
A framework for combining model calibration
with model-based optimization in virtual

engineering design workflows

Submitted September 2020, in partial fulfillment of
the conditions for the award of the degree PhD - Automatic Control and Systems

Engineering.

Oliver Jones
160120664

Supervised by Professor Robin Purshouse
and Professor Jeremy Oakley

Department of Automatic Control and Systems Engineering
The University of Sheffield

I hereby declare that this dissertation is all my own work, except as indicated in
the text:

Signature _____________________
Date ______ / ______ / ______

To my family and all my friends
Thank you for helping me see this adventure through to the end

“It’s the questions we can’t answer that teach us the most. They teach us how to think.
If you give a man an answer, all he gains is a little fact. But give him a question
and he’ll look for his own answers.” - Patrick Rothfuss, The Wise Man’s Fear

i

Acknowledgements

I owe my deepest gratitude to my supervisor Professor Robin Purshouse. He
has been supporting me ever since I came to Sheffield University. Without his
continuous guidance, enthusiasm and optimism concerning this work this project
would not be where it is today. I also express my warmest gratitude to my other
supervisor Professor Jeremy Oakley who has supported me over these last 4 years.
He has always been willing to lend a hand and point me in the right direction
when I am lost. Within the University of Sheffield, I would also like to thank
Mathew Ham for his administrative legwork and Darren Fox for his equipment
procurement.

To my friends, Zak and Shiv, thank you for always being there day or night
whether it was for a simple sanity check or proofreading a document. To Daniel,
Harry, Buket and Abidemi along with my other friends from university thank
you for making this experience such an adventure and for always being willing to
come over and say hi.

Finally, to my family. To my brothers and sister, thank you for your continued
support whether it was helping with work or even just checking up on me. To my
parents, you have always being there for me and never doubting I would succeed,
thank you.

ii

Abstract

In recent years, the development of complex engineering products has seen a
movement towards increasing levels of virtualisation using expensive black-box
simulations. One of the main factors driving this trend is the rapid increase in
available computational resources. As computational capabilities are further de-
veloped, projects which used to be infeasible are now possible.

When using a virtual engineering design process, once the structure of the
simulation model has been built, there is a need to perform both calibration and
optimization in order to ensure that the resulting outputs presented to a decision
maker correctly represent the optimal solutions. Both of these stages require the
use of model evaluations to determine the efficacy of new parameterizations and
designs. Such usage becomes a problem when there is only a limited budget of
evaluations available within the design process for both stages. This problem is
reinforced further by the current practice of considering the two stages as separate
problems where there is only a limited transfer of knowledge between them, rather
than a linked process.

The question that is posed within this research is whether there would be
any benefits to adopting a linked approach to the calibration and optimization of
expensive multi-objective design problems.

In order to determine an answer to this question, it is first essential to set out
a mathematical formulation for the joint problem of calibration and optimisation.
In order to assess any newly developed methods, it is necessary to devise a set of
benchmark problems that contain both model parameters and control inputs that
are required to be determined. This is achieved through the adaptation of pre-
existing problems from the optimization literature as well as the development of a
new component that fits within the Walking Fish Group (WFG) framework. A new
alternating combined methodology is developed with the aim of gaining informa-
tion within more relevant areas of the search space to improve the efficiency of the
evaluations used. This new alternating method is further expanded to incorporate
surrogates with the aim of improving knowledge sharing between the stages of
model calibration and optimization. It is found that the use of the new alternat-
ing method can improve the final parameter sets obtained by the calibration, when
compared to the classical approach. The extended alternating approach also offers
superior calibration, in addition to achieving faster improvement in convergence
of the optimiser to the true Pareto front of optimal designs.

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Aims and objectives . 5

1.3 Contributions . 6

1.4 Description of the thesis . 6

1.5 Related publications . 9

2 Literature review 10

2.1 Background . 11

2.1.1 Population selection methods 11

2.1.2 Model types . 14

2.2 Model calibration . 16

2.2.1 Calibration via statistical inference 17

2.2.2 Markov chain Monte Carlo . 19

2.2.3 Approximate Bayesian computation 21

2.2.4 Calibration for computer models 22

2.3 Optimization . 23

2.3.1 Optimization methods . 24

2.3.2 Multi objective optimization 25

2.3.3 Robust optimization . 29

2.3.4 Dynamic optimization . 31

2.3.5 Surrogate modelling . 31

2.3.6 Efficient Global Optimization 33

2.3.7 Mixed-integer surrogate optimization 34

2.3.8 Expensive multi-objective optimization 34

2.4 Combined calibration and optimization 35

2.5 Research gap . 37

iii

iv Contents

3 MOEA/D study 39
3.1 Introduction . 40
3.2 MOEA/D and its components . 41

3.2.1 Components of MOEA/D . 42
3.2.2 Implementation of components 43

3.3 Component Investigation . 44
3.3.1 Areas of interest . 44
3.3.2 Performance analysis . 46

3.4 Results . 48
3.4.1 Impact of sharing information 48
3.4.2 Impact of normalisation . 50
3.4.3 Interesting variants . 53

3.5 Discussion . 53
3.6 Conclusion . 56

4 Framework 57
4.1 Introduction . 58
4.2 Mathematical formulation . 58

4.2.1 Problem framework and variables 58
4.2.2 Model calibration . 60
4.2.3 Optimization . 63
4.2.4 Combined workflow . 64
4.2.5 Toy formula - The problem . 65

4.3 Possible solutions . 66
4.4 Real-world examples set within the combined problem framework . 67

4.4.1 Injection moulding . 67
4.5 Conclusion . 71

5 Benchmarking 73
5.1 Introduction . 74
5.2 Indicators . 74

5.2.1 Hypervolume . 75
5.2.2 Generational Distance . 76
5.2.3 Inverted Generational Distance 76
5.2.4 Epsilon family . 77

5.3 COCO / B-BOB framework . 77
5.4 Adapting test problems from the literature 78

5.4.1 Examples of possible test functions 78
5.4.2 Proposed method for adapting test problems 78

Contents v

5.4.3 Single objective . 78
5.4.4 Multi objective . 80

5.5 Creation of a new test problem . 87
5.5.1 Requirements . 87
5.5.2 New component . 88
5.5.3 New WFG function . 90
5.5.4 WFG4s . 91

5.6 Conclusion . 91

6 Architectures for 5000 evaluations 92
6.1 Introduction . 93
6.2 Implementation . 93

6.2.1 Schematics . 94
6.2.2 Model calibration . 96
6.2.3 Optimization . 98
6.2.4 Robust optimization . 98
6.2.5 Alternating . 99
6.2.6 Correcting model error . 101
6.2.7 Performance measure . 104
6.2.8 Evaluation budget . 106
6.2.9 Input and parameter ranges 107

6.3 Results and discussion . 108
6.3.1 DTLZ1θ function . 109
6.3.2 ZDT1θ function . 115
6.3.3 WFG2θ function . 119

6.4 Conclusion . 123

7 Architectures for up to 800 evaluations 125
7.1 Introduction . 126
7.2 Combined solution . 126

7.2.1 Kriging model . 128
7.2.2 Updated optimization and calibration 133
7.2.3 Tracking information throughout the combined method . . . 137

7.3 Algorithm setup . 138
7.3.1 Run order . 139
7.3.2 Surrogate parametes . 139
7.3.3 Calibration and optimization parameters 140

7.4 Results . 140
7.4.1 Selecting the appropriate number of generations 140

vi Contents

7.4.2 Initial evaluations . 142
7.4.3 Results from the alternating method 143
7.4.4 Results of running the classical method 153
7.4.5 Comparison . 161
7.4.6 Discussion . 164

7.5 Conclusion . 164

8 Conclusion 166
8.1 Main contributions . 167
8.2 Future work . 168

Bibliography 170

List of Figures

1.1 A schematic of the virtual engineering workflow 2

2.1 An example of Latin hypercube sampling within a two dimensional
input space for which four points have been selected. For both di-
mensions X1 and X2, each of the four defined regions only contains
a single point which is obtained uniformly at random from within
the region. 13

2.2 Three dimensional Central Composite Design 13

3.1 Trajectory plot for the baseline algorithm using 100 reference direc-
tions and a budget of 20,000 evaluations (progress after 500 evalua-
tions is shown by the circled points). Good convergence is observed
for the larger budget. 44

3.2 Boxplot showing how the use of neighbourhoods to share informa-
tion between subproblems within the optimizer impacts the IGD.
It is evident that the inclusion of neighbourhoods for updating of
neighbouring solutions has a positive impact on performance. 47

3.3 Plot showing how the median IGD for different setups progresses
over iterations of the optimizer. The positive impact of updating is
clearly visible for the majority of the evaluation budget. 48

3.4 Trajectory plots of the median runs, based on the integrated IGD.
The inclusion of neighbourhoods causes clustering and rapid initial
movement. 49

3.5 Boxplot showing how normalisation affects IGD performance. Of
interest is how reserving a portion of the budget for estimated ideal
and nadir points greatly improves performance. 51

vii

viii List of Figures

3.6 Trajectory plots of the median runs using different normalisation
methods, based on the integrated IGD. It is evident that lacking
good estimates of the ideal and nadir points greatly compromises
the ability of a decomposition-based optimizer to find the Pareto
front. 52

3.7 Trajectory plot when five offspring are generated, in the absence
of information sharing components. Note the smoother trajectories
approaching the Pareto front, when compared to the previous single
offspring configurations. 54

3.8 Trajectory plot when four neighbours are used for SBX and there is
no update of neighbouring solutions. The points cluster together,
affecting the overall ability of the optimizer to find the Pareto front. 54

4.1 Flow diagram for the proposed joint problem of model calibration
and optimization. 67

4.2 Injection molding process optimization and calibration framework
taken from the original paper (Villarreal-Marroquín et al., 2017). . . 68

5.1 Example of hypervolume, with non dominated points shown as cir-
cles, the selected anti ideal shown as a cross and the Hypervolume
area encircled by a dashed line . 75

5.2 A plot showing both the true Pareto front as well as that produced
by the model containing a structural error for the DTLZ1a function. 82

5.3 A plot showing both the true Pareto front as well as that produced
by the model due to model error for the ZDT1θ function. 84

5.4 A plot showing both the true Pareto front as well as that produced
by the model due to model error for the WFG2 function. 85

5.5 A plot showing both the true Pareto front as well as that produced
by the model due to model error for the WFG4 function. 86

5.6 Example of how a simple surrogate can fit to a more complex function 87

5.7 Two possible realizations of the new ssignal component produced
with fixed parameters and a varying input 89

5.8 Plots of two possible realizations of the function 89

6.1 Schematic of the classical aproach for tackling model calibration and
optimization . 94

6.2 Schematic of the new alternating aproach for tackling model cali-
bration and optimization . 96

List of Figures ix

6.3 Comparison of the effects of different methods by which new points
are added to the expert population during an implementation of the
alternating method. Results are shown as a comparison between
the achieved IGD and the number of optimization iterations that
have been carried out. A greater improvement, smaller IGD values,
can be identified when more information is made available to the
method as well as when the information more directly relates to the
area of interest. Once a sufficient quantity of information is present
the impact of the chosen selection methods is reduced. 100

6.4 The least squares estimation of the error between the true system
output and the modelled output for the DTLZ1θ function. 102

6.5 The effects of applying the least squares estimation results as a cor-
rective term to the model outputs after calibration for the DTLZ1θ

function. 103

6.6 The effects of applying the least squares estimation results as a in-
put correction term for the model outputs after calibration on the
WFG4θ function . 104

6.7 The progress of the log likelihood obtained by the MCMC over the
course of the calibration. The alternating and classical (series) meth-
ods are depicted for both when modelling error (ME) is present and
absent. 109

6.8 The final parameter values achieved by the alternating and classi-
cal (series) methodologies for both the cases when modelling error
(ME) is present and absent while examining the DTLZ1θ function. . 111

6.9 Comparison of the final apparent hypervolume achieved by the al-
ternating and classical (series) methodologies, for both the cases
when modelling error (ME) is present and absent. The y value
shows the percentage of the optimal hypervolume which would be
achieved using a reference point takes as the worst case for each
objective in combination with the true front. 112

6.10 Comparison of the final true hypervolume achieved by the alter-
nating and classical (series) methodologies, for both the cases when
modelling error (ME) is present and absent. The y value shows the
percentage of the optimal hypervolume which would be achieved
using a reference point taken as the worst case for each objective in
combination with the true front. 113

x List of Figures

6.11 Comparison of the absolute difference between the apparent and
true final hypervolumes achieved by the alternating and classical
(series) methodologies both for the cases when modelling error (ME)
is present and absent. 114

6.12 The true and apparent final populations for the alternating and se-
ries methods when modelling error is present. The populations pre-
sented represent the medium performing alternating run along with
its corresponding series run. 115

6.13 The final parameter values achieved by the alternating and classi-
cal (series) methodologies for both the cases when modelling er-
ror (ME) is present and absent. The alternating methods show a
reduced spread of final value over what is seen for the classical
method. Better calibration is observed when there is no model error
present within the system. 116

6.14 Comparison of the final apparent hypervolume achieved by the al-
ternating and classical (series) methodologies when examining the
ZDT1θ function, for both the cases when modelling error (ME) is
present and absent. The y value shows the percentage of the opti-
mal hypervolume which would be achieved using a reference point
takes as the worst case for each objective in combination with the
true front. Both the alternating and classical methodologies strug-
gled to achieve a satisfactory final apparent hypervolume. 117

6.15 Comparison of the final true hypervolume achieved by the alternat-
ing and classical (series) methodologies when examining the ZDT1θ

function, for both the cases when modelling error (ME) is present
and absent. The y value shows the percentage of the optimal hyper-
volume which would be achieved using a reference point takes as
the worst case for each objective in combination with the true front. 118

6.16 Comparison of the absolute difference between the apparent and
true final hypervolumes achieved by the alternating and classical
(series) methodologies both for the cases when modelling error (ME)
is present and absent when considering the ZDT1θ function. A
lower absolute difference between the hypervolumes was achieved
when the alternating method is used. 119

6.17 The final parameter values achieved by the alternating and classi-
cal (series) methodologies for both the cases when modelling error
(ME) is present and absent when examining the WFG2θ function. . . 120

List of Figures xi

6.18 Comparison of the final apparent hypervolume achieved by the al-
ternating and classical (series) methodologies, for both the cases
when modelling error (ME) is present and absent. The y value
shows the percentage of the optimal hypervolume which would be
achieved using a reference point takes as the worst case for each
objective in combination with the true front. 120

6.19 Comparison of the final true hypervolume achieved by the alternat-
ing and classical (series) methodologies when examining the ZDT1θ

function, for both the cases when modelling error (ME) is present
and absent. The y value shows the percentage of the optimal hyper-
volume which would be achieved using a reference point takes as
the worst case for each objective in combination with the true front. 121

6.20 Comparison of the absolute difference between the apparent and
true final hypervolumes achieved by the alternating and classical
(series) methodologies both for the cases when modelling error (ME)
is present and absent when considering the WFG2θ function. As
with the other test problems a lower absolute difference between
the hypervolumes was achieved when the alternating method is used.122

7.1 Effect of varying p on the correlation, with x axis showing distance
from sample point and the y axis showing the correlation. A p value
of 2 is often chosen for use within the liturature. 130

7.2 Effect of varying θ on the correlation, with x axis showing distance
from sample point and the y axis showing the correlation. An ap-
propriate value of θ for each input within the training data will need
to be found. 130

7.3 Fitness change within a GA searching for best theta during surro-
gate construction. Twenty five generations were selected for use
within the GA as this was the point at which both the best and
mean fitness are close to the minimum fitness found. 141

7.4 The control inputs, parameters and model outputs corresponding
to the points present within the initial population. A good degree
of coverage has been achieved for all the control inputs and param-
eters, with only small regions having a lower density of initial points.142

7.5 The selected parameter from each of the calibration iterations (red
cross) with the true parameter value (blue dashed line) shown. As
the calibration progresses the selected parameter 1 values move
closer to the true value. There is no clear trend in the values of
parameter 2 selected. 143

xii List of Figures

7.6 Absolute difference between the modelled outputs using the true
and determined parameter values. The blue lines show points on
the Pareto front and the magenta lines show expert points. A clear
trend of reducing error can be seen. In the later iterations the per-
formance of the points located at the Pareto front outperform that
of the expert points. 145

7.7 Model output 1 for fixed inputs with varying parameters. Most
variation is dependent on parameter 1. There is a higher density of
peaks and troughs at lower parameter 2 values. 146

7.8 The effects of changing the parameters, after 1, 10, 20, 30, 40 and 50
calibration iterations, on output 1 of the surrogate is shown. Fixed
control inputs of [0.5 0.5 2.1 2.8]. Initially a large difference can
be seen between the surogate output plot and that shown for the
model in Fig. 7.7. At the 30th iteration, subplot d, the shape is a
much closer match but worsens by the 40th iteration, subplot e. The
areas of higher complexity are never well modelled. 147

7.10 The final output space after all optimization runs have been com-
pleted evaluated using the selected parameters. Modelled output
points are shown as crosses, while the undominated set of points
comprising the Pareto front from the population are shown as cir-
cles. The set of initial population points are displayed as dots and
the expert population are shown as black diamonds. The optimiza-
tion has successfully found points near the front. It has struggled to
identify points at the central region of the output space. 149

7.9 The absolute error between the surrogate and the model for output
1 after 1, 10, 20, 30, 40 and 50 calibration iterations. Over the first
4 plots the level of error is observed decreasing. There are areas
at which peaks and troughs occur in the model at which the error
remains high for all stages of the calibration. 150

7.11 The final output space after all optimization runs have been com-
pleted evaluated using the true parameters. Points near the front
generally either maintain or improve upon their performance when
evaluated using the true parameters. Some initial points perform
better than believed and move closer to the front. 151

List of Figures xiii

7.12 Hypervolume progress for both the modelled and true output pop-
ulations over the cause of the optimization iterations. There is ini-
tially a large error present due to parameter error which is reduced
over time. The rate of improvement slows as points closer to the
front are obtained. An error remains due to the model not identify-
ing points near the central region of the Pareto front. 152

7.13 Selected parameter value after each interaction of calibration. Dashed
line shows the true parameter value, blue x’s show initial training
data spread. There is no clear trend of improvement observed over
the course of the calibration. The parameter set found to be produc-
ing the highest likelihood was [0.501 0.504]. 154

7.14 The effects of the different parameter sets selected during calibra-
tion on both expert and Pareto optimal points. While there are some
iterations at which low error is observed, there does not appear to
be any continuous improvement over the course of the calibration.
In the majority of cases the performance of the expert points is bet-
ter than that of points chosen on the Pareto front. 155

7.15 Model output 1 for fixed inputs with varying parameters. Included
to allow for easier comparison with plots in Fig. 7.16. The model
outputs match those presented in Fig. 7.7. 155

7.16 Plots of the surrogate looking at the effects of the parameters on
output 1 after 1, 10, 20, 25, 30 and 35 calibration iterations. It ap-
pears that the surrogate struggles to correctly identify the channel
which is present for lower values of parameter 1. Like before the
surrogate failed to identify the more complex regions occurring at
lower values of parameter 2. 157

7.17 The absolute error between the first surrogate and model output
after 1, 10, 20, 25, 30 and 35 calibration iterations. Regions where
peaks and troughs occur can be seen to possess a larger absolute
error. It can be clearly seen that as noted in Fig. 7.16 the surrogate
appears to struggle with correctly identifying the troughs present
for smaller values of parameter 1. 158

7.18 The final output population obtained when points were evaluated
using the parameters selected from the calibration runs. Only a few
points manage to make it close to the true Pareto front. All the
selected expert points lie away from the true front. The obtained
points appear to be forming a front set back from the true Pareto
front. 159

xiv List of Figures

7.19 The final output population obtained when points were evaluated
using the true parameters. Points in the central and lower region of
the front have moved closer to the true front. The points obtained
with lower values of output 2 have been shifted dramatically when
comparing to Fig. 7.18. 160

7.20 Hypervolume progress for both the modelled and true output pop-
ulations over the cause of the optimization iterations for the classi-
cal method. The parameter error produces a large initial difference
between the modelled and true hypervolume. The rate of improve-
ment for the modelled hypervolume slows over the cause of the
optimization. The modelled hypervolume fails to match the true
hypervolume, although the difference between the two is reduced
over the cause of the optimization. 161

7.21 Comparison of the expert points present within the alternating and
classical (series) methods. The points selected by the alternating
method are in general closer to the front than those obtained by the
series classical method. 162

7.22 Comparison of the hypervolumes achieved by alternating and clas-
sical (series) methods. The rate of improvement for the alternating
method is faster than the classical method for both the true and
modelled values. The final hypervolumes achieved by the alternat-
ing method outperformed those by the series method. 163

List of Tables

5.1 A list of some of the available test problems from within the liter-
ature indicating their, number of objectives and inputs, if they are
separable or unimodal and what shape geometry they posses. 79

6.1 The minimum, maximum and true values for the parameter and
control input values present within the DTLZ1θ function. 108

6.2 The minimum, maximum and true values for the parameter and
control input values present within the ZDT1θ function. 108

6.3 The minimum, maximum and true values for the parameter and
control input values present within the WFG2θ function. 108

7.1 Internal parameters of the optimizer 140
7.2 Internal parameters of the calibration 140
7.3 Parameters selected for use within optimization after each batch of

calibration was completed. Selected parameter values progress to-
wards true values. Within some batches there is a lack of improved
points being obtained. These results are from a single run of the
alternating methodology. 144

7.4 The expert points that were available for the classical and alter-
nating method displayed in the order they were acquired. Those
obtained by the alternating method in general have better values
(closer to lying on the true Pareto front) than those obtained by the
classical method. 162

xv

Chapter 1

Introduction

1

2

This thesis examines the design stages of model calibration and optimization
in order to determine if their overall efficiency can be increased through consid-
ering them as a combined problem. The research fields for both these stages are
very active and their presence can be seen throughout both academia and industry.
While this is the case, currently the fields of model calibration and optimization
are treated almost exclusively as separate stages. Within this work the focus lies
upon exploring the possibility of crossover and combination between them. Be-
fore continuing it is useful to lay out precisely how this work fits into the larger
engineering design process.

In its most broad sense the engineering design process is the series of steps
taken by an engineer to create a functional product. During the process of engi-
neering design, modelling is one of the key stages that needs to be considered.
There are two main methods used to perform modelling: prototyping and com-
puter simulation. Numerous factors influence the decision as to which of these two
methods are preferable. Such factors include the manufacturing costs of producing
the simulation or prototype and how long they take to make. When prototyping
it can be difficult to change the parameters of the product. For instance, when de-
signing a plane it would not be practical to build new wings of each possible shape
that was to be tested due to the expense and possible safety issues. The alternative
to this is the production of a computer simulation which aids in supporting the
engineering design. The advantage of producing a computer model is that once it
is constructed, alterations can be applied to it at relatively low expense. Despite
the adaptability that can be obtained through the use of a computer model, they
suffer from the issue of often being expensive to build as well as never being fully
trustworthy. While in many cases, the minor differences between any simulated
results and reality would not matter, there are exceptions such as when there is a
risk of harm or damage occurring. In these cases, it is important to ensure that the
product will act as expected, so the use of prototypes is advisable. A schematic of
the virtual engineering design workflow can be seen in Figure 1.1.

Figure 1.1: A schematic of the virtual engineering workflow

Chapter 1. Introduction 3

The steps within the workflow are:

• Customer requirements - Lay out a list of requirements provided by the
customer detailing what they want from the final product
• Problem definition – Produce a textual description of the problem, including

where it fits within the process of the organization
• Problem formulation – Develop a mathematical formulation of the problem,

including objectives, constraints, design variables and parameters
• Model / simulation build – Construct the model presented in the problem

formulation. This construction consists of two stages, the creation of a model
structure and the calibration of internal parameters.
• Optimization – Acquire the best possible solutions from the model
• Decision maker – Ask the decision maker whether the found solutions are

acceptable
• Complex product engineered – Return the finalised product to the customer.

The two stages of calibration (part of the model build) and optimization which
are of interest for this research both require the use of function evaluations. In the
case of model calibration, the function evaluations are used for the production and
improvement of the system model through alteration of the internal parameters
in order to ensure that the system outputs represent reality as closely as possible.
Optimization utilises the function evaluations for selecting inputs to the system
that provide the most desirable outputs. When working on real world problems
it is often the case that only a set number of function evaluations are available
for use throughout the entire design process. For simple problems this does not
pose an issue as the number of evaluations available often lies above the tens of
thousands. When the system is more complex however the cost of the function
evaluations can become prohibitive. For instance, if a single evaluation were to
take an hour of computer time to run, then it may only be possible to perform
a couple of hundred evaluations over the course of an entire project. The focus
of this work is on when such instances occur. This means that while within both
research fields there are a multitude of methods for performing their respective
steps, a large proportion of these are not suitable when only a small evaluation
budget is present.

Within industry, especially within some larger companies, it is common prac-
tice for there to be separate departments handling each of the calibration and
optimization stages. These departments will contain specialists that are proficient
at their field but may only possess superficial knowledge of the other. Due to
this separation the majority of information gathered during the calibration stage

4 1.1. Motivation

is thrown away with only a minimal transfer of knowledge occurring when the
parameters are passed to those working on optimization.

In this work the broad perspective is maintained when considering the two
stages with a focus on considering them as a single combined problem. A math-
ematical framework for the combined problem is produced in order to allow for
better understanding of how calibration and optimization can be linked. The new
frameworks viability is demonstrated by setting a real-world injection moulding
problem within it. Possible assessment criteria for determining the performance of
the combined problem are discussed. In order to allow for benchmarking a new set
of test problems based on a selection drawn from the optimization literature were
developed with both control inputs and parameters present. A novel approach
to solving the combined problem through the use of an alternating methodology
is detained and compared to the classical approach. This novel method was fur-
ther developed for use with a limited evaluation budget with the aim of solving
expensive problems.

The remainder of this chapter begins, in Section 1.1, by presenting the motiva-
tion for this research. The formal aims and objectives are laid out in Section 1.2.
A description of the thesis and its contained work is given in Section 1.4. Finally
Section 1.5 lists the related publications.

1.1 Motivation

The ever increasing level of product development occurring as companies try to
outperform competitors and improve themselves is one of the main reasons behind
the need for ever more complex simulations. While complex simulations may take
hours if not days to run and be expected to produce beneficial results, it is often
the case that only a small budget of evaluations are available for use. These high
complexity models can be very expensive to run, both in terms of computational
time as well monetary expense. The high computational demand means that it is
not always possible to obtain the desired level of output performance. While it is
possible to use more powerful computers to overcome some of the computational
burden, it is not always a viable option.

A selection of questions arise from this situation including:

• How the design process (engineering workflow) can be improved.
• Whether there is a better design methodology for making more efficient use

of the available evaluation budget.
• If it is possible to use the information that is gathered throughout the model

calibration stage as a basis for the optimization and make better use of all

Chapter 1. Introduction 5

available knowledge.
• What is the most efficient way of dividing the budget between the different

design stages.
• If it is possible to integrate the model calibration and optimization workflows

in order to negate the need for splitting the available evaluations.

The proposed solution to this situation is that of developing a new design
method. This new method shall efficiently incorporate both the design steps of
model calibration and optimization together. Doing so will allow for greater in-
formation sharing and hence reduce the number of function evaluation required
while maintaining the overall performance of the system.

It is hoped that this study will have an impact on the scientific community by
providing new methods that can be used to incorporate multiple fields of work
bringing together ideas from model calibration and optimization. Introduction of
new cooperative methods that aim to guide users into having a greater under-
standing and control over how resources need to be allocated. Additionaly it will
help to get people to look at the overall process of design rather than just their
own specialist areas.

Providing members of industry with a tool that can aid in reducing the cost
of the design process when working with expensive models will prove to be im-
pactfull on how such work is carried out. It aims to add many advantages such as
reducing the cost of development and improving the amount of development that
can be done with a set budget of evaluations. These issues have been shown to
have particular interest for engineering companies such as Jaguar Land Rover who
use highly complex simulation during their development processes. Through the
incorporation of such newly developed methods companies would have greater
flexibility within their design process.

1.2 Aims and objectives

This project aims to develop a method by which the efficiency of the function
evaluations that are used within the model calibration and optimization design
steps can be improved. The aim of the project can be subdivided down into three
objectives:

• Formalise the joint problem of ’model verification, validation and optimiza-
tion’ mathematically
• Develop an abstracted simulation of the problem

6 1.3. Contributions

• Develop a method to re-use or combine information from historical model
builds during optimization

1.3 Contributions

The key original contributions towards the fields of model calibration and opti-
mization which were discovered within this thesis are:

• The proposition of a new mathematical formulation to express the problems
of model calibration and optimization as a single unified problem.

• The extension of existing optimization benchmark problems to incorporate
calibration parameters to allow for the testing of methods which consider
both the stages of model calibration and optimization. Additionally the
created multi objective problems were expanded to included cases for both
when model error is present as well as when it is absent.

• The creation of a new component, s_signal, for the WFG framework that
incorporates model parameters. This new component was designed so that it
would possess adjustable complexity and could not be easily approximated
via a simple surrogate model.

• The proposition of a new alternating methodology for solving the combined
problems of model calibration and optimization. It was designed with the
aim of obtaining improved knowledge of more relevant area of the output
space and hence ensure that the outputs obtained lie as close as possible to
the true front.

• Extension of the alternating methodology for use with a small evaluation
budget. This was achieved through the incorporation of surrogate models
within both the calibration and optimization stages.

• Assessments for the performance of both the new alternating method as well
as its surrogate version were performed. In both cases they are compared to
a comparable setup in which the classical approach, of performing the two
stages in series, was implemented.

1.4 Description of the thesis

This section presents an overview of the structure present within the thesis chap-
ters, first briefly then in more detail. Chapter 2 presents background information

Chapter 1. Introduction 7

and an overview of the literature relevant to this research. Chapter 3 describes a
study performing a component level investigation into the multi-objective evolu-
tionary algorithm based on decomposition (MOEA/D). Chapter 4 looks at forming
a mathematical formulation of the combined problem and laying out a real-world
problem within it. Chapter 5 goes through aspects related to benchmarking look-
ing at both performance metrics and test problems. Chapter 6 introduces an al-
ternating approach for tackling the combined problem which is further developed
in Chapter 7 where a more limited evaluation budget was considered. Chapter 8
concludes the thesis and discusses potential areas of future work.

• Chapter 2 presents a literature review covering the fields of model calibra-
tion and optimization. The chapter starts by coving background knowledge
that is relevant to implementations from both the fields of calibration and op-
timization. This is followed by an introduction to model calibration which
also looks at performing calibration via statistical inference. Methods that
both use likelihood functions, such as Markov chain Monte Carlo (MCMC),
are examined along with cases which do not, approximate Bayesian compu-
tation. The discussion of calibration is concluded by an assessment of cases
in which it is used for computer models. The next field to be looked at
within the literature review is that of optimization. Within the optimization
field both the single and multi-objective cases are discussed along with the
use of surrogate and dynamic methodologies. The review of optimization
finishes with a look at expensive multi objective optimization before moving
on to examine literature which attempts to consider the combined case. This
chapter is finished by presenting the research gaps that are found.
• Chapter 3 describes the examination carried out within a component level

investigation of the MOEA/D algorithm. After presenting a thorough intro-
duction to the algorithm along with the components it is comprised of, the
implementation that is carried out is given. There were two main areas in-
vestigated within the work presented, these being to determine the impact of
information sharing within the MOEA/D algorithm and to see how different
forms of normalization effect the algorithms performance. After presenting
the results of these investigations along with some interesting variants, a
discussion of the findings took place and the chapter is finished with some
concluding remarks.
• Chapter 4 introduces a new mathematical framework for laying out the com-

bined problem of model calibration and optimization. The framework is pre-
sented along with a toy formulation that demonstrates how it can be applied.
Once the framework is laid out possible methods by which such a combined

8 1.4. Description of the thesis

problem could be solved are discussed. The final area looked at within this
chapter is the laying out of a real-world example which has been set within
the new combined problem framework.
• Chapter 5 describes aspects of the benchmarking process that are necessary

later when assessing new methodologies. The use of performance indices
within the optimization literature is discussed before a selection of different
performance metrics are laid out. After this the chapter moves on to detail
a proposed method for altering pre-existing test problems for use with the
new case, where they are required to possess both parameters and control
inputs. A selection of both single and multi-objective problems are updated
using the devised method to form a pool that can be draw from for later
testing. The chapter goes on to look at how a new component for the WFG
framework was developed, with the aim of providing properties which the
current test problems did not possess.
• Chapter 6 presents a new alternating methodology for tackling the combined

problem of model calibration and optimization. It begins by setting out
the implementation of both methods along with high level schematics. The
design choices are laid out along with the performance metrics used and
the setup of the test functions. Results for the DTLZ1θ , ZDT1θ and WFG2θ

functions are presented and discussion.
• Chapter 7 provides an extension of the alternating method in which the

use of surrogates is examine with an aim to allowing for greater information
sharing. This extended version is aimed at tackling expensive multi objective
problems for which only a small evaluation budget is available. The chapter
again begins by presenting the new methodologies for the classical and al-
ternating methods, along with relevant implementation information. This is
followed by additional information about the algorithm setup before results
are presented. The presented results are broken down into four section, with
the first analysing an initial investigation into values used to determine part
of the setup. After this the results of the alternating methods are presented
followed by those achieved by the classical approach. Finally, a comparison
of the two methods is presented.
• Chapter 8 concludes the thesis by laying out the key findings and discussion

points before presenting future avenues of research.

Chapter 1. Introduction 9

1.5 Related publications

Parts of the work presented within this thesis are also available within the follow-
ing publications:

2019

Conference paper

Oliver P. H. Jones, Jeremy E. Oakley, and Robin C. Purshouse. 2019. Toward a
unified framework for model calibration and optimization in virtual engineering
workflows. In 2019 IEEE International Conference on Systems, Man and Cyber-
netics (SMC) (pp. 3148-3153). IEEE.

2018

Conference paper

Oliver P. H. Jones, Jeremy E. Oakley, and Robin C. Purshouse. 2018. Component-
level study of a decomposition-based multi-objective optimizer on a limited eval-
uation budget. In Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO ’18), Hernan Aguirre (Ed.). ACM, New York, NY, USA, 689-696.

Chapter 2

Literature review

10

Chapter 2. Literature review 11

The virtual design process stretches over multiple fields of research and areas
of study. For this work the review of the literature focuses on two main areas of
interest, being, work from the optimization and model calibration communities.
Other areas such as model building, decision making and higher-level system
design play a part in the overall process but have been deemed too broad for
this work. To recap what was mentioned before, we have a specific interest in
problems which are computationally expensive and are looking for ways by which
the overall virtual engineering design flow could be made more efficient.

Learning more about the methods used to perform calibration and optimiza-
tion will allow us to identify the current state of the art. This chapter begins
by looking at population initialization methods and types of models. These are
examined first as they are relevant to both the fields of model calibration and
optimization and are used within many methods.

This general background is followed by an overview of model calibration
which leads into looking at calibration via statistical inference and concludes by
looking at calibration methods for computer models. The third section of this
chapter presents an overview of optimization. Within this the different types of
optimization ranging from single objective to expensive multi-objective cases are
discussed.

The fourth section looks at some of the literature that depicts possible crossovers
between the fields of model calibration and optimization. Finally, the last section
presents the research gaps which were identified from the literature.

2.1 Background

Before beginning the examination of the literature pertaining to the main areas of
interest for this work it is first necessary to examine a few topics which will be
present while not necessarily being the main focus. The first of these areas looks
at the different methods by which a population of points can be obtained. This is
followed by an overview of possible model types that are often used.

2.1.1 Population selection methods

The choice of an appropriate initialization method is an important one and can
have a major impact on the performance of an algorithm. The selection of an
appropriate population is necessary within both main fields under examination
within this work. If considering initialization methods for engineering design
the input space to be sampled would be representing either a design variable or
environmental uncertainty. Looking at it from the perspective of carrying out

12 2.1. Background

calibration the input spaces to be sampled for initialization would be the model
parameters as well as potentially control inputs if none had been previously ob-
tained.

There are many methods to determine a set of initial starting points, most of
which fall within one of two groups, either space filling or criterion based. One
of the most common methods seen within the literature is a space filling design
called Latin Hypercube Sampling (LHS) (Damblin et al., 2013). From examin-
ing optimization papers and selecting twenty-eight that used an initial sampling
method, it was found that twenty of them used Latin hypercube sampling with
another five using random sampling to decide upon their initial set of points. With
the rest using alternate methods such as equal spacing and the Halton sequence.
There are many approaches for which Latin hypercube sampling has been used,
such as the ParEGO algorithm by Knowles (2006) which is discussed later. Latin
hypercube sampling can be used when the range of possible input values is known
and is capable of being scaled for use with multi-dimensional problems. Another
of its advantages is that of ensuring that the whole search area is well covered.

The process of performing Latin hypercube sampling can be broken down into
three steps, first, subdivide each dimension of the search space into N regions
of equal size. Next select a point at random from within each of these regions.
The last step is to randomly combine together points from each of the separate
dimensions to produce points that now reside within the multi-dimensional space.
A simple two dimensional example of this is shown in 2.1.

A modified version of the Latin hypercube design, presented by Morris and
Mitchell (1995), called the ‘Maximim Latin hypercube design’ aims at acquiring
an optimal set of initial points. The basic implementation is similar to that of the
Latin hypercube sampling method with the main difference being that a design
criterion, maximizing the minium distance between design points, is used to select
the best version of the Latin hypercube design after it has been run a set number
of times.

Huang et al. (2006) laid out a selection of alternative methods for determin-
ing the initial population of points. These include the space filling method of
the Monte Carlo design and the design criteria based method of maximum and
minimum distance. The Monte Carlo design (Hastings, 1970) works by randomly
selecting points within a pre-specified region. When compared to Latin hypercube
sampling it has the disadvantage of requiring a relatively large number of points
if a reasonable cover of the search space is necessary. This means that a larger
number of evaluations is required which when done on a complicated model can
lead to a high computational expense.

Chapter 2. Literature review 13

Figure 2.1: An example of Latin hypercube sampling within a two dimensional
input space for which four points have been selected. For both dimensions X1 and
X2, each of the four defined regions only contains a single point which is obtained
uniformly at random from within the region.

The central composite design method demonstrates one of the issues some ini-
tialization methods face. It decides upon the initial sampling points by taking a
centre point and then ’2k’ Factorial points and ’2 x k’ Star points. For example,
in a three dimensional problem you would have one centre point, eight factorial
points and six star points. This can be seen in Figure 2.2. The issue that the central
composition method presents is that of having multiple points corresponding to
a single value in each of the input dimensions. Thus, if it is found that one of
the dimensions has a negligible effect on the output, all points that have the same
values in that dimension are now obsalete, resulting in wasted evaluations. Alter-
native methods such as the Latin hypercube sampling method and lattice design
have gained popularity as they avoid this problem.

Figure 2.2: Three dimensional Central Composite Design

14 2.1. Background

2.1.2 Model types

When considering models, it is important to distinguish between high fidelity
models and surrogates. High fidelity models focus on being accurate to the real-
world system they are representing. They are often formed of a complex set of
equations and can have a high computational cost to run. Surrogates, also re-
ferred to as meta models, are data driven models which are used to represent a
more complex system. Unlike high fidelity models which are often custom made
for a specific real world problem surrogates are often based of standardised for-
mulations. There are many types of surrogate models present within the literature
for both optimization and model calibration. In this section three of these methods
are examined, the Polynomial, Radial Basis function and Gaussian process mod-
els. These were selected due to their popularity within the literature and the fact
they can be applied to a wide variety of problems.

Polynomial model

Polynomial models have been around since the early 19th century and have
been used widely in all areas of research. They replicate the expected behaviour of
a model using a polynomial equation of length n (see equation 2.1). A polynomial
model can then be used to predict output values for new inputs, with determinable
confidence. The basic form of a polynomial regression model is as follows:

f (x) = a0 + a1x + a2x2 + ... + anxn + e (2.1)

with unknown coefficients a0 ... an which are to be determined and e the error
term that represents the difference between the polynomial output and the true
output. A common method for fitting a polynomial model to a data set is through
the use of the least squares method. This method works by minimizing the sum
of squared errors, the difference between true points and model estimates. An
example of the polynomial model in use can be seen in the EANA algorithm
proposed by Liang et al. (2000). In the case of the EANA algorithm, even though it
managed to outperform both the Improve Fast Evolutionary Programming (IFEP)
and Evolution Strategies (ES) it was compared against, it still took a fairly large
number of evaluations, over 1000, in most cases to run.

Radial basis function

The Radial Basis Function (RBF) is a low-cost function that can be used dur-
ing surrogate modelling. There are many different types of RBF that can be used
when producing a model; Gaussian, linear, multi quadratic and thin plate spline

Chapter 2. Literature review 15

are just some examples of the options available. A surrogate model is produced by
combining multiple RBF’s into a RBF network, sometimes known as an artificial
neural network (Broomhead and Lowe, 1988). Provided a large enough number
of RBF are used, the network will be capable of providing a reasonable approx-
imation of the test function. Gutmann (2001) presents a case in which he uses a
RBF for global optimization. His method works by defining a utility function that
represents the performance of the RBF model. Using this the optimal point from
a set of given inputs can be determined and the new test point selected.

Gaussian processes and kriging models

Gaussian processes (Rasmussen (2004)) are sets of random numbers that have a
defined mean and covariance function. A Gaussian process is a stochastic function
and can be expressed as:

f ∼ GP(m, k) (2.2)

where m is the mean and k is the covariance of the function. In order to construct a
Gaussian process for modelling it is necessary to have a set of known points from
which the initial mean and covariance matrix can be found. As more points are
obtained through experimentation or evaluations of the true function the model
generally improves as the quantity of uncertainty is being reduced. One potential
issue that can occur is over training the Gaussian process model. If the process
being modelled has a high level of noise or fast oscillations, over training occurs
more often and becomes especially problematic. Kriging is a specific case of using
Gaussian processes and usually refers to when only a single realization of the
process is obtained, often with a mean of zero.

There are numerous variations of the kriging methodology implemented within
the literature, three of them are presented by Lebensztajn et al. (2004). The first
approach Lebensztajn et al, discuss is the ‘Geostatistics approach’, which involves
estimating a random function and then correcting it through the application of a
weighting. In order for this to work, the error needs to be minimised and the ex-
pected difference between the estimated random function and the actual random
function must be zero. The most important factor to consider in this method is
the choice of a suitable covariance function. It is suggested in the paper that a
Gaussians or the popular thin elastic plates model (TEPM) as seen in Equation 2.3
should be used for the covariance function.

cov(x1, x2) = |x1 − x2|2log|x1 − x2| (2.3)

16 2.2. Model calibration

The second approach discussed is that of the Maximum Likelihood Estimate
(MLE) approach. This approach works by incorporating two functions, the first
function f (x) is used to incorporate the normal tendencies of the function to be
modelled. The second function Z(x) is a zero mean random process for which
a correlation matrix is derived. This is done using a correlation function, often a
Gaussian of the form:

R(xi, xj) = e∑
Npar
k=1 −θk(|xi−xj|k)2

, (2.4)

as shown by Lebensztajn et al. (2004), where Npar is the dimension of the problem
and θk is an internal parameter used to represent how the data is correlated in a
given direction. This is performed for each combination of x values and the results
are stored within the correlation matrix R. Using this correlation matrix the MLE
is then obtained and used to calculate the estimated y value, y∗(x), obtained from
combining f (x) and Z(x).

y∗(x) = f (x) + Z(x) (2.5)

The third approach that Lebensztajn et al proposed is a non-probabilistic krig-
ing methodology called ‘Basic Kriging’. In this case it is assumed that the value at
each point can be calculated from two functions wTh(x) and cT p(x), where wTh(x)
represents any fluctuations around the general tendencies and cT p(x) represents
the general tendencies of the function. Both w and c are unknowns, which must be
calculated so that the output at known inputs passes through the observed output
points, while attempting to minimise any fluctuations. A comparison of the three
kriging methodologies was performed and it was found that the optimal solution
was produced by the Maximum likelihood estimation approach. The approach
managed to obtain values for the x positions which were nearest the true optimal
point.

2.2 Model calibration

This section looks at the first of the two stages of interest from the virtual engineer-
ing lifecycle, model calibration. The purpose of model calibration is to determine
the values of a set of model parameters such that the difference between the model
and the real-world system is minimised. When performing model calibration, the
inputs to the model that is undergoing the calibration, are split into two groups,
the calibration inputs, θ, and the control inputs, x. The calibration inputs possess
a fixed value which can be changed during the calibration process, whereas the

Chapter 2. Literature review 17

control inputs are chosen to have a known value that relate to acquired observa-
tions and include inputs that could change depending upon the calibrated model.
The computer model can be defined as,

f (x, θ), (2.6)

with physical observations,

{yi, xi} f or i = 1, . . . , n (2.7)

where the goal is to find θ such that,

f (xi, θ) ≈ yi f or i = 1, . . . , n (2.8)

Both the inputs and outputs can be either a single value or a vector of values. It
is important to note that even when a model has been built there are many reasons
why the validity of the model may be threatened. Such reasons can include:

• Temporal variation - when the data is old and changes have happened since
obtaining them,

• Spatial variation - when values differ depending on where they were ob-
tained,

• Heterogeneity - when data for a subgroup of the population is not available.

The methods used within calibration are generally broken down into two clas-
sifications, either being frequentist or Bayesian. During this section, the process of
performing calibration via statistical inference is first discussed. This is followed
by a look at methods that both use likelihood functions, MCMC, and an exam-
ple method that does not, Approximate Bayesian computation (ABC). Finally, an
overview of calibration methods used for computer models is presented.

2.2.1 Calibration via statistical inference

In order to be able to perform calibration via statistical inference it is first necessary
to assume that the physical observations can be related to the model by,

yi = f (xi, θ) + ε i (2.9)

where ε is an error with some probability distribution, either the same or differ-
ing, that is assumed for ε1, . . . , εn. Once the problem has been laid out in this form
it is possible to use ‘standard’ statistical inference methods. The two presented
here are the Maximum likelihood method followed by Bayesian inference.

18 2.2. Model calibration

Maximum likelihood inference

The Maximum Likelihood Estimation (MLE) is one of the most used methods for
performing calibration when a probability model is available for the parameters
(Rossi, 2018). The MLE is based on the maximum liklihood principle which states:

“Given a random sample X1, . . . , Xn and a parametric model f (x1, . . . , xn; θ), choose
as the estimator of θ, say θ̂(X), the value of θ ∈ Θ that maximizes the likelihood function.”

Using this principle, it is possible to define the MLE of a parameter θ as,

max
θ∈Θ

L(θ) (2.10)

where L() is a likelihood function. There is a vast quantity of literature covering
the MLE ranging from high level overviews, such as Myung (2003), to much more
specific case studies, for example Excoffier and Slatkin (1995) work on Molecular
Haplotype Frequencies in a Diploid Population. A comparison between maximum
likelihood inference and Bayesian inference which is discussed in the next section
can be seen in the paper by Beerli (2006).

Bayesian inference

Bayesian inference has existed for a long time with the concepts used originat-
ing from the Bayes (1763) paper which was edited by Richard Price before being
posthumously presented. Laplace continued the development and use of Bayesian
statistics within fields including astronomy, meteorology and population statistics.
After Laplace, its use diminished until Jeffreys rediscovered it in the 1930’s. The
field of study was not well comprehended until around 1960 at which point it
started to grow more widespread during the 19th century. A more detailed his-
tory of Bayesian statistics can be seen in Jaynes (1986) paper.

Bayes’ theorem comes from a combination of two of the rules of probability.
Assuming that there are two conditional random variables A and B, by combining
the product rule of probability,

p(A, B) = p(B|A)p(A), (2.11)

with the symmetry property,

p(A, B) = p(B, A), (2.12)

the equation known as Bayes’ theorem,

Chapter 2. Literature review 19

p(B|A) =
p(A|B)p(B)

p(A)
, (2.13)

can be obtained. In these equations,

• p(B|A) is the posterior probability, this is the probability after the current
evidence is obtained.

• p(A|B) is the likelihood, which is the probability of observing the evidence
generated by a model using a set value of A.

• p(B) is the prior probability, which is the estimate of the probability before
the current evidence is obtained.

• p(A) is the marginal probability, this is the probability of observing A.

Bayes’ theorem provides several advantages such as providing a natural way
of combining prior information with data and providing a convenient setting for
a wide range of models. It also can naturally incorporate uncertainty into the
modelling process. Some of the disadvantages of the Bayesian approach is that it
does not tell how to select a prior and it can come with a high computational cost.
Another disadvantage is that the posterior distribution can be highly influenced
by the prior, which can be an issue when people do not trust the selected prior.

2.2.2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) sampling methods (Goodman and Weare
(2010)) are methods which approximate the posterior distribution of a variable of
interest by randomly sampling in a probabilistic space. They are often used with
Bayesian statistics because of this allowing for the identification of more complex
posterior distributions which are either hard or impossible to solve for analyti-
cally. It is important to note that Markov chains are memoryless meaning that all
the information needed to predict the next step in the chain should be available
in the current step. This means that knowing earlier data will not lead to new
information being obtained.

Metropolis Hastings

One of the best know variations of the MCMC method is the Metropolis Hastings
algorithm which obtains a sequence of random sample from a probability distri-
bution based on a set of rules. The algorithm was originally proposed in a paper
by Metropolis et al. (2004) and then further developed by Hastings (1970) which
is how it gained its name. A special case of the Metropolis Hastings algorithm is

20 2.2. Model calibration

the Metropolis algorithm in which the proposal function is symmetric. The basic
steps which are present for this algorithm are:

• Initialize the starting point and the probability density function used for
finding the next point
• Generate a candidate point using the selected probability density function

set around the current point.
• Calculate the acceptance ratio
• Determine whether the new point will be accepted dependent on if the ac-

ceptance ratio is larger than a uniformly selected random number between
0 and 1
• Either return to step 2 or conclude if all evaluation budget has been used up.

Once the MCMC algorithm has used up its available budget it is usual to dis-
card an initial proportion of the points (known as the ‘burn in’ period) to help
ensure that those which remain lie in the region of interest. The algorithm allows
for some leeway in the selection of points with them not requiring to be strictly
better than the previously found one. This means that while the algorithm will
tend to stay in high density regions it allows for the movement to lower density
regions. This is beneficial as in cases where a local minima is determined it in-
creases the chance for the algorithm to break out making it more likely to find the
globally most probable region.

Gibbs sampler

In the case that the distribution being examined is multivariate while it is still
possible to use the Metropolis Hastings algorithm there are other methods such as
the Gibbs sampler (Liu, 2001) which are more favoured. The reason for this is that
when the Metropolis Hastings algorithm selects a new multi-dimensional point, as
the different dimensions can have varying impacts, selecting an appropriate jump
distribution can be hard. The Gibbs sampler overcomes this by varying each of
the components of the point separately. Through doing this a separate sampling
distribution can be assigned to each of the components of the point. When using
the Gibbs sampler each of the components is updated before moving on to the
next step and repeating the process.

MCMC methods like this possess a couple of disadvantages including the fact
that the samples are correlated. If independent samples were desired, then as the
results are they do not necessarily correctly represent the distribution. This can
be mitigated to some extent by only using every nth sample, however in doing so
a large proportion of the points which were acquired are discarded. On the over

Chapter 2. Literature review 21

hand MCMC methods are better suited to handling high dimensional spaces for
which other methods tend to find the rejection rate increasing exponentially.

2.2.3 Approximate Bayesian computation

Approximate Bayesian computation (ABC) is a set of methods based in Bayesian
statistics which do not require the use of a likelihood function (Sunnåker et al.
(2013)). This proves an advantage when working with large complex models for
which a likelihood model can be hard to derive and expensive to run. An overview
of the maths used within one of the Approximate Bayesian computation methods,
ABC rejection, is now detailed.

In order to carry out ABC rejection algorithm it is necessary to obtain a set of
sampled parameter points θ from the prior distribution. A dataset D̂ can then be
obtained from simulation using the statistical model M at a chosen value of θ.

D̂ = M(θ) (2.14)

The performance of the model is then determined by looking at the difference
between the simulated data D̂ and the observed data D. When making a decision
a tolerance is used as, it is unlikely except with the most simplistic of models that
the simulated and observed data will coincide exactly. The decision of whether or
not to accept the parameter values θ is therefore decided by the condition:

ρ(D̂, D) <= ε

Where ε >= 0
(2.15)

The probability of this condition holding is often greatly decreased by an in-
crease in dimensionality. Due to this, a method of using a set of summary statistics
S(D) which comprises of a lower dimensional set of data was developed. This set
of summary statistics has been designed to capture as much of the data present
within D as possible. From using the summary statistics the condition for accep-
tance changes to:

ρ(S(D̂), S(D)) <= ε (2.16)

The final step to performing the ABC rejection algorithm is carried out after a
decision of which simulations, and corresponding values from the prior distribu-
tion, are to be accepted. It consists of approximating the posterior distribution of
θ using the θ values from the accepted simulations.

There are potentially many issues present with the ABC methodologies includ-

22 2.2. Model calibration

ing the previously mentioned ‘curse of dimensionality’. While this can cause large
problems ranging from having low acceptance rates to a risk of overfitting the data
it is possible to combat using methods of model reduction or by using a method
to speed up the rate at which parameters are looked at. In relation to this, the use
of summary statistics can cause issues when they produce too large a difference
from the original data rendering the results meaningless. There are other issues
present such as the possibility of conclusions being sensitive to the choice of the
parameter range and priors, as well as the use of non-zero tolerance, which could
cause a bias in the calculated posterior distribution.

2.2.4 Calibration for computer models

Within this work we are specifically interested in the virtual engineering workflow
for which the model being produced is a computer simulation. Due to this being
an area of key interest is methods which specifically address the fact that the
function f () is a computer model. There are two main features that will require
consideration when examining potential methodologies, these being,

• The function may be computationally expensive
• There may be a discrepancy between the model and physical system

A state of the art method for tackling such problems was presented in a paper
by Kennedy and O’Hagan (2001). This paper laid out a Bayesian approach for
tackling the calibration of computer models. They aimed to improve upon that of
the traditional method through designing a process that corrects itself while also
incorporating all sources of uncertainty. Within their work they used a Gaussian
process model which possesses the advantage of being cheap which allows the
function to be treated as known and for the uncertainty to be ignored. Through
doing this the issue of problems being computationally expensive is countered.

Looking at alternative methods Wong et al. (2015) presents a frequentist ap-
proach for performing computer model calibration. The proposed framework uses
a general semi-parametric data model along side an emulator for computationally
expensive systems. It also incorporates the discrepancy present between the phys-
ical and simulated system using a discrepancy function. It was determined that
the proposed approach should work well provided the model discrepancy was
negligible and the model parameters represented physical parameters. The au-
thors acknowledged that this methodology is not suitable for all problems but
could be useful in cases where there is no good prior knowledge available.

Chapter 2. Literature review 23

2.3 Optimization

The second stage of the design process that is of interest to this work is that
of optimization. Optimization is the process of determining the best solution,
defined by some form of criteria, from a set of possible solutions. In the case of
this work it refers to obtaining the best possible output from a model through
the selection of model inputs. Optimization can be applied to a wide range of
problems ranging from simple Single Input Single Output (SISO) models to Multi
Input Multi Output (MIMO) models. The general mathematical formulation of
the optimization process for SISO is defined as,

Minimize z = f (x, ψ)

s.t. g(x, ψ) ≤ 0

h(x, ψ) = 0

Where xmin ≤ x ≤ xmax

(2.17)

In the formulation z = f (x, ψ) is the objective function, g(x, ψ) is the inequality
constraint and h(x, ψ) is the equality constraint. The inputs to the model are
represented by x, with uncertainty represented by ψ and the output of the function
represented by z. The formulation can be expanded to allow for multiple inputs
or outputs by making the variables into vectors. If this was to be done then each
of the new variables can be defined as,

x = (x1, x2, x3, ..., xn) (2.18)

using x as an example and where x denotes the vector of x’s.
When deciding on an optimization method it is important to consider the fea-

tures of the problem you are going to solve. Features of interest may include:

• The number of model inputs and outputs
• Whether inputs and outputs are continuous
• The fact that f , g and h are implicit functions
• The time it will take to perform each function evaluation
• Whether the number of function evaluations are limited
• If a simple fast model is available
• Whether the function is rough or smooth
• If it is possible to perform multiple evaluations simultaneously
• Whether the problem is stochastic or deterministic
• If there are limits on the model inputs or if it is unconstrained

24 2.3. Optimization

From the features above, there are some aspects that will need to be considered
for this work. Firstly, having models that have multiple inputs causes issues due
to increased dimensionality. The main issue is that when only a limited number
of evaluations are used, as the dimensionality increases, the unknown regions
between points increases. The fact that f , g and h are implicit functions means
that the problem is being treated as a black box. For black box problems it is
assumed that it is not possible to write down the problems and hence you do
not try to analytically solve them. If the function evaluations take a long time
to perform or are limited, it is necessary to select a method that allows for this
limitation. Most optimization techniques work better for problems in which the
output function is smooth; this is due to a rough function having numerous local
minima where the ripples occur, leading the optimizer to fall into local minima
more often.

2.3.1 Optimization methods

Optimization methods can be broken down into broad fields which include, Linear
optimization, Dynamic programming, Convex optimization, and Metaheuristics.
Linear optimization, also referred to as linear programming looks at optimizing
problems which posses a linear objective function. Additionally, the constraints
of the function being examined must also be linear. Linear optimization has been
about for a long time and dates back to before 1827 when Fourier published a
method for solving them. Currently linear optimization is used widely throughout
industry and many other walks of life ranging from the design of diets to making
predictions of economic growth. Dynamic programming was first developed by
Bellaan (1954). It is a method that looks at simplifying a problem by breaking it
down into simpler sub-problems using a recursive method. For optimization this
is done through defining a sequence of value functions.

Convex optimization refers to methods in which both the constraint and ob-
jective functions are convex (Boyd and Vandenberghe, 2004). Many problems fall
within this class and can be effectively solved even if they possess large quantities
of variables and constraints. This ability to solve large problems in addition to
the relatively low computation power required are some of the main selling points
of convex optimization. As would be expected the largest draw back to complex
optimization is that it does require the problem to be convex. Within the field of
convex optimization, the gradient decent methods are some of the most popular
due to their simplicity and effectiveness (Ruder, 2017).

Metaheuristics optimization strategies are high level strategies which control
and alter the workings of heuristic strategies in order to obtain the best possible

Chapter 2. Literature review 25

solution (Voß, 2001). Some of the most commonly used examples of metaheuristic
optimization are Evolutionary Algorithms (EA) (Bäck and Schwefel, 1993). These
methods have been central to a lot of work done with optimization and have many
variations both for single and multi-objective optimization. Another example of
metaheuristics are swarm intelligence based algorithms which include methods
such as Ant Colony optimization (ACO) (Cáceres et al., 2014, 2015). In cases
where the problem possesses a discrete search space one metaheuristic method
that is popular is simulated annealing (Kirkpatrick et al., 1983), which can also be
applied to problems with continuous search spaces.

2.3.2 Multi objective optimization

A large proportion of real-world problems have more than one objective that is
trying to be obtained. This means that when performing optimization, the method
selected needs to consider all the objectives and select values that produce the
greatest overall benefit. Simply optimizing one objective at a time is likely to lead
to a large portion of the optimum values being overlooked. The methods laid
out within the literature can be broken down into three main areas that of Pareto
based, Decomposition based and Indicator based optimization.

Pareto-based

The first set of multi objective optimization methods that are looked at are those
which use the concept of Pareto optimality. The aim when performing this type of
optimization is to obtain a Pareto optimal front which occurs when it is not pos-
sible to improve one objective without worsening another for a given set of input
values, such points would be said to be in a state of Pareto optimality. Depending
whether the problem is being formulated as a minimization or maximisation, it
may be necessary to alter the form of each of the output variables. Most methods
also require that the values be normalised within some limits, this has the benefit
of getting rid of any negative values which could potentially be problematic. One
of the many advantages of this Pareto-based methods include allowing a single
value to represent the overall performance of the system through methods such as
the Hypervolume Indicator. This is advantageous as it allows for easy comparison
of optimizer performance.

An example of a Pareto based multi-objective optimizer is the non-dominated
sorting genetic algorithm II (NSGA-II) (Deb et al., 2002). This is a popular Pareto
dominance based MOEA and has been used throughout the literature as a compar-
ison for newly developed methods. The NSGA-II function works by producing an

26 2.3. Optimization

initial parent population which is sorted based on non-dominance. It uses the new
population to produce an offspring population, of the same size, through binary
tournament selection, recombination and mutation. The crowded-comparison ap-
proach is used as it does not require any user defined parameter for maintain
diversity among population members. Both populations are combined to form
a new population which is sorted by nondomination. This breaks down points
into their separate non dominated sets the best of which is assigned to be the
new parent population. When the best non-dominated set is not sufficiently large
to be used as the parent population extra points are added from the second best
non-dominated set, then third and so on until the population is filled. The process
then repeats until a stopping criterion is reached or all evaluations are used. It was
shown that for nine of the test problems that Deb et al. (2002) applied NSGA-II
to it managed to outperform the other methods of PAES and SPEA which it was
being compared to.

Another method for performing multi objective Pareto based optimization is
with the Multi-objective Genetic Algorithm (MOGA) (Murata and Ishibuchi, 1995).
MOGA is not the first optimizer to try and use Genetic algorithms to solve Multi
objective problems. An example of such an algorithm is the VEGA algorithm
which was developed by Schaffer (1985) this suffered from an issue of obtaining
most values at the extreme solutions on the Pareto front however. MOGA works
by creating an initial population and then evaluating the points with randomly
selected weightings. A temporary set of Pareto optimal solutions is produced be-
fore moving on to select a set of string pares from the population. Child solutions
are then produced through crossover and mutation with some of the results being
swapped out for points from the stored Pareto optimal solutions. The final stages
of the optimizer are to test if a stopping criteria have been met, if so the decision
maker is presented with the current best set of Pareto optimal solutions. In or-
der to test the performance of MOGA Murata and Ishibuchi (1995) chose to test
it against two other multi objective genetic algorithms. The two algorithms used
were the VEGA algorithm and the Niched Pareto GA. It was found that MOGA
outperformed both the other algorithms although the performance of the Niched
Pareto GA did come close to that of MOGA.

Decomposition-based

Another method of approaching multi-objective optimization problems is through
decomposition-based methods. Such methods look at breaking down the multi-
objective optimization problem into a group of single objective sub problems
with the use of scalarization. In recent years, this class of optimization methods

Chapter 2. Literature review 27

has been growing more popular again since the introduction of the ‘Multiobjec-
tive Evolutionary Algorithm Based on Decomposition’ MOEA/D methodology
(Qingfu Zhang and Hui Li, 2007).

The MOEA/D works much like other evolutionary algorithms. There are two
main differences present that distinguish it. The first comes from it using the
decomposition. At the start of the algorithm a selection of weighting are chosen
which are then treated as separate sub problems. The second difference is the
inclusion of neighbourhoods. These are initially created at the start of the algo-
rithm and for each weighting consist of a group of other weightings which are
close by. While the algorithm is running the neighbourhoods are used within
two phases, the first being reproduction. During this stage two points from those
within the neighbourhood are selected for use in creating a new child point. The
other time that neighbourhoods are used is during the ‘Update of Neighboring
Solutions’ where each point is compared to the newly discovered one using the
current weighting and replacing it if found to be better.

There are multiple ways in which scalarization functions can be applied to
optimization problems. In addition to simply applying a single scalarization func-
tion such as within the MOEA/D algorithm, sometimes it is advantageous to use
multiple. Hughes (2007) provides an example of this in his work on extending
the Multiple Single Objective Pareto Sampling (MSOPS) algorithm. Each point
has a selection of scalarization functions applied with the resulting value being
ranked against the performance of the other points. The rankings obtained from
all scalarization methods are looked at when deciding upon which point should
be selected.

The choice of scalarization function is important to consider when deciding
on what characteristics are required by an optimizer. There are two scalariza-
tion functions, which consistently appear within the literature. The Tchebycheff
function:

f (x) =
k

max
j=1

(λj f j(x)), (2.19)

and the Weighted sum:

f (x) =
k

∑
j=1

(λj f j(x)), (2.20)

The Tchebycheff function is another name for the l∞ norm. It is a useful scalar-
ization function as it pulls the points towards their assigned direction allowing the
user to ensure that the objective space is more fully explored. An example of the

28 2.3. Optimization

weighted sum (also known as the l1 norm) can be seen in the work of Ishibuchi
et al. (2006) in which they incorporated the weighted sum scalarization function
with the NSGA-II algorithm. Unlike the Tchebycheff function, the weighted sum
only provides minor influence on the direction of approach to the Pareto front.
This means that there is no guarantee as to how well covered the objective space
will be.

An altered form of the Tchebycheff function can be seen in use within the
ParEGO algorithm (Knowles, 2006) . This augmented Tchebycheff function has a
weighted sum (l1 norm) multiplied by a small value ρ added onto it so as to avoid
weakly dominated solutions being selected. It can be seen in Equation 2.30. The
maths and concepts behind the augmented Tchebycheff function are explained in
the papers by Steuer and Choo (1983) and Dächert et al. (2012).

Indicator-based

The third approach to performing multi-objective optimization is with Indicator-
based methods (Zitzler and Künzli, 2004). Indicator-based methods aim to try and
either minimize or maximize the value of an Indicator. This can be incorporated
into a multi-objective scheme by ranking each point within the population based
on the indicator. Once they are ranked a subset of the best points can be selected
and improve through acquiring new points, either by reproduction or some other
method. Over time, a set of the optimal points based off the selected indicator can
be built up.

Many commonly used indicator-based multi-objective algorithms use hyper-
volume, also referred to as the S-metric as the indicator (detailed explanation of
hypervolume present in section 2.3.2). Two such algorithms are the SMS-EMOA
algorithm (Beume et al., 2007) and the HYPE algorithm (Bader and Zitzler, 2011).
The SMS-EMOA uses a method of choosing which point to discard that is based
on the fast-nondominated-sort used by the NSGA-II algorithm. The main differ-
ence between the algorithms is that the point to be discarded for SMS-EMOA is
the one from the worst front that will have the smallest possible negative impact
on the worst front’s hypervolume.

SMS-EMOA is shown through benchmarking to be generally more effective on
two and three dimensional problems than that of NSGA-II as well as SPEA2 and
the ε-MOEA algorithm. In addition to outperforming other algorithms on bench-
mark test problems, it has been effectively applied to real world case studies. One
issue that the SMS-EMOA does start to suffer from is the computational burden of
calculating the value of the S-metric. This is not such a problem when looking at
two or three dimensional problems but could become prohibitive if higher dimen-

Chapter 2. Literature review 29

sions were used. The ideas present within this work have been adapted for use
within other algorithms such as in the case of SMS-EGO (Ponweiser et al., 2008).

The HYPE algorithm aims to overcome the issues associated with calculating
the S-metric by using a Monte Carlo simulation to find an approximation of the
hypervolume. The idea that makes doing this feasible is that if using a ranked
based approach it is not necessary to find exact values to be able to order solu-
tions. While it would still be better to calculate the values, exactly HYPE is set
up so that it will automatically switch to estimating hypervolume when there are
more than three objectives. Similarly, to SMS-EMOA, the performance of HYPE is
compared to that of NSGA-II and SPEA2 in addition to IBEA. It is expected that
these algorithms will not manage to optimize the hypervolume particularly well
but were instead selected, as they are a lot faster than most hypervolume-based
methods. It was found that the mean performance of HYPE was better than any
of the algorithms to which it was compared.

2.3.3 Robust optimization

Robust optimization is a field of study that focuses on minimizing the effects of
uncertainty (Beyer and Sendhoff, 2007). There are many situations where it is ben-
eficial to implement this approach, such as when aleatory uncertainty is present
within your model. With the presence of parameters that are defined as distribu-
tions rather than set values, the implementation of robust optimization provides
an opportunity to combat the uncertainty caused by the parameter variation with-
out needing to perform calibration. Robust optimization can be defined in general
as an optimization problem where there is a new term Ω that represents the un-
certainty from all sources. This uncertainty includes input uncertainty, structural
uncertainty, and parameter uncertainty. The variations caused by the uncertainty
that Ω represents means that the objective function will give outputs which vary
each time it is run and so during robust optimization the output is replaced by an
indicator I(f), as seen in Equation 2.21.

Maximise
x∈X

I(f (x, Ω)). (2.21)

Before implementing robust optimization, it is necessary to decide upon an
indicator to use. The options for indicators can be broken down into three main
groups, which are,

• Worst-case scenario - determine the worst case that can be produced from
within a bounded domain (Ehrgott et al., 2014)

30 2.3. Optimization

Iwc(x, Ωs) = max
Ω∈Ωs

f (x, Ω) (2.22)

• Aggregated Value – a combination of possible values gained from the un-
certain values determined by an integral measure of robustness (Mourelatos
and Liang, 2006). This method uses the expectancy, variance or a combina-
tion of the two as the indicator.

Iexp(x, Ω) = E[f (x, Ω)]

Ivar(x, Ω) = var[f (x, Ω)]
(2.23)

where the bi-objective problem is,

min
x∈X

[Iexp , Ivar] (2.24)

• Threshold probability – determine how probable it is for the objective func-
tion to be better than a reference threshold (Rambeaux et al., 2000). The
indicator determines the confidence level where q is the threshold.

Icon(f (x, Ω), q) = p(f (x, Ω) ≤ q) (2.25)

Once one of these indicators has been chosen, the results of the indicator re-
places the random objective function which would have been used within the
optimization. Depending on the representation of the parameter, there are two
methods that can be implemented (Langley, 2000),

• Probabilistic - a method which works with distributions.
• Possibilistic - works based on possible realizations of the parameter, often

expressed as “scenarios”, either

– A set of scenarios is used within the indicator (e.g. worst case across all
scenarios), or

– Performance against the objectives under different scenarios are repre-
sented by additional objectives and/or constraints.

Through implementing robust optimization the effects of uncertainty are min-
imized. The use of robust methods can present additional issues for problems
with expensive evaluations, since typically multiple evaluations for each choice
of control inputs are needed in order to understand the variability in the outputs
(e.g. via Monte Carlo methods). However, methods are becoming available that
attempt to estimate the variability without the necessity for repeated evaluations
(Duro et al., 2019).

Chapter 2. Literature review 31

2.3.4 Dynamic optimization

Another field of study which was identified as potentially being useful for this
work is that of dynamic optimization (Kamien and Schwartz, 2012). The main con-
cept behind dynamic optimization is that the problems being considered change
over time. Currently the vast majority of problems which are looked at can be
classed as ‘static optimization problems’. Even with real world problems where
there would naturally be some change, they are often taken to be fixed, as it
is assumed that any variations present are minimal and can simply be included
through some error term. In such cases it is possible for the decision maker to
make a single choice, the outcome of which would be used from then on. Dy-
namic optimization, in contrast, refers to changing problems in which the decision
maker will need to make multiple choices.

An overview of dynamic optimization focusing on evolutionary methodolo-
gies was presented in the survey paper by Nguyen et al. (2012). In addition to
presenting a review of the methods the paper also lies out both information cov-
ering benchmarking problems and performance measures for dynamic problems.
New performance measures for single objective problems have been produced
while classical methods like hypervolume, maximum spread and inverse genera-
tional distance are still used with multi objective problems. In such cases however
the values of the performance metrics are recorded at set intervals and aggre-
gated over time. A more recent survey by Mavrovouniotis et al. (2017) presents
an overview of the use of swarm intelligence for solving dynamic optimization
problems.

A lot of the current reasurch focusing on dynamic problems has looked at
problems which possess a pre-set way in which they change as time progresses.
More recent work by Fu et al. (2014) is of specific interest as it looks at cases
where previous choices effect the dynamics of the system. Such a methodology
could potentially help during the virtual engineering design process if multiple
iterations are required.

2.3.5 Surrogate modelling

Surrogate modelling, also known as reduced-order modelling and meta-modelling,
looks at building low cost, simplistic models of more complicated models in order
to determine the best parameters with which to evaluate the true model. This en-
ables the possibility of making the most efficient use of the evaluations as possible.
An overview of surrogate modelling is presented by Forrester and Keane (2009)
and Vu et al. (2017).

32 2.3. Optimization

The application of surrogate models can be separated into two approaches,
integrated use and non-integrated. Integration refers to how a surrogate model
is incorporated into the overall design process. Integrated surrogate models ef-
fectively evaluate a large number of potential points in order to determine which
points will have the largest beneficial effect. The selected points are then evalu-
ated using the true model of the system and the acquired data is used to improve
the surrogate. Non-integrated surrogate models refer to surrogate models that are
produced using a set number of function evaluations after which they replace the
true model of the system and are no longer updated. The decision to use inte-
grated or non-integrated models depends on many factors including how much
the surrogate model is trusted and how long the true model takes to run.

The steps necessary to perform optimization with an integrated surrogate
model are as follows (Wynn and Bates, 1999):

1. Acquire an initial population of points

• Initial input array

x(i)initial = [x(i)1 x(i)2 ... x(i)K] i = 1, 2, ..., n (2.26)

n is the number of initial points, K is the number of input dimensions

• Initial output array

y(i)
initial = [y(i)1 y(i)2 ... y(i)L] i = 1, 2, ..., n (2.27)

n is the number of initial points, L is the number of outputs

2. Set up a surrogate model

zm(x∗) = f (x∗1 , x∗2 , ..., x∗K) (2.28)

3. Determine location of new point to be evaluated
4. Evaluate new point on true function

y(x∗) = F(x∗1 , x∗2 , ..., x∗K) (2.29)

5. Check to see if stopping criteria has been met. If stopping criteria has not
been met repeat steps 3 and 4.

Information on both the selection of an initial population as well as possible
choices for a model which could be used were discussed earlier in Section 2.1.1
and 2.1.2. Now that an overview of how surrogate models work have been given

Chapter 2. Literature review 33

we look at different optimization methods in which they have been used starting
with the Efficient Global Optimization algorithm.

2.3.6 Efficient Global Optimization

The Efficient Global Optimization (EGO) algorithm (Jones et al., 1998) uses a com-
bination of Latin Hypercube Sampling and a version of kriging called the Design
and Analysis of Computer Experiments (DACE) model (Sacks et al., 1989). The
model is used to determine the location at which the largest Expected Improve-
ment (EI) will occur and select a point to be evaluated. Due to using this expected
improvement variable the EGO algorithm looks both at areas close to the know
points as well as evaluating points in empty regions of the search space. This
has the advantage that it prevents the optimiser from focussing too much on local
minimums and ignoring the global minimum.

Southall and O’Donnell (2011) presented a practical application of the EGO
algorithm, using it for antenna design. They compared its performance to that of
a Genetic Algorithm (GA) as well as that of the Nelder-Mead algorithm. While
the Nelder-Mead algorithm did perform well, it was out-performed by the EGO
algorithm. Testing the EGO algorithm against both a simple and enhanced Genetic
algorithm, they found that the EGO algorithm outperformed both of the GA’s and
provided a higher degree of accuracy with fewer evaluations. An interesting idea
that they suggested was the inclusion of the ‘linear decreasing’ endgame technique
with the EGO algorithm. This was shown to both reduce the deviation from the
global minimum as well as reducing the variation over multiple runs compared to
that of the GA or Basic EGO algorithm.

One of EGO’s drawbacks is that as the search progresses and the number
of known points increases, the time to perform each iteration of the algorithm
increases as well. While this will not have a significant impact for problems that
take hours to days to complete, it is an issue when quickly testing the algorithms
performance with a simplistic model. Knowles (2006) present a simple solution
involving selecting a subset of the points that would be used instead of the full
set. The subset consists of two parts, the first being from the best solutions and
the second from a random choice without replacement of the other points.

Many people have looked into assessing and improving the EGO algorithm.
One area of research that has been explored is the effectiveness of constraint han-
dling, (Habib et al., 2016b), and what type of sampling criteria is most effective
within such constrained problems, (Sasena et al., 2002). Another area of work is
that of looking for better methods by which new points can be selected, one ex-
ample of which is the bootstrapped kriging method proposed by Kleijnen et al.

34 2.3. Optimization

(2012). Other research looks at a higher level view of how EGO should be carried
out. Examples of such are work done on the best way to balance the amount of
local and global optimization when EGO is used in parallel (Zhan et al., 2017),
and the idea of using the sequential kriging Meta-Models (Huang et al., 2006).

2.3.7 Mixed-integer surrogate optimization

The Mixed-Integer Surrogate Optimization (MISO) framework (Müller, 2016) is
another approach that looks at solving computationally expensive optimization
problems. MISO, similarly to EGO, uses Latin hypercube sampling for acquiring
its initial points. The MISO framework can work with a selection of algorithms
including sequential radial basis function (SRBS), Dynamic Coordinate search us-
ing Response surface models (DYCORS) and Gutmann’s RBF method. Two new
MISO algorithms, MISO-CPTV and MISO-CPTV-local were proposed. They com-
prise of a combination of Coordinate perturbation, Target value and, in the case of
MISO-CPTV-local, a local search. Within the algorithm each of the three stages are
referred to as the ‘c-step’, ’t-step and ‘l-step’ respectively. Each of the steps have
distinct purposes, the c-step looks at find promising regions throughout the whole
search space. The t-step identifies the better value from within the promising re-
gions identified by the c-step. The l-step is implemented when both the c-step
and t-step can no longer find better values and performs a local search around the
current best solution to try to improve its performance.

Algorithms including the efficient global optimization algorithm and the mixed-
integer surrogate optimization framework are limited in that they only work for
single objective problems. The next section will look at potential ways of overcom-
ing this.

2.3.8 Expensive multi-objective optimization

Within real world problems there are some which prove to be highly expensive
to run. This high expense can be due to many things such as the problem being
highly complex or time consuming to evaluate. This is problematic from an opti-
mization standpoint as it means that only a limited number of evaluations can be
carried out. While many optimization methods do not look at this problem the
are some that do.

The ParEGO algorithm which, was first presented by Knowles (2006), is an
example of such an algorithm. While other extensions of the EGO algorithm, such
as those presented by Ponweiser et al. (2008) and Habib et al. (2016a) exist for use
in multi objective optimization ParEGO was specifically designed for expensive

Chapter 2. Literature review 35

problems and has become popular within the field. It combines the system outputs
f1... fn to form a single value for the system by using the augmented Tchebycheff
function (Equation 2.30). Of the three variables within the equation f is the system
output, λ is a weighting and ρ is a small positive value which is usually set to 0.05
(Knowles, 2006).

fλ(x) =
k

max
j=1

(λj. f j(x)) + ρ
k

∑
j=1

λj. f j(x) (2.30)

The ParEGO algorithm has been compared against other algorithms both within
its original paper as well as in others such as Knowles and Hughes (2005) and
Knowles et al. (2009). It has been shown the ParEGO algorithm was capable of
outperforming alternatives such as the non-dominated sorting genetic algorithm
II (NSGA-II), binary search algorithm (Bin_MSOPS) and Tau-Oriented Multi ob-
jective Optimizer (TOMO) in all but a few cases. There are many reasons why
this might be the case, one of which is that the ParEGO algorithm was design
specifically to be able to cope with limited numbers of function evaluations where
as most algorithms are not. From the testing it was concluded that ParEGO could
make better use of the discovered points due to issues such as Bin_MSOPS missing
out when there is only a low density of points at the Pareto front.

There has been research into many aspects of the ParEGO algorithm such as
the use of LCB instead of EI (Horn et al., 2015) the incorporation of decision
maker preferences (Hakanen and Knowles, 2017) the choice of scalarising norm
(Trautmann et al., 2017) and the use of dual kriging (Davins-Valldaura et al., 2017).

2.4 Combined calibration and optimization

Within the literature there are many cases of taking methods from one field of
study to aid in improving those from another. One example of this is the use
of multi-objective methods to improve pre-existing calibration methods (Li et al.,
2010, Zhang et al., 2008). While crossover such as this does occur and can lead
to improvements, in general the two fields of study are still kept separate from
each other. In the rare cases when a published work considers both the calibration
and optimization stages together, they are usually looking at specific case studies.
For example, the paper by Gibbs et al. (2010) presents a study on ’Pumping and
Disinfection of a Real Water Supply System’ and while both stages are discussed,
they are treated as separate entities.

Another example of a paper which considers both the optimization and cali-
bration stages is Villarreal-Marroquín et al. (2017) which looks at work on injection

36 2.4. Combined calibration and optimization

moulding. Examining the paper, it can be seen that while a model is constructed
and calibrated, the calibration is not revisited after the optimization has started.
Similarly, the formulation of the problem is done as one following the other rather
than considering the overall process. While the problem being examined is multi-
objective the techniques being used for optimization are simplistic with a grid
search being applied with a second iteration in which the search region is refined.

One paper that appears to more deeply examine the problem is a study on
common rail diesel Engine calibration and optimization by Qiang et al. (2004). In
this paper the authors look at using a combined method of neural networks and
Adaptive Network-based Fussy Inference System (ANFIS) to create a combined
model. They found that this proved to be a valid modelling method for their case
study. The study did not however lay out the problem mathematically or consider
other methods that could be effective.

More generally we are also interested in cases where the methodologies used
within both calibration and optimization either have the same structure or some
linking element. The most obvious of these are cases in which surrogate models
are used as they should allow for direct information sharing. Within the paper by
Kennedy and O’Hagan (2001) on the calibration of computer models a Gaussian
process model was used as a surrogate. This could be potentially used as a link
to an optimization method such as ParEGO (Knowles, 2006). Another linking
factor between these two methods that can be considered is the method used for
initialization. In both cases a form of Latin hypercube sampling was used. If this
initial population were shared it could cut down on the number of points used for
initialization opening them up for more beneficial uses.

Another example of Model calibration using similar processes to those in Op-
timization can be seen in Kajero et al. (2016) paper ’Kriging Meta-Model Assisted
Calibration of Computational Fluid Dynamics Models’. In this paper, they have
proposed a method that is similar to that of the EGO algorithm. It works by min-
imising the sum of squared errors between the original model and the kriging
meta-model through the adjustment of parameters.

This type of combined optimization and model calibration problem also seems
to appear within some newer work present in the field of robotics. Specifically,
recent work on continuous self-modelling from papers such as that of Bongard
et al. (2006) show similarities. In this work they show how robots can be capable
of synthesising new models and optimizing their parameters when unexpected
changes occur and potentially generate compensatory behaviour. More recently
work by Kwiatkowski and Lipson (2019) shows a robot successfully managing to
maintain its self-model and continue its operation through an increased data usage

Chapter 2. Literature review 37

after it has a component replaced with a deformed part. This type of behaviour
links closely with the concept of combining model calibration and optimization
which is of interest within this work.

Here we have shown that while there is some literature depicting both the
stages of calibration and optimization they are still mostly considered as separate
steps. While there are methods that have been used within both fields, they have
not been considered for combining into a single unified method. The next sec-
tion looks at gaps that have been identified as being present within the current
literature.

2.5 Research gap

From this examination of the literature there are a selection of gaps which have
been identified. The first of these comes from looking at the current combined cal-
ibration and optimization literature. The work that has been carried out has pre-
dominantly focused on implementations for specific applications, also the meth-
ods used are often simplistic. It was also normal that when both stages of the
design process were presented no further consideration into improving the over-
all efficiency was given. From this it can be seen that the development of a unified
approach using state-of-the-art methods to solve the combined problem would be
a novel area of research. Examining how the process could be changed to improve
the overall efficiency of the design process rather than just the individual stages
would also be novel.

One area identified within the literature that might be able to be applied here
is dynamic optimization. It could be used in situations such as when the model is
being developed over a period causing multiple iterations of the calibrated model
to produced. More specifically, if a situation where the model is being developed
in parallel with the optimization process, such that either discrete realisations or a
continuously changing model is available, it provides a framework. This is a po-
tential avenue to explore for combining the two stages into a unified methodology.

While within the literature there are a large variety of performance criteria and
test problems present there are currently no benchmarking problems that span the
two fields of research. Due to this it will be necessary to develop a new set of test
problems which possess all desired characteristics before developing and testing
new methods.

Another area of interest is that there is potentially a wide range of methods be-
ing overlooked that might be more efficient that the current practice of performing
calibration followed by optimization in a sequential fashion. While this practice is

38 2.5. Research gap

effective for many problems this does not mean that it is necessarily suitable for
problems in which there are multiple iterations of the model being produced.

Chapter 3

MOEA/D study

39

40 3.1. Introduction

3.1 Introduction

This chapter focus on the behaviour of a representative algorithm from one of
the main classes of Multi-objective evolutionary algorithms (MOEA) – specif-
ically, we consider the MOEA/D algorithm (Qingfu Zhang and Hui Li, 2007)
from the decomposition-based family of optimizers. A full version of this work
was published at GECCO in 2018 under the title ‘Component-level study of a
decomposition-based multi-objective optimizer on a limited evaluation budget’.
Rather than study the algorithm as a monolithic entity, we adopt a component-based
approach that allows the impact of different aspects of the algorithm to be analysed
in detail (Bezerra et al., 2015, Laumanns et al., 2001, Purshouse and Fleming, 2002).
The focus is on how typical component choices that would need to be made when
configuring an optimizer for a real-world applications (RWA) affect optimizer be-
haviour over a small evaluation budget. In this way, we seek to contribute the
first known analysis of decomposition components for small budgets, in isola-
tion from the complexity of surrogate-based components – with a view to making
some preliminary recommendations for how such a targeted decomposition-based
algorithm should be configured.

MOEAs have come to be used widely throughout both the scientific and engi-
neering communities, and are typically classified in terms of the primary selection
method used in the algorithm: Pareto-based, decomposition-based and indicator-
based (Giagkiozis et al., 2015). Most of the methods that have been developed
within each class typically assume that a large budget will exist for evaluating
candidate solutions as the optimization process progresses. In many optimizer
benchmarking studies, a budget of tens or hundreds of thousands of evaluations
is used – for example, the CEC’09 MOEA competition permitted 300,000 evalua-
tions (Zhang et al., 2009).

However, solution evaluation can be an expensive procedure for many RWAs,
typically arising from the use of high-fidelity simulations or physical experiments.
In the case of high-fidelity simulations, even if the computational costs of running
the models can be overcome (e.g. by careful exploitation of high performance com-
puting facilities) then other resource constraints often still remain (e.g. availability
of software licenses). In this setting, it is inappropriate to assume that a budget of
many thousands of evaluations will be available to the optimizer.

Faced with this issue, algorithm designers have sought to couple surrogate
modelling techniques to the optimization process (Jin, 2011). In a loose coupling,
the surrogate model is estimated either before the optimization begins, or at sched-
uled points during the optimization process. In more tightly coupled schemes,

Chapter 3. MOEA/D study 41

the surrogate model becomes a key component of the optimizer itself. These lat-
ter schemes have found particular favour for optimization on very small budgets
– typically regarded as between 100 and 500 evaluations (Knowles and Hughes,
2005). The algorithms, such as ParEGO (Knowles, 2006), are typically highly com-
plex in nature, featuring large numbers of configurable parameters. It remains
unclear how these parameters should be set for different types of RWA, or how
the behaviour of the overall algorithm is related to the behaviour of the underpin-
ning selection method.

The chapter is structured as follows. Section 3.2 gives an overview of the
MOEA/D algorithm, including an abstraction of its components. Section 3.3 iso-
lates the different components which are examined in the study and describes
the empirical framework used. Section 3.4 presents the results of the experiments
which are then discussed in Section 3.5. Section 3.6 draws conclusions and indi-
cates future directions for the research.

3.2 MOEA/D and its components

The Multi Objective Evolutionary Algorithm based on Decomposition was first pre-
sented by Zhang and Li in 2007 (Qingfu Zhang and Hui Li, 2007). The algorithm,
as was discussed in the literature review (Section 2.3.2), is based on the classical
multi-objective optimization concept of defining different reference directions in
objective-space, and then directing the optimization process along each of these
directions. The main innovation in MOEA/D is that information is shared between
neighbouring reference directions during a single optimization run – rather than
performing separate optimization runs for each direction in turn as was used in
the classical methods. The underlying hypothesis is that there is some kind of
relationship in the neighbourhood that makes the sharing of information useful
for the neighbours concerned.

MOEA/D has proved to be a seminal MOEA, with many variants and alterna-
tive decomposition-based schemes now in existence. A tightly-coupled surrogate-
based addition – MOEA/D-EGO – was proposed in 2010 (Zhang et al., 2010) as an
alternative to the earlier ParEGO algorithm which also used decomposition-based
principles (Knowles, 2006).

A number of studies have investigated configuration choices for MOEA/D,
offering alternatives to the originals proposed in Qingfu Zhang and Hui Li (2007).
Parameters examined include choice of norm in the scalarising function (Ishibuchi
et al., 2010, 2013), weight vector specification (Qi et al., 2014), and neighbourhood
size (Zhao et al., 2012).

42 3.2. MOEA/D and its components

3.2.1 Components of MOEA/D

Within the implementation of MOEA/D there are four main stages that can be
abstracted as components: (1) initialisation; (2) reproduction; (3) improvement; (4)
update. In addition to these aspects, a further area of interest is the normalisa-
tion operation used to enable non-commensurate objectives to be compared. How
these components fit within the algorithms structure can be seen in the pseudo-
code provided in Algorithm 3.1. Of the components present, reproduction, update
neighbouring solutions and normalisation are considered as optional and are in-
vestigated in Section 3.3. An overview of each of these components is given below
along with their corresponding line number form within the pseudo code.

Initialisation. Lines 1-4. The first step that needs to be performed is to ini-
tialise the various parameters present within the MOEA/D algorithm. The algo-
rithm begins by defining a set of weight vectors, which are evenly spread through-
out the output space. The next step is to set up neighbourhoods which consists of
the closest, determined using Euclidean distance, n weight vectors to each weight
vector. The final aspect that needs to be implemented within the initialisation is
the creation of a set of initial points. Within the MOEA/D algorithm, these points
are determined either randomly or through a problem-specific method.

Reproduction. Line 8. After initialisation, the optimizer loops through all of
the reference directions. For each direction, the optimizer will select two weight
vectors from that direction’s neighbourhood and use the points from those two
reference directions to perform reproduction. The type of reproduction used by
MOEA/D is simulated binary crossover (SBX), during which only one offspring is
created. That offspring then has polynomial mutation applied to it.

Improvement/Repair. Lines 10. The improvement stage is used to apply either
a problem specific repair or improvement heuristic to the offspring point. This
stage is useful as it can ensure that the acquired solution is feasible.

Update neighbouring solutions. Line 13. This section of the algorithm works
on ensuring that newly found solutions are used effectively. The new solution is
compared to all other solutions related to it through its neighbourhood. The com-
parison of whether the newly found solution is superior to existing solutions in
the neighbourhood is performed by applying the Tchebycheff scalarisation func-
tion associated to each of its neighbour’s reference directions.

Normalisation. Line 12. While normalisation is not a separate stage specifi-
cally stated within the MOEA/D algorithm, it is still carried out and has an effect
on the algorithm’s performance. In the basic description of the algorithm in the
original MOEA/D paper (Qingfu Zhang and Hui Li, 2007) there was no normal-
isation undertaken prior to scalarisation. However, normalisation was discussed

Chapter 3. MOEA/D study 43

Algorithm 3.1 Component-level abstraction of MOEA/D

1: for 1 : Number of replications do
2: Initialise parameters
3: Initialise neighbourhood
4: Initialise points using Latin hypercube sampling
5: for 1 : Number of iterations do
6: for 1 : Number of directions do
7: for 1 : Number of offspring do
8: Optional component: Reproduction
9: Mutation

10: Improvement/Repair
11: Evaluation
12: Optional component: Normalisation
13: Selection
14: Optional component: Update neighbouring solutions
15: Calculate and store performance metrics

in a separate analysis within the original paper to understand if improved perfor-
mance could be achieved when working with disparately-scaled objectives. The
normalisation is undertaken with respect to the ideal and nadir points. These
points are estimated progressively from the solutions that have be found so far:
the best values achieved for each objective are taken as the current estimate of the
ideal; the worst values achieved within the current best set of solutions across all
reference directions are taken as the current estimate of the nadir.

3.2.2 Implementation of components

The baseline MOEA/D algorithm within this chapter has been setup slightly dif-
ferently to how it was described within Zhang and Li’s original paper. These
variations are caused by the desire to test different aspects of the optimizer. The
chosen initialisation method implemented throughout the chapter is the widely
used space-filling Latin hypercube sampling method. While this method does re-
quire the user to have knowledge of the limits of the input space, it ensures that
the whole of the input space is well covered. In the baseline setup it is also as-
sumed that the ideal and nadir points required for performing fixed normalisation
are known to be the correct values. The improvement step simply checks whether
decision variables have moved outside of their bounds and, if so, sets them to the
closest feasible boundary. It was assumed that components such as the neighbour-
hood, reproduction and updating are not implemented unless they are the aspect
specifically under test. A representative trajectory plot for the baseline algorithm
solving the test problem, shown in Section 3.3.2, is presented in Figure 3.1.

44 3.3. Component Investigation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective 1

0

5

10

15

20

25
O

b
je

c
ti
v
e
 2

Progress of baseline MOEA/D after 500 and 20,000 evaluations

Figure 3.1: Trajectory plot for the baseline algorithm using 100 reference directions
and a budget of 20,000 evaluations (progress after 500 evaluations is shown by the
circled points). Good convergence is observed for the larger budget.

3.3 Component Investigation

3.3.1 Areas of interest

While MOEA/D has many areas of interest that could be investigated, we focus
on two key component choices for RWAs: the first of these is how the inclusion of
information sharing through neighbourhoods affects the optimizer’s performance;
the second area of interest is how different forms of normalization cause changes
in the optimizer’s behaviour.

Baseline optimizer

The baseline configuration, also referred to as independent, consists solely of a
mutation component, with no reproduction, or update of neighbouring solutions.
Due to the budget limitations, a very modest number of reference directions has
been chosen: 5 in total. The optimizer is run for 100 iterations, within each of
which one evaluation is used for each of the 5 reference directions, leading to the
total budget of 500 evaluations being exhausted. An elitist (µ+ λ) strategy is used
for selection across all variants of the algorithm. A (1 + 1) strategy is used in the
baseline algorithm. Scalarisation is performed using the Tchbycheff norm.

Chapter 3. MOEA/D study 45

Impact of sharing information

Three component configurations consider the impact of sharing information be-
tween the different subproblems present within MOEA/D - all require the def-
inition of a neighbourhood. The neighbourhood is defined as the adjacent two
reference directions. The first approach implements the update of neighbouring
solutions component; the second implements SBX reproduction, with three solu-
tions considered (the two parents are chosen at random from both the neighbour-
hood and the reference direction). The SBX distribution index is set to 20 as in
the original MOEA/D paper (Qingfu Zhang and Hui Li, 2007). The third setup,
refered to later as mixed, consists of using the neighbourhood for both SBX repro-
duction and update of neighbouring solutions. This final configuration provide
the greatest sharing of information between the different references directions. As
with the previous setups, a neighbourhood size of two is implemented in order to
maintain consistency.

Impact of normalisation

One of the issues when performing decomposition-based optimization on RWAs
is that the location of the ideal point and nadir point, required for normalisation,
are generally unknown. In many studies, an assumption is made about the points
used for normalisation, such as is done in this paper during the assessment of
sharing of information. The choice of using fixed known points for the ideal and
nadir point is reasonable as it allows the impact of these neighbourhood features
to be examined without having to simultaneously consider the impacts of using
estimates of the ideal/nadir points. However, in order to test the impact of nor-
malisation on the optimizer, different normalisation methods are applied to the
most effective information sharing setup examined above.

Four alternative normalisation approaches are considered. The first uses a
fixed normalisation with limits that are known to work well. The second variation
is to not apply normalisation at all (Ishibuchi et al., 2017). The use of adaptive
normalisation is the third setup, in which new ideal and nadir estimates are ob-
tained for each iteration of the optimizer. This is implemented in the same way as
in the original MOEA/D paper. The final setup looks at whether using a portion
of the evaluation budget to determine an approximate value of the ideal and nadir
points could be beneficial. In order to determine these two points, a lexicographic
optimization methodology is used with a (1 + 1) strategy. This first determines
the minimum for one of the objectives, before minimising the second objective
while maintaining the value found for the first.

46 3.3. Component Investigation

3.3.2 Performance analysis

Test function

A modified version of the DTLZ1 function, initially presented in Deb et al. (2005),
has been chosen. It has been altered in order to make the objectives disparately
scaled so that some form of normalisation might prove beneficial. The altered
DTLZ1 function, referred to here as ‘DTLZ1alt’, is defined as:

Minimize f1 =
1
2

x1(1 + g)

Minimize f2 = 5(1− x1)(1 + g)

g =
[
5 + ∑

i∈{2,...,6}
(xi − 0.5)2 − cos(2π(xi − 0.5))

]
Where xi ∈ [0, 1], i ∈ {1, ..., n}, n = 6.

(3.1)

The test problem possesses a linear Pareto front, which stretches from the point
[0, 5] to [0.5, 0]. Points on the front can be generated by setting x2,...,6 = 0.5 and
taking any choice for x1.

Performance indicator

The performance indicator used throughout the analysis is the inverted genera-
tional distance (IGD), which measures the quality of a non-dominated set in terms
of both convergence and diversity simultaneously (Sierra and Coello, 2004). IGD
calculates the average Euclidean distance between a set of evenly spaced points
which lie along the Pareto front and the closest points to them from the current
non-dominated set. A more detailed explanation of IGD can be seen in Section
5.2.3 in which a description and mathematical formulation are presented.

In the analysis, the points along the Pareto front used for IGD are the points
where the reference directions cross it when ideal normalization is applied. In
order to gain robust insight into how the optimizer will perform, each setup is
run 31 times. Box plots are used to indicate the variation in performance, as well
as median levels of attainment. In addition to producing a box plot of the IGD
obtained after 500 evaluations, a box plot of the integrated IGD is also considered,
which considers the sum of the IGD obtained over the iterations of an optimizer
run. The integrated measure provides some insight into how rapidly convergence
is obtained, which is useful context if 500 is regarded as an upper limit on the
number of permissible evaluations.

Chapter 3. MOEA/D study 47

Independent Updating Reproduction Mixed

50

100

150

200

In
te

gr
at

ed
 IG

D

Boxplot showing IGD performance

Independent Updating Reproduction Mixed

0.2

0.4

0.6

0.8

1

1.2

F
in

al
 IG

D

Boxplot showing IGD achieved after 500 evaluations

Figure 3.2: Boxplot showing how the use of neighbourhoods to share information
between subproblems within the optimizer impacts the IGD. It is evident that the
inclusion of neighbourhoods for updating of neighbouring solutions has a positive
impact on performance.

Subproblem convergence trajectories

In addition to the IGD metric, we also show the dynamic convergence in objective-
space of the optimizer along each of the five reference directions. The trajectories
are taken from the run of the optimizer associated with the median IGD result.
These trajectories provide useful insight into the dynamic behaviour of the opti-
mizer for different choices of information sharing or normalisation.

Significance testing

The statistical significance of the results (at the 0.05 level) is determined using
pairwise Wilcoxon rank-sum tests with Bonferroni correction. The test statistic
used is the mean IGD performance for each algorithm after 500 evaluations.

48 3.4. Results

0 50 100 150 200 250 300 350 400 450 500

Number of evaluations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
IG

D

IGD plot showing the effects of information sharing

Independent

Updating

SBX reproduction

Mixed methods

Figure 3.3: Plot showing how the median IGD for different setups progresses over
iterations of the optimizer. The positive impact of updating is clearly visible for
the majority of the evaluation budget.

3.4 Results

3.4.1 Impact of sharing information

The results of implementing the different methods for information sharing can
be observed in Figure 3.2. All relative rankings of algorithms implied by the
lower boxplots are statistically significant, except between the independent and
reproduction configurations, where no difference in mean performance could be
confirmed.

When the subproblems are performed independently, the performance of the
optimizer appears to be worse with its final IGD achieving a median value of
about 0.45. When the updating of neighbouring solutions component is included,
it is evident that the optimizer’s performance is positively impacted – with the
optimizer achieving a median final IGD of about 0.21. Another point of interest
with this setup is that the integrated IGD implies that it was also faster to reduce
its IGD, and so could prove to be a good option if there were the possibility that the
optimizer would need to stop early. The use of reproduction without the update
of neighbouring solutions does not improve the optimizer’s performance. While
it produces an equivalent median final IGD when no information sharing was

Chapter 3. MOEA/D study 49

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective 1

0

5

10

15

20

25

O
b

je
c
ti
v
e

 2

DTLZ1alt optimized using independent optimization

(a) Independent

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective 1

0

5

10

15

20

25

O
b

je
c
ti
v
e

 2

DTLZ1alt optimized using a neighbourhood size of

two and updating neighbouring solutions

(b) Updating

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective 1

0

5

10

15

20

25

O
b

je
c
ti
v
e

 2

DTLZ1alt optimized using a neighbourhood size of

two and SBX reproduction

(c) Reproduction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective 1

0

5

10

15

20

25

O
b

je
c
ti
v
e

 2

DTLZ1alt optimized using a neighbourhood size of two with both SBX

reproduction and updating of neighbouring solutions

(d) Mixed

Figure 3.4: Trajectory plots of the median runs, based on the integrated IGD. The
inclusion of neighbourhoods causes clustering and rapid initial movement.

50 3.4. Results

used, it possesses a worse integrated IGD. This can be more clearly seen in Figure
3.3 which shows the median runs based on the integrated IGD. The final setup
examined is the one using a mix of SBX and updating neighbouring solutions.
While this setup does perform better than that of either using the independent
setup or SBX reproduction, it does not outperform the setup using just the update
of neighbouring solutions.

The set of plots in Figure 3.4 show the trajectories of how the subproblems
progress within the objective-space. The independent setup in which there is
no passing of knowledge seen in Figure 3.4(a) performs as expected when run
using the Tchebycheff scalarisation function, with each of the trajectories moving
over to their respective reference direction before progressing down it towards the
Pareto front. The large jumps induced by updating neighbouring solutions are
evident within Figure 3.4(b). It can be observed that when points lie far from
their reference directions or far from the front they quickly jump to a closer point
causing rapid movement towards the front. Once near the front, the trajectories
diverge with each moving over to its relevant reference direction. What appears to
be a similar behaviour can be seen in Figure 3.4(c) which shows the median run of
the effects of using SBX. The grouping caused by SBX reproduction appears to be
an issue when the points draw close to the Pareto front, as they remain clustered
together. Finally, Figure 3.4(d) shows the effects of using a mixture of reproduction
and updating the neighbouring solutions. Similar to before, the points progress
down towards the Pareto front while being gathered together; once they reach the
front they try and spread across it, but only have limited success.

3.4.2 Impact of normalisation

The results of testing the impact of applying different normalisation methods are
presented within the boxplots in Figure 3.5. As previously, all relative rankings
of algorithms implied by the lower boxplots are statistically significant, except for
the comparison between the adaptive approach and no normalisation, where no
difference in mean performance could be confirmed. The fixed normalisation that
has been used throughout the chapter so far shows good performance in both
the boxplot of the integrated IGD as well as that of the final IGD. As well as
achieving a very low IGD value, the results for fixed normalisation have only a
small amount of variation. Using no normalisation, the second setup has a worse
performance with both the integrated and final IGD obtained being much higher
than that of fixed normalization. A point of interest is that when no normalisation
is used, there is also little variation in performance across runs of the optimizer.
When adaptive normalisation is used, the median integrated IGD and final IGD

Chapter 3. MOEA/D study 51

Fixed None Adaptive Pre estimate

100

200

300

400

In
te

gr
at

ed
 IG

D

Boxplot showing IGD performance

Fixed None Adaptive Pre estimate
0

0.5

1

1.5

2

2.5

F
in

al
 IG

D

Boxplot showing IGD achieved after 500 evaluations

Figure 3.5: Boxplot showing how normalisation affects IGD performance. Of in-
terest is how reserving a portion of the budget for estimated ideal and nadir points
greatly improves performance.

are similar to those obtained when using no normalisation. Adaptive normalisa-
tion possesses a large variation in results, ranging from similar performance to
fixed optimization to being much worse than any other method.

The last method considered was to pre-determine the ideal and nadir points
by using a lexicographic optimization methodology, before commencing optimiza-
tion, referred to as the pre estimate. The lexicographic optimization methodology
works by imposing your preference through ordering the objective functions ac-
cording to their importance or significance. In this work when finding the ideal
value for an objective all importance is given to it and the other objective is ig-
nored. When searching for the nadir the search begins for a chosen objective
where the ideal search for that objective ended. It is then run such that it main-
tains the found ideal value of the first objective, while trying to minimise the value
of the second objective. Through previous testing it was determined that 80 evalu-
ations were needed for each objective in order to estimate an acceptable ideal point
and a further 40 were needed for each to get a suitable nadir point. The median
values found for the ideal and nadir after the search was run are [0, 0.0683] and
[0.9134, 8.4708] respectively. During testing, it was determined that the improve-
ment gained with additional evaluations did not balance the loss in performance

52 3.4. Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective 1

0

5

10

15

20

25

O
b

je
c
ti
v
e

 2

DTLZ1alt optimized using fixed normalization

(a) Fixed

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective 1

0

5

10

15

20

25

O
b

je
c
ti
v
e

 2

DTLZ1alt optimized using no normalization

(b) None

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective 1

0

5

10

15

20

25

O
b

je
c
ti
v
e

 2

DTLZ1alt optimized using adaptive normalization

(c) Adaptive

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective 1

0

5

10

15

20

25
O

b
je

c
ti
v
e

 2
DTLZ1alt optimized using a predetermined ideal and nadir point

(d) Predetermined

Figure 3.6: Trajectory plots of the median runs using different normalisation meth-
ods, based on the integrated IGD. It is evident that lacking good estimates of the
ideal and nadir points greatly compromises the ability of a decomposition-based
optimizer to find the Pareto front.

due to fewer iterations of the optimizer. Going back to Figure 3.5 it can be seen
that when the predetermined estimates for the ideal and nadir points are used,
the integrated IGD is improved while the final IGD was superior to that of either
adaptive normalization or when no normalization was used.

Figure 3.6 shows the trajectory plots of the median runs for the four methods.
In each of the four subplots, the dashed lines indicate the reference directions. In
(a), (b) and (d) the reference directions represent those that the optimizer is using.
In (c) the reference directions shown are the best ones that could be found, as they
change during each iteration for adaptive normalisation. Figure 3.6(a) shows the
fixed normalisation, with the trajectories moving down towards the front in the
same manner as seen before. In Figure 3.6(b), when no normalization is applied,
all of the trajectories head down towards the first objective axis before starting to

Chapter 3. MOEA/D study 53

progress towards the Pareto front. As the reference directions are evenly spaced
across the objective space, they focus on the lower half of the Pareto front. In
Figure 3.6(c) all of the trajectories move together before progressing down to the
front, where they do not spread out. The final subplot, where the previously
estimated ideal and nadir point are used, shows the points moving towards the
front quickly before spreading out and managing to reach three of the reference
directions (due to the points initialising close together, it is difficult to see their
movement within this particular plot).

3.4.3 Interesting variants

There were a selection of interesting variants discovered during the process of
testing. The first of which is when five offspring are used instead of just one.
When implemented, it implies running the optimizer for only 20 iterations, so as
to use the same number of evaluations in total as before. It can be seen in Figure 3.7
that, when compared to running the optimizer independently with one offspring,
the trajectories obtained are much smoother. The erratic behaviour caused by the
optimizer going back on itself is also almost entirely absent. This demonstrates
how the addition of extra offspring allows for better directed convergence. When
compared to the performance of using only a single offspring, equivalent median
IGD was achieved.

The second interesting variant to be examined was discovered when running
the optimizer with four neighbours and SBX reproduction with no update of
neighbouring solutions. Using four neighbours meant that points from any of
the subproblems had a chance of being selected during the reproduction step. The
median result of running this setup can be seen in Figure 3.8. All of the differ-
ent trajectories are pulled together, almost to a single point, before attempting to
spread out. The rate at which they can separate out is negatively impacted by the
use of SBX.

3.5 Discussion

It is evident that the sharing of information in a decomposition-based optimizer,
through the use of neighbourhoods, between the different subproblems, can have
a substantial impact on the optimizer’s performance. The clearest example of this
was observed when the component for updating the neighbourhood solutions
was used. From the trajectory plot it was seen that the component enabled rapid
improvement by jumping to a more advantageous point within the objective-space.

54 3.5. Discussion

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective 1

0

5

10

15

20

25
O

b
je

c
ti
v
e
 2

DTLZ1alt optimized using five offspring

Figure 3.7: Trajectory plot when five offspring are generated, in the absence of
information sharing components. Note the smoother trajectories approaching the
Pareto front, when compared to the previous single offspring configurations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective 1

0

5

10

15

20

25

O
b
je

c
ti
v
e
 2

DTLZ1alt optimized using a neighbourhood size of four

for SBX reproduction

Figure 3.8: Trajectory plot when four neighbours are used for SBX and there is no
update of neighbouring solutions. The points cluster together, affecting the overall
ability of the optimizer to find the Pareto front.

Chapter 3. MOEA/D study 55

Updating the neighbourhood solutions also allowed the solutions to spread out
once they were close to the Pareto front.

While it has often been shown that the use of reproduction (or recombina-
tion) can aid optimizer performance, this appears to be invalid in the context of
a small number of reference directions. The use of reproduction does initially
seem to help in moving the solutions down towards the Pareto front; however
once they arrive their progress comes to an almost complete stop. A likely rea-
son for this is that while only two neighbours are being used, this constitutes a
sizeable region of the Pareto front. In most problems a much larger number of
reference directions are used, such as the 150 to 250 reference directions used in
the original MOEA/D study (Qingfu Zhang and Hui Li, 2007). In an exploratory
analysis using a ‘limited’ evaluation budget, the authors still used 20 reference
directions and 250 iterations, which is a total evaluation budget that is an order
of magnitude greater than that considered in this and other limited budget stud-
ies. Where a larger budget is available, any unhelpful effects of SBX reproduction
are lessened due to the smaller distances between reference directions (see Figure
3.1). Using both SBX reproduction and the update of neighbourhood solutions
together proved to be unsatisfactory, producing a worse IGD than the update of
neighbouring solutions did on its own.

The results of using the different normalisation methods are also notable.
Firstly, while using fixed normalisation provides the best performance, it is unre-
alistic for most RWAs as both the ideal and nadir points are unlikely to be known
in advance. The next option of simply using no normalisation proved to be worse
for the chosen disparately scaled test problem. This was due to the reference
directions forcing points to one side of the front. The option of using adaptive
normalisation, which is a more feasible option, proved to have a poor IGD value
while also possessing a high degree of variability, which is undesirable. Using
pre-estimation provided a considerable improvement over all but fixed normali-
sation, even though it reduced the subsequent number of evaluations available to
the optimizer.

While our findings have implications for the design and configuration of deco-
mposition-based optimizers, it is important to acknowledge that only a single
problem instance was used in the analysis. Generalisation of findings to other
classes of problem should be handled cautiously pending further experimental
studies.

56 3.6. Conclusion

3.6 Conclusion

This chapter has demonstrated how the selection and configuration of key compo-
nents of decomposition-based optimizers, represented by the seminal MOEA/D
algorithm, can substantially affect the performance of the optimizer when it is be-
ing run with a limited budget of evaluations. The sharing of knowledge through
the inclusion of neighbours can provide a large benefit when the update of neigh-
bourhood solutions component is implemented. On the other hand, the inclusion
of SBX reproduction when only a small number of reference directions are present,
such as in the present context, is inadvisable. When considering what form of
normalisation to use, it was found that using a subset of the evaluation budget
to gain an estimate of the ideal and nadir points for normalisation proved more
effective than the conventional adaptive scheme, and achieved close to the perfor-
mance of the ideal, but infeasible, approach of knowing the correct normalisation
parameters in advance. Now that an investigation into the effects of different con-
figurations for expensive optimization has been concluded the next chapter lays
out a mathematical framework for the combined problem.

Chapter 4

Framework

57

58 4.1. Introduction

4.1 Introduction

In this chapter, we present a mathematical framework for laying out the combined
problem of model calibration and optimization as a unified approach. This is
based around the work presented in my paper ‘Toward a unified framework for model
calibration and optimization in virtual engineering workflows’ (Jones et al. (2019)) pub-
lished in IEEE SMC. The basis for the ideas present were drawn from the papers
presented within the literature review, in Sections 2.2 and 2.3.

The chapter begins with Section 4.2 by laying out the combined mathemati-
cal problem framework for model calibration and optimization. The formulation
is designed to possess consistent notation through the different stages of work,
which is often lacking when comparing the optimization and calibration litera-
ture. A simple demonstration of how the notation can be applied to a toy system
has also been included.

The next Section 4.3 presents a selection of potential ways that such combined
problems could be tackled. These concepts are expanded upon and examined in
more detail within later chapters.

Section 4.4 looks at presenting a real-world virtual engineering case study
within the new problem framework. The case study is taken from work done
by Villarreal-Marroquín et al. (2017) on injection moulding in which both the opti-
mization and model calibration stages were considered, although no attempt was
made at laying out the problem in a unified way. This chapter finished by sum-
marising the different conclusions in Section 4.5.

4.2 Mathematical formulation

Now that a overview of the problem has been laid out the next step it to present a
mathematical formulation of the framework.

4.2.1 Problem framework and variables

We represent the physical system by

zs = s(x, ψ), (4.1)

with

• zs: the outputs of the system;
• x: control inputs to be optimised, potentially subject to constraints;

Chapter 4. Framework 59

• ψ: aleatory inputs, representing uncontrollable quantities that may differ
randomly each time the physical system is run;
• s(., .): unknown function that encodes the physical laws relating inputs to

outputs.

Both the inputs and outputs of the system can be multi-dimensional and are as-
sumed to be continuous (although could be discrete). We also have a computer
model of the system, represented by

zm = f (x, θ, ψ), (4.2)

which may include additional calibration inputs θ required to ‘tune’ the model to
the physical system. Uncertainty about θ would be epistemic.

The relationship between the model and the physical system is given by

s(x, ψ) = f (x, θ, ψ) + δ(x, θ, ψ), (4.3)

where δ(x, θ, ψ) represents residual error in the model predictions, once the model
has been tuned by selecting θ. The function δ() is often referred to as the model
discrepancy (Kennedy and O’Hagan, 2001).

Toy Formula - elements of the problem

A simple toy formulation is now presented in which a ball is thrown with the
aim of hitting a target. In this scenario the objective is to minimize the distance
between where the ball lands and the target. It is assumed that noisy physical
measurements can be obtained for the distance the ball lands from the target,
and that a model of how far the ball lands from the target is also available. For
illustration, we suppose that the true distance to the target (50m), the height at
which the ball is thrown (2m), and the acceleration due to gravity (9.81m/s2) are
all unknown. The different components within the problem are as follows.

Model inputs:

• Control inputs: horizontal velocity (vh) and vertical velocity (vv)
• Calibrations inputs: distance to target (Dta), starting height (Hi) and acceler-

ation due to gravity (g)
• Aleatory input: constant horizontal acceleration exerted by wind (a)

We suppose that the physical system that described the distance from the target is

s(vh, vv, a) = |50− Dth| (4.4)

60 4.2. Mathematical formulation

with
Dth = (vht) + (0.5at2)

t = − vv

−9.81
+

√(
vv

−9.81

)2

−
(

4
−9.81

) (4.5)

The system output (to be minimised) is the distance from the target, and a con-
straint on the control input would be a maximum throwing speed.

We suppose that there is also an (imperfect) computer model of the system,

f (vh, vv, Dta, Hi, g) = |Dta − vht|, (4.6)

with

t = − vv

−g
+

√(
vv

−g

)2

−
(

2Hi

−g

)
(4.7)

so that there will be model discrepancy resulting from the model failing to account
for the wind acceleration.

Example of real world variables

Taking the more complex real world example of designing a road car, by extracting
different features the variables present in the system can be organized as follows,
Model inputs:

• Control Inputs - x - Driver inputs (Throttle, Break)
• Epistemic uncertainty - θ - Type of engine, vehicle body design, compressor/

torque converter spec, final drive ratio
• Aleatory uncertainty - ψ - Variation in road surface, Component tempera-

ture, NOx conversion efficiency

Model Outputs:

• Objective output - z - Speed, Fuel efficiency, Co2 emissions, Weight, Total
cost

4.2.2 Model calibration

Before laying out model calibration it is important to consider what information
is available for use.

Available Information

The information available for the analyst will not necessarily be the same in all
problems. There are two main sources from which new data could be obtained,

Chapter 4. Framework 61

either expert opinion or physical experiments. There are two suggested types of
available information looked at.

• Case 1: Noisy observations. We obtain physical experimental data with
observation error. For i = 1, . . . , n, experiment i is carried out with control
input setting xi and measured aleatory inputs ψi, giving an observation

yi = s(xi, ψi) + εi, (4.8)

where εi is an observation error.
• Case 2: Plausibility/acceptability check. An expert believes the system out-

put would lie in some range, given the control and aleatory inputs. For
i = 1, . . . , n, the expert judges

s(xi, ψi) ∈ Si, (4.9)

for some set Si.

In both cases it is assumed that the value of ψi is found. In the first case it is
possible to work with an unknown ψi although it would increase the complexity
of the problem.

Determining parameters

In model calibration, the aim is to reduce the error between the predicted and
observed behaviour (Kennedy and O’Hagan, 2001). This is achieved through al-
tering the internal parameters of the model so that it can as closely predict the
‘true’ outputs as possible.

Depending on what form of information is being supplied by the expert, the
method needed for model calibration will vary.

• Case 1: Noisy observations
The observations from the experiments are

Y = [y1, . . . , yn]. (4.10)

If we assume a distribution for the unknown discrepancy δ() and for the er-
rors ε1, . . . , εn, then from (4.3) we can construct a likelihood function p(Y|θ).
We may then choose,

argmax
θ

p(Y|θ), (4.11)

62 4.2. Mathematical formulation

to obtain a single best point, or, having specified a prior distribution p(θ)
derive the posterior distribution,

p(θ|Y) ∝ p(θ)p(Y|θ). (4.12)

Note that such calibration data are not just informative for θ: they would
also be informative for the model discrepancy δ, so that, as in Kennedy and
O’Hagan (2001), we can derive a joint posterior distribution p(θ, δ|Y). This
has important implications for optimization: via (4.3), we can attempt to op-
timise the physical system s, rather than the computer model approximation
of it f .
• Case 2: Viability/acceptability check

In this case there are two situations that need to be considered. The first is
when it is assumed that the model matches the true system without model-
ing error and the second is when it does not.

– No modeling error present
In this case,

s(x, ψ) = f (x, ψ, θ) (4.13)

for some θ and all x, ψ. This gives a likelihood function,

p(D|θ) =

1, if f (xj, θ, ψ) ∈ Si i = 1, ..., N

0, otherwise.
(4.14)

where D is the event of a point being accepted by an expert.
– Modeling error present

When using the relationship between the model and system as shown
in Equation 4.3 the uncertainty due to the model error becomes an issue.
One method of overcoming this is to add a tolerance to each Si based
on a judgment about δ(x, ψ). In doing this a new set S∗i is produced
which represents the original set Si with the added tolerances. Using
this the likelihood function becomes,

p(D|θe) =

1, if f (xj, θ, ψ) ∈ S∗i i = 1, ..., N

0, otherwise.
(4.15)

In both cases it is possible to also construct a distribution for which it is
necessary to find one or more values of θ that posses a p(D|θ) = 1

Chapter 4. Framework 63

p(θ|D) ∝ p(θ)p(D|θ). (4.16)

4.2.3 Optimization

We suppose that the aim is to optimise the physical system, and that model
discrepancy is acknowledged, so that we must consider optimising f (x, θ, ψ) +

δ(x, ψ). Were we to ignore model discrepancy, the subsequent notation could be
simplified by omitting the term δ(x, ψ) throughout.

Assuming vector output quantities, we have a standard (multi-objective) opti-
mization problem (Deb et al., 2001) written as

f (x, θ, ψ) + δ(x, θ, ψ) =(f1(x, θ, ψ) + δ1(x, θ, ψ),

. . . , fk(x, θ, ψ) + δk(x, θ, ψ)),
(4.17)

the optimization problem can be written as

minimize
x∈X

f (x, θ, ψ) + δ(x, θ, ψ), (4.18)

subject to any constraints on x, where X is the set of possible choices of control
inputs x, and minimisation is element-wise.

Pareto optimality

Working with multi-objective problems a trade-off surface between the objectives,
known as the Pareto front, can be obtained by getting the set of non-dominated
points from within the current population of points. A point x ∈ X is said to be
non-dominated when there does not exist a point x′ ∈ X such that

fi(x′, θ, ψ) + δi(x′, θ, ψ) < fi(x, θ, ψ) + δi(x, θ, ψ), (4.19)

for i = 1, . . . , k.

Robust optimization

Robust optimization considers optimization in the presence of uncertainty and
can provide a link between the calibration and optimization stages described here.
Starting with the optimization problem in (4.18), if we now consider θ, ψ and δ as
uncertain, the objective function will be uncertain for any x. To recover a deter-
ministic optimization function with a known objective function, we re-express the
optimization problem as

64 4.2. Mathematical formulation

minimise
x∈X

I(f (x, θ, ψ) + δ(x, θ, ψ)), (4.20)

For some appropriate indicator functional I. Writing Ω = (θ, ψ, δ), with a cor-
responding sample space Ωs, the common choices for I shown in the literature
review (section 2.3.3) can be expressed as follows.

• Worst-case scenario

Iwc(x, Ωs) = max
Ω∈Ωs

f (x, θ, ψ) + δ(x, θ, ψ) (4.21)

• Aggregated value

Iexp(x, Ωs) = E[f (x, θ, ψ) + δ(x, θ, ψ)]

Ivar(x, Ωs) = var[fi(x, θ, ψ) + δi(x, θ, ψ)]
(4.22)

where the bi-objective problem requires the selection of the minimum be-
tween the possible indicators,

min
x∈X

[Iexp(x, Ωs) , Ivar(x, Ωs)] (4.23)

• Threshold probability

Icon(f (x, θ, ψ) + δ(x, θ, ψ)), q) = p(f (x, θ, ψ) + δ(x, θ, ψ) ≤ q) (4.24)

The newly determined indicator will replace the random objective function for
use within an optimizer. As mentioned before there are two possible methods that
can be used, either probabilistic or possibilistic. In a probabilistic approach, the
calibration phase could supply the probability distribution for both θ and δ.

4.2.4 Combined workflow

Taking the components present from the calibration and optimization stages we
can now summarise the combined workflow.

The physical system,
zs = s(x, ψ), (4.25)

produces expert data.
y = s(x, ψ) + ε, (4.26)

The model,
zm = f (x, θ, ψ), (4.27)

Chapter 4. Framework 65

relates to expert data by,

s(x, ψ) = f (x, θ, ψ) + δ(x, θ, ψ), (4.28)

Calibration: calculate probability of expert data given a selection of θ,

p(y|θ). (4.29)

and either select a single value, by taking the maximum likelihood,

θ̃ = argmax
θ

p(y|θ), (4.30)

or produces a distribution of possible θ,

p(θ|y) ∝ p(θ)p(y|θ). (4.31)

Then perform optimization using the discovered θ̃ or by selecting θ̃ from
p(θ|y),

minimize
x∈X

f (x, θ̃, ψ) + δ(x, θ, ψ), (4.32)

The robust formulation is one possible way in which the combined problem
can be expressed.

4.2.5 Toy formula - The problem

Working with the same problem as before, if the ball is thrown at a particular
velocity, a noisy measurement may be obtained as

y = s(vh, vv, a) + ε. (4.33)

In this case the observation error ε would be the difference between the mea-
sured distance the ball is from the target and the actual distance between the ball
and target. The model output is expressed as,

zm = f (vh, vv, Dta, Hi, g). (4.34)

Relating the model output to the physical measurements the expression

y = f (vh, vv, Dta, Hi, g) + δ(vh, vv, Dta, Hi, g, a), (4.35)

is obtained, where δ(vh, vv, Dta, Hi, g, a) is the model discrepancy. If, for example,
we wanted a point estimate of the calibration inputs θ = [Dta, Hi, g], we would

66 4.3. Possible solutions

need to obtain
θ̂ = argmax

θ

p(y|θ), (4.36)

which could then be used to calculate the model discrepancy.
The newly acquired set of parameters, θ̂ = (D̂ta, Ĥi, ĝ), can now be used in

optimization,
minimize

x∈X
f (x, θ̂) + δ(x, θ̂, a), (4.37)

for a given a, with x = (vh, vv). δ() would initially take the form of an assumed
distribution which could be improved through the addition of knowledge gained
from experimentation.

4.3 Possible solutions

There are three logical routes that solutions to this problem could take. The first
would be to use a robust optimization approach, without performing any calibra-
tion. This could save budget in terms of physical experiments, and potentially
computer model runs, but may result in an overly-conservative result as a con-
sequence of greater parameter uncertainty. A second option is to perform cali-
bration before beginning the optimization process. This may reduce the risk of a
conservative solution, but at a greater cost in terms of the computation budget. A
third option is to alternate between performing optimization and model calibra-
tion based upon a chosen criteria. This may be beneficial if model discrepancy
is a concern: as the non-dominated set of control inputs is reduced, further cal-
ibration experiments can be performed, which may improve estimates of model
discrepancy precisely in the regions of interest within the control input space.

Figure 4.1 provides a sketch of how such a third option could be realised.
The processes of calibration and optimization are alternated, with the transition
between the two determined by switching conditions. These conditions could be
based on number of evaluations (or proportion of the budget), or use convergence
criteria that are relevant to either calibration or optimization (e.g. respectively,
robustness of optimal output to parameter uncertainty or negligible improvement
in a hypervolume indicator (Zitzler et al., 2007)).

A further area to consider is the use of low-complexity surrogate models (also
known as emulators or meta-models) to replace expensive evaluations within either
the calibration process, optimization process, or both processes (Chugh et al., 2019,
Kennedy and O’Hagan, 2001). Any of the above approaches can incorporate surro-
gates. Surrogates have the further benefit that they can use information from both
the calibration and optimization runs, allowing for greater information sharing

Chapter 4. Framework 67

Initialize model

Perform
calibration

Perform
optimisation

Switching
condition

met?

Switching
condition

met?

Has whole
budget been

used?

Has whole
budget been

used?

Yes

Yes

Yes

No

No

No

No

End

Figure 4.1: Flow diagram for the proposed joint problem of model calibration and
optimization.

between the two activities.

4.4 Real-world examples set within the combined problem
framework

This section sets out an example problems within the combined problem frame-
work for optimization and model calibration. The problem presented is from a
paper on injection molding (Villarreal-Marroquín et al., 2017).

4.4.1 Injection moulding

The methodology used within the injection moulding paper is linear with a fixed
number of steps which are each only undertaken once. The basic workflow as
presented within the paper is as follows,

68 4.4. Real-world examples set within the combined problem framework

Figure 4.2: Injection molding process optimization and calibration framework
taken from the original paper (Villarreal-Marroquín et al., 2017).

Within the paper the method was broken down into eight stages which mostly
corresponds to the workflow above. There are slight deviations from Figure 4.2
however as process windows are not explicitly developed. Returning to the prob-
lem it is possible to extract the components present within the system and obtain
the,
Model inputs:

• Control Inputs - Melting temperature (◦C), Packing time (s), Packing pres-
sure (MPa), Cooling time (s),
• Epistemic uncertainty - HTC flow (W/m2 k), HTC pack (W/m2 k), HTC open

(W/m2 k),

Model Outputs:

• Objective output - Relative shrinkage of the length (L3), relative shrinkage of
the thickness (T3) and relative shrinkage of the width (W3).

The objective is to choose control inputs that will minimise all three outputs.
There are no aleatory inputs in this example.

Their methodology proceeds in a series of stages. We give a condensed list
here, skipping those stages that are not directly relevant to our framework.

Chapter 4. Framework 69

Stage 1 - Design of experiment

The methodology starts by acquiring two sets of data. The first set consisting of
physical observed values at 19 different settings of control inputs, each replicated
four times. These initial control inputs (x̌) are determined using a full factorial
with n=2 (i.e taking the high and low values of all combinations). The second set
of data comes from running a computer simulation of the process. The initial con-
trol inputs and parameters for the simulation are determined through the use of
the Maximin Latin Hypercube design (obtained from URL{https://spacefillingdesigns.nl})
and are represented by xhyp and θhyp respectively. It is not mentioned which
method was used for the creation of the maximin design they chose to use from
the database.

The physical data comes from,

ŷ =
1
N

N

∑
i=1

(ys(x̌i)), (4.38)

where the average of the four repetitions is being taken for the final value. This
design is known as a trend free split-plot design. The simulated data is obtained
using the model function,

zm = f (xhyp, θhyp). (4.39)

Stage 2 - Fit calibrated predictor

The computer model is computationally expensive, and so the authors do not
use it ‘directly’ for either calibration or optimization. They also recognise the
presence of model discrepancy, which they account for in their optimization. This
is done through the construction of a ‘calibrated predictor’. Using the two datasets
(physical experiments and computer model runs), they

• construct a meta-model of the computer model, based on Gaussian process
regression;

• construct an estimate δ̂(x, θ) of the model discrepancy between reality and
the simulation;

• derive a posterior distribution p(θ|ŷ) of the calibration inputs θ given the
two datasets.

The calibrated predictor takes the form

ŝ(x) = Eθ [f̂ (x, θ)] + δ̂(x, θ), (4.40)

70 4.4. Real-world examples set within the combined problem framework

where f̂ is an estimate of the computer model obtained from the meta-model, and
the expectation is taken with respect to the posterior distribution of the calibration
inputs θ.

Once this has been completed the calibrated Gaussian predictors are then eval-
uated at the same control input settings as the initial physical experiments to
allow for a comparison of results. The root mean square prediction error (RMSPE)
is used to assess the accuracy of the calibrated predictor.

RMSPE =

√
∑

j
i=1(f̌ (x̌i)− ys(x̌i))2

j
, (4.41)

where j is the number of physical experiments that have been carried out.

Stage 3 - First attempt to optimise the physical system

The authors perform optimization by constructing a grid of equally spaced points,
xg spanning each of the control inputs. In their case study, the authors used a grid
of 360 points. Once the grid is constructed, the next step is to evaluate (4.42) at
each grid point (producing three outputs per grid point),

ŝg(xgi) = Eθ [f̂ (xgi, θ)] + δ̂(xgi, θ), (4.42)

where i goes from one to the number of grid points. It should be noted that
they do not state what summary statistic they were using on z.

Stage 4 - Obtain Pareto front

A Pareto front is obtained by inspection of the grid. The condition for selecting the
non-dominated points that comprise the Pareto front is provided in equation 4.19.
Given the averaging with respect to θ, this corresponds to the robust optimization
procedure with the functional I chosen to be the expectation operator.

Stage 5 - Refine Pareto front

Having identified (approximately) the Pareto front, a second grid of control inputs
is chosen in the location of the front, and (4.42) is again evaluated at each grid
point. A refined Pareto front is then identified by inspection. The authors used
560 grid points in their case study.

Chapter 4. Framework 71

Stage 8 - Validate final front

The estimated Pareto front has been obtained from a ’calibrated predictor’, eval-
uated at 920 settings of the control inputs. The calibrated predictor is only an
estimate of the physical system, based on 19 (replicated) physical experiments,
and 35 computer model runs. Consequently, there is a need to validate the esti-
mated Pareto front. This is done by selecting five control input settings from the
front, and then performing physical experiments at these settings. The system
outputs are then compared with those from the initial 19 physical experiments.
No replications of the validation run physical values are carried out.

Extension

Although the methodology that is described only performs two loops for opti-
mization it would be relatively easy to extend this work to expand it for more
iterations. To actually implement this all that would be needed is to repeat step 5
for as many times as necessary. An alternative to increasing the number of itera-
tions would be to use a finer grid of points. Both of these options should aid in
improving the results obtained, however, incorporating either would increase the
number of evaluations of the computer simulation that would be have to be run.

Critique

After going through the paper there are some areas that seem to be lacking or
unclear. The main points identified were,

• Some stages are not clear on what is being done and some of the information
being used is not provided to the reader.
• There is no consideration of structural uncertainty.
• There is no comparison to more advanced optimization strategies.
• Limitations of this method are not discussed in detail.
• The predictors are not correlated.

These make it harder to determine whether this setup would be viable for a
larger array of problems and are aspects that will need to be taken into consider-
ation during future work.

4.5 Conclusion

This chapter has set out a mathematical notation that is consistent for problems
within which both calibration and optimization parameters are present. Examples

72 4.5. Conclusion

of how problem components can be manipulated to fit within such a framework
have been demonstrated. Possible methods that could be used for approaching
such a problem have been presented and their viability commented upon.

The proposed formulation has then been used as a basis to lay out a real world
problem possessing both control inputs as well as model parameters. The example
was drawn from a practical study examining the calibration and optimization
of the injection moulding process. From this example it can be seen that this
formulation is capable of adequately including the features present within such
problems.

The fact that the problem framework is capable of being used for defining a
diverse set of different problems poses many benefits. One such benefit is that
provided a method is developed to work with this framework, any problem ca-
pable of being defined using this framework should be compatible with the new
method. Another benefit of having such a combined problem framework is that it
should be easier to extract and categorise information.

Now that a viable mathematical formulation combining the two areas of inter-
est form the virtual engineering workflow (VEW) has been produced. The next
step is to lay out a methodology for benchmarking problems of this new setup.
The following chapter looks at the performance metrics which could be used with
the new problems before going on to lay out possible benchmarking problems
and finally constructing a new component to work with the pre-existing WFG
benchmarking framework.

Chapter 5

Benchmarking

73

74 5.1. Introduction

5.1 Introduction

This chapter looks at benchmarking, which is the process by which the perfor-
mance of a methodology can be assessed. In order for benchmarking to be carried
out it is necessary to set it up as a systematic structured process. Within this pro-
cess there are several components that need to be selected. The two examined
here are the performance metric and the test problem. The first of these to be
presented is the possible options that could be utilised as the performance metric.
Those looked at include the hypervolume indicator, inverted generational distance
and the epsilon family.

The chapter then moves on to examine possible test problems. In order to do
this, it is first necessary to come up with a method for developing test problems
that possess both model parameters and control inputs. The proposed approach
involves altering pre-existing test problems from within the optimization literature
and was carried out to obtain a selection of single and multi-objective problems.

The third area the chapter details is the creation of a new component for the
Walking Fish Group (WFG) framework. This was found to be necessary as a
problem which could not be solved, by a simple surrogate model, was desired.
The WFG framework was selected due to its modularity, this feature means that
the newly developed component can fit within a wide range of setups and achieve
a variety of properties.

The chapter follows the areas laid out above with the performance indicators
being shown in Section 5.2, the adapted optimization test problems presented in
Section 5.4 and finally the development of the new component being described in
Section 5.5. In addition to these a brief overview of COmparing Continuous Opti-
misers (COCO) and Black Box Optimization Benchmarking (B-BOB) is presented
in Section 5.3.

5.2 Indicators

There are many different indicators, also known as performance metrics, present
within the literature as shown by Riquelme et al. (2015) in their paper on perfor-
mance metrics for multi-objective optimization. Their assessment of performance
metrics focused around those used for Evolutionary multi-criterion optimization
(EMO). They present that between 2005 and 2013 within the literature on EMO
approximately 53% of articles used performance indices and of these about 43%
chose to use only a single metrics. This means that during this period only just
over 30% of article used more than one performance metric. Out of the perfor-

Chapter 5. Benchmarking 75

mance metrics used Hypervolume was by far the preferred choice, followed up by
Generational distance and the Epsilon family. Each of these methods shall now be
discussed in addition to that of the inverted generational distance.

5.2.1 Hypervolume

The hypervolume indicator works by calculating the area between the current un-
dominated points and an anti-ideal point. A comprehensive overview of the hy-
pervolume indicator is given by (Bader, 2010). It possesses the advantage of giving
a representation of both the accuracy and the diversity on the discovered points as
well as being capable of working with any number of objectives. One issue with
using the hypervolume is the complexity of calculating it, while it is possible to
use for high dimensions, as the number of objectives increases so does the com-
putational difficulty and the time required. An example of the hypervolume can
be seen if Figure 5.1 with the hypervolume area being marked by a dashed line.
It can be clearly seen from the graph that if either the known undominted points
moved further from the anti-ideal or new undominated points were to be found
then the size of the hypervolume would increase.

Figure 5.1: Example of hypervolume, with non dominated points shown as circles,
the selected anti ideal shown as a cross and the Hypervolume area encircled by a
dashed line

The hypervolume does not require knowledge of the Pareto front in order to
be useful as it is possible to take arbitrary points for the ideal and anti-ideal. If
this is done, then it is possible to tell whether the performance of the optimizer is
improving, although it is not however possible to determine how close the results

76 5.2. Indicators

of the optimizer are to the optimal outputs. When testing an optimizer on a pre-
known model the hypervolume has the added benefit of informing the decision
maker how close to the optimizer is to the best achievable performance. In order
to calculate this the hypervolume it calculated using the Pareto front and anti-
optimal point. The optimizer can then be run while trying to minimize the differ-
ence between this ideal hypervolume and that obtained from the non-dominated
point set. The hypervolume does suffer from bias being present when a reference
point is badly chosen. Zitzler et al. (2007) look at modifying it in order to obtain
other preferences. They determined that it is possible to incorporate other prefer-
ences while managing to maintain the hypervolume indicators sensitivity to the
domain.

5.2.2 Generational Distance

Generational distance looks at the average of the Euclidean distances between the
points in the current best Pareto front and the nearest point from the true Pareto
front to each of them (Van Veldhuizen and Lamont, 1998). While generational
distance does inform the decision maker of how close to the Pareto front the non-
dominated set is it requires the user to have knowledge of the front’s location
and so does not work with arbitrary test problems. From this, it can be taken
that obtaining a Generational distance of zero would mean that all points in the
calculated Pareto front lie on the true front. The Large disadvantage of this method
is that it gives no information about the spread of points over the true Pareto front.

5.2.3 Inverted Generational Distance

Inverted generational distance (Ishibuchi et al., 2015) works similarly to that of
Generational distance. Once again, it is necessary to have a set of reference points
representing the true Pareto front as well as the set of points representing the
current best set of points. The difference in methods is that for the inverted gener-
ational distance the Euclidean distance from each point in the true Pareto front set
and the closest point from the set of current best points is averaged. The formula
for calculating the inverted generational distance with Pareto front reference point
set Z = (z1, z2, ...z|Z|) and ’best’ solution set Y = (y1, y2, ..., y|Y|) is:-

IGD =
1
|Z|

|Z|

∑
j=1

min
yi∈Y

d(yi, zj) (5.1)

Through looking at the distances from each point in the true Pareto front, it
becomes possible to assess the spread of points over the true front. The require-

Chapter 5. Benchmarking 77

ment of points needing to be spread over the Pareto front makes it a harder metric
to meet.

5.2.4 Epsilon family

There are two main Epsilon methods, the epsilon indicator and additive epsilon
indicator (Zitzler et al., 2002). Both methods function in the same manner with
the only difference being how ε is applied. In the epsilon indicator a value of
ε is determined to represent an approximate value with respect to all directions,
where one set of objectives is worse than another. In the additive epsilon indicator,
ε represents an amount that needs to be added instead of a factor. Assuming there
are two objective vectors Y1 = (y1

1, y1
2, ..., y1

|Y1|) and Y2 = (y2
1, y2

2, ..., y2
|Y2|) the binary

ε -indicator is determined by:-

Ie(A, B) = max
y2∈B

min
y1∈A

max
1≤i≤n

y1
i

y2
i

(5.2)

for any two approximation sets A,B (Zitzler et al., 2002). The additive binary ε

-indicator is determined by(Bringmann et al. (2014)):-

Ie(A, B) = max
y2∈B

min
y1∈A

max
1≤i≤n

y2
i − y1

i (5.3)

5.3 COCO / B-BOB framework

COmparing Continuous Optimisers (COCO) is a process that has been developed
in order to give users both a experimental framework as well as a method for pro-
cessing the results of benchmarking for clear presentation (Hansen et al., 2011).
The main team behind the development of the software that is used in COCO is
TAO. COCO is a popular method for performing Black Box Optimization Bench-
marking (B-BOB) having been used for around 100 articles and algorithms. COCO
and the B-BOB methodology gives a standardised method for analysing the per-
formance of optimizers. This allows for them to be more easily compared. The
methodology for performing B-BOB is available for everyone to see and has clear
reasoning behind its implementation choices

78 5.4. Adapting test problems from the literature

5.4 Adapting test problems from the literature

5.4.1 Examples of possible test functions

Initially a large selection of test problems were considered from the optimization
literature, see 5.1, from which a small selection were chosen. Within these prob-
lems taken from the optimization literature, the main structure of the functions
have been kept the same while constants have been changed into model param-
eters that are now required to be found. Each problem requires two setups, one
without model error and one where the structure of the function has been altered
so that an error exists between the two model setups. These are to simulate the
real world physical system and an imperfectly model of that system.

5.4.2 Proposed method for adapting test problems

Initially the prospect of directly adapting test problems from within the literature
was examined.

When creating the test problems like this a pre existing problem from the
literature was selected as a starting point. This was done as they are what other
within the field of optimization are currently familiar with. Each of them have
known characteristics and shapes which have been set as the ideal setup of the
function. The problems where first taken and possible parameters selected. These
were broken down to two groups, those which change the modelled front and
those which change the inputs required to gain that front. Those belonging to the
first category cause a discrepancy between what is observed from the model and
the system while those of the second prevent the optimal inputs being obtained
while their true values have not been found.

In most cases these parameters are simply constants that were already present
within the function which have been changed to variables. A range of possible
values surrounding the initial constant value were selected and used as the param-
eter range. If possible the range has been chosen so that any repeating patterns
are avoided. Once this is done the, ‘modelled’ version of the function is produced
through altering it in some way. Currently the functions are changed so that the
fronts have an altered shape. In the case of the WFG functions this is very simple
to achieve due to their modular framework.

5.4.3 Single objective

The Rastrigin and Schwefel function have been chosen as examples of possible
single objective problems.

Chapter 5. Benchmarking 79

Name No Objectives No Inputs Separability Unimodal Geometry
ZDT1 2 2+ S Y convex
ZDT2 2 2+ S Y concave
ZDT3 2 2+ S [Y N] disconnected
ZDT4 2 2+ S [Y N] convex

DTLZ1 2+ 2+ S N linear
DTLZ2 2+ 2+ S Y concave
DTLZ3 2+ 2+ S N concave
DTLZ4 2+ 2+ S Y concave
DTLZ5 2+ 2+ Y
DTLZ6 2+ 2+ Y
DTLZ7 2+ 2+ [NS NS ... S] [Y Y ... N] disconnected
MOP1 2 1 S Y convex
MOP2 2 3+ S Y concave
MOP3 2 2 [NS S] [N Y] disconnected
MOP4 2 3+ S [Y N] disconnected
MOP5 3 2 NS [N Y N]
MOP6 2 2 S [Y N] disconnected
MOP7 3 2 [S NS NS] Y disconnected
WFG1 2+ 24 S Y convex, mixed
WFG2 2+ 24 NS [Y N] convex, disconnected
WFG3 2+ 24 NS Y Linear, degenerate
WFG4 2+ 24 S N concave
WFG5 2+ 24 S concave
WFG6 2+ 24 NS Y concave
WFG7 2+ 24 S Y concave
WFG8 2+ 24 NS Y concave
WFG9 2+ 24 NS N concave
BK1 2 2 S Y convex

DGO1 2 1 NA N convex
DGO2 2 1 NA Y point

FF1 2 2 S Y concave
JOS1 2 2+ S Y convex
JOS2 2 2+ [NA S] Y mixed
LRS1 2 2 S Y convex
LE1 2 2 S Y concave

MLF1 2 1 NA N convex
QV1 2 2+ S N concave
SP1 2 2 NS Y convex
VU1 2 2 S Y convex
VU2 2 2 S Y convex

Table 5.1: A list of some of the available test problems from within the literature
indicating their, number of objectives and inputs, if they are separable or unimodal
and what shape geometry they posses.

80 5.4. Adapting test problems from the literature

Rastrigin function

Minimize f (x) = θ1n +
n

∑
i=1

[x2
i − θ1cos(θ2xi)]

where xi ∈ [−5.12, 5.12].

(5.4)

where the model inputs are,

Inputs = [x1 x2 ... xn] (5.5)

and the model parameters are,

Parameters = [θ1 θ2] (5.6)

The values for the inputs at the optimal solution are x = (0, 0, ..., 0) when ‘true’
model parameters θ1 = 10 and θ2 = 2π are used.

Schwefel Function

Minimize f (x) = f (x1, x2, ..., xn) = θ1n−
n

∑
i=1

θ2xisin
(√
|xi|+ θ3

)
where xi ∈ [−500, 500].

(5.7)
where the model inputs are,

Inputs = [x1 x2 ... xn] (5.8)

where the model parameters are,

Parameters = [θ1 θ2 θ3] (5.9)

The values for the inputs should be x = (420.9687, ..., 420.9687) when θ =

(418.9829, 1, 0)

5.4.4 Multi objective

DTLZ1θ

A less rugged version of the DTLZ1 (Deb et al., 2005) function obtained from
the Parego paper (Knowles, 2006). It originally possessed a straight Pareto front

Chapter 5. Benchmarking 81

that went between [0.5 0] and [0 0.5].

Minimize f1 = θ1x1(1 + g)

Minimize f2 = θ2(1− x1)(1 + g)

g = 10
[
θ3 + ∑

i∈{2,...,6}
(xi + θ4)

2 − cos(2π(xi + θ5))
]

where xi ∈ [0, 1], i ∈ {1, ..., n}, n = 6.
(5.10)

When model error is included the structure of the function changes to become,

Minimize f1 = θ1x1(1 + g)

Minimize f2 = θ2(1− x2
1)(1 + g)

g = 10
[
θ3 + ∑

i∈{2,...,6}
(xi + θ4)

2 − cos(2π(xi + θ5))
]

where xi ∈ [0, 1], i ∈ {1, ..., n}, n = 6.
(5.11)

where the model inputs are,

Inputs = [x1 x2 x3 x4 x5 x6], (5.12)

and the model parameters are,

Parameters = [θ1 θ2 θ3 θ4 θ5]. (5.13)

To obtain the Pareto front the inputs should be set to xm = 0.5 for all but x1

which should be in the range of [0, 1]. The parameters that correspond to the ‘true’
model are θ = (0.5, 0.5, 5,−0.5,−0.5). The Model error that has been incorporated
causes the shape of the front to become concave. Each of the parameters impact
the model in different ways, θ1 and θ2 work to scale the objectives, θ3 represents
an amount that is required to cancel out the effects of inputs x2 : xn. These first
three parameters will not have any effect on the inputs required to achieve the
‘true’ Pareto front, they simply alter the output of the model. θ4 has a varying
impact which depends on the difference between the current input and the value
of θ4 when this difference is small it has a negligible impact on what constitutes
a good input. θ5 has the largest impact on which inputs will produce the ‘true’
Pareto front, when θ4 is a reasonable approximation of its true value the inputs
(x2 : xn) that will make up the Pareto front are xi = −θ5.

82 5.4. Adapting test problems from the literature

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Objective 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
O

bj
ec

tiv
e

2
Plot showing the true and modelled Pareto front for DTLZ1a

True front
Modelled front

Figure 5.2: A plot showing both the true Pareto front as well as that produced by
the model containing a structural error for the DTLZ1a function.

ZDT1θ

ZDT1 (Zitzler et al., 2000) originally possessed a convex Pareto front that went
between [1, 0] and [0 1].

Minimize f1(x) = x1

Minimize f2(x) = g(x)h(f1(x), g(x))

g(x2, ..., xm) = θ1 + θ2

[m

∑
i=2

(xi)
]

h(f1, g) = 1−
√

f1/g

where xi ∈ [0, 1], m = 30.

(5.14)

When model error is included the structure of the function changes to become,

Chapter 5. Benchmarking 83

Minimize f1(x) = x1

Minimize f2(x) = g(x)h(f1(x))

g(x2, ..., xm) = θ1 + θ2

[m

∑
i=2

(xi)
]

h(f1) = 1− f1

where xi ∈ [0, 1], m = 30.

(5.15)

where the Model inputs are

Inputs = [x1 x2 ... x30] (5.16)

and the Model parameters are

Parameters = [θ1 θ2] (5.17)

Similarly to the DTLZ1 function to obtain the true Pareto front all but the first
input need to have the same value, in this case x=0. Once again the first input, x1 ,
indicates direction and can takes a value between [0, 1]. The ‘true’ parameters that
match the original problem are θ = (1, 9/29). Both θ1 and θ2 affect the distance
between a point and the origin while also having some impact on the direction

WFG2θ

The WFG2 test problem comes from the walking fish group test suite presented
by Huband et al. (2005) and originally possessed a convex disconnected Pareto
front. Its main components consist of,

Shape

t1

t2

t3

hm=1:M−1=convexm

hm=discm (with α = β = 1 and A = θ1)
t1
i=1:k=yi

t1
i=k+1:n=s_linear(yi, θ2)

t2
i=1:k=yi

t2
i=k+1:k+l/2=r_nonsep({yk+2(i−k)−1, yk+2(i−k)}, 2)

t3
i=1:M−1=r_sum({y(i−1)k/(m−1)+1, ..., yik/M−1)}, {1, ..., 1})

t3
M=r_sum({yk+1, ..., yk+l/2}, {1, ..., 1})

When model error is included the structure of the function changes to become,

84 5.4. Adapting test problems from the literature

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Objective 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
O

bj
ec

tiv
e

2
Plot showing the true and modelled Pareto front for ZDT1

True front
Modelled front

Figure 5.3: A plot showing both the true Pareto front as well as that produced by
the model due to model error for the ZDT1θ function.

Shape

t1

t2

t3

hm=1:M−1=concavem

hm=discm (with α = β = 1 and A = θ1)
t1
i=1:k=yi

t1
i=k+1:n=s_linear(yi, θ2)

t2
i=1:k=yi

t2
i=k+1:k+l/2=r_nonsep({yk+2(i−k)−1, yk+2(i−k)}, 2)

t3
i=1:M−1=r_sum({y(i−1)k/(m−1)+1, ..., yik/M−1)}, {1, ..., 1})

t3
M=r_sum({yk+1, ..., yk+l/2}, {1, ..., 1})

where the Model inputs are,

Inputs = [x1 x2 ... x24] (5.18)

and the Model parameters are,

Parameters = [θ1 θ2] (5.19)

For the WFG2θ problem the first four inputs control direction while the last
20 alter the distance. In this case the Pareto front is found when x=0.35i, where
i is the current input being looked at, for all distance inputs. The possible range
of inputs are between zero and 2i (this can also be shown as 2 : 2 : 2n) and the

Chapter 5. Benchmarking 85

‘true’ parameters in this case are θ = (5, 0.35). The effect of θ1 is to change the
number of disconnected regions making up the pareto optimal front. The second
parameter, θ2, is highly important is it determines the value for which the control
inputs achieve an optimal performance.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Objective 1

0.5

1

1.5

2

2.5

3

3.5

4

O
bj

ec
tiv

e
2

Plot showing the true and modelled Pareto front for WFG2

True front
Modelled front

Figure 5.4: A plot showing both the true Pareto front as well as that produced by
the model due to model error for the WFG2 function.

WFG4θ

The WFG4 test problem also comes from the comes from walking fish group
test suite and originally possessed a convex disconnected Pareto front. Its main
components consists of,

Shape
t1
t2

hm=1:M=concavem

t1
i=1:n=s_multi(yi, 30, θ1, θ2)

t2
i=1:M−1=r_sum({y(i−1)k/(m−1)+1, ..., yik/M−1)}, {1, ..., 1})

t2
M=r_sum({yk+1, ..., yn}, {1, ..., 1})

When model error is included the structure of the function changes to become,

Shape
t1
t2

hm=1:M=linearm

t1
i=1:n=s_multi(yi, 30, θ1, θ2)

t2
i=1:M−1=r_sum({y(i−1)k/(m−1)+1, ..., yik/M−1)}, {1, ..., 1})

t2
M=r_sum({yk+1, ..., yn}, {1, ..., 1})

where the Model inputs are,

86 5.4. Adapting test problems from the literature

Inputs = [x1 x2 ... x24] (5.20)

and the Model parameters are,

Parameters = [θ1 θ2] (5.21)

For the WFG4θ problem the first four inputs control direction while the last 20
alter the distance. In this case the Pareto front is found when x=0.35i, where i is
the current input being looked at, for all distance inputs. The possible range of
inputs are between zero and 2i (this can also be shown as 2 : 2 : 2n). The ‘true’
parameters in this case are θ = (10, 0.35). The first model parameter, θ1, controls
the magnitude of the multi-modality present within the problem. Similarly, to
the WFG2θ problem the second parameter, θ2, determines the value for which the
control inputs achieve an optimal performance.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Objective 1

0

0.5

1

1.5

2

2.5

3

3.5

4

O
bj

ec
tiv

e
2

Plot showing the true and modelled Pareto front for WFG4

True front
Modelled front

Figure 5.5: A plot showing both the true Pareto front as well as that produced by
the model due to model error for the WFG4 function.

Chapter 5. Benchmarking 87

5.5 Creation of a new test problem

5.5.1 Requirements

There are certain characteristics that are desired from the test problem, these in-
clude,

• Non-separable

• Scalable

• Adjustable complexity

• Can not be easily approximated via a simple surrogate model

The main points that are not currently addressed satisfactorily within the literature
are the ability to adjust the complexity of a problem and the lack of problems that
are tricky to approximate through the use of a simple function. In regards to the
second issue, in a lot of cases problems have been produced via taking an initial
shape such as x2 and applying complexity to it with a function such as sin(x).
Such a problem can be seen within Figure 5.6.

-3 -2 -1 0 1 2 3

x

0

2

4

6

8

10

12
Function
Surrogate

Figure 5.6: Example of how a simple surrogate can fit to a more complex function

While such problems may be difficult to solve normally when applying a sur-
rogate the solution can often be easily found. In this case even though the sur-
rogate does not match up to the true function it was still possible to determine

88 5.5. Creation of a new test problem

the optimal value. In regards to adjusting the complexity of a problem the WFG
toolkit already allows for this to some extent in addition to allowing problems to
be built up from components. Due to these aspects it seems sensible to make a
new component that can be incorporated into the pre-existing framework.

5.5.2 New component

The new component is required to not be easily matched with a simple function.

s_signal(x, A, B, C, D, E, F) = D + F +

(
G

1 + E|x(i)− A|

)
G = D sin

(
−π

2
− C|x(i)− A|

B + |x(i)− A|

) (5.22)

• A - Target output value - Input for which smallest output will be obtained

• B - Frequency near target - Affects minimum frequency near the target (
must be > 0)

• C - Rate of frequency decrease - Affects the rate at which frequency decreases
as you move away from the target (smaller values lead to a faster decrease
in frequency), also effects maximum amplitude (larger values give a larger
maximum amplitude)

• D - Scaling of the output/ steady state value - This value represents the the
value which the sign waves deteriorates towards as you move away from the
target location before offset is applied.

• E - Rate of amplitude deterioration - Determines how fast the amplitude will
deteriorate towards the steady state.

• F - Vertical offset - Shifts the output vertically by the specified amount.

Two possible realisations of the component are made in Figure 5.7. These are
displayed to demonstrate how the difficulty of the problem can be manipulated.

The plots present in Figure 5.8 show how the output of the component has the
possibility of producing similar results for a region even though the parameters
used can be quite different. This shows that possessing points within certain
regions when carrying out calibration does not guarantee that the whole search
space is calibrated well.

Chapter 5. Benchmarking 89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

(a) Example output of component,
ssignal(x, 0.35, 1, 100, 0.5, 10, 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Example output of component,
ssignal(x, 0.35, 1, 40, 0.5, 40, 0)

Figure 5.7: Two possible realizations of the new ssignal component produced with
fixed parameters and a varying input

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Output of component with
ssignal(x, 0.35, 1, 40, 0.5, 40, 0) (solid line) and

ssignal(x, 0.35, 1, 40, 0.2, 40, 0.3) (dashed)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Output of component with
ssignal(x, 0.35, 1, 40, 0.5, 40, 0) (solid line) and

ssignal(x, 0.17, 1.4, 60, 0.3, 12, 0.2) (dashed)

Figure 5.8: Plots of two possible realizations of the function

90 5.5. Creation of a new test problem

It is possible to take the different parameters on the component to be the sys-
tem parameters that need to be obtained in order to calibrate the system. Limi-
tations will need to be applied on a couple of the parameters to ensure that they
stay within a reasonable range and prevent them going negative in some cases.

In order for this new component to be used within the WFG framework it is
necessary to ensure that the output is limited to fall within the range of 0 to 1.

5.5.3 New WFG function

In order to fulfil our objective it is necessary to use the the Non-separable compo-
nent. The design that was decided upon looks similar to the WFG4 Function only
with the multi modal (s_multi) component being replaced with our new s_signal
component.

Shape
t1
t2

hm=1:M=concavem

t1
i=1:n=s_signal(yi, θ1, θ2, θ3, θ4, θ5, θ6)

t2
i=1:M−1=r_sum({y(i−1)k/(m−1)+1, ..., yik/M−1)}, {1, ..., 1})

t2
M=r_sum({yk+1, ..., yn}, {1, ..., 1})

It is assumed that when modelling a more simple function would be produced
than that which is considered the ‘true’ function. Hence, including the model er-
ror the function becomes,

Shape
t1
t2

hm=1:M=linearm

t1
i=1:n=s_signal(yi, θ1, θ2, θ3, θ4, θ5, θ6)

t2
i=1:M−1=r_sum({y(i−1)k/(m−1)+1, ..., yik/M−1)}, {1, ..., 1})

t2
M=r_sum({yk+1, ..., yn}, {1, ..., 1})

This function is scalable and possesses both position (k) and distance (l) inputs,
which can be expressed as,

Inputs = [x1 x2 ... xn]

n = k + l
(5.23)

and the model parameters are,

Parameters = [θ1 θ2 ... θ6] = [A B ... F] (5.24)

The Pareto optimal front will be achieved when all of the distance input values
are set to the value of A. The range of all of the inputs is between [0 2i], with i
representing the current input being looked at.

Depending on how difficult you want the problem to be it would be possible to

Chapter 5. Benchmarking 91

use all or just a subset of s_signal’s parameters. Initially the problem is looked at
with only A, B and C being used as parameters. This allows for both the shifting
of the optimal of the signal and control over the frequency of the signal. Not
allowing D and F to change has the benefit of helping to ensure the output of the
component stays within the range of 0 to 1.

5.5.4 WFG4s

The final version of new problem, referred to as WFG4s, which was settled upon
and used for testing in Chapter 7 uses the structure of the new test problem with
an altered version of the s_signal component. The two changes made to the com-
ponent was first to limit the parameters being actively varied to just θ1 and θ2. The
second change was to use (x(i)− A)2 instead of abs(x(i)− A) which makes the
trough wider. This resulted with the simplified version of the component being,

s_signal(x, A, B) = 0.5 + 0 +
(

G
1 + 40(x(i)− A)2

)
G = 0.5 sin

(
−π

2
− 40(x(i)− A)2

B + (x(i)− A)2

) (5.25)

5.6 Conclusion

This chapter presents information necessary for carrying out benchmarking of a
combined model calibration and optimization problem. It begins by presenting
a selection of popular performance indicators include hypervolume and Inverted
generational distance.

The chapter then goes on to present a methodology by which optimization
test problems can be taken and adapted to the combined problem. This process
is applied to a selection of popular test problems, both single and multi-objective,
from within the optimization literature.

After examining the test problems produced it is determined that it would
be necessary to develop a new function to accommodate specific properties. The
main property that was lacking was for the problem not to be easily approximated
via the use of a simple surrogate model. Rather than developing a new problem
from scratch it was decided to develop a new component for the WFG framework.

Now that a suite of test problems is available the next step is to implement pos-
sible solutions to this joint problem. The following chapter looks at methods that
can be implemented within a medium sized budget of 5000 function evaluations.

Chapter 6

Architectures for 5000 evaluations

92

Chapter 6. Architectures for 5000 evaluations 93

6.1 Introduction

This chapter investigates methods for solving the combined problem of model
calibration and optimization. This is done with the aim of improving the over-
all performance of the combined stages without the use of additional function
evaluations.

The new adaptive method looks at using a combination of Bayesian calibration,
implemented using MCMC, along with MOEA/D and is compared to the classical
series approach. A high-level schematic of each process is presented along with
details about how this specific implementation was carried out. Additional infor-
mation is included, covering a discussion on how robust optimization could be
achieved as well as examining a possible process for correcting model error.

There are two performance metrics by which the results will be assessed. These
are the hypervolume indicator along with the absolute error between the true and
apparent hypervolumes. The division of the evaluation budget is presented for
both the classical and alternating approach.

Results from running both the classical and alternating methods with 21 repe-
titions for three different test functions are presented. The selected test functions
are the DTLZ1θ , ZDT1θ and WFG2θ test problems. All three of these are multi-
objective problems that have been adapted from within the optimization literature
to include parameters that need to be determined along with the control inputs.
These adapted functions can be seen in Section 5.4.4.

The chapter begins by laying out the implementation of the methods in Section
6.2. This is followed by a presentation of results and discussion in Section 6.3. The
final Section 6.4 gives the conclusion that have been drawn.

6.2 Implementation

Now that the framework for laying out the combined problem and the methods
for benchmarking them have been discussed the next step is to investigate the
effectiveness of different solvers. As mentioned previously in Section 4.3 there
are three main methods by which it would be possible to go about solving the
combined calibration and optimization problem. These three methods are the
classical method of performing calibration followed by optimization (covered in
Section 6.2.2 and 6.2.3), Robust optimization (discussed in Section 6.2.4) and an
alternating approach (explained in Section 6.2.5). Before looking at the implemen-
tation information for each of these, schematics for the classical and alternating
approaches are laid out (Section 6.2.1).

94 6.2. Implementation

6.2.1 Schematics

The components present within both schematics are set up so that their implemen-
tations are as similar as possible. The main differences between the two implemen-
tations are how the evaluation budget has been divided and what information is
available at any given point. The main components are represented as boxes with
the movement of information shown as lines. The notation used here is inline with
that presented in Chapter 4.

Classical approach

The first of the two implementations to be considered is that of the classical ap-
proach within which the model calibration is carried out a single time before
optimization is performed. In this set up once the calibration has been performed
and a parameter set, or distribution, has been obtained it is never updated and is
assumed to provide a reasonable representation of the system.

Expert

Model

Calibrator

Optimizer

Model

Optimization

Model calibration

Initial	parameters
θ[0]

θ[i]

θ[i]	to	optimizer

Initial	inputs
x[0]

x[i]

zm[i]

zm[i]

y[i]

Decision maker

Initial	inputs
x[0]

Figure 6.1: Schematic of the classical aproach for tackling model calibration and
optimization

Chapter 6. Architectures for 5000 evaluations 95

Figure 6.1 presents a high level schematic of the two processes of model calibra-
tion and optimization. Within model calibration there are three main components:
calibrator, model and expert. The expert component represents an entity that
knows how the system should perform for a given set of control inputs. In this
study the expert is represented by a test function for which the predefined ‘true’
parameter set is used. The model takes both a set of control inputs and the cur-
rent estimated values of the model parameters and returns an output. This work
considers both cases where the structure of the model exactly matches that of the
expert function and when there is a modelling error present. The modelling error
is incorporated as an alteration in the test function as depicted in Section 5.4.4.
The calibrator represents the combination of Bayesian calibration and MCMC. It
produces a set of potential parameters using an initial set of control inputs, along
with corresponding true system outputs and the model output for a previous as-
sumption of the parameters.

The second half of the schematic shows the optimization process (see Figure
6.1). There are two main components: the model, which performs the same func-
tion as the one present within model calibration, and the optimizer. The optimizer
runs a version of MOEA/D and determines the new sets of control inputs believed
to have superior performance.

Once the model evaluation budget allocated for calibration has been fully
utilised, the calibrator passes the selected parameter set to the optimization pro-
cess. The parameter set is selected based on the maximum likelihood. When the
optimization stage has expended its evaluation budget, the results are passed onto
the decision maker for consideration.

Alternating approach

The second approach presented here is the alternating approach which considers
moving back and forth between the stages of model calibration and optimization
in order to make better use the of available function evaluation budget.

96 6.2. Implementation

Expert

Model

Calibrator

Optimizer

Model

Optimization

Model calibration

Initial	parameters
θ[0]

θ[i]

θ[i]	to	optimizer

Initial	inputs
x[0]

x[i]

x[i]	to	calibrator	

zm[i]

zm[i]

y[i]

Decision maker

Figure 6.2: Schematic of the new alternating aproach for tackling model calibra-
tion and optimization

As can be seen in the schematic presented in Figure 6.2 the alternating method
has much the same structure as that of the classical approach. The main difference
between the two setups is that there is now a connection which can pass new
control inputs back to the model calibration. This connection is what allows for
an iterative method to occur, with the aim of ensuring that the information gained
focuses on the areas of interest. The switching condition between the two stages
for this work is set to be when a predefined portion of the available evaluation
budget has been used. The next section covers the implementation information
for the main components of the calibrator and optimizer.

6.2.2 Model calibration

Model calibration is implemented using a form of Bayesian calibration (Section
2.2). Markov Chain Mote Carlo (MCMC) sampling, (Section 2.2.2) was used to
sample the distribution produced and determine a set of the parameters based of
the maximum likelihood. In specific Gibbs sampling was implemented using the

Chapter 6. Architectures for 5000 evaluations 97

Metropolis Hastings acceptance criteria for new points. This allows for each of
the parameters to be developed as well as allowing the possibility of backwards
movement within the output space. The standard deviations used for sampling
the parameters of new points within the chain are determined at the start using
the range of each of the parameters. The following Implementation decisions were
made for model calibration:

• The MCMC starting point was randomly selected from within the multidi-
mensional parameter space
• A normal distribution is used to determine the next point in the MCMC

chain, with the mean being taken as the previous parameters and the stan-
dard deviation being a predefined value, sigma. The value of sigma used
varies depending on the problem being looked at and is defined as a pro-
portion of the parameter range. Due to this it is necessary to calculate the
value of sigma before beginning.
• If a newly determined set of parameters lies outside of the acceptable range

they are discarded and a new set is produced. In the case that none of the
samples are viable within a reasonable number of samples an error is given
to the user.
• The likelihood used for MCMC was calculated using the log-likelihood func-

tion,

p(D|θ) = −N
2

log(2π)− N
2

log(σ2)− 1
2σ2 ∑

i=1:N
(yi − f (θ))2 (6.1)

where y and f (θ) follow the notation from Chapter 4 and are assumed to
have been samples using the same control input sets. N defines the number
of control input sets that have been sampled and σ is the standard deviation
of the noise from the points that have been evaluated on the physical system.
In this work σ is treated as a known value.
• The acceptance criteria and the calculation for the acceptance ratio used in

this work are the general ones defined for the Metropolis Hastings method-
ology
• An extension to this method would be the use of a Least squares estimate.

This is an optional stage that can be performed to correct for the modelling
error. See section 6.2.6.

98 6.2. Implementation

6.2.3 Optimization

In this chapter we once again use the Multi Objective Algorithm Based on de-
composition (MOEA/D) algorithm used in Chapter 3. As discussed previously
MOEA/D is a seminal algorithm within the field and its wide use makes it a
suitable benchmark for comparison to other methods. The key implementation
choices included:

• The use of ten reference directions that are set to be evenly spread over
the output space. While in some cases this can be sub-optimal, when no
knowledge is present it helps to ensure that a large proportion of the output
space is explored. It should be noted that no specific scheme is used to assign
points to reference directions and instead they are assigned at random. This
could prove to be suboptimal as time could be waisted traversing the output
space.
• Neighbourhoods as mentioned before are a new aspect introduced within

the MOEA/D algorithm. For this work a neighbourhood size of 3 was used
due to the limited budget meaning only 10 reference directions were present.
• The distribution index used for reproduction is taken to be 20 within the

implementation presented.
• The scalarisation function selected for implementation within the optimizer

is the Tchebycheff function. This function was chosen over other possible
alternatives such as weighted sum due to its ability of providing guidance
as the point evolves and draws the point towards its reference direction. This
feature proves to be useful as it ensures that a spread of points across the
Pareto front is achieved.
• When determining the outputs for use within the MOEA/D algorithm, which

will be used to decide if a new point should be kept, the normalised values
are used. The DLTZ1θ uses a normalisation of [1,1], ZDT1θ uses [1,5] and
WFG2θ uses [2,4].

6.2.4 Robust optimization

One of the possible solutions was to implement robust optimization instead of
using some form of Model calibration to reduce the modelling error. The imple-
mentation of robust optimization can be achieved through replacing the output
value of the system with some form of performance indicator. Possible perfor-
mance indicators which could have been used include the Maximin, Mean and
90th percentile

Chapter 6. Architectures for 5000 evaluations 99

When thinking of implementing a robust strategy there lies a potential issue
due to the number of evaluations that are required. In the case of all three of the
indicators mentioned, the usual method for implementation is to produce a popu-
lation of points based on each of the new output points that have been discovered
and then calculate the indicator from that. Here, it is impractical as the number of
function evaluations being used is limited.

There are methods to circumvent this through defining a distribution, although
this has not currently been explored. Such methods can include the use of implicit
averaging and estimation of the robustness indicator such as is seen in the paper
by Duro et al. (2019). This is one area which should be investigated within future
work.

6.2.5 Alternating

The third option proposed was to use a scheme that would alternate between the
stages of model calibration and optimization in order to try and ensure that the
evaluations that are used provide the greatest benefits possible. In order to do this,
it is necessary to develop a criterion for when to switch between the two stages.
These could include switching conditions such as,

• Switching after a predetermined number of evaluations have been used,
• When the improvement obtained from an evaluation, or set of evaluations,

falls below a certain amount,
• After a random number of evaluations,
• If the optimizer performance starts to get worse
• If the model calibration parameter values have stabilized.

For testing it was decided that the simple option of switching after a pre-
determined number of evaluations were used would be implemented. The next
aspect to be considered was when the true function evaluations, expert points,
would be used. In the classical approach they are all used to create an initial
population before model calibration is started. For the alternating approach the
available true evaluations are split between being used at the start and after each
time the optimization budget has been used up before the next iteration of cali-
bration is carried out. There are four different options for going about selecting
these new expert points which have been examined. These are,

• Do not add any new points to the expert population,
• Asses all undominated points found by the optimizer,

100 6.2. Implementation

• Asses a subset of the undominated points found (if only a limited budget is
available)
• Assess points gained from some form of sampling technique e.g Latin hy-

percube.

In order to assess what impact the types of selected points would have, if used
within the alternating setup, an experiment was run. The alternating approach
was implemented for the DTLZ1θ function with five alternations. The only differ-
ence in the setup was the method by which new points were selected and added to
the expert population. The resulting Inverse Generational Distance (IGD), detailed
in Section 5.2.3, obtained from this can be seen in Figure 6.3.

0 100 200 300 400 500 600

Iteration

0

2

4

6

8

10

12

14

16

18

20

IG
D

Effects of adding different types of points for expert evaluation

No added points

Undominated points

Subset of undominated points

Latin hypercube points

Data type added

Figure 6.3: Comparison of the effects of different methods by which new points
are added to the expert population during an implementation of the alternat-
ing method. Results are shown as a comparison between the achieved IGD and
the number of optimization iterations that have been carried out. A greater im-
provement, smaller IGD values, can be identified when more information is made
available to the method as well as when the information more directly relates to
the area of interest. Once a sufficient quantity of information is present the impact
of the chosen selection methods is reduced.

The first thing to be noted from Figure 6.3 is that the progress of the optimizer
over the first 100 optimization evaluations is the same when using all four methods
as at this point there is no difference present within the implementations. After the
first loop of the code is completed (both calibration and optimization) the impact

Chapter 6. Architectures for 5000 evaluations 101

of the methods can be observed. In the case when no additional points are added
to the expert population the performance is significantly worse than that of the
other proposed methods regardless of the type or amount of information added.

With the exception of the first 100 optimization evaluations, during each sub-
sequent 100 optimization evaluations little to no progress can be observed from
the optimizer. This is due to it having already achieved what it believes to be the
optimum Pareto front. This excessive number of evaluations has been permitted
as the impact of the selection method was of interest rather than how the opti-
mizer would affect it. The oddity seen during the first 100 evaluations where the
performance appears to improve and then become worse again is due to the ob-
tained points passing the true front. Similar performance to this can be seen in
Section 6.3.1.

The large leaps in performance are observed as more knowledge of the system
is obtained and hence better calibration is achieved. As the improved parameters
are found it becomes possible to obtain points that lie closer to the true Pareto
front and hence superior IGD value are obtained. One aspect to take note of is
the case when the additional points were chosen using Latin hypercube sampling.
In this case while an improvement is seen, it is initially not as effective as when
information more closely relevant to the problem was added. After enough points
were added however the impact of this is greatly reduced, it is assumed that
this reduced impact is due to enough relevant points being determined near the
area of interest by this time. Both methods in which undominated points were
selected for addition to the expert population are shown to be effective. It is
unclear why a subset of the undominated points outperformed the full set. One
possible explanation is that the subset prioritised selecting undominated points
and so the calibration was more focused on the region of interest (the area closer
to the Pareto front).

6.2.6 Correcting model error

The problem of the discrepancy between the true system and model, caused by the
model error, needs to be considered. The plots in section 5.4.4 demonstrates that
even if the optimal inputs and parameters are used there will still be an error due
to the structural error present. In most of the problems this took the form of the
Pareto front possessing an altered shape. In order to combat this error, it is first
necessary to determine what portion of the error present is due to parameters and
what portion is due to inaccuracy in the model structure. During implementation
this is hard (if not unfeasible) to do, so instead of this once calibration is performed
all remaining error is assumed to be a result of inaccuracies in the model.

102 6.2. Implementation

The exact values of the model error at each of the true evaluations performed
on the system can be calculated without the need for further evaluations. Using
this limited set of data, it is necessary to be able to correct for the model error. One
possible way of performing this correction would be to implement least squares
estimation (LSE) using the available output data and points with known model
error. Performing LSE it is possible to fit a line comparing model error against
each of the objectives and use that to estimate the error for any given output. This
is one way to produce a model of the model error. There is one major issue with
this however, which is that there is no certainty that there will be a correlation
between the different values of the output. Another issues is that the aleatory
uncertainty (φ) might be included, this should only really be an issue though if
the model error is of similar size or smaller than φ. An example in which least
squares estimation was applied to find a correction term as described can be seen
in Figures 6.4 and 6.5.

0 2 4 6 8 10 12 14 16 18

Objective 1

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

E
rr

or
 in

 o
bj

ec
tiv

e
1

Values of objective one plotted against the errors present

Figure 6.4: The least squares estimation of the error between the true system
output and the modelled output for the DTLZ1θ function.

Chapter 6. Architectures for 5000 evaluations 103

0 5 10 15 20 25 30

Objective 1

0

5

10

15

20

25

30

35

40

45

O
bj

ec
tiv

e
2

Comparison of a set of test points showing their actual,
predicted and least squares adjusted values

Actual
Predicted
Least squares aproximation

Figure 6.5: The effects of applying the least squares estimation results as a correc-
tive term to the model outputs after calibration for the DTLZ1θ function.

In Figure 6.4 the LSE for the error in objective 1 is presented and although
the estimate appears to fit there is still a large difference between the true and
predicted values of the error for some of the points. The effects of applying this
LSE, along with a corresponding one for objective 2, to the predicted outputs can
be seen in Figure 6.5. Doing this does appear to aid in improving the model
estimate of the output. In most cases the output, after being adjusted using the
LSE, lies closer to the actual objective output than the value obtained through the
calibrated model by itself.

The traditional method for applying the LSE to a problem like this would
be to use it to model the effects of changing the inputs on the output values.
Ideally when performing this correction it would be ideal to use points in which
only a single input is varied at a time. Unfortunately, with the current setup
this information is not currently available. While obtaining these points would
be plausible, it would require further function evaluations to be undertaken with
the consequential increase in cost. This in turn would reduce the available budget
present during the calibration or optimization stages. Due to this it is necessary to
obtain points for which multiple inputs are being varied. The issue of such points
is that it is harder to identify the impact that the variation of each of the inputs is
having, this issue is confounded by the fact that only a limited number of points
is available in the first place due to the limited evaluation budget.

104 6.2. Implementation

The results of applying LSE examining the effects of varying inputs on the
outputs can be seen in Figure 6.6. During the implementation only five points
were used for training, with an additional ten to demonstrate what effect it has.
The five training points can be identified within the figure as those which have
their LSE approximation almost perfectly matching the true points. While this
implementation of the LSE does appear to perform well there are a couple of the
LSE approximations (identified at the far right hand side of the plot) which still
lie far from the actual objective values for the given sets of inputs. In addition, in
some cases the LSE can perform worse than the predicted values.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Objective 1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

O
bj

ec
tiv

e
2

Comparison of a set of test points showing their actual, predicted and
adjusted values (where LSE adjustment was applied to inputs)

Actual
Predicted
Least squares approximation

Figure 6.6: The effects of applying the least squares estimation results as a input
correction term for the model outputs after calibration on the WFG4θ function

6.2.7 Performance measure

As discussed earlier, in Chapter 5 there are many performance metrics which
could be used for this work with the main two that have being considered being
the inverse generational distance (IGD) (Ishibuchi et al., 2016) and hypervolume
(Bader, 2010). When considering the use of IGD for this work there is a problem as
the choice of what to take for the Pareto front can potentially change depending
if the model or true system are being examined. Looking to the future there is
also the issue that for real world problems, knowledge of the true front would not
be available, so while the use of IGD might be beneficial for visualisation in some

Chapter 6. Architectures for 5000 evaluations 105

cases, it is not necessarily practical here.

Hypervolume is the second performance measure considered, usually for test-
ing purposes IGD would be more suitable as it is necessary to select a reference
point for hypervolume which has the possibility of introducing bias on the dif-
ferent objectives. One possible option for selecting the reference point would be
to take the nadir point (either as it is or with some gain applied) as this would
ensure that it would both fully include the Pareto front as well as help to prevent
bias. For this work this is not practical as it is desired to assess the progress of the
evolving Pareto front throughout the optimization process. If the nadir point was
used a large proportion of the resulting hypervolumes would be shown as zero
due to the current best undominated set of points from the population lying out-
side of the reference point for some of the test problems. Due to this the reference
point selected for the hypervolume calculation was found by selecting the worst
case for each of the objectives from a combined population. This ensures that all
points found will produce a positive hypervolume value. In addition to this the
hypervolumes presented are shown as a percentage of the optimal hypervolume
with 100% representing perfect knowledge of the Pareto front.

Another performance indicator that is looked at for this work is the absolute
error between the true and apparent hypervolume. This works as an indication of
the amount of error present both from the model and parameter error. The error
of the hypervolume is of specific interest as it embodies the error within the points
present in the undominated set. These points lie close to the true Pareto front and
so represents the area of the search space at which it is most desirable to have a
reduced model error.

Statistical assessment

After the results from implementing different possible methods have been ob-
tained and performance measures have been calculated, the next step carried out
in this study is to assess what impact the different methods have actually made.
To do this permutation testing has been implemented. Permutation testing works
by resampling a population numerous times in order to obtain a p-value, the
probability of getting data as extreme as or more extreme than the observations
for which the null hypothesis is true. Permutation testing has a few advantages
including,

• Being simple to implement

• Not requiring knowledge of the distribution of the data

106 6.2. Implementation

• Ability to analyse unbalanced designs

There are also disadvantages,

• Depending on the number of data points the resulting number of permuta-
tions required can be restrictive

• Observations need to be exchangeable under the null hypothesis

In this work it was decided to do 21 repeat runs for each of the setups. This
means that if two of the setups are compared using permutation testing there
would be 3.122e+23 possible permutations that should be considered. This is sim-
ply not practical to compute even with the recent advancement in computational
power. In order to get around this a subset (1,000,000 permutations) of the pos-
sible permutations are selected at random for use in calculating the p-value. To
carry out permutation testing the results of both setups are combined into a single
population which is then permuted and broken down into two new populations.
The means of these two populations are then compared to assess if the differ-
ence between them is larger than the difference between the means of the original
population. This is repeated numerous times and the p-values is calculated by
dividing the number of times the difference between the means was larger by the
number of permutations performed.

The null hypothesis that is being used for this work is that there is no difference
according to the performance indicator. The alternative hypothesis states that
there is a difference. The statistical assessment considers the problem, without
Bonferroni correction, as being two tailed which means that the required p value
is 0.025 rather than the standard 0.05.

6.2.8 Evaluation budget

There are two types of evaluations that need to be considered when determining
how the system should be run. These are the true function evaluations that come
from physical experiments or expert opinions and the expensive model evalua-
tions. In both cases, it is assumed that the budget will be limited due to factors
such as expense or time constraints. In this work a slightly larger number of
model evaluation than would normally be used for expensive problems has been
selected.

For model runs a budget of 5000 evaluations was chosen due to it being one
order of magnitude larger than the usual budget of around 500 evaluations. The
true system evaluations (expert points) are limited to just 10 and are used within

Chapter 6. Architectures for 5000 evaluations 107

the calibration. When sampling the expert points there is observation error ap-
plied. For this work the observation error is produced by a normal distribution
with the mean set on the objective value and a standard deviation of either 0.1
or 0.05 depending on the problem. The schedule of the evaluations used differs
between the two setups as follows.

• Classical

– The full 10 expert points are evaluated at the start

– Calibration uses 3000 model evaluation – Broken down into 300 MCMC
steps with comparing to the 10 expert points.

– Optimization uses 2000 model evaluations – Broken down into 200 op-
timization iterations with 10 reference directions being examined for
each.

• Alternating

– Half of the expert points, 5, were evaluated at the start with a further 5
being evaluated after the first iteration of optimization was complete.

– Calibration uses 3000 model evaluations in two segments, with 1000
evaluations being used for the first calibration and 2000 for the second
– In both cases 200 MCMC steps were used, although only 5 expert
points were available for comparison in the first case with 10 available
in the second.

– Optimization used 2000 model evaluations split equally between the
first and second optimization stage – This works out as two repetitions
of 100 optimization iterations with 10 reference directions.

6.2.9 Input and parameter ranges

The configurations of the three test problems used, DTLZ1θ , ZDT1θ and WFG2θ ,
is presented in Section 5.4.4. During implementation it was necessary to set up
minimum and maximum values for each of the control inputs and parameters
and while the limits of the control inputs was discussed before they have been
restated here for easy access. The true values presented here represent the con-
trol inputs required to get optimal performance and the parameters required to
remove parameter error from the model.

108 6.3. Results and discussion

DTLZ1θ

Control Input Parameter
i=1 i=2:6 1 2 3 4 5

Maximum 1 1 2 1.5 15 1 0
True - 0.5 0.5 0.5 5 -0.5 -0.5

Minimum 0 0 0 0 0 -3 -1

Table 6.1: The minimum, maximum and true values for the parameter and control
input values present within the DTLZ1θ function.

ZDT1θ

Control Input Parameter
i=1 i=2:30 1 2

Maximum 1 1 4 1
True - 0 1 9/29

Minimum 0 0 0 0

Table 6.2: The minimum, maximum and true values for the parameter and control
input values present within the ZDT1θ function.

WFG2θ

Control Input Parameter
i=1:4 i=5:24 1 2

Maximum 2i 2i 6.5 1
True - 0.35i 5 0.35

Minimum 0 0 4 0

Table 6.3: The minimum, maximum and true values for the parameter and control
input values present within the WFG2θ function.

6.3 Results and discussion

The results of assessing the performance of the three test problems, DTLZ1θ ,
ZDT1θ and WFG2θ , is presented within this section. In each case the test problem
has been used with both the classical approach of performing calibration followed
by optimization (series method) and the alternating approach. The results are pre-
sented as four figures, with the first showing the final parameter values achieved
by the methods. The second and third figures show the apparent and true hy-
pervolumes achieved by the methods. The final figure depicts the absolute error

Chapter 6. Architectures for 5000 evaluations 109

between the apparent and true final hypervolumes achieved. All of these are re-
sults are shown as boxplots and represent 21 repetitions on the methods. The
results demonstrate that the performance obtained by the alternating is either an
improvement or comparable to that of the classical (series) method. There are
an additional two figures presented for the DTLZ1θ function which look at the
log-likelihood achieved and present a set of results within the output space.

6.3.1 DTLZ1θ function

What was the log likelihood observed during the calibration

The first aspect to the methods to be examined is the progression of the calibrator
over the course of a run. This is shown in Figure 6.7 as the log-likelihood achieved
at each step of the MCMC. The four cases depicted here are when the alternating
and series (classical) approach were run for both the cases when modelling error
was present and absent. The difference in the number of steps between the al-
ternating and series method is explained in Section 6.2.8. When looking at these
results it is important to remember that the expert points used to calculate the
likelihood differ between the two methods so performing a direct comparison of
the maximum values reached can be misleading.

0 50 100 150 200 250 300 350 400 450

Steps

-107

-106

-105

-104

-103

-102

Lo
g

lik
lih

oo
d

Log likelihood achieved over the course of the MCMC

Alternating (ME)
Series (ME)
Alternating
Series

Figure 6.7: The progress of the log likelihood obtained by the MCMC over the
course of the calibration. The alternating and classical (series) methods are de-
picted for both when modelling error (ME) is present and absent.

110 6.3. Results and discussion

During the series runs, fast initial improvement is seen, as better parameter
sets are discovered. By around 150 steps however, the rate of improvement is
greatly reduced with little change present for both when the model error is present
and absent. Looking at the alternating method a similar rate of improvement is
observed during the first calibration stage. After the 200th step when the new
expert points are gained by the alternating method, a drop in the log likelihood
can be seen as the algorithm gains a better knowledge of the system. Once the
alternating algorithm commences its second calibration stage rapid improvement
is again seen. The large difference between the final obtained log likelihood for
the alternating method when model error is present and absent is likely due to
there not currently being a corrective term applied, to remove the modelling error.

Examination of the final parameter values obtained by the two methods when
testing with the DTLZ1θ

The final obtained values for the five parameters can be seen in Figure 6.8. The
first thing to notice is that the calibration runs better when no model error is
present. The reason why both methods struggle to identify the correct parameter
values when model error is present, is that the model error changes the parameters
required for an evaluated point to match the expert value for a given set of inputs.
This results in values close to the true parameters producing a worse likelihood
than those in a different location and so getting rejected by the MCMC.

The parameters each have a different impact on the Pareto front with some
having greater importance for optimization than others. Both parameters 1 and
2 work to scale the objective values. While incorrect selection of these may affect
the speed of the optimizer it is still possible to acquire the current control inputs.
Parameters 3, 4 and 5 have a more direct impact on the control inputs being se-
lected. In the case of parameters 3 and 4 it is possible to find combinations that
can make it look like the problem is correctly calibrated while it is not. Due to
this it is important to ensure they are well calibrated. Turning back to the figure,
for these two parameters the alternating method archives a better calibration than
that of the series method. It should also be noted that for all five of the parameters
the final distributions achieved by the alternating method are smaller than those
seen for the series method.

Chapter 6. Architectures for 5000 evaluations 111

Alternating (ME) Series (ME) Alternating Series

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

Final parameter 1 values selected for DTLZ1

(a) Parameter 1

Alternating (ME) Series (ME) Alternating Series
0

0.2

0.4

0.6

0.8

1

2

Final parameter 2 values selected for DTLZ1

(b) Parameter 2

Alternating (ME) Series (ME) Alternating Series

0

2

4

6

8

10

12

3

Final parameter 3 values selected for DTLZ1

(c) Parameter 3

Alternating (ME) Series (ME) Alternating Series

-2

-1.5

-1

-0.5

0

4
Final parameter 4 values selected for DTLZ1

(d) Parameter 4

Alternating (ME) Series (ME) Alternating Series

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

5

Final parameter 5 values selected for DTLZ1

(e) Parameter 5

Figure 6.8: The final parameter values achieved by the alternating and classical
(series) methodologies for both the cases when modelling error (ME) is present
and absent while examining the DTLZ1θ function.

112 6.3. Results and discussion

Comparison of the apparent hypervolumes achieved by the classical and alter-
nating methods

The apparent hypervolume examined within these results is obtained from the
resulting points for which the model was evaluated using the current best knowl-
edge of the parameters. In Figure 6.9 there are many cases in which the achieved
hypervolume exceeds 100%. These scenarios can occur due to the incorrect calibra-
tion of the model. The alternating approach appears to perform more consistently
well when compared to the series method, both when model error is present as
well as when it is not. It should be noted that there are still outlying cases in
which the alternating method performs badly. Another interesting thing to note
is that the presence of model error seems to have had a larger impact on the series
method causing the results to be much more spread out. The fact that the alternat-
ing method tends not to overestimate the value of the hypervolume with the 75th
percentile of runs coming in at under 100% indicates it is likely to be a better rep-
resentation of the true performance. In comparison the classical method regularly
overestimates the hypervolume, especially when there is model error present.

Alternating (ME) Series (ME) Alternating Series

80

100

120

140

160

180

200

220

%
 o

f t
ot

al
 h

yp
er

vo
lu

m
e

Final apparent hypervolume achieved for the DTLZ1

Figure 6.9: Comparison of the final apparent hypervolume achieved by the al-
ternating and classical (series) methodologies, for both the cases when modelling
error (ME) is present and absent. The y value shows the percentage of the optimal
hypervolume which would be achieved using a reference point takes as the worst
case for each objective in combination with the true front.

Chapter 6. Architectures for 5000 evaluations 113

Comparison of the true hypervolumes achieved by the classical and alternating
methods

The results presented in Figure 6.10 show the same points as were seen for the
apparent hypervolume in Figure 6.9 but they are now being evaluated on the true
system. The performance of the alternating and classical methods is very similar
when modelling error is present. When no modelling error is present, the series
method appears to outperform the alternating method. Testing to see if it is truly
statistically better a p value of 0.7974 was obtained showing that the series method
does not provide a significant improvement. From this it can be deduced that even
if the determined parameters are suboptimal it is still possible to determine good
inputs.

Alternating (ME) Series (ME) Alternating Series

20

30

40

50

60

70

80

90

100

%
 o

f t
ot

al
 h

yp
er

vo
lu

m
e

Final true hypervolume achieved for the DTLZ1

Figure 6.10: Comparison of the final true hypervolume achieved by the alternat-
ing and classical (series) methodologies, for both the cases when modelling error
(ME) is present and absent. The y value shows the percentage of the optimal hy-
pervolume which would be achieved using a reference point taken as the worst
case for each objective in combination with the true front.

Comparison of the absolute error between the apparent and true final hypervol-
ume for the classical and alternating methods

Comparing the absolute difference between the apparent and true hypervolume
achieved is useful as it gives an indication of how much the user would be able

114 6.3. Results and discussion

to trust the suggestion from the model. It is important to remember that the de-
cision maker would realistically not possess the true system outputs unless they
have specifically put aside some of the expert evaluations which would reduce the
amount available during the implementation. The absolute difference observed is
a lot smaller for the alternating methods (Figure 6.11) due to the better calibra-
tion. For the series method, when model error is present, the majority of results
presented by the solver would be misleading until evaluated on the true system.

Alternating (ME) Series (ME) Alternating Series

0

500

1000

1500

2000

2500

A
bs

ol
ut

e
di

ffe
re

nc
e

Absolute difference between the final true and apparent
hypervolumes achieved for the DTLZ1

Figure 6.11: Comparison of the absolute difference between the apparent and true
final hypervolumes achieved by the alternating and classical (series) methodolo-
gies both for the cases when modelling error (ME) is present and absent.

A clearer look at the true and apparent Pareto fronts for the alternating and
series methods when modelling error is present

In order to get a clear understanding of how these results actually translate to the
objective space the final output populations achieved by the alternating and series
methods when model error was present are shown in Figure 6.12. Specifically,
the runs presented are the medium performing alternating run and the series run
possessing the same seed. This means that apart from the expert population both
setups possessed the same initial information. The true output populations of the
methods can be seen to perform equivalently. Looking at the apparent outputs
achieved, the outputs of the series method are projected further from the front

Chapter 6. Architectures for 5000 evaluations 115

than that of the alternating method. It is also interesting that the series method
overestimates the fronts location while the alternating methods underestimates it.

-10 -8 -6 -4 -2 0 2 4

Objective 1

-12

-10

-8

-6

-4

-2

0

2

4

6

O
bj

ec
tiv

e
2

Pareto fronts of the true and apparent outputs of
 the medium runs when model error is present

Alternating apparent output
Alternating true output
Series apparent output
Series true output

Figure 6.12: The true and apparent final populations for the alternating and series
methods when modelling error is present. The populations presented represent
the medium performing alternating run along with its corresponding series run.

6.3.2 ZDT1θ function

Examination of the final parameter values obtained by the two methods when
testing with the ZDT1θ

The final parameters that where achieved by the alternating and classical methods
are seen within Figure 6.13 and show similar properties to those observed for
the DTLZ1θ function. Once again, the spread of the parameters is smaller the
alternating method, both when model error is present and absent. It is evident
that when model error is present the methods have struggled to identify the true
value for parameter 2. In the case of the series method when model error was
present the spread of found points did not even manage to encapsulate the true
value. In contrast to this, for parameter 1, the series method successfully achieved
a median value much closer to the true value than the alternating method when
model error was present.

116 6.3. Results and discussion

Alternating (ME) Series (ME) Alternating Series

0

0.5

1

1.5

2

2.5

3

3.5

4

1

Final parameter 1 values selected for ZDT1

(a) Parameter 1

Alternating (ME) Series (ME) Alternating Series

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2

Final parameter 2 values selected for ZDT1

(b) Parameter 2

Figure 6.13: The final parameter values achieved by the alternating and classical
(series) methodologies for both the cases when modelling error (ME) is present
and absent. The alternating methods show a reduced spread of final value over
what is seen for the classical method. Better calibration is observed when there is
no model error present within the system.

Comparison of the final apparent hypervolumes achieved by the classical and
alternating methods when testing with the ZDT1θ function

Both the alternating and classical method can be seen to struggle to achieve a
good final apparent hypervolume within the allotted evaluation budget, shown in
Figure 6.14. This is accredited to the increased number of control inputs that are
required to be calibrated within the ZDT1θ function. While the 2000 evaluations
available for the optimization stage are considered a lot from the perspective of
solving expensive multi-objective problems, for the current methodology it proves
to be insufficient. This shows that the development of a method that would make
more efficient use of the available budget is necessary. Returning to the results,
the performance of both the alternating and series methods is similar with the
alternating having a slightly better median performance, both when model error
is present and absent. Unlike with the DTLZ1θ function the spread of the points
found is not significantly better for the alternating method, this could be due
to several factors. One example of such a factor would be, as optimization has
progressed so little, the points do not lie near the Pareto front. Owing to this the
cases where the methodologies overestimated the location of the Pareto front due
to bad calibration, as was seen for DTLZ1θ , have not occurred.

Chapter 6. Architectures for 5000 evaluations 117

Alternating (ME) Series (ME) Alternating Series

30

35

40

45

50

55

60

65

70

75

%
 o

f t
ot

al
 h

yp
er

vo
lu

m
e

Final apparent hypervolume achieved for the ZDT1

Figure 6.14: Comparison of the final apparent hypervolume achieved by the alter-
nating and classical (series) methodologies when examining the ZDT1θ function,
for both the cases when modelling error (ME) is present and absent. The y value
shows the percentage of the optimal hypervolume which would be achieved using
a reference point takes as the worst case for each objective in combination with the
true front. Both the alternating and classical methodologies struggled to achieve a
satisfactory final apparent hypervolume.

Comparison of the final true hypervolumes achieved by the classical and alter-
nating methods when testing with the ZDT1θ function

The final true hypervolumes obtained by the alternating and classical methods,
displayed in Figure 6.15, possess similar performance to the final apparent hy-
pervolumes achieved. The alternating methods maintain a very slight lead when
looking at the median performance, although this lead is not statistically signifi-
cant. This is especially evident when comparing the medium performance of the
two methodologies when modelling error is present.

118 6.3. Results and discussion

Alternating (ME) Series (ME) Alternating Series

30

35

40

45

50

55

60

65

70

75
%

 o
f t

ot
al

 h
yp

er
vo

lu
m

e

Final true hypervolume achieved for the ZDT1

Figure 6.15: Comparison of the final true hypervolume achieved by the alternating
and classical (series) methodologies when examining the ZDT1θ function, for both
the cases when modelling error (ME) is present and absent. The y value shows
the percentage of the optimal hypervolume which would be achieved using a
reference point takes as the worst case for each objective in combination with the
true front.

Comparison of the absolute error between the apparent and true final hypervol-
ume achieved for the ZDT1θ function using the classical and alternating meth-
ods

From examining the absolute error between the apparent and true hypervolume,
displayed in Figure 6.16, it can be seen that the alternating method manages on
average to obtain smaller values. Looking back at the absolute error observed for
the DTLZ1θ function the current results match the behaviour which was previ-
ously present. This behaviour once again indicates that the results produced by
the alternating method are a more reliable representation of the true system, when
additional true function evaluations cannot be carried out.

Chapter 6. Architectures for 5000 evaluations 119

Alternating (ME) Series (ME) Alternating Series

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A

bs
ol

ut
e

di
ffe

re
nc

e

Absolute difference between the final true and apparent
 hypervolumes achieved for the ZDT1

Figure 6.16: Comparison of the absolute difference between the apparent and true
final hypervolumes achieved by the alternating and classical (series) methodolo-
gies both for the cases when modelling error (ME) is present and absent when
considering the ZDT1θ function. A lower absolute difference between the hyper-
volumes was achieved when the alternating method is used.

6.3.3 WFG2θ function

Examination of the final parameter values obtained by the two methods when
testing with the WFG2θ

The calibration of the model parameters displayed in Figure 6.17 appear to have
achieved good final values especially in the case of parameter 1. It is interesting to
note that, for parameter 1, both methods obtained points lying close to its upper
limit. What is odd about this, is that there is a distinct separation with a large
region void of any points. Looking at the WFG2θ function closely, parameter 1 is
seen to be located within a cos function. This would explain the points located near
the upper limit and implies that the parameter range selected is inappropriate.
Now looking at parameter 2 the final values obtained are relatively consistent
between the two methodologies, with the alternating method appearing to have a
slightly smaller spread of points.

120 6.3. Results and discussion

Alternating (ME) Series (ME) Alternating Series

5

5.5

6

6.5

1

Final parameter 1 values selected for WFG2

(a) Parameter 1

Alternating (ME) Series (ME) Alternating Series

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2

Final parameter 2 values selected for WFG2

(b) Parameter 2

Figure 6.17: The final parameter values achieved by the alternating and classical
(series) methodologies for both the cases when modelling error (ME) is present
and absent when examining the WFG2θ function.

Alternating (ME) Series (ME) Alternating Series
20

25

30

35

40

45

50

55

60

65

%
 o

f t
ot

al
 h

yp
er

vo
lu

m
e

Final apparent hypervolume achieved for the WFG2

Figure 6.18: Comparison of the final apparent hypervolume achieved by the al-
ternating and classical (series) methodologies, for both the cases when modelling
error (ME) is present and absent. The y value shows the percentage of the optimal
hypervolume which would be achieved using a reference point takes as the worst
case for each objective in combination with the true front.

Chapter 6. Architectures for 5000 evaluations 121

Comparison of the final apparent hypervolumes achieved by the classical and
alternating methods when testing with the WFG2θ function

It is evident from Figure 6.18 that the model error has a large impact on the perfor-
mance of the optimization. From examine the impact on the hypervolume caused
by the model error when using the true Pareto fronts, it was determined that this
would account for the difference observed within the results. Considering the
case were model error is present and absent separately, the performance observed
by the two methods is comparable. Similarly to ZDT1θ both the alternating and
classical methods struggle to achieve the true hypervolume. This can again be
accounted for by the larger number of control inputs present within the WFG2θ

function.

Alternating (ME) Series (ME) Alternating Series

10

20

30

40

50

60

%
 o

f t
ot

al
 h

yp
er

vo
lu

m
e

Final true hypervolume achieved for the WFG2

Figure 6.19: Comparison of the final true hypervolume achieved by the alternating
and classical (series) methodologies when examining the ZDT1θ function, for both
the cases when modelling error (ME) is present and absent. The y value shows
the percentage of the optimal hypervolume which would be achieved using a
reference point takes as the worst case for each objective in combination with the
true front.

Comparison of the true hypervolumes achieved by the classical and alternating
methods when testing with the WFG2θ function

The final true hypervolumes achieved by the alternating and classical methods,
displayed in Figure 6.19, shows similar performance to that seen in the apparent

122 6.3. Results and discussion

hypervolume. The main changes the true hypervolume shows over the apparent
are that the series method, when model error is present, possess a larger spread of
points. The other change observed is the median performance of the alternating
method, with no model error, matches that of the series method and both have
achieve a smaller spread of points.

Comparison of the absolute error between the apparent and true final hyper-
volume achieved for the WFG2θ function using the classical and alternating
methods

The absolute difference between the true and apparent hypervolumes obtained
by the alternating and classical method, Figure 6.20, once again show consistently
lower value being achieved by the alternating method. This behaviour is consistent
with what was observed for the DTLZ1θ and ZDT1θ functions.

Alternating (ME) Series (ME) Alternating Series

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
bs

ol
ut

e
di

ffe
re

nc
e

Absolute difference between the final true and apparent
 hypervolumes achieved for the WFG2

Figure 6.20: Comparison of the absolute difference between the apparent and true
final hypervolumes achieved by the alternating and classical (series) methodolo-
gies both for the cases when modelling error (ME) is present and absent when
considering the WFG2θ function. As with the other test problems a lower absolute
difference between the hypervolumes was achieved when the alternating method
is used.

Chapter 6. Architectures for 5000 evaluations 123

6.4 Conclusion

This chapter presents a new alternating methodology that employs 5000 evalua-
tions and compares it to the classic approach of performing calibration followed
by subsequent optimization.

This novel (alternating) approach employs alternating stages of model cali-
bration and optimization, in order to more efficiently use the available function
evaluations. Additionally, the new approach evaluates interim points on the true
system between alternations, rather than fully expending them in the initial cali-
bration.

The performance of the novel method is evaluated based on both final param-
eters obtained and the final hypervolume achieved by each run of the methods,
both when model error is present and absent. To ensure a fair comparison, 21
iterations of both the classical and alternating approach are carried out. The sta-
tistical significance of the results is assessed using the p-value with the commonly
accepted threshold value of 0.025, due to two tails.

Analysing the results for all three test problems, the performance of the novel
alternating approach is superior (or at least comparable) to that of the classical ap-
proach. There are a selection of hypothesizes for why this could occur, these are:
(1) Some thetas are more important than others to get right in the neighbourhood
of the Pareto front, so alternating allows a progressively more concentrated cali-
bration; (2) For some problems, it may be easier to get thetas right in a local region
(e.g. the Pareto front) than across the search space, so by getting near the PF we
make the calibration problem easier. (3) The optimizer is sometimes more badly
fooled by some bad calibrations than others. In the case of all three hypothesizes
it should be possible to determine their validity through further testing.

The alternating methods shows a consistent improvement in the parameter
values obtained during all three of the test problems. The absolute difference be-
tween the apparent and true hypervolumes also shows the impact that the alter-
nating method has, with consistently smaller values being obtained. This indicates
that while the alternating method may not significantly improve the final hyper-
volume, it is effective at removing the discrepancy between the true and modelled
outputs of the system. It should be noted that both methods are allocated an
evaluation budget of the same size, ensuring that any observed improvement is
due to the change in methodology. While the methods both use sampling from a
distribution, this should not be capable of causing the consistent improvement ob-
served. Additionally there is not currently anything in place that directly accounts
for model error, which could hinder their performance.

124 6.4. Conclusion

Having demonstrated that the alternating strategy can prove beneficial when
making use of a limited budget, the next step is to reduce the number of available
function evaluation from the current 5000 to something closer to a realistic size.
In order to do this, it is necessary to develop methods that make more efficient
use of the data available. Such methods allow for a greater sharing of information
(e.g. through using surrogates) and are examined in the next chapter.

Chapter 7

Architectures for up to 800
evaluations

125

126 7.1. Introduction

7.1 Introduction

After looking at problems using 5000 function evaluations the next step is to look
at a more limited number. For this work it was decided upon to use 800 evalu-
ations which is a more respectable number when working with expensive prob-
lems. In addition, to being more realistic for real world cases with, this decrease
in the number of function evaluations being used it is even more imperative that
each of them is being used as effectively as possible. In order to achieve this the
work, Chapter 7 focuses on the use of surrogate models. Surrogates should allow
for better decision making of where to sample new points when using function
evaluations.

In Section 7.2 the methodology for using a surrogate model for solving the
combined problem is laid out. First an overall look at the main control function is
given with a brief explanation of the different sections before it moves on to look
at the surrogate model being used. Changes to the optimization and calibration
processes are presented before a detailed plan laying out at what stages different
forms of information are available and used is given.

Section 7.3 lays out how the testing of the new surrogate combined method-
ology is carried out. The different choices that were made pertaining to method
selection are explained.

Section 7.4 lays out the results from running both the new alternating method
as well as the classical method using the methodology which was laid out in the
previous sections. Before presenting the results of either method, the determina-
tion of methods internal parameters is first examined and the initial data that is
used for both methods is presented.

7.2 Combined solution

The newly proposed methodology designed to tackle the combined problems of
model calibration and optimization with only a limited budge of around 800 eval-
uations draws upon concepts from both the ParEGO method, discussed in Section
2.3.8, as well as the Bayesian calibration detailed in Section 6. The main idea that
is added with this new method is the creation and use of a shared population of
points compiled from the function evaluations performed over the cause of the
run. This population aims to prevent knowledge from being wasted and is used
for the creation of surrogate model (also known as meta-models).

When designing the new method, the process for running it was broken down
into multiple sections. In order to make this work a main controller was estab-

Chapter 7. Architectures for up to 800 evaluations 127

lished to set up the various control parameters for the methodology, as well as
obtaining the initial data and calling the necessary steps that need to be taken.
The pseudo code for this main process is presented within Algorithm 7.1.

Algorithm 7.1 Pseudo code for main file of combined methadology

1: Set up workspace
2: Define run order
3: Select test function form the model and system
4: Retrieve function information
5: Set up variable for - General code, Surrogates, calibration, optimization
6: Set up seed for random number generation
7: for 1 : Number o f replications do
8: Initialise control inputs
9: Initialise expert inputs

10: Initialise parameters
11: Retrieve modelled outputs
12: Retrieve expert outputs
13: Obtain weightings
14: Set up CurrentData
15: for i = 1 : Number o f run steps do
16: switch Run order do
17: case Optimization
18: for 0 : Number o f run steps (i) do
19: Run optimization
20: Add in new expert points
21: case Calibration
22: for 0 : Number o f run steps (i) do
23: Run calibration
24: Save stored data

It is possible to break the pseudo code presented in Algorithm 7.1 down into
five main sections. In order these sections are:

• Set up the algorithm run - During this initial step the different elements
of the algorithm are setup with the main objects that will contain variables
being defined. A couple of the major choices that should be noted here are
the selection of the run order and how many iterations of each stage will be
performed. This is also the point at which the test function is selected and
the corresponding information is retrieved.
• Initialization - The next stage of the algorithm is to initialise the parameters

and inputs. As described in the previous chapter these values are obtained
using Latin hypercube sampling. Once the initial values are gathered the
corresponding outputs are obtained through evaluating the initial input and

128 7.2. Combined solution

parameter set on the function. the expert outputs are also obtained through
evaluating the inputs with the defined true parameter values.
• Store values within objects - In order to simplify the management of vari-

ables within the implementation they are stored within a set of data objects
that can be passed more easily between functions.
• Determine run stage - Now that the algorithm is set up and the initial data

has been obtained the framework determined which of the processes, either
optimization or calibration, will be run dependent on its progress through
an array called ’Run_order’.
• Acquire additional expert point - If optimization was run then a point is

selected from the newly obtained undominated points. This newly selected
point is evaluated using the true parameters and added to the expert pop-
ulation. Depending on the number of expert points available it may not be
possible to obtain a new expert point after each execution of the optimizer.
In such cases it would be necessary to add additional constrains on when a
new point would be obtained for the expert population.

The next sections fist go through the modelling process, Section 7.2.1, and an
examination of the optimization and calibration stages, Section 7.2.2, before going
on to look at tracking information throughout the process, Section 7.2.3.

7.2.1 Kriging model

The largest difference between this new method and the one presented in the
previous chapter is the inclusion of surrogate models. The purpose of utilising
surrogate models is to allow for computationally cheap evaluation which can aid
in guiding where the more expensive model evaluations will be carried out. Doing
this has the aim of improving the effectiveness of each of the evaluations with the
aim of obtaining better performance when working with more limited resources.

After consideration, the kriging model was selected for use within this method
due to it having been previously shown to be effective for use when dealing with
expensive problems within methodologies such as the ParEGO algorithm. A brief
overview of the kriging model (a type of Gaussian process) was given within the
literature review, Chapter 2, and went over both what it was as well as a selection
of the different variations of the surrogate that are present within the literature.
While there are advantages to using kriging there are also potential drawbacks
with using a kriging operator for the surrogate model. One of these problems is
the internal requirement of the kriging operator to perform a matrix inversion.
While there are strategies that can be used to reduce the computational expense

Chapter 7. Architectures for up to 800 evaluations 129

of doing this it remains a factor that should be considered.

The surrogate model is set up to be over both the control input and parameter
space. When looking at the kriging model from the perspective of implementing
it for use as a surrogate the process can be broken into two parts, the construction
of the kriging model and calling the kriging model to evaluate a new set of inputs.
The pseudo code for the surrogates construction can be seen in Algorithm 7.2.

Algorithm 7.2 Pseudo code for kriging surrogate setup

1: Inputs : Inputs, Outputs, code, Surrogate_setup
2: Outputs : Surrogate
3: Function : Kriging_surrogate_setup

4: Set up function(based on the likelihood function that is to be minimised)
5: Run a genetic algorithm to determine the best value of ‘θ_surrogate′ for within the

surrogate
6: Calculate the Correlation matrix R using the best θ_surrogate and the Inputs
7: Find the inverse of R
8: Determine the mean
9: Determine the standard deviation

10: Store all data within the object ‘Surrogate.’
End Function

This function constructs the surrogate using the training data that is passed
to it and stores the required data to run the surrogate within the output object
’Surrogate’. The Inputs and training data both consist of vectors containing both
parameters and control inputs, [x, θ]. There are four main components that are
carried out in the surrogate creation.

• Kriging parameters - The kriging surrogate model possesses two internal
parameters, p and θ, which need to be discovered before it is possible to de-
termine the correlation matrix. The effects of varying the internal parameter
p can be seen in Fig. 7.1. As the value of p increases the corresponding
correlation becomes smoother while if the value of p is small it implies that
there is no immediate correlation. The results of changing the second inter-
nal parameter θ can be seen in Fig. 7.2. Low values of θ will result in all
points having a high level of correlation while small values of θ can lead to
only minimal amounts of correlation between points.

130 7.2. Combined solution

-3 -2 -1 0 1 2 3

x
j
(i)-x

j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ex

p(
-|

x j(i)
-x

j|p
)

p=0.1
p=0.5
p=1
p=2

Figure 7.1: Effect of varying p on the correlation, with x axis showing distance
from sample point and the y axis showing the correlation. A p value of 2 is often
chosen for use within the liturature.

-3 -2 -1 0 1 2 3

x
j
(i)-x

j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ex
p(

-
|x

j(i)
-x

j|2
)

=0.1
=0.5
=1
=10

Figure 7.2: Effect of varying θ on the correlation, with x axis showing distance
from sample point and the y axis showing the correlation. An appropriate value
of θ for each input within the training data will need to be found.

Chapter 7. Architectures for up to 800 evaluations 131

For this work it was assumed that the value of p has been maintained at 2
while the value of θ needs to be determined each time the kriging model is
built. Line 4 and 5 in Algorithm 7.2 refer to the determination of the value
of θ. Each of the inputs to the surrogate model can possess a different value
of θ which is dependent on the data being used to build the surrogate. In
order to determine the values of θ a function that finds the likelihood for a
given set of data and a selected θ is first constructed. This function is then
used within a genetic algorithm to determine appropriate values of θ.
• Correlation matrix – Now that the internal parameter θ has been deter-

mined, and p has been taken as 2, it is possible to calculate the correlation
using Equation 7.1

cor[y(x(i)), y(x(l))] = exp

(
−

k

∑
j=1

θj|x(i)j x(l)j |
2

)
(7.1)

Through calculating this for each of the elements it is possible to construct
the correlation matrix. In order to improve the computation time of the code
instead of calculating each element of the correlation matrix only the upper
half of the correlation matrix was constructed. Using the upper half the full
correlation matrix could be constructed using Equation 7.2

Correlation = upper + upper′ + eye(n) + (eye(n)eps) (7.2)

Where upper is the upper half of the correlation matrix, eye is an identity
matrix, n is the number of input points and eps is a small number. The
purpose of adding the, (eye(n)eps) is to help reduce the chance of the created
correlation matrix being ill conditioned.
• Cholesky factorization – The next step after the determination of the cor-

relation would be to acquire its inverse. While, when working with small
population of points this may not pose an issue, it can prove to be pro-
hibitive with larger populations due to its high computational cost. In order
to avoid the need to calculate the inverse matrix, Cholesky factorization was
used with back substitution. For its implementation the chol() function from
MATLAB was used.
• Mean and variance - The final stage of constructing the surrogate model,

shown in lines 8 and 9 of Algorithm 7.2, is to use back substitution to calcu-
late the mean and variance.

µ =
one′ ∗ (U\(U′\y))

one′ ∗ (U\(U′\one))
(7.3)

132 7.2. Combined solution

The mean is calculated as shown in Equation 7.3, in which y represented
the training data outputs, U is the Cholesky factorization of the correlation
matrix and one is a matrix the same dimensions as y in which all values
had been set to 1. Once the mean had been found it was substituted into
Equation 7.4 to find the variance. The only additional variable n represents
the number of training points present.

σ2 =
y− one ∗ µ′ ∗ (U\(U′\(y− one ∗ µ)))

n
(7.4)

The function displayed in Algorithm 7.3 takes in a set of new points along
with the object surrogate that contains all the relevant information to a constructed
kriging model and returns the surrogate output along with the mean squared error
(MSE) of the prediction.

Algorithm 7.3 Pseudo code for kriging surrogate

1: Inputs : New_input,Surrogate
2: Outputs : Surrogate_output, MSE
3: Function : Kriging_surrogate

4: for i = 1 : length(New_inputs) do
5: Calculate the correlation between the new input points and surrogate input points
6: Calculate the surrogate output
7: Calculate the mean squared error of the prediction

End Function

The correlation between the new point being looked at and those present
within the surrogate (represented as r) is calculated using the formula from Equa-
tion 7.1. Once the array containing the correlation for the new point has been
created it is used to calculate the output, ŷ, for the given input.

ŷ = µ + (r′ ∗ (U\(U′\(y′ − (one ∗ µ)))); (7.5)

MSE(i) = σ2
(

1− (r′(U\(U′\r))) + ((1− (one′)(U\(U′\r))))2

one′(U\(U′\one))

)
; (7.6)

It is also possible to calculate the mean squared error of the predictor using the
information that has been obtained up to this point. The formula for doing so is
presented in Equation 7.6. For both of these equations the Cholesky factorization
found during the building is used with back-substitution in order to avoid the
need to perform matrix inversions. If matrix inversion were to be used then the

Chapter 7. Architectures for up to 800 evaluations 133

inverse correlation matrix, R−1, could be substituted in as seen in Equation 7.7.

R−1y = (U\(U′\y)) (7.7)

7.2.2 Updated optimization and calibration

Optimization

As mentioned earlier the optimization method used for this new method is based
on the ParEGO algorithm. The choice was made due to the ParEGO algorithm
inherently already incorporating the use of a surrogate models to deal with ex-
pensive problems, as mentioned within the literature review in Chapter 2.3.8.

Similarly, to the MOEA/D algorithm, ParEGO is also a decomposition-based
method that looks at breaking down more complex high dimensional problems
into a set of simpler subproblems. While both MOEA/D and ParEGO use a set
of weight vectors to define the separate subproblems, ParEGO selects the one
currently being worked on uniformly at random, which is unlike MOEA/D that
cycles through the different subproblems. After implementing the ParEGO algo-
rithim in its original for it was found that there were certain aspects of it which
needed modification to work within the combined method. The pseudo code for
this altered optimization method can be seen in Algorithm 7.4.

The implementation of the optimization, as shown in Algorithm 7.4, begins by
following the ParEGO algorithm with the reference direction being selected uni-
formly at random from the possible reference directions. The selected reference
direction is then used to get the scalarised outputs for points within the popula-
tion. The first main change comes before constructing the surrogate model, where
it is necessary to determine which points within the population will be used as
training data. Ideally all the points would be used, however this can be very time
consuming, so the population is limited. The two main cause of the increased run
time is the need to compute the correlation matrix as well as perform a matrix in-
version when constructing the surrogate. Both processes are highly computation-
ally expensive and while it was possible to avoid computing the inverse directly
the correlation matrix still needed to be found. The reason for this high compu-
tational expense is that with each new point added it is necessary to compare it
with all the other points which have been included.

The method by which the limited population, that is used to build the surro-
gate, was selected within the ParEGO algorithm was to select half the points based
on those with the smallest scalarized output followed by selecting the remainder
at random from the remaining population. There are many other criteria upon

134 7.2. Combined solution

Algorithm 7.4 Pseudo code for optimization

1: Function : Optimization

2: Select reference direction uniformly at random
3: Get scalarized outputs of data using current reference direction
4: Determine which points will be used to construct the surrogate
5: Obtain the surrogate model for each objective using ‘Kriging_surrogate_setup’
6: Get scalarized outputs from current population
7: Acquire temporary population consisting of mutated points and points from a Latin

hypercube
8: Evaluate points within the temporary population using ‘Kriging_surrogate’
9: Determine the scalarized output for each of these points

10: Set up parent pairs for the evolutionary algorithm
11: while Current EA iteration < total EA iterations do
12: for 1 : Number o f parent pairs do
13: Perform crossover
14: Perform mutation
15: Ensure child lies within limits
16: Find the surrogate output of the child using ‘Kriging_surrogate’
17: Find the scalarized output of the child
18: If the scalarized output of the child is superior to that of the parent replace it
19: Combine the parent population
20: Select the best point
21: Add new data to Current_data

End Function

which points could be chosen and a list of some of the considered criteria can be
seen below,

• Highest actual improvement,
• Highest EI
• Newest points
• Smallest scalarized output
• Random

Due to the points being used needing to model both the control inputs and
parameters instead of just the inputs such as with ParEGO it was proposed that
other point selection schemes could prove beneficial. The final selection method
decided upon for building the surrogate for optimization took half the available
points from those with the smallest scalarized output for the given reference direc-
tion. Instead of selecting all the remaining points at random, half of the remaining
points were chosen based on those which show the highest actual improvement.
This measure is determined by calculating the difference between the scalarized

Chapter 7. Architectures for up to 800 evaluations 135

output of the surrogate and the model for a given point. These points should
identify regions in which the surrogate has the largest amount of modelling error
and aid in combating it. The remaining points comprising the build points for
the surrogate are selected at random from the points which had not already been
selected.

It should be noted that before the selection of point for construction of the
surrogate was carried out the possible population was refined. This was done in
order to remove any duplicates or points which were close to identical to prevent
computation errors. Points that were close to identical were defined as those who
would possess the same inputs if they were rounded to three decimal places.

Once the training population is selected, the surrogate model is constructed,
this is done using the function detailed in Section 7.2.1. Next, as was done in
ParEGO a parent population consisting of 20 points is constructed. Five of the
points were chosen from current population depending on which possess the
smallest scalarized outputs under the prevailing reference direction. The remain-
ing 15 points are selected through Latin hypercube sampling of the input space.

The Second major difference between this newly constructed method and ParEGO
is that the expected improvement (EI) is not used as a criterion for selecting new
points, instead the scalarized output is used. This change was made as it was
found that when EI was being used there were many cases where most points
ended up focusing on selecting points which help to remove the error. While im-
proving the model is not a bad thing in those cases there was very little progress
made towards discovering the actual front making the use of EI unviable.

Returning to the algorithm, once the parent population is obtained the corre-
sponding surrogate outputs are evaluated and scalarized outputs determined. The
parent population is ordered based on their scalarized output and broken down
into parent pairs for use within an internal genetic algorithm. The code then loops
through a pre-set number of iterations. During each of the loops singular binary
crossover is performed on the parent pairs before a mutation is applied. Once
the new child point is created it is assessed to ensure that its inputs lie within
previously stated boundaries. If the inputs are determined to lay outside of these
boundaries, they are shifted to the boundary value.

The child point is then evaluated using the surrogate model and its scalarized
outputs, dependent on the current reference direction are obtained. The scalar-
ized output of the child is finally compared against that of its superior parent.
If it is found to have performed better, it replaces its parent and if not, it is dis-
carded. This process is repeated till the whole evaluation budget has been used
up at which point the parent population is compiled and the best point from the

136 7.2. Combined solution

optimization is determined. The new data is added to the corresponding data
objects.

Calibration

While the methodology for calibration has remained mostly the same as that seen
in Section 6.2, a major change has been made where, before when the function
would have been called the surrogate is now called instead.

Similarly, to the optimizer which was just discussed a population of points
needs to be determined for training the surrogate model. The requirements of the
model are different however as during optimization the surrogate focused on the
reference direction while for calibration the region in which the best parameters
may lie is not known. Due to this the types of points selected have been adjusted
slightly.

The first set of points obtained for the training set comprising of a quarter
of the surrogate build population are again taken based of the points possessing
the best scalarized output although this was calculated using a weighted sum
with equal weighting rather than the Tchebycheff function. These points aim at
giving us information about the region near to the Pareto front. The next quarter
points are selected based on those with the highest actual improvement followed
by a quarter of the points being selected based on the lowest actual improvement.
These are chosen to give information about regions with high levels of error as
well as maintain information about good regions. The final quarter of the points
are selected by random sampling out of the remaining points. Before commencing
this sampling the population is again processed to ensure that identical or close to
identical points have been removed.

The ‘Kriging_surrogate_setup’ function is called to determine the components
of the surrogate as it was within the optimizer. Once the initial MCMC point
has been chosen it is evaluated on the newly constructed surrogate model and its
likelihood is calculated with the resulting value being stored. The MCMC is then
carried out as previously described in Section 6.2.

After the MCMC has finished running a new set of parameters needs to be
extracted from the run. There are many methods by which this could be done such
as fitting a kernel to the results after burn in or selecting some type of average. For
this work however the selected parameters are simply chosen based on the ones
which managed to achieve the highest likelihood.

A more thorough breakdown of the calibration process used can be seen in the
pseudo code for Algorithm 7.5.

Chapter 7. Architectures for up to 800 evaluations 137

Algorithm 7.5 Pseudo code for model calibration

1: Function : Calibration

2: Select points to be used within surrogate
3: Obtain the surrogate model using ‘Kriging_surrogate_setup’
4: Initialize MCMC chain
5: Assess the current model parameters to find the corresponding model outputs using

‘Kriging_surrogate’
6: Get scaled expert output
7: Calculate likelihood
8: Determine/ set the Prior distribution
9: for 1 : loop per parameter do

10: for 1 : number o f parameters do
11: while Candidate point is out of bounds do
12: Produce candidate point
13: Check to see if candidate point is within bounds
14: Determine model outputs using ‘Kriging_surrogate’
15: Get the scaled expert output
16: Determine the likelihood of scaled model outputs
17: Calculate posterior from likelihood and prior
18: Determine if the new point will be accepted or not
19: Store relevant data
20: Determine the newly accepted set of parameters
21: Calculate the model output and Likelihood of the best current parameters
22: Calculate the scalarized output of the best points
23: Store relevant data

End Function

7.2.3 Tracking information throughout the combined method

Now that an overview of how the algorithm operates has been given it is important
to have a clear understanding of when different types of data are obtained and
used. There are three main types of information being acquired throughout the
time the algorithm is running. These are expert/real world data point, modelled
data points and data points from the surrogate. Each of these types of data will
only have a limited number of points used throughout the entire run.

Real world data points are highly limited with only around ten points being
used. The modelled points are also limited with around 800 points being used.
Finally, while the number of surrogate evaluations is not specifically limited the
total amount used will depend on the number of times that the optimizer and
calibration are called as well as the run limits are for their internal GA and MCMC.
The information spread shown below is looking at the case of the alternating
method in which the algorithm goes back and forth between the calibration and

138 7.3. Algorithm setup

optimization.
Initialization

• Part of the real-world evaluation budget is used (E.g. around 5 points)
• Around 100 model evaluations are used to create the initial output popu-

lation. This population consists of points with differing control inputs and
parameters.

Calibration

• No additional real-world evaluations are used. The expert points already
gained are used within the likelihood calculation.
• After the MCMC has been fully run the parameter set that was determined to

be the best is evaluated on the model in conjunction to the expert inputs. This
means that the total number of function evaluations used for each calibration
should be in a range of about 5 to 10 evaluations.

Optimization

• After all optimization runs in a batch have been performed a single point
is selected from within the undominated points to be evaluated using the
expert model. Depending on how many times optimization is called this
may need to be limited.
• Each iteration of the optimizer uses only a single function evaluation. The

point chosen for evaluation possesses the highest kriging prediction out of
the final parent population the genetic algorithm discovers.

If the classical method, in which the calibration and optimization run in series,
were to be considered then the expert points would all have been evaluated at the
start. This means that while there would have been more model points used in
each calibration run there would be no additional expert points being acquired
after optimization.

7.3 Algorithm setup

The two methods have been set up to allow for as fair a comparison as possible
with both methods having the same amount of computational budget assigned to
them. The seed for the random number generation has been fixed for both cases
to the same value. This ensures that the initial populations for both runs are the
same to ensure that they have a fair starting point and to help remove any possible
sources of bias.

Chapter 7. Architectures for up to 800 evaluations 139

7.3.1 Run order

When setting up the algorithm it is necessary to determine the number of times
you wish to alternate between performing model calibration and optimization as
well as how many iterations of each of them you wish to perform. Currently the
method is set up to perform ten iterations of calibration followed by seventy iter-
ations of optimization before going back to calibration. When calculating the total
number of evaluations that this will use it is important to note that the number
of evaluations used by the model calibration will increase as the size of the expert
population increases. In this case if we were to alternate 5 times we would use,

Optimization model evaluations = 70 ∗ 5 = 350, (7.8)

Calibration model evaluations = 50 + 60 + 70 + 80 + 90 = 350, (7.9)

Total model evaluations = 100 + 350 + 350 = 800. (7.10)

The additional hundred evaluations come from those used during the initial-
ization stage. If the classical approach of performing calibration followed by op-
timization is considered then thirty five calibration loops would be used, as 10
expert set are present. These calibration iterations would be followed by three
hundred and fifty optimization iterations to use up the same total 800 evaluations,
including the hundred initial evaluations.

As the number of expert points is limited it is assumed that there are only ten
expert evaluations available over the cause of the entire algorithm run. The avail-
able expert evaluations are split into two sets with the first five being used during
initialization and the remaining five used after each of the batches of optimization
runs are completed.

7.3.2 Surrogate parametes

The internal parameters of the kriging model need to be determined in order to
create the surrogate. When trying to determine the value of the internal param-
eters (θ), we assume that they should lie within a reasonable range of possible
values. For our work the range is set as 102 to 10−3 which is converted to search-
ing between 2 and -3 for the genetic algorithm during surrogate creation. If the
value of theta lies below 10−3 this indicates that it has very little impact on the
output of the surrogate. The results of an experiment to see how many runs of
the GA need to take place for a suitable value of θ to be obtained can be seen in

140 7.4. Results

Section 7.4.2.

7.3.3 Calibration and optimization parameters

Both the Calibration and optimization contain internal parameters that need to be
set before it is possible to run the combined method. These values can be seen in
Table 7.1 and 7.2.

Parameter Setting
Surrogate size limit 150

Number of scalarization vectors 11
Scalarizing function Tchebycheff

Internal GA evals per iteration 1000
Tournament size 20

Table 7.1: Internal parameters of the optimizer

Parameter Setting
Surrogate size limit 150

Number of scalarization vectors 1
Scalarizing function Weighted sum

MCMC Burn in 30%
MCMC step 1000

Table 7.2: Internal parameters of the calibration

7.4 Results

Using the setups detailed in the previous section, the algorithm was run for both
the series and alternating cases. The results are detailed in five sections; firstly, the
setup details are discussed, flowed by looking at the initial data, then the results
of using the alternating method are discussed, subsequently those generated from
the classical series method are examined and finally results directly comparing the
two methods are looked at.

7.4.1 Selecting the appropriate number of generations

Before performing either setup, the minimum number of generations required by
the internal Genetic algorithm (GA), utilised in the generation of the surrogate
model, to produce an adequate fitness value is determined. While it is possible
to skip this step, and simply select a large number of generations for the genetic

Chapter 7. Architectures for up to 800 evaluations 141

algorithm, it can lead to a number of problems. For example, too few generations
can result in the final θ value selected by the genetic algorithm being suboptimal
and causing the surrogate model to underperform. Conversely, an excessive num-
ber of generations can lead to an increase in the overall run time of the algorithm,
causing it to be increasingly computationally expensive, especially as surrogate
creation is perhaps the most computationally expensive step within the algorithm.
The results of running the genetic algorithm for fifty generations are shown in Fig
7.3.

0 5 10 15 20 25 30 35 40 45 50

Generation

-135

-130

-125

-120

-115

-110

-105

F
itn

es
s

va
lu

e

Best fitness
Mean fitness

Figure 7.3: Fitness change within a GA searching for best theta during surrogate
construction. Twenty five generations were selected for use within the GA as this
was the point at which both the best and mean fitness are close to the minimum
fitness found.

From Fig. 7.3 it can be observed that after approximately 20 generations the
rate of improvement of the ‘best fitness’ falls off and the marginal rate of improve-
ment approaches zero. There is an inherent variance between runs performed in
a generation, so generation’s mean run and best run will therefore differ. The
relative distance between the mean and best performance can be used as a gauge
to identify convergence towards the best run and aid in identifying the diminish-
ing marginal returns from continuing the search for an appropriate theta. The
number of generations selected for the GA within the surrogate build is 25 as this
is when the marginal return from increasing the number of generations becomes
insubstantial.

142 7.4. Results

7.4.2 Initial evaluations

Before discussing the progress and performance of the alternating method, the
initial information available to the algorithm is detailed. Fig. 7.4 depicts the
different Control inputs (Ci), Parameters (P) and the Model outputs (MO) available
to the algorithm at the start of the run.

0 0.5 1
0

0.5

1

0 1 2 3 4
0

1

2

0 2 4 6
0

1

2

0 2 4 6 8
0

1

2

0 0.5 1
0

1

2

0 1 2 3
0

1

2

0.5 1 1.5 2
0

1

2

2.5 3 3.5 4 4.5
0

1

2

0 0.5 1 1.5 2
0

2

4

0 0.5 1
0

0.5

1

0 2 4 6
0

2

4

0 2 4 6 8
0

2

4

0 0.5 1
0

2

4

0 1 2 3
0

2

4

0.5 1 1.5 2
0

2

4

2.5 3 3.5 4 4.5
0

2

4

0 0.5 1 1.5 2
0

2

4

6

0 1 2 3 4
0

2

4

6

0 0.5 1
0

0.5

1

0 2 4 6 8
0

2

4

6

0 0.5 1
0

2

4

6

0 1 2 3
0

2

4

6

0.5 1 1.5 2
0

2

4

6

2.5 3 3.5 4 4.5
0

2

4

6

0 0.5 1 1.5 2
0

2

4

6

0 1 2 3 4
0

2

4

6

0 2 4 6
0

2

4

6

0 0.5 1
0

0.5

1

0 0.5 1
0

2

4

6

0 1 2 3
0

2

4

6

0.5 1 1.5 2
0

2

4

6

2.5 3 3.5 4 4.5
0

2

4

6

0 0.5 1 1.5 2
0

0.5

1

0 1 2 3 4
0

0.5

1

0 2 4 6
0

0.5

1

0 2 4 6 8
0

0.5

1

0 0.5 1
0

0.5

1

0 1 2 3
0

0.5

1

0.5 1 1.5 2
0

0.5

1

2.5 3 3.5 4 4.5
0

0.5

1

0 0.5 1 1.5 2
0

1

2

3

0 1 2 3 4
0

1

2

3

0 2 4 6
0

1

2

3

0 2 4 6 8
0

1

2

3

0 0.5 1
0

1

2

3

0 0.5 1
0

0.5

1

0.5 1 1.5 2
0

1

2

3

2.5 3 3.5 4 4.5
0

1

2

3

0 0.5 1 1.5 2
0.5

1

1.5

2

0 1 2 3 4
0.5

1

1.5

2

0 2 4 6
0.5

1

1.5

2

0 2 4 6 8
0.5

1

1.5

2

0 0.5 1
0.5

1

1.5

2

0 1 2 3
0.5

1

1.5

2

0 0.5 1
0

0.5

1

2.5 3 3.5 4 4.5
0.5

1

1.5

2

0 0.5 1 1.5 2

3

3.5

4

0 1 2 3 4

3

3.5

4

0 2 4 6

3

3.5

4

0 2 4 6 8

3

3.5

4

0 0.5 1

3

3.5

4

0 1 2 3

3

3.5

4

0.5 1 1.5 2

3

3.5

4

0 0.5 1
0

0.5

1

CI 2

CI 3

CI 4

 P 1

 P 2

CI 1

MO 2

MO 1

Figure 7.4: The control inputs, parameters and model outputs corresponding to
the points present within the initial population. A good degree of coverage has
been achieved for all the control inputs and parameters, with only small regions
having a lower density of initial points.

Fig. 7.4 shows that by selecting varied control inputs and parameters, via
the use of Latin hypercube sampling, a wide spread of points is obtained. For
the most part, there is excellent coverage of the majority of the input domain for
each control input and parameter. There are a few regions for which using an
initial population of 100 points still shows some areas that are sparsely populated
(such as in the central area of Ci3 , P1). The majority of the model outputs (MO
in Fig. 7.4) exhibit no significant correlation between any of the control inputs
or parameters. The only clustering that can be see is present within the model
outputs for which higher values appear to be obtained more often.

Chapter 7. Architectures for up to 800 evaluations 143

7.4.3 Results from the alternating method

The first aspect of the alternating method discussed is the results produced by the
model calibration over fifty iterations. During each iteration MCMC is performed
and the parameter set possessing the highest likelihood is selected to be evaluated
on the model and added to the point population (see Section 7.2.2). These selected
points are displayed in Fig. 7.5.

0 10 20 30 40 50
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ar

am
et

er
 1

0 10 20 30 40 50
Iteration

0.5

1

1.5

2

2.5

3

P
ar

am
et

er
 2

Figure 7.5: The selected parameter from each of the calibration iterations (red
cross) with the true parameter value (blue dashed line) shown. As the calibration
progresses the selected parameter 1 values move closer to the true value. There is
no clear trend in the values of parameter 2 selected.

Fig 7.5 shows the change in selected parameter values over calibration itera-
tions. In this alternating method after every tenth iteration step (10, 20, 30, 40, 50)
a new expert point is selected and added to the population being used. The result
is that by the end of the iteration sequence the full ten expert points are included
in the population.

Evaluating the overall progress of the calibration using the alternating method,
a significant improvement in the selection of parameters over the initial values is
observed. Firstly, parameter 1 initially has high variability in the selected values,
with many of the points being located far from the true value. Such points repre-
sent cases in which a local minimum are discovered. This test problem has local
minima that the MCMC could potentially get stuck in, located around 0, 0.77 and

144 7.4. Results

1. To get a clearer image of where these local minima occur refer to the problem
definition in Section 5.5.2. These three local minima appear to be able to explain
many of the points which diverge from the desired parameter values.

Evaluating the calibrations chosen values of parameter 2 it can be seen that
there is much more variation in the values being selected than in the case of pa-
rameter 1. In general, when a value of parameter 2 is selected which lies close to
the true value it corresponds with a value of parameter 1 which also lay close to
the true value. It is known that while large changes in parameter 2 are impact-
ful, smaller variations in it have a limited impact on the output. In addition, the
impact of varying parameter 2 is also much greater when the values are small.

Selected parameters
1 2 3 4 5

Parameter 1 0.417 0.327 0.327 0.362 0.362
Parameter 2 2.999 1.083 1.083 1.255 1.255

Table 7.3: Parameters selected for use within optimization after each batch of cal-
ibration was completed. Selected parameter values progress towards true values.
Within some batches there is a lack of improved points being obtained. These
results are from a single run of the alternating methodology.

The parameter values selected for use within the optimization after each batch
of ten calibration iterations are detailed within Table 7.3. The selected parameters
remain the same both between the second and third batches and between the
fourth and fifth. This is because no new point possessing a higher likelihood was
obtained. The three points that were selected are, in order, the 3rd, 16th and 37th

points.

In order to get a clearer idea of how the selected parameters actually effect
the model outputs Fig. 7.6 shows how the absolute difference between true and
modelled scalarized outputs of the system vary with the selected parameters.

Chapter 7. Architectures for up to 800 evaluations 145

0 5 10 15 20 25 30 35 40 45 50

Calibration interation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
bs

ol
ut

e
er

ro
r

Absolute difference between true and modelled outputs for points
both at the pareto front and from the expert population

Figure 7.6: Absolute difference between the modelled outputs using the true and
determined parameter values. The blue lines show points on the Pareto front and
the magenta lines show expert points. A clear trend of reducing error can be seen.
In the later iterations the performance of the points located at the Pareto front
outperform that of the expert points.

There are two types of points considered in Fig. 7.6, the first of which consists
of the points within the expert population at each step of the calibration iteration
(shown in magenta). The second type of points considered consist of those which
lie along the Pareto front (shown in blue). Fig. 7.6 shows a general decrease in the
absolute error over the course of the calibration.

More interesting than the reduction in absolute error, is relative change be-
tween the absolute error of the expert and Pareto optimal points. Initially it can be
seen that the points within the expert population have a lower absolute error than
that of points that lie on the Pareto front. As the calibration progresses however
the points lying on the Pareto front show greater improvement until roughly iter-
ation 27 whereby their performance starts to consistently outperform those from
points from within the expert population. The large peaks that can be observed
throughout the calibration appear to relate to cases where the parameter values
lie close to local minima’s. The number of such cases also occurs less often later
into the calibration by which time the performance is relatively stable.

The first output of the model when a set of predetermined inputs,
x = [0.5 0.5 2.1 2.8], were used to assess the impact of varying parameters can be

146 7.4. Results

seen in Fig. 7.7. A pre-determined set of inputs were used to allow for compari-
son between the different methods. There is a clear impact when parameter 1 is
changed. Changing parameter 2 causes variation in the oscillatory of the model
output. When small values of parameter 2 are selected there are more peaks and
troughs, possessing extreme output values.

Figure 7.7: Model output 1 for fixed inputs with varying parameters. Most varia-
tion is dependent on parameter 1. There is a higher density of peaks and troughs
at lower parameter 2 values.

A set of six figures showing the surrogate after different numbers of calibra-
tions runs is depicted in Figure 7.8. The iterations of the surrogate output surface
chosen to be displayed begins with the starting surrogate formed from the initial
data followed by the surrogate produced at each tenth iteration. These were se-
lected as they represent the final surrogates used for calibration before switching
over to perform optimization.

The surrogate changes throughout the model calibration and is depicted at
six points in Fig. 7.8. The initial, final and each tenth iteration is depicted. The
initial surrogate (depicted in Fig. 7.8.a) is only capable of replicating the general
shape of the model with both dips in approximately the right place. The surrogate
model is, at this initial stage, unable to model areas that do not follow the general
trend, such as the peaks and troughs that appear for smaller values of parameter
2. The surrogate generated after the first set of ten calibration iterations (see Fig.

Chapter 7. Architectures for up to 800 evaluations 147

(a) Iteration 1 (b) Iteration 10

(c) Iteration 20 (d) Iteration 30

(e) Iteration 40 (f) Iteration 50

Figure 7.8: The effects of changing the parameters, after 1, 10, 20, 30, 40 and 50
calibration iterations, on output 1 of the surrogate is shown. Fixed control inputs
of [0.5 0.5 2.1 2.8]. Initially a large difference can be seen between the surogate
output plot and that shown for the model in Fig. 7.7. At the 30th iteration, subplot
d, the shape is a much closer match but worsens by the 40th iteration, subplot e.
The areas of higher complexity are never well modelled.

148 7.4. Results

7.8.b) shows significantly improved performance over the initial surrogate and
more closely matches the model. This is most evident at low values of parameter
1 where the surrogate now forms a trough matching the model output shown in
Fig. 7.7. However, the matching is poorer at larger values of parameter 2, where
it still has relatively large output values. By the 20th iteration, see Fig. 7.8.c, the
trench present at low values of parameter 1 is much more defined and is now
present for all parameter 2 values matching the model. The transitions between
the peaks and troughs for smaller values of parameter 2 also now lie in the correct
location. However, the size of the output for larger values of parameter 1 is much
lower than it should be.

Moving on to look at the surrogate output obtained in the 30th iteration, see
Fig. 7.8.d, further improvements can be observed. Both the shape of the surface
and the size of the outputs more closely match those present within the model.
The quality of the surrogate for the 40th run, observed in Fig 7.8.e, has actually
detreated quite considerably compared to those of previous surrogates. The final
surrogate produced (see Fig. 7.8.f) for calibration exhibits an significant improve-
ment over the 40th iteration in both definition and locations of the troughs and
peaks, although it still does not fully match the model. It is concluded that the
surrogate appears to struggle at emulating the more extreme regions of the model
even after fifty iterations.

In order to be able to gain a better understanding of how well these surrogates
are truly doing the plots of the absolute error between the surrogate and the model
output for a fixed input set and varying parameters is produced and can be seen
in Fig. 7.9. Each of these plots corresponds to the surrogates displayed in Fig.7.8.
When considering these graphs, it is important to take not of the scale as just
casually comparing them can be misleading. Over the cause of the first four plots,
Fig. 7.9.a to Fig. 7.9.d, a reduction in the error globally can be observed. The
plots displaying the surrogate error for 40 and 50 iterations (Fig. 7.9.e and 7.9.f
respectively) have a large increase of error which is especially noticeable at the
parameter values [0.35 0.5]. The principal regions of error in the surrogate arise
at the location of the model’s peaks and troughs. This again indicates that the
employed surrogate model is unable to properly model the extreme regions of the
function.

The underlying cause of poor surrogate performance at extreme spatial regions
is twofold. Firstly, none of the initial population of points being used to construct
the surrogate lie within these regions. Secondly, the location of these regions
varies depending on the inputs being considered and hence can cause them to be
more difficult to locate. Considering these points, one avenue in future research

Chapter 7. Architectures for up to 800 evaluations 149

is to investigate possible methods by which points lying in such regions could be
efficiently identified and included in the surrogate. Alternatively, the surrogate
used could be improved by either adapting the current kriging model to correctly
identify such points or examining other potentially viable surrogates for use in the
approach.

Now that the results of performing calibration have been presented and the
performance of the surrogate examined, we shall now look at the findings from
performing optimization. We begin this by presenting the modelled output points
which have been evaluated using the parameter values displayed in Table 7.3,
which correspond to when they were evaluated.

0 0.5 1 1.5 2 2.5

Output 1

2

2.5

3

3.5

4

4.5

5

O
ut

pu
t 2

Current output population after optimization using
selected parameters for evaluation

Points
Undominated points
Expert points
Initial points
Pareto front

Figure 7.10: The final output space after all optimization runs have been com-
pleted evaluated using the selected parameters. Modelled output points are shown
as crosses, while the undominated set of points comprising the Pareto front from
the population are shown as circles. The set of initial population points are dis-
played as dots and the expert population are shown as black diamonds. The opti-
mization has successfully found points near the front. It has struggled to identify
points at the central region of the output space.

The modelled output from the points is determined using the possible points
produced during calibration (displayed in Fig. 7.10). As can be observed, progress
is made towards discovering the Pareto front by the optimization especially to-
wards the upper portion of the Pareto front (see Fig. 7.10). During the opti-
mization 11 different reference directions were used and it is possible the see the

150 7.4. Results

(a) Iteration 1 (b) Iteration 10

(c) Iteration 20 (d) Iteration 30

(e) Iteration 40 (f) Iteration 50

Figure 7.9: The absolute error between the surrogate and the model for output 1
after 1, 10, 20, 30, 40 and 50 calibration iterations. Over the first 4 plots the level
of error is observed decreasing. There are areas at which peaks and troughs occur
in the model at which the error remains high for all stages of the calibration.

Chapter 7. Architectures for up to 800 evaluations 151

optimizers progress along these lines. The clearest example of this the points lead-
ing up to the undominated point lying at [1.53 2.71]. The optimization appears to
struggle to determine points lying closer to the front in the central region. One
reason is the lack of any expert points lying close to the central region of the
Pareto front, unlike the lower and upper regions of the Pareto front. With regards
to the initial points, only a few approach the front and all of these are successfully
dominated by the newly obtained points from optimization.

The same population of points is then evaluated using the true parameters
(depicted in Fig. 7.11) . The set of undominated points highlighted corresponds
to those produced by the modelled output using selected parameters (Fig. 7.10) is
again shown in order to provide a comparison to newly evaluated points.

0 0.5 1 1.5 2 2.5

Output 1

2

2.5

3

3.5

4

4.5

5

O
ut

pu
t 2

Current output population after optimization using
true parameters for evaluation

Points
Undominated points
Expert points
Initial points
Pareto front

Figure 7.11: The final output space after all optimization runs have been com-
pleted evaluated using the true parameters. Points near the front generally either
maintain or improve upon their performance when evaluated using the true pa-
rameters. Some initial points perform better than believed and move closer to the
front.

The true output values produced by the population are comparative to those
produced by the modelled output, with some areas appearing to perform slightly
better and some performing slightly worse (see Fig. 7.10 and Fig. 7.11). One
of the most noticeable differences is the change of the positioning of the initial
data points. Quite a few of these initial points which performed badly using
the selected parameters, move closer to the front when evaluated with the true

152 7.4. Results

parameters. While this is interesting to see in reality this should not be impactful
as they would not have been considered as possible solutions. It has also been
noted that points within the central region shift away from the Pareto front. This
shows that none of the found points lie within this region meaning that it is likely
due to insufficient optimization rather than poor calibration.

0 50 100 150 200 250 300 350

Iteration

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

H
yp

er
vo

lu
m

e

Hypervolume progress over algorithm steps, reference point [2.5 5]
Modelled
True

Figure 7.12: Hypervolume progress for both the modelled and true output popu-
lations over the cause of the optimization iterations. There is initially a large error
present due to parameter error which is reduced over time. The rate of improve-
ment slows as points closer to the front are obtained. An error remains due to the
model not identifying points near the central region of the Pareto front.

The performance of the optimization is assessed with the hypervolume indica-
tor using the reference point located at [2.5 5]. The hypervolume for the modelled
and true outputs produced using both the new input sets and initial points (seen
in Fig. 7.12), it can be seen that they continuously improve over the course of the
algorithm. Initially, as expected there is a large difference between the hypervol-
umes for the modelled and true outputs. This difference is reduced over the course
of the algorithm but reaches a point after which only minor reductions in the im-
provement are obtained. The continued difference between the two hypervolumes
is believed to be due in large part to the bad parameter values at which the initial
points were evaluated. As they are never re-assed using newly obtained parame-
ters due to the limitation of the evaluation budget it is not possible to realise that
they in fact perform relatively well. As more points were discovered closer to the

Chapter 7. Architectures for up to 800 evaluations 153

front the rate of improvement of the hypervolume slowed down. The final hyper-
volume reached by the true outputs was 4.26 and the final hypervolume reached
by the modelled points was 4.09. Realistically the maximum hypervolume pos-
sible is 4.83 (determined from taking 100,00 random Pareto optimal samples and
calculating the obtained hypervolume) so achieving these hypervolumes is rea-
sonable. Most of the missed hypervolume is present at the extremities which were
not fully explored and central portion of the Pareto front where the optimization
was unable to locate points close to the front.

7.4.4 Results of running the classical method

This next section details the results generated by the classical approach of cali-
bration followed by optimization. This run uses the same seed as the alternating
method and hence generates the same initial population of points, which is done
to ensure that variation in the results is due to the differences in the approach
and not different initial data. The only difference between the initial information
available for the series run (classical approach) is that all ten of the available expert
points are evaluated at initialization rather than being incrementally added over
the cause of the algorithm.

The results are displayed using the same plots to allow for comparison between
the two methods. The progress of the calibration can be seen in Fig. 7.13.

While there are points which lie away from the true value, many of these
points can be explained as corresponding with local minima’s (at around 0, 0.77
and 1). A large proportion of the remaining selected points that are not near the
true value for parameter 1 lie between 0.5 and 0.6. There does not appear to be a
reason for this to happen and so is most likely caused by possessing expert points
that do not manage to adequately represent the model. The fact that most of the
selected values for parameter 2 lie either close to 0.5 or 3 indicates that the true
value that would have produced the best results for these points lies outside of the
search range. There does not appear to be a trend of the selected values improving
over the cause of the calibration although some better values for parameter 2 were
spotted towards the end.

As this method is looking at utilising the full calibration budget before moving
on to perform optimization only a single parameter set is selected. For this run
the selected parameters are [0.501 0.504] which may seem odd as points possessing
good approximations of parameter 1 are present. The reason that the points lying
closer to the true value were discarded is due to them having worse likelihoods
which could have been caused by either the expert population or the inability to
select an appropriate value of parameter 2.

154 7.4. Results

0 10 20 30 40
Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ar

am
et

er
1

0 10 20 30 40
Iteration

0.5

1

1.5

2

2.5

3

P
ar

am
et

er
 2

Figure 7.13: Selected parameter value after each interaction of calibration. Dashed
line shows the true parameter value, blue x’s show initial training data spread.
There is no clear trend of improvement observed over the course of the calibration.
The parameter set found to be producing the highest likelihood was [0.501 0.504].

The effect of the different parameter sets selected over the cause of the calibra-
tion on both the modelled expert inputs as well as points lying on the Pareto front
can be observed in Fig. 7.14. All the points except for the additional initial expert
points match those examined when looking at the alternating method.

The classical approach exhibits that there is no clear trend of improvement over
the 35 calibration iterations (see Fig. 7.14). The error present at points lying on
the Pareto front is consistently higher than that present resulting from the outputs
of the expert inputs. There are multiple instances at which the error for all points
is noticeably reduced. Comparing this to the progress made with calibrating the
parameters (see Fig. 7.13), these cases can be seen to have been caused by points
for which their value of parameter 1 lies close to the true value. Looking at the
parameter set that was selected to be taken forward for use within optimization
(iteration 23) it does not arear to be performing well. However, scrutinizing it
more closely it can be observed that while the error present at the Pareto front is
not improved the error the expert points is in fact greatly diminished.

Chapter 7. Architectures for up to 800 evaluations 155

0 5 10 15 20 25 30 35

Calibration interation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
bs

ol
ut

e
er

ro
r

Absolute difference between true and modelled outputs for points
both at the pareto front and from the expert population

Figure 7.14: The effects of the different parameter sets selected during calibration
on both expert and Pareto optimal points. While there are some iterations at which
low error is observed, there does not appear to be any continuous improvement
over the course of the calibration. In the majority of cases the performance of the
expert points is better than that of points chosen on the Pareto front.

Figure 7.15: Model output 1 for fixed inputs with varying parameters. Included
to allow for easier comparison with plots in Fig. 7.16. The model outputs match
those presented in Fig. 7.7.

156 7.4. Results

The model output for objective one with varying parameters is shown in Fig.
7.15. Due to using the same test function and initial population the model output
possesses the same shape as that seen for the model in the alternating method
and has been included mainly to allow for easier comparison to the surrogates
presented in Fig. 7.16.

The selected calibration iterations that have been chosen for presentation for
the series method, in Fig. 7.16, are different to those that were displayed for
the alternating method. The main reasons for this are that the total number of
calibrations iterations used is less due to more points being generated at each
iteration and so the available budget is used up faster. As additional information
is acquired over the course of the calibration additional iterations were selected
later to examine if the added information has an impact on the surrogate.

The first stage selected and displayed in Fig. 7.16.a is of the initial surrogate
built which as would be expected matches the initial surrogate produced by the
alternating method. As seen previously the two main troughs are not currently
well modelled and none of the more complex regions are identified. At the tenth
iteration, which can be seen in Fig. 7.16.b, the main regions of the surrogate are
clear although both their shape and the size of the output values do not match
those present within the model well.

The shape of the surrogate matches that of the model by the 20th iteration, seen
in Fig. 7.16.c, and is maintained until the completion of the calibration. Over the
course of this period small changes in the size and shape of the output surface can
be observed. The main difference to the model is that the surrogate has continued
to not include the more complex regions that are present for smaller values of
parameter 2.

The absolute error between the surrogate and model output plotted in Fig.
7.17 gives a much clearer image of how the surrogate changes. The iterations
displayed are again selected to match the surrogates displayed in Figure 7.16. The
peak error present at the different iterations of the series method is overall lower
than that perceived in the surrogates produced for calibration by the alternating
method. The error present due to badly modelling the trench, that occurs at small
values of parameter 1, does not get removed over the cause of the calibration.
More complex regions of the surrogate’s surface are often observed as peaks on
the error plot due to failing to be properly modelled by the surrogate. This shows
again that either population of points used to build the surrogate failed to include
points containing information about the peaks and troughs or the surrogate is
struggling to model them.

Chapter 7. Architectures for up to 800 evaluations 157

(a) Iteration 1 (b) Iteration 10

(c) Iteration 20 (d) Iteration 25

(e) Iteration 30 (f) Iteration 35

Figure 7.16: Plots of the surrogate looking at the effects of the parameters on
output 1 after 1, 10, 20, 25, 30 and 35 calibration iterations. It appears that the sur-
rogate struggles to correctly identify the channel which is present for lower values
of parameter 1. Like before the surrogate failed to identify the more complex
regions occurring at lower values of parameter 2.

158 7.4. Results

(a) Iteration 1 (b) Iteration 10

(c) Iteration 20 (d) Iteration 25

(e) Iteration 30 (f) Iteration 35

Figure 7.17: The absolute error between the first surrogate and model output after
1, 10, 20, 25, 30 and 35 calibration iterations. Regions where peaks and troughs
occur can be seen to possess a larger absolute error. It can be clearly seen that as
noted in Fig. 7.16 the surrogate appears to struggle with correctly identifying the
troughs present for smaller values of parameter 1.

Chapter 7. Architectures for up to 800 evaluations 159

0 0.5 1 1.5 2 2.5

Output 1

2

2.5

3

3.5

4

4.5

5

O
ut

pu
t 2

Current output population after optimization using
selected parameters for evaluation

Points
Undominated points
Expert points
Initial points
Pareto front

Figure 7.18: The final output population obtained when points were evaluated
using the parameters selected from the calibration runs. Only a few points manage
to make it close to the true Pareto front. All the selected expert points lie away
from the true front. The obtained points appear to be forming a front set back
from the true Pareto front.

The results of the optimization shown in Fig. 7.18 appear worse than those
produced when using the alternating method. There are a smaller number of
points discovered close to the front with those that are found lying further apart.
The classical method managed to obtain points located within the central region
of the output space which are closer to the true Pareto front than in the alternating
method. There expert points present within the classical approach lie further back
with none of them being selected close to the Pareto front. The points selected by
the optimization form two fronts that are set back from the Pareto front.

When the points discovered over the course of performing optimization are
evaluated using the true parameters a large shift in their location can be observed
in Fig. 7.19. Many points experienced an increase in the value of their second
objective to the extent that no point remain that only one point remains that pos-
sesses a value for output 2 which is lower than 2.5. There were multiple points
obtained within the central region after evaluation with the true parameters which
is an area that both methods appeared to have difficulty in identifying. The Pareto
optimal set determined from the points evaluated using selected parameters can
be seen to lose out in many cases to points that have shifted after being evalu-

160 7.4. Results

ated with the true parameters. This clearly shows how the incorrect parameters
selection has a major impact on the perceived performance of the methodology.

0 0.5 1 1.5 2 2.5

Output 1

2

2.5

3

3.5

4

4.5

5

O
ut

pu
t 2

Current output population after optimization using
true parameters for evaluation

Points
Undominated points
Expert points
Initial points
Pareto front

Figure 7.19: The final output population obtained when points were evaluated
using the true parameters. Points in the central and lower region of the front have
moved closer to the true front. The points obtained with lower values of output 2
have been shifted dramatically when comparing to Fig. 7.18.

The performance of the optimization over algorithm run for the classical method
can be seen in Fig. 7.20. Similarly, to the hypervolume observed for the alternat-
ing method in Fig. 7.12 the true performance again is much superior to that
produced by the model, which as has been stated is due to the initial population.
The final modelled hypervolume achieved is 4.09 whereas the final hypervolume
gained from the points being evaluated using the true parameters is 4.24. This
performance is comparable to that achieved by the alternating method, being only
slightly worse.

Chapter 7. Architectures for up to 800 evaluations 161

0 50 100 150 200 250 300 350

Iteration

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

H
yp

er
vo

lu
m

e

Hypervolume progress over algorithm steps, reference point [2.5 5]
Modelled
True

Figure 7.20: Hypervolume progress for both the modelled and true output popu-
lations over the cause of the optimization iterations for the classical method. The
parameter error produces a large initial difference between the modelled and true
hypervolume. The rate of improvement for the modelled hypervolume slows over
the cause of the optimization. The modelled hypervolume fails to match the true
hypervolume, although the difference between the two is reduced over the cause
of the optimization.

7.4.5 Comparison

While the results for the two different methods have been laid out in the previous
sections, there are some areas that could benefit from a clearer comparison. The
first of these is an examination of the positioning of the expert points which were
obtained during both methods.

The inputs for the selected points are displayed in Table 7.4. The first five
points are those shared between both methods which were selected at initializa-
tion. The remaining five points for the classical method were also selected at
initialization through the used of Latin hypercube sampling as described in the
methodology. The additional alternating points are listed in the order that they
were obtained during the run. The first two inputs depict the direction of the
point from the origin while the last two inputs dictate the distance between the
point and the Pareto front. For a point to lie on the Pareto front it is necessary
for the third and fourth inputs to be 2.1 and 2.8 respectively. From the table the
discovered alternating points are closer to these values than those acquired by the

162 7.4. Results

Classical Alternating
[0.33 3.59 0.91 1.76]
[1.36 1.49 2.95 0.94]
[0.98 0.03 4.14 5.00]
[1.78 3.04 1.38 3.74]
[0.46 2.34 5.55 6.70]

[1.70 3.55 2.60 1.82] [1.58 0.65 3.35 3.78]
[0.45 1.67 5.23 4.11] [1.29 0.28 2.72 2.40]
[1.28 2.48 4.22 6.54] [1.75 0.00 1.44 1.61]
[0.97 0.64 0.27 0.96] [0.75 2.61 2.67 1.26]
[0.01 1.51 2.17 4.99] [0.85 1.66 1.86 2.99]

Table 7.4: The expert points that were available for the classical and alternating
method displayed in the order they were acquired. Those obtained by the alternat-
ing method in general have better values (closer to lying on the true Pareto front)
than those obtained by the classical method.

classical method most of the time.

0 0.5 1 1.5 2 2.5

Objective 1

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

O
bj

ec
tiv

e
2

Pareto front
Alternating
Series

Figure 7.21: Comparison of the expert points present within the alternating and
classical (series) methods. The points selected by the alternating method are in
general closer to the front than those obtained by the series classical method.

The output resulting from these input sets can be seen displayed in Fig 7.21
along with the true Pareto front. It can be clearly seen that the alternating method
successfully obtained points closer to the Pareto front than those determined

Chapter 7. Architectures for up to 800 evaluations 163

through Latin hypercube sampling. The alternating methods expert points that lie
on either side are closer to the front, this is explained by the optimizers progress
which can be seen in Fig. 7.10. As for the expert points obtained at initialization
for the classical method, while they have the potential to be chosen close to the
front this is unlikely to happen as was seen here.

0 50 100 150 200 250 300 350

Iteration

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

H
yp

er
vo

lu
m

e

Comparion of the hypervolume progress for
the alternating and series methods

Atlernating modelled
Alternating true
Series modelled
Series true

Figure 7.22: Comparison of the hypervolumes achieved by alternating and classi-
cal (series) methods. The rate of improvement for the alternating method is faster
than the classical method for both the true and modelled values. The final hy-
pervolumes achieved by the alternating method outperformed those by the series
method.

While the hypervolumes obtained by both the alternating and classical method
have been previously shown they have been plotted here again to allow for an
easier comparison. Looking at Fig. 7.22 it can be seen that the alternating method
allowed for faster improvement in the output as well as a better final hypervolume.
In both cases there is a large discrepancy between the modelled and true output.
While from looking at Fig. 7.10 and Fig. 7.11 it can be seen that this error appears
to mainly come from the difference in the initial population when it is evaluated
with the expert parameters rather than those chosen from the calibrated set. In
the case of the classical method it appears as if a lot more of the error between the
modelled and true hypervolume was due to movement of optimized points which
were badly calibrated, seen in Fig. 7.18 and Fig. 7.19.

164 7.5. Conclusion

7.4.6 Discussion

It is important to note that the results displayed here show the outcome of a single
run of both the alternating and classical methods. Both the runs are setup with the
same initial random number generator (RNG) seed which means that the initial
information in both runs is the same. This allows us to compare the two runs, as
any discrepancy between the performance of the runs must be largely impacted
by the change of methodology. Due to using random samples in multiple parts of
the method it is not possible to ensure that the same selection was made, and so
possible discrepancy could have formed due to this.

From examining multiple runs of the methods with differing RNG seeds, and
hence initial populations, it was found that the performance of the methods was
strongly affected. The results set which is presented comes from a run in which
the Latin hypercube sampling performed by the classical method, to find its expert
points, does not determine one situated next to the Pareto front. This was chosen
as we are interested in how the alternating method can help when the region of
interest is not identified initially.

It is necessary to note that in this case, at first glance, the final performance
metric value achieved by the alternating and classical methods may appear very
close. While this may be true there are other aspects that need to be considered;
such as the density of points near the Pareto front and the calibration performance.
It was seen that the calibration achieved through the alternating method was su-
perior to that of the classical approach. Over the course of the run the alternating
method managed to identify a parameter set which was close to the true parame-
ters. It also focused on improving the performance for both the expert population
as well as points lying near the true Pareto front.

Another aspect of discussion is the surrogate’s ability to correctly model the
true function. The kriging model ended up struggling to model the areas of higher
complexity within the output space. Even with this issue the alternating method
managed to identify reasonable approximation of the true parameter values. The
examination of other possible surrogate methods is one area which could be worth
looking into in the future.

7.5 Conclusion

This chapter has detailed an extension to the alternating method designed to allow
it to function with the use of a smaller budget of evaluations. This has been done
through the addition of a kriging surrogate model that is used within both the
model calibration and optimization. Both this new alternating method as well as

Chapter 7. Architectures for up to 800 evaluations 165

a classical alternative are detailed along with justification forwhy certain design
choices were taken.

Before the results of running either of the setups are presented a small inves-
tigation into the number of generations required to find a suitable θ value for use
within the surrogate was carried out. It was concluded that 25 generations were
required before the marginal return became insubstantial.

From the results presented within this chapter, it was found that the alternating
method achieved superior calibration to the classical approach. Additionally, the
alternating method was found to improve the performance of both points lying
within the expert population and those near the Pareto front. In the future it is
necessary to perform further work into assessing different surrogate model as the
current kriging model was shown to have issues.

Chapter 8

Conclusion

166

Chapter 8. Conclusion 167

The principle aim of this research was to determine if there was a method
by which the development steps of model calibration and optimization could be
made more efficient through being considered as a single combined problem. This
thesis has laid out a combined mathematical formulation for the joint problem of
model calibration and optimization (Chapter 4). It presents methods by which
such problems can be benchmarked along with a set of potential test problems
which include both calibration parameters and control inputs for identification
(Chapter 5). An initial examination of the use of an alternating method for im-
proving the performance of the joint problem over the classical serial approach
was performed (Chapter 6). This was further expanded to look at cases in which
expensive multi objective problems were being considered (Chapter 7). With the
reduction in the available evaluation budget a new surrogate method was devel-
oped and its performance assessed.

8.1 Main contributions

The key original knowledge contributions towards the fields of model calibration
and optimization presented within this thesis are:

• The construction of a new mathematical formulation to express the com-
bined problem of model calibration and optimization. While the different
components of the formulation are based on those drawn from the opti-
mization and calibration literature, the new framework provides consistent
notation allowing for a coherent expression of the combined problem. This
new framework allows for better tracking of components, such as uncer-
tainty, throughout the entire process.

• The extension of pre-existing benchmark problems to create new variants
which would allow for testing of methods designed to solve the combined
stages of model calibration and optimization. This was accomplished through
selecting popular test problems from within the optimization literature and
expanding them to incorporate both model parameters along with control in-
puts. The multi-objective problems were also expanded to incorporate cases
where both modelling error is present as well as absent.

• A new component for the WFG framework, s_signal, that incorporates model
parameters was developed. The new component was designed so that it
would possess adjustable complexity and could not be easily approximated
via a simple surrogate model. This was necessary due to the way many of
the current test problems are formed by adding complexity on to simpler

168 8.2. Future work

problems. The new module for WFG is also designed to be non-separable
and allow for scalability.

• The proposition of a new alternating methodology for solving the combined
problems of model calibration and optimization. This new method moves
between the two stages with the aim of making more efficient use of the
available evaluation budget. The alternating method was developed under
the assumption that successfully calibrating the model for a given set of
inputs did not guarantee that the model would be calibrated for all inputs.
Through alternating between the two stages, the aim was to obtain better
knowledge of more relevant area of the output space and hence ensure that
the outputs obtained lie as close as possible to the true front.

• Extension of the alternating methodology for use with a small evaluation
budget. This was achieved through the incorporation of surrogate models
within both the calibration and optimization stages. These surrogates al-
lowed for cheap evaluations to be performed with the aim of aiding the
solver to determine the optimal locations to use the available model evalu-
ations. The surrogates also facilitate better information sharing between the
two stages.

• Assessments for the performance of both the new alternating method as well
as its surrogate version were performed. In both cases they are compared
to a comparable setup in which the classical approach, of performing the
two stages in series, was implemented. The basic alternating method was
examined on the DTLZ1θ function as well as ZDT1θ and WFG2θ for the cases
when model error was present and absent. It was shown that the alternating
method aided in improving the final parameters achieved by calibration. It
was also demonstrated that the alternating method to achieve comparable
(in some cases superior) performance on average for the final hypervolume.
The extended alternating method was examined on the newly developed
WFG4s function. It again showed an improvement in the calibration as well
as achieving faster progress within the found hypervolume.

8.2 Future work

At the current stage there are a number of directions future research and improve-
ments, based on the work presented, could be carried out for.

One area of future work to consider is the continued development of the al-
ternating approach. Some of its components, which could benefit from further

Chapter 8. Conclusion 169

examining, include the effects of using different conditions to determine when the
method would switch between stages. If a dynamic method were used to deter-
mine the switching time it would be necessary to consider the conditions under
which the next true evaluation would take place. Another component which may
be beneficial to analyse is how the use of different surrogate models affects the
performance. Further testing of the current setups on a larger variety of problems
may aid in achieving a better understanding of how the new approach operates.

Another avenue of future work should be the implementation of a robust
methodology using implicit averaging, to allow it to function with the limited eval-
uation budget, as a viable alternative for comparison to the alternating method.
The possibility of incorporating the robustness indicator into the alternating ap-
proach should also be considered. This could be done either as a replacement of
the current optimization or as a supporting mechanism. One potential benefit of
doing this would be an ability to help mitigate any issues from cases in which the
model calibration has failed to successfully calibrate the parameters.

The final area of future work is to apply the new method to a real-world case
study. Currently the work carried out has all been based on test functions which,
while allowing for some performance examination, do not necessarily represents
how the method would truly function.

Bibliography

J. Bader and E. Zitzler. HypE: An algorithm for fast hypervolume-based many-
objective optimization. Evolutionary computation, 19(1):45–76, 2011.

J.M. Bader. Hypervolume-based search for multiobjective optimization: theory and meth-
ods. Number 112. Johannes Bader, 2010.

T. Bayes. Lii. an essay towards solving a problem in the doctrine of chances. by
the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton,
amfr s. Philosophical transactions of the Royal Society of London, (53):370–418, 1763.

T. Bäck and H.P. Schwefel. An Overview of Evolutionary Algorithms for Parameter
Optimization. Evolutionary Computation, 1(1):1–23, March 1993.

P. Beerli. Comparison of Bayesian and maximum-likelihood inference of popula-
tion genetic parameters. Bioinformatics, 22(3):341–345, February 2006.

R. Bellaan. The theory of dynamic programming. Technical report, Rand corp
santa monica ca, 1954.

N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research, 181
(3):1653–1669, September 2007.

H.G. Beyer and B. Sendhoff. Robust optimization – a comprehensive survey. Com-
puter Methods in Applied Mechanics and Engineering, 196(33):3190–3218, July 2007.

L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle. Comparing decomposition-based
and automatically component-wise designed multi-objective evolutionary algo-
rithms. In Evolutionary Multi-Criterion Optimization, EMO 2015 Part I, pages 396–
410, 2015.

J. Bongard, V. Zykov, and H. Lipson. Resilient Machines Through Continuous
Self-Modeling. Science, 314(5802):1118–1121, November 2006.

170

Bibliography 171

S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,
Cambridge, UK ; New York, 2004.

K. Bringmann, T. Friedrich, and P. Klitzke. Two-dimensional subset selection for
hypervolume and epsilon-indicator. pages 589–596. 2014.

D.S. Broomhead and D. Lowe. Radial basis functions, multi-variable functional
interpolation and adaptive networks. Technical report, DTIC Document, 1988.

L.P. Cáceres, M. López-Ibánez, and T. Stützle. Ant colony optimization on a budget
of 1000. In International Conference on Swarm Intelligence, pages 50–61. 2014.

L.P. Cáceres, M. López-Ibáñez, and T. Stützle. Ant colony optimization on a limited
budget of evaluations. Swarm Intelligence, 9(2-3):103–124, September 2015.

T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen. A survey on handling com-
putationally expensive multiobjective optimization problems with evolutionary
algorithms. Soft Computing, 23(9):3137–3166, May 2019.

G. Damblin, M. Couplet, and B. Iooss. Numerical studies of space-filling designs:
optimization of Latin Hypercube Samples and subprojection properties. Journal
of Simulation, 7(4):276–289, November 2013.

J. Davins-Valldaura, S. Moussaoui, G. Pita-Gil, and F. Plestan. ParEGO extensions
for multi-objective optimization of expensive evaluation functions. Journal of
Global Optimization, 67(1-2):79–96, January 2017.

K. Dächert, J. Gorski, and K. Klamroth. An augmented weighted Tchebycheff
method with adaptively chosen parameters for discrete bicriteria optimization
problems. Computers & Operations Research, 39(12):2929–2943, December 2012.

K. Deb et al. Multi objective optimization using evolutionary algorithms. John Wiley
and Sons, 2001.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2):
182–197, 2002.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test problems for evo-
lutionary multiobjective optimization. Evolutionary Multiobjective Optimization.
Theoretical Advances and Applications, pages 105–145, 2005.

J.A. Duro, R.C. Purshouse, S. Salomon, D.C. Oara, V. Kadirkamanathan, and
P.J. Fleming. sparego – a hybrid optimization algorithm for expensive un-
certain multi-objective optimization problems. In K. Deb, E. Goodman, C.A.

172 Bibliography

Coello Coello, K. Klamroth, K. Miettinen, S. Mostaghim, and P. Reed, editors,
Evolutionary Multi-Criterion Optimization, pages 424–438, Cham, 2019.

M. Ehrgott, J. Ide, and A. Schöbel. Minmax robustness for multi-objective op-
timization problems. European Journal of Operational Research, 239(1):17–31,
November 2014.

L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular hap-
lotype frequencies in a diploid population. Molecular Biology and Evolution,
September 1995.

A.I. Forrester and A.J. Keane. Recent advances in surrogate-based optimization.
Progress in Aerospace Sciences, 45(1-3):50–79, January 2009.

H. Fu, P.R. Lewis, B. Sendhoff, K. Tang, and X. Yao. What are dynamic optimiza-
tion problems? In Evolutionary Computation (CEC), 2014 IEEE Congress on, pages
1550–1557. 2014.

I. Giagkiozis, R.C. Purshouse, and P.J. Fleming. An overview of population-based
algorithms for multi-objective optimisation. International Journal of Systems Sci-
ence, 46(9):1572–1599, 2015.

M.S. Gibbs, G.C. Dandy, and H.R. Maier. Calibration and Optimization of the
Pumping and Disinfection of a Real Water Supply System. Journal of Water
Resources Planning and Management, 136(4):493–501, July 2010.

J. Goodman and J. Weare. Ensemble samplers with affine invariance. Communica-
tions in applied mathematics and computational science, 5(1):65–80, 2010.

H.M. Gutmann. A radial basis function method for global optimization. Journal of
global optimization, 19(3):201–227, 2001.

A. Habib, H.K. Singh, and T. Ray. A multi-objective batch infill strategy for efficient
global optimization. In Evolutionary Computation (CEC), 2016 IEEE Congress on,
pages 4336–4343. 2016a.

A. Habib, H.K. Singh, and T. Ray. A study on the effectiveness of constraint han-
dling schemes within Efficient Global Optimization framework. In Computational
Intelligence (SSCI), 2016 IEEE Symposium Series on, pages 1–8. 2016b.

J. Hakanen and J.D. Knowles. On Using Decision Maker Preferences with
ParEGO. In H. Trautmann, G. Rudolph, K. Klamroth, O. Schütze, M. Wiecek,

Bibliography 173

Y. Jin, and C. Grimme, editors, Evolutionary Multi-Criterion Optimization, vol-
ume 10173, pages 282–297. Springer International Publishing, Cham, 2017. DOI:
10.1007/978-3-319-54157-0_20.

N. Hansen, S. Finck, and R. Ros. Coco-Comparing continuous optimizers: The docu-
mentation. PhD thesis, INRIA, 2011.

W.K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their
Applications. Biometrika, 57(1):97, April 1970.

D. Horn, T. Wagner, D. Biermann, C. Weihs, and B. Bischl. Model-Based Multi-
objective Optimization: Taxonomy, Multi-Point Proposal, Toolbox and Bench-
mark. In A. Gaspar-Cunha, C. Henggeler Antunes, and C.C. Coello, editors,
Evolutionary Multi-Criterion Optimization, volume 9018, pages 64–78. Springer
International Publishing, Cham, 2015. DOI: 10.1007/978-3-319-15934-8_5.

D. Huang, T.T. Allen, W.I. Notz, and N. Zeng. Global Optimization of Stochastic
Black-Box Systems via Sequential Kriging Meta-Models. Journal of Global Opti-
mization, 34(3):441–466, March 2006.

S. Huband, L. Barone, L. While, and P. Hingston. A scalable multi-objective test
problem toolkit. In International Conference on Evolutionary Multi-Criterion Opti-
mization, pages 280–295. Springer, 2005.

E.J. Hughes. MSOPS-II: A general-purpose Many-Objective optimiser. pages 3944–
3951. September 2007.

H. Ishibuchi, T. Doi, and Y. Nojima. Incorporation of scalarizing fitness functions
into evolutionary multiobjective optimization algorithms. Parallel Problem Solv-
ing from Nature-PPSN IX, pages 493–502, 2006.

H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima. Simultaneous use of dif-
ferent scalarizing functions in MOEA/D. In Proceedings of the 12th Annual Con-
ference on Genetic and Evolutionary Computation, pages 519–526, 2010.

H. Ishibuchi, N. Akedo, and Y. Nojima. A study on the specification of a scalariz-
ing function in MOEA/D for many-objective knapsack problems. In International
Conference on Learning and Intelligent Optimization, pages 231–246, 2013.

H. Ishibuchi, H. Masuda, and Y. Nojima. A Study on Performance Evaluation
Ability of a Modified Inverted Generational Distance Indicator. pages 695–702.
2015.

174 Bibliography

H. Ishibuchi, H. Masuda, and Y. Nojima. Sensitivity of performance evaluation re-
sults by inverted generational distance to reference points. In 2016 IEEE Congress
on Evolutionary Computation (CEC), pages 1107–1114. 2016.

H. Ishibuchi, K. Doi, and Y. Nojima. On the effect of normalization in MOEA/D
for multi-objective and many-objective optimization. Complex & Intelligent Sys-
tems, 3(4):279–294, 2017.

E.T. Jaynes. Bayesian methods: General background. Cambridge University Press, 1
edition, November 1986.

Y. Jin. Surrogate-assisted evolutionary computation: Recent advances and future
challenges. Swarm and Evolutionary Computation, 1(2):61–70, 2011.

D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

O. Jones, R.C. Purshouse, and J.E. Oakley. Toward a unified framework for model
calibration and optimization in virtual engineering workflows’. October 2019.

O.T. Kajero, R.B. Thorpe, T. Chen, B. Wang, and Y. Yao. Kriging meta-model
assisted calibration of computational fluid dynamics models. AIChE Journal, 62
(12):4308–4320, December 2016.

M.I. Kamien and N.L. Schwartz. Dynamic optimization: the calculus of variations and
optimal control in economics and management. Courier Corporation, 2012.

M.C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–464,
2001.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated Anneal-
ing. Science, 220(4598):671–680, May 1983.

J.P.C. Kleijnen, W. van Beers, and I. van Nieuwenhuyse. Expected improvement
in efficient global optimization through bootstrapped kriging. Journal of Global
Optimization, 54(1):59–73, September 2012.

J. Knowles. ParEGO: a hybrid algorithm with on-line landscape approximation
for expensive multiobjective optimization problems. IEEE Transactions on Evolu-
tionary Computation, 10(1):50–66, February 2006.

J. Knowles and E.J. Hughes. Multiobjective optimization on a budget of 250 eval-
uations. In International Conference on Evolutionary Multi-Criterion Optimization,
pages 176–190. 2005.

Bibliography 175

J. Knowles, D. Corne, and A. Reynolds. Noisy multiobjective optimization on
a budget of 250 evaluations. In International Conference on Evolutionary Multi-
Criterion Optimization, pages 36–50. 2009.

R. Kwiatkowski and H. Lipson. Task-agnostic self-modeling machines. Science
Robotics, 4(26):eaau9354, January 2019.

R.S. Langley. Unified approach to probabilistic and possibilistic analysis of uncer-
tain systems. Journal of engineering mechanics, 126(11):1163–1172, 2000.

M. Laumanns, E. Zitzler, and L. Thiele. On the effects of archiving, elitism, and
density based selection in evolutionary multi-objective optimization. In Proceed-
ings of the First International Conference on Evolutionary Multi-Criterion Optimiza-
tion (EMO 2001), pages 181–196, 2001.

L. Lebensztajn, C. RondiniMarretto, M. CaldoraCosta, and J.L. Coulomb. Kriging:
A Useful Tool for Electromagnetic Device Optimization. IEEE Transactions on
Magnetics, 40(2):1196–1199, March 2004.

X. Li, D.E. Weller, and T.E. Jordan. Watershed model calibration using multi-
objective optimization and multi-site averaging. Journal of Hydrology, 380(3-4):
277–288, January 2010.

K.H. Liang, X. Yao, and C. Newton. Evolutionary search of approximated n-
dimensional landscapes. International Journal of Knowledge Based Intelligent Engi-
neering Systems, 4(3):172–183, 2000.

J.S. Liu. Monte Carlo strategies in scientific computing. New York, NY: Springer, 2001.

M. Mavrovouniotis, C. Li, and S. Yang. A survey of swarm intelligence for dynamic
optimization: Algorithms and applications. Swarm and Evolutionary Computation,
33:1–17, April 2017.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equa-
tion of State Calculations by Fast Computing Machines. The Journal of Chemical
Physics, pages 1–7, 2004.

J. Müller. MISO: mixed-integer surrogate optimization framework. Optimization
and Engineering, 17(1):177–203, March 2016.

M.D. Morris and T.J. Mitchell. Exploratory designs for computational experiments.
Journal of statistical planning and inference, 43(3):381–402, 1995.

176 Bibliography

Z.P. Mourelatos and J. Liang. A methodology for trading-off performance and
robustness under uncertainty. Journal of Mechanical Design, 128(4):856, 2006.

T. Murata and H. Ishibuchi. MOGA: Multi-objective genetic algorithms. In Evolu-
tionary Computation, 1995., IEEE International Conference on, volume 1, page 289.
1995.

I.J. Myung. Tutorial on maximum likelihood estimation. Journal of Mathematical
Psychology, 47(1):90–100, February 2003.

T.T. Nguyen, S. Yang, and J. Branke. Evolutionary dynamic optimization: A survey
of the state of the art. Swarm and Evolutionary Computation, 6:1–24, October 2012.

W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze. Multiobjective optimization
on a limited budget of evaluations using model-assisted\backslash mathcal
${$s$}$-Metric selection. In International Conference on Parallel Problem Solving
from Nature, pages 784–794. 2008.

R.C. Purshouse and P.J. Fleming. Why use elitism and sharing in a multi-objective
genetic algorithm? In Proceedings of the 2002 Genetic and Evolutionary Computation
Conference (GECCO 2002), pages 520–527, 2002.

Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu. MOEA/D with adaptive weight
adjustment. Evolutionary Computation, 22(2):231–264, 2014.

H. Qiang, Y. Fuyuan, Z. Ming, and O. Minggao. Study on Modeling Method for
Common Rail Diesel Engine Calibration and Optimization. pages 2004–01–0426,
March 2004.

Qingfu Zhang and Hui Li. MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition. IEEE Transactions on Evolutionary Computation, 11(6):
712–731, December 2007.

F. Rambeaux, F. Hamelin, and D. Sauter. Optimal thresholding for robust fault de-
tection of uncertain systems. International Journal of Robust and Nonlinear Control:
IFAC-Affiliated Journal, 10(14):1155–1173, 2000.

C.E. Rasmussen. Gaussian processes in machine learning. In Advanced lectures on
machine learning, pages 63–71. Springer, 2004.

N. Riquelme, C. Von Lücken, and B. Baran. Performance metrics in multi-objective
optimization. In Computing Conference (CLEI), 2015 Latin American, pages 1–11.
2015.

Bibliography 177

R.J. Rossi. Mathematical statistics: an introduction to likelihood based inference. John
Wiley & Sons, 2018.

S. Ruder. An overview of gradient descent optimization algorithms.
arXiv:1609.04747 [cs], June 2017. arXiv: 1609.04747.

J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis of computer
experiments. Statistical science, pages 409–423, 1989.

M.J. Sasena, P. Papalambros, and P. Goovaerts. Exploration of Metamodeling Sam-
pling Criteria for Constrained Global Optimization. Engineering Optimization, 34
(3):263–278, January 2002.

J.D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Al-
gorithms. In Proceedings of the First Int. Conference on Genetic Algortihms, pages
93–100, 1985.

M.R. Sierra and C.A.C. Coello. A new multi-objective particle swarm opti-
mizer with improved selection and diversity mechanisms. Technical Report of
CINVESTAV-IPN, 2004.

H.L. Southall and T.H. O’Donnell. Antenna Design Using the Efficient Global
Optimization (EGO) Algorithm. Technical report, DTIC Document, 2011.

R.E. Steuer and E.U. Choo. An interactive weighted Tchebycheff procedure for
multiple objective programming. Mathematical programming, 26(3):326–344, 1983.

M. Sunnåker, A.G. Busetto, E. Numminen, J. Corander, M. Foll, and C. Dessimoz.
Approximate Bayesian Computation. PLoS Computational Biology, 9(1):e1002803,
January 2013.

H. Trautmann, G. Rudolph, K. Klamroth, O. Schütze, M. Wiecek, Y. Jin, and
C. Grimme, editors. Evolutionary Multi-Criterion Optimization, volume 10173 of
Lecture Notes in Computer Science. Springer International Publishing, Cham, 2017.
DOI: 10.1007/978-3-319-54157-0.

D.A. Van Veldhuizen and G.B. Lamont. Evolutionary computation and conver-
gence to a pareto front. In Late breaking papers at the genetic programming 1998
conference, pages 221–228, 1998.

M.G. Villarreal-Marroquín, P.H. Chen, R. Mulyana, T.J. Santner, A.M. Dean, and
J.M. Castro. Multiobjective optimization of injection molding using a calibrated
predictor based on physical and simulated data. Polymer Engineering & Science,
57(3):248–257, March 2017.

178 Bibliography

S. Voß. Meta-heuristics: The State of the Art. In G. Goos, J. Hartmanis, J. van
Leeuwen, and A. Nareyek, editors, Local Search for Planning and Scheduling, vol-
ume 2148, pages 1–23. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.
DOI: 10.1007/3-540-45612-0_1.

K.K. Vu, C. D’Ambrosio, Y. Hamadi, and L. Liberti. Surrogate-based methods for
black-box optimization. International Transactions in Operational Research, 24(3):
393–424, May 2017.

R.K.W. Wong, C.B. Storlie, and T.C.M. Lee. A Frequentist Approach to Computer
Model Calibration. arXiv:1411.4723 [stat], September 2015. arXiv: 1411.4723.

H.P. Wynn and R.A. Bates. Emulator technology in engineering design. Proceedings
of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,
213(3):305–309, 1999.

D. Zhan, J. Qian, and Y. Cheng. Balancing global and local search in parallel
efficient global optimization algorithms. Journal of Global Optimization, 67(4):
873–892, April 2017.

Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, and S. Tiwari. Multiobjective
optimization test instances for the cec 2009 special session and competition.
Technical report, University of Essex, 2009.

Q. Zhang, W. Liu, E. Tsang, and B. Virginas. Expensive multiobjective optimization
by MOEA/D with Gaussian Process model. IEEE Transactions on Evolutionary
Computation, 14(3):456–474, 2010.

Z. Zhang, T. Wagener, P. Reed, and R. Bhushan. Reducing uncertainty in predic-
tions in ungauged basins by combining hydrologic indices regionalization and
multiobjective optimization: PREDICTIONS IN UNGAUGED BASINS. Water
Resources Research, 44(12), December 2008.

S.Z. Zhao, P.N. Suganthan, and Q. Zhang. Decomposition-based multiobjective
evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Transac-
tions on Evolutionary Computation, 16(3):442–446, 2012.

E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search. In
International Conference on Parallel Problem Solving from Nature, pages 832–842.
2004.

E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary computation, 8(2):173–195, 2000.

Bibliography 179

E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. da Fonseca. Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Transactions on evolutionary computation, 7(2):117–132, 2002.

E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator revisited: On
the design of Pareto-compliant indicators via weighted integration. In Evolu-
tionary multi-criterion optimization, pages 862–876. 2007.

	Introduction
	Motivation
	Aims and objectives
	Contributions
	Description of the thesis
	Related publications

	Literature review
	Background
	Population selection methods
	Model types

	Model calibration
	Calibration via statistical inference
	Markov chain Monte Carlo
	Approximate Bayesian computation
	Calibration for computer models

	Optimization
	Optimization methods
	Multi objective optimization
	Robust optimization
	Dynamic optimization
	Surrogate modelling
	Efficient Global Optimization
	Mixed-integer surrogate optimization
	Expensive multi-objective optimization

	Combined calibration and optimization
	Research gap

	MOEA/D study
	Introduction
	MOEA/D and its components
	Components of MOEA/D
	Implementation of components

	Component Investigation
	Areas of interest
	Performance analysis

	Results
	Impact of sharing information
	Impact of normalisation
	Interesting variants

	Discussion
	Conclusion

	Framework
	Introduction
	Mathematical formulation
	Problem framework and variables
	Model calibration
	Optimization
	Combined workflow
	Toy formula - The problem

	Possible solutions
	Real-world examples set within the combined problem framework
	Injection moulding

	Conclusion

	Benchmarking
	Introduction
	Indicators
	Hypervolume
	Generational Distance
	Inverted Generational Distance
	Epsilon family

	COCO / B-BOB framework
	Adapting test problems from the literature
	Examples of possible test functions
	Proposed method for adapting test problems
	Single objective
	Multi objective

	Creation of a new test problem
	Requirements
	New component
	New WFG function
	WFG4s

	Conclusion

	Architectures for 5000 evaluations
	Introduction
	Implementation
	Schematics
	Model calibration
	Optimization
	Robust optimization
	Alternating
	Correcting model error
	Performance measure
	Evaluation budget
	Input and parameter ranges

	Results and discussion
	DTLZ1 function
	ZDT1 function
	WFG2 function

	Conclusion

	Architectures for up to 800 evaluations
	Introduction
	Combined solution
	Kriging model
	Updated optimization and calibration
	Tracking information throughout the combined method

	Algorithm setup
	Run order
	Surrogate parametes
	Calibration and optimization parameters

	Results
	Selecting the appropriate number of generations
	Initial evaluations
	Results from the alternating method
	Results of running the classical method
	Comparison
	Discussion

	Conclusion

	Conclusion
	Main contributions
	Future work

	Bibliography

