic effect of centrifugal drift and

Coriolis drift increase the frequency of GAM and make this kind of m = 1 structure

propagate in the radial direction. In most studies of rotation’s effects on ZF and

GAM[130, 157], the effects of toroidal rotation are regarded as convection flow or

centrifugal drift flow. However, all non-inertial terms, including Coriolis effects,

need to be considered when applying centrifugal drift. This work suggests that the

phase difference between parallel momentum and electrostatic potential can also

trigger GAMs. In the absence of ion magnetic drift (cold ion mode), the Coriolis

convection plays a vital role in GAM radial propagation ZF’s global structure.

In most previous studies, the ITG is considered as an important role of exciting ZF,

especially under the situation of arbitrary heating[62, 172]. But the experiments

on ASDEX-U prove that ion temperature profile change a bit during the process

of ECRH[137], which has little effects on ITG. Therefore, it is reasonable to use
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cold ion model to simulate the physics of this flows. Then we guess that the

changes of rotation profile and parallel plasma distribution may be one of the

reasons influencing ZF and GAMs during the heating process. From the results

in Fig.4.14, asymmetric density sources are proved to have effects on amplitude

and phase of GAMs or ZFs, which can be induced by ECRH[129, 139]. Combined

with the previous theories and preliminary experimental results, it is possible to

explore ECRH’s effects on GAM and ZF.

However, there are some limitations of those cold ion simulations. The ion mag-

netic drift, which is considered as the one of the main contributions of GAMs and

ZFs, is vanished in cold ion model. The ion viscosity and heat flux terms are not

concluded in this model since the ion temperature is set to zero. In the future

work, hot ion model will be applied to study rotation’s effects.



Chapter 5

Plasma rotation and flows effects

on ELMs

Previous work on plasma rotation’s effects on ELMs mostly focuses on the ad-

vection terms in the inertial system. Some results of BOUT++ simulations show

that only shear E×B flow has a clear influence on ELM [19, 123]. These studies

reveal that shear flow can reduce ELM growth rate and suppress ELM size. On

the other hand, Kelvin-Helmholtz instability caused by shear flow destabilizes low

n P-B mode. However, equilibrium E × B flow in those work is treated as an

additional term rather than self-consistent with equilibria. And it is still interest-

ing to study flow and plasma rotation’s effects on ELM. In this chapter, 4-field

reduced-MHD equations are derived from collision-less Vlasov equation in a non-

inertial rotating frame, new terms include both centrifugal and Coriolis effects.

Based on this model, simulation results show rigid rotation can also mitigate P-B

instabilities with consideration non-inertial terms. Our results indicate that non-

inertial effects should be taken into consideration in ELM studies. In the previous

studies, the P-B instability studies generally focus on the radial characteristics

of pressure profiles, the results of this chapter suggest that poloidal structure or

parallel structure of pressure is also important.

112
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5.1 A brief review of studies of plasma rotation

effects on ELMs

As was reviewed in chapter 1 and chapter 4, shear flows at the plasma edge are

believed to play an essential role in L-H transitions and the H-mode pedestal.

In the experiments, toroidal rotation is believed to lead to poloidal rotation and

cause its shear at the edge to increase significantly[173]. At the same time, many

experiments support the hypothesis that ELMs are stongly influenced by shear

flows[34, 174]. In experiments on JT-60, toroidal rotation was found to have

effects on both ELM size and frequency[34], shown in Figure.5.1. Experimental

work on KSTAR also suggests stabilization of pedestal instabilities due to toroidal

rotation[33]. In addition, the energy losses of ELMs have been shown to be reduced

by counter current direction NBI heating in JT-60U[34] and DIII-D [35].
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Figure 5.1: (a)Toroidal rotation profiles at the LFS of midplane, the zero
point on x axis of (a) is the location of peak density. The scan regime is
q95 ≈ 4.7 − 6.3. (b-e)The identities(Dα) of ELMs frequency and energy loss

with different toroidal rotation velocities on JT-60.

[34] .

From the results of Fig.5.1, we can find that larger counter toroidal rotation rates

lead to smaller ELM size but higher frequency. The reason for rotation’s mitigation

effect can be the sign or absolute value of velocity instead of its shear. In the

same experiment, no edge fluctuations were observed, which means turbulence
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makes little effect. However, the mechanism is still not fully understood, each

theoretical model can find some support from the experiments[174]. Generally,

critical flow shears at the edge are believed to mitigate ELMs. Waelbroeck[175]

suggested that the flow shear has a stabilizing effect on high-n ballooning modes

in a circular tokamak equilibrium. In the latter study, high-n peeling ballooning

mode was addressed can also be stabilized by flow shear and toroidal rotation

rotation[176]. Further simulation work using ELITE examined the effects of flow

shear and toroidal rotation on ideal peeling-ballooning mode[55]. Later simulation

studies using BOUT++ studied the influence of toroidal rotation shear on nonideal

P-B mode, such as ion diamagnetic effects and the resistivity[19, 123]. Both linear

and non-linear results demonstrate that the shear of parallel equilibrium flows

can both stabilize P-B mode and destabilize ELM by driving Kelvin-Helmholtz

instabilities.

However, the experiment results on JT-60[34] find that for grassy ELMs, the sign

or the amplitude is the main cause of ELM energy suppression, rather than the

shear of rotation. In addition, the supposed equilibrium shear flow or rotation in

previous BOUT++ simulations was generated by imposing an electric field or ve-

locity shear, the severe impacts of this electric or velocity shear on equilibrium and

pressure profiles are neglected. In some other work, the shear flows are regarded as

centrifugal drift velocities[55], which only exist in the non-inertial system. There-

fore, it is needed to develop a self-consistent model for the influence of rotation on

ELMs. Treating previous approaches toroidal rotation as a rotation frame in the

non-inertial system, problems can be avoided. In this section, we will develop a

self-consistent MHD model in the rotating frame to explore the effects of toroidal

rotation and flow shear on ELMs.

5.2 Reduced single MHD model in rotating frame

Neglecting the collisional operater, we can obtain the Vlasov equation in non-

inertial system:

∂fa
∂t

+v∗·∇fa+
ea
ma

(
E∗ + v∗ ×B− 2

ma

ea
Ω0 × v∗ +

1

2

ma

ea
∇Ω2

0R
2

)
· ∂fa
∂v∗

= 0 (5.1)



116

Taking the integration over Eq.5.1 with zero, first and second momentum. We can

obtain similar fluid equations:

∂nj
∂t

+∇ · njVj = 0 (5.2)

the momentum conservation equation,

∂mjnjVj

∂t
+∇pj +∇ · (←→π +mjnjVjVj) = Zjenj(E + Vj ×B)

+2mjnjVj ×Ω0Ω0Ω0 +mjnjRΩ2
0∇R (5.3)

and the energy conservation equation,

∂

∂t
(
3

2
pj +

1

2
mjnjV

2
j ) +∇ ·Qj

= Vj · (ZjenjE +mjnjRΩ2
0∇R) (5.4)

where the Snj ,S
M
j , S

e
j are density, momentum and energy sources for species j,

respectively. Followed the method in plasma textbook[4], we obtain single fluid

momentum equation combining Eq.3.44 and Eq.5.3,with neglecting plasma viscos-

ity:

ρ
∂V

∂t
+ ρV · ∇V = ∇P + J×B + 2ρV ×Ω0 + ρRΩ2

0∇R (5.5)

Then we take ee
me
Me + ei

mi
Mi to get Ohm’s law:

E + V ×B = −memi

eeei

∂

∂t

(
J

ρ

)
+

1

ρ

(
mi

ei
+
me

ee

)
J×B

−
(
ee
me

∇pe +
ei
mi

∇pi
)
memi

ρeeei
+ 2

memi

eeeiρ
J×Ω0 (5.6)

whereMe andMi are electron and ion species of momentum equation. In the quasi-

neutral assumption, the contribution of centrifugal force turns to zero. Then the

parallel Ohm’s law can be obtained by dotting b on both sides of Eq.5.6.

E|| = −
(
ee
me

∇||pe +
ei
mi

∇||pi
)
memi

ρeeei
+ 2

memi

eeeiρ
J×Ω0 · b (5.7)

Where the electron inertia term −memi
eeei

∂
∂t

(
J
ρ

)
and hall term 1

ρ

(
mi
ei

+ me
ee

)
J × B

are neglected for low engough frequency. Following the same process, we can get
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the MHD version of energy conservation equation:

∂

∂t

(
3

2
+

1

2
ρV 2

)
+

5

2
∇ · (pV) +

1

2
∇ · (ρV 2V) = J · E + ρRΩ2

0V · ∇R (5.8)

Combining Eq.5.2 and Eq.5.3, we can find that:

∂

∂t

(
1

2
ρV 2

)
+∇ ·

(
1

2
ρV 2V

)
+ V · ∇p = V · J×B + ρRΩ2

0V · ∇R (5.9)

where in the view of Ohm’s law with neglecting electron inertia term, hall term

and diamagnetic contribution:

V · J×B = J · E (5.10)

Hence:

∂

∂t

(
1

2
ρV 2

)
+∇ ·

(
1

2
ρV 2V

)
+ V · ∇p = J · E + ρRΩ2

0V · ∇R (5.11)

Substituting this result into Eq.5.9, energy conservation equation is obtained:

dp

dt
+

5

3
p∇ ·V = 0 (5.12)

The expression is the same as that in non-rotating system, which illustrates rota-

tion does not contribute to internal energy. Following the same derivation process

of shear-Alfven’s law[89], we obtain the vorticity equation using of tensor identity

and taking b · ∇× and the curvature term gives:

b · [∇× f − 2κ× f ] ' ρ
dU

dt

where U is the parallel component of vorticity:

U ≡ b · ∇ ×V (5.13)

ρ
dU

dt
= B2B · ∇

(
J||
B

)
+ 2b× κ · ∇P

+2ρb · ∇ × (V ×Ω0) + ρRΩ2
0b · ∇ ×∇R (5.14)
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Since∇×(∇F ) = 0 for any scalar F, the last term of RHS of the vorticity equation

turns to zero. The Coriolis term can be written as:

B · ∇ × (V ×Ω0) = ∇ · [(V ×Ω0)×B)] + (V ×Ω0) · (∇×B) (5.15)

based on the identity ∇ · (F × G) = G · (∇ × F) − F · (∇ × G). Note that

∇×B = µ0J and thus

(J×B) · (∇×B) =
1

µ0

(J×B) · J = 0 (5.16)

Thus,

B · ∇ × (V ×Ω0) = ∇ · [(V ×Ω0)×B)]

= ∇ · [−B× (V ×Ω0)] = ∇ · [−V (B ·Ω0) + Ω0 (V ·B)]

= ∇ ·
[
−BΩ0||V +BV||Ω0

]
= −V · ∇(BΩ0||) + Ω0∇(BV||) (5.17)

The terms −BΩ0∇ ·V and BV||∇ ·Ω0 are eliminated since

∇ ·V = 0;

∇ ·Ω0 = ∇ ·∇× u = 0

where u is the uniform toroidal rotation velocity. Then we can obtain the vorticity

equation by substituting Eq.5.17 into Eq.5.14:

ρ
dU

dt
= B2b · ∇

(
J||
B

)
+ 2b× κ · ∇P

− ρ

B0

V · ∇(BΩ0||) +
ρ

B0

Ω0∇(BV||) (5.18)

In the drift ordering, the perpendicular velocity is the drift velocity[89],so:

V⊥ '
1

B2
B×∇φ+

1

en

1

B2
B×∇P

+
2ρV||
enB

Ω0⊥Ω0⊥Ω0⊥ −
ρΩ2

0R

enB
b×∇R (5.19)
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Taking the curl of this gives:

∇×V⊥ ≈
b

B
∇2
⊥φ+

b

enB
∇2
⊥P

The contributions of inertial terms are approximately zero in this equation. Com-

bined with the definition of vorticity, electrostatic potential and pressure can there-

fore be related to vorticity by:

U =
1

B
∇2
⊥φ+

1

enB
∇2
⊥P (5.20)

For perturbed magnetic field, B can be written as B = ∇ × A. In the flute

reduction, we only consider its parallel component, so the magnetic field can be

expressed as:

B = B0 + B1

B1 = ∇×
(
b0A||

)
= A||∇× b0 +∇A|| × b0 (5.21)

' ∇A|| × b0 ≈ ∇ψ ×B0 (5.22)

In the Eq.5.22, we used the same definition as it in Hazeltine[89]:

ψ = A||/B0 (5.23)

where ψ is also poloidal flux surface function. Based on Ampere’s law, then we

obtain the expression of plasma current[89]:

J = J0 +
1

µ0

∇×B1 = J0 +
1

µ0

∇×∇ψ ×B0 (5.24)

∇×∇ψ ×B0 = ∇ψ (∇ ·B0)−B0∇2ψ

+ (B0 · ∇)∇ψ − (∇ψ · ∇) B0

The first term of the RHS is zero, and last two terms are small and to be neglected.

Therefore, we only keep the second term of RHS. Then the parallel current is:
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J|| = J||0 −
1

µ0

B0∇2
⊥ψ (5.25)

Combined with Ohm’s law, then we can get the evolution equation for ψ from

Eq.5.6:

E|| = b0 ·
(
−∇φ−

∂A||
∂t

)
= 2

memi

eeeiρ
J×Ω0 · b (5.26)

and since A|| = ψB0,

∂ψ

∂t
= − 1

B
∇||φ− 2

1

B

memi

eeeiρ
J×Ω0 ·B (5.27)

with:

1

B
J×B ·Ω0

=
1

Bµ0

[
B2κ−B∇⊥B

]
·Ω0 (5.28)

where the field-line curvature vector κ is[177]:

κ ≡ b · ∇b = (∇× b)× b

=

[
1

B
∇×B−B×∇

(
1

B

)]
× b (5.29)
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Using the expresion ∇
(

1
B

)
= −∇ (B) /B2[89], κ is rewritten as:

κ =

[
1

B
∇×B−B×∇

(
1

B

)]
× b

=

[
1

B
∇×B +

1

B2
(B×∇B)

]
× b

=
1

B
µ0J× b +

1

B2
(b×∇B × b)

=
µ0

B
J× b

B
+

1

B

(
B

B
×∇B × b

)
=
µ0

B2
J×B +

1

B
(b×∇B)× b

=
µ0

B2
J×B +

1

B
[∇B (b · b)− b (b · ∇B)]

=
µ0

B2
J×B +

1

B
∇⊥B (5.30)

From this equation we get

J×B =
1

µ0

[
B2κ−B∇⊥B

]
(5.31)

where the expression of field line curvature κ in drift order[89]:

κ = κ0 + κ1

≈ b0 · ∇b0 +
1

B2
0

∇P1 (5.32)

Taking the parallel component of momentum equation(5.5), we obtain the parallel

velocity equation

ρ
dV||
dt

= b · ∇P + ρRΩ2
0b · ∇R− 2ρΩ0 ·

(
∇⊥φ
B

+
∇⊥P
enB

)
(5.33)

Subtracting Eq.5.28 into Eq.5.27, we get:

∂ψ

∂t
= − 1

B
∇||φ− 2

1

B

memi

eeeiρ
[Bκ−∇⊥B] ·Ω0 (5.34)
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And energy conservation equation does not change, we can linearize those parallel

velocity, vorticity, energy conservation and ψ evolution equations with:

∇ =
1

ε
∇f +∇s, ∇f =

∂

∂xf
, xf =

x

ε

B = B0 + B1 = B0 +∇ψ ×B0

P = P0 + P1, V|| = V||1, U = U0 + U1

J|| = J||0 + J||1 = J||0 −
1

µ0

B0∇2
⊥ψ

Applying those into Eq.5.12, Eq.5.18, Eq.5.27 and Eq.5.33 we obtain the linearized

reduced MHD equations:
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ρ0
∂U1

∂t
= B2

0

[
b0 · ∇

(
J||1
B0

)
− b0 ×∇ψ1 · ∇

(
J||0
B0

)]
2b× κ0 · ∇P1 −

1

B0

ρ0V1 · ∇(BΩ0||) +
1

B0

ρ0Ω0∇(BV||1)

− ρ0

B0

b0 ×∇φ1 · ∇U1 −
ρ0

enB0

b0 ×∇P0 · ∇U1 +
ρ2

0Ω2
0R

enB0

b0 ×∇R · ∇U1 (5.35)

∂ψ1

∂t
= − 1

B0

b0 · ∇φ1 +
1

2

memi

e2B2
0ρ0

Ω0 · ∇P1 (5.36)

∂P1

∂t
+

1

B0

b0 ×∇φ1 · ∇P0 −
ρ0RΩ2

0

enB0

b0 ×∇R · ∇P1 +
2ρ0V||
enB0

Ω0⊥Ω0⊥Ω0⊥ · ∇P0

=
B2

0

µ0

v2
s

v2
A + v2

s

[
− 2

B0

b0 × κ0 · ∇φ−∇||V|| +
V||
B0

b0 · ∇B0

]
(5.37)

ρ0

∂V||
∂t

+
ρ0

enB0

b0 ×∇P0 · ∇V||1 −
ρ2

0RΩ2
0R

enB0

b0 ×∇R · ∇V||1 =

−∇||P1 + b0 ×∇ψ1 · ∇P0 + ρ0RΩ2
0b0 ×∇ψ1 · ∇R

−2ρ0Ω0 ·
(∇⊥φ1

B
+
∇⊥P1

enB

)
(5.38)

U1 =
1

B0

∇2
⊥φ1 +

1

enB0

∇2
⊥P1 (5.39)

J||1 = − 1

µ0

B0∇2
⊥ψ1 (5.40)

where v2
A = B2

0/ρµ0 and v2
s = γP0/ρ. In these equations, we obtained several new

terms due to the rotation effects in our derivation compared to original 4-field

Elm-pb equations[19]. Following the same normalization units as BOUT++ that

reviewed in chapter 3, we obtain the normalized equations:
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∂Û

∂t̂
+ b0 × ∇̂P̂0 · ∇̂Û − ΛΩ̂2

0R̂b0 × ∇̂R̂ · ∇̂Û + V̂||∂||Û

= −B̂2
0b · ∇̂Ĵ|| + 2b× κ̂0 · ∇̂P̂ − V̂||b · ∇̂(B̂0Ω̂0||) + Ω̂0 · ∇̂(B̂0V̂||) (5.41)

∂ψ̂

∂t̂
= −b0 · ∇̂φ̂+

1

2

me

mi

Ω̂0 · ∇̂P̂ (5.42)

∂P̂

∂t̂
+ b0 × ∇̂φ̂ · ∇̂P̂0 − ΛR̂Ω̂2

0b0 × ∇̂R̂ · ∇̂P̂ + 2ΛV̂|| ˆΩ0⊥ · ∇̂P̂0

= −V̂||∂||P̂0 + 2B̂2
0

v2
s

v2
A + v2

s

[
−2b0 × κ̂0 · ∇̂φ̂− ∇̂||V̂|| +

V̂||

B̂0

b0 · ∇̂B̂0

]
(5.43)

∂V̂||

∂t̂
+ b0 × ∇̂P̂0 · ∇̂V̂|| − ΛR̂Ω̂2

0b0 × ∇̂R̂ · ∇̂V̂||

= −∇̂||P̂ + b0 × ∇̂ψ̂ · ∇̂P̂0 + R̂Ω̂2
0b0 × ∇̂ψ̂ · ∇̂R̂ (5.44)

Û = ∇̂2
⊥

[
φ̂+

(
mi

2eTB

)
P̂ /B̂0

]
(5.45)

Ĵ|| = ∇̂2
⊥ψ̂ (5.46)

where R and Ω0 are normalized with:

R̂ =
R

L
, Ω̂0 = TΩ0, V̂|| =

V||

VA
. (5.47)

Λ is a dimensionless constant equals to mi
eBT

. Those equations are the models we

will use in the further linear simulations. For non-linear cases, the normalized

equations become:
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∂Û

∂t̂
+ b0 × ∇̂φ̂ · ∇̂Û + V||∂||Û

+b0 × ∇̂(P̂0 + P̂ ) · ∇̂Û − ΛΩ̂2
0R̂b0 × ∇̂R̂ · ∇̂Û

= −B̂2
0b · ∇̂Ĵ|| + 2b× κ̂0 · ∇̂P̂ − V̂||b · ∇̂(B̂0Ω̂0||) + Ω̂0 · ∇̂(B̂0V̂||) (5.48)

∂ψ̂

∂t̂
− = −b0 · ∇̂φ̂+

1

2

me

mi

Ω̂0 · ∇̂P̂ (5.49)

∂P̂

∂t̂
+ b0 × ∇̂φ̂ · ∇̂(P̂0 + P̂ ) + V||∂||(P̂0 + P̂ )

−ΛR̂Ω̂2
0b0 × ∇̂R̂ · ∇̂P̂ + 2ΛV̂|| ˆΩ0⊥ · ∇̂(P̂0 + P̂ )

= 2B̂2
0

v2
s

v2
A + v2

s

[
−2b0 × κ̂0 · ∇̂φ̂− ∇̂||V̂|| +

V̂||

B̂0

b0 · ∇̂B̂0

]
(5.50)

∂V̂||

∂t̂
+ b0 × ∇̂P̂0 · ∇̂V̂|| − ΛR̂Ω̂2

0b0 × ∇̂R̂ · ∇̂V̂|| + 2ΛV̂|| ˆΩ0⊥ · ∇̂V̂||

= −∇̂||P̂ + b0 × ∇̂ψ̂ · ∇̂P̂0 + R̂Ω̂2
0b0 × ∇̂ψ̂ · ∇̂R̂

−V̂||∂||V̂|| − b0 × ∇̂φ̂ · ∇̂V̂|| (5.51)

Û = ∇̂2
⊥

[
φ̂+

(
mi

2eTB

)
P̂ /B̂0

]
(5.52)

Ĵ|| = ∇̂2
⊥ψ̂ (5.53)

using the new derived equations to update BOUT++ elm-pd code, we then can

carry out linear and non-linear simulations. Compared to linear model, the main

nonlinear terms from non-inertial terms comes from Coriolis advections.
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5.3 Simulations

Using the normalized equations we derived in the previous section, we modified

the BOUT++ ELM-pb model to simulate the toroidal rotation effect on ELMs.

All involving variables have the same boundary conditions: Neumann for inner

boundary and Dirichlet for outer boundary. We use the same shifted circular

equilibrium as section 3.4 and section 4.5. For normal 3-field ELM-pb linear

simulations, nΨ = 68, ny = 64 is enough to obtain reasonable results. However,

it seems that this resolution is insufficient when concluding non-inertial effects in

simulations. We run some linear cases to test the convergence of resolutions. The

time evolutions of growth rates under different resolutions are shown in Fig.5.2(a).

The growth rates suffer a numerical resonance at first then find the dominant

instabilities of ELM, growth rates come to finite values. From Fig.5.2 we can find

that nΨ68×ny64 resolution is insufficient to get finite growth rate(Fig.5.2(a)), also

numerical instabilities of perturbed pressure on HFS are also distinct(Fig.5.2(b)).

However, nΨ260×ny64 resolution seems sufficient in simulation, both finite growth

rate and radial perturbed structure on HFS converge to the results of nΨ516×ny128

one. Therefore, we choose nΨ260× ny64 grid resolution in linear simulation.

Figure 5.2: (a)Linear Growth rates vs. time (b)radial structure of perturbed
pressure at t = 50τA on HFS. Where toroidal number n=5, rotation velocity on
axis R0Ω0 = 0.4Mach, Pmax is the peak amplitude value of perturbed pressure.

5.3.1 Linear results

Using the Eq.5.41 to Eq.5.46, we perform linear simulations of ELM crash. By

changing the toroidal mode numbers in BOUT.inp files, we get the linear growth
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rates with different rotation rates, shown in Fig.5.3.

Figure 5.3: Growth rate of P-B modes versus toroidal mode number n with
different toroidal rotation rates, ctr-rotation indicates counter-current rotation.

From Fig.5.3, it is found that the major impacts of rotation locate on low-n mode

peeling-ballooning instabilities. Rotation’s effects on high n modes are little. Ro-

tation on counter-current direction can decrease ELM growth rates, and larger

growth rate better mitigation effects. On the contrary, the co-current direction’s

rotation rises the low n mode growth rates, higher rotation rate cause larger insta-

bilities. (Noting that current and magnetic field have negative values on cbm18,

but we still define co-current direction rotation as positive to avoiding confusing

in the thesis, but change signs on simulations.)

Previous simulation work in inertial system[19] indicates that only shear flow play

a role in ELM mitigation. Our results show that rigid toroidal rotation also has

mitigation effects on the linear growth of Peeling-Ballooning mode. The impact

of rotation locates on low n, little effects on high n modes are obtained.

To understand the reasons, we also checked the terms induced by rotation in

Eq.5.41 to Eq.5.46. It was found that the main reason of growth rate suppression

or increase of low-n mode is caused by the terms −V̂||b · ∇̂(B̂0Ω̂0||) + Ω̂0 · ∇̂(B̂0V̂||)

in the vorticity equation. Those terms have impacts on current-gradient driven

instability. As shown in Fig.5.4, parallel flow shear can be obtained on HFS, the

two terms play stabilizing or destabilizing roles for counter-current or co-current

rotations. Because the current-driven modes (low n instability) can also localized
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on the HFS, it can explain why rotation has a greater effect on the growth rate of

low-n modes.

Figure 5.4: Radial structures of plasma velocity of HFS (red line) and LFS
(black line). Data is collected at 70τA, toroidal number n = 5, rotation velocity

at axis R0Ω0 is 0.8 Mach.

In addition, we looked into the ploidal structure of perturbed pressure. A little

phase shift along the poloidal direction is observed with rotational effect (Fig.5.5).

The pressure structure becomes not symmetric about midplane poloidally com-

pared to the non-rotation case. It can be also seen that the perturbed pressure

is reduced in LFS, resulting lower growth rate. Noticing that as even the no

rotation case perturbed pressure is not symmetric poloidally. This is caused by

Er × BΦ drift from a radial electric field. The poloidal rotation would appear

as an asymmetry about the midplane. Then perturbed pressure are not up-down

symmetric.
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Figure 5.5: Comparison of poloidal structure of perturbed pressure between
the cases with (red line) and without (blue line) rotation . Data is collected at
70τA, toroidal number n = 5, rotation velocity at axis R0Ω0 is 0.8 Mach, the
radial location is 0.8Ψnor, the π = 0 index locates in HFS of midplane. Pmax is

the peak amplitude value of perturbed pressure.

In summary, counter-current and co-current direction plasma toroidal rotation can

stabilize or destabilize low n P-B mode respectively, in our linear simulation. In

addition, higher rotation rates have greater stabilizing and destabilizing effects.

Some experiments on grassy-ELM and QH-mode also suggest both the rotation

rates and directions matters.

5.3.2 Non-linear Simulations

In our nonlinear simulations, we retain ion diamagnetic effects, resistivity and

viscosity. We take same equilibrium as linear cases, but use nΨ516 × ny128 reso-

lution, since non-linear simulations require higher resolutions[178]. Compared to

linear simulations, high order advection terms were included in equations, specif-

ically, Coriolis advection in vorticity (Eq.5.48), pressure (Eq.5.50) and parallel

momentum equation (Eq.5.48). We then look into the time evolution of perturbed

pressure at first, shown in Fig.5.6. Unlike ELMs dominated by single toroidal

mode n in linear simulations, instabilities often have multi-toroidal modes in non-

linear cases. We then set the limits of maximum toroidal mode number n = 30 in

non-linear simulations.
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Figure 5.6: The perturbed pressure on peak gradient location, the green,
red and black lines are the cases without, with co-current and conter-current

direction rotations. Rotation velocity at axis is 0.8Mach.

It is recognized that the ELM crash has three evolution stages from the view of

pressure fluctuation. The first one is the phase that all kinds of modes start to

evolve. In the next crash phase, the dominant mode rapidly increases until the

energy loss amplitude reaches a peak, the ELM begins to crash at this stage. The

third one is the turbulence/saturated phase in which turbulent transport is the

dominant process[19].

Comparing green, red and black lines in Fig.5.6, we find that in the linear case,

plasma with co-current rotation has higher growth than no rotation one. The

perturbed pressure reaches a greater amplitude with co-current rotation. On the

contrary, the perturbed pressure with counter-current rotation has a smaller am-

plitude and growth rate in linear growth stage. This result agrees with linear

simulation results. In the turbulence phase, both co-current and counter-current

rotations mitigate ELMs.

In turbulence phase, a primary quantity of interest to evaluate ELM is the ELM

size, defined as

∆ELM(t) =

∫ ψin
ψout

dψ
∮
dθP (t)/Bp∫ ψin

ψout
dψ
∮
dθP0/Bp

(5.54)
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where P is perturbed pressure, ψin is the inner boundary of our simulation do-

main and ψout is the location of the peak pressure gradient. To further study

how rotation saturate ELM in turbulence phase, we plots the data of pressure

profiles (Fig.5.7(a)) at t = 122τA and the time averages of ELM sizes(∆ELM(t))

in turbulence phase (100τA − 200τA) (Fig.5.7(b)) with different rotation rates.

Figure 5.7: (a)Pressure profiles in turbulence phase, the black, red, green,
purple lines denote the equilibrium pressure profiles, pressure profiles without
rotation, with co-current rotation and counter-current rotation. Rotation ve-
locities on axis are R0Ω0 = 0.4Mach(co) and R0Ω0 = −0.4Mach(counter). (b)
Time averaged ELM size vs. different co-current (red square line) and counter-

current (diamond purple line) rotation rate.

Fig.5.7(a) can be interpreted as that the growth of the perturbation is suppressed

by the rotation in the turbulence phase. It is also found that the pressure without

shear penetrates deeper. This means that the radial extent of the pressure per-

turbation is reduced by both co-current and counter-current rotation. Fig.5.7(b)

shows that ELM sizes decrease with toroidal rotation rates, for both directions of

toroidal rotation.

Further, we look into the influences of rotations on ELMs sizes through spatial

Fourier transform on perturbed pressure in toroidal direction(Fig.5.13). The n

(toroidal mode) structures of averaged ELM sizes (t = 100τA − 200τA) shows

rotations on both directions can mitigate high n components ELM size. The

difference is that co-current rotation destabilizes low n mode ELM size and leads

to the dominant mode cascade to low n mode (from n = 15 to n = 10). While

counter-current rotation suppresses ELM sizes of both low and high n modes. The

reason of these differences may be the terms −V̂||b · ∇̂(B̂0Ω̂0||) + Ω̂0 · ∇̂(B̂0V̂||)
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discussed in linear simulations, which make the destabilization and stabilization

of low n modes with co-current and counter-current rotations. The non-linear

effects of Coriolis and Centrifugal advection suppress the ELM sizes of both low

n and high n mode. Then only counter-direction rotation involves in the latter

mechanism study.

Figure 5.8: Time averaged ELMs sizes of each n components without rotation
(black circle lines), with co-current (red diamond lines) and counter-current
rotation (green square lines). Rotation velocity at axis are R0Ω0 = 0.8Mach,

R0Ω0 = −0.8Mach separately.

To study the mechanisms of rotation’s stabilization effect with non-inertial terms.

We look into 2D-poloidal and radial structures of perturbed pressure, shown in

Fig.5.9. It is found that the structure pressure perturbations differs poloidally and

radially with rotation.
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Figure 5.9: The 2D structure (poloidal plane) of perturbed pressure with
counter-current (left) and without(right) rotation in non-linear simulations.
Data is collected at their crash stage respectively, rotation velocity at axis R0Ω0

is 0.8 Mach.

Then we look into poloidal and toroidal structure of perturbed pressure separately.

Fixing the radial location at 0.8Ψnor, the perturbed pressure shifts in poloidal

direction at ELM crash stage (t = 96τA), shown in Fig.5.10. The index 0 and 2π

is the poloidal location of LFS on midplane. Fig.5.10 tells the peak of pressure

perturbation shift to + − 0.5π (top and down) poloidally. Then we operate flux

surface average on perturbed pressure to investigate radial structures, the averaged

pressure perturbation is defined as[9]:

< P >=

∫ 2π

0
dζ
∮
dθP/Bp∫ 2π

0
dζ
∮
dθ/Bp

(5.55)

where ζ is the toroidal angle. The radial structure of averaged pressure at ELM

crash stage (t = 96τA) is plotted in Fig.5.11.
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Figure 5.10: Comparison of poloidal structure of perturbed pressure between
the cases with(red) and without(blue) rotation. Data is collected at their crash
stage respectively, counter-current rotation velocity at axis R0Ω0 = −0.8Mach,
the radial location of two profiles is 0.8Ψnor, the π = 0 index locates in HFS of

midplane. Pmax is the peak amplitude value of perturbed pressure.

Figure 5.11: Radial structures of flux-averaged perturbed pressure with and
without rotation. Data is is collected at their crash stage respectively, counter-
current rotation velocity at axis R0Ω0 = −0.8Mach, the radial location of two

profiles is 0.8Ψnor.

From the results in Fig.5.9 and Fig.5.10, we find that different from the linear

simulation, a strong phase shift of perturbed pressure occurs. The perturbed
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pressure peaks at the top of the poloidal plane instead of the outboard mid-plane

poloidally. That makes the reduction of the pressure gradient in bad curvature

region (normally outer mid-plane). The peeling-ballooning instabilities are there-

fore mitigated owing to the non-inertial effects. This is because ELM crash mainly

happens at the LFS of outer mid-plane[31](because of bad curvature). Similarly,

Dickinson and Abddoul [179, 180] reported that the poloidal pressure phase shift

can stabilize micro-instabilities, by introducing an external poloidally asymmetry

electrostatic potential. Besides, the rotation also broadens the perturbed pressure

radial structures and reduce pressure amplitudes in the pedestal region (Fig.5.11).

Since lower pressure perturbation in peak pressure region, this kind of pressure

radial structure change may suppress ELM size.

To further study the role of Centrifugal and Coriolis effects independently. we

carry out ELM nonlinear simulations with keeping the terms related to one of

these two effects (centrifugal and Coriolis) separately. From the view of the per-

turbed pressure’ 2D structure (shown in Fig.5.12) at the beginning of turbulence

phase(t = 120τA), the Coriolis effects mainly contribute to the pressure poloidal

phase shift (Fig.5.12(a)). On the other side, centrifugal terms have an influence on

pressure’s radial structure (shown in Fig.5.12(b)). Fig.5.12(c) shows both the ra-

dial and poloidal structure change under the influence of whole non-inertial effects,

compared to the pressure perturbation without rotation (Fig.5.12(d)). We also no-

tice that the perturbed pressure has boarder radial fluctuation in the absence of

rotation.
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Figure 5.12: The 2D structure (poloidal plane) of perturbed pressure un-
der the centrifugal(a) and Coriolis’s(b) effects; (c) and (d) are the perturbed
pressure with all non-inertial effects and without rotation respectively. Rota-
tion velocity at axis R0Ω0 = −0.8Mach, perturbed pressure is normalized by

2µ0P0/B
2
0 .

Lastly, we compare the time average ELM sizes in the turbulence phase with

centrifugal and Coriolis’s effects independently on Fig.5.13. It is found that both

centrifugal and Coriolis terms can reduce ELM size independently. In addition,

comparing the value of the black diamond, red circle and green cubic lines in

Fig.5.13, it can be summarized that centrifugal and Coriolis terms have coupling

effects on ELM size reductions (The ELM size with both effects is smaller than

the ones with single Centrifugal or Coriolis effect).
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Figure 5.13: Time-averaged ELM sizes in turbulence phase, black diamond,
red circle and green cubic lines denote both effects, Coriolis and Centrifugal

effect respectively, rotation velocity on axis R0Ω0 = −0.8Mach.

5.4 Summary and discussion

To summarize, the plasma flow’s effects on ELMs are shortly reviewed at the

begining of this chapter. Then 4-field reduced-MHD equations are derived from

collisionless Vlasov equation in a non-inertial rotating frame, new terms concludes

both centrifugal and Coriolis effects. Applying these new fixed 4-field equation into

the Elm-pb code, we carried out linear and non-linear simulations. In linear simula-

tions, it obtained that the impact of rotation on low n modes are greater than high

n modes. It is also found that co-current direction rotation enhance low n instabili-

ties, while counter-current rotation mitigate ELMs on low n modes. Mechanisms of

the results are also explored, we address the terms −V̂||b·∇̂(B̂0Ω̂0||)+Ω̂0 ·∇̂(B̂0V̂||)

related to Coriolis effects play the majority roles.

From the results of non-linear simulation, we find perturbed pressure grows faster

with co-current rotation that whom with counter-current rotation and without

rotation. In addition, toroidal rotation on both co and counter directions can mit-

igate ELM size in turbulence phase. In our preliminary study, one of the mech-

anisms is the poloidal shift of perturbed pressure, resulting in reduced pressure

gradient in LFS (bad curvature side). And Centrifugal terms have an influence on

radial structure of perturbed pressure, also resulting in the suppression of ELM

size. Those conclusions comes to an agreement with some previous ballooning
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and micro-instabilities studies[179, 180]. Abdou’s([180]) work only points out the

asymmetric perturbations cause the stabilization of ballooning mode, but can’t

explain how those asymmetricity come from. Therefore, non-inertial seems to

be the a reason of this ELM size reduction. From the result of simulation, we

also conclude that there exists coupling effects between centrifugal and Coriolis

terms, mean the ELM size with both effects is smaller than the ones with single

Centrifugal or Coriolis effect.

In conclusion, studies of flow’s influence on ELMs are reviewed, it is well recognized

that plasma rotation has significant effects on ELMs. In the previous BOUT++

simulation work, the effects of rotation is carried out in inertial system, centrifugal

and Coriolis terms are not concluded in those studies[19, 123]. The results of

previous work indicate that only E×B can influence ELM growth rates and size

significantly, rigid rotation without shear has little impact on P-B instabilities.

However, the experiments in JT-60 suggest that it is the sign or absolute value

of velocity rather than its shear[34]that influence ELMs. Our results indicate

that the non-inertial effects should be taken into consideration in ELM studies.

In the previous studies, the P-B instability studies generally focus on the radial

characteristics of pressure profiles, the results of this chapter suggest that poloidal

structure or parallel structure of pressure is also important.

However, the work in this chapter still has several limitations. First, the density

evolution is not fully included in the equations, which has been proved to have

dominant effect in poloidal flow[62]. Second, further studies of coupling effects

of centrifugal and Coriolis are still required. Lastly, the results show the low-n

instabilities are important, further work are still required with updated model

which has good performance in low n(n¡3) instabilities.
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Conclusion and Discussion

The design of a large scale magnetic confinement fusion machine presents large

scale technical challenges. One such challenge involves reducing the peak energy

loads to the divertor during large ELM operating scenarios. Therefore it is neces-

sary to explore the mechanisms and methods to mitigate ELMS.

In chapter 1 of this thesis, the high performance operating mode (H-mode) in the

study of tokamak was reviewed, including the advantages of H-mode and factors

that influence it. Previous experiments and analytic studies were also reviewed

and discussed. The issues and the conditions that trigger H-mode, including L-H

transition were also listed. Finally, the Edge Localized mode (ELM), as one of

most important MHD instabilities which trigger ELMs was discussed. Further,

experiments and theories of ELM studies are introduced. Pedestal physics and

Peeling-ballooning mode theories were highlighted in the review. The benefits

and drawbacks of ELMs in tokamak confinement and H mode operation were

discussed. Finally, we reviewed the effects of plasma rotation and flow shear on

the mitigation of ELMs. As one of most important shear flow in plasma, Zonal

Flow (ZF) and Geodesic Acoustic Modes (GAMs) need to be addressed; some

experiments findings concerning ZF and GAM were discussed at the end of chapter

1.

The main simulation tools, including framework of BOUT++, elm-pb mode, Her-

mes cold ion model and CORSICA is introduced briefly in Chapter 2.

In chapter 3, we explored the mechanism of ELMs besides the Peeling-ballooning

mode. Since previous experimental and analytically work proved that peeling

139
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modes are stable in pedestal regions. Based on previous work, we propose the

kink-ballooning mode- a kind of plasma instability driven by current gradient

inside of resonant surface and pressure gradient. From the energy principle, we

get the kink mode criteria on plasma current and current gradient. Caltrans-

Corsica is used to regenerate the equilibria . We the found that kink-ballooning

mode can drive ELM in some peeling-ballooning stable regions.

Chapter 4 focused on rotation’s effect on ZF and GAMs in non-inertial frame. In

this part, previous work on GAMs and ZF flows were reviewed. Theories of drift

wave and GAM propagation were highlighted. In this chapter, Drift-ordered 2-fluid

equations were derived from collisional Vlasov equation in non-inertial rotating

frame firstly, under the cold ion assumption. We then solved these equations

using the Hermes cold ion code. The results of simulations revealed that ZF rate

and GAM frequency grows with increasing toroidal rotation rate. Comparing to

analytic work, it was found that phase differences between parallel momentum

and electrostatic potential can also excite ZF and GAM. The Coriolis convection

plays a similar role as ion magnetic drift in the propagation of GAMs. The effects

of external density source are also studied; it turns that the asymmetric source

injection can enhance the growth of GAM and ZF. We suggest that the ZF and

GAMs may be able to be triggered under the condition of some arbitrary heating

such as ECRH. At last of this chapter, preliminary results of some experiments

are briefly addressed, aiming to validate the analytic and simulation results.

In the Chapter 5, studies of flows influence on ELMs are reviewed critically. 4-

field reduced-MHD equations were derived from collision-less Vlasov equation in

a non-inertial rotating frame. Linear and non-linear simulations were performed

with modifying the Elm-pb code. Mechanisms of the results are explored, co-

current destabilize, while counter-current stabilize the low n instablities. Then

modification terms of current in non-inertial system helps to suppress current

drive instabilities. The non-linear simulation results show that toroidal rotation

can suppress ELM size . The poloidally phase shift of perturbed pressure on is

proposed to be the reason of ELMs suppression.

One interesting outcome in chapter 3 and chapter 5 is both kink-ballooning mode

and rotation play major effects on low-n modes. Coincidentally, the Q-H modes

happen on low-n modes. Current simulation studies find that E × B shear flow

plays an important role in the formation of Q-H mode, which has good agreements

with experiments[56, 57]. However, the results of experiments indicate that the
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directions of flow matters in Q-H mode[181], previous simulation work fails to

explain this. In our simulations in chapter 5, co-current and counter-current rota-

tions play different roles in low-n instabilities due to non-inertial effects. Therefore,

it is essential to study the Q-H mode in the non-inertial frame in future work.

Overall, this thesis has addressed the effect of current and rotation on tokamak

edge instabilities analytically and numerically. 3-D simulations of MHD instabil-

ities in non-inertial frame for the first time. The centrifugal and Coriolis effects

have been proven important role in the generation and propagation of GAM and

Zonal flow. Non-inertial effects on ELM mitigation are also proposed and verified.

One of applications of this work is to the possibility of influencing ELMs using

radio frequency (ECRH), either through current drive or by influencing flows.

However, there are several limitations for this work. First, the ion temperature

is absent in GAM and Zonal flow simulation, which may changes the characters

of GAM and ZF. Second, the mechanism of non-inertial terms’ ELM mitigation

effects required further exploration in the . Finally, the density evolution needs to

be taken into consideration in further ELM simulations.
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