
The Assessment of Surface Precipitation
Type Measurements

by

Ben Stuart Pickering

Submitted in accordance with the requirements for the degree of Doctor of

Philosophy

The University of Leeds

School of Earth and Environment

October 2020



ii



Declaration of authorship

The candidate confirms that the work submitted is their own, except where work which

has formed part of jointly authored publications has been included. The contribution

of the candidate and the other authors to this work has been explicitly indicated below.

The candidate confirms that appropriate credit has been given within the thesis where

reference has been made to work of others.

The publication Pickering et al., 2019, The Disdrometer Verification Network (Di-

VeN): a UK network of laser precipitation instruments, Atmospheric Measurement

Techniques 12, p5845–5861, https://doi.org/10.5194/amt-12-5845-2019, jointly

authored with Ryan R. Neely III and Dawn Harrison, is included as Chapter 2 of this

thesis. The text was solely written by the candidate, with comments from co-authors.

The candidate performed all data analysis and produced all figures. Neely and Har-

rison contributed to method refinement and interpretation of results. Harrison was

responsible for the acquisition of the instruments from the Met Office.

Chapter 3: Pickering et al., Evaluation of multiple precipitation sensor designs for pre-

cipitation rate and depth, drop size and velocity distribution, and precipitation type.,

jointly authored with Ryan R. Neely III, Judith Jeffery, David Dufton and Maryna

Lukach, has been prepared for submission to AMS Journal of Hydrometeorology. The

text was solely written by the candidate, with comments from co-authors. The candi-

date performed all data analysis and produced all figures. The candidate installed and

maintained the two DiVeN instruments while Jeffery was responsible for the mainte-

nance and calibration of the five non-DiVeN instruments. All co-authors contributed

to interpretation of results. The Chilbolton Atmospheric Observatory (CAO) group

published the non-DiVeN observational data to the CEDA Archive.

Chapter 4: Pickering et al., Improving Observations of Precipitation Type at the Sur-

face: A 5-year Verification of a Radar-derived Product from the United Kingdom Met

Office. Part I: Rain, Mixed-phase and Snow, jointly authored with Steven Best, David

Dufton, Maryna Lukach, Darren Lyth and Ryan R. Neely III, has been prepared for

iii

https://doi.org/10.5194/amt-12-5845-2019


submission to AMS Journal of Hydrometeorology. The text was solely written by the

candidate, with comments from co-authors. The candidate performed all data analysis

and produced all figures. Steven Best supplied the product data in a converted format

to the candidate. All co-authors contributed to interpretation of results.

Chapter 5: Pickering et al., Improving Observations of Precipitation Type at the Sur-

face: A 5-year Verification of a Radar-derived Product from the United Kingdom Met

Office. Part II: Hail, jointly authored with Steven Best, David Dufton, Maryna Lukach,

Darren Lyth and Ryan R. Neely III, has been prepared for submission to AMS Journal

of Hydrometeorology. The text was solely written by the candidate, with comments

from co-authors. The candidate performed all data analysis and produced all figures.

Steven Best supplied the product data in a converted format to the candidate. All

co-authors contributed to interpretation of results.

This copy has been supplied on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper acknowledgement.

© 2020 The University of Leeds and Ben Stuart Pickering

iv



Acknowledgements

I would like to thank all of my supervisors for their support over the last 4 years: Ryan

Neely III, Steven Best, Dawn Harrison, David Dufton, Maryna Lukach and Alan Blyth.

In particular, I cannot fully express my gratitude to Neely for all of the opportunities

that he enabled for me throughout my PhD. Our supervisor (and grant writing) ses-

sions were enjoyable, memorable and inspiring. I respect Neely for his ability to not

deconstruct an idea, but to instead ask what needs to happen for it to succeed. His

constructive thinking fostered my creativity and it is a mindset that I will take forward

with me in my future career.

This research was funded by a NERC Industrial CASE studentship (NE/N008359/1).

Thank you to the academic partners at the UK Met Office for their support through-

out the project. The visits to the Met Office were productive and enjoyable, and the

research would not have been possible without their continued efforts. Thank you to

the whole radar group at the Met Office for making me feel welcome during my vis-

its. Thank you to Dawn Harrison for supervising the start-up of the research, and

for sourcing the Thies LPM instruments, which was fundamental to the success of

the Disdrometer Verification Network. Thank you to Steven Best for supervising and

hosting me at the Met Office. In particular, his assistance and insight into the Met

Office systems and products has been invaluable. Darren Lyth has been another ex-

ceptional colleague at the Met Office who has provided helpful expertise on the ground

instruments that the Met Office operate. Thanks goes to Steve Willington at the Met

Office and Thomas Schreiner at the European Severe Storms Laboratory for assistance

retrieving the European Severe Weather Database (ESWD) data.

Particular thanks goes to the entire team at the CAO, who have been a fantastic group

of people to work with both on my PhD research and other research we have collab-

orated on. In particular, thank you to Judith Jeffery who managed the precipitation

instruments at the site and for providing insightful knowledge during the research eval-

uating the DiVeN instruments in Chapter 3. To Dave Hazzard, Chris Walden, Darcy

Ladd and Judith Jeffery for assisting with the installation of the DiVeN instruments.

v



I wish to extend my gratitude to the following people and institutions for contributing

to the creation of the Disdrometer Verification Network. Morwenna Cooper (Met Of-

fice), Dan Walker (NCAS), James Groves (NCAS), and Darren Lyth (Met Office) for

technical advice regarding the data acquisition design of DiVeN. The contacts at each

site hosting a disdrometer for DiVeN: Judith Jeffery (CAO), Andrew Lomas (University

of Reading), Rebecca Carling (Facility for Atmospheric Measurements), Grant Forster

(University of East Anglia), David Hooper (NFARR), James Heath (University of Lan-

caster), Richard Essery (University of Edinburgh), Geoff Monk (Mountain Weather

Information Service), Michael Flynn (University of Manchester), Louise Parry (Scot-

tish Environment Protection Agency), Jim Cornfoot (Natural Retreats), Chris Taylor

(Natural Retreats), Andrew Black (University of Dundee), Darren Lyth (Met Office),

Megan Klaar (University of Leeds), and Stephen Mawle (Coverhead Farm). For pro-

viding accommodation and sanity during the month-long installation of DiVeN, I thank

Jack Giddings, Ashley Nelis, Scott Duncan, and Daniel Page. I thank Philip Rosen-

berg (NCAS) for advice on statistical tests, and I also thank Stephen Best (Met Office),

James Bowles (Met Office), Dave Hazard (NFARR), Darcy Ladd (NFARR), Stephen

Burt (University of Reading), and Chris Westbrook (University of Reading) for other

assistance and advice.

The National Centre for Atmospheric Science (NCAS) has welcomed me in throughout

my PhD and provided additional support through training, resources and funding for

which I am immensely grateful. The NCAS radar group has been wonderful and pro-

vided many interesting science conversations over the years. Furthermore, conferences

with the NCAS radar group have been great fun. Thank you to Harriett Richardson

for all the yoga classes keeping me zen both in the office and whilst working from home.

The Royal Meteorological Society (RMetS) has afforded me many opportunities over

the last 4 years. Being part of several organising committees—special shout out to the

Yorkshire Local Centre—has been rewarding and enjoyable. I look forward to working

with RMetS in the future.

Funding from the NCAS Visiting Science Programme and the Royal Meteorological

Society Legacies Award enabled me to partake in fieldwork with the RELAMPAGO

field campaign in Argentina, an unforgettable experience working on mobile radar and

MesoNet vehicles in late 2018. Special thanks to Professor Stephen Nesbitt and Karen

Kosiba for encouraging me to get involved and also to the entire RELAMPAGO team

for being incredibly friendly and welcoming on a project so far from home.

To Dongqi Lin and Jonathan Coney—thank you for being brilliant masters students.

vi



It was a great pleasure to supervise you on the MRes programme, and I am incredibly

proud of all the work you have achieved. I wish you all the very best with your PhD

projects, and your future careers.

To Farran: I dedicate this thesis to you. You have been by my side throughout my

entire PhD, you’ve supported me through the happy times and the difficult times, and

you’ve also inspired me with your own plight back into education. For believing in

me and my crazy ideas, and for listening to them—but most importantly, for knowing

when I need to breathe and talk.

The Met Gang: Sabrina, Hristo, Dan, Richard, Ashley, Scott, Sarah, Jack, Becca,

Ben. For all the crazy adventures, the video calls during the COVID-19 lockdown, for

keeping me sane in general and for knowing that we’ll always be there to support each

other. Special thanks to Joshua, Freya, Dean, Beth and Anya for suffering with me in

Fairbairn from the start. We got through it stronger, together. For all of my friends in

the community who have kept me going, with a particular shout out to the wonderful

Kris and Jim. To Elon Musk, for inspiring me to think bigger, and for giving me hope

for humanity, especially in 2020.

Finally, some credit is necessary to the MathPix team for making LATEX equations so

easy, to the Google Docs team and the Overleaf team for making writing and getting

feedback easy, and a big thank you to Beth Woodhams for creating the superb LATEX

thesis template which has saved me hours of coding and debugging when writing this

thesis.

vii



viii



Abstract

The type of precipitation reaching the surface (SPT) has a significant impact on soci-

ety, yet both SPT observations and forecast products have poor skill. Improving any

observation or forecast requires a framework of suitable assessment techniques. The

assessment of SPT data is difficult because the commonly used categorisation standards

lack specificity; slight differences exist between the standards, and some categories con-

tain several SPTs, obfuscating the reference data. Furthermore, the rarity of some SPTs

makes capturing a statistically significant and climatologically representative reference

dataset challenging. Finally, assessing the skill of spatial SPT products from radar

or forecasts, against a single point reference SPT dataset introduces representativity

errors. Within the literature, the statistical metrics used to perform verification of any

SPT data differ, obscuring the comparison of SPT diagnosis techniques and thereby

suppressing the advancement of more accurate techniques into widespread operational

use.

This thesis tackles these assessment issues with a focus on observational techniques

in the United Kingdom. Firstly, a new network of low-cost, real-time disdrometers

were deployed to increase the number, quality and represented climatologies of SPT

observations. These instruments were validated using case studies, followed by a 12-

month evaluation with existing precipitation instruments. To facilitate the assessment,

a new SPT classification standard, based on microphysical processes, is produced to

reduce the ambiguity in SPT observations. In addition, an algorithm to amalgamate

SPT observations over time is developed and applied successfully. Finally, a radar-

based spatial SPT product from the UK Met Office is verified against all available

ground-based datasets for five years. A novel tolerance technique is developed to ad-

dress the representativity issues between spatial and point datasets. This technique is

used to quantify the skill of the spatial SPT product and highlights several areas for

improvement, which are being implemented by the UK Met Office.
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Chapter 1.

Introduction

1. Motivation

Meteorological conditions influence almost all aspects of daily life. Singleton (1989)

states that: “there are few activities upon which meteorology does not have a bearing or

the execution of which cannot benefit in some way by meteorological advice.” The goal

of meteorology is to increase our scientific understanding, improve our ability to observe

the current state of the atmosphere, and subsequently to improve forecasts of a future

state of the atmosphere. By improving atmospheric observations and forecasts, the

informedness of societal decision-making is also improved and therefore socioeconomic

value is realised. The atmosphere is a fluid and behaviour within it is complex; patterns

and features exist across broad spatiotemporal scales simultaneously, from seconds to

weeks and from sub-metre to planetary, making numerical weather prediction (NWP)

inherently difficult without accurate and timely observations. The skill in NWP models

for slowly-evolving, broad-scale features such as the 500 hPa geopotential height has

steadily increased since the 1980’s to greater than 95% correlation for a 3-day lead time

(Bauer et al. 2015). However, small-scale and unstable atmospheric processes such as

precipitation are less well predicted. Even with the advent of more accurate, high

resolution precipitation observations and data assimilation techniques, the advection

of radar-based products generally has more skill than NWP in the first 6 hours (Lin

et al. 2005). Ensemble techniques (running multiple NWP models with equally likely

perturbations in the initial state) have aided the predictability and informedness of

precipitation intensity forecasts (Epstein 1969; Tracton and Kalnay 1993; Bauer et al.

2015), yet the variable of precipitation type (rain, snow, mixed-phase, freezing rain,

ice pellets, graupel, hail etc.) reaching the surface remains poorly resolved by NWP

(Wandishin et al. 2005; Ikeda et al. 2013; Elmore et al. 2015; Gascón et al. 2018). In
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part, this is because the type of precipitation reaching the surface is not widely or

accurately observed (Schmid and Mathis 2004; Bloemink and Lanzinger 2005; Chen

et al. 2016; Reeves 2016; Boudala et al. 2017) which makes improvements to NWP

difficult. Furthermore, there is a lack of statistically rigorous verification techniques

for surface precipitation type (SPT) data. The lack of rigor is due to the subjective

nature of many decisions in the assessment process—a problem which this thesis aims

to address with a technology-led approach for SPT observations and products in the

United Kingdom (UK).

Knowledge of the SPT can often have greater socioeconomic impact than knowledge of

the amount and the precise timing of the precipitation. Broadly speaking, the majority

of precipitation in the UK falls as rain, so there is a lack of preparedness for less common

precipitation types (snow, mixed-phase, ice pellets, freezing rain, graupel and hail) and

so the impact is increased.

The safety of vehicular transportation is dependent upon the ability of the vehicle to

have sufficient grip on the road surface, and the visibility of the driver, both of which

are lowered in any type of precipitation (Thornes 1992). However, certain precipitation

types are more detrimental than others. Mixed-phase precipitation occurs at surface

temperatures between 0–4 ◦C (Langleben 1954; Lumb 1961, 1963) which can be more

dangerous than snow. The temperature at which tyres have the least amount of fric-

tion on ice is at T = 0 ◦C (Moore 1975), a temperature frequently experienced over

large areas in the UK winter season (Parker et al. 1992). Both snow and mixed-phase

precipitation can substantially reduce visibility which is critical to aviation and ground

transport. Agnew and Thornes (1995) demonstrate an impact of snow to agriculture

and retail: while cold temperatures have been shown to increase the demand for root

vegetables, the presence of lying snow inhibits the harvesting of those crops. In this

scenario, the demand increases at the same time that the supply is diminished. Skil-

ful predictions of SPT would allow farmers to confidently over-harvest beforehand, in

anticipation of increased demand. Notably, mixed-phase precipitation serves as the

boundary between the accumulation of snow locally and the runoff of melting precipi-

tation into bodies of water, which has importance for flood forecasting and hydrology

(Berne and Krajewski 2013). For these reasons, being able to distinguish between

the mixed-phase and snow SPTs is important. However, the processes controlling the

mixed-phase to snow boundary are complex, depend on several atmospheric feedbacks,

and require suitably dense spatial SPT observations or high forecast resolution and

accuracy to be well-resolved. The rain–freezing rain–snow transition region has been

identified as one of five key research areas for winter quantitative precipitation forecasts
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by the U.S. Weather Research Program (Ralph et al. 2005).

Freezing rain is one of the most impactful precipitation types; supercooled liquid drops

which freeze upon contact with the ground and form a glaze of ice over objects. A suffi-

cient mass of the freezing rain glaze can cause trees and structures to collapse. During

the event later shown in Figure 1.12, 4.5 cm of freezing rain accumulated in Cham-

paign, Illinois, U.S., causing more than $12 million in unadjusted damages (Rauber

et al. 1994). Freezing rain and ice pellets occur less than 0.2% of the time in the

UK (Carrière et al. 2000) but a recent and notable freezing rain event in early March

2018 impacted southwestern parts of the UK in Cornwall and Devon (Jameson 2018).

Leading up to the event, the highest Met Office warning (red) was issued for a part of

southwestern England and southern Wales. Widespread freezing rain occurred leading

to main road closures, and some passengers were stuck in their vehicles for over 12

hours as ice glaze caused numerous accidents. Rail networks were also disrupted, with

one train being stranded for 11 hours with passengers on-board. Across the UK, 10

weather-related deaths were reported.

The graupel and hail SPTs are only associated with convective precipitation. Grau-

pel signifies the electrification of a storm (Carey and Rutledge 1996; Deierling et al.

2008; Courtier et al. 2019) but has little direct impact upon precipitating, unless in

large quantities. Hail (defined as having a diameter greater than 5 mm (AMS 2012b))

transfers a significant amount of kinetic energy upon impact (Hohl et al. 2002), so it is

important to distinguish between graupel and hail. In the United States, 60% of prop-

erty losses from convective weather are attributed to hail (Guntur and Tippett 2017),

raising the overall price of insurance premiums (Brown et al. 2015). Even individual

hail-producing cells have resulted in damages on the order of 1 billion USD (Kaspar

et al. 2009; Punge et al. 2014; Brown et al. 2015; Schemm et al. 2016). Although hail

is rare in the UK with fewer than 3 events per 1000 km2 per 100 years (Punge and

Kunz 2016; Webb et al. 2009), costly events do occur (Webb et al. 2001; Clark 2011;

Clark et al. 2018). Hail is particularly difficult to forecast with NWP models because

it precipitates in narrow swaths of a few kilometres (Frisby 1961; Webb et al. 2001)

which results in observation-based nowcasting being the most skillful warning system.

Radar-based products such as the Met Office spatial SPT product (see Chapter 5)

cover a large spatial area at high spatial and temporal resolution which is ideal for hail

detection, if the diagnosis is accurate and skilful.

The need for improved SPT forecasts is evident from their socioeconomic impacts, but

to improve the skill of SPT forecasts we must first examine the skill of our observations
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of SPT. Observations of SPT aid NWP forecasts of SPT in three ways. Firstly, by

improving our understanding of the atmosphere, the processes which lead to differ-

ent SPTs can be more accurately represented in NWP models. Secondly, if accurate

enough, observations could be ingested by NWP directly through data assimilation

schemes to reduce the NWP model initialisation errors. Finally, and most relevant to

this thesis, when the skill of NWP forecasts of SPT are evaluated, observations are

used as the truth—however, this is not always a good assumption. In many cases the

diagnosis of SPT can be subjective. Many fundamental biases and artefacts can exist

with automated ground observations, which differ between instruments (see Chapter

3). The maximum theoretical predictive skill of SPT from NWP is effectively limited

by the maximum skill in our ability to observe SPT.

Our ability to observe the different SPTs is poor, especially for rarer types and at air

temperatures of around T ≈ 0 ◦C (Schmid and Mathis 2004; Bloemink and Lanzinger

2005; Chen et al. 2016; Boudala et al. 2017). Verification of SPT skill is challenging

because the observations are discrete (assigned a category rather than being a contin-

uous scale) and are typically non-probabilistic, which limits the number of applicable

statistical techniques (see Section 4.4). Additionally, the standard format for recording

SPT observations is both complex and ambiguous (see Section 3.1). The overarching

goal of this thesis is to create a consistent verification framework that is applicable

to observations of SPT. By doing so, the skill of existing instruments and products

can be quantified and there will be sufficient evidence to motivate the operational im-

plementation of the most accurate SPT diagnosis techniques. Furthermore, using the

verification framework, new SPT diagnosis techniques can be rapidly and rigorously

assessed, which should aid their future development.

The introduction to this thesis covers three topics:

1. What are the microphysical causes and characteristics of different SPTs?

2. How are SPTs measured, both at single points and spatially?

3. How can the skill of SPT measurements and products be verified?

2. Precipitation Types and Their Origins

This section defines a framework of precipitation types justified by the literature, details

the microphysical conditions which lead to the nucleation and growth of each hydrom-
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eteor that ultimately becomes the SPT, and highlights misnomers and transitional

boundaries between the precipitation types.

The following definitions are used in this thesis:

A hydrometeor is defined as any liquid or solid phase water-based particle

suspended in the atmosphere (Rogers and Yau 1996; Straka 2009). A hydrometeor

may be descending, ascending, and may be inside or outside of saturated regions

of the atmosphere (i.e. clouds) but upon labelling, exists suspended within the

fluid of the atmosphere and does not touch the ground.

A hydrometeor is defined to have ‘precipitated’ when it comes into contact with

the ground. Therefore, a hydrometeor exiting a region of saturated air (a cloud)

is not defined to have ‘precipitated’, since it may evaporate or sublimate before

it reaches the ground.

Precipitation is defined in this thesis as the collective term for a group of hy-

drometeors which have come into contact with the ground. The terms SPT

and precipitation type are used interchangeably in this thesis but have the same

meaning. Precipitation can be given a classification or a type, which is the domi-

nant type of precipitation by flux through the surface. In cases where near-equal

fractions of precipitation are made of multiple types, a combined classification

is required, such as mixed-phase. This is where some ambiguity exists in the

measurement and categorisation of different precipitation types.

Before any further discussion on the subject of SPT, a reference list of precipitation

types must be defined, since some are distinct and others have gradual boundaries

from one type to another. Furthermore, there is no rigorously agreed-upon table of

precipitation types; different organisations, countries, and research papers define SPTs

differently. present weather (PW) codes described in Tables 4677, 4678, 4680 (WMO

1988, 2017) and Meteorological Terminal Air Report (METAR) codes (U.S. NWS 2020)

all have slightly different classifications and naming conventions for SPTs (see Section

3.1). In Chapter 3, the classification of precipitation types shown in Table 3.3 is in-

troduced, which forms the framework used throughout this thesis. These SPTs can be

grouped into the following categories where similar atmospheric microphysical processes

are involved:

1. Drizzle and Rain

2. Ice Crystals and Snow

5
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3. Mixed-phase

4. Ice Pellets and Freezing Rain

5. Graupel and Hail

The following subsections describe these groups of SPTs that can be produced in the

atmosphere and also describe the microphysical processes which lead to each type.

2.1. Drizzle and Rain

There are two processes which can lead to drizzle and rain SPT occurring at the surface.

These are referred to as the warm rain process and the cold rain process. The warm

rain process is when the hydrometeors have been liquid for their entire lifecycle from

nucleation to growth to precipitation (Lau and Wu 2003; Seinfeld and Pandis 2006).

The cold rain process is where at some stage the hydrometeors have been solid in

phase and have subsequently melted before reaching the surface. Liquid precipitation

is the dominant SPT by mass in most regions, including the UK (Fairman et al. 2015).

The following section first describes the liquid cloud droplet nucleation and growth

process by diffusion, followed by a description of the behaviours and characteristics

which apply both warm rain drops and to cold rain drops (after melting has occurred).

These behaviours have implications for the measurement techniques of SPT, which are

described in Section 3.

Water molecules in vapour phase cannot condense homogeneously together into liquid

droplets under natural atmospheric vapour pressure conditions due to the free energy

barrier, which must be overcome. Liquid cloud droplets instead form heterogeneously

in the warm rain process, with water molecules condensing onto the surface of parti-

cles known as cloud condensation nuclei (CCN), which reduce the required free energy

barrier because the nucleus is orders of magnitude larger than the water molecules.

The reduced curvature of larger CCN means that the required bonding energy is also

reduced, such that condensed molecules are less likely to evaporate back into vapour

than compared with homogeneous nucleation (Thomson 1870). The chemical compo-

sition of the CCN can also reduce the required vapour pressure for equilibrium to be

reached (Raoult 1887; Seinfeld and Pandis 2006). Subsequently, equilibrium can be

achieved at the much lower vapour pressures observed in Earth’s atmosphere (Rogers

and Yau 1996). After initial nucleation (known as nucleus activation), vapour continues

to condense onto, or evaporate from, the surface of the CCN dependent on the atmo-
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spheric vapour pressure. Water molecules diffuse through the air to conserve the local

atmospheric vapour pressure (Brown 1828; Einstein 1905; Montgomery 1947) and heat

produced by condensation of vapour onto the droplet conducts into the surrounding at-

mosphere (Maxwell 1890; Mason 1971), keeping the air parcel buoyant. Cloud droplets

can undergo this diffusional growth by condensation until their mass and therefore

their terminal velocity, increases compared to smaller cloud droplets. The differential

velocity of cloud droplets leads to collisions. At droplet radii of around 20–30 µm, the

dominant growth process changes from diffusional condensation to collision coalescence

(Rogers and Yau 1996). The efficiency of coalescence is maximised when the ratio be-

tween the radii of two colliding droplets is approximately 0.6 (Klett and Davis 1973;

Lin and Lee 1975; Schlamp et al. 1976). At droplet ratios of less than 0.6 in laminar

flow (neglecting atmospheric turbulence), the small drops have insufficient inertia and

are swept around the airflow of the larger droplet; at similar radii, droplets have similar

terminal velocities and a collision is thus less likely to occur. Collision and coalescence

is a process which also occurs with liquid droplets formed through the cold rain pro-

cess (solid phase nucleation followed by melting, see section 2.2), after the melting has

occurred. The following descriptions of liquid droplet characteristics apply to droplets

which have formed in either the warm or the cold rain process.

The terminal velocity of a liquid droplet increases and is strongly dependent on the

increasing size of the droplet. Gunn and Kinzer (1949) built upon the work of Lenard

(1904); Schmidt (1909); Laws (1941) by reducing the experimental uncertainty in the

measurement of the terminal fall velocity of liquid droplets by their diameter. Their

result is referred to as the Gunn-Kinzer curve, which is now the most commonly applied

raindrop diameter–velocity relationship. Gunn and Kinzer (1949) also noted that once

the drops grew larger than 90 µm, they did not obey Stokes’ Law (Stokes 1851) due

to aerodynamic drag. Table 1.1 shows a subset of the Gunn-Kinzer curve data, which

was obtained at 1013 hPa, 20 ◦C. Note from Table 1.1 that the rate of the increase

in terminal velocity with increasing diameter, decreases as the drop size increases.

The Gunn-Kinzer curve can be applied to measurements of the precipitation diameter

and velocity distribution at the surface, which is one method for identifying SPT (See

section 3.1).

Droplets cannot grow in size indefinitely. As the diameter and terminal velocity in-

creases, the aerodynamic flow around the droplet distorts the shape of the droplet from

a nominal sphere into a horizontally oblate spheroid as shown in Figure 1.1. The flow

of the air around the droplet can be described by the Reynolds number (Re; Stokes

1851; Reynolds 1883; Sommerfeld 1908). When droplets are small, Re � 1 and the

7
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Table 1.1.: The terminal velocity of liquid droplets of distilled water from the laboratory
experiments of Gunn and Kinzer (1949), obtained at 1013 hPa, 20 ◦C. Droplets larger
than 5.8 mm diameter were unstable and experienced breakup. Droplets smaller than
90 µm (not shown) obeyed Stokes’ Law (Stokes 1851). The number of repeat measure-
ments for each diameter class was ≥ 50. Also included for each droplet diameter class
is the droplet mass and the calculated Reynolds number.

Equivalent
diameter

(mm)

Terminal
velocity
(m s−1)

Mass of
drop
(mg)

Reynolds
number

(calculated)

0.2 0.72 0.004 9.6
0.4 1.62 0.034 43
0.6 2.47 0.113 99
0.8 3.27 0.268 175
1.0 4.03 0.524 269
1.4 5.17 1.44 483
1.8 6.09 3.05 731
2.2 6.90 5.58 1,013
2.6 7.57 9.20 1,313
3.0 8.06 14.1 1,613
3.4 8.44 20.6 1,915
3.8 8.72 28.7 2,211
4.2 8.92 38.8 2,500
4.6 9.03 51.0 2,772
5.0 9.09 65.5 3,033
5.4 9.14 82.4 3,293
5.8 9.17 102 3,549

flow is laminar, such that the air detaches around the droplet and merges again with no

distortion. As the droplet increases in size and terminal velocity, the Reynolds number

increases. At Re ≈ 10, the airflow detaches from the rearward side of the droplet, and

at Re ≈ 104 the drop wake is turbulent. When the droplet is large enough it falls

in an unstable regime and oscillations can overcome surface tension, resulting in the

droplet breaking apart. The droplet can experience breakup in three categorised ways:

filament/neck, sheet, or disk (McTaggart-Cowan and List 1975; Low and List 1982).

Figure 1.2 shows a thin, horizontally oblate droplet which experiences disk breakup,

where the surface tension in the centre of the original droplet is overcome. Aerody-

namic processes effectively limit the size to which droplets can grow which, for Earth’s

atmosphere at sea-level pressure, has been shown to be a limit of approximately 6 mm

diameter (Marshall and Palmer 1948; Gunn and Kinzer 1949; Villermaux and Bossa
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Figure 1.1.: Figure 5 from Pruppacher and Beard (1970) showing the shape of droplets
falling at terminal velocity perpendicular to the imaging device. As the droplets grow
in size, their base is flattened. The vertical wind tunnel was at a pressure of 1,007 ±
5 hPa but turbulence was minimised which allowed drops up to 9 mm in diameter to
exist for a short time—larger than those seen in nature due to turbulence.

Figure 1.2.: A timeseries of five high-speed video frames showing a liquid hydrometeor
droplet at terminal velocity undergoing disk breakup due to aerodynamic drag. No size
scale is provided. ©Dr Christopher Emersic, University of Manchester, 2010.

2009). These results are useful for the verification of instruments which measure the

diameter of precipitation particles in order to infer their SPT. The maximum size of

measured raindrops is used as a benchmark in Chapter 3 where particles larger than 6

mm are noted as unrealistic.

Inevitably, a range of drop sizes exist in the rainfall which reaches the Earth’s surface.

The drop size distribution (DSD) is defined as a distribution of the number of drops as

a function of diameter per unit volume (Jameson and Kostinski 2001):

DSD =

∫ ∞
0

N(D)dD (1.1)

where N is the number of drops as a function of the drop diameter, D. The DSD is an

important measure of precipitation to consider since it is a direct consequence of the

processes which influence precipitation over its lifetime (Testud et al. 2001; Das et al.

2017; Lin et al. 2020, and many more). Note that size distributions also occur for other

9
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Figure 1.3.: Figure 2 from Marshall and Palmer (1948). The drop size distribution as
a function of drop diameter per unit volume. Dashed lines are observational data from
Washington D.C., U.S.A. Laws and Parsons (1943), dotted lines are observational data
from Ottawa, Canada Marshall et al. (1947), and solid lines denote the distribution
functions of Marshall and Palmer (1948).

SPTs but that DSD specifically refers to liquid precipitation of drizzle or rain. Drizzle

drops are D < 0.5 mm in diameter and rain drops are D ≥ 0.5 mm (Baker and Friday

1996; Met Office 2014). Marshall and Palmer (1948) identified a relationship between

the precipitation rate and the DSD, shown in Figure 1.3. For higher precipitation rates,

the negative gradient of the drop size distribution on a logarithmic plot, decreases,

whilst the zero intercept appears approximately constant. This discovery led to the

ability to use radars for quantitative precipitation estimation (QPE) over large spatial

domains and contributes to the estimation of spatial SPT diagnosis in a UK Met Office

algorithm which will be described in Section 3.2.

Since a distribution of drop diameters exists in liquid precipitation, a drop velocity

distribution also exists. The drop velocity distribution (henceforth DVD) is defined as:

DVD =

∫ ∞
0

N(V )dV (1.2)

10
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where N is the number of drops as a function of the drop velocity, V . The combination

of drop size and velocity is important generally because the total kinetic energy of

precipitation can then be measured. As mentioned in Chapter 3, the kinetic energy

of precipitation controls soil, building and aerofoil (aircraft and wind turbine) erosion,

as well as downbursts (Kinnell 1981; Rosewell 1986; Feingold et al. 1991; Tang and

Davidson 2004; Erkal et al. 2012; Keegan et al. 2013; Slot et al. 2015; Eisenberg et al.

2018). Of greater importance to the wider objectives of this thesis are the differences

between the fall velocities of different SPTs. These SPT velocity differences arise due to

their density and aerodynamic drag differences, and can be measured by ground-based

instruments to infer the SPT (see Section 3.1). The diameter-velocity relationship for

drizzle and rain is described by the aforementioned Gunn-Kinzer curve (Gunn and

Kinzer 1949) but other relationships exist for other SPTs (Langleben 1954; Locatelli

and Hobbs 1974; Bohm 1989, and more) and will be described in the following sections.

2.2. Ice Crystals and Snow

The formation of ice crystals in clouds is arguably more complex than the formation of

liquid droplets, and the exact processes of ice nucleation are not yet fully understood

(Rogers and Yau 1996; David et al. 2019). On a broad scale the same growth by

diffusion of water vapour occurs as for the liquid droplet nucleation described in Section

2.1. Homogeneous hydrometeors can exist in liquid phase at temperatures approaching

−38 ◦C (Kanji et al. 2017) before the enthalpy of fusion or latent heat energy of freezing

is overcome. The presence of various aerosols and CCN within heterogeneous liquid

drops (heterogeneous being the typical droplet state, as discussed in Section 2.1) reduces

the latent heat energy of fusion. Depending on the chemical composition of the droplet

solute, freezing of nucleated liquid particles can occur at temperatures as high as −4 ◦C

(Houghton 1985). The natural variability of hydrometeor chemistry means that liquid

hydrometeors can exist between −38 ◦C < T < 0 ◦C but occur less frequently with

decreasing temperature (Houghton 1985; Rogers and Yau 1996; Whale et al. 2015).

Figure 1.4 summarises 4 processes in which an ice particle can form. Firstly, water

vapour can directly undergo deposition onto an ice nucelating particle (INP), known

as heterogeneous deposition. The remaining 3 processes involve first the nucleation by

condensation of a liquid droplet and then freezing nucleation. An INP can catalyse

both nucleations; first acting as a CCN as described in Section 2.1 and then when the

latent heat of fusion can be overcome, the particle can also act as a freezing nuclei,

reducing the free energy barrier in both instances. Alternatively, an INP can encounter

an existing CCN-nucleated liquid droplet and either freeze the droplet immediately

11
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Heterogeneous  
deposition

Immersion

Contact

Condensation  
followed by freezing

Ice nucleating 
particle (INP)

Liquid  
droplet

Ice  
crystal

Figure 1.4.: Redrawn version of Figure 9.1 from Rogers and Yau (1996). Schematic
illustration of the different processes in which atmospheric INPs can result in ice for-
mation, through deposition or freezing.

upon contact or some time thereafter.

Saturation vapour pressure is lower over ice than over water, making nucleation more

probable than liquid droplet nucleation at lower values of atmospheric vapour pressure,

shown in Figure 1.5 (Murphy and Koop 2005). However, due to the sparsity of INPs

in the atmosphere compared to the density of condensation nuclei, ice nucleation is

typically less probable than liquid droplet nucleation when both effects are combined

(Seinfeld and Pandis 2006). On the contrary, ice crystal concentrations observed in

the atmosphere are sometimes higher than the concentrations of INPs. Therefore a

secondary production process must be occurring. Several theories exist for the precise

mechanism of secondary ice production which include nucleated ice particles emitting

fragments of ice, which can then themselves serve as INPs (Hallett and Mossop 1974;

Field et al. 2016).

Once the initial ice nucleation has occurred through any of the aforementioned pro-

cesses, the growth rate of an ice particle by deposition can occur at any temperature

less than 0 ◦C (Houghton 1985). Due to the vapour pressure difference between liquid

and ice (Figure 1.5; Murphy and Koop 2005), deposition growth of ice can occur at

a faster rate than condensational growth of droplets for the same atmospheric vapour

12
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Figure 9. The difference between vapour pressure over water, pliq, and over ice, pice, according to Eqs. (10)
and (7) together with experimental data. The data of Scheel and Heuse (1909) and Bottomley (1978) were used
directly. Since Kraus and Greer (1984) and Fukuta and Gramada (2003) provide data on pliq, the vapour pressure
difference was calculated using Eq. (7) for pice. Over this temperature range the uncertainty in the calculation is
not much larger than the line width on the graph. The difference between this work and Goff (1965) is similarly

small.

because there are no heat-capacity data below 233 K. The residuals compared to the
combination of the numerical solution and Wagner and Pruss (1993) are < 0.05% for
123 < T < 332 K. The results of Eq. (10) for pliq are shown in Fig. 2 together with the
curve for pice. Interestingly, the lowest temperature data points by Bryson et al. (1974)
are in agreement with Eq. (10), implying that these measurements do indeed correspond
to amorphous ice rather than hexagonal ice.

5. DIFFERENCES BETWEEN pliq AND pice

The difference between the individual vapour pressures of liquid water and ice is
important for applications such as the characteristic time constant for water vapour
transfer from liquid water droplets to ice crystals in mixed clouds. Figure 9 shows
the difference between the parametrizations for ice and liquid water derived in this
work as a function of temperature. Data on the vapour pressure of supercooled water
are also shown in Fig. 9 (Scheel and Heuse 1909; Bottomley 1978; Kraus and Greer
1984; Fukata and Gramada 2003). The maximum difference occurs at a temperature
of 261.3 K, in accordance with experimental data. Below about 255 K all of the data
are lower than the calculation. To explain the Fukata and Gramada (2003) data, the
molar heat capacity of water would have to differ from measured values by about a
factor of three. This is in a temperature range where the heat capacity of water has been
measured by several groups with both small droplets and bulk samples. Therefore, we

Figure 1.5.: Figure 9 from Murphy and Koop (2005). The difference between vapour
pressure over water (pliq) and over ice (pice) in Pa, for temperatures of -43 ◦C to 0 ◦C.
Data shown are from this work, Scheel and Heuse (1909); Bottomley (1978); Kraus and
Greer (1984); Fukuta and Gramada (2003).

pressure. In mixed-phase clouds without strong updrafts, ice particles can grow (depo-

sition) at the expense (evaporation) of liquid droplets due to the difference in saturation

vapour pressure shown in Figure 1.5 (Wegener 1911; Bergeron 1935; Findeisen 1938).

The growth of an ice particle by deposition is both non-spherical and non-linear, and

can occur either laterally across a plane (plate, dendrite) or principally, increasing in

‘depth’ (column). The wide range of ice crystal growth habits have been shown to

depend on both the temperature of the air and the supersaturation vapour pressure,

from laboratory experiments (Nakaya 1954; Hallett and Mason 1958; Kobayashi 1958,

1961). The broad habits are summarised with the Kobayashi (1958) habit diagram

shown in Figure 1.6.

Whilst pristine ice crystal precipitation is not unheard of, the dominant form of solid

SPT in the UK is snow, or aggregate hydrometeors, where pristine ice crystals col-

lide and aggregate in a similar process to collision and coalescence (see Section 2.1).

However, there are some complex, non-linear behaviours within the aggregation of ice
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On the  Habit of Snow Crys ta ls  Artificia lly Produced 

                 a t Low Pressures* 

                      By T. Kobayashi 

      Ins titute  of Low Tempera ture  Science , Hokkaido Univers ity, 
                          Sapporo, Japan 

                 (Manuscript rece ived 8 Aug. 1958)

Abstract

   A se ries  of a rtificia l snow-making experiment was  carried out in the  a ir a t low pres -
sures , and the  re la tion be tween crys ta l forms  and ambient tempera ture  and pressure  as  
represented by the  Ta  -p diagram (Fig. 9) was  es tablished. It was  found tha t solid hex-

, agona l columns  a re  formed a t pressures  lower than 70 mmHg, which is  to be  a ttributed to 
the  s low ra te  of growth, tha t is , very s light supersa tura tion of the  ambient vapour. The  
mode  of growth a t low pressure  may probably be  cons idered to have  the  same characte ris -
tics  as  the  growth under quas i-equilibrium condition. 

   By the  a id of the  results  obta ined from the  present and previous  experiments , we  
obta in the  following scheme as  to the  snow crys ta l habit:

1. Introduction 

 We carried out a  se ries  of experiments  on 
a rtificia l snow crys ta ls  in aerosol-free  a ir and 
concluded in the  previous  paper1 tha t the  
snow crys ta l habit, in particula r, whether a  
crys ta l deve lops  as  a  prismatic column or a  

pla te , is  primarily de te rmined by the  tempera-
ture . The  manner in which the  crys ta l habit 
varies  with tempera ture  is  represented in the  
following scheme : 

 The  direction of pre fe rred growth is  de-
finite ly de te rmined by the  tempera ture  of the

 * Contribution No . 459 from the  Ins titute  of 
Low Tempera ture  Science ,

ambient a ir where  the  crys ta ls  grow. These  
changes  in crys ta l habit with tempera ture  a re  
very s imila r to those  observed in the  experi-

- 27-

Figure 1.6.: From Kobayashi (1958). Ice crystal growth habits as a function of air
temperature Ta and supersaturation vapour pressure over ice ∆ρ. Sheath refers to
columns with hollow cones starting from the nucleation point.

crystals. Hosler et al. (1957) found that temperature and vapour pressure were corre-

lated with adhesion efficiency of ice spheres, which increased towards 0 ◦C. Secondly,

it has been shown that the ‘openness’ of an ice crystal (the ratio of surface area to vol-

ume) increases the aggregation efficiency when contact occurs (Westbrook et al. 2004).

Dendrites have the highest surface area to volume ratio and therefore have the highest

aggregation efficiency. There is broad evidence that air temperatures of approximately

−11 to −17 ◦C (consistent with the dendritic growth habit shown in Figure 1.6) support

the highest aggregation efficiencies (Hosler and Hallgren 1960; Mitchell 1988; Connolly

et al. 2012; Phillips et al. 2015). Finally, several studies have also shown a relationship

between the strength or presence of an electric field in the atmosphere and aggregation

efficiency (Latham and Saunders 1970; Saunders and Wahab 1975; Connolly et al. 2005;

Phillips et al. 2015). Once two ice crystals have collided and adhered, the mass and

terminal velocity of the aggregate is increased, and so the differential velocity between

the aggregate and the pristine ice crystals increases the probability of more collisions.

The terminal velocity of ice crystals is generally less than that of liquid drops for an

equivalent diameter (Nakaya and Terada 1935; Langleben 1954; Locatelli and Hobbs

1974; Bohm 1989). The density of ice is approximately 920 kg m−3 (dependent on

temperature) which is less than the 1000 kg m−3 density of water (Bader 1964; Yen

1981), so the mass of an ice particle is less than a liquid drop of the same volume. In

addition, ice crystals are typically non-spherical (dendrites, columns, needles, see Fig-

ure 1.6) which means their largest dimension is significantly larger than a liquid droplet
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properties for various types of crytsals, the mean values of d, m and v 
were compared for six kinds of crystals without regard to the distribution 
of frequency. The results are tabulated in Table II. 

Figure 1.7.: Figure 3 from Nakaya and Terada (1935). The diameter (mm) and the fall
velocity (cm s−1) of different solid hydrometeor types. The diameter is referred to as
the longest dimension of the particle, so for needles the diameter is the length of the
needle.
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2194 LOCATELLI AND HOBBS: SOLID PRECIPITATION PARTICLES 
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Fig. 24. Best-fit curves for fall speeds versus maximum dimensions for aggregates of various types. 

EXPERIMENTAL DATA FOR AGGREGATES 

We describe now our experimental data for aggregates of 
different types of crystals. 

Aggregates of unrimed and densely timed dendrites and 
radiating assemblages of dendrites (Figures 2p and 2q). The 
fall speeds and masses of these particles are shown in Figures 
20 and 21. Radiating assemblages of dendrites and dendrites 
have been combined in determining the best-fit curves, so that 
only two curves are shown on each diagram, one for unrimed 
aggregates and the other for densely cited aggregates of these 
crystals. The densely cited aggregates are generally more 
massive and fall faster than the unrimed aggregates of the 
same size. The densely cited aggregates have fall speeds 
about 1.3 times greater than the fall speeds of unrimed 
aggregates-of comparable size, in comparison with single 
snow particles for which the fall speed increases by a factor of 
about 2.0 when the particles pass from unrimed to densely 
cited particles. 

Aggregates of unrimed side planes. Results for these par- 
ticles are shown in Figures 22 and 23. 

Unrimed aggregates of radiating assemblages of plates, side 
planes, columns, and bullets and unrimed aggregates of side 
planes (Figures 2r, 2s, 2t, 2u, and 2v). We obtained fall 
speeds and mass data for particles of this type with maximum 
dimensions in the range 1.0-5.0 mm (Figures 22 and 23). In 
obtaining the best-fit line for the fall speeds (Figure 22), we 
combined our data with those obtained by Zikmunda [1972], 
which covered maximum dimensions from about 0.2 to 1.4 
mm. It can be seen in Figure 22 that aggregates of unrimed 
side planes tend to fall somewhat more slowly than aggregates 
that include crystals such as bullets and columns, and the 
latter are somewhat heavier (Figure 23). Apparently, bullets 
and columns, being more compact crystals than side planes, 
pack closer together in an aggregate. 

COMPARISON OF DATA FOR AGGREGATES 

The best-fit curves for the fall speeds and masses of various 
types of aggregates as a function of their maximum dimen- 
sions are shown for comparison in Figures 24 and 25. It is of 
interest to note that the masses of aggregates of unrimed side 
planes, bullets, and columns fall on the same line as those of 

aggregates of densely rimed dendrites and radiating 
assemblages of dendrites. Also, the slopes of the mass- 
maximum dimension lines for aggregates of unrimed side 
planes and aggregates of unrimed dendrites and of radiating 
assemblages of dendrites are the same. The increase in mass 
with increasing dimensions is greater for aggregates that are 
densely rimed or that contain bullets and columns than it is 
for unrimed aggregates of side planes, dendrites, and 
radiating assemblages of dendrites. 

Aggregates of two sizes are ranked by their fall speeds and 
masses in Figure 26; it can be seen that the order of rank by 
fall speed is generally the same as that by mass. 

COMPARISON OF FALL SPEEDS OF AGGREGATES 
WITH THEIR COMPONENT PARTICLES 

Shown in Figure 27 are the ranges of fall speeds and max- 
imum dimensions for several different types of aggregates and 
their component crystals. All the data are from the present 
study except those for unrimed dendrites, which are from 
Brown [1970], and unrimed radiating assemblages of den- 
drites, which are from Zikmunda [1972]. It can be seen that an 
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Fig. 25. Best-fit curves for maximum dimensions versus masses of 
aggregates of various types. 

Figure 1.8.: Figure 24 from Locatelli and Hobbs (1974). The relationship between
diameter (mm) and terminal velocity (m s−1) for aggregates of different ice crystal
habits.

of the same mass, increasing aerodynamic drag. Figure 1.7 shows the diameter-velocity

relationships of several pristine ice crystal types and other solid hydrometeors mea-

sured by Nakaya and Terada (1935). Several later studies produced diameter velocity

relationships for pristine ice using larger samples and with different habit classifications

(Magono 1953; Langleben 1954; Locatelli and Hobbs 1974; Bohm 1989). Aggregates

have a lower overall density due to the air trapped between the interlaced ice crystals.

However, the larger mass and the rounded shape of aggregates results in a greater

terminal fall velocity compared to pristine ice crystals. Figure 1.8 from Locatelli and

Hobbs (1974) shows some experimental data for the diameter-velocity relationship for

aggregates of varying ice crystal habits. Bohm (1989) produced similar results.

Throughout this thesis the term ‘aggregate’ refers to the hydrometeor as it exists in the

atmosphere, and the term ‘snow’ refers to aggregates which precipitate to the ground,

making snow an SPT class. The snow SPT class may also contain a low concentration of

pristine ice crystals, since aggregates can experience breakup from aerodynamic forces,

but these are neglected for classification simplicity. The SPT class of ‘ice crystals’ refers

to pristine ice crystals falling to the ground which have not experienced aggregation,

a rare phenomenon in the UK due to the comparatively slow terminal fall velocity of

individual crystals and their tendency to aggregate at temperatures warmer than −20
◦C. The ice crystals SPT class refers to all of the habits shown in Figure 1.6. While the

great variations in crystal habits have implications for studies of cloud microphysics,
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the habits have negligible societal impact when precipitating and are therefore not

considered in the SPT classification used throughout this thesis.

2.3. Mixed-phase

The term mixed-phase in this thesis refers to pristine ice crystals and aggregated ice

crystal hydrometeors which are partially liquid upon precipitating to the surface due to

the air temperature being greater than 0 ◦C. Throughout this thesis they are also re-

ferred to as ‘wet’ ice crystals and ‘wet’ snow individually. Graupel and hail do typically

coexist with liquid precipitation but are distinct and are not included within the ‘mixed-

phase’ SPT moniker (see Section 2.5). Note from Section 2.2 that the efficiency of ice

crystal aggregation increases with increasing temperature from approximately −20 ◦C

towards 0 ◦C. Hence, mixed-phase precipitation usually consists of melting aggregates,

except for very low precipitation rates where the collisions between hydrometeors are

improbable. The melting of ice crystals and aggregates is not an instantaneous process.

Melting layers can vary in the time taken to melt and therefore the vertical depth in the

atmosphere. Figure 1.9 shows results from Tabary et al. (2007) where the depth of the

melting layer (inferred from the radar bright band depth, see Figure 1.21 in Section 3.2)

was shown to vary between 20–1,000 metres over a 12-month period of non-convective

precipitation cases in France. The most common melting layer depth from Tabary et al.

(2007) was 200–400 m which accounted for approximately 55% of the cases, whereas

the 20 m and 1 km deep melting layers accounted for 7% and 15% of cases respectively.

Fabry and Zawadzki (1995) showed that the melting layer thickness varied from 250 m

to 750 m with precipitation rates from PR < 1.0 increasing to PR ≈ 11.5 mm h−1 in

a 4-year study conducted near Montreal, Canada.

There are several factors which can control the melting layer depth, including the

environmental lapse rate, the environmental saturation ratio, the hydrometeor size dis-

tribution and the hydrometeor mass concentration. A greater increase of temperature

with decreasing height (the environmental lapse rate) results in faster melting as more

sensible heat energy is conducted into the hydrometeors. Note that this process acts to

cool the surrounding air parcel. If the environmental vapour pressure is below satura-

tion, the melting particles will also lose latent heat energy through the evaporation of

any liquid, until the surrounding air reaches saturation. Note that an unsaturated air

parcel has the ability to cool further than a saturated air parcel, due to the additional

heat lost through evaporation. Lumb (1963) derived a method to quantify the evapo-

rative cooling effect, which is applied to a radar-based spatial SPT product described
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distance between the radar site and the radiosounding
station is about 100 km on average over the eight radars
but varies from 0 km (Plabennec and Bordeaux) up to
200 km (Opoul and Collobrières). Such large distances
may impact the comparison in some situations (e.g.,
passage of a warm or cold front). However, inspection
of model analyses suggests that in most cases the 0°C
isotherm field is very smooth. The radar-derived FLHs
were systematically compared to the “quasi-
instantaneous” 1200 UTC radiosounding. This may be
another source of error in some circumstances, as the
retrieved VPR is actually an average over the day or, to
be more precise, over the period when the rain fell
around the radar (which is not necessarily always
around noon). Each radar-derived FLH was compared
to the dry 0°C isotherm but also, following Giangrande
and Ryzhkov (2004), to the wet-bulb 0°C isotherm.

Figure 4 shows the time series of the radar-derived

FLH (thick, solid line) for all eight radars. The enve-
lope of the RS 0°C dry- and wet-bulb temperatures has
been superimposed in gray. All time series have a
length of about 1-yr (October 2003–October 2004) even
though the number of days that compose the series is
variable. The annual cycle of the freezing-level height is
evident in all graphs. The short-term variability may be
also very important. Despite the fact that the eight ra-
dars of the study are located in different regions of
France and are in some cases very far away from each
other, the 0°C isotherms time series are quite compa-
rable. Overall, for all radars put together, the mean 0°C
isotherm height for the cold season is around 1500 m
above sea level (ASL) and that of the warm season is
around 3000 m ASL. The radar-derived FLH is gener-
ally very well correlated with the RS 0°C isotherms
(both dry and wet bulb), whichever radar is considered.
It is however difficult to decide, on the basis of Fig. 4

FIG. 3. Climatological distribution of the (a) brightband peak, (b) brightband thickness, and
(c) decreasing rate for all radars. The number of days that were used to compute the histogram
is indicated in each graph. Recall that the brightband peak stands for the ratio of the rain rate
(mm h!1) in the middle of the bright band to that at ground level. Only stratiform days (BBP
" 1) were considered to build the BBT histogram. The label “0 km” in the brightband
thickness histogram actually refers to an ultrathin bright band of 20-m thickness.
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Figure 1.9.: Figure 3b from Tabary et al. (2007). The climatology of melting layer
depths derived from eight scanning radars in France. The y-axis is frequency of occur-
rence (%) and the x-axis is the bright band thickness (km). The bright band thickness of
0 km actually refers to the lowest resolution increment of the radar processing method
which was 20 m thick. Only stratiform precipitation over 452 days of independent
observations from eight radars in the years 2003 and 2004 were considered.

in Section 3.2 and is verified in Chapter 4 of this thesis.

The prior aggregate size distribution is also important for the mixed-phase SPT. Com-

pared to smaller diameter particles, larger diameter aggregates have a second-power

larger surface area (increasing sensible heat flux) but a third-power larger volume and

mass (increasing the total required energy to melt). Therefore the larger aggregates

take more time to melt and fall further into the T > 0 ◦C layer than smaller aggregates

or ice crystals. Furthermore, larger aggregates have a faster terminal fall velocity and

thus reach further into the T > 0 ◦C layer for a given amount of time when compared

with smaller aggregates. Lumb (1963) determined with the equations of Wexler (1955)

that mixed-phase SPT could penetrate to maximum temperatures of 2.5 ◦C and 3.5 ◦C

for stratiform and convective precipitation respectively, while Lumb (1961) observed

mixed-phase SPT at a temperature of 4.2 ◦C. Finally, the mass concentration of hy-

drometeors per unit volume matters; a larger total mass demands more sensible heat

energy from the surrounding atmosphere and can therefore reduce the surrounding

atmospheric temperature. On the contrary, a high mass concentration can cause sub-

sidence which adiabatically warms the air parcel. This effect is typically counteracted

by the aforementioned processes such that an increase to the amount of precipitation

typically reduces the height of the 0 ◦C isotherm. The subsidence of the 0 ◦C isotherm

is visible with high resolution precipitation radar (see Section 3.2) and is referred to as

bright band sagging.

For mixed-phase precipitation, the terminal fall velocity of the hydrometeors depends

on both the size and the degree to which melting has occurred. Wexler (1955) deter-

mined with the velocity measurements of Langleben (1954) that melting aggregates
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Figure 1.10.: Figure 3 from Mitra et al. (1990). The relationship between percentage of
velocity change and percentage of mass melted for 5 and 10 mm aggregates in a vertical
wind tunnel which was warmed at realistic rates to those experienced by hydrometeors
in the atmosphere. A total of 45 aggregates were measured.

retain their shape until 90% of the hydrometeor has melted. However, as aggregates

melt, their density (diameter) increases (decreases), and thus their aerodynamic drag

decreases for an overall increase in their terminal velocity. Zenith-pointing Doppler

radars are useful in order to determine the vertical fall velocities of melting hydrom-

eteors, which are difficult to simulate in laboratories. Fabry and Zawadzki (1995)

show a change in vertical Doppler velocity from between 0-3 m s−1 before melting oc-

curred to between 4–9 m s−1 after melting occurred, in a 4-year study near Montreal,

Canada. Similarly, Lin et al. (2020) show a change in vertical Doppler velocity from

between 0.5–1.5 m s−1 before melting occurred to between 3.5–6.5 m s−1 after melting

occurred, in a 12-month study at Chilbolton Atmospheric Observatory (CAO), UK.

Over the whole atmospheric column the measured velocity change has a non-linear,

sharp S-curve characteristic (Fabry and Zawadzki 1995; Lin et al. 2020). However, as

shown in Section 2.2, aggregation increases the terminal velocity of hydrometeors at

temperatures less than 0 ◦C before melting occurs. The transition from aggregates to

liquid drops is a continuous process rather than a discrete change, which complicates

the use of diameter-velocity relationships for mixed-phase SPT diagnosis (see Section

3.1).

Mitra et al. (1990) used a vertical wind tunnel to measure aggregates of 5 and 10

mm diameter and found that the increase in fall velocity change as a function of mass

melted was exponential (Figure 1.10), and that the velocity of the aggregate rapidly

increased once 70% of the hydrometeor mass was liquid. Yuter et al. (2006) showed
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details on the environmental setting and observations
at McKenzie Bridge and Storm Peak are presented in
Table 1.

The distribution of fall speeds for particles of a given

size at temperatures from 1.5° to 0.5°C (Fig. 3a) is wider
than that for the rain-only time period (Fig. 1a). The
PSD distribution from 1.5° to 0.5°C likely includes
some particles that are not 100% melted. At tempera-

FIG. 2. Time series of the number of particles measured in
10-min intervals by a PARSIVEL disdrometer (solid line) and
10-min-averaged air temperature (dotted line): (a) rain-only event
at McKenzie Bridge from 0000 to 1400 UTC 17 Dec 2001, (b)
dry-snow event at Storm Peak from 0000 to 1400 UTC 27 Feb
2003, and (c) mixed-precipitation event at McKenzie Bridge from
1400 UTC 18 Dec to 1100 UTC 19 Dec 2001. During the mixed-
precipitation event, the time periods A, B, and C correspond to
precipitation samples when air temperature decreased from 1.5°
to 0.5°C, decreased from 0.5° to 0°C, and held steady at 0°C. In
(c), the dashed line shows 0°C temperature.

FIG. 3. As in Fig. 1, but for a mixed-precipitation event at Mc-
Kenzie Bridge: (a) 2030–2345 UTC 18 Dec 2001, (b) 2346 UTC 18
Dec–0049 19 Dec 2001, and (c) 0050–0600 UTC 19 Dec 2001.
Times represented in (a)–(c) correspond to intervals A, B, and C
defined by temperature in Fig. 2.
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Figure 1.11.: Figure 3 from Yuter et al. (2006). Diameter (mm) and velocity (m s−1)
relationships for aggregates in three temperature regimes: a) falling temperature from
1.5–0.5 ◦C; b) falling temperature from 0.5–0 ◦C; c) steady temperature at 0 ◦C. The
curves represent the empirical diameter–velocity distributions from Locatelli and Hobbs
(1974) for r: rain, g: graupel, d: dendrites.

with a laser occultation method (see Section 3.1) that diameter-velocity relationships

for mixed-phase precipitation are broad due to the degree of melting to which each

hydrometeor has experienced (Figure 1.11). 5% of the total particle count (1% of total

volume) are small liquid drops at 0 ◦C, which increases to 23% (4% volume) at 0–0.5
◦C and 93% (74% volume) at 0.5–1.5 ◦C. The maximum size of the liquid drops also

increased with increasing temperature in the study of Yuter et al. (2006). The lack

of constraint in the diameter-velocity relationship for melting precipitation makes the

observation of the mixed-phase SPT difficult for some ground based instruments (see

Section 3.1).

When the hydrometeors have fully melted, they exhibit the same behaviours as the

falling droplets described in Section 2.1, where collision coalescence and breakup control

the overall drop size distribution. As previously mentioned, rain produced by solid

hydrometeors melting before reaching the ground are referred to as cold rain.
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2.4. Ice Pellets and Freezing Rain

Frozen or supercooled liquid water droplets are common within convective clouds but

the atmospheric conditions which are conducive to precipitation reaching the surface

in the form of ice pellets or freezing raindrops are rare, especially in the UK (Carrière

et al. 2000). Synoptically speaking, the hydrometeors will typically exist as solid-phase

crystals or aggregates first (see Section 2.2), fall into an environment with T > 0 ◦C

to begin melting (see Section 2.3), and then fall into a region with T < 0 ◦C which

should extend to the surface. Atmospheric temperatures usually decrease with increas-

ing height, so it is uncommon for warmer air to exist between two colder layers (a

temperature inversion). An example is shown in Figure 1.12 of three vertical tempera-

ture profiles recorded during an atmospheric inversion event. If the warm (T > 0 ◦C)

layer is of a depth and temperature to allow only partial melting, then hydrometeors

which fall into the cold (T < 0 ◦C) layer retain some mass of ice. The presence of ice

acts as an INP at T = 0 ◦C (see Section 2.2; Houghton 1985; Seinfeld and Pandis 2006)

which enables the hydrometeors to re-freeze into ice pellets with a shallow cold layer.

If the warm (T > 0 ◦C) layer is of a depth and temperature to allow total melting,

then the liquid hydrometeors which fall into the cold (T < 0 ◦C) layer lack the ice INPs

which allow freezing at temperatures of T = 0 ◦C. They are also unlikely to contain the

INPs which allow freezing at temperatures as high as −4 ◦C (see Section 2.2; Houghton

1985; Seinfeld and Pandis 2006). These hydrometeors therefore remain liquid and if

they exist in the cold layer for enough time, the liquid drops can supercool into freez-

ing rain. When a supercooled liquid hydrometeor falls to the ground, the impinged

surface triggers ice nucleation and hydrometeors freeze immediately upon, or shortly

after impact. The outcome is that, over time, surfaces and objects are covered in a

dense, translucent glaze of ice, making freezing rain one of the most disruptive SPTs. If

the lower altitude sub-zero temperature layer is sufficiently cold, the supercooled drops

may also freeze again into ice pellets before reaching the ground.

Czys et al. (1996) derived a non-dimensional parameter based on the ratio of the time

available for melting to the time required for total melting to occur. The required

and available time durations were estimated based on microphysical models of melting

physics (see Section 2.3) on the largest hydrometeors which are the last hydrometeors

to melt. From Figure 1.13, several scenarios for the ice pellets to freezing rain bound-

ary can be suggested: a warm layer depth of 2 km with an average temperature of

approximately 0.8 ◦C; a warm layer depth of 1 km with an average temperature of

approximately 1.7 ◦C; a warm layer depth of 500 m with an average temperature of

approximately 3.2 ◦C. Czys et al. (1996) also noted that during the 1990 event shown

21



Chapter 1: Introduction

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/9/2/183/4651222/1520-0434(1994)009_0183_sam

soa_2_0_co_2.pdf by guest on 14 Septem
ber 2020

Figure 1.12.: Figure 8 from Rauber et al. (1994). Temperature and relative humidity
measured during three rawinsonde ascents at 1800 and 2100 UTC 14 February and 0000
15 February 1990. The event caused more than $12 million in damages in Champaign,
Illinois (Rauber et al. 1994) and over $120 million in property damages across 35 states
(Czys et al. 1996).

in Figure 1.12, that freezing rain was observed in air temperatures only a few tenths of

a degree below 0 ◦C.

Freezing rain exhibits the same fall velocity and diameter microphysics as with non-

supercooled liquid rain, namely following the Gunn-Kinzer curve (Gunn and Kinzer

1949). The temperature or the glaze which occurs upon reaching the ground are the only

discernible features which can be used to detect freezing rain with in-situ measurements

(Section 2.1). For ice pellets, Nagumo and Fujiyoshi (2015) show that there are two

regimes of ice pellets which they describe as fast and slow. Figure 1.14 shows the

diameter-velocity distribution of ice pellets during a prolonged event in Japan. The

slow-falling regime of ice pellets is closely related to that of hailstones (rough surface)

of average empirical density (Knight and Heymsfield 1983), and to smooth ice spheres

with densities of 160 kg m−3. The fast-falling regime is close to the empirical diameter-

velocity relationship for raindrops. The similarity of these two ice pellet regimes to other

SPT diameter-velocity relationships makes their distinction difficult for instruments

which discern SPTs using diameter and velocity measurements. The difficulty cannot
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FIG. 8. Isonomogram of t Å 1 for different critical ice particle
radii computed over a range of warm layer depths and mean tem-
peratures.

to the northern t Å 0 line in Fig. 4. The boundary
separating the regions of freezing rain and ice pellets
corresponds to the t Å 1 line in the region with surface
temperatures colder than 07C.

4. Preliminary evaluation

The observed distribution of precipitation type at
0000 UTC 15 February 1990 is shown in Fig. 7. The
diagnosed and observed regions for freezing rain and
ice pellets are in remarkably good agreement consid-
ering that a number of marginal assumptions were
made, and in spite of the coarse spatial resolution of
the radiosonde data.
The diagnosed field shows an area of freezing rain

that almost exactly coincides with that observed except
for a large region of false alarm in central Oklahoma
and south-central Kansas. This region of false alarm
occurred because it was an area without precipitation,
and no attempt was made in the diagnosis to filter ac-
cording to the presence or absence of precipitation. The
diagnosis of ice pellets coincides with the region of
observed except that it is not as narrow. This difference
probably occurred because of the coarse spatial reso-
lution of the sounding data. When conditions for freez-
ing rain and ice pellets were diagnosed for the obser-
vation times of 1200 UTC 14 February 1990 and 1200
UTC 15 February 1990, corresponding to the beginning
and end of the St. Valentine’s event, similar good
agreement was found and the same types of qualitative
errors were uncovered.
The methodology was further evaluated in a cursory

forecast experiment conducted during the winter of
1995/96 with the cooperation of the National Weather
Service Forecast Offices (NWSFOs) at St. Louis, Mis-
souri, and Indianapolis, Indiana. At total of 17 freezing
rain and ice pellets episodes were identified within the
geographic domain represented in, for example, Fig. 7.
As was the case for the St. Valentine’s ice storm, qual-
itatively the methodology tended to accurately identify
areas where freezing rain and ice pellets did occur. Also
in keeping with the St. Valentine’s example, false
alarms resulted by not taking into consideration the
areal distribution of precipitation. Another source of
false alarm uncovered in the experiment was occasions
when an elevated warm layer developed as a result of
strong nocturnal cooling in the boundary layer in the
absence of precipitation. A tendency for the diagnosis
to have a less detailed spatial fit than observed was also
noted in the experiment.
The preliminary evaluation leads to consideration of

a few improvements. First, the simplified theoretical
treatment for the heat balance equation governing melt-
ing given in Eq. (2) could better specify the effect that
the ice–liquid mixture has on consumption of energy
from the environment. Future research needs to be con-
ducted so that the type of ice entering the top of the
melting layer can be better taken into account. The

present theory assumes that the ice is initially spherical
when in reality it may start out as aggregates, or pos-
sibly large individual crystals that may or may not ex-
hibit some degree of riming. It can be suspected that
an aggregate would take longer to melt than another
form of ice because of the delay induced by the time
required for melting to collapse the aggregate into a
spherical liquid with an ice core, as assumed in devel-
opment of Eq. (2) .
GOES-8 satellite data could be used to improve the

diagnosis by helping to delineate between the presence
and absence of clouds and to estimate cloud-top tem-
perature to determine the extent to which ice may be
involved in the formation and evolution of precipita-
tion. Further improvement can be made if values of the
critical radius were determined over a higher spatial
resolution and regular grid spacing using, for example,
composite WSR-88D reflectivity data with rain-rate
data. This would require future research to determine
the best location within the echo structure to extract
reflectivity for use and development of specific rain-
rate relationships for freezing rain and ice pellets.

5. Application

Figure 8 was created to allow Eq. (5) to be applied
simply. It shows isopleths of t Å 1 computed over a
range of critical ice particle radii, warm layer depths,
and mean warm layer temperatures. In the 17 cases
identified in the winter 1995/96 forecast experiment,
depths and mean temperatures as large as about 5000
m and 107C, respectively, were found. The t Å 1 iso-
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Figure 1.13.: Figure 8 from Czys et al. (1996). An isonomogram of boundaries between
ice pellets and freezing rain based on the ratio of the time taken and the time available
for the largest hydrometeors to melt. The curved isopleths denote the magnitude of
the radius of the largest hydrometeor (µm), which is related to the precipitation rate.
The highlighted isopleth is for a maximum hydrometeor radius of 400 µm (0.8 mm)
which the study found to be most accurate in the 1990 event shown in Figure 1.12.

necessarily be overcome with temperature measurements. While ice pellets usually

occur at surface temperatures below 0 ◦C the same as freezing rain, Nagumo and

Fujiyoshi (2015) demonstrate that ice pellets can also occur at surface temperatures up

to 2.7 ◦C with partial melting.

Carrière et al. (2000) examined PW code (see Section 3.1) reports between 1995–1998

across Europe and found that ice pellets or freezing rain made up between 0-0.2%

of the UK reports. However, there was a recent notable ice pellet and freezing rain

event in the UK in 2018 (Jameson 2018). While both ice pellets and freezing rain are

relatively rare in the current climate of the UK (due to the mild maritime geography),

they are included here for the completeness of the generalised SPT classification list.

In the United States and other parts of the world, ice pellets are also referred to as

sleet whereas in the UK, sleet is the nomenclature for mixed-phase (melting snow)
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Figure 9 plots the fall velocities of ice pellets against
their diameters. Two modes of ice particle terminal ve-
locity are evident: fast-falling and slow-falling pellets.
The velocities of fast-falling pellets were very close to
the raindrop terminal velocity (Atlas et al. 1973). The
velocities of slow-falling pellets were close to a terminal
velocity of average-density (0.44 g cm23) hailstones
(Knight andHeymsfield 1983). In section 4b, reasons for
classifying the twomodes of fall velocity are discussed in
detail from the viewpoint of ice pellet geometrical
properties in 2DVD data and in comparison with pre-
vious studies on precipitation particle microphysics.

4. Discussion

a. Validation of freezing by evaporative cooling

1) NUMERICAL SIMULATIONS

One-dimensional simulations were performed to in-
vestigate the possibility of refreezing of raindrops under
the observed environmental conditions. The simulation
framework was based on Matsuo and Sasyo (1981a,b).
Since we focused on the temperature of precipitation
particles Tp just before freezing, we assumed that the
melted particles remain liquid during cooling even when

their temperatures were below 08C. To consider vertical
environmental conditions, linearly interpolated air
temperature and relative humidity profiles (Fig. 3) were
used for the model simulations. In Matsuo and Sasyo
(1981a,b), the heat transported from the surrounding air
to a snowflake is given as

H5 «H0 5 4p«R(aKDT1 bL
V
DDs) , (1)

where « is determined experimentally and depends on
snowflake properties (e.g., porosity and sphericity). Here,
R is the particle radius, a(b) is the ventilation coefficient
for heat (water vapor diffusion), K is the thermal con-
ductivity,LV is the latent heat of vaporization of water,D
is water vapor molecular diffusivity, DT is the tempera-
ture difference between a precipitation particle and the
environment, and Ds is the difference between the water
vapor density of environment and equilibrium water va-
por density of a particle. The particle temperature was
calculated using Eq. (1) by iteration considering the fall
velocity and environmental conditions with thermal
relaxation times of several seconds (Watts 1971). The
particle size change was calculated from the balance
equation between the heat transport and latent heat
associated with a phase change of the precipitation
particle. For raindrops, the equation is

4pR(aKDT1 bL
V
DDs)Dt524pR2r

p
L

f
DR . (2)

Here, rp is the particle density, Lf is the latent heat of
melting, and DR is the particle size change over a time
step of Dt. The discretized DR was calculated using a Dt
of 0.03 s. All precipitation particles were assumed to
start as dry spherical snowflakes with 0.04, 0.02, or
0.005 g cm23 density. The initial diameter of dry snow-
flakes varied in 0.5-mm increments from 1.0 to 10.0mm.
The terminal velocity before and during melting was
calculated from the balance between drag and gravity,
whereas that after melting was based on the raindrop
terminal velocity of Atlas et al. (1973). For melting
particles, the densities were calculated from particle size
and mass while tracking water and ice mass separately.
In addition, we did not consider any feedback from the
environment, such as cooling and humidification by va-
porization, because the observed sounding data used in
the simulation already included such factors.
Figure 10 presents the results of simulations for snow-

flakes with initial diameters of 10.0 and 5.0mm and
density of 0.02g cm23. Table 1 lists the results for other
particles. All of the simulations started at a height of
2150m, where the air temperature is 08C, just above the
melting layer. The snowflake temperatures immediately
decrease to below 08C as a result of evaporative cooling

FIG. 9. Relationship between fall velocity and diameter of IPs
observed from 0900 to 1000 LST. The solid blue line indicates
velocity–diameter relationships for raindrops (Atlas et al. 1973),
the solid green line indicates hailstones with a density of
0.91 g cm23, and the solid red line indicates the average density of
hailstones (0.44 g cm23) (Knight and Heymsfield 1983). The
dashed blue line indicates terminal fall velocities for smooth ice
spheres with densities of 0.91 g cm23, and the dashed red line in-
dicates those for smooth ice spheres with densities of 0.16 g cm23

(Mikhailov and Silva Freire 2013). The fall velocity relationships
for hail are extrapolated to particles smaller than 5mm in size that
are typically not considered to be hail.

NOVEMBER 2015 NAGUMO AND FU J I YOSH I 4381

Figure 1.14.: Figure 9 from Nagumo and Fujiyoshi (2015). The relationship between
diameter and velocity of particles during an ice pellet event, with drawn empirical or
calculated relationships for different particles. The solid blue line is for empirical liquid
raindrops, the dashed blue line is for calculated smooth ice spheres with a density of
910 kg m−3, the solid green line is for calculated hailstones with a density of 910 kg
m−3, the dashed red line is for calculated smooth ice spheres with a density of 160 kg
m−3, the solid red line is for calculated hailstones with a density of 440 kg m−3 (Knight
and Heymsfield 1983).

precipitation (WMO 1992; AMS 2012c; Met Office 2019a). Therefore the term ‘sleet’

is not used in this thesis to avoid confusion.

2.5. Graupel and Hail

In storm updraft environments, solid hydrometeors (pristine ice crystals, ice aggregates

and ice pellets) can co-exist with supercooled liquid hydrometeors. When supercooled

liquid drops collide with solid hydrometeors, the solid hydrometeor acts as an INP and

drops will immediately freeze as the latent heat of fusion is overcome, in a process

known as riming (Rogers and Yau 1996; Seinfeld and Pandis 2006). Where riming is

the dominant form of hydrometeor growth, and the hydrometeor is less than 5 mm

in diameter, the hydrometeor is referred to as graupel (AMS 2012a). If the riming

continues and the hydrometeor grows to a diameter of D ≥ 5 mm, it is referred to
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Figure 1.15.: Cross sections of 20 hailstones collected on 19 January 2020 in Camberwell,
Melbourne, Australia. The hailstones were all collected from within a 5 m2 area within
5 minutes, around 16:00 AEDT (UTC+11). The slices were created with a hot-wire
cutter and photographed on a glass plate over a dark background. ©Joshua Soderholm
(Australian Bureau of Meteorology), used with permission.

as hail (AMS 2012b). When riming occurs, latent heat of fusion is released, and

the graupel or hail hydrometeor warms, gradually conducting the heat away to the

atmosphere over time. If the flux of supercooled droplets riming onto the surface of the

hydrometeor exceeds a critical value, the hydrometeor surface will be warmed by the

latent heat release to a temperature T ≥ 0 ◦C and a liquid layer will exist on the surface

(Pruppacher and Klett 1997). In this state, supercooled drops accrete rather than rime

onto the surface because freezing does not occur upon contact (Rogers and Yau 1996).

Over time the hydrometeor loses heat through conduction to the air and evaporation

of the liquid layer, freezing the liquid. When it freezes, the ice is translucent or clear,

whereas for rime, air gaps exist between the rimed droplets and so the ice is opaque.

The layers of larger hailstones (shown in Figure 1.15) are caused by the alternation

between opaque (dry growth) and translucent/clear (wet growth) due to the change in

the flux of supercooled liquid water droplets experienced by the hail as it grows (Allen
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Figure 1.16.: Figure 17 from Locatelli and Hobbs (1974). The relationship between
diameter (mm) and fall velocity (m s−1) for sub-species of graupel.

et al. 2020). The notion that hailstones take multiple ascent and descent cycles within a

convective updraft is a myth (Knight et al. 1975; Nelson 1983; Ziegler et al. 1983; Foote

1984; Conway and Zrnić 1993; Dennis and Kumjian 2017). There is some evidence that

the layers of the atmosphere where temperatures of −10 to −25 ◦C exist are the most

conducive to hail formation (Knight et al. 1975; Nelson 1983; Ziegler et al. 1983). Some

radar-based criterion, such as the one used in the spatial SPT product verified in this

thesis (see Chapter 5), use a reflectivity threshold at an altitude above the T = 0 ◦C

level which would also correspond to temperatures of approximately T = −10 ◦C or

lower. Finally, the spiked shape of larger hailstones is due to the preferential flow of

liquid water towards any raised lumps on the surface of a hailstone during wet growth

(Knight and Knight 1970). A more detailed description of the formation and convective

dynamics of hail exists in Chapter 5.

A few notable studies present empirically derived diameter–velocity relationships for
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Figure 1.17.: Figure 12 from Matson and Huggins (1980). Theoretical and empirical
relationships between diameter (mm) and fall velocity (m s−1) for hailstones.

the various habits for the growth of graupel (Locatelli and Hobbs 1974; Bohm 1989;

Heymsfield et al. 2018), and hail (Roos and Carte 1973; Locatelli and Hobbs 1974; Mat-

son and Huggins 1980; Heymsfield et al. 2018). Some of these relationships are shown in

Figures 1.16, 1.17, and 1.18. The terminal fall velocity of graupel and hail is dependent

on the density of the hydrometeor. Macklin (1962) showed that the density of rimed

particles decreased with decreasing wind speed, air temperature, supercooled droplet

diameter, liquid-water concentration, and decreased with increasing graupel/hail hy-

drometeor size. In addition, Garrett and Yuter (2014) show that the presence of tur-

bulence affects the density of graupel hydrometeors to broaden the range of velocities

that graupel of a given diameter can exhibit. The spreading of the diameter-velocity

distribution increases the uncertainty for ground-based instruments to identify graupel

using diameter-velocity measurements compared with empirical relationships (see Sec-

tion 3.1). For hail, the consistency of the ratio of dry to wet growth between hailstones

will also result in a broad diameter-velocity relationship, the controls of which were

described previously.

2.6. Summary

The processes that determine the SPT for any given location are complex but, as dis-

cussed above, the vertical temperature profile is a dominant factor (see also: Thériault
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Figure 1.18.: Figure 3 from Bohm (1989). The diameter–velocity relationships for four
hydrometeor types listed within each subplot. The solid lines represent the study
distributions, the dashed lines in a), b) and c) represent the graupel relationships
derived in Locatelli and Hobbs (1974), the dotted line with error bars in d) represents
the hail relationship derived in Matson and Huggins (1980), and the dashed line in d)
represents the hail relationship derived in Roos and Carte (1973).

et al. 2010). A simplified schematic demonstrating the broad atmospheric differences

between SPTs is shown in Figure 1.19. There are some distinct differences between

the SPTs as they reach the surface. Any (freezing) non-freezing liquid precipitation

predominantly < 0.5 mm in drop size is labelled as (freezing) drizzle, and any (freez-

ing) non-freezing liquid precipitation with drops ≥ 0.5 mm is labelled as (freezing)

rain. Precipitation which remains liquid from nucleation is labelled as warm rain and

precipitation which at some point contained solid hydrometeors followed by melting

before reaching the surface are labelled as cold rain. For solid hydrometeors reaching

the ground, there are five distinct categories. If deposition alone is the primary growth

mode, hydrometeors will be pristine ice crystals and the SPT is labelled as such. If

aggregation between ice crystals is the dominant growth mode, then the SPT is labelled

as snow. If riming is the dominant form of hydrometeor growth, and if the hydromete-

ors are < 5 mm in diameter, then the SPT is labelled as graupel. If riming or accretion
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Figure 1.19.: A simplified schematic of the differences between SPTs. The vertical
profile of temperature is the main differentiator between most SPTs but in the case
of graupel and hail, a moderate to strong updraft (usually tilted for hail) is typically
required, associated with convective clouds. A major control between snow and ice
crystals, and between rain and drizzle, is the amount of atmospheric water content
available for precipitation. Additional processes which were described throughout Sec-
tion 2 are neglected here for the purposes of simplification. The columns reflect the
height from the highest altitude the hydrometeors experience but do not reflect the
height of the tropopause nor are the columns comparable between SPTs.

is the dominant form of hydrometeor growth, and critically if the hydrometeors are ≥
5 mm in diameter, then the SPT is labelled as hail. Accretion is not impossible on

graupel hydrometeors but is very unlikely to occur because a rapid growth rate is re-

quired for accretion (see Section 2.5). Finally, if the hydrometeors partially or fully

melted on descent but then re-froze, the SPT is labelled as ice pellets. Note that a

weak to moderate updraft is usually required in instances of graupel in order to advect

supercooled droplets past solid hydrometeors, and that a moderate to strong updraft

is usually required to support the growth of hailstones. Note also that a tilted updraft

encourages larger hailstones to be produced. The mixed-phase precipitation class is

defined in this thesis as when both liquid and solid aggregate hydrometeors are impact-

ing the surface. Mixed-phase includes partially melted ice crystals (wet ice crystals)

and partially melted snow (wet snow). While graupel and hail precipitation are typi-

cally accompanied by some liquid component, they are distinct atmospheric processes

associated with convection and are therefore excluded from the mixed-phase SPT label.

An objective of this thesis (Section 5) is to develop a standard set of SPTs because

the existing classification schemes are ambiguous, do not contain all SPTs and conflate

SPT with other properties such as event duration or non-precipitating atmospheric

phenomenon. The controlling microphysical processes on SPT can be used to assist with

the classification of SPTs. Table 1.2 is duplicated from Chapter 3 here to emphasise
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Table 1.2.: Duplicate of Table 3.3. The master table of precipitation types measured
by a ground-based instrument.

ABC PT Description PW Codes Comments

Er -2 Instrument Error — Instrument offline/data corrupt

Un -1 Unidentified 40-42
Particles detected but
type unknown

No 00 No Precipitation
0, 4, 5, 10,
30-34, 94

Includes fog, mist, haze, smoke

Dr 01 Drizzle 50-53 All drops < 0.5 mm diameter
DrRa 02 Rain & Drizzle 57, 58 Changing between each over time

Ra 03 Rain 60-63

Ic 04 Ice Crystals 78
Pristine ice crystals;
no aggregation

WIc 05 Wet Ice Crystals — Presence of liquid water
Sn 06 Snow 70-73 Aggregated ice crystals

WSn 07 Wet Snow 67, 68 Presence of liquid water

Pl 08 Ice Pellets 74-76
Partially melted aggregates,
subsequently re-frozen

Gr 09 Graupel —
Rimed and accreted ice particles,
< 5 mm diameter

Ha 10 Hail 89, 96
Rimed and accreted ice particles,
≥ 5 mm diameter

FzDr 11 Freezing Drizzle 54-56
Supercooled below 0 ◦C
All drops < 0.5 mm diameter

FzDrRa 12
Freezing Drizzle
& Freezing Rain

—
Supercooled below 0 ◦C
Changing between each over time

FzRa 13 Freezing Rain 64-66 Supercooled below 0 ◦C

the universal classification system for SPTs proposed in this thesis.

3. Measurement Techniques for SPT

Section 2 described, in detail, the origins and processes which lead to the different

precipitation types. The understanding of the origins and processes of SPTs is based

on observational, laboratory, theoretical, and computer modelling studies. However,

there are several additional factors which specifically complicate our ability to measure

the different precipitation types, depending on the technique used. This thesis assesses

some of the techniques for observing SPT, and moreover examines the approaches
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to statistically verify measurements of precipitation type for evidence of skill. The

following section provides some additional background material to the measurement

techniques which are employed in Chapters 2, 3, 4 and 5. In section 4.6, existing

studies of the assessment of these instrument techniques will be discussed, highlighting

the statistical metrics used, which themselves will be outlined in Sections 4.4 and 4.5.

The terms ‘point’ and ‘spatial’ are used throughout this thesis to describe data repre-

senting limited locales and data representing broad locales. One of the challenges of

this thesis is the verification of spatial data using point data as the reference, since

the representativity differs by several orders of magnitude between datasets. Instru-

ments are typically categorised as either in-situ or remote sensing techniques. In-situ

refers to measurements made within the confines of the instrument, including those

instruments which emit and/or receive radiation. Human-made observations either by

trained observers or members of the public are also referred to as in-situ, if the SPT

being observed is precipitating at the location of the observer. In-situ measurements

are point data, including those by human observers who may be able to perceive a

wider area. Remotely sensed measurements (and NWP model forecasts which are not

assessed in this thesis) are spatial data. Remote sensing refers to measurements made

where electromagnetic radiation is emitted and/or received, and typically covers a very

large spatial locale. The following two sections describe the techniques for recording

point and spatial SPT observations.

3.1. Point SPT Observations

Fundamentally, all SPTs are inferred into categories through observations of other

variables. There are four fundamental categories that can be used to describe point SPT

measurement techniques: vision, air temperature, hydrometeor scattering behaviour

and hydrometeor diameter-velocity distribution. Human observers primarily use their

vision over a short period of time and either a priori or a posteriori knowledge of

the properties of different SPTs such as shape, translucency, and how hydrometeors

interact with the surface (splashing, bouncing, settling etc.). Automated instruments

in use today utilise some combination of air temperature, scattering behaviour and

the diameter-velocity distribution. The following section describes the observations

which are currently available in the UK and some of the mechanisms behind automated

instrument diagnoses of SPT. Chapter 2 of this thesis introduces a new network of SPT-

measuring instruments and the observation technique is also described here.
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The primary source of SPT observations in the UK is from the Met Office, which

operates and maintains a network of surface stations. During the study period examined

in this thesis, there were 176 Met Office surface stations providing SPT information;

160 stations were automated and 16 were manual. Manual stations have a human

observer reporting all aspects of the present weather at the site and are typically not

operational for 24 hours a day. The human observer has been the most trusted source

for present weather observations since the dawn of meteorology. Observers are capable

of reliably differentiating between SPTs as each observer is trained in the rarer types

such as being able to distinguish hail from graupel from ice pellets. Note that the

observations are encoded into the PW code system (WMO 1988, 2017) described below,

which ambiguates the SPT measurements. Since present weather is reported hourly, the

human observer may note down significant weather that occurred in the prior hour but

that is no longer presently occurring; this is a source of error that should be considered

when performing verification of spatial products.

The automatic Met Office stations use a method of determining precipitation type by

combining the output of several instruments. The Vaisala FD12P present weather sen-

sors emit a beam of near-infrared light at a 16.5◦ angle below the horizontal which is

then received by a diode at 16.5◦ angle below the horizontal for a total of a 33◦ angle

forward scatter of the light beam. The voltage of the diode depends upon the amount

of received light which can be interpreted as the visibility. The peaks of scattered light

caused by hydrometeors falling through the beam are related to both the precipita-

tion type and the precipitation rate. A capacitive plate measures precipitation rate

(with high uncertainty, see Chapter 3) and the ratio of precipitation rate and diode

peak intensity is used to infer the precipitation type. The secondary nature of the de-

rived information makes the technique susceptible to high uncertainty measurements.

However, the Vaisala FD12P instrument is not solely relied upon. The addition of a

thermometer and a rain gauge are combined into the Met Office present weather ar-

biter (PWA), a scoring algorithm which relies heavily on the value of air temperature

to support the SPT classification (Green 2010). Internal Met Office testing showed

that the automatic stations can provide more accurate SPT diagnosis than the Vaisala

visiometer alone (Lyth and Molyneux 2006). However, when compared with a human

observer, there is still more overlap between SPT signals in the automatic station mea-

surements. Boudala et al. (2017) found that the performance of automated present

weather instruments was poorest at temperatures around T ≈ 0 ◦C. For example, the

SPTs which could occur at an air temperature slightly less than T = 0 ◦C include:

snow, freezing drizzle, freezing rain, ice pellets, graupel and hail. For the Met Office

automatic station, the tipping-bucket rain gauge would not register any precipitation
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until melting occurs; the visiometer might detect some changes between these SPTs

but would do so with high uncertainty. Furthermore, Merenti-Välimäki et al. (2001)

highlights low precipitation intensity (PR < 0.05 mm h−1) as one of the reasons for

disagreement between human observers and the FD12P instrument used in the Met

Office automatic present weather system.

Due to the nature of the Met Office automatic stations and the lack of manual stations

(both the overall number of stations and the number of reports made at night), a more

accurate point SPT-measuring automated instrument was sought, in order to have

higher confidence in the verification of spatial SPT products. Chapter 2 describes the

development, installation and maintenance of a new network (called the Disdrometer

Verification Network (DiVeN)) of Thies LPM instruments which create a precipitation

diameter-velocity distribution from observing individual hydrometeors. To measure the

diameter and fall velocity of an individual hydrometeor, a laser occultation technique is

used, shown in Figure 1.20. On one end of the instrument, an infrared laser is emitted

in a thin horizontal beam and on the other, a diode receives the infrared beam inducing

a constant voltage into a circuit. When a hydrometeor falls through the laser beam the

amount of infrared light received by the diode decreases and so does the circuit voltage.

The amplitude of the voltage decrease is related to the diameter of the hydrometeor, and

the duration of the voltage decrease is related to the fall velocity of the hydrometeor.

Once a diameter-velocity distribution has been established (1 minute for the DiVeN

sensors) the SPT can be inferred using the empirical relationships described in Section

2 (Nakaya and Terada 1935; Gunn and Kinzer 1949; Langleben 1954; Macklin 1962;

Locatelli and Hobbs 1974; Matson and Huggins 1980; Bohm 1989; Mitra et al. 1990;

Yuter et al. 2006; Garrett and Yuter 2014; Nagumo and Fujiyoshi 2015; Heymsfield

et al. 2018).

Since mixed-phase SPT undergoes a continuous diameter–velocity transition, point

measurements which use this technique to diagnose SPT can struggle to infer the mixed-

phase SPT class if the ground instrument has any uncertainty or if turbulence around

the instrument induces vertical air velocities, spreading the distribution of precipitation

velocities. For example, Section 2.4 showed that the diameter–velocity relationship for

the two regimes of ice pellets are very similar to those of rain and graupel. The

addition of temperature would allow for further separation of the SPT classes than

diameter–velocity alone. Also, note that the aerodynamic drag effect which determines

the terminal fall velocity of a hydrometeor, is multiplicative (Section 2.1) and as such,

the linear difference between two large hydrometeors of different SPT is much greater

than two small hydrometeors of different SPT (see Chapter 2). The result is that
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TABLE 1. Specifications of the optical disdrometer.

Sensor head
Size
Weight
Laser diode wavelength
power

Light sheet size
Measuring area
Measuring range diameter
velocity

d 5 225 mm, h 5 200 mm
5 kg

780 nm
3 mW
30 mm 3 1 mm 3 160 mm
48 cm2

0.3–30 mm (0.1–10 mm)
0.1–20 m s21

Electronics
Size
Weight
Power supply
Power consumption
A/D–Converter resolution
sample rate

Memory capacity (internal)
Access, interface

250 mm 3 260 mm 3 150 mm
5 kg
10–40 V DC or 100–230 V AC
10 W
12 bit
50 3 103 s21

1 month of rain
PC via RS 232

FIG. 1. Signals of particles falling through the light sheet. (a) Small
and large particles, (b) raw signal from the sensor, and (c) inverted
and amplified signal after thresholding for measuring purposes.

be obtained. This information is useful for ‘‘present
weather sensors’’ and for interpreting results from
weather radar systems in wintertime, especially in
alpine regions, where hydrometeors in the radar vol-
ume usually consist of snow.
Section 2 describes the instrument: general attributes,

the optical part of the sensor, the sensor housing, the
data analysis, and the accuracy achieved. In section 3
results from field operations are presented and compared
with data from other instruments. Finally, ideas for the
future, instrumental development, and planned appli-
cations are outlined in section 4.

2. Measuring system
a. Attributes of the instrument

The disdrometer consists of an optical sensor within
a housing and some appropriate electronics including
solid state memory, which allows at least one month’s
recording of rain data. Attributes of the instrument are
summarized in Table 1. The following sections explain
the measuring system in more detail.

b. Optical sensor

The basis of the instrument is a commercially avail-
able sensor, producing a horizontal sheet of light (30
mm wide and 1 mm high, 160 mm long). The light sheet
is produced by a 780-nm laser diode with a power of
3 mW. In the receiver the light sheet is focused onto a
single photodiode. The transmitter and receiver are
mounted in a housing for protection (see section 2c). In
the absence of drops the receiver produces a 5-V signal
at the output of the sensor. Particles passing through the
light sheet cause a decrease of this signal by extinction
and therefore a short reduction of the voltage. The volt-
age decrease depends linearly on the fraction of the light
sheet blocked. Figure 1 (upper part) schematically

shows the signals of two particles of different size. The
amplitude of the signal deviation is a measure of particle
size, the duration of the signal allows an estimate of
particle velocity. An appropriate concept to detect the
start and the end of a signal is implemented in the soft-
ware.
Geometrical considerations show that the effective

width of the light sheet depends on the particle size. To
be completely in the light sheet, larger particles have a
smaller region in horizontal direction. Therefore, to es-
timate concentration, the effective width for each par-
ticle is taken into account.

c. Sensor housing

Two different protections have been tested. At first,
a housing (Fig. 2a) of a shape similar to a Hellmann
rain gauge was analyzed for the rain measurements.
Then, for snow measurements a tunnel-like housing was
used (Fig. 2b).
The Hellmann housing has been tested; for example,

the effects of wind were investigated in great detail by
Nespor (1998). Furthermore, the Hellmann housing has
a rather small outside dimension, producing a minimum
of disturbance for rain, though only at vertical incidence.

Figure 1.20.: Figure 1 from Löffler-Mang and Joss (2000). A schematic of the tech-
nique of laser occultation for precipitation diameter and fall velocity measurement. a)
particles falling through the laser beam; b) the raw voltage of the receiving diode; c)
the inverted voltage after post-processing.
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SPTs are more accurately diagnosed when precipitation rates are higher since larger

hydrometeors exist. Despite these issues, there is evidence that the instrument used in

DiVeN as part of this thesis research, has higher accuracy when compared to a human

than the instrument used at automated Met Office stations (Bloemink and Lanzinger

2005; Lyth and Molyneux 2006). All of the measurement techniques described here

are used in this thesis and are subject to further description in the individual chapters

where they are used.

For rare SPTs which automated instruments struggle to capture such as hail, the human

vision method can be utilised by crowdsourcing reports from members of the public.

The coverage of locations is increased with this method but will still not capture all

events. In addition, the downside to this method is that the accuracy of elements

of the report may differ from trained meteorological observers. For example, Elmore

et al. (2015) use a crowdsourced dataset from the public to verify NWP forecasts of

precipitation type. A specifically-designed mobile phone application was developed for

volunteers to submit their reports (Elmore et al. 2014). In Chapter 5 a crowdsourced

dataset from the European Severe Weather Database (Dotzek et al. 2009) is used as the

verification reference for the Met Office spatial SPT product for the hail SPT. Since

this product specifically neglects graupel and only detects hail, the ground stations

(manual, automatic and DiVeN) are not appropriate due to the format of the SPT

observations which do not unambiguously differentiate between graupel and hail. The

crowdsourced dataset is described in greater detail including benefits and limitations,

in Chapter 5.

The format of SPT observations is critical to the research conducted throughout this

thesis. The most widely used format for SPT data is the World Meteorological Orga-

nization (WMO) PW code (WMO 1988, 2017). The PW code is a reporting system

that describes not only the SPT but any meteorological features like fog and dust,

includes the duration of SPTs with descriptors such as ‘showers’ or‘ ‘intermittent’, and

even encompasses trends in the preceding hour; all distilled into a two-digit number.

There are slight differences in the PW coding system for manual observers (Table 4677

WMO 2017) and for automated stations (Table 4680 WMO 2017) which make them

slightly incompatible. There is also a third PW code table (Table 4678 WMO 2017) for

aircraft pilots, referred to as the Meteorological Aerodrome Report (METAR). Note

that some SPTs such as graupel (Section 2.5) are not explicitly mentioned, and that

some PW codes contain two or several of the SPTs described in Section 2. In addi-

tion, not all sensors are capable of observing all PW codes. Without a temperature

or icing sensor, PW instruments cannot distinguish between freezing and non-freezing
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liquid precipitation. Some automated instruments that are relevant to this study are

the Thies LPM, the Campbell Scientific PWS100, the Vaisala PWD21, and the Vaisala

FD12P (excluding the Met Office arbiter), each of which are able to report 21, 58, 42

and 52 PW codes from the 93 available in the WMO Table 4680 standard. However,

the ability to report more codes does not correlate with more SPTs or a more accurate

SPT diagnosis. The Thies LPM does not measure visibility which excludes many PW

code discriminators. The manual observer has no restriction on the PW code choice

but must interpret the meaning of the PW codes from training. For example, graupel

is not explicitly listed in the PW code system and therefore the observer must choose

between 20, 77 (contains the term ‘snow grains’), 87, 88, 93–97, 99 (contains the terms

‘snow pellets’ and also ‘small hail’), all with varying intensities and accompanying fea-

tures. Note that the asterisked term ‘hail’ in codes 93–97 and 99 actually refers to

either/or ‘hail’, ‘small hail’ and ‘snow pellets’. Two examples of the most incoherent

and ambiguous PW codes from Table 4677 from the 2017 update to the standard, are

provided below (WMO 2017).

Code 88: “Shower(s) of snow pellets or small hail, with or without rain or rain

and snow mixed—moderate or heavy”.

Code 93: “Slight snow, or rain and snow mixed or hail at time of observation—

thunderstorm during the preceding hour but not at time of observation”.

For these reasons, a new standard SPT classification list is defined in this thesis, deter-

mined by the microphysical processes which lead to each type. The standard table is

shown in Figure 1.19 of Section 2.6, and is developed and applied in Chapter 3, along

with the development of a new algorithm (Figure 3.4 in Chapter 3) to merge short-

timescale observations of SPT into longer timescales (e.g. 5× 1-minute observations

into 1× 5-minute observation). In Chapter 4, the PW codes are converted to match

the SPT classes defined by the Met Office radar-based spatial SPT product, the details

of which are shown in Figure 4.6 of Chapter 4.

3.2. Spatial SPT Observations

Radars are the most suitable measurement technique for spatial SPT observations be-

cause of their high spatial and temporal resolution; on the order of 1 km2 every 5

minutes in the UK (Harrison et al. 2000). In addition, they can cover a large area on

the order of 100,000 km2. Radars emit a pulse of polarised microwave energy which is

scattered by hydrometeors in the beam; the backscattered energy is then received by
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the radar and measured (Figure 2.2 in Fabry 2015). The power received back to the

radar at a single polarisation is described by the radar equation:

Pr =
π3λ2Ptg

2θφh|k|2l
1024 ln(2)r2π2

Z, (1.3)

from Collier (1989), where Pt is the power transmitted, g is the gain factor of the

antenna, θ, φ is the beamwidth (horizontal and vertical), h is the pulse length, |k|2 is

the dielectric factor (backscattering efficiency of hydrometeor) which is 0.93 for liquid

water and ∼0.176 for solid ice (Collier 1989; Fabry 2015; Ryzhkov and Zrnic 2019),

l is the loss of power through propagation which is not always known, λ is the beam

wavelength, r is the distance from the radar to the target, and Z is the radar reflectivity

factor:

Z =

∫ ∞
0

D6n(D)dD, (1.4)

which is the sum of the sixth-powers of all hydrometeor diameters in a unit volume.

Equation 1.4 assumes all hydrometeors are liquid spheres and are small compared to the

wavelength of the radar beam so that scattering is within the Rayleigh regime (Bringi

and Chandrasekar 2001; Ryzhkov and Zrnic 2019). The amount of energy received

by the radar can be used to compute the radar reflectivity factor, and the time taken

between emit and receive gives the range at which the hydrometeors exist since the

speed of the beam is assumed to be constant. The exact relationship between the radar

reflectivity factor and the precipitation rate is incalculable, since multiple DSDs can

produce the same reflectivity due to the sixth-power of the diameter of drops. Fabry

(2015) gives an example: “one 2-mm diameter drop falling at 7 m s−1 has a reflectivity

factor similar to 64 drops of 1-mm diameter falling at 4 m s−1”. However, the DSD

has been shown to vary depending on the rainfall rate (see Section 2.1; Marshall and

Palmer 1948) and so approximations of Z–R relationships exist, typically in the form:

Z = aRb, (1.5)

where a and b are coefficients based on the local climatology and the type of rainfall.

Warm rain, cold rain, convective and stratiform are just some examples of precipitation

regimes which have been shown to exhibit different Z–R relationships (Marshall and

Palmer 1948; Wexler and Atlas 1963; Joss and Waldvogel 1970; Battan 1976; Austin

1987; Lin et al. 2020). These relationships form the basis of QPE from radar.

Of importance to this thesis is that different SPTs, or hydrometeors as they are viewed

by the radar, exhibit vastly different radar properties. If it is snowing on the ground

then the radar must also be observing solid hydrometeors, and will observe a much
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Figure 1.21.: Figure 4.8 from Fabry (2015). The properties of aggregates melting into
liquid hydrometeors which result in the enhancement of radar reflectivity known as
the bright band. The solid line represents a typical snowflake (grown by aggregation)
density, and the dashed line represents a graupel (grown by riming and accretion)
density.

weaker reflectivity for the same mass of water due to the dielectric constant (|k|2)
of different hydrometeors. Figure 1.21 shows the properties of hydrometeors which

affect the radar reflectivity factor, as the hydrometeors change from large aggregates

to mixed-phase (partially melted aggregates with a liquid surface), to raindrops.

Knowledge of the precipitation type within the radar beam can therefore aid more

accurate QPE from radar. Dual-polarisation radar technology provides numerous po-

larimetric variables that provide more information about the scattering process and

thus reflect the characteristics of the target population of the hydrometeors (Seliga

and Bringi 1978; Hall et al. 1984; Aydin et al. 1986; Chandrasekar et al. 1990; Cobb

2004). Polarimetric variables can then be ingested into logic algorithms to estimate

the dominant hydrometeor type within the radar beam (Straka and Zrnic 1993; Liu

and Chandrasekar 2000; Park et al. 2009; Al-Sakka et al. 2013). For the estimation

of SPT, microphysical effects below the radar beam must still be considered for either

single-polarisation or dual-polarisation radars since they are incapable of observing at

ground level. The lowest usable radar beam is a function of distance from the radar

dish, beam blockage from terrain and anthropogenic structures, ground or sea clutter,

anomalous propagation, and more (Wilson and Brandes 1979; Collier 1989; Berne and

Krajewski 2013; Fabry 2015). If these artefacts and errors are not considered, the qual-

ity of the radar QPE can be degraded, which also affects SPT diagnosis. Note that the

removal of non-meteorological echoes is improved with dual polarisation radars using
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Figure 1.22.: Figure 4.6 from Fabry (2015). A vertical wind profile (left) pushes the
precipitation falling from a height of 5 km along the dashed lines (middle) to the
ground, advecting several kilometres horizontally. A vertically pointing radar (right)
first observes the 5 km height followed by lower altitudes, which over time generates a
time–height plot which appears to show the precipitation being advected in the opposite
direction (the solid line in the middle figure), a geometric illusion.

fuzzy logic classifiers such as those described in Gourley et al. (2007); Rico-Ramirez and

Cluckie (2008); Dufton and Collier (2015). Chapter 4 and Chapter 5 contain long-term

frequency plots of SPTs over 5 years from a radar-based product (see below) which are

useful to visualise these artefacts and biases in radar observations. Finally, precipita-

tion may advect horizontally between its location when observed by the lowest-usable

radar beam and its location when the precipitation impacts the ground (see Figure

1.22), which can deteriorate a verification metric score deceptively. Chapter 4 intro-

duces a verification method to address the issue of representativity due to precipitation

advection.

The UK Met Office operates a network of 15 C-band (5.6 GHz frequency) radars and

collaborates closely with Met Éireann and the Channel Islands Meteorological Depart-

ment who operate an additional two and one C-band radar(s) respectively. Hence,

there are a total of 18 radars contributing to the coverage over the UK, as shown in

Figure 1.23. Harrison et al. (2000, 2015) describes some of the design choices and the

processing techniques used in the network.

The placement of UK radars shown in Figure 1.23 are chosen for optimal scanning with

low partial beam blockage, minimal ground clutter, and appropriate land permissions.

Low elevation scans of 0.5◦ reduce the below-beam area and thus the uncertainty of

below-beam effects and thus aids QPE and SPT diagnosis. The scan strategy of the Met

Office radars begins with the highest elevation scan first and then tilts down, ending
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Figure 3. Current rainfall radar coverage across the British Isles. The radar network covers over 99% of the UK

Weather radar coverage of the UK

+ Operated by Met Éireann
* Operated by Jersey Met

Improving quality

Figure 1.23.: Figure 3 from Met Office (2019b). A map of the UK radar network con-
sisting of 15 Met Office-owned sites and 3 third-party owned sites denoted by a ‘+’
symbol for Met Éireann and a ‘*’ for the Channel Islands Meteorological Department.
Radar beams increase with height and are susceptible to blockage by terrain and an-
thropogenic objects, which lowers their QPE and SPT diagnosis skill. An indicator of
increasing quality is shown by the colours light blue to dark blue.
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with the lowest elevation scan last, which is beneficial for surface product diagnoses

because the scan closest to the ground is used for the QPE and SPT calculation and is

therefore conducted adjacent to the denoted timestamp of the surface products.

The Met Office owned sites have recently been upgraded to dual-polarisation capability

and were fully operational in January 2018, which should improve both QPE and SPT

diagnosis in the long-term over the UK. The focus of the research in this thesis was

the development of a verification framework for SPT-datasets in general. However,

in Chapter 4 and Chapter 5, the verification framework is applied to an existing SPT

product which has been operational since late 2013 using only the radar reflectivity fac-

tor and the derived surface rainfall rate data. The results of this verification show that

the framework provides reasonable results and provides a baseline value for the skill

of a spatial SPT product which motivated improvements to a dual-polarisation equiv-

alent product. The single-polarisation Met Office spatial SPT product is described in

more detail in Chapter 4 which diagnoses SPT classes of rain, mixed-phase, snow, and

hail encompassing the SPTs described in Sections 2.1, 2.3, 2.2, and 2.5 respectively

(note that graupel is explicitly neglected). It uses Lumb’s critical rate (Lumb 1963,

see section 2.3) for mixed-phase diagnosis and a reflectivity with temperature criterion

for hail (Waldvogel et al. 1979). There were several intermediary objectives regarding

the enhancement of the available surface point SPT reference observations which were

required prior to the development of a verification framework for the spatial SPT prod-

uct. The next section describes the statistical challenges of the assessment of SPT data

generally, as well as specific considerations for the verification of spatial SPT products

such as the Met Office radar-based product.

4. Statistical Techniques Employed in this Thesis

This thesis approaches the quantitative assessment of SPT measurements. A brief

introduction into the statistical methods typically used for discrete, non-probabilistic

data is necessary, along with specific mentions of those methods which are used in this

research. Here a wider statistical background is introduced, as well as highlighting

some of the statistical difficulties in categorising transitional precipitation types. The

section concludes with a summary of the statistical approaches used in the literature

to assess point SPT observations and spatial SPT products.
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4.1. Assessment Terminology

Firstly, the terms evaluation, validation and verification have different meanings. De-

spite this, their use in the literature is often inconsistent (STC 2013; Sparrius 2016),

so a standard terminology to follow for this thesis must be chosen. The fields of engi-

neering and medical science have more strict definitions (ECS 2002; IEEE 2011) which

are useful considerations to follow. The following definitions used are:

Validation is checking that a system meets the needs of an application or an end

user: does the system function as intended? ISO 15189:2012 defines validation as

“confirmation, through the provision of objective evidence that the requirements

for a specific intended use or application have been fulfilled” (ECS 2012). Chapter

2 of this thesis is primarily a validation of an SPT observing system.

Evaluation is comparing multiple methods of achieving the same output. Met-

rics to quantify an evaluation can include accuracy, practicality, cost etc. (ECS

2002; Rossi et al. 2018). A more accurate system may be less desirable if the

practicality or cost is inhibitive. Here the choice of evaluation criteria should be

simplified; attempting to meet too many, or poorly defined criteria, can result in

an unclear outcome. Chapter 3 of this thesis is an evaluation of SPT instruments.

Verification is checking that a product or system is accurate against a known

or accepted standard. Metrics such as accuracy, precision, linearity etc. can be

used to quantify verification. ISO 15189:2012 defines verification as “the confir-

mation, through provision of objective evidence that specified requirements have

been fulfilled” (ECS 2012). Chapters 4 and 5 of this thesis are both classified as

the verification of a spatial SPT product.

All three of these definitions are used in this thesis to differentiate the research con-

ducted in each of the results chapters.

4.2. Discrete Non-probabilistic Data

Section 2 introduced the processes and behaviours of hydrometeors in the atmosphere

from growth to precipitation at the surface. SPT data are discrete and in this research

the SPT data are also non-probabilistic. Discrete and non-probabilistic datasets are

such that the values are split into categories and are counted by integers, which limits

the available statistical methods that can be applied. The most basic discrete variable
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is dichotomous; a simple yes or no outcome for the occurrence of an event. SPT is

a more complex discrete variable, where the number of categories is subjective. The

most basic distinction of precipitation type is the phase: liquid or solid. However,

even here the border between liquid and solid phase is not well defined. The melting

layer is a region of the atmosphere of non-negligible depth, where falling hydrometeors

exist at temperatures greater than 0 ◦C but are not yet fully liquid (Section 2.3).

The hydrometeors exist as a mixture of both solid and liquid phase particles. Solid

hydrometeors melt from the outer edge inwards, such that ice can be coated with a

surface layer of water. For ice aggregates which contain large volumes of air and are

thus significantly less dense than liquid water, the existence of a liquid surface appears

to precipitation radar instruments as an extremely large raindrop (Fabry 2015; Lin

et al. 2020). Note that the enhancement of radar reflectivity in the melting layer

is known as the bright band, which must be corrected for when equating reflectivity

into precipitation rate (Smyth and Illingworth 1998; Harrison et al. 2000; Villarini and

Krajewski 2010).

Further still, within the solid hydrometeor types there are hail, graupel, aggregates,

and pristine ice crystals. Within ice crystals there are the crystal habits shown by

Kobayashi (1958) in Figure 1.6. Each extra level of precipitation class specificity re-

quires higher skill, specifically of discrimination (in statistical terms; Wilks 2011), in

the observation or forecast. Figure 1.24 demonstrates an example of a hierarchical tree

of precipitation types with increasing complexity with each subclass. If the discrimina-

tion of the observation or forecast is not sufficient, then increasing the number of SPT

classes will diminish its useful skill.

4.3. Confusion Matrices and Contingency Tables

The verification of dichotomous discrete non-probabilistic datasets is typically visu-

alised in a 2 × 2 table known as a contingency table (Wilks 2011). Figure 1.25 is an

example of the layout of the contingency table, where the rows (y-axis) are the dataset

under examination, and the columns (x-axis) are the reference dataset which is consid-

ered the truth. The quadrants have the associated labels of a = hit, b = false alarm,

c = miss and d = correct null. The quadrants can be represented in normalised proba-
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Figure 1.25.: The contingency table for dichotomous discrete non-probabilistic verifi-
cation. Dimensions are 2 × 2 with quadrants referred to as a) hit, b) false alarm, c)
miss, and d) correct null.

bilistic form:

a = p (y1, x1) (1.6)

b = p (y1, x2) (1.7)

c = p (y2, x1) (1.8)

d = p (y2, x2) (1.9)

where y1 and y2 are the probability of a diagnosed event being a ‘yes’ and a ‘no’

respectively, and x1 and x2 are the probability of the true event being a ‘yes’ and a ‘no’

respectively. For the contingency table there are various metrics which are described

in the following section.

SPT data are rarely dichotomous—as shown in Figure 1.24. Verification of non-

dichotomous discrete non-probabilistic datasets are typically visualised in an higher

dimensional table known as a confusion matrix. Figure 1.26 is an example of the lay-

out of a 3 × 3 confusion matrix, where the rows (y-axis) are the classes of the dataset

under examination, and the columns (x-axis) are the classes of the reference dataset

which is considered the truth. The cells have the associated labels of r–z, where the

top-left to bottom-right diagonal cells of the matrix are the hits. The remaining cells

can be false alarms, misses, or correct nulls depending on the class under consideration.
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Figure 1.26.: The structure of the 3 × 3 confusion matrix applied in this study.

Cells can also be represented in the normalised probabilistic form of Eqs. 1.6–1.9, such

as w = p (y2, x3) and so on. The difficulty with SPT data is that the borders between

the classes can be sequential in the case of solid to mixed-phase to liquid, or can be

statistically independent such as hail and snow.

The higher dimensional confusion matrix can be reformulated into dichotomous, 2 × 2

contingency tables for each of the I classes (Wilks 2011) as shown in Figure 1.27. For

example, the quadrants of the dichotomous 2 × 2 contingency table which is created

for “Class 1” can be surmised in terms of the elements in Figure 1.26. The hit quadrant

(a) is r, the false alarm quadrant (b) is s + t, the miss quadrant (c) is u + x, and the

correct null (d) is v + w + y + z. This is repeated as appropriate for “Class 2” and

“Class 3”.

4.4. Scalar Metrics

There are many ways to assign a single numeric value to a diagnosis from the di-

chotomous 2 × 2 contingency table, but all encounter a loss of information since the

dimensionality of the table is I × J − 1 = 3 (Murphy 1991). The following section
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Figure 1.27.: Redrawn version of Figure 8.3 from Wilks (2011). A 3 × 3 confusion
matrix being collapsed into three 2 × 2 contingency tables, one for each class in the
confusion matrix. The collapsing arithmetic extends to a confusion matrix of any square
dimensions.

describes some of the scalar metrics used on 2 × 2 contingency tables as well as high-

lighting their strengths and weaknesses. In this thesis the notation of Wilks (2011) is

followed, where more details on the scalar metrics can be found.

Since the perfect diagnosis in a contingency table would be a + d = n, the proportion

correct (PC; Finley 1884) is:

PC =
(a+ d)

n
(1.10)

where the metric ranges from 0 (always incorrect) to 1 (always correct). There is no

differentiation between correct diagnoses of the event a and correct diagnoses of the

non-event d, which may be undesirable for high-impact events where a hit (a) is more

valuable than a correct null (d). For rare events where c + d is large, the PC will be

larger for more diagnoses of ‘no’ which increases the value of d.

Attempting to resolve the issue with hit and correct null events receiving equivalent

weighting in the proportion correct metric, the critical success index (CSI) is an accu-

racy metric which neglects the correct null events:

CSI =
a

(a+ b+ c)
(1.11)

CSI ranges from 0 (no hit cases) to 1 (only hit cases) and is also referred to as the

threat score (TS) (Gilbert 1884). Here the false alarm and miss cases are given equal

weighting, which is not always desirable. A miss for a high-impact event may be a
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worse outcome than a false alarm.

A metric which only considers the diagnosis when the event does occur and measures

the probability that the diagnosis will be correct, is called the probability of detection

(POD):

POD =
a

(a+ c)
(1.12)

which also ranges from 0 (always a miss) to 1 (always a hit), and is also referred to as

the hit rate. In some instances however, it may be more detrimental to have a false

alarm b than a miss c, which is not quantified with POD.

There are two similarly named equivalent scalar metrics which include the false alarm

quadrant. Firstly the fraction of non-event occurrences (b + d) that were false alarms

called the false alarm rate (F), and secondly the fraction of diagnoses (a+ b) that were

false alarms called the false alarm ratio (FAR):

F =
b

(b+ d)
(1.13)

FAR =
b

(a+ b)
(1.14)

F ranges from 0 (always a correct null) to 1 (always a false alarm). FAR ranges

from 0 (always a hit) to 1 (always a false alarm). The POD and F/FAR are usually

interdependent, such that changing the bias (see Eq. 1.15) of a product to reduce the

number of miss events typically results in an increase to the number of false alarm

events.

Knowing the ratio of ‘yes’ diagnoses (a + b) to the ‘yes’ occurrences (a + c) is useful

for determining whether a product or forecast is overzealous and can be the simplest

metric to fix with a post-correction. The bias (B) is defined as:

B =
(a+ b)

(a+ c)
(1.15)

ranging from 0 (events are never diagnosed) to ∞ (events never occur), with B = 1

being the perfect score since the number of diagnoses is equal to the number of events.

Any bias value less than 1 is an underdiagnosis, and any bias value greater than 1 is

an overdiagnosis. A product can have the perfect bias score of 1 and have a POD of

0, by having equal numbers of false alarms and miss cases. In some cases, if there is a

preference for miss cases over false alarms, or vice versa, then B 6= 1 will be desired.
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Again, no single scalar metric is able to represent the behaviour of a 2 × 2 contingency

table which has 3 degrees of freedom (Murphy 1991). Ultimately the choice of scalar

metrics on a 2 × 2 contingency table should depend on the desired goal of the product

but a combination of turning false alarms into hits and misses into correct nulls, is the

overall goal of any verification.

4.5. Skill Score Metrics

Skill is a term used to define how much improvement a diagnosis or forecast has over

some reference. The choice of the reference differs depending on the exact intentions

of the verification, and ultimately determines the outcome of the value of skill. Skill

scores are additional scalar metrics which set the reference skill value to zero and the

perfect skill value to 1. As such, skill scores are defined as:

SS =
V − Vref

Vperf − Vref
(1.16)

where V is the verification metric, Vref is the verification metric for a reference diag-

nosis, and Vperf is the verification metric for a perfect diagnosis, set equal to 1. While

many skill score formatted metrics exist for the contingency table, a subset of these

metrics are higher-dimensional and are therefore also applicable to the confusion ma-

trix. In this thesis it is desirable to use skill scores which apply to both the confusion

matrix and the compressed contingency tables which originate from the confusion ma-

trix. With this approach, the contribution (be that the advantage or detriment) of each

precipitation class to the overall classifier skill score can be quantified. The classifica-

tions can also be adjusted, grouped or divided such as those described in Figure 1.24

to determine whether another classification structure warrants higher skill.

Therefore, only a subset of skill scores are considered. The higher-dimensional Heidke

Skill Score (HSS) is defined following the structure of Eq. 1.16 as:

HSS =

∑I
i=1 p (yi, xi)−

∑I
i=1 p (yi) p (xi)

1−
∑I

i=1 p (yi) p (xi)
(1.17)

where
∑I

i=1 p (yi, xi) is the proportion correct (the normalised sum of all diagonal con-

fusion matrix terms),
∑I

i=1 p (yi) p (xi) is the random proportion correct (the product

of diagnosed and observed normalised probabilities summed over each class), 1 is the

perfect score, I is the length of the confusion matrix I × J , yi is the ith row and

xi is the ith column (Doolittle 1888; Heidke 1926). The HSS indicates the fractional
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improvement in diagnosis over the probability of a correct diagnosis by chance, which

would score zero. The highest score (Vperf ) is 1, and the lowest possible score is −∞;

negative values therefore indicate that a random guess would have been more skilful.

For a dichotomous 2 × 2 contingency table the HSS collapses to:

HSS =
2(a× d− b× c)

(a+ c)(c+ d) + (a+ b)(b+ d)
(1.18)

where a, b, c, and d have the same interpretation as in Figure 1.25

The higher-dimensional Peirce Skill Score (PSS) (also referred to in the literature as

the true skill statistic (TSS) and Hanssen-Kuipers discriminant (HK)) is defined as:

PSS =

∑1
i=1 p (yi, xi)−

∑1
i=1 p (yi) p (xi)

1−
∑J

j=1 [p (xj)]
2

(1.19)

where
∑I

i=1 p (yi, xi) and
∑I

i=1 p (yi) p (xi) are the proportion correct and the random

proportion correct respectively (identical to the HSS in Eq. 1.17), and the remaining

symbols have the same meaning as in Eq. 1.17 (Peirce 1884; Hansen and Kuipers 1965).

One term differs from the HSS—on the denominator of Eq. 1.17,
∑J

j=1 [p (xj)]
2 is a

modified random proportion correct which is the square of the observed normalised

probabilities summed over each class, meaning that the diagnosed normalised proba-

bilities are excluded. Again the highest score (Vperf ) is 1, and the lowest possible score

is −∞, and zero means no skill, so values of PSS < 0 indicate that a random guess

would have been more skilful. The PSS also indicates the fractional improvement in

diagnosis over the probability of a correct diagnosis by chance (with a different defini-

tion of “chance”), which would score zero. For a dichotomous 2 × 2 contingency table

the PSS collapses to:

PSS =
(a× d)− (b× c)
(a+ c)× (b+ d)

(1.20)

which can be represented as the sum of the hit rate (POD, Eq. 1.12) minus the false

alarm rate (F, Eq. 1.13):

PSS =
a

(a+ c)
− b

(b+ d)
(1.21)

The PSS denominator modification compared with the HSS, where the denominator

Vref term is
∑J

j=1 [p (xj)]
2, is equivalent to the squared climatology distribution of

events. The score must be applied to each climatological subset if significant differ-

ences exist in the dataset under verification (Wilks 2011). The fundamental difference

between the HSS and the PSS is the definition of a random chance diagnosis. For the
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HSS, the random chance is the combined product of the diagnosed and the true event

probabilities. For the PSS, the random chance (in the denominator only) is the square

of the climatological probability. In other words, the HSS uses the random chance that

the final confusion or contingency table would reach the same diagnosed and observed

probabilities, whereas the PSS uses the random chance that the diagnosed probability

would match the observed (climatological) probability.

Doswell III et al. (1990) showed that the value of the PSS for a 2 × 2 contingency table

asymptotes toward the value of the POD scalar metric (Eq. 1.12), as the weighting

of the correct null (d) quadrant increases—in other words, as the event under scrutiny

increases in climatological rarity. In this instance, the observation or forecast under

examination can appear to have a higher PSS value by increasing the frequency of the

‘no’ diagnosis. Furthermore, if the bias of the dataset under examination is approxi-

mately 1 then the HSS and PSS have the same value, since if B = 1, then yi = oi such

that:
J∑

j=1

[p (xj)]
2 =

I∑
i=1

p (yi) p (xi) (1.22)

More skill scores do exist for the 2 × 2 contingency table (Gilbert 1884; Yule 1900;

Clayton 1927, 1934; Stephenson 2000; Hogan et al. 2009; Ferro and Stephenson 2011)

but are not scalable to the higher-dimensional confusion matrix and are thus not de-

sirable. Spatial skill scores such as the Fractions Skill Score (FSS; Roberts and Lean

2008; Mittermaier et al. 2013) and the Localised FSS (Woodhams et al. 2018), compare

two spatial datasets which must exist on the same resolution grid. The FSS combines

spatial and temporal inaccuracies into a single score and avoids the so-called ‘double

penalty’ problem where a convective cell in the wrong location results in both a false

alarm and a miss. However, in this thesis the comparisons made are first point-to-point

evaluations, and then point-to-grid verifications, not grid-to-grid. A novel method for

the comparison of gridded spatial data against point-based reference data, using several

of the metrics introduced in this section, will be introduced in Chapter 4.

4.6. Metrics Used in the Literature

For the verification of point SPT observations, a manual observer is the most commonly

used reference data. Sheppard and Joe (2000) use POD, FAR and HSS (no justification

is provided for the choice of metrics) to verify the Vaisala FD12P, two more forward-

scattering sensors and a close range (2 m) vertically-pointing radar (with and without

multi-parameter temperature/icing sensor) against human observers over two 6-month
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winter periods in Toronto, Canada. Merenti-Välimäki et al. (2001) use POD and a

proprietary correlation model (which they claim is “fascinating in its flexibility and

simplicity”) based on confusion matrices of PW codes to verify a Vaisala FD12P sensor

against a manual observer for two winters at the Jokioinen Observatory of the Finnish

Meteorological Institute. Bloemink and Lanzinger (2005) also use POD, FAR, and

HSS (without justification) and verify the Thies LPM and the Vaisala FD12P against

manual observers over a six-week period in central Germany (at 950 m a.m.s.l) where

liquid and solid precipitation occurred for 7% and 5% of the study period respectively.

Boudala et al. (2017) simply compare the frequencies (no justification is given for the

lack of scalar metrics) of observed SPTs from a range of automated instruments and

manual observers for 12 months in Northeastern Alberta, Canada. In all cases, some

level of interpretation of the PW coding system is required.

Several studies perform verification of SPT diagnosis from spatial observations. In

Schmid and Mathis (2004), dry-bulb and dew-point temperature from 72 ground sta-

tions between 200–2,000 m altitude in the Swiss Alps are combined with a radar-based

precipitation mask into a rain or snow SPT algorithm (Koistinen and Saltikoff 1998)

at 10-minute frequency. When verified against 52 automatic stations (Vaisala PWD11)

the inferred metrics used were the bias and POD but no rationale was provided for the

lack of other scalar metrics. Reeves (2016) used automated stations and crowdsourced

reports of SPT to verify atmospheric sounding-based SPT algorithms. The main metric

used in the verification is the POD, justified with the claim that the interpretation of

the FAR, HSS and PSS “is the same as what can be gleaned through consideration of

only the POD”. Of note is that the crowdsourced verification datasets almost always

gave lower POD values, which was attributed to the skill of the members of the public

submitting reports. Chen et al. (2016) verify an SPT algorithm by Zhang et al. (2011)

which uses a 3D radar mosaic plus model temperature surface data, against the same

crowdsourced reports dataset in Reeves (2016) over 4 winter months of 2012/13. The

POD, FAR and CSI were applied to this verification but no reasoning is provided.

More studies perform a verification of SPT forecasts from NWP models. Gascón

et al. (2018) describe two probabilistic forecast products from the European Centre

for Medium Range Weather Forecasts (ECMWF) ensemble model. Since the product

is probabilistic, different verification metrics can apply and are well-reasoned. However,

for the deterministic portion of the forecasts, POD, FAR and CSI are used because their

mathematical relatability allows geometrical representation in a visualisation called a

performance diagram. Elmore et al. (2015) evaluated 3 NWP short-range (0–24h) SPT

models against crowdsourced observations over 2 winter seasons. The bias and PSS
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metrics are applied on 2 × 2 contingency tables (PSS gives similar values as HSS if

the bias is minimal; Wilks 2011) but the Gerrity Skill Score (GSS; Gerrity Jr. 1992)

is applied on higher-dimensional confusion matrices, which gives weighted influence to

precipitation classes based on their frequency more than the HSS does. However, the

skill contribution from each precipitation class toward the higher-dimension score is

not tangible because the PSS and the higher-dimensional GSS are incomparable. Ikeda

et al. (2013) verified the High-Resolution Rapid Refresh (HRRR) 1–8h lead-time SPT

diagnosis through winter 2010/11 with a fractional confusion matrix approach to over-

come the “double penalty” problem for NWP forecast verification (Roberts and Lean

2008; Mittermaier and Roberts 2010). The model value (the column) of the confusion

matrix is spread across the precipitation types based on what fraction of each type

exists in a neighbourhood region around the ground data location. The neighbourhood

used is 18 × 18 km ± 6-min, significantly larger than the neighbourhood used in Chap-

ters 4 and 5, however, an NWP forecast has codependent spatiotemporal errors. POD

is the main verification metric but misses and false alarms are also presented on maps

for two case studies. Wandishin et al. (2005) compare 5 algorithms using short-range

(0–48h) ensemble forecast data against manual reports for the first 3 months of 2002

in the United States. Many probabilistic metrics are applied but for the deterministic

output, the POD is the main scalar metric used. Of note is that Wandishin et al. (2005)

remove sample events when surface temperatures greater than T > 5 ◦C because these

are cases where a rain diagnosis is ‘easy’.

The metrics used in the current literature to perform verification of SPT data vary

widely between studies, which makes comparison difficult. Furthermore, there is typi-

cally an absence of justification for the choice of scalar metrics used in the verification.

However, the most commonly used metrics are bias, POD, FAR, and HSS. Compar-

ison between studies is critical in order to assess which measurement or forecasting

techniques are more accurate in space, time and by SPT. Knowing where some meth-

ods succeed and where others fail is useful to combine and improve methods for rapid

improvement of SPT observation or forecast diagnosis. This thesis addresses the am-

biguities of SPT verification in several ways, which are outlined in the next section.

5. Thesis Objectives and Structure

Surface precipitation type has a high impact on society but is poorly observed and

poorly forecast, due, in part, to the lack of an unambiguous measurement standard
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and the absence of a suitable verification framework to assess the skill of measurement

techniques.

The objectives and questions of this thesis are:

1. Collect a dataset of low-cost, high quality in-situ surface precipitation type mea-

surements in the UK.

a) Build and validate a low-cost network of precipitation type instruments.

b) Make the observations available in real-time to end users.

c) Make the observational dataset available to the wider research community.

2. Evaluate the new and the existing measurement techniques for in-situ surface

precipitation type measurements.

a) Are the new instruments comparable to those sensing methods already used?

b) How should SPTs be classified?

c) What is a suitable approach to evaluate discrete, non-probabilistic SPT ob-

servations?

d) How does the evaluation result differ at various timescales?

3. Perform a verification of a radar-based surface precipitation type product in the

UK.

a) What is a suitable statistical method to perform verification of spatial aerial

products with surface-based point reference data?

b) What is the skill of surface precipitation type diagnoses from existing spatial,

gridded products?

c) How does the diagnosis skill vary between precipitation types?

d) When and where does the skill vary—and what underlying processes are

causing discrepancies?

e) Using a consistent verification skill methodology, how does the result differ

between reference datasets?
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f) Can the skill of existing SPT products be improved by modifying the clas-

sification structure or the underlying algorithm?

Chapter 2 describes the development, deployment, and continued maintenance of a

new network of 14 precipitation sensors in the UK which was named DiVeN (objective

1a). The deployment of these sensors aimed to address the lack of high-quality SPT

observations available through the existing surface station network, which rely on a

visiometer, rain gauge and thermometer to determine SPT. The deployed sensors (Thies

LPMs) instead use the occultation technique described in Section 3.1 to estimate the

SPT, and their network forms the first of its kind in the UK. The research highlights the

difficulties that were overcome in creating such a network on a restricted budget, and

the challenges that were faced in maintaining a continuous dataset. A real-time website

(objective 1b) was created to encourage the regular usage of the instrument network for

forecasting. The publication of a community-accessible dataset in a compliant format

(objective 1c) aimed to encourage further research beyond the scope of the research

conducted in this thesis. A qualitative validation through three case studies against

manual trained observers is described which motivates the study performed in Chapter

3.

Chapter 3 describes the evaluation of six precipitation measurement techniques using

seven sensors at the CAO. Two of the sensors were co-located Thies LPMs from DiVeN

described in Chapter 2. The purpose of this research is to evaluate the instruments to

determine if they meet or exceed the quality of existing SPT-measuring instruments

similar to those used in the existing surface station network from the Met Office (objec-

tive 2a). All instruments are compared across a 12-month period for four precipitation

variables: precipitation rate/depth, drop diameter, drop velocity, and SPT diagnosis.

The wider evaluation, in addition to the SPT comparisons, is undertaken primarily to

support the SPT results since some instruments use the diameter and velocity measure-

ments to diagnose SPT. Furthermore, the results for other variables were evaluated with

the aim of informing decisions on which sensors to use for future sensor deployments.

A new SPT classification standard is developed (objective 2b) and statistical metrics

are chosen which are suitable for SPT data (objective 2c). Time scales were varied

with the aim of showing the limit of high temporal resolution where some measurement

techniques lose quality (objective 2d), which is important since higher temporal reso-

lution allows for faster response to an SPT event and more accurate quantification at

high precipitation rates.

Chapter 4 describes the verification of a spatial SPT product for rain, mixed-phase and

55



Chapter 1: Introduction

snow, which uses an empirical relationship between radar-derived rainfall rate and the

height of the 0 ◦C wet-bulb isotherm from an NWP model. The product is operational

within the Met Office and this research is the first time that a spatial, radar-based

SPT product has received verification in the UK. A total of 5 years of the product

are sampled and three ground datasets are used as a reference, including the Met

Office surface stations and the DiVeN instruments from Chapter 2. The verification

is performed with the aim of informing users when the product is uncertain, and to

motivate improvements to a future version of the product. The choice of statistical

metrics and skill scores, as well as the method of verification are specifically appropriate

for SPT data (objective 3a). The approach taken is novel compared to the literature

and the aim is for these methods to be applied to future verifications of spatial SPT

products. Chapter 5 describes the verification of a hail-specific spatial SPT product

from the UK Met Office. The methods from Chapter 4 are used in a limited spatial

SPT verification using crowdsourced hail reports as the point reference because the

automated ground point instruments have poor skill for hail diagnosis. The main

purpose of the research in Chapter 4 and Chapter 5 was to provide a baseline skill level

(objective 3b) and to identify weaknesses with the current product (objectives 3c, 3d)

in order to motivate improvements for a future SPT product (objective 3f).

The results of Chapters 2, 3, 4 and 5 are summarised in Chapter 6 along with a discus-

sion and synthesis of the results for their wider impact to the scientific field. Recom-

mendations for future research in a research sense are made as well as recommendations

for changes to operational observing practices.

56



The Assessment of Surface Precipitation Type Measurements

References

Agnew, M. D., and J. E. Thornes, 1995: The weather sensitivity of the UK food

retail and distribution industry. Meteorological Applications, 2 (2), 137–147, doi:

10.1002/met.5060020207.

Al-Sakka, H., A. A. Boumahmoud, B. Fradon, S. J. Frasier, and P. Tabary, 2013: A new

fuzzy logic hydrometeor classification scheme applied to the french X-, C-, and S-

band polarimetric radars. Journal of Applied Meteorology and Climatology, 52 (10),

2328–2344, doi:10.1175/JAMC-D-12-0236.1.

Allen, J. T., I. M. Giammanco, M. R. Kumjian, H. Jurgen Punge, Q. Zhang, P. Groen-

emeijer, M. Kunz, and K. Ortega, 2020: Understanding Hail in the Earth System.

Reviews of Geophysics, 58 (1), 1–49, doi:10.1029/2019RG000665.

AMS, 2012a: Graupel. Glossary of Meteorology. URL https://glossary.ametsoc.org/

wiki/Graupel.

AMS, 2012b: Hail. Glossary of Meteorology. URL https://glossary.ametsoc.org/wiki/

Hail.

AMS, 2012c: Sleet. Glossary of Meteorology. URL https://glossary.ametsoc.org/wiki/

Sleet.

Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall.

Monthly Weather Review, 115 (5), 1053–1070.

Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual linear

polarization radar. Journal of climate and applied meteorology, 25 (10), 1475–1484.

Bader, H., 1964: Density of ice as a function of temperature and stress.

Baker, J. D., and E. W. Friday, 1996: Observing Handbook No.8 Aviation Weather

Observations for Supplementary Aviation Weather Reporting Stations (SAWRS).

Tech. Rep. 8, The United States National Weather Service.

Battan, L. J., 1976: Vertical air motions and the ZR relation. Journal of Applied

Meteorology, 15 (10), 1120–1121.

Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical

weather prediction. Nature, 525 (7567), 47–55, URL http://dx.doi.org/10.1038/

57

https://glossary.ametsoc.org/wiki/Graupel
https://glossary.ametsoc.org/wiki/Graupel
https://glossary.ametsoc.org/wiki/Hail
https://glossary.ametsoc.org/wiki/Hail
https://glossary.ametsoc.org/wiki/Sleet
https://glossary.ametsoc.org/wiki/Sleet
http://dx.doi.org/10.1038/nature14956 http://10.0.4.14/nature14956
http://dx.doi.org/10.1038/nature14956 http://10.0.4.14/nature14956
http://dx.doi.org/10.1038/nature14956 http://10.0.4.14/nature14956


Chapter 1: Introduction

nature14956http://10.0.4.14/nature14956.

Bergeron, T., 1935: On the Physics of Clouds and Precipitation. International Union

of Geodesy and Geophysics, 156–178.

Berne, A., and W. F. Krajewski, 2013: Radar for hydrology: Unfulfilled promise or

unrecognized potential? Advances in Water Resources, 51, 357–366, doi:10.1016/j.

advwatres.2012.05.005, URL http://dx.doi.org/10.1016/j.advwatres.2012.05.005.

Bloemink, H., and E. Lanzinger, 2005: Precipitation type from the Thies

disdrometer. WMO Technical Conference on Meteorological and Environ-

mental Instruments and Methods of Observation (TECO-2005), 1–7, URL

http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-82-TECO 2005/

Papers/3(11) Netherlands 4 Bloemink.pdf.

Bohm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors.

2419–2427 pp., doi:10.1175/1520-0469(1989)046〈2419:AGEFTT〉2.0.CO;2.

Bottomley, G. A., 1978: The vapour pressure of supercooled water and heavy water.

Australian Journal of Chemistry, 31 (6), 1177–1180.

Boudala, F. S., G. A. Isaac, P. Filman, R. Crawford, D. Hudak, and M. Anderson, 2017:

Performance of emerging technologies for measuring solid and liquid precipitation in

cold climate as compared to the traditional manual gauges. Journal of Atmospheric

and Oceanic Technology, 34 (1), 167–185, doi:10.1175/JTECH-D-16-0088.1.

Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler weather radar: prin-

ciples and applications. Cambridge university press.

Brown, R., 1828: XXVII. A brief account of microscopical observations made in the

months of June, July and August 1827, on the particles contained in the pollen of

plants; and on the general existence of active molecules in organic and inorganic

bodies. The Philosophical Magazine, 4 (21), 161–173.

Brown, T. M., W. H. Pogorzelski, and I. M. Giammanco, 2015: Evaluating hail damage

using property insurance claims data. Weather, Climate, and Society, 7 (3), 197–210,

doi:10.1175/WCAS-D-15-0011.1.

Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the

microphysical and kinematic evolution of a lightning producing storm. Meteorology

and Atmospheric Physics, 59 (1-2), 33–64, doi:10.1007/BF01032000.

58

http://dx.doi.org/10.1038/nature14956 http://10.0.4.14/nature14956
http://dx.doi.org/10.1038/nature14956 http://10.0.4.14/nature14956
http://dx.doi.org/10.1038/nature14956 http://10.0.4.14/nature14956
http://dx.doi.org/10.1016/j.advwatres.2012.05.005
http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-82-TECO_2005/Papers/3(11)_Netherlands_4_Bloemink.pdf
http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-82-TECO_2005/Papers/3(11)_Netherlands_4_Bloemink.pdf


The Assessment of Surface Precipitation Type Measurements

Carrière, J. M., C. Lainard, C. Le Bot, and F. Robart, 2000: A climatological study of

surface freezing precipitation in Europe. Meteorological Applications, 7 (3), 229–238,

doi:10.1017/S1350482700001560.

Chandrasekar, V., V. N. Bringi, N. Balakrishnan, and D. S. Zrnić, 1990: Error struc-
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Im Sturmwarnungsdienst. Geografiska Annaler, 8 (4), 301–349, doi:10.1080/

20014422.1926.11881138, URL https://doi.org/10.1080/20014422.1926.11881138.
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Abstract. Starting in February 2017, a network of 14 Thies
laser precipitation monitors (LPMs) were installed at various
locations around the United Kingdom to create the Disdrom-
eter Verification Network (DiVeN). The instruments were in-
stalled for verification of radar hydrometeor classification al-
gorithms but are valuable for much wider use in the scien-
tific and operational meteorological community. Every Thies
LPM is able to designate each observed hydrometeor into
one of 20 diameter bins from ≥ 0.125 to > 8 mm and one of
22 speed bins from > 0.0 to > 20.0 m s−1. Using empirically
derived relationships, the instrument classifies precipitation
into one of 11 possible hydrometeor classes in the form of
a present weather code, with an associated indicator of un-
certainty. To provide immediate feedback to data users, the
observations are plotted in near-real time (NRT) and made
publicly available on a website within 7 min. Here we de-
scribe the Disdrometer Verification Network and present spe-
cific cases from the first year of observations. Cases shown
here suggest that the Thies LPM performs well at identifying
transitions between rain and snow, but struggles with detec-
tion of graupel and pristine ice crystals (which occur infre-
quently in the United Kingdom) inherently, due to internal
processing. The present weather code quality index is shown
to have some skill without the supplementary sensors rec-
ommended by the manufacturer. Overall the Thies LPM is a
useful tool for detecting hydrometeor type at the surface and
DiVeN provides a novel dataset not previously observed for
the United Kingdom.

1 Introduction

Precipitation in all its various forms is one of the most im-
portant meteorological variables. In the UK, severe precipi-
tation events cause millions of pounds worth of damage ev-
ery year (Thornes, 1992; Penning-Rowsell and Wilson, 2006;
Muchan et al., 2015). The phase of precipitation is also im-
portant. In winter, limited resources such as flood defences,
ploughs, and grit will be allocated differently based on fore-
casts of hydrometeor type (Elmore et al., 2015; Gascón et al.,
2018, and references therein). Accurate observations and
forecasts of precipitation amount and type are therefore es-
sential.

1.1 Motivation for DiVeN

Observations of precipitation are traditionally conducted
with networks of tipping-bucket rain gauges (henceforth
TBRs) such as the UK Met Office network described in
Green (2010). TBR gauges funnel precipitation into a bucket,
which tips and empties when a threshold volume is reached.
The threshold volume is typically equivalent to 0.2 mm depth
of rainfall, which means the TBR has a coarse resolution
and struggles to measure low rainfall rates over short inter-
vals. For example, a rain rate of 2.4 mm h−1 would only tip
a TBR once every 5 min. Moreover, TBRs cannot detect hy-
drometeor type, only the liquid equivalent when the solid hy-
drometeors in the funnel melt naturally or from a heating ele-
ment. Even liquid precipitation is poorly measured by TBRs.
Ciach (2003) analysed 15 collocated TBRs and showed that
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considerable errors occur between the instruments, inconsis-
tent across time and intensity scales. Finally, TBRs are easily
blocked by debris and bird droppings, and the airflow around
the instrument has been shown to influence the measurement
(Groisman et al., 1994).

Weather radar can observe a large area at high spatial and
temporal resolution. Since 1979 the United Kingdom Mete-
orological Office has operated and maintained a network of
weather radars at C-band frequency (5.60–5.65 GHz) which,
as of March 2018, consists of 15 radars. The 5 min frequency
volume data from each radar are quality controlled and cor-
rected before an estimate of surface precipitation rate is de-
rived. Surface precipitation rate estimates from each radar
are then composited into a 1 km resolution product (Harrison
et al., 2000).

The first operational weather radars only observed a single
polarization (Fabry, 2015). An issue with single-polarization
weather radar is that it only provides the radar reflectivity fac-
tor for the sample volume. Deriving an accurate quantitative
estimate of the equivalent rainfall rate from radar reflectivity
factor requires additional knowledge about the size distribu-
tion and type of hydrometeors being observed.

Dual-polarimetric weather radars are better able to esti-
mate the type of hydrometeor within a sample volume. Thus,
variables derived from the dual-polarimetric returns provide
information about the shape, orientation, oscillation, and ho-
mogeneity of observed particles (Seliga and Bringi, 1978;
Hall et al., 1984; Chandrasekar et al., 1990). This infor-
mation may be used to infer the hydrometeor type through
hydrometeor classification algorithms (HCAs). HCAs com-
bine observed polarimetric variables using prior knowledge
of typical values for each hydrometeor type, to identify the
most likely hydrometeor species within a sample volume
(Liu and Chandrasekar, 2000). Chandrasekar et al. (2013)
give an overview of recent work on HCAs.

Starting in mid-2012 and completing early 2018, every
radar in the UK Met Office network was upgraded from sin-
gle to dual-polarization using in-house design and off-the-
shelf components, reusing the pedestal and reflector from the
original radar systems. To take advantage of the new infor-
mation and to improve precipitation estimates, an operational
HCA was developed within the Met Office, based on work
at Météo France (Al-Sakka et al., 2013). While significant
amounts of literature have been published on the technical
improvement of HCAs (Chandrasekar et al., 2013), the veri-
fication of HCA skill has not been discussed as widely. There
is a need for more rigorous validation of HCAs and DiVeN
was created specifically for the verification of the UK Met
Office radar network HCA.

Typically in situ aircraft are used to verify radar HCA (Liu
and Chandrasekar, 2000; Lim et al., 2005; Ribaud et al.,
2016). Instrumented aircraft flights such as the Facility for
Airborne Atmospheric Measurements (FAAM) take a swath
volume using 20 Hz photographic disdrometer instruments
(Abel et al., 2014). However there is no fall speed informa-

tion, which distinguishes hydrometeor type with high skill
due to distinct particle density differences (Locatelli and
Hobbs, 1974). The lack of fall speed information on FAAM
instruments means that the 1200 images collected in every
minute of flight must be visually analysed manually or with
complex image recognition algorithms. The major disadvan-
tage with FAAM data is the sparsity of cases due to the ex-
pense of operating the aircraft.

Therefore, in situ surface observations must be utilized
to expand the quantity of comparison data. A larger dataset
allows bulk verification statistics to be performed on radar
HCAs. Here we introduce a new surface hydrometeor type
dataset and examine the skill of the dataset, independently of
any radar instruments.

1.2 Precipitation measurement with disdrometers

A disdrometer is an instrument which measures the drop size
distribution of precipitation over time. The drop size distri-
bution (henceforth DSD) of precipitation is the function of
drop size and drop frequency. Jameson and Kostinski (2001)
provide an in-depth discussion on the definition of a DSD.
Disdrometers typically record drop sizes into bins of non-
linearly increasing widths due to the accuracy reducing with
increasing values.

The disdrometer is also a useful tool for verifying radar hy-
drometeor classification algorithms. Hydrometeor type can
be empirically derived using information about the diameter
and fall speed of the particle, which the Thies laser precip-
itation monitor (LPM) instrument used in DiVeN is able to
measure. The Gunn–Kinzer curve (Gunn and Kinzer, 1949)
describes the relationship between raindrop diameter and
fall speed. As diameter increases, the velocity of a raindrop
increases asymptotically. Other velocity–diameter relations
have been shown in the literature for snow, hail, and graupel,
which are well described in Locatelli and Hobbs (1974).

At of the time of writing this publication, operational net-
works of disdrometers are uncommon, with the notable ex-
ceptions of Canada (Sheppard, 1990) and Germany. Net-
works of disdrometers solely for research purposes have
been frequently deployed for short periods of time. From
March 2009 to July 2010 (16 months), 16 disdrometers were
placed on rooftops within 1 km by 1 km on the campus of the
Swiss Federal Institute of Technology in Lausanne to study
the inter-radar pixel variability in rainfall (Jaffrain et al.,
2011). Another example of research using networked dis-
drometers is the Midlatitude Continental Convective Clouds
Experiment (MC3E) (Jensen et al., 2016), which utilized 18
Parsivel-1 disdrometers and seven 2DVDs (two-dimensional
video disdrometers) within a 6 km radius of a central facility
near Ponca City, Oklahoma. The project lasted for 6 weeks
(22 April through 6 June 2011). DiVeN has an initial deploy-
ment phase of 3 years with a high expectation of renewal,
which enables unique long-term research to be conducted
with the data.
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1.3 Paper structure

This paper describes DiVeN and demonstrates the data prod-
ucts of the Thies LPM instruments being used. The first part
of the paper provides a technical description of the disdrom-
eter instruments used in the network, the locations chosen to
host the instruments, and data management in the network.
Case studies from the first 12 months of DiVeN observations
are then discussed. The case studies include rain–snow tran-
sitions in the 2017 winter storm named Doris, a convective
rainfall event, and graupel observations. These events will
provide an illustrative analysis of the observations being pro-
duced by all the individual disdrometer instruments within
DiVeN. Enhanced scrutiny will be placed on the performance
of the present weather code because this variable will be used
to verify the Met Office radar HCAs.

2 Thies Clima laser precipitation monitor

2.1 Specification

The instruments used in DiVeN (see Fig. 1) are the
Thies™ laser precipitation monitor (LPM), model number
5.4110.00.200, which is described in detail in Adolf Thies
GmbH & Co. KG (2011). To make observations the instru-
ment utilizes an infrared (785 nm) beam with dimensions
of 228 mm× 20 mm× 0.75 mm, a total horizontal area of
45.6 cm2. The infrared beam is emitted from one end of the
instrument and is directed to the other. A photodiode and sig-
nal processor determine the optical characteristics including
optical intensity, which is reduced as a particle falls through
the beam. The diameter of the hydrometeor is inferred by the
maximum amplitude of the signal reduction and the speed of
the hydrometeor is estimated by the duration of the signal re-
duction. Figure 1 in Löffler-Mang and Joss (2000) describes
a similar instrument (Parsivel-1) with the same observing
principle and is an excellent visualization of the technique
which is employed by the Thies LPM. The signal processing
claims to detect and remove particles that fall on the edge
of the beam: “the measured values are processed by a sig-
nal processor (DSP), and checked for plausibility (e.g. edge
hits).” No further details are given by the manufacturer. The
instrument is able to allocate individual hydrometeors into 20
diameter bins from 0.125 to > 8 mm and 22 speed bins from
> 0.0 to > 20 m s−1.

The Thies disdrometer performs additional calculations on
the incoming data which it attaches to the Telegram 4 se-
rial output. Table 1 provides details of the variables and the
range of possible values that the instrument is capable of
recording. The quantity, intensity, and type of precipitation
(drizzle, rain, snow, ice, grains, soft hail, and hail as well
as combinations of multiple types) are calculated. Hydrome-
teor type is recorded as a present weather code. Table 2 lists
all of the WMO Table 4680 present weather codes that the

Figure 1. A DiVeN Thies LPM located at Weybourne Observatory
in Weybourne, East Anglia, UK, which is an Atmospheric Mea-
surement Facility (AMF) site, part of the National Centre for At-
mospheric Science (NCAS).

Thies laser precipitation monitor is capable of recording. The
present weather code is encoded as a number between 1 and
99, which has a corresponding description of the weather us-
ing the standardized codes from the World Meteorological
Organization Table 4860 (WMO, 1988). The present weather
descriptors cover most hydrometeor types but not all; graupel
is not explicitly mentioned, for example.

Hydrometeor type is inferred by the instrument, using
empirical relationships between hydrometeor size and fall
speed. The diameter–fall speed relation described in Gunn
and Kinzer (1949) is the only relationship cited in the in-
strument manual but it is expected that further relationships
are used for solid precipitation, undisclosed by the manufac-
turer. Section 4 of this paper will qualitatively test the skill of
the present weather code regardless of the algorithm it uses,
since the exact method of derivation is not known.

Lastly, the present weather code quality index (Table 1) is
calculated based on the number of particles within each hy-
drometeor class. Thies do not recommended using the qual-
ity index without additional temperature and wind sensors
which can be added to the disdrometer (Marc Hillebrecht,
Adolf Thies GmbH & Co. KG, personal communication,
2017). Although DiVeN does not employ the additional sen-
sors, the quality index is still published and can be a useful
indicator as shown in Sect. 4.1.

2.2 Limitations

Tapiador et al. (2016) performed a physical experiment with
14 laser disdrometers (Parsivel-1) placed in close proximity
(within 6 m2) on the roof of a building in Toledo, Spain. Pre-
cipitation characteristics were calculated for one disdrome-
ter’s data, then for two instruments’ combined data, and so
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Table 1. Variable output from the Thies laser precipitation monitor (LPM).

Output Units Resolution Range

Particle diameter mm 0.125 mm (max) ≥ 0.125–> 8 mm
Particle velocity m s−1 0.2 m s−1 (max) > 0–> 20 m s−1

Particle count Counts 1 count 0–99 999
Rainfall rate mm h−1 0.001 mm h−1 0.000–999.999 mm h−1

Precipitation visibility m 1 m 0–99 999 m
Radar reflectivity factor dBZ 0.1 dBZ −9.9–99.9 dBZ
PW code quality index % 1 % 0 %–100 %

Table 2. World Meteorological Organization (WMO) synoptic
present weather codes (Table 4680) output by the Thies laser pre-
cipitation monitor (LPM).

SYNOP Description
(Table 4680)

−1 Sensor error
41 Light/moderate unknown precipitation
42 Heavy unknown precipitation
0 No precipitation
51, 52, 53 Light/moderate/heavy drizzle
57 Light drizzle with rain
58 Moderate/heavy drizzle with rain
61, 62, 63 Light/moderate/heavy rain
67 Light rain and/or drizzle with snow
68 Moderate/heavy rain and/or drizzle with snow
71, 72, 73 Light/moderate/heavy snow fall
74, 75, 76 Light/moderate/heavy soft hail/ice grains
77 Snow grains
89 Hail

on until all 14 disdrometers’ data were used. The aim was to
test how many disdrometers’ data were needed for the precip-
itation parameters to asymptote towards a stable value. It was
found that a single disdrometer could underestimate instan-
taneous rain rate by 70 %. Tapiador et al. (2016) proposed
that large drops contribute disproportionately to the rain rate
and that instantaneous measurements have a lower chance of
measuring large drops because they are sparsely populated.
The DiVeN disdrometers have a shortest temporal resolution
of 1 min, which alleviates some of the sampling issues by
allowing time for larger droplets to be observed.

Hydrometeor type observations are less affected by the
aforementioned sample size limitations as the dominant type
can be estimated from a relatively small sample of the to-
tal precipitation. Theoretically only one hydrometeor needs
to be sampled by the disdrometer to determine hydrometeor
type. The hydrometeor type accuracy is only as good as the
diameter and fall speed measurements. In reality, the accu-
racy of the diameter and fall velocity measurements for a sin-
gle particle are not accurate enough to determine the domi-
nant hydrometeor phase from an instantaneous measurement.

Furthermore, the fall velocity and diameter of small hydrom-
eteors may be indistinguishably similar for several hydrom-
eteor types when observed by the disdrometer. Similar to the
results of Smith (2016) for rainfall rate, the largest particles
also give the strongest indication of hydrometeor type. This
is because fall velocity is related to the density of the particle
multiplicatively (Gunn and Kinzer, 1949); i.e. the difference
in fall speed for a 5 mm raindrop and a 5 mm snow aggregate
is large compared with the difference between a 0.5 mm rain-
drop and 0.5 mm ice crystal. Therefore the disdrometer can
determine with greater confidence the type of hydrometeor
when the hydrometeors are larger.

If the sample size of the instrument were larger and thus
could count more particles at a faster rate, other limitations
would occur. The instrument relies on observing one parti-
cle in the beam at any given time; the optical intensity of
the beam must return to normal (no obstruction) for maxi-
mum confidence of speed observations. If two hydrometeors
partially overlap vertically as they fall through the beam, the
disdrometer will observe a double dipped reduction in optical
intensity which the signal processor must account for. Simi-
larly for diameter, if two hydrometeors fall through the beam
simultaneously, the disdrometer will observe a hydrometeor
twice as large at the same speed. The sample area is thus lim-
ited to reduce the possibility of overlapping particles. Again,
Fig. 1 in Löffler-Mang and Joss (2000) is an excellent dia-
gram to aid the understanding of this limitation.

The chance of two drops being in the disdrometer at the
same time is unlikely except at extremely high precipita-
tion rates. To examine this, a Poisson distribution test is ap-
plied using the sampling volume of the disdrometer with
increasing drop concentrations. Figure 2 shows that pre-
cipitation rates of greater than 10 000 drops min−1 are re-
quired before the probability of simultaneous drops in the
beam occurring becomes non-negligible. There is a 0.09 %
chance of two or more drops in the beam simultaneously
for 104 drops min−1 observed by the disdrometer; one in ev-
ery 1075 drops. For 105 drops min−1 observed by the dis-
drometer there is a 7 % chance of two or more drops in the
beam simultaneously; one in every 14 drops. For context, a
drop count of 12 000 observed by a disdrometer located at
NFARR Atmospheric Observatory, Chilbolton, England, in
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Figure 2. Probability of X number of drops residing within the dis-
drometer beam for a given drop concentration. If two or more drops
are within the beam simultaneously, data quality can be reduced.
More than 12 000 drops m−3 (equivalent to 10 000 drops min−1

recorded by the disdrometer∗) are required before the probability
of two or more drops occurring in the beam simultaneously be-
comes non-negligible. As such, any events with more than 10 000
drops observed per minute should be treated as less reliable. ∗ Drops
falling through the disdrometer beam assume a 3 m s−1 fall velocity,
which from Gunn and Kinzer (1949) is a particle of approximately
0.8 mm diameter, typically the average size observed for a moderate
rainfall event. Droplet breakup on the housing of the Thies LPM is
not factored into this test.

March 2017 (see Sect. 4.2) was equivalent to 22 mm h−1.
Rain rates approaching 100 mm h−1 would be necessary for
the chance of two drops existing in the beam simultaneously
to be non-negligible. Such rainfall rates are extremely rare in
the UK.

3 Description of the network

3.1 DiVeN locations

Disdrometers have similar site specification requirements as
other precipitation instruments. Ideally a flat site with no tall
objects or buildings nearby that can cause shadowing, and
steps taken to minimize the splash of liquid droplets from the
surrounding ground into the instrument. To this end, Thies
recommends that the instrument be mounted on a 1.5 m pole
above a grassy surface. A grassy surface also minimizes con-
vective upwelling from solar heating of the ground – a par-
ticular problem for concrete surfaces – which can slow hy-
drometeor fall speeds and create turbulence. Turbulence from
buildings should also be avoided if possible since it acts

Figure 3. Instrument locations that make up the Disdrometer Ver-
ification Network (DiVeN) as of September 2018. Grey icons are
the operational Met Office radars as well as the Met Office re-
search radar at Wardon Hill. Map data © 2018 GeoBasis-DE/BKG
(© 2009), Google, Inst. Geogr. Nacional.

to break larger particles into smaller particles, resulting in
skewed drop size distributions.

The locations chosen for DiVeN cover a variety of geo-
physical conditions such as mountain peaks, valleys, and flat
regions, as well as inland and coastal sites. The locations also
cover the full breadth of the climatology of precipitation to-
tals and hydrometeor types in the UK (Fairman et al., 2015)
with sites in wetter (Wales) and drier (East Anglia) regions as
well as sites in warmer (southern England) and colder (north-
ern Scotland) climates.

The typical range at which the Met Office radar HCA
product will need to perform is < 120 km (maximum range
used to produce surface rainfall rate composite). For the dis-
drometers to be representative when verification work is per-
formed, the instruments in DiVeN are located at varying
ranges from Met Office radars. Figure 3 shows the DiVeN
site locations and the Met Office radar locations for compari-
son. Table 3 gives an overview of each site in DiVeN, includ-
ing the coordinates, height above mean sea level, and terrain
characteristics.

Two instruments are located 10 m apart at NFARR Atmo-
spheric Observatory in Chilbolton. These two instruments
form part of an extended observational period of 12 months
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Table 3. Site location descriptions of disdrometers in the Disdrometer Verification Network.

Site name Latitude, longitude Altitude Installation date Description
(decimal ◦) (m a.m.s.l.)

Chilbolton 51.1455,−1.4396 83 10 Feb 2017 NFARR Atmospheric Observatory. Two instruments, 10 m
apart. Land type: flat, agricultural fields for > 500 m in all direc-
tions. Nearby objects: 25 m diameter radar dish antenna 100 m
ESE; two-floor building 25 m SSW.

RUAO 51.4415, −0.9376 63 13 Feb 2017 Reading University Atmospheric Observatory. Land type: open
grass in vicinity; campus with lake and trees situated within a
wider suburban area. Lake 100 m W–NW, three-floor building
50 m SSE. Shed 30 m ENE.

Cranfield 52.0744, −0.6252 105 15 Feb 2017 Facility for airborne atmospheric measurements. Land type:
two-floor rooftop observatory within a cluster of buildings at
a university airport. Nearby objects: stairwell NW, hangar ESE.
Above most nearby buildings.

Weybourne 52.9505, 1.1218 8 17 Feb 2017 NCAS Atmospheric Measurement Facility. Land type: military
base, mostly grass. Sandy beach and ocean 100 m NNE. Nearby
objects: small one-floor building ESE, four-floor scaffold tower
E.

Aberystwyth 52.4248, −4.0045 44 20 Feb 2017 NFARR/NERC (Natural Environment Research Council)
mesosphere–stratosphere–troposphere (MST) radar site. Land
type: agricultural fields in a WSW–ENE valley. Nearby objects:
single tree and one-floor building SSE, hedgerow N–SSE.

Lancaster 54.0138, −2.7749 94 22 Feb 2017 Hazelrigg Weather Station, University of Lancaster. Land type:
agricultural fields. Nearby objects: 100 m tall wind turbine
150 m WSW, meteorological mast 10 m NW. Road and trees
30 m E.

Edinburgh 55.9217, −3.1745 105 24 Feb 2017 GeoSciences Weather Station, University of Edinburgh. Land
type: roof of six-floor James Clark Maxwell Building. Urban
campus W–N–E, with golf course S. Nearby objects: rooftop
above all surrounding buildings.

Laurieston 54.9614, −4.0605 67 28 Feb 2017 Mountain Weather Information Service. Land type: rural vil-
lage, undulating agricultural terrain beyond. Nearby objects:
one-floor buildings 10 m SE, trees 30 m S–W.

Holme Moss 53.5335, −1.8574 522 10 Mar 2017 Holme Moss transmitting station. Land type: hilltop moorland.
Nearby objects: 228 m transmitting mast 40 m SW with anchor-
ing cables overhead. Cabin 10 m SW, wire mesh fence NNW.

Cairngorm 57.1269, −3.6628 781 12 Jun 2017 Cairngorm Mountain ski resort with Scottish Environment Pro-
tection Agency (SEPA) collaboration. Land type: arctic tundra,
frequently snow-covered valley, facing NW. Nearby objects:
road and power outbuilding uphill (SE) 20 m.

Feshie 57.0063, −3.8550 882 13 Jun 2017 Druim nam Bo weather station owned by University of Dundee.
Land type: arctic tundra, frequently snow-covered, rounded
mountain ridge oriented SW–NE, sloping SW. Nearby objects:
weather station 10 m N.

Dunkeswell 50.8603, −3.2398 255 14 Jul 2017 Met Office official observatory at Dunkeswell Aerodrome. Land
type: flat in all directions. Runway N–E–S with surrounding
agricultural fields and forest SW–N. Nearby objects: one-floor
building 20 m NW.

Coverhead 54.2038, −1.9849 316 15 Dec 2017 Coverhead Estate with Water@Leeds collaboration. Land type:
NW slope of SW–NE valley, agricultural fields. Nearby objects:
mounted on a small outhouse facing S. Telegraph pole 10 m NW
and trees E–SW.
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where their performance will be assessed against several
other precipitation sensors located at the same site. A sep-
arate paper will be produced to address the results of this
dual-instrument study.

3.2 Installation

The main installation campaign occurred in February 2017
for nine instruments. The Holme Moss site was installed
shortly after in March, followed by Cairngorm and Feshie
in June 2017. Dunkeswell is a Met Office site which was
added to the network via a Raspberry Pi with 3G dongle
being appended in July 2017. The last instrument to be in-
stalled was at Coverhead Estate in the Yorkshire Dales in
December 2017, as a collaboration with Water@Leeds https:
//water.leeds.ac.uk/ (last access: 7 August 2019).

Installation took around 2 h at each site and consisted of
anchoring the tripod to the ground, attaching the disdrometer
and data logging box, plugging the disdrometer cables into
the power strip and the Raspberry Pi, and cutting the power
strip cable to length for the site. The installation was de-
signed to be “as plug and play as possible”. Wiring of plugs,
data, and power cables onto the disdrometer and coding of
the Raspberry Pi were all completed in a lab before arriving
at the site.

3.3 DiVeN costs and environmental impact

Each site required the following components to support
the disdrometer: Davis Instruments® tripod (GBP 100,
http://www.davisnet.com/product_documents/weather/
manuals/07395-299_IM_07716.pdf, last access: 7 Au-
gust 2019), IP67-rated box (GBP 25, https://www.
timeguard.com/products/safety/weathersafe-outdoor-power/
outdoor-multi-connector-box, last access: 7 August
2019), Raspberry Pi 3 Model B (GBP 30, https:
//www.raspberrypi.org/products/raspberry-pi-3-model-b/,
last access: 7 August 2019), and a generic RS-485 to USB
converter (GBP 12). Therefore the total cost per site for
hardware was GBP 167. A total of 200 m of power/data
cable and tools required for the installation cost an additional
GBP 270 and GBP 60 respectively. Some sites rely on a 3G
dongle to upload data. The dongles themselves were free
when purchased with a single-use data allotment. The total
cost of hardware and equipment to build DiVeN amounted
to GBP 2500.

The Thies Clima instrument is power rated at a maximum
of 750 mA at 230 v. No typical usage has been measured but
should the maximum be continuous, then the annual con-
sumption would be 1500 kWh per year, or GBP 190 per year
at average UK electricity costs (valid March 2018). In reality
the power consumed is subjectively known to be much less
than the maximum rating.

Most sites use existing networks at their sites for uploading
data to the NCAS server, but those with 3G dongles have an

ongoing cost of GBP 75 per year for a yearly data plan. There
are eight sites using 3G dongles; hence the ongoing annual
cost is GBP 600.

The emissions from the first 3700 km journey in a diesel
van were approximately 966 kg of CO2 and 1.74 kg of
NOx +PMs (nitrogen oxides+ particulate matters). Ongo-
ing power consumption for 13 sites (the Druim nam Bo (Fes-
hie) site is powered off-grid by solar and wind) at the afore-
mentioned maximum rating would be 7150 kg of CO2 annu-
ally (using the UK average of 0.367 kg kWh−1, valid October
2017). In reality the power consumption is less and the UK
average kg kWh−1 is gradually decreasing over time. Com-
putational energy consumed by DiVeN is nearly unquantifi-
able; the data hosting, processing, and analysis were carried
out on shared systems (National Centre for Atmospheric Sci-
ence server, JASMIN server), so the fractional consumption
is difficult to estimate.

3.4 Data acquisition and management

The disdrometer data are read through a serial port by a Rasp-
berry Pi, which executes a Python script to receive and digest
the Telegram 4 format data. The Python code performs file
management with timestamps taken from the Raspberry Pi
internal clock (set over IP) and backs up files to a memory
card into a directory specific to the date. Separate program-
ming triggers the uploading of new files in the “today” direc-
tory to an NCAS server every 5 min over Secure File Trans-
fer Protocol (SFTP). At 01:00 UTC each day, the Raspberry
Pi attempts to upload any remaining files in the directory of
the previous day. At 02:00 UTC each day, the Raspberry Pi
attempts to upload files from the directory for 7 d ago as a
backup command in the event that no connection could be
made at the time. Only new files that do not already exist
on the NCAS server are uploaded to avoid duplication. The
entire directory of data for a single day is compressed us-
ing tar gunzip, 8 d after it is recorded. A support script ex-
ists to keep the processing and uploading scripts running and
self-regulating. The support script checks that the processing
script is running; if not, it will issue a command to start the
processing script again. This means that the data acquisition
script will be reattempted if an exit error occurs. In the event
of a power loss the Raspberry Pi will start up and initiate all
of the required scripts itself when power is restored, without
user intervention.

Each disdrometer produces 3.2 MB of ASCII .txt files
per day but this can be compressed significantly. A total of
10 years of continuous minute-frequency disdrometer data
(5.3 million minutes) can be compressed to as small as
400 MB.

3.5 Open-access website

Data are uploaded to an NCAS server every 5 min. Plot-
ting scripts are initiated 1 min after the upload. An addi-
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Figure 4. Flow chart of the sequence of data in the Disdrometer Verification Network. The instrument outputs a Telegram 4 format serial
ping every minute, which is then captured by a Raspberry Pi (v3) running a Python script. The Python script then saves the file to the built-in
SD card as an ASCII.txt. Separate BASH scripts upload the new files every 5 min (xx:05, xx:10, xx:15) to an NCAS server, which JASMIN
then reads to plot the data (xx:06, xx:11, xx:16). The website indexes for new images at xx:07, xx:12, xx:17, and so on. Thus the time taken
for the xx:00 to xx:05 data to reach the website is 2 min.

tional minute later, a QuickLook system indexes the target
directories for new images and displays them on the pub-
lic website. The public website can be accessed here: https:
//sci.ncas.ac.uk/diven/ (last access: 7 August 2019). Data can
currently be downloaded from NCAS upon request to the
lead author. At the end of the first DiVeN deployment phase
(early 2020) all data collected by DiVeN will be archived
into netCDF at the Centre for Environmental Data Analysis
(CEDA).

3.6 DiVeN users

Although the data from DiVeN will be used for radar verifi-
cation, there are many other uses for the data. Several stake-
holders have used DiVeN data. Met Office operational fore-
casters are able to see live hydrometeor type data and com-
pare with numerical weather prediction forecasts to adjust
their guidance. Second, there are some research projects at
the University of Leeds being carried out. This includes re-
search on DSD characteristics in bright band and non-bright
band precipitation, calibration work with the NCAS X-band
polarimetric (NXPol) radar in Cumbria, England, for the En-
vironment Agency (EA), and flood forecasting research with
the Water@Leeds project. Other institutions have also used
DiVeN data; The University of Dundee and the Scottish En-
vironment Protection Agency (SEPA) are conducting work
on snowmelt and the University of Reading may use DSD
information from the Reading University Atmospheric Ob-
servatory (RUAO) disdrometer to study aerosol sedimenta-
tion rates. Finally, the wind turbine manufacturer Vestas has
used annual DSD data to evaluate models of blade-tip drag

to improve turbine efficiency. The applications of disdrome-
ter data are broad and cover many fields. The authors intend
that this publication combined with the open accessibility of
data will inspire new uses of DiVeN observations.

3.7 Performance of DiVeN in the first year

Figure 5 shows the uptime of each site in DiVeN in the order
that they were installed. Generally the uptime of the network
has been good for the period shown, with most sites upload-
ing more than 95 % each day. A few sites have not been as
good but this was mostly anticipated. In particular the Druim
nam Bo site at 900 m a.m.s.l. in the Scottish Highlands has
poor upload percentages. The 3G signal is weak at the site
and a signal booster was added in January 2018. Further-
more the site is powered by a small wind turbine and solar
panel, which became rimed in ice during the winter (Fig. 6).
Although these issues were anticipated, the site was still cho-
sen because it can provide cases of solid hydrometeors nearly
all year round, in a terrain which is notoriously difficult for
radar performance. Radar hydrometeor classification will be
particularly difficult at this location and thus the site will
provide a “worst-case scenario” for radar HCA verification
work.

Holme Moss is a remote site at relatively high altitude and
uses satellite broadband, which has been somewhat unreli-
able; however the amount of data stored on the Raspberry
Pi may be higher than depicted in Fig. 5, which was created
based from data successfully uploaded to the NCAS server.
Furthermore, the data are being archived on the University of
Manchester’s system at Holme Moss and this is known to be
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Figure 5. Daily upload performance of DiVeN in the first 365 d of
operation. Black indicates 100 % upload (1440 files in a day), and
white indicates 0 % upload.

Figure 6. Disdrometer at Druim nam Bo, Scotland, covered in
rime in January 2018. The instrument was still receiving power and
recording nullified (no beam received by optical diode) data, which
it interpreted as a “sensor error” (−1) present weather code.

a much more complete dataset, which will be transferred to
the NCAS servers in the future.

There were several unanticipated downtime periods. Wey-
bourne had to be moved for construction work at the field
site and was without power for approximately 1 month in
March 2017. In late April 2017, the NCAS server blacklisted
all disdrometer IP addresses and these had to be manually
whitelisted. This was detected and resolved within 8 d. The
7 d backup upload filled in the majority of the missing data
but the eighth day prior to the issue being fixed was never
reattempted because of the design of the code discussed in
Sect. 3.4.

The largest unanticipated downtime occurred in Septem-
ber 2017. An issue arose with the disdrometers being unable
to record any new data, in the order that they were installed.

A total of 2 GB of free space remained on the SD cards; how-
ever there was a (previously unknown) limit to the number
of files that can be saved to certain card formats regardless of
the space remaining. The issue was fixed by the creation of
a new script which merged old files together. The script had
to be added to all of the Raspberry Pi’s in the network. The
issue was detected after the first four DiVeN disdrometer in-
stallations failed sequentially, so the failure of other sites in
the network was anticipated and mitigated. This can be seen
in Fig. 5 as a stepped-failure starting with the Chilbolton 1
instrument in September 2017.

Some further issues occurred which were avoidable. Lau-
rieston was disconnected from power whilst closing the data
logger box after the installation, which meant it was offline
for the first 2 months until the site could be visited again.
Similarly during the Dunkeswell installation in July 2017 the
serial data cable was damaged, which could not be fixed un-
til November 2017. The Raspberry Pi at Lancaster was not
reconnected after the aforementioned file number problem in
September 2017.

Although several problems have arisen with the Disdrom-
eter Verification Network in the first 12 months, the network
manager and site owners have been, on the whole, quick to
respond to these issues, which has minimized downtime. Di-
VeN is in an ideal state for long-term data collection as it
has been designed with few potential failure points and with
several backup methods in place in the event of a failure.

4 Case studies

The following sections subjectively analyse the skill of the
disdrometer instrument for classifying hydrometeor type.
Three types are discussed here: snow from winter storm
Doris, an intense rainfall event at NFARR Atmospheric Ob-
servatory, and a graupel shower at the Reading University At-
mospheric Observatory. NFARR Atmospheric Observatory
instrument data were sourced from Science and Technology
Facilities Council et al. (2003) and Agnew (2013).

4.1 Rain–snow transition

During the first disdrometer installation trip in Febru-
ary 2017, the Met Office-named winter storm Doris im-
pacted the UK. The disdrometer at Lancaster was installed
on 22 February, and Edinburgh was scheduled for instal-
lation on 24 February. Storm Doris was forecast to bring
heavy snowfall to the central belt of Scotland on the morn-
ing of 23 February. Therefore a decision was made to leave
Lancaster early on the evening of 22 February, to arrive in
Gladhouse Reservoir before the expected snowfall. An op-
portunity arose to temporarily operate a disdrometer at Glad-
house Reservoir (55.7776, −3.1173). Observations began at
01:00 UTC, by which time light rain had begun precipitating.
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Figure 7. Maps, satellite images, and ground images of the disdrometer location and setup for winter storm Doris at Gladhouse Reservoir
House, Scotland. Map data © 2018 GeoBasis-DE/BKE (© 2009), Google. Satellite image: copyright © 2012–2016 Apple Inc. All rights
reserved.

Figure 8. Rain rate, hydrometeor type, and present weather code quality index during the storm Doris event on 23 February 2017, which
occurred over approximately 16 h at Gladhouse Reservoir, Scotland. Rain rate is liquid equivalent for periods of snow and is recorded
by a Thies LPM disdrometer. Hydrometeor type is shown from both the disdrometer and impromptu from a trained meteorologist. The
meteorologist observations at 05:00 and 07:00 UTC are approximate due to a lack of accurate time information. The disdrometer misidentified
individual ice crystals at 15:39 as drizzle.

The opportunistic observations made during storm Doris
provide a unique dataset by which to evaluate the skill of
the disdrometer for prescribing hydrometeor type. Several
transitions between rain and snow occurred that were also
observed by a qualified meteorologist. The following sec-
tion compares the disdrometer present weather codes and
the eyewitness observations taken by the lead author during

the event. An important consideration is the fact that the dis-
drometer was set up in a suboptimal observing environment,
which had approximately 200◦ of tall objects in close prox-
imity. Figure 7 shows the instrument operating at Gladhouse
Reservoir. There were tall evergreen trees to the east and west
and a two-floor building to the south. Telecom cables were
also overhead and associated poles are visible to the NNE
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Table 4. Present weather code evolution throughout the named winter storm Doris event on 23 February 2017. All times in UTC.

Time Disdrometer present Time Qualified meteorologist
weather code observation

00:55 to 01:24 Rain 00:30 to 01:05 Rain
01:24 to 01:50 Rain or mixed precipitation
01:50 to 03:55 Snow 02:31 to 02:40 Snow
03:55 to 06:00 Light/moderate drizzle Approx. 05:00 Drizzle
06:00 to 06:45 Drizzle or rain
06:45 to 07:24 Rain or mixed precipitation Approx. 07:00 Mixed precipitation
07:24 to 15:28 Moderate/heavy snow 09:49 to 14:31 Moderate/heavy snow
15:28 to 17:13 Light/moderate drizzle 15:39 Pristine ice crystals

Figure 9. Accumulated particle information for each hydrometeor class period described in Fig. 8. The centre grid shows particle counts
binned by size and fall velocity. The y-axis histogram shows particle velocity distribution (DVD) and the x-axis histogram shows particle
size distribution (DSD) for the time period described. Since the time periods between each subplot are inconsistent in length, the colour scale
and histograms have been normalized for the total precipitation over each period. The periods are as follows: (a) 00:55–01:24 UTC (rain),
(b) 01:24–01:50 (rain/snow), (c) 01:50–03:55 (snow), and (d) 03:55–06:00 (drizzle).
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Figure 10. As in Fig. 9, but time periods are as follows: (e) 06:00–06:45 (drizzle/rain), (f) 06:45–07:24 (rain/snow), (g) 07:24–15:28 (snow),
and (h) 15:28–17:13 (drizzle).

behind the disdrometer in Fig. 7. This was unavoidable given
the impromptu circumstances of deployment.

Despite the suboptimal observing conditions, the disdrom-
eter performed well at diagnosing the correct present weather
code during the storm Doris event. Table 4 and Fig. 8 show
that the disdrometer correctly output a present weather code
of rain initially, followed by an unverified “mixed precipita-
tion” from 01:24 to 01:50 UTC. From 01:50 onwards a con-
sistent snowfall present weather (PW) code was observed,
which agrees with visible observations made within 01:50–
03:55. At 03:55 the precipitation became light and was de-
scribed as drizzle by the disdrometer.

From 06:00 onwards the precipitation intensified and the
present weather code changed between drizzle and rain. By
06:45 the PW code was switching between only rain and
a rain–snow mix. From 07:24 onwards the present weather
code was constant snow, which continued with varying in-
tensity until 15:28. The eyewitness observation at 15:39 is
of individual ice crystals, which the disdrometer perceived
as low precipitation rates of 0.293 mm h−1 misclassified as
drizzle. Weak precipitation continued until 17:13 where no

precipitation is observed by the disdrometer, concluding the
IOP.

Table 4 shows that the Thies LPM has good skill with
regard to determining the present weather type. Every
disdrometer-diagnosed present weather code is in agreement
with the eyewitness observations throughout the IOP, with
the exception of 15:39. The difference in fall velocity be-
tween drizzle particles and individual ice crystals is small
and as such the disdrometer struggled to identify the precip-
itation correctly.

Figures 9 and 10 show the periods of constant hydrom-
eteor type observed by the disdrometer in Fig. 8, normal-
ized for particle count. There are clear differences between
rain, snow, and rain–snow mix periods. Rain follows the
curve shown by Gunn and Kinzer (1949). The rain–snow mix
periods in (b) and (f) retain the Gunn–Kinzer relationship
but with additional, larger particles with slower fall veloci-
ties. The snow categories in (c) and (g) are markedly differ-
ent with broader distributions of particle size and a shifted
fall velocity distribution. The drizzle and ice crystal periods,
however, are very similar. Both are characterized by distribu-
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tions of particle fall speed and diameter peaking at approx-
imately 1.4 m s−1 and 0.375 mm respectively. The distribu-
tion similarities of drizzle and pristine ice crystals in Figs. 9
and 10 illustrate the difficulty in distinguishing between these
two types by fall speed and diameter alone, without addi-
tional information. A temperature sensor added to the dis-
drometer may have aided the PW code classification. The
misidentification described here is not a major concern since
pristine ice crystal precipitation is (a) uncommon in the UK
and (b) contributes negligible amounts to total rainfall as in-
dicated during this event.

The present weather code quality index shown in Fig. 8
demonstrates that the Thies LPM is able to detect when
recording conditions are challenging. The PW code quality
index decreases, showing a poor quality measurement, dur-
ing times of weak precipitation rates and in mixed precipita-
tion phases.

The opportunistic data collected in the storm Doris event
are unusual in their number of transitional periods and will
be a valuable case by which to compare the performance of
radar-derived surface hydrometeor classification schemes.

4.2 Intense convective rainfall

Storm Doris also brought an interesting event to another site;
a high rainfall rate observed by the NFARR Atmospheric Ob-
servatory pair of disdrometers (Chilbolton 1 & 2). The event
was synoptically characterized by a narrow swath of intense
precipitation oriented meridionally. The high-intensity pre-
cipitation moved west to east across the UK, associated with
a cold front originating from the low associated with win-
ter storm Doris. About 30 km NE of NFARR Atmospheric
Observatory in Stratfield Mortimer, a private weather sta-
tion managed by Stephen Burt also observed the intense
band of rainfall (Stephen Burt, personal communication,
2017). A high-resolution Lambrecht gauge (recorded reso-
lution of 0.01 mm) on the site observed a 75.6 mm h−1 rain
rate over 10 s at 07:51 UTC. The 1 min rain rate at 07:51
was 54.6 mm h−1 and the 5 min rain rate ending at 07:52 was
30.6 mm h−1. The event was described by a trained observer
as “rain quickly became heavy then torrential”.

The event was particularly outstanding from a DiVeN
point of view due to the drop count measured by the
Thies LPMs situated at NFARR Atmospheric Observatory,
Chilbolton, which peaked at around 12 000 drops in a single
minute (200 per second) at 07:39 UTC on 23 February 2017.
Both disdrometers observed a similar evolution of drop count
over the short 26 min rainfall event. This does not prove that
the instruments are recording accurately; conversely it may
be a signal of a systematic issue with the measurement tech-
nique used in every Thies LPM.

Figure 11 shows an anomalously large left-tailed DSD
from both of the Thies LPMs when compared against the
Joss-Waldvogel RD-80 and Campbell Scientific PWS100
disdrometers. A high concentration of small drop sizes sug-

Figure 11. Drop characteristics of a heavy rain event at NFARR
Atmospheric Observatory, Chilbolton, England, on 23 March 2017.
Distributions are accumulated from 07:25 to 07:50 UTC inclusively
for a 26 min summation. Panel (a) shows drop size distribution and
panel (b) shows drop velocity distribution. The Joss-Waldvogel RD-
80 (JWD) does not provide drop velocity information. Each instru-
ment has been normalized for sampling area and bin widths. Total
drop count is listed in the top right of each plot. Both of the Thies
LPMs have a higher total drop count, as well as significantly higher
counts of small and high-velocity particles compared with the PWS
and JWD. The frame of the Thies LPM may be splashing droplets
into the beam, leading to increased counts of small, fast-moving
droplets.

gests that splashing is occurring, where larger drops breakup
on impact with either the instrument itself or the surround-
ings. Earlier versions of the Thies LPM did not have shields
on top of the sensor, which the manufacturer acknowledged
were added because of splashing issues. It is possible that
at very high rainfall rates, splashed droplets are still reach-
ing the instrument beam and are being erroneously recorded.
The drop velocity distribution (DVD) from the Thies LPM
is also in disagreement with the PWS100. The PWS100 uses
a similar optical technique to the Thies LPM with the addi-
tion of having four vertically stacked beams versus one on the
Thies LPM, which should increase the accuracy of fall veloc-
ity measurements. Furthermore, the Thies LPM categorizes
the highest velocity particles into the smallest diameter par-
ticle bins, which is unphysical. Finally, the total drop count
per metre is significantly higher for both of the Thies LPMs.

The DVD during the event is very wide. A noteworthy
observation from the Stratfield Mortimer observatory is the
wind characteristics. Marking the passage of the cold front
at 07:45, winds became increasingly gusty and 10 min wind
mean ending at 07:40 was 20 knots. A strong surface wind
is associated with turbulent eddies, which have some vertical
component. The intermittent vertical wind acts to widen the
drop velocity distribution. Furthermore, turbulence breaks
up droplets, thus skewing the drop size distribution. Finally,
winds tangent to the beam (N–S-oriented beam, westerly

www.atmos-meas-tech.net/12/5845/2019/ Atmos. Meas. Tech., 12, 5845–5861, 2019

91



5858 B. S. Pickering et al.: The Disdrometer Verification Network (DiVeN)

Figure 12. Rain rate measured by four instruments during a heavy
rain event at NFARR Atmospheric Observatory, Chilbolton, Eng-
land, on 23 March 2017. The total accumulated rain depth over the
26 min for each instrument is as follows: Chilbolton 1 (1.481 mm);
Chilbolton 2 (1.847 mm); PWS100 (1.237 mm); JWD (1.090 mm).
Each instrument has been normalized for sampling area and bin
widths. Both of the Thies LPMs have a higher total rain rate than the
PWS100 and JWD. The difference in rain rate between both of the
Thies LPMs and the PWS100 and JWD is greatest during the most
intense precipitation, which may be evidence of droplets splashing
from the instrument housing into the measuring beam.

wind as was the case here) increase the number of beam-edge
hits, which reduce the quality of the data.

Figure 12 shows that the two Thies LPMs have good
agreement for rain rate from 07:25 to 07:35 where the rain
rates are moderate, but that the Thies LPMs overestimate
the rainfall from 07:35 to 07:40 where the rain rate is heavy.
In total, Chilbolton 1 and Chilbolton 2 recorded 120 % and
149 % of the rainfall measured by the PWS100. The JWD is
expected to underestimate slightly due to the range of observ-
able diameters (0.3 to 5 mm) being smaller than true raindrop
sizes and smaller drop sizes being undetectable in the pres-
ence of large droplets due to sensor oscillation.

It appears that in these conditions the hydrometeors were
not correctly measured by the Thies LPM. However, the hy-
drometeor type is still correctly identified despite these short-
comings in rain rate, particle diameter, and particle velocity.

4.3 Graupel shower

Graupel (rimed ice crystals) is an important signature of con-
vection for the UK, where hail is relatively uncommon. The
Thies instrument does not have a graupel category because
the category does not exist within the WMO Table 4680,
which it uses to convey hydrometeor type. Codes 74, 75, and
76 (light/moderate/heavy soft hail/ice grains) are presumed
to be equivalent to what is commonly described as graupel.

On 25 April 2017 a shower containing conical-shaped
graupel passed over Reading University “between 16:30 and
16:45 UTC” as observed by Chris Westbrook (Chris West-
brook, personal communication, 2017). Figure 13 shows the
temporal evolution of hydrometeor type identified by the Di-
VeN instrument during the event. The disdrometer observed
only a single minute (16:36) of “soft hail/ice grains” PW

Figure 13. Rain rate, present weather code quality index, and hy-
drometeor type during a graupel shower in Reading, England, on
25 April 2017. The event was recorded by a Thies LPM at the Read-
ing University Atmospheric Observatory. Conical graupel was also
observed from a nearby building (approximately 500 m away) by a
qualified meteorologist between 16:30 and 16:45 UTC. Rain rate is
the liquid equivalent for periods of solid hydrometeors as recorded
by a Thies LPM disdrometer. Hydrometeor type is shown based on
the present weather code (WMO Table 4680) recorded by the Thies
LPM. The instrument struggles to diagnose the graupel and instead
outputs a present weather code of snow and mixed rain–snow pre-
cipitation.

code (indicating graupel) during the entire 21 min of pre-
cipitation detected. Between 16:30 and 16:50 UTC inclu-
sively, the following codes were also observed: 7 min of code
68 (moderate/heavy rain and/or drizzle with snow), 12 min
of codes 61/62 (light/moderate rain), and 1 min of code 72
(moderate snowfall). Clearly the instrument struggled to di-
agnose graupel in this particular event.

Figure 14 shows the particle size and velocity information
grouped by hydrometeor type prescribed by the Thies LPM.
Throughout the graupel shower the instrument observed a bi-
modal distribution in both velocity and diameter for all hy-
drometeor types, which is indicative of both rain and graupel
precipitating simultaneously. Furthermore in the rain/snow,
snow, and graupel periods, a few hydrometeors exist below
the Gunn–Kinzer curve, which are misidentified as snow. Al-
though the accumulated drop characteristics for the rain and
rain/snow minutes are indicative of a rain–graupel mixture,
in a single minute only a few particles may fall through the
disdrometer beam versus several hundred raindrops. The ra-
tio of rain to graupel may therefore be insufficient for the PW
code to change to graupel. No PW code exists in the WMO
Table 4680 for a rain–graupel mixture or rain–soft hail mix-
ture. The false detection of snow hydrometeors may be at-
tributed to graupel particles bouncing off nearby surfaces or
the instrument itself, slowing the fall velocity and thus ap-
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Figure 14. Accumulated particle information for each hydrometeor class period described in Fig. 13. The centre grid shows particle counts
binned by size and fall velocity. The y-axis histogram shows particle velocity distribution (DVD) and the x-axis histogram shows particle size
distribution (DSD) for the time period described. The periods are as follows: (a) rain (12 min), (b) rain/snow (7 min), (c) snow (1 min), and
(d) graupel (1 min). The colour scale is identical in all plots despite the different time accumulations in order to highlight the rare particles.

pearing to the disdrometer as a lower-density particle such as
an ice aggregate.

For future work with DiVeN data it is important to note
1 min observations of “soft hail/ice grain” PW codes when
longer time periods are being analysed. For example, radar
hydrometeor classification will be performed with DiVeN
data at 5 min intervals. If in one of the 5 min soft hail or snow
grains is observed, this must be highlighted. Graupel likely
existed for longer than 1 min but it was either not the domi-
nant hydrometeor or the instrument was unable to correctly
identify it.

5 Summary

The Disdrometer Verification Network is the largest network
of laser precipitation measurements in the UK. Here we have
fully described the network and discussed three specific ob-
servation cases to subjectively discuss the accuracy of the
Thies LPM with a focus on hydrometeor type diagnosis.

In summary, the instruments are able to correctly identify
changes between snow and rain during storm Doris even with
the suboptimal observing conditions. Snow is easily detected

by the disdrometer and it is also able to accurately signal
a mixture of hydrometeor types when transitioning between
rain and snow.

Yet, the Thies LPM appears to have difficulty with mea-
suring heavy rainfall events, where droplet breakup may be
occurring due to instrument design. Distributions of drop size
are skewed, such that small particle counts are significantly
enhanced when compared with the Joss-Waldvogel RD-80
and the Campbell Scientific PWS100. The hydrometeor type
variable was unaffected by the distribution discrepancies in
the case studied.

The Thies LPM also struggled to detect graupel in the
event studied here. This shortcoming can be somewhat
compensated for by flagging individual minutes of present
weather codes 74, 75, and 76 within larger datasets but there
will be graupel cases that the Thies LPM fails to detect en-
tirely.

A factor affecting the Thies LPM for hydrometeor clas-
sification is that empirical relationships do not account for
instrument errors or the design of the instrument, which may
interfere with the precipitation being measured. The hydrom-
eteor type signatures should be derived using data from the
instrument to which they will be applied. Furthermore, by us-
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ing the present weather code to describe hydrometeor type,
the Thies LPM is restricted in its ability to express the true
nature of the observations being made, particularly noted in
instances of graupel.

DiVeN offers open-access data in near-real time at 5 min
updates. The 1 min frequency data are available upon request
from the authors or via the Centre for Environmental Data
Analysis (CEDA) from 2020. Data have been made publicly
accessible in the hope that the Disdrometer Verification Net-
work will be used for research beyond the original scope of
the network.

Data availability. Data plots are available in near-real time here:
https://sci.ncas.ac.uk/diven/ (last access: 7 August 2019). Original
data are available through the Centre for Environmental Data Anal-
ysis (CEDA, http://www.ceda.ac.uk, last access: 7 August 2019)
in NetCDF format (CF-1.6, NCAS-AMF-1.0) under the following
DOI: https://doi.org/10.5285/602f11d9a2034dae9d0a7356f9aeaf45
(Natural Environment Research Council et al., 2019).
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Chapter 3.

Evaluation of multiple

precipitation sensor designs for

precipitation rate and depth,

drop size and velocity

distribution, and precipitation

type.

In revision to AMS Journal of Hydrometeorology.

Contributions from: Ryan R. Neely III, Judith Jeffery, David Dufton and Maryna

Lukach

Abstract

Observations of the drop-size distribution, drop-velocity distribution, rainfall rate

and precipitation type are compared from six in-situ precipitation sensor designs

over 12 months to assess their performance and provide a benchmark for future

design and deployment. The designs considered are: tipping-bucket (TBR), drop-

counting (RAL), acoustic (JWD), optical (LPM), single-angle visiometer with ca-

pacitor (PWD21) and dual-angle visiometer (PWS100). Precipitation rates are

compared for multiple time resolutions over the study period, while drop size and

velocity distributions are compared with cases at stable precipitation rates. To

examine precipitation type a new index and a logic algorithm to amalgamate con-
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secutive precipitation type observations consistently is introduced and applied.

Overall the choice of instrument for deployment depends on the usage. For fast

response (less than 15 minutes), the PWD21 and TBR should not be used. As

precipitation rate or the duration of a sample increases, the correlation of the TBR

with the majority of other instruments increases. However, the PWD21 consis-

tently underestimates precipitation. The RAL, PWS100 and JWD are within ±
15% for precipitation depth over 12 months. All instruments are inconsistent in

their ability to observe drop size and velocity distributions for differing precipita-

tion rates. There is low agreement between the instruments for precipitation type

estimation. The PWD21 and PWS100 rarely report some precipitation types,

but the LPM reports more broadly. Meteorological stations should use several

instrument designs for redundancy and to more accurately capture precipitation

characteristics.

1. Introduction

All meteorologists agree that precipitation must be recorded accurately, yet there is no

consensus on the best method to do so. There are many ways to measure precipitation,

both in-situ or through remote sensing. For remote sensing techniques, the sample vol-

ume of any single remote sensing measurement contains a population of hydrometeors

that must be derived statistically from the measurement. As such, spatial variability

smaller than the measurement scale is lost and important details may be obscured.

Meanwhile, though surface in-situ measurements are able to directly measure, they

typically only sample a fraction of a square metre, which renders their observations as

unrepresentative of the wider area. A combination—using surface precipitation mea-

surements as a “ground truth” to calibrate remote sensing techniques—is commonly

used in operational meteorological agencies (Fulton et al. 1998; Harrison et al. 2000;

Rubel and Brugger 2009). Precipitation depth (mm) and rate (mm h−1), distribu-

tions of drop size (mm) and velocity (m s−1), and dominant precipitation type are 4

fundamental variables used to describe precipitation. Whilst WMO intercomparison

experiments have focussed on the rate of liquid (Lanza and Vuerich 2009) or solid

(Kochendorfer et al. 2017) precipitation, this study examines all of these variables for

a single location over 12 months.
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1.1. Precipitation Depth & Precipitation Rate

This study will consider measured precipitation depth and precipitation rate (hence-

forth PD and PR) performance from very weak to very intense precipitation (0.05 to

50.0 mm h−1). Instruments must be capable of accurately detecting the heaviest pre-

cipitation since these events have the highest impact on society through flooding. At

the other end of the scale, weak precipitation can also be important. Oppenheim and

Shinar (2012) showed that drivers do not reduce their speed sufficiently on wet roads.

Warning signage based on automatic rainfall sensors must be able to detect the weakest

precipitation events that could otherwise endanger motorists. When studying the accu-

racy of precipitation gauges, a “ground truth” reference value is difficult to obtain. This

is because multiple factors can either increase (splashing, non-hydrometeors, conver-

gent airflow, condensation) or decrease (divergent airflow, shadowing, unfilled buckets,

edge hits, leaves, insects, evaporation) measured rainfall rates. This study examines 12

months of real-world data and uses methods to compare the instruments which reveals

strengths and weaknesses in different applications.

1.2. Drop Size Distribution

The drop size distribution (henceforth DSD) is a distribution of the number of drops

as a function of diameter per unit volume (Jameson and Kostinski 2001) and is defined

as N(D). Instruments which are able to measure this variable are called disdrometers;

for disdrometers, the DSD defines every subsequent calculated variable such as rainfall

rate, equivalent radar reflectivity factor and precipitation type. The first DSDs were

measured with either ink-dusted paper or trays of flour (Wiesner 1895; Bentley 1904;

Laws and Parsons 1943) which led to the Marshall-Palmer relations of DSD to rainfall

rate (R) and radar reflectivity (Z) (Marshall and Palmer 1948). DSD-derived Z–R re-

lations are commonly used to retrieve radar-based quantitative precipitation estimates.

Therefore, the importance of the accuracy of in-situ surface observations of DSD cannot

be understated.

1.3. Drop Velocity Distribution

The drop velocity distribution (henceforth DVD) is defined as N(V ), the number of

drops as a function of drop velocity. DVD is important because it allows the total

kinetic energy of precipitation to be considered. Our understanding of soil erosion
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(Kinnell 1981; Rosewell 1986), building erosion (Tang and Davidson 2004; Erkal et al.

2012), vertical winds and downbursts caused by mass loading (Feingold et al. 1991)

and the erosion of aerofoils like planes and wind turbine blades (Keegan et al. 2013;

Slot et al. 2015; Eisenberg et al. 2018) benefits from more accurate observations of

DVD. Some instruments also rely on the fall velocity of the particle to distinguish its

precipitation type, since different hydrometeors have different aerodynamic properties

(Gunn and Kinzer 1949; Locatelli and Hobbs 1974).

1.4. Precipitation Type

Precipitation type (henceforth PT) describes the dominant phase, shape, and density of

hydrometeors within a volume of the atmosphere that fall to the surface. The present

weather (henceforth PW) code is used to represent PT, which presents problems for

bulk statistical analysis. The codes are a qualitative description of the PW type. Table

4680 from the World Meteorological Organization is the standard for automatic sensors

(WMO 1988, 2017), which has 99 entries. Some hydrometeor types are represented

by several PW codes—typically variations of intensity and longevity—whereas this

investigation only concerns the type of hydrometeor detected. The motivation for the

PW code’s existence was to reduce the bandwidth of descriptive information, only

upheld today for consistency with existing data.

PT can have great impact on transportation, agriculture and infrastructure but is

poorly forecasted (Ralph et al. 2005; Reeves 2016). PT has become more prominent

in the field of operational meteorology in the last decade as operational radar net-

works have gained dual-polarisation capabilities (Park et al. 2009; Saltikoff and Nevvo-

nen 2011; Al-Sakka et al. 2013). PT information within a radar sample can also be

used to provide more accurate quantitative precipitation estimates (QPE) because Z–

R relationships vary with hydrometeor class (Atlas and Ludlam 1961; Harimaya 1978;

Fujiyoshi et al. 1990).

2. Experimental Conditions

The following sections briefly describe the instruments as summarised in Table 3.1, and

recorded variables in Table 3.2. This is followed by a summary of the experimental

conditions on-site, and finally the broader structure of this study.
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2.1. Instruments

2.1.1. Thies Laser Precipitation Monitors

Two identical Thies Laser Precipitation Monitors (LPMs) are used in this study (hence-

forth Thies1, Thies2, or the Thies LPMs). The Thies LPMs are both part of a wider

network of 14 Thies LPM instruments called the Disdrometer Verification Network (Di-

VeN), described by Pickering et al. (2019). The Thies LPM emits an infrared beam

which is received by a photodiode. As precipitation or other particles cross the path

of the beam, the electrical signal produced by the photodiode is reduced (Adolf Thies

GmbH & Co. KG 2011). The amplitude and duration of signal reduction is analogous

to the size and speed of the particle. Löffler-Mang and Joss (2000) describe this optical

occlusion method of observation. Observed particles are sorted into 20 diameter bins

(from ≥ 0.125 mm to > 8 mm) and 22 velocity bins (> 0.0 to > 20.0 m s−1), and

21 out of 93 total PW codes are supported for 6 PTs (drizzle, rain, mixed rain/snow,

snow grains, snow aggregates, hail). Non-hydrometeors (insects, debris) can appear as

precipitation and the housing of the instrument is a surface on which precipitation can

rebound into the beam. Partial beam-hits are accounted for with internal processing.

2.1.2. Campbell Scientific PWS100

The Campbell Scientific Present Weather Sensor (PWS100) uses a forward-scattering

technique using 4 light beams and two receiving diodes; one diode at a vertical angle

only and one diode at a combined horizontal and vertical angle from the emitted beams.

Drop size distributions are measured in 0.1 mm bins from > 0.0 to 30.0 mm but the

manual states that the “proportion of particles detected will fall off significantly below

about 0.5 mm diameter”. Drop velocity distributions are recorded in non-linearly

spaced bins from > 0.0 to > 25.6 m s−1. Both diameter and velocity measurements

have a quoted accuracy of ± 5% (for liquid particles > 0.3 mm). Optical scattering

characteristics differ between solid and liquid hydrometeors and integrated temperature

and humidity sensors assist the determination of PT. Hydrometeor types are reported

explicitly: drizzle, rain, snow grains, snowflakes, hail, ice pellets, graupel, and 58 out

of a total 93 PW codes (Table 4680) are supported. The limitations of the PWS100

are similar to those of the Thies LPM.
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2.1.3. Vaisala PWD21

The Vaisala Present Weather Detector PWD21 (Vaisala Oyj 2001) combines an op-

tical forward-scattering sensor (875 nm peak, single emit and receive diode) with a

resistive capacitive plate indicating water content, and a temperature sensor. Heat-

ing elements evaporate condensation and melt solid hydrometeors. PT and current

weather are reported using Table 4680 (WMO 1988), of which 42 out of 93 descriptors

are supported—7 types of precipitation (drizzle, rain, freezing drizzle, freezing rain,

snow aggregates, mixed rain/snow, ice pellets). The capacitive plate is only used to

discriminate between rain and snow between 0 ◦C and 6 ◦C. Outside of this range, the

types are overruled by temperature (T < 0 ◦C = snow, T > 6 ◦C = rain).

2.1.4. Joss-Waldvogel RD-80

The Joss-Waldvogel Disdrometer (JWD) has an exposed Styrofoam cone atop a spring-

loaded transducer. The kinetic energy applied to the transducer is related to the size

of a hydrometeor (Joss and Waldvogel 1967), and is recorded into 127 non-linearly

spaced size bins (from ≥ 0.313 to 5.145 mm with an accuracy of ± 5%). The terminal

fall velocity of the particle species must be assumed to convert kinetic energy into

mass and then diameter, so there are no DVD measurements from the JWD. Different

hydrometeors have different diameter-velocity relationships, the JWD only functions

accurately for one type of hydrometeor because it has no way to distinguish PT to

then change the internal processing. By default, the JWD assumes all particles to

be liquid. Snowflakes (slower terminal velocities) appear as small raindrops and hail

(faster terminal velocities) appear as large raindrops.

2.1.5. RAL Drop Counting Gauge

The RAL (Rutherford Appleton Laboratory) Drop Counting Rain Gauge (henceforth

RAL) funnels liquid precipitation into a reservoir, from which drops overflow through

a precision tube, occluding an optical infrared sensor (Norbury and White 1971). Oc-

clusions are tallied over time to generate a rain rate. A smaller minimum resolution

than the TBR should provide greater sensitivity in light rainfall, but the funnel can still

disturb the airflow and become blocked. Above 50 mm h−1 droplets begin to merge,

so occlusions become non-linear with increasing rainfall rate. A continuous stream of

fluid cannot be measured.
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2.1.6. Munro 0.2 mm Tipping-bucket Rain Gauge

The Munro 0.2 mm tipping bucket rain gauge (TBR) funnels liquid precipitation into

a pivoting double bucket, which limits the temporal representation of PR. A single tip

over 1 minute represents a 12 mm h−1 PR; over 5 minutes 2.4 mm h−1. Due to this,

TBR PRs are typically only used for ≥ 15-minute durations (1 tip = 0.8 mm h−1).

In addition, TBRs are only able to funnel liquid precipitation (when sufficiently wet)

into the tipping bucket; snow, hail and graupel must melt to be detected with delay. A

heated funnel consumes significantly more energy and limits where such sensors may

be deployed. The TBR alone cannot distinguish between PTs. Furthermore, the TBR

can be easily rendered unusable if debris blocks the funnel. The Munro is similar in

design to gauges used throughout the fields of hydrology and meteorology and thus

represents this category of design.

2.2. Study Location

All instruments were installed at the Chilbolton Atmospheric Observatory (CAO),

Hampshire, UK. The climate at CAO is temperate and maritime where the weather

can fluctuate on a daily basis. Proximity to the polar front jet stream ensures that

mid-latitude depressions impact the site regularly. Precipitation is therefore frequent,

and intermittent rainfall is the modal type. Air temperature extremes are uncommon

due to the UK being a small landmass, surrounded by ocean and situated on the north-

eastern Atlantic, influenced by the warmth of the North Atlantic Current. The Met

Office (2016) provides a climate summary for Southern England and shows that on

average (1981-2010) 12 days per year have falling snow and 109.5 days have precipita-

tion accumulation of ≥ 1.0 mm. Ventouras et al. (2006) contains more information on

the climatology of PRs observed at CAO. The frequency and variation of precipitation

events as well as the occurrence of stratiform, convective, and different PTs make CAO

a suitable location to conduct this study because it covers a wide range of precipitation

conditions seen worldwide.

2.3. Instrument Installations

Figure 3.1 shows the installation of each instrument at CAO. The JWD is situated

inside a circular pit slightly below ground level to reduce turbulence over the instrument

whereas the TBR and RAL are on the ground. Both Thies LPM beams are at 1.5 m,
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Figure 3.1.: Aerial view of the Chilbolton Atmospheric Observatory (CAO), showing
the instruments used in this study and their proximity. a) Vaisala PWD21 b) Campbell
Scientific PWS100 c) Thies Clima LPM #1 d) Thies Clima LPM #2 e) Munro 0.2 mm
Tipping Bucket Gauge f) Joss-Waldvogel RD-80 g) RAL Drop Counting Gauge. The
furthest distance between any two instruments is 80 m.

whereas the PWD21 and PWS100 are at 8 m and 9 m respectively, mounted on 1

& 2 m poles above a 7 m tall building. All of the instruments are spatially within

80 m, are installed within manufacturer recommendations and meet WMO standards

where practical. The agricultural land surrounding CAO is flat for at least 500 m in all

directions. The Chilbolton Advanced Meteorological Radar (CAMRa) dish (30 m tall)

is 80 m east of the instrument enclosure; visible in Figure 3.1. The radar should not

lead to bias of the observations since prevailing wind direction at the site is westerly

and it is sufficiently distant.

Both the climatic conditions and the physical mounting conditions of the instruments

at CAO makes the results of this study applicable to a wide range of precipitation and

monitoring conditions at other mid-latitude locations. Therefore the performance of
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the instruments in this study should be comparable to similar instrumentation located

at analogous locations.

2.4. Data Quality

All instruments used in this study have been calibrated as per the manufacturer stan-

dards. The TBR and RAL are calibrated dynamically (as described in Humphrey et al.

(1997)) with a pump at different flow rates. The TBR was calibrated by the manufac-

turer in 2011, verified on site in 2018 and in 2020 both with no corrections needed. The

RAL was last calibrated in 2013 and was checked in 2020 with no correction needed.

We therefore conclude that the TBR and RAL instruments are well calibrated over

the study period. The PWD21 and PWS100 have no CEN standardised calibration

method for the optical scattering technique, and therefore the manufacturer calibra-

tion cannot be verified on site. The capacitive plate on the PWD21 also has no CEN

standardised calibration method. The manufacturer calibration is therefore relied upon

for the PWD21 and PWS100—which is also true of any deployment of these sensors

and is not unique to this study. Therefore, this study is using a calibration comparable

to typical installations of these two instruments. Similarly with the JWD, there is no

CEN standardised calibration method for on-site verification. The JWD manufacturer

recommends that calibration is repeated every 6 years (Distromet Ltd. 2012), which

this study period is within, so the instrument is said to be calibrated. The Thies LPMs

were calibrated by the manufacturer in 2011 and again no CEN standardised method

exists for verification on-site. The Thies LPM manual also states that a calibration

is then only necessary when a component is changed (Adolf Thies GmbH & Co. KG

2011), so the Thies LPMs are said to be calibrated during this study period. In ad-

dition, all rain gauges at CAO are monitored on an on-going basis using all rain data

recorded at the site. Any faults or any relative changes in sensitivity of the gauges

are investigated and suspect measurements are removed from the datasets before pub-

lication to the Centre for Environmental Data Analysis (CEDA). Figure 3.2 shows the

availability of each instrument during the study period.

3. Methodology

The following sections explain the methodologies employed in this study, split by each

precipitation variable, since each variable is unique and requires a unique approach.
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Figure 3.2.: Availability of usable, quality controlled data during the 12-month period
under examination (10th February 2017 - 9th February 2018, totaling 365 days). Each
day is a vertical strip with the opacity representative of the percentage of time success-
fully recorded. The lower bar (‘ALL’) represents the combination of all instruments
above, and represents the data under study since all instruments must be operational
for a fair comparison. Any time with one or more instruments down, are excluded. The
Thies LPMs had a period of downtime in September 2017 resulting in approximately
20 days without data. The missing data from the TBR and RAL gauges was due to
the gauge becoming temporarily blocked with debris. For the PWD21, the fault at the
start of February 2017 was due to a failure in datalogging. The remaining missing files
were due to temporary, intermittent logging or file formatting problems. The minutes
where all instruments were simultaneously recording during the study sum up to 309.8
days, which is equivalent to 84.9% of the study period.

The overall goal is to compare the CAO instruments for all precipitation variables that

are important to operational and research meteorology today.

3.1. Precipitation Depth & Precipitation Rate

PR measurement techniques are subject to random and systematic errors, affecting

the exact determination of PR at ground level. As such, there is no measurement

at the site that could be considered a reference. The instruments will be compared

and discussed in context of their measurement design to compare and contrast the

strengths and weaknesses of each. Sample duration is also an important consideration

when examining PR measurements. Some uses and applications of PR data need only

daily values while others require much shorter PR timescales, so several durations will

be considered.
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The comparison of PDs uses the full 12 month dataset described above. To examine

bulk behaviours and general differences in the observations of the instruments, the

cumulative precipitation measured over the study period is compared first. We compare

both the raw accumulations and the deviation of the accumulations of each instrument

from the mean of the instrument ensemble.

We then compare the PR from each instrument, performed using simple linear re-

gression by least squares applied between two instruments. The observations should

have a 1:1 relation through the origin if both instruments have similar characteristics.

Gradient and intercept values of the regression reveal differences in behaviour of the

instruments. Each instrument is compared with every other instrument for 5 time

durations. In each regression, both of the instruments being compared must detect

precipitation in order for that datum to be included, which removes major anomalies

but favors insensitive instruments.

3.2. DSD & DVD

DSD and DVD measurements are difficult to analyse using bulk statistics because they

are non-linear. To facilitate comparison, DSDs can be parameterized into a gamma or

generalised-gamma model (Marshall and Palmer 1948; Ulbrich 1983; Thurai and Bringi

2018) in the form:

N(D) = N0 exp(−ΛD) (0 6 D 6 Dmax) (3.1)

where N0 is the intercept, Λ the slope function and D the drop diameter. The advantage

of parameterization is that the comparison is simplified to a purely numerical one, but

in doing so the artefacts or biases in the data are potentially concealed. For example, an

overestimation of medium-diameter drops combined with an underestimation of small-

diameter drops could result in the same slope function as for an instrument without

biases. There is also uncertainty on the gamma model performance for drop-diameters

< 1.0 mm. Chandrasekar et al. (2003) suggest that the reduction in counts of small

drops in the gamma model is a consequence of a parametric fit on experimental data

that underdiagnoses small drops. Therefore this study compares measured DSDs and

DVDs without parameterization.

Here a case study approach is used, similar to that of Tokay et al. (2013) but with some

improvements. In Tokay et al. (2013), the cases are all 1 hour in duration, the PR varies

throughout, and the average PRs range from 1.8 to 12.6 mm h−1, so less-common (very
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Figure 3.3.: PRs from Thies1 for the chosen a) 5 minute, b) 15 minute, and c) 60 minute
cases.

weak and very heavy) PR-DSDs are not explicitly represented. Here cases are chosen

based on constant PR throughout 5-minute, 15-minute and 1-hour periods so that the

observed DSD/DVD remains consistent. The PRs used to identify cases are: 0.05, 0.3,

1.0, 2.0, 5.0, 20.0 and 50.0 mm h−1.

Thies1 measurements are used to select cases. The absolute deviation from the desired

PR is calculated in a moving window of the desired duration and the period with the

least absolute deviation is selected as the case from the entire dataset. Figure 3.3 shows

the PR over the cases selected. A 50 mm h−1 PR does not occur consistently for 15

minutes or 1 hour, and a 20 mm h−1 PR does not occur consistently for 1 hour. In

total there are 18 cases. When averaged, the 1 hour weakest rainfall rate (case 15 in

Figure 3.5 and 3.6) is approximately 0.02 mm h−1.

Each instrument uses different DSD and DVD bin widths. The Thies LPMs have

the broadest bin widths so the data from the PWS100 and JWD are mean-weight

normalized into the Thies LPM bins. The upper and lower limits of the JWD are

narrower than the Thies LPMs and result in partially filled bins after normalization

that are discarded. The effective measurement range of the JWD in this analysis is
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Table 3.3.: A master look up table (LuT) for precipitation type.

ABC PT Description PW Codes Comments

Er -2 Instrument Error — Instrument offline/data corrupt

Un -1 Unidentified 40-42
Particles detected but
type unknown

No 00 No Precipitation
0, 4, 5, 10,
30-34, 94

Includes fog, mist, haze, smoke

Dr 01 Drizzle 50-53 All drops < 0.5 mm diameter
DrRa 02 Rain & Drizzle 57, 58 Changing between each over time

Ra 03 Rain 60-63

Ic 04 Ice Crystals 78
Pristine ice crystals;
no aggregation

WIc 05 Wet Ice Crystals — Presence of liquid water
Sn 06 Snow 70-73 Aggregated ice crystals

WSn 07 Wet Snow 67, 68 Presence of liquid water

Pl 08 Ice Pellets 74-76
Partially melted aggregates,
subsequently re-frozen

Gr 09 Graupel —
Rimed and accreted ice particles,
< 5 mm diameter

Ha 10 Hail 89, 96
Rimed and accreted ice particles,
≥ 5 mm diameter

FzDr 11 Freezing Drizzle 54-56
Supercooled below 0 ◦C
All drops < 0.5 mm diameter

FzDrRa 12
Freezing Drizzle
& Freezing Rain

—
Supercooled below 0 ◦C
Changing between each over time

FzRa 13 Freezing Rain 64-66 Supercooled below 0 ◦C

therefore shortened to 0.375 mm to 5.0 mm. The DSD and DVD data have also been

normalized by instrument sampling area.

3.3. Precipitation Type

PT observations are recorded as PW codes which are difficult to compare because the

data are categorical and their interpretation is ambiguous. PT is often not explicitly

described by a PW code. To simplify the analysis, a new PT scheme has been created

(shown in Table 3.3) with translations from PW codes, and is broadly ranked by the

impact of the SPTs to society.
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Wexler (1955) notes that empirical evidence by Langleben (1954) demonstrates that a

snow aggregate retains its velocity characteristics until > 90% of the mass has melted.

Lumb (1963) further showed empirically that snowflakes are reported by trained ob-

servers up to 1.5 to 3.0 ◦C, corresponding to approximately 300–500 m penetration

below the 0 ◦C dry-bulb isotherm. Wet types, therefore, occur in a wide range of

temperatures and are important to include.

All 1-minute PW code data from the study period are converted into PT as an initial

step. Confusion matrices are produced which tally occurrences of each PT between

instruments. For numerical comparison, a statistical score for evaluating instrument

agreement is needed. Rather than comparing individual PTs between instruments,

a multi-class score is desirable; the multi-class adaptation of the Heidke Skill Score

(henceforth HSS) is used:

HSS =

∑I
i=1 p (yi, xi)−

∑I
i=1 p (yi) p (xi)

1−
∑I

i=1 p (yi) p (xi)
(3.2)

where
∑I

i=1 p (yi, xi) is the proportion correct,
∑I

i=1 p (yi) p (xi) is the random propor-

tion correct, 1 is the perfect forecast score, I is the length of the confusion matrix, yi

is the ith row and xi is the ith column (Heidke 1926). HSS indicates the fractional

improvement in agreement over a randomised observation set, which would score zero.

The worst possible score is -∞, and the best score is 1; negative values indicate that

a random guess would have been more skillful. The HSS is symmetric, e.g. Thies1

vs. PWD21 yields the same score as PWD21 vs. Thies1. HSS tends to decrease for

more complex PT schemes with more classes. The PT scheme introduced here has 13

classes which are explicit (i.e. more classes would not add value to a user). HSS is also

calculated for a simplified scheme: none, liquid, mixed-phase, solid, to illustrate the

range of HSS that can be obtained by using a simplified scheme that is more ambiguous

to a user.

The instruments used in this study do not output PW codes at consistent time periods.

5, 10, 15 and 60 minute intervals are used by some but not by all instruments but all

instruments do output a 1 minute interval. Evaluating longer timescales of PT is useful

because radars often operate on a 5 minute (or longer) sampling strategy, and some

weather reports are conducted hourly. The instruments in this study employ different

and poorly documented methods to merge 1-minute observations.

For fair comparison between instruments, a new algorithm to merge 1-minute PT ob-

servations into PT assessments of longer duration is developed. A set of Boolean logic
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criteria are applied sequentially and are outlined in Figure 3.4.

4. Results

4.1. Precipitation Depth and Rate

Over the entire 12 month period, Figure 3.5 shows the variation in PD recorded by the

instruments. The PWD21 reports much less (280.8 mm) precipitation than the average

for the period (542.8 mm). The JWD records more accumulation than the TBR and

remains closest to the mean of all instruments, but this should not be confused with be-

ing the most accurate. The PWS100 has a positive bias in July but this is counteracted

with a negative bias at the end of September, resulting in a final accumulation close

to the average. The RAL and Thies1 agree until November where the RAL develops

a positive bias until the end of the period and records 618.8 mm in total. The Thies

LPMs disagree; with Thies1 and Thies2 recording 591.7 and 744.8 mm respectively

(26% difference).

Next the PRs are compared, first with a focus on the 5-minute time period (operational

radar periodicity) before other time periods are considered. In Figure 3.6, every com-

parison with the PWD21 has a gradient of between 0.28 < m < 0.42 and the lowest

coefficients of any instrument. The comparison reveals that the PWD21 is consistently

measuring less rainfall than the other instruments. Similarly, the TBR records less pre-

cipitation than the PWS100, Thies LPMs, JWD and RAL but more precipitation than

the PWD21, and has the second lowest r2 values. Furthermore, the TBR versus the

PWD21 has the lowest r2 value of any case, indicating that the TBR and PWD21 are

also inconsistent in their underestimations. The TBR has a resolution of 0.2 mm which

in a 5-minute sampling period equates to a 2.4 mm h−1 minimum rainfall rate, hence

the TBR data are aliased (insufficient sampling frequency for the signal frequency) at

this time resolution. The intercept values for the TBR tests have large deviations from

the origin which highlights the poor performance of the TBR in weak rainfall.

The remaining instruments (RAL, PWS100, JWD, Thies LPMs) have higher coefficient

values of 0.89 < r2 < 0.95. The Thies2 generally has slightly higher coefficient values

than the Thies1, which is also observed in Figure 3.5. The gradient and intercept of

the RAL and JWD consistently show a slight negative bias compared with other in-

struments. The JWD–RAL comparison shows that both instruments must have similar

observational characteristics because the r2 of their comparison is high (0.947). Since
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the JWD is shown to underestimate drop counts during heavy PRs (Section 4.2), the

RAL must also be underestimating PR during heavy precipitation events.

In general, Figure 3.7 shows an increase in agreement as the sample duration increases.

This is to be expected due to the decrease in the influence of random error as the

sample duration increases. Though Figure 3.7 demonstrates that using longer time

periods results in higher r2 values overall, the difference between 1 hour and 1 day

for some instruments does not change or even slightly decreases. The RAL, JWD and

PWS100 all have similar r2 values throughout the time periods. At a 1-hour interval,

the TBR has equivalent coefficients to the other instruments (excluding the PWD21).

The PWD21 reaches a maximum r2 value of 0.8 at a 1-day interval, but this is still far

below the other instruments. The Thies2 has slightly higher albeit similar coefficients

of determination as the RAL, JWD and PWS100 which is unexpected considering that

the Thies LPMs use the same instrument design.

4.2. Drop Size Distribution

Overall, Figure 3.8 shows an increase in the steepness of the right tail of the DSD

with increasing PR, as expected from Marshall and Palmer (1948). For more detailed

analysis we split the results into three parts.

4.2.1. Small Drop Sizes (< 1.0 mm)

The PWS100 records fewer drops than the other instruments for small drops in all

PRs and durations; multiple orders of magnitude less in the smallest sizes (< 0.8 mm).

In case 15 the PWS100 barely detects the precipitation compared to the other three

instruments. Case 15 was intended to represent the 1 hour, 0.05 mm h−1 PR scenario.

However in Figure 3.3 it is noted that the actual PR in case 15 is slightly lower than the

desired amount, due to the method of finding stable PR cases. The actual PR in case

15 is 0.02 mm h−1 and this slightly lower PR, combined with the PWS100 being unable

to count small drop diameters, is likely the cause of the PWS100 barely detecting the

precipitation. The Thies LPMs agree with the JWD for small drop-diameters up to

PRs of 2 mm h−1, where the Thies LPMs record more small droplets than the JWD.

Above the 2 mm h−1 cases, the JWD count-values for small drops increasingly deviate

from the Thies LPMs and more towards the PWS100 which is known to underestimate

small drops across all PRs.
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Does any minute  
contain PT ≥ 08

Does a single type 
occupy ≥ 66.6% of the 

period?

Is rain or 
any ‘Wet’ type 

present for ≥ 33.3% of the 
precipitation 

minutes?

Highest numbered 
type output

Highest type output

Multiple PT-coded 
observations

Yes

Yes

Yes

No

No

No

Type occupying 
≥ 66.6% period output

‘Wet’ version of 
highest type output

Figure 3.4.: A Boolean algorithm to take multiple precipitation type-data periods and
merge them into longer periods. Any PT≥ 8 in the input data results in that type as the
output. This is because these events are rare, high-impact, and short duration, which
may not meet the next criterion in the algorithm. Next, if any single PT occupies
≥ two-thirds of the input data, that is the output. Thirdly, the minutes with no
precipitation are excluded. Of the remaining data, if ≥ one-third contain rain or any
wet PT, then the highest wet PT code index that exists in the input data is used.
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Figure 3.5.: Long term precipitation accumulation behaviour between the different in-
struments. 3.5a) shows the total precipitation accumulation, and 3.5b) shows the bias,
using the mean of all sensors as the baseline. The total accumulation for each instru-
ment is listed for each instrument in decreasing order in the legend of Figure 3.5a, and
the total deviation from the mean of all instruments (542.8 mm) at the end of the
period is listed in order in Figure 3.5b. The accumulation measured after 12 months
ranges from 262.0 mm to 744.8 mm (284% difference), with a range of bias from -280.8
mm to +202.1 mm.
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5 Minute 
Precipitation 

Rate
PWD21 RAL TBR PWS100 JWD Thies2

Thies1

Thies2

JWD

PWS100

TBR

RAL

5 MINUTES

0.581
0.33 0.15

0.911
0.88 0.20

0.715
0.51 1.83

0.907
1.08 −0.10

0.927
0.79 0.06

0.946
1.05 0.09

0.628
0.31 0.09

0.938
0.83 0.08

0.730
0.49 1.67

0.900
0.98 −0.20

0.951
0.73 0.00

0.627
0.42 0.09

0.947
1.10 0.08

0.710
0.67 1.67

0.919
1.33 −0.22

0.574
0.28 0.20

0.890
0.75 0.38

0.730
0.45 1.94

0.351
0.37 −0.07

0.722
1.18 −1.10

0.604
0.36 0.09

r2
m c

Figure 3.6.: Every instrument compared with another for 5 minute-averaged PR. Within
each cell, the large upper value is the coefficient of determination r2, whilst the lower
left and lower right are the gradient m and y-axis intercept c of the linear least-squares
regression line respectively. The cells are shaded based on the r2 value. The instruments
in the columns are the y-axis data and the instruments in the rows are the x-axis data,
such that the uppermost left result of r2 = 0.581 is taken from a scatterplot of Thies1
on the x-axis and PWD21 on the y-axis. Hence, the gradient of Thies1 vs. PWD21
(m = 0.33) indicates that the PWD21 records a third of the rainfall that the Thies1
recorded during the 12-month observation period.
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1 Min 5 Min 15 Min 1 Hour 1 Day

Amalgamation Period

0.0

0.2

0.4

0.6

0.8

1.0

r2

Coefficient of Determination for Thies1 and x Rainfall Rate

PWD21

RAL

TBR

PWS100

JWD

Thies2

Figure 3.7.: Coefficient of determination (r2) used as an indicator of instrument agree-
ment between PRs measured by the labelled instrument and Thies1. Values are shown
for multiple time durations to indicate the dependence of time interval on agreement.
Data from the whole study period is binned into time durations labelled, and a co-
efficient is calculated using least-squares linear regression as explained in Section 3.1.
Thies1 is used as the baseline instrument because Figure 3.6 showed it to be similar to
the Thies2, RAL, PWS100 and JWD, and allows the Thies LPMs to be compared.
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Chapter 3

4.2.2. Medium Drop Sizes (1.0–3.0 mm)

The spread of medium-sized drop counts measured by all instruments is within an order

of magnitude, showing broad agreement. For the medium-intensity PRs (1.0, 2.0, 5.0

mm h−1), the PWS100 typically records equal or more drops in the 1-3 mm diameter

region of the distribution. The largest deviation is in case 17 where the PWS100 records

50,000 drops, Thies1 and JWD 10,000 drops, and Thies2 11,000 drops at 2 mm. The

JWD agrees with the Thies LPMs for medium-sized drops in weak PR (0.3 mm h−1),

but in 3 of the cases (10, 17, 18) records the least drops in the 2.0–3.0 mm size bin

(approaching 1 order of magnitude towards 3.0 mm drops) compared to the Thies LPMs

and PWS100. Case 10 has the largest spread in medium-sized drop counts which is 1

order of magnitude at 2 mm.

4.2.3. Large Drop Sizes (> 3.0 mm)

The Thies LPMs and JWD are in agreement for large drops, except during the more

intense rain rates (20, 50 mm h−1), where the JWD records 1–1.5 orders of magnitude

fewer large drops than the Thies LPMs and PWS100. The JWD also records the largest

drops to be in the 4.0–4.5 mm size bin, and none in the 4.5–5.0 mm size bin in any

of the cases. The largest difference between the Thies LPMs is at 4.25 mm in case 6

(5-minute, 20 mm h−1) but only around 100 drops. The PWS100 is in agreement with

the Thies LPMs in most cases for large drops. In 4 of the cases (12, 17, 18, 19) the

large drop counts are marginally higher, but above 4.5 mm diameter drops, the counts

from the PWS100 are less than the Thies LPMs. Out of the 18 cases, the Thies LPMs

record the largest drop-diameters out of any instrument 5 times and equal largest drop-

diameters 6 times, occurring more often in the higher PRs. The PWS100 records the

largest drop-diameters in 7 of the cases, occurring more often in weak PRs.

4.3. Drop Velocity Distribution

Figure 3.9 shows the DVD results, in the same cases and layout as in Figure 3.8, but

without the JWD which cannot measure drop velocity. Broadly the PWS100 counts

fewer particles in total (the cases are identical to Figure 3.5) and has a DVD upper

tail which ends at lower velocities in all cases compared to both of the Thies LPMs.

The DVD lower tail and peak counts of drop velocities have less than an order of

magnitude of spread between instruments, with the notable exception of cases 6, 8 and
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The Assessment of Surface Precipitation Type Measurements

15. Cases 8 and 15 are again affected by the PWS100 undercounting small drops. The

two Thies LPMs agree to within half an order of magnitude (except in case 15, very

weak precipitation) but Thies2 records more drops > 4 m s−1 than Thies1 in almost

every case, and records the highest drop velocities in 8 cases (equal to Thies1 in 8 cases,

less than Thies1 in 2 cases).

4.4. Precipitation Type

Figure 3.10 shows the agreement between instruments on coincident observations of PT

at 5-minute intervals (operational radar periodicity). The most striking result is that

the Thies LPMs report more PTs than the PWS100 and PWD21. The PWS100 never

reports wet ice, and only observes 2 periods of ice and 1 period of hail. The PWD21

never reports drizzle and rain, ice, wet ice or hail. Along the diagonal boxes (bordered

in white) the highest agreement between instruments occurs in the no precipitation

class (> 98% across-the-board), the rain class (> 80%) and the snow class (> 30%).

The drizzle class has broad results; both of the Thies LPMs count more drizzle than rain.

The PWS100 and PWD21 record ∼20 times fewer drizzle periods than the Thies LPMs,

and yet in the lower right matrix (Figure 3.10f), both instruments rarely (6%) agree

on the times of drizzle despite having similar total counts. The PWS100 frequently

identifies rain when the other instruments identify drizzle (8-15%) or drizzle & rain

(80–90%) classes.

The spuriosity of the Thies LPMs is evidenced by the first two rows and columns in

Fig. 10a, where the none and drizzle classes all contain other hydrometeors. Wet snow

is equally agreed upon as it is disagreed as rain by both Thies LPMs (∼40% each).

The PWD21 has less spuriousness because it is unable to resolve many hydrometeor

types—evident with the many zero count rows (grey boxes) in Figure 3.10c, 3.10e, and

3.10f. The PWS100 typically classifies Thies LPM drizzle as no precipitation (73-84%)

or rain (8-16%), Thies LPM ice as no precipitation, and Thies LPM hail as snow, rain

or none. The snow has some agreement compared to the other instruments (32-39%)

but often the PWS100 classifies Thies LPM snow as no precipitation (52-64%). The

PWS100 and PWD21 have large disagreements, as do the two LPMs with themselves

and the other instruments, highlighting the difficulty in observing PT. The HSS from

each comparison for each time period examined is summarised in Figure 3.11.

Unsurprisingly, Figure 3.11 shows the two identical Thies LPM instruments have the

highest agreement. Second highest are the PWS100-PWD21 matrices. For the other
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Figure 3.10.: Confusion matrices of hydrometeor type for 5-minute time intervals. Val-
ues shown inside the matrix are percentages normalized by the total number of obser-
vations of the type in that column, such that the instrument listed on the top of the
matrix is considered truth in each plot. E.g. for the first matrix, for the ‘wet snow’
precipitation type (denoted WSn), 42.9% of the observations made by Thies2 agreed
with Thies1. Looking further up in that same column, it shows that 44.4% of the
Thies1 ‘wet snow’ events were classified as ‘rain’ by Thies2. The color intensity of each
cell from white to dark red corresponds to the percentage values written inside each
cell. Totals observed by an instrument are shown in the white boxes surrounding the
matrix and the total number of observations in the black lower right box which differs
for each matrix since both instruments in a matrix must report a PT (Section 3.3).
The multi-class Heidke Skill Score (HSS; Heidke (1926)) of each confusion matrix is
shown in red, in the lower right corner outside each matrix.
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Figure 3.11.: Multi-class Heidke Skill Scores (HSS) between each instrument capable
of PT observations. Scores are shown for 1, 5 and 60-minute intervals. The vertical
lines indicate the improvement in score if a simpler hydrometeor class scheme is used
(none, liquid, mixed-phase, solid). The PWS100 is shortened to PWS here, Thies1 to
T1, Thies2 to T2 and the PWD21 to PWD for readability.
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comparisons, the Thies-PWD21 agree less than the Thies-PWS100. The vertical lines

on Figure 3.11 show the HSS if the confusion matrices were to be simplified into four

classes: none, liquid, mixed-phase and solid, where mixed-phase are any wet-denoted

type. Solid includes ice, snow and hail. HSS increases modestly across-the-board if a

simpler hydrometeor class system is used. However this would not help in instances

of hail and snow where the two classes are merged, nor does it indicate which type of

mixed-phase precipitation is occurring.

5. Discussion

The performance of the instruments depends on the user. This section will consider

applications in context with the results seen in the study to inform existing and future

sensor deployments and design.

5.1. Precipitation Depth and Rate

The results confirm that the PWD21 is unable to measure over 20 mm h−1—no pre-

cipitation is observed over this rate; convective events are significantly under-captured.

Concurrently the sensitivity of weak PRs is poorly captured, evidenced by a positive

intercept when compared with all other instruments at 5 minute sample duration (ex-

cept the TBR which has time resolution limitations). The PWD21 should not be used

as a PR or depth sensor where possible. Funnel gauges (TBR and RAL) are affected

by air temperature and humidity. The funnels will take longer to wet in the summer

because precipitation can more rapidly evaporate. There is evidence for this seasonality

as Figure 3.5 shows that the largest increase in bias in the TBR occurs in June-August,

and the RAL bias increases more than the other instruments from November onwards.

The TBR can also lose liquid within a bucket through evaporation, which the RAL

mitigated by employing a less exposed drop collection reservoir design. This may ex-

plain the larger summer differences in the TBR vs the RAL. Funnel gauges are also

affected by wind (Sevruk 1996).

The Thies LPMs have a large difference in recorded precipitation over 12 months (591.7

and 744.8 mm for Thies1 and Thies2 respectively, or 25% more in Thies2). The Thies1

accumulated total is close to other instruments throughout the year and both Thies

LPMs have similar r2 values to other instruments in Figure 3.6, the largest difference

being for the PWD21 with a difference of 0.047. However, the gradient m between the
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Thies LPMs is 1.05 which suggests a 5% difference. Here, the limitation of the least

squares regression is highlighted; examination of the scatterplot between the Thies

LPMs (not shown) reveals several cases where the Thies2 reported 5-minute precipi-

tation as much as half that of the Thies1, skewing the gradient of the best fit. The

scatterplot shows that the overdiagnosis of PR (at 5-minute intervals) in Thies2 com-

pared to Thies1 generally occurs across all PRs and is likely a systematic bias with the

laser to diode occultation technique. Lanza and Vuerich (2009) noted an overestima-

tion in precipitation from optical disdrometers compared with a reference gauge and

Lanzinger (2006) quantified a 5-20% overestimation from optical disdrometers. Fras-

son et al. (2011) suggests that the Thies LPM is sensitive to precipitation particles

outside of the manufacturer-quoted laser beam area, causing an overcount of particles

for the specified area when compared with a TBR-gauge. Large differences between

Thies LPMs were also noted in Frasson et al. (2011), suggesting that the build and

calibration consistency by the manufacturer is poor.

A phenomenon observed in Figure 3.8 with the JWD is the underestimation of small

and large drops in heavy PRs, also observed in Figure 3.6 because the gradient of the

JWD versus RAL, PWS100 and Thies LPMs all show an underestimation by the JWD.

The total PD over 12 months is near the mean of all instruments (-4.3 mm bias), but

the DSD results indicate that the JWD underdetects PR, so the PD value should be

lower than truth. The PWS100 has a similar 12 month PD (-3.0 mm from average of all

instruments) which is likely to be an underestimate and r2 values are around 0.9 (if the

lower TBR and PWD21 are dismissed). These values are the lowest of the RAL, JWD

and Thies LPMs and the PWS100 also has a lower gradient than the Thies1, JWD and

RAL for 5-minute intervals seen in Figure 3.6, further supporting the conclusion that

the PWS100 is underdiagnosing PR and PD.

5.2. Drop Size Distribution

The DSD comparisons are split up by PR and accumulation time. There are few

differences between the time accumulations showing that 5 minutes is sufficient for a

representative DSD shape. The Thies LPMs and PWS100 measure some drops larger

than the JWD can measure (> 5.0 mm). It has been shown that the maximum stable

diameter of a raindrop in stationary air before breakup occurs is ∼6 mm (Villermaux

and Bossa 2009; Marshall and Palmer 1948). This suggests that the largest drops

measured by the Thies LPMs and PWS100 are realistic. Therefore the JWD appears

to be limited and from the results in Figure 3.8 is also underdiagnosing the number of
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large droplets. This is important for heavy PRs which can cause flash flooding because

larger drops contribute more volume of water to the rain rate than smaller drops.

Capturing larger drops in disdrometer measurements is also important for comparison

with, or calibration of, precipitation radars. Smith (2016) found that the largest 6%

of drops in a simulated DSD contributed towards 85% of the value of the reflectivity

factor, Zh. The JWD should therefore not be used for applications where high PRs

need to be well captured.

The JWD also underdiagnoses the small drops at high PRs (> 2.0 mm h−1), which

may be due to the dead-time effect, not accounted for here, where large drops cause

oscillations on the JWD plate which take a non-negligible time to dampen. In this

time, motion from small drops is undetectable. However, the impact of the dead-time

correction has been questioned in the literature (Ulbrich and Atlas 2007). The JWD

agrees with the Thies LPM for lower PRs (< 2.0 mm h−1) so high sensitivity to drizzle

and weak PRs makes the JWD suitable for those applications.

Alternatively, the Thies LPMs have a steeper DSD for small drops during high PRs

(> 5.0 mm h−1) which is unrealistic; the Thies LPM housing has been suspected of

splashing precipitation into the measuring beam (Pickering et al. 2019) which would

increase the number of small drops seen in Figure 3.8. Sensitivity at weak PRs and

drizzle is also high in the Thies LPMs, although this does occasionally result in some

anomalous measurements of insects or debris. The PWS100 underdiagnosing small

drops could be a critical failure for automated precipitation-detection applications. In

the PWS100 manual it states “proportion of particles detected will fall off significantly

below about 0.5 mm diameter”, not below 1.0 mm as seen here and should therefore not

be used for high-sensitivity purposes. All instruments have suspect drop count values

in the small drop diameter sizes for higher PRs (> 5.0 mm h−1), so it is not clear that

any of the instruments tested capture the full DSD correctly for high PRs (> 5.0 mm

h−1).

5.3. Drop Velocity Distribution

As with DSD, the difference in distribution shape is consistent for a given PR across

multiple data collection time samples, indicating that a 5-minute sample is sufficiently

representative. Pickering et al. (2019) note that there are often cases where the Thies

LPM measures a portion of the smallest particles (0.125 mm) at the highest velocity bin

(> 10 m s−1) which is incompatible with the empirically derived relationship between
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drop diameter and terminal fall velocity by Gunn and Kinzer (1949). The cause of

these small diameter and high velocity drops is unknown but the behaviour exists in

both Thies LPMs used in this study.

The Gunn-Kinzer curve is a widely-used relationship between drop size and terminal

velocity. In the 5.0 mm h−1 cases (5, 12, 19), the maximum drop-diameters of around

4.0–4.5 mm for both the PWS100 and Thies LPMs should have a terminal velocity of

8.7-9.0 m s−1 according to the Gunn-Kinzer curve. In Figure 3.9 however, the PWS100

has a maximum velocity of 4.5 m s−1 and the Thies LPMs of 10.5 m s−1 which is higher

than Gunn-Kinzer but closer than the PWS100. This trend continues across all DVDs.

The Thies LPMs are close to the values expected from Gunn-Kinzer, but the PWS100

DVDs appear to be linearly stretched to approximately half the values expected.

Since the PWS100 under-detects small drops, the DVD will also be affected. Despite

this the counts of low velocity drops are the same or higher than the Thies LPMs in 13

out of the 18 cases, which supports the observation that the Thies LPMs incorrectly

measure a broad range of velocities for small drops, decreasing the true low velocity

(< 1.0 m s−1) count. Since the Thies LPMs use only DSD and DVD for PT, these

anomalies in observation will lead to incorrect diagnoses of PT when particle sizes are

small.

5.4. Precipitation Type

Both Thies LPMs have high drizzle counts, higher than rain which does not match the

site climatology (Ventouras et al. 2006). This signals a systematic design error which

may be due to the sensitivity of the instrument to any small particles in the atmosphere

like insects or debris. Both the PWS100 and PWD21 counted fewer drizzle cases than

the Thies LPMs. In Section 4.1 it was shown that the PWS100 underestimates small

drops; drizzle is defined as drops < 0.5 mm in diameter, so the result is consistent with

earlier findings. Similarly, the PWD21 does not output DSDs, so cannot explicitly

distinguish drizzle. Ice and wet ice are the most disagreed classes simply because the

climatology of the study location has rare occurrences of pristine ice crystals. Hail

is also rare in the UK (Hand and Cappelluti 2011) and is therefore unreasonable to

evaluate over a 12-month period.

The results for PT show weak agreement across the instruments, which is consistent

with the literature for similar instruments. Bloemink and Lanzinger (2005) showed that

for a simple PT classifier (none, liquid, mixed-phase, solid), there was little difference
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between the Thies LPM and Vaisala FD12P (akin to the PWD21 with a visiometer,

thermometer and capacitive plate) when each were compared with a trained observer.

They noted a particular weakness for the instruments to detect mixed-phase precipita-

tion, also seen here.

There is little difference in the HSS for different time periods, which demonstrates that

the amalgamation algorithm presented here is successful; if there were large increases

or decreases in the HSS over time, then the algorithm is introducing a bias. The PT

scheme and amalgamation algorithm should be applied to future instruments and to

research analysis, so that there is consistency between instrument manufacturers in this

field. The explicit PT scheme will also require instruments to be explicit, which the

current PW code does not require since it is ambiguous.

5.5. Study Limitations

Several limitations exist with the current study which must be noted and considered.

Firstly there is no single instrument which can be identified as the truth, and therefore

the results are limited to comparisons between two instruments or an average of all

instruments (referred to as a “composite working reference” in intercomparison studies).

By contrast, Lanza and Vuerich (2009) use a composite working reference of 4 gauges

(two TBRs and two weighing gauges) identified from laboratory comparisons (Lanza

and Stagi 2009). The effect of wind on precipitation measurements has long been

known (Heberden 1769; Jevons 1862; Koschmieder 1934) but here no considerations

are made to isolate precipitation events by wind speed thresholds. This study was

based on existing instruments on-site and their pre-installed locations which could not

be changed due to the need to maintain consistent long-term measurements at CAO.

The PWD21 and PWS100 instruments are on the roof of a small building, which is sub-

optimal due to turbulence generated by the building—however, these instruments are

raised above the building as shown in Figure 3.1 which reduces the turbulence within the

instrument sampling volume. Finally, whilst 12 months of data covers seasonal changes,

the study period cannot be considered a true climatological sample since 30 years of

observations would be required. Note that other intercomparison studies also use a

data collection period on the order of 1 year (Lanza and Vuerich 2009; Kochendorfer

et al. 2017). The study is also conducted in a single location and therefore the results

only apply to locations with similar precipitation climatologies as that of CAO (see

Section 2.2) and up to PRs of 50 mm h−1.

129



Chapter 3

6. Summary

We examined six techniques for measuring precipitation to inform the future usage

of their observations, sensor deployments and to provide a benchmark for new sensor

development. Comparison techniques from the literature were modified and improved

upon to further explore the consistency and reliability of the observations from sensors

with different measurement techniques. Rainfall depth and rate were examined using

linear regression. The regressions of each instrument were cross-compared to reveal

consistent poor-agreement and other patterns. A novel technique for comparing drop

size and velocity distributions was described and employed. By selecting cases of stable

rainfall rate, the drop distributions are kept consistent for the comparisons. A new

precipitation type look-up-table was created to convert and group the widely-used PW

code format into more explicit classes which enables a standardised comparison with

other instruments to be performed. An amalgamation algorithm was also introduced

which merges multiple 1-minute precipitation type observations into a single code. The

new PT codes and amalgamation algorithm were then used to compare 4 instruments

over 3 timescales. Though the comparison of the instruments showed poor instrument

agreement, the results demonstrate the successful application of the PT scheme and

amalgamation algorithm.

For robust measurements, observing sites should employ multiple sensor designs. No

single sensor in this study could satisfy all user applications. The Thies LPM makes

reasonable observations for all variables, although the PT data is difficult to verify

without a human observer and the PD between two Thies LPMs over 12 months had

a 26% difference, signalling poor manufacturing calibration consistency. The PWS100

reported unrealistically low velocity measurements, fewer PTs than the Thies LPM

and struggled to observe drizzle. The PWD21 performed poorly for every variable; PR

and PD showed large negative biases of around 50% compared with the average of all

instruments in the study, and PTs were narrowly reported (few classes). The JWD

and PWS100 12-month PD were close to the mean PD but the DSD from the JWD

underdiagnosed small and large drops, especially in higher PRs. The JWD and RAL

had reasonable PR r2 values with a fast response time. The RAL 12-month PD was

14% higher than the average for all instruments. The TBR has a slight negative PD

bias compared with the average for all instruments over 12 months with 7.2% below

the average. The low PD resolution of 0.2 mm makes the TBR unsuitable for response

times less than 5 minutes for typical PRs observed at CAO.

A clear outcome of this study is that observations of PT, whilst useful and in grow-
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ing demand, are poor because there is only moderate agreement between instruments

with mixed-phase precipitation disagreed upon the most. Other studies still use human

observers as the most trusted PT which shows that there is a need for improved pre-

cipitation type sensors. Overall, the sensor design choice should change based on the

user requirements, and this study serves as a reference for such a decision to be made.
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Abstract

This study aims to evaluate the skill of a radar-based surface precipitation type

(SPT) product with observations on the ground. Social and economic impacts can

occur from SPT because it is not well forecast or observed. Observations from

the United Kingdom Meteorological Office’s weather radar network are combined

with post-processed numerical weather prediction (NWP) freezing level heights in

a Boolean logic algorithm to create a 1 km resolution Cartesian-gridded map of

SPT. Here 5 years of discrete non-probabilistic outputs of rain, mixed phase, snow
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(Part I) and hail (Part II) are compared against surface observations made by

trained observers, automatic weather stations, disdrometers and public reports.

The novel skill verification method developed as part of this study employs several

tolerances of space and time from the SPT product, indicating the precision of the

product for a desired accuracy. In general the results indicate that the tolerance

verification method works well and produces reasonable statistical score ranges

grounded in physical constraints. Using this method, we find that the mixed

precipitation class is the least well diagnosed which is due to a negative bias in the

input temperature height field, resulting in rain events frequently being classified as

mixed. Snow is captured well by the product which is entirely reliant upon a post-

processed NWP temperature field, although a single period of anomalously cold

temperatures positively skewed snow scores with low-skill events. Furthermore,

we conclude that more verification consistency is needed amongst studies to help

identify successful approaches and thus improve SPT forecasts.

1. Introduction

The type of hydrometeors reaching the surface, known as the surface precipitation

type (SPT), can severely impact human activities. In regions where solid precipitation

types are common and expected occurrences, long-term adaptations are cost-effective,

but where solid precipitation types are infrequent and uncommon (mid-latitudinal and

certain mountainous regions) these adaptations are not cost-effective and (as in the

case of the UK) events can significantly disrupt daily life (Kay 2016; Curtis et al.

2017). In the winter of 2009/10, the cost to the UK National Health Service from falls

on snow and surface ice was £42 million (Beynon et al. 2011). Mitigative actions such

as clearing roads, covering exposed crops, redirecting aircraft are cost-associated and

require sufficient lead time and confidence (Cornford and Thornes 1996; Rasmussen

et al. 2001; Handa et al. 2006; Clarke et al. 2009).

Real-time observations are often used by forecasters directly, or in nowcasting systems

to issue precipitation type guidance, valid for timescales of 0-6 hours (Rasmussen et al.

2001; Schmid and Mathis 2004; Haiden et al. 2011). SPT is accurately reported by

trained observers but their observations are infrequent, whereas automated ground

instruments record continuously but with less accuracy (Bloemink and Lanzinger 2005;

Landolt et al. 2019). The United Kingdom’s Met Office operates a network of both

station types across the UK but these do not provide complete spatial coverage at a

high enough temporal resolution sufficient for animated, gridded map products which

are essential for SPT nowcasting and public understanding. An ideal measurement
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system for SPT nowcasting is weather radar because it possesses a high spatiotemporal

resolution. Additionally, the UK weather radar network has (at most) a 10-minute

turnaround from measurement to dissemination (Harrison et al. 2000) so it is useful for

real-time decision-makers.

This study aims to assess the skill of a UK radar-derived SPT product over a 5-year

period. Since the product is deterministic and precipitation type is discrete non-

probabilistic data, there are a limited number of statistical techniques suitable for

performing a verification. Furthermore, snow and mixed-phase precipitation are an or-

der of magnitude less frequent than rain (Kay 2016; Brown 2019). This discrepancy in

the abundance of the classes can deceptively skew some statistical scores (Wilks 2011),

further reducing the number of applicable verification techniques.

Added difficulty is introduced with the comparison of a radar-derived spatial prod-

uct with point surface instruments, since the representative volumes differ. Weather

radars measure distribution-weighted three-dimensional volumes of the atmosphere.

The verification “truth” on the ground (often many hundreds of metres below the

peak-weighting of the radar voxel) is a pinpoint measurement, typically a fraction of a

cubic metre for automated instruments. Human reporters are capable of broader visual

verification of the precipitation type but their observation volume is still an order of

magnitude less than weather radars.

In this study, a new approach is applied to determine the skill-range of radar-based

surface precipitation type products against several surface observation datasets, by

varying the temporal and spatial tolerance of the product. Part I examines the ability

for the Met Office SPT product to diagnose rain, mixed-phase and snow precipitation

types, while Part II examines the skill of hail diagnosis, which uses a separate criterion

in the Met Office product and requires separate verification data. Weaknesses and

opportunities for improvement of the radar-based SPT product are presented in both

parts. The verification techniques developed here are further useful for verification of

NWP forecasts of precipitation type (or any discrete non-probabilistic variable) and

thus facilitate more accurate diagnoses of precipitation type in atmospheric science.

The boundary between rain, mixed-phase and snow (R-M-S) is important because

the presence of mixed-phase precipitation typically indicates that the hydrometeors

are melting before they reach the ground and will therefore not accumulate. This is

important for several industries - if wet precipitation meets a cold surface (or if it occurs

with diurnal cooling), then ice is the primary risk. If the surface is warm (or if it is

associated with diurnal heating) then the runoff water will drain away into rivers and
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lakes, potentially contributing to flood events.

The R-M-S boundaries in the UK (and similar geographies) are difficult to diagnose and

forecast. Cases are often borderline since surface temperatures are non-extreme and

fluctuate diurnally between −5 ◦C and +10 ◦C in winter (Parker et al. 1992; Brabson

and Palutikof 2002), and many factors can influence the change of precipitation phase.

The influence of the northern hemisphere mid-latitude jet stream and the enclosure of

the North Atlantic warmed by the gulf stream create fluctuating synoptic patterns and

coastal micrometeorology. Small changes in the vertical temperature structure of the

atmosphere can also shift the R-M-S boundary by hundreds of kilometers horizontally.

1.1. Met Office SPT Product

To overcome the disparity between the radar-observed voxel and the surface precipita-

tion type diagnosis, the Met Office created an SPT product which uses NWP output

as input to a parameterised translational process below the lowest-usable radar beam.

Since late 2013 the SPT product has been operational with the same spatiotemporal

resolution as the Met Office precipitation rate product (1 km2, 5-minute frequency).

Figure 4.1 shows an example of the product at a single point in time. The product

has 4 classes: hail, snow, mixed-phase and rain. Note that the term ‘mixed-phase’

refers to the mixture of snow and rain and does not include partially melted graupel

or hail. These types are determined with a Boolean logic decision tree described in

Table 4.1. The algorithm inputs are radar-derived surface precipitation rate (Harrison

et al. 2000), 0 ◦C wet-bulb isotherm altitude (above local surface) derived from the Met

Office Unified Model run in a Euro4 configuration, and radar reflectivity.

The criterion from Waldvogel et al. (1979) is employed for hail diagnosis:

Z ≥ 45 dBZ

&

h ≥ (FZL+ 1.4 km),

(4.1)

where Z is radar reflectivity factor at a radar bin, h is the height of the radar bin, and

FZL is the 0 ◦C wet-bulb isotherm altitude in km. Lumb’s critical rate is used for the

mixed-phase diagnosis and is defined as:

Rc = 0.2909e

(
0.004FZL

f(v)

)
(4.2)
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Met Office SPT Product - 2017/02/23 09:30
Hail
Snow
Mixed-Phase
Rain

Figure 4.1.: An example of the Met Office SPT product, during named winter storm
Doris at 0930 UTC 23rd February 2017. An animated video of the whole day is supplied
in the supplementary material.
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where Rc is the critical rate in mm h−1, FLZ is the 0 ◦C wet-bulb isotherm height

above the local surface in metres, and f(v) is a function of wind speed but is set equal

to 1 in the Met Office implementation and is therefore neglected. The notion is that

for a given 0 ◦C wet-bulb isotherm height, precipitation will be observed at the ground

as still containing a proportion of solid hydrometeors if the critical rate is met, due to

evaporative cooling (Lumb 1963).

This process is applied initially to each pixel from all 18 radars (15 Met Office, 2 Met

Éireann and 1 Channel Islands Meteorological Department). All data are then compos-

ited onto a Cartesian 1 km2 grid using the modal-value of all contributing pixels since

a single location in the UK is typically observed by many radar sites simultaneously.

1.2. Verification Data

Data which are used to evaluate the performance of the SPT product are described

here. The known capabilities and limitations of the ground instruments are critical

to aid the discussion of the results. Table 4.2 summarises each dataset and Figure 4.2

shows the locations of all surface stations as well as the locations of all radar sites which

contribute to the SPT product.

1.2.1. Automatic SYNOP

The Met Office operates a network of surface weather stations called SYNOP sta-

tions which report observations once every hour. At the automatic stations, precipi-

tation type is reported using the World Meteorological Organization (WMO) “Present

Weather” (PW) code from table 4680 (WMO 1988, 2017). The PW code is determined

using an arbiter which combines multiple measurements: a Vaisala FD12P present

weather sensor, a precipitation detector, a visiometer, a ceilometer and an air temper-

ature thermometer (Green 2010). Known limitations of the arbiter are insensitivities

to weak precipitation rates, poor detection of ‘sleet’ (UK nomenclature for mixed pre-

cipitation), no quantitative uncertainty and difficulties calibrating or tracing errors

since the arbiter “has many assumptions” (Lyth and Molyneux 2006; Lyth 2008). 172

automatic SYNOP station locations were available for inclusion during this study.
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Figure 4.2.: A map of the UK showing all surface station sites (automatic, manual and
DiVeN) used in the verification in this study, as well as the locations of all radar sites
used in the UK Met Office SPT product. Some stations are a hybrid (denoted with
adjacent yellow left-pointing and green right-pointing triangles), where the observations
are mostly automatic but are sometimes overridden with manual observations if an
observer is present and disagrees with the automated diagnosis.
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1.2.2. Manual SYNOP

Met Office manual SYNOP stations are those where a qualified employee has physically

observed meteorological conditions every hour. WMO Table 4677 is used to record PW

observations (WMO 1988, 2017). Manual reports are considered to be the highest

quality standard of PW observation and observers are well trained with handbooks to

minimise inconsistencies between sites. The range of PW codes available cover more

obscure weather conditions and many do not refer to precipitation at all. The main

limitation of the manual stations is that there are few locations; 38 manual SYNOP

station locations were available for inclusion during this study.

1.2.3. DiVeN Disdrometers

With the support of the Met Office and the National Centre for Atmospheric Science

(NCAS), the Disdrometer Verification Network (DiVeN) was installed in the UK in

early 2017 (Pickering et al. 2019). The Thies laser disdrometers (Adolf Thies GmbH &

Co. KG 2011) measure the diameter and fall velocity of hydrometeors and use empirical

relationships (such as those developed by Gunn and Kinzer (1949); Locatelli and Hobbs

(1974)) to estimate WMO table 4680 PW codes (WMO 1988, 2017). Prior studies

have shown that the Thies laser disdrometers have good ability to distinguish between

solid and liquid precipitation types but less skill in the mixed-phase or during light

precipitation (Bloemink and Lanzinger 2005; Lyth 2008; Pickering et al. 2019, 2020).

Hail detection from the Thies laser disdrometer is possible but is less well studied, so

the instruments will not be used here for verification of the SPT hail class. Data are

openly available (NERC et al. 2019) from February 2017 (18–23 months depending on

the site install date) at a 5-minute frequency and 14 locations exist.

2. Study Period Characteristics

In this study, the Met Office SPT product is veified over a 5 year period of 2014 to

2018 inclusive (60 months total). Before verifying the product an overview of the data

characteristics throughout the study period is provided here.
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2.1. Frequency Maps

SPT-product classes from the 5-year study period are summed in time to create total

radar-diagnosed frequencies of precipitation, and then each precipitation type as a

percentage of total precipitation observed. High-resolution zoomable PDF maps are

provided in the supplementary material. Figure 4.3 shows the percentage of the 5-year

period where a pixel prescribed precipitation of any kind. The spatial distribution

of precipitation frequency in Figure 4.3 shows higher precipitation frequency in the

north and western areas, and over higher terrain. The radar network covers the whole

of the UK (except the Shetland Islands) but some artefacts are visible. Note that

the western and southern edges of the product are constrained by the extent of the

UKPP 0 ◦C wet-bulb isotherm field. The furthest extent of the radar network detects

precipitation less frequently because the beam is less sensitive with range and may

overshoot precipitation.

In a similar fashion, azimuths which experience long-term partial or total beam block-

age (by terrain, buildings or trees) exhibit radial streaks of decreased percentages. The

edge of some radar maximum-range boundaries are visible notably in northern Scotland

and this is due to dual-polarisation upgrade downtime at individual sites (see supple-

mentary material). The patches of decreased precipitation frequency are likely due to

the removal of ground or sea clutter (reflective human or natural structures) which also

removed some weaker precipitation events. Annual and monthly plots (see supplemen-

tary material) show that the Channel Islands (most southern radar) sea clutter has

been almost entirely eradicated by the dual-polarisation upgrade - a well-documented

ability of the technology (Hubbert et al. 2009; Dufton and Collier 2015).

For the precipitation classes, the total occurrences are normalised against occurrences

of any precipitation type e.g. for each pixel, the total number of snow reports as a

percentage of the total number of precipitation reports from Figure 4.3. Since rain is

overwhelmingly common in the UK (greater than 90% in most areas), the rain frequency

map is dominated by the signals shown in Figure 4.3 and is therefore not shown here

(see supplementary material). Maps for mixed-phase and snow are shown in Figures

4.4 and 4.5.

Orography is clearly resolved in the SPT product, which can be attributed to the 0 ◦C

wet-bulb local height for the mixed and snow classes. The mixed-phase class is also

influenced by the enhancement of precipitation rate over orography applied by the Met

Office (Harrison et al. 2000) due to Lumb’s critical rate. The highest snow frequency is

149



Chapter 4

Percentage of Time SPT Product Detected Precipitation (2014-2018)

Min: 0.0%
Max: 48.3%
Files: 521,978
Total Occurences: 53,536,579,925
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Figure 4.3.: Percentage of time that precipitation of any class is detected by the Met
Office radar network from the start of 2014 to the end of 2018 (5 years). The Met Office,
Met Éireann and the Channel Islands Meteorological Department radar locations are
marked as white dots.
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Percentage of SPT Product Precipitation Classified as Mixed-Phase (2014-2018)

Min: 0.0%
Max: 37.5%
Files: 521,978
Total Occurences: 899,692,697
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Figure 4.4.: Percentage of precipitation detected by the Met Office radar network which
the SPT product diagnosed as the precipitation type mixed-phase, between 2014 and
2018 inclusive. The Met Office, Met Éireann and the Channel Islands Meteorological
Department radar locations are marked as white dots. The scale is set from 0 to 10%.
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Percentage of SPT Product Precipitation Classified as Snow (2014-2018)

Min: 0.0%
Max: 45.2%
Files: 521,978
Total Occurences: 1,538,901,244
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Figure 4.5.: Percentage of precipitation detected by the Met Office radar network diag-
nosed as snow by the SPT product, between 2014 and 2018 inclusive. The Met Office,
Met Éireann and the Channel Islands Meteorological Department radar locations are
marked as white dots. The scale is set from 0% to 10% to highlight features. The
maximum percentage is 45.2%, which occurs over the Scottish Grampians.
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over the Scottish mountains where 45.2% of the precipitation detected receives a snow

classification. Between 2014-2018, every km2 pixel of UK-land is diagnosed as experi-

encing snow at least once. Lowland areas of England typically experience ∼0.5-1.0%

of precipitation as mixed-phase and ∼3-4% of precipitation as snow. The mixed-phase

class occurs more frequently over the western-facing coasts of Scotland and the Re-

public of Ireland, which experience heavier precipitation more often due to exposure

to westerly-dominated synoptic weather and thus meet Lumb’s critical rate more fre-

quently.

In Figures 4.4 and 4.5, offshore wind farms are visible east of London and the Thames

Estuary. Wind turbines are reflective so the precipitation rate will be falsely higher and

thus Lumb’s critical rate will be met more often. Mixed-phase frequency also decreases

in both plots where a reflectivity correction is made for known wind farms; for snow, this

means the minimum reflectivity for precipitation diagnosis is met less often. These plots

show that the correction is too strong and that the polygon is not large enough since a

halo-effect is seen around these locations, even after the dual-polarisation upgrade. A

feathered-edge polygon would give improved results.

The Ingham radar (Lincolnshire) has fewer mixed-phase precipitation events at maxi-

mum range from the radar, caused by lower reflectivity such that Lumb’s critical rate is

met less frequently. Borders between preferred radars during the compositing process

are visible but mainly over the ocean (with the exception of East Anglia). Banding

occurs in the mixed and snow plots particularly around the edge of the network; the

insensitivity to weaker precipitation at long ranges (because the radar is less sensitive

generally and the beam is at a high altitude) means that the percentage of events de-

tected that are heavy (and are therefore more likely to meet Lumb’s critical ratio) is

higher.

In general, long-term frequency plots are useful for exposing artefacts, events and trends

within the radar and SPT product data. The sensitivity of the SPT product to changes

in reflectivity and radar scan geometry are well highlighted here. A limitation of using

this method to find radar artefacts is that many years of observations are needed if

seasonal changes are to be observed.

2.2. Verification Data Statistics

The SYNOP (automatic and manual) reports are hourly and cover the full 5-year

study period. DiVeN began in February 2017 and therefore contributes 18–23 months
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of data (depending on the site install date), but every 5 minutes. The automatic

stations contributed a total of 330,369 precipitating PW code reports, of which 321,111

(97.20%) were rain, 2,408 (0.73%) were mixed, and 6,850 (2.07%) were snow. Manual

sites are less common and contributed 75,647 precipitation reports, consisting of 73,609

(97.31%) rain, 716 (0.95%) mixed-phase, and 1,322 (1.75%) snow. DiVeN disdrometer

instruments contributed 148,441 precipitation reports, of which 135,083 (91.00%) were

rain, 2,787 (1.88%) were mixed-phase and 10,571 (7.12%) were snow. DiVeN sites

observe higher frequencies of mixed and snow cases because several of the sites are at

high elevation (5 sites > 250 m a.m.s.l. out of 14 total). The Met Office SYNOP sites

are more commonly at lower elevations on flat terrain (∼10% > 250 m a.m.s.l.).

3. Methodology

The aim of this study is to evaluate the skill of the Met Office SPT product over a

5-year period. To achieve this, several ground-based datasets are used to increase the

volume of data available and to have multiple perspectives since all ground-based data

have their own artefacts and biases. The sections below outline the steps taken to

evaluate the skill of the SPT product.

3.1. Data Handling and Quality Control

A limitation of the ground-based data is that all are coded using the PW system; many

codes contain multiple precipitation types or are ambiguous (i.e. multiple conditions

are described). To facilitate comparison to the SPT product, the WMO Table 4680 and

4677 codes are translated into the Met Office SPT product classes (none, rain, mixed-

phase, snow, hail) or ‘ambiguous’ as shown in Figure 4.6. The number of ambiguous

(containing more than one SPT product class) reports were as follows: manual 16,961

(1.8%), automatic 489,481 (7.7%), DiVeN 12,888 (0.5%).

In this study, an event constitutes one surface observation paired with a co-located

SPT product diagnosis. There are 9,894,007 events in total available to this study from

combined automatic, manual, DiVeN sites. The purpose of this study is to examine

the SPT-classification skill of the product, not whether the radar correctly detects

precipitation. Therefore, events that contain no precipitation (from either or both data

sources), events that are erroneous (SPT data missing, codes outside of the PW coding

scheme) or are ambiguous, are removed (562,590 events remain). The SPT product

154



The Assessment of Surface Precipitation Type Measurements

SPT 
Class

Verification 
Dataset Present Weather Codes Included WMO Table 

Number

None
Manual 0-19, 28-49, 98 4677

Automatic 0-10, 12-20, 27-35, 91, 94, 99 4680
DiVeN 0 4680

Rain
Manual 21, 24-25, 50-69, 80-82, 91-92 4677

Automatic 43-44, 47-66, 81-84 4680
DiVeN 51-53, 57-58, 61-63 4680

Mixe
d

Manual 23, 83-84 4677
Automatic 67-68 4680

DiVeN 67-68 4680

Snow
Manual 22, 70-78, 85-86, 94 4677

Automatic 11, 70-73, 85-87 4680
DiVeN 70-73 4680

Hail
Manual 27, 79, 87-90, 96, 99 4677

Automatic 74-76, 89, 93, 96 4680
DiVeN 74-76, 89 4680

Ambiguous Manual 20, 26, 93, 95, 97 4677
Automatic 21-26, 40-42, 45-46, 77, 80, 90, 92, 95 4680

DiVeN 41-42, 77 4680

Figure 4.6.: Conversion Look up Table (LuT) for converting ground observations from
WMO Present Weather code into the SPT product classes for this study. Also shown are
the ranges of PW codes supported by each instrument and the specific table used, since
autonomous and human observations use different WMO tables. Many of the codes
available in the WMO tables are ambiguous (contain multiple SPT product classes)
and are shown in the last row. All supported PW codes from each surface dataset are
assigned an “SPT class” in the table. Note that the term ‘mixed-phase’ refers to the
mixture of snow and rain and does not include partially melted graupel or hail.

should also be functioning nominally in the wider vicinity; if the SPT product has any

erroneous flags in the 5 × 5 km ± 15-minute SPT pixel region around the ground report

location, then the event-pair is discarded (555,993 events remain). Additionally, events

where either of the event-pair report hail are removed. After filtering, 554,457 events

remain from which the analysis is performed.

Ground-based observations are paired with the next available SPT file because output

files are labelled with the end time of a 5-minute period. Note that the Met Office

operates a 10-minute radar scan strategy with 3 elevation descents containing both

high and low elevation angles.
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Table 4.3.: The structure of the 3× 3 confusion matrix applied in this study.

Surface
Rain Mixed Snow

Rain r s t y1
SPT Mixed u v w y2

Snow x y z y3
x1 x2 x3 Total, n

Table 4.4.: The layout of the 2× 2 contingency table used in this study.

Surface
Yes No

SPT Yes Hit, a False Alarm, b y1
No Miss, c Correct Null, d y2

x1 x2 Total, n

3.2. Confusion Matrices and Contingency Table Metrics

Discrete non-probabilistic datasets are typically veified by confusion matrices where

events are allocated a position in the matrix based on the ground-truth dataset (the

class-designated column) and the dataset under examination (the class designated row).

Table 4.3 shows the confusion matrix that will be employed in this analysis. The top-

left to bottom-right diagonal entries are therefore instances where the dataset under

examination is in agreement with the truth and a ‘hit’ occurs. The remaining entries

reveal where the scrutinised dataset (the SPT product) is misdiagnosing.

Furthermore, the confusion matrix (n × n) is reformulated into dichotomous (yes/no)

contingency tables (2×2, shown in Table 4.4) for each of the SPT product precipitation

classes (Wilks 2011). Three metrics are then applied to each table: frequency bias (B),

probability of detection (POD), false alarm ratio (FAR):

B =
(a+ b)

(a+ c)
(4.3)

POD =
a

(a+ c)
(4.4)

FAR =
b

(a+ b)
(4.5)

where a = hit, b = false alarm and c = miss. Bias shows whether the class is being

under or over-diagnosed by the SPT product which can range from 0 (under-diagnosis)
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to ∞ (over-diagnosis); 1 is the perfect score. POD is the chance of a correct diagnosis

when the precipitation type does occur and thus ranges from 0 (the event is never

detected) to 1 (the event is always detected). FAR is the chance of a false diagnosis

when the event is diagnosed and ranges from 0 (no false alarms) to 1 (all diagnoses are

false alarms).

3.3. Heidke Skill Score and Bootstrapping

An overall score is sought for the SPT product, before narrowing in to identify the

strengths and weaknesses of the product on a per-precipitation-class basis. Generally,

a skill score (SS) takes the form:

SS =
V − Vref

Vperf − Vref
(4.6)

Where V is the verification metric, Vref is the verification metric for a reference di-

agnosis, and Vperf is the verification metric for a perfect diagnosis. Several scores

exist and each come with strengths and limitations. Since the SPT data is discrete

non-probabilistic (rain, mixed-phase or snow) as opposed to dichotomous (yes or no),

two appropriate higher-dimension generalised skill scores are considered: the Heidke

Skill Score (HSS) and the Peirce Skill Score (PSS). The n-dimension Heidke Skill Score

(HSS) is defined following the structure of Eq. 6 as:

HSS =

∑I
i=1 p (yi, xi)−

∑I
i=1 p (yi) p (xi)

1−
∑I

i=1 p (yi) p (xi)
(4.7)

where
∑I

i=1 p (yi, xi) is the proportion correct (the normalised sum of all diagonal

confusion matrix terms),
∑I

i=1 p (yi) p (xi) is the random proportion correct (the product

of diagnosed and observed normalised probabilities summed over each class), 1 is the

perfect score, I is the length of the confusion matrix, yi is the ith row and xi is the ith

column (Doolittle 1888; Heidke 1926). The HSS indicates the fractional improvement

in diagnosis over the probability of a correct diagnosis by chance, which would score

zero. The highest score (Vperf ) is 1, and the lowest possible score is −∞; negative

values therefore indicate that a random guess would have been more skillful. For a

dichotomous 2× 2 contingency table the HSS collapses to:

HSS =
2(a× d− b× c)

(a+ c)(c+ d) + (a+ b)(b+ d)
(4.8)
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where d = correct nulls. Applying the HSS to both the higher-dimension classifier (all

classes simultaneously) and the individual classes allow the contributions from each

precipitation type to be quantified.

The PSS is a modification on the HSS where the denominator Vref term is the unbi-

ased random proportion
∑J

j=1 [p (xj)]
2, defined by the climatology of the observation

dataset. If the climatology of the verification region differs substantially, or if seasonal

changes occur during a verification period, the score must be re-calculated for each

subset of the events (Wilks 2011). This adds computational expense and obscures the

analysis as the subsets of events have no rigorous boundaries for climatology or sea-

sonality. Therefore this study uses the HSS as an overall SPT product metric, which

is applied to each ground-based dataset (automatic, manual, DiVeN) separately.

To show the stability of the overall skill score, a bootstrapping technique is employed

(Efron and Tibshirani 1994; Chernick 2011). A similar approach for SPT verification is

taken by Wandishin et al. (2005); Elmore et al. (2015). Events are extracted at random

with replacement (an event can be extracted multiple times) to form a new subset of

data. Bootstrapping is repeated 100 times to create many new subsets of randomised

events which give an indication of the sensitivity of the HSS to rare events.

The spread of HSS for the subset of data produced by bootstrapping is heavily depen-

dent on the number of random samples taken in each bootstrap and must, therefore,

be chosen with physical justification. The more data that is ingested, the less vari-

ability the HSS exhibits with a random subset. The full 5-year dataset will have a

narrow spread when bootstrapped, whereas a single event could have any HSS value

and therefore the maximum possible spread. This study aims to show the realistic range

of HSS values possible with a single month and a single year of the SPT product. Two

bootstrap sample sizes are chosen to represent the number of events typically reported

(after the quality control procedures described in Section 3.1) in one month and in one

year, from each ground observation dataset (automatic, manual and DiVeN).

3.4. Tolerance

Due to the disparity of the lowest usable radar beam height and the surface, precipi-

tation observed by radar is often not vertically co-located with the surface. Sandford

(2015) showed that the uncertainty in radar drift estimates can vary from 1 km be-

low the melting layer to 10 km at the extreme distance of the maximum range of a

radar. Hail has a terminal fall velocity of > 10 m s−1 (Matson and Huggins 1980;
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Figure 4.7.: An example of a timeseries of the SPT product stacked, representing time
(5-minute frequency). The green-outlined area is the sample used for verification in
three tolerances. The strict tolerance uses only the pixel co-located with the ground
report. The fair tolerance uses a 3 × 3 km region around the ground report and ± 10
minute product outputs for a total of 45 pixels. The lenient tolerance uses a 5 × 5 km
region around the ground report and ± 15 minute product outputs for a total of 175
pixels. If any of the green-shaded pixels are in agreement with the ground observation,
then the SPT product is correct and a ‘hit’ is recorded.

Bohm 1989) while snow aggregates fall with a velocity of less than 2 m s−1 (Langleben

1954; Zikmunda 1972; Locatelli and Hobbs 1974), so the descent time varies between

precipitation types. Furthermore, the horizontal wind advects precipitation as it falls

and, therefore, the amount of horizontal displacement during descent will differ between

precipitation types.

There are several factors determining the trajectory of hydrometeors as they fall to the

Earth’s surface, which makes verification difficult. Here a general solution is applied

which increases the spatial and temporal tolerance for the SPT product to inform how

the product skill is impacted. This informs a user of what spatiotemporal specificity

corresponds with a desired accuracy. Three tolerances of the SPT product are used;

strict: only the 1 × 1 km area and 5-minute period co-located with the surface report;

fair: a 3 × 3 km area and ± 10 minutes around the surface observation will be consid-

ered; lenient: a 5 × 5 km area and ± 15 minutes around the surface observation will

be considered. Figure 4.7 shows the three tolerances diagrammatically.
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If any of the SPT product pixels in the fair or lenient tolerances agrees with the surface,

then it is considered a ‘hit’. The lenient tolerance is approximately the maximum

reasonable displacement (∼2.5 km radius) and fall time (15 minutes) a hydrometeor

could experience from the lowest usable beam height given the Met Office radar network

coverage. To apply this verification technique to other products, the choice in tolerance

may differ. There must exist a physical meaning to the minimum (strict) and maximum

(lenient) possible extent of the gridded product under examination, which is dependent

upon the specific variable being examined and also the measurement technique.

4. Results

4.1. Heidke Skill Score and Bootstrapping

First, the higher-dimension generalised HSS is examined to give an overall value to

the SPT product, before examining each precipitation class. Note that only the SPT

product pixel which directly encapsulates the location and time of the ground-based

observation is used here (i.e. strict tolerance). While the hit and correct null quad-

rants are simple, the higher-dimension thresholds for false alarm or miss criterion from

multiple SPT pixels would be subjective.

Figure 4.8 shows the higher-dimension HSS for all classes of the SPT product. Overall

the SPT product has absolute HSS values (using the full dataset without bootstrapping,

indicated by black dots on Figure 4.8) from 0.48 for automatic, 0.60 for manual, and

0.73 for DiVeN. If all surface-based observations are combined, the HSS of the SPT

product is 0.61.

The spread of HSSs represents the possible scores if a random month or random year

of data were considered. HSS distributions are markedly different between yearly and

monthly bootstrap representations, with a much narrower spread for the yearly than

monthly. Between verification datasets there are also differences. The manual station

verification has the largest spread with a standard deviation (2σ) of 0.147 monthly and

0.038 yearly. Automatic stations give the second largest spread but the lowest overall

score, with a standard deviation (2σ) of 0.058 monthly and 0.018 yearly (approximately

half compared to manual sites). The DiVeN dataset has the highest scores and a stan-

dard deviation (2σ) of 0.024 monthly and 0.008 yearly (approximately half compared

to automatic sites). Ultimately the differences in HSS spread tell us more about the

ground-based dataset than the SPT product, but taking into consideration all three
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Figure 4.8.: Higher-dimension HSS (rain, mixed-phase and snow simultaneously) with
probability distributions produced by a bootstrapping technique. Note that each dis-
tribution is scaled to fit half the width of the column for ease of viewing. Each ground
dataset is shown (automatic, manual, DiVeN) and each has monthly and yearly repre-
sentative distributions. The black dot indicates the HSS for the full dataset.

ground-based datasets gives a broader picture of the variability of the skill of the SPT

product on different timescales, from approximately 0.4 to 0.8.

The HSS is recalculated with adjustments to some of the SPT product classes. Including

the hail class of the SPT product in the calculation makes little difference because the

HSS gives proportional weighting to rare events, and the ground-based datasets rarely

report hail; automatic stations never report hail. If the mixed precipitation class is

removed, the score (for all ground-based datasets) improves significantly from 0.61 to

0.77. This is unhelpful as the SPT product would in this scenario have an ‘unknown’

class for these events. If all mixed-phase diagnoses are re-classified as rain the HSS

increases to 0.73 and if all mixed-phase diagnoses are re-classified as snow then the

HSS decreases slightly to 0.59. This indicates that mixed diagnoses are more likely to

be rain than either mixed-phase or snow.
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4.2. Confusion Matrices

Confusion matrices are useful for showing where each class is being misdiagnosed.

Figure 4.9 shows the results for the rain, mixed-phase and snow classes for each of the

three ground observation sets available. Note again that the tolerance approach cannot

be applied (see previous section), so the values shown are using only the encapsulating

SPT product pixel area and time.

Firstly for the overall frequency of diagnoses, the rain type is underdiagnosed by the

SPT product for automatic stations (-1.94%) but is close to the observed occurrences

by manual (+0.18%) and DiVeN (+0.08%) sites. For mixed precipitation, the SPT

product diagnoses this class twice as often compared with automatic sites, around

the same compared with manual sites, and half as often compared with DiVeN sites.

Finally, snow is diagnosed 50% more by the SPT product compared with automatic

stations, around the same for manual stations, and 12% more for DiVeN sites.

Next, the rows of the confusion matrices are examined so that for a given SPT product

diagnosis, the true observed precipitation type can be discussed. For example, given

that the rain class is diagnosed, it is correct most often, but there are some miss events

where the ground station observed mixed-phase or snow and in all ground datasets the

mixed-phase class is the missed truth more often. The mixed class is poorly diagnosed,

and rain is the observed ground event 23.8, 4.7, and 7.1 times more often (automatic,

manual and DiVeN). Finally, the snow diagnosis is correct 52.5%, 78.4%, and 77.7% of

the time (automatic, manual, DiVeN). The miss events differ between ground datasets.

For automatic, the majority of miss events are rain (41.3% of all snow diagnoses), with

6.3% miss events being mixed. For manual, miss events are more evenly split over rain

(10.3%) and mixed (11.4%). For DiVeN, rain is the missed event for 14.1% of the snow

diagnoses and mixed is the missed event for 8.3% of the snow diagnoses.

4.3. Contingency Table Metrics with Tolerance

Next, skill scores are examined for each precipitation class where a contingency table

has been produced from the confusion matrices. Three realistic tolerances based on the

maximum horizontal displacement during descent from the lowest-usable radar beam

have been applied to the SPT product as described in Section 3.4. All of the results

are composed into Figure 4.10.

The hierarchy of the next section is as follows: each verification metric is discussed indi-
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Automatic
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Rain Mix Snow

Rain 132,349 1,658 1,190 135,197 
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Figure 4.9.: Confusion matrices of SPT product against ground observations, for each
ground observation type. a) Automatic SYNOP, b) Manual SYNOP c) Disdrometer
Verification Network (DiVeN).
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b)

a)

c)

d)

Figure 4.10.: Skill scores for each precipitation class and ground dataset. a) Bias, b)
Probability of Detection (POD), c) False Alarm Ratio (FAR), d) Heidke Skill Score
(HSS). Cyan horizontal lines indicate a perfect score, and red horizontal lines indicate
a ‘no skill’ score. Solid cyan or red lines are fixed value limits, dashed are surpassable
(bias and HSS).
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vidually, going through the precipitation types (as some scores have interdependencies

between the precipitation classes) and commenting on differences between the ground

datasets and tolerances throughout.

4.3.1. Bias

The frequency bias indicates the scale to which precipitation classes are being under

or over-diagnosed. Generally speaking, the mixed-phase and snow classes are overdiag-

nosed at the expense of rain. The high frequency of rain events makes the bias close

to 1 but a slight underdiagnosis is occurring. Bias changes with increased tolerance

are also small. The mixed-phase has the largest positive biases of any class, with the

highest being 8.87 (automatic, lenient tolerance), whereas some are close to an ideal

bias (0.87, manual, strict tolerance). The strict DiVeN result shows an underdiagnosis

of mixed-phase (0.49) but increased tolerance shows an overdiagnosis (1.67 and 2.40).

For snow, biases are overall smaller than the mixed-phase class but still show a positive

tendency. With strict tolerance, biases against the manual and DiVeN data are 0.96

and 1.12, whereas bias against automatic is 1.52.

4.3.2. Probability of Detection

The POD tells us the probability of the SPT product being correct given that the

precipitation class is occurring. Again the rain class is weighted by the frequency of

occurrence (91-97% of precipitation) in the study period and has values close to a

perfect score of 1. The lowest rain class POD score is in the automatic dataset (0.97,

strict) due to underdiagnosis. For the mixed-phase class, POD is low, ranging from

0.08, 0.15 and 0.05 to 0.24, 0.44, and 0.19 (automatic, manual, DiVeN). The snow

class has POD values similar to rain, with lenient/fair tolerances consistently 0.91-0.94

for all ground datasets. The strict tolerance varies: 0.79 (automatic), 0.76 (manual),

0.87 (DiVeN). Given that an SPT is occurring, increasing tolerance makes a correct

diagnosis more likely.

4.3.3. False Alarm Ratio

The FAR indicates the probability of a false alarm when the SPT product diagnoses

a precipitation type. The rain FAR is consistently low due to its high occurrence fre-

quency. The DiVeN dataset gives a slightly higher rain FAR of 0.04 (lenient tolerance)
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which is indicative of the lower occurrence frequency from DiVeN (91% vs. 97% of

precipitation for the other datasets). The mixed-phase class has high FAR (from 0.83

to 0.97) for all verification datasets consistent with a positive bias. The snow class has

different FAR depending on the verification dataset: against manual and DiVeN, FAR

values are around 0.22-0.39 but against automatic, FAR values are 0.48-0.66. Increasing

the SPT product tolerance increases the chance of a false alarm.

4.3.4. Heidke Skill Score

The HSS indicates the fractional improvement of the SPT product diagnoses over ran-

dom diagnoses, where a value of 0 is no skill and a value of 1 is a perfect diagnosis every

time. The decimal value can be described as a percentage improvement over random

chance. The HSS values for rain take into account the high frequency of occurrence

and range between 0.51-0.64 for automatic and strict, but are higher (0.70-0.77) for

DiVeN (lower rain occurrence frequency). The HSS values are not correlated with in-

creasing or decreasing tolerance as is the case with the other verification metrics; this

is explained in the discussion (Section 5.4). The weaknesses in the mixed-phase class

are highlighted by the HSS, with low values across the ground datasets and tolerances.

Automatic observations give the lowest scores (∼0.04), DiVeN the middle scores (0.06-

0.09), and manual the highest scores (0.15-0.19), but all indicate poor skill. Snow has

skill on-par or better than the rain class, with values ranging between 0.73-0.81 for

manual and DiVeN datasets, while the automatic dataset gives scores slightly lower

with a wider range from 0.49-0.62.

5. Discussion

5.1. Rain

Since rain is the dominant class with > 90% frequency, most skill scores for this pre-

cipitation type are skewed. The bias appears close to 1 but is underdiagnosed, POD is

deceptively high and, similarly, FAR is deceptively low. The HSS takes the frequency

into account and shows a 50-65% improvement over random chance diagnoses which is

caused by the mixed-phase class diagnosing rain events. A fairer verification should not

include low-skill rain cases; product users would not look for snow during heatwaves,

for example. Events could be limited to the Met Office snow warnings, or periods of
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0 ◦C wet-bulb isotherm below 500 m a.m.s.l., criteria that operational forecasters use

(Sabrina Lee, MeteoGroup, personal communication, 2019). Alternatively, the occa-

sions when the SPT product is opened could be recorded to build up cases targeted to

user activity. The number of events would be reduced but SPT frequencies would be

more equitable and the verification more applicable to certain product users, dependent

on the criteria used.

5.2. Mixed-phase

POD for the mixed-phase class ranges from 0.08-0.24. Combined with a positive bias

tendency up to 8.87, this indicates that the mixed-phase class has very little skill. This

is reinforced by FAR values ranging from 0.83-0.97 and HSS scores between 0.04-0.19.

Typically overdiagnosis increases the POD, but the mixed-phase class in the Met Office

SPT product is the most overdiagnosed and still has the lowest POD of any class.

The HSS re-classification results (Section 4.1) and the confusion matrices in Figure

4.9 show that the mixed-phase class diagnoses are more often rain than mixed-phase

or snow. Combining all verification datasets, 87.2% of mixed-phase class diagnoses

are rain, 6.2% are correct and 6.5% are snow. The height of the mixed-phase to rain

boundary being too low would be consistent with these results. Assuming Lumb’s

critical rate to be correct, this bias would be attributable to either a negative bias in

the local 0 ◦C wet-bulb isotherm height, a positive bias in precipitation rate diagnosed

by the radar, or both. Figures 4.4 and 4.5 showed the sensitivity of the SPT product

to precipitation rate, as ‘corrected’ artefacts in precipitation rate still show a signal in

the mixed-phase frequency map.

Lumb’s critical rate uses the work of Langleben (1954), setting the boundary between

rain and mixed-phase at 90% of the precipitation as liquid, based on the behaviour of the

velocity of the particle. Lumb (1963) also assumed spherical aggregates and a saturated

atmospheric column. Note that the data used in the derivation of Lumb’s critical

rate only covered 1-4 mm h−1 precipitation rates. These assumptions and limitations

of Lumb’s critical rate should be revisited and examined with modern measurement

techniques to ensure that the SPT product is valid under all atmospheric conditions.

Finally, the effect of topographic representativity must be discussed. The method of

calculating the local 0 ◦C wet-bulb isotherm height results in a topographic resolution

of 1 km2. For the majority of the United Kingdom this is an acceptable approach.

Where deviations of topography altitude are large such as in mountainous regions,
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if the station providing verification data is situated in a valley or on a peak in the

terrain, then the verification will have systematic errors, since the SPT product is

calculating precipitation type for the average topographic altitude within 1 km2. To

combat this, a higher resolution topography could be used with the existing framework,

for higher-resolution product output. Topographic representativity will also affect the

snow diagnosis since the local height of the 0 ◦C wet-bulb isotherm is the only criterion,

meaning a perfect diagnosis at 1 km2 resolution is not possible.

5.3. Snow

Overall the snow class has similar HSS to rain diagnoses, but is overdiagnosed and, thus,

has a higher FAR than rain. Since the diagnosis is entirely dependent on the height of

the UKPP 0 ◦C wet-bulb isotherm being below the ground (i.e. surface temperatures

below zero), the results suggest that the height is negatively biased. This conclusion

would also agree with the results of the mixed-phase precipitation class.

For the snow class the skill of the Euro4 temperature field is essentially being veified,

which itself has many influencing factors. The only other source for misclassification

is the previously mentioned 1 km2 resolution of the local terrain input data. The

SPT product might be seen as an attractive candidate for verifying NWP model SPT

forecasts against. However, be aware that this would be a closed-loop verification for

the snow class since its diagnosis is entirely reliant upon the model.

DiVeN data give higher verification metric values (73-81% improvement over random

chance). The sites contain more snow events (5 sites > 250 m a.m.s.l.) which are often

observed when the 0 ◦C wet-bulb isotherm height is several hundred metres below

the surface. Borderline cases are less common in DiVeN compared with the other

data. Similar to rain cases being low-skill in summer, low-skill winter events make a

difference to the snow verification results. In late February and early March 2018, the

exceptional snowfall associated with the “Beast from the East” (Galvin et al. 2019;

Greening and Hodgson 2019) brought many low-skill snow cases into the verification

dataset. If 2018 data is removed then scores using all datasets are reduced dramatically.

The SPT product has diminished value in these scenarios since it is clear to users that

all precipitation will reach the surface as snow.
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5.4. Tolerance Method

The tolerance method used in this study demonstrates the sensitivity of the product’s

skill when adjusting the spatiotemporal inclusion, which a user typically considers when

viewing a graphical map. Given the spatiotemporal range (from 1 pixel at one time,

to 175 pixels over 30 minutes) the range of values provided by this method is often

quite narrow, and is therefore informative to users. A wide range of score results would

add negligible value to a single verification score result with no indication of spread.

The tolerance method is therefore applicable to future verification of precipitation type

diagnosis from any spatial-coverage product using single-point reference datasets.

When viewing a contingency table, the sum of all events remains constant between

strict, fair and lenient tolerances but events can only move vertically in a contingency

table between tolerances. If more events move from ‘miss’ to ‘hit’ compared with the

number moving from ‘correct null’ to ‘false alarm’, then the HSS improves, and vice

versa. The initial distribution of events differs significantly between precipitation class

and ground dataset, hence the HSS values sometimes increase and sometimes decrease

(notably rain against automatic observations) between SPT product tolerances in the

results of this study.

If a user desires a higher POD then a larger domain should be considered from the SPT

product. If a lower FAR is desirable then a smaller domain should be taken around

a desired location, which will depend on the specific user and their application of the

Met Office SPT product. The results are more complex for the HSS values. If a user

wants a higher skill score, then the spatiotemporal sample should be different for each

precipitation class and always dependent on which ground dataset is most trusted. For

the mixed-phase class, the HSS values reveal that a larger sample increases the skill

of the diagnosis (except when considering the automatic data (explained above) which

has the lowest HSS of any ground dataset). Generally for rain and snow, using the

specific pixel encapsulating a location area and time increases product skill. Note that

this does not take into account the skill of detecting or not detecting precipitation

accurately since all events that feed into the verification have precipitation in both

sources.
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5.5. Comparison to Other Verification Work

Comparing other SPT products in the literature is difficult since there are many vari-

ables affecting the verification. Table 4.5 shows a sample of literature verifying many

SPT products based on NWP and various observational inputs. In addition to the

different inputs to each algorithm, the location, time period, method and verification

scores also differ, influencing the verification results of each study. Here it was noted

that even the inclusion of a fifth year onto four existing years dramatically changed the

true climatology and therefore the overall results.

Different statistical approaches are applied in different studies. Chen et al. (2016) and

Gascón et al. (2018) use critical success index (CSI) as a verification metric, but CSI

cannot be applied to the higher-dimension confusion matrices. Wandishin et al. (2005)

use Brier Skill Score (BSS) but this is only applicable for probabilistic data. Elmore

et al. (2015) use the PSS for contingency and the Gerrity skill score (GSS; Gerrity

Jr. (1992)) for higher-order which emphasises weighted ranking to each class based on

climatological rarity. The PSS is as justifiable as the HSS as a skill metric and both

have higher-order applicability and give similar score values (Wilks 2011). However,

using the same score for contingency tables and confusion matrices (as was done here)

demonstrates the contributions from each class to the overall score.

6. Summary and Further Work

Reliable observations of precipitation type are needed both to verify and improve fore-

cast microphysics, and also to operationally force NWP models with more accurate

initial conditions through data assimilation. The Met Office surface precipitation type

(SPT) product was examined with 3 datasets of ground-based observations over 5 years

(2014-2018). The product uses Boolean logic to diagnose hail, snow, mixed-phase and

rain using two empirical relationships based on radar reflectivity, radar precipitation

rate and the 0 ◦C wet-bulb isotherm from an NWP model. In this paper, which is the

first part of two papers, snow, mixed-phase and rain were veified. An overall product

score was obtained using the higher-order Heidke skill score (HSS) and a bootstrap-

ping technique to infer the monthly and yearly sensitivity to the overall product score.

Statistical metrics applied to individual precipitation classes from contingency tables

were bias (B), probability of detection (POD), false alarm ratio (FAR), and the HSS. A

novel tolerance method was introduced which shows the realistic spatiotemporal spread
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of scores taking into consideration the fall time and the horizontal displacement precip-

itation may experience between the lowest-usable radar beam from the UK Met Office

radar network and the ground.

The results show that the 0 ◦C wet-bulb isotherm from the UKPP (interpolation from

the Euro4 NWP model) is too low, causing an overdiagnosis of snow (B > 1) leading

to FAR values of 0.22-0.48 (strict tolerance). The 0 ◦C wet-bulb isotherm height also

controls the height at which mixed-phase precipitation is fully melted into rain, and may

contribute to the significant overdiagnosis of mixed-phase (B >> 1) with FAR values

of 0.83-0.97 and POD values of 0.05-0.44 (all verification datasets and tolerances).

Due to the overdiagnosis of snow and mixed-phase, by elimination the rain class is

underdiagnosed. Rain has a bias of just under 1 which is skewed by the high frequency

of the rain class, 91-97% between verification datasets. The HSS takes into account

high frequency of occurrence, and this gives values of 0.51-0.77, which are similar to

snow where HSS values are 0.49-0.81 (all verification datasets and tolerances). The

mixed-phase has low HSS values of 0.04-0.19.

Overall the higher-dimension HSS value for all datasets combined is 0.61, which im-

proves to 0.73 if all mixed-phase diagnoses are re-labelled as rain. Between verifica-

tion datasets, the higher-dimension HSS are 0.48 ± 0.058 (automatic), 0.60 ± 0.147

(manual) and 0.73 ± 0.024 (DiVeN), where the uncertainty is representative of a 2σ

confidence interval produced through bootstrapping.

Ground-based observations should capture the climatology of the location or target

audience of the users of the product. Thus, the representativity of the data used to

evaluate the product at a certain location is important. The automatic and manned

SYNOP stations run by the Met Office may not capture the most extreme climatologies

of the UK due to their siting requirements for optimal measurement standard. Similarly,

the Disdrometer Verification Network likely does not capture the UK climatology since

many instruments are located at high elevations.

Improvements to the Met Office radar-based SPT product are ongoing based on the

results of this study. The Euro4 model has been marked for depreciation at the end

of 2021 and there has been a freeze on scientific upgrades for several years. The im-

plementation of a newer, higher resolution NWP model temperature field, particularly

a model with improved microphysics schemes, should improve the snow class diagno-

sis in a future Met Office SPT product. Note that to evaluate the improvement in

future SPT products, the current SPT product can be statistically implemented as a

baseline. Currently, Vref in Equation 4.6 is set here as the random proportion correct
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but this can be changed to be the proportion correct from this ‘baseline’ SPT product

instead. Thus the score can then be used to show the percentage improvement over

the current SPT product. The methods employed here may be easily implemented for

verifying a range of observation-based or simulation-based classifiers, however the most

important aspect of verification is consistency of score choice between studies to enable

comparisons and to identify successful SPT diagnosis techniques.

In Part II, the hail precipitation class which uses a separate empirically-derived criterion

from Waldvogel et al. (1979) is veified. Since the 3 ground-based datasets used here

rarely detected true hail cases (automatic SYNOP stations are incapable of detecting

hail and DiVeN instruments mistake graupel for hail), crowdsourced reports are used

as verification data. Strengths and limitations are discussed, with recommendations to

improve hail detection in the UK. Further, precipitation classes which are not included

in the current radar-based Met Office SPT product are discussed for future inclusion.
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Improving Observations of

Precipitation Type at the

Surface: A 5-year Verification of

a Radar-derived Product from

the United Kingdom Met Office.

Part II: Hail.

In revision to AMS Journal of Hydrometeorology.

Contributions from: Ryan R. Neely III, Steven Best, Maryna Lukach and David Dufton

Abstract

In Part II of this study, the hail precipitation class from the United Kingdom Met

Office surface precipitation type (SPT) product is verified. The criterion used for

hail detection is that a radar reflectivity factor ≥ 45 dBZ must exist at an altitude

of greater than 1.4 km above the 0 ◦C isotherm. Since hail is uncommon in the

UK, the verification dataset used in Part I of this verification for rain, mixed-

phase and snow, is not suitable for verifying hail. Instead, a crowdsourced set of

reports from the European Severe Weather Database are employed. The tolerance

method described and applied in Part I is applied to the hail class verification

over 5 years from 2014 through to 2018, where 111 reports of hail occurred in the

total radar network domain and 32 hail reports occurred in the UK itself. Hail
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events from the SPT product are also mapped which shows the broad distribution

and frequency of hail in the UK and also reveals artefacts in the SPT product.

Verification results show that the Met Office SPT product has a higher probability

of detection for hail-producing storms in mainland Europe than in the UK due

to the exact method of applying the criterion and the scan strategy of individual

radars. Further, there is a slight northeasterly spatial bias in hail diagnoses by

the SPT product. Improvements to the ground verification datasets for hail are

needed and would permit more extensive verification of hail diagnosis and forecast

products in the future.

1. Introduction

Pickering et al. (2020, hereafter Part I) introduced the United Kingdom Met Office’s

radar-based surface precipitation type (SPT) product and verified the rain, mixed-

phase and snow diagnoses over 5 years with a novel tolerance technique. In this paper,

the same technique is applied to verify the SPT product for hail diagnoses over the

same time period. Strengths and limitations are discussed, with recommendations to

improve hail detection in the UK.

Hailstones begin with an embryo, which are most commonly pristine ice crystals, ag-

gregates or frozen supercooled drops (Knight and Knight 1970a; Federer et al. 1986;

Rasmussen and Heymsfield 1987; Dennis and Kumjian 2017; Allen et al. 2020). The

embryos are then grown by supercooled water instantly freezing into an opaque layer

on the surface, also known as riming. When particles grown by this process are small,

they are often referred to as graupel; with continued growth, the larger particles are

referred to as hail. Defining criteria between graupel and hail have included their size

but also their shape and density which affects their diameter-velocity relationship (Lo-

catelli and Hobbs 1974). AMS (2017) defines hail as ice particles larger than 5 mm in

diameter and is the most widely used definition.

Large hail is grown in the updraft region of convective systems where supercooled

liquid water is lofted and collides with larger ice particles which have greater mass and

therefore faster fall velocities (Nelson 1983; Allen et al. 2020). The supercooled liquid

water will either immediately freeze onto the larger ice particle (dry growth, riming)

or remain as a liquid until the whole liquid-coated ice particle sheds enough energy to

the surrounding atmosphere to freeze (wet growth, accretion). When an ice particle

is small, the impacting supercooled water freezes instantly onto its surface and the

temperature of the particle is slightly increased from the latent heat of freezing. The
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larger a hailstone gets, the more supercooled liquid water is deposited onto the surface

and the more latent heat is generated which leads to the wet growth stage (Pruppacher

and Klett 1997). Several atmospheric conditions determine the growth type, which

often changes several times during a hailstone growth cycle and leads to the distinctive

internally-layered opaque-translucent structure. During wet growth the liquid coating

is distorted by aerodynamic drag, causing icicle lobes to form which gives larger hail

its spiked appearance (Knight and Knight 1970b).

Hail can have varying degrees of impact on society based upon the kinetic energy

transferred upon impact (Hohl et al. 2002). The kinetic energy of a hailstone is over-

whelmingly determined by its size (mass). However, the transfer of energy upon impact

is, to a lesser extent, determined by the mechanical properties of the hailstone (elastic-

ity, tensile strength, elongation, hardness and fatigue limit), which may vary between

storms but are less understood due to measurement difficulties (Heymsfield et al. 2014;

Giammanco et al. 2017). In 2016, U.S. property (which includes vehicles but excludes

agriculture) losses due to convective storms were similar to hurricanes at 11.23 billion

USD, where 60% of property losses are attributed to hail by insurance risk modelling

(Guntur and Tippett 2017). A single severe hail event in a dense urban area can result

in nearly 1 billion USD of property and vehicular losses alone (Brown et al. 2015), the

cost of which is burdened upon insurance companies and their policyholders, or directly

upon uninsured owners. In Europe, hail can be the costliest natural hazard (Schemm

et al. 2016) with single events known to cost on the order of 1 billion EUR (Punge et al.

2014; Kaspar et al. 2009). In the UK, hail is less common (Punge and Kunz 2016; Webb

et al. 2009) but damaging events do occur; Webb et al. (2001) and Clark et al. (2018)

discuss several historical hailfalls that caused significant damage, and more recently a

storm in Sheffield produced large spiked hail with icicle lobes, shown in Figure 5.1.

Hail is difficult to forecast with numerical weather prediction (NWP) models because

it precipitates in narrow swaths on the order of 1-10 km as storms propagate (Frisby

1961; Webb et al. 2001). Due to this, forecasts mostly exist as probabilities of hail-

producing convective activity occurring within a radius of a given location. Certain

properties of the predicted atmosphere can be used as diagnostics to estimate the likely

size of hail produced if convective activity occurs, such as surface temperature, CAPE,

deep-layer shear, storm-relative helicity, mid-level lapse rate (Rasmussen and Straka

1998; Manzato 2005; Johnson and Sugden 2014); however there are many drawbacks

and these methods lack specificity. Observation-based hail warnings use the real-time

observed properties of a storm to nowcast which areas will be impacted. Radar-based

products such as the Met Office SPT product are suitable for nowcasting because
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23.4 mm

28.4 mm

Courtesy of @ImEmmaB

Figure 5.1.: An image of large hail taken during a storm in Sheffield, UK on the 26th
June 2020, courtesy of Twitter user @ImEmmaB. The hail has a spiked appearance
indicating wet growth occurred to produce icicle lobes. The coins in the image used
for comparison indicate that the largest hailstones during this event had a maximum
diameter approximately greater than 5 cm.

of their broad coverage and high spatiotemporal resolution—if the reliability of the

product is sufficient. Furthermore, NWP improvements rely upon observations with

higher diagnosis skill to be used as verification data. Verifying an NWP model against

a poorer-skill observation will not lead to improvements. An added layer of complexity

to consider is that climate change may lead to the occurrence of hail becoming more

common in places such as the UK, along with increases in maximum hailstone sizes

and therefore greater property damage and losses. However, there is low certainty and

much disagreement in the literature over climatological changes for hail in Europe (Eccel

et al. 2012; Mohr et al. 2015; Sanderson et al. 2015; Púčik et al. 2017). Reliable and

long-term observations will help in understanding the effect of climate change on hail,

which radar-based products are suitable for. Long term climatologies also have value

in the construction industry, to inform material choices based on risk. For example,

wind turbines are particularly sensitive to hail (Keegan et al. 2013), so their placement

or protective tolerance (which is associated with a cost) could be decided based on

long term radar observations for hail, if the observations are reliable. However, the

reliability of the Met Office product has not yet been verified, which is the purpose of

this study.

184



The Assessment of Surface Precipitation Type Measurements

Due to the rare nature of hail events in the UK, the methods used in Part I must be

adapted. Further, the verification datasets used in Part I are unreliable for hail diagno-

sis, so a crowdsourced dataset is utilised to bring greater certainty to the verification.

The following sections describe the hail diagnosis algorithm used in the Met Office SPT

product, and the verification dataset used in this verification and how it differs from

those used in Part I.

1.1. Met Office Radar Product

The radar-based hail detection product is part of the broader precipitation type product

detailed in Part I. Briefly, the SPT product has been running since late 2013, covers

the United Kingdom and has a spatiotemporal resolution of 1 km2 and 5 min. Hail is

the first class in a Boolean logic decision tree, using the criterion of Waldvogel et al.

(1979) as follows:

Z ≥ 45 dBZ

&

h ≥ (FZL+ 1.4 km),

(5.1)

where Z is the radar reflectivity factor on a polar grid, in units of dBZ. FZL is the 0 ◦C

wet-bulb isotherm altitude which is taken from the UKPP, a post-processed (regridded)

version of the Euro4 NWP model based on the Met Office Unified Model architecture,

updated hourly. Figure 5.2 gives an example of the SPT product during a severe hail

event on the 1st July 2015, which is described in detail by Clark et al. (2018). Three

individual storms produced hailstones reaching the surface widely in excess of 25 mm

with the highest up to 60 mm in diameter at several locations.

Waldvogel et al. (1979) originally set out to examine how many hail embryo seeding

rockets were being wasted in the Soviet hail suppression work by Sulakvelidze (1969).

The criterion used for selection of hail seeding was complex and Waldvogel et al. (1979)

used a sample of 195 cells (chosen if 35 dBZ or greater existed at the −5 ◦C isotherm)

to show that a) 32% of rockets were being wasted on non-hail producing cells and that

b) the same hit rate could be achieved using the simplified criterion of Equation 5.1

with fewer false alarms. Note that graupel events were specifically avoided in the study

by excluding cold low synoptic characteristics.

Equation 5.1 is applied to every polar voxel observed by individual radars in the pre-

cipitation radar network, which consists of 15 radars managed by the Met Office, 2

managed by Met Éireann, and 1 managed by the Channel Islands Meteorological De-
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Met Office SPT Product - 2015/07/01 22:00
Hail
Snow
Mixed-Phase
Rain

Figure 5.2.: An example of the Met Office SPT product, during two disruptive hail-
producing supercells at 2200 UTC 1st July 2015 as discussed in Clark et al. (2018). An
animated video of the entire day is supplied in the supplementary material.
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partment. These individual radars have significant coverage area overlap in the network.

The final composited product is a Cartesian 1 km2 grid over the UK and Ireland. For

each pixel, any radar which observes that location is checked for hail diagnoses. If the

statistical mode (the most common) diagnosis out of the available radars is the hail

class (versus any other precipitation type in the SPT product, or none), then the final

gridded product pixel is labelled as hail. For example, if five radars observe a chosen

1 km2 location, three out of the five must be diagnosing hail there for the pixel in the

final gridded product to receive the hail label.

1.2. Verification Data

The verification datasets used in Part I [(automatic, manual and Disdrometer Verifi-

cation Network (DiVeN)] all use the Present Weather (PW) code system (WMO 1988,

2017) to record observations, yet there is no entry for graupel meaning that hail is often

used to describe both events, with no delineation. Pickering et al. (2019) demonstrated

graupel being reported as hail by the DiVeN instruments with a first-hand case study.

Furthermore, hail is rarely captured by traditional fixed-point observing networks due

to sparse coverage and infrequent event occurrence. Crowdsourced reports such as the

U.S. storm reports (Carey et al. 2003), mPING (Elmore et al. 2014), or home automatic

weather stations (Clark et al. 2018) are more successful at capturing sporadic events,

although in the case of manually submitted reports, the lack of a report co-located with

a diagnosis does not mean the absence of the event in reality. Therefore the choice of

statistical metrics can be somewhat limited. The technique used in this study gives

added insight where these verification limitations exist.

1.2.1. ESWD Reports

The verification dataset used in this study is a crowdsourced dataset from the European

Severe Weather Database (ESWD), created by the European Severe Storms Laboratory

(ESSL), which does delineate between hail and graupel (Dotzek et al. 2009). While

graupel is a relatively unknown term to the general public who will typically label all

dense ice precipitation of any size as hail, the ESWD only records hail and excludes

graupel events. The maximum hail diameter is recorded, and a human checks the

feasibility of reports to ensure that all reports are likely to be hail as per the > 5

mm diameter definition (AMS 2017). The definition of a hail report for the ESWD

in Groenemeijer and Liang (2019) is: “Hailstones that have a diameter (in the longest
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direction) of at least 2.0 centimetres, or hailstones that form a layer of 2.0 cm thickness

or more on flat parts of the earth’s surface.” This gives the verification confidence

that all verification data points are certain hail occurrences. Table 5.1 summarises the

dataset characteristics and includes the datasets from Part I for comparison.

The ESWD reports also contain quality control designations (considered analogous to

uncertainty) which enables filtering to increase the overall quality of the dataset. The

designations are: “as received” (QC0), “plausibility check passed” (QC0+), “report

confirmed by a reliable source” (QC1), and “scientific case study” (QC2), described

in Groenemeijer and Liang (2019). The limitation of crowdsourced datasets like the

ESWD reports is that spatial biases inevitably exist which are correlated with pop-

ulation density and community awareness of the reporting system. For example, the

ESWD does not capture the frequency of hail events known to exist around the Mediter-

ranean from Michaelides et al. (2018). Further, Punge and Kunz (2016) showed that

there is a bias in the ESWD towards central Europe where more people are reporting

hail events to the database. Since this study does not directly compare the spatial dis-

tribution of the ESWD hail reports against the Met Office SPT product, these biases

should not hamper the verification. The ESWD reports have been used successfully

in numerous studies (Kaltenböck et al. 2009; Gatzen et al. 2011; Hov et al. 2013; An-

tonescu et al. 2016; Groenemeijer et al. 2017) and reports are available for the entire

5-year study period (2014-2018).

2. Study Period Characteristics

In this study, the Met Office SPT product is verified for hail over a 5 year period

of 2014 to 2018 inclusive (60 months total). This section of the paper describes the

characteristics of the study period through a frequency map and statistics derived from

the SPT product and the ESWD verification dataset.

2.1. Frequency Map

Following Part I, the SPT-product diagnoses of hail over the 5-year study period are

summed in time to create total radar-diagnosed frequencies, shown in Figure 5.3. High-

resolution zoomable PDF maps for different timescales are also provided in the supple-

mentary material. In addition, Figure 5.4 shows a map of the UK and the Republic of

Ireland, with locations, regions and radar sites labelled to aid with the interpretation
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Percentage of SPT Product Precipitation Classified as Hail (2014-2018)

Min: 0.0%
Max: 7.7%
Files: 521,978
Total Occurences: 2,595,812

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Frequency (%
)

Figure 5.3.: Percentage of precipitation which the Met Office SPT product diagnosed as
hail from the start of 2014 to the end of 2018 (5 years). The Met Office, Met Éireann and
the Channel Islands Meteorological Department radar locations are marked as white
dots. The scale is set from 0% to 0.2% to show additional features. The maximum of
7.7% is a bug in the product on the southern boundary. The highest percentages on
the product domain fringes over mainland Europe are around 2-3%.
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of the following section.

The hail class frequency map highlights the disparity in hail event occurrence in the UK.

Regions which are diagnosed hail more frequently are, in rank order: continental Europe

(even when factoring in long-distance effects), East Anglia (possibly emphasised by

radar distance), the English Channel and the Pennines. These frequency-rankings are

in broad agreement with climatological studies of hail occurrences over Western Europe

(Punge and Kunz 2016; Webb et al. 2009), where continental Europe experiences higher

frequencies of hail than the UK. However, the lack of spatial coverage in the verification

reference data does not allow for informed specific comments to be made on the exact

frequency values suggested by the SPT product for the occurrence of hail.

Radar scan geometry is important for the hail class. The hail criterion has an altitude

requirement so the edge of the radar network is more likely to observe hail; the only

level of the atmosphere being observed is high and there are no low-altitude beams to

‘disagree’ (given that the mode of several overlapping radars is output, as described

in Section 1.1) with a diagnosis simply because the altitude is insufficient. However,

the Ingham (Lincolnshire) radar diagnoses significantly less hail than adjacent radars at

long range, signalling a low reflectivity bias at long-range concurrent with the frequency

map interpretations from Part I.

Close to radar site locations, the detection of hail appears to be less frequent. The

Channel Islands (furthest south) radar is the most prominent example of this behaviour,

which results in the Channel Islands having almost no hail diagnoses over the 5-year

period. This close range ‘hail hole’ effect is due to a combination of the criterion used

for hail detection and also the method of compositing individual, overlapping radars

into a single end product. For the Channel Islands, coverage is only provided by one

radar, so the effect is most notable. The scan strategy has a maximum elevation angle

of 4◦ and thus the beams are not high enough at close range to be greater than 1.4

km above the 0 ◦C wet-bulb isotherm. Even if 45 dBZ or greater is observed, the

height criterion will not be satisfied and thus no hail can be diagnosed. For other

radars in the UK and Ireland, the close range area to one radar site is also observed

by one or multiple other radar sites and therefore, the ‘hail hole’ is less pronounced.

Coverage from distant radars (if not blocked by geographical features) will consist of

higher elevation beams which more frequently observe the atmospheric region required

for the Waldvogel et al. (1979) criterion. However, for a single 1 km2 Cartesian pixel

location in the final SPT product, the majority of individual radars observing that

location on their polar grid must diagnose hail. For example, the atmosphere above
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Castor Bay Radar Belfast

Isle of Man
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Figure 5.4.: A map of the UK and the Republic of Ireland showing locations discussed
in Section 2.1.
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London is simultaneously observed by 5 radar sites; in order for hail to be diagnosed

for a given 1 km2 pixel in London, 3 out of the 5 radars must diagnose hail in that 1

km2 Cartesian pixel. Two of the radars are close to London, and will exhibit the same

‘hail hole’ individually as the Channel Islands radar does, making hail diagnosis in the

final composited product less likely but not as unlikely as the Channel Islands ‘hail

hole’. Sub-seasonal versions of this plot (see supplement) show that the border of the

hail hole changes over the year. The height of the 0 ◦C wet-bulb isotherm in an average

month is lower in the winter than in the summer, so the radar beams reach the altitude

needed to be 1.4 km above the 0 ◦C level at closer ranges to the radar compared to the

summer months.

Just north of the Isle of Man in Dumfries and Galloway, a partial beam blockage

correction on the Castor Bay radar (located at latitude, longitude: 54.50, -6.34, near

Lurgan, Belfast, Northern Ireland) may be the cause of a high streak of hail detections

which would be caused by a high reflectivity bias. Snowdonia in North Wales also

exhibits an increased hail frequency, possibly due to elevated terrain being observed

with high reflectivity.

Narrow swaths of individual storm-cell motion can be seen in Figure 5.3 (not to be

confused with the ray-interference of the Met Éireann radar in Shannon, furthest west

of the network). The three storm tracks of the long-lived hail-producing cells on 1st

July 2015, documented by Clark et al. (2018), are also visible on Figure 5.3. These

start near Manchester and propogate to the NNW towards Newcastle. The streak of

hail on the edge of the network NW of the Republic of Ireland and Northern Ireland is

observed by 2 radars and associated with a single event from 1800 UTC 19 July 2016

to 0100 UTC 20 July 2016 where consistently high precipitation rates of > 32 mm

h−1 existed for over 6 hours. This event was associated with a slow-moving shortwave

trough leading ahead of a cold front pushing in from the west replacing southerly flow in

the region, which triggered a long line of convection with substantial lightning activity.

In general, long-term frequency plots are useful for exposing artifacts, events and trends

within the radar and SPT product data. The sensitivity of the SPT product to changes

in radar scan geometry are well highlighted. The limitation of using this method to

find radar artifacts is that many years of observations are needed, particularly for hail,

and usually more than one year if seasonal changes are to be observed.
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2.2. Verification Data Statistics: ESWD

The ESWD database contains 111 reports of hail within the Met Office radar domain

occurring on 35 days out of the 5-year study period (7 hail days per year on average). Of

these, 32 were located in the UK and 79 were in mainland Europe, where the frequency

of hail is much higher (Punge et al. 2014). Maximum hail diameter seen in each event

(85/111 reported this variable) varies from 15 to 90 mm with an average of 37 mm.

The months of June, July and August (JJA) contain the majority of the hail reports

(92, 82.9%) and also the largest hail diameters compared to the rest of the year. For

comparison, the SPT product diagnoses 58.0% of hail occurrences in JJA across the

whole domain (so including over the ocean, which is unobserved by the ESWD). 14 of

the 32 ESWD hail reports occurring in the UK (43.8%) occurred on 1 July 2015.

3. Methodology

The aim of this study is to verify the skill of the Met Office SPT product for hail over

a 5-year period. To achieve this, traditional ground-based verification instruments do

not provide frequent observations to conduct a verification. Further, graupel is often

reported as hail due to the absence of a graupel code in the PW system. Graupel is

a hydrometeor which forms in a similar process as hail, with supercooled liquid drops

freezing as rime onto an ice crystal or aggregate, but does not exceed 5 mm in diameter

(AMS 2017). The product criterion (Waldvogel et al. 1979) was designed for hail, not

graupel. The sections below outline the steps taken to verify the skill of the SPT

product.

3.1. Quality Control and Data Handling

The ESWD reports contain a quality control rating, designated by staff at the ESSL.

Out of the 111 reports within the radar domain and study period, 93 (83.8%) were

rated QC1: “report confirmed by reliable source” and 18 (16.2%) were rated QC0+:

“plausibility check passed” which are both deemed acceptable for this study. Therefore,

all events in the database are used and no removal is required. No events were QC0:

“as received” nor were any rated a QC2: “scientific case study” despite Clark et al.

(2018) and the 14 ESWD reports associated with those storms.
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Table 5.2.: The layout of the 2 × 2 contingency table used in this study. Compared
with Part I, there is no ground verification report of ‘no hail’ and therefore several of
the contingency table elements are N/A.

Surface
Yes N/A

SPT Yes Hit, a N/A N/A
No Miss, c N/A N/A

o1 N/A N/A

3.2. Statistical Metrics

Since the hail reports are only confirmatory (i.e. there are zero reports of “no hail”),

only the ‘hit’ and ‘miss’ quadrants of a contingency table (described in Part I) are

satisfied (see Table 5.2).

Therefore the statistical metrics used in Part I to verify the precipitation classes, such

as the Heidke skill score (HSS; Heidke (1926)) are not applicable in this study. With

only the ‘yes’ hail verification data, the metrics that can be used here are probability

of detection (POD or hit rate) and probability of miss (POM or miss rate):

POD =
a

(a+ c)
(5.2)

POM =
c

(a+ c)
(5.3)

where a = hit and c = miss. POD is the chance of a correct diagnosis when hail does

occur and thus ranges from 0 (the event is never detected) to 1 (the event is always

detected). POM is the chance of no diagnosis when hail does occur and thus ranges

from 0 (the event is never missed) to 1 (the event is always missed). The values are

complementary such that POD + POM = 1. Since hail has such a high impact on

society, the SPT product is also simplified into a dichotomous (yes / no) hail output,

such that cases where the radar saw no precipitation are included as ‘miss’ events. This

is in contrast to Part I where the no-precipitation cases were excluded. This makes the

results of the hail verification incomparable to the results of the rain, mixed-phase and

snow categories and demonstrates that without improvements to ground-based hail

observations, all precipitation types cannot be verified equitably.
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ben.pickering@ncas.ac.uk  |      @wx_radar 26

Varying Spatiotemporal Skill

Strict
1 pixel (1 x 1 km) 

1 time, ± 0 mins 

1 pixel total

Fair Lenient
9 pixels (3 x 3 km) 

5 times, ± 10 mins 

45 pixels total

25 pixels (5 x 5 km) 

7 times, ± 15 mins 

175 pixels total
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Figure 5.5.: An example of a timeseries of the SPT product stacked representing time
(5-minute frequency). The green-shaded area is the sample used for verification in
three tolerances. The strict tolerance uses only the pixel co-located with the ground
report. The fair tolerance uses a 3×3 region around the ground report and ± 10 minute
product outputs for a total of 45 pixels. The lenient tolerance uses a 5 × 5 km region
around the ground report and ± 15 minute product outputs for a total of 175 pixels.
If any of the green-shaded pixels are in agreement with the ground observation, then
the SPT product is correct and a ‘hit’ is recorded.

3.3. Tolerance

Part I introduced the idea of using a tolerance method on the SPT product to incorpo-

rate the disparity of the lowest-usable radar beam height and the horizontal advection

that may occur as the hydrometeors fall to the surface. The same method used for the

rain, mixed-phase and snow verification of varying the spatial and temporal tolerance

of the radar between strict (only the pixel containing the report), fair (3×3 km & ± 10

min), and lenient (5×5 km & ± 15 min) is applied here. If the radar does not diagnose

hail in the 5× 5 km area and within ± 15 min of the ESWD report, it is labelled as a

miss. Figure 5.5 shows diagrammatically the tolerance method applied in this analysis.
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4. Results

4.1. Statistical Metrics

The tolerance method is applied to enhance the informedness of the hail class results,

where the only outcome is hit or miss since all of the ESWD reports are confirmatory.

The strict tolerance, where only the pixel encapsulating the hail report is examined,

has an overall hit rate of 30.6%, the fair tolerance (3 × 3 km ± 10 min) 65.8%, and

the lenient tolerance (5 × 5 km ± 15 min) 75.7%. Note that the scores are additive

such that all the events captured by the strict tolerance will also be captured by the

fair tolerance, and so on. Complete misses where the radar did not report any hail

diagnoses within 5× 5 km and ± 15 min occurred in 24.3% (27) of the ESWD events.

A map is shown in Figure 5.6 which denotes which tolerance included a hail diagnosis

by the SPT product, or a miss. For example, the blue triangles over Northern England

mean that the strict and fair (3 × 3 km, ± 10 min) tolerance did not contain any

hail diagnoses, but that the lenient (5 × 5 km, ± 15 min) did. Only 3 events in

the UK were detected by the SPT product at the exact time and location of the

ESWD report (i.e. strict tolerance), and they all occurred in East Anglia. The results

visually suggest a discrepancy between hail events in the UK compared with hail reports

in mainland Europe. The analysis is therefore further broken down into hail events

in the UK (of which there are 32) and in continental Europe (79) to check for any

discrepancy. The UK results are: strict (9.4%), fair (46.9%), lenient (62.5%) and miss

(37.5%) whereas the continental Europe results are: strict (39.2%), fair (73.4%), lenient

(81.0%) and miss (19.0%). The POD is higher and the POM is lower for the ESWD

reports in continental Europe compared with those in the UK. For each tolerance, the

improvement of continental European hit scores are: strict (+29.8%), fair (+26.5%),

lenient (+18.5%) and miss (-18.5%).

4.2. Spatiotemporal Variability

To provide further insight into the performance of the SPT algorithm for diagnosing

hail, the SPT product around the 111 ESWD-reported events (in a Lagrangian per-

spective) is visualised in Figure 5.7. The radar pixels around the report location in

space and time are tallied up for hail diagnosis across all of the 111 ESWD reports.

For example, if the radar product were perfect then the pixel directly over the ESWD

report should contain 111 hail classifications (out of a total of 111). The same can be
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Strict 

(best result)

Fair

Lenient

Not Detected

(worst result)

Rendering for 
paper

Figure 5.6.: A map of all of the ESWD hail reports within the UKMO-domain from
2014 to 2018 inclusive. The colours indicate which tolerance (if any) included a hail
diagnosis by the SPT product, starting with the strict tolerance and increasing the
spatiotemporal domain through fair and lenient tolerance. If the SPT product did not
diagnose a hail pixel in the lenient tolerance then it is a complete miss event. The
yellow circles represent the locations of the radar sites.
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t t+5
t+10

t+15t-15
t-10 t-5

Figure 5.7.: Spatiotemporal map of hail hits surrounding an ESWD report at the
ground. For each report of hail, the surrounding radar pixels in space and time from a
Lagrangian perspective are captured. Shown is a sum of all the reports such that the
total number of hits possible for each pixel is the number of the ESWD hail reports,
or 111, meaning every hail report was associated with a hail detection from the radar
at that time and space away from the hail report.

done for the pixel 1 km north, 5 min prior to the hail report, and so on, to produce a

spatiotemporal spread map (Figure 5.7).

Every pixel in a 5× 5 km region and ± 15 min around the report contains at least one

radar-reported hail diagnosis (shown in Figure 5.7), possibly in-part due to the true size

and motion of the hail-producing region of a convective feature. The temporal variation

shows the general movement of hail-producing cells in the Met Office radar domain. At

t-15 min to t-5 min, the hail pixels are concentrated to the south and southwest, whereas

in the t+5 to t+15 minute period, hail pixels are more frequent to the northeast. The

spatial variation indicates that the radar product has a slight northeasterly bias from

the location of a hail report from the ESWD. The most frequently hit pixel is not

directly over the report (30.6%) but 1 km NE of the report (34.2%). At first the results

could be interpreted that a time delay is the cause of the spatial shift. However, note

that if the product was shifted back in time by 5 min, then the time t+5 grid would

become time t, which has lower hits across all pixels, so the timing of the product is at

peak accuracy.

4.3. Maximum Hail Diameter

Since Figure 5.6 shows that the Met Office SPT product has higher POD over continen-

tal Europe, it was hypothesised that the hail sizes being larger on the continent than

over the UK (Punge and Kunz 2016), may be the cause of the increase in skill. Most
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20 21 21 11 9	 3	

Figure 5.8.: Probability of detection (POD) for binned groups of hail reports of increas-
ing maximum diameter, for each tolerance method. The grey values inside the lower
region of the plot indicate the number of events in each bin. Bin-widths are all 1 cm
with the exception of the final diameter bin which is larger (3.5 cm) to capture the
remaining 3 events.

of the ESWD reports (85 out of 111) include an estimate of the maximum diameter

of the hail being observed, so to check for a relationship between hail diameter and

skill of the SPT product, POD values for each binned size range are calculated for each

tolerance, and are displayed in Figure 5.8.

The strict tolerance has lower POD in smaller diameter hail events (approximately

25%) but the POD increases to 35% in larger hail diameter events. The lenient and

fair tolerances also broadly increase with increasing hail diameter, with lower diameter

hail having a POD around 50-75%, increasing up to 90-100% for 5.5-6.5 cm diameter

hail (although there are only 9 events in this bin). The largest diameter hail bin has

only 3 events and is therefore more likely to be affected by anomalies in the data due to

a very small sample size. Also note that the radar reflectivity factor will not increase

linearly with size for particles greater than ∼1–2 cm diameter since Mie scattering

dominates over Rayleigh at this size for C-band (5.6 GHz) radars (Fabry 2015). The

number of complete miss events is the area between the lenient line and 100%, which

is around 25% for smaller diameter hail (1.5–2.5 cm) and drops to 0% for the 5.5-6.5

diameter hail bin.
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5. Discussion

5.1. Hail

As shown, the diagnosis of hail by the SPT product is variable, and hail is a rare event

in the UK with only 32 events reported to the ESWD in 5 years, 14 of which are on

a single day. With a lenient tolerance the UK POD is 62.5% which is reasonable; for

the strict tolerance the POD is 9.4%, which would suggest poor skill. However, there

are large representativity issues with this product. Hail is an atmospheric process

which can occur in very narrow swaths, the product resolution is only 1 km2, and the

measurement of high reflectivity aloft may not be co-located directly above the location

where the hail reaches the surface. For hail, the strict tolerance shows that the SPT

product has low skill at diagnosing hail with an accuracy of less than 1 km2.

The main outcome is that there is lower skill over the UK compared with mainland

Europe. One hypothesis is that the hail diameters are larger on the mainland but

Section 4.3 shows that hail diameter does not correlate with sufficiently large changes

in POD to explain the POD differences between the UK and mainland Europe. This

result appears to be a combination of radar coverage overlap, scan geometry and the

criterion used for hail detection. Radars close together increase the amount of overlap

meaning one ground location may have several radars observing over it. Since the SPT

algorithm for hail uses the modal output from overlapping radars, for hail to be detected

the majority of radars covering a single point need to agree in the diagnosis of hail.

Note that the Waldvogel et al. (1979) criterion relies on altitude; a reflectivity threshold

of 45 dBZ or greater must be met ≥ 1.4 km above the 0 ◦C wet-bulb isotherm. The scan

strategy of the Met Office radars is such that the radar beam does not observe higher

than 4◦ elevation angle. These factors translate into a horizontal radial distance close

to the radar (approximately 20 km) where the radar does not observe at the required

altitude. Conversely, areas in mainland Europe are almost entirely being observed by a

single radar; if it detects hail then there is no agreement needed between other radars.

In addition, the increased distance from the radar in mainland Europe means that

all radar elevation angles are at higher altitudes, making it more likely that the hail

criterion will be met. This increased likelihood of hail detection extends around the

entire edge of the UK radar domain, visible in the frequency maps in Figure 5.3.

The northeasterly spatiotemporal bias seen in Figure 5.7 may be related to several

sources. Human observers are more likely to report the hail event with a time delay

rather than before the event occurred. Also, by the time the hail has reached the ground
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from the altitude where the radar criterion is met, the storm may have proceeded NE

and therefore the radar associates a ground report with the new location of the storm

at a later time. Microphysically, the bias may be due to the tilted updraft of hail-

producing storms. Dennis and Kumjian (2017) showed that an increase in east-west

shear should produce larger hailstones, which would also tilt the updraft region meaning

that the radar is observing the hail at a slightly eastward bias compared to where the

hail reaches the ground. Dennis and Kumjian (2017) also note that north-south shear

reduces the supply of hail embryos into the updraft. Allen et al. (2020) show with

hail trajectory data from Dennis and Kumjian (2017) that the hail does not reach

the surface directly below the area of highest radar reflectivity factor (Z) but instead

reaches the ground to the southwest of the peak Z, which is consistent with the bias

seen here in the Met Office SPT hail class.

The use of the criterion from Waldvogel et al. (1979) is somewhat questionable from

the onset. Waldvogel et al. (1979) used a 3 cm, 10 GHz, X-band radar which begins

to exhibit Mie scattering at smaller hydrometeor sizes than C-band does. The Met

Office (and partners) radar network will begin to have decreasing and then non-linearly

changing reflectivity for hailstones greater than ∼1–2 cm diameter. The testing for

Waldvogel et al. (1979) also took place in Switzerland and used only 71 convective cells

(33 hail and 38 rain) to derive the criterion used here. The POD achieved was 100%

but this was at the expense of false alarms, which were high; 28 rain events met the

hail criterion of greater than 45 dBZ > 1.4 km above the 0 ◦C isotherm, representing

a 39% false alarm ratio (FAR, see Part I). Finally, Waldvogel et al. (1979) discussed

the geometric limitations of the criterion since it was used on range-height indicators

(RHIs) and therefore all elevation angles were observed. For this reason, they state

that “a real-time application of this method is therefore excluded at the present time”,

saying that this criterion should not be used on plan-position indicator (PPI) data such

as the Met Office (and partners) radar network scan strategy. In fact, Waldvogel et al.

(1979) suggest a different criterion for hail on PPI data but it uses 6 variables (hail

probability from a complex table of parameters, maximum reflectivity Z and its height,

height of the 45 dBZ reflectivity contour, height of the cloud top and height of the 0 ◦C

isotherm) and is therefore more computationally expensive for an operational product

which has to be published to users a set time after the initial observation.

The major limitation of this study is that it is not possible to say when the SPT product

falsely diagnosed hail that did not occur. For example, some of the hail occurrences on

the frequency map in Figure 5.3 appear to be artifacts. The POD could be low at the

expense of a high FAR since (as described in Part I) these values are interdependent.
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Reducing FAR may be desirable such that costly mitigative action is not taken too

frequently. However, the frequency map in Figure 5.3 indicates that hail seems to occur

significantly more frequently than the literature would suggest (Punge and Kunz 2016)

and almost in every location in the UK over the 5-year study period. Anecdotally

and from the ESWD reports, this seems unlikely to be true. The limitations of the

ground verification datasets that exist at this current time do not allow the false alarm

ratio to be verified, and the question therefore remains and will remain unanswered

until ground-based datasets improve. Without improvements to ground-based hail

observations, all precipitation types cannot be verified equitably.

5.2. Comparison to Other Products

Several studies test the Waldvogel et al. (1979) criterion or similar. Holleman et al.

(2000) compared 5 radar-based hail detection criterion on two C-band radars in the

Netherlands during summer 1999 against ground data from 19 synoptic sites, 321 vol-

unteers, insurance filings and media reports. The Waldvogel et al. (1979) criterion

achieved the highest critical skill index (CSI) of 0.44 with a POD of ∼65%. Tweaking

the height above the 0 ◦C isotherm to 1.75 km instead of the original 1.4 km criterion

achieved a slightly higher critical success index of 0.46 but lower POD of ∼60%. Skrip-

niková and Řezáčová (2014) tested seven radar-based hail detection algorithms on well

documented recent hail events from Czechia and southwest Germany from 2002 to 2011.

For the Waldvogel et al. (1979) criterion, POD (FAR) varied from 83% (80%) down to

25% (45%) as Skripniková and Řezáčová (2014) adjusted the altitude threshold from

4 km to 8.5 km. Further tweaks to the Waldvogel et al. (1979) criterion produced a

maximum CSI of 0.32 for 56 dBZ at 3.5 km above the 0 ◦C isotherm, where the POD

reached ∼50%. Donavon and Jungbluth (2007) found a strong relationship between

the 50-dBZ echo height and the height of the melting level, similar to Waldvogel et al.

(1979), for hail of 19-25 mm in the contiguous United States. A criterion developed

with linear regression of past observations was verified over three convective seasons.

The criterion achieved a POD of 90%, a FAR of 22%, and a critical success index (CSI)

of 0.72. Donavon and Jungbluth (2007) noted that performance of the criterion was

surpassed by other indicators in strong-shear cases such as supercells, which typically

produce the largest hailstone diameters.

Several other studies find conflicting results with other criterion. Blair et al. (2011)

studied 568 giant-hail reports (greater than 102 mm in diameter) over 15 years (1995-

2009) in the contiguous United States, compared with WSR-88D radar observations and
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reanalysis data. The verification determined that vertically integrated liquid, maximum

storm reflectivity and reflectivity in the hail-growth region showed “little to no skill

in discriminating between giant hail and smaller hail sizes.” Ortega (2018) used a

database where residents were cold-called after a suspected hail-producing cell passed

over a location, to verify 9 algorithms in the United States. The method of data

collection enabled a dichotomous surface verification dataset unlike the storm reports

method such as the ESWD used in the present study. The greatest Heidke skill score

(HSS; Heidke (1926)) value of 0.42 was reached for a reflectivity threshold of 55 dBZ

on the lowest-usable radar beam at a given location when used to detect the presence

of hail of any diameter. Allen et al. (2020) comment on the empirical nature of all hail-

detection studies: “empirical relationships developed in one part of the world may not

be applicable globally or even regionally depending on the sample used in development.”

Allen et al. (2020) also comment on the scan strategy limitations of hail detection

methods, which is the case in this study with the Met Office SPT product.

For a fair (3 × 3 km, ± 10 min) tolerance which encapsulates the northeasterly spa-

tiotemporal bias, the Met Office SPT product for UK-only events have a POD of 46.9%,

which is lower than the aforementioned implementations of the Waldvogel et al. (1979)

in other studies. The compositing method used, demanding the majority of radars to

agree upon hail diagnosis, is likely to be the cause of the comparative underperfor-

mance. However, the false alarm ratio is unknown in the present study. Where the

POD is high in other studies, the FAR is also high which is an undesirable product

trait. Future verification work for hail detection in the UK should prioritise the ability

for ground verification datasets to capture false diagnoses in order to balance FAR and

POD with more complex skill metrics such as CSI, HSS and more.

5.3. Tolerance Method

The tolerance method used in Part I of this study is modified here but still retains a

sense of realistic range to the presented POD values. It also demonstrates the sensitivity

of the product’s skill when adjusting the spatiotemporal inclusion, which a user typically

considers when viewing a graphical map. Adjacent pixels to a location would not be

dismissed by a user viewing the product. More realistically, a user would associate a

particular convective cell with a hail detection and note it as a hail-capable feature,

rather than expecting kilometre-level accuracy. The broad spread of the POD scores

for hail shows that choosing a single tolerance is not desirable since it may mislead the

conclusion of the verification. In this instance, the spatiotemporal bias would not have
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been detected with a strict tolerance verification. As in Part I, if a user desires a higher

POD then a larger sample should be considered from the SPT product. Vice versa

if a lower FAR is desirable then a smaller sample should be taken around a desired

location, which will depend on the specific SPT product user.

6. Summary and Further Work

In Part I of this study, the rain, mixed-phase and snow classes of the Met Office

SPT product were verified against synoptic (automatic and manual; Green (2010)) and

DiVeN (Pickering et al. 2019) datasets. The second part of this study verified the hail

class against a crowdsourced database of reports from the EWSD. In both instances,

a novel tolerance method is applied which shows the sensitivity of the verification to a

larger area and time period based on radar scan geometry and atmospheric behaviours

from the literature. Part I showed that the SPT product had some skill in the rain

and snow classes, but the mixed-phase class was overdiagnosed and had low skill. Here

in Part II, the skill of the hail class has been shown to be moderate with lenient

tolerance, although large uncertainty remains over the false diagnoses due to limited

ground verification data, nor can the results of Part I and Part II be directly compared.

The SPT product has 4 classes; by comparison, dual-polarisation radar hydrometeor

classification algorithms or HCAs (Liu and Chandrasekar 2000; Straka et al. 2000;

Park et al. 2009; Al-Sakka et al. 2013) often have many more. With increasing classes,

more specificity is required by the algorithm to achieve the same level of skill. Adding

more classes without the justified ability to do so will degrade the skill of a discrete,

non-probabilistic product. Therefore a balance is required between what classes are

beneficial to users of a product and what is reasonably achievable. The Met Office

SPT product does not contain a criterion for freezing rain, so misclassifies a freezing

level above the surface as either mixed-phase or rain. If two freezing levels exist from

the Euro4 model then the highest one is used. This atmospheric setup is rare for the

UK, but it did occur during the study period; on 1 March 2018 affecting southern and

southwestern parts of England and Wales.

As was discussed in Section 1, graupel are small ice crystals rimed with supercooled

water and typically form the embryos for hail. Graupel are not part of the SPT class but

have useful properties for the signal of electrification of a storm (Carey and Rutledge

1996; Deierling et al. 2008). The WMO PW code system also does not contain a

graupel entry, only hail, so the verification of graupel versus hail would be difficult
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with the datasets which exist today. DiVeN instruments or similar instruments which

measure the diameter and fall velocity distributions of hydrometeors have the raw data

to enable graupel to be distinguished from hail, but there are very few sites so UK

coverage is poor (Pickering et al. 2019) and the verification of these instruments does

not cover the graupel/hail delineation (Pickering et al. 2020). In general, a standardised

table of precipitation types is needed across the atmospheric sciences, which reduces

the ambiguity supplied in the PW code system and is also widely adopted by both

instrument manufacturers and national weather services globally.

In dual-polarisation HCAs, the graupel class can exceed the 45 dBZ criterion used in

Waldvogel et al. (1979). The UK Met Office has an operational HCA on the newly up-

graded dual-polarisation radar network (Best and Harrison 2018), based on a modified

version of Al-Sakka et al. (2013). An added graupel class is one of the modifications,

supervised by a backscattering microphysical model described in Marzano et al. (2007)

where graupel exists up to a reflectivity of 60 dBZ. However, because there is no altitude

dependency on HCAs, many of the issues found in the SPT product in this study can

be overcome. Note that the HCA classifies precipitation at the radar beam-height, and

that a translational product is still required to deal with below-beam effects as precip-

itation falls to the surface, which is of particular importance for the rain, mixed-phase

and snow classes. A newer version of the SPT product based on the outcomes of this

verification and the dual-polarisation HCA is in operation at the Met Office. Future

work will apply the same verification techniques used here onto the new product, in

order to quantify the improvements.
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Gatzen, C., T. Púčik, and D. Ryva, 2011: Two cold-season derechoes in Europe. At-

mospheric Research, 100 (4), 740–748, doi:10.1016/j.atmosres.2010.11.015.

208

http://dx.doi.org/10.1016/j.atmosres.2008.10.020


The Assessment of Surface Precipitation Type Measurements

Giammanco, I. M., B. R. Maiden, H. E. Estes, and T. M. Brown-Giammanco,

2017: Using 3D laser scanning technology to create digital models of hailstones.

Bulletin of the American Meteorological Society, 98 (7), 1341–1347, doi:10.1175/

BAMS-D-15-00314.1.

Green, A., 2010: From Observations to Forecasts – Part 7 . A new meteorological

monitoring system for the United Kingdom’s Met Office. Weather, 65 (10), 272–

277.

Groenemeijer, P., and Z. Liang, 2019: ESWD data format specification. Tech. rep.,

European Severe Storms Laboratory e.V., Münchener Straße 20, 82234 Wessling,

Germany, 1–65 pp.

Groenemeijer, P., and Coauthors, 2017: Severe convective storms in Europe: Ten

years of research and education at the European Severe Storms Laboratory. Bul-

letin of the American Meteorological Society, 98 (12), 2641–2651, doi:10.1175/

BAMS-D-16-0067.1.

Guntur, P., and M. Tippett, 2017: Impact of ENSO on U.S. Tornado and Hail

frequencies. Tech. Rep. March, Willis Re, Minneapolis, MN, USA. doi:10.1175/

JAMC-D-16-0249.1.

Heidke, P., 1926: Berechnung Des Erfolges Und Der Güte Der Windstärkevorhersagen
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Chapter 6.

Conclusions

1. Summary of the Achieved Research

The type of precipitation reaching the surface (SPT) has a significant impact on society

and can often be more impactful than the amount of precipitation reaching the surface.

In the United Kingdom (UK), uncommon precipitation types are often the cause of

significant disruption to daily activities (Thornes 1992; Agnew and Thornes 1995; Webb

et al. 2001; Clark et al. 2018). Despite the high impact of rare surface precipitation

types (SPTs), they are both poorly observed (Schmid and Mathis 2004; Chen et al.

2016, and more) and are poorly forecasted (Elmore et al. 2015; Gascón et al. 2018,

and more), in part due to the complex and unstable microphysical processes which

determine the SPT, as explained in Chapter 1. To improve the skill of SPT data, a

framework of suitable assessment techniques must be established. The assessment of

SPT data is challenging for many reasons. Firstly, the frequency of SPTs is highly

skewed in places like the UK, where rain is by far the most common type but mixed-

phase, snow, freezing rain, ice pellets, graupel and hail all occur orders of magnitude

less frequently while being more impactful to society (Carrière et al. 2000; Fairman

et al. 2015). Capturing a statistically significant and climatologically representative

sample of SPT data is difficult due to the rarity of some SPTs. Secondly, ambiguous

reporting standards such as the descriptive present weather (PW) code tables (WMO

1988, 2017) are used widely for recording both manual and automatic SPT observations

at a single point location. Slight differences exist in the PW code descriptions between

the manual stations and the automatic stations, and many of the PW codes mention

several SPTs or are listed alongside other atmospheric phenomena which dilutes the

specificity of the reference dataset. Finally, the verification of spatial SPT products

against point SPT observations, such as those derived from radar observations or from
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numerical weather prediction (NWP), requires compensation of representativity errors

which exist between the two datasets. All of these issues can result in obfuscated

assessments which is evident from the wide variety of verification metrics used in the

literature. The inconsistency of applied assessment techniques obscures the comparison

of different SPT diagnosis techniques, thereby suppressing the advancement of the most

accurate methods into widespread operational use.

A framework of assessment techniques was developed throughout this thesis, with a

focus on three areas. First, new automated instruments were deployed in the UK which

had the potential to provide more SPT observations and with higher accuracy. Second,

these instruments were evaluated against other precipitation-measuring instruments

with novel techniques to determine their accuracy, including the development of a new

SPT classification standard. Third, the new instruments were used alongside existing

observational datasets to verify a radar-based spatial SPT product in the UK over 5

years with a tolerance approach to address representativity errors. The methodologies

applied successfully throughout the thesis can be used to more effectively assess the

skill of SPT data in meteorology.

The following sections summarise the research that has been completed, connecting the

research to the objectives from Section 5 of Chapter 1. The limitations of the research

and then recommendations for future research are presented, ending with some final

remarks.

1.1. Point SPT Instrument Deployment

The end goal of the thesis was to perform a verification of a spatial SPT product against

surface point SPT observations (objective 3). To begin with, a new dataset was needed

to supplement the existing surface point SPT observations that were being collected by

the Met Office. In particular, the existing automated stations were known for measuring

the mixed-phase SPT class with poor skill (Lyth and Molyneux 2006). While some

manual stations were available (16) which had trained observers and reported SPTs with

high confidence (daytime only and through PW codes), the majority of UK surface SPT

observations were automatic (160). Furthermore, all of the Met Office surface station

SPT reports were recorded hourly, while the spatial SPT product diagnosed SPT at

5-minute intervals, meaning that verification could only take place for every twelfth

opportunity, reducing the verification sample size. In Chapter 2 a new reference point

dataset was collected which had the potential to identify SPT with greater confidence,
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in more extreme environments and at higher temporal resolution than those currently

available from the UK Met Office surface network (Green 2010).

Chapter 2 describes the low-cost installation of a network of Thies LPMs around the

UK called the Disdrometer Verification Network (DiVeN) (Pickering et al. 2019), con-

tributing to the objective (1a) of this thesis to increase the available surface point SPT

reference data. 14 instruments were taken on loan from the UK Met Office and were

installed in 13 locations (the Chilbolton site had two instruments placed two metres

apart). The DiVeN locations were chosen to represent the breadth of known radar

sampling geographies and precipitation climatologies in the UK (Harrison et al. 2000;

Fairman et al. 2015), with consideration to the intended aim of performing verification

on a radar-based spatial SPT dataset. Some DiVeN sites were close to Met Office radar

dishes and in flat terrain so that the lowest usable radar beam was at low altitude and

at high polar resolution, thereby providing high quality data. Alternatively, some Di-

VeN sites were far from the radar sites in mountainous areas so that the lowest usable

radar beam was at high altitude and at coarse polar resolution, thereby providing low

quality data. The choice of DiVeN site locations attempted to reduce any bias resulting

from only performing the verification in high quality radar locations, a criticism of the

existing Met Office surface stations which were located in non-remote and non-extreme

terrain locations, typically well-observed by radars (Green 2010).

The datalogging system was engineered in-house using commercial off-the-shelf (COTS)

components and the data were published to a website in near-real time (see Appendix

A.1), satisfying objective 1b of this thesis. Per-minute plots (see Appendix A.2) ap-

peared with at most a 7-minute delay from the initial observation, and daily plots (see

Appendix A.3) appeared at 01 UTC. Both types of plot were used primarily to main-

tain the network and spot artefacts in the data but they also found wider use. For

example, the Cairngorm Ski Centre used daily plots to determine when the snow level

had surpassed the instrument and to determine conditions at the site mid-point before

leaving the base station (Jim Cornfoot, personal communication, 2018). The website

was available to Met Office forecasters to use in daily operations to determine whether

the type of information would have value beyond the DiVeN project. The feedback was

that too much information was presented at high temporal frequency which slowed the

loading times of the website, and that spatial data would be preferred to point obser-

vations (Dawn Harrison, personal communication, 2017). This user feedback further

motivated the use of these instruments to perform verification and to improve a spatial

product rather than being useful standalone. While the instruments and the datalog-

ging systems were robust and performed well, the uploading of data to the server was
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sporadic from many sites, due to the need for cellular data renewal and some power

losses. An extended version of the upload performance plot (Figure 2.5) from Chapter

2 is shown in Appendix A.4.

In addition to the real-time website, to increase the impact of the research, DiVeN

data were uploaded to an online repository: the Centre for Environmental Data Anal-

ysis (CEDA) Archive (NERC et al. 2019, see Appendix A.5). The data exist on the

CEDA Archive in a citable, CF-compliant netCDF format which makes it an accessible

standard to the environmental research community. One of the included variables is

the new SPT classification standard which was proposed in Chapter 3, to encourage

its wider adoption. The outcome is that DiVeN data have been used on numerous

published (e.g. Lin et al. 2020) and in-preparation research projects from the Univer-

sity of Leeds, two commercial studies on wind turbine blade erosion by Vestas and

WeatherQuest, and is also referenced in a Danish study on wind turbine blade erosion

(Tilg et al. 2020). In the first 11 months the CEDA Archive entry for DiVeN has been

accessed by 19 users from 6 countries (as of 1 October 2020). By these metrics, making

the observational dataset available to the wider research community (objective 1c) was

successfully achieved.

Note that the case studies in Chapter 2, as well as two other occurrences of graupel

being diagnosed as snow (noted by trained observers viewing the live website), led to the

DiVeN dataset being unusable for observations of hail in Chapter 5. In total there were

nearly 2,000 minutes of hail PW code reports across 13 sites which is significantly higher

than the expected climatology shown by Punge and Kunz (2016), reaffirming that

graupel and hail are not distinguished by the PW code standard. While the research

described in Chapter 2 validated that the DiVeN instruments were functional and

verified that SPT reports had some merit, the case study results were qualitative and

used only a few samples. Hence, an evaluation of the DiVeN Thies LPM instruments

against existing precipitation instruments was required, in order to determine their

overall performance, which was conducted in Chapter 3.

1.2. Point SPT Instrument Evaluation

Before the new DiVeN Thies LPMs could be used as a reference dataset for verification,

the quality of the measurements needed to be assessed. Two DiVeN instruments were

co-located 2 metres apart at the Chilbolton Atmospheric Observatory (CAO) for the

purposes of a consistency comparison between the two instruments, as well as an eval-
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uation against the other precipitation sensors located at CAO. Chapter 3 describes the

precipitation sensor evaluation study, which utilised a 12-month period starting from

the initial Thies LPM installations in February 2017. Precipitation depth and rate, the

drop size and drop velocity distributions, and SPT were compared at several timescales.

Although this thesis is focused on measurements of SPT, the analysis of other variables,

in particular the ability to accurately capture the drop size and velocity distributions,

has implications for the diagnosis of SPT. Six measurement techniques were included:

tipping-bucket (TBR), drop-counting (RAL), acoustic (JWD), optical (Thies), single-

angle visiometer with capacitor (PWD21) and dual-angle visiometer (PWS100). Not

all of the measurement techniques were able to record every variable under examination

and only the PWD21, PWS100 and the two Thies LPMs were able to directly infer

SPT.

Firstly, the Thies LPMs were compared with the other instruments for precipitation

rate and depth, drop size and drop velocity distribution (objective 2a). There were

large differences in the measured precipitation depth and rate between the instruments

(25%) with both Thies LPMs recording more precipitation than the average of all in-

struments. However, these results do not affect the Thies LPM for SPT diagnosis as

the drop size distribution (DSD) results show that the high precipitation totals are

due to a high drop count rather than the drop volumes inferred from diameter mea-

surements, which is in agreement with the literature (Lanza and Vuerich 2009; Frasson

et al. 2011). Long-term qualitative examination of the diameter and velocity output

combined (made possible with the live website) revealed that the velocity of the small

drops varied significantly and often had unrealistically high values when compared with

the literature (Gunn and Kinzer 1949). The anomaly appeared to be associated with

high wind speeds, although this was not examined directly by the research in Chapter

3. The interpretation of the anomaly is that SPT diagnosis will be highly uncertain

for low precipitation rates where small hydrometeors tend to be dominant, especially

in high winds. This is unlikely to affect the verification in Chapter 4, since both the

radar-based pixel and the surface point must detect precipitation to be included and

radars are generally insensitive to very low precipitation rates. For the larger drop

sizes in the evaluation in Chapter 3, the velocities and the velocity distribution were

consistent with the literature, whereas the only other velocity measuring instrument

in the study (the PWS100) measured a much slower velocity distribution compared to

the literature. However, the PWS100 was located on the roof of a small building which

may cause turbulence and reduce fall velocities; the results are inconclusive. These re-

sults partially answer how the Thies LPM compares to existing instruments (objective

2a), but a more rigorous reference instrument for particle size and velocity would have
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been more conclusive. For example, the World Meteorological Organization (WMO)

intercomparison study (liquid precipitation only) of Lanza and Vuerich (2009), used a

composite working reference of four laboratory calibrated gauges whereas the research

in Chapter 3 used an average of all instruments as the reference value for precipitation

depth and rate.

Another objective of this thesis was to assess the impact that timescale had on the

measurements (2c), which the results show to be more significant to certain instruments

and variables. The most notable was the TBR for precipitation rate which is due to

the small resolution of a single increment of rainfall (0.2 mm) and is a widely known

issue. At time periods of 15 minutes or longer, the TBR had similar coefficients of

determination with the other instruments in the study, a result which could be used

to inform future studies, along with the extensive body of research on TBR gauges

which exists in the literature. After 1-hour periods the coefficients of determination

did not significantly increase for any of the instruments, likely related to the typical

duration of a precipitation event being less than one hour. For DSDs and drop velocity

distribution (DVDs), it was found that a 5-minute sample was sufficient to represent

the distributions at all precipitation rates PR ≥ 0.3 mm h−1; a longer sample duration

did not change the shape of the distributions nor did it change the differences between

each instrument. These results support the use of the Thies LPM for diagnosis of

SPT on 5-minute timescales since it relies on the diameter-velocity relationship for the

diagnosis.

Comparing SPT measurements (objective 2b) required a new approach because the

existing standard for point SPT data (the PW code) increases the uncertainty in the

measurements. All of the instruments recorded SPT in the PW code format, in which

some codes are ambiguous and reference multiple precipitation types as well as differ-

ent intensities which are not of concern to the objective of SPT assessment. A new

standard set of SPT classes were created which is based on the microphysical processes

leading to different SPTs (Chapter 1, Section 2) and also utilised many of the categories

used in dual-polarisation radar hydrometeor classification algorithms (Liu and Chan-

drasekar 2000; Park et al. 2009; Al-Sakka et al. 2013; Best and Harrison 2018), making

the standard compatible for future assessments. A conversion table between PW codes

and the new precipitation type (PT) index was also presented—for the unambiguous

PW codes. The ambiguous PW codes containing many different SPTs or conditionals

(‘and’/‘or’) could not be translated and were therefore excluded from the evaluation

dataset. Since PW codes do not distinguish between graupel and hail (WMO 1988,

2017), graupel cannot be translated or appear in the confusion matrix results of the
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instrument comparison (Figure 3.10 of Chapter 3), although it is part of the proposed

SPT classification standard (Table 3.3 of Chapter 3). PW codes were recorded across

different time intervals, covering 1, 5, 10, 15 and 60 minutes depending on the in-

strument, however all instruments recorded the 1-minute interval so this was chosen

as the baseline. The method of producing multi-minute amalgamations of PW code

also differed between the instruments and often led to unintuitive SPT outputs not

suitable for high impact SPT events. A new Boolean algorithm was designed to amal-

gamate multiple 1-minute SPT observations together. When applied in Chapter 3, the

amalgamation algorithm performed well and did not introduce a time-dependent bias.

The development of an SPT classification standard and an amalgamation algorithm

contribute towards a more suitable method for evaluating SPT observations (objective

2b).

The instruments were then compared across the 12-month period for their SPT di-

agnoses. The PWD21 and PWS100 never reported several of the SPT classes which

the Thies LPMs reported, which resulted in the agreement between the PWD21 and

PWS100 being higher than each of the instruments compared with any of the Thies

LPMs. The mixed-phase (denoted by the class ‘wet snow’) was the least agreed upon

by the instruments. The number of cases was limited and without a trained meteoro-

logical observer as the reference ‘truth’ the results are inconclusive. The results could

therefore not satisfactorily answer whether the Thies LPMs were comparable to exist-

ing sensors for SPT observations (objective 2d). However, verification studies in the

literature have compared the Thies instrument to a trained observer albeit for short

periods of time, which provides some evidence of the skill of the Thies LPM for SPT

observations. The prior study results do not clarify whether the Thies LPM used in

DiVeN will produce more skilful diagnoses of mixed-phase precipitation compared with

the automated arbiter of instruments used at Met Office surface stations. Therefore, in

Chapter 4 it was decided to present all three of the ground reference datasets separately,

since the skill of each was not definitively quantified by the earlier research.

1.3. Spatial SPT Verification—Rain, Mixed-phase and Snow

Chapter 4 discusses the verification of a spatial SPT product from the Met Office. The

output SPT classes are rain, mixed-phase, snow and hail. Hail is diagnosed separately

and also requires separate verification data and is therefore separated into Chapter 5.

The delineation of rain, mixed-phase and snow is calculated using Lumb’s critical rate

which accounts for evaporative cooling effects with an assumed lapse rate (Lumb 1963).

221



Chapter 6: Conclusions

The wider issues to address in Chapters 4 and 5 were the choice of verification metrics

and how to overcome the representativity issue of a spatial SPT product being verified

against point SPT observations (objective 3a).

The choice of verification metrics (Bias, probability of detection (POD), false alarm

ratio (FAR), Heidke Skill Score (HSS)) was motivated by the information provided by

each metric which could inform both the users of the product and the development

of a future product. Bias indicates the tendency of the product to under- or over-

diagnose a specific SPT class and shows which direction borders between classes need

to be adjusted. The POD indicates what chance the product has of detecting a certain

SPT event, whereas the FAR indicates the probability that a diagnosed SPT event is

false. The HSS was chosen because it indicates the percentage of improvement between

random chance and a perfect diagnosis (matching the reference dataset), so the HSS

considers the climatological rarity of the SPT class. Importantly, the HSS can be

applied to both a single SPT class on a contingency table and also a multi-dimensional

confusion matrix of the whole product, which allows for the comparison of SPT classes,

or the contribution of a specific SPT to the overall product skill score value. Chapter

4 discusses both of these methods for the Met Office radar-based spatial SPT product.

A novel method was developed to perform verification of spatial products against point

reference data, addressing the representativity errors between the datasets (objective

3a). Using realistic values of the maximum horizontal advection and fall velocity from

the lowest-usable radar beam, a range of spatiotemporal tolerances of the spatial SPT

data were verified against the point reference data. Three tolerances were used: 1 ×
1 km ± 0 mins, 3 × 3 km ± 10 mins, and 5 × 5 km ± 15 mins. The result is a

verification score range which can be considered representative of the realistic best and

worst case verification result. The score range is more informative and understandable

to an end user than a single verification score which can be improved or deteriorated

by the verification parameters. The developed method was applied in Chapters 4 and 5

and demonstrated the benefit added to the interpretation of the product skill compared

to a single tolerance approach, thus addressing objective 3a.

Using only the strict tolerance on the spatial SPT data, the overall HSS for all SPT

classes combined was 0.61, which can be interpreted as a 61% improvement over a

random chance diagnosis, where 100% would be an exact match with the reference

dataset. When each reference dataset was considered individually, the overall HSS of

the spatial SPT product was 0.48 for automatic, 0.60 for manual, and 0.73 respectively.

The verification was further regimented with a 2 × 2 contingency table for each precip-
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itation class, where any correct diagnosis in the wider tolerance was considered a hit.

These results showed that the mixed-phase is overdiagnosed with the lowest HSS for

any precipitation class. Together these results quantify the skill of an existing spatial

SPT product (objective 3b) and delineates the skill between the SPT classes (objective

3c) and between the reference datasets (objective 3e).

How the skill of the spatial SPT product varies at different locations (objective 3d)

was not possible to verify quantitatively because the verification scores were highly

dependent upon the climatology of the location. For example, in mountainous regions

there are more ‘obvious’ snow cases, so the spatial SPT product has more hit events

and thus has a higher skill score value, which is not realistic or useful to an end user.

This meant that the effect of high or low quality radar data was not discernible. A

similar outcome occurred for seasonal changes in skill, where in summer months the

skill of the snow precipitation class was undefinable, since no events occurred or were

diagnosed. For a qualitative validation of the product, the normalised frequency of

each precipitation type was plotted on a map of the UK for the 5-year study period.

Many artefacts were found with radar beam blockage, wind turbines, ground and sea

clutter, and more complex artefacts caused by seasonal changes in the meteorological

features when observed by radar. These results highlight where the skill is qualitatively

very poor due to artefacts and allows the Met Office to overcome these artefacts in the

future for a more accurate product.

The last objective of the thesis (3f) was to suggest changes to the product which could

improve its skill. Chapter 4 showed that the product skill, defined as the multi-class

HSS, could be improved by adjusting the mixed-phase class. If the mixed-phase class

is removed, the overall HSS improved from 0.61 to 0.77 but this is unhelpful since the

new class would be ‘undefined’. If mixed-phase diagnoses are changed to another class,

the overall HSS improves from 0.61 to 0.73 for rain re-classification, and deteriorates

from 0.61 to 0.59 for snow re-classification. This is consistent with the other results

indicating that the mixed-phase class has very little skill, and is over-diagnosed at

the expense of rain. Also, since a bias was identified in the 0 ◦C wet-bulb height

from NWP when compared to the radar-diagnosed freezing level height, a change is

expected to improve the skill of the product. However, this test was not performed

due to the resources required to re-run the product algorithm over the large dataset.

Therefore, the research on how to improve spatial SPT products (objective 3f) has only

been minimally achieved. Improvements to the spatial SPT products is where future

research should be focused now that a verification framework and a baseline skill value

have been established in the research conducted here.
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1.4. Spatial SPT Verification—Hail

The final results chapter of this thesis was very limited by the reference data available

due to the rarity of true hail events in the UK, defined as ice particles larger than 0.5 mm

in diameter (AMS 2012). The PW code system used by manual, automatic and DiVeN

instruments do not differentiate between graupel and hail and therefore cannot be used.

Automatic stations never report a hail PW code between 2014–2018. Crowdsourced

hail reports from the European Severe Weather Database (ESWD) (Dotzek et al. 2009)

were relied upon as the trusted source of ground point reference data. These data are

confirmatory such that they are only a ‘yes’ observation of a hail event, which rules out

the method of using a dichotomous 2 × 2 contingency table. The tolerance method is

again applied, but to the limited ‘yes only’ ground point reference data. In addition,

spatial SPT product diagnoses of ‘no precipitation’ were considered a ‘no hail’ event,

which differs from the rain, mixed-phase and snow verification. There, ‘no precipitation’

cases are instead removed from the events set in order to ignore the skill of the product

to detect precipitation at all. Since hail is a high-impact event due to the damage it

can cause, if the radar product diagnoses ‘no precipitation’ when hail occurs, it was

determined that such events should be included in the verification.

The results in Chapter 5 showed that over the entire domain, hail was correctly diag-

nosed 30.6%, 65.8% and 75.7% for strict, fair and lenient tolerances respectively. These

POD values are low, but the FAR values are unknown and thus may be intentionally

low for the end user, as noted in the product description from the Met Office. When

the ESWD reports were split into UK events and mainland Europe events (the UK

Met Office radar products cover part of mainland Europe), a difference was discovered.

POD values for strict, fair and lenient tolerance were +29.8%, +26.5% and +18.5%

higher over mainland Europe compared with the UK. The size of the observed hail

had a weak relationship to the spatial SPT product skill but overall the sample sizes

were very small, limiting the statistical rigour of the results. The interpretation of the

difference in results between the UK and mainland Europe was that the geometry of

the radar scans makes a hail detection more likely the further away from a radar it

occurs. This is due to the radar beam height increasing with range and the hail cri-

terion having an altitude dependence. Artefacts were noted in the 5-year normalised

frequency maps in Chapter 5 (Figure 5.3) where isolated radar sites had a ring of no

hail diagnoses within a short range from the radar, concurrent with the radar geometry

being unsuitable for a high-skill spatial SPT hail product. Even the source of the algo-

rithm (Waldvogel et al. 1979) highlighted radar geometry issues and suggested that the

criterion only be used on range height indicator scans rather than volumetric scans.
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The results in Chapter 5 confirm the poor performance and frequent artefacts that

were expected by users of the single-polarisation radar-based spatial SPT product for

hail. The results can be used as a baseline for new products that were developed by

the Met Office in recent years. However, more reference data is needed for a more

conclusive result. While it is difficult to quantify how large a reference dataset should

be, one major improvement would be the ability to report detections of hail from the

spatial product as false alarms, which would require the continuous operation of a hail

detection sensor network. Some methods for increasing the amount and the quality of

reference data for hail are discussed in Section 4.1. Dual-polarisation radar technology

allows for hail detection without an altitude criterion and will also be discussed, in

Section 4.3.

2. Wider Impact of the Research

The overarching theme of this thesis research is that verification of SPT is inherently

difficult and that the existing infrastructure does not permit high confidence SPT ob-

servations. Without confident and rigorous SPT observations, improvements in the

skill of forecasts or nowcasts of SPT will be unverifiable. DiVeN showed that low-cost

real-time precipitation type observations are possible at high temporal frequency us-

ing a high resolution diameter–velocity distribution. The Thies LPM provides more

information about the precipitation characteristics and could produce less ambiguous

SPT data than those provided by the PW code. The Thies LPM instruments in the

DiVeN network that were originally loaned from the Met Office have now been donated

to the National Centre for Atmospheric Science (NCAS) Atmospheric Measurement

and Observation Facility (AMOF) so that their scientific research impact can continue.

Furthermore, the Met Office have made plans to change their data collection system for

surface stations which will allow more complex DSD and DVD data from disdrometers,

with the eventual goal of deploying disdrometers to their ground station network. By

having a dense network of disdrometers, NWP models could be verified through DSDs

and DVDs directly using continuous statistics rather than having to infer the discrete

SPT. The PW code system is also under examination by the Met Office for a poten-

tial replacement which can meet all future user requirements (Darren Lyth, personal

communication, 2020).

The evaluation of different measurement techniques at CAO in Chapter 3 showed the

disparity in precipitation measurements and should motivate research designing more
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accurate instruments. Over 12 months there were significant differences in total mea-

sured precipitation depth. In addition, the technique of using consistent precipitation

rates for DSD and DVD comparisons allows for greater interrogation of the instruments

compared with the techniques used in the literature, and should be applied to all pre-

cipitation distribution comparisons in future research. The SPT comparisons, while

inconclusive due to the lack of a trusted reference, used a novel approach with a new

SPT classification standard and an algorithm to amalgamate observations over time.

Both the standard and the amalgamation algorithm should be implemented as the new

consistent standard in SPT-measuring instruments, such as the planned UK Met Office

surface station renewal. Furthermore, consideration should be given to the activity of

verification when surface networks are designed, as it was for DiVeN.

The results of Chapter 4 which show a positive bias in the diagnosis of mixed-phase

precipitation, led to the discovery of a negative bias in the height of the 0 ◦C isotherm

from the NWP model when compared with radar-diagnosed freezing level, shown in

Appendix A.6. A correction has been applied to a new Met Office spatial SPT product

which also uses dual-polarisation hail diagnosis. Hydrometeor classification algorithms

on dual-polarisation radars do not rely on a reflectivity–altitude relationship like the

Waldvogel et al. (1979) criterion did. Therefore, the geometry of the radar scan will

not influence the ability for the radar to detect hail, and the artefacts of the product

evaluated in Chapter 5 of this thesis such as the rings around radar sites where hail

could not be detected, should not exist in the new product. Future research includes

the verification of the new spatial SPT product against the existing spatial SPT prod-

uct examined here. Overall this thesis research provides an improved SPT observing

standard and a framework on which to perform the verification of SPT data. The

application of the new framework to existing ground point SPT measurements and

to a spatial SPT product will motivate new approaches to surface precipitation type

measurements, and enable them to be quantitatively assessed.

3. Limitations of the Research

The main limitations of the research performed in Chapter 2 were the number of instru-

ments (14), the budget, and the available time which all restricted the data collection

abilities of the Disdrometer Verification Network. However, the choice of site locations

did cover a wide array of geographies and precipitation climatologies, and the high

temporal resolution of the DiVeN sites enabled a verification “event” in Chapter 4 to
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occur with every spatial SPT product output (5 minutes). Conversely, the automatic

and manual station datasets had a combined 121 sites (8.6 times more than DiVeN)

but reported every hour (12 times less frequently). The DiVeN data were also hypoth-

esised to be of higher accuracy than the automatic station reports for mixed-phase and

hail due to the more direct measurement technique of diameter–velocity distributions

over the Met Office arbiter of temperature, forward-scattering and rain gauge. This

hypothesis could ultimately not be resolved by the research conducted due to the lack

of cases in Chapter 2 and the absence of a true reference and the limited number of

events in Chapter 2 where the experimental design was not fit for purpose. Ideally the

true reference should be a human observer for multiple borderline cases of mixed-phase

SPT, beyond the resource capabilities of this thesis. The opportunistic human observer

validation in Chapter 2 only covered two transitions from rain to snow and did not do

so continuously. Bloemink and Lanzinger (2005) compared a Thies LPM and a FD12P

sensor against a human observer and provided some evidence of the accuracy of the

Thies LPM in different SPTs but the study only considered a six-week period of precip-

itation with 10-minute observations (341 rain, 48 mixed-phase, 247 snow). The lack of

a temperature sensor connected to the Thies LPM (an optional extra which improves

the PW code diagnosis skill according to the manufacturer) meant that the verification

of a spatial SPT product in Chapter 4 could not be isolated to the borderline cases,

which would be a more stringent method since the ‘obvious’ cases of rain and snow

unfairly raise the skill value.

The low-cost implementation of DiVeN combined with the remote-only access to most

of the sites meant that the instruments were offline for a large percentage of the study

period resulting in a reduction to the overall number of verification cases. A critical

bug in September 2017 was fixed within 1 month but resulted in the loss of several

weeks of data. The Feshie (Druim nam Bo) site was located at 882 m a.m.s.l. and was

frequently covered in rime ice as shown in Figure 2.6 in Chapter 2, which hampered

the ability to record precipitation at the site in the winter months. While heated Thies

LPMs are available, the renewable energy generated at the Feshie site was insufficient

to support the required power demands. More examples of site-specific challenges are

given in Chapter 2. Overall the impact to the research was minimal due to the large

number of total cases, but more cases of the rare SPTs would have increased the rigour

of the verification.

The PW codes were relied on throughout the research, which are a limitation when

the raw drop size and drop velocity measurements are provided by the Thies LPM.

Deriving SPT from the raw DSD and DVD values would have been possible from the
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literature on the relationships of the 2D distribution of diameter and velocity to SPT

(Gunn and Kinzer 1949; Langleben 1954; Locatelli and Hobbs 1974; Bohm 1989). How-

ever, with some artefacts and spurious particles noted during the early measurements,

and from contact with the instrument manufacturer, it was determined that the inter-

nal processing of the Thies LPM considered artefacts and also relied on the literature

(although the exact methodology was not supplied since it is considered the intellec-

tual property of Thies). In addition, for the research in Chapters 3 and 4, all other

instruments and manual observers reported PW code, so it was a set standard by which

to perform the verification (with translation to the new SPT classifier and the spatial

SPT classifications). More research is needed to implement the new SPT standard

proposed in Chapter 3 into future instruments and spatial product updates to replace

the ambiguous PW code for the SPT variable.

In Chapter 3, no absolute truth reference could be obtained for any of the precipitation

variables considered. For this reason the research is an evaluation (comparing multiple

methods of reaching an end result) as opposed to a verification (comparing a new

method with an existing method considered to be the truth), but a verification is

more valuable and is needed for the ground point SPT instruments (see Section 4.1

of Chapter 1). As mentioned in Chapter 3, the WMO intercomparison studies use

a composite working reference of four laboratory-tested gauges for rain rate, which

could be considered a verification (Lanza and Vuerich 2009). While a set of trusted

instruments could have been implemented at the start of the study period at CAO,

this was not considered at the time nor would it have likely been possible due to the

available resources. In addition the most trusted instrument differs depending on the

precipitation rate. Some of the instruments were installed sub-optimally, such as the

PWD21 and PWS100 being on the roof of a small building, but these could not be

altered because of the need to maintain a consistent long term data record at CAO.

Ultimately, the most trusted reference for SPT measurements is a human using vision

to make a manual observation (without the constraint of the PW code system). Finally,

the evaluation study in Chapter 3 was limited to a single location in Southern England

and only a 12-month period. Therefore, the variety of SPTs and the number of rare

SPTs captured by the study was low. The applicability of the results is limited to

locations with similar climatologies but furthermore, a 12-month period is also not a

sufficiently long period to be labelled as a representative climatological sample.

In Chapter 4 the main limitation was that the accuracy of the in-situ reference point

ground data was not well quantified. The research in Chapters 2 and 3 showed some

deficiencies in the DiVeN dataset and the automated station sensors are also suspected
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of performing poorly in cases of mixed-phase precipitation (Lyth and Molyneux 2006).

Due to these uncertainties, all the reference datasets were presented separately in Chap-

ter 4 to show the disagreements. Part of the disagreements can be attributed to the

locations of the sensors in their network. For example, the DiVeN instruments have

more locations at high altitude (36% > 250 m a.m.s.l.) compared with the Met Office

sites (∼10% > 250 m a.m.s.l.) which means there are more ‘obvious’ snow cases at

these sites so the skill appears to be higher. Chapter 4 demonstrated that the verifi-

cation scores were highly sensitive to the meteorology of the study period. Removing

the year 2018 from the verification sample, the overall HSS scores were reduced. There

was a period in March 2018 where temperatures were below zero for many days and

snow was the dominant precipitation type. While snow is usually a borderline event in

the UK and an SPT product requires high skill to capture it accurately, March 2018

contained many ‘obvious’ snow events. The value of the spatial SPT product to end

users in an obvious SPT scenario is unclear; in summer, the value to end users of the

snow and mixed-phase classes approaches zero.

Generally the results of Chapters 4 and 5 are only applicable to the UK and only

cover a 5-year study period which may not capture the true climatology of extremely

rare events like hail. The overwhelming number of rain cases compared with any

other type of precipitation makes the verification challenging because scalar metrics

become skewed. The future research in Section 4.2 suggests a method to make all SPT

classes equitably represented which requires additional ground data not present in this

research. In both Chapter 4 and Chapter 5, the SPT product is examined independently

at each time step. No consideration is given to the behaviour of the product for a single

meteorological feature (convective cell, frontal system) over time. Whether the features

behave realistically compared to the expected atmospheric dynamics within convective

and frontal features, is unknown. For example, the verification of an NWP model for

SPT performed by Ikeda et al. (2013) noted that larger synoptic-scale features were

more accurately predicted than convective-scale features, a delineation which was not

explored here.

In Chapter 5 the reference dataset of ESWD crowdsourced and quality controlled hail

reports was the major limiting factor due to the statistically insignificant number of

cases (111). Since the PW code system does not definitively separate hail and graupel,

they could not be used, and the automatic surface stations never report the hail PW

codes. The crowdsourced dataset from ESWD has high certainty because of the quality

control processes that are performed on submitted reports. However, the database is

not widely known by the UK public and therefore only 32 reports were submitted within
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5 years. The critical success measure of a crowdsourced dataset is its popularity which

will result in a larger sample size. The spatial SPT product frequency map of hail shows

around half of all land pixels in the UK being diagnosed hail within the 5-year study

period, which is high compared to the literature (Punge and Kunz 2016). However,

the false alarm ratio of the radar-based product is not known because of the absence

of a ‘no hail’ category in the reference dataset. The lack of data meant that the same

verification methodology from the rain, mixed-phase and snow verification could not

be repeated, nor could the results be compared, despite the SPT categorisations being

codependent (i.e. a hail diagnosis is an event removed from the other precipitation

classes). The fact that consistent methodologies are not applicable to all SPT classes

demonstrates that improvements are needed to the ground point reference datasets.

An ideal goal for the ground point reference datasets is for all precipitation types to be

verified with the same, equitable statistical framework.

Finally, the major limitation of the spatial SPT product itself is that a feedback loop

exists if the Met Office radar-based product is used to verify NWP forecasts because the

0 ◦C wet-bulb isotherm height is taken from an NWP model. Therefore, the verification

of NWP using the spatial SPT product will simply be verifying a combination of the

location of the storm and the precipitation rate (or reflectivity for hail), which is possible

without the SPT product. The ground data is a more independent reference by which

to conduct verification of NWP forecasts of SPT but these are not spatial. Note that

the verification methods currently used in the literature for NWP forecasts against

surface point SPT observations (see Section 4.6 in Chapter 1) have the same issues as

the verification of spatial and point SPT data. The verification framework developed

in this thesis, particularly the tolerance method in Chapter 4, is also suitable for the

verification of NWP SPT forecasts against ground point reference SPT data, and should

be employed in the future for this task.

4. Future Research and Recommendations

The research in Chapters 2, 3, 4 and 5 have demonstrated the real-time capture of pre-

cipitation type data and have advanced our ability to perform both evaluation of point

SPT data and statistical verification of spatial SPT products. Despite the advances,

there are some limitations which have been described in the previous section. There

are several fields of future research and research that can be built upon and motivated

by the research laid out in this thesis. The following sections describe these potential
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avenues in three categories: point measurements, statistical techniques, and spatial

products.

4.1. Point SPT Measurements

Having a trusted set of point reference observations is the necessary foundation on which

improvements to forecasting can be built upon to realise socioeconomic value. Some

skill is lost between the observations and the forecast simply due to the stochastic

nature of the atmosphere and the inconsistent geometry of the datasets. While it

may be possible to make an NWP model more skilful than the reference dataset is, it

could not be proven through verification. However, the more accurate the initial point

observations are, the more skill and understanding can be passed onto the NWP model

and improve decision making and informedness to the end users. For these reasons, the

following paragraphs describe future research that would improve the quality and the

amount of available reference data for SPT.

The deployment of the Disdrometer Verification Network as described in Chapter 2

demonstrated that there is added value to operational data on precipitation charac-

teristics more than just the typically observed rate or the accumulated depth of the

precipitation. In addition, the research in Chapter 2 showed that the cost to achieve

that value can be minimised, motivating widespread disdrometer use. Deutscher Wet-

terdienst (DWD) has operated disdrometers in Germany for several years. The UK

Met Office plan to introduce disdrometers into their network in the next few years to

supplement the existing arbiter for SPT. This is needed and will improve the reliabil-

ity of any reference dataset by which to perform verification of spatial SPT diagnosis

products and NWP forecasts.

More research is needed to produce observations using the new SPT standard from

the raw diameter–velocity data that the Thies LPM disdrometer collects. This will

require both laboratory studies and more fieldwork comparing the SPT observations of

the Thies LPM against human observations. The scale of the work required is outside

of the scope of this thesis and will require thousands of SPT events to be captured

in order to provide a statistically rigorous sample. The PW code system should be

replaced with the SPT classifier developed in Chapter 3. The Met Office is aware of

the shortcomings of the PW code system and has plans to replace it in the future,

which will be aided by the deployment of disdrometers at automatic surface station

sites. Again this will improve all future verification work by providing a more accurate
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reference dataset.

While crowdsourced data was utilised in Chapter 5 for hail verification, the number

of datapoints in the 5-year study period was statistically small. Other crowdsourced

datasets exist but must be thoroughly quality controlled to avoid spurious reports, in

particular by delineating graupel from hail. One method would be to trawl social media

for images of hail that were uploaded with location information. The limitation is that

such an endeavour would traditionally be labour intensive and time consuming, and that

estimating the size of hail from images is difficult. Other data collection methods have

demonstrated success for the hail SPT. A novel dataset was collected between 2006–

2015 where a team of volunteers watched potential hail-producing storms on radar and

then call businesses and homes with publicly listed phone numbers to ask them about

what was occurring or what had occurred (Ortega et al. 2009; Ortega 2018), resulting

in a total dataset of 54,299 reports. While this method is effective, it requires an active

group of volunteers, is labour intensive and may be considered intrusive.

An automated approach to collecting hail sizes is described in Soderholm et al. (2020).

An unmanned aerial system (UAS) is used to build up a composite image of an area

where hailstones are lying on the ground. Numerical image processing techniques are

then used to estimate the size of the individual hailstones through photogrammetry,

which produces a hail size distribution. Although piloting a UAS is labour intensive, the

photogrammetry technique could be applied to static webcams, cameras in vehicles, and

social media images to reduce the physical labour required and thus increase the amount

of data available. Autonomous UAS would be a path forward to survey suspected

hailstorms but regulatory permission is currently difficult to obtain. Calibration is also

a difficult task when the cameras will differ in their distance to the ground and viewing

angle, and melting means that the measured hail sizes are smaller than when they

impacted the ground. Machine learning with convolutional neural network approaches

(also referred to as ‘computer vision’) may be a way to account for camera differences

and to recognise the size of known reference objects in the image to increase the accuracy

of the hail size distribution. Being able to capture these images immediately after or

even during a hail event will minimise the effect of melting. Computer vision could also

be applied more generally to the discrimination of all SPTs and even estimate their

quantity, as some work in the literature has shown (Garg and Nayar 2007; Ma et al.

2016).

The research conducted in this thesis can be used to motivate the need for higher

temporal frequency and spatially dense SPT data, which are needed to support the
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radar-based products, in the same way that observations currently are with TBRs used

for radar quantitative precipitation estimation (QPE) calibration. More accurate and

more dense SPT data would improve our understanding of the transitional processes,

allow for finer calibration, and would enable the work of Lumb (1963) to be revisited,

as was suggested by the conclusions of Chapter 4. While hail is not observable with

the current automated Met Office surface stations, there is some evidence that hail will

become an increasingly likely and increasingly damaging event in the UK (Eccel et al.

2012; Mohr et al. 2015; Sanderson et al. 2015; Púčik et al. 2017), so capturing hail

events accurately may become more important in the future. The ESWD is a good

resource of trusted hail events and should be maintained, but more work needs to be

done to publicise the database so that more hail reports are submitted by members of

the public.

4.2. Statistical Verification Techniques

While the study period used in this thesis to verify the spatial SPT product was 5

years, there were only 5,911 mixed-phase events and 18,743 snow events recorded by all

ground point reference instruments. Hail was notably infrequent with only 32 events

in the UK from the ESWD dataset. The study should be repeated with a longer study

period of 10 or more years, in combination with another hail reference dataset source.

With a more than 10 year study-period, all precipitation types would be widely detected

by the spatial SPT product, allowing for smoother frequency maps, particularly for the

hail SPT.

One issue faced in Chapter 4 was the unequal number of SPT events by class. Rain made

up between 91–97% of the reference point observations, which skewed some of the scalar

verification metrics. In addition, the product was being verified for snow and mixed-

phase events during the summer, when users would not find any value in the spatial

SPT product because the SPT was ‘obvious’ as rain. In future research, the set of events

to be verified should be truncated based on when users (forecasters, decision makers)

actually use the spatial SPT product. For example, some forecasters would only look

at such a product for mixed-phase and snow SPT in the UK when the freezing level was

below 1 km (Sabrina Lee, personal communication, 2019). Alternatively, a temperature

range could be chosen. Snow may be considered ‘obvious’ at surface temperatures less

than −2 ◦C, whereas rain may be considered ‘obvious’ at surface temperatures greater

than 4 ◦C. A temperature criterion for verification could not be applied consistently

for all reference datasets in this research because the DiVeN instruments did not have
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co-located temperature information. In a future verification, the verification sample set

could be limited to days where a winter precipitation warning had been issued, or days

when thunderstorm warnings had been issued (for the hail class). However, limiting

the verification sample would remove the majority of SPT occurrences, and introduces

a bias based on the current skill of weather warning issuance from the Met Office.

There are a wide variety of verification metrics, some of which are described in Chapter

1. The choice to use one metric over another is difficult to make and is often subjective.

In this research, the choices were bias, probability of detection, false alarm ratio, and

Heidke skill score based on the questions that were asked about the spatial SPT product

in the thesis objectives, but the needs of the end user should also influence the choice.

For example, the hail SPT class may prioritise the reduction of the false alarm ratio

over the probability of detection, so that users do not become complacent after many

false alarms. The contingency table and confusion matrix in the verification could be

weighted by how impactful or costly one precipitation type is over another, to reduce

the overall skill score if the most impactful SPTs have poor skill. The weighting could

be different for each category of product user and therefore the skill values would also

differ between users. The usefulness of verification is in how the results reveal which

action should be taken to improve a product by some predetermined standard. In

practical terms the results would become more complex with this suggested approach

and thus would be harder to interpret, perhaps making the required action unclear.

Finally, the spatial SPT product verified in this thesis is deterministic which gives no

indication of the certainty of the diagnosis and is less informative to an end user. A

probabilistic version of the spatial SPT product should be developed in the future, as

will be explained in the next section. From a verification perspective, the toolset of

applicable statistical methods for verification of a probabilistic product would be much

greater if the product were probabilistic. In such a product, clear definitions should

exist for the mixed-phase class, where confusion could occur between the percentage

probability of occurrence versus the percentage of precipitation that was liquid or solid.

Furthermore, a validation is required with the end users of the spatial SPT product.

The level of specificity (with regards to Figure 1.24 in Section 4.2 of Chapter 1) needed

by the users is not evident. Are the rain, mixed-phase, snow and hail SPT classifications

sufficient? Would the delineation of drizzle and rain, or would the addition of graupel,

ice pellets and freezing rain SPT classes be valuable to an end user? A validation checks

whether a product is fit for purpose (see Section 4.1 in Chapter 1), which has not been

performed for the spatial SPT product but should be before future development of a
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new product occurs.

4.3. Spatial SPT Products

The research going forward should be concentrated on objective 3f of this thesis—to

iterate and improve upon spatial SPT observation products. Work is ongoing at the UK

Met Office to develop a new radar-based spatial SPT product based on the verification

research performed in this thesis. Two major changes have been made. Firstly, a

correction has been applied to the height of the 0 ◦C wet-bulb isotherm which was

shown in Chapter 4 to be too low, causing an over-diagnosis of mixed-phase when rain

occurred, and an over-diagnosis of snow when mixed-phase occurred. In addition, the

Euro4 NWP model which supplies the 0 ◦C wet-bulb isotherm will likely be replaced

by a newer NWP model and thus take advantage of increased resolution and improved

microphysics schemes to further improve the freezing level height estimation. Secondly,

hail is now detectable at any altitude and distance from the radar (within the radar

beam) with a dual-polarisation hydrometeor classification algorithm. The hit rate is

expected to increase and the circles of no hail detection for isolated radars, which was

noted in Chapter 5, should not exist in the new product. The verification framework

developed in this thesis should be reapplied to the new product in order to quantify

the improvements.

In addition, based on the conclusions of Chapter 4, Lumb’s critical rate (Lumb 1963)

should be re-examined. The current derived formula only considers cases with precipi-

tation rates between 1–4 mm h−1 and uses 90% precipitation melted (so 10% remains

solid) as the boundary between liquid and mixed-phase, which does not follow the def-

inition used in the new SPT classification standard. The ability for the ground point

SPT instruments to detect the 10% remaining solid mass and record a mixed-phase PW

code when Lumb’s critical rate would diagnose rain, was not examined in this research.

Also, Lumb’s critical rate does not consider time; a saturated atmospheric column is

always assumed due to the precipitation evaporatively cooling the air (Lumb 1963) but

this process is not instantaneous. When precipitation begins, the atmospheric column

may not be saturated and an SPT of rain may take some time to transition to mixed-

phase and snow through evaporative cooling. The time taken for the column to saturate

will be strongly dependent on the precipitation rate such that any time-dependence will

be more important for stratiform (typically weaker) precipitation events, as explained

by Lumb (1963).
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For rain, mixed-phase and snow, the current spatial SPT product essentially tries to

estimate the surface temperature through the NWP 0 ◦C wet-bulb isotherm height and

an empirical relationship for evaporative cooling. Future research should attempt to

instead utilise the real-time observations of temperature from the ground since there

already exists an operational capability to produce high-resolution surface temperature

maps in near-real time (Green 2010). For locations without surface temperature data,

maps could use interpolation and could also consider terrain changes where surface

stations do not exist. The average distance from one UK Met Office surface station

to the next nearest station is 17.6 km. With crowdsourced home weather stations

that distance has been shown to decrease to 2.1 km (Coney et al. 2020) but significant

quality control is required because the data is low-quality and is associated with many

artefacts. Using the suggested surface temperature approach would make the spatial

product completely independent from NWP and allow the product to be a reference

to NWP verification with higher statistical rigour. However, some rarer SPTs such

as freezing rain and ice pellets would require a full vertical temperature profile of the

atmosphere in order to be diagnosed. For these SPTs, vertical temperature profiles

from NWP may be crucial and irreplaceable inputs.

A limitation of the current spatial SPT product itself is that it gives no indication of

hail size which is often a critical variable in order to determine whether the event will

be a minor spectacle or cause costly damage. Similarly, the SPT product does not

indicate the intensity of each precipitation type. Rainfall and snowfall require different

relationships for radar QPE because their electromagnetic scattering behaviour differs.

Future research should utilise the SPT information to aid the quantification of the

amount of precipitation, which could lead to more accurate values (Berne and Krajewski

2013). Combining the amount of precipitation with an awareness of time, the spatial

SPT product could be used to estimate the depth of snow on the ground, which would

be a useful input to hydrology models. With memory, a product would take into

account that rain was falling over snow and would therefore accelerate melting, which

is known to exacerbate flood events (Muchan et al. 2015).

Finally, there is no indication of uncertainty in the spatial SPT product. Probabilistic

values give additional information to decision makers on the confidence of the prod-

uct and can increase informedness when compared to a deterministic product. There

are many ways to produce a probabilistic output, such as with fuzzy logic algorithms

or with neural networks. The recommended research to revisit Lumb’s critical rate

should attempt to produce a probabilistic function instead of a discrete relationship,

as well as using knowledge of the recent precipitation rate to estimate how saturated
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the atmospheric column is. Alternatively, surface-based humidity values or wet-bulb

temperatures could indicate whether a change in SPT was likely to occur, for a given

precipitation rate.

5. Final Remarks

This thesis has demonstrated firstly that low-cost point observations of SPT have value.

Secondly, the classification of SPTs has been constrained compared to the existing SPT

reporting standards. Finally, spatial SPT products have been verified with point SPT

data using novel tolerance techniques which address representativity issues and can be

applied to other spatial products in the future. As NWP attempts to resolve small-

scale features with increasing resolution, there is more research to be done on SPT.

Observations of SPT need to be improved with increased specificity in order for the

verification of NWP to add value. To address this, novel SPT data sources are being

developed which will require equitable assessment. The research conducted in this

thesis demonstrates a verification framework which should be used to quantify the

skill of, and to motivate improvements to, SPT products. In addition, a baseline skill

value has been set for future products to improve upon. With further research these

improvements may lead to more accurate and informed NWP model predictions of SPT

and increase the preparedness of society for disruptive SPT events.
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Appendix A.

Supplementary Figures

The following section is a selection of supplementary figures (A.1–A.6) that are not

critical to the interpretation of the thesis but that add additional context to the wider

work accomplished.

Figure A.1.: The design of the publicly-accessible Disdrometer Verification Network
(DiVeN) website containing real-time (within 2–7 minutes) precipitation data from the
Thies LPM instruments.
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Figure A.2.: An example of the 1-minute plot available to users on the DiVeN website.
Animated versions were available for each minute of the day to show changes in the 2D
precipitation diameter-velocity distribution over time.
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Figure A.3.: An example of a daily summary plot from the DiVeN website. The plot
is showing data from 11 January 2020 at the Feshie (Druim nam Bo) site which is in
the Scottish Cairngorms and is typically covered in rime ice in the winter (as shown
in Figure 2.6 in Chapter 2). Subplots from top to bottom are: precipitation rate per
minute (liquid equivalent, mm h−1); liquid versus solid fraction (%); accumulation of
liquid, solid and any precipitation since midnight (mm); precipitation type from present
weather (PW) codes using the classifier and LuT described in Chapter 3; visibility due
to precipitation (km).
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Figure A.4.: Extended version of Figure 2.5 in Chapter 2 showing the longer term avail-
ability of the DiVeN instruments, with site names changed to match those with datasets
already labelled on the Centre for Environmental Data Analysis (CEDA) archive. Some
sites were very successful in uploading data almost for the entire duration of the project,
whereas some sites were very poor, which was most commonly due to loss of internet
rather than the instrument itself not functioning. Note that the study period of Chap-
ter 4 ends on 31st December, 2018. Also note that although the recurring internet fees
were not paid from 2020 onwards, the instruments are still functioning and storing data
locally. When the instruments are collected to be ingested by the National Centre for
Atmospheric Science for redeployment, any data that was recorded can be converted
to netCDF and uploaded to CEDA with minimal effort due to the coding approach
taken. Depending on travel restrictions imposed by the novel coronavirus COVID-19,
there could be almost 5 years of data collected in total, an invaluable resource for future
precipitation studies in the United Kingdom (UK).
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Figure A.5.: The CEDA Archive containing the DiVeN dataset.
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Figure A.6.: The bias between the 0 ◦C wet-bulb isotherm height from the UK post-
processed (UKPP) model and the bright band top height from the melting layer de-
tections of vertically-pointing radar scans. The data were collected between January
2019 and March 2020. This examination performed by colleagues at the UK Met Office
was investigated as a result of the verification results of this thesis work in Chapter 4.
The offset in median height difference of negative 167.5 m indicates that the UKPP-
diagnosed freezing level is too low, which is in agreement with the verification results
of Chapter 4 of this thesis.
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