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ABSTRACT 

The formation and properties of many naturally occurring layered phenomena in the 

mesosphere-lower thermosphere (MLT, 50-110 km) are not fully understood. Such 

layers, through their inclusion in chemistry-climate model studies, offer considerable 

insight into the chemical and transport properties of the MLT. In part, this thesis 

reports the first phase of chemistry developments for the Met Office’s new high 

altitude (~120 km) chemistry-climate model: the Extended Unified Model coupled to 

the UK Chemistry and Aerosols scheme (Extended UM-UKCA). The initial work 

reported here has added a realistic representation of neutral chemistry in the MLT, 

focusing on atomic oxygen (O) and atomic hydrogen (H). This contributes towards 

the Met Office’s strategic goal of a Sun-to-Earth coupled forecasting system, whilst 

providing a testbed for associated model performance diagnostics to be developed for 

the MLT. In particular, an atomic sodium (Na) chemistry diagnostic package is 

developed and used here to quantitatively attribute the physical and chemical 

deficiencies of this early version of the Extended UM-UKCA to the magnitude and 

variation of the resultant Na layer distribution. Motivated by recent Atmospheric 

Chemistry Experiment (ACE) limb satellite measurements of a layer of enhanced 

nitrous oxide (N2O) in the MLT, peaking around 94 km, this thesis also reports the 

development of a novel N2O production parametrisation to explain and allow a first 

model simulation of the observations. 

With suitable extensions to O and H chemistry included, Extended UM-UKCA 

simulations reproduce the target climatological H profile through the MLT, but show 

an approximate ×10 O-excess, weighted towards the summer pole. Na chemistry 

diagnostic simulations reveal this as a cause of a similar magnitude Na-excess and an 

even greater Na+-excess, although model transport deficiencies also contribute. The 

expected Na compound partitioning is reproduced, negating some discrepancies in 

minor compounds, partly attributable to the breakdown of assumptions in the 

background chemistry. Sub-grid scale physics parametrisations, such as eddy 

diffusion, should be prioritised in future model versions to improve vertical transport, 

while the provision of chemical heating will enable a more realistic seasonal 

temperature gradient to be generated, assisting meridional transport. A further 
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extension to the model lid height (≥ 140 km) is recommended to reduce the impact of 

atmospheric wave reflection off of the upper boundary. Simulations of the N2O layer, 

performed in the reference Whole Atmosphere Community Climate Model 

(WACCM) to overcome noted deficiencies in the Extended UM-UKCA, provide 

strong quantitative support for the satellite observations. Furthermore, the results 

show that essentially all of the N2O enhancement occurs through a new mechanism 

(N2(A3Su
+) + O2) based on secondary electrons. The contribution of a previously 

proposed mechanism (N(4S) + NO2) appears to be less important than originally 

suggested, attributable to no more than 20% of overall N2O simulated at any altitude 

or latitude band. Therefore, the new mechanism needs to be included in relevant 

chemistry-climate models for a realistic description of N2O in the MLT.  
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1 INTRODUCTION 

1.1 Background 

The Earth’s atmosphere from the 

surface to around 120 km can be 

divided into four primary vertical 

layers based on the mean temperature 

profile (Figure 1.1): the troposphere, 

the stratosphere, the mesosphere and 

the thermosphere. The mesosphere-

lower thermosphere (MLT) describes 

the interface between the Earth’s 

atmosphere and outer space. It spans 

between about 50 and 110 km in 

altitude, starting above the 

stratosphere and extending into the 

first few kilometres of the 

thermosphere (Brasseur and 

Solomon, 2005). 

The distinct location of the MLT affords conditions for particularly interesting and 

varied atmospheric chemistry. Through this region, chemicals readily exist as a blend 

of compounds, atoms and ions (Mlynczak and Hunt, 2015). However, the driving 

force behind the chemistry of the MLT is the presence of atomic oxygen (Plane et al., 

2015). Atmospheric waves play a progressively important role in constituent transport 

with increasing altitude through the MLT. Here, air density measures several orders 

of magnitude lower than surface values (Martin, 1965), causing wave amplitudes to 

grow exponentially with height (Vincent, 2015). Such waves drive a robust MLT 

circulation, causing a large seasonal temperature gradient and significant dynamical 

variability (Smith, 2012). 

Figure 1.1 Global mean atmospheric 
temperature profile. From Braesicke 
(2015). 



INTRODUCTION 

 

2 

Different types of layered 

phenomena have a well-established 

presence in the MLT. This includes 

ice layers (Russell et al., 2009) 

observed as noctilucent clouds such 

as in Figure 1.2, as well as both 

neutral and ionised atomic metal 

layers derived from meteors (Plane, 

2003). Significant scientific insight 

can be sought from the study of 

MLT layers. For example, changes 

in ice layers have been linked to anthropogenic climate change (von Zahn, 2003) and 

metal layers provide a tool for the study of mesospheric dynamics (Gardner et al., 

2017). 

The effect of solar radiation and energetic particles, known as space weather, also 

plays a critical role in the MLT. Chemical compounds can be dissociated, raised to 

states of higher energy or ionised when exposed to space weather. This mechanism 

drives important chemical reactions such as ozone (O3) depletion via the production 

of radicals (Swider and Keneshea, 1973) and thermospheric heating through the 

quenching of excited atomic oxygen (Mlynczak and Solomon, 1993). 

1.2 Motivation 

It is no longer sufficient to individually represent the components of the Sun-to-Earth 

system through separate models. Such an approach is rapidly becoming incompatible 

with the forecasting advancements demanded by the world’s leading meteorological 

agencies (Jackson et al., 2019). It is therefore becoming necessary to adopt a cohesive 

approach whereby models are combined to provide an interactive representation of 

processes originating from the surface of the Sun, right through to the surface of the 

Earth. For example, the link between solar variability and variability in tropospheric 

climate has been known for some time e.g. Ineson et al. (2011). Similarly, 

tropospheric weather has been long-known to impact the ionosphere e.g. Immel et al. 

(2006). However, the associated models have historically had little or no 

representation of the processes outside their immediate domain. Thanks to continual 

Figure 1.2 Noctilucent clouds over Leeds at 
2200 UT on 21st June 2019 (photographed 
by author). 
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advances in scientific insight and computing infrastructure, the atmospheric 

modelling community is now in a position to change this. Part of this thesis reports 

the development of an essential component to the UK Met Office’s progress in this 

task: the coupling of chemistry to an extended altitude configuration of the Met Office 

climate and forecasting model. Furthermore, the formulation of this model (Griffith 

et al., 2020) provides a testbed to address the first two of the following three specific 

scientific problems. 

Firstly, a suitable method for representing neutral chemistry in the MLT has not yet 

been established in the context of the new Met Office model. Central to this is 

ensuring that the vertical upper boundary of the model accounts for the truncation of 

the atmosphere at the initial model lid height of 120 km. This is typically done by 

prescribing the top level of key constituents to an external source of data. An existing 

US coupled chemistry-climate model of the whole-atmosphere with a comparable 

altitude limit (Gettelman et al., 2019) uses data from an empirical model (Picone et 

al., 2002) for this purpose. However, a case has been made for using full numerical 

models with complete descriptions of the thermosphere instead, based on recent 

technical developments e.g. Liu et al. (2018). There is therefore motivation to review 

the suitability of prescribing output from such models as vertical upper boundary 

conditions for the neutral chemistry of the new Met Office model. 

Secondly, there is uncertainty in the role of chemistry and transport on the distribution 

and seasonal variation of the atomic sodium (Na) layer (an atomic metal layer) in the 

MLT. The Na layer comprises various short-lived intermediate compounds that are 

not directly observable (Plane, 2015). At present, the previously mentioned US model 

is the only fully interactive chemistry-climate model that has been used to simulate 

this phenomenon. The new Met Office model offers a unique opportunity to 

investigate connections between the simulated background MLT and the resulting Na 

layer composition, based on the known chemical and physical differences between 

the models. Furthermore, such experiments will assist the understanding of the 

magnitude and profile of the meteoric input itself – an issue highlighted by a recent 

model study (Li et al., 2018). 

Finally, the impact of space weather on MLT chemistry is not comprehensively 

understood. This is in part due to the sparsity of chemical observations available above 
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the mesopause (Jackson et al., 2019). When such observations are made, they are 

often uncorroborated. This is true for the first satellite measurements of a nitrous oxide 

(N2O) layer in the mesopause region, reported by Sheese et al. (2016). It is important 

that all sources of atmospheric N2O production are quantitatively accounted for, as 

N2O is an important greenhouse gas and is now, due to the decline in halogenated 

source gases, considered the most important anthropogenic ozone-depleter 

(Ravishankara et al., 2009). There is therefore immediate motivation to develop a 

reasonable mechanism for this unexpected source.  

1.3 Objectives 

The overall objective of this thesis is to further scientific understanding of the 

chemical and transport properties of layered phenomena in the MLT. It focuses on the 

provision of new modelling tools, from the development of chemistry for a climate 

model of the whole atmosphere, to parametrisations of individual novel atmospheric 

processes. The results from this work intend to establish the atomic Na layer as a 

suitable diagnostic of model chemistry and transport, as well as provide the first model 

explanation for uncorroborated observations of an N2O layer. The specific research 

questions are: 

1. How does the Met Office’s chemistry-climate model perform in the MLT and 

what is the best way to optimise neutral chemistry below the 120 km lid? 

2. How does the chemical and physical structure of the background MLT 

influence the distribution and seasonal evolution of the atomic Na layer? 

3. What is the underlying mechanism behind novel observations of an N2O layer 

in the mesopause region? 

The research approach is split into two stages. The first stage, which addresses 

question 1, is to provide a suitable representation of neutral chemistry in the MLT for 

the Met Office Unified Model with thermospheric extension (Extended UM). The 

framework for this will be provided by the UK Chemistry and Aerosols (UKCA) 

scheme, thus creating the Extended UM-UKCA. Important photochemical reactions 

in the MLT need to be either added, parametrised or extended (if already present). In 

addition, the case for representing the impact of important thermospheric processes 

from above the new model lid needs to be considered for selected chemical tracers. 
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The successful completion of this research stage is essential to suitably represent the 

key components of the MLT: atomic oxygen, atomic hydrogen and temperature. 

The second stage is to utilise the new model alongside existing modelling tools to 

answer research questions 2 and 3. This will happen with the development of: i) an 

atomic Na chemistry scheme for the Extended UM-UKCA; and ii) a lower-

thermospheric N2O production mechanism for an existing chemistry-climate model. 

Simulations of the atomic Na layer can be used to diagnose chemical and physical 

deficiencies in the simulated background MLT, while the physical reasoning behind 

the N2O production mechanism can be used to explain the previously unaccounted for 

observations. 

1.4 Thesis Layout 

The work documented in this thesis is split into seven chapters. Chapter 2 presents 

background information on the chemistry, composition and transport properties of the 

MLT, including focused literature reviews on both the Na layer and the N2O layer. 

Chapter 3 provides individual descriptions of the various models and observations 

used in this thesis, with particular attention payed to the Extended UM. Chapter 4 

introduces the Extended UM-UKCA, specifically reporting developments to the 

treatment of photolysis, the inclusion of upper-boundary conditions and the provision 

of offline chemical heating rate calculations. Chapter 5 describes the method used to 

implement a sodium chemistry scheme in the Extended UM-UKCA and investigates 

the chemistry and transport of the Na layer in the new model. Chapter 6 describes the 

mechanism derived to parametrise N2O production in the MLT and provides the first 

model explanation for the observations of a lower-thermospheric source. Finally, 

Chapter 7 summarises the scientific findings from this thesis within the context of the 

original objectives and research questions. 
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2 THE MESOSPHERE-LOWER THERMOSPHERE 

2.1 Introduction 

The mesosphere-lower thermosphere (MLT) is characterised by a variety of physical 

and chemical properties. Knowledge of the driving processes for, and the implications 

of, such properties is essential in our quest to better understand this unique region of 

the atmosphere.  

In this chapter, I review key literature that documents the MLT to provide a scientific 

background for the research questions proposed in Chapter 1. Where applicable, I also 

provide context with other parts of the atmosphere. Section 2.2 introduces the 

composition and chemistry of the MLT. Section 2.3 summarises the thermal 

properties of the region, while Section 2.4 reviews constituent transport. Section 2.5 

provides an overview of space weather – a major driver of atmospheric chemistry in 

the MLT. Sections 2.6 and 2.7 review existing scientific understanding of the two 

atmospheric layered phenomena particularly relevant to this thesis: Section 2.6 

considers the atomic sodium layer, while Section 2.7 considers the novel nitrous oxide 

layer. The key points from this literature review are summarised in Section 2.8. 

2.2 Composition and Chemistry 

The region of the atmosphere below 100 km in altitude is known as the homosphere. 

This is because molecular nitrogen (N2) and molecular oxygen (O2) uniformly 

constitute about 80 and 20%, respectively, of the total number density. As a result of 

this, the vertical variation of mean molecular mass is small (Brasseur and Solomon, 

2005). Upwards of 100 km, diffusive separation occurs between compounds. Through 

diffusive separation, the most lightweight compounds are lifted upwards, while the 

heavier compounds are brought downwards. This, combined with significant O2 

photolysis above 80 km, means that atomic oxygen (O) becomes the increasingly 

dominant chemical component with altitude, while N2 and O2 abundances become 
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increasingly less 

significant. To reflect this 

vertical variation in 

composition, the region of 

the atmosphere above 100 

km is called the 

heterosphere (Brasseur and 

Solomon, 2005). 

Particularly lightweight 

species, such as atomic 

hydrogen (H) and helium 

(He) are also important, 

especially towards the top 

of the heterosphere. Figure 

2.1 depicts the relative 

contributions of N2, O2 and 

O to the total number density of the heterosphere, up to an altitude of 500 km. 

2.2.1 Atomic Oxygen and Atomic Hydrogen 

The MLT extends between about 50 and 110 km in altitude, across the threshold 

between the homosphere and heterosphere. Atmospheric density in this region is 

sufficiently low enough to support the existence of O and H populations that would 

otherwise be quickly consumed by chemical reactions (Mlynczak and Hunt, 2015). 

The chemistry of the MLT is dominated by the reactions of O (Plane et al., 2015). By 

far, the main source of O is through the photolysis of O2 

 O2 + hv → O(3P) + O(3P). (R2.01) 

The global mean concentration of O peaks at around 95 km, where it is typically 

between 4 and 6 × 1011 cm-3. O density is modulated by the 11-year solar cycle, with 

the upper limit of this range realised at solar maximum and the lower limit at solar 

minimum (Mlynczak and Hunt, 2015). The primary mechanism for O destruction 

occurs through the following reaction series, as listed by Plane et al. (2015): 

Figure 2.1 Global mean profiles of the three major 
chemical components of the heterosphere, calculated 
for solar medium conditions. From Solomon and 
Roble (2015). 
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 O + O2 + M → O3 + M (R2.02) 

 H + O3 → OH + O2 (R2.03) 

 O + OH → H + O2 (R2.04) 

 H + O2 + M → HO2 + M (R2.05) 

 O + HO2 → OH + O2 (R2.06) 

Below about 80 km, the chemical lifetime of O is less than a day, yielding a diurnal 

variation in its distribution (Friederich et al., 1999). Here, typical day-side 

concentrations of O are several orders of magnitude greater than the corresponding 

night-side concentrations. However, since atmospheric density falls by approximately 

an order of magnitude for every 5 km altitude increment in the MLT, so does the rate 

of reaction R2.02 (Plane et al., 2015). Hence, there is no distinguishable diurnal 

variation in O throughout the upper portion of the MLT, with the typical chemical 

lifetime of O being 1 year at 105 km (Friederich et al., 1999). H acts as a catalyst 

through reactions R2.03 and R2.04, enabling the removal of O in the MLT. The 

predominant source of H in the MLT is the photolysis of water vapour at Lyman-α 

(121.6 nm) 

 H2O + hv → OH + H (R2.07) 

(Verronen et al., 2013). Note that this channel is not an important source of H in the 

lower atmosphere, where photolysis occurs at longer wavelengths. H follows a similar 

diurnal distribution pattern to O throughout the MLT, due to their closely aligned 

chemistry schemes (Plane et al., 2015). The other product of reaction R2.07, OH, is 

part of the odd hydrogen (HOx = H + OH + HO2) family, responsible for significant 

ozone (O3) destruction. Details of this process are provided in Section 2.5.2. A 

discussion on ozone destruction caused by odd nitrogen and other reactive nitrogen 

compounds (NOy = NO + NO2 + NO3 + HNO3 + …) is also provided in the same 

section. 

2.2.2 The Ions 

The harsh environment of solar radiation in the MLT can cause ionisation of the 

chemical constituents at all latitudes. That is: 
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 X + hv → X+ + e-, (R2.08) 

where X is a neutral atom or molecule, hv is UV or X-ray solar radiation, X+ is an 

ionised atom or molecule and e- is a liberated electron. Towards the poles, energetic 

particle precipitation (EPP, see Section 2.5) may induce the same effect through: 

 X + e* → X+ + 2e-, (R2.09) 

where e* is an energetic 

electron or proton (Brasseur 

and Solomon, 2005). The 

region of the atmosphere 

where such ionisation occurs 

is named the ionosphere, 

which extends vertically over 

the upper mesosphere and a 

large part of the 

thermosphere. The 

ionosphere is split by altitude 

range into three regions: the D 

region (<90 km), the E region 

(90-150 km) and the F region 

(150-500 km) (Kelley, 2009). 

Total ion density exhibits a 

significant diurnal variation 

(shown for the E region in 

Figure 2.2). Here, peak 

density is up to a factor of 100 

smaller on the night-side than it is on day-side, as without the primary ionisation 

source of solar radiation, the dissociative recombination of molecular ions through 

 O2
+ + e- → O + O (R2.10) 

and 

Figure 2.2 Diurnal variation in the chemical 
composition of the ionosphere. From Plane 
(2003). 
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 NO+ + e- → N + O (R2.11) 

outweighs their EPP-induced production. This does not happen to the atomic ions in 

the F region, as maintaining energy and momentum conservation is kinetically 

unfavourable in single-product recombinations such as 

 O+ + e- → O. (R2.12) 

In addition, the rates of such reactions are small (Kelley, 2015). 

2.2.3 Atomic Metal Layers 

An interesting chemical feature of the MLT is its support of various atomic metal 

layers. The Earth’s atmosphere has a continuous input of material from meteoroids, 

sourced primarily from dust trails of sublimating comets and fragments of the asteroid 

belt (Plane, 2003). Metals constitute a proportion of the mass of meteoroids. Upon 

atmospheric entry, the contained metals are ablated at various efficiencies, causing 

the injection of different metal atoms at different altitudes (Plane, 2015). A recent 

estimate for the total meteoric mass injection rate is 43 ± 14 t d-1 (Carrillo-Sánchez et 

al., 2016). The relative abundances of ozone and O are important in meteoric metal 

chemistry. Upon reaction with ozone, metal atoms are converted to metal oxides, 

enabling the subsequent formation of a range of compounds. Reaction of such 

compounds with O, however, reduces the compounds and reforms the metal atoms. 

Since the MLT exhibits 

a greater abundance of 

O than ozone above 

about 80 km (Plane, 

2015), the metals are 

able to maintain their 

atomic configurations 

in the MLT. Meteoric 

metals are heavily 

involved in both the 

neutral and ion 

chemistry of the MLT, 

with neutral compounds 

Figure 2.3 Annual mean altitude profiles of Fe, Na, K 
and Ca based on LIDAR observations. From Plane 
(2015). 
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dominating below about 100 km and ionic compounds dominating above (Plane et al., 

2015).  

Particularly notable atomic metal layers include those of iron (Fe), sodium (Na), 

potassium (K) and calcium (Ca). Altitude profiles for each of these species are shown 

in Figure 2.3. Since the Na layer is the topic of interest in Chapter 5, Section 2.6 of 

this literature review provides a separate, more detailed discussion specific to the 

status of Na layer research.  

2.3 Thermal Properties 

The primary vertical layers of the Earth’s atmosphere are assigned based on their 

thermal properties. Shown in Figure 1.1 of Chapter 1, in order of ascending altitude, 

they include the troposphere, the stratosphere, the mesosphere and the thermosphere. 

In the troposphere, atmospheric temperature decreases with height, up to an inversion 

point called the tropopause. In the stratosphere, temperature increases with height, up 

to another inversion point called the stratopause. Temperature decreases with height 

once again in the mesosphere, up to the next inversion point called the mesopause. 

The coldest natural temperatures on Earth are recorded at the mesopause during polar 

summer (Varney and Kelley, 2015), a feature that makes the MLT a particularly 

interesting region to study. Above the mesopause is the thermosphere, where 

temperature continually increases with height. 

Absorption of short-wave solar radiation largely provides the radiative heating of the 

lower and middle atmosphere. This is dominated by water vapour in the troposphere 

and ozone in the stratosphere (Brasseur and Solomon, 2005). Such heating is 

approximately balanced by cooling through the emission of long-wave radiation 

(Andrews, 2000). As with the heating, this is dominated by water vapour in the 

troposphere, but by carbon dioxide in the stratosphere (Brasseur and Solomon, 2005). 

Upwards through the MLT, there are short-wave heating contributions from ozone 

and increasingly O2. Longwave cooling in the MLT is primarily provided by carbon 

dioxide (Brasseur and Solomon, 2005), but nitric oxide (NO) has a role in the lower 

thermosphere (Knipp et al., 2017). In the ionosphere, joule heating (transformation of 

electrical energy to heat through collisions between electrons, neutrals and ions (Kato, 

1962)) arises. The contributions of both joule heating and NO cooling are enhanced 
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during and after space weather events (see Section 2.5), when energetic particle fluxes 

and NO densities are increased. The opposing radiative impact of each process acts 

as a thermostat on lower-thermospheric temperature (Knipp et al., 2017). However, it 

is chemical heating that provides the overall largest source of heating in the MLT 

(Marsh et al., 2007). 

The enthalpy change, ∆H, describes the heat evolved from a process under constant 

pressure. For chemical reactions, that is the difference between the enthalpies of the 

products and the enthalpies of the reactants. If ∆H > 0, heat is required to initiate the 

reaction which is described as endothermic. Conversely, if ∆H < 0, heat is released by 

the reaction which is exothermic (Andrews, 2000). Photolysis (the breaking up of 

molecules by light) initiates exothermic reactions in the MLT (Marsh et al., 2007). A 

high proportion of the absorbed energy is converted to chemical energy. As the 

density of the MLT is low, large separation exists between particles. It can therefore 

take time for such chemical energy to be released as heat through subsequent chemical 

reactions (Mlynczak and Solomon, 1993). The principal source of chemical heating 

in the MLT is through reactions involving O atoms (Brasseur and Solomon, 2005). 

2.4 Transport Properties 

Atmospheric transport occurs on a variety of different spatial and temporal scales. 

Transport processes are broadly split into two key regimes: large-scale advection and 

small-scale turbulence (Brasseur and Solomon, 2005). To assess the net flow of air 

parcels through a particular region of the atmosphere, large-scale advection should be 

considered. The principal drivers of large-scale advection are i) the upwards 

propagation of tropospheric waves and ii) the variation of incident solar radiation. 

Key examples of tropospheric waves include gravity waves and planetary waves. 

Gravity waves are compressional oscillations formed by the vertical displacement and 

subsequent gravity-induced restoration of air parcels, initially triggered by topography 

or convection (Fritts, 2015). Planetary waves are global oscillations driven by the 

rotational forces of the Earth, formed by the angular displacement of air parcels and 

subsequent restoration by the Coriolis force (Smith and Perlwitz, 2015). 
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2.4.1 Transport Circulation 

Figure 2.4 depicts transport circulation in the middle atmosphere. A form of 

meridional circulation occurs in the stratosphere, known as the Brewer-Dobson 

Circulation (BDC) (Brewer, 1949; Dobson, 1956). The leading driving force of the 

BDC is energy deposition from planetary waves, although gravity waves are also a 

contributing factor (Cohen et al., 2014). Upwelling of air parcels occurs in the tropical 

lower stratosphere, before air is carried poleward and downward by the BDC in both 

hemispheres (Strahan, 2015). Above this exists a different meridional circulation 

pattern in the MLT. The several orders of magnitude reduction in air density (Martin, 

1965) affords conditions for exponential growth of gravity wave magnitudes 

(Vincent, 2015). Hence it is gravity waves that provide the major driving force of 

circulation in the MLT (Brasseur and Solomon, 2005). Mesospheric air is lifted from 

the summer pole and transported across towards the winter pole, where it descends. 

This results in adiabatic cooling over the summer pole and adiabatic heating over the 

winter pole, responsible for temperature perturbations of up to 50 K (Vincent, 2015).  

Figure 2.4 Schematic of the mean transport circulation in the middle atmosphere. 
From Strahan (2015). 
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The polar regions also host an important dynamical feature, known as the wintertime 

polar vortex. During winter, a portion of the atmosphere enters polar night. Here, there 

is no longer a short-wave heating contribution from ozone (see Section 2.3) causing 

temperatures to fall and air to descend. Since the tropics continue to be heated, a 

temperature gradient forms between the wintertime pole and the equator. This 

temperature gradient drives a strong pressure gradient, causing air to be forced 

poleward through a flow pattern known as the polar jet. The Coriolis force induces 

zonal motions on the polar jet, generating the wintertime polar vortex. The wintertime 

polar vortex extends from the tropopause to the stratopause (Schoeberl and Newman, 

2015). Strong winds of the subpolar jets create a dynamical barrier against meridional 

transport, isolating the wintertime polar regions from the rest of the stratosphere 

(Brasseur and Solomon, 2005).  

Upwards through the thermosphere, the summer-to-winter mean circulation pattern 

of the MLT is maintained (Solomon and Roble, 2015), although dynamical processes 

become governed primarily by the in situ absorption of solar radiation (Brasseur and 

Solomon, 2005). The day-side of the thermosphere expands as it is heated, inducing 

a pressure gradient against the night-side, which in turn drives zonal winds (Solomon 

and Roble, 2015). Variations in solar activity levels are known to impact this flow. In 

general, wind velocities increase with solar activity, although this is the result of a 

balance between competing processes. High solar activity intensifies the zonal 

pressure gradient and reduces kinematic viscosity, which both accelerate winds. 

However, under the same conditions, wind damping from enhanced electron density 

and ion drag increases (Hedin and Mayr, 1987). 

2.4.2 Atmospheric Tides 

Further global-scale waves, known as atmospheric tides exist throughout the MLT. 

Atmospheric tides have periods that are harmonics of a solar day. Notably, there is a 

24-hourly diurnal tide and a 12-hourly semidiurnal tide (Hagan et al., 2001). Tides 

that propagate in sequence with the Sun’s apparent zonal motion are referred to as 

migrating tides, otherwise they are called non-migrating tides. The principal driver of 

migrating tides is the daily radiative heating cycle in the middle and lower 

atmosphere, caused by the periodic absorption of short-wave solar radiation (see 

Section 2.3). The principal driver for non-migrating tides is instead latent heat release 
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in the troposphere (Brasseur and Solomon, 2005). Similar to the propagation of 

gravity waves in the MLT, the amplitude of atmospheric tides increases rapidly with 

height. The diurnal tide is observed to reach altitudes of up to about 110 km, while 

the semidiurnal tide may reach up to 300 km. However, it is from the mesopause up 

to about 200 km where such tidal forcing from the lower atmosphere has a significant 

impact on thermospheric dynamics (Solomon and Roble, 2015). Consequently, this 

region also sees tidal variations in atmospheric temperature. Typical temperature 

perturbations of 10 K are recorded at 100-120 km, increasing to 100 K at 150 km 

(Brasseur and Solomon, 2005). 

2.4.3 Diffusive Separation 

Another source of vertical transport in the thermosphere is diffusive separation above 

100 km (see Section 2.2). This differs to the previously discussed transport 

mechanisms, as it acts on individual compounds based on their relative mass, rather 

than as a bulk motion in the atmosphere. 

2.5 Space Weather 

The MLT is particularly susceptible to space weather. Space weather primarily 

describes the effect of long-term and sudden changes in solar activity on the terrestrial 

environment (Hapgood, 2017). An official definition was devised by the European 

Cooperation in Science and Technology (COST) Action 724 in 2007: 

“Space weather is the physical and phenomenological state of natural space 

environments. The associated discipline aims, through observation, monitoring, 

analysis and modelling, at understanding and predicting the state of the Sun, the 

interplanetary and planetary environments, and the solar and non-solar driven 

perturbations that affect them, and also at forecasting and nowcasting the potential 

impacts on biological and technological systems.” (COST, 2007) 

2.5.1 Sources of Space Weather 

Space weather is mainly caused by solar activity changes on timescales from centuries 

to hours, but also by galactic cosmic rays (GCRs) from outside the solar system. 

Historically, solar activity is known to enter long-term periods of grand minima and 
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maxima (Lockwood et al., 2012). Within this trend is the previously mentioned 11-

year solar cycle, whereby solar UV and the solar wind periodically oscillate in flux. 

Most unpredictable are single-event effects, caused by rapidly occurring phenomena 

such as solar radiation storms and severe energetic particle precipitation (EPP) 

(Hapgood, 2017). Solar radiation storms arise from a plasma process known as 

magnetic reconnection. This is often followed by coronal mass ejections (CMEs) and 

solar flares. CMEs are violent releases of solar plasma, while solar flares are bursts of 

X-ray and extreme-UV (EUV) radiation (Hapgood, 2017). EPP includes protons, 

electrons, and some larger ions that have been accelerated either directly by the sun 

during CMEs or solar proton events (SPEs), by radiation belts during geomagnetic 

storms, or by GCRs (Sinnhuber et al., 2012). 

Space weather impacts the 

physical and chemical properties 

of the MLT through both solar 

activity trends and single-event 

effects. For example, atmospheric 

temperature and hence neutral 

density are modulated by 

geomagnetic activity, while space 

weather initiates chemical 

processes in the MLT (Pulkkinen, 

2007) (see the following section). 

Figure 2.5 shows an example of space weather propagation and impact, including its 

inception at the Sun, dissipation through the Earth’s magnetic field and observation 

as the aurora. 

2.5.2 Impact on Atmospheric Chemistry 

Stratospheric ozone depletion has been attributed to mesospheric production of NOy 

(Crutzen et al., 1975; Funke et al., 2005), and more recently HOx (Verronen et al., 

2013) after EPP events. NOy-induced ozone depletion occurs through the ‘direct 

effect’, as well as the ‘indirect effect’. The former refers to the in situ destruction of 

mesospheric and upper stratospheric ozone (Funke et al., 2011; Jackman et al., 2001) 

Conversely, the indirect effect occurs when NOy is transported down to the 

Figure 2.5 Illustrative representation of space 
weather. Includes a solar storm (left), the 
Earth’s auroral oval (middle) and the aurora 
borealis (right). Image credit: NASA. 
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stratosphere through confinement in the wintertime polar vortex (see Section 2.4.1). 

This transport is enabled by the typical lifetime of NOy being around 1 month at 60 

km (Brasseur and Solomon, 2005). The main route for mesospheric NOy production 

at all latitudes involves the photolysis of N2 

 N2 + hv → N(4S) + N(2D), (R2.13) 

although EPP also causes significant N2 dissociation over the polar regions (N2 + e* 

→ N(4S) + N(2D) + e-). This is followed by the reaction of ground or first excited 

state atomic nitrogen with oxygen 

 N(4S, 2D) + O2 → NO + O (R2.14) 

(Funke et al., 2005). Ozone is then catalytically destroyed in the stratosphere via 

 NO + O3 → NO2 + O2 (R2.15) 

and   

 NO2 + O → NO + O2 (R2.16) 

(McElroy et al., 1992). 

The most significant example of ozone depletion via the indirect effect, so-far 

documented, occurred after the extreme solar storms and associated SPEs of late 

October 2003 and the strong Sudden Stratospheric Warming (SSW) of December 

2003. Randall et al. (2005) reported satellite observations of stratospheric NOy mixing 

ratios of around 80 ppb at 40 km over some locations, with corresponding 

stratospheric ozone depletion of up to 60%. It was recognised that this extraordinary 

event was caused by a combination of both severe EPP and favourable meteorological 

conditions (Randall et al., 2005). A study by Manney et al. (2005) described the 2003-

2004 major stratospheric warming and subsequent rapid, exceptionally strong 

recovery of the polar vortex. Later work by Randall et al. (2006) reported large mixing 

ratios of stratospheric NOy in 2005-2006. Unlike 2003-2004 there was no significant 

geomagnetic activity that winter, however there was again an exceptionally strong 

polar vortex. It appeared that the large stratospheric NOy mixing ratios observed in 

2003-2004 could not be attributed to EPP from the SPEs alone, which had their impact 

erased by the SSW. Sinnhuber et al. (2014) found the influence of EPP-NOy from the 
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indirect effect to exceed the direct impact of the SPE by nearly a factor of 10. 

However, it was hypothesised by Lu et al. (2008) that the solar wind itself could partly 

influence the strength of the wintertime polar vortex. Baumgaertner et al. (2011) 

performed atmospheric chemistry general circulation model simulations that linked 

high geomagnetic activity levels to a strong polar vortex, mediated by NOy-induced 

stratospheric ozone loss. These findings were verified by Seppälä et al. (2013), who 

summarised the impact of geomagnetic activity on stratospheric and tropospheric 

dynamics: 

- “Reduced upward propagation of waves into the stratosphere in early winter, 

followed by 

- Enhanced equatorward reflection of waves from the polar vortex edge, 

- Warming of the polar upper stratosphere and cooling below, starting in 

December–January and continuing into March, 

- Descent of the warming signal from January to March, 

- Anomalously strong polar vortex in late winter, as measured by changes in 

zonal mean zonal winds, leading to positive Northern Annular Mode 

anomalies.” 

Mechanisms for NOy production other than reactions R2.13 and R2.14 exist. One 

example, the reaction 

 N2O + O(1D) → 2NO (R2.17) 

is the primary source of NOy in the lower and middle stratosphere (Portmann et al., 

2012). Since the nitrous oxide (N2O) involved in this process originates from surface 

emissions (Brasseur and Solomon, 2005), it is traditionally considered that the MLT 

contains no appreciable quantity of N2O. Novel observations of an N2O layer in the 

MLT provide the motivation for Chapter 6 of this thesis. Section 2.7 of this literature 

review provides the scientific background for in situ N2O production in the MLT. 

Ozone depletion by HOx is limited to the direct effect, as HOx is short-lived and not 

transported far. Typically, HOx will exist for around 1 hour at an altitude of 60 km 

(Brasseur and Solomon, 2005). Similar to NOy production, the primary mechanism 

for HOx production at all latitudes in the mesosphere is the photolysis of water vapour 

(reaction R2.07) (Verronen et al., 2013). However, during EPP events the enhanced 
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ionisation causes additional HOx production in polar regions via water cluster ion 

chemistry (Verronen and Lehmann, 2013). Subsequent ozone destruction then occurs 

largely through the catalytic cycle 

 OH + O3 → HO2 + O2 (R2.18) 

and 

 HO2 + O3 → OH + 2O2 (R2.19) 

(McElroy et al., 1992). Andersson et al. (2014) observed up to 90% short-term ozone 

depletion at 60-80 km during severe energetic electron precipitation (EEP) events. 

The occurrence of severe EEP events (defined by Andersson et al. (2014) as when the 

daily mean Medium Energy Proton and Electron Detector (MEPED) electron 

precipitation count rate exceeds 150 counts s-1) has been correlated to the 11-year 

solar cycle. Interestingly, for solar cycle 23 (1996-2008), most severe EEP events 

were observed during the transition between the solar maximum and the following 

minimum. Andersson et al. (2014) suggested that although ozone depletion from 

single EEP events is short lived, the combined impact from frequent events could lead 

to mesospheric ozone variability on solar cycle timescales. 

EEP can be divided into three energy categories: low-energy/auroral (less than 30 

keV) electrons (LEE), medium-energy (between 30 and 300 keV) electrons (MEE), 

and high-energy (between 300 keV and several MeV) electrons (HEE) (Brasseur and 

Solomon, 2005). Historically, chemistry-climate model studies have only included the 

contribution of LEE (e.g. (Baumgaertner et al., 2009; Rozanov et al., 2012)). 

However, the contribution of MEE was included in simulations reported by Arsenovic 

et al. (2016). The authors attributed a proportion of the NOy generated by the model 

to MEE, and found that with this additional source, the model better replicated 

satellite observations of NOy. To fully represent the importance of EPP on 

atmospheric chemistry, future model studies will need to also incorporate HEE. 

GCRs have been shown to influence surface climate through atmospheric chemistry. 

Incident GCRs ionise atmospheric gas molecules and the resulting charged secondary 

particles cause further ionisation down into the atmosphere, reaching depths 

dependent on the original GCR energy. Calisto et al. (2011) reported chemistry-
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climate model simulations assessing the impact of such GCR-induced ionisation 

cascades on NOy, HOx and ozone. In the lower stratosphere, they found NOy 

enhancements of up to 4% and corresponding ozone decreases of over 3% in the 

Northern Hemisphere (NH) polar region. This can be largely attributed to the NOy 

catalytic ozone depletion cycle given by Reactions R2.15 and R2.16. In the 

troposphere, NOy enhancements of up to 20% were simulated in the Southern 

Hemisphere (SH) polar region, leading to ozone increases of up to 3%. NOy is a 

precursor to ozone production in the troposphere through the photolysis of NO2 

 NO2 + hv → NO + O (R2.20) 

followed by the association of O and O2 with the presence of a third body, M, 

 O + O2 + M → O3 + M (R2.21) 

(Monks et al., 2015). Although GCRs also cause HOx production, Calisto et al. (2011) 

simulate a net reduction in HOx across the atmosphere when GCR impacts are 

included. Any HOx enhancements are surpassed by an improved efficiency of NOy-

induced OH removal through 

 OH + NO2 + M → HNO3 + M (R2.22) 

due the large abundance of NOy (Jackman et al., 2016). Maximum HOx reductions of 

around 3% were reported by Calisto et al. (2011), occurring in the middle latitudes of 

the upper troposphere. Corresponding meteorological results from this study during 

NH winter include an acceleration of zonal wind of up to 5 m s-1 below 40 km, and a 

deceleration of up to 3 m s-1 above 70 km. Surface air warming of around 2 K was 

identified in Eastern Europe and Russia, whereas cooling of a similar magnitude was 

reported in Siberia and Greenland (Calisto et al., 2011). 

Jackman et al. (2016) obtained similar results from their chemistry-climate model 

simulations, reporting maximum polar NOy enhancements of 6% in the NH and 15% 

in the SH, occurring in the lower stratosphere and troposphere, respectively. Their 

corresponding ozone changes for the same regions were slightly smaller than Calisto 

et al. (2011), yielding a reduction of up to 1% in the NH lower stratosphere, and an 

increase of up to 2% in the SH troposphere. Both studies attributed this latitudinal 

ozone variation to the fact that the SH is the lesser polluted hemisphere, concluding 
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that ozone production is more sensitive to supplementary NOy from GCR in the SH, 

than it is in the NH (Calisto et al., 2011; Jackman et al., 2016). 

2.6 The Atomic Sodium Layer 

From the atomic metal layers discussed in Section 2.2.3, it is the Na layer that has 

been studied the most comprehensively. This is largely because it is the easiest to 

observe through spectroscopy. For example, while Mg is the most abundant metallic 

constituent of meteoroids, visibility of its optical transition at 285.2 nm is blocked by 

the stratospheric ozone layer (Plane, 2015). Scientific understanding of the formation 

and evolution of the Na layer has progressed rapidly in the last few years as a result 

of better observations, focused laboratory studies and computational advancements. 

2.6.1 Physical and Chemical Properties 

The atomic Na layer exists globally in the MLT, peaking at between 88 and 92 km 

altitude (Plane, 2003). Na atoms are sourced from meteoric ablation, as described in 

Section 2.2.3. The Na layer is an excellent tracer of constituent transport in the MLT 

due to two key properties: i) it has 

a relatively long chemical lifetime 

of over a day (Xu and Smith, 

2003) and ii) it exerts a strong 

sensitivity to temperature (Plane, 

2003). Its involvement in both 

neutral and ion-molecule 

reactions results in the formation 

of various other Na compounds, 

as shown in Figure 2.6. Above 

100 km, ion chemistry generally 

dominates, allowing Na+ to 

become the major constituent of 

the layer. It is only at the 80 km O 

shelf (see Section 2.2.3) where 

metal oxidation begins to take 

Figure 2.6 Schematic depicting the chemical 
interactions between Na layer compounds in 
the MLT. From Plane et al. (2015). 
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over and the stable reservoir of NaHCO3 provides an efficient sink of atomic Na 

(Plane, 2015). 

2.6.2 Observations 

An emission of 589 nm light in the Earth’s airglow was originally reported in the 

1920s. A few years later Sydney Chapman suggested an electronic state transition in 

Na as an explanation for the source of the emission (Plane, 2015). Ground-based 

photometers were then used in the 1950s to measure the emissions and provide the 

first quantitative observations of the Na layer (Plane et al., 2015). At present, there 

are two main methods used to observe the Na layer. Firstly, the resonance lidar 

technique (Plane, 2003) and secondly, satellite limb-scanning spectroscopy (Plane et 

al., 2015). 

There are a significant number of Na layer observations made from ground-based lidar 

instruments across the globe, e.g. (Gardner et al., 2005; States and Gardner, 1999; 

Zhou et al., 2005). The layer has also been observed by three satellite instruments: the 

Global Ozone Measurement by Occultation of Stars (GOMOS) (Fussen et al., 2010) 

the Optical Spectrograph and Infra-Red Imager System (OSIRIS) (Fan et al., 2007; 

Gumbel et al., 2007; Hedin and Gumbel, 2011) and the SCanning Imaging Absorption 

spectroMeter for Atmospheric CHartographY (SCIAMACHY) (Casadio et al., 2007) 

(see Chapter 3 for descriptions of each instrument). Although there are currently no 

operational observations of the Na+ component of the layer, measurements from 

historical rocket launches exist (e.g. (Kopp, 1997), see Chapter 3). It is only Na and 

Na+ that can be directly observed (Plane, 2015), therefore studies using computational 

models are essential for understanding Na layer chemistry. 

2.6.3 Model Studies 

The Na layer has been studied by various generations of models through the 

computational era. Examples include early models where the steady-state assumption 

is applied to Na chemistry (McNeil et al., 1995), independent time-resolved models 

(Plane, 2004) and nonlinear models with representation of atmospheric waves (Xu 

and Smith, 2004). More recently, Marsh et al. (2013) provided the first integration of 

a meteoric Na scheme into a fully interactive chemistry-climate model. Their study 

used the Whole Atmosphere Community Climate Model (WACCM) (Marsh et al., 
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2013). WACCM simulations 

well-replicated the observed 

global distribution and seasonal 

variation of Na. Figure 2.7 

shows a plot from the study, 

where total column monthly 

means of Na are compared 

against lidar observations. 

Marsh et al. (2013) also 

provided computational support 

to the observations of Fussen et 

al. (2010), indicating that the Na 

layer is strongly influenced by 

the MLT global circulation. 

A shared limitation of Marsh et 

al. (2013) and the other model 

studies is the specified rate of 

injection of Na atoms into the 

model. Estimates of this 

quantity have historically 

varied significantly (Plane, 

2012). However, Carrillo-Sánchez et al. (2016) recently constrained the total rate of 

meteoric mass input to 43 ± 14 t d-1, with an associated Na input rate of 0.3 t d-1. The 

simulations in Marsh et al. (2013) were driven by an Na mass input rate of just 0.035 

t d-1 (equivalent to a total meteoric mass input rate of 4.6 t d-1). This was based on the 

lower end of a previous estimate, nearly factor of ten smaller than the Carrillo-

Sánchez et al. (2016) estimate. Li et al. (2018) reported updated WACCM Na scheme 

simulations, driven by the Carrillo-Sánchez et al. (2016) Meteoric Input Function 

(MIF). WACCM is known to underestimate the vertical transport of minor species in 

the MLT, because short wavelength gravity waves are not resolved on the horizontal 

grid scale of the model (~150 km). These sub-grid waves contribute to vertical 

chemical and dynamical transport of constituents while dissipating, and this can 

exceed transport driven along mixing ratio gradients by the turbulent eddy diffusion 

Figure 2.7 WACCM vs. lidar observations. Total 
column (109 cm-2) monthly mean of Na for (a) 
Fort Collins and (b) South Pole lidar 
observations. From Marsh et al. (2013). 
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produced once the waves break (Gardner et al., 2017). Because these additional 

vertical transport mechanisms are underestimated, the MIF of each metal needs to be 

divided by a specific factor in order to correctly simulate the observed absolute metal 

density (Plane et al., 2018). Notably, a factor of five reduction was found to be 

necessary for the Na input rate (Li et al., 2018). There is scientific interest to test this 

MIF scaling factor in other chemistry-climate model studies, in order to further 

understanding of the drivers behind the discrepancy between what is simulated and 

observed. 

2.7 The Nitrous Oxide Layer 

The wide availability of Na layer observations, as discussed in the previous section, 

is an exception to the general trend of there being a sparsity of chemical observations 

available above the mesopause (Jackson et al., 2019). The potential for an N2O layer 

in the MLT is an active debate. Recent developments to satellite retrieval techniques 

have extended the limits of observable altitudes, potentially highlighting a new source 

of N2O. 

2.7.1 Surface Sources of N2O 

The major source of N2O present in the Earth’s atmosphere is from surface emissions. 

The primary production mechanism for this involves nitrification and denitrification 

bacterial processes in soil (Brasseur and Solomon, 2005). N2O is then transported into 

and through the stratosphere via the Brewer-Dobson circulation (Brewer, 1949; 

Dobson, 1956) (see Section 2.4.1). It is well known that N2O is a precursor to 

stratospheric NOy, through reaction R2.17. As explained in Section 2.5.2, NOy 

depletes ozone through the catalytic cycle shown in reactions R2.15 and R2.16 

(Crutzen, 1970). Ravishankara et al. (2009) noted that N2O is now the most important 

anthropogenic ozone-depleter, largely due to the success of the Montreal Protocol in 

reducing the emissions of the historically dominant ozone-depleters: chlorine- and 

bromine-containing halocarbons. N2O is also an important greenhouse gas, with 

anthropogenic emissions causing a steady increase in atmospheric N2O concentrations 

over the past three decades (IPCC, 2014). 
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2.7.2 Atmospheric Sources of N2O 

It is usually assumed that N2O has no in situ atmospheric sources, although potential 

sources in the MLT have been identified. One reaction mechanism postulated by Zipf 

and Prasad (1982), based on their laboratory work, is that secondary electron impact 

from EEP (see Section 2.5.2) promotes N2 to the excited triplet state 

 N2(X1Sg
+) + e- → N2(A3Su

+) + e-, (R2.23) 

where the N2(A3Su
+) state lies 7.63 eV above the N2(X1Sg

+) ground state (Gillan et 

al., 1996). In a similar manner, reaction R2.23 can be induced by photoelectrons 

(energetic electrons produced by photoionisation of atmospheric species) (Nagy and 

Banks, 1970). This is then followed by a reaction with O2 

 N2(A3Su
+) + O2 → N2O + O (R2.24a) 

to produce N2O. The other, dominant (>70%) channel of N2(A3Su
+) + O2 produces 

ground state N2 and atomic oxygen 

 N2(A3Su
+) + O2 → N2(X1Sg

+) + 2O. (R2.24b) 

N2O produced in the MLT would be transported down to the stratosphere through the 

wintertime polar vortex via seasonal mesospheric circulation (Fisher and O’Neill, 

1993) (see Section 2.4.1). Enhanced descent of such N2O would be possible after a 

major SSW event, particularly if the stratopause reforms at significantly higher 

altitudes, as has occurred several times this century (Karpechko et al., 2017), most 

notably during the winter of 2009 (Manney et al., 2009). 

Until recently, the mechanism suggested by Zipf and Prasad (1982) was largely 

disregarded as there were no high-altitude observations available to verify it. 

However, following measurements from the Atmospheric Chemistry Experiment - 

Fourier Transform Spectrometer (ACE-FTS) (Bernath et al., 2005) on-board 

SCISAT-1 and the Michelson Interferometer for Passive Atmospheric Sounding 

(MIPAS) instrument (Fischer and Oelhaf, 1996) on-board Envisat, discussion of the 

potential for MLT production of N2O was reopened. Using N2O retrievals from ACE-

FTS data limited to near 60 km, Semeniuk et al. (2008) argued that N2O production 
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in the upper mesosphere was highly likely. The authors suggested that it could be 

attributed to the reaction of ground state N with NO2 

 N(4S) + NO2 → N2O + O, (R2.25) 

peaking at around 75 km, where both reactants are produced via MEE impact in the 

mesosphere. This reaction occurs only on the night-side, or in polar night, as day-side 

NO2 abundances are small due to NO2 photolysis (Funke et al., 2008). Semeniuk et 

al. (2008) included reaction R2.25 in the Canadian Middle Atmosphere Model 

(CMAM), and provided simulations that supported the satellite observations. 

Meanwhile, using MIPAS data limited to near 70 km, Funke et al. (2008) also 

suggested that the primary source of N2O production in the MLT was likely to be 

reaction R2.25. However, they acknowledged the potential for a significant 

contribution to enhancements from the lower thermosphere via the mechanism 

described by Zipf and Prasad (1982). 

Sheese et al. (2016) provided first measurements of what appears to be this previously 

overlooked source, using v3.5 of the ACE-FTS data. Compared to the data available 

to Semeniuk et al. (2008), the altitude limit for N2O was increased from 60 to 94.5 

km by employing less conservative micro-window sets. This data was the first of its 

kind to extend into the lower thermosphere, up to where the signal is close to the noise 

(Boone et al., 2013). Figure 2.8 shows latitudinal cross-section plots of the ACE-FTS 

dataset from Sheese et al. (2016). Mean N2O volume mixing ratios (VMRs) on the 

order of 20-40 ppb were reported for the polar winters near 94.5 km, decreasing to 

Figure 2.8 ACE-FTS N2O climatology (ppb) for (a) January-February and (b) July-
August over the 2004-2013 period. From Sheese et al. (2016). 
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10-20 ppb at low latitudes. Note that the large VMRs do in fact correspond to small 

N2O concentrations of ~105 molecules cm-3 compared to typical near-surface N2O 

concentrations of ~1013 molecules cm-3. So far, there have been no corroborating 

observations to confirm this discovery and, prior to Kelly et al. (2018) (the basis of 

Chapter 6), reaction R2.24a had not been included in any chemistry-climate model. 

2.8 Summary 

A combination of physical and chemical properties make the MLT an incredibly 

varied region of the atmosphere. Molecules, atoms and ions all coexist, each 

representing a significant fraction of the total composition. The chemistry of the MLT 

is dominated by O, produced primarily via the photolysis of O2 (Mlynczak and Hunt, 

2015). An abundance of O enables the formation of layered phenomena such as 

atomic metal layers (Plane et al., 2015) and facilitates the heating of the region 

through exothermic chemical reactions (Marsh et al., 2007). The mean transport 

circulation of the MLT is driven by the upwards propagation of tropospheric waves. 

Upwelling of mesospheric air occurs over the summertime pole, with meridional 

motions towards the wintertime pole where air eventually descends (Vincent, 2015). 

Unlike the lower atmosphere, bulk motion does not provide a complete representation 

of transport in the MLT. A process called diffusive separation occurs above 100 km, 

providing vertical transport of individual compounds based on their relative mass 

(Brasseur and Solomon, 2005).  

The atomic Na layer is the most well-studied of all atomic metal layers. Metal input 

is sourced from the ablation of meteors in the Earth’s atmosphere, with a recent 

estimate of the Na input rate being 0.3 t d-1 (Carrillo-Sánchez et al., 2016). The Na 

layer peaks at around 90 km, below which the chemistry is largely neutral, resulting 

in NaHCO3. Ion-molecule chemistry dominates above the peak, producing Na+. The 

long chemical lifetime (Xu and Smith, 2003) and strong temperature dependency 

(Plane, 2003) of the Na layer lend to its use as a tracer of transport in the MLT. Na is 

well-observed by lidar and satellite instruments (e.g. States and Gardner (1999), 

Fussen et al. (2010)), Na+ has been observed by rocket sounding experiments (e.g. 

(Kopp, 1997)), but it is not possible to directly observe other Na compounds (Plane, 

2015). Previous model studies of the Na layer have not been coupled to global 

chemistry-climate models (e.g. McNeil et al. (1995), Plane (2004) and Xu and Smith 
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(2004)), aside from more recent WACCM studies, based on the Na scheme of Marsh 

et al. (2013). Marsh et al. (2013) originally managed to replicate the observed global 

distribution and seasonal variation of Na, using an estimate of the injection rate that 

was around ten times lower than the Carrillo-Sánchez et al. (2016) estimate. Li et al. 

(2018) reported updated WACCM simulations using the revised MIF, but found a 

factor of five reduction in the input rate of Na was now necessary, attributable to 

known model deficiencies in the vertical transport of minor species in the MLT. 

Understanding of the drivers behind the discrepancy between what is simulated and 

observed may be furthered by testing this MIF scaling factor in other chemistry-

climate model studies. 

Space weather impacts (notably solar UV radiation and EPP) cause the production of 

ozone-depleting radicals HOx and NOy in the MLT, primarily through the dissociation 

of H2O and N2, respectively. The in situ destruction of mesospheric ozone has been 

attributed to HOx produced in this way (Andersson et al., 2014). Meanwhile, NOy-

enriched mesospheric air may be brought down into the stratosphere through a polar 

vortex under certain dynamical conditions, following which stratospheric ozone 

depletion has been reported (Funke et al., 2005). N2O is another precursor to NOy, but 

it is usually assumed that N2O has no in situ atmospheric sources. However, satellite 

observations of N2O enhancements at around 70 km (Funke et al., 2008; Semeniuk et 

al., 2008) and more recently at around 95 km (Sheese et al., 2016) have challenged 

this assumption. The inclusion of a likely N2O production mechanism in chemistry-

climate model simulations can assess the feasibility of an N2O layer in the MLT. 
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3 MODELS AND OBSERVATIONS 

3.1 Introduction 

Simulations from mathematical models of the Sun-to-Earth system are an essential 

tool for scientific research and operational forecasting alike. Models are used to 

understand the processes behind the current conditions of our environment, as well as 

make informed predictions of both past and future environmental conditions. For 

example, solar flare models have been used to estimate historical magnetic fluxes 

based on sunspot number records (Aulanier et al., 2012), weather models are central 

to any modern meteorological forecast e.g. Rawlins et al. (2007) and climate models 

are used to project future climate change scenarios e.g. Eyring et al. (2016). However, 

to be useful, models require reliable observations to compare against. Observations of 

the mesosphere lower-thermosphere (MLT) can be made from the Earth’s surface by 

lidar, directly in the Earth’s atmosphere through rocket sounding and from space via 

satellite instruments. 

In this chapter, I discuss the models and observations that are used and developed in 

Chapters 4, 5 and 6. Section 3.2.1 provides an overview of the Met Office Unified 

Model and the development programme set to convert it into a model of the whole 

atmosphere. Brief descriptions of the other models are provided in the subsequent 

subsections of Section 3.2 and in Section 3.3, followed by the observations in Section 

3.4. The most important details from the chapter are summarised in Section 3.5. 

3.2 Models 

3.2.1 UM and Extended UM 

The Unified Model (UM) (Cullen, 1993; Walters et al., 2019) and the Extended UM 

(Griffith et al., 2020) are versions of the combined weather forecasting and climate 

model developed by the UK Met Office. The UM provides a detailed representation 

of the global atmosphere with its dynamical core (based on the fully compressible, 

non-hydrostatic Euler equations (Wood et al., 2014)) combined with parametrisations 

of various physical processes. The non-hydrostatic dynamical core of the UM 
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distinguishes it from many other atmospheric models, as the hydrostatic 

approximation is commonly used by models to simplify the treatment of momentum 

in the vertical direction. It assumes that the most important vertical forces acting on a 

parcel of air are the vertical pressure gradient and gravity. Some phenomena, such as 

sound waves, are overlooked by this assumption (Brasseur and Solomon, 2005). 

Furthermore, the hydrostatic approximation breaks down with large vertical 

accelerations, as exist in the thermosphere, potentially making it less suitable for 

whole atmosphere modelling applications compared to non-hydrostatic formulations 

(Jackson et al., 2019). A notable feature of the output from a non-hydrostatic model 

is that the vertical grid is on altitude levels instead of pressure levels, as seen in 

hydrostatic model output. 

A framework exists to couple the UM to models of other terrestrial components, such 

as the ocean (Storkey et al., 2018), land surface (Harper et al., 2018) and atmospheric 

chemistry (Archibald et al., 2019) (described in Section 3.2.2). Simulations of the 

coupled model, known as the UK Earth System Model (UKESM) (Sellar et al., 2019), 

are used to investigate the response of the Earth’s climate to future pollutant emission 

scenarios and land use changes. Climate configurations of the UM have a maximum 

model lid height of 85 km (Walters et al., 2019) (cutting-off in the upper-mesosphere). 

The Extended UM (directly building on the existing formulation of the UM) is the 

product of an initiative to raise this lid into the thermosphere (Jackson et al., 2019). 

Harry (2015) made the first documented attempt to run the UM with a vertical 

extension, testing 100 km and 120 km ceilings. These runs could not progress without 

intensifying the ‘sponge layer’ (for the restraining of vertical motions) via the model’s 

vertical wave damping coefficient. The specific cause of the problem was left 

unknown, until it was revisited by Griffith et al. (2020). In their study, Griffith et al. 

(2020) tested the UM at model lid heights of 100 km, 120 km and 135 km. As with 

Harry (2015), attempts to run the Extended UM before upgrading any physics 

parametrisations resulted in significant model instabilities that led to frequent crashes 

and anomalous output. Crashes were largely triggered by errors associated with the 

model ‘halos’. When the UM is run in parallel on a high performance computer, 

divisions of the model domain are spread across multiple computational processors. 

Each processor can only access a specific horizontal square of the model domain. 

Model halos refer to an interpolation applied across the surrounding grid points, used 
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to allow for advection between processors. Excessive wind speeds generated over the 

poles were found to extend beyond the limits of their halo. The authors diagnosed the 

breakdown of the Local Thermodynamic Equilibrium (LTE) assumption validity in 

the MLT as the cause of the problem. 

Measures were imposed in 

subsequent Extended UM 

simulations to avoid this issue. 

Firstly, the halo size and the 

vertical wave damping 

coefficient were both 

increased. Secondly, a 

treatment of temperature 

forcing was applied from 70 

km upwards. The temperature 

forcing works as follows. 

When applied, both shortwave 

and longwave radiation are 

switched off. The forcing then 

incrementally ‘pushes’ the 

UM temperature field towards 

the globally and temporally invariant climatological profile shown in Figure 3.1, 

based on data from the US Standard Atmosphere (USSA) (COESA, 1976), the 

Committee of Space Research (COSPAR) International Reference Atmosphere 

(CIRA) (Fleming et al., 1990) and a specified exobase temperature of 1000 K. The 

forcing acts over a relaxation timescale of 24 hours, as to preserve some of the internal 

influence of model dynamics on air temperature (Griffith et al., 2020). A fixed vertical 

resolution of 3 km was applied to the additional levels above the original 85 km lid. 

This thickness was optimised to provide the best possible representation of fine scale 

features without causing additional model instabilities. Griffith et al. (2020) found 

that the model was more susceptible to crashing with increasing lid height, so adjusted 

the vertical wave damping coefficient accordingly. A version of the Extended UM 

with non-LTE (NLTE) implementation has recently been developed. This has reduced 

the extent to which the model relies on artificial temperature forcing, maintaining 

Figure 3.1 Climatological temperature profile, 
used for forcing in Extended UM simulations. 
Based on (70-86 km) the US Standard Atmosphere 
(USSA) (COESA, 1976); (86-119.7 km) the 
Committee on Space Research (COSPAR) 
International Reference Atmosphere (CIRA) 
(Fleming et al., 1990); and (>119.7 km) 
asymptotic treatment towards exobase 
temperature of 1000 K. From Griffith et al. (2020). 
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stability with a longer relaxation timescale of 35 hours and without the need for any 

forcing between 70 and 90 km whatsoever. Hence, this enables a more realistic 

seasonal temperature variation to be simulated in this region. 

Table 3.1 Properties of the Extended UM vs. the standard release UM. 

Configuration/ variant Standard Extended 

Model lid height 85 km 120 km 

Number of levels 85 100 

Temperature forcing above n/a 90 km 

Vertical damping coefficient 0.05 0.25 

Radiation scheme LTE NLTE 

 

In Chapter 4, the Extended UM with NLTE implementation is used as the base model 

for the coupled chemistry. The 120 km altitude lid configuration (containing 100 

altitude levels) was selected for this purpose based on an assessment of the benefits 

of additional levels against the drawbacks of larger instabilities. All simulations 

reported from this model configuration have a horizontal resolution of 1.25° (latitude) 

´ 1.875° (longitude). The key differences between this particular version of the 

Extended UM and the standard release UM, from which it is derived, are summarised 

in Table 3.1. 

At the time of writing, the Extended UM remains an active Met Office development 

project with ongoing preparation of additional physics processes. The next step will 

be the inclusion of eddy diffusion, an important process for chemical transport in the 

MLT (Brasseur and Solomon, 2005). Following this, molecular viscosity and 

molecular diffusion are due to be added. This will be necessary for the stability of 

further increments to the altitude of the Extended UM model lid, as the importance of 

molecular physics on wave amplitude regulation above 150 km was highlighted by 

ray-tracing experiments conducted in Griffin and Thuburn (2018). 
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3.2.2 UKCA 

UK Chemistry and Aerosols (UKCA) (Archibald et al., 2019; Morgenstern et al., 

2009; Mulcahy et al., 2018; O’Connor et al., 2014) is a community framework led by 

the Met Office and the UK National Centre for Atmospheric Science (NCAS) that 

converts the UM into a chemistry-climate model. The UKCA scheme simulates 

atmospheric composition on a global scale by connecting aerosol and gas phase 

chemistry in the troposphere and stratosphere (Archibald et al., 2019). The key aim 

of UKCA is to support climate and environmental change research. Different 

configurations of UKCA exist, enabling detail to be either added or removed from a 

particular region or process. For example, the StratTrop configuration provides a 

detailed representation of both stratospheric and tropospheric chemistry (O’Connor et 

al., 2014), the (lesser-used) Strat configuration contains detailed stratospheric 

chemistry with simplified tropospheric chemistry (Morgenstern et al., 2009) and 

GLOMAP mode provides a focused description of aerosol processes (Mulcahy et al., 

2018). Figure 3.2 shows a 

plot from an example 

study, where UM-UKCA 

simulations are used to 

model future changes in 

the tropical ozone (O3) 

column. The 11-year 

ensemble mean is shown 

to predict a return of the 

ozone column to 1980s 

values by around 2040 and 

to 1960s values close to 

the mid-century (Keeble et 

al., 2017). 

In Chapter 4, UKCA is used to provide the Extended UM with neutral chemistry 

developments in the MLT. Representation of upper atmospheric chemistry will enable 

top-down impacts on stratospheric ozone to be directly simulated, potentially 

improving the accuracy of UM-UKCA projections, such as the example in Figure 3.2. 

The UKCA Strat scheme is selected as a template for this work, instead of the more 

Figure 3.2 Total-column ozone anomalies from year-
2000 conditions over the tropics, projected to 2100 by 
UM-UKCA ensemble simulations. From Keeble et al. 
(2017). 
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widely used StratTrop scheme. This is because the highly detailed tropospheric 

representation in StratTrop makes it unnecessarily computationally expensive for 

simulations focused on the MLT. In the Strat scheme, O2, N2 and CO2 are treated as 

uniform, while the excited species O(1D) is calculated via a steady-state 

approximation. There were no branches of the Strat UKCA code available at UM 

version 11.3 (required for compatibility with the Extended UM), so it was necessary 

to upgrade the most recent Strat scheme code branch available (provided by Olaf 

Morgenstern). Further technical details on this are included in the Appendix.  

3.2.3 WACCM and WACCM-X 

The Whole Atmosphere Community Climate Model (WACCM) (Garcia et al., 2007; 

Gettelman et al., 2019; Marsh et al., 2013) and WACCM with thermosphere and 

ionosphere eXtension (WACCM-X) (Liu et al., 2018; Liu et al., 2010) are both 

advanced models provided by the US National Center for Atmospheric Research 

(NCAR). WACCM is a global atmosphere model that includes fully interactive 

neutral and ion chemistry, covering altitudes from the Earth’s surface to the lower 

thermosphere, extending to a model lid of 5.96 ´ 10-6 hPa (~140km). Unlike the UM, 

WACCM has a finite-volume dynamical core requiring the hydrostatic 

approximation. Vertical resolution in the MLT is ½ a scale height (3-4 km) (Feng et 

al., 2013) and the default Prandtl number for the production of turbulence from 

breaking gravity waves is 4. It is part of the Community Earth System Model (CESM) 

(Danabasoglu et al., 2020; Hurrell et al., 2013), which has the primary aim of 

understanding and predicting the behaviour of the Earth’s climate. WACCM-X 

contains an added representation of the thermospheric physics occurring above the 

vertical limit of WACCM, extending further to a model lid of 4.1 ́  10-10 hPa (typically 

500-700 km, varying by solar and geomagnetic activity). It was built to study the 

sensitivity of the upper atmosphere to solar and magnetospheric inputs and understand 

connections to the lower atmosphere (Liu et al., 2010). Figure 3.3 presents a plot from 

an example study, where WACCM-X was used to simulate the atmosphere-

ionosphere response to the 21st August 2017 solar eclipse. The temporary lack of 

photolysis is shown to result in a significant depletion of atomic oxygen (O) with a 

corresponding enhancement of ozone (McInerney et al., 2018). The study also reports 

signatures of the lower atmospheric dynamical response to the eclipse in the upper 
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atmosphere. This demonstrates the important detail that can be sought from fully-

coupled, whole atmosphere models. 

In Chapter 4, the prescription of upper-boundary conditions for selected variables in 

the Extended UM-UKCA is considered, based on data from a standard WACCM-X 

simulation. This data is available with registration through the NCAR Climate Data 

Gateway: 

https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.f.e20.FXSD.f19_f19.001.at

m.hist.monthly_ave.html. 

In Chapter 5, simulations with a new Extended UM-UKCA atomic sodium (Na) 

scheme are compared to the free-running WACCM simulation reported in Li et al. 

(2018). This was based on the model configuration of Mills et al. (2016), augmented 

with the Na scheme described in Marsh et al. (2013). Horizontal resolution was set to 

1.9° (latitude) ´ 2.5° (longitude), while this particular configuration contained 70 

altitude levels, extending to the default model lid (~140 km). The Prandtl number was 

set equal to 2, as recommended by Garcia et al. (2014). 

In Chapter 6, model simulations are performed using a specified dynamics version of 

WACCM. The configuration described in Kinnison et al. (2007) is modified with a 

novel source of nitrous oxide (N2O) production in the MLT. The horizontal resolution, 

Figure 3.3 WACCM-X simulated impact of 21st August 2017 solar eclipse on atomic 
oxygen (left) and ozone (right) at 65 km, 1800 UT, over North America. From 
McInerney et al. (2018). 
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model lid pressure and Prandtl number are unchanged from the WACCM simulations 

used in Chapter 5. This WACCM configuration does, however, contain 88 altitude 

levels. 

3.2.4 GLOW 

Global Airglow (GLOW) (Solomon, 

2017) is another model provided by 

NCAR. It is a single-column, single-

time model operating between 

altitudes of 80 and ~600 km, designed 

to simulate upper atmospheric light 

emissions at discrete wavelengths 

caused by the relaxation of excited 

chemical constituents. When run 

repeatedly over horizontal space and 

through time, it can be used to 

generate a 3D time series (Solomon, 

2017). The required input parameters 

for GLOW include Ap index and 

F10.7 (solar flux at 10.7 cm). Figure 3.4 shows example GLOW output, where model 

simulations have been used to derive thermospheric O composition. The WACCM 

simulations in Chapter 6 are driven by GLOW input to provide the photoelectron-

induced production rate of excited triplet state molecular nitrogen, N2(A3Su
+), over 

2013. Ap indices and F10.7 data were taken from the National Oceanic and 

Atmospheric Administration (NOAA) database and are accessible through: 

ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP 

ftp://ftp.swpc.noaa.gov/pub/weekly/RecentIndices.txt.  

3.3 Empirical Models 

3.3.1 MSIS 

Mass Spectrometer Incoherent Scatter (MSIS) (Hedin et al., 1977; Picone et al., 2002) 

is an empirical model of the whole atmosphere developed by the US Naval Research 

Laboratory (NRL). It generates a global distribution of atmospheric composition, total 

Figure 3.4 Global distribution of emissions 
at 135.6 nm from atomic oxygen in the 
O(5S) doublet state, generated by GLOW, 
based on general circulation model output. 
Snapshot at 0000 UT, over the Atlantic. 
From Solomon (2017). 
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mass density and temperature based on mass spectrometry measurements from 

various satellite instruments and rocket probes, as well as incoherent scatter 

measurements (Nisbet, 1967) from a collection of ground-based stations. The 

incoherent scatter method works by measuring light backscattered from the free 

electrons in the ionosphere (Gordon, 1958). MSIS combines and integrates these 

observations to provide an estimation of the above parameters from ground to exobase 

(near 500 km (Solomon and Roble, 2015)) with complete horizontal coverage. In 

Chapter 4, MSIS output for temperature, O and atomic hydrogen (H) is used in 

comparisons with Extended UM-UKCA and WACCM-X output. 

3.4 Observations 

3.4.1 SCIAMACHY 

SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY 

(SCIAMACHY) was an instrument on-board the ESA EnviSat satellite, operational 

between 2002 and 2012. It took measurements within the wavelength range of 240-

2380 nm, initially probing the atmosphere between altitudes of 5-100 km (Burrows et 

al., 1995), before the altitude limit was reduced to 93 km in late 2003. SCIAMACHY 

derived atmospheric composition via three different viewing geometries: limb, nadir 

and occultation. Each of these are depicted in Figure 3.5. The overall objective of 

SCIAMACHY was to investigate global atmospheric change, with a particular focus 

on tropospheric pollution and stratospheric ozone depleting substances (Bovensmann 

et al., 1999). It also had the capability to retrieve atomic Na from limb measurements, 

which are used in Chapter 5. Extended UM-UKCA and WACCM simulations of the 

atomic Na layer distribution are compared to SCIAMACHY data. 

3.4.2 GOMOS 

Global Ozone Monitoring by Occultation of Stars (GOMOS) (Kyrölä et al., 2004) was 

another instrument on-board EnviSat. Measurements were made within the 

wavelength range of 245-942 nm via the stellar occultation technique. This works by 

replicating the solar occultation geometry shown in Figure 3.5, but with the incident 

light provided by stars instead of the Sun. The principal aim of GOMOS was to record 

the stratospheric ozone distribution to a high degree of accuracy, however it also 

monitored other trace gases, aerosols and temperature, within a maximum altitude 



MODELS AND OBSERVATIONS 

 

40 

range of 5-250 km (Bertaux et al., 2004). In this remit, GOMOS also provided 

observations of atomic Na, which are used in Chapter 5. 

3.4.3 OSIRIS 

Optical Spectrograph and Infra-Red Imager System (OSIRIS) (Llewellyn et al., 2003) 

is equipment on-board the Swedish Odin satellite, operational since 2001. Via two 

separate instruments, it measures radiance profiles of the Earth’s limb (geometry 

shown in Figure 3.5). A UV-visible spectrograph works between the wavelength 

range of 280-800 nm, while an infrared imager observes through three different 

wavelength channels: 1.53, 1.27 and 1.26 µm. Combined, OSIRIS covers altitudes of 

10-100 km, deriving minor species altitude profiles from terrestrial absorption 

features and detecting airglow in the MLT (Llewellyn et al., 2004). The primary 

purpose of OSIRIS is to provide a better understanding of the mechanisms responsible 

for stratospheric ozone depletion, although it was also designed to study mesospheric 

chemistry (Llewellyn et al., 2003). Atomic Na retrievals from OSIRIS are used in 

Chapter 5, alongside equivalent data from GOMOS and SCIAMACHY. 

Figure 3.5 Schematic of observational geometries from different satellite 
measurement techniques. Shown are solar occultation and limb viewing (horizontal), 
and nadir viewing (vertical). From Lee et al. (2009). 
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3.4.4 SABER 

Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) 

(Russell III et al., 1999) is an instrument on-board the NASA Thermosphere-

Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite, operational 

since 2001. It works by measuring emissions of the Earth’s limb (Figure 3.5) akin to 

OSIRIS, but in the infrared wavelength range of 1-17 µm (Esplin et al., 1994). The 

mission was designed to provide a focused investigation of the chemical composition, 

temperature variation and key emission features of the atmosphere between altitudes 

of 60-180 km (Mlynczak, 1997). In Chapter 4, SABER observations of temperature, 

O and H are used alongside MSIS data for Extended UM-UKCA performance testing. 

3.4.5 ACE-FTS 

Atmospheric Chemistry 

Experiment – Fourier 

Transform Spectrometer 

(ACE-FTS) is the main 

payload on-board the 

Canadian satellite SCISAT-1, 

operational since 2003. It 

works primarily in solar 

occultation (geometry shown 

in Figure 3.5) (Bernath et al., 

2005). ACE-FTS operates in 

the near-infrared wavelength 

range of 2.2-13.3 µm, 

typically covering altitudes of 

10-100 km. Similar to many 

of the other instruments discussed in this section, a particular focus of ACE-FTS is to 

further understanding of ozone-related processes. However, it is also designed to 

study connections between atmospheric chemistry and climate change. A key 

limitation of ACE-FTS is that measurements can only be made at sunrise and sunset. 

The orbit of SCISAT-1 enables a maximum of 32 occultation events per day (Boone 

et al., 2013), resulting in a relatively sparse spatial coverage. However, this is 

compensated by the high signal-to-noise ratio of the instrument, allowing a 

Figure 3.6 Increasing VMR residuals of carbon 
dioxide in the lower thermosphere (~101 km), 
calculated from ACE-FTS observations. From 
Emmert et al. (2012). 
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comprehensive list of chemical retrievals to be made. At processing version 3.5 of the 

data, retrievals are available for 36 different molecules, 21 subsidiary isotopologues 

(molecules of shared chemical formula but different neutron number) and high 

altitude carbon dioxide (CO2) (Boone et al., 2013). Figure 3.6 shows a plot from an 

example study, where ACE-FTS data was used to investigate CO2 trends in the lower 

thermosphere. The study reported a rate of CO2 increase that was about 10 ppm per 

decade faster than what was predicted by an atmospheric model. In this thesis, the 

work reported in Chapter 6 was motivated by ACE-FTS observations of N2O in a 

similar region, published in Sheese et al. (2016). 

3.4.6 Rocket Data 

Data from numerous historical rocket sounding campaigns is used in Chapter 5 to 

provide observations of Na+ (ionised atomic Na). The dataset contains measurements 

from a non-uniform selection of locations, dates and times, but is fairly large. Given 

this, I made the decision to use all available data and apply statistical treatments to it.  

Table 3.2 Description of the campaigns that provided rocket data used in Chapter 5. 

Campaign Location Reference 

Noctilucent Clouds Perseids Kiruna 
(Sweden) 

(Kopp et al., 1985) 

Cold Arctic Mesopause 
Project 

Kiruna 
(Sweden) 

(Kopp et al., 1984) 

Perseids Meteor Shower Wallops Island 
(Virginia, USA) 

(Herrmann et al., 1978; Kopp, 
1997) 

Winter Anomaly Campaign Wallops Island 
(Virginia, USA) 

(Grebowsky et al., 1998) 

International Solar Eclipse 
Campaign 

Red Lake 
(Canada) 

(Kopp, 1997; Kopp and 
Herrmann, 1984) 

European Energy Budget 
Campaign 

Kiruna 
(Sweden) 

(Kopp, 1997; Kopp et al., 
1985; Offermann, 1985; 
Offermann et al., 1981) 

 

Contributing campaigns are listed in Table 3.2 and include launches from Kiruna 

(Sweden), Wallops Island (Virginia, USA) and Red Lake (Canada) that occurred 
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between 1976 and 1982. In Chapter 5, the arithmetic mean, geometric mean and 

median of the individual profiles compiled from this dataset are used to infer a 

consensus for the observed Na+ profile. 

3.5 Summary 

The UM is a climate and forecasting model developed by the Met Office. It forms the 

basis of the Extended UM, the product of an initiative to raise the UM model lid into 

the thermosphere (Jackson et al., 2019). The current, best available version of the 

Extended UM has its model lid height set to 120 km and contains an NLTE radiation 

scheme. However, it requires temperature to be forced towards a globally and 

temporally invariant climatological profile from above 90 km in order to maintain 

model stability. It is this Extended UM version that is used as the starting point in this 

thesis for coupling to a chemistry scheme. The Strat scheme of UKCA is used as a 

template for this purpose, with associated neutral chemistry developments for the 

MLT reported in Chapter 4. 

WACCM is a global atmosphere model developed by NCAR that already includes 

fully interactive neutral and ion chemistry, covering all altitudes from the Earth’s 

surface to the lower thermosphere (~140 km). The Extended UM differs to WACCM 

in its dynamical formation. The Extended UM has a fully compressible non-

hydrostatic dynamical core, whereas WACCM has a finite-volume dynamical core 

working under the hydrostatic approximation. The hydrostatic approximation breaks 

down with large vertical accelerations as exist in the thermosphere, potentially making 

non-hydrostatic formulations preferable in the upper atmosphere (Jackson et al., 

2019). For this reason, the Extended UM may be better suited for whole atmosphere 

modelling applications than WACCM, especially when future versions with more 

detailed descriptions of physics are released. However, WACCM is currently the most 

comprehensive tool available for studying chemistry and transport in the MLT in a 

whole atmosphere setting. Therefore, WACCM is used in Chapter 6 to support an 

explanation for uncorroborated observations of N2O production in the MLT. 

Model performance after each development step reported in this thesis is evaluated 

against the best available corresponding observations. Observations from various 

instruments and methods are used, including satellite measurements made from the 
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limb, nadir and occultation geometries; as well as rocket sounding measurements from 

a range of campaigns. Reliable observations provide an essential resource for effective 

model development, as is shown in Chapters 4 and 5, while models can also be a 

valuable tool to provide physical reasoning for otherwise unexplained observations, 

as is shown in Chapter 6. 
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4 COUPLED CHEMISTRY FOR THE EXTENDED 
UNIFIED MODEL 

4.1 Introduction 

Through my co-authorship of a commentary paper on the future directions of whole 

atmosphere modelling (see Jackson et al. (2019)), I contribute towards the discussion 

on building blocks for chemistry in whole atmosphere models. In this chapter, I use 

the conclusions from the publication to guide the development of chemistry in the UK 

Chemistry and Aerosols (UKCA) framework for the Met Office Extended Unified 

Model (Extended UM). Opening efforts have been directed towards neutral chemistry 

in the Mesosphere-Lower Thermosphere (MLT). Atomic oxygen (O) and atomic 

hydrogen (H) are the major influencers on the aeronomy of this region (Mlynczak and 

Hunt, 2015). It is therefore critical for a coupled chemistry-climate model of the whole 

atmosphere to accurately simulate their abundances. This requires adequate 

representation of chemistry and radiation above the stratopause, where the majority 

of far-UV (FUV) and extreme-UV (EUV) radiation is absorbed. 

This chapter reports the first vertical extension phase of the UKCA coupled Extended 

UM (Extended UM-UKCA), with a focus on the methods used to generate realistic 

magnitudes of O and H. In this instance, an intermediate model lid height of 120 km 

altitude is specified. Significant technical work is required to enable compatibility 

between UKCA and the Extended UM. This includes the transformation of all 3D 

UKCA input files from the original 85-level (85 km lid) vertical grid to the extended 

100-level (120 km lid) vertical grid, as well as a myriad of model specific changes. In 

the interest of brevity, an overview of the modifications necessary to recreate the basic 

version of the Extended UM-UKCA that is used as the starting point in this chapter is 

provided in the Appendix. 

Section 4.2 reports work completed to generate a realistic global mean temperature 

profile in the MLT. Section 4.3 documents the inclusion of shorter wavelength 

photolysis for the key reactions relevant to O and H production. Section 4.4 considers 

the prescription of upper boundary conditions for both O and H, to account for the 
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processes occurring above the 120 km lid. With this, the first estimates of Extended 

UM-UKCA chemical heating rates are made in Section 4.5, representing the largest 

source of heating in the MLT (Marsh et al., 2007). The key results from the testing 

completed in this chapter are summarised in Section 4.6. 

4.2 Temperature 

Many of the chemical 

reactions in the MLT 

display a strong temperature 

dependence. In order for the 

resulting rates of such 

reactions to be realistic in 

the Extended UM-UKCA, 

atmospheric temperature 

must be suitably 

constrained. As referenced 

in Chapter 3, the Extended 

UM configuration that I am 

building upon has its 

temperature field forced to a 

fixed climatological profile 

in the thermosphere. Before 

any chemistry developments 

take place, it is necessary to 

first evaluate the suitability 

of this treatment by comparing the model temperature output against observations. 

Figure 4.1 shows the temperature profile of the MLT for the Extended UM-UKCA in 

its unmodified state, alongside corresponding satellite data from the Sounding of the 

Atmosphere using Broadband Emission Radiometry (SABER) instrument (Russell III 

et al., 1999), empirical model data from Mass Spectrometer Incoherent Scatter (MSIS) 

(Hedin et al., 1977; Picone et al., 2002) and reference model data from the Whole 

Atmosphere Community Climate Model with thermosphere and ionosphere extension 

(WACCM-X) (Liu et al., 2018; Liu et al., 2010). Upwards of about 75 km, the UKCA 

Figure 4.1 Zonal mean, meridional mean for range 
80°S-80°N, annual mean altitude profiles of 
atmospheric temperature (K). Profiles include 
(dashed black) UM-UKCA without temperature 
adjustment, (solid black) UM-UKCA with 
temperature adjustment, (solid red) SABER 
observations, (solid green) MSIS data and (solid blue) 
WACCM-X data. 
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profile begins to fall below MSIS and WACCM-X. This is a result of the model 

containing no treatment of chemical heating (Mlynczak and Solomon, 1993). To 

address this, the temperature forcing (as described in Section 3.2.1) comes into effect 

at altitudes above 90 km. A stepped increase at this height is clearly visible in the 

UKCA profile, but it is not significant enough to guide the profile towards the 

reference values. Another key feature of this plot is the disagreement between 

WACCM-X and the observations above about 100 km. Since MSIS and SABER 

corroborate each other, the MSIS data will be used as the target reference profile in 

the lower thermosphere, rather than the WACCM-X data. It should be anticipated that 

this temperature difference will cause a similar disparity between WACCM-X and the 

observations in the subsequent chemistry sections, particularly when converting 

constituent mixing ratios to atmospheric number densities. 

In order to get the Extended UM-UKCA to better replicate the now-established 

temperature reference profile, I tuned the forcing code to apply an additional 25 K 

increment. The profile containing this change, also shown in Figure 4.1, eliminates 

the temperature deficit previously generated around the mesopause. Between 90 and 

100 km, UM-UKCA (+25 K) is within ±3 K of MSIS. Note that below 90 km, where 

no forcing is applied, the difference between UM-UKCA (+25 K) and MSIS is still 

up to ±25 K. Meanwhile, above 100 km, where the applied forcing becomes 

increasingly less effective with altitude, a maximum offset of ±60 K is seen at the 

very top of the model domain. It should be stressed that by definition, the fixed 

temperature profile used for the forcing contains no horizontal variation. Hence, it is 

only designed to be an interim measure until the Extended UM radiation scheme is 

coupled to UKCA. 

4.3 Photolysis 

The standard treatment of photolysis in regular 85-km-lid UM-UKCA simulations is 

split into two vertical domains. For altitudes below 20 hPa (around 25 km), online 

photolysis rates calculated through the Fast-JX package (Bian and Prather, 2002; Wild 

et al., 2000) are used exclusively. Fast-JX is effective down to the lower wavelength 

limit of 177 nm, which is not suitable to represent all of the important reactions in the 

upper stratosphere and lower mesosphere. Hence for altitudes above 20 hPa / 25 km, 

Fast-JX rates are merged with rates generated from offline stratospheric lookup tables 
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with a lower wavelength limit of 112 nm (Lary and Pyle, 1991; Morgenstern et al., 

2009). Unsurprisingly, the Extended UM-UKCA requires photolysis rates to be 

calculated down to even shorter wavelengths, specifically the EUV and soft x-ray 

bands (reaching 10 and 0.4 nm respectively) (Jackson et al., 2019). At the time of 

writing, the Met Office are developing a new unified photolysis and photoionisation 

scheme for the whole atmosphere that will be effective down to 0.4 nm. However, this 

scheme was not available during my research period. As an alternative, I was provided 

with extended offline photolysis and photoionisation rates as a function of pressure 

and solar zenith angle. 

Since the chemistry of the MLT is dominated by O, it is essential to generate realistic 

concentrations of both the ground state O(3P) and the first electronic excited state 

O(1D). Table 4.1 lists the O production and destruction channels that were either 

extended or added to the Extended UM-UKCA. 

Table 4.1 Oxygen photolysis and photoionisation reactions that were either extended 
to lower wavelength bands or newly added. 

Reaction  Note  

 O2 + hv → O(3P) + O(3P) Extension (R4.01) 

 O2 + hv → O(1D) + O(3P) Extension (R4.02) 

 O(3P) + hv → O+(4S) + e- New (R4.03) 

 O(3P) + hv → O+(2D) + e- New (R4.04) 

 O(3P) + hv → O+(2P) + e- New (R4.05) 

 O(3P) + hv → O+(4Pe) + e- New (R4.06) 

 O(3P) + hv → O+(2Pe) + e- New (R4.07) 

 

The principal source of O in the MLT is the photolysis of molecular oxygen (O2) 

(R4.01 and R4.02), mainly in the Schumann-Runge continuum, the Schumann-Runge 

bands and at Lyman-α (121.6 nm) (Mlynczak and Hunt, 2015). Both reactions are also 

important in the stratosphere and were therefore already present in UKCA. 

Maintaining the existing online Fast-JX treatment of their photolysis was preferable 

in the stratosphere. However, the extended offline rates would be needed in the MLT. 

I set the section of the UKCA code that controls photolysis to switch off Fast-JX for 

reactions R4.01 and R4.02 at model levels above a selected pressure. Instead, it would 
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calculate new rates based on the extended offline rates via a linear interpolation over 

pressure and solar zenith angle for each level and horizontal point, every model time-

step. This treatment came into effect above 0.01 hPa (around 70 km) to provide a 

smooth transition into the new regime. 

The additional production of O in the MLT needed to be balanced by appropriate 

destruction mechanisms. I added five O photoionisation channels to UKCA (R4.03-

4.07) where, in each, the resulting O ion constitutes a different electronic state. Since 

I am not developing an ion chemistry scheme, the various new ions needed to be 

accounted for to avoid an indefinite build up. To achieve this I added a constant 

volume mixing ratio (VMR) tracer that could be set as the product in place of each O 

ion. It did not matter that this violated oxygen conservation, as O2 is not advected and 

is itself a constant tracer calculated as a function of atmospheric density. In effect, this 

provides an unlimited excess of O2. Another O destruction mechanism missing in 

UKCA is the recombination back to O2 

 O(3P) + O(3P) → O2. (R4.08) 

With the inclusion of reaction R4.08, I had a suitable treatment of atomic oxygen in 

the MLT. 

The second most important constituent to the chemistry of the MLT is H. Table 4.2 

lists the H production channels that had their treatment of photolysis developed for 

the Extended UM-UKCA. 

Table 4.2 Water vapour photolysis reactions that were either extended to lower 
wavelength bands or newly added. 

Reaction  Note  

 H2O + hv → OH + H Extension (R4.09) 

 H2O + hv → O(1D) + H2 New (R4.10) 

 H2O + hv → O(3P) + 2H New (R4.11) 

 

The largest source of H is the photolysis of water vapour (H2O) (R4.09-4.11) at 

Lyman-α (Mlynczak and Solomon, 1993). Additional destruction mechanisms were 

not required, as the majority of H loss occurs through reactions with O2, HO2, NO2 
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and O3 that all pre-exist in the chemistry scheme. A photolysis extension was applied 

to reaction R4.09 and reactions R4.10 and R4.11 were newly added, through the same 

method as used for O. 

Figure 4.2 shows altitude profiles of O, O(1D) and H from simulations with and 

without the photolysis developments, alongside equivalent profiles from satellite data 

Figure 4.2 Zonal mean, meridional mean for range 80°S-80°N, annual mean altitude 
profiles of (a, b) ground state atomic oxygen, O, (c, d) first electronic excited state 
atomic oxygen, O(1D) and (e, f) atomic hydrogen, H, as number densities (cm-3, left) 
and VMRs (ppm, right). Profiles are (dashed black) UM-UKCA without photolysis 
extension, (solid black) UM-UKCA with photolysis extension, (solid red) SABER 
observations, (solid green) MSIS data and (solid blue) WACCM-X data. 
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and empirical model data (where available) as well as reference model data. Panels 

(a) and (b) display corroboration between the SABER, MSIS and WACCM-X O 

reference profiles throughout the MLT, replicated by both Extended UM-UKCA 

simulations up to the original model lid height (85 km). Above this, the unchanged 

Extended UM-UKCA simulation (stnd) falls just under a factor of ten short of the 

reference (×9.2 at 100 km, in VMR); and the Extended UM-UKCA simulation with 

photolysis developments (extn) falls above the reference by a similar factor (×9.5 at 

100 km, in VMR). The O deficit simulated in the UKCA (stnd) run is expected, given 

the previously explained underrepresentation of O2 photolysis in the MLT. However, 

the extent of the O excess in the UKCA (extn) run is perhaps surprising. Conversely, 

the response of O(1D) and H to the photolysis developments is generally good over 

all altitudes. In panel (e), O(1D) shows a marked improvement in its replication of the 

equivalent WACCM-X profile in VMR, yielding a near-perfect agreement between 

the models above 100 km. The UM-UKCA (extn) profile of H in panel (f) also better 

matches the reference above 85 km, where the UM-UKCA (stnd) profile begins to 

deviate. However, it should be noted that WACCM-X appears to overestimate the H 

VMR compared to the observations by a factor of 2-3 between 80 and 100 km. UM-

UKCA (extn) overestimates this further, suggesting that both models could have 

minor issues in the treatment of H in this region. 

A particularly noticeable discrepancy in Figure 4.2 is the apparent underestimation of 

UM-UKCA tracers plotted in number density compared to VMR above about 95 km, 

most noticeable in panels (c) and (e). I conclude that this is attributable to the 

temperature offset discussed in Section 4.2, hence the VMR profiles are best suited 

for assessing the performance of chemistry alone. However, the UM-UKCA (extn) 

VMR profile in Figure 4.2b highlights a separate model anomaly. Above 100 km, O 

VMRs are greater than 1, which is unphysical. This result is derived from O mass 

mixing ratios (MMRs) from the original model output, which are also greater than 1. 

It is highly likely that this is a feature of O2 being treated as uniform in UKCA (see 

Section 3.2.2). This means any O2 that is removed is effectively immediately restored, 

while any products of the removal process (e.g. O) are maintained – a violation of 

mass conservation. Although this is a reasonable approximation in the homosphere, 

where densities of N2 and O2 by far outweigh all other chemical species (see Section 

2.2), it is clearly causing issues in the heterosphere. 



COUPLED CHEMISTRY FOR THE EXTENDED UNIFIED MODEL 

 

52 

Based on this analysis of Figure 4.2, it is clear that the next priority is to investigate 

all other factors that may contribute to the excess of O produced by UM-UKCA (extn) 

in the MLT. Naturally, evaluating the new O2 photolysis rates (the key change made) 

is the logical place start. Monthly mean photolysis rates for UM-UKCA (extn) and 

WACCM are compared as fixed altitude horizontal slices in Figure 4.3 and as altitude 

profiles in Figure 4.4. For simplicity, the UM-UKCA rates were calculated offline 

directly from the list of extended rates for the purpose of these plots. Averaged over 

each month, solar zenith angle was projected onto a latitude-longitude grid with a 3-

hourly time-step, before the corresponding photolysis rates were attached to their 

relevant locations. The temporal resolution of this method can be seen in panels (a) 

and (b) of Figure 4.3 as a pattern of eight longitudinal waves.  

Figure 4.3 Horizontal distributions of monthly mean O2 photolysis rates (s-1) through 
channel R4.01 at an altitude slice of 100 km for (a, b) UM-UKCA with photolysis 
extension (input) and (c, d) WACCM (output). Includes June mean (left) and 
December mean (right). 
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It is clear from Figure 4.3 that O2 photolysis in the Extended UM-UKCA is of a similar 

magnitude and follows the same seasonal distribution to that of WACCM. Therefore, 

the relative factor ten VMR enhancement of O in the MLT, seen in Figure 4.2b, is not 

attributable to a discrepancy in photolysis rates. Nevertheless, there do appear to be 

smaller differences in the photolysis rates between the models, which should be 

quantified. Comparing the June rates (Figures 4.3a and 4.3c), UM-UKCA records a 

greater maximum magnitude than WACCM in the summer hemisphere, with the peak 

region extending over a larger area. Conversely, the December rates in Figures 4.3b 

and 4.3d show WACCM to have the highest maximum magnitude. However, such 

rates are limited to latitudes above about 80°S, suggesting that the overall O2 

photolysis rates in UKCA are still larger than in WACCM. 

The altitude profiles in Figure 4.4 provide a globally averaged picture of the difference 

in photolysis rates between the Extended UM-UKCA and WACCM. On the log scale, 

the rates progress very closely between about 90 and 110 km in June (Figure 4.4a) 

and are virtually indistinguishable in December (Figure 4.4b). The offset seen 

between the models below this region is large in relative terms, but very small (over 

1000 times) in absolute terms compared to the rates seen when approaching 120 km. 

Therefore, such offset will not make any noticeable impact on the overall rate. Above 

110 km, the Extended UM-UKCA rates are up to a factor of two larger than WACCM, 

so perhaps an O excess of a similar magnitude should be expected here. When the 

Figure 4.4 Global mean altitude profiles of O2 photolysis rates (s-1) through channel 
R4.01 for (a) June mean and (b) December mean. Profiles are (black) UM-UKCA 
with photolysis extension and (blue) WACCM-X. 
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global mean photolysis rates are averaged over the pressure level range used by the 

photolysis extension (the y-axis of Figure 4.4), a single figure to represent the overall 

rate of photolysis in the MLT is generated for each model. As predicted, UKCA yields 

a higher result than the WACCM, with UKCA-to-WACCM percentage differences of 

+58.2% and +22.9% for June and December respectively (annotated). From the 

analysis of Figures 4.3 and 4.4, I conclude that the extended offline photolysis rates 

provide a reasonable estimate for reaction R4.01 in the MLT, which are on average 

slightly faster compared to WACCM, weighted towards the highest model levels. 

Next, I consider the instantaneous horizontal distribution of O in the Extended UM-

UKCA to assess how the global factor ten discrepancy varies spatially at given 

snapshots. Figure 4.5 shows UT midday snapshots for the summer and winter solstices 

at 100 km, comparing UKCA to WACCM-X. The most noticeable feature of panels 

Figure 4.5 Horizontal distributions of instantaneous O VMR (ppm) at an altitude 
slice of 100 km for (a, b) UM-UKCA with photolysis extension and (c, d) WACCM-
X. The panels show 12:00 UT snapshots for the summer solstice (left) and the winter 
solstice (right). 
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(a) and (b) is the accumulation of O in the polar regions of the respective summer 

hemispheres. Poleward of about 75°, UKCA simulated O is on average the most 

abundant constituent of the atmosphere, once again showing the previously discussed 

VMR anomaly, while typical ratios simulated outside of these regions are of the order 

105 ppm. Since O is long-lived at high altitude (typical lifetime of approximately 1 

year at 105 km (Friederich et al., 1999)), it is subject to transport through the MLT. 

A significant build-up over the summer pole is not consistent with typical mesospheric 

circulation, where downwelling occurs over the winter pole (Smith et al., 2011). This 

result provides an early warning into the performance of constituent transport in the 

Figure 4.6 Altitude profiles of O in (a, b) number density (cm-3) and (c, d) VMR 
(ppm) from (black) UM-UKCA with photolysis extension from (solid) global mean 
and (dashed) 30°S-30°N mean; (blue) WACCM-X from (solid) global mean and 
(dashed) 30°S-30°N mean. Includes 12:00 UT snapshots for summer solstice (left) 
and winter solstice (right). 
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Extended UM-UKCA. No such stark polar variation is simulated by WACCM-X, 

with panel (c) displaying a well-mixed horizontal O distribution for the June solstice 

and panel (d) displaying only a slight positive bias to the polar region of the summer 

hemisphere for the December solstice. It would therefore appear that the polar 

accumulation in the Extended UM-UKCA is an unphysical artefact. To explore this 

in a quantitative manner, the data from Figure 4.5 is plotted as O altitude profiles in 

Figure 4.6. 

Figure 4.6 includes instantaneous global means, alongside profiles limited to just the 

tropics (30°S-30°N) to remove the impact of the polar accumulation seen in UKCA. 

Inter-model percentage offset calculations reveal a maximum relative improvement 

in model agreement near 95 km at the reduced latitude range. Here, an improvement 

of 67.3% is recorded for the summer solstice, while a similar value of 70.2% is 

recorded for the winter solstice. This means that when the area of O accumulation is 

excluded from consideration, the relative excess of O simulated in UKCA compared 

to WACCM-X is cut by over two thirds. Such a significant factor provides a strong 

case for insufficient Extended UM-UKCA transport in the MLT being a key cause of 

the simulated O surplus. 

Future configurations of the Extended UM will contain physics developments, such 

as the inclusion of eddy diffusion, molecular viscosity and molecular diffusion. This 

will enable more realistic chemical transport (Brasseur and Solomon, 2005), hopefully 

addressing the contribution of dynamics to the O build-up issue. Therefore, given that 

the extended O2 photolysis rates appear to be reasonable, it would be inappropriate to 

artificially lower them to counteract a separate problem. Instead, it seems more 

reasonable to acknowledge this issue and attempt to validate the performance of O 

chemistry in the model in relative terms. One way to do this is to analyse the 

temperature dependence of the given tracer over the region of interest (e.g. Stolarski 

et al. (2012)). In this case, I measure the correlation of O VMR with temperature near 

the mesopause and compare the results to WACCM-X. Figure 4.7 displays the 

resulting correlation plots, produced separately for various latitude ranges. For each 

plot, I calculate the Pearson correlation coefficient 

𝜌 x,	y 	= 
cov x,	y
σx⋅σy

, 
(E4.01) 
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where x is temperature, y is log10(O VMR), cov(x, y) is the covariance and σx and σy 

are the standard deviations of x and y respectively. For the plots that showed an 

appreciable correlation, defined by a Pearson coefficient of magnitude greater than 

0.5, I calculate a linear regression and include the corresponding line of best fit. 

WACCM-X (Figures 4.7c, 4.7f and 4.7i) shows a consistent linear positive 

correlation, with the Pearson coefficient declining as the latitude range is refined, but 

remaining above 0.5. This suggests that O magnitudes increase with temperature.  

Figure 4.7 Correlation plots of the logarithm of O VMR (ppm) versus temperature 
(K) made from annual mean horizontal grid data at 90 km for (left column) UM-
UKCA without photolysis extension, (middle column) UM-UKCA with photolysis 
extension and (right column) WACCM-X. Analysis split into latitude bands of (top 
row) global, (middle row) 60°S-60°N and (bottom row) 30°S-30°N. Pearson 
correlation coefficients annotated inside subplots. Linear regressions conduced for 
Pearson correlation coefficients of magnitude greater than 0.5. Note different axis 
ranges. 
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Elsewhere, the unchanged Extended UM-UKCA simulation (stnd, Figures 4.7a, 4.7d 

and 4.7g) shows negative or no correlation through each latitude domain. The 

Extended UM-UKCA simulation with photolysis developments (extn, Figures 4.7b, 

4.7e and 4.7h) presents a similar result in the wider latitude ranges, however a 

structure with strong positive correlation of 0.890 is resolved between 30°S and 30°N. 

It is clear that the grid points responsible for the apparent negative correlation in the 

global domain are all located outside of the tropics. Therefore, such data is subject to 

the previously identified O accumulation issue. This provides one indication that 

independent of what is a likely transport deficiency in the Extended UM, Extended 

UM-UKCA O chemistry appears to perform as expected compared to WACCM-X. 

However, it should be noted that the temperature ranges of the UM-UKCA plots in 

Figure 4.7 do not overlap those of the corresponding WACCM-X plots, which are 

approximately 30 K warmer. Additionally, each positive correlation in the UM-

UKCA data is seen at the high-temperature end of the plots. Therefore, any 

conclusions made about the chemistry contain the caveat that positive correlations 

may also be a feature of a warmer background atmosphere. 

4.4 Upper-Boundary Conditions 

The inclusion of an extended photolysis treatment improves the performance of 

Extended UM-UKCA chemistry in the MLT. However, realistic distributions of O 

and H cannot necessarily be expected in the top few altitude levels of the model below 

the 120 km lid. Firstly, tracer accumulation may arise close to the model lid before 

the atmosphere is truncated. Secondly, the physical and chemical processes occurring 

Figure 4.8 2003-2013 (one 11-year solar cycle period) monthly mean time series at 
120 km for (a) O and (b) H VMRs (ppm) from WACCM-X data. 
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above this limit are not accounted for and may have a significant impact lower down 

in the atmosphere. It is therefore necessary to consider prescribing the top level of the 

O and H tracer fields to an external source of data. In turn, this should also guide the 

next few levels below to more realistic values. 

Data from both MSIS and WACCM-X are available for upper-boundary conditions. 

However, it is apparent from Figure 4.2b that the magnitude of the offset between the 

two data sources at 120 km, for O, is by far outweighed by their collective offset to 

the Extended UM-UKCA at the same altitude. Here, a very small WACCM-X-to-

MSIS VMR offset factor of ×1.01 is yielded, while UKCA is around a factor of 13 

larger than both sources. Clearly, the Extended UM-UKCA is not currently in a 

position to be used to assess whether MSIS or WACCM-X offers the better top-level 

treatment. At this development stage, the priority is instead to establish the most 

suitable way to impose upper-boundaries in UKCA from any reasonable source of 

Figure 4.9 Normalised 11-year solar cycle monthly mean time series baseline at 120 
km (black) with absolute (ppm, left) and percentage (right) differences plotted for the 
individual years in the period, for (a, b) O and (c, d) H from WACCM-X data. 
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data. Hence, in the following discussion, I only evaluate the case for prescribing 

WACCM-X data as upper-boundary conditions for O and H, independently.  

Given the important role that solar activity has in determining the composition of the 

thermosphere (Solomon and Roble, 2015), it is necessary to consider the variation of 

O and H over the 11-year solar cycle period. For this purpose, I retrieved data from a 

long-term WACCM-X simulation (Liu et al., 2018). I used this to analyse the extent 

to which the data varies seasonally and annually, relative to the offset in the 

corresponding Extended UM-UKCA fields. Firstly, I calculated the mean O and H 

VMRs at 120 km for each month, averaged across one solar cycle period in the 

WACCM-X data. From this, I constructed the time series shown in Figure 4.8. Figure 

4.8 extracts the same seasonal variation in both species, with maximum VMRs 

occurring at each solstice and minimum VMRs occurring at each equinox. This time 

series can be considered a seasonal baseline for the period. Secondly, I normalised the 

seasonal baseline, enabling the deviations of individual years from the collective 

monthly means to be assessed. This was done by subtracting the monthly mean O and 

H VMRs from the baseline for each year. Figure 4.9 displays the resulting time series 

in terms of both absolute 

(ppm) and relative (%) 

differences. There 

appears to be no month 

exhibiting significantly 

more solar cycle variation 

than any other for either 

species. April and May 

are arguably the most 

variable months and July 

and August the least, 

although this is marginal. 

Panel (b) shows a typical 

variation in O of up to 

±7.5% and panel (d) 

shows a typical variation 

in H of up to ±10%. 

Figure 4.10 (Left axis) annual mean percentage 
difference from the 11-year solar cycle mean at 120 km 
plotted for the individual years in the period, for (blue) 
O and (green) H from WACCM-X data. (Right axis) 
solar flux at 10.7 cm (10-22 W m-2 Hz-1) plotted as (light 
grey) monthy means and (dark grey) annual means. 
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Therefore, I conclude that the extent of tracer VMR change at 120 km arising across 

a solar cycle is too large to disregard through the use of just one arbitrary year in 

prospective upper-boundary conditions. 

Figure 4.10 is a bar chart containing the annual mean relative variation in O and H 

from their respective Figure 4.8 baselines, plotted to qualitatively assess solar cycle 

correlation. Superimposed on this are lines of monthly and annual mean solar flux at 

10.7 cm, recorded over the same period to provide a metric of solar activity. It is clear 

that the highest VMRs of both tracers are simulated at solar maximum, while the 

lowest are simulated at solar minimum with a gradual decline in between. Extended 

Figure 4.11 Deviation of WACCM-X variables over the 11-year solar cycle (blue 
fill) versus deviation of UM-UKCA variables over an example year (dotted black 
line) from the WACCM-X normalised solar cycle monthly mean time series baseline 
at 120 km (solid blue line). Annual mean UKCA deviations (solid black line) used to 
calculate mean offset between models (α); UM-UKCA seasonal range (β) also 
annotated. Absolute deviations (ppm, left) and percentage deviations (right) for (a, b) 
O and (c, d) H. 
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UM-UKCA upper-boundary conditions constructed from this data must account for 

this. For the case of the first model extension phase reported in this chapter, 

prescribing the solar-cycle-mean time series from Figure 4.8 would be the most 

suitable treatment for the initial perpetual year simulations.  

Next, I assess whether the inherent offsets in the Extended UM-UKCA O and H 

distributions relative to the WACCM-X solar-cycle-mean distributions are large 

enough to warrant the implementation of upper-boundary conditions. Top-level 

treatments are not imposed by default, as merits of such corrections are balanced by 

the drawback of UKCA-generated seasonal variation being removed from the 

simulations. My criteria for warranting upper-boundary conditions are: i) if the mean 

magnitude of the UKCA-to-WACCM-X offset is greater than the UKCA seasonal 

range; and ii) if the UKCA seasonal variation does not intersect the WACCM-X solar 

cycle variation. 

Figure 4.11 reveals the exact differences between the existing Extended UM-UKCA 

O and H output and the corresponding solar-cycle-mean WACCM-X output at 120 

km. Annotated on each subplot are the terms α and β, representing the magnitudes of 

the UKCA offsets and seasonal variations respectively. The first criteria for upper-

boundary conditions (specified above) can be simplified to where α > β. Panels (a) 

and (b), on the log scale, show an obvious void between the two models in their 

generation of O, indicative of the known order-of-magnitude discrepancy. Here, α > 

β (by nearly a factor of ten) and the UKCA seasonal variation does not come close to 

the WACCM-X solar cycle variation. Hence, no further case needs to be made for O 

and the upper-boundary condition should be applied. In contrast, the decision is not 

so clear-cut for H. Panels (c) and (d) show that α and β are of similar magnitude, but 

ultimately α < β. In addition, the UKCA seasonal variation (dotted line) falls very 

close to the WACCM-X solar cycle range (blue fill) over the summer months, but 

does not intersect. Regardless, the first criteria for upper-boundary conditions is not 

met and therefore the WACCM-X data should not be prescribed for H. Here I 

conclude that the advantage of maintaining the internal Extended UM-UKCA 

seasonal variation in H outweighs the disadvantage caused by a slight offset from the 

WACCM-X reference. 
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To implement an upper-boundary condition for O, I configured a treatment of 

asymptotic nudging towards the WACCM-X data. Offsets in the values of O recorded 

in the top-level of the Extended UM-UKCA against those recorded at the equivalent 

altitude in the WACCM-X data were continually reduced each time-step. This worked 

by adding or subtracting (as appropriate) a specified factor of the difference between 

the instantaneous UKCA-generated mixing ratios and solar cycle mean WACCM-X 

data. I found that a nudging factor of 0.1 was optimal for implementing the upper-

boundary condition effectively without inducing further model instabilities. Testing 

revealed that simulations with more aggressive nudging factors would crash after a 

few time-steps with errors in the UKCA tracer arrays, caused by a large difference 

between the first and second uppermost model levels of O. 

Figure 4.12 Zonal mean, meridional mean for range 80°S-80°N, annual mean altitude 
profiles of (a, b) ground state atomic oxygen, O and (c, d) first electronic excited state 
atomic oxygen, O(1D), as number densities (cm-3, left) and VMRs (ppm, right). 
Profiles include (dotted black) UM-UKCA without photolysis extension, (dashed 
black) UM-UKCA with photolysis extension, (solid black) UM-UKCA with 
photolysis extension and upper-boundary condition for O, (solid red) SABER 
observations, (solid green) MSIS data and (solid blue) WACCM-X data. 
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Results from an Extended UM-UKCA simulation containing the upper-boundary 

condition for O (extn, ubc) are included in Figure 4.12. To assess the relative 

improvement on the previous checkpoints reported in this chapter, profiles from the 

simulation without photolysis developments (stnd) and the simulation with photolysis 

developments but no top-level treatment (extn) are replotted from Figure 4.2. Profiles 

from SABER, MSIS and WACCM-X are also used for reference, as before. I consider 

O (Figures 4.12a and 4.12b) alongside O(1D) (Figures 4.12c and 4.12d), as O(1D) was 

deemed the next tracer most susceptible to the new top-level of O. However, it is clear 

that the O(1D) steady-state calculation is not significantly perturbed by this, as close 

replication to WACCM-X is maintained. For O itself, the difference between the 

UKCA profiles with and without the upper-boundary condition is negligible up to an 

altitude of about 95 km. This confirms that the new treatment causes no adverse 

impact on the lower levels of the model. Above 95 km, the effect of the upper-

boundary condition on O is realised. An exponential decrease in O is seen with 

increasing altitude, until the UKCA profile intersects with MSIS and WACCM-X at 

120 km (in VMR). I conclude that the implementation of an upper-boundary condition 

for O based on WACCM-X data has undoubtedly improved the agreement between 

the Extended UM-UKCA and the target reference data. Subsequent simulations 

should therefore continue to use this treatment. 

4.5 Chemical Heating 

The second vertical extension phase of the UM-UKCA will require the chemistry and 

radiation schemes of the model to be coupled for the provision of direct chemical 

heating in the MLT. As a preparatory step for that, I make an offline estimate for the 

total daily rate of chemical heating that can be expected from the model in its current 

state. This estimation is based on simulated annual mean tracer densities, highlighting 

the individual contributions from each relevant chemical reaction. Mlynczak and 

Solomon (1993) identified seven particular reactions deemed likely to be responsible 

for substantial heating in the MLT. Listed in Table 4.3, five are reactions of O (R4.12, 

R4.13, R4.14, R4.15 and R4.17) and two are reactions of H (R4.16 and R4.18). Also 

included in the table are three chemical reactions (R4.19-4.21) considered by Marsh 

et al. (2007) that were not listed by Mlynczak and Solomon (1993). These include the 

quenching deactivation of O(1D) to the ground state (R4.19). This route was shown 
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by Marsh et al. (2007) to be the dominant source of chemical heating above about 100 

km. 

Table 4.3 Important exothermic reactions for chemical heating in the mesosphere-
lower thermosphere. R4.12-4.18 from first seven rows of Table 4 in Mlynczak and 
Solomon (1993), R4.19-4.22 from Figure 5 in Marsh et al. (2007). Molar enthalpies 
from Mlynczak and Solomon (1993) (R4.12-4.18) and Baulch et al. (2005) (R4.19-
4.21), all converted to J mol-1. Rate terms k0, n and Ea for Arrhenius expression of 
form k(T) = k0(T/298)ne-Ea/RT from Atkinson et al. (2004) (R4.12, R4.14, R4.15), 
Tsang and Hampson (1986) (R4.13), Turányi et al. (2012) (R4.16), DeMore et al. 
(1997) (R4.17, R4.18, R4.19, R4.20) and González et al. (2001) (R4.21). 

Reaction Molar Enthalpy 
(∆H/n) 
[J mol-1] 

Rate 
Constant 
(k0) 

Rate 
Power 
(n) 

Activation 
Energy (Ea) 
[J mol-1] 

 

O + O3 → O2 + O2 -3.92e+5 8.00e-12  1.71e+4 (R4.12) 

O + O + M → O2 + M -4.50e+5 5.21e-35  -7.48e+3 (R4.13) 

O + OH → H + O2 -7.02e+4 2.40e-11  -9.15e+2 (R4.14) 

O + HO2 → OH + O2 -2.23e+5 2.70e-11  -1.86e+3 (R4.15) 

H + O2 + M → HO2 + M -2.05e+5 4.11e-32 -1.10  (R4.16) 

O + O2 + M → O3 + M -1.07e+5 6.01e-34 -2.30  (R4.17) 

H + O3 → OH + O2 -3.22e+5 1.40e-10  3.91e+3 (R4.18) 

O(1D) + M → O + M -1.90e+5    (R4.19) 

M = N2  1.79e-11  -9.15e+2 (.19a) 

M = O2  3.20e-11  -5.82e+2 (.19b) 

N + NO → N2 + O -3.14e+5 2.09e-11  -8.31e+2 (R4.20) 

N(2D) + O2 → NO + O -3.63e+5 1.22e-11  2.64e+3 (R4.21) 

Ion reactions various various  various (R4.22) 

 

Into the ionosphere, the heating contribution from ion chemistry reactions (R4.22) 

must also be considered. This collective contribution was shown by Marsh et al. 

(2007) to be the second most substantial source of chemical heating above about 105 

km. Of course, an efficient Extended UM-UKCA ion chemistry scheme is a 

prerequisite for this contribution to be realised. 
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My method for estimating the chemical heating contribution from each reaction in 

Table 4.3 is as follows. I consider the bimolecular reactions (R4.12, R4.14, R4.18 and 

R4.20) where the rate of reaction is defined generally as 

rateRi molecules cm-3 s-1 	=	ki⋅ R1 ⋅ R2  (E4.02) 

and the termolecular reactions (R4.13, R4.16, R4.17 and R4.19) such that 

rateRi molecules cm-3 s-1 	=	ki⋅N)⋅ R1 ⋅ R2  (E4.03) 

where ki is the rate constant, Nρ is the atmospheric number density and [R1] and [R2] 

are the number densities of reactant 1 and reactant 2 respectively. Note that reactions 

R4.15 and R4.21 are omitted from this consideration, as HO2 was not an available 

output from a comparative WACCM-X simulation and the N(2D) tracer does not exist 

in UKCA. 

An equation for the daily heating rate contribution is derived below for the example 

of reaction R4.12. Starting with an expression for the rate of reaction 

rateR12 molecules cm-3 s-1  =	k12⋅ O ⋅ O3 , (E4.04) 

Equation E4.04 is divided by the Avogadro constant, NA(mol-1), to generate the molar 

rate per unit volume 

rateR12 mol cm-3 s-1  = 
k12⋅ O ⋅ O3

NA
. 

(E4.05) 

Next, equation E4.05 is multiplied by enthalpy ∆H(J mol-1) to convert this to an 

energy rate per unit volume 

rateR12 J cm-3 s-1  = 
k12⋅ O ⋅ O3 ⋅ΔH

NA
. 

(E4.06) 

Since atmospheric mass density ρ(kg cm-3) = m / V, where m is atmospheric mass and 

V is atmospheric volume, the energy rate per unit mass can be constructed as 

rateR12 J kg-1 s-1  = 
k12⋅ O ⋅ O3 ⋅ΔH

NA⋅ρ
. 

(E4.07) 
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Dividing equation E4.07 by specific heat capacity at constant pressure, Cp(J kg-1 K-1) 

= Q / m·∆T, where Q is energy and T is temperature, generates the heating rate 

rateR12 K	s-1 	=
dT
dt R12

	=	
k12⋅ O ⋅ O3 ⋅ΔH

NA⋅ρ⋅Cp
. 

(E4.08) 

Integrating equation E4.08 over a day yields the daily heating rate contribution from 

reaction R4.12, 

rateR12 K	day-1  = 
dT
dt R12

 

day
. 

(E4.09) 

This process was repeated for the listed reactions and their respective contributions 

were summed to generate an expression for the total daily heating rate 

rateTOT K day-1 	=	 rateRi K day-1 i=12,13,14,16,17,18,19,20 , (E4.10) 

which was used to calculate an offline estimate. Once complete, the whole sequence 

was repeated with WACCM-X tracer fields to calculate a reference estimate to 

compare to. The contribution of ion reactions (R4.22) were then added to the 

WACCM-X total. 

Figure 4.13 presents the resultant heating rate estimates as global mean altitude 

profiles for the MLT. Below 80 km, excellent agreement is seen between the Extended 

UM-UKCA and WACCM-X, where the leading sources of heating are reactions 

R4.17 and R4.19 generating rates of approximately 1 K day-1 each. This similarity 

reflects the conformity seen in the O and O(1D) tracers between models in this altitude 

region (see Figure 4.12). Above 80 km, the UKCA total heating rate increases rapidly 

largely due to enhanced contributions from reactions R4.18 and R4.19, combined with 

the introduction of significant heating from reaction R4.13. Close to 90 km, a peak 

total rate of 65 K day-1 is yielded. A rapid increase attributable to the same reactions 

is also seen in the WACCM-X plot, but the near 90 km peak is just over a factor of 

six times smaller. A discrepancy of about this size was anticipated as it is principally 

caused by reaction R4.13, specifically the O density offset between models that is 

well-documented in this chapter. 
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Otherwise, generally good agreement is seen between models throughout the MLT, 

particularly for the reactions involving H. An exception to this is R4.20, the reaction 

of N and NO. The heating rate contribution from this reaction in UKCA falls short of 

the x-axis scale used in Figure 4.13, generating a negligible impact compared to that 

seen in WACCM-X. This was also anticipated to some extent, as the Extended UM-

UKCA currently has no representation of Energetic Particle Precipitation (EPP). As 

discussed in Chapter 2, EPP is a significant source of odd nitrogen (NOx) in the MLT 

(Funke et al., 2005). Without this top-down forcing in the model, we cannot expect to 

simulate realistic amounts of N and NO. Since the provision of EPP representation 

was not one of the model development objectives within the remit of this thesis, I 

make no attempt to fill the NOx deficit. However, the WACCM-X plot shows the 

increasing relative influence that this reaction has on the total chemical heating rate 

at altitudes above the current Extended UM-UKCA model lid. EPP NOx generation is 

therefore essential for future iterations of the Extended UM-UKCA, particularly those 

with higher altitude model lids.  

Figure 4.13 Global mean estimated daily chemical heating rate (K day-1) altitude 
profiles in the MLT for (a) the Extended UM-UKCA and (b) WACCM-X. Includes 
profiles for the total chemical heating rate (solid black) alongside profiles for the 
individual contributions from each reaction (various colours and styles – see legend). 
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Another key difference between panels (a) and (b) in Figure 4.13 is the missing 

contribution of ion reactions in UKCA. The chemical heating rate profile from ion 

reactions seen in the WACCM-X plot follows a similar trajectory to that of reaction 

R4.20. As mentioned previously, an ion chemistry scheme is not being developed in 

this first phase of the UM-UKCA vertical extension project. Although, the importance 

of such a scheme for chemical heating upwards through the thermosphere should be 

noted alongside that of EPP NOx. 

4.6 Summary 

The first vertical extension phase of the Extended UM-UKCA up to the intermediate 

model lid height of 120 km has been completed. I report details of the technical 

modifications made to couple UKCA to the Extended UM in the Appendix. The 

results presented in this chapter are directed towards reviewing and improving the 

basic performance of Extended UM-UKCA neutral chemistry in the MLT. In 

particular, I focus on air temperature, O and H. 

The original temperature profile generated by the model is subject to forcing to a 

thermospheric climatology above 90 km. I found this forcing to be too weak, with the 

model unable to replicate the temperatures observed in this region. The addition of a 

25 K increment to the forcing provides a better fit. Similarly, a lack of short 

wavelength photolysis in the default setup gives rise to deficient magnitudes of O and 

H in the MLT. Through the implementation of extended photolysis treatments for O2 

and H2O in this work, based on offline rates, production of both species is enhanced. 

Revised H magnitudes match reference values reasonably well, but revised O 

magnitudes appear larger than expected, typically exceeding reference VMRs by a 

factor of ten throughout the extended altitude domain. This can partly be explained 

by the fact that O2 is treated as uniform in UKCA, although diagnostic analysis reveals 

an accumulation of O near the polar region of the summer hemisphere to be a 

contributing factor, most likely attributable to insufficient model transport in the 

MLT. 

To account for the physical and chemical process occurring above the new model lid, 

I consider the prescription of upper-boundary conditions for O and H. I utilise data 

from a long-term WACCM-X run to assess the seasonal and inter-annual variation in 
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each species. From this, I establish that a solar-cycle-mean of the data would provide 

the most suitable treatment at the top level. A robust case is made for the 

implementation of such treatment for O, while I conclude that for H, the existing 

seasonal variation in the tracer is more valuable than the adjustment offered. 

Simulations containing this development see an improved representation of O in the 

lower thermosphere. 

The combined effect of exothermic reactions involving O or H constitutes the majority 

of atmospheric chemical heating, the largest source of heating in the MLT. With both 

species better characterised in the Extended UM-UKCA, I use model output to 

estimate a profile for the total rate of chemical heating up to the new model lid. 

Generally good agreement is seen compared to WACCM-X, aside from two main 

exceptions. Firstly, the UKCA estimated contribution from the recombination of O 

reaction is around a factor of six higher than WACCM-X at its peak. This is easily 

attributable to the known difference in O magnitudes. Secondly, the contribution of 

the reaction of N and NO is missed entirely by UKCA. Clearly, there is a requirement 

for EPP driven NOx generation to be added to the model. 

The work completed in this chapter has delivered the Extended UM-UKCA a suitable 

representation of temperature and neutral chemistry in the MLT, providing a 

modelling tool for further scientific investigation. The next chapter focuses on testing 

the chemistry and transport properties of the model, through the addition of the O-

controlled and temperature sensitive atomic sodium (Na) chemistry scheme. 
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5 THE ATOMIC SODIUM LAYER AS A DIAGNOSTIC 
OF CHEMISTRY AND TRANSPORT IN THE 
MESOSPHERE-LOWER THERMOSPHERE 

5.1 Introduction 

I now build on the UK Chemistry and Aerosols coupled Extended Unified Model 

(Extended UM-UKCA) neutral chemistry developments reported in the previous 

chapter. The next logical step is to test the chemistry and constituent transport 

performance of the model through the extended altitude domain. Specifically, through 

the additional vertical levels in the Mesosphere-Lower Thermosphere (MLT). This 

chapter reports the inclusion and subsequent analysis of Extended UM-UKCA 

simulations augmented with an atomic sodium (Na) chemistry diagnostic package. As 

discussed in Chapter 2, the Na layer originates from material that is released by 

meteoroids as they ablate in the MLT (Plane, 2015). It provides an excellent tool for 

chemical and dynamical studies of the MLT due to its relatively long chemical 

lifetime (Xu and Smith, 2003) and strong sensitivity to temperature (Plane, 2003). 

Furthermore, the Na chemistry scheme comprises a concise set of largely atomic 

oxygen (O)- and hydrogen (H)-controlled chemical reactions, providing a robust test 

of minor constituent chemistry. The Extended UM-UKCA is only the second fully 

interactive chemistry-climate model to contain such a scheme and the first to do so 

with a non-hydrostatic dynamical core. Marsh et al. (2013) reported the first of such 

Na layer simulations completed with the hydrostatic Whole Atmosphere Community 

Climate Model (WACCM). In this chapter, I compare output from Extended UM-

UKCA simulations to updated WACCM simulations (Li et al., 2018) and 

observational data (Casadio et al., 2007; Fussen et al., 2010; Hedin and Gumbel, 2011; 

Kopp, 1997). The results aim to offer the first insight into the performance of 

chemistry and transport in the Extended UM-UKCA, focusing on the MLT. It is 

intended that the current physical and chemical deficiencies of the model may be 

quantitatively attributed to imprints in specified diagnostics of the Na layer, including 
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its spatial and seasonal variation, its overall magnitude and the relative magnitudes of 

associated Na compounds. 

Section 5.2 describes the method used to include an injection of meteoric Na into the 

Extended UM-UKCA. Section 5.3 reports the addition of an atomic Na chemistry 

scheme in the model, notably detailing the method used to generate a parametrised 

ionosphere. Section 5.4 compares the Extended UM-UKCA Na layer simulations 

completed for the study to a reference WACCM Na chemistry configuration. Section 

5.5 presents the results from the Extended UM-UKCA Na layer simulations, with 

specific attention to the spatial and seasonal variations of Na compounds, as well as 

the calculation of constituent transport metrics. The main findings from this 

investigation are summarised in Section 5.6. 

5.2 Meteoric Input Function 

A Meteoric Input Function (MIF) provides the injection of Na into a model. As 

reviewed in Chapter 2, the best estimate for the rate of this input function was from 

Carrillo-Sánchez et al. (2016) at the time of the developments. This MIF specifies the 

Na injection rate as a particle flux per unit volume, for the altitude range of 50 to 150 

km, every 100 m. I adapted this MIF for compatibility with the Extended UM-UKCA. 

This treatment involved adding meteoric Na as a 3D UKCA chemical emission field. 

Firstly, I transformed the vertical 

profile of the MIF from its 

original levels onto the Extended 

UM-UKCA model levels. This 

involved a mass conserving 

interpolation, as the UM has a 

coarse vertical resolution 

compared to the MIF. Secondly, I 

converted the units of the MIF to 

a mass flux for each level, as 

required by UKCA. This 

interpolation and conversion 

yielded the MIF shown in Figure 

Figure 5.1 Meteoric Na input function based on 
Carrillo-Sánchez et al. (2016), on Extended 
UM-UKCA model levels, in mass flux units. 
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5.1. I used a MIF of single vertical profile to allow results to be attributed clearly to 

the performance of chemistry and dynamics within the model, removing any 

uncertainty that could be caused by an input time series. In reality, the rate of Na 

injection will contain some seasonal and latitudinal variation to reflect changes in the 

amount and distribution of incoming meteoric material (Janches et al., 2006). It should 

be noted that the vertical structure of the MIF in Figure 5.1 is attributable to the way 

in which the estimate is constructed. As discussed in Chapter 2, the main sources of 

meteoroids are cometary trails and asteroid belt fragments. Naturally, there is 

considerable variation in the size, velocity and entry angle of meteoroids from both 

sources. Carrillo-Sánchez et al. (2016) ran an astronomical model to estimate mass 

and velocity distributions of meteoroids, which were used to drive a chemical ablation 

model to solve the momentum and energy balance. As a result, some deviation from 

a completely smooth vertical MIF distribution is to be expected. 

Recent WACCM Na scheme simulations, reported in Li et al. (2018), were driven by 

the Carrillo-Sánchez et al. (2016) MIF. However, Li et al. (2018) found that the Na 

MIF required a factor of five reduction in order to correctly simulate the observed 

absolute Na density (see Chapter 2). Since the Extended UM-UKCA is also subject 

to the above limitations and still requires physics developments in the MLT (Griffith 

et al., 2020), the initial MIF that is used in this study maintains the inferred factor of 

five reduction. This approach has the benefit of enabling Extended UM-UKCA 

simulations to be directly compared to the WACCM simulations from Li et al. (2018). 

5.3 Atomic Sodium Chemistry Scheme 

In total, 11 new chemical tracers were added to the Extended UM-UKCA: five neutral 

Na compounds (Na, NaO, NaO2, NaOH and NaHCO3), five ionised Na compounds 

(Na+, Na.O+, Na.N2
+, Na.CO2

+, Na.H2O+) and the dimer (NaHCO3)2. The chemical 

reactions and rate equations used in this Na chemistry scheme were taken from Plane 

et al. (2015). This includes 12 reactions of exclusively neutral compounds (R5.01-

5.12) and 11 reactions involving ions (R5.13-5.23), as listed in Table 5.1. I converted 

the rate equations to satisfy the form of Arrhenius expression for rate of reaction used 

in UKCA 
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Table 5.1 Chemical reactions added to the Extended UM-UKCA for the Na chemistry 
scheme, as listed in Plane et al. (2015), but with rate coefficients converted to the 
UKCA format. 

Reaction Rate Coefficient  
Neutral Chemistry 

Na + O3 → NaO + O2 1.10 × 10-9 exp(-116/T) (R5.01) 

NaO + O → Na + O2 (2.69 × 10-10) (T/300)0.50 (R5.02) 

NaO + O3 → Na + 2O2 3.20 × 10-10 exp(-550/T) (R5.03) 

NaO + H2 → NaOH + H 1.10 × 10-9 exp(-1100/T) (R5.04) 

NaO + H2 → Na + H2O 1.10 × 10-9 exp(-1400/T) (R5.05) 

NaO + H2O → NaOH + OH 4.40 × 10-10 exp(-507/T) (R5.06) 

NaOH + H → Na + H2O 4.00 × 10-11 exp(-550/T) (R5.07) 

NaOH + CO2 + M → NaHCO3 + M (1.27 × 10-28) (T/300)-1.00 (R5.08) 

NaHCO3 + H → Na + H2CO3 1.57 × 10-11 (T/300)0.78 exp(-1014/T) (R5.09) 

Na + O2 + M → NaO2 + M (3.05 × 10-30) (T/300)-1.22 (R5.10) 

NaO2 + O → NaO + O2 5.00 × 10-10 exp(-940/T) (R5.11) 

2NaHCO3 + M → dimer + M (4.01 × 10-9) (T/300)-0.23 (R5.12) 

Ion-Molecule Chemistry 

Na + O2
+ → Na+ + O2 2.70 × 10-9 (R5.13) 

Na + NO+ → Na+ + NO 8.00 × 10-9 (R5.14) 

Na+ + N2 + M → Na.N2
+ + M (1.97 × 10-30) (T/300)-2.20 (R5.15) 

Na+ + CO2 + M → Na.CO2
+ + M (1.14 × 10-29) (T/300)-2.90 (R5.16) 

Na.N2
+ + X → Na.X+ + N2 

(X = CO2, H2O) 
6.00 × 10-10 (R5.17) 

Na.N2
+ + O → Na.O+ + N2 4.00 × 10-10 (R5.18) 

Na.O+ + O → Na+ + O2 1.00 × 10-11 (R5.19) 

Na.O+ + N2 → Na.N2
+ + O 1.00 × 10-12 (R5.20) 

Na.O+ + O2 → Na+ + O3 5.00 × 10-12 (R5.21) 

Na.Y+ + e− → Na + Y 
(Y = N2, CO2, H2O, O) 

(8.16 × 10-7) (T/300)-0.5 (R5.22) 

Na+ + e− → Na + hν (2.89 × 10-12) (T/300)-0.74 (R5.23) 
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k = k0

T
300

α

exp
-β
T

 
(E5.01) 

where T is temperature and k0, α and b are coefficients to be determined for each 

reaction. 

Note that the five Na photochemical reactions listed by Plane et al. (2015) were not 

transferred to the UKCA scheme, as no suitable treatment was available. The omitted 

reactions were: the photolysis of NaO, NaO2, NaOH and NaHCO3, and the 

photoionisation of Na. As a destruction channel of Na, NaO or NaO2, 

photolysis/photoionisation is largely inconsequential compared to removal via 

reaction with O (Self and Plane, 2002). However, a small imbalance of the scheme, 

caused by insufficient daytime removal of NaOH and NaHCO3, compounds that are 

instead chemically removed via reaction with the less abundant species, H, should be 

anticipated in simulations. 

5.3.1 Atomic Sodium Ion Production Parametrisation 

Unlike WACCM, UKCA did not contain an existing treatment of ions. Therefore, 

additional work was required before the ion-molecule chemistry could be introduced. 

The reactions involving the background ions O2
+ and NO+ (R5.13 and R5.14) and 

electrons (R5.22 and R5.23) needed to be accounted for. It would have been both 

exorbitant and a divergence from the scientific purpose of this study to develop a full 

description of ion chemistry in UKCA. Instead, the aim was to find the simplest-but-

still-realistic representation achievable. I therefore developed a parametrisation for 

calculating the number density of NO+, O2
+ and electrons at any given time or 

location. This was based on offline photoionisation rates, dissociative recombination 

rates and a relative ionospheric composition approximation. 

Central to the parametrisation are two photoionisation processes to produce molecular 

ions. That of molecular nitrogen (N2) 

 N2	+	hν	→	N2
+	+	e+ (R5.24) 

and that of molecular oxygen (O2) 



THE ATOMIC SODIUM LAYER AS A DIAGNOSTIC OF CHEMISTRY AND 
TRANSPORT IN THE MESOSPHERE-LOWER THERMOSPHERE 

 

76 

 O2	+	hν	→	O2
+	+	e+. (R5.25) 

Between them, reactions R5.24 and R5.25 represent the total input of ions and 

electrons into the model. Ion production is dependent on sunlight, so in order to 

capture the diurnal variation across the globe, offline photoionisation rates were 

provided for reactions R5.24 and R5.25 as a function of pressure and solar zenith 

angle. Within the parametrisation, these rates were interpolated linearly during 

simulations for each level and horizontal point, every model time-step (similar to the 

treatment of photolysis reported in Chapter 4). 

The parametrisation was incorporated into the online rate calculation for the relevant 

reactions via special rate code following the method outlined below (example shown 

for reaction R5.13). 

The overall rate for the bimolecular reaction R5.13 is given by 

 rate = k13⋅ Na ⋅ O2
+ , (E5.02) 

where k13 is the listed rate coefficient and [Na] and [O2
+] are the number densities of 

Na and molecular oxygen (O2), respectively.  

By defining 

 k13
’ = k13⋅ O2

+ , (E5.03) 

that means rate = k13
’·[Na]. The model has an explicit Na number density, so the 

variable to be determined is k13
’. Consider the overall ionisation rate 

 I = kDR⋅ M+ ⋅ e+  (E5.04) 

where kDR is the rate of dissociative recombination, [M+] is the total ion number 

density and [e-] is the total electron number density. Assuming charge neutrality: [M+] 

= [e-], this yields I = kDR·[M+]2 which can be rearranged to 

 
M+  = 

I
kDR

. 
(E5.05) 
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Introducing a relative ionospheric composition approximation of 80% NO+ and 20% 

O2
+ in the MLT solves for [O2

+] with 

 
O2

+  = 0.2⋅
I

kDR
. 

(E5.06) 

The overall ionisation rate can also be expressed as 

 I = JN2→N2
+⋅ N2 + JO2→O2

+⋅ O2 , (E5.07) 

where JN2→N2
+ and JO2→O2

+ are the offline photoionisation rates for the production of 

N2
+ from N2 and O2

+ from O2, respectively; and [N2] and [O2] are the number densities 

of N2 and O2, respectively. 

The composition partition used in equation E5.06 can also be applied to the rate of 

dissociative recombination. Hence, 

 kDR = 0.8⋅kDR NO+  + 0.2⋅kDR O2
+ . (E5.08) 

Therefore, a parametrised rate equation of known quantities may be constructed by 

substituting equation E5.06 into equation E5.02. This gives 

 
rate = k13⋅0.2⋅

I
kDR
⋅ Na . 

(E5.09) 

This process was repeated to suit reactions R5.14, R5.22 and R5.23 accordingly. 

It was necessary to check the validity of this parametrisation before using it in 

Extended UM-UKCA Na scheme simulations. I made an offline estimate for the 

electron density of the ionosphere derived from this parametrisation. This was done 

by calculating [M+] (hence, charge neutrality) through equation E5.05, but with [N2] 

and [O2] (as required for I, equation E5.07) replaced by values from annual mean 

Extended UM-UKCA output. Since neither N2 nor O2 are advected in UKCA, I 

calculated their number densities based on their respective, near constant, fractions of 

the total atmospheric volume density throughout the homosphere (0.78 and 0.21). The 

same treatment is applied during model simulations inside the UKCA code. In order 
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to generate an offline global mean electron density profile, I sampled a range of solar 

zenith angles at frequency intervals of 5° to estimate the electron density of the day-

side. I then countered this by factoring in an equal number of zero rates for the photo-

inactive night-side, before taking the mean of the samples. Figure 5.2 shows the 

resulting electron density profile estimate.  

It is clear from Figure 5.2 

that the ionosphere derived 

from the Extended UM-

UKCA atomic Na ion 

production parametrisation 

(stnd) well replicates the 

global mean electron 

density generated by 

WACCM-X, a model with 

an interactive ionosphere, 

up to an altitude of about 

110 km. However, in the 

top 10 km of UM-UKCA 

(which is also the top 10 

km of the offline 

photoionisation rates), the 

parametrisation yields a 

significantly higher 

electron density than that of WACCM-X. At the UM-UKCA model lid (120 km), the 

magnitude of this discrepancy approaches a factor of five. This sharp rise is solely 

attributable to the uppermost pressure level of the parametrisation, specifically the 

associated photoionisation rates JN2→N2
+ and JO2→O2

+ (see equation E5.07). The offline 

photoionisation rates are overestimated at the top pressure level, as their calculation 

represents the column of the atmosphere from 2.25 × 10-5 hPa up to space. To address 

this, I derive a second electron density profile that has the top levels of JN2→N2
+ and 

JO2→O2
+ overwritten by the rates from their respective second highest levels. The 

global mean electron density profile inferred from this calculation is shown in Figure 

Figure 5.2 Inferred UM-UKCA global mean electron 
density altitude profiles from the atomic Na ion 
production parametrisation, compared against the 
profile from an interactive ionosphere. Profiles are 
(dashed black) UM-UKCA parametrisation without 
changes, (solid black) UM-UKCA parametrisation 
with uppermost photoionisation rate overwritten by 
second highest rate and (solid blue) WACCM-X 
output. 
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5.2 as UM-UKCA (top lev ovwr). This revised profile is always inside a factor of 0.3 

above or below the WACCM-X profile, a significant improvement on UM-UKCA 

(stnd). Therefore, this treatment was used in Extended UM-UKCA Na scheme 

simulations. Note that this top-level issue will be resolved in future versions of the 

model that are equipped with the new unified photolysis and photoionisation scheme 

for the whole atmosphere, as mentioned in Chapter 4.  

5.4 Extended UM-UKCA Set-up 

Model simulations were performed using a revision of the Extended UM-UKCA that 

contains the neutral chemistry developments from Chapter 4, augmented with the 

atomic Na chemistry scheme described in Section 5.3. Simulations were for year-2000 

lower atmospheric conditions, but since the initialisation atmosphere contained no Na, 

simulations were started one year before to provide sufficient time for constituent 

spin-up. I ran two separate configurations of the Extended UM-UKCA, as detailed in  

Table 5.2 Configurations of the Extended UM-UKCA simulations and the reference 
WACCM simulation used in this study. Simulations UKCA and UKCA_10 are 
identical aside from Na MIF magnitude. 

Configuration/ simulation UKCA UKCA_10 WACCM 

Year 2000 2000 2000 

Model lid height 120 km 120 km ~140 km 

Number of levels 100 100 70 

Horizontal resolution 1.25° ´ 1.875° 1.25° ´ 1.875° 1.875° ´ 2.5° 

Vertical resolution (MLT) 3 km 3 km ½ scale height 
(3-4 km) 

Dynamical core Non-
hydrostatic 

Non-
hydrostatic 

Hydrostatic 

Na MIF: 
Magnitude 

Horizontal variation 
Time variation 

 
0.06 t d-1 
None 
None 

 
0.006 t d-1 
None 
None 

 
0.06 t d-1 
Latitudinal 
Monthly 
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Table 5.2. The first, denoted ‘UKCA’, contains the Na MIF exactly as described in 

Section 5.2. The second, denoted ‘UKCA_10’, contains the Na MIF scaled down by 

a further factor of ten. Otherwise, the two Extended UM-UKCA simulations are 

identical to each other. 

Also included in Table 5.2 are details of the WACCM configuration used by Li et al. 

(2018) in their study. In this chapter, I take the WACCM results as the best available 

model reference of the Na layer. Importantly, WACCM generates a spatial and 

temporal representation of every Na compound that is involved in the scheme – 

something that cannot be done via direct observations (as mentioned in Chapter 2). 

The WACCM results were taken from a 13-year simulation of perpetual year-2000 

conditions. To ensure equal model-spin up compared to the Extended UM-UKCA, 

only the second year of the dataset is used in my analysis. Note that Marsh et al. (2013) 

also excluded the first year of their simulations from analysis. As discussed in Chapter 

3, WACCM is of a different dynamical formulation to the Extended UM-UKCA. 

Notably, its dynamical core adopts the hydrostatic approximation, putting the model 

levels on pressure levels. However, the Na MIF used by WACCM is of identical 

magnitude to that used in simulation UKCA. 

5.5 Atomic Sodium Layer Simulations 

5.5.1 Magnitude and Distribution 

Figure 5.3 presents altitude profiles of Na from the two Extended UM-UKCA 

simulations (UKCA and UKCA_10), the reference WACCM simulation from Li et 

al. (2018) and three sets of satellite observations (GOMOS, OSIRIS and 

SCIAMACHY, see Chapter 3). Starting with the observations, the profiles of 

GOMOS and SCIAMACHY align very closely, where the magnitude of 

SCIAMACHY is within 15% of the slightly larger GOMOS at its 92 km annual mean, 

near global mean peak height. Conversely, OSIRIS is about a factor of two below the 

mean of GOMOS and SCIAMACHY, vertically throughout the Na layer. The offset 

of OSIRIS can be explained by its lack of spatial coverage through polar night, 

overlapping with the horizontal location of observed Na maxima (see Figure 5.15). 

Considering the models, UKCA simulates Na magnitudes that are at least a factor of 

ten larger than each of the observations at 92 km. This offset provided the motivation 
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for completing simulation UKCA_10. UKCA_10 generates a vertical Na profile that 

appears to scale approximately with the size of the MIF, which well replicates the 

observed Na densities at 92 km. Therefore, as an initial metric of model performance, 

it can be concluded that for reasons to be established, the Extended UM-UKCA 

requires a scaling factor of 50 to simulate the observed absolute Na density (an order 

of magnitude increase on the scaling factor of 5 used by WACCM in Li et al. (2018)). 

Both UKCA simulations do, however, produce a lower-than-observed peak layer 

height. WACCM generates more realistic Na magnitudes than UKCA above 80 km, 

but like UKCA, also simulates a peak layer height below the observations. 

The peak layer height discrepancy that exists between both models and the 

observations is investigated in Section 5.5.2. A portion of the subsequent analysis in 

this section investigates the magnitude discrepancy of UKCA compared to WACCM 

and the observations. However, I first consider the equivalent plot for the atomic Na 

ion, Na+. Figure 5.4 shows Na+ altitude profiles from the Extended UM-UKCA and 

WACCM simulations, compared to vertical distributions of Na+ measurements from 

various rocket sounding campaigns, as described in Chapter 3. Three different 

statistical averages are plotted from the rocket data: the arithmetic mean, the 

geometric mean and the median. Simulation UKCA exceeds the upper limit of the 

Figure 5.3 Model versus satellite zonal mean, meridional mean for range 80ºS-80ºN, 
annual mean altitude profiles of Na. Model profiles are (solid black) UM-UKCA, 
(dashed black) UM-UKCA with scaled down MIF and (solid blue) WACCM. Satellite 
profiles are (dashed red) GOMOS, (dash-dot red) OSIRIS and (dotted red) 
SCIAMACHY. 
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observed density range by at least a factor of 10 throughout the altitude domain. As 

with the Na profile, the Na+ profile from simulation UKCA_10 scales linearly with 

the MIF, resulting in a profile that is just inside the observed range at most altitudes. 

Excessive Na+ is also generated by WACCM relative to the observations, albeit to a 

lesser extent, with the largest magnitude of the disagreement occurring around 95 km. 

However, reasonable agreement between WACCM and the arithmetic mean of the 

rocket data is seen above 100 km. 

From Figure 5.4, it is clear that the overestimation in Na+ from both Extended UM-

UKCA simulations, relative to WACCM and the observational averages, increases 

with height. At the 120 km model lid, simulation UKCA (UKCA_10) is around 200 

(20) times larger than WACCM. Related to this, a particularly noticeable feature from 

both Figures 5.3 and 5.4 is that the high densities of Na and Na+ are maintained 

upwards into the lower thermosphere. Firstly, it is almost certain that both excesses 

are to some extent attributable to the absence of eddy diffusion in the model. This 

highlights the importance of vertical transport in determining the Na layer 

distribution. Hence, a detailed investigation into the transport properties of the model 

is conducted in Section 5.5.3. Secondly, another plausible contributing factor to the 

lower-thermospheric excess may be the accumulation of Na and Na+ in the top levels 

Figure 5.4 Model versus rocket data global mean, annual mean altitude profiles of 
Na+. Model profiles are (solid black) UM-UKCA, (dashed black) UM-UKCA with 
scaled down MIF, (solid blue) WACCM. Rocket profiles are (pale red) the original 
data, consisting of historical launches from a myriad of dates, times and geographical 
locations; and three statistical averages: arithmetic mean (dashed red), geometric 
mean (dash-dot red) and median (dotted red). 



THE ATOMIC SODIUM LAYER AS A DIAGNOSTIC OF CHEMISTRY AND 
TRANSPORT IN THE MESOSPHERE-LOWER THERMOSPHERE 

 

83 

of the model, due to the model lid of the Extended UM-UKCA occurring around 20 

km lower than that of WACCM. However, there is unfortunately little that can be 

done about this, as the 120 km vertical limit is an inherent property of this current 

model version. Finally, the known physical and chemical biases present in the current 

configuration of the Extended UM-UKCA (as reviewed in Chapter 4) will have 

impacts of their own on the balance of Na chemistry. It is possible that the conditions 

resulting from such biases favour the generation of the atomic forms of Na over the 

heavier metallic compounds. Therefore, an investigation into the distribution of each 

Na compound among which the remaining original content of the MIF is divided will 

enable the importance of each bias to be assessed. 

Figure 5.5 Global mean, annual mean altitude profiles of Na and each Na compound 
(see legend). (a) UM-UKCA, (b) UM-UKCA with scaled down MIF and (c) 
WACCM, for reference. 
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Figure 5.5 presents altitude profiles of every Na compound included in the scheme 

(aside from the (NaHCO3)2 reservoir), plotted for each model. The results generated 

by WACCM are of course not real-world measurements, but they do provide the best 

available indication of how the various Na compounds behave, based on interactions 

with an extensively tested, detailed model atmosphere. Attention is drawn to the 

similarities between models in the vertical distribution of the most abundant species. 

WACCM and both Extended UM-UKCA configurations simulate a larger density of 

NaHCO3 than any other compound in the lower altitude domain (up to ~80 km). 

Above this, Na becomes the leading component, through to an altitude of at least 90 

km. The upper altitude domain in each simulation is subsequently dominated by Na+. 

Considering just this order of significance, there is one key difference between UKCA 

and WACCM. That is, the vertical extent of the Na-dominated region. In WACCM, 

Na is the dominant species up to an altitude of above 95 km. However, in UKCA, Na+ 

takes over from just above 90 km. Although it is acknowledged that both Na and Na+ 

are overestimated by UKCA (Figures 5.3 and 5.4), it is clear from Figure 5.5 that there 

is consistently a larger Na+ to Na ratio in UKCA compared to WACCM above 90 km. 

Hence, one likely explanation for the UKCA Na layer being thinner than the 

corresponding layer in WACCM is excessive Na+ generation. Later in the section, in 

Figures 5.9 and 5.10, Na-normalised profiles of each compound are plotted to 

investigate this particular observation and highlight any similar cases. 

I now review the altitude profiles of the other, minor Na compounds from the scheme. 

The compounds: NaO, NaO2, NaOH, Na.O+, Na.N2
+, Na.CO2

+ and Na.H2O+ are all 

short-lived intermediates (Plane, 2004), with chemical lifetimes of just a few seconds 

(Self and Plane, 2002). For their analysis, I focus on comparing UKCA_10 in Figure 

5.5b to WACCM in Figure 5.5c, as UKCA_10 contains more realistic magnitudes of 

Na and Na+ than the standard UKCA simulation. On first inspection, there appears to 

be a reasonably good agreement between the simulations in terms of the magnitude 

and distribution of each species. This indicates that i) the background neutral MLT of 

the Extended UM-UKCA, developed in Chapter 4, is capable of producing an Na 

compound partitioning similar to that of WACCM and ii) the Na ion production 

parametrisation developed in Section 5.3.1 is working satisfactorily. There are, 

however, a couple of discrepancies above 100 km that should be noted. 
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Figure 5.6 Latitude-height zonal mean, annual mean cross-section number densities 
(cm-3) of (a, b) Na, (d, e) NaHCO3, (g, h) Na+ and (j, k) their sum. Shown are 
simulations from (left column) UM-UKCA and (middle column) UM-UKCA with 
scaled down MIF. Note different colour scales (factor of 10) between the left and 
middle columns, aside from (d) and (e) (factor of 2). Right column shows the ratio 
between simulations, calculated for (c) Na, (f) NaHCO3, (i) Na+ and (l) their sum. 
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There is a large relative difference in the 

UKCA_10 simulated magnitude of Na.CO2
+ 

compared to the corresponding WACCM 

magnitude, most significant near the 

Extended UM-UKCA model lid. A 

significant overestimate of each Na ion-

molecule would be expected due to the factor 

20 relative excess of Na+, however 

UKCA_10 generates Na.CO2
+ magnitudes 

that are over 1000 times greater than 

WACCM. Na.CO2
+ is produced by either 

reaction R5.16 or R5.17, which both involve 

CO2. A small part of the UKCA_10 excess 

can be explained by the breakdown of the 

assumption that CO2 has a uniform volume 

mixing ratio (VMR) throughout the 

atmosphere (see Chapter 3). This causes 

there to be around twice as much CO2 at 120 

km in the Extended UM-UKCA than in 

WACCM. In reality, the mixing ratio of CO2 

decreases above about 80 km due to 

photolysis, as well as diffusive separation, 

since CO2 has a molecular mass greater than 

that of air (Chabrillat et al., 2002). However, 

the combined offsets of Na+ and CO2 only 

account for a maximum 4% of the simulated 

Na.CO2
+ excess. Clearly, there are some 

imbalances of Na ion-molecule partitioning 

in the Extended UM-UKCA. Conversely, the 

CO2 offset does have a proportionately larger 

impact on the second notable discrepancy. 

Above 100 km, where NaHCO3 may also be considered a minor constituent of the 

scheme, the UKCA_10 profile of NaHCO3 is typically a factor of ten greater than 

WACCM. CO2 is involved in reaction R5.08, the only NaHCO3 production 

Figure 5.7 Latitude-height zonal 
mean, annual mean cross-section 
number densities (cm-3) of (a) Na, 
(b) NaHCO3, (c) Na+ and (d) their 
sum from WACCM simulation. 
Note different colour scales. 
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mechanism. Therefore, up to 20% of the lower-thermospheric NaHCO3 excess can be 

attributed to the approximation of uniform CO2 in the MLT. Clearly, it is necessary 

(in future work) to explicitly solve for CO2 in the MLT in order to accurately simulate 

the minor chemistry of the Na layer. However, it appears that on average, the 

Extended UM-UKCA handles the partitioning of neutral Na compounds better than 

the ion-molecules. 

The major layers of the scheme that were identified from Figure 5.5: Na, NaHCO3 

and Na+, as well as their sum, are plotted as latitude-height cross-sections for the 

Extended UM-UKCA and WACCM simulations in Figures 5.6 and 5.7, respectively. 

From this, the meridional distribution of each layer can be analysed, and the overall 

most influential Na compound from each simulation can be inferred. Also included, 

in panels (c), (f), (i) and (l) of Figure 5.6, are plots of the ratio between simulations 

UKCA and UKCA_10 for each species, in the same projection. 

From a qualitative comparison of the left and middle columns of Figure 5.6, it appears 

that the factor of ten reduction in the size of the Na MIF has no noticeable impact on 

the relative spatial distribution of Na, NaHCO3 or Na+. Regarding magnitude, firstly 

of Na and Na+, Figures 5.6c and 5.6i show that the linear scaling of Na and Na+ with 

the size of the MIF, concluded from the near-global means of Figures 5.3 and 5.4, is 

also valid for any given latitude region. It is clear from Figure 5.6f that this near-

perfect scaling is not, however, applicable to NaHCO3. Since NaHCO3 removal 

occurs through the second-order dimerization reaction R5.12 (Plane, 2004), NaHCO3 

is proportional to Na by a factor smaller than ten. This factor is quantified for the 

Extended UM-UKCA by the Na-normalised profile in Figure 5.9d. 

Figure 5.7a reveals a key difference in the latitudinal distribution of Na between the 

Extended UM-UKCA and WACCM simulations. UKCA and UKCA_10 simulate a 

well-defined pole-to-equator Na density gradient, with peak densities over the polar 

regions that are more than four times larger than the tropical lows. WACCM, on the 

other hand, simulates a distribution of Na that is largely homogeneous across all 

latitudes. This polar bias of Na in UKCA can be explained at least in part by the excess 

O generated by the Extended UM-UKCA over the summer polar region, as 

established in Chapter 4 (see Figures 4.5 and 4.6). To substantiate this, Figure 5.8 

shows a latitude-height cross-section of O from simulation UKCA, equivalent to the 
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panels in Figure 5.6. The latitudinal 

distribution of O in Figure 5.8 is similar to 

the distribution of Na in Figure 5.6a, albeit 

with a smaller pole-to-equator relative 

density gradient. This result supports the 

well-established notion that a greater 

density of O will preferentially maintain 

Na in its atomic form, over the formation 

of heavier compounds (Plane, 2015). In 

the UKCA scheme, this occurs through an 

increased efficiency of reactions R5.02, 

R5.11, R5.18 and R5.19. It should be 

noted that insufficient meridional transport is also likely to contribute to the polar bias, 

which is investigated in Section 5.5.3. 

Another difference between models is highlighted by Figure 5.7b. WACCM simulates 

peak NaHCO3 over the polar regions, while UKCA and UKCA_10 simulate peak 

NaHCO3 over the equatorial region. In the UKCA scheme, the rate of NaHCO3 

generation via reaction R5.08 should vary little with latitude, due to the previously 

mentioned treatment of uniform CO2 and the fact that NaOH is short-lived. 

Furthermore, aside from the dimerization reaction R5.12, the only other removal 

mechanism of NaHCO3 in the model is through reaction with H (R5.09). In Chapter 

4, Extended UM-UKCA H densities were found to be consistent with the observed 

values and WACCM-X. Therefore, the only chemical explanation for this 

disagreement between models is again linked to O, via enhanced removal of NaO, 

hence NaOH and NaHCO3, over the high latitudes. Evidently, much of the difference 

in distribution can be attributed to meridional transport once again (Section 5.5.3). 

Figure 5.7c shows that maximum WACCM Na+ densities are simulated over the 

tropical region. This would be anticipated, as the charge transfer of Na to Na+ through 

reactions R5.13 and R5.14 is most efficient in the sunlit regions where there is a 

greater background ion density. UKCA and UKCA_10 generate the opposite result, 

with maximum Na+ densities occurring over the high latitudes, as seen in panels (g) 

and (h) of Figure 5.6. This can be largely attributed to the ion density enhancements 

Figure 5.8 Latitude-height zonal 
mean, annual mean cross-section 
number density (cm-3) of O from 
simulation UKCA. 
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over the tropics being outweighed by the discussed Na density excess over the polar 

regions. As a result, reactions R5.13 and R5.14 are in fact more efficient closer to the 

poles than they are over the tropics in the Extended UM-UKCA. The excess of O 

generated over the summer pole is also likely to contribute to this, by enhanced 

removal of Na.N2
+ via reaction R5.18 followed by reaction R5.19, inhibiting 

dissociative recombination of Na+ back to Na (R5.23). The nature of this contribution 

is reviewed in more detail in Figure 5.10. Indeed, the Na+ distribution dominates the 

Extended UM-UKCA cumulative tracer panels (j) and (k), making it the most 

abundant component of the Na layer in the model. This contrasts the equivalent 

WACCM plot in Figure 5.7d, which is dominated by the Na distribution. 

Next, I take the focus back to the global mean magnitude of the Na layer. There is 

motivation generated by the discussion of Figures 5.5 and 5.6 to analyse the relative 

size of each compound in each simulation, after division by the corresponding Na 

profile. Figure 5.9 presents Na-normalised profiles for the neutral compounds of the 

scheme, while Figure 5.10 presents this for the ion-molecules. It is evident from the 

Figure 5.9 Relative magnitude of neutral Na compounds: (a) NaO, (b) NaO2, (c) 
NaOH and (d) NaHCO3 after division by atomic Na profile. Profiles are (solid black) 
UM-UKCA, (dashed black) UM-UKCA with scaled down MIF and (solid blue) 
WACCM. 
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displacement between the profiles of UKCA and UKCA_10, in panel (d) of Figure 

5.9, that NaHCO3 is in fact the only compound with a magnitude not directly 

proportional to the size of the Na MIF. In every other panel of Figures 5.9 and 5.10, 

the two Extended UM-UKCA simulations are nearly identical. A factor of ten 

reduction in the injection rate of Na atoms corresponds to just a factor 3-4 reduction 

in the density of NaHCO3. This disproportionality can be attributed to the removal of 

NaHCO3 via reaction R5.12. Through this channel, the loss rate of NaHCO3, L, is 

proportional to the concentration of NaHCO3 squared. That is: 

Figure 5.10 Relative magnitude of ionised Na compounds: (a) Na+, (b) Na.O+, (c) 
Na.N2

+, (d) Na.CO2
+ and (e) Na.H2O+ after division by atomic Na profile. Profiles are 

(solid black) UM-UKCA, (dashed black) UM-UKCA with scaled down MIF and 
(solid blue) WACCM. 
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 L	∝	 NaHCO3
2. (E5.10) 

Therefore, a factor of ten reduction in the rate of NaHCO3 production through reaction 

R5.08 (caused by a factor of ten reduction in the density of the reactant NaOH) will 

actually cause a factor of 100 reduction in L. Hence, the density of NaHCO3 

approximately scales with the square root of the MIF. 

Panels (a), (b) and (c) of Figure 5.9 show that the minor neutral compounds of the 

scheme have slightly smaller relative densities in the Extended UM-UKCA, compared 

to WACCM, below about 80 km. However, for the altitudes above the intersection 

point of the model profiles, slightly larger relative densities are simulated in UKCA. 

Given the considerably smaller limits of the x-axis scales that are used by these panels, 

compared to panel (d), I attribute such model offsets to minor variations in the 

respective background atmospheres of the Extended UM-UKCA and WACCM. The 

same conclusion can be made for model differences in the relative densities of the 

minor ion-molecules, in panels (b), (c), (d) and (e) of Figure 5.10. 

As pointed out during the analysis of Figure 5.5, it can be seen in Figure 5.10a that 

above 90 km, the Na+ to Na ratio is larger in the Extended UM-UKCA than it is in 

WACCM. Above 100 km, the UKCA ratio is typically 2-4 times the WACCM ratio. 

The maximum offset is seen at approximately 95 km, where this difference is ×9. 

There could be a chemical explanation for the component partitioning of the Na layer 

being weighted so firmly towards Na+. Specifically, the high level of O contained in 

the MLT of Extended UM-UKCA simulations. Through a balance of the Na+ 

production and loss channels, a greater background density of O is likely to result in 

an enhanced rate of Na+ generation via reaction R5.19. Referring back to panels (a) 

and (b) of Figure 4.12 in Chapter 4, it can be seen that with the upper-boundary 

condition for O applied (as is the case for simulations UKCA and UKCA_10 in this 

chapter), the maximum offset between UKCA and WACCM-X O profiles also occurs 

near 95 km. Around 95 km, the UKCA simulated magnitude of O is approximately 

×3 (×5) that of WACCM-X in cm-3 (ppm). Hence, I conclude that a disproportionately 

large level of Na+ is a signature of a background atmosphere with high levels of O. 

There are also likely to be other factors contributing to the high Na+:Na ratio in the 

Extended UM-UKCA. Figure 4.1 of Chapter 4 shows that the background atmosphere 
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of UKCA has a lower temperature than WACCM-X throughout the MLT. At around 

95 km, the difference is about 15 K. The principal mechanism for the removal of Na+ 

is through the three-body reaction R5.15. Additional Na+ removal occurs through 

reactions R5.16 and R5.23. All three destruction channels have temperature-

dependent rate coefficients, which are faster at lower temperatures. This implies that 

the removal of Na+ via chemistry is in fact more efficient in UKCA than it is in 

WACCM. Therefore, at least some of the high weighting to Na+ is probably transport 

related. 

5.5.2 Seasonal Evolution 

I now assess the seasonal evolution of the Na layer. First, I analyse how the altitude 

at which maximum Na occurs varies through the year. The simulated peak height of 

the Na layer may be used as a model performance metric in the MLT. It also provides 

an indication into the reliability of the vertical distribution of the associated MIF. The 

altitude location of peak Na cannot be reliably inferred from a single annual mean, 

global mean profile (similar to that in Figure 5.3), as it is known to vary with latitude 

across the seasons (Marsh et al., 2013). Furthermore, models are severely limited by 

their vertical resolution in the MLT, which is typically of order kilometres (see Table 

Figure 5.11 Illustration of technique used to calculate Na layer peak height time 
series in Figure 5.12. (a) A Gaussian fit (solid black) is applied to the data (dashed 
grey line) over the altitude range of 81-99 km (fully encompassing the Na layer 
peak). (b) The process is repeated for each monthly mean (see legend) and then 
latitude point (not shown). 
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5.2 for Extended UM-UKCA and WACCM values). It is therefore necessary to adopt 

a more sophisticated approach to represent the simulated peak height. 

Figure 5.11 depicts the method used to calculate a latitude-time series for the Na layer 

peak height. This was based on the curve-fitting method used by Marsh et al. (2013) 

for the same purpose. However, instead of calculating a quadratic fit to the Na layer 

profile, a Gaussian fit was applied, as this has previously been shown to offer a better 

match (Plane, 2004). Individual consideration of each month and latitude point allows 

the seasonality to be captured, while the application of a continuous function provides 

a smooth interpolation over the constraints of the angular peak. The resulting plots are 

Figure 5.12 Seasonal evolution of zonal mean Na layer peak height (km) from (a) 
UM-UKCA simulation, (b) GOMOS satellite data, (c) UM-UKCA simulation with 
scaled down MIF, (d) OSIRIS satellite data, (e) WACCM simulation and (f) 
SCIAMACHY satellite data. White regions indicate either where measurements were 
unavailable (satellites), or where a suitable Gaussian fit could not be achieved (models 
and satellites). 
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shown in Figure 5.12. The Extended UM-UKCA and WACCM panels in the left 

column are generated from output sampled at the full horizontal resolution of their 

model (see Chapter 3), for every time-step. It should be noted that this comprehensive 

sampling is not replicated by the GOMOS, OSIRIS and SCIAMACHY panels in the 

right column, which are limited by the availability of satellite measurements. Panels 

(a) and (c) appear to be virtually identical, which suggests that the size of the MIF has 

no bearing on the peak height. By comparing the model panels to the satellite panels, 

it is clear that on average, both the Extended UM-UKCA and WACCM underestimate 

the observed peak height of the Na layer. Typically, UKCA generates peak heights in 

the range 88-91 km, while in WACCM, this range is about 2 km lower. GOMOS, 

OSIRIS and SCIAMACHY corroborate a peak height range of 91-93 km. The largest 

rate of Na injection from the MIF (used in both models) occurs around 87 km 

(Carrillo-Sánchez et al., 2016). The precise height of this injection is less important 

in WACCM than it is in UKCA, as in WACCM, fast vertical transport by eddy 

diffusion quickly adjusts the vertical distribution of the Na layer. Since the Extended 

UM-UKCA currently contains no treatment of eddy diffusion, its comparatively better 

observational agreement than WACCM is likely to be partly attributable to the MIF. 

There is evidence to suggest that the simulated background atmosphere may also be 

an important factor in governing the peak height. Marsh et al. (2013) originally 

highlighted the discrepancy between WACCM and the observed peak height, albeit 

to a lesser extent, based on simulations with maximum Na injection at a much higher 

altitude of 102 km (Li et al., 2018). The authors suggested errors in the background 

density, caused by a warmer-than-observed mesopause temperature as an explanation 

(Marsh et al., 2013). Following this, the fact that UKCA is able to more closely 

recreate the observed peak height than WACCM could also be partly attributable to 

the colder mesopause generated by the Extended UM-UKCA (recall Figure 4.1, 

Chapter 4). WACCM does, however, more accurately recreate the observed 

latitudinal variation seen in the Na layer peak height. 

Next, I focus on the seasonal evolution of the Na layer component composition. 

Figure 5.13 presents latitude-time series from simulations UKCA and UKCA_10 for 

the columns of Na, NaHCO3, Na+ and their sum, in the MLT. Figure 5.14 shows the 

equivalent plots from the WACCM simulation, while Figure 5.15 shows only the Na 

columns, as observed by the GOMOS, OSIRIS and SCIAMACHY satellite 
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instruments. Starting with the Na in panels (a) and (b) of Figure 5.13, very similar 

seasonal evolutions are seen in each, separated only by a factor of 10 in magnitude, 

as expected from the analysis of the equivalent panels in Figure 5.6. Undoubtedly, a 

distinct pattern has formed, with peak Na column occurring over the winter polar 

Figure 5.13 50-120 km column (109 cm-2) monthly means of (a, b) Na, (c, d) NaHCO3, 
(e, f) Na+ and (g, h) their sum from (left column) UM-UKCA and (right column) UM-
UKCA with scaled down MIF. Note different contour scales. Excessive values 
saturated at 100 (left)/10 (right) cm-2 for Na, 900/90 cm-2 for Na+ and 1000/100 cm-2 
for ∑ and shown by dotted regions. 
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regions. This pattern is exclusively 

attributable to chemistry and 

transport within the Extended UM-

UKCA, as the injection of Na is 

provided though a time-invariant, 

single profile MIF. In contrast, the 

MIF used in the WACCM 

simulation does contain some 

seasonal variation (Table 5.2). 

However, the annual variation of Na 

simulated by UKCA and UKCA_10 

is consistent with the WACCM 

simulation in Figure 5.14a, with the 

exception of autumn at high 

latitudes, where the model shows 

very high results. This also 

replicates the findings of Marsh et 

al. (2013) (generated using a 

previous WACCM version driven 

by a MIF based on an older 

estimate). Importantly, the satellite 

plots of Figure 5.15 provide 

observational support to the 

modelled seasonal evolution of Na. 

GOMOS (panel a), which offers the 

largest global coverage out of the 

three instruments, observes over 

five-fold enhancements of Na over 

the peak seasons. OSIRIS (panel b) 

and SCIAMACHY (panel c) appear to converge towards even greater relative 

enhancements, but verification of that is inhibited by a lack of measurements over the 

winter polar regions. However, peak seasonal Na column enhancements of over 7 × 

109 cm-2 have previously been reported from lidar observations at the South Pole 

(Gardner et al., 2005).  

Figure 5.14 Reference 50-120 km column 
(109 cm-2) monthly means of (a) Na, (b) 
NaHCO3, (c) Na+ and (d) their sum from 
WACCM simulation. 
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The observed and simulated seasonal 

evolution of Na follows the typical 

transport circulation pattern of the 

MLT, whereby mesospheric air is 

lifted over the summer pole, before 

being taken across to the winter pole 

where it descends (see Chapter 2). 

The fact that the Extended UM-

UKCA is clearly able to represent 

this circulation marks a successful 

first test of constituent transport 

through the MLT. There are, 

however, a couple of features in 

Figures 5.13a and 5.13b that are not 

replicated by WACCM nor by the 

observations. Firstly, as previously 

mentioned, areas of extremely high 

Na column (exceeding 100 × 109   

cm-2) are simulated during autumn in 

UKCA/UKCA_10, centred over 

March in the Southern Hemisphere 

(SH) and September in the Northern 

Hemisphere (NH). These are indeed 

peculiar model artefacts, which have 

no obvious explanation. Whether or not this issue reoccurs in tests using future 

developments of the Extended UM-UKCA, with more comprehensive descriptions of 

model dynamics, would provide valuable insight into the nature of the cause. 

Secondly, column enhancements of over 40 × 109 cm-2 (4 × 109 cm-2) are simulated 

throughout the year over the equatorial latitudes in UKCA (UKCA_10). 

Enhancements in this region are not a signature of the known circulation pattern in 

the MLT. Therefore, they are most likely a symptom of meridional transport 

deficiencies. 

Figure 5.15 Satellite data total column (109 
cm-2) monthly means of Na from (a) 
GOMOS, (b) OSIRIS and (c) 
SCIAMACHY. Colour scale shared with 
the equivalent WACCM plot in Figure 
5.14a for direct comparisons. 
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I now consider the seasonal evolution of the other two major compounds of the Na 

layer: NaHCO3 and Na+. By comparing panels (c) and (d) of Figure 5.13 to Figure 

5.14b, it can be seen that in both models, the key driver of the seasonal evolution in 

the NaHCO3 column is transport circulation, as was concluded for Na. Interestingly, 

NaHCO3 is subject to equatorial accumulation in UKCA and UKCA_10, to an even 

greater relative extent than was seen in the Na column. The NaHCO3 enhancements 

here are in fact of a similar magnitude to those generated over the winter polar regions 

in the same simulation. Since the NaHCO3 component of the layer peaks below 80 

km (Figure 5.5), this result suggests that the previously postulated Extended UM-

UKCA meridional transport deficiencies could extend to lower altitudes than 

previously thought. Next, comparing panels (e) and (f) of Figure 5.13 to Figure 5.14c 

shows that, in both models, the seasonal evolution of the Na+ column anti-correlates 

with the seasonal evolutions of both the Na and the NaHCO3 columns. It appears that 

the Na+ distribution in UKCA has an annual variation controlled by solar zenith angle, 

as the maximum column occurs over the summer, focused towards the pole. Marsh et 

al. (2013) simulated a very similar seasonal evolution to that in Figure 5.14c, but 

attributed the variations to meridional transport. Therefore, it is concluded that any 

meridional transport of Na+ in the Extended UM-UKCA is masked by its excessive 

production via photoionisation, making it a poor tracer of transport. 

Lastly, in panels (g) and (h) of Figure 5.13, the latitude-time series for the cumulative 

column of the three compounds from simulations UKCA and UKCA_10 are 

dominated by the variations of the Na+ column. Figure 5.14d shows that in WACCM, 

the overall seasonal evolution of the layer is dominated by Na. Based on the discussion 

in Section 5.5.1, an excessive column of Na+ is to be expected in the Extended UM-

UKCA, attributable to high levels of O in the MLT. 

5.5.3 Transformed Eulerian Mean Diagnostics 

Andrews and Mcintyre (1976) pioneered the use of Transformed Eulerian Mean 

(TEM) diagnostics as a tool to study the large-scale net motion of air. TEM circulation 

is an approximation of the overall zonal mean Lagrangian motion of wind driven air 

parcels in the latitude-pressure plane (Smith et al., 2011). Here, TEM flow velocities 

are calculated to provide a quantitative measure of simulated net transport circulation 

through the stratosphere and the MLT. Central to the determination of TEM velocities 
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is the air temperature diagnostic of the model. It therefore makes sense to evaluate 

this first. Figure 5.16 shows the seasonal temperature gradient at 90 km for 

simulations UKCA (panel a) and WACCM (panel b). This was constructed by 

subtracting the monthly latitudinal temperature variations from the global mean, 

annual mean value. It provides an indication of temperature perturbations close to the 

peak of the Na layer. 

Good agreement is seen between the 

models in Figure 5.16 at high 

latitudes. Here, both UKCA and 

WACCM simulate positive 

temperature perturbations of over 15 

K during the NH (SH) winter 

(summer), and negative temperature 

perturbations of over 30 K during the 

NH (SH) summer (winter). This 

supports the notion that the Na and 

NaHCO3 seasonal evolution patterns 

in panels a-d of Figure 5.13 are 

driven by transport circulation and 

temperature. It also suggests that 

many of the transport deficiencies 

apparent from the previous 

subsections are caused by missing 

dynamical processes, rather than 

unrealistic temperatures. UKCA 

does not, however, replicate the 

extent to which the negative 

temperature perturbations in WACCM extend through to the opposing hemisphere. 

For example, the WACCM NH summertime low in Figure 5.16b remains below -10K 

up to the equator, while the corresponding UM low in Figure 5.16a dissipates north 

of the tropics. This would suggest weaker meridional winds, which could explain the 

equatorial ‘trapping’ of Na and NaHCO3 seen in panels a-d of Figure 5.13.  

Figure 5.16 Air temperature difference (K) 
at 90 km from global mean, annual mean 
value at the same height calculated for (a) 
UM-UKCA and (b) WACCM as a monthly 
mean time series. Dotted regions indicate a 
difference of over -30 K. 
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Figure 5.17 presents the TEM flow velocities through the MLT for simulations UKCA 

(panels a and b) and WACCM (panels c and d), calculated based on the method of 

Smith et al. (2011). Corresponding latitude-pressure cross-sections of air temperature 

are included in the background of each panel, for reference. As anticipated from the 

seasonal evolution of the UKCA Na layer, the correct direction of circulation is indeed 

simulated by UKCA. The models simulate similar magnitudes of downwelling over 

the winter polar region in both June (strong) and December (weak). Although, the 

typical upwelling simulated by UKCA over the summer polar regions is 

Figure 5.17 Net modelled Transformed Eulerian Mean (TEM) 𝒗-∗ and 𝒘-∗ wind 
vectors for (left) June mean and (right) December mean in m s-1, scaled by (x, y) ratio 
(12.5, 4.25 × 10-2). The background in each panel shows corresponding monthly mean 
air temperature contours. (a, b) UM-UKCA, (c, d) WACCM. 
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approximately half the magnitude of WACCM. Similarly, the maximum horizontal 

component of transport is smaller in UKCA compared to WACCM, by the same 

factor. This result supports the suggestion of weak meridional winds in UKCA, from 

the analysis of Figure 5.16. 

A striking feature from the TEM flow in UKCA is the strong tropical downwelling 

above 90 km, simulated in both June and December. This feature is not replicated by 

WACCM to any extent. It may be explained by the downward reflection of 

propagating atmospheric waves off the model lid. Large vertical motions in this region 

are likely to be problematic for the transport of Na through the MLT, as meridional 

transport will be inhibited. This provides reasoning for why it was necessary to scale 

down the Na MIF in Extended UM-UKCA simulations by a further factor of ten in 

order to replicate the observed magnitude of the Na layer. As such, this analysis 

provides quantitative support for the requirement of Extended UM-UKCA dynamical 

developments. In particular, the inclusion of eddy diffusion will provide a much-

needed source of wave dissipation above the mesopause (Schuchardt and Blum, 

1981). Furthermore, this analysis provides evidence that a 120 km altitude limit is not 

sufficient to avoid the impact of wave reflection from off the model lid. A vertical 

extension that covers a greater proportion of the MLT, such as the near-140 km model 

lid height that is used by WACCM, is likely to produce a more suitable model.  

5.6 Summary 

Meteoric metal layer chemistry has, for the first time, been successfully implemented 

into UKCA. This was done through the development of an atomic Na diagnostic 

package, designed to test model performance of chemistry and transport in the MLT. 

It is expected that a model with an accurate background atmosphere would produce 

the predicted magnitude and partitioning of each component Na compound. Both the 

scientific methods devised to create this tool and the analysis of its use on the 

Extended UM-UKCA configuration developed in Chapter 4 are reported in this 

chapter. 

The efficient Na chemistry scheme available for WACCM simulations (Marsh et al., 

2013) was used as a template for the UKCA scheme. However, without an existing 

mechanism for in situ atmospheric particle injection or any representation of 
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background ion chemistry, UKCA required additional model development work. I 

configured a mass injection of Na through a 3D chemical emission field, via the 

adaptation of a recent estimate of the Na particle flux altitude profile. To account for 

the missing ion chemistry, I developed an Na+ production parametrisation based on 

the assumption of 80% NO+ and 20% O2
+ relative ionospheric composition in the 

MLT. 

Two Na-augmented Extended UM-UKCA simulations were completed. The first 

(simulation UKCA), contained an Na injection rate magnitude equivalent to that used 

in a recent WACCM study that replicated observed peak Na densities (Li et al., 2018). 

UKCA generates peak Na and Na+ densities around a factor of ten greater than what 

is simulated by the WACCM study. The second (simulation UKCA_10), with a tenth 

of the Na input, shows good agreement with WACCM, displaying near-perfect linear 

input-to-output scaling for Na and Na+. Hence, as an initial metric of model 

performance, it is concluded that the Extended UM-UKCA requires a scaling factor 

of 50 (ten times larger than the factor of 5 used by WACCM in Li et al. (2018)) in 

order to simulate the observed absolute Na density. Meanwhile, the resulting 

magnitude of UKCA simulated NaHCO3 was found to approximately scale with the 

square root of the Na input rate, in agreement with previous studies. Extended UM-

UKCA lower-thermospheric densities of NaHCO3 and Na.CO2
+ are 

disproportionately large compared to other compounds, exceeding the corresponding 

WACCM densities by factors of up to ten and 1000, respectively. This is largely a 

signature of imbalances in the partitioning of Na compounds, although the breakdown 

of the assumption that CO2 is uniform throughout the atmosphere is a contributing 

factor in both cases (up to 20% for NaHCO3 and 4% for Na.CO2
+). Hence, 

highlighting the need to treat CO2 as a separate tracer in the MLT. Latitude-height 

cross-sections of UKCA simulated Na reveal a pole-to-equator density gradient, with 

peak Na densities over the polar regions, while the corresponding WACCM 

distribution is largely invariant with latitude. This is primarily attributable to O 

accumulation in the polar regions of UKCA, causing an excessive dissociation of Na 

compounds back to atomic Na. Above 100 km, UKCA simulates a global mean 

Na+:Na ratio typically 2-4 times larger than WACCM. Enhancements of Na+ are 

chemically consistent with high levels of O, but a greater rate of Na+ removal through 
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chemistry would be expected in the colder UKCA MLT. Transport deficiencies are 

therefore also likely to contribute to the relative discrepancy. 

The altitude at which the Na layer peak occurs is in UKCA, on average, around 3 km 

below the observed height, but around 2 km above the WACCM generated height. 

Although the injection of Na into both models is based on the same MIF, the precise 

height of maximum Na injection is more important in UKCA than it is in WACCM. 

Unlike UKCA, WACCM contains eddy diffusion, which provides fast vertical 

transport to adjust the vertical distribution of the Na layer. Therefore, the 

comparatively better observational agreement of UKCA than WACCM is likely to be 

partly attributable to the MIF. The fact that UKCA simulates a colder mesopause than 

WACCM is also likely to be a contributing factor. The observed seasonal evolution 

of the Na layer is recreated by UKCA to some extent, although limitations in the 

meridional circulation of the model are exposed. Near the peak of the layer, the UKCA 

temperature field shows the expected seasonal perturbations over the polar regions, 

declining towards the tropics. TEM diagnostics reveal that the correct direction of 

circulation is simulated by UKCA through the MLT, but highlight deficiencies in 

mesospheric upwelling and meridional transport. Furthermore, UKCA is shown to 

suffer from the downward reflection of propagating atmospheric waves off the model 

lid, emphasising both the limitation of a 120 km ceiling and the requirement of eddy 

diffusion for wave dissipation. An extension of the model lid to at least 140 km, 

similar to WACCM, is recommended to negate this problem. Finally, the extent of the 

identified transport deficiencies of the Extended UM-UKCA mean that it is too early 

in the development program to accurately assess the impact of the model’s non-

hydrostatic dynamical core on transport in the MLT. However, once the 

recommended physics have been included, this atomic Na chemistry diagnostic 

package is available to provide a comprehensive range of tests. 
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6 AN EXPLANATION FOR THE NITROUS OXIDE 
LAYER OBSERVED IN THE MESOPAUSE REGION 

6.1 Introduction 

Observations of atmospheric chemistry are relatively sparse for altitudes above the 

mesopause (Jackson et al., 2019). Therefore, not all chemical phenomena of the 

mesosphere-lower thermosphere (MLT) are as well-observed as the atomic sodium 

layer studied in the previous chapter. Notably, the community is lacking a complete 

picture of the impact of space weather on the chemistry of the MLT. Motivated by 

recent satellite measurements from the Atmospheric Chemistry Experiment - Fourier 

Transform Spectrometer (ACE-FTS), this chapter aims to provide a model 

explanation for an unexpected layer of enhanced nitrous oxide (N2O) in the MLT. As 

discussed in Chapter 2, N2O was previously assumed to only be produced at the 

Earth’s surface, primarily through bacterial processes in soil (Brasseur and Solomon, 

2005). N2O is an important constituent of the Earth’s atmosphere as it is a greenhouse 

gas and leads to the production of odd nitrogen and other reactive nitrogen compounds 

(NOy) that can deplete the ozone (O3) layer (Ravishankara et al., 2009). The new MLT 

observations suggest a minor high altitude N2O production source, most likely 

attributable to space weather (Sheese et al., 2016). Hence, this study requires a model 

with a treatment of Energetic Electron Precipitation (EEP). A suitable choice for this 

is a configuration of the previously mentioned Whole Atmosphere Community 

Climate Model (WACCM), containing forcing from both auroral and medium-energy 

electrons (MEE). This chapter describes the development of a novel mechanism and 

the first model simulations which can explain the formation of this MLT N2O layer, 

and was published during the course of my PhD in Geophysical Research Letters 

(Kelly et al., 2018). 

Section 6.2 details the excited molecular nitrogen (N2) chemistry scheme added to 

WACCM, highlighting the incorporated N2O production parametrisation. Section 6.3 

describes the WACCM N2O layer simulations completed for the study. Section 6.4 
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presents the results from the simulations, with a focus on comparing the magnitude 

and distribution of the simulated layer to that of the ACE-FTS observations. Control 

and sensitivity runs are also used in this section to attribute the relative production 

contributions to specific mechanisms. Section 6.5 summarises my explanation for the 

source of the observed N2O layer. 

6.2 Excited Nitrogen Chemistry Scheme 

As reviewed in Chapter 2, the likely source of N2O production in the MLT is reaction 

R2.24a (N2(A3Su
+) + O2 → N2O + O), where N2(A3Su

+) is the excited triplet state of 

N2. Literature suggests that secondary electron impact from EEP is the leading driver 

of the required N2 excitation: reaction R2.23 (N2(X1Sg
+) + e- → N2(A3Su

+) + e-) (Zipf 

and Prasad, 1982). By default, WACCM does not contain the N2(A3Su
+) tracer, hence 

nor any excitation rate. For this work, I augmented WACCM with the N2(A3Su
+) 

tracer, reaction R2.24a (R6.01a) and the other accompanying N2(A3Su
+) removal 

reactions (R6.01b-6.05). Each of these is listed in Table 6.1. Rate constants were 

sourced from Herron (1999) (reactions R6.02-6.04) and Shemansky (1969) (reaction 

R6.05). The other potential in situ atmospheric N2O production source identified in 

Chapter 2, reaction R2.25 (N(4S) + NO2 → N2O + O), was already included in the 

default configuration of WACCM. The key challenge of this study was to develop a 

method to parametrise the impact of reaction R6.01a on the N2O budget in the MLT. 

Table 6.1 Chemical reactions added to WACCM for N2(A3Su
+) chemistry scheme. 

Reaction  

N2(A3Su
+) + O2 → N2O + O (R6.01a) 

N2(A3Su
+) + O2 → N2(X1Sg

+) + 2O (R6.01b) 

N2(A3Su
+) + O → N2(X1Sg

+) + O (R6.02) 

N2(A3Su
+) + N2(X1Sg

+) → 2N2(X1Sg
+) (R6.03) 

N2(A3Su
+) + N(4S) → N2(X1Sg

+) + N(2P) (R6.04) 

N2(A3Su
+) → N2(X1Sg

+) + hv (R6.05) 
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6.2.1 Nitrous Oxide Production Parametrisation 

Central to this parametrisation is the assumption that in the MLT, the rate of in situ 

N2O production balances the local chemical loss over a 24-hour period, since N2O is 

short-lived (lifetime ~10 days at 95 km) (Brasseur and Solomon, 2005). This means 

that N2O is in steady-state on a timescale of days and its production rate P can be set 

equal to the product of its first-order loss rate L and the observed concentration 

[N2O]obs 

 d N2O
dt

 = P – L⋅ N2O obs = 0, 
(E6.01) 

where loss occurs through photolysis and reaction with O(1D). For production, I 

consider EEP over the polar caps and photoelectrons at all latitudes. Hence, 

 Pphoto⋅α  + PEEP⋅α  = k0⋅ O(1D)  + JN2O ⋅ N2O obs, (E6.02) 

where Pphoto is the production rate of N2(A3Su
+) via photoelectrons, α is the probability 

that N2(A3Su
+) reacts with O2 and makes N2O via reaction R6.01a, PEEP is the 

production rate of N2(A3Su
+) via EEP, k0 is the rate constant for the reaction between 

N2O and O(1D) (Burkholder et al., 2015), and JN2O is the photolysis rate of N2O. 

The next task was to estimate the production rates of N2(A3Su
+) via both 

photoelectrons (Pphoto) and EEP (PEEP). The NCAR Global Airglow (GLOW) model 

(Solomon, 2017) (described in Chapter 3) was used to give a direct estimate for Pphoto 

over 2013. The required input parameters for GLOW include the Ap index and F10.7 

(solar flux at 10.7 cm), which were taken from the National Oceanic and Atmospheric 

Administration (NOAA) database. The resulting GLOW model output for the 

N2(A3Su
+) production rate was then taken at three-hourly intervals and interpolated 

onto the WACCM model grid. 

PEEP is estimated from EEP ion-pair production rates from both MEE and auroral 

electrons. The MEE ionisation rate profile is based on measurements from the 

Medium Energy Proton and Electron Detector (MEPED) instrument, on-board the 

Polar Orbiting Environmental Satellites (POES) (Lam et al., 2010; Newnham et al., 

2018; Orsolini et al., 2018). The auroral electron ionisation rate profile is based on the 
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parametrisation of Roble and Ridley (1987). Their sum is multiplied by an N2(A3Su
+) 

production efficiency factor, β (treated here as independent of altitude in the MLT). 

That is: 

 PEEP = IMEE + Iaur ⋅β, (E6.03) 

where IMEE and Iaur are the ionisation rates due to MEE and auroral electrons, 

respectively. 

Substituting equation E6.03 into equation E6.02 yields an expression for β 

 
β = 

k0⋅ O(1D)  + JN2O ⋅ N2O obs – Pphoto⋅α
IMEE + Iaur ⋅α

. 
(E6.04) 

The branching ratio contained inside α is uncertain, with literature estimates ranging 

from <0.2% (Fraser and Piper, 1989) to 30% (Prasad and Zipf, 2000). To determine 

an optimal value of this in WACCM-GLOW, I performed test WACCM simulations 

with only the photoelectron contribution to N2(A3Su
+) production. Comparison with 

the observed N2O in the MLT at low latitudes, where there is no impact from EEP, 

showed that a branching ratio of 0.5% was consistent with observations around 94.5 

km. This value is within the literature range quoted above, and was treated as a 

constant given that it should be independent of pressure and probably has a weak 

temperature dependence, since R6.01a and R6.01b are both fast reactions (Zipf and 

Prasad, 1982). The efficiency factor, β, was estimated using the 100-130 km zonal 

mean of each variable over the polar regions, as the auroral electron regime is 

considerably more regular than the MEE regime (a fixed value extrapolation was 

applied to [N2O]obs above the satellite retrieval limit). This gave a value of 0.5 

(rounded to one decimal place). 

Given the importance of IMEE on β, the reliability of the MEE ionisation rate profile 

calculations are assessed. Firstly, large measurement uncertainty arises from proton 

contamination during geomagnetic storms and solar proton events (SPEs). However, 

uncertainty from geomagnetic storms is corrected via the algorithm of Lam et al. 

(2010) and SPE phases are excluded (Orsolini et al., 2018). However, measurements 

made over the South Atlantic Magnetic Anomaly (SAA) region contain additional 

uncertainty due to electron flux enhancements caused by the drift loss cone region 
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(Newnham et al., 2018). The SAA region is estimated to cause an underestimation in 

MEE ionisation rates by a factor of ~2-3 in simulations of the Southern Hemisphere 

(SH) mesosphere. Therefore, since the combined EEP production rate of N2(A3Su
+) is 

given by 𝑃EEP = (IMEE + Iaur)·β, a potential factor 1.5-2 underestimation of the overall 

EEP induced N2(A3Su
+) could be anticipated here. However, given that the method 

used to implement N2(A3Su
+) production in WACCM for this study was based on a 

steady-state assumption in the mesosphere, the value for PEEP must be maintained. 

Figure 6.1 First-order energy-dependent rates for the excitation of N2 to N2(A3Su
+), 

and ionisation of N2 to N2
+, as a function of electron energy. Panels (a), (b), (c) and 

(d) show altitudes 95 km, 105 km, 117 km and 148 km, respectively. The efficiency 
factor β for the proportion of ion-pair production from EEP that leads to N2(A3Su

+) 
production was inferred from the ratio of excitation to ionisation + excitations. The 
values of β for the integration up to 50 eV are given in each panel. 



AN EXPLANATION FOR THE NITROUS OXIDE LAYER OBSERVED IN THE 
MESOPAUSE REGION 

 

110 

Therefore, a revised calculation of the production efficiency factor β for this IMEE 

underestimation scenario would yield a smaller value of ~0.25-0.33 (still between 0.1 

and 1) to compensate. Hence, there would be no impact on the amount of N2O 

produced in model simulations, and conclusions about the relative importance of EEP 

against photoelectrons would remain the same. 

A second estimate of β was carried out through a process based on first principles. 

This allowed me to compare the two estimates, to i) examine whether the N2O mixing 

ratios measured by the ACE-FTS satellite above 90 km seemed physically viable, and 

to ii) then justify the assumptions made in the original efficiency factor estimate. Data 

and reasoning from Itikawa (2006), Cartwright et al. (1977), and Banks et al. (1974) 

were used to make this second estimate. β was estimated here using the integrated 

cross-section (ICS) for the excitation of N2 to N2(A3Su
+), and ionisation to N2

+, as a 

function of electron energy (Itikawa, 2006). The excitation ICS was increased by a 

factor of 3 to account for cascade contributions, as reported by Cartwright et al. 

(1977). To factor in the electron flux at each energy, the ICS was multiplied by the 

auroral electron energy distribution spectrum measured by Banks et al. (1974) at 

various altitudes in the MLT. This gives the electron energy-dependent first-order 

rates for both excitation and ionisation, shown in Figure 6.1 (a-d) for altitudes of 95, 

105, 117 and 148 km, respectively. 

Integrating over electron energy up to the limit of typical secondary electron energies 

(50 eV) provides the fraction of N2 excitation compared to ionisation + excitation at 

each altitude, yielding a mean efficiency factor of 0.4 (rounded to 1 decimal place). 

This compares well to the first estimate of 0.5. To test the sensitivity of the calculation 

performed in this estimate, I increased the energy limit to 100 eV or 200 eV. 

Increasing the energy limit lowers the resulting β, as ionisation becomes the 

increasingly dominant regime above about 20 eV. However, in both of these tests β 

remained between 0.1 and 1. This indicates that my use of the steady-state assumption 

to determine β is robust. 

6.3 WACCM Set-up 

Model simulations were performed using a specified dynamics version of WACCM, 

as described in Chapter 3. I adapted this WACCM configuration by adding the 
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N2(A3Su
+) chemistry scheme based on the reasoning of the previous section. For the 

study, I completed six separate WACCM simulations with various combinations of 

N2O reactions and mechanisms included (see Table 6.2). 

Table 6.2 Configurations for WACCM simulations used in this study. Includes 
simulation with all N2O production sources switched on (Standard), three control 
simulations, and two sensitivity runs. All six model simulations were for the whole of 
2013. 

Simulation/ 
configuration 

N2(A3Su
+) 

production via 
EEP 

N2(A3Su
+) 

production via 
photoelectrons 

N2(A3Su
+) + O2 

→ N2O + O 
N(4S) + NO2 
→ N2O + O 

Standard On On On On 
Control_0 Off Off Off Off 
Control_1 On On On Off 
Control_2 Off Off Off On 
Sensitivity_E On Off On On 
Sensitivity_P Off On On On 

 

Meteorological variables (wind speed, temperature and surface fluxes) in each 

simulation were nudged from surface to 50 km, to the NASA Modern-Era 

Retrospective Analysis for Research and Applications (MERRA) reanalysis data with 

a 30-minute time-step, as described in Rienecker et al. (2011) and Garcia et al. (2017). 

Variables were output as monthly means for all of 2013; a solar maximum and a major 

Sudden Stratospheric Warming (SSW) year. Auroral electrons precipitate almost 

continuously, however MEE levels are more sporadic as they are associated with 

geomagnetic storms, which were more frequent in 2013 compared to 2014 (the other 

year considered in the electron precipitation model of Newnham et al. (2018)). 

Simulations were run for one year before results were taken to allow for model spin-

up. Control simulations 0, 1 and 2 were performed to compare the relative importance 

of reaction R6.01a against reaction R2.25 on the overall N2O budget in the MLT. 

Sensitivity simulations E and P compare the altitude and latitude-dependent 

contributions of EEP and photoelectrons. 
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6.4 Nitrous Oxide Layer Simulations 

6.4.1 Magnitude and Distribution 

Figure 6.2 shows latitude-height plots of the mean N2O volume mixing ratio (VMR) 

for 2013, comparing the v3.6 ACE-FTS observations with WACCM simulation 

Standard (containing all sources), and three selected control and sensitivity 

simulations: Control_0 (the baseline for other simulations), Sensitivity_E, and 

Sensitivity_P (see Table 6.2). Plots extend from the stratosphere around 30 km to 140 

km in the thermosphere, though the ACE-FTS data only extends up to the satellite 

retrieval limit around 94.5 km. The WACCM panels are generated from output 

sampled each time-step at full horizontal resolution (see Chapter 3). It should be noted 

that this comprehensive sampling is not replicated by ACE-FTS, which is limited by 

the availability of occultations. The N2O VMRs for the ACE-FTS plots were 

calculated using the 5° running mean for each altitude level, as described by Sheese 

et al. (2016). The white spots and vertical bands in Figures 6.2a and 6.2b indicate 

where reliable means could not be calculated due to there being no or only one valid 

occultation in that location and time interval. 

Comparing the Standard run (Figures 6.2c and 6.2d) to ACE-FTS (Figures 6.2a and 

6.2b) demonstrates firstly that a similar magnitude of N2O to that observed is 

simulated near 94.5 km for both seasons (of order 10 ppb), which supports the 

assumptions made when parametrising the production of N2(A3Su
+) from EEP and 

photoelectrons (Section 6.2.1). Secondly, good similarity in the vertical, latitudinal, 

and seasonal profiles is generally seen between model and satellite. There are two 

focal points of high N2O VMRs: the upper stratosphere especially at low latitudes, 

and the winter poles of the lower thermosphere. Clearly, the majority of stratospheric 

enhancements can be attributed to surface sources distributed via the Brewer-Dobson 

circulation (Brewer, 1949; Dobson, 1956) (as described in Chapter 2). In contrast, 

N2O above the stratopause is produced in situ via reactions R2.25 and R6.01a. The 

seasonal changes of N2O in the polar MLT can be explained by the efficiency of N2O 

photolysis, the dominant route of removal. The model simulates larger VMRs (up to 

40 ppb) with a greater descent over the winter poles, as the lack of sunlight enables 

N2O to persist during descent in the polar vortex. Conversely, lower values (around 

10 ppb) are found with much less descent over the summer pole where N2O is readily  
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Figure 6.2 Latitude-height zonal mean cross-sections of N2O VMR (ppb) averaged 
for (left column) January-February and (right column) July-August. Panels (a) and 
(b) show ACE-FTS satellite data for 2013 which extends up to 94.5 km. Panels (c)-
(j) show four corresponding WACCM simulations (Table 6.2), where each y-axis uses 
the simulated geopotential height for direct model comparisons. The horizontal 
dashed white line indicates 94.5 km. 
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photolysed. Further model-satellite agreement is seen over the extra-polar latitudes of 

the lower thermosphere, where simulations match the largely uniform N2O VMRs of 

10-20 ppb. The only region showing obvious disagreement is the mesosphere between 

60-80 km, particularly over mid-low latitudes, where less N2O is simulated than 

observed.  

Careful inspection of the ACE-FTS N2O data (Figures 6.2a and 6.2b) reveals patchy 

regions of N2O throughout the mid-low latitude mesosphere, which are not 

reproduced by WACCM. Instead, a smooth N2O distribution is simulated across all 

latitudes over the whole year (Figures 6.2c and 6.2d). Figure 6.3 presents the VMR 

climatology (2004-2016) of the v3.6 ACE-FTS N2O data, for the same seasons shown 

in Figure 6.2. As the climatology is calculated from a much larger dataset than that 

limited to 2013, the sampling coverage is much improved. In turn, the patchy regions 

of Figures 6.2a and 6.2b are smoothed out, suggesting that the patchiness can be 

attributed to sampling frequency. This is supported by the fact that there are typically 

over a factor of 10 fewer occultations at lower latitudes (as the majority of ACE-FTS 

measurements are made at high latitudes), combined with a weaker signal at high 

altitude (Boone et al., 2013). Figure 6.3 provides an update of Figure 2.8 from Chapter 

2 (taken from Sheese et al. (2016)), where the v3.5 ACE-FTS climatology (2004-

2013) was shown in the same format. 

Figure 6.3 Latitude-height zonal mean cross section of ACE-FTS N2O VMR 
climatology (2004-2016) for (a) January-February and (b) July-August. The N2O 
climatology provides a smoother comparison to model simulations than the limited 
2013-only dataset shown in Figure 6.2. 
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6.4.2 Source Attribution 

For a more quantitative comparison of the features discussed above, I compare N2O 

VMR profiles averaged over different latitude bands for two seasons (Figure 6.4). 

From about 80 km upwards, simulation Standard follows the ACE-FTS profile closely 

for both seasons over all latitude bands. Given that the changes to the model primarily 

impact the MLT, this indicates that it now successfully captures the observed N2O 

enhancements in this region. Interestingly, Control_1 is almost indistinguishable to 

Standard, meaning that in this altitude range, at least 99% of the N2O production can 

be attributed to reaction R6.01a. Reaction R2.25 appears to be largely unimportant 

outside of mesospheric altitudes below 80 km. However, this mechanism is most 

prevalent in the Southern Hemisphere (SH) winter pole (Figure 6.4b). Here, a 

maximum contribution of ~20% is seen from Control_2 close to 60 km. Nevertheless, 

the remaining N2O (~80%) is from reaction R6.01a, yielding twice the upper limit 

suggested by Funke et al. (2008). From the similarity between 2013 and the N2O VMR 

climatology (panels (a) and (b) of Figures 6.2 and 6.3), it is likely that these results 

would be closely replicated in simulations for different years. 

Figures 6.4a and 6.4b highlight some apparent systematic differences between the 

model and satellite measurements. Firstly, at around 60-80 km and 40-60 km for the 

north and south winter polar vortices, respectively, it appears that the model has a 

slower N2O descent rate. This is most severe in the Northern Hemisphere (NH) where 

the N2O VMR difference is up to a factor of 4, while it is only up to a factor of 2 in 

the SH. As this region appears challenging to simulate, it could be used as a future 

test for assessing model performance. Secondly, larger than measured (~5 times) N2O 

VMRs are simulated below about 50 km in the NH. If this is a model problem, it may 

point to issues in the meridional stratospheric Brewer-Dobson circulation. 

As expected from Figure 6.2, in Figures 6.4c-f (which include the mid-low latitudes), 

simulation Standard typically underestimates the ACE-FTS N2O by a factor of ~2 

between 60-80 km. At this altitude, Semeniuk et al. (2008) suggest that the dominant 

N2O production mechanism is reaction R2.25. Therefore, a possible explanation for 

the shortfall could be that N2O production via reaction R2.25 is underestimated in the 

model because the simulated concentration of NO2 (the source of N2O in reaction 

R2.25) is too low. Unfortunately, v3.6 ACE-FTS retrievals of NO2 do not extend into  
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Figure 6.4 Altitude profiles of mean N2O VMR (ppb) from ACE-FTS observations 
compared with all six WACCM simulations (Table 6.2) averaged for (left column) 
January-February and (right column) July-August. The winter poles are shown in 
panels (a) and (b), the extra-polar regions in (c) and (d), and the global means in (e) 
and (f). Shaded regions indicate the ACE-FTS uncertainty with standard deviation 
(grey), and standard error of the mean (SEM) (yellow). Note that the average of the 
individual profile errors can be on the order 50-200% in the MLT. 
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the mesosphere, so no direct comparison to the simulation can be made. A deficiency 

of NO2 in the mesosphere could arise in WACCM either through underestimated 

vertical transport of NOy from the thermosphere or the simplified ion chemistry in the 

ionospheric D region. This could be tested in future work using the very detailed D 

region ion chemistry that is included in recent versions of WACCM (Kovács et al., 

2016). Longer simulations with such models could also provide quantification of the 

impact of upper atmospheric N2O production on total stratospheric ozone destruction. 

Based on typical conversion efficiencies of N2O to NOy around an SSW event, Sheese 

et al. (2016) estimate the upper limit of this to be around 2%. 

I compare the relative importance of contributions from EEP and photoelectrons to 

overall N2O production via reaction R6.01a using the sensitivity simulations. In the 

polar regions, Figures 6.4a and 6.4b show that above ~90 km Sensitivity_E follows 

closely to Standard, whereas Sensitivity_P produces a VMR profile that is nearly a 

factor of 10 lower. This result indicates that almost all N2O enhancements in the lower 

thermosphere during polar winter are caused by EEP, which is to be expected since 

there is very little sunlight to induce photoelectron production. However, there is 

significant MEE and auroral activity, resulting in large EEP rates. The conclusion that 

EEP is the principal driver of polar MLT N2O can also be drawn by comparing Figures 

6.2e (6.2f) and 6.2g (6.2h). Figures 6.4c and 6.4d show that the situation in the extra-

polar regions above about 90 km is the opposite. Here, the majority of N2O is 

produced via photoelectrons, as sunlight is present at mid-low latitudes throughout 

the year, but there is little incident EEP away from the polar caps (see again the 

relevant panels in Figure 6.2). The sensitivity simulations thus indicate the importance 

of including both EEP and photoelectrons in the model. However, photoelectrons 

appear to be about twice as influential as EEP on the global N2O budget in the lower 

thermosphere. This is evidenced most clearly by Figures 6.4e and 6.4f, which show 

the global mean altitude profiles; VMRs above 90 km from Sensitivity_P are roughly 

a factor of 2 larger than those from Sensitivity_E. 

6.4.3 Solar Cycle Impact 

Figure 6.5 shows variations in the ACE-FTS data over the 11-year solar cycle. N2O 

retrievals are plotted as annual means for 2008, near solar minimum (Figure 6.5a) and 

2014, near solar maximum (Figure 6.5b). These years were selected to avoid the 
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conflicting dynamical 

impact that would be 

found in major SSW years 

(e.g. 2009 and 2013). 

Figure 6.5c shows the 

magnitude of this 

variation as a percentage 

difference at solar 

maximum relative to solar 

minimum. Below 70 km, 

the deviations are most 

likely caused by varying 

N2O transport by the 

Brewer-Dobson 

circulation over the solar 

cycle period, rather than 

the solar cycle itself. 

However, there is clearly 

more N2O observed in the 

mid-low latitude MLT 

during solar maximum. 

Above 70 km there is a 

typical enhancement of 

~10-100%, with values 

over 100% in some 

isolated areas. At solar 

maximum, solar 

irradiance intensity more 

than doubles at wavelengths required for photoionisation (<100 nm) (Brasseur and 

Solomon, 2005). Therefore, such increases could be anticipated from heightened 

photoelectron fluxes generating additional N2(A3Su
+) through reaction R2.23. This 

supports the concept that photoelectrons have an important role in upper atmospheric 

N2O production. In contrast, little difference is seen over the polar regions. A slightly 

Figure 6.5 Solar cycle comparison: latitude-height 
zonal mean annual mean cross-sections of ACE-FTS 
N2O VMR (ppb) for (a) 2008 near solar minimum and 
(b) 2014 near solar maximum. Panel (c) shows relative 
percentage difference at solar maximum with respect to 
solar minimum, where a +500% limit was applied to 
saturate anomalies (characteristic of the calculation 
used on satellite data). 
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negative deviation is even seen throughout the mesosphere, particularly in the SH. As 

recorded in the NOAA database, the increase in mean geomagnetic activity levels 

observed throughout 2014 compared to 2008 was relatively small (~25%). Since EEP 

is the dominant driver of N2(A3Su
+) production over the polar regions, the observed 

smaller solar cycle impact on N2O concentration at high latitudes compared to mid-

low latitudes is therefore expected. One reason for this is that solar minimum and 

maximum do not necessarily correspond to EEP minimum and maximum, which in 

this example both fell around a year later. Furthermore, the geomagnetic activity 

change during this solar cycle was small compared to the typical change (e.g. ~+40% 

from 1996 to 2001 in the previous cycle). 

6.5 Summary 

The reaction between N2(A3Su
+) (produced via collisions between secondary electrons 

and N2) and O2 to form N2O has been included for the first time in a chemistry-climate 

model. WACCM simulations provide strong quantitative support for the ACE-FTS 

observations of N2O VMR enhancements above 90 km, first reported in Sheese et al. 

(2016). Essentially all of the N2O enhancement (>99%) in the MLT occurs through 

the reaction of N2(A3Su
+) and O2. Therefore, its inclusion in future modelling studies 

is essential for providing a description of N2O production in the MLT. The reaction 

between N(4S) and NO2 appears to be less important than previously suggested (Funke 

et al., 2008; Semeniuk et al., 2008), contributing no more than 20% of overall N2O 

simulated at any altitude or latitude band in WACCM. However, this may in part be 

due to mesospheric NO2 being underestimated in the model, something that could be 

investigated in a future study using a model with more detailed D region ion 

chemistry. 

Latitudinal cross-sections comparing the WACCM simulation against the ACE-FTS 

measurements generally show a good spatial agreement, and replicate the seasonal 

N2O variations observed near the poles. Both EEP and photoelectrons are found to 

play an important role in the production of N2(A3Su
+) and ultimately N2O in the MLT. 

As expected, EEP is the dominant process near the poles, whereas photoelectrons are 

most significant in the extra-polar regions, and contribute approximately twice as 

much as EEP to the global N2O budget. Analysis of the ACE-FTS data over the 
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extremes of the 11-year solar cycle show typical N2O enhancements of ~10-100% 

during solar maximum, compared to solar minimum. Photoelectrons appear to be the 

more responsive process here, as the positive deviations are seen over the extra-polar 

latitudes of the MLT. 

The findings from this chapter have provided a suitable explanation for the origins of 

the second layered phenomena of the MLT studied in this thesis: the N2O layer. More 

generally, they have furthered our understanding of how space weather interacts with 

atmospheric chemistry. My conclusions make an immediate impact on the accepted 

chemical description of N2O in the MLT, and in the long-term, promote the case for 

the search of other space-weather-driven minor chemical production sources. 
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7 CONCLUSIONS 

7.1 Completion of Objectives 

The overall objective of this thesis was to further scientific understanding of the 

chemical and transport properties of layered phenomena in the mesosphere-lower 

thermosphere (MLT). A key model development task of my PhD, essential to this, 

was to provide the coupling of the UK Chemistry and Aerosols (UKCA) scheme to 

an extended altitude configuration of the Met Office Unified Model (Extended UM). 

Layered phenomena in the MLT are particularly sensitive to temperature and 

chemistry. Therefore, a detailed review into the current Extended UM-UKCA model 

performance, focusing on neutral chemistry, was a prerequisite to my investigation of 

the atomic sodium (Na) layer. The development of individual parametrisations, 

including those for atomic Na ion production and lower-thermospheric nitrous oxide 

(N2O) production, and their inclusion in chemistry-climate model simulations, have 

enabled various scientific findings in the domain of my overall objective. The 

following paragraphs of this section address my conclusions with respect to the three 

specific research questions outlined in Chapter 1. 

1. How does the Met Office’s chemistry-climate model perform in the MLT and 

what is the best way to optimise neutral chemistry below the 120 km lid? 

As the major influencers on the aeronomy of the MLT, simulated atomic oxygen (O) 

and atomic hydrogen (H) distributions were the focus of my model performance 

analysis. However, simulated atmospheric temperature was reviewed prior to this, 

given the strong temperature dependencies exerted by many of the chemical reactions 

in the MLT. The Extended UM-UKCA was able to replicate the observed global mean 

temperature profile around the mesopause, between 90 and 100 km, to within a 

tolerance of ±3 K when a 25 K increment was added to the prescribed thermospheric 

climatology. The implementation of extended photolysis treatments for molecular 

oxygen (O2) and water vapour (H2O), based on offline rates, generated H magnitudes 

that matched reference volume mixing ratios (VMRs) reasonably well, but 

corresponding O magnitudes were a factor of ten larger than expected. This was 
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somewhat explained by the fact that O2 is treated as uniform in UKCA, although 

diagnostic analysis revealed an accumulation of O near the polar region of the summer 

hemisphere to be a contributing factor, most likely attributable to transport 

deficiencies in the model. 

I considered the prescription of upper-boundary conditions for O and H through the 

assessment of the seasonal and inter-annual variation in each species in a long-term 

Whole Atmosphere Community Climate Model with thermosphere and ionosphere 

eXtension (WACCM-X) simulation. It was established that a solar-cycle-mean of the 

data would provide the most suitable treatment at the top level. A robust case was 

made for the implementation of such treatment for O, while it was concluded that the 

existing seasonal variation in H was more valuable than the adjustment offered. 

Simulations containing this development saw an improved representation of O in the 

lower thermosphere. Estimated chemical heating rate profiles from the Extended UM-

UKCA saw generally good agreement with WACCM-X, bar a couple of exceptions. 

The heating contribution from the recombination of O2 reaction was around a factor 

of six higher than WACCM-X at its peak, attributable to the known difference in O 

magnitudes. Meanwhile, a lack of odd nitrogen (NOx) in the Extended UM-UKCA, 

attributable to the absence of energetic particle precipitation (EPP) driven NOx 

generation, was found to be the cause of the missing chemical heating contribution 

from the reaction between N and NO. 

2. How does the chemical and physical structure of the background MLT 

influence the distribution and seasonal evolution of the atomic Na layer? 

An atomic Na diagnostic package was developed to test the performance of Extended 

UM-UKCA chemistry and transport in the MLT. The resulting layer size of each Na 

compound was found to scale approximately with the Na input rate, aside from 

NaHCO3, which scaled by the square root of this. Simulations with an Na injection 

rate equivalent to that used in a recent WACCM study (Li et al., 2018) generated peak 

atomic Na abundances around a factor of ten greater than the measured values. The 

known excess of O simulated by the Extended UM-UKCA was found to be a key 

cause of this, through enhanced dissociation of Na compounds back to atomic Na, 

based on similarities in the latitudinal distributions of O and Na. As an initial metric 

of model performance, it was therefore concluded that the Extended UM-UKCA 
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required an Na input scaling factor of 50 (ten times larger than the factor of 5 used by 

WACCM in Li et al. (2018)) in order to simulate the observed absolute Na density. 

Above 100 km, the Extended UM-UKCA simulated a global mean Na+:Na ratio that 

was typically 2-4 times larger than WACCM. Enhancements of Na+ are also 

chemically consistent with high levels of O, but a greater rate of Na+ removal through 

chemistry would be expected in the colder MLT of the Extended UM-UKCA. 

Transport deficiencies were also deemed likely to contribute to the discrepancies 

simulated in both Na and Na+. Some imbalances in the partitioning of Na compounds 

were simulated by the Extended UM-UKCA. Disproportionately large densities of 

NaHCO3 and Na.CO2
+ were generated in the lower thermosphere, exceeding the 

corresponding WACCM densities by factors of up to ten and 1000, respectively. The 

breakdown of the assumption that CO2 is uniform throughout the atmosphere was 

found to contribute in both cases (up to 20% for NaHCO3 and 4% for Na.CO2
+). 

The altitude of the Na layer peak in Extended UM-UKCA simulations was, on 

average, around 3 km below the observed height, but around 2 km above the WACCM 

generated height. The precise height of maximum Na injection was found to be more 

important in the Extended UM-UKCA than in WACCM, since fast vertical transport 

provided by eddy diffusion quickly adjusts the vertical distribution of the Na layer in 

WACCM simulations. The comparatively better observational agreement of the 

Extended UM-UKCA than WACCM was deemed likely to be partly attributable to 

the Na input profile, although the fact that the Extended UM-UKCA simulated a 

colder mesopause than WACCM was also considered to be a likely contributing 

factor. The observed seasonal evolution of the Na layer was reproduced by the 

Extended UM-UKCA to some extent, although limitations in the meridional 

circulation of the model were exposed. Near the peak of the layer, the Extended UM-

UKCA temperature field showed the expected seasonal perturbations over the polar 

regions, but this declined towards the tropics. Transformed Eulerian Mean (TEM) 

diagnostics confirmed that the correct direction of circulation was simulated by the 

Extended UM-UKCA through the MLT, but deficiencies in mesospheric upwelling 

and meridional transport were highlighted. Furthermore, the Extended UM-UKCA 

was shown to suffer from the downward reflection of propagating atmospheric waves 

off the model lid, emphasising both the limitation of a 120 km ceiling and the 

requirement of eddy diffusion for wave dissipation. 
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3. What is the underlying mechanism behind novel observations of an N2O layer 

in the mesopause region? 

A parametrisation of N2O production in the MLT, based on the reaction between 

N2(A3Su
+) (produced via collisions between secondary electrons and N2) and O2 was 

developed. This mechanism was included for the first time in a chemistry-climate 

model. WACCM simulations were completed, designed to determine the principal 

mechanism for the proposed atmospheric N2 excitation, and assess the relative overall 

importance of the new mechanism compared to a competing mechanism (N2O 

production via the reaction between N(4S) and NO2). Model results provided strong 

quantitative support for the Atmospheric Chemistry Experiment - Fourier Transform 

Spectrometer (ACE-FTS) observations of N2O VMR enhancements above 90 km, 

first reported in Sheese et al. (2016). Essentially all of the N2O enhancement (>99%) 

in the MLT was found to occur through the new mechanism (N2(A3Su
+) + O2). The 

reaction between N(4S) and NO2 appeared to be less important than previously 

suggested (Funke et al., 2008; Semeniuk et al., 2008), contributing no more than 20% 

of overall N2O simulated at any altitude or latitude band in WACCM. However, it 

was acknowledged that this may have been in part due to the known underestimation 

of mesospheric NO2 in the model. Both Energetic Electron Precipitation (EEP) and 

photoelectrons were found to play an important role in the production of N2(A3Su
+) 

and ultimately N2O in the MLT. As expected, EEP was the dominant process near the 

poles, whereas photoelectrons were most significant in the extra-polar regions, and 

contributed approximately twice as much as EEP to the global N2O budget. 

Synthesis 

The results presented in this thesis contribute towards a growing body of evidence 

that suggests the importance of computationally modelling the MLT and its impact 

on the lower atmosphere (e.g. Jackson et al. (2019)). In particular, results highlight 

the extent to which the top boundary of an atmospheric model can impact the 

chemistry and transport below it; as well as drawing attention to a previously 

overlooked minor source of stratospheric ozone (O3) depletion originating from the 

MLT. More broadly, this work highlights the value gained from coupling chemistry 

to upper atmospheric models, when used in connection with observations of upper 

atmospheric chemical species. Original insight into the chemistry and physics of the 
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MLT is provided in terms of new processes and new modelling tools. It is proven that 

complicated mechanisms may be appropriately simplified within a chemistry-climate 

model, to represent key processes in an efficient way (e.g. O2/H2O offline photolysis 

schemes, Na+ production parametrisation and N2O steady-state assumption (Kelly et 

al., 2018)). Minor constituent chemistry should not be overlooked in such models, as 

Na is shown to be an excellent diagnostic of fundamental chemistry and transport, and 

N2O production is shown to be a useful test of atmospheric interactions with EEP.  

7.2 Future Work 

Recommendations for the direction of future work related to my PhD are made from 

the results presented in this thesis. These are split into two categories: ‘Extended UM-

UKCA development priorities’ and ‘Investigations of particular scientific interest’. 

Extended UM-UKCA development priorities 

It was clear from the poleward accumulation of O and Na identified in Chapters 4 and 

5 that constituent transport needs to be improved in the MLT, as an Extended UM-

UKCA development priority. This may be done in part through the inclusion of sub-

grid scale physics parametrisations, including eddy diffusion, molecular viscosity and 

molecular diffusion. A more realistic seasonal temperature gradient through the low 

latitudes of the MLT will assist meridional transport. This may be provided by direct 

chemical heating in the MLT, once the chemistry and radiation schemes of the model 

have been coupled. An extension of the model lid to at least 140 km is recommended 

to avoid the generation of unphysical downward motions in the MLT, caused by the 

reflection of propagating atmospheric waves off the model lid. 

It was also apparent that some of the chemical approximations used by the model in 

the stratosphere and lower mesosphere break down in the MLT. For example, O2 and 

CO2 would be better treated as advected tracers in the current model configuration, 

with the importance of this only increasing in future model iterations with further 

altitude extensions. The inferred electron density profile from Chapter 5 highlighted 

the need for the new photoionisation scheme to calculate rates up to an altitude higher 

than 120 km, when used with the 120 km lid model. This will avoid the severe 

overestimation of photoionisation originally simulated at the top level. In addition to 

the upper-boundary conditions discussed in Chapter 4, other top-down forcings also 
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need to be added to the model. For example, the inclusion of an EPP scheme will 

provide more realistic NOx generation in the MLT. 

Investigations of particular scientific interest 

Recreation of the positive correlation in log10(O) vs. temperature, identified in 

WACCM-X data near the mesopause (Chapter 4), may be used as a metric of model 

performance in the MLT. Pearson correlation coefficients could be recalculated after 

each future development phase of the Extended UM-UKCA, and be used as a 

quantitative measure of future chemistry improvements in the MLT. Equally, the 

factor by which the rate of meteoric input needs to be scaled down by, in order to 

replicate the observed magnitude of the Na layer in future atomic Na scheme Extended 

UM-UKCA simulations (Chapter 5), could provide another proxy of model 

performance. Building on this work, chemistry schemes for other atomic metal layers, 

such as those of iron (Fe), potassium (K) and calcium (Ca) could also be added to the 

model. In particular, an atomic K scheme would provide another test of chemistry and 

transport in the MLT, as differences in the semiannual variations of the K layer and 

the Na layer have been observed (Plane et al., 2015). 

The Na+ production parametrisation from Chapter 5 may be adapted for use in other 

chemistry-climate models that do not contain a description of ion chemistry. The 

parametrisation is not only valid for Na+, as it can be easily modified to represent the 

impact of a background ionosphere in any chemical reaction involving O2
+ or NO+. 

This would enable a greater pool of models to be suitable for studies of the MLT. 

Equally, there is motivation to test the N2O production parametrisation from Chapter 

6 in other models. There is an immediate incentive to first do this using a variant of 

WACCM with D region ion chemistry (WACCM-D) (Verronen et al., 2016). This 

will enable the impact of mesospheric NO2 deficiencies on the N2O budget in the same 

region to be quantified. It would also be useful to measure the extent to which the 

findings from the WACCM study are reproducible by models with different 

dynamical formulations. Furthermore, replication of the observed mesospheric 

descent rate of N2O through the polar vortices could be used as another model 

performance benchmark, as it appeared challenging to simulate with WACCM. It 

would be of particular interest to test this with a future configuration of the Extended 
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UM-UKCA, as it may be a feature that is more easily reproducible by a model with a 

non-hydrostatic dynamical core. 

Multiyear simulations containing the N2O production parametrisation would provide 

a valuable insight into the wider implications of the newly discovered source. Based 

on a model climatology, the impact of in situ atmospheric N2O production on 

stratospheric ozone depletion could be quantified. The potential for there to be 

contributions to the N2O layer from other atmospheric processes should also be 

investigated. For example, Pérez-Invernón et al. (2020) have very recently suggested 

that sprite streamers may have a role in N2O production in the MLT, based on results 

from a 2D model. This could be investigated further through the development of a 

sprite-induced N2O production parametrisation for future chemistry-climate model 

simulations. 
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LIST OF ABBREVIATIONS 

ACE-FTS Atmospheric Chemistry Experiment - Fourier Transform 
Spectrometer 

BDC Brewer Dobson Circulation 

CESM Community Earth System Model 

CIRA COSPAR International Reference Atmosphere 

CMAM Canadian Middle Atmosphere Model 

CME Coronal Mass Ejection 

COSPAR Committee On SPAce Research 

COST European COoperation in Science and Technology 

EEP Energetic Electron Precipitation 

EPP Energetic Particle Precipitation 

EUV Extreme-UV 

FUV Far-UV 

GCR Galactic Cosmic Ray 

GLOW GLobal AirglOW 

GOMOS Global Ozone Measurement by Occultation of Stars 

HEE High-Energy Electrons 

ICS Integrated Cross-Section  

LEE Low-Energy Electrons 

LTE Local Thermodynamic Equilibrium 

MEE Medium-Energy Electrons 

MEPED Medium Energy Proton and Electron Detector 

MERRA Modern-Era Retrospective analysis for Research and 
Applications 

MIF Meteoric Input Function 
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MIPAS Michelson Interferometer for Passive Atmospheric Sounding 

MLT Mesosphere-Lower Thermosphere 

MMR Mass Mixing Ratio 

MSIS Mass Spectrometer Incoherent Scatter 

NCAR National Center for Atmospheric Research 

NCAS National Centre for Atmospheric Science  

NH Northern Hemisphere 

NLTE Non-Local Thermodynamic Equilibrium 

NOAA National Oceanic and Atmospheric Administration 

NRL Naval Research Laboratory 

OSIRIS Optical Spectrograph and Infra-Red Imager System 

POES Polar Orbiting Environmental Satellites  

SAA South Atlantic Magnetic Anomaly 

SABER Sounding of the Atmosphere using Broadband Emission 
Radiometry 

SCIAMACHY SCanning Imaging Absorption spectroMeter for Atmospheric 
CHartographY 

SH Southern Hemisphere 

SPE Solar Proton Event 

SSW Sudden Stratospheric Warming 

TEM Transformed Eulerian Mean 

TIMED Thermosphere-Ionosphere-Mesosphere Energetics and 
Dynamics 

UKCA UK Chemistry and Aerosols 

UKESM UK Earth System Model  

UM Unified Model 

USSA US Standard Atmosphere 

VMR Volume Mixing Ratio 
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WACCM Whole Atmosphere Community Climate Model 

WACCM-D Whole Atmosphere Community Climate Model with D region 
ion chemistry  

WACCM-X Whole Atmosphere Community Climate Model with 
thermosphere and ionosphere eXtension 
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APPENDIX: TECHNICAL STEPS FOR UKCA 
COMPATIBILITY WITH THE EXTENDED UM 

A.1 Introduction 

This appendix provides an overview of the technical steps completed to enable 

compatibility between UKCA and the Extended UM. It is intended that this 

supplement could provide a useful resource to developers of the Extended UM-UKCA 

who wish to recreate the modifications made to enable the basic configuration of the 

model that is used in this thesis. In Section A.2, I list the additional input file 

requirements specific to running UKCA at a different number of vertical levels. In 

Section A.3, I outline the changes made to the Rose framework for running 

meteorological suites. In Section A.4, I summarise the relevant UM source code 

changes. Note that these technical steps are valid for version 11.3 of the UM. To be 

used with later versions of the model, some adjustments may be required. 

A.2 Input Files 

It is a prerequisite that all 3D UKCA input files are transformed from the original 85-

level (85 km lid) vertical grid to the extended 100-level (120 km lid) vertical grid. 

This includes: 

- the model start dump (containing all dynamical, chemical and state variables); 

- chemical emissions (aircraft NOx); 

- and the aerosol climatology ancillaries (including biogenic, biomass burning, 

black carbon, organic carbon, dust, sea salt, sulphate and unspecified). 

A model start dump on user defined vertical levels is generated by the Reconfiguration 

task in the UM workflow. Reconfiguration requires the model to have successfully 

built before functioning. Therefore, it is necessary to make the changes in Sections 

A.3.1 and A.3.2 first. The only chemical emission file that requires a transformation 

onto the 100-level (L100) grid is that for aircraft NOx. This can be done offline by 

using IRIS to append 15 additional levels containing zero emissions above the original 
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85-level (L85) file. For the aerosol ancillaries, there is currently no straightforward 

way of transforming their vertical resolution. Hence, Met Office assistance is 

recommended for this task.  

A.3 Rose Suite Settings 

Chemistry changes should be built into a Rose suite configured for the Extended UM. 

A suitable starting point is suite I.D. u-bl305 at revision number 154213. 

A.3.1 Switch on UKCA 

The first task is to switch on UKCA without GLOMAP, initially under the StratTrop 

chemistry scheme. The necessary suite changes required for this are available through 

the aeroclim-chem UM optional configuration file, documented under ticket #183 on 

the Rose repository. 

A.3.2 Generation of Start Dumps 

The second task is to generate a compatible model start dump containing the UKCA 

fields. At first instance, this will be on the L85 grid. This can be done by running the 

Build UM and Reconfiguration tasks without any L100 UM or Ancillary optional 

configuration keys specified. Next, the resulting L85 start dump needs to be 

transformed onto the L100 grid. Set the suite to initialise from the new start dump and 

configure each UKCA tracer to read from the same location. Now, re-run the Build 

UM and Reconfiguration tasks, this time with the L100 UM and Ancillary optional 

configuration keys. This will produce a start dump that includes UKCA fields on the 

L100 grid. 

A.3.3 Addit ional Modifications 

Finally, there are a few additional modifications required to ensure that the suite runs 

correctly. The first two of which are UKCA settings. 

1. Set the Fast-JX mode (for the photolysis treatment above the Fast-JX cut-off) 

to ‘Fast-JX and lookup table’. Testing revealed this setting to produce the most 

reliable results. 
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2. Set the UKCA top boundary (for the optional overwriting of tracer densities 

for selected UKCA species) to ‘No top boundary condition’. Existing 

treatments are incompatible with the additional vertical model levels. 

The last modification refers to the tuning of the model in aid of stability. 

3. Increase the vertical damping coefficient to a factor of 0.25. Testing revealed 

this to be the lowest factor that could reliably complete a 2-year simulation. 

Before the model can be run successfully, UM source code modifications need to be 

made. The changes specified in Section A.4.1 are sufficient to run with the StratTrop 

scheme, while the changes in Section A.4.2 are also required to run with the Strat 

scheme. By default, the aeroclim-chem UM optional configuration key selects the 

StratTrop scheme. To use the Strat scheme instead (recommended), it will need to be 

manually selected. The suite will also need to be set to read the STASHMaster file 

from the new branch. In addition, all chemical emission files aside from CH4, CO, 

NO, HCHO and aircraft NOx will need to be deallocated from the suite. 

A.4 UM Branch Settings 

Chemistry changes should be applied to new branches. This must be done 

incrementally, first to enable simulations using the StratTrop scheme, then to enable 

simulations using the Strat scheme. 

A.4.1 StratTrop Scheme 

One minor code change is necessary to remove a problematic reference to the original 

model lid height. In the ‘ukca_calc_ozone_col’ subroutine of the ‘ukca_strat_update’ 

module, delete the condition ‘.AND. z_top_of_model < 85500.0’. 

A.4.2 Strat Scheme 

In addition to the above change, a collection of further code changes are required to 

run with the Strat scheme. The necessary changes are available at vn11.1 in the 

‘lukeabraham/vn11.1_ukca_change_diagnostics’ branch, upgradable to vn11.3. 


