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Abstract

Due to a recent influx of attention, the field of quantum information is rapidly pro-

gressing towards the point at which quantum technologies move from the laboratory

to widespread community use. However, several difficulties must be overcome before

this milestone can be achieved. Two such difficulties are addressed in this thesis.

The first is the ever-growing security threat posed by quantum computers to existing

cryptographic protocols and the second is the missing knowledge regarding the per-

formance differences between quantum and classical communications over various

existing network topologies. Continuous-variable (CV) quantum key distribution

(QKD) poses a practical solution to the security risks implied by the advancement

of quantum information theory, with the promise of provably secure communica-

tions. Unfortunately, the maximum range of many CV-QKD protocols is limited.

Here, this limitation is addressed by the application of post-selection, firstly, to a

scenario in which two parties communicate using terahertz frequency radiation in

the atmosphere, and secondly, to measurement-device-independent QKD, in which

two parties communicate through the medium of an untrusted relay. In both cases,

the introduction of post-selection enables security over distances substantially ex-

ceeding those of equivalent existing protocols. The second difficulty is addressed

by a comparison of the quantum and classical networking regimes of the butterfly

network and a group of networks constructed with butterfly blocks. By comput-

ing the achievable classical rates and upper bounds for quantum communication,

the performance difference between the two regimes is quantified, and a range of

conditions is established under which classical networking outperforms its quantum

counterpart. This allows for guidance to be provided on which network structures

should be avoided when constructing a quantum internet.
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Chapter 1

Introduction

1.1 The ancestry of quantum information theory

Upon the turn of the twentieth century, physicists had been lulled into a false sense

of security by the apparent ability of Newtonian mechanics and electrodynamics

to describe, with extraordinary accuracy, almost any observable phenomenon. The

accuracy and elegance of the theory caused physicists to harbor a belief that no new

major component was needed to form a complete description of reality. However,

problems were on the horizon as advancements in experimental technology were

leading to discoveries that fell outside of the descriptive boundaries of these theories.

A crisis quickly emerged when classical electrodynamics predicted in�nite energies

within the black-body radiation spectrum. This infamous blunder was quickly coined

the `ultraviolet catastrophe'. Thankfully, in times of crisis, paradigm-shifting ideas

emerge, in this case, in the form of Max Planck's revolutionary radiation law [3].

Planck described the energy of the black body as a composition of discrete packets

named `quanta'. Though unbeknownst to Planck, this insight would light the fuse

on the quantum era of physics, leading to a radically di�erent description of reality.

Four years later, armed with Planck's quantization idea, Einstein was able to

formulate a quantized description of the photoelectric e�ect by hypothesizing that

radiation itself is quantized and composed ofparticles of energy proportional to the

frequency of the radiation [4]. This model of radiation appeared to be in direct

contradiction to the widely accepted wave model that had been con�rmed by the

1



Chapter 1. Introduction

observation of an interference pattern in Young's double-slit experiment several years

prior to Einstein's work. Light appeared to be behaving as a waveand a particle;

an apparent paradox known as wave-particle duality. In his Ph.D. thesis, Louis

de Broglie proposed that wave-particle duality was not a paradox but a physical

phenomenon that was possessed not just by light but by all particles. His formulation

associated with every particle a de Broglie wavelength simply computed as the ratio

of the Planck constant to the particle's momentum.

The de Broglie formulation formed the foundation on which the �rst formalisms

of the theory we now call quantum mechanics were developed. Inspired by the

idea of formulating the wave mechanics behind de Broglie's `matter waves', Er-

win Schr•odinger began searching for a three-dimensional wave equation that would

describe the behavior of the electron in a hydrogen atom. His initial attempt to

derive a relativistic equation fell short and he became discouraged. However, he

decided to publish the non-relativistic version of his work, and with the help of

Hermann Weyl, he was able to use his equation to predict the spectral lines of the

hydrogen atom. Schr•odinger interpreted the electron wave function emerging from

his equation as a charge-density function that spreads throughout space. However,

shortly after Schr•odinger published his work, Max Born showed that the square of

the absolute value of the wave function was proportional to theprobability density

associated with �nding the electron at a given point in space. In general, Born's

result implied that the wavefunction of a quantum system could reveal the proba-

bility distribution associated with the measurement outcome of that system. Born's

results appeared to suggest the presence of an inherently random aspect to reality,

a concept that shocked the world of physics that held the idea of determinism at its

core. Schr•odinger himself would later proclaim \I don't like it, and I'm sorry I ever

had anything to do with it."

Born's discovery opened a Pandora's box of philosophical questions regarding

the interpretation of the mathematics of quantum mechanics. The most widely ac-

cepted interpretation was proposed by Neils Bohr and Werner Heisenberg, known as

the Copenhagen interpretation, in which a physical system exists in a superposition

of states before measurement and, upon measurement, collapses into one possible

2



1.1. The ancestry of quantum information theory

state with probability determined by the Born rule. Importantly, this interpretation

assumed quantum mechanics to be entirely probabilistic in nature. On the other

side of the spectrum and entering the realms of science �ction, the Many-Worlds

interpretation, proposed by Hugh Everett in 1957, suggests that every possible out-

come of a measurement exists in its own `universe' with unique space and time [5].

For each outcome, there is an observer who is only aware of the speci�c outcome

that occurs in the space and time in which they reside.

One of the harshest critics of the probabilistic Copenhagen interpretation of

quantum mechanics was Einstein who famously said \I, in any case, am convinced

that He does not play dice with the universe". Together with Boris Podolski and

Nathan Rosen, he developed the EPR paradox thought experiment in an attempt

to illuminate the conceptual di�culties of quantum mechanics and argue that it was

an incomplete theory [6]. The experiment can be understood by considering two

distant particles whose properties are interlinked in such a way that measurement

of the state of one reveals that of the other. In this case, the particles are said to

be entangled. The Copenhagen interpretation describes the state of the measured

particle as uncertain until the moment the measurement is performed, thus the

state of the other appears to be instantaneously certain. Einstein dubbed this

concept `spooky action at a distance', viewing it as a violation of the theory of

relativity as knowing the state instantly implies faster-than-light communication

between the particles. Bohr refuted the paradox, asserting that both particles should

be described as a single quantum system rather than two individual entities. In this

case, the measurement of one particle makes certain the state of the system as a

whole and no communication is necessary.

The disagreement between Bohr and Einstein is one of the most famous in the

history of physics. Bohr's Copenhagen interpretation was gaining traction with

mounting experimental evidence but physicists were still uncomfortable with its

probabilistic implications. In 1964, John Bell devised the Bell inequalities, which

quantify the point at which a theory of hidden variables cannot produce the same

correlations observed between two entangled systems. The Bell inequalities (largely)

settled the debate over the completeness of quantum mechanics when, eight years

3
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after Bell's paper, the �rst Bell test was carried out experimentally by Freedman

and Clauser [7]. The result of this experiment and many more was a violation of the

Bell inequality as predicted by the probabilistic quantum mechanical description of

reality.

Despite the conceptually di�cult and highly counter-intuitive nature of quan-

tum mechanics, the �eld has seen unprecedented progress and continues to grow

rapidly in modern physics. Moreover, the �eld has attracted interest from a range

of other scienti�c disciplines including computer science and mathematics. This

inter-disciplinary interest has led to the emergence of the �eld of quantum infor-

mation theory (QIT) [8,9], which aims to exploit the unique properties of quantum

states for a wide range of information processing tasks. Its purpose is identical to

that of classical information theory, but it di�ers vastly in nature. The emergence

of QIT dates back to the 1980s when a quantum mechanical version of the Turing

machine was proposed by Paul Benio� [10]. The main advantage of QIT is the emer-

gence of quantum parallelism which makes it possible to manipulate large quantities

of data at once [11]. This important characteristic allows the theory to provide solu-

tions to many problems that are di�cult and slow to solve using classical techniques.

Some of the most well-known examples include the quantum discrete Fourier trans-

form [12], Shor's algorithm for factorization of large numbers in polynomial time [13]

and Grover's algorithm for searching [14]. Another important application pointed

out by Richard Feynman and Yuri Manin is the ability of quantum computers to

simulate certain physical entities that may be di�cult or even impossible to simu-

late with modern-day computers [15]. Notwithstanding these important results, the

research introduced in this thesis is placed within the branch of QIT which focuses

on quantum communication between two or more parties over quantum channels.

In this setting, quantum mechanics makes possible many non-trivial results such as

quantum key distribution (QKD) and quantum networking that form the founda-

tions on which the results presented here are obtained.
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1.2 Thesis outline

Throughout this thesis, several original contributions to the �eld of quantum infor-

mation theory will be introduced that are focused on illuminating and improving,

where possible, the limitations of quantum communications across three di�erent

regimes. Firstly, a point-to-point scenario is considered in which two parties are

connected by and communicate over an insecure quantum channel. This is followed

by consideration of the more complex regime of assisted communication in which

third-party relays are introduced into the communication line between the parties.

Finally, the most general case is considered in which the points become two of many

nodes communicating over any number of quantum channels in a quantum network.

In the consideration of direct and relay-assisted communications, the focus is

directed at the capacity for secure communications using QKD. In particular, the

goal is to address the current limitations of continuous-variable (CV) QKD in each

setting, which mainly relates to the maximum range of the current state-of-the-

art protocols. To counteract these limitations, two original CV-QKD protocols are

introduced, one for each communication regime. In the consideration of quantum

networks, the investigation follows a more fundamental path. The di�cult questions

posed by the intrinsic nature of quantum mechanics when considering the structure

of future quantum networks are addressed. Speci�cally, the investigation seeks to

identify and quantify the performances of network structures that are frequently

and e�ectively used in classical networking, while being simultaneously detrimental

to quantum networking. The following two sections provide an introduction to the

�elds of CV QKD and quantum networking in more detail and explain their role

within the �eld of quantum information theory as a whole.

1.2.1 Quantum key distribution

With the promise of secure communications guaranteed by the laws of physics, quan-

tum cryptography is an intriguing consequence of quantum theory of interest to a

variety of disciplines. Quantum key distribution is the most advanced instance of

quantum cryptography in which quantum mechanics plays a small but vital role in a
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wider cryptographic protocol of distributing a secret key between parties. Key dis-

tribution is a di�cult open problem in private-key cryptography that QKD promises

to solve by proving impossible an eavesdropper's task of successfully replicating a

secret key in conjunction with keeping their presence undetectable. This impossibil-

ity emerges from the inherent uncertainty of quantum mechanics and the no-cloning

theorem. If two communicating parties use QKD to share a secret key, they can

subsequently apply a symmetric classical cryptographic protocol such as the un-

breakable one-time pad algorithm, to completely guarantee security.

The race to develop quantum cryptography is fuelled by the threat posed to

existing cryptographic protocols by the rapid advancement of quantum technologies,

in particular, the development of many-qubit quantum computers. The application

of Shor's algorithm on such machines has the potential to render insecure many

existing cryptosystems based on factorization such as the Rivest-Shamir-Adleman

(RSA) protocol [16]. As a solution to this problem, much e�ort has been directed at

developing a class of so-called post-quantum classical cryptographic algorithms that

are thought to be secure against quantum attacks. However, the security of such

protocols is predicated on the computational ability (or lack thereof) of the attacker.

Without knowledge of all possible quantum algorithms, or even future computing

paradigms, security is not guaranteed. The security of QKD on the other hand is

built on the fundamental nature of reality and it assumes the most general attack an

eavesdropper may employ that is permitted under the laws of physics. As a result,

it guarantees security, regardless of any attack incorporating unimaginably powerful

technologies and algorithms that may be developed in the future.

The seminal BB84 QKD protocol [17] and many subsequent protocols were based

on systems with �nite degrees of freedom, such as the polarisation of photons or

ground/excited states of trapped ions, referred to as discrete variables. Several

years later, the �eld of continuous-variable (CV) QKD was born [18,19]. CV QKD

aims to exploit systems with continuous degrees of freedom to guarantee security,

the most obvious candidate being the quadrature amplitudes of the electromagnetic

�eld. The key advantage of CV QKD over its discrete variable counterpart is the ease

at which most state-of-the-art protocols can be implemented. Many quantum states
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of the electromagnetic �eld can be generated straightforwardly with linear optics

and measurements can be performed with readily-available and low-cost homodyne

detectors.

Since the inception of CV QKD, the �eld has seen substantial advancements in

key areas such as protocol range, secret key rate, and ease of experimental implemen-

tation. In fact, CV QKD has been demonstrated to be capable of secret key rates

close to the ultimate repeaterless (PLOB) bound [20]. Recently, CV QKD has been

proposed as a viable candidate for secure communication at terahertz frequencies in

the atmosphere [21] and as a means of inter-satellite communications [22]. Facilita-

tion of communications in the terahertz band is an important topic of active research

that is expected to experience rapid development in the near future due to the in-

creasing demand for high-speed, short-distance wireless communications [23, 24].

The novel CV-QKD scheme for terahertz communication in the atmosphere o�ers

the highly desirable feature of extremely high security at high rates for applications

such as key cards and covert operations. Unfortunately, it is currently limited to

particularly short distances on the scale of meters [21]. In Chap. 4, an alternative

protocol is developed that exploits the technique of post-selection, �rst introduced

for optical communications with optical states. By investigating the protocol under

a variety of parameters, it is demonstrated that the limitations of CV QKD in this

setting can be reduced by extending the maximum distance over which the legiti-

mate parties can establish a secret key. As a result, the range of possible applications

in this area is expanded.

QKD has been proven to be possible not only in the point-to-point regime but in

the end-to-end regime in the form of measurement-device-independent (MDI) QKD,

in which the parties communicate through the medium of an untrusted relay [25,26].

The seminal CV-MDI-QKD protocol was able to achieve very high secret key rates,

especially in an asymmetric scenario (when the relay is positioned closer to one party

than the other), however, in the symmetric con�guration, communication is limited

to relatively short distances, falling well short of DV protocols which, in some cases,

can achieve secret key rates at distances exceeding the PLOB bound. In Chap. 5, an

original post-selected CV-MDI protocol is introduced which is capable of extending
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the range of CV-MDI QKD. The protocol can bridge the gap between the CV and

DV regimes while maintaining all of the advantages associated with CV QKD.

1.2.2 Quantum networking

The �nal part of this thesis involves a glance into the not-too-distant future in

which quantum information and computation will have likely progressed to the level

of adoption that requires signi�cant infrastructure in order to connect quantum de-

vices and create a widespread quantum internet [27,28]. This kind of infrastructure

will require further advancements in the �eld of quantum networking, in particular

since it may be desirable to copy or replace existing classical network structures, it

is important to establish any performance di�erences between classical and quan-

tum networks of various topologies. A crucial element of this analysis is to take

into consideration the unique properties of quantum mechanics that may cause the

performance of certain quantum network topologies to deviate from that of their

classical counterparts. In Chap. 6, this question is examined by consideration of the

well-known buttery network [29]. In the buttery network, the duplicability of clas-

sical information may be exploited in order to transfer four bits of information using

three channels. Here, it is formally show using the techniques of channel simulation

that this exploit is not possible if the goal is to distribute quantum information. Fur-

thermore, the analysis is extended to a group of larger networks constructed with

buttery blocks, and the di�erences between the achievable classical rates and an

upper bound on the quantum rates for identity, erasure, and depolarizing channels

are quanti�ed. In doing so, guidance is provided on which network structures and

conditions should be avoided in the construction of the quantum internet and within

the wider �eld of quantum networking.
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Preliminaries

In this chapter, we will introduce the preliminary notions of quantum information

theory required to instill in a reader unfamiliar with the theory, an understanding

of the framework on which our research is built. In the �rst part of the chapter, we

will focus on the pre-requisites of CV QKD which begins with a brief background of

quantum optics with a particular focus on Gaussian states of light that frequently

arise in our protocols. We also briey introduce some of the fundamental principles

of information theory in both classical and quantum regimes. In the later sections,

we introduce the technique of teleportation stretching, which allows us to bound

the rates of quantum channels and networks. These tools enable us to provide the

necessary benchmarks for quantum networking that are utilized in Chap. 6.

Throughout this chapter, we assume that the reader is familiar with the funda-

mentals of quantum mechanics. For those seeking a more thorough understanding

of the principles we outline here, the excellent books by Nielsen & Chuang [8] and

Braunstein & Pati [9], and, of particular importance in the case of continuous-

variable quantum information, the reviews by Braunstein et al. [19] and Weedbrook

et al. [18] are recommended.

2.1 From classical to quantum optics

To begin our journey towards quantum optics, we will assume that the reader has

a core understanding of the fundamental principles of classical electromagnetism.
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As with most introductions to quantum optics, our starting point is with Maxwell's

equations which form a succinct description of the �eld. We will demonstrate how

Maxwell's equations lead to a description of electromagnetic radiation as a wave

propagating through space and, using this framework, we will show how the tran-

sition to a quantum description of light is facilitated by the quantum harmonic

oscillator and how this gives rise to a mathematical framework for quantum optics.

2.1.1 Classical electromagnetism in a ash

Let us now recap the Maxwell equations which govern the electricE and magnetic

B �elds. To streamline the mathematical description, we will choose our operating

medium to be free space, in which there are no currents or charges. In this scenario,

the Maxwell equations are as follows

r � E = 0 (2.1.1)

r � E = �
@B
@t

(2.1.2)

r � B = 0 (2.1.3)

r � B = � 0� 0
@E
@t

: (2.1.4)

In only a few steps, we can arrive at Maxwell's crucial discovery of the wave nature

of the electric and magnetic �elds. Firstly, by taking the curl of both sides of

Eq. (2.1.2) we obtain

r � (r � E) = �
@
@t

(r � B ) (2.1.5)

= � � 0� 0
@2E
@t2

(2.1.6)

then, by applying vector identity r � (r � E) = r (r � E) � r 2E and noting that

the �rst term on the right hand side is zero due to Eq. (2.1.1), we arrive at the wave

equation

r 2E = � 0� 0
@2E
@t2

; (2.1.7)

where it is easy to see that the wave speed is given byc = ( � 0� 0)� 1=2, the speed

of light. This observation prompted Maxwell to proclaim \this coincidence is not

merely numerical".
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In order to describe the behaviour of the electric and magnetic �elds more easily,

we introduce their scalar� and vector A potentials, respectively, from which the

Maxwell equations emerge. The Maxwell equations are satis�ed if

B = r � A and r � = � E �
@A
@t

: (2.1.8)

Choosing the Coulomb gauge for whichr � A = 0, the electric �eld vector in

Eq. (2.1.7) may be replaced by the vector potential. The general solution to this

equation is a linear combination of a number of radiation modes with unique wavenum-

ber k, angular frequency! k and polarization vectorek � ,

A (r; t ) =
X

k

X

� =1 ;2

ek � Ak � (r ; t): (2.1.9)

where theAk � (r ; t) are general solutions to the wave equation which we may write

for now as

A(r ; t) = Ak � (t) exp(ik � r ) + A �
k � (t) exp(� ik � r ): (2.1.10)

Substituting the general solutions back into the wave equation, we �nd that the

time-dependent coe�cients Ak � (t) satisfy the harmonic oscillator equation

@2

@t2
Ak � (t) = � ! 2

kAk � (t) (2.1.11)

with ! k = ck. This allows us to state the complete form of the general solutions

Ak � (r ; t) = Ak � ei (k �r � ! k t ) + A �
k � e� i (k �r � ! k t ) : (2.1.12)

The electric and magnetic �elds are then readily expressed as

E(r ; t) =
X

k

X

� =1 ;2

ek � Ek � (r ; t) (2.1.13)

and B(r ; t) =
X

k

X

� =1 ;2

k � ek ;�

k
Bk ;� (r ; t); (2.1.14)

where the single-mode components are given by

Ek � (r ; t) = i! �
�
Ak � ei (kr � ! k t ) � A �

k � e� i (kr � ! k t )
�

(2.1.15)

and Bk � (r ; t) = ik
�
Ak � ei (k �r � ! k t ) � A �

k � e� i (k �r � ! k t )
�

: (2.1.16)
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2.1.2 The quantum harmonic oscillator

\The further away from home you are, the more you want to come back"

(Gary Marchant)

In order to adapt our discussion of classical electromagnetism for the quantum

regime, we start with a brief discussion of the one-dimensional quantum harmonic

oscillator. Let us consider a particle of massm con�ned to a one-dimensional po-

tential U(x) = ! 2x2=2. The Hamiltonian of such a system consists of the sum of

this potential and the kinetic energy of the particle,

Ĥ =
p̂2

2m
+

1
2

m! 2q̂2; (2.1.17)

where q̂ and p̂ are the position and momentum operators, respectively, satisfying

the canonical commutation relation [q̂;p̂] = i~. Rather than proceeding to solve the

Schr•odinger equation with the Hamiltonian in this form, it is convenient to introduce

the operator â and its hermitian conjugateây, de�ned as

â =
1

p
2m~!

(m! q̂+ i p̂) (2.1.18)

ây =
1

p
2m~!

(m! q̂ � i p̂) ; (2.1.19)

so that, conversely, the position and momentum operators may be written as

q̂ =

r
~

2m!

�
â + ây

�
(2.1.20)

p̂ = � i

r
m~!

2

�
â � ây

�
: (2.1.21)

The operatorsâ and ây are known as the creation and annihilation operators, re-

spectively for reasons that will become clear as we proceed. It is straightforward to

prove their commutation relations
�
â; ây

�
= 1 and [â; â] =

�
ây; ây

�
= 0. By perform-

ing the multiplication âyâ, we can see that the Hamiltonian in Eq. (2.1.17) may be

written as

Ĥ = ~!
�

âyâ +
1
2

�
: (2.1.22)

In the Schr•odinger picture of quantum mechanics, the eigenequation for a general

energy eigenstate n with eigenvalueEn is given by

Ĥ n = En  n : (2.1.23)
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With the above form of the Hamiltonian, it is easy to show the following commuta-

tion relations
h
Ĥ; ây

i
= ~! ây and

h
Ĥ; â

i
= � ~! â (2.1.24)

and combining these relations with Eq. (2.1.23), we can show that operating on n

with Ĥ ây yields the following eigenequation

Ĥ ây n = ( ~! + En )ây n (2.1.25)

such that ây n is an eigenfunction ofĤ with eigenvalue (En � ~! ). Instead, if we

operate on n with Ĥ â, we �nd that â n is an eigenvalue ofĤ with eigenvalue

(En � ~! ). These relations tell us that the energy of the oscillator comes in discrete

packets which can either be removed or added by application of the operator ^a or

ây, respectively, hence their names. Sometimes in the literature, these operators

are referred to as the ladder operators as the energy of the harmonic oscillator can

be viewed as a ladder of equally-spaced levels. It can be shown that the bottom

rung of the ladder, corresponding to the lowest energyE0 of the oscillator, is equal

to ~!= 2. This value is known as the zero-point energy and it is a purely quantum

mechanical artefact. It will become clear later that the zero-point energy represents

the important vacuum uctuations in the quantization of the electromagnetic �eld

that are an intrinsic property described by the Heisenberg uncertainty principle [30].

2.1.3 Quantization of the electromagnetic �eld and the quadra-

ture operators

With an overview of classical electromagnetism and the quantum harmonic oscillator

behind us, we now turn our attention to the quantization of the electromagnetic

�eld that is crucial in a complete understanding of the concepts to be introduced

in the upcoming chapters. Our starting point is the energy of a single mode of the

electromagnetic �eld labeledk� within a volume V averaged over an optical cycle,

which is given by

H =
1
2

Z

V

�
� 0E2 +

B 2

� 0

�
d3r = 2V �0! 2Ak � A �

k � : (2.1.26)
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It is clear from this expression that the energy of the electromagnetic �eld looks

identical to that of a harmonic oscillator with position and momentum coordinates

q and p, respectively given by (p2=m + m! 2q2)=2. Noting that the generalization

to multiple modes is attained as the sum of the energy contributions of each mode,

we can achieve quantization of the �eld by treating each �eld mode as a quantum

harmonic oscillator with canonically-conjugate phase-space coordinates ^qk � and p̂k � .

We may then de�ne a pair of dimensionless operators known as thequadrature

operators or, simply, the quadratures,

Q̂k � =

r
2m!

~
q̂k � =

�
âk � + ây

k �

�
; P̂k � =

r
2

m~!
p̂k � = � i

�
âk � � ây

k �

�
: (2.1.27)

In terms of the quadrature operators, the creation and annihilation operators may

be written as

âk � =
1
2

�
Q̂k � + i P̂k �

�
; ây

k � =
1
2

�
Q̂k � � i P̂k �

�
: (2.1.28)

The quadratures obey the dimensionless canonical commutation relation
h
Q̂k � ; P̂k �

i
=

2i , hence their de�nition can be thought of as setting~ = 2. In the following chap-

ters, we use this convention exclusively, but it is important to note, especially in

the interest of readers unfamiliar with the �eld, that many others are employed in

the literature, including but not limited to ~ = 1 and ~ = 1=2. Henceforth, we

will exclusively use the quadrature operators when referring to the quantized elec-

tromagnetic �eld, and we will use the lowercase notation ^qk � and p̂k � which is most

common in the literature.

We are now able to express formulae for the quantum operators describing �eld

potential by replacing the classical �eld amplitudesAk � and A �
k � in Eq. (2.1.12) with

their quantum counterparts. We have

Âk � ! A0âk � and Â �
k � ! A0ây

k � : (2.1.29)

The constant A0, containing all of the dimensional pre-factors, is given byA0 =

(~=2� 0! k)1=2. We may then write the quantized vector potential in analogy with

Eq. (2.1.12) as

Âk � = A0

h
âk � ei (k �r � ! k t ) + ây

k � e� i (k �r � ! k t )
i

(2.1.30)
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and with equations (2.1.15) and (2.1.16), we obtain the quantized electric and mag-

netic �eld operators, respectively,

Êk � = E0

h
âk � ei (k �r � ! k t ) + ây

k � e� i (k �r � ! k t )
i

(2.1.31)

B̂k � = B0

h
âk � ei (k �r � ! k t ) + ây

k � e� i (k �r � ! k t )
i

; (2.1.32)

with E0 = ! kA0 and B0 = A0. The importance of the quadrature operators becomes

clear when they are used to express the electric �eld operator of a single mode labeled

k� . We have

Êk � = E0 [q̂k � cos(! k t � k � r ) + p̂k � sin(! k t � k � r )] : (2.1.33)

The quadrature operators represent the in- and out-of-phase components of the �eld

that, unlike the creation and annihilation operators, are observable quantities that

can be measured with respect to a reference �eld. With the aid of Eq. (2.1.28), the

Heisenberg uncertainty relation for the quadrature operators can be shown to be



(�^qk � )2

� 

(�^pk � )2

�
�

1
4

h[q̂k � ; p̂k � ]i = 1: (2.1.34)

The minimum uncertainty implied by this equation corresponds to the variance of

the quantum vacuum uctuations that are always present due to the laws of quantum

mechanics, analogous to the zero-point energy of the quantum harmonic oscillator.

In the next section, we will explore the quadrature operators in more detail and

consider the energy eigenstates of the �eld in more detail.

2.2 Phase-space representation

After the brief introduction of the quadrature operators in the previous section, let

us take some time to introduce some of their key properties. For convenience, we

will consider a single mode with a single polarization such that the operators are

labeledq̂ and p̂.

1. The eigenvalue equations for the operators are given by

q̂jqi = qjqi and p̂ jpi = pjpi ; (2.2.35)
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whereq 2 R and p 2 R. The eigenstates have unbounded and continuous spec-

tra, hence they are not normalizable and therefore nonphysical. Nevertheless,

they are useful as a tool in a variety of applications.

2. They are complete
Z + 1

�1
jqi hqj dq = 1;

Z + 1

�1
jpi hpj dp = 1: (2.2.36)

3. They are related to one-another by Fourier transform

jqi =
1

2
p

�

Z
e� iqp=2 jpi dp ; jpi =

1
2
p

�

Z
eiqp=2 jqi dq : (2.2.37)

In order to establish a general notation for multi-mode light in terms of the

quadrature operators, we can group the operators labeled ^qi and p̂i into a single

operator x̂ such that, for a system ofn modes, we have

x̂ = ( q̂1; p̂1; : : : ; q̂n ; p̂n )T : (2.2.38)

In line with the relationship in Eq. (2.2.35), the eigenequation for the vector operator

is simply

x̂ jx i = xT jx i (2.2.39)

wherex 2 R2N . The commutation relation for the operator becomes

�
x̂ ; x̂T

�
= 2 i 
 ; (2.2.40)

where
 is known as thesymplectic form, de�ned for N modes as


 =
NM

k=1


 1 with 
 1 :=

0

@
0 1

� 1 0

1

A : (2.2.41)

The description of a multimode state is most easily visualised in the phase space

in terms of the Wigner quasi-probability distribution which, for a generalN -mode

state of light, is given by

W(x) =
1

(2� )2N

Z

R2N
exp

�
� ixT 
 �

�
� (� ) d2N � ; (2.2.42)

where � 2 R2N and � (� ) is the Wigner characteristic function, which, for a state ^�

is given by

� (� ) = tr [ �̂D (� )] ; D(� ) := exp
�
i x̂T 
 �

�
; (2.2.43)
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where D(� ) is the Weyl operator and tr(�̂O ) =
P

i h i j �̂O j i i for an operator O

where fj  i ig is an orthonormal basis spanning the Hilbert space of ^� . The Wigner

function is always normalized to unity but holds its status as a quasi-probability

distribution due to the fact it is generally non-positive. As with any statistical

distribution, the Wigner function is characterized by its statistical moments. The

�rst moment is the mean value, which is given by

�x := ĥxi = tr ( x̂ �̂ ) (2.2.44)

while the second is called the covariance matrix (CM)V , whose elementsVij are

de�ned as

Vij :=
1
2

hf�^x i ; �^x j gi ; (2.2.45)

where � x̂ i := x̂ i � h x̂ i i and f Â; B̂g = ÂB̂ + B̂ Â is the anticommutator. The CM of

an N -mode state is a 2N � 2N symmetric and positive de�nite (V > 0) matrix that

satis�es the uncertainty principle V + i 
 � 0.

2.3 Fock representation

The Fock representation (or photon number state representation) is a method of

representing quantum states of light based on the harmonic oscillator model. We

begin with the statesjni which are the energy eigenstates of the quantum harmonic

oscillator with n excited quanta in a mode of angular frequency! that satisfy the

eigenequation

~!
�

âyâ +
1
2

�
jni = ~!

�
q̂2 + p̂2

4
+

1
2

�
jni = En jni =

�
n +

1
2

�
~! jni ; (2.3.46)

where ây and â are the creation and annihilation operators for the mode and ^q

and p̂ are its quadrature operators. We can see immediately that if no quanta are

excited, the zero-point energyof the oscillator is equal to~!= 2. In the quantized

electromagnetic �eld picture, the states are called Fock states, and a Fock statejni

represents a monochromatic �eld containingn photons. As mentioned previously,

the zero-point energy in this picture represents the inherent quantum mechanical

vacuum uctuations that can be observed in detectors with no incoming photons.

The key properties of Fock states can be summarized as follows
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1. The Fock states form an orthonormal basis and thus satisfy the relation

hnjn0i = � nn 0: (2.3.47)

2. Despite forming an in�nite set, they are complete

1X

n=0

jni hnj = 1: (2.3.48)

3. In the Fock representation, the creation and annihilation operators are de�ned

according to the following relations

ây jni =
p

n + 1 jn + 1i (2.3.49)

â jni =
p

n jn � 1i : (2.3.50)

Applying the creation operator to Eq. (2.3.50) yields the following result

âyâ jni = n̂ jni = n jni ; (2.3.51)

where n̂ is called the number operator and, when applied to the statejni , it

yields the number of photonsn.

2.4 Gaussian quantum optics

In this section, we will introduce the Gaussian states of the electromagnetic �eld,

which are a particularly important and useful subset of optical quantum states. The

de�nition of a Gaussian state follows naturally from our discussion of the phase-space

representation. It is simply a state that can be completely characterized by the �rst

and second moments of the Wigner distribution, such that ^� = �̂ ( �x; V ) where �x and

V are the mean value and CM of the state, respectively. The characteristic function

of a Gaussian state takes the following form

� (� ) = exp
�

1
2

� T �

V
 T

�
� � i (
 �x)T �

�
(2.4.52)

such that the Wigner function is, by de�nition, Gaussian

W(x) =
1

(2� )2N
p

detV
exp

�
�

1
2

(x � �x)T V � 1 (x � �x)
�

; (2.4.53)
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where N is the number of modes. Gaussian states are of particular importance in

this thesis and more generally in the �eld of quantum optics and quantum informa-

tion theory as a whole. Their mathematical description is straightforward in terms

of Gaussian functions and their evolution is described with Gaussian unitary trans-

formations. Moreover, many important states relevant to CV QKD are Gaussian,

as we will describe in the following sections.

The most important de�nition relevant to Gaussian states is the symplectic de-

composition. Williamson's theorem states that every positive-de�nite real matrix of

even dimension can be put into diagonal form by a symplectic transformation [31].

Recall that any N -mode CMV is a positive-de�nite real matrix and can, therefore,

be expressed as

V = SV � ST ; V � :=
NM

i =1

� i I ; (2.4.54)

where I is the 2� 2 identity matrix and V � is called the Williamson form of the

matrix V . The set ofN real numbersf � i g is called the symplectic spectrum ofV and

the elements, called the symplectic eigenvalues, satisfy the condition� i � 1. They

can be obtained in identical pairs by taking the absolute values of the eigenvalues

of the matrix i 
V , where 
 is the symplectic form given in Eq. (2.2.41). We will

see that this important property is the key to the simplicity of the mathematical

description of Gaussian states. In the following sections, we will introduce some of

the most common Gaussian states and operations which are made use of frequently

throughout the following chapters.

2.4.1 Vacuum and thermal states

The most fundamental Gaussian state is the vacuum state, which has the lowest

possible energy allowed by quantum mechanics. It is the eigenstate of the annihi-

lation operator with zero eigenvalue (^a j0i = 0) and it contains zero photons. As

a result, its CM is simply the identity matrix. In the phase space, vacuum states

are represented by a circle of unit radius which corresponds to the smallest variance

allowed by the uncertainty principle (cf. Eq. (2.1.34))

Excited states of light are known thermal states. They are parameterized by a
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mean number of photons �n and their CM is given by V = (2�n + 1) I whereI is the

2� 2 identity matrix. In the Fock basis, a thermal state takes the form

p̂th (�n) =
1X

n=0

�nn

(�n + 1) n+1
jni hnj (2.4.55)

and, in phase space representation, it is represented by a circle of radius 2�n + 1.

2.4.2 Coherent states and the displacement operator

The coherent state, represented byj� i is the quantum state that most resembles the

classical behavior of light and is equivalent to a classical monochromatic wave. As

such, it is a minimum uncertainty state that saturates the uncertainty principle. To

describe the mathematics of the coherent state we �rst introduce the displacement

operator, whose action is to displace a state in the phase space. It is de�ned as

D(� ) := exp
�
� ây � � � â

�
; (2.4.56)

where � is the (complex) magnitude of the displacement. It can be shown that

application of the displacement operator on the creation and annihilation operators

shifts them by an amount� as

D y(� )âD(� ) = â + � (2.4.57)

D y(� )âyD(� ) = ây + � � : (2.4.58)

The coherent state is obtained simply by operating on a vacuum state with the

displacement operator such thatj� i = D(� ) j0i . It is straightforward to show that

a coherent statej� i is an eigenvector of the annihilation operator ^a j� i = � j� i and

it is readily expressed in the Fock basis as

j� i = exp
�

�
1
2

j� j2
� 1X

n=0

� n

p
n!

jni : (2.4.59)

We can see that the average number of photons, �n = h� jn̂j� i = j� j2 and we can

write the probability of observing n photons when performing a photon-number

measurement on a coherent state,p(n), as

p(n) = j hnj� i j 2 =
�nn

n!
e� �n ; (2.4.60)

which is a Poisson distribution.
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2.4.3 Squeezed states of light

Squeezed states are a particular group of states of light that exhibit quadrature

uncertainty less than that associated with the vacuum uctuations. The term

squeezed refers to the fact that the uncertainty circle of the state in the phase-

space is `squeezed' in a particular direction. In accordance with the uncertainty

principle, the uncertainty in the conjugate direction is simultaneously increased, or

`anti-squeezed' such that the area of uncertainty remains constant. In this section,

we will outline the Gaussian operations which generate squeezed states for either

one or two modes. This discussion will lead us to the important notion of two-mode

squeezed vacuum states which exhibit Einstein-Podolski-Rosen (EPR) correlations

and are the main source of entanglement in quantum optics.

Single-mode squeezing

The process of generating squeezed states is complex, requiring non-linear optical

methods. For single-mode squeezing, the underlying method is degenerate optical

parametric ampli�cation (OPA), in which a second-order non-linear crystal is placed

between two or more mirrors in order to form an optical resonator. The resonator

is pumped with bright laser light of frequency 2! and combined with a signal mode

of frequency! . The non-linearity of the crystal causes the electric �eld of the signal

to be either ampli�ed or deampli�ed depending on its phase relative to the pump

laser, resulting in the mode being squeezed in the phase or amplitude quadrature,

respectively. The Gaussian single-mode squeezing operator describing this process

is de�ned as

S(r ) := exp
hr

2

�
â2 � ây2

� i
; (2.4.61)

wherer is called the squeezing parameter. If the signal mode is simply the vacuum,

we obtain a squeezed vacuum state, which, in the Fock basis, can be written as

j0; r i = S(r ) j0i =
1

p
coshr

1X

n=0

p
(2n)!

2nn!
tanh r n j2ni : (2.4.62)

21



Chapter 2. Preliminaries

Two-mode squeezing and continuous-variable entanglement

A two-mode squeezed state is one that exhibits uncertainty below that of the vacuum

uctuations in a linear combination of the quadratures of the two �elds of a two-mode

system. The usual process for generating two-mode squeezed light is non-degenerate

OPA in which a non-linear crystal is pumped with laser light as well as light from

signal and idler modes. The interaction is described by the Gaussian two-mode

squeezing operator, de�ned as

S2(r ) := exp
hr

2

�
âb̂� âyb̂y

�i
; (2.4.63)

where â and b̂ are the annihilation operators of the two modes andr quanti�es

the two-mode squeezing. If we apply the two-mode squeezing operator to a pair of

vacuum modes, we obtain atwo-mode squeezed vacuum (TMSV) state. In the Fock

basis, this process is represented as

jr i TMSV = S2(r ) ( j0i a 
 j 0i b) (2.4.64)

=
p

1 � � 2
1X

n=0

(� � )n jni a jni b ; (2.4.65)

where � = tanh r . The TMSV state is particularly important as it exhibits EPR

correlations between the quadratures. For this reason, it is a form of continuous-

variable entanglement. In the limit r ! 1 , we have perfect correlation between the

quadratures, and the state is analogous that of two maximally entangled qubitsA

and B, i.e. one of the following Bell states

j� � i =
1

p
2

(j0i A 
 j 0i B � j 1i A 
 j 1i B ) (2.4.66)

j	 � i =
1

p
2

(j0i A 
 j 1i B � j 1i A 
 j 0i B ) : (2.4.67)

In the quadrature picture, the CM of a TMSV state,V TMSV is parameterised by

the variance� = cosh 2r . It is given by

V TMSV (� ) =

0

@
� I

p
� 2 � 1Z

p
� 2 � 1Z � I

1

A ; (2.4.68)

where I is the 2� 2 identity matrix and Z := diag(1; � 1). We will make use of this

formalism frequently throughout the remainder of this thesis as it is of particular

importance in CV QKD.
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2.4.4 The beam splitter

The beam splitter is one of the most fundamental interactions in quantum optics

which is useful in its own right as well as a simple model for several more complex

optical devices. A beam splitter is simply a device in which two incoming beams

interfere to produce two outgoing beams. The beam splitter interaction is described

by a Gaussian unitary operation de�ned as

B(� ) = exp
h
�

�
âyb̂ � âb̂y

�i
; (2.4.69)

whereâ and b̂are the annihilation operators of the incoming beams. The interaction

is characterised by transmissivity of the beam splitter,� = cos2 � . The operation

transforms the quadrature operatorŝr as

x̂ ! B (� )x̂ ; B (� ) :=

0

@
p

� I
p

1 � � I

�
p

1 � � I
p

� I

1

A ; (2.4.70)

such that the mean value and CM transform as�x ! B (� ) �x and V ! B(� )VB (� )T .

This transformation can easily be generalized to ann-mode system of which two

modes interact by adding identity blocks in the relevant locations.

2.4.5 Measuring Gaussian states

A measurement process is an essential tool in any quantum protocol. It allows

us to extract usable information from any quantum system. Fortunately, in the

case of continuous-variable states of light, the measurement process is relatively

straightforward and is performed almost exclusively with homodyne detectors. For

Gaussian states, in particular, the description of not only the measurement outcome

but the post-measurement quantum state has a particularly soluble mathematical

form based on the mean value and CM of the signal state. This section will serve

as a complete introduction to this mathematical framework that is of the utmost

importance in a full understanding of continuous-variable quantum mechanics.

Homodyne detection

The homodyne detector apparatus usually consists of a balanced beam splitter and

two photodiodes. At the beam splitter, a signal mode,S, is mixed with a local

23



Chapter 2. Preliminaries

oscillator of equivalent frequency. The amplitude of the local oscillator must be

much larger than that of the signal, so that we may make the assumption that it

behaves classically and its intensity can, therefore, be accurately obtained without

disrupting the system.

Let us consider a generaln-mode Gaussian state with CMV that can be written

as

V AB =

0

@
A C

CT B

1

A ; (2.4.71)

whereA is the CM of the (n � 1)-mode subsystemA, B is the CM of the modeB to

be measured andC is the correlation between the subsystems. The corresponding

mean value is�xAB = ( �xA ; �xB )T where �xA(B ) is the mean value of subsystem A(B).

Let us now assume that modeB is measured with homodyne detection with outcome

� . It can be shown that the post-measurement CM of the system becomes [18]

V Aj� = A � C (�B� )� 1 CT ; (2.4.72)

where, forq-quadrature detection,� = diag(1; 0) and, for p-quadrature detection,

� = diag(0; 1). As �B� is singular, (�B� )� 1 is a pseudoinverse (Moor-Penrose

inverse) which, for square diagonal matrices such as this, is obtained by taking the

reciprocal of each non-zero element1. The pseudoinverse is applicable in this case as

the measurement has no support in the quadrature conjugate to that which is being

measured.

The mean value of the larger system is also a�ected by the measurement process,

after which it takes the following form

�xAj� = �xA � C (�B� )� 1 dT (2.4.73)

where d = �xB � (�; 0)T and d = �xB � (0; � )T for q- and p-quadrature detection,

respectively. Finally, the probability of obtaining outcome� upon measurement of

1The pseudoinverse of a general matrixM can be obtained by performing singular value decom-

position M = U� V � such that M � 1 = V � � 1U � . The pseudoinverse of the rectangular diagonal

matrix � is obtained by taking the reciprocal of each non-zero diagonal element then taking the

transpose of the matrix.
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a given quadrature is obtained by integrating the Wigner functionW(q; p) over the

conjugate quadrature

p(� ) =
Z + 1

�1
W(�; p ) dp ; or p(� ) =

Z + 1

�1
W(q; � ) dq : (2.4.74)

The result can be conveniently expressed in the following form

p(� ) =
1

p
2�

p
det(�B� )

exp
�
�

1
2

dT (�B� )� 1d
�

; (2.4.75)

where � and d are de�ned above. While the e�ciencies of modern-day homodyne

detectors are particularly high, the detection cannot be implemented with ideal

precision. Detector ine�ciencies are usually modelled by a beam splitter with a

transmissivity that coincides with the e�ciency of the detector, which mixes an

incoming signal with the vacuum. The transmitted mode is then measured with an

ideal detector described by the above formalism.

Heterodyne detection

Homodyne detection can be used to measure a single quadrature of the electromag-

netic �eld, but how can we measure both quadratures of the mode at the same time?

The answer to this question is provided by a technique called heterodyne detection.

The detection scheme can be seen as follows. The signal mode �rst passes through a

beam splitter where it is mixed with the vacuum. This process e�ectively duplicates

the mode, with the caveat that an extra unit of noise is injected. The outputs from

each port of the beam splitter are subsequently measured in independent homodyne

detectors.

The mathematical description of the post-measurement CM and mean value can

be broached in a similar manner to that of homodyne detection and our starting

point again is Eq. (2.4.71). The post-measurement CM of systemA after modeB

is measured with heterodyne detection with outcome� has been shown to be [32]

V Aj� = A � C (B + I )� 1 CT ; (2.4.76)

where the addition of the identity accounts for the additional unit of vacuum noise

introduced and is thus speci�c to our choice of normalization convention. Note that
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the post-measurement CM is again independent of the measurement outcome, which

only appears in the mean value of the remaining system that is given by

�xAj� = �xA � C (B + I )� 1 d; (2.4.77)

where �xA is the mean value of the (n � 1)-mode systemA, d = �xB � � and

� = ( � q; � p)T is the measurement outcome with� q and � p being the individual

measurement outcomes of theq- and p-quadratures, respectively. Finally, the prob-

ability associated with outcome� is given by

p(� ) =
exp

�
� 1

2dT (B + I )� 1 d
�

2�
p

det (B + I )
: (2.4.78)

2.5 Measures of information for classical and quan-

tum ensembles

The inherently probabilistic nature of quantum mechanics necessitates a strong un-

derstanding of the fundamentals of probability theory to its readers. We will use

this section to introduce important de�nitions from information theory that arise

frequently in our forthcoming analysis of QKD protocols and quantum networks.

We will then introduce measures of analyzing quantum states and how they pertain

to our study of quantum information theory.

2.5.1 Shannon entropy

Perhaps the most important quantity from information theory that we must intro-

duce is the entropy of a random variable, which quanti�es the level of uncertainty

in its possible outcomes. The concept of entropy was introduced by Claude Shan-

non [33] and is often referred to as the Shannon entropy, particularly when it is used

in the context of binary information.

De�nition 2.5.1 (Entropy) Let X a random variable with corresponding alphabet

X and probability mass functionp(x). The entropy of X is given by

H (X ) = �
X

x2X

p(x) log p(x): (2.5.79)

26



2.5. Measures of information for classical and quantum ensembles

The base of the logarithm in Eq. (2.5.79) should be selected depending on the

particular problem being considered, for example, base-2 for bits and base-e for nats.

Let us consider a binary random variableX with probability p = Pf X = 0g 2 [0; 1].

Using Eq. (2.5.79) it is straightforward to see that the entropy reduces to

H (X ) = H2(X ) = � plogp � (1 � p) log(1 � p); (2.5.80)

whereH2(�) is known as the binary entropy function. This function will arise often

throughout the following chapters.

Up to this point, we have only considered discrete variables in our discussion.

Let us now introduce the di�erential entropy which allows us to compute the entropy

of a continuous random variable.

De�nition 2.5.2 (Di�erential entropy) Let X be a continuous random variable

with probability density functionp(x). The di�erential entropy is de�ned as

H (X ) := �
Z + 1

�1
p(x) log p(x) dx : (2.5.81)

The modi�cation is rather straightforward but worthy of inclusion in this discussion

as a demonstration of the process required to compute the statistical quantities

of continuous variables. The next quantity is somewhat less trivial but of great

importance in the upcoming chapters.

De�nition 2.5.3 (Conditional entropy) Let X and Y be random variables with

probability mass functionsp(x) and p(y). Let us also assume thatp(xjy) is a prob-

ability mass function which is discrete for everyx. The conditional entropy of the

distribution X given Y is de�ned as

H (X jY) =
X

y2Y

p(y)H (X jY = y); (2.5.82)

whereH (X jY = y) is the entropy of random variableX conditioned on the outcome

of random variableY beingy, given by

H (X jY = y) = �
X

x2X

p(xjy) log p(xjy): (2.5.83)
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For the remainder of the thesis we employ the shorthand notationHX jy � H (X jY =

y) for brevity. The conditional entropy is a measure of the uncertainty on the vari-

able X given the value of the variableY. Clearly knowledge ofY cannot increase

our uncertainty about X , hence we may write the inequalityH (X jY) � H (X ). The

expression for the di�erential conditional entropy is readily obtained from this de�-

nition by replacing the probability mass functions with probability density functions

and replacing the sums with integrals.

2.5.2 Mutual information

One statistical quantity that is encountered frequently in the study of quantum

information theory is the mutual information between two random variables.

De�nition 2.5.4 (Mutual information) For two random variablesX andY with

joint probability mass functionp(x; y), marginal distributions p(x) and p(y), and al-

phabetsX and Y, respectively, the mutual information is given by

I (X : Y) =
X

x2X

X

y2Y

p(x; y) log
p(x; y)

p(x)p(y)
(2.5.84)

= H (X ) � H (X jY) (2.5.85)

= H (Y) � H (Y jX ): (2.5.86)

In short, the mutual information between two random variables is the amount of

information attainable about one variable if the other is known. It is of particular

importance in the study of QKD when attempting to estimate the information that

the parties share as well as that which an eavesdropper may attain.

2.5.3 Von Neumann entropy

The von Neumann entropy (VNE) is the quantum generalization of the classical

entropy which is derived by extending the classical de�nition from probability dis-

tributions to density matrices.

De�nition 2.5.5 (Von Neumann entropy) For a density matrix �̂ X , the von
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Neumann entropy is de�ned as

S(X ) := � tr( �̂ X log �̂ X ) = �
X

i

� i log� i (2.5.87)

wheref � i g are the eigenvalues of the statê� X .

The VNE of a systemX conditioned on the random variableY with alphabet Y

and probability mass functionp(y) is given in analogy with the conditional Shannon

entropy by

S(X jY) =
X

y2Y

p(y)S(�̂ X jy) (2.5.88)

where ^� X jy is the density matrix representing the variableX conditioned on the

value y of the random variableY. If the density matrix in question is that of an

N -mode Gaussian state, ^� = �̂ ( �x; V ), the VNE can be obtained straightforwardly

in terms of the symplectic eigenvaluesf � i g of the CM V by

S(�̂ ) =
NX

i =1

h(� i ) (2.5.89)

where

h(� ) :=
� + 1

2
log

� + 1
2

�
� � 1

2
log

� � 1
2

: (2.5.90)

2.5.4 Quantum relative entropy

Another important entropic quantity in quantum mechanics is the quantum relative

entropy, which measures the distinguishability between two quantum states ^� and �̂

S(�̂ jj �̂ ) := tr [ �̂ (log �̂ � log �̂ )] : (2.5.91)

By taking the in�mum of the quantum relative entropy over all states ^� in some

convex set, we obtain the relative entropy distance which measures the distance

between ^� and the set of states. If this convex set is the set of separable statesS ,

the relative entropy distance becomes the relative entropy of entanglement (REE)

ER [34],

ER(�̂ ) = inf
�̂ 2 S

S(�̂ jj �̂ ): (2.5.92)
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2.5.5 The Holevo bound

The last quantity that we will introduce is the Holevo bound (or Holevo information)

� which provides an upper bound on the maximum information attainable with any

measurement.

De�nition 2.5.6 (The Holevo Bound) Let us suppose that partyA prepares states

�̂ x according to the random variableX with alphabetX and probability mass function

p(x). Party A sends states to partyB , who observes the statê� =
P

x2X p(x)�̂ x and

performs measurements with outcomes forming the random variableY. The mutual

information betweenX and Y is bounded by the Holevo information� such that

I (X : Y) � �; � := S(�̂ ) �
X

x2X

p(x)S(�̂ x ): (2.5.93)

The �rst term in the expression for � is the total entropy of the system of party

B and the second term is the conditional entropy, i.e. the entropy of the system

given knowledge of the classical information. The di�erence, and thus the Holevo

bound, is a measure of the inherent quantum information within the system. The

bound appears in a variety of tasks within quantum information theory, particu-

larly in QKD, where its importance cannot be overstated as it allows the security

of a protocol to be determined under the strong assumption that an eavesdropper

is performing the best possible measurement on their data. This allows us to con-

sider some particularly strong eavesdropping regimes which may even exploit future

quantum technologies.

2.6 Capacities of quantum channels and networks

The �nal tool we must add to our collection in order for a full understanding of

the upcoming chapters takes us back to the foundational level of quantum infor-

mation theory. We will examine the current state of the art of establishing the

capacities of quantum channels and networks. Recently, substantial progress has

been made in this �eld using a new channel simulation technique dubbed `telepor-

tation stretching' that we will introduce later. These ideas were �rst introduced by
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Pirandola et al. [20] and used to establish the Pirandola-Laurenza-Ottaviani-Banchi

(PLOB) bound which provides the fundamental limit of repeaterless communica-

tions. Teleportation stretching is the foundational principle on which we will seek

to establish bounds for quantum networking in the �nal chapter. We will, therefore,

introduce the mathematical framework starting �rst with single quantum channels

and progressing later to quantum networks.

2.6.1 A general adaptive protocol for quantum communica-

tion and general bounds

Before we proceed to compute bounds on the capacities of various quantum channels,

we must outline a general communication protocol between two parties Alice and

Bob separated by a quantum channelE. We will consider the most general strategy

which may be assisted by adaptive local operations and classical communications

(LOCCs), which may be applied to Alice and Bob's local registers of quantum states,

which we labela and b, respectively. Such a protocol can be summarized in the

following steps [20]:

1. Alice and Bob prepare an initial state ^� 0
ab by applying a LOCC � 0 to their

individual registers.

2. Alice sends a systema1 from her register to Bob through the channel. Bob

adds the received systemb1 to his register, b1b ! b and a further adaptive

LOCC � 1 is applied by the parties yielding the output state ^� 1
ab.

3. The process in step 2 is repeated forn uses of the channel, giving a series of

LOCCs P = f � 0; : : : ; � ng which characterizes the protocol. The �nal state of

the combined system is, therefore, ^� n
ab.

The rate of the protocol isRn if the output state �̂ n
ab after n transmissions is

epsilon-close to a target statê� n in trace norm, i.e. jj �̂ n
ab � �̂ n jj � � , with nRn bits.

The capacity of the quantum channel,C(E) is de�ned as the optimization over the

set of LOCCs in the asymptotic limit of channel uses,

C(E) := sup
P

lim
n

Rn (2.6.94)
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where C is a generic symbol for the two-way assisted capacity which can be, for

example, the two-way entanglement-distribution capacityD2, the two-way quantum

capacity Q2, the secret key capacityK or the two-way private capacity P2 [35,36].

We can now establish a weak bound on the capacity using the REE introduced

in Sec. 2.5.4. Following the de�nitions of the REE and the relative entropy, the

REE of a quantum channel is de�ned by [20]

ER(E) := sup
�̂

ER [I 
 E (�̂ )] � ER(�̂ E); (2.6.95)

where ^� E is called theChoi matrix of the channel, which is de�ned by

�̂ E := ( I 
 E )
�

�̂ AB

�
(2.6.96)

where �̂ AB is a maximally entangled (EPR) state with two sitesA and B [8]. The

Choi matrix is obtained by propagating siteB of this state through the channel,

leaving siteA unchanged. These results lead to the general weak converse theorem

[20]

Theorem 2.6.1 (Weak converse theorem) At any dimension, �nite or in�nite,

the generic two-way capacity of a quantum channelE is upper-bounded by the REE

bound

C(E) � E ?
R(E) := sup

P
lim

n

ER(�̂ n
ab)

n
: (2.6.97)

We will see in the upcoming sections that the weak converse theorem allows us to

bound the capacity of a channel using the REE.

2.6.2 Channel simulation and teleportation covariance

Channel simulation is a well-known area of research in the �eld of quantum com-

munication. It allows complex channels to be modeled with a relatively simple

protocol, which has led to many important results. Until recently, the main idea

behind channel simulation was teleportation simulation, which is only applicable to

certain quantum channels. The �rst reference to channel simulation was by Bennett

et al. [37] for the teleportation simulation of Pauli channels. Since then there has

been much attention on the �eld yielding important and much more general results.
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2.6. Capacities of quantum channels and networks

Figure 2.1: Schematic of the simulation of a quantum channel from teleportation

simulation to simulation with a general LOCC. (a): Teleportation of Alice's system

a in state �̂ with resource state ^� between two systemsA and B. Bell detection

is performed on the systemsa and A with outcome k that is communicated to

Bob who performs a corrective unitaryV � 1
k undoing the teleportation unitary Uk

to recover the original state. On average, performing this teleportation procedure is

equivalent to applying a teleportation channelE from a to b. (b): The teleportation

protocol can be replaced by an arbitrary LOCCT . Bell detection is replaced by an

arbitrary quantum operation A and classical informationk is communicated to Bob

who applies another arbitrary quantum operationB. This protocol is equivalent to

the simulation of a channelE as E(�̂ ) = T (�̂ 
 �̂ ) if the LOCC is averaged over

all k so that it is trace-preserving. (c): If a channel can be simulated by a trace-

preserving LOCCT applied to its Choi matrix �̂ E := ( I 
 E )( �̂), it is said to be

`Choi stretchable'.

The recent work by Pirandola et al. [20] presented a radically new channel simula-

tion formulation for completely arbitrary quantum channels. Moreover, the method

is extended to the continuous- as well as discrete-variable formulation. It is this

work that we will introduce below that will form the foundation of our analysis of

quantum networks.

LOCC simulation of quantum channels

We will begin by considering the teleportation simulation of a channel as shown

in Fig. 2.1(a). Alice and Bob are connected by a channelE which Alice uses to

communicate her state ^� representing her systema to Bob who receivesE(�̂ ). This
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scenario can be simulated by considering a shared state ^� between Alice and Bob.

Bell detection is performed on Alice's systema and her part of the shared state,

which we labelA, with outcome k, which is communicated to Bob. Bob applies a

corrective unitary V � 1
k to his systemB with outcome b. This teleportation protocol

is equivalent to the action of certain quantum channels from Alice to Bob, thus it

may be considered a simulation of such channels.

Pirandola et al. showed that the teleportation LOCC in Fig. 2.1(a) can be re-

placed with an arbitrary LOCC T and resource state ^� as shown in Fig. 2.1(b). A

channel can be simulated in this way if it can be written as

E(�̂ ) = T (�̂ 
 �̂ ): (2.6.98)

If so, we say that the channel is `� -stretchable'. In this case, the Bell detection LO

is replaced by an arbitrary quantum operationAk and Bob applies the corrective

operation Bk after receiving classical informationk. A case of particular interest,

especially in our work, is that in which the channel can be simulated with a trace-

preserving LOCCT applied to its Choi matrix �̂ E de�ned in Eq. (2.6.96) with the

shared resource being an EPR statê� as shown in Fig. 2.1(c). In this case, the

channel is said to be `Choi stretchable'.

Choi-stretchable channels can be identi�ed by a property known as teleportation

covariance. Ad-dimensional quantum channel is teleportation covariant if, for any

U 2 U, where the setU is that which contains the random unitaries generated by

Bell detection,

E
�
U�̂U y

�
= VE(�̂ )V y (2.6.99)

whereV is another arbitrary unitary. Teleportation covariant channels are of partic-

ular importance as they can be teleportation-simulated with the associated correc-

tive teleportation unitary taken outside of the channel and applied later as an-

other corrective unitary. The starting point for understanding this property is

the schematic for the simulation of a teleportation covariant channel outlined in

Fig. 2.1(c). Replacing the LOCCT with a teleportation LOCC, Bell detection on

Alice's systemsa and A creates the state ^� A 0 = Uk �̂ aUy
k whereUk is a random tele-

portation unitary. The state of Bob's systemB is given by E(�̂ A 0) = E(Uk �̂ aUy
k ) =
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2.6. Capacities of quantum channels and networks

VkE(�̂ a)V y
k where the last equality is obtained by teleportation covariance. Upon

receiving the outcomek of the Bell detection, Bob simply appliesV � 1
k to obtain

�̂ b = V � 1
k �̂ B (V � 1

k )y. This process describes the simulation ofE by a teleportation

LOCC and Choi matrix resource state ^� E [20]. Some examples of teleportation

covariant channels include the erasure, dephasing, and depolarizing channels. One

example of a well-known channel that is not teleportation covariant is the amplitude

damping channel.

2.6.3 Stretching of adaptive protocols and bounding capac-

ities

We will now outline the key process which allows us to use channel simulation

methods to simplify the general quantum communication protocol and easily �nd

upper bounds for quantum channel capacities, following the process outlined in

Ref. [20]. Consider thei th transmission through a channelE, such that Alice and

Bob share the state ^� i � 1
ab prior to and �̂ i

ab after communication. Consider a simulation

with a LOCC � i . We know that the output state can be written as

�̂ i
ab = � i (�̂ i � 1

ab 
 �̂ ): (2.6.100)

Iterating the formula n times gives

�̂ n
ab = �

�
�̂ 0

ab 
 �̂ 
 n
�

(2.6.101)

for � = � n � � � � � � 1. We can include the process of preparing the initial state

�̂ 0
ab in the LOCC � and average over all local measurements in � so that it becomes

the trace-preserving LOCC�� (see Ref. [20] for a more in-depth discussion of this

process). The state can then be written as

�̂ n
ab = ��( �̂ 
 n ): (2.6.102)

If the channel is Choi-stretchable, the resource state is the Choi matrix such that

�̂ n
ab = ��( �̂ 
 n

E ). An important property of the REE is that it is monotonic under

trace-preserving LOCC. This fact allows us to write

ER(�̂ n
ab ) � ER(�̂ 
 n ); (2.6.103)

35



Chapter 2. Preliminaries

such that the LOCC �� is removed. We can now insert the right-hand side of

this inequality into the weak converse theorem in Eq. (2.6.97) which allows us to

write E ?
R � ER(�̂ ) and, �nally, we can write what is known as the one-shot REE

bound [20]: if we stretch an arbitrary quantum channelE into a resource state�̂ ,

its quantum capacity can be bounded by the REE of the resource state,

C(E) � ER(�̂ ): (2.6.104)

This equation represents a signi�cantly reduced calculation of the upper bound on

the capacity of a quantum channel. Moreover, ifE is Choi-stretchable, the upper

bound is obtained simply by the REE of the channel

C(E) � ER(�̂ E) = ER(E): (2.6.105)

This key result allows us to provide upper bounds on a variety of quantum channels

simply through straightforward calculation of their REE.

2.6.4 Capacities and rates of quantum networks

In this section, we will extend the above formalism of the capacities of single quan-

tum channels to the most general case of quantum networks. Our goal is to establish

the quantum capacity of arbitrary network structures in which a set of senders (or

Alices) f A i g communicate with a set of receivers (or Bobs)f B j g via a set of interme-

diate nodes that may transmit quantum information in a single direction. Ref. [20]

was the �rst to begin this generalization by considering point-to-point protocols over

a quantum channel, while Ref. [38] extended this study to protocols over repeater

chains and, more generally, quantum networks. Finally, Ref. [39] further extended

the study to quantum communication networks with multiple senders and receivers.

In order to describe arbitrary network con�gurations in a mathematically suc-

cinct way, we must introduce a framework based on graph theory. We will describe

a quantum network N as an undirected graph with nodes (or points)P and edges

E. Two points, x and y are connected by an edge (x; y) 2 E if and only if there

is a corresponding quantum channelExy between the two. Each pointp has a local

register of quantum systems over which LOs are performed and optimized on the

36



2.6. Capacities of quantum channels and networks

basis of two-way CCs with the other nodes. Given a set of sendersf A i g and a set

of receiversf B j g, we de�ne a cut C as a bipartition (A ; B ) of the points P such

that f A i g � A and f B j g � B which is denoted asC : f A i gjf B j g. Then, a cut-set

~C corresponds to the set of edges (x; y) which are disconnected by the cutC, i.e.,

such that x 2 A and y 2 B .

The most straightforward quantum network communication con�guration where

we begin our analysis is one that consists of a single senderA and a single receiver

B via a single route. For ease of understanding, we will restrict our analysis to

networks constructed with teleportation-covariant channels. In this case we must

de�ne the single-edge ow of REEfor a cut C : AjB with cutset ~C consisting of

teleportation-covariant channels and Choi matrix resource state ^� Exy for edgeExy as

ER(C) := max
(x;y )2 ~C

ER(�̂ Exy ): (2.6.106)

Again in analogy with the previous techniques applied to quantum channels, the

two-way assisted quantum capacity of the network is bounded from above by

Q2(N ) � min
C:A jB

ER(C) (2.6.107)

where the minimization is over all network cuts. We can extend these ideas to

a slightly more complicated communication regime under which the parties may

make use of all of the edges of the network exactly once by simultaneous routing

from Alice to Bob. This type of strategy is known as a ooding protocol. In this

case, the quantity of interest is themulti-edge ow of REE through cut C : AjB

de�ned by

E m
R (C) =

X

(x;y )2 ~C

ER(�̂ Exy ) (2.6.108)

which leads to the following upper bound on the multipath (two-way assisted) quan-

tum capacity

Q2(N ) � min
C:A jB

E m
R (C): (2.6.109)

A natural next step is to consider a network of an ensemble of Alicesf A i g com-

municating with an ensemble of Bobsf B i g. However, the mathematical complexity

of this scenario can be alleviated by grouping the ensemble of Alices into a sin-

gle `super-Alice' and the ensemble of Bobs into a `super-Bob'. While the physical
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structure of the network is the same, the communication problem with respect to

these `super-users' reduces to that examined above. CutsC : AjB must now be

replaced by cuts splitting the super-users, i.e. the two ensembles,C : f A i gjf B j g.

This treatment of the network leads to an upper bound because the super-users may,

in principle, apply non-local quantum operations among their nodes and, therefore,

better optimize the transmission rate with respect to the case of ensembles of sep-

arate users. As a result, the optimal rate at which qubits can be transmitted from

the senders to the receivers is bounded by

B(N ) := min
C:f A i gjf B j g

X

(x;y )2 ~C

ER(�̂ Exy ): (2.6.110)

It is also important to note that this is a general bound for multiple multicasts

which applies to both the case of single- and multi-message multicasts from senders

to receivers. In fact, since we bound the total number of physical qubits that super

Alice transmits to super Bob, it does not matter if these qubits are independent (i.e.,

in a tensor product of di�erent states) or dependent (e.g., in a global Greenberger-

Horne-Zeilinger (GHZ) state [40]) when we unravel super Bob back into an ensemble

of Bobs.
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Foundations of continuous-variable

quantum key distribution

The core idea of quantum key distribution is elegant and comprehensible, however,

its mathematical and experimental foundations are complex with many important

subtleties. It is for this reason that we have chosen to dedicate a chapter to the

introduction of the fundamental ideas of the theory particularly in regard to the

continuous-variable regime. We will start with an introduction to the motivation

for QKD and proceed to introduce the �eld of CV QKD. We will then introduce

the notion of the secret key rate and di�erent attack strategies an eavesdropper

may employ, and subsequently, introduce a one-way CV-QKD protocol exploiting

modulated coherent states. This introduction is followed by a brief overview of the

classical strategies of privacy ampli�cation and information reconciliation amongst

others that play a vital role in guaranteeing the security of the regime.

3.1 The motivation for quantum key distribution

A somewhat startling fact about the most widely-used cryptographic protocols that

almost all of us interact with daily is that they are far from provably secure. Worse

still, the exponential growth in computational power adds a further layer of un-

certainty since the security of these protocols is predicated on the computational

di�culty associated with particular mathematical problems such as prime factoring
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in the case of the well-known RSA protocol. These protocols fall into the category

of public-key cryptography. In brief, a public key protocol consists of a legitimate

party, Alice, generating a secret key and a related public key that is broadcast. A

second legitimate party, Bob, can obtain the public key and encrypts a message

before sending the new key back to Alice who can decrypt the message with her

secret key. The security of the protocol is entirely based on the algorithm used by

Bob to perform the encryption that a malicious party may, in principle, successfully

undo, obtaining Bob's message.

Private-key cryptography is a lesser-used alternative method of cryptography

with some interesting properties. One of the assumptions of any private key pro-

tocol (and simultaneously one of its biggest problems) is that the legitimate com-

municating parties Alice and Bob must share a secret key. If this is the case, the

parties can apply theone-time padalgorithm which simply requires Alice to add the

secret key to her message and send the result to Bob who then subtracts the secret

key to recover the original message. The best feature of private-key cryptography

is that, if the main assumption is granted, the regime is provably secure against

any possible attack an eavesdropper can employ. The di�culty then is in �nding a

provably secure key distribution system which, when combined with the one-time

pad, will guarantee the security of the entire protocol.

Quantum cryptography aims to address the problem of securely distributing a

key for private-key cryptography by providing a provably-secure key distribution

protocol that is guaranteed by the laws of physics. The inherent uncertainty of

quantum mechanics is the framework on which this possibility emerges. The funda-

mental di�culty that an eavesdropper faces when attempting to replicate a secret

key encoded in quantum states is the no-cloning theorem, which states that it is

impossible to duplicate an arbitrary quantum state. Moreover, an attempt to inter-

fere with an incoming state, in an attempt to duplicate it or otherwise, can cause

a disturbance in the signal that may be detectable by the legitimate parties. An

eavesdropper must, therefore, only employ a relatively passive attack on the com-

munication channel in order to ensure their presence is undetected.

The seminal QKD protocol was introduced by Bennett and Brassard in 1984 and
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coined the BB84 [17] protocol. In this protocol, the information was encoded in the

polarisation of photons communicated between the parties in optical �ber. A series

of subsequent protocols aimed to improve the performance of the BB84 protocol,

featuring a variety of encoding strategies. However, the early QKD protocols all

shared one feature: their encoding exploited physical systems with discrete degrees

of freedom. Such schemes are now referred to asdiscrete-variable(DV) QKD. Several

years after the inception of QKD, the �rst protocols exploiting continuous degrees

of freedom of the quadrature amplitudes of the electromagnetic �eld were developed

and the �eld of CV QKD was born.

3.2 A brief history of continuous-variable quan-

tum key distribution

In 1999, T. Ralph published the �rst QKD protocol which exploited the non-classical

behavior of continuous-variable squeezed states of light [41]. This protocol repre-

sented a stark deviation from the direction of the �eld of QKD at the time and it

would later lead to the inception of the new �eld of CV QKD. Several subsequent

protocols including those by Hillery [42] and Reid [43] helped secure the foundations

of CV QKD by exploiting squeezed states of light in di�erent ways to guarantee se-

curity. Two years after the seminal CV-QKD protocol was introduced, it was found

that security could also be achieved with coherent states, bypassing the technical

di�culty of generating squeezed states [44{48].

The �eld of CV QKD has drawn much attention mainly due to several appeal-

ing advantages it boasts over its DV counterpart: states can be generated and

manipulated relatively easily with linear optics and feed-forward techniques, and

measurements can be performed with readily-available, inexpensive, and highly ef-

�cient homodyne detectors as opposed to single-photon detectors. Furthermore,

homodyne detectors o�er particularly high bit rates, providing the regime a sig-

ni�cant advantage for large-scale communication applications. The combination of

these properties means that CV-QKD protocols can be implemented directly into

existing network infrastructure where �ber optic cables and homodyne detectors are
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commonplace.

At this point, the reader should be armed with the knowledge of the key ideas

of CV quantum mechanics introduced in the previous chapter. The remainder of

this chapter will serve as an introduction to the ideas surrounding CV QKD, in

order to ensure a solid understanding of the fundamentals before tackling more

complex protocols in the following chapters. The discussion begins with the notion

of the secret key rate which is followed by an overview of several ways in which

an eavesdropper may attempt to interfere with a CV-QKD protocol. Next, an

introduction is given to a fundamental CV-QKD protocol that exploits modulated

coherent states, and, �nally, the chapter concludes with a brief introduction to

classical post-processing techniques.

3.3 Secret key rate

The performance of any QKD protocol is characterized by its secret key rate,R.

The secret key rate is the number of secret bits that can be communicated per use

of the protocol. In the asymptotic limit of the number of transmitted signals, the

Devetak-Winter formula [49] provides an incredibly straightforward expression for

the secret key rate,

R = I (A : B) � � (3.3.1)

where I (A : B) is the mutual information between the legitimate partiesA and

B, conventionally labeled Alice and Bob, respectively, and� is the Holevo bound

quantifying the maximum accessible information of an eavesdropper, whom we will

name Eve. Eq. (3.3.1) is the most general form of the secret key rate and its form in

a particular protocol is written in terms of Alice's encoding, Bob's best estimate of

Alice's encoding and Eve's attack strategy, as we shall see later in the chapter. In a

realistic setting, this rate cannot be achieved as the mutual information,I (A : B)

should be multiplied by the parameter� 2 [0; 1] which represents the reconciliation

e�ciency of the classical post-processing step that we will discuss later. Typical

values of� � 0:95 are commonplace in modern CV QKD error-correcting codes [50].

Due to the Holevo bound� being an upper bound on Eve's accessible informa-
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tion, the rate in Eq. (3.3.1) is a lower bound on that which may be achieved if a

suboptimal attack strategy is employed. This property allows us to a�ord Eve the

most generous quantum resources, enabling strong claims on the security of any

particular protocol. Despite this, Eq. (3.3.1) only provides an asymptotic secret-key

rate in the limit of many uses of a protocol, it alone does not guarantee the security

in a realistic setting, but it does indicate the success of the protocol without the

need for a detailed security analysis [51].

3.4 Eavesdropping

Clearly, no QKD protocol is complete without an eavesdropper. We will now in-

troduce three possible attack strategies and the required quantum technologies for

each. In light of this, we will introduce one particular Gaussian attack that is

very frequently considered in CV-QKD protocols and how it can be easily described

mathematically.

ˆ Individual attacks. An individual attack is the weakest attack Eve may employ

as part of her eavesdropping strategy, but it is also expected to be the most

realistic at present based on state-of-the-art quantum technologies. For each

use of the protocol, Eve prepares an independent ancillary mode that inter-

acts unitarily with the target mode. This is known as an independent and

identically distributed (IID) attack. The modi�ed modes are independently

measured before the communicating parties perform the post-processing step.

ˆ Collective attacks. In this attack strategy, Eve interacts with each target mode

with independent ancillary modes, but she can perform an optimal collective

measurement on all of her modes after the post-processing is complete or,

in general, at any time. This attack necessitates that Eve can store quan-

tum states, potentially for a long time. This is a di�cult task with current

technologies but it provides a useful bound on Eve's information.

ˆ Coherent attacks. This is the most general and, therefore, the most powerful

attack available to an eavesdropper. They may prepare a general (entangled)
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state of an arbitrary number of modes that interact with the incoming target

modes. This ancillary system can then be stored and measured collectively at

a later time.

The entangling cloner attack

We will now introduce a particularly important type of collective attack which is

frequently utilized in CV-QKD protocols due to it being the strongest attack that

Eve can employ in the most commonly used CV-QKD protocols. It is known that

the optimal attack strategy for protocols based on Gaussian operations, such as

homodyne detection, encoding based on Gaussian modulation and channels that

perform Gaussian operations, is a collective attack that is based on a Gaussian

unitary operation. A classi�cation of all collective Gaussian attacks is given in

Ref. [52]. The most commonly employed attack of this form, and that which will

be used frequently throughout the analysis in the forthcoming chapters, is known

as the entangling cloner [53]. The attack consists of two modesE and e which are

initially in a TMSV state of variance ! , the CM of which is given by

VEe =

0

@
! I

p
! 2 � 1Z

p
! 2 � 1Z ! I

1

A : (3.4.2)

We assume that Eve is in full control of the quantum channel between Alice and

Bob which, without her presence, is an ideal quantum channel, i.e. with unit trans-

missivity. Eve's strategy is to insert into this channel a beam splitter of transmis-

sivity � . In this situation, the legitimate parties will attribute the losses associated

with the beam splitter to realistic channel loss. Eve uses her beam splitter to mix

her modeE with the incoming mode sent by Alice. She then sends the output from

one port of the beam splitter to Bob via a perfect quantum channel while she stores

the remaining output E 0 in a quantum memory. Assuming that Eve's quantum

memory is lossless and unlimited, she may store the output of every realization of

the protocol and operate them collectively after quantum communication between

the legitimate parties ceases. In the next section, the entangling cloner is applied

to a CV-QKD protocol using coherent states as information carriers.
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Figure 3.1: Schematic of a one-way CV-QKD protocol. Alice sends Gaussian-

modulated coherent states to Bob through an insecure quantum channel of transmis-

sivity � after displacing the quadratures of her state according to a randomly drawn

vector a. Bob performs a homodyne measurement on one quadrature of his received

mode. It is assumed that Eve performs a collective entangling cloner attack.

3.5 Continuous-variable quantum key distribution

with coherent states

In order to illustrate the principles introduced thus far in a more quantitative man-

ner, we now introduce a foundational CV-QKD protocol based on coherent states

encoded with Gaussian modulation. This protocol serves as a useful introduction

for readers unfamiliar with CV QKD as the procedure is straightforward to under-

stand while the foundations are transferable to the more complex protocols that are

introduced in the subsequent chapters.

As outlined in Fig. 3.1, each realization of this protocol consists of four main

steps. Firstly, Alice chooses variablesq 2 Q and p 2 P from IID random variablesQ

and P that each follow a zero-mean Gaussian distribution with varianceVa denoted

as N (0; Va). She uses these variables to modulate the quadratures of a coherent

state so that she obtainsj� i = jq+ ipi . For the protocol as a whole, the variance

of Alice's signal isVA = Va + 1 where the additional unit accounts for the vacuum

uctuations. In each round of the protocol, Alice selects one of the quadratures

at random to be used in the construction of the secret key. The relevant encoding
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variable after this choice (q or p) is denoteda. Alice sends her encoded coherent

state to Bob via an untrusted quantum channel. The channel may be pure-loss (i.e.

with zero thermal noise) but is more generally a thermal-loss channel characterized

by a transmissivity � and excess noise that will be discussed in detail later.

All of the losses and noise associated with the channel are attributed to an

eavesdropper, Eve. The fact that all aspects of the protocol (channels, states, and

measurements) are Gaussian allows us to make the assumption that Eve employs

a collective entangling cloner attack as discussed in Sec. 3.4. We therefore assume

she holds a TMSV state of variance! and modesE and e. She inserts, into an

otherwise lossless channel, a beamsplitter of transmissivity� which mixes her mode

E with Alice's mode. After the interaction, her modi�ed modeE 0 is stored and the

remaining output is sent to Bob without loss. When Bob receives the attenuated

signal, he performs homodyne detection on either theq- or p-quadrature, selected

randomly. His measurement outcome denotedb, is his estimate of Alice's encoding

a.

In the �nal step, the parties perform post-processing. They must �rst determine

in which instances of the protocol their choice of quadrature matched, in a process

known as basis reconciliation, before estimating the channel parameters� and � .

Finally, they perform error correction and privacy ampli�cation in order to distill

the �nal key. In the next section, we will introduce these concepts in more detail,

but for the purpose of familiarizing the reader with the core ideas of CV QKD, we

will assume an in�nite number of channel uses so that an ideal secret key rate can

be computed directly without concern for classical post-processing measures.

Prior to Alice sending a coherent state through the channel, the CM of the global

system conditioned on Alice's encodinga is given by the direct sum of the CM of

her coherent state and Eve's TMSV state describing her entangling cloner attack,

V AEe ja = V0I A �

0

@
! I

p
! 2 � 1Z

p
! 2 � 1Z ! I

1

A : (3.5.3)

whereV0 = 1 is the quantum variance of Alice's coherent state. The post-propagation

46



3.5. Continuous-variable quantum key distribution with coherent states

CM of the system is obtained by applying a beam splitter transformation of the form

T =

0

@
p

� I
p

1 � � I

�
p

1 � � I
p

� I

1

A � I (3.5.4)

that mixes Alice's mode with Eve's modeE, resulting in the following CM of the

total system

V BE 0eja =

0

B
B
B
@

[�V0 + (1 � � )! ] I
p

1 � �
p

� (! � V0)I
p

1 � �
p

! 2 � 1Z
p

1 � �
p

� (! � V0)I [� ! + (1 � � )V0] I
p

�
p

! 2 � 1Z
p

1 � �
p

! 2 � 1Z
p

�
p

! 2 � 1Z ! I

1

C
C
C
A

:

(3.5.5)

Tracing out Eve's system from the total CM leaves us with Bob's CM conditioned

on Alice's encoding, given byVbjaI with Vbja = �V0 + (1 � � )! . Bob's unconditional

varianceVb is obtained by replacing the quantum varianceV0 with the total variance

of Alice's input, VA such that Vb = �VA + (1 � � )! . We assume for simplicity that

Bob's quadrature variable can be obtained perfectly with ideal homodoyne detection.

In this case, the mutual information between Alice and Bob,I AB , can be obtained

from these variances using the signal-to-noise ratio [51] as

I AB = I (a : b) =
1
2

log2
Vb

Vbja
: (3.5.6)

At this point, it is common to take Alice's variance Va to be very large so that all

terms in the expression forVb, in which it doesn't appear, can be ignored. This

allows us to obtain the following expression for the mutual information

I AB =
1
2

log2
�Va

�V0 + (1 � � )!
: (3.5.7)

We now turn our attention to Eve's accessible information. The process of ob-

taining Eve's conditional state requires two steps. First, we trace Bob's mode from

the conditional post-propagation CM of the global system, then we replace the

quantum varianceV0 in one of the quadratures of Eve's modeE 0 with Alice's total

varianceVA to reect the fact that Eve is only collecting outcomes for one quadra-

ture due to the the fact that Alice and Bob select a random choice of quadrature in

each round. After these steps, Eve's conditional CM is given by

V E 0eja =

0

@
E0 p

�
p

! 2 � 1Z
p

�
p

! 2 � 1Z ! I

1

A ; (3.5.8)
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with

E0 =

0

@
�! + (1 � � )V0 0

0 � ! + (1 � � )VA

1

A : (3.5.9)

The total CM is obtained by replacing the coherent state variance with Alice's

total variance in both quadratures of Eve's modeE 0, which leads to the following

expression

V E 0e =

0

@
[� ! + (1 � � )VA ] I

p
�
p

! 2 � 1Z
p

�
p

! 2 � 1Z ! I

1

A : (3.5.10)

Eve's total and conditional systems are described by Gaussian states, thus their

entropies can be obtained straightforwardly from the corresponding CMs as we saw

in the previous chapter. We can thus write the Holevo bound as

� (E 0e : a) = S(V E 0e) � S(V E 0eja): (3.5.11)

The expressions we have now obtained for the mutual information and the Holevo

bound allow us to compute the secret key rate of the protocol under what is known

as direct reconciliation (DR). This means that Bob is attempting to reconcile his

variable with Alice's encoding. Reverse reconciliation (RR) is an alternative strategy

in which Alice adapts her key in response to corrective information received by

Bob [45]. In this case, the mutual information between Alice and Bob is identical

to that of the DR case, while the Holevo bound must be modi�ed such that Eve's

conditional entropy is obtained from her state conditioned on Bob's outcomeb, which

is now the secret variable that Eve is attempting to obtain. The Holevo bound in

this setting is given by

� (E 0e : b) = S(V E 0e) � S(V E 0ejb): (3.5.12)

where the �rst term is identical under both DR and RR. In order to obtain the

second term, we must �rst obtain an expression the relevant CM. Our starting point

is the post-propagation CM of Bob and Eve conditioned on Alice's choice of en-

coding. The �rst step is to replace the varianceV0 with Alice's total variance VA ,

which removes the conditioning and provides us with the total CM of Bob and Eve,

labeled V BE 0e. From here, we can obtain the the conditional CM by performing
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a homodyne measurement on Bob's mode using the mathematical formalism intro-

duced in Sec. 2.4.5. Without loss of generality, we can assume Bob measures the

q-quadrature with outcomeb. With some manipulation, the conditional CM is given

by

V E 0ejb =

0

@
E1 C

CT E2

1

A : (3.5.13)

where we de�ne

E1 = [ � ! + (1 � � )VA ] I �
�
�

� (3.5.14)

E2 = ! I �
(1 � � )( ! 2 � 1)

�
� (3.5.15)

C =
p

�
p

! 2 � 1Z +

�

� (3.5.16)

where� = diag(1; 0) and

� := � (1 � � )(VA � ! )2 (3.5.17)

� := VA � + (1 � � )! (3.5.18)

 := (1 � � )(VA � ! )
p

�
p

! 2 � 1: (3.5.19)

The Holevo bound under RR is obtained by computing the symplectic decomposi-

tion of this CM and, subsequently, the von Neumann entropy from the symplectic

eigenvalues. As the mutual information is identical in both DR and RR, this cal-

culation is the �nal element required in order to compute the secret key rate of the

protocol under RR.

Having outlined the mathematical procedure that allows for the computation of

the secret key rates of the coherent state protocol under both DR and RR, let us

now explore these in more detail by plotting them as a function of the channel loss

for a variety of values of excess thermal noise,� , in the channel. The excess noise

is not a quantity we have dealt with directly thus far, rather, it is a quantity that

would be estimated in an experimental implementation of the protocol. Usually, the

excess noise originates from imperfections in elements of the experimental setup,

but to be as stringent as possible in the security analysis, all of the noise must be

attributed to Eve. In the entangling cloner attack, the excess noise can be expressed
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Figure 3.2: Rates of the CV-QKD protocol with coherent states under DR (left-hand

side) and RR (right-hand side) as a function of the channel loss in dB with excess

noise� = 0:01 (blue), � = 0:02 (orange) and� = 0:05 (green).

in terms of the variance of Eve's TMSV state as

� =
(1 � � )( ! � 1)

�
: (3.5.20)

Given an estimation of the channel noise, this equation can be used to estimate! .

We can thus express the secret key rates in terms of� as opposed to! . Fig. 3.2 shows

the rates of the protocol under both DR and RR with excess noise values of� = 0:01

(blue line), � = 0:02 (orange line) and� = 0:05 (green line). The rates plotted as

a function of the channel loss in decibels (dB) is related to the transmissivity as

� = 10� dB=10. It is clear from the �gure that the maximum tolerable loss under

DR corresponds to� 3 dB. In fact, in the ideal case (� = 0), the maximum loss

corresponds to a transmissivity of� = 0:5. A channel loss exceeding this limit would

lead to Eve gaining more information than Bob about Alice's signal, rendering it

impossible to generate a secret key. Happily, RR provides an elegant solution to

this problem, enabling a key rate to be generated at channel losses exceeding 25 dB

even with a large amount of excess noise. In the next section, we will provide an

overview of the classical post-processing techniques that are required to turn the

ideal secret key rates shown here into realistic rates o�ering practical security for

real-life implementations of the protocol.
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3.6 Post-processing

The �nal step of any QKD protocol is classical post-processing and it is a vital

component in ensuring security when constructing the �nal secret key between the

trusted parties. Below, we briey introduce the individual components of a typical

post-processing protocol.

ˆ Basis reconciliation and sifting. The �rst step in the post-processing of a

CV-QKD protocol that involves a random choice of basis is known as basis

reconciliation. It is most commonly used in the context of protocols such as

that introduced in the previous section. Each party reveals which quadrature

(q or p) they used to encode/measure. This process can be performed most

easily if the parties select their quadrature using a random bit, the value of

which they can later reveal thus conveying the required information. A process

known as sifting is employed in order to remove any data which is obtained

from realizations of the protocol in which the parties' choices of quadrature do

not coincide. Note that certain CV-QKD protocols are designed to make use

of both quadratures. In this case, the basis reconciliation and sifting processes

are not required.

ˆ Parameter estimation. After performing a su�cient number of realizations of

the protocol, Alice and Bob each hold a set of data. In order to estimate the

parameters associated with the protocol, for example, the transmissivity of

quantum channels and any excess noise, they can broadcast a subset of this

data. By constructing Gaussian estimators, the parties can obtain a worst-case

bound on the parameters to a high degree of accuracy, usually corresponding

to six, seven, or more standard deviations from the mean. With these worst-

case estimates, they can compute their reconcilable mutual information�I AB

and the Holevo bound� and thus determine if they can distill a secret key.

ˆ Information reconciliation. Information reconciliation is the process by which

Alice and Bob ensure both of their keys are identical. Essentially, this process

is an error correction protocol and is an active area of research and many
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of the details involved are beyond the scope of this thesis. The state-of-the-

art protocols used in CV QKD are slice reconciliation and multidimensional

reconciliation.

ˆ Con�rmation and privacy ampli�cation . After they perform information rec-

onciliation, the parties each perform a hash function on their key and exchange

the resulting hash values. In the worst-case scenario, in which the hash func-

tions are di�erent, they abort the protocol knowing that error correction has

failed. Otherwise, they know that error correction has succeeded except with

some small probability. If con�rmation is successful, the �nal step in the clas-

sical post-processing procedure is privacy ampli�cation, in which the goal is

to minimize the probability that Eve can guess the key from any information

she has attained throughout the use of the protocol. It is usually achieved by

applying a compression algorithm to the secret key to obtain a shorter key

of which Eve has negligible information. The compression algorithm usually

involves a universal hash function. The di�erence between the lengths of the

keys is determined by an estimate of the amount of information Eve may have

obtained about the key.
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Continuous-variable quantum key

distribution at terahertz

frequencies

Up to this point in the discussion, we have considered only the most foundational

CV-QKD protocols that paved the way for CV QKD to compete with its DV counter-

part. While these protocols can be implemented relatively easily with inexpensive

equipment, they are not without several signi�cant limitations. Shortly after the

publication of the seminal CV-QKD protocols, the most pressing of these limita-

tions was the apparent maximum tolerable transmission loss of 3 dB, at which point

an eavesdropper would gain more information than Bob about Alice's encoding.

Beating the 3 dB limit became a key target in CV-QKD research, and it was

quickly met with the idea of RR in which Alice adapts her key in response to

corrective information received by Bob [45] (cf. Chap. 3). More recently, combining

RR with two-way communication has been found to achieve secret key rates close

to the PLOB bound [54]. An alternative strategy that falls somewhat in between

DR and RR was proposed by Silberhorn et al. [55]. The idea was termed post-

selection, which refers to the ability of the parties to control which instances of the

protocol are included in the �nal key. This ability can be derived from modifying

the protocol so that the information carriers remain Gaussian-modulated states,

while the secret encoding is a discrete binary variable that relates to two possible
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positions of the displaced state in phase space. If the absolute values of Alice's

phase-space displacement and Bob's measurement outcome are known to both Alice

and Bob in each instance, they can calculate their mutual information and that of

an eavesdropper with respect to the discrete encoding. This knowledge allows them

to establish which instances o�er them an informational advantage. By including

in the �nal key only these instances, the secret key rate is always positive and

its magnitude is the only limiting factor when considering the range over which

the parties may communicate securely. The post-selection technique was rapidly

generalized to thermal loss channels [56, 57] and it has since been supported by

proof-of-concept experiments [58,59].

In modern CV-QKD theory, much interest has been directed at thermal states

as information carriers. High-frequency thermal states with a small mean photon

number display quantum mechanical properties similar to those of optical coherent

states, hence they are appropriate candidates for CV-QKD protocols away from

optical frequencies. As the required operating frequency of a protocol decreases,

DV strategies become unfeasible as there is no direct way to detect individual pho-

tons [60], hence developing comprehensive CV-QKD protocols in this regime is of

the utmost importance. The viability of such protocols has been demonstrated in

several works under DR [61,62] and RR with two-way communication [63]. Further-

more, a �nite-size analysis has demonstrated its viability in a realistic setting [64].

The reason for the more recent interest in this area is the feasibility of CV QKD

as a means of secure communications at frequencies within the terahertz band. Ed-

holm's law, which predicts a doubling in telecommunication bandwidth every 18

months [24], continues to hold true 50 years after its inception, accelerating the de-

mand for high-rate communications towards the point at which operating frequencies

in the terahertz band are required. CV QKD at terahertz frequencies has so far been

proposed under atmospheric conditions [21] and as a means of inter-satellite com-

munication [22]. In the atmosphere, high secret-key rates are achievable but security

is only guaranteed at very short distances of the order of meters.

In this chapter, we will begin by briey outlining the original CV-QKD pro-

tocol for communication within the terahertz band in the atmosphere. We will
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Figure 4.1: Schematic of the one-way CV-QKD protocol using Gaussian-modulated

thermal states. Alice sends states to Bob via an untrusted quantum channel with

transmissivity � after displacing the quadratures by a random tuplea. Bob performs

a homodyne measurement on his received mode. Eve performs an entangling cloner

attack. She is in possession of a TMSV state, one mode of which interacts with the

channel via the beam splitter. Furthermore, she has access to a quantum memory

which is optimally measured after quantum communication between the trusted

parties ceases.

subsequently introduce an original post-selected CV-QKD protocol that allows for

communication at frequencies within, or below, the terahertz band. We formulate

the protocol by assuming Alice sends thermal states via an insecure quantum chan-

nel operated by an eavesdropper who may perform a collective entangling cloner

attack. Comparing with the original protocol, we �nd that post-selection o�ers a

signi�cantly longer range and thus extends the viability of the regime to a variety

of new applications.

4.1 Quantum key distribution at terahertz fre-

quencies with Gaussian encoding

In this section, we will introduce the �rst CV-QKD protocol for communication

at terahertz frequencies in the atmosphere, introduced by Ottaviani et al. [21] and

outlined schematically in Fig. 4.1. In this protocol, the sender, Alice, transmits
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thermal states with thermal noise varianceV0 to Bob. She has access to IID random

variables Q and P that each follow a zero-mean Gaussian distribution with vari-

anceVa denoted asN (0; Va). She encodes each state by applying a displacement

a = ( qA ; pA ) to its quadrature amplitudes with qA 2 Q and pA 2 P . Finally, she

randomly chooses eitherqA or pA as her variablea that will be used in the generation

of the �nal key.

The process of preparing and sending the encoded thermal states can be viewed

as the action of the quadrature operatorÂ = 0̂ + â on the vacuum wherê0 is the

`THz quadrature operator' [21], which applies the background thermal noise, and

â is the displacement operator that displaces the state in phase space according to

the vector a. The variance of this operator (and, therefore, the variance of Alice's

signal) is VA = V0 + Va, where V0 := 2�n + 1 is the total quantum noise variance

with the vacuum contribution normalized to unity and the remaining thermal noise

parameterized by the mean photon number �n, related to the frequency,� of the

radiation at temperature t by Planck's law,

�nth =
�
exp

�
h�
kB t

�
� 1

� � 1

; (4.1.1)

where kB is the Boltzmann constant andh is the Planck constant. During trans-

mission to Bob, Alice's modeA is subject to channel loss, all of which we attribute

to an eavesdropper, Eve. Despite the terahertz protocol being somewhat more com-

plex than the coherent state protocol introduced in Sec. 3.5, it is still comprised

exclusively of Gaussian operations (channels, states, and measurements). We can

therefore assume Eve performs the collective entangling cloner attack as introduced

in Sec. 3.4. We label the modes of Eve's TMSV stateE and e and the associ-

ated variance! . Alice's modeA is mixed with Eve's modeE in a beam splitter

of transmissivity � . Eve's modi�ed mode E 0 is stored in a quantum memory for

later measurement (that may involve all rounds of the protocol) and the remaining

output becomes Bob's modeB.

Upon receiving his mode, Bob converts the incoming terahertz signal to optical

light and performs a homodyne detection on one randomly-chosen quadrature of the

resulting mode, obtaining outcomeb. The conversion process performed by Bob has

a limited e�ciency that requires consideration in the security analysis with typical
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values expected to be just 10% at the time of writing, based on recent developments

in THz-optical conversion hardware [65]. This detection ine�ciency can be modeled

by placing a beam splitter of transmissivity� in front of a perfect detector, mixing

the incoming mode with some noise of varianceS that can be modeled by a TMSV

state of equivalent variance. The noiseS and the output of the beam splitter can

be considered to be either trusted or untrusted, however, we will only consider the

former in our analysis as this is a realistic assumption for wireless communications

in the atmosphere.

In each round of the protocol after Alice selects her variablea prior to the onset

of quantum communication, the CM of the entire system can be written as the direct

sum of each of the subsystems

V AES ja = V0I � V TMSV (! ) � V TMSV (S) (4.1.2)

where the systemS represents the detection noise andV TMSV (� ) is the CM of a

TMSV state with variance � , given by

V TMSV (� ) =

0

@
� I

p
� 2 � 1Z

p
� 2 � 1Z � I

1

A : (4.1.3)

To obtain the post-propagation CM, we apply a global beam splitter operation,

T = T � T � to the initial CM, that encapsulates the combined e�ect of the beam

splitter controlled by Eve, given by

T � =

0

@
p

� I 2
p

1 � � I 2

�
p

1 � � I 2
p

� I 2

1

A � I 6; (4.1.4)

and the beam splitter modeling detector ine�ciencies, given by

T � =

0

B
B
B
@

p
� I 2 0

p
1 � � I 2

0 I 4 0

�
p

1 � � I 2 0
p

� I 2

1

C
C
C
A

� I 2; (4.1.5)

whereI n is the n � n identity matrix and 0 is the null matrix of implicit dimensions.

After this interaction, the variance of Bob's mode conditioned on Alice's encoding

can be extracted from the post-propagation CM as

Vbja = ��V 0 + � (1 � � )! + (1 � � )S: (4.1.6)
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The mutual information between Alice and Bob is obtained from the signal-to-noise

ratio, which in this case, is the ratio of Bob's total variance over all rounds,Vb, and

the varianceVbja above. Bob's total variance is obtained by replacing the inherent

thermal variance V0 in Eq. (4.1.6) with Alice's total variance VA . If the variance

Va of Alice's Gaussian distributionsQ and P is large, Bob's total variance can be

approximated as the dominant term of the resulting expression,��V a, allowing us

to write the following formula for the mutual information

I AB =
1
2

log2
Vb

Vbja
=

��V a

��V 0 + � (1 � � )! + (1 � � )S
: (4.1.7)

Turning our attention now to Eve, the computation of the Holevo bound is a

little more complicated and depends on whether the parties employ DR or RR. For

the purposes of comparison with our post-selection protocol, we will consider only

DR and refer the reader to Ref. [21] for a complete discussion. Labeling Eve's total

state �̂ E 0e and conditional state ^� E 0eja, the Holevo bound can be written as

� (E 0e : a) = S(�̂ E 0e) � S(�̂ E 0eja) (4.1.8)

= S(V E 0e) � S(V E 0eja); (4.1.9)

where the second equality is due to the fact that Eve's total and conditional states

are both Gaussian and their entropies can be computed directly from their CMs.

The Holevo bound is, of course, di�erent depending on whether the noise at the

detector is trusted or untrusted, however, we will concentrate exclusively on the

former scenario as already mentioned. In this case, the CM of Eve's conditional

state is obtained by tracing out all but Eve's part of the global post-propagation

CM. It can be written as

V eE0 =

0

@
WI

p
�
p

! 2 � 1Z
p

�
p

! 2 � 1Z [� ! + (1 � � )V0] I

1

A : (4.1.10)

The total CM is obtained by replacing the quantum varianceV0 in Eq. (4.1.10) with

the total variance of Alice's signal,VA in one of the quadratures of Eve's modeE 0 in

order to model the fact that only one quadrature is used for key generation. Taking

the limit of large Gaussian variance (Va � 1), the symplectic spectrum of Eve's

total CM becomes

f � 1; � 2g = f !; (1 � � )Vag; (4.1.11)
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while that of the conditional CM becomes

f ~� 1; ~� 2g =

( s
! [� + (1 � � )!V 0]

� ! + (1 � � )V0
;

p
(1 � � )Va[� ! + (1 � � )V0]

)

: (4.1.12)

Using the VNE of Gaussian states (cf. Sec. 2.5.3) and some algebraic manipulation,

taking into account the limit of large variance, we can write the Holevo bound in

the following form

� (E 0e : a) = h(! ) � h( ~� 1) +
1
2

log2
(1 � � )Va

� ! + (1 � � )V0
: (4.1.13)

Finally, with the results obtained thus far, we are able to compute the secret key

rate of the protocol. This quantity is given by the di�erence in the mutual informa-

tion between the legitimate parties, given by the mutual information between Alice's

encodinga and Bob's measurement outcomeb, and the Holevo bound quantifying

Eve's maximum accessible information on Alice's encoding,

R := I (a : b) � I (E 0e : a): (4.1.14)

Using equations (4.1.7) and (4.1.13) and some algebraic manipulation, we arrive at

an expression for the rate as a function of all of the parameters associated with the

protocol under the assumption of large variance

R(V0; �; !; �; S ) =
1
2

log2
� � [� ! + (1 � � )V0]

(1 � � )[��V 0 + (1 � � )�! + (1 � � )S]

+ h

" s
! [� + (1 � � )!V 0]

� ! + (1 � � )V0

#

� h(! ): (4.1.15)

In order to give Eve the strongest attack, we can assume that she exploits all of

the thermal noise associated with the state. Symbolically, this means that we set

! = V0. Moreover, the rate turns out to be minimized by settingS = 1. Under

these conditions, the rate reduces to the following straightforward formula of three

variables

R(V0; �; � ) = h
� q

� + (1 � � )V 2
0

�
� h(V0) +

1
2

log2
� �V 0

(1 � � )( �V 0 + 1 � � )
: (4.1.16)

This convenient analytic form of the secret key rate will serve as an important

benchmark for our original post-selection protocol which we will introduce in the

next section and we will explore its behavior as a function of its parameters therein.
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4.2 Quantum key distribution at terahertz fre-

quencies with post-selection

4.2.1 Protocol overview

In order to enable post-selection in a one-way CV-QKD protocol, we must make

several modi�cations to the usual one-way scheme, including introducing a discrete

encoding alphabet. Let us now introduce our protocol in the abstract as outlined

schematically in Fig. 4.2. As with the protocol introduced above, Alice has access

to IID random variables Q and P, both of the form N (0; Va). In each use of the

protocol, she constructs the random tuple� = ( qA ; pA ) by choosing real elements

qA 2 Q and pA 2 P . She separatesqA into a sign� and modulusA and pA into a sign

� 0 and modulusA0 and stores the tuples� = ( �; � 0) and a = ( A; A0). She uses these

variables to encode the mean value�xA of a thermal state ^� A that she prepares in her

modeA such that �xAj� a = ( � A; � 0A0) and �̂ A ! �̂ Aj� a. She subsequently sends her

mode to Bob via an untrusted quantum channel. The mean thermal photon number

of Alice's signal, �nth is related to the frequency,� of the radiation by Planck's law

in Eq. (4.1.1) and the variance of the mode isV0 = 2�nth + 1. The total variance of

Alice's signal is againVA = V0 + Va.

We assume that Eve performs an entangling cloner attack and we label her

modesE and e with variance ! and the channel transmissivity is� . After the

interaction, Alice's modeA becomes Bob's modeB, and Eve's modeE 0 is stored

for later measurement. As with the protocol introduced in the previous section, the

post-selection protocol consists of Gaussian measurements, channels, and states.

However, it will become clear later that there is a non-Gaussian component that

emerges in the calculation of Eve's information due to the binary encoding. We must

therefore only conjecture that the optimal attack is based on a Gaussian unitary,

leaving the proof as the focus of further investigation. This conjecture is reasonable

as Eve's interaction with Alice's information may only occur in each channel use

where all aspects are Gaussian.

Upon receiving his modeB, Bob performs aheterodynemeasurement, with out-
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Figure 4.2: Schematic of the post-selected one-way protocol with thermal states

assuming theq-quadrature is used for generation of the secret key. Alice sends

thermal states of varianceV0 to Bob via a quantum channel with transmissivity

� who performs a heterodyne measurement on his received mode. Eve performs

an entangling cloner attack. She is in possession of a TMSV state, one mode of

which interacts with the channel via the beam splitter. Furthermore, she has access

to a quantum memory which is optimally measured after quantum communication

between the trusted parties ceases.

come � = ( qB ; pB ). He separatesqB into a sign ~� and modulusB and pB into a

sign ~� 0 and modulus B0. He stores the tuples~� = (~�; ~� 0) and b = ( B; B0). We

adopt the same model of detection e�ciencies as outlined in the previous section.

A beam splitter of transmissivity � is placed in front of an ideal detector and mixes

the incoming mode with sometrusted noise of varianceS.

After quantum communication ceases, the parties perform the classical post-

processing step of basis reconciliation. At the start of the protocol, both Alice and

Bob select either theq- or p-quadrature at random. In this step, they each reveal

their choice to the other. If the parties both selected theq-quadrature, the variables
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� 0and ~� 0are ignored. Alice publicly broadcastsA andpA while Bob broadcastsB and

pB and attempts to reconcile his variable ~� with Alice's variable � . Alternatively, if

the p-quadrature is chosen, the relevant variables become� 0and ~� 0. Alice broadcasts

A0 and qA while Bob broadcastsB0 and qB . In the computation of the secret key

rate in the asymptotic number of channel uses, it is su�cient to assume that the

parties always agree on a particular quadrature, leading to a simpli�cation of the

analysis. The reason why this strategy is possible will become clear as we compute

the outputs of the protocol in the next section.

4.2.2 Propagation of the modes

Let us now follow the propagation of the modes of the total system assuming a

particular choice ofa and � . The CM of the total system in this case can be written

as the direct sum of the individual systems of Alice, Eve and Bob (whose initial

system, labeledS, consists of the detector with thermal noise),

V ASEe j� a = V Aj� a � V S � V Ee (4.2.17)

= V0I � V TMSV (S) � V TMSV (! ): (4.2.18)

Alice's encoding imposes a generally non-zero mean value on Alice's mode of the

form �xAj� a = ( � A; � 0A0)T while that of the remaining system can be taken to be zero.

The post-propagation CM and mean value are obtained by applying the global beam

splitter T such that

V BS 0E 0ej� a = TV ASEe j� aTT (4.2.19)

and �xBS 0E 0ej� a = T �xASEe j� a: (4.2.20)

The systemS0contains the modes of the TMSV state at the detector after interaction

with the incoming mode from the channel. As we assume the detection noise is

trusted, this system can be ignored in the remaining calculations by tracing it from

the total system. The remaining system of Bob and Eve may be written in the

following block form

V BE 0ej� a =

0

@
B C

CT E

1

A ; (4.2.21)
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whereB represents Bob's CM, given by

B = VB j� aI with VB j� a = ��V 0 + � (1 � � )! + (1 � � )S (4.2.22)

and its corresponding mean value is

�xB j� a = ( � A
p

�� ; � 0A0p �� )T : (4.2.23)

Block E represents Eve's CM,

E =

0

@
[(1 � � )V0 + � ! ]I

p
�
p

! 2 � 1Z
p

�
p

! 2 � 1Z ! I

1

A (4.2.24)

with corresponding mean value

�xE j� a =
�
� � A

p
1 � � ; � � 0A0

p
1 � � ; 0; 0

� T
: (4.2.25)

Finally, the correlations between Bob and Eve are given by

C = ( � I ; � Z) ; (4.2.26)

where we de�ne the quantities

� =
p

�� (1 � � )( ! � V0) (4.2.27)

and � =
p

� (1 � � )
p

! 2 � 1: (4.2.28)

In the �nal step, Bob performs a heterodyne measurement on his modeB. He

obtains the outcome� = ( qB ; pB ) from which he records signs~� = (~�; ~� 0) and abso-

lute valuesb = ( B; B0). The probability of outcome � is derived from Eq. (2.4.78)

as described in Sec. 2.4.5 using

p(� j� a) = p(� bj� a) =
exp

�
� 1

2dT (B + I )� 1 d
�

2�
p

det (B + I )
; (4.2.29)

where d = �xB j� a � � . The probability can be separated into the product of the

probabilities of the individual quadrature outcomes. We have

p(~� Bj� A) =
1

p
2�

p
VB j� a + 1

exp

"

�
1
2

�
~� B � � A

p
��

� 2

VB j� a + 1

#

; (4.2.30)

and

p(~� 0B0j� 0A0) =
1

p
2�

p
VB j� a + 1

exp

"

�
1
2

�
~� 0B0 � � 0A0p ��

� 2

VB j� a + 1

#

: (4.2.31)
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Note that the probability of each quadrature outcome is independent of Alice's

encoding in the conjugate quadrature. It is this fact that allows us to simplify the

computation of the secret key rate by assuming the parties always agree on one of

the two quadratures. Moreover, the independence of the quadratures ensures that

any variables relating to the quadrature conjugate to that which is assumed to be

used for key generation do not a�ect the secret key rate and can thus be ignored in

the calculations.

Eve's CM after Bob's measurement can be expressed in terms of the blocks in

Eq. (4.2.21) as

V E 0ej� a~� b = E � C (B + I )� 1 CT ; (4.2.32)

which we can write in the following block form

VE 0ej� a~� b =

0

@
E1I CZ

CZ E2I

1

A ; (4.2.33)

where we have de�ned

E1 = (1 � � )V0 + � ! �
� 2

VB + 1
(4.2.34)

E2 = ! �
� 2

VB + 1
(4.2.35)

C =
p

�
p

! 2 � 1 �
��

VB + 1
: (4.2.36)

Finally, the mean value of Eve's state after Bob's measurement is given by

�xE 0ej� a~� b = �xE 0ej� a � C (B + I )� 1 d (4.2.37)

from which we obtain

xE 0ej� a~� b =

0

B
B
B
B
B
B
@

� � A
p

1 � � +
�
~� B � � A

p
��

�
�

VB +1

� � 0A0
p

1 � � +
�
~� 0B0 � � 0A0p ��

�
�

VB +1

(~� B � � A
p

�� ) �
VB +1

(~� 0B0 � � 0A0p �� ) �
VB +1

1

C
C
C
C
C
C
A

: (4.2.38)

4.2.3 Mutual information

Let us begin our computation of the secret key rate by computing the mutual in-

formation between the legitimate parties. At this point, in the asymptotic limit of
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channel uses, the mutual information between the parties is equivalent to the mutual

information between� and ~� (or equivalently � 0 and ~� 0) such that

I (� : ~� jAB) = 1 � H (� j ~� AB): (4.2.39)

The second term on the right-hand side of the mutual information is a di�erential

conditional entropy which may be written as

H (� j ~� AB) =
Z

p(AB)
X

~�

p(~� jAB)H � j ~� AB dA dB ; (4.2.40)

where we note thatp(~� jAB) = 1 =2 since there is no correlation between the variables

involved. The conditional entropyH � j ~� AB is given by

H � j ~� AB =
X

�

p(� j ~� AB) log2 p(� j ~� AB) (4.2.41)

= H2(perr) 8 ~� (4.2.42)

whereH2(perr) = � perr log2 perr � (1 � perr) log2(1 � perr) is the binary entropy of the

error probability, perr , i.e. the probability that Bob's sign ~� does not coincide with

Alice's sign � given the valuesA and B, which can be obtained by �rst calculating

p(~� j� AB) =
p(~� Bj� A)

P
~� p(~� Bj� A)

=
1

1 + exp
�
� 2� ~� AB

p
�� (VB j� a + 1) � 1

� ; (4.2.43)

then noting that p(+ j � AB) = p(�j + AB) = perr with

perr =
1

1 + exp
�
2AB

p
�� (VB j� a + 1) � 1

� : (4.2.44)

We may then write the mutual information in the following compact form

I (� : ~� jAB) = 1 �
Z

p(AB)H2(pe) dA dB (4.2.45)

where the probability p(AB) is given by

p(AB) =
X

�; ~�

p(~� Bj� A)p(� A): (4.2.46)

The variance of Alice's Gaussian distributions,Va enters the calculation in the prob-

ability p(� A) above, however, it is not a directly relevant factor in the calculation

of the secret key rate. As such, its value is largely exible and can be selected in

order to maximize the rate.

65



Chapter 4. Continuous-variable quantum key distribution at terahertz
frequencies

4.2.4 Eve's accessible information

Let us now turn our attention to Eve's accessible information about Alice's encoding

which can be taken to be� . In order to provide an upper bound on this quantity,

we make use of the Holevo bound, which, in this case, is given by

� (E 0e : � jAB) = S(E 0ejAB) � S(E 0ej� AB); (4.2.47)

where the terms on the right-hand side are conditional von Neumann entropies

(cf. Sec 2.5.3). The calculation of these terms requires the total and conditional

states which may be obtained from the output state of a given instance of the

protocol, �̂ E 0ej� A ~� B as follows:

�̂ E 0ejAB =
X

�; ~�

p(�; ~� jAB)�̂ E 0ej� A ~� B: (4.2.48)

=
1
2

X

�

�̂ E 0ej� AB; (4.2.49)

where the conditional state ^� E 0ej� AB is given by

�̂ E 0ej� AB =
X

~�

p(~� j� AB)�̂ E 0ej� A ~� B: (4.2.50)

While Eve's output state from each use of the protocol is Gaussian, the same is not

true of her total nor her conditional state and we cannot apply the simple rules for

the entropy of Gaussian states. Instead, we must obtain the total and conditional

states by expressing the protocol output state ^� E 0ej� A ~� B in the Fock basis before

using the relationships outlined above. Fortunately, there exists an e�cient way to

obtain the density matrix of a Gaussian state, which is to relate its form to that of

the generating function for the multivariate Hermite polynomials [66], given by

exp
�

yA � T �
1
2

� A � T

�
=

X

m � 0

lY

i =1

� m i
i

mi !
H (A )

m (y): (4.2.51)

This connection was �rst drawn by Kok et al. in 2001 for single-photon states [67].

It was later used in the computation of pure Gaussian states [68, 69] and later

generalized to mixed states by Dodonov et al. [70] (see Ref. [71] for an open source

implementation of this method).
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We will now follow the method introduced by Dodonov et al. in order to �nd the

density matrix form of Eve's states. The �rst step in this process is to attain the

CM � and mean value� in terms of the quadrature amplitudes

� i =
1
2

(qi + ip i ): (4.2.52)

To do so, it is convenient to change the ordering of the vector of quadrature operators

x̂ by applying the matrix O such that x̂ = ( q̂1; p̂1; q̂2; p̂2) ! Ox̂OT = ( q̂1; q̂2; p̂1; p̂2)

whereO is de�ned as

O :=

0

B
B
B
B
B
B
@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1

C
C
C
C
C
C
A

: (4.2.53)

This causes the quadrature CM and mean value to transform according toV !

OVO T and x ! Ox . We then de�ne the following matrix

R :=
1

p
2

0

@
I i I

I � i I

1

A ; (4.2.54)

which, when applied to the quadrature CM and mean value yield the CM� and

mean value� as

� =
1
2

RVR y and � = R �x: (4.2.55)

We can then introduce the Husumi-Q matrix, given by

� = � +
1
2

I ; (4.2.56)

which allows us to de�ne the parametersA and y of the multivariate Hermite

polynomials as

A =
�
I � � � 1

� �
X (4.2.57)

and

y = � � A � : (4.2.58)

At this point, we must introduce the parameterN , which represents the truncation

point of the in�nite-dimensional Hilbert space of the state. With respect to the

Hermite polynomials, the parameterl in Eq. (4.2.51) becomes the parameterN . The
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required value ofN is determined by examining the convergence of the entropy of the

total and conditional states, which is dependent on all of the protocol parameters.

Once they are generated, the entropy of theN 2 � N 2 approximate density matrices

of the total and conditional states can be determined by the VNE, which, we recall,

for a state ^� with eigenvaluesf � i g is given by

S(�̂ ) = �
X

i

� i log2 � i : (4.2.59)

4.2.5 Single-point rate and post-selection

Having derived the mutual information and Eve's accessible information, we are in

a position to compute the secret key rateR = �I � � where� is the reconciliation

e�ciency. However, to allow for post-selection, it is useful to re-write the rate as a

single intergral overA and B. To do this, we �rst express the mutual information

in the following single-integral form

I (� : ~� jAB) =
Z

p(AB) ~I (A; B) dA dB ; (4.2.60)

where we have de�ned thesingle-point reconcilable mutual information ~I (A; B) :=

� (1 � H � j ~� AB). Similarly, we may re-write the Holevo bound as

� (E 0e : � jAB) =
Z

p(AB)~� (A; B) dA dB (4.2.61)

with ~� := S(�̂ E 0ejAB) � 1
2

P
� S(�̂ E 0ej� AB). Then, the rate in full is expressed as

R =
Z

p(AB) ~R(A; B) dA dB ; (4.2.62)

where ~R := ~I � ~� is the single-point rate. Post-selection is de�ned as the process

of removing protocol instances in which the mutual information between Alice and

Bob is less than that which is accessible by Eve. To model this process in our

expression for the rate, we simply take the maximum of the single-point rate and

zero in Eq. (4.2.62), such that the post-selected rate is given by

RPS =
Z

p(AB) max
� ~R(A; B); 0

	
dA dB : (4.2.63)

The post-selected rate may also be obtained by integrating the single-point rate

with weighting p(AB) over the post-selection area�, de�ned as the region in the
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Figure 4.3: Plot of the spectral energy density as a function of frequency in the tera-

hertz range at room temperature (296 K). Also plotted is the mean photon number

of thermal states used in the protocol as a function of the operating frequency at

the same temperature.

A-B plane in which the single-point rate is positive,

RPS =
Z

�
p(AB) ~R(A; B) dA dB : (4.2.64)

4.2.6 Results

With the framework for our protocol in place, let us now present the results of

numerical calculations of the secret key rate under a variety of parameters. For all

of the forthcoming results, we have assumedt = 296 K as we anticipate that most

applications of the technology will occur around room temperature. Fig. 4.3 shows

the spectral energy density of the background radiation at room temperature as a

function of frequency, a distribution that peaks within the range of frequencies of

interest. The same �gure shows the mean photon number of the thermal states

used in the protocol over the same frequency range. This curve demonstrates that

thermal states with frequencies in the high terahertz range can closely resemble
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Figure 4.4: Rates of the post-selection protocol at a variety of terahertz frequencies

as a function of the channel loss in dB. We set! = V0 and assume a detection

e�ciency of 10%. For comparison, we include the rate of the protocol with coherent

states and a pure-loss attack (dashed black line).

optical coherent states due to the mean photon number being orders of magnitude

smaller than the variance of the vacuum uctuations.

It is convenient to express the secret key rate as a function of the distanced,

between Alice and Bob using the relation� = 10� �d= 10 where � is the loss in dB

per unit distance. The parameter� is dependent on the medium through which the

parties communicate. For example, if the quantum channel is a �ber optic cable, a

typical value of � is 0:2 dB/km. For wireless communication in the atmosphere, the

situation is far more complex and is the subject of active research. A comprehensive

review of results and simulation packages may be found in Ref. [72].

We will begin by temporarily ignoring � and plotting the rates of the protocol

for a variety of frequencies as a function of the channel loss in dB. In order to

a�ord Eve the best-case scenario and remain in line with the original Gaussian-
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Figure 4.5: Rates of the Gaussian (dashed lines) and post-selection (solid lines)

protocols as a function of the maximum transmission distance in meters for a range

of frequencies within a window in which� = 50 dB=km. We assume! = V0 and a

detection e�ciency of 10%.

modulated protocol, we set! = V0 and we assume a realistic detection e�ciency of

10%. For comparison, we include the case of coherent states (V0 = 1) where Eve's

action is reduced to a pure-loss attack [51]. The secret key rates for a variety of

frequencies are shown in Fig. 4.4. The general trend is that an increase in thermal

noise (corresponding to a lower frequency) leads to a rapid reduction in tolerable

channel loss. This behavior can be attributed to the fact that the lower-frequency

background radiation creates states that behave in a manner that becomes close

to classical in nature, thus eliminating the uncertainty of quantum mechanics that

enables security.

In Fig. 4.5, we consider the performance of our protocol at three frequencies

which fall into an frequency window between 15 and 34 THz where the loss per unit

distance,� , is relatively low at 50 dB/km [72]. Again we assume! = V0 and � = 0:1

and, for comparison, we include the corresponding rates of the protocol with Gaus-
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Figure 4.6: Rates of the protocol as a function of the distance between Alice and

Bob under atmospheric parameters with 10% detection e�ciency and withVa = 2.

We have assumed� = 50 for the transmission window encompassing the frequencies

considered. For comparison, we include the equivalent rates of the protocol with

Gaussian encoding under direct reconciliationq introduced previously (dashed lines).

sian encoding introduced previously. It is clear that our protocol o�ers a signi�cant

improvement to the maximum distance at which security can be guaranteed. We

observe a roughly �ve-fold improvement in the maximum range for all of the fre-

quencies considered. This improvement can be attributed entirely to the addition

of post-selection. By only including a round of the protocol in which the parties

have an informational advantage over the eavesdropper, the parties can communi-

cate securely over a longer range, with the caveat that the rate in the short-distance

regime is reduced. This process can be performed independently of the frequency of

the thermal states used, hence the rate-distance behavior with respect to frequency

is broadly equivalent across the post-selected and Gaussian-encoded protocols.

So far, we have only considered one typical detection e�ciency value in our

analysis. Let us �rst introduce the maximum tolerable loss, which is de�ned equal
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