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Abstract

Due to a recent influx of attention, the field of quantum information is rapidly pro-

gressing towards the point at which quantum technologies move from the laboratory

to widespread community use. However, several difficulties must be overcome before

this milestone can be achieved. Two such difficulties are addressed in this thesis.

The first is the ever-growing security threat posed by quantum computers to existing

cryptographic protocols and the second is the missing knowledge regarding the per-

formance differences between quantum and classical communications over various

existing network topologies. Continuous-variable (CV) quantum key distribution

(QKD) poses a practical solution to the security risks implied by the advancement

of quantum information theory, with the promise of provably secure communica-

tions. Unfortunately, the maximum range of many CV-QKD protocols is limited.

Here, this limitation is addressed by the application of post-selection, firstly, to a

scenario in which two parties communicate using terahertz frequency radiation in

the atmosphere, and secondly, to measurement-device-independent QKD, in which

two parties communicate through the medium of an untrusted relay. In both cases,

the introduction of post-selection enables security over distances substantially ex-

ceeding those of equivalent existing protocols. The second difficulty is addressed

by a comparison of the quantum and classical networking regimes of the butterfly

network and a group of networks constructed with butterfly blocks. By comput-

ing the achievable classical rates and upper bounds for quantum communication,

the performance difference between the two regimes is quantified, and a range of

conditions is established under which classical networking outperforms its quantum

counterpart. This allows for guidance to be provided on which network structures

should be avoided when constructing a quantum internet.
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Chapter 1

Introduction

1.1 The ancestry of quantum information theory

Upon the turn of the twentieth century, physicists had been lulled into a false sense

of security by the apparent ability of Newtonian mechanics and electrodynamics

to describe, with extraordinary accuracy, almost any observable phenomenon. The

accuracy and elegance of the theory caused physicists to harbor a belief that no new

major component was needed to form a complete description of reality. However,

problems were on the horizon as advancements in experimental technology were

leading to discoveries that fell outside of the descriptive boundaries of these theories.

A crisis quickly emerged when classical electrodynamics predicted infinite energies

within the black-body radiation spectrum. This infamous blunder was quickly coined

the ‘ultraviolet catastrophe’. Thankfully, in times of crisis, paradigm-shifting ideas

emerge, in this case, in the form of Max Planck’s revolutionary radiation law [3].

Planck described the energy of the black body as a composition of discrete packets

named ‘quanta’. Though unbeknownst to Planck, this insight would light the fuse

on the quantum era of physics, leading to a radically different description of reality.

Four years later, armed with Planck’s quantization idea, Einstein was able to

formulate a quantized description of the photoelectric effect by hypothesizing that

radiation itself is quantized and composed of particles of energy proportional to the

frequency of the radiation [4]. This model of radiation appeared to be in direct

contradiction to the widely accepted wave model that had been confirmed by the

1



Chapter 1. Introduction

observation of an interference pattern in Young’s double-slit experiment several years

prior to Einstein’s work. Light appeared to be behaving as a wave and a particle;

an apparent paradox known as wave-particle duality. In his Ph.D. thesis, Louis

de Broglie proposed that wave-particle duality was not a paradox but a physical

phenomenon that was possessed not just by light but by all particles. His formulation

associated with every particle a de Broglie wavelength simply computed as the ratio

of the Planck constant to the particle’s momentum.

The de Broglie formulation formed the foundation on which the first formalisms

of the theory we now call quantum mechanics were developed. Inspired by the

idea of formulating the wave mechanics behind de Broglie’s ‘matter waves’, Er-

win Schrödinger began searching for a three-dimensional wave equation that would

describe the behavior of the electron in a hydrogen atom. His initial attempt to

derive a relativistic equation fell short and he became discouraged. However, he

decided to publish the non-relativistic version of his work, and with the help of

Hermann Weyl, he was able to use his equation to predict the spectral lines of the

hydrogen atom. Schrödinger interpreted the electron wave function emerging from

his equation as a charge-density function that spreads throughout space. However,

shortly after Schrödinger published his work, Max Born showed that the square of

the absolute value of the wave function was proportional to the probability density

associated with finding the electron at a given point in space. In general, Born’s

result implied that the wavefunction of a quantum system could reveal the proba-

bility distribution associated with the measurement outcome of that system. Born’s

results appeared to suggest the presence of an inherently random aspect to reality,

a concept that shocked the world of physics that held the idea of determinism at its

core. Schrödinger himself would later proclaim “I don’t like it, and I’m sorry I ever

had anything to do with it.”

Born’s discovery opened a Pandora’s box of philosophical questions regarding

the interpretation of the mathematics of quantum mechanics. The most widely ac-

cepted interpretation was proposed by Neils Bohr and Werner Heisenberg, known as

the Copenhagen interpretation, in which a physical system exists in a superposition

of states before measurement and, upon measurement, collapses into one possible

2
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state with probability determined by the Born rule. Importantly, this interpretation

assumed quantum mechanics to be entirely probabilistic in nature. On the other

side of the spectrum and entering the realms of science fiction, the Many-Worlds

interpretation, proposed by Hugh Everett in 1957, suggests that every possible out-

come of a measurement exists in its own ‘universe’ with unique space and time [5].

For each outcome, there is an observer who is only aware of the specific outcome

that occurs in the space and time in which they reside.

One of the harshest critics of the probabilistic Copenhagen interpretation of

quantum mechanics was Einstein who famously said “I, in any case, am convinced

that He does not play dice with the universe”. Together with Boris Podolski and

Nathan Rosen, he developed the EPR paradox thought experiment in an attempt

to illuminate the conceptual difficulties of quantum mechanics and argue that it was

an incomplete theory [6]. The experiment can be understood by considering two

distant particles whose properties are interlinked in such a way that measurement

of the state of one reveals that of the other. In this case, the particles are said to

be entangled. The Copenhagen interpretation describes the state of the measured

particle as uncertain until the moment the measurement is performed, thus the

state of the other appears to be instantaneously certain. Einstein dubbed this

concept ‘spooky action at a distance’, viewing it as a violation of the theory of

relativity as knowing the state instantly implies faster-than-light communication

between the particles. Bohr refuted the paradox, asserting that both particles should

be described as a single quantum system rather than two individual entities. In this

case, the measurement of one particle makes certain the state of the system as a

whole and no communication is necessary.

The disagreement between Bohr and Einstein is one of the most famous in the

history of physics. Bohr’s Copenhagen interpretation was gaining traction with

mounting experimental evidence but physicists were still uncomfortable with its

probabilistic implications. In 1964, John Bell devised the Bell inequalities, which

quantify the point at which a theory of hidden variables cannot produce the same

correlations observed between two entangled systems. The Bell inequalities (largely)

settled the debate over the completeness of quantum mechanics when, eight years

3
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after Bell’s paper, the first Bell test was carried out experimentally by Freedman

and Clauser [7]. The result of this experiment and many more was a violation of the

Bell inequality as predicted by the probabilistic quantum mechanical description of

reality.

Despite the conceptually difficult and highly counter-intuitive nature of quan-

tum mechanics, the field has seen unprecedented progress and continues to grow

rapidly in modern physics. Moreover, the field has attracted interest from a range

of other scientific disciplines including computer science and mathematics. This

inter-disciplinary interest has led to the emergence of the field of quantum infor-

mation theory (QIT) [8,9], which aims to exploit the unique properties of quantum

states for a wide range of information processing tasks. Its purpose is identical to

that of classical information theory, but it differs vastly in nature. The emergence

of QIT dates back to the 1980s when a quantum mechanical version of the Turing

machine was proposed by Paul Benioff [10]. The main advantage of QIT is the emer-

gence of quantum parallelism which makes it possible to manipulate large quantities

of data at once [11]. This important characteristic allows the theory to provide solu-

tions to many problems that are difficult and slow to solve using classical techniques.

Some of the most well-known examples include the quantum discrete Fourier trans-

form [12], Shor’s algorithm for factorization of large numbers in polynomial time [13]

and Grover’s algorithm for searching [14]. Another important application pointed

out by Richard Feynman and Yuri Manin is the ability of quantum computers to

simulate certain physical entities that may be difficult or even impossible to simu-

late with modern-day computers [15]. Notwithstanding these important results, the

research introduced in this thesis is placed within the branch of QIT which focuses

on quantum communication between two or more parties over quantum channels.

In this setting, quantum mechanics makes possible many non-trivial results such as

quantum key distribution (QKD) and quantum networking that form the founda-

tions on which the results presented here are obtained.
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1.2 Thesis outline

Throughout this thesis, several original contributions to the field of quantum infor-

mation theory will be introduced that are focused on illuminating and improving,

where possible, the limitations of quantum communications across three different

regimes. Firstly, a point-to-point scenario is considered in which two parties are

connected by and communicate over an insecure quantum channel. This is followed

by consideration of the more complex regime of assisted communication in which

third-party relays are introduced into the communication line between the parties.

Finally, the most general case is considered in which the points become two of many

nodes communicating over any number of quantum channels in a quantum network.

In the consideration of direct and relay-assisted communications, the focus is

directed at the capacity for secure communications using QKD. In particular, the

goal is to address the current limitations of continuous-variable (CV) QKD in each

setting, which mainly relates to the maximum range of the current state-of-the-

art protocols. To counteract these limitations, two original CV-QKD protocols are

introduced, one for each communication regime. In the consideration of quantum

networks, the investigation follows a more fundamental path. The difficult questions

posed by the intrinsic nature of quantum mechanics when considering the structure

of future quantum networks are addressed. Specifically, the investigation seeks to

identify and quantify the performances of network structures that are frequently

and effectively used in classical networking, while being simultaneously detrimental

to quantum networking. The following two sections provide an introduction to the

fields of CV QKD and quantum networking in more detail and explain their role

within the field of quantum information theory as a whole.

1.2.1 Quantum key distribution

With the promise of secure communications guaranteed by the laws of physics, quan-

tum cryptography is an intriguing consequence of quantum theory of interest to a

variety of disciplines. Quantum key distribution is the most advanced instance of

quantum cryptography in which quantum mechanics plays a small but vital role in a
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wider cryptographic protocol of distributing a secret key between parties. Key dis-

tribution is a difficult open problem in private-key cryptography that QKD promises

to solve by proving impossible an eavesdropper’s task of successfully replicating a

secret key in conjunction with keeping their presence undetectable. This impossibil-

ity emerges from the inherent uncertainty of quantum mechanics and the no-cloning

theorem. If two communicating parties use QKD to share a secret key, they can

subsequently apply a symmetric classical cryptographic protocol such as the un-

breakable one-time pad algorithm, to completely guarantee security.

The race to develop quantum cryptography is fuelled by the threat posed to

existing cryptographic protocols by the rapid advancement of quantum technologies,

in particular, the development of many-qubit quantum computers. The application

of Shor’s algorithm on such machines has the potential to render insecure many

existing cryptosystems based on factorization such as the Rivest-Shamir-Adleman

(RSA) protocol [16]. As a solution to this problem, much effort has been directed at

developing a class of so-called post-quantum classical cryptographic algorithms that

are thought to be secure against quantum attacks. However, the security of such

protocols is predicated on the computational ability (or lack thereof) of the attacker.

Without knowledge of all possible quantum algorithms, or even future computing

paradigms, security is not guaranteed. The security of QKD on the other hand is

built on the fundamental nature of reality and it assumes the most general attack an

eavesdropper may employ that is permitted under the laws of physics. As a result,

it guarantees security, regardless of any attack incorporating unimaginably powerful

technologies and algorithms that may be developed in the future.

The seminal BB84 QKD protocol [17] and many subsequent protocols were based

on systems with finite degrees of freedom, such as the polarisation of photons or

ground/excited states of trapped ions, referred to as discrete variables. Several

years later, the field of continuous-variable (CV) QKD was born [18, 19]. CV QKD

aims to exploit systems with continuous degrees of freedom to guarantee security,

the most obvious candidate being the quadrature amplitudes of the electromagnetic

field. The key advantage of CV QKD over its discrete variable counterpart is the ease

at which most state-of-the-art protocols can be implemented. Many quantum states
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of the electromagnetic field can be generated straightforwardly with linear optics

and measurements can be performed with readily-available and low-cost homodyne

detectors.

Since the inception of CV QKD, the field has seen substantial advancements in

key areas such as protocol range, secret key rate, and ease of experimental implemen-

tation. In fact, CV QKD has been demonstrated to be capable of secret key rates

close to the ultimate repeaterless (PLOB) bound [20]. Recently, CV QKD has been

proposed as a viable candidate for secure communication at terahertz frequencies in

the atmosphere [21] and as a means of inter-satellite communications [22]. Facilita-

tion of communications in the terahertz band is an important topic of active research

that is expected to experience rapid development in the near future due to the in-

creasing demand for high-speed, short-distance wireless communications [23, 24].

The novel CV-QKD scheme for terahertz communication in the atmosphere offers

the highly desirable feature of extremely high security at high rates for applications

such as key cards and covert operations. Unfortunately, it is currently limited to

particularly short distances on the scale of meters [21]. In Chap. 4, an alternative

protocol is developed that exploits the technique of post-selection, first introduced

for optical communications with optical states. By investigating the protocol under

a variety of parameters, it is demonstrated that the limitations of CV QKD in this

setting can be reduced by extending the maximum distance over which the legiti-

mate parties can establish a secret key. As a result, the range of possible applications

in this area is expanded.

QKD has been proven to be possible not only in the point-to-point regime but in

the end-to-end regime in the form of measurement-device-independent (MDI) QKD,

in which the parties communicate through the medium of an untrusted relay [25,26].

The seminal CV-MDI-QKD protocol was able to achieve very high secret key rates,

especially in an asymmetric scenario (when the relay is positioned closer to one party

than the other), however, in the symmetric configuration, communication is limited

to relatively short distances, falling well short of DV protocols which, in some cases,

can achieve secret key rates at distances exceeding the PLOB bound. In Chap. 5, an

original post-selected CV-MDI protocol is introduced which is capable of extending
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the range of CV-MDI QKD. The protocol can bridge the gap between the CV and

DV regimes while maintaining all of the advantages associated with CV QKD.

1.2.2 Quantum networking

The final part of this thesis involves a glance into the not-too-distant future in

which quantum information and computation will have likely progressed to the level

of adoption that requires significant infrastructure in order to connect quantum de-

vices and create a widespread quantum internet [27,28]. This kind of infrastructure

will require further advancements in the field of quantum networking, in particular

since it may be desirable to copy or replace existing classical network structures, it

is important to establish any performance differences between classical and quan-

tum networks of various topologies. A crucial element of this analysis is to take

into consideration the unique properties of quantum mechanics that may cause the

performance of certain quantum network topologies to deviate from that of their

classical counterparts. In Chap. 6, this question is examined by consideration of the

well-known butterfly network [29]. In the butterfly network, the duplicability of clas-

sical information may be exploited in order to transfer four bits of information using

three channels. Here, it is formally show using the techniques of channel simulation

that this exploit is not possible if the goal is to distribute quantum information. Fur-

thermore, the analysis is extended to a group of larger networks constructed with

butterfly blocks, and the differences between the achievable classical rates and an

upper bound on the quantum rates for identity, erasure, and depolarizing channels

are quantified. In doing so, guidance is provided on which network structures and

conditions should be avoided in the construction of the quantum internet and within

the wider field of quantum networking.
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Preliminaries

In this chapter, we will introduce the preliminary notions of quantum information

theory required to instill in a reader unfamiliar with the theory, an understanding

of the framework on which our research is built. In the first part of the chapter, we

will focus on the pre-requisites of CV QKD which begins with a brief background of

quantum optics with a particular focus on Gaussian states of light that frequently

arise in our protocols. We also briefly introduce some of the fundamental principles

of information theory in both classical and quantum regimes. In the later sections,

we introduce the technique of teleportation stretching, which allows us to bound

the rates of quantum channels and networks. These tools enable us to provide the

necessary benchmarks for quantum networking that are utilized in Chap. 6.

Throughout this chapter, we assume that the reader is familiar with the funda-

mentals of quantum mechanics. For those seeking a more thorough understanding

of the principles we outline here, the excellent books by Nielsen & Chuang [8] and

Braunstein & Pati [9], and, of particular importance in the case of continuous-

variable quantum information, the reviews by Braunstein et al. [19] and Weedbrook

et al. [18] are recommended.

2.1 From classical to quantum optics

To begin our journey towards quantum optics, we will assume that the reader has

a core understanding of the fundamental principles of classical electromagnetism.
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As with most introductions to quantum optics, our starting point is with Maxwell’s

equations which form a succinct description of the field. We will demonstrate how

Maxwell’s equations lead to a description of electromagnetic radiation as a wave

propagating through space and, using this framework, we will show how the tran-

sition to a quantum description of light is facilitated by the quantum harmonic

oscillator and how this gives rise to a mathematical framework for quantum optics.

2.1.1 Classical electromagnetism in a flash

Let us now recap the Maxwell equations which govern the electric E and magnetic

B fields. To streamline the mathematical description, we will choose our operating

medium to be free space, in which there are no currents or charges. In this scenario,

the Maxwell equations are as follows

∇ · E = 0 (2.1.1)

∇× E = −∂B

∂t
(2.1.2)

∇ ·B = 0 (2.1.3)

∇×B = µ0ε0
∂E

∂t
. (2.1.4)

In only a few steps, we can arrive at Maxwell’s crucial discovery of the wave nature

of the electric and magnetic fields. Firstly, by taking the curl of both sides of

Eq. (2.1.2) we obtain

∇× (∇× E) = − ∂

∂t
(∇×B) (2.1.5)

= −µ0ε0
∂2E

∂t2
(2.1.6)

then, by applying vector identity ∇× (∇× E) = ∇(∇ · E)−∇2E and noting that

the first term on the right hand side is zero due to Eq. (2.1.1), we arrive at the wave

equation

∇2E = µ0ε0
∂2E

∂t2
, (2.1.7)

where it is easy to see that the wave speed is given by c = (µ0ε0)−1/2, the speed

of light. This observation prompted Maxwell to proclaim “this coincidence is not

merely numerical”.
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In order to describe the behaviour of the electric and magnetic fields more easily,

we introduce their scalar φ and vector A potentials, respectively, from which the

Maxwell equations emerge. The Maxwell equations are satisfied if

B = ∇×A and ∇φ = −E− ∂A

∂t
. (2.1.8)

Choosing the Coulomb gauge for which ∇ · A = 0, the electric field vector in

Eq. (2.1.7) may be replaced by the vector potential. The general solution to this

equation is a linear combination of a number of radiation modes with unique wavenum-

ber k, angular frequency ωk and polarization vector ekλ,

A(r, t) =
∑
k

∑
λ=1,2

ekλAkλ(r, t). (2.1.9)

where the Akλ(r, t) are general solutions to the wave equation which we may write

for now as

A(r, t) = Akλ(t) exp(ik · r) + A∗kλ(t) exp(−ik · r). (2.1.10)

Substituting the general solutions back into the wave equation, we find that the

time-dependent coefficients Akλ(t) satisfy the harmonic oscillator equation

∂2

∂t2
Akλ(t) = −ω2

kAkλ(t) (2.1.11)

with ωk = ck. This allows us to state the complete form of the general solutions

Akλ(r, t) = Akλe
i(k·r−ωkt) + A∗kλe

−i(k·r−ωkt). (2.1.12)

The electric and magnetic fields are then readily expressed as

E(r, t) =
∑
k

∑
λ=1,2

ekλEkλ(r, t) (2.1.13)

and B(r, t) =
∑
k

∑
λ=1,2

k× ek,λ

k
Bk,λ(r, t), (2.1.14)

where the single-mode components are given by

Ekλ(r, t) = iωκ
[
Akλe

i(kr−ωkt) − A∗kλe−i(kr−ωkt)
]

(2.1.15)

and Bkλ(r, t) = ik
[
Akλe

i(k·r−ωkt) − A∗kλe−i(k·r−ωkt)
]
. (2.1.16)
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2.1.2 The quantum harmonic oscillator

“The further away from home you are, the more you want to come back”

(Gary Marchant)

In order to adapt our discussion of classical electromagnetism for the quantum

regime, we start with a brief discussion of the one-dimensional quantum harmonic

oscillator. Let us consider a particle of mass m confined to a one-dimensional po-

tential U(x) = ω2x2/2. The Hamiltonian of such a system consists of the sum of

this potential and the kinetic energy of the particle,

Ĥ =
p̂2

2m
+

1

2
mω2q̂2, (2.1.17)

where q̂ and p̂ are the position and momentum operators, respectively, satisfying

the canonical commutation relation [q̂, p̂] = i~. Rather than proceeding to solve the

Schrödinger equation with the Hamiltonian in this form, it is convenient to introduce

the operator â and its hermitian conjugate â†, defined as

â =
1√

2m~ω
(mωq̂ + ip̂) (2.1.18)

â† =
1√

2m~ω
(mωq̂ − ip̂) , (2.1.19)

so that, conversely, the position and momentum operators may be written as

q̂ =

√
~

2mω

(
â+ â†

)
(2.1.20)

p̂ = −i
√
m~ω

2

(
â− â†

)
. (2.1.21)

The operators â and â† are known as the creation and annihilation operators, re-

spectively for reasons that will become clear as we proceed. It is straightforward to

prove their commutation relations
[
â, â†

]
= 1 and [â, â] =

[
â†, â†

]
= 0. By perform-

ing the multiplication â†â, we can see that the Hamiltonian in Eq. (2.1.17) may be

written as

Ĥ = ~ω
(
â†â+

1

2

)
. (2.1.22)

In the Schrödinger picture of quantum mechanics, the eigenequation for a general

energy eigenstate ψn with eigenvalue En is given by

Ĥψn = Enψn. (2.1.23)
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With the above form of the Hamiltonian, it is easy to show the following commuta-

tion relations [
Ĥ, â†

]
= ~ωâ† and

[
Ĥ, â

]
= −~ωâ (2.1.24)

and combining these relations with Eq. (2.1.23), we can show that operating on ψn

with Ĥâ† yields the following eigenequation

Ĥâ†ψn = (~ω + En)â†ψn (2.1.25)

such that â†ψn is an eigenfunction of Ĥ with eigenvalue (En − ~ω). Instead, if we

operate on ψn with Ĥâ, we find that âψn is an eigenvalue of Ĥ with eigenvalue

(En−~ω). These relations tell us that the energy of the oscillator comes in discrete

packets which can either be removed or added by application of the operator â or

â†, respectively, hence their names. Sometimes in the literature, these operators

are referred to as the ladder operators as the energy of the harmonic oscillator can

be viewed as a ladder of equally-spaced levels. It can be shown that the bottom

rung of the ladder, corresponding to the lowest energy E0 of the oscillator, is equal

to ~ω/2. This value is known as the zero-point energy and it is a purely quantum

mechanical artefact. It will become clear later that the zero-point energy represents

the important vacuum fluctuations in the quantization of the electromagnetic field

that are an intrinsic property described by the Heisenberg uncertainty principle [30].

2.1.3 Quantization of the electromagnetic field and the quadra-

ture operators

With an overview of classical electromagnetism and the quantum harmonic oscillator

behind us, we now turn our attention to the quantization of the electromagnetic

field that is crucial in a complete understanding of the concepts to be introduced

in the upcoming chapters. Our starting point is the energy of a single mode of the

electromagnetic field labeled kλ within a volume V averaged over an optical cycle,

which is given by

H =
1

2

∫
V

(
ε0E

2 +
B2

µ0

)
d3r = 2V ε0ω

2AkλA
∗
kλ. (2.1.26)
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It is clear from this expression that the energy of the electromagnetic field looks

identical to that of a harmonic oscillator with position and momentum coordinates

q and p, respectively given by (p2/m + mω2q2)/2. Noting that the generalization

to multiple modes is attained as the sum of the energy contributions of each mode,

we can achieve quantization of the field by treating each field mode as a quantum

harmonic oscillator with canonically-conjugate phase-space coordinates q̂kλ and p̂kλ.

We may then define a pair of dimensionless operators known as the quadrature

operators or, simply, the quadratures,

Q̂kλ =

√
2mω

~
q̂kλ =

(
âkλ + â†kλ

)
, P̂kλ =

√
2

m~ω
p̂kλ = −i

(
âkλ − â†kλ

)
. (2.1.27)

In terms of the quadrature operators, the creation and annihilation operators may

be written as

âkλ =
1

2

(
Q̂kλ + iP̂kλ

)
, â†kλ =

1

2

(
Q̂kλ − iP̂kλ

)
. (2.1.28)

The quadratures obey the dimensionless canonical commutation relation
[
Q̂kλ, P̂kλ

]
=

2i, hence their definition can be thought of as setting ~ = 2. In the following chap-

ters, we use this convention exclusively, but it is important to note, especially in

the interest of readers unfamiliar with the field, that many others are employed in

the literature, including but not limited to ~ = 1 and ~ = 1/2. Henceforth, we

will exclusively use the quadrature operators when referring to the quantized elec-

tromagnetic field, and we will use the lowercase notation q̂kλ and p̂kλ which is most

common in the literature.

We are now able to express formulae for the quantum operators describing field

potential by replacing the classical field amplitudes Akλ and A∗kλ in Eq. (2.1.12) with

their quantum counterparts. We have

Âkλ → A0âkλ and Â∗kλ → A0â
†
kλ. (2.1.29)

The constant A0, containing all of the dimensional pre-factors, is given by A0 =

(~/2ε0ωk)1/2. We may then write the quantized vector potential in analogy with

Eq. (2.1.12) as

Âkλ = A0

[
âkλe

i(k·r−ωkt) + â†kλe
−i(k·r−ωkt)

]
(2.1.30)
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and with equations (2.1.15) and (2.1.16), we obtain the quantized electric and mag-

netic field operators, respectively,

Êkλ = E0

[
âkλe

i(k·r−ωkt) + â†kλe
−i(k·r−ωkt)

]
(2.1.31)

B̂kλ = B0

[
âkλe

i(k·r−ωkt) + â†kλe
−i(k·r−ωkt)

]
, (2.1.32)

with E0 = ωkA0 and B0 = A0. The importance of the quadrature operators becomes

clear when they are used to express the electric field operator of a single mode labeled

kλ. We have

Êkλ = E0 [q̂kλ cos(ωkt− k · r) + p̂kλ sin(ωkt− k · r)] . (2.1.33)

The quadrature operators represent the in- and out-of-phase components of the field

that, unlike the creation and annihilation operators, are observable quantities that

can be measured with respect to a reference field. With the aid of Eq. (2.1.28), the

Heisenberg uncertainty relation for the quadrature operators can be shown to be

〈
(∆q̂kλ)

2
〉 〈

(∆p̂kλ)
2
〉
≥ 1

4
〈[q̂kλ, p̂kλ]〉 = 1. (2.1.34)

The minimum uncertainty implied by this equation corresponds to the variance of

the quantum vacuum fluctuations that are always present due to the laws of quantum

mechanics, analogous to the zero-point energy of the quantum harmonic oscillator.

In the next section, we will explore the quadrature operators in more detail and

consider the energy eigenstates of the field in more detail.

2.2 Phase-space representation

After the brief introduction of the quadrature operators in the previous section, let

us take some time to introduce some of their key properties. For convenience, we

will consider a single mode with a single polarization such that the operators are

labeled q̂ and p̂.

1. The eigenvalue equations for the operators are given by

q̂ |q〉 = q |q〉 and p̂ |p〉 = p |p〉 , (2.2.35)
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where q ∈ R and p ∈ R. The eigenstates have unbounded and continuous spec-

tra, hence they are not normalizable and therefore nonphysical. Nevertheless,

they are useful as a tool in a variety of applications.

2. They are complete∫ +∞

−∞
|q〉 〈q| dq = 1,

∫ +∞

−∞
|p〉 〈p| dp = 1. (2.2.36)

3. They are related to one-another by Fourier transform

|q〉 =
1

2
√
π

∫
e−iqp/2 |p〉 dp , |p〉 =

1

2
√
π

∫
eiqp/2 |q〉 dq . (2.2.37)

In order to establish a general notation for multi-mode light in terms of the

quadrature operators, we can group the operators labeled q̂i and p̂i into a single

operator x̂ such that, for a system of n modes, we have

x̂ = (q̂1, p̂1, . . . , q̂n, p̂n)T . (2.2.38)

In line with the relationship in Eq. (2.2.35), the eigenequation for the vector operator

is simply

x̂ |x〉 = xT |x〉 (2.2.39)

where x ∈ R2N . The commutation relation for the operator becomes[
x̂, x̂T

]
= 2iΩ, (2.2.40)

where Ω is known as the symplectic form, defined for N modes as

Ω =
N⊕
k=1

Ω1 with Ω1 :=

 0 1

−1 0

 . (2.2.41)

The description of a multimode state is most easily visualised in the phase space

in terms of the Wigner quasi-probability distribution which, for a general N -mode

state of light, is given by

W (x) =
1

(2π)2N

∫
R2N

exp
(
−ixTΩξ

)
χ(ξ) d2Nξ , (2.2.42)

where ξ ∈ R2N and χ(ξ) is the Wigner characteristic function, which, for a state ρ̂

is given by

χ(ξ) = tr [ρ̂D(ξ)] , D(ξ) := exp
(
ix̂TΩξ

)
, (2.2.43)
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where D(ξ) is the Weyl operator and tr(ρ̂O) =
∑

i 〈ψi|ρ̂O|ψi〉 for an operator O

where {|ψi〉} is an orthonormal basis spanning the Hilbert space of ρ̂. The Wigner

function is always normalized to unity but holds its status as a quasi-probability

distribution due to the fact it is generally non-positive. As with any statistical

distribution, the Wigner function is characterized by its statistical moments. The

first moment is the mean value, which is given by

x̄ := 〈x̂〉 = tr (x̂ρ̂) (2.2.44)

while the second is called the covariance matrix (CM) V, whose elements Vij are

defined as

Vij :=
1

2
〈{∆x̂i,∆x̂j}〉 , (2.2.45)

where ∆x̂i := x̂i− 〈x̂i〉 and {Â, B̂} = ÂB̂ + B̂Â is the anticommutator. The CM of

an N -mode state is a 2N×2N symmetric and positive definite (V > 0) matrix that

satisfies the uncertainty principle V + iΩ ≥ 0.

2.3 Fock representation

The Fock representation (or photon number state representation) is a method of

representing quantum states of light based on the harmonic oscillator model. We

begin with the states |n〉 which are the energy eigenstates of the quantum harmonic

oscillator with n excited quanta in a mode of angular frequency ω that satisfy the

eigenequation

~ω
(
â†â+

1

2

)
|n〉 = ~ω

(
q̂2 + p̂2

4
+

1

2

)
|n〉 = En |n〉 =

(
n+

1

2

)
~ω |n〉 , (2.3.46)

where â† and â are the creation and annihilation operators for the mode and q̂

and p̂ are its quadrature operators. We can see immediately that if no quanta are

excited, the zero-point energy of the oscillator is equal to ~ω/2. In the quantized

electromagnetic field picture, the states are called Fock states, and a Fock state |n〉
represents a monochromatic field containing n photons. As mentioned previously,

the zero-point energy in this picture represents the inherent quantum mechanical

vacuum fluctuations that can be observed in detectors with no incoming photons.

The key properties of Fock states can be summarized as follows
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1. The Fock states form an orthonormal basis and thus satisfy the relation

〈n|n′〉 = δnn′ . (2.3.47)

2. Despite forming an infinite set, they are complete

∞∑
n=0

|n〉 〈n| = 1. (2.3.48)

3. In the Fock representation, the creation and annihilation operators are defined

according to the following relations

â† |n〉 =
√
n+ 1 |n+ 1〉 (2.3.49)

â |n〉 =
√
n |n− 1〉 . (2.3.50)

Applying the creation operator to Eq. (2.3.50) yields the following result

â†â |n〉 = n̂ |n〉 = n |n〉 , (2.3.51)

where n̂ is called the number operator and, when applied to the state |n〉, it

yields the number of photons n.

2.4 Gaussian quantum optics

In this section, we will introduce the Gaussian states of the electromagnetic field,

which are a particularly important and useful subset of optical quantum states. The

definition of a Gaussian state follows naturally from our discussion of the phase-space

representation. It is simply a state that can be completely characterized by the first

and second moments of the Wigner distribution, such that ρ̂ = ρ̂(x̄,V) where x̄ and

V are the mean value and CM of the state, respectively. The characteristic function

of a Gaussian state takes the following form

χ(ξ) = exp

[
1

2
ξT
(
ΩVΩT

)
ξ − i(Ωx̄)Tξ

]
(2.4.52)

such that the Wigner function is, by definition, Gaussian

W (x) =
1

(2π)2N
√

det V
exp

[
−1

2
(x− x̄)T V−1 (x− x̄)

]
, (2.4.53)
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where N is the number of modes. Gaussian states are of particular importance in

this thesis and more generally in the field of quantum optics and quantum informa-

tion theory as a whole. Their mathematical description is straightforward in terms

of Gaussian functions and their evolution is described with Gaussian unitary trans-

formations. Moreover, many important states relevant to CV QKD are Gaussian,

as we will describe in the following sections.

The most important definition relevant to Gaussian states is the symplectic de-

composition. Williamson’s theorem states that every positive-definite real matrix of

even dimension can be put into diagonal form by a symplectic transformation [31].

Recall that any N -mode CM V is a positive-definite real matrix and can, therefore,

be expressed as

V = SV⊕ST, V⊕ :=
N⊕
i=1

νiI, (2.4.54)

where I is the 2×2 identity matrix and V⊕ is called the Williamson form of the

matrix V. The set of N real numbers {νi} is called the symplectic spectrum of V and

the elements, called the symplectic eigenvalues, satisfy the condition νi ≥ 1. They

can be obtained in identical pairs by taking the absolute values of the eigenvalues

of the matrix iΩV, where Ω is the symplectic form given in Eq. (2.2.41). We will

see that this important property is the key to the simplicity of the mathematical

description of Gaussian states. In the following sections, we will introduce some of

the most common Gaussian states and operations which are made use of frequently

throughout the following chapters.

2.4.1 Vacuum and thermal states

The most fundamental Gaussian state is the vacuum state, which has the lowest

possible energy allowed by quantum mechanics. It is the eigenstate of the annihi-

lation operator with zero eigenvalue (â |0〉 = 0) and it contains zero photons. As

a result, its CM is simply the identity matrix. In the phase space, vacuum states

are represented by a circle of unit radius which corresponds to the smallest variance

allowed by the uncertainty principle (cf. Eq. (2.1.34))

Excited states of light are known thermal states. They are parameterized by a
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mean number of photons n̄ and their CM is given by V = (2n̄ + 1)I where I is the

2×2 identity matrix. In the Fock basis, a thermal state takes the form

p̂th(n̄) =
∞∑
n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n| (2.4.55)

and, in phase space representation, it is represented by a circle of radius 2n̄+ 1.

2.4.2 Coherent states and the displacement operator

The coherent state, represented by |α〉 is the quantum state that most resembles the

classical behavior of light and is equivalent to a classical monochromatic wave. As

such, it is a minimum uncertainty state that saturates the uncertainty principle. To

describe the mathematics of the coherent state we first introduce the displacement

operator, whose action is to displace a state in the phase space. It is defined as

D(α) := exp
(
αâ† − α∗â

)
, (2.4.56)

where α is the (complex) magnitude of the displacement. It can be shown that

application of the displacement operator on the creation and annihilation operators

shifts them by an amount α as

D†(α)âD(α) = â+ α (2.4.57)

D†(α)â†D(α) = â† + α∗. (2.4.58)

The coherent state is obtained simply by operating on a vacuum state with the

displacement operator such that |α〉 = D(α) |0〉. It is straightforward to show that

a coherent state |α〉 is an eigenvector of the annihilation operator â |α〉 = α |α〉 and

it is readily expressed in the Fock basis as

|α〉 = exp

(
−1

2
|α|2
) ∞∑

n=0

αn√
n!
|n〉 . (2.4.59)

We can see that the average number of photons, n̄ = 〈α|n̂|α〉 = |α|2 and we can

write the probability of observing n photons when performing a photon-number

measurement on a coherent state, p(n), as

p(n) = | 〈n|α〉 |2 =
n̄n

n!
e−n̄, (2.4.60)

which is a Poisson distribution.
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2.4.3 Squeezed states of light

Squeezed states are a particular group of states of light that exhibit quadrature

uncertainty less than that associated with the vacuum fluctuations. The term

squeezed refers to the fact that the uncertainty circle of the state in the phase-

space is ‘squeezed’ in a particular direction. In accordance with the uncertainty

principle, the uncertainty in the conjugate direction is simultaneously increased, or

‘anti-squeezed’ such that the area of uncertainty remains constant. In this section,

we will outline the Gaussian operations which generate squeezed states for either

one or two modes. This discussion will lead us to the important notion of two-mode

squeezed vacuum states which exhibit Einstein-Podolski-Rosen (EPR) correlations

and are the main source of entanglement in quantum optics.

Single-mode squeezing

The process of generating squeezed states is complex, requiring non-linear optical

methods. For single-mode squeezing, the underlying method is degenerate optical

parametric amplification (OPA), in which a second-order non-linear crystal is placed

between two or more mirrors in order to form an optical resonator. The resonator

is pumped with bright laser light of frequency 2ω and combined with a signal mode

of frequency ω. The non-linearity of the crystal causes the electric field of the signal

to be either amplified or deamplified depending on its phase relative to the pump

laser, resulting in the mode being squeezed in the phase or amplitude quadrature,

respectively. The Gaussian single-mode squeezing operator describing this process

is defined as

S(r) := exp
[r

2

(
â2 − â†2

)]
, (2.4.61)

where r is called the squeezing parameter. If the signal mode is simply the vacuum,

we obtain a squeezed vacuum state, which, in the Fock basis, can be written as

|0, r〉 = S(r) |0〉 =
1√

cosh r

∞∑
n=0

√
(2n)!

2nn!
tanh rn |2n〉 . (2.4.62)
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Two-mode squeezing and continuous-variable entanglement

A two-mode squeezed state is one that exhibits uncertainty below that of the vacuum

fluctuations in a linear combination of the quadratures of the two fields of a two-mode

system. The usual process for generating two-mode squeezed light is non-degenerate

OPA in which a non-linear crystal is pumped with laser light as well as light from

signal and idler modes. The interaction is described by the Gaussian two-mode

squeezing operator, defined as

S2(r) := exp
[r

2

(
âb̂− â†b̂†

)]
, (2.4.63)

where â and b̂ are the annihilation operators of the two modes and r quantifies

the two-mode squeezing. If we apply the two-mode squeezing operator to a pair of

vacuum modes, we obtain a two-mode squeezed vacuum (TMSV) state. In the Fock

basis, this process is represented as

|r〉TMSV = S2(r) (|0〉a ⊗ |0〉b) (2.4.64)

=
√

1− λ2

∞∑
n=0

(−λ)n |n〉a |n〉b , (2.4.65)

where λ = tanh r. The TMSV state is particularly important as it exhibits EPR

correlations between the quadratures. For this reason, it is a form of continuous-

variable entanglement. In the limit r →∞, we have perfect correlation between the

quadratures, and the state is analogous that of two maximally entangled qubits A

and B, i.e. one of the following Bell states

|Φ±〉 =
1√
2

(|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B) (2.4.66)

|Ψ±〉 =
1√
2

(|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B) . (2.4.67)

In the quadrature picture, the CM of a TMSV state, VTMSV is parameterised by

the variance µ = cosh 2r. It is given by

VTMSV(µ) =

 µI
√
µ2 − 1Z√

µ2 − 1Z µI

 , (2.4.68)

where I is the 2×2 identity matrix and Z := diag(1,−1). We will make use of this

formalism frequently throughout the remainder of this thesis as it is of particular

importance in CV QKD.
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2.4.4 The beam splitter

The beam splitter is one of the most fundamental interactions in quantum optics

which is useful in its own right as well as a simple model for several more complex

optical devices. A beam splitter is simply a device in which two incoming beams

interfere to produce two outgoing beams. The beam splitter interaction is described

by a Gaussian unitary operation defined as

B(θ) = exp
[
θ
(
â†b̂− âb̂†

)]
, (2.4.69)

where â and b̂ are the annihilation operators of the incoming beams. The interaction

is characterised by transmissivity of the beam splitter, τ = cos2 θ. The operation

transforms the quadrature operators r̂ as

x̂→ B(τ)x̂, B(τ) :=

 √
τI

√
1− τI

−
√

1− τI √
τI

 , (2.4.70)

such that the mean value and CM transform as x̄→ B(τ)x̄ and V→ B(τ)VB(τ)T.

This transformation can easily be generalized to an n-mode system of which two

modes interact by adding identity blocks in the relevant locations.

2.4.5 Measuring Gaussian states

A measurement process is an essential tool in any quantum protocol. It allows

us to extract usable information from any quantum system. Fortunately, in the

case of continuous-variable states of light, the measurement process is relatively

straightforward and is performed almost exclusively with homodyne detectors. For

Gaussian states, in particular, the description of not only the measurement outcome

but the post-measurement quantum state has a particularly soluble mathematical

form based on the mean value and CM of the signal state. This section will serve

as a complete introduction to this mathematical framework that is of the utmost

importance in a full understanding of continuous-variable quantum mechanics.

Homodyne detection

The homodyne detector apparatus usually consists of a balanced beam splitter and

two photodiodes. At the beam splitter, a signal mode, S, is mixed with a local
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oscillator of equivalent frequency. The amplitude of the local oscillator must be

much larger than that of the signal, so that we may make the assumption that it

behaves classically and its intensity can, therefore, be accurately obtained without

disrupting the system.

Let us consider a general n-mode Gaussian state with CM V that can be written

as

VAB =

 A C

CT B

 , (2.4.71)

where A is the CM of the (n−1)-mode subsystem A, B is the CM of the mode B to

be measured and C is the correlation between the subsystems. The corresponding

mean value is x̄AB = (x̄A, x̄B)T where x̄A(B) is the mean value of subsystem A(B).

Let us now assume that mode B is measured with homodyne detection with outcome

β. It can be shown that the post-measurement CM of the system becomes [18]

VA|β = A−C (ΠBΠ)−1 CT, (2.4.72)

where, for q-quadrature detection, Π = diag(1, 0) and, for p-quadrature detection,

Π = diag(0, 1). As ΠBΠ is singular, (ΠBΠ)−1 is a pseudoinverse (Moor-Penrose

inverse) which, for square diagonal matrices such as this, is obtained by taking the

reciprocal of each non-zero element1. The pseudoinverse is applicable in this case as

the measurement has no support in the quadrature conjugate to that which is being

measured.

The mean value of the larger system is also affected by the measurement process,

after which it takes the following form

x̄A|β = x̄A −C (ΠBΠ)−1 dT (2.4.73)

where d = x̄B − (β, 0)T and d = x̄B − (0, β)T for q- and p-quadrature detection,

respectively. Finally, the probability of obtaining outcome β upon measurement of

1The pseudoinverse of a general matrix M can be obtained by performing singular value decom-

position M = UΣV ∗ such that M−1 = V Σ−1U∗. The pseudoinverse of the rectangular diagonal

matrix Σ is obtained by taking the reciprocal of each non-zero diagonal element then taking the

transpose of the matrix.
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a given quadrature is obtained by integrating the Wigner function W (q, p) over the

conjugate quadrature

p(β) =

∫ +∞

−∞
W (β, p) dp , or p(β) =

∫ +∞

−∞
W (q, β) dq . (2.4.74)

The result can be conveniently expressed in the following form

p(β) =
1√

2π
√

det(ΠBΠ)
exp

[
−1

2
dT(ΠBΠ)−1d

]
, (2.4.75)

where Π and d are defined above. While the efficiencies of modern-day homodyne

detectors are particularly high, the detection cannot be implemented with ideal

precision. Detector inefficiencies are usually modelled by a beam splitter with a

transmissivity that coincides with the efficiency of the detector, which mixes an

incoming signal with the vacuum. The transmitted mode is then measured with an

ideal detector described by the above formalism.

Heterodyne detection

Homodyne detection can be used to measure a single quadrature of the electromag-

netic field, but how can we measure both quadratures of the mode at the same time?

The answer to this question is provided by a technique called heterodyne detection.

The detection scheme can be seen as follows. The signal mode first passes through a

beam splitter where it is mixed with the vacuum. This process effectively duplicates

the mode, with the caveat that an extra unit of noise is injected. The outputs from

each port of the beam splitter are subsequently measured in independent homodyne

detectors.

The mathematical description of the post-measurement CM and mean value can

be broached in a similar manner to that of homodyne detection and our starting

point again is Eq. (2.4.71). The post-measurement CM of system A after mode B

is measured with heterodyne detection with outcome β has been shown to be [32]

VA|β = A−C (B + I)−1 CT, (2.4.76)

where the addition of the identity accounts for the additional unit of vacuum noise

introduced and is thus specific to our choice of normalization convention. Note that
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the post-measurement CM is again independent of the measurement outcome, which

only appears in the mean value of the remaining system that is given by

x̄A|β = x̄A −C (B + I)−1 d, (2.4.77)

where x̄A is the mean value of the (n − 1)-mode system A, d = x̄B − β and

β = (βq, βp)
T is the measurement outcome with βq and βp being the individual

measurement outcomes of the q- and p-quadratures, respectively. Finally, the prob-

ability associated with outcome β is given by

p(β) =
exp

[
−1

2
dT (B + I)−1 d

]
2π
√

det (B + I)
. (2.4.78)

2.5 Measures of information for classical and quan-

tum ensembles

The inherently probabilistic nature of quantum mechanics necessitates a strong un-

derstanding of the fundamentals of probability theory to its readers. We will use

this section to introduce important definitions from information theory that arise

frequently in our forthcoming analysis of QKD protocols and quantum networks.

We will then introduce measures of analyzing quantum states and how they pertain

to our study of quantum information theory.

2.5.1 Shannon entropy

Perhaps the most important quantity from information theory that we must intro-

duce is the entropy of a random variable, which quantifies the level of uncertainty

in its possible outcomes. The concept of entropy was introduced by Claude Shan-

non [33] and is often referred to as the Shannon entropy, particularly when it is used

in the context of binary information.

Definition 2.5.1 (Entropy) Let X a random variable with corresponding alphabet

X and probability mass function p(x). The entropy of X is given by

H(X) = −
∑
x∈X

p(x) log p(x). (2.5.79)
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The base of the logarithm in Eq. (2.5.79) should be selected depending on the

particular problem being considered, for example, base-2 for bits and base-e for nats.

Let us consider a binary random variable X with probability p = P{X = 0} ∈ [0, 1].

Using Eq. (2.5.79) it is straightforward to see that the entropy reduces to

H(X) = H2(X) = −p log p− (1− p) log(1− p), (2.5.80)

where H2(·) is known as the binary entropy function. This function will arise often

throughout the following chapters.

Up to this point, we have only considered discrete variables in our discussion.

Let us now introduce the differential entropy which allows us to compute the entropy

of a continuous random variable.

Definition 2.5.2 (Differential entropy) Let X be a continuous random variable

with probability density function p(x). The differential entropy is defined as

H(X) := −
∫ +∞

−∞
p(x) log p(x) dx . (2.5.81)

The modification is rather straightforward but worthy of inclusion in this discussion

as a demonstration of the process required to compute the statistical quantities

of continuous variables. The next quantity is somewhat less trivial but of great

importance in the upcoming chapters.

Definition 2.5.3 (Conditional entropy) Let X and Y be random variables with

probability mass functions p(x) and p(y). Let us also assume that p(x|y) is a prob-

ability mass function which is discrete for every x. The conditional entropy of the

distribution X given Y is defined as

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y), (2.5.82)

where H(X|Y = y) is the entropy of random variable X conditioned on the outcome

of random variable Y being y, given by

H(X|Y = y) = −
∑
x∈X

p(x|y) log p(x|y). (2.5.83)
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For the remainder of the thesis we employ the shorthand notation HX|y ≡ H(X|Y =

y) for brevity. The conditional entropy is a measure of the uncertainty on the vari-

able X given the value of the variable Y . Clearly knowledge of Y cannot increase

our uncertainty about X, hence we may write the inequality H(X|Y ) ≤ H(X). The

expression for the differential conditional entropy is readily obtained from this defi-

nition by replacing the probability mass functions with probability density functions

and replacing the sums with integrals.

2.5.2 Mutual information

One statistical quantity that is encountered frequently in the study of quantum

information theory is the mutual information between two random variables.

Definition 2.5.4 (Mutual information) For two random variables X and Y with

joint probability mass function p(x, y), marginal distributions p(x) and p(y), and al-

phabets X and Y, respectively, the mutual information is given by

I(X : Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.5.84)

= H(X)−H(X|Y ) (2.5.85)

= H(Y )−H(Y |X). (2.5.86)

In short, the mutual information between two random variables is the amount of

information attainable about one variable if the other is known. It is of particular

importance in the study of QKD when attempting to estimate the information that

the parties share as well as that which an eavesdropper may attain.

2.5.3 Von Neumann entropy

The von Neumann entropy (VNE) is the quantum generalization of the classical

entropy which is derived by extending the classical definition from probability dis-

tributions to density matrices.

Definition 2.5.5 (Von Neumann entropy) For a density matrix ρ̂X , the von
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Neumann entropy is defined as

S(X) := − tr(ρ̂X log ρ̂X) = −
∑
i

λi log λi (2.5.87)

where {λi} are the eigenvalues of the state ρ̂X .

The VNE of a system X conditioned on the random variable Y with alphabet Y
and probability mass function p(y) is given in analogy with the conditional Shannon

entropy by

S(X|Y ) =
∑
y∈Y

p(y)S(ρ̂X|y) (2.5.88)

where ρ̂X|y is the density matrix representing the variable X conditioned on the

value y of the random variable Y . If the density matrix in question is that of an

N -mode Gaussian state, ρ̂ = ρ̂(x̄,V), the VNE can be obtained straightforwardly

in terms of the symplectic eigenvalues {νi} of the CM V by

S(ρ̂) =
N∑
i=1

h(νi) (2.5.89)

where

h(ν) :=
ν + 1

2
log

ν + 1

2
− ν − 1

2
log

ν − 1

2
. (2.5.90)

2.5.4 Quantum relative entropy

Another important entropic quantity in quantum mechanics is the quantum relative

entropy, which measures the distinguishability between two quantum states ρ̂ and σ̂

S(ρ̂||σ̂) := tr [ρ̂ (log ρ̂− log σ̂)] . (2.5.91)

By taking the infimum of the quantum relative entropy over all states σ̂ in some

convex set, we obtain the relative entropy distance which measures the distance

between ρ̂ and the set of states. If this convex set is the set of separable states S,

the relative entropy distance becomes the relative entropy of entanglement (REE)

ER [34],

ER(ρ̂) = inf
σ̂∈S

S(ρ̂||σ̂). (2.5.92)
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2.5.5 The Holevo bound

The last quantity that we will introduce is the Holevo bound (or Holevo information)

χ which provides an upper bound on the maximum information attainable with any

measurement.

Definition 2.5.6 (The Holevo Bound) Let us suppose that party A prepares states

ρ̂x according to the random variable X with alphabet X and probability mass function

p(x). Party A sends states to party B, who observes the state ρ̂ =
∑

x∈X p(x)ρ̂x and

performs measurements with outcomes forming the random variable Y . The mutual

information between X and Y is bounded by the Holevo information χ such that

I(X : Y ) ≤ χ, χ := S(ρ̂)−
∑
x∈X

p(x)S(ρ̂x). (2.5.93)

The first term in the expression for χ is the total entropy of the system of party

B and the second term is the conditional entropy, i.e. the entropy of the system

given knowledge of the classical information. The difference, and thus the Holevo

bound, is a measure of the inherent quantum information within the system. The

bound appears in a variety of tasks within quantum information theory, particu-

larly in QKD, where its importance cannot be overstated as it allows the security

of a protocol to be determined under the strong assumption that an eavesdropper

is performing the best possible measurement on their data. This allows us to con-

sider some particularly strong eavesdropping regimes which may even exploit future

quantum technologies.

2.6 Capacities of quantum channels and networks

The final tool we must add to our collection in order for a full understanding of

the upcoming chapters takes us back to the foundational level of quantum infor-

mation theory. We will examine the current state of the art of establishing the

capacities of quantum channels and networks. Recently, substantial progress has

been made in this field using a new channel simulation technique dubbed ‘telepor-

tation stretching’ that we will introduce later. These ideas were first introduced by
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Pirandola et al. [20] and used to establish the Pirandola-Laurenza-Ottaviani-Banchi

(PLOB) bound which provides the fundamental limit of repeaterless communica-

tions. Teleportation stretching is the foundational principle on which we will seek

to establish bounds for quantum networking in the final chapter. We will, therefore,

introduce the mathematical framework starting first with single quantum channels

and progressing later to quantum networks.

2.6.1 A general adaptive protocol for quantum communica-

tion and general bounds

Before we proceed to compute bounds on the capacities of various quantum channels,

we must outline a general communication protocol between two parties Alice and

Bob separated by a quantum channel E . We will consider the most general strategy

which may be assisted by adaptive local operations and classical communications

(LOCCs), which may be applied to Alice and Bob’s local registers of quantum states,

which we label a and b, respectively. Such a protocol can be summarized in the

following steps [20]:

1. Alice and Bob prepare an initial state ρ̂0
ab by applying a LOCC Λ0 to their

individual registers.

2. Alice sends a system a1 from her register to Bob through the channel. Bob

adds the received system b1 to his register, b1b → b and a further adaptive

LOCC Λ1 is applied by the parties yielding the output state ρ̂1
ab.

3. The process in step 2 is repeated for n uses of the channel, giving a series of

LOCCs P = {Λ0, . . . ,Λn} which characterizes the protocol. The final state of

the combined system is, therefore, ρ̂nab.

The rate of the protocol is Rn if the output state ρ̂nab after n transmissions is

epsilon-close to a target state φ̂n in trace norm, i.e. ||ρ̂nab − φ̂n|| ≤ ε, with nRn bits.

The capacity of the quantum channel, C(E) is defined as the optimization over the

set of LOCCs in the asymptotic limit of channel uses,

C(E) := sup
P

lim
n
Rn (2.6.94)
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where C is a generic symbol for the two-way assisted capacity which can be, for

example, the two-way entanglement-distribution capacity D2, the two-way quantum

capacity Q2, the secret key capacity K or the two-way private capacity P2 [35, 36].

We can now establish a weak bound on the capacity using the REE introduced

in Sec. 2.5.4. Following the definitions of the REE and the relative entropy, the

REE of a quantum channel is defined by [20]

ER(E) := sup
ρ̂
ER[I⊗ E(ρ̂)] ≥ ER(ρ̂E), (2.6.95)

where ρ̂E is called the Choi matrix of the channel, which is defined by

ρ̂E := (I⊗ E)
(

Φ̂AB

)
(2.6.96)

where Φ̂AB is a maximally entangled (EPR) state with two sites A and B [8]. The

Choi matrix is obtained by propagating site B of this state through the channel,

leaving site A unchanged. These results lead to the general weak converse theorem

[20]

Theorem 2.6.1 (Weak converse theorem) At any dimension, finite or infinite,

the generic two-way capacity of a quantum channel E is upper-bounded by the REE

bound

C(E) ≤ E?
R(E) := sup

P
lim
n

ER(ρ̂nab)

n
. (2.6.97)

We will see in the upcoming sections that the weak converse theorem allows us to

bound the capacity of a channel using the REE.

2.6.2 Channel simulation and teleportation covariance

Channel simulation is a well-known area of research in the field of quantum com-

munication. It allows complex channels to be modeled with a relatively simple

protocol, which has led to many important results. Until recently, the main idea

behind channel simulation was teleportation simulation, which is only applicable to

certain quantum channels. The first reference to channel simulation was by Bennett

et al. [37] for the teleportation simulation of Pauli channels. Since then there has

been much attention on the field yielding important and much more general results.
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Figure 2.1: Schematic of the simulation of a quantum channel from teleportation

simulation to simulation with a general LOCC. (a): Teleportation of Alice’s system

a in state ρ̂ with resource state σ̂ between two systems A and B. Bell detection

is performed on the systems a and A with outcome k that is communicated to

Bob who performs a corrective unitary V −1
k undoing the teleportation unitary Uk

to recover the original state. On average, performing this teleportation procedure is

equivalent to applying a teleportation channel E from a to b. (b): The teleportation

protocol can be replaced by an arbitrary LOCC T . Bell detection is replaced by an

arbitrary quantum operation A and classical information k is communicated to Bob

who applies another arbitrary quantum operation B. This protocol is equivalent to

the simulation of a channel E as E(ρ̂) = T (ρ̂ ⊗ σ̂) if the LOCC is averaged over

all k so that it is trace-preserving. (c): If a channel can be simulated by a trace-

preserving LOCC T applied to its Choi matrix ρ̂E := (I ⊗ E)(Φ̂), it is said to be

‘Choi stretchable’.

The recent work by Pirandola et al. [20] presented a radically new channel simula-

tion formulation for completely arbitrary quantum channels. Moreover, the method

is extended to the continuous- as well as discrete-variable formulation. It is this

work that we will introduce below that will form the foundation of our analysis of

quantum networks.

LOCC simulation of quantum channels

We will begin by considering the teleportation simulation of a channel as shown

in Fig. 2.1(a). Alice and Bob are connected by a channel E which Alice uses to

communicate her state ρ̂ representing her system a to Bob who receives E(ρ̂). This
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scenario can be simulated by considering a shared state σ̂ between Alice and Bob.

Bell detection is performed on Alice’s system a and her part of the shared state,

which we label A, with outcome k, which is communicated to Bob. Bob applies a

corrective unitary V −1
k to his system B with outcome b. This teleportation protocol

is equivalent to the action of certain quantum channels from Alice to Bob, thus it

may be considered a simulation of such channels.

Pirandola et al. showed that the teleportation LOCC in Fig. 2.1(a) can be re-

placed with an arbitrary LOCC T and resource state σ̂ as shown in Fig. 2.1(b). A

channel can be simulated in this way if it can be written as

E(ρ̂) = T (ρ̂⊗ σ̂). (2.6.98)

If so, we say that the channel is ‘σ-stretchable’. In this case, the Bell detection LO

is replaced by an arbitrary quantum operation Ak and Bob applies the corrective

operation Bk after receiving classical information k. A case of particular interest,

especially in our work, is that in which the channel can be simulated with a trace-

preserving LOCC T applied to its Choi matrix ρ̂E defined in Eq. (2.6.96) with the

shared resource being an EPR state Φ̂ as shown in Fig. 2.1(c). In this case, the

channel is said to be ‘Choi stretchable’.

Choi-stretchable channels can be identified by a property known as teleportation

covariance. A d-dimensional quantum channel is teleportation covariant if, for any

U ∈ U, where the set U is that which contains the random unitaries generated by

Bell detection,

E
(
Uρ̂U †

)
= V E(ρ̂)V † (2.6.99)

where V is another arbitrary unitary. Teleportation covariant channels are of partic-

ular importance as they can be teleportation-simulated with the associated correc-

tive teleportation unitary taken outside of the channel and applied later as an-

other corrective unitary. The starting point for understanding this property is

the schematic for the simulation of a teleportation covariant channel outlined in

Fig. 2.1(c). Replacing the LOCC T with a teleportation LOCC, Bell detection on

Alice’s systems a and A creates the state ρ̂A′ = Ukρ̂aU
†
k where Uk is a random tele-

portation unitary. The state of Bob’s system B is given by E(ρ̂A′) = E(Ukρ̂aU
†
k) =
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VkE(ρ̂a)V
†
k where the last equality is obtained by teleportation covariance. Upon

receiving the outcome k of the Bell detection, Bob simply applies V −1
k to obtain

ρ̂b = V −1
k ρ̂B(V −1

k )†. This process describes the simulation of E by a teleportation

LOCC and Choi matrix resource state ρ̂E [20]. Some examples of teleportation

covariant channels include the erasure, dephasing, and depolarizing channels. One

example of a well-known channel that is not teleportation covariant is the amplitude

damping channel.

2.6.3 Stretching of adaptive protocols and bounding capac-

ities

We will now outline the key process which allows us to use channel simulation

methods to simplify the general quantum communication protocol and easily find

upper bounds for quantum channel capacities, following the process outlined in

Ref. [20]. Consider the ith transmission through a channel E , such that Alice and

Bob share the state ρ̂i−1
ab prior to and ρ̂iab after communication. Consider a simulation

with a LOCC ∆i. We know that the output state can be written as

ρ̂iab = ∆i(ρ̂
i−1
ab ⊗ σ̂). (2.6.100)

Iterating the formula n times gives

ρ̂nab = Λ
(
ρ̂0
ab ⊗ σ̂⊗n

)
(2.6.101)

for Λ = ∆n × · · · × ∆1. We can include the process of preparing the initial state

ρ̂0
ab in the LOCC Λ and average over all local measurements in Λ so that it becomes

the trace-preserving LOCC Λ̄ (see Ref. [20] for a more in-depth discussion of this

process). The state can then be written as

ρ̂nab = Λ̄(σ̂⊗n). (2.6.102)

If the channel is Choi-stretchable, the resource state is the Choi matrix such that

ρ̂nab = Λ̄(ρ̂⊗nE ). An important property of the REE is that it is monotonic under

trace-preserving LOCC. This fact allows us to write

ER(ρ̂nab) ≤ ER(σ̂⊗n), (2.6.103)
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such that the LOCC Λ̄ is removed. We can now insert the right-hand side of

this inequality into the weak converse theorem in Eq. (2.6.97) which allows us to

write E?
R ≤ ER(σ̂) and, finally, we can write what is known as the one-shot REE

bound [20]: if we stretch an arbitrary quantum channel E into a resource state σ̂,

its quantum capacity can be bounded by the REE of the resource state,

C(E) ≤ ER(σ̂). (2.6.104)

This equation represents a significantly reduced calculation of the upper bound on

the capacity of a quantum channel. Moreover, if E is Choi-stretchable, the upper

bound is obtained simply by the REE of the channel

C(E) ≤ ER(ρ̂E) = ER(E). (2.6.105)

This key result allows us to provide upper bounds on a variety of quantum channels

simply through straightforward calculation of their REE.

2.6.4 Capacities and rates of quantum networks

In this section, we will extend the above formalism of the capacities of single quan-

tum channels to the most general case of quantum networks. Our goal is to establish

the quantum capacity of arbitrary network structures in which a set of senders (or

Alices) {Ai} communicate with a set of receivers (or Bobs) {Bj} via a set of interme-

diate nodes that may transmit quantum information in a single direction. Ref. [20]

was the first to begin this generalization by considering point-to-point protocols over

a quantum channel, while Ref. [38] extended this study to protocols over repeater

chains and, more generally, quantum networks. Finally, Ref. [39] further extended

the study to quantum communication networks with multiple senders and receivers.

In order to describe arbitrary network configurations in a mathematically suc-

cinct way, we must introduce a framework based on graph theory. We will describe

a quantum network N as an undirected graph with nodes (or points) P and edges

E. Two points, x and y are connected by an edge (x, y) ∈ E if and only if there

is a corresponding quantum channel Exy between the two. Each point p has a local

register of quantum systems over which LOs are performed and optimized on the
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basis of two-way CCs with the other nodes. Given a set of senders {Ai} and a set

of receivers {Bj}, we define a cut C as a bipartition (A,B) of the points P such

that {Ai} ⊂ A and {Bj} ⊂ B which is denoted as C : {Ai}|{Bj}. Then, a cut-set

C̃ corresponds to the set of edges (x, y) which are disconnected by the cut C, i.e.,

such that x ∈ A and y ∈ B.

The most straightforward quantum network communication configuration where

we begin our analysis is one that consists of a single sender A and a single receiver

B via a single route. For ease of understanding, we will restrict our analysis to

networks constructed with teleportation-covariant channels. In this case we must

define the single-edge flow of REE for a cut C : A|B with cutset C̃ consisting of

teleportation-covariant channels and Choi matrix resource state σ̂Exy for edge Exy as

ER(C) := max
(x,y)∈C̃

ER(σ̂Exy). (2.6.106)

Again in analogy with the previous techniques applied to quantum channels, the

two-way assisted quantum capacity of the network is bounded from above by

Q2(N ) ≤ min
C:A|B

ER(C) (2.6.107)

where the minimization is over all network cuts. We can extend these ideas to

a slightly more complicated communication regime under which the parties may

make use of all of the edges of the network exactly once by simultaneous routing

from Alice to Bob. This type of strategy is known as a flooding protocol. In this

case, the quantity of interest is the multi-edge flow of REE through cut C : A|B
defined by

Em
R (C) =

∑
(x,y)∈C̃

ER(σ̂Exy) (2.6.108)

which leads to the following upper bound on the multipath (two-way assisted) quan-

tum capacity

Q2(N ) ≤ min
C:A|B

Em
R (C). (2.6.109)

A natural next step is to consider a network of an ensemble of Alices {Ai} com-

municating with an ensemble of Bobs {Bi}. However, the mathematical complexity

of this scenario can be alleviated by grouping the ensemble of Alices into a sin-

gle ‘super-Alice’ and the ensemble of Bobs into a ‘super-Bob’. While the physical
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structure of the network is the same, the communication problem with respect to

these ‘super-users’ reduces to that examined above. Cuts C : A|B must now be

replaced by cuts splitting the super-users, i.e. the two ensembles, C : {Ai}|{Bj}.
This treatment of the network leads to an upper bound because the super-users may,

in principle, apply non-local quantum operations among their nodes and, therefore,

better optimize the transmission rate with respect to the case of ensembles of sep-

arate users. As a result, the optimal rate at which qubits can be transmitted from

the senders to the receivers is bounded by

B(N ) := min
C:{Ai}|{Bj}

∑
(x,y)∈C̃

ER(σ̂Exy). (2.6.110)

It is also important to note that this is a general bound for multiple multicasts

which applies to both the case of single- and multi-message multicasts from senders

to receivers. In fact, since we bound the total number of physical qubits that super

Alice transmits to super Bob, it does not matter if these qubits are independent (i.e.,

in a tensor product of different states) or dependent (e.g., in a global Greenberger-

Horne-Zeilinger (GHZ) state [40]) when we unravel super Bob back into an ensemble

of Bobs.
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Foundations of continuous-variable

quantum key distribution

The core idea of quantum key distribution is elegant and comprehensible, however,

its mathematical and experimental foundations are complex with many important

subtleties. It is for this reason that we have chosen to dedicate a chapter to the

introduction of the fundamental ideas of the theory particularly in regard to the

continuous-variable regime. We will start with an introduction to the motivation

for QKD and proceed to introduce the field of CV QKD. We will then introduce

the notion of the secret key rate and different attack strategies an eavesdropper

may employ, and subsequently, introduce a one-way CV-QKD protocol exploiting

modulated coherent states. This introduction is followed by a brief overview of the

classical strategies of privacy amplification and information reconciliation amongst

others that play a vital role in guaranteeing the security of the regime.

3.1 The motivation for quantum key distribution

A somewhat startling fact about the most widely-used cryptographic protocols that

almost all of us interact with daily is that they are far from provably secure. Worse

still, the exponential growth in computational power adds a further layer of un-

certainty since the security of these protocols is predicated on the computational

difficulty associated with particular mathematical problems such as prime factoring
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in the case of the well-known RSA protocol. These protocols fall into the category

of public-key cryptography. In brief, a public key protocol consists of a legitimate

party, Alice, generating a secret key and a related public key that is broadcast. A

second legitimate party, Bob, can obtain the public key and encrypts a message

before sending the new key back to Alice who can decrypt the message with her

secret key. The security of the protocol is entirely based on the algorithm used by

Bob to perform the encryption that a malicious party may, in principle, successfully

undo, obtaining Bob’s message.

Private-key cryptography is a lesser-used alternative method of cryptography

with some interesting properties. One of the assumptions of any private key pro-

tocol (and simultaneously one of its biggest problems) is that the legitimate com-

municating parties Alice and Bob must share a secret key. If this is the case, the

parties can apply the one-time pad algorithm which simply requires Alice to add the

secret key to her message and send the result to Bob who then subtracts the secret

key to recover the original message. The best feature of private-key cryptography

is that, if the main assumption is granted, the regime is provably secure against

any possible attack an eavesdropper can employ. The difficulty then is in finding a

provably secure key distribution system which, when combined with the one-time

pad, will guarantee the security of the entire protocol.

Quantum cryptography aims to address the problem of securely distributing a

key for private-key cryptography by providing a provably-secure key distribution

protocol that is guaranteed by the laws of physics. The inherent uncertainty of

quantum mechanics is the framework on which this possibility emerges. The funda-

mental difficulty that an eavesdropper faces when attempting to replicate a secret

key encoded in quantum states is the no-cloning theorem, which states that it is

impossible to duplicate an arbitrary quantum state. Moreover, an attempt to inter-

fere with an incoming state, in an attempt to duplicate it or otherwise, can cause

a disturbance in the signal that may be detectable by the legitimate parties. An

eavesdropper must, therefore, only employ a relatively passive attack on the com-

munication channel in order to ensure their presence is undetected.

The seminal QKD protocol was introduced by Bennett and Brassard in 1984 and
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coined the BB84 [17] protocol. In this protocol, the information was encoded in the

polarisation of photons communicated between the parties in optical fiber. A series

of subsequent protocols aimed to improve the performance of the BB84 protocol,

featuring a variety of encoding strategies. However, the early QKD protocols all

shared one feature: their encoding exploited physical systems with discrete degrees

of freedom. Such schemes are now referred to as discrete-variable (DV) QKD. Several

years after the inception of QKD, the first protocols exploiting continuous degrees

of freedom of the quadrature amplitudes of the electromagnetic field were developed

and the field of CV QKD was born.

3.2 A brief history of continuous-variable quan-

tum key distribution

In 1999, T. Ralph published the first QKD protocol which exploited the non-classical

behavior of continuous-variable squeezed states of light [41]. This protocol repre-

sented a stark deviation from the direction of the field of QKD at the time and it

would later lead to the inception of the new field of CV QKD. Several subsequent

protocols including those by Hillery [42] and Reid [43] helped secure the foundations

of CV QKD by exploiting squeezed states of light in different ways to guarantee se-

curity. Two years after the seminal CV-QKD protocol was introduced, it was found

that security could also be achieved with coherent states, bypassing the technical

difficulty of generating squeezed states [44–48].

The field of CV QKD has drawn much attention mainly due to several appeal-

ing advantages it boasts over its DV counterpart: states can be generated and

manipulated relatively easily with linear optics and feed-forward techniques, and

measurements can be performed with readily-available, inexpensive, and highly ef-

ficient homodyne detectors as opposed to single-photon detectors. Furthermore,

homodyne detectors offer particularly high bit rates, providing the regime a sig-

nificant advantage for large-scale communication applications. The combination of

these properties means that CV-QKD protocols can be implemented directly into

existing network infrastructure where fiber optic cables and homodyne detectors are
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commonplace.

At this point, the reader should be armed with the knowledge of the key ideas

of CV quantum mechanics introduced in the previous chapter. The remainder of

this chapter will serve as an introduction to the ideas surrounding CV QKD, in

order to ensure a solid understanding of the fundamentals before tackling more

complex protocols in the following chapters. The discussion begins with the notion

of the secret key rate which is followed by an overview of several ways in which

an eavesdropper may attempt to interfere with a CV-QKD protocol. Next, an

introduction is given to a fundamental CV-QKD protocol that exploits modulated

coherent states, and, finally, the chapter concludes with a brief introduction to

classical post-processing techniques.

3.3 Secret key rate

The performance of any QKD protocol is characterized by its secret key rate, R.

The secret key rate is the number of secret bits that can be communicated per use

of the protocol. In the asymptotic limit of the number of transmitted signals, the

Devetak-Winter formula [49] provides an incredibly straightforward expression for

the secret key rate,

R = I(A : B)− χ (3.3.1)

where I(A : B) is the mutual information between the legitimate parties A and

B, conventionally labeled Alice and Bob, respectively, and χ is the Holevo bound

quantifying the maximum accessible information of an eavesdropper, whom we will

name Eve. Eq. (3.3.1) is the most general form of the secret key rate and its form in

a particular protocol is written in terms of Alice’s encoding, Bob’s best estimate of

Alice’s encoding and Eve’s attack strategy, as we shall see later in the chapter. In a

realistic setting, this rate cannot be achieved as the mutual information, I(A : B)

should be multiplied by the parameter β ∈ [0, 1] which represents the reconciliation

efficiency of the classical post-processing step that we will discuss later. Typical

values of β ≈ 0.95 are commonplace in modern CV QKD error-correcting codes [50].

Due to the Holevo bound χ being an upper bound on Eve’s accessible informa-
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tion, the rate in Eq. (3.3.1) is a lower bound on that which may be achieved if a

suboptimal attack strategy is employed. This property allows us to afford Eve the

most generous quantum resources, enabling strong claims on the security of any

particular protocol. Despite this, Eq. (3.3.1) only provides an asymptotic secret-key

rate in the limit of many uses of a protocol, it alone does not guarantee the security

in a realistic setting, but it does indicate the success of the protocol without the

need for a detailed security analysis [51].

3.4 Eavesdropping

Clearly, no QKD protocol is complete without an eavesdropper. We will now in-

troduce three possible attack strategies and the required quantum technologies for

each. In light of this, we will introduce one particular Gaussian attack that is

very frequently considered in CV-QKD protocols and how it can be easily described

mathematically.

• Individual attacks. An individual attack is the weakest attack Eve may employ

as part of her eavesdropping strategy, but it is also expected to be the most

realistic at present based on state-of-the-art quantum technologies. For each

use of the protocol, Eve prepares an independent ancillary mode that inter-

acts unitarily with the target mode. This is known as an independent and

identically distributed (IID) attack. The modified modes are independently

measured before the communicating parties perform the post-processing step.

• Collective attacks. In this attack strategy, Eve interacts with each target mode

with independent ancillary modes, but she can perform an optimal collective

measurement on all of her modes after the post-processing is complete or,

in general, at any time. This attack necessitates that Eve can store quan-

tum states, potentially for a long time. This is a difficult task with current

technologies but it provides a useful bound on Eve’s information.

• Coherent attacks. This is the most general and, therefore, the most powerful

attack available to an eavesdropper. They may prepare a general (entangled)
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state of an arbitrary number of modes that interact with the incoming target

modes. This ancillary system can then be stored and measured collectively at

a later time.

The entangling cloner attack

We will now introduce a particularly important type of collective attack which is

frequently utilized in CV-QKD protocols due to it being the strongest attack that

Eve can employ in the most commonly used CV-QKD protocols. It is known that

the optimal attack strategy for protocols based on Gaussian operations, such as

homodyne detection, encoding based on Gaussian modulation and channels that

perform Gaussian operations, is a collective attack that is based on a Gaussian

unitary operation. A classification of all collective Gaussian attacks is given in

Ref. [52]. The most commonly employed attack of this form, and that which will

be used frequently throughout the analysis in the forthcoming chapters, is known

as the entangling cloner [53]. The attack consists of two modes E and e which are

initially in a TMSV state of variance ω, the CM of which is given by

VEe =

 ωI
√
ω2 − 1Z

√
ω2 − 1Z ωI

 . (3.4.2)

We assume that Eve is in full control of the quantum channel between Alice and

Bob which, without her presence, is an ideal quantum channel, i.e. with unit trans-

missivity. Eve’s strategy is to insert into this channel a beam splitter of transmis-

sivity τ . In this situation, the legitimate parties will attribute the losses associated

with the beam splitter to realistic channel loss. Eve uses her beam splitter to mix

her mode E with the incoming mode sent by Alice. She then sends the output from

one port of the beam splitter to Bob via a perfect quantum channel while she stores

the remaining output E ′ in a quantum memory. Assuming that Eve’s quantum

memory is lossless and unlimited, she may store the output of every realization of

the protocol and operate them collectively after quantum communication between

the legitimate parties ceases. In the next section, the entangling cloner is applied

to a CV-QKD protocol using coherent states as information carriers.
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Figure 3.1: Schematic of a one-way CV-QKD protocol. Alice sends Gaussian-

modulated coherent states to Bob through an insecure quantum channel of transmis-

sivity τ after displacing the quadratures of her state according to a randomly drawn

vector a. Bob performs a homodyne measurement on one quadrature of his received

mode. It is assumed that Eve performs a collective entangling cloner attack.

3.5 Continuous-variable quantum key distribution

with coherent states

In order to illustrate the principles introduced thus far in a more quantitative man-

ner, we now introduce a foundational CV-QKD protocol based on coherent states

encoded with Gaussian modulation. This protocol serves as a useful introduction

for readers unfamiliar with CV QKD as the procedure is straightforward to under-

stand while the foundations are transferable to the more complex protocols that are

introduced in the subsequent chapters.

As outlined in Fig. 3.1, each realization of this protocol consists of four main

steps. Firstly, Alice chooses variables q ∈ Q and p ∈ P from IID random variables Q
and P that each follow a zero-mean Gaussian distribution with variance Va denoted

as N (0, Va). She uses these variables to modulate the quadratures of a coherent

state so that she obtains |α〉 = |q + ip〉. For the protocol as a whole, the variance

of Alice’s signal is VA = Va + 1 where the additional unit accounts for the vacuum

fluctuations. In each round of the protocol, Alice selects one of the quadratures

at random to be used in the construction of the secret key. The relevant encoding

45



Chapter 3. Foundations of continuous-variable quantum key
distribution

variable after this choice (q or p) is denoted a. Alice sends her encoded coherent

state to Bob via an untrusted quantum channel. The channel may be pure-loss (i.e.

with zero thermal noise) but is more generally a thermal-loss channel characterized

by a transmissivity τ and excess noise that will be discussed in detail later.

All of the losses and noise associated with the channel are attributed to an

eavesdropper, Eve. The fact that all aspects of the protocol (channels, states, and

measurements) are Gaussian allows us to make the assumption that Eve employs

a collective entangling cloner attack as discussed in Sec. 3.4. We therefore assume

she holds a TMSV state of variance ω and modes E and e. She inserts, into an

otherwise lossless channel, a beamsplitter of transmissivity τ which mixes her mode

E with Alice’s mode. After the interaction, her modified mode E ′ is stored and the

remaining output is sent to Bob without loss. When Bob receives the attenuated

signal, he performs homodyne detection on either the q- or p-quadrature, selected

randomly. His measurement outcome denoted b, is his estimate of Alice’s encoding

a.

In the final step, the parties perform post-processing. They must first determine

in which instances of the protocol their choice of quadrature matched, in a process

known as basis reconciliation, before estimating the channel parameters τ and ε.

Finally, they perform error correction and privacy amplification in order to distill

the final key. In the next section, we will introduce these concepts in more detail,

but for the purpose of familiarizing the reader with the core ideas of CV QKD, we

will assume an infinite number of channel uses so that an ideal secret key rate can

be computed directly without concern for classical post-processing measures.

Prior to Alice sending a coherent state through the channel, the CM of the global

system conditioned on Alice’s encoding a is given by the direct sum of the CM of

her coherent state and Eve’s TMSV state describing her entangling cloner attack,

VAEe|a = V0IA ⊕

 ωI
√
ω2 − 1Z

√
ω2 − 1Z ωI

 . (3.5.3)

where V0 = 1 is the quantum variance of Alice’s coherent state. The post-propagation
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CM of the system is obtained by applying a beam splitter transformation of the form

T =

 √
τI

√
1− τI

−
√

1− τI √
τI

⊕ I (3.5.4)

that mixes Alice’s mode with Eve’s mode E, resulting in the following CM of the

total system

VBE′e|a =


[τV0 + (1− τ)ω] I

√
1− τ√τ(ω − V0)I

√
1− τ

√
ω2 − 1Z

√
1− τ√τ(ω − V0)I [τω + (1− τ)V0] I

√
τ
√
ω2 − 1Z

√
1− τ

√
ω2 − 1Z

√
τ
√
ω2 − 1Z ωI

 .

(3.5.5)

Tracing out Eve’s system from the total CM leaves us with Bob’s CM conditioned

on Alice’s encoding, given by Vb|aI with Vb|a = τV0 + (1− τ)ω. Bob’s unconditional

variance Vb is obtained by replacing the quantum variance V0 with the total variance

of Alice’s input, VA such that Vb = τVA + (1− τ)ω. We assume for simplicity that

Bob’s quadrature variable can be obtained perfectly with ideal homodoyne detection.

In this case, the mutual information between Alice and Bob, IAB, can be obtained

from these variances using the signal-to-noise ratio [51] as

IAB = I(a : b) =
1

2
log2

Vb
Vb|a

. (3.5.6)

At this point, it is common to take Alice’s variance Va to be very large so that all

terms in the expression for Vb, in which it doesn’t appear, can be ignored. This

allows us to obtain the following expression for the mutual information

IAB =
1

2
log2

τVa
τV0 + (1− τ)ω

. (3.5.7)

We now turn our attention to Eve’s accessible information. The process of ob-

taining Eve’s conditional state requires two steps. First, we trace Bob’s mode from

the conditional post-propagation CM of the global system, then we replace the

quantum variance V0 in one of the quadratures of Eve’s mode E ′ with Alice’s total

variance VA to reflect the fact that Eve is only collecting outcomes for one quadra-

ture due to the the fact that Alice and Bob select a random choice of quadrature in

each round. After these steps, Eve’s conditional CM is given by

VE′e|a =

 E′
√
τ
√
ω2 − 1Z

√
τ
√
ω2 − 1Z ωI

 , (3.5.8)
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with

E′ =

 τω + (1− τ)V0 0

0 τω + (1− τ)VA

 . (3.5.9)

The total CM is obtained by replacing the coherent state variance with Alice’s

total variance in both quadratures of Eve’s mode E ′, which leads to the following

expression

VE′e =

 [τω + (1− τ)VA] I
√
τ
√
ω2 − 1Z

√
τ
√
ω2 − 1Z ωI

 . (3.5.10)

Eve’s total and conditional systems are described by Gaussian states, thus their

entropies can be obtained straightforwardly from the corresponding CMs as we saw

in the previous chapter. We can thus write the Holevo bound as

χ(E ′e : a) = S(VE′e)− S(VE′e|a). (3.5.11)

The expressions we have now obtained for the mutual information and the Holevo

bound allow us to compute the secret key rate of the protocol under what is known

as direct reconciliation (DR). This means that Bob is attempting to reconcile his

variable with Alice’s encoding. Reverse reconciliation (RR) is an alternative strategy

in which Alice adapts her key in response to corrective information received by

Bob [45]. In this case, the mutual information between Alice and Bob is identical

to that of the DR case, while the Holevo bound must be modified such that Eve’s

conditional entropy is obtained from her state conditioned on Bob’s outcome b, which

is now the secret variable that Eve is attempting to obtain. The Holevo bound in

this setting is given by

χ(E ′e : b) = S(VE′e)− S(VE′e|b). (3.5.12)

where the first term is identical under both DR and RR. In order to obtain the

second term, we must first obtain an expression the relevant CM. Our starting point

is the post-propagation CM of Bob and Eve conditioned on Alice’s choice of en-

coding. The first step is to replace the variance V0 with Alice’s total variance VA,

which removes the conditioning and provides us with the total CM of Bob and Eve,

labeled VBE′e. From here, we can obtain the the conditional CM by performing
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a homodyne measurement on Bob’s mode using the mathematical formalism intro-

duced in Sec. 2.4.5. Without loss of generality, we can assume Bob measures the

q-quadrature with outcome b. With some manipulation, the conditional CM is given

by

VE′e|b =

 E1 C

CT E2

 . (3.5.13)

where we define

E1 = [τω + (1− τ)VA] I− α

β
Π (3.5.14)

E2 = ωI− (1− τ)(ω2 − 1)

β
Π (3.5.15)

C =
√
τ
√
ω2 − 1Z +

γ

β
Π (3.5.16)

where Π = diag(1, 0) and

α := τ(1− τ)(VA − ω)2 (3.5.17)

β := VAτ + (1− τ)ω (3.5.18)

γ := (1− τ)(VA − ω)
√
τ
√
ω2 − 1. (3.5.19)

The Holevo bound under RR is obtained by computing the symplectic decomposi-

tion of this CM and, subsequently, the von Neumann entropy from the symplectic

eigenvalues. As the mutual information is identical in both DR and RR, this cal-

culation is the final element required in order to compute the secret key rate of the

protocol under RR.

Having outlined the mathematical procedure that allows for the computation of

the secret key rates of the coherent state protocol under both DR and RR, let us

now explore these in more detail by plotting them as a function of the channel loss

for a variety of values of excess thermal noise, ε, in the channel. The excess noise

is not a quantity we have dealt with directly thus far, rather, it is a quantity that

would be estimated in an experimental implementation of the protocol. Usually, the

excess noise originates from imperfections in elements of the experimental setup,

but to be as stringent as possible in the security analysis, all of the noise must be

attributed to Eve. In the entangling cloner attack, the excess noise can be expressed
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Figure 3.2: Rates of the CV-QKD protocol with coherent states under DR (left-hand

side) and RR (right-hand side) as a function of the channel loss in dB with excess

noise ε = 0.01 (blue), ε = 0.02 (orange) and ε = 0.05 (green).

in terms of the variance of Eve’s TMSV state as

ε =
(1− τ)(ω − 1)

τ
. (3.5.20)

Given an estimation of the channel noise, this equation can be used to estimate ω.

We can thus express the secret key rates in terms of ε as opposed to ω. Fig. 3.2 shows

the rates of the protocol under both DR and RR with excess noise values of ε = 0.01

(blue line), ε = 0.02 (orange line) and ε = 0.05 (green line). The rates plotted as

a function of the channel loss in decibels (dB) is related to the transmissivity as

τ = 10−dB/10. It is clear from the figure that the maximum tolerable loss under

DR corresponds to ∼3 dB. In fact, in the ideal case (ε = 0), the maximum loss

corresponds to a transmissivity of τ = 0.5. A channel loss exceeding this limit would

lead to Eve gaining more information than Bob about Alice’s signal, rendering it

impossible to generate a secret key. Happily, RR provides an elegant solution to

this problem, enabling a key rate to be generated at channel losses exceeding 25 dB

even with a large amount of excess noise. In the next section, we will provide an

overview of the classical post-processing techniques that are required to turn the

ideal secret key rates shown here into realistic rates offering practical security for

real-life implementations of the protocol.
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3.6 Post-processing

The final step of any QKD protocol is classical post-processing and it is a vital

component in ensuring security when constructing the final secret key between the

trusted parties. Below, we briefly introduce the individual components of a typical

post-processing protocol.

• Basis reconciliation and sifting. The first step in the post-processing of a

CV-QKD protocol that involves a random choice of basis is known as basis

reconciliation. It is most commonly used in the context of protocols such as

that introduced in the previous section. Each party reveals which quadrature

(q or p) they used to encode/measure. This process can be performed most

easily if the parties select their quadrature using a random bit, the value of

which they can later reveal thus conveying the required information. A process

known as sifting is employed in order to remove any data which is obtained

from realizations of the protocol in which the parties’ choices of quadrature do

not coincide. Note that certain CV-QKD protocols are designed to make use

of both quadratures. In this case, the basis reconciliation and sifting processes

are not required.

• Parameter estimation. After performing a sufficient number of realizations of

the protocol, Alice and Bob each hold a set of data. In order to estimate the

parameters associated with the protocol, for example, the transmissivity of

quantum channels and any excess noise, they can broadcast a subset of this

data. By constructing Gaussian estimators, the parties can obtain a worst-case

bound on the parameters to a high degree of accuracy, usually corresponding

to six, seven, or more standard deviations from the mean. With these worst-

case estimates, they can compute their reconcilable mutual information βIAB

and the Holevo bound χ and thus determine if they can distill a secret key.

• Information reconciliation. Information reconciliation is the process by which

Alice and Bob ensure both of their keys are identical. Essentially, this process

is an error correction protocol and is an active area of research and many
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of the details involved are beyond the scope of this thesis. The state-of-the-

art protocols used in CV QKD are slice reconciliation and multidimensional

reconciliation.

• Confirmation and privacy amplification. After they perform information rec-

onciliation, the parties each perform a hash function on their key and exchange

the resulting hash values. In the worst-case scenario, in which the hash func-

tions are different, they abort the protocol knowing that error correction has

failed. Otherwise, they know that error correction has succeeded except with

some small probability. If confirmation is successful, the final step in the clas-

sical post-processing procedure is privacy amplification, in which the goal is

to minimize the probability that Eve can guess the key from any information

she has attained throughout the use of the protocol. It is usually achieved by

applying a compression algorithm to the secret key to obtain a shorter key

of which Eve has negligible information. The compression algorithm usually

involves a universal hash function. The difference between the lengths of the

keys is determined by an estimate of the amount of information Eve may have

obtained about the key.

52



Chapter 4

Continuous-variable quantum key

distribution at terahertz

frequencies

Up to this point in the discussion, we have considered only the most foundational

CV-QKD protocols that paved the way for CV QKD to compete with its DV counter-

part. While these protocols can be implemented relatively easily with inexpensive

equipment, they are not without several significant limitations. Shortly after the

publication of the seminal CV-QKD protocols, the most pressing of these limita-

tions was the apparent maximum tolerable transmission loss of 3 dB, at which point

an eavesdropper would gain more information than Bob about Alice’s encoding.

Beating the 3 dB limit became a key target in CV-QKD research, and it was

quickly met with the idea of RR in which Alice adapts her key in response to

corrective information received by Bob [45] (cf. Chap. 3). More recently, combining

RR with two-way communication has been found to achieve secret key rates close

to the PLOB bound [54]. An alternative strategy that falls somewhat in between

DR and RR was proposed by Silberhorn et al. [55]. The idea was termed post-

selection, which refers to the ability of the parties to control which instances of the

protocol are included in the final key. This ability can be derived from modifying

the protocol so that the information carriers remain Gaussian-modulated states,

while the secret encoding is a discrete binary variable that relates to two possible
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positions of the displaced state in phase space. If the absolute values of Alice’s

phase-space displacement and Bob’s measurement outcome are known to both Alice

and Bob in each instance, they can calculate their mutual information and that of

an eavesdropper with respect to the discrete encoding. This knowledge allows them

to establish which instances offer them an informational advantage. By including

in the final key only these instances, the secret key rate is always positive and

its magnitude is the only limiting factor when considering the range over which

the parties may communicate securely. The post-selection technique was rapidly

generalized to thermal loss channels [56, 57] and it has since been supported by

proof-of-concept experiments [58, 59].

In modern CV-QKD theory, much interest has been directed at thermal states

as information carriers. High-frequency thermal states with a small mean photon

number display quantum mechanical properties similar to those of optical coherent

states, hence they are appropriate candidates for CV-QKD protocols away from

optical frequencies. As the required operating frequency of a protocol decreases,

DV strategies become unfeasible as there is no direct way to detect individual pho-

tons [60], hence developing comprehensive CV-QKD protocols in this regime is of

the utmost importance. The viability of such protocols has been demonstrated in

several works under DR [61,62] and RR with two-way communication [63]. Further-

more, a finite-size analysis has demonstrated its viability in a realistic setting [64].

The reason for the more recent interest in this area is the feasibility of CV QKD

as a means of secure communications at frequencies within the terahertz band. Ed-

holm’s law, which predicts a doubling in telecommunication bandwidth every 18

months [24], continues to hold true 50 years after its inception, accelerating the de-

mand for high-rate communications towards the point at which operating frequencies

in the terahertz band are required. CV QKD at terahertz frequencies has so far been

proposed under atmospheric conditions [21] and as a means of inter-satellite com-

munication [22]. In the atmosphere, high secret-key rates are achievable but security

is only guaranteed at very short distances of the order of meters.

In this chapter, we will begin by briefly outlining the original CV-QKD pro-

tocol for communication within the terahertz band in the atmosphere. We will
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Figure 4.1: Schematic of the one-way CV-QKD protocol using Gaussian-modulated

thermal states. Alice sends states to Bob via an untrusted quantum channel with

transmissivity τ after displacing the quadratures by a random tuple a. Bob performs

a homodyne measurement on his received mode. Eve performs an entangling cloner

attack. She is in possession of a TMSV state, one mode of which interacts with the

channel via the beam splitter. Furthermore, she has access to a quantum memory

which is optimally measured after quantum communication between the trusted

parties ceases.

subsequently introduce an original post-selected CV-QKD protocol that allows for

communication at frequencies within, or below, the terahertz band. We formulate

the protocol by assuming Alice sends thermal states via an insecure quantum chan-

nel operated by an eavesdropper who may perform a collective entangling cloner

attack. Comparing with the original protocol, we find that post-selection offers a

significantly longer range and thus extends the viability of the regime to a variety

of new applications.

4.1 Quantum key distribution at terahertz fre-

quencies with Gaussian encoding

In this section, we will introduce the first CV-QKD protocol for communication

at terahertz frequencies in the atmosphere, introduced by Ottaviani et al. [21] and

outlined schematically in Fig. 4.1. In this protocol, the sender, Alice, transmits
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thermal states with thermal noise variance V0 to Bob. She has access to IID random

variables Q and P that each follow a zero-mean Gaussian distribution with vari-

ance Va denoted as N (0, Va). She encodes each state by applying a displacement

a = (qA, pA) to its quadrature amplitudes with qA ∈ Q and pA ∈ P . Finally, she

randomly chooses either qA or pA as her variable a that will be used in the generation

of the final key.

The process of preparing and sending the encoded thermal states can be viewed

as the action of the quadrature operator Â = 0̂ + â on the vacuum where 0̂ is the

‘THz quadrature operator’ [21], which applies the background thermal noise, and

â is the displacement operator that displaces the state in phase space according to

the vector a. The variance of this operator (and, therefore, the variance of Alice’s

signal) is VA = V0 + Va, where V0 := 2n̄ + 1 is the total quantum noise variance

with the vacuum contribution normalized to unity and the remaining thermal noise

parameterized by the mean photon number n̄, related to the frequency, ν of the

radiation at temperature t by Planck’s law,

n̄th =

[
exp

(
hν

kBt

)
− 1

]−1

, (4.1.1)

where kB is the Boltzmann constant and h is the Planck constant. During trans-

mission to Bob, Alice’s mode A is subject to channel loss, all of which we attribute

to an eavesdropper, Eve. Despite the terahertz protocol being somewhat more com-

plex than the coherent state protocol introduced in Sec. 3.5, it is still comprised

exclusively of Gaussian operations (channels, states, and measurements). We can

therefore assume Eve performs the collective entangling cloner attack as introduced

in Sec. 3.4. We label the modes of Eve’s TMSV state E and e and the associ-

ated variance ω. Alice’s mode A is mixed with Eve’s mode E in a beam splitter

of transmissivity τ . Eve’s modified mode E ′ is stored in a quantum memory for

later measurement (that may involve all rounds of the protocol) and the remaining

output becomes Bob’s mode B.

Upon receiving his mode, Bob converts the incoming terahertz signal to optical

light and performs a homodyne detection on one randomly-chosen quadrature of the

resulting mode, obtaining outcome b. The conversion process performed by Bob has

a limited efficiency that requires consideration in the security analysis with typical
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values expected to be just 10% at the time of writing, based on recent developments

in THz-optical conversion hardware [65]. This detection inefficiency can be modeled

by placing a beam splitter of transmissivity η in front of a perfect detector, mixing

the incoming mode with some noise of variance S that can be modeled by a TMSV

state of equivalent variance. The noise S and the output of the beam splitter can

be considered to be either trusted or untrusted, however, we will only consider the

former in our analysis as this is a realistic assumption for wireless communications

in the atmosphere.

In each round of the protocol after Alice selects her variable a prior to the onset

of quantum communication, the CM of the entire system can be written as the direct

sum of each of the subsystems

VAES|a = V0I⊕VTMSV(ω)⊕VTMSV(S) (4.1.2)

where the system S represents the detection noise and VTMSV(µ) is the CM of a

TMSV state with variance µ, given by

VTMSV(µ) =

 µI
√
µ2 − 1Z√

µ2 − 1Z µI

 . (4.1.3)

To obtain the post-propagation CM, we apply a global beam splitter operation,

T = TηTτ to the initial CM, that encapsulates the combined effect of the beam

splitter controlled by Eve, given by

Tτ =

 √
τI2

√
1− τI2

−
√

1− τI2

√
τI2

⊕ I6, (4.1.4)

and the beam splitter modeling detector inefficiencies, given by

Tη =


√
ηI2 0

√
1− ηI2

0 I4 0

−√1− ηI2 0
√
ηI2

⊕ I2, (4.1.5)

where In is the n×n identity matrix and 0 is the null matrix of implicit dimensions.

After this interaction, the variance of Bob’s mode conditioned on Alice’s encoding

can be extracted from the post-propagation CM as

Vb|a = ητV0 + η(1− τ)ω + (1− η)S. (4.1.6)
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The mutual information between Alice and Bob is obtained from the signal-to-noise

ratio, which in this case, is the ratio of Bob’s total variance over all rounds, Vb, and

the variance Vb|a above. Bob’s total variance is obtained by replacing the inherent

thermal variance V0 in Eq. (4.1.6) with Alice’s total variance VA. If the variance

Va of Alice’s Gaussian distributions Q and P is large, Bob’s total variance can be

approximated as the dominant term of the resulting expression, ητVa, allowing us

to write the following formula for the mutual information

IAB =
1

2
log2

Vb
Vb|a

=
ητVa

ητV0 + η(1− τ)ω + (1− η)S
. (4.1.7)

Turning our attention now to Eve, the computation of the Holevo bound is a

little more complicated and depends on whether the parties employ DR or RR. For

the purposes of comparison with our post-selection protocol, we will consider only

DR and refer the reader to Ref. [21] for a complete discussion. Labeling Eve’s total

state ρ̂E′e and conditional state ρ̂E′e|a, the Holevo bound can be written as

χ(E ′e : a) = S(ρ̂E′e)− S(ρ̂E′e|a) (4.1.8)

= S(VE′e)− S(VE′e|a), (4.1.9)

where the second equality is due to the fact that Eve’s total and conditional states

are both Gaussian and their entropies can be computed directly from their CMs.

The Holevo bound is, of course, different depending on whether the noise at the

detector is trusted or untrusted, however, we will concentrate exclusively on the

former scenario as already mentioned. In this case, the CM of Eve’s conditional

state is obtained by tracing out all but Eve’s part of the global post-propagation

CM. It can be written as

VeE′ =

 W I
√
τ
√
ω2 − 1Z

√
τ
√
ω2 − 1Z [τω + (1− τ)V0] I

 . (4.1.10)

The total CM is obtained by replacing the quantum variance V0 in Eq. (4.1.10) with

the total variance of Alice’s signal, VA in one of the quadratures of Eve’s mode E ′ in

order to model the fact that only one quadrature is used for key generation. Taking

the limit of large Gaussian variance (Va � 1), the symplectic spectrum of Eve’s

total CM becomes

{ν1, ν2} = {ω, (1− τ)Va}, (4.1.11)
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while that of the conditional CM becomes

{ν̃1, ν̃2} =

{√
ω[τ + (1− τ)ωV0]

τω + (1− τ)V0

,
√

(1− τ)Va[τω + (1− τ)V0]

}
. (4.1.12)

Using the VNE of Gaussian states (cf. Sec. 2.5.3) and some algebraic manipulation,

taking into account the limit of large variance, we can write the Holevo bound in

the following form

χ(E ′e : a) = h(ω)− h(ν̃1) +
1

2
log2

(1− τ)Va
τω + (1− τ)V0

. (4.1.13)

Finally, with the results obtained thus far, we are able to compute the secret key

rate of the protocol. This quantity is given by the difference in the mutual informa-

tion between the legitimate parties, given by the mutual information between Alice’s

encoding a and Bob’s measurement outcome b, and the Holevo bound quantifying

Eve’s maximum accessible information on Alice’s encoding,

R := I(a : b)− I(E ′e : a). (4.1.14)

Using equations (4.1.7) and (4.1.13) and some algebraic manipulation, we arrive at

an expression for the rate as a function of all of the parameters associated with the

protocol under the assumption of large variance

R(V0, τ, ω, η, S) =
1

2
log2

τη[τω + (1− τ)V0]

(1− τ)[ητV0 + (1− τ)ηω + (1− η)S]

+ h

[√
ω[τ + (1− τ)ωV0]

τω + (1− τ)V0

]
− h(ω). (4.1.15)

In order to give Eve the strongest attack, we can assume that she exploits all of

the thermal noise associated with the state. Symbolically, this means that we set

ω = V0. Moreover, the rate turns out to be minimized by setting S = 1. Under

these conditions, the rate reduces to the following straightforward formula of three

variables

R(V0, τ, η) = h

[√
τ + (1− τ)V 2

0

]
− h(V0) +

1

2
log2

τηV0

(1− τ)(ηV0 + 1− η)
. (4.1.16)

This convenient analytic form of the secret key rate will serve as an important

benchmark for our original post-selection protocol which we will introduce in the

next section and we will explore its behavior as a function of its parameters therein.
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4.2 Quantum key distribution at terahertz fre-

quencies with post-selection

4.2.1 Protocol overview

In order to enable post-selection in a one-way CV-QKD protocol, we must make

several modifications to the usual one-way scheme, including introducing a discrete

encoding alphabet. Let us now introduce our protocol in the abstract as outlined

schematically in Fig. 4.2. As with the protocol introduced above, Alice has access

to IID random variables Q and P , both of the form N (0, Va). In each use of the

protocol, she constructs the random tuple α = (qA, pA) by choosing real elements

qA ∈ Q and pA ∈ P . She separates qA into a sign κ and modulus A and pA into a sign

κ′ and modulus A′ and stores the tuples κ = (κ, κ′) and a = (A,A′). She uses these

variables to encode the mean value x̄A of a thermal state ρ̂A that she prepares in her

mode A such that x̄A|κa = (κA, κ′A′) and ρ̂A → ρ̂A|κa. She subsequently sends her

mode to Bob via an untrusted quantum channel. The mean thermal photon number

of Alice’s signal, n̄th is related to the frequency, ν of the radiation by Planck’s law

in Eq. (4.1.1) and the variance of the mode is V0 = 2n̄th + 1. The total variance of

Alice’s signal is again VA = V0 + Va.

We assume that Eve performs an entangling cloner attack and we label her

modes E and e with variance ω and the channel transmissivity is τ . After the

interaction, Alice’s mode A becomes Bob’s mode B, and Eve’s mode E ′ is stored

for later measurement. As with the protocol introduced in the previous section, the

post-selection protocol consists of Gaussian measurements, channels, and states.

However, it will become clear later that there is a non-Gaussian component that

emerges in the calculation of Eve’s information due to the binary encoding. We must

therefore only conjecture that the optimal attack is based on a Gaussian unitary,

leaving the proof as the focus of further investigation. This conjecture is reasonable

as Eve’s interaction with Alice’s information may only occur in each channel use

where all aspects are Gaussian.

Upon receiving his mode B, Bob performs a heterodyne measurement, with out-
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Figure 4.2: Schematic of the post-selected one-way protocol with thermal states

assuming the q-quadrature is used for generation of the secret key. Alice sends

thermal states of variance V0 to Bob via a quantum channel with transmissivity

τ who performs a heterodyne measurement on his received mode. Eve performs

an entangling cloner attack. She is in possession of a TMSV state, one mode of

which interacts with the channel via the beam splitter. Furthermore, she has access

to a quantum memory which is optimally measured after quantum communication

between the trusted parties ceases.

come β = (qB, pB). He separates qB into a sign κ̃ and modulus B and pB into a

sign κ̃′ and modulus B′. He stores the tuples κ̃ = (κ̃, κ̃′) and b = (B,B′). We

adopt the same model of detection efficiencies as outlined in the previous section.

A beam splitter of transmissivity η is placed in front of an ideal detector and mixes

the incoming mode with some trusted noise of variance S.

After quantum communication ceases, the parties perform the classical post-

processing step of basis reconciliation. At the start of the protocol, both Alice and

Bob select either the q- or p-quadrature at random. In this step, they each reveal

their choice to the other. If the parties both selected the q-quadrature, the variables
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κ′ and κ̃′ are ignored. Alice publicly broadcasts A and pA while Bob broadcasts B and

pB and attempts to reconcile his variable κ̃ with Alice’s variable κ. Alternatively, if

the p-quadrature is chosen, the relevant variables become κ′ and κ̃′. Alice broadcasts

A′ and qA while Bob broadcasts B′ and qB. In the computation of the secret key

rate in the asymptotic number of channel uses, it is sufficient to assume that the

parties always agree on a particular quadrature, leading to a simplification of the

analysis. The reason why this strategy is possible will become clear as we compute

the outputs of the protocol in the next section.

4.2.2 Propagation of the modes

Let us now follow the propagation of the modes of the total system assuming a

particular choice of a and κ. The CM of the total system in this case can be written

as the direct sum of the individual systems of Alice, Eve and Bob (whose initial

system, labeled S, consists of the detector with thermal noise),

VASEe|κa = VA|κa ⊕VS ⊕VEe (4.2.17)

= V0I⊕VTMSV(S)⊕VTMSV(ω). (4.2.18)

Alice’s encoding imposes a generally non-zero mean value on Alice’s mode of the

form x̄A|κa = (κA, κ′A′)T while that of the remaining system can be taken to be zero.

The post-propagation CM and mean value are obtained by applying the global beam

splitter T such that

VBS′E′e|κa = TVASEe|κaT
T (4.2.19)

and x̄BS′E′e|κa = Tx̄ASEe|κa. (4.2.20)

The system S ′ contains the modes of the TMSV state at the detector after interaction

with the incoming mode from the channel. As we assume the detection noise is

trusted, this system can be ignored in the remaining calculations by tracing it from

the total system. The remaining system of Bob and Eve may be written in the

following block form

VBE′e|κa =

 B C

CT E

 , (4.2.21)
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where B represents Bob’s CM, given by

B = VB|κaI with VB|κa = ητV0 + η(1− τ)ω + (1− η)S (4.2.22)

and its corresponding mean value is

x̄B|κa = (κA
√
ητ , κ′A′

√
ητ)

T
. (4.2.23)

Block E represents Eve’s CM,

E =

 [(1− τ)V0 + τω]I
√
τ
√
ω2 − 1Z

√
τ
√
ω2 − 1Z ωI

 (4.2.24)

with corresponding mean value

x̄E|κa =
(
−κA

√
1− τ ,−κ′A′

√
1− τ , 0, 0

)T
. (4.2.25)

Finally, the correlations between Bob and Eve are given by

C = (θI, φZ) , (4.2.26)

where we define the quantities

θ =
√
ητ(1− τ)(ω − V0) (4.2.27)

and φ =
√
η(1− τ)

√
ω2 − 1. (4.2.28)

In the final step, Bob performs a heterodyne measurement on his mode B. He

obtains the outcome β = (qB, pB) from which he records signs κ̃ = (κ̃, κ̃′) and abso-

lute values b = (B,B′). The probability of outcome β is derived from Eq. (2.4.78)

as described in Sec. 2.4.5 using

p(β|κa) = p(κb|κa) =
exp

[
−1

2
dT (B + I)−1 d

]
2π
√

det (B + I)
, (4.2.29)

where d = x̄B|κa − β. The probability can be separated into the product of the

probabilities of the individual quadrature outcomes. We have

p(κ̃B|κA) =
1√

2π
√
VB|κa + 1

exp

[
−1

2

(
κ̃B− κA√ητ

)2

VB|κa + 1

]
, (4.2.30)

and

p(κ̃′B′|κ′A′) =
1√

2π
√
VB|κa + 1

exp

[
−1

2

(
κ̃′B′ − κ′A′√ητ

)2

VB|κa + 1

]
. (4.2.31)

63



Chapter 4. Continuous-variable quantum key distribution at terahertz
frequencies

Note that the probability of each quadrature outcome is independent of Alice’s

encoding in the conjugate quadrature. It is this fact that allows us to simplify the

computation of the secret key rate by assuming the parties always agree on one of

the two quadratures. Moreover, the independence of the quadratures ensures that

any variables relating to the quadrature conjugate to that which is assumed to be

used for key generation do not affect the secret key rate and can thus be ignored in

the calculations.

Eve’s CM after Bob’s measurement can be expressed in terms of the blocks in

Eq. (4.2.21) as

VE′e|κaκ̃b = E−C (B + I)−1 CT, (4.2.32)

which we can write in the following block form

VE′e|κaκ̃b =

 E1I CZ
CZ E2I

 , (4.2.33)

where we have defined

E1 = (1− τ)V0 + τω − θ2

VB + 1
(4.2.34)

E2 = ω − φ2

VB + 1
(4.2.35)

C =
√
τ
√
ω2 − 1− θφ

VB + 1
. (4.2.36)

Finally, the mean value of Eve’s state after Bob’s measurement is given by

x̄E′e|κaκ̃b = x̄E′e|κa −C (B + I)−1 d (4.2.37)

from which we obtain

xE′e|κaκ̃b =


−κA

√
1− τ +

(
κ̃B− κA√ητ

)
θ

VB+1

−κ′A′
√

1− τ +
(
κ̃′B′ − κ′A′√ητ

)
θ

VB+1

(κ̃B− κA√ητ) φ
VB+1

(κ̃′B′ − κ′A′√ητ) φ
VB+1

 . (4.2.38)

4.2.3 Mutual information

Let us begin our computation of the secret key rate by computing the mutual in-

formation between the legitimate parties. At this point, in the asymptotic limit of
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channel uses, the mutual information between the parties is equivalent to the mutual

information between κ and κ̃ (or equivalently κ′ and κ̃′) such that

I(κ : κ̃ |AB) = 1−H(κ| κ̃AB). (4.2.39)

The second term on the right-hand side of the mutual information is a differential

conditional entropy which may be written as

H(κ| κ̃AB) =

∫
p(AB)

∑
κ̃

p(κ̃ |AB)Hκ| κ̃AB dA dB , (4.2.40)

where we note that p(κ̃ |AB) = 1/2 since there is no correlation between the variables

involved. The conditional entropy Hκ| κ̃AB is given by

Hκ| κ̃AB =
∑
κ

p(κ| κ̃AB) log2 p(κ| κ̃AB) (4.2.41)

= H2(perr) ∀ κ̃ (4.2.42)

where H2(perr) = −perr log2 perr− (1− perr) log2(1− perr) is the binary entropy of the

error probability, perr, i.e. the probability that Bob’s sign κ̃ does not coincide with

Alice’s sign κ given the values A and B, which can be obtained by first calculating

p(κ̃ |κAB) =
p(κ̃B|κA)∑
κ̃ p(κ̃B|κA)

=
1

1 + exp
[
−2κ κ̃AB√ητ(VB|κa + 1)−1

] , (4.2.43)

then noting that p(+| − AB) = p(−|+ AB) = perr with

perr =
1

1 + exp
[
2AB√ητ(VB|κa + 1)−1

] . (4.2.44)

We may then write the mutual information in the following compact form

I(κ : κ̃ |AB) = 1−
∫
p(AB)H2(pe) dA dB (4.2.45)

where the probability p(AB) is given by

p(AB) =
∑
κ,κ̃

p(κ̃B|κA)p(κA). (4.2.46)

The variance of Alice’s Gaussian distributions, Va enters the calculation in the prob-

ability p(κA) above, however, it is not a directly relevant factor in the calculation

of the secret key rate. As such, its value is largely flexible and can be selected in

order to maximize the rate.

65



Chapter 4. Continuous-variable quantum key distribution at terahertz
frequencies

4.2.4 Eve’s accessible information

Let us now turn our attention to Eve’s accessible information about Alice’s encoding

which can be taken to be κ. In order to provide an upper bound on this quantity,

we make use of the Holevo bound, which, in this case, is given by

χ(E ′e : κ|AB) = S(E ′e|AB)− S(E ′e|κAB), (4.2.47)

where the terms on the right-hand side are conditional von Neumann entropies

(cf. Sec 2.5.3). The calculation of these terms requires the total and conditional

states which may be obtained from the output state of a given instance of the

protocol, ρ̂E′e|κA κ̃B as follows:

ρ̂E′e|AB =
∑
κ,κ̃

p(κ, κ̃ |AB)ρ̂E′e|κA κ̃B. (4.2.48)

=
1

2

∑
κ

ρ̂E′e|κAB, (4.2.49)

where the conditional state ρ̂E′e|κAB is given by

ρ̂E′e|κAB =
∑
κ̃

p(κ̃ |κAB)ρ̂E′e|κA κ̃B. (4.2.50)

While Eve’s output state from each use of the protocol is Gaussian, the same is not

true of her total nor her conditional state and we cannot apply the simple rules for

the entropy of Gaussian states. Instead, we must obtain the total and conditional

states by expressing the protocol output state ρ̂E′e|κA κ̃B in the Fock basis before

using the relationships outlined above. Fortunately, there exists an efficient way to

obtain the density matrix of a Gaussian state, which is to relate its form to that of

the generating function for the multivariate Hermite polynomials [66], given by

exp

(
yAβT − 1

2
βAβT

)
=
∑
m≥0

l∏
i=1

βmi
i

mi!
H(A)

m (y). (4.2.51)

This connection was first drawn by Kok et al. in 2001 for single-photon states [67].

It was later used in the computation of pure Gaussian states [68, 69] and later

generalized to mixed states by Dodonov et al. [70] (see Ref. [71] for an open source

implementation of this method).
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We will now follow the method introduced by Dodonov et al. in order to find the

density matrix form of Eve’s states. The first step in this process is to attain the

CM σ and mean value β in terms of the quadrature amplitudes

αi =
1

2
(qi + ipi). (4.2.52)

To do so, it is convenient to change the ordering of the vector of quadrature operators

x̂ by applying the matrix O such that x̂ = (q̂1, p̂1, q̂2, p̂2) → Ox̂OT = (q̂1, q̂2, p̂1, p̂2)

where O is defined as

O :=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (4.2.53)

This causes the quadrature CM and mean value to transform according to V →
OVOT and x→ Ox. We then define the following matrix

R :=
1√
2

 I iI

I −iI

 , (4.2.54)

which, when applied to the quadrature CM and mean value yield the CM σ and

mean value β as

σ =
1

2
RVR† and β = Rx̄. (4.2.55)

We can then introduce the Husumi-Q matrix, given by

Σ = σ +
1

2
I, (4.2.56)

which allows us to define the parameters A and y of the multivariate Hermite

polynomials as

A =
(
I−Σ−1

)∗
X (4.2.57)

and

y = β −Aβ. (4.2.58)

At this point, we must introduce the parameter N , which represents the truncation

point of the infinite-dimensional Hilbert space of the state. With respect to the

Hermite polynomials, the parameter l in Eq. (4.2.51) becomes the parameter N . The
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required value of N is determined by examining the convergence of the entropy of the

total and conditional states, which is dependent on all of the protocol parameters.

Once they are generated, the entropy of the N2×N2 approximate density matrices

of the total and conditional states can be determined by the VNE, which, we recall,

for a state ρ̂ with eigenvalues {λi} is given by

S(ρ̂) = −
∑
i

λi log2 λi. (4.2.59)

4.2.5 Single-point rate and post-selection

Having derived the mutual information and Eve’s accessible information, we are in

a position to compute the secret key rate R = βI − χ where β is the reconciliation

efficiency. However, to allow for post-selection, it is useful to re-write the rate as a

single intergral over A and B. To do this, we first express the mutual information

in the following single-integral form

I(κ : κ̃ |AB) =

∫
p(AB)Ĩ(A,B) dA dB , (4.2.60)

where we have defined the single-point reconcilable mutual information Ĩ(A,B) :=

β(1−Hκ| κ̃AB). Similarly, we may re-write the Holevo bound as

χ(E ′e : κ|AB) =

∫
p(AB)χ̃(A,B) dA dB (4.2.61)

with χ̃ := S(ρ̂E′e|AB)− 1
2

∑
κ S(ρ̂E′e|κAB). Then, the rate in full is expressed as

R =

∫
p(AB) R̃(A,B) dA dB , (4.2.62)

where R̃ := Ĩ − χ̃ is the single-point rate. Post-selection is defined as the process

of removing protocol instances in which the mutual information between Alice and

Bob is less than that which is accessible by Eve. To model this process in our

expression for the rate, we simply take the maximum of the single-point rate and

zero in Eq. (4.2.62), such that the post-selected rate is given by

RPS =

∫
p(AB) max

{
R̃(A,B), 0

}
dA dB . (4.2.63)

The post-selected rate may also be obtained by integrating the single-point rate

with weighting p(AB) over the post-selection area Γ, defined as the region in the
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Figure 4.3: Plot of the spectral energy density as a function of frequency in the tera-

hertz range at room temperature (296 K). Also plotted is the mean photon number

of thermal states used in the protocol as a function of the operating frequency at

the same temperature.

A-B plane in which the single-point rate is positive,

RPS =

∫
Γ

p(AB)R̃(A,B) dA dB . (4.2.64)

4.2.6 Results

With the framework for our protocol in place, let us now present the results of

numerical calculations of the secret key rate under a variety of parameters. For all

of the forthcoming results, we have assumed t = 296 K as we anticipate that most

applications of the technology will occur around room temperature. Fig. 4.3 shows

the spectral energy density of the background radiation at room temperature as a

function of frequency, a distribution that peaks within the range of frequencies of

interest. The same figure shows the mean photon number of the thermal states

used in the protocol over the same frequency range. This curve demonstrates that

thermal states with frequencies in the high terahertz range can closely resemble
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Figure 4.4: Rates of the post-selection protocol at a variety of terahertz frequencies

as a function of the channel loss in dB. We set ω = V0 and assume a detection

efficiency of 10%. For comparison, we include the rate of the protocol with coherent

states and a pure-loss attack (dashed black line).

optical coherent states due to the mean photon number being orders of magnitude

smaller than the variance of the vacuum fluctuations.

It is convenient to express the secret key rate as a function of the distance d,

between Alice and Bob using the relation τ = 10−δd/10 where δ is the loss in dB

per unit distance. The parameter δ is dependent on the medium through which the

parties communicate. For example, if the quantum channel is a fiber optic cable, a

typical value of δ is 0.2 dB/km. For wireless communication in the atmosphere, the

situation is far more complex and is the subject of active research. A comprehensive

review of results and simulation packages may be found in Ref. [72].

We will begin by temporarily ignoring δ and plotting the rates of the protocol

for a variety of frequencies as a function of the channel loss in dB. In order to

afford Eve the best-case scenario and remain in line with the original Gaussian-
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Figure 4.5: Rates of the Gaussian (dashed lines) and post-selection (solid lines)

protocols as a function of the maximum transmission distance in meters for a range

of frequencies within a window in which δ = 50 dB/km. We assume ω = V0 and a

detection efficiency of 10%.

modulated protocol, we set ω = V0 and we assume a realistic detection efficiency of

10%. For comparison, we include the case of coherent states (V0 = 1) where Eve’s

action is reduced to a pure-loss attack [51]. The secret key rates for a variety of

frequencies are shown in Fig. 4.4. The general trend is that an increase in thermal

noise (corresponding to a lower frequency) leads to a rapid reduction in tolerable

channel loss. This behavior can be attributed to the fact that the lower-frequency

background radiation creates states that behave in a manner that becomes close

to classical in nature, thus eliminating the uncertainty of quantum mechanics that

enables security.

In Fig. 4.5, we consider the performance of our protocol at three frequencies

which fall into an frequency window between 15 and 34 THz where the loss per unit

distance, δ, is relatively low at 50 dB/km [72]. Again we assume ω = V0 and η = 0.1

and, for comparison, we include the corresponding rates of the protocol with Gaus-
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Figure 4.6: Rates of the protocol as a function of the distance between Alice and

Bob under atmospheric parameters with 10% detection efficiency and with Va = 2.

We have assumed δ = 50 for the transmission window encompassing the frequencies

considered. For comparison, we include the equivalent rates of the protocol with

Gaussian encoding under direct reconciliationq introduced previously (dashed lines).

sian encoding introduced previously. It is clear that our protocol offers a significant

improvement to the maximum distance at which security can be guaranteed. We

observe a roughly five-fold improvement in the maximum range for all of the fre-

quencies considered. This improvement can be attributed entirely to the addition

of post-selection. By only including a round of the protocol in which the parties

have an informational advantage over the eavesdropper, the parties can communi-

cate securely over a longer range, with the caveat that the rate in the short-distance

regime is reduced. This process can be performed independently of the frequency of

the thermal states used, hence the rate-distance behavior with respect to frequency

is broadly equivalent across the post-selected and Gaussian-encoded protocols.

So far, we have only considered one typical detection efficiency value in our

analysis. Let us first introduce the maximum tolerable loss, which is defined equal
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to 1−τmin where τmin is the value of the channel transmissivity at which RPS = 10−10.

In Fig. 4.6 we plot the maximum tolerable loss as a function of the detection efficiency

for the full range of possible values with ω = V0. The dotted lines correspond to

the original Gaussian-encoded protocol and the solid lines correspond to our post-

selection protocol. We also include the rate with coherent states which is shown

in black. For all of the frequencies considered, we observe a significant advantage

when post-selection is applied. The advantage is most pronounced at lower detection

efficiencies which makes the scheme particularly valuable with realistic hardware

implementations available today.

4.3 Conclusions

The results we have presented in this chapter give credence to CV QKD as a method

of high-rate secure communication at frequencies within the terahertz band. We

have successfully introduced a protocol that can be implemented straightforwardly

due to the continuous-variable framework on which it is constructed. Our protocol

surpasses the range of the existing CV-QKD protocol designed to operate in the

atmosphere. This significant advantage naturally extends the range of applicability

of this regime, for example, applications such as short-range covert communications,

that would otherwise require RR, can be implemented with our protocol. The next

step towards an in-field implementation of our protocol is a finite-size analysis which

will provide an important and necessary benchmark.
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Measurement-device-independent

quantum key distribution

The one-way QKD protocols introduced in the previous chapter are incredibly pow-

erful tools for private communication between two parties. However, one thing that

we did not consider is that certain implementations may be susceptible to quantum

hacking, in which an eavesdropper may exploit production flaws in the measurement

apparatus to gain information. Such attacks are known as side-channel attacks and

they are a difficult obstacle to overcome when attempting to prove the complete

security of one-way QKD. One way to avoid the risk of side-channel attacks at the

parties’ stations is to transfer the liability of measurement to a third (generally un-

trusted) party. This strategy is known as measurement-device-independent (MDI)

QKD.

In most MDI-QKD protocols, two parties, Alice and Bob, communicate through

the means of a relay which may be entirely under the control of an eavesdropper,

Eve. The role of the relay is to create the necessary correlations between the signals

received from the communicating parties to enable a secret key to be constructed.

The responsibility of the parties is therefore reduced simply to preparing and send-

ing signals. Any potential eavesdropper at the relay must remain clandestine by

ensuring that the relay output is predictable by the parties, who would otherwise

cease communication. However, their attack may take into account any information

attainable at the relay as well as from any form of attack on the Alice-relay and
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Bob-relay links.

MDI QKD was initially proposed independently by S. L. Braunstein et al. [25]

and H. K. Lo et al. [26] in 2012. Since then, a plethora of studies have aimed

to improve the rate and range of both DV and CV protocols. Several DV-MDI

protocols have recently been devised that can enable secure communication over a

very long distance, exceeding the PLOB bound. The first protocols to achieve this

feat all belong to the so-called twin-field (TF) regime in which Alice and Bob send

phase-randomized optical fields to the relay [73–75]. TF-inspired protocols offering

improvements on the original scheme include the phase-matching protocol [76] and

the sending-or-not-sending protocol [77,78].

The first CV-MDI protocol was introduced in 2013 by Pirandola et al. and

was demonstrated in a proof-of-concept experiment to achieve very high secret key

rates [79]. Furthermore, finite-size analyses exist which demonstrate the practicality

of the protocol in a realistic setting [80, 81]. Unfortunately, the range of the pro-

tocol is limited, particularly in the ‘symmetric’ configuration in which the relay is

positioned equidistant between Alice and Bob where the maximum tolerable loss on

each link is a mere 0.75 dB. In an asymmetric configuration, particularly if the relay

is positioned very close to one of the parties, the range is increased to metropolitan

distances, but still falls well short of that offered by the TF protocols. As a result,

developing a protocol that allows exploitation of the practicality of the CV-MDI

regime at long distance is an active area of research in modern QKD theory. Sev-

eral noteworthy efforts include protocols based on virtual photon subtraction [82,83],

unidimensional modulation [84], and discrete modulation [85]. While these protocols

offer an improvement in the range of the asymmetric configuration, their applica-

bility in the symmetric configuration is very limited. Only Refs. [82,83] offered any

improvement over the original CV-MDI protocol in the symmetric configuration.

In this chapter, we will first introduce the seminal CV-MDI-QKD protocol before

introducing an original alternative protocol in which we employ post-selection. Our

goal is to improve the range of the CV-MDI regime, particularly in the symmetric

configuration in which the rate-distance performance discrepancy between the DV

and CV-MDI regimes is most pronounced. We find that with post-selection, we are
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able to achieve a significant improvement over the original protocol which is largest

in more symmetric configurations. We also consider a restricted eavesdropping sce-

nario, which allows for secure communication exceeding 50 km. As a result, we can

begin to bridge the gap between DV and CV-MDI protocols while maintaining the

advantages of the CV scheme.

5.1 Measurement-device-independent quantum key

distribution with Gaussian encoding

Let us now introduce the seminal CV-MDI-QKD protocol by Pirandola et al. [79],

which will provide an important benchmark for our post-selection protocol that we

will introduce subsequently. The schematic for this protocol is shown in Fig. 5.1.

Alice and Bob both prepare Gaussian-modulated coherent states in modes A and B,

respectively, that are sent to the relay. At the relay, a Bell detection is performed

in which the incoming modes A′ and B′ are mixed in a balanced beam splitter with

outputs A′′ and B′′ that are subsequently measured with homodyne detection in

the p- and q-quadratures, respectively. The corresponding outcomes γp and γq are

publicly broadcast as γ = (γq, γp).

As all elements of the protocol are based on Gaussian operations, the optimal

eavesdropping strategy is known to be based on a Gaussian unitary operation [86].

We can consider a general strategy that involves two modes E1 and E2 that interact

directly with the quantum channels connecting the trusted parties to the relay, as

well as a reservoir of additional modes which we label e. We assume that Eve inserts

beam splitters of transmissivity τA and τB into the otherwise lossless Alice-relay and

Bob-relay channels, respectively, which mix Alice’s mode A with her mode E1 and

Bob’s mode B with her mode E2. After the interaction, the modified modes E ′1

and E ′2 may interact with the ancillary modes e before being stored in a quantum

memory. The conjugate outputs A′ and B′ are sent to the relay without loss. Any

attack involving unitary operations applied to all of Eve’s modes over many rounds

of the protocol and higher-rank measurements of Eve’s quadratures can be reduced

to this attack with suitable reasoning [79], thus this model of the attack is the
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strongest we may consider. In general, the modes E1 and E2 are correlated while

the attack reduces to dual one-mode entangling cloners if the correlations are zero.

It was shown in the studies of the CV-MDI-QKD protocol that the optimal attack

is the so-called ‘negative EPR attack’ [79, 87].

Eve

1

2

τA τB

ωA ωB

A

Alice Bob

QMQM

QM

q p

B

A

A

E1 E2

B

B

e

|β〉|

Figure 5.1: Schematic of the Gaussian CV-MDI-QKD protocol. Alice and Bob send

coherent states in modes labeled A and B which interact with Eve’s modes E1 and

E2 via beam splitter interactions of transmissivities τA and τB, respectively. Eve

stores her outputs in a reservoir of quantum states (E1, E2, e) and may perform an

optimal quantum measurement after communication ceases. The remaining outputs

are sent to the relay where they are measured with Bell detection.

The protocol is most mathematically soluble by considering an entanglement-

based representation in which we assume each of the legitimate parties holds a TMSV

state of the form

VAa = VBb =

 µI
√
µ2 − 1Z√

µ2 − 1Z µI

 (5.1.1)

while Eve holds the general two-mode state

VE =

 ωAI G

G ωBI

 , G =

 g 0

0 g′

 . (5.1.2)

By measuring one mode of their TMSV states with heterodyne detection, Alice and

Bob prepare coherent states |α〉 and |β〉. In the limit of large modulation, this
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process is identical to the direct preparation of coherent states in that the mean

value of the resulting coherent states are identical. For smaller modulation, the

mean values associated with the regimes differ, however this can be rectified by

rescaling the modulation of one regime in accordance with the set value of that of

its conjugate.

After Alice and Bob’s modes interact with Eve’s beam splitters and the Bell

detection is performed at the relay, the global system of Alice, Bob and Eve is

ρ̂abE′
1E

′
2e|γ . This state is pure, and as a result, all of the calculations regarding the

secret key rate of the protocol can be performed using only the part of the state

belonging to Alice and Bob while Eve holds the purifying system. As this state is

Gaussian, since all of the protocol is performed with Gaussian states and operations,

all of the relevant information is contained within its CM, which is given by

Vab|γ =

 µI 0

0 µI

− (µ2 − 1
)


τA
θ

0 −
√
τAτB
θ

0

0 τA
θ′

0
√
τAτB
θ′

−
√
τAτB
θ

0 τB
θ

0

0
√
τAτB
θ′

0 τB
θ

 , (5.1.3)

where we define

θ = (τA + τB)µ+ λ, θ′ = (τA + τB)µ+ λ′ (5.1.4)

with

λ = (1− τA)ωA + (1− τB)ωB − 2g
√

(1− τA)(1− τB) (5.1.5)

and λ′ = (1− τA)ωA + (1− τB)ωB + 2g′
√

(1− τA)(1− τB) (5.1.6)

In the following sections we will compute the mutual information between Alice and

Bob, IAB and the Holevo bound χ which allow us to compute the secret key rate,

R = βIAB − χ, where β is the reconciliation efficiency.

Mutual information

The mutual information between Alice and Bob can be computed relatively straight-

forwardly using the following formula

IAB =
1

2
log2 Σ, (5.1.7)
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where we define

Σ :=
1 + det Vb|γ + tr Vb|γ

1 + det Vb|γα + tr Vb|γα
. (5.1.8)

Vb|γ and Vb|γα, respectively are Bob’s total and conditional CMs with respect to

Alice’s encoding α or the measured value of the quadratures of Alice’s coherent

state in the entanglement-based representation. The total CM can be derived from

Eq. (5.1.3) simply by tracing out Alice’s mode such that

Vb|γ =

 µ− (µ2−1)τB
θ

0

0 µ− (µ2−1)τB
θ′

 (5.1.9)

while the second is obtained from the same equation by applying heterodyning

detection to Alice’s mode a

Vb|γα =

 µ− (µ2−1)τB
τA+τBµ+λ

0

0 µ− (µ2−1)τB
τA+τBµ+λ′

 . (5.1.10)

Alternatively, the mutual information can be expressed in terms of the signal-to-

noise ratio such that IAB = log2 µ/χ where χ = µΣ−1/2 is called the equivalent

noise. An important parameter we will require in our subsequent analysis is the

excess noise ε which is given by the difference in the equivalent noise and the noise

attributed to channel loss

ε := χ− χloss, (5.1.11)

where χloss is computed from the mutual information in the case of a pure-loss attack

(ωA = ωB = 1 and g = g′ = 0).

Eve’s accessible information

Due to the purity of the global state, the Holevo bound can be computed from the

CM of the combined system of Alice and Bob’s in Eq (5.1.3) and Bob’s conditional

CM in Eq. (5.1.10). It can be written in terms of the density matrices as

χ = S(ρ̂ab|γ)− S(ρ̂b|γα). (5.1.12)

The first term can be calculated first by obtaining the symplectic spectrum {ν1, ν2}
of Bob’s conditional CM Vb|γα such that S(ρ̂b|γα) = S(Vb|γα) = h(ν1) + h(ν2)

where h(·) is defined in Sec. 2.5.3. The entropy of the second term is simply given
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by S(ρ̂b|γα) = h(ν) where ν is the single symplectic eigenvalue of Bob’s CM Vb|γ ,

which can be easily calculated as

ν =
√

det Vb|γα. (5.1.13)

Secret key rate

Combining the results from the previous two sections, we may write the secret key

rate in full as

R = βIAB − χ =
ξ

2
log2 Σ + h(ν)− h(ν1)− h(ν2). (5.1.14)

This formula is the most general form of the rate that depends on all of the pa-

rameters of the protocol, R = R(µ, τA, τB, ωA, ωB, g, g
′). Under ideal reconciliation

efficiency (β = 1), the optimal modulation variance µ tends to infinity. Taking this

into account and assuming the optimal negative EPR attack in which g′ = −g, the

rate can be reduced to a simple analytic expression in terms of fixed equivalent noise

χ = χloss(τA, τB) + ε. We have

R(τA, τB , χ) = log2

[
2(τA + τB)

e|τA − τBχ

]
+ h

[
τAχ

τA + τB
− 1

]
− h

[
τAτBχ− (τA + τB)2

|τA − τB|(τA + τB)

]
,

(5.1.15)

while in the symmetric case we obtain

R(χ) = h
(χ

2
− 1
)

+ log2

[
16

e2χ(χ− 4)

]
. (5.1.16)

Unfortunately, in the upcoming sections when using the Gaussian CV-MDI-

QKD protocol as a benchmark for our post-selection protocol, we are not often

able to exploit these expressions as we will consider a variety of parameters where

optimization is necessary. However, it is appropriate to outline the remarkably

simple mathematical description of the protocol under ideal conditions made possible

by its Gaussian nature.
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5.2 Measurement-device-independent quantum key

distribution with post-selection

We will now introduce our original CV-MDI protocol which allows the communicat-

ing parties to perform post-selection. We first outline the actions of the parties and

the eavesdropper before following the evolution of the modes in a single use of the

protocol. From the protocol outputs, we derive the mutual information, the Holevo

bound, and thus the asymptotic secret key rate. We then describe how post-selection

can be applied in order to improve the range of the protocol. Finally, we compare

our results with the original CV-MDI protocol under a variety of parameters.

1

2
(˜B + ipB)

1

2
( A + ipA)

Eve

1
2

τA τB

ωA ωB

B b

A

e1 e2

Alice Bob

QMQM

QM

q p

B

(a)

(b)
(˜B, pB)

A

A

E1 E2

B

B

Figure 5.2: Schematic of a single use of the protocol assuming the q-quadrature is

chosen by the parties for reconciliation. (a): Alice and Bob send coherent states to

the relay which interact with Eve’s modes. At the relay, a Bell detection is performed

and the outputs γq and γp are publicly announced. After quantum communication

ceases, Alice broadcasts A and pA while Bob broadcasts B and pB. (b): In the

restricted eavesdropping scenario Bob’s action is modeled in the entanglement-based

representation. He measures, with heterodyne detection, one mode b of a TMSV

state of variance µ obtaining the outcome (κ̃B, pB). This action prepares coherent

states in the conjugate mode B that is subsequently sent to the relay.
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5.2.1 Protocol overview

Trusted parties

Application of post-selection of the case of CV-MDI QKD draws many similarities

with the process outlined in Chap. 4 for the one-way protocol with the main dif-

ference being that both parties now prepare and send signals to the relay. We will

limit our analysis to the case in which Alice and Bob send coherent states as this

process ensures Eve’s state is pure and the Holevo bound can be computed without

considering the photon statistics of multimode states. This being the case, extend-

ing the analysis to thermal states is an interesting albeit difficult avenue for future

work.

The preparation step requires the assumption that both parties have access to

IID random variables Q and P that each follow a zero-mean Gaussian distribution

of the form N (0, σ) where the variance σ can be adjusted freely. In each use of

the protocol, Alice draws the random numbers qA ∈ Q and pA ∈ P with variance

σA. From these two numbers, she extracts absolute values |qA| = A and |pA| = A′

and signs κ and κ′, respectively. The values of the signs κ and κ′ define the binary

encoding alphabet i.e. Alice records bit value 0(1) if the sign is positive(negative).

She stores tuples a = (A,A′) and κ = (κ, κ′) and proceeds to prepare a coherent

state of the form
∣∣1

2
(κA + iκ′A′)

〉
which she sends to the relay via a quantum channel.

Bob follows a similar procedure, generating two random numbers qB and pB from his

Gaussian distributions with a generally different variance σB. He generates a state

of the form
∣∣1

2
(κ̃B + iκ̃′B′)

〉
and sends it to the relay while storing tuples b = (B,B′)

and κ̃ = (κ̃, κ̃′).

After quantum communication ceases, the parties perform basis reconciliation.

If the q-quadrature is chosen, the variables κ′ and κ̃′ are discarded. Alice broadcasts

A and pA while Bob broadcasts B and pB. Bob attempts to reconcile his variable

κ̃ with Alice’s variable κ. Alternatively, if the p-quadrature is chosen, the relevant

variables become κ′ and κ̃′. Alice broadcasts A′ and qA while Bob broadcasts B′ and

qB.

82



5.2. Measurement-device-independent quantum key distribution with
post-selection

1
2QM QM

1
2

(a) (c)

1
2

(a)
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Figure 5.3: Models of inefficiency in homodyne detection at the relay using beam

splitters. (a) depicts a trusted noise scenario in which it is assumed that Eve does

not have access to the output of the beam splitters. (b) assumes that the outputs

of the beam splitters are added to Eve’s quantum memory for later measurement.

(c) depicts a simplification in the symmetric case (τA = τB = τ) and with S = 1

Complete and restricted eavesdropping

We will see later that our post-selection scheme does not allow the secret key of

our protocol to be computed simply from the state of Alice and Bob. As a result,

we cannot consider an unknown reservoir of states as in the case of the original

protocol with Gaussian encoding as we must be able to fully and independently

describe Eve’s state. We, therefore, assume that Eve employs dual collective entan-

gling cloner attacks as introduced in Section 3.4 in which she inserts beam splitters

of transmissivity τA and τB into lossless Alice-relay and Bob-relay channels, respec-

tively. She uses the beam splitters to mix Alice’s mode A with her mode E1 and

Bob’s mode B with her mode E2. The modes E1 and E2 each form one half of

independent TMSV states with conjugate modes e1 and e2, and variances ωA and

ωB, respectively. She stores the outputs from one port of each beam splitter in a

quantum memory and sends the remaining outputs A′ and B′ to the relay where

the usual Bell detection is performed and outcomes γ = (γq, γp) are broadcast.

As the channels, measurements, and states sent by the parties are all Gaussian,

we conjecture that this attack, based on a Gaussian unitary, is optimal and accounts

for any general attack that may include higher-rank measurements applied by Eve,

in line with that of the original CV-MDI protocol introduced in the previous sec-

tion. However, we will see later that a non-Gaussian component emerges in Eve’s

system due to the discrete modulation required for post-selection, hence proving the
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optimality of the Gaussian attack in this context is an open problem.

In order to ensure our protocol description is as general as possible, we allow

the homodyne detection to have an associated efficiency η which can be modeled by

assuming modes A′′ and B′′ pass through beam splitters of transmissivity η where

they are each mixed with one half of separate TMSV states with identical variance

S before arriving at 100% efficient homodyne detectors. We may assume that the

noise of the detectors is untrusted, in which case we assume the TMSV states are

part of Eve’s state and are included in the calculation of Eve’s information, or

trusted, in which case they are discarded. If S = 1, and τA = τB = τ , the detector

inefficiencies can be modeled without considering beam splitter interactions at the

relay by absorbing them into the transmissivities of the links such that τ → ητ . We

outline each model schematically in Fig. 5.3.

Bob’s Broadcasting of the tuple (B, pB) or (qB,B′) achieves the task of ensur-

ing that both parties can independently establish which instances of the protocol

should be included in the final key. Such a communication step is likely a necessity

in any post-selection protocol, however, it is possible that there is a more optimal

strategy that reduces the amount of information Bob must broadcast and therefore

the amount of information Eve gains. Such a strategy would yield a secret key rate

that lies in between the achievable lower bound in which Bob broadcasts (B, pB) or

(qB,B′) in every use of the protocol and the upper bound in which no information

is broadcast by Bob. An alternative way to think about the latter is to consider a

restricted eavesdropping scenario in which Eve does not use the information broad-

cast by Bob in her attack. In the following sections, we will compute the secret

key rate of the lower bound as well as that of what we will henceforth refer to

as the restricted eavesdropping scenario. To establish Eve’s state under restricted

eavesdropping, we need to consider an entanglement-based version of the protocol

as shown in Fig. 5.2(b). Bob’s action may be modeled as measuring one mode of a

TMSV state with modulation µ. The amplitude of the coherent states |β̃〉 remotely

prepared as a result of this process is related to the measurement outcome β by

β̃ = ξβ∗, ξ =

√
µ+ 1

µ− 1
(5.2.17)

and we label Bob’s heterodyne measurement outcome as (κ̃B, κ̃′ B′).
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5.2.2 Mode propagation

Our goal in the forthcoming sections is to establish the post-selected asymptotic key

rate of the protocol, RPS. However, our initial objective is to obtain a formula for

the usual asymptotic secret key rate R given by

R = βIAB − χ, (5.2.18)

where IAB is the mutual information between Alice and Bob, β is the reconciliation

efficiency and χ is the Holevo bound. To this end, we follow the propagation of the

covariance matrix (CM) of the total Alice-Bob-Eve system and its associated mean

value. With the individual uses of the protocol being Gaussian, these are the only

tools we need to compute the probabilities and states needed to derive the key rate.

After completing this task, we will proceed to explain the post-selection procedure

which allows us to extend the range of the protocol.

Let us begin with the initial CM of the total system which is simply the direct

sum of the CMs of the constituent systems,

VAB E |κaκ̃b = IA ⊕ IB ⊕VE (5.2.19)

where VE is Eve’s initial CM, which, assuming she controls the detector noise at

the relay, is given by

VE = VTMSV(ωA)⊕VTMSV(ωB)⊕VTMSV(S)⊕VTMSV(S),

with VTMSV(µ) being the CM of a TMSV state with variance µ. The mean value of

the combined system of Alice and Bob is given by

x̄AB|κaκ̃b = (κA, κ′A′, κ̃B, κ̃′B′)T, (5.2.20)

while the mean value of Eve’s system can be taken initially as zero. The action

of all of the beam splitters can be encapsulated by the matrix T that, when ap-

plied to the system, gives the post-propagation CM VA′′B′′E′e|κaκ̃b and mean value

x̄A′′B′′E′e|κaκ̃b. Eve’s CM with conditioning on γ is obtained by performing the

homodyne measurements at the relay on the modes A′′ and B′′ in the p- and q-

quadrature, respectively. The measurement outcome in the q-quadrature, γq with
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conditioning on the measurement outcome of the p-quadrature, γp, is given by

p(γq|κaκ̃bγp) =
1√
2πυ

exp

[
− 1

2υ

(
γ +

√
η

2
(κA
√
τA − κ̃B

√
τB)

)2
]

(5.2.21)

and in the reverse case we have

p(γp|κaκ̃bγq) =
1√
2πυ

exp

[
− 1

2υ

(
γ −

√
η

2
(κ′A′

√
τA + κ̃′B′

√
τB)

)2
]

(5.2.22)

where

υ = (1− η)S +
η

2
[τA + τB + (1− τA)ωA + (1− τB)ωB]. (5.2.23)

Note that the two quadratures are independent, we have

p(γq|κaκ̃bγp) = p(γq|κκ̃AB) (5.2.24)

p(γp|κaκ̃bγq) = p(γp|κ′κ̃′A′B′). (5.2.25)

As in Chap. 4 for the one-way protocol, we may compute the asymptotic secret

key rate by assuming that the parties always agree on one particular quadrature

for encoding. In doing so, we simplify our calculation of the rate by ignoring the

variables associated with the conjugate quadrature. Note, however, that the rate is

independent of this choice of quadrature. We will arbitrarily choose the q-quadrature

for our forthcoming calculation of the rate and we will employ the refined notation

γ ≡ γq while ignoring the variables κ′, κ̃′, A′ and B′.

Restricted eavesdropping

In the restricted eavesdropping case, we again consider only the q-quadrature for

our calculations. After applying the beam splitter operation to the CM and mean

value, we obtain the relay measurement outcome γ ≡ γq with probability

p(γ|κA) =
1√
2πυ̃

exp

− 1

2υ̃

(
γ + κA

√
1

2
ητA

)2
 , (5.2.26)

where

υ̃ = (1− η)S +
η

2
[τA + τBµ+ (1− τA)ωA + (1− τB)ωB] . (5.2.27)

After the relay measurements, the CM and mean value of the remaining system be-

come VbE′e|κAγ and x̄bE′e|κAγ . Eve’s CM and mean value are obtained by tracing out
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Bob’s remaining mode b. In the final step, Bob performs a heterodyne measurement

on his retained mode. The associated probability distribution for this measurement

is p(κ̃B, pB|κAγ) and by integrating over pB we obtain

p(κ̃B|κAγ) =
1√

2πVb
exp

{
− 1

2Vb

[
κ̃B− 1

υ̃

√
(µ2 − 1)

ητB
2

(
γ + κA

√
ητA
2

)]2
}
,

(5.2.28)

where

Vb = (µ+ 1)

(
1− µ− 1

υ

ητB
2

)
. (5.2.29)

In the following sections, we will derive the secret key rate of the protocol for both

eavesdropping scenarios based on the secret encoding variable κ and Bob’s variable

κ̃. We first compute the mutual information then the Holevo bound and, finally, we

will introduce the post-selection procedure and calculate the post-selected rate.

5.2.3 Mutual information

Armed with expressions for the protocol outputs, we are now in a position to be

able to compute the mutual information between Alice and Bob and thus the first

term of the asymptotic secret key rate. The mutual information formula is given,

independent of the eavesdropping strategy under consideration, by

I(κ : κ̃ |ABγ) = H(κ|ABγ)−H(κ| κ̃ABγ), (5.2.30)

where H(X|Y ) is the conditional Shannon entropy of X given Y (cf. Sec. 2.5.1). We

may express the mutual information as the following single integral

I(κ : κ̃ : ABγ) =

∫
p(ABγ)

[
Hκ|ABγ −

∑
κ̃

p(κ̃|ABγ)Hκ|κ̃ABγ

]
dA dB dγ . (5.2.31)

The key components of the mutual information are the entropies Hκ|ABγ and

Hκ| κ̃ABγ which reduce to binary entropies of respective probabilities p(κ|ABγ) and

p(κ| κ̃ABγ). The majority of the following section is dedicated to determining their

form for both complete and restrictive eavesdropping. The main mathematical tool

required in this process is Baye’s rule, which we apply repeatedly in order to attain

these probabilities from the known output of the protocol, p(γ|κAB) and the initial

probabilities p(κA) and p(κ̃B).
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Considering the strongest eavesdropping scenario first, the conditional probabil-

ity p(κ| κ̃ABγ) can be computed as follows

p(κ| κ̃ABγ) =
p(γ|κ κ̃AB)p(κ| κ̃AB)∑
κ p(γ|κ κ̃AB)p(κ| κ̃AB)

=
1

1 + exp
[
2κA

√
1
2
ητA

(
γ − κ̃B

√
1
2
ητB

)
υ−1
] , (5.2.32)

where υ is defined in Eq. (5.2.23) and we have used the fact that κ, κ̃, A and B are

independent variables. Using the same logic, we arrive at the following expression

for the reverse probability

p( κ̃ |κABγ) =
1

1 + exp
[
−2 κ̃B

√
1
2
ητB

(
γ + κA

√
1
2
ητA

)
υ−1
] . (5.2.33)

The next step is to compute the total probabilities p(κ|ABγ) and p(κ̃|ABγ). For

the former we obtain

p(κ|ABγ) =

∑
κ̃ p(γ|κ κ̃AB)p(κ κ̃ |AB)∑
κ,κ̃ p(γ|κ κ̃AB)p(κ κ̃ |AB)

=
1

1 +
(
p(+|1ABγ)
p(−|0ABγ)

)κ
exp

[
2κ
√

1
2
η(B√τB + A√τA)υ−1

] , (5.2.34)

where we note that p(κ κ̃ |AB) = 1/4 for all combinations of κ and κ̃ due to the

independence of the variables. Using the same logic we obtain the last probability

required for the calculation of the conditional entropies,

p(κ̃ |ABγ) =
1

1 +
(
p(0|−ABγ)
p(1|+ABγ)

)κ̃
exp

[
−2 κ̃

√
1
2
η(B√τB + A√τA)υ−1

] . (5.2.35)

The final probability we require is the total probability of all of the post-selection

variables which is simply given by p(ABγ) =
∑

κ,κ̃ p(γ|κ κ̃AB)p(κA)p(κ̃B).

Restricted eavesdropping

The computation of the probabilities required for the mutual information in the

restricted eavesdropping scenario are slightly cumbersome due to Bob’s TMSV state,

however, the first conditional probability is easily attainable as

p(κ̃ |κABγ) =
p(κ̃B|κAγ)∑
p(κ̃B|κAγ)

=
1

1 + exp
[
−2 κ̃B

(
γ + κA

√
1
2
ητA

)
∆ υ̃′−1

] .
(5.2.36)
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By setting µ = 1 in the expression for υ̃ in Eq. (5.2.27), we define the variance υ̃′,

υ̃′ = (1− η)S +
η

2
[τA + τB + ωA(1− τA) + ωB(1− τB)] (5.2.37)

and we also define

∆ =

√
η

2

1

τB

√
µ− 1

µ+ 1
. (5.2.38)

In order to calculate the reverse probability p(κ| κ̃ABγ), we first compute

p(κ|Aγ) =
p(γ|κA)∑
κ p(γ|κA)

=
1

1 + exp
(

2κAγ
√

1
2
ητAυ̃−1

) (5.2.39)

then the required probability can be derived as

p(κ| κ̃ABγ) =
p(κ̃B|κAγ)p(κ|Aγ)∑
κ p(κ̃B|κAγ)p(κ|Aγ)

=
1

1 + exp
[
2κA

√
1
2
ητA (γ′ − κ̃B∆) υ̃′−1

]
(5.2.40)

where we have defined

γ′ =
1

υ̃

(
υ̃′ +

η

2

1

τB
(µ− 1)

)
γ. (5.2.41)

We can now compute the total probabilities of κ and κ̃ as

p(κ|ABγ) =

∑
κ̃ p(κ̃B|κAγ)p(κ|Aγ)∑
κ,κ̃ p(κ̃B|κAγ)p(κ|Aγ)

=
1

1 + Ξκ exp
[
2κA

√
1
2
ητA (γ′ + B∆) υ̃′−1

] (5.2.42)

and

p(κ̃ |ABγ) =
1

1 + Ξκ̃ exp
[
−2 κ̃B

(
γ − A

√
1
2
ητA

)
∆ υ̃′−1

] (5.2.43)

with

Ξm =

(
p(1|+ ABγ)

p(1| − ABγ)

)m
. (5.2.44)

Finally, the total probability of the three post-selection variables becomes p(ABγ) =∑
κ,κ̃ p(κ̃B|κAγ)p(γ|κA)p(κA).
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5.2.4 Eve’s accessible information

We now turn to the task of quantifying Eve’s accessible information on the secret

variable. As we are assuming collective entangling cloner attacks, we make use of

the Holevo bound χ, to establish the maximum amount of information Eve may

attain using any strategy permitted by the laws of quantum mechanics. The Holevo

bound is given by

χ(E′ : κ|ABγ) = S(E′|ABγ)− S(E′|κABγ), (5.2.45)

where the first term can be written in terms of Eve’s total state ρ̂E′|ABγ as

S(E′|ABγ) =

∫
p(ABγ)S(ρ̂E′|ABγ) dA dB dγ , (5.2.46)

where S(ρ̂) is the VNE of state ρ̂ introduced in Section 2.5. The second term of

the Holevo bound is established using Eve’s state conditioned on the clandestine

variable, ρ̂E′|κABγ. It may be written as

S(E′|κABγ) =

∫
p(ABγ)

∑
κ

p(κ|ABγ)S
(
ρ̂E′|κABγ

)
dA dB dγ . (5.2.47)

Access to both the total and conditional states is obtained by manipulation of the

post-propagation state of Eve’s system, ρ̂E′|κA κ̃Bγ which can be derived from the

corresponding CM and mean value. We may write her total and conditional states

as

ρ̂E′|ABγ =
∑
κ,κ̃

p(κ κ̃ |ABγ)ρ̂E′|κA κ̃Bγ (5.2.48)

and ρ̂E′|κABγ =
∑
κ̃

p(κ̃ |κABγ)ρ̂E′|κ κ̃ABγ. (5.2.49)

Neither the total nor the condition states are Gaussian, and computing their

entropy directly in the Fock basis is a difficult problem due to Eve now being in

possession of four modes. Instead, we follow a method originally used for post-

selection of one-way coherent state protocol originating from Refs [56, 57]. With

little added complexity, we can derive the equivalent method for the MDI protocol.

Let us first note that Eve’s state emerging after the propagation of the modes is

pure and can be written in the bra-ket notation as

ρ̂E′|κ κ̃ABγ = Ê′ABγκ κ̃ =
∣∣∣E′ABγκ κ̃

〉〈
E′ABγκ κ̃

∣∣∣ . (5.2.50)
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For convenience, we also introduce the shorthand notation

pABγκ κ̃ ≡ p(κ κ̃ |ABγ) and pABγκ̃ |κ ≡ p(κ̃ |κABγ). (5.2.51)

Using the broadcast values A, pA, B, pB and γ, Eve knows that her total state is

a convex combination of the four states
∣∣∣E′ABγ0+

〉
,
∣∣∣E′ABγ0−

〉
,
∣∣∣E′ABγ1+

〉
and

∣∣∣E′ABγ1−

〉
and

it can therefore be expressed in a four-dimensional Hilbert space. Let us note at

this point that in our notation we use Alice’s assigned bit values 0(1) to represent

κ = +(−) in order to aide distinguishability between κ and κ̃. Eve’s total state in

Eq. (5.2.48) may be expressed conveniently in this shorthand notation as

ρ̂E′|ABγ =
∑
κ,κ̃

pABγκ κ̃

∣∣∣E′ABγκ κ̃

〉〈
E′ABγκ κ̃

∣∣∣ . (5.2.52)

The next step in our task of determining Eve’s state is to compute the matrix

of all overlaps S, whose elements are given by the combinations of the overlaps〈
E′ABγκ1 κ̃1

∣∣∣E′ABγκ2 κ̃2

〉
of Eve’s possible states. We may write the matrix of overlaps as

S =

0+ 0− 1+ 1−


1 B A AB 0 +

B 1 AB A 0−
A AB 1 B 1 +

AB A B 1 1−

(5.2.53)

where we have ignored irrelevant phase factors by noting that they may always

be removed by multiplying the states
∣∣∣E′ABγκ κ̃

〉
by other appropriate phase factors

without modifying the nature of the state. The matrix of overlaps reveals the inter-

relationship between the basis vectors in Eve’s total state. It can be seen that the

matrix is expressible in tensor product form as

S =

1 A

A 1

⊗
 1 B

B 1

 (5.2.54)

which implies that Eve’s state is the product of two states in two-dimensional Hilbert

spaces, which we write as ∣∣∣E′ABγκ κ̃

〉
=
∣∣E′ABγκ

〉 ∣∣∣E′ABγκ̃

〉
. (5.2.55)
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The individual states can be expanded as∣∣∣E′ABγ0

〉
= c0 |Φ0〉+ c1 |Φ1〉 ,

∣∣∣E′ABγ1

〉
= c0 |Φ0〉 − c1 |Φ1〉 (5.2.56)

and ∣∣∣E′ABγ+

〉
= c+ |Φ+〉+ c− |Φ−〉 ,

∣∣∣E′ABγ−

〉
= c+ |Φ+〉 − c− |Φ−〉 , (5.2.57)

where {|Φ0〉 , |Φ1〉} and {|Φ+〉 , |Φ−〉} are orthonormal basis sets for the Hilbert

spaces spanned by
∣∣E′ABγκ

〉
and

∣∣∣E′ABγκ̃

〉
, respectively. Our focus now turns to re-

lating the coefficients to the overlaps A and B. We perform the following inner

products 〈
E′ABγ0

∣∣∣E′ABγ0

〉
= |c0|2 + |c1|2 = 1 (5.2.58)〈

E′ABγ0

∣∣∣E′ABγ1

〉
= |c0|2 − |c1|2 = A (5.2.59)

from which we obtain expressions for the absolute values of the coefficients c0 and

c1 of

|c0|2 =
1

2
(1 + A) (5.2.60)

and |c1|2 =
1

2
(1− A) , (5.2.61)

and following a similar calculation we arrive at the following expressions for the

absolute values of the remaining coefficients

|c+|2 =
1

2
(1 +B) (5.2.62)

and |c−|2 =
1

2
(1−B) . (5.2.63)

The elements of the matrix of overlaps and, therefore, the values A and B, are

computed from the overlap formula for Gaussian states [88], which, for two pure

states ρ̂1 and ρ̂2 with the same CM, V and different mean values x̄1 and x̄2, reduces

to

tr(ρ̂1ρ̂2) = exp

[
−1

4
(x̄1 − x̄2)TV−1(x̄1 − x̄2)

]
(5.2.64)

and our coefficients A and B become

A =
〈
E′ABγ0

∣∣∣E′ABγ1

〉
= exp

[
−1

2
A2
(

1− ητA
υ

)]
(5.2.65)
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and

B =
〈
E′ABγ+

∣∣∣E′ABγ−

〉
= exp

[
−1

2
B2
(

1− ητB
υ

)]
. (5.2.66)

Note that the overlaps are independent of the relay measurement outcomes. At

this point we have derived the necessary tools required to compute Eve’s total state

using Eq. (5.2.52). We arrive at the following matrix

Ê′ABγ = (5.2.67)
|c0|2|c+|2 h.c.

|c0|2c−c∗+Λ(+,−,+,−) |c0|2|c−|2

|c+|2c1c
∗
0Λ(+,+,−,−) c1c+c

∗
0c
∗
−Λ(+,−,−,+) |c1|2|c+|2

c1c−c∗0c
∗
+Λ(+,−,−,+) |c−|2c1c

∗
0Λ(+,+,−,−) |c1|2c0c

∗
+Λ(+,−,+,−) |c1|2|c−|2


(5.2.68)

where h.c. represents the hermitian conjugate of the lower triangle of the matrix

and the function Λ is defined as

Λ(s1, s2, s3, s4) = s1p
ABγ
0+ + s2p

ABγ
0− + s3p

ABγ
1+ + s4p

ABγ
1− . (5.2.69)

To obtain the entropy of the total state, we first compute the eigenvalues of Eq. (5.2.68)

which amounts to solving a quartic equation in which the coefficients are combina-

tions of the absolute values of the basis coefficients. From these eigenvalues, the

VNE is readily obtained and can then be substituted into Eq. (5.2.46) to obtain the

first term of the Holevo bound.

In order to compute the conditional state and the second term of the Holevo

bound, we construct the density matrices of the conditional states. Using the sepa-

rable nature of the state, we are able to write

Ê′ABγ0 =
∣∣∣E′ABγ0

〉〈
E′ABγ0

∣∣∣⊗ (pABγ+|0

∣∣∣E′ABγ+

〉〈
E′ABγ+

∣∣∣+ pABγ−|0

∣∣∣E′ABγ−

〉〈
E′ABγ−

∣∣∣ ) (5.2.70)

and

Ê′ABγ1 =
∣∣∣E′ABγ1

〉〈
E′ABγ1

∣∣∣⊗ (pABγ+|1

∣∣∣E′ABγ+

〉〈
E′ABγ+

∣∣∣+ pABγ−|1

∣∣∣E′ABγ−

〉〈
E′ABγ−

∣∣∣ ).
(5.2.71)

It is then straightforward to obtain the sets of eigenvalues

λ0
1,2 =

1

2

(
1±

√
1− 16pABγ+|0 p

ABγ
−|0 |c−|2|c+|2

)
(5.2.72)
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and

λ1
1,2 =

1

2

(
1±

√
1− 16pABγ+|1 p

ABγ
−|1 |c−|2|c+|2

)
, (5.2.73)

from which we compute the second term of the Holevo bound using Eq. (5.2.47).

It is interesting to note that unlike in the case of the one-way protocol, the sets of

eigenvalues are not degenerate. This is a consequence of the correlations created by

the relay.

Restricted eavesdropping

Let us now consider Eve’s accessible information in the restricted eavesdropping

scenario. In this case, Eve has to distinguish between two states corresponding to

the two possible values of κ. Under these conditions, it is possible to consider both

individual and collective attacks as we will outline in the following.

Let us first examine the most straightforward case in which Eve employs in-

dividual attacks, and may not access a quantum memory. In this case the mutual

information between Alice and Eve, IAE, can be estimated by from Eve’s error prob-

ability using the fidelity, F of Eve’s two possible states, ρ̂E′|+Aγ and ρ̂E′|−Aγ which

we compute using Eq. (5.2.64). We apply the lower bound

F− =
1−
√

1− F
2

(5.2.74)

in order to bound Eve’s error probability from below, modeling a worst-case scenario

for Alice and Bob [89]. The total expression for the mutual information IAB becomes

IAE =

∫
p(Aγ) [1−H2(F−)] dA dγ , (5.2.75)

where H2(p) is the binary entropy.

In the case of collective attacks we must compute the Holevo bound in order

to establish an upper-bound on Eve’s accessible information. The Holevo bound is

given by

χRE(E′ : κ|Aγ) = S(E′|Aγ)− S(E′|κAγ), (5.2.76)

where the first term can be written as

S(E′|Aγ) =

∫
p(Aγ)S(ρ̂E′|Aγ) dA dγ , (5.2.77)
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where ρ̂E′|Aγ is the total state, given by

ρ̂E′|Aγ =
∑
κ

p(κ|Aγ)ρ̂E′|κAγ. (5.2.78)

As it is derived from the sum of two Gaussian states, the total state is non-Gaussian.

To avoid the difficulty in obtaining the entropy of this state from its photon statistics,

we may employ a non-Gaussian entropy approximation which we derive in Appendix

A. Using the main result we may write the CM of the total state as

VE′|A = VE′|κA + p(+|Aγ)p(−|Aγ)∆x̄E′ ·∆x̄T
E′ , (5.2.79)

where ∆x̄E′ = x̄E′|+Aγ − x̄E′|−Aγ. Taking the entropy of this state via the symplectic

eigenvalues, {νi} of its CM provides an upper bound on the exact entropy of Eve’s

total state as it assumes this state to be Gaussian. We therefore have

S(ρ̂κAγ) ≤ S(VE′|κAγ) =
∑
i

h(νi) (5.2.80)

where we recall the following expression from Sec. 2.5.3

h(x) =
x+ 1

2
log2

x+ 1

2
− x− 1

2
log2

x− 1

2
. (5.2.81)

Meanwhile, the second term of the Holevo bound involves a Gaussian state and

can be computed directly from the protocol output, independent of any measurement

outcome. As described in Section 5.2.2, Eve’s CM VE′|κA after the relay measure-

ments is obtained by tracing out Bob’s remaining mode. The entropy is then simply

computed from the symplectic eigenvalues, {υi} of the remaining CM by

S(ρ̂E′|κA) = S(VE′|κA) =
∑
i

h(υi). (5.2.82)

The Holevo bound is then reduced to the following expression

χ(E′ : κ|Aγ) ≤
∫
p(Aγ)S(VE′|Aγ) dA dγ − S(VE′|κAγ). (5.2.83)

5.2.5 Post-selection

At this point, we have obtained expressions for both terms of the asymptotic secret

key rate under both complete and restricted eavesdropping and we may now manip-

ulate these components in order to apply the technique of post-selection and improve
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the range of the protocol. Let us first re-write the mutual information integrand in

the following form

IAB =

∫
p(ABγ)ĨAB(A,B, γ) dA dB dγ . (5.2.84)

where we defined the single-point mutual information

ĨAB(A,B, γ) = Hκ|ABγ −
∑
κ̃

p(κ̃ |ABγ)Hκ| κ̃ABγ. (5.2.85)

Similarly, we can write the Holevo bound under complete eavesdropping as a single

integrand

χ =

∫
p(ABγ)χ̃(A,B, γ) dA dB dγ (5.2.86)

with χ̃ being the single-point Holevo bound given by

χ̃ = S(ρ̂E′|ABγ)−
∑
κ

p(κ|ABγ)S(ρE′|κABγ). (5.2.87)

In the same way, we define the following single-point Holevo bound for restricted

eavesdropping, χ̃RE for collective attacks and the single-point mutual information

between Alice and Eve, ĨAE for individual attacks,

χ̃RE ≤ S(VE′|Aγ)− S(VE′|κAγ) (5.2.88)

ĨAE = 1−H2(F−). (5.2.89)

Using these definitions, we introduce the single-point rate, R̃ = ĨAB− χ̃ for complete

eavesdropping, R̃ = ĨAB− χ̃RE for restricted eavesdropping under collective attacks

and R̃ = ĨAB − ĨAE for restricted eavesdropping under individual attacks. We can

then express the secret key rate in terms of the generic single-point rate as

R =

∫
p(ABγ)R̃(A,B, γ) dA dB dγ . (5.2.90)

For post-selection, we are interested in the region where the single-point rate is

positive so that the parties can choose to only include instances of the protocol that

contribute positively to the key rate. We can therefore define the post-selected key

rate as

RPS =

∫
p(ABγ) max{R̃(A,B, γ), 0} dA dB dγ . (5.2.91)
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The post-selected rate can also be thought of as the secret key rate over the region of

the A-B-γ volume in which the single-point rate is positive, labeled Γ. Symbolically,

this definition can be expressed as follows

RPS =

∫
Γ

p(ABγ)R̃(A,B, γ) dA dB dγ . (5.2.92)

5.2.6 Results

In this section, we will present a detailed analysis of our post-selected protocol.

However, we must first recap the relations for the channel loss and protocol range.

Firstly, the channel loss in dB is related to the transmissivity of the channel by

τ = 10−dB/10. We can also relate the transmissivity to the distance spanned by the

channel, d as τ = 10−δd/10 where δ is the loss per unit distance. As we are exclusively

considering fiber optic cables, a typical value of δ is 0.2 dB. There are cases in which

this number is smaller, but we will take a worst-case scenario for the purposes of

demonstrating the most realistic range of the protocol.

We use the excess noise to express the variances ωA and ωB in terms of the

transmissivities of the channels. By considering each link to be a point-to-point

channel we write

ωA(B) = 1 + εA(B)

ητA(B)/2

1− ητA(B)/2
. (5.2.93)

where εA(B) is the excess noise in the Alice-relay (Bob-relay) links.

Fig. 5.4 shows the total-distance between Alice and Bob, i.e. the sum of the

lengths of both channels, as a function of the rates of all variations of the pro-

tocol in the symmetric configuration (τA = τB) and assuming a pure-loss attack

(ε = εA = εB = 0) with perfect detection efficiency. In all cases, we have optimized

the rate over the variances σA and σB (σA and µ for restricted eavesdropping). For

comparison, we have included the rate of the original Gaussian MDI protocol with

equivalent parameters. Clearly, the range of the original protocol can be substan-

tially increased in the case of restricted eavesdropping but a notable advantage also

exists in the strongest eavesdropping scenario. It is possible that an achievable rate

with complete eavesdropping may lie somewhere between the rates of the collective

restricted eavesdropping rate and the complete eavesdropping rate, but the exact
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Figure 5.4: Rates of the pure-loss symmetric protocol as a function of the total dis-

tance between Alice and Bob with σA, σB and µ optimized. The red line represents

the rate of the symmetric Gaussian MDI protocol.

curve remains a topic for future investigations.

In Fig. 5.5, we examine the rates of the symmetric protocol under complete eaves-

dropping in more detail. We include the rates under ideal parameters (η = 1, β = 1,

and ε = 0) as well as a realistic rate with excess noise ε = 0.05, detector efficiency

of 98% and reconciliation efficiency of 95%. Again, we also show the optimal rates

of the Gaussian MDI protocol with identical parameters. Our protocol provides an

advantage over the original MDI protocol under both ideal and realistic parameters,

however, we note that the scale of the improvement reduces as we move closer to

unfavorable parameters. In Fig. 5.6 we explore the asymmetric configuration of the

protocol under complete eavesdropping. We see that our protocol offers the biggest

advantage as the symmetry of the configuration increases. However, we still observe

an advantage in the asymmetric regime up to very asymmetric configurations with

less than 1 km separating Alice from the relay.
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Figure 5.5: Rates of the symmetric protocol function of the total distance between

Alice and Bob with σA and σB optimized (black lines). For comparison, we include

the original Gaussian MDI protocol with optimal parameters (red lines). The solid

lines correspond to the pure-loss protocols with ideal parameters η = 1 and β = 1,

while the dashed lines correspond to a realistic scenario in which ε = 0.05, η = 0.98

and β = 0.95.

To explore the effect of the realistic parameters in more detail, we consider in

Fig. 5.7, for individual and collective attacks with restricted eavesdropping, the rates

with ε = 0.05, η = 0.8 and β = 0.95 that are typical experimental parameters [90],

in the symmetric configuration. For each rate, we have incorporated η by scaling

the transmissivities on each link. This has a considerable effect on the rate but

a distance exceeding 60 km with collective attacks is still possible. We show in

Fig. 5.8 the optimal values of the free parameters for the symmetric protocol with

restricted eavesdropping under individual (top) and collective (bottom) attacks with

the same parameters as those used for the rates in Fig. 5.7 between 10 and 20 km.

The optimal values of µ are displayed with red lines while black lines correspond

to optimal values of σA in units of the quantum vacuum variance, also known as
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Figure 5.6: Comparison of the maximum Bob-relay distance as a function of the

Alice-relay distance under complete eavesdropping. The black lines represent our

protocol with the solid line corresponding to the pure-loss case with ideal parameters

η = 1 and β = 1 and the dashed line corresponding to case with ε = 0.05 and

imperfect parameters η = 0.98 and β = 0.95. For comparison, the red line represents

the pure-loss Gaussian MDI protocol with ideal parameters.

shot-noise units (SNU). We note that the optimal parameters are small relative to

the original Gaussian MDI protocol in which the optimal value of µ tends to infinity

for perfect reconciliation efficiency.

5.3 Conclusions

In this chapter, we have introduced a long-distance CV-MDI-QKD protocol with a

general mathematical formulation with collective attacks that may include excess

noise and experimental inefficiencies. We have demonstrated that our protocol ex-

ceeds the range of the original Gaussian CV-MDI-QKD protocol in both symmetric

and asymmetric configurations. This improvement exists in the strongest eavesdrop-
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Figure 5.7: Rates of the symmetric protocol with restricted eavesdropping as a

function of the total distance between Alice and Bob with σA and µ optimized. The

black lines correspond to the pure-loss case with perfect detection and reconciliation

while the red lines represent the rate with parameters ε = 0.05, η = 0.8, and

β = 0.95.

ping scenario and is substantially increased to distances exceeding 50 km if restricted

eavesdropping is considered with either individual or collective attacks. In future

work, it would be beneficial to explore the possibility of a fully-secure rate between

these extremes if Bob is able to communicate all of the necessary information to

Alice without broadcasting the absolute value of his measurement in each use of the

protocol.

Our protocol is robust against excess noise as well as detection and reconcilia-

tion inefficiencies and it is, therefore, a significant step towards a realistic experi-

mental implementation. We have demonstrated that CV-MDI QKD need not be

restricted to short distances. In fact, our protocol provides a theoretical founda-

tion for MDI-QKD at distances previously only achievable with discrete variable
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Figure 5.8: Optimal values of µ (red lines) and σA (black lines) in short-noise units

(SNU) for the symmetric protocol with restricted eavesdropping under individual

(top panel) and collective (bottom panel) attacks. The solid lines represent the

optimal parameters for the pure-loss case with ideal detection efficiency and the

dashed lines represent the optimal values under parameters ε = 0.05, η = 0.8 and

β = 0.95.

protocols, achievable with inexpensive and easily implementable equipment.

Despite the rate-distance improvements offered by our protocol, increasing the

range further remains a difficult task. One interesting extension of the CV-MDI

technology is a generalization to a multipartite configuration in which many users

communicate with a central relay controlled by an eavesdropper, enabling quantum

conferencing or quantum secret sharing between the parties [91]. Recently, this
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architecture has been proposed as a building block for a scalable modular quan-

tum network that may provide a path towards long-distance CV-MDI QKD [92].

An interesting avenue for future work would be to implement post-selection into

the multivariate CV-MDI architecture to extend its range in anticipation of larger

network implementations in the future.
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Chapter 6

Analysis of quantum versus

classical networking in

butterfly-based networks

In this chapter, we will reach the end of our journey from points to nodes. Our focus

will be directed at one of the major hurdles ahead in the path towards widespread

quantum networking, which is the lack of clarity regarding the performance of quan-

tum networks built on top of or using classical network infrastructure. We will con-

sider the well-known butterfly network and the problem of network coding, which is

trivially implemented with the benefits of classical networking, but somewhat more

complex in its quantum counterpart.

The characteristic feature of the butterfly network as shown in Fig. 6.1 is the

bottleneck point at the node R1. Let us consider a communication problem between

the senders A1 and A2 and the receivers B1 and B2. We can assume that each

sender wishes to send a single message to both receivers, known as a single-message

multicast. We will also assume a flooding protocol is in place, which means each

channel in the network can be used exactly once. Upon first glance, it would appear

that it isn’t possible for both parties to successfully perform multicasts due to the

bottleneck at R1 where data can be sent to R2 from either A1 or A2. In 2002, a

solution to this problem was proposed by R. Ahlswede et al. in the form of network

coding [29]. As outlined in Fig. 6.1, network coding in the butterfly network consists
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Figure 6.1: A schematic of the butterfly network with two senders, A1 and A2, a

bottleneck channel with bottleneck nodes R1 and R2, and two receivers, B1 and B2.

The bits transmitted according to the Ahlswede classical network coding protocol

are labelled on each channel. Network coding is achieved using modulo-2 addition

for encoding at R1 and for decoding B1 and B2 after duplication of the encoded

bit at R2. Also highlighted in green are the states sent via the side channels in a

scheme for QNC introduced by M. Hayashi based on teleportation using the resource

of prior entanglement shared between the two senders.

of encoding data using a modulo-2 addition operation at the bottleneck node R1

before sending the encoded bit through the bottleneck channel to R2 where it is

duplicated and sent to each receiver. Receiver B1(2) decodes the data received from

R2 using modulo-2 addition with data received from their directly-connected sender

A1(2). This simple strategy proved groundbreaking in network theory and the field

of network coding is still of great importance in modern research.

Given the success of network coding in classical networks, an important question

we must ask: is can this success be replicated in the quantum setting? More specif-

ically, can the bits in classical network coding be replaced with qubits to achieve

quantum network coding (QNC) with the same high data rate per use of the net-

work? It is apparent that quantum network coding cannot be achieved in parallel

with its classical counterpart due to the no-cloning theorem [93]. Hayashi et al. [94]
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confirmed that no quantum process achieves perfect QNC (i.e. with unit fidelity)

while demonstrating that approximate quantum network coding can be achieved for

qubits using a “universal quantum copying machine” [95] with a fidelity greater than

1/2 but no more than 0.983. In addition, Ref. [96] provided an information-theoretic

proof that quantum network coding does not provide a larger information flow than

routing in the butterfly network.

Clearly then, perfect QNC demands some out-of-the-box thinking. A possible

solution is to assume the presence of additional resources available to nodes in the

network. One protocol proposed in 2007 by M. Hayashi et al. [97] makes use of prior

entanglement between the two senders in the butterfly network to achieve QNC

with a strategy based on quantum teleportation. This protocol is also depicted in

Fig. 6.1 with the states required to be sent via the side channels highlighted in green.

Senders A1 and A2 share two pairs of maximally entangled Bell states. The first

pair has two sites, A1,1, A2,1 and second pair has two sites, A1,2 and A2,2. The state

prepared by sender Ai is denoted |ψi〉. The protocol can be summarised in four

steps as follows:

1. Sender Ai performs a Bell measurement on the joint system Ai ⊗ Ai,i and

obtains data xi. The state of the remaining site Ai,i⊕1 is

U(xi⊕1)−1 |ψi⊕1〉 , (6.0.1)

where U(x) is the teleportation unitary associated with the outcome x of the

Bell detection.

2. Ai performs the unitary operation U(xi)
−1 on the remaining site Ai,i⊕1, hence

the state of the system Ai,i⊕1 becomes

U(xi)
−1U(xi⊕1)−1 |ψi⊕1〉 = c(xi, xi⊕1)U(x1 ⊕ x2)−1 |ψi⊕1〉 (6.0.2)

where c(xi, xi⊕1) is a constant with |c(xi, xi⊕1)| = 1. Ai sends the system Ai,i⊕1

to Bi via the channel that directly connects the two nodes. Ai also sends the

classical information xi to R1.

3. R1 sends the classical information x1 ⊕ x2 to R2, where it is duplicated and

sent to B1 and B2 as in the classical case.
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4. Bi performs the unitary operation U(x1 ⊕ x2) to the received state U(x1 ⊕
x2)−1 |ψi〉. The original state is then recovered as

U(x1 ⊕ x2)U(x1 ⊕ x2)−1 |ψi〉 = |ψi〉 . (6.0.3)

This relatively straightforward protocol demonstrates a perfect QNC scheme pos-

sible due to the presence of prior entanglement between senders. This protocol has

recently been verified experimentally [98] and several other studies make use of prior

entanglement in the butterfly network to achieve the same goal [99–101]. Alterna-

tively, Ref. [102] has shown that transfer of quantum states by quantum network

coding is possible in the absence of prior entanglement by enabling free classical

communication between nodes and several other investigations have considered a

free-classical-communication regime [103–105]. While these schemes provide an-

swers to the question of perfect QNC, the requirement of prior entanglement and/or

classical communication between nodes makes them suboptimal solutions in many

applications and highlights the non-trivial limitations of extending network coding

to the quantum regime.

In the context of QNC in realistic networks, one must consider the general case

in which multicasts from senders to receivers are only partially achieved. This is

particularly important if we replace the perfect quantum channels considered thus

far with noisy channels in which successful transmission is not guaranteed. We may,

therefore, associate an average rate to each sender which accounts for the fact that

sometimes only a subset of the receivers is reached. This rate describes the average

number of bits per receiver that are transmitted in each network multicast. In this

chapter, we will perform a detailed analysis of the rates of the butterfly network

constructed with identity, depolarizing, and erasure channels. We will deviate from

the existing literature in that our objective will be to quantify the rates in a quan-

tum communication setting in which quantum systems are physically sent through

quantum channels, rather than a quantum information processing setting in which

quantum states are simply transferred or reconstructed. By applying the techniques

introduced in Sec. 2.6, namely LOCC simulation and teleportation stretching, we can

upper-bound the highest quantum communication rates achievable in a multicast
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assisted by adaptive local operations and two-way classical communication involving

all the nodes of the network. We then compare these bounds with the correspond-

ing rates that can be achieved for multicasts of classical information from senders

to receivers, establishing parameter regimes where classical outperforms quantum

communication.

The techniques introduced in Sec. 2.6 allow us to extend our analysis to a class of

networks that are constructed with butterfly network blocks, for which we find that

the performance gap between the classical and quantum regimes is more pronounced.

To our knowledge, these network structures have not been considered previously in

the literature. Our results allow us to illuminate the non-trivial limitations that

certain network architectures have for transmitting quantum information.

6.1 Rates of a single butterfly block

Let us now proceed with our analysis of the butterfly network starting with the

computation of the rates of a single butterfly block. Firstly, we must recall the

bound introduced in Sec. 2.6.4 for the capacity of a network of an ensemble of

senders {Ai} and receivers {Bi},

B(N ) := min
C:{Ai}|{Bj}

∑
(x,y)∈C̃

ER(σ̂Exy), (6.1.4)

where C : {Ai}|{Bj} represents a network cut that separates the ensemble of senders

from the ensemble of receivers. In analogy to the classical networking case, we are

interested in single-message multiple multicasts, where, in each use of the network,

each sender aims to send the same bit to each receiver. The quantum state that

describes this framework most accurately is the GHZ-like multipartite logical qubit

α|0̄〉 + β|1̄〉 which is encoded into as many physical qubits as there are receivers,

i.e. |0̄〉 = |0...0〉 and |1̄〉 = |1...1〉. In this context, the total number of logical qubits

that are correctly received by the destination set is equal to the total number of

physical qubits correctly received by each receiver, which means that we need to

divide the bound in Eq. (6.1.4) by the number of receivers r. Therefore our figure of

merit is the total number of qubits per use and receiver, which is less than or equal
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to the quantum bound

RQ(N ) := r−1 min
C:{Ai}|{Bj}

∑
(x,y)∈C̃

ER(σ̂Exy). (6.1.5)

By examining Fig. 6.1, we can immediately see that the minimum cut that

separates the senders from the receivers in the butterfly network is horizontally

through the middle of the network, disconnecting the edges (A1, B1), (R1, R2), and

(A2, B2). Using Eq. (6.1.5), we obtain an upper bound of three physical qubits to be

divided by r = 2 receivers or 1.5 qubits per use and receiver. By contrast, we know

from network coding theory that, in the classical case, we can obtain two classical

bits per use and receiver; hence we have a difference of 0.5 bits per use and receiver

between the quantum and classical networks in this case.

A more interesting application of our general bound is in the examination of the

butterfly network constructed with noisy channels. Let us start by considering the

depolarizing channel whose action in d dimensions on an arbitrary density matrix ρ̂

can be expressed as

Pdepol(ρ̂) = (1− p)ρ̂+ p
I

d
, (6.1.6)

where I is the identity matrix. The output of the channel is the maximally mixed

state I/d with probability p, known as the depolarizing probability, or the input state

ρ̂ with probability 1−p. In the case of qubits, the action of the depolarizing channel

can be thought of as shrinking the Bloch sphere [8]. At the time of writing, the

exact two-way quantum capacity of the depolarizing channel is unknown, however,

Ref. [20] obtained an upper bound of

Q2(p) ≤ ER(σ̂Pdepol
) = 1−H2

(
1− 3p

4

)
(6.1.7)

for p ≤ 2/3 with Q2 = 0 otherwise, where H2(p) = −p log2 p − (1 − p) log2(1 − p)
is the binary Shannon entropy. Applying the bound with the same network cut, we

can write the rate per use and receiver of a butterfly network Bdep connected by

depolarizing channels with equal probability p, of

RQ(Bdep) =
3

2

[
1−H2

(
1− 3p

4

)]
. (6.1.8)
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The unassisted classical capacity of the quantum depolarizing channel is given

by [106]

C(p) = 1−H2

(
1− p

2

)
. (6.1.9)

This result can be better understood by propagating an encoded classical bit through

the channel. For the input |0〉 〈0|, we obtain

P(|0〉 〈0|) = (1− p) |0〉 〈0|+ p

2
(|0〉 〈0|+ |1〉 〈1|)

=

(
1− p

2

)
|0〉 〈0|+ p

2
|1〉 〈1| , (6.1.10)

and similarly for |1〉 〈1| we have

P(|1〉 〈1|) =

(
1− p

2

)
|1〉 〈1|+ p

2
|0〉 〈0| . (6.1.11)

Examination of equations (6.1.10) and (6.1.11) reveals that the channel behaves as

a classical binary symmetric channel (BSC) with bit flip probability p/2. We can

use this equivalency to establish the rates of the butterfly network constructed with

identical depolarizing channels.

To compute an achievable rate for the classical single-message multiple multicast

over a depolarizing butterfly network, we deconstruct the network into two channels

A1, A2 → B1 and A1, A2 → B2. Calculating the total rate of the combined channels

gives an achievable rate for the network. The general procedure for this process is to

create the transition probability matrix using the logic of the butterfly network, fol-

lowed by an optimization over a distribution on the input symbol. The upper panel

of Fig. 6.2 shows both the quantum bound RQ (qubits per per use and receiver) and

the achievable rate RC for sending classical information (bits per use and receiver).

The quantum bound is exceeded by the classical rate over the entire range of p with

the maximum difference being 0.5 bits per receiver (which corresponds to the ideal

example of identity channels discussed above).

Let us now move on to erasure channels. From classical information theory, we

know that the capacity of the binary erasure channel with erasure probability ε is

given by C(ε) = 1− ε. This formula has also been shown to be equal to the classical

capacity of the quantum erasure channel [107]. The same work found the quantum

capacity to be Q(ε) = max{0, 1 − 2ε} and also C(ε) = Q2(ε) = 1 − ε. The erasure
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Figure 6.2: Rates (bits/qubits) per use and receiver as a function of the depolarizing

probability p considering a single butterfly block (upper panel) and the limit of

Nx → ∞ blocks in parallel (lower panel). We plot the achievable classical rate RC

(solid blue line) and the quantum boundRQ (dashed black line). Inset: the minimum

difference between the classical rate and the quantum bound as a function of Nx

(where the minimization is taken over the probabilities).

channel is unique in that the number of correctly transmitted bits is known with

certainty so that the capacity is equivalent to the average number of transmitted

bits. For any network, it is straightforward to calculate the achievable classical rate.

For a single butterfly network block Bera connected by erasure channels with the

same probability, we obtain the classical rate (per use and receiver)

RC(Bera) = (1− ε) + (1− ε)5, (6.1.12)
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Figure 6.3: Rates (bits/qubits) per use and receiver as a function of the erasure

probability ε, considering a single butterfly block (upper panel) and the limit of

Nx →∞ blocks in parallel (lower panel). We plot the quantum bound RQ (dashed

black line), the achievable classical rate, RC (solid blue line), and the inter-node-

assisted achievable classical rate R̃C (solid green line). The values η and η′ are the

critical points at which RC and R̃C , respectively cross the quantum bound RQ. Inset:

Difference between R̃C and RQ as a function of Nx for values of erasure probability

equal to 0 (black line), and η′/2 (green line), and the difference between RC and RQ

as a function of Nx for erasure probability equal to η/2 (blue line).

where the first term arises from the contribution of the side channels and the second

comes from network coding at the bottleneck node.

Allowing side one-way classical communication between nodes in the network
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allows for the optimization of the transmission routes, increasing the rate. For ex-

ample, if we detect a failure in a channel connected to the bottleneck node, (Ai, R1),

we send any correct data received at R1 directly to R2 and subsequently to both

receivers. We then have additional communication paths from Aj to Bi and Bj.

The inter-node-assisted rate (per use and receiver) is given by

R̃C(Bera) = (1− ε) + (1− ε)5 + ε(1 + ε)(1− ε)3. (6.1.13)

The upper panel of Fig. 6.3 shows each of the rates for a single butterfly block.

For both RC and R̃C , we observe a region where the quantum bound RQ is exceeded.

We label the crossing points η = 0.159 and η′ = 0.244 for RC and R̃C , respectively.

The advantage of inter-node classical communications is significant and extends the

performance difference between the classical and quantum butterfly network in this

configuration.

6.2 Building networks with butterfly blocks

We will now expand our analysis to larger networks constructed with butterfly net-

work blocks as shown in Fig. 6.4. We consider adding blocks in parallel in Sec. 6.2.1,

in series in Sec. 6.2.2 and in both series and parallel in Sec. 6.2.3.

6.2.1 Butterfly blocks connected in parallel

By connecting Nx butterfly network blocks in parallel, i.e. in a single row, we create

a larger network Npar with r = Nx + 1 senders/receivers. Happily, we can easily

extend the previous reasoning to evaluate the maximum number of multipartite

logical qubits that can be transmitted from senders to receivers in a flooding pro-

tocol per use of the network. The optimal network cut in this case is the one that

passes through the horizontal center of the network such that 2r − 1 channels are

disconnected. For the depolarizing case, therefore, we obtain the general quantum

bound

RQ =
2r − 1

r

[
1−H2

(
3p

4

)]
, (6.2.14)
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Figure 6.4: Diagram of the construction of larger networks from butterfly network

blocks in parallel (horizontal) and series (vertical).

while for the erasure case, we can write

RQ =
2r − 1

r
(1− ε). (6.2.15)

The achievable classical rate of the depolarizing network can be found by ex-

panding the methods used in the case of a single butterfly block. The network can

be deconstructed into two channels of the form Ai, Ai+1 → Bi at the ends, and

(Nx − 1) channels of the form Ai, Ai+1, Ai+2 → Bi+1 in the middle. We find the

overall rate numerically from the combination of the capacities of all channels, from

which we can compute the rate per user and receiver, RC . The lower panel of Fig. 6.2

shows the rates of the depolarizing case in the limit of large r for the entire range

of probabilities. The asymptotic rates are approximately identical at 0.2 but the

classical case outperforms the quantum bound everywhere else in the range.

For a network of identical erasure channels, this process of finding the classical

rates is far more straightforward and we can directly write the following unassisted

rate per user and receiver

RC = (1− ε) + 2
(r − 1)

r
(1− ε)5. (6.2.16)
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Here the first term on the right-hand side is due to the fact that all receivers may

receive a single bit from their directly connected sender, while the second term

accounts for the fact that all receivers, except those at the edges of the network,

B1 and Br, may receive two bits from successful network coding on the adjacent

intermediate nodes. In the case of free inter-node classical communication, the rate

can be adapted by considering the additional ‘backup’ communication routes in each

block in addition to the unassisted rate in Eq. (6.2.16), giving an overall rate per

user and receiver of

R̃C = (1− ε) +
2(r − 1)

r

[
(1− ε)5 + ε(1 + ε)(1− ε)3

]
. (6.2.17)

Using these bounds, we see immediately for the erasure network that the difference

between the average number of bits/qubits grows monotonically as we increase the

number of butterfly blocks. Taking the limit of large r, we obtain

lim
r→∞

RQ = 2(1− ε) (6.2.18)

lim
r→∞

RC = (1− ε) + 2(1− ε)5 (6.2.19)

lim
r→∞

R̃C = (1− ε) + 2(1− ε)5 + 2ε(1 + ε)(1− ε)3. (6.2.20)

The lower panel of Fig. 6.3 shows the asymptotic rates for the erasure case. We find

that η and η′ are independent of Nx. At small values of the erasure probability ε,

the gap between the rates converges to one bit per use per receiver as the channels

become free of noise.

6.2.2 Butterfly blocks connected in series

We now consider the rates of a networkNser consisting of Ny butterfly network blocks

connected in series i.e. in a ladder formation. The number of receivers is always the

same (r = 2), and the number of intermediate nodes and channels now varies. The

addition of extra blocks has the effect of reducing the rates, as it becomes harder

to reach a receiver without incurring errors. The quantum capacity of the network

Nser is independent of Ny as the optimal cut is any that passes through the center

of any of the butterfly blocks, which always disconnects three quantum channels.
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Figure 6.5: Classical rate (lower lines) and inter-node CC assisted classical rate

(upper lines) per receiver for a 1 × Ny butterfly block network constructed with

erasure channels. Comparison with the quantum bound (solid black line).

For the depolarizing case, adding blocks in a ladder structure is equivalent to

adding only extra side channels above a single block as the information arriving at

the intermediate nodes cannot be checked for errors. In the erasure case, however,

extra bottlenecks can be used effectively, even if there are no additional communi-

cations. If we allow the nodes to duplicate data, we can use the bottleneck channels

as effective backup channels in case of errors and perform network coding only in

the final bottleneck before the receivers.

For simplicity, we will explicitly consider only two blocks in series. In the upper

block, we send data via the side channels to the intermediate nodes. Additionally, a

bit from A1 to the intermediate node on A1’s side of the network, which we briefly

label I1, via the channel R1 → R2. Now I1 has a greater probability of receiving

the correct bit, and, because there are no additional operations, no communication

between nodes is required. We can calculate the probability that a correct bit is
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received as

λ = 1− p(fail) = 1− ε[1− (1− ε)3], (6.2.21)

where p(fail) is the probability that the bit is not received correctly. The classical

rate (per use and receiver) is therefore given by

RC =
(1− ε)λ+ (1− ε)2

2
+ (1− ε)6λ. (6.2.22)

This strategy can be extended to any number of blocks in series, where a backup

channel can be applied once per block. Sender/intermediate nodes on either side of

the network can use the bottleneck route, however, for more than two blocks the

rate is maximized when the routes are always used by nodes on the same side of the

network. The previous classical rate can, therefore, be generalized as

RC =
(1− ε)λNy−1 + (1− ε)Ny

2
+ (1− ε)5(1− ε)Ny−1λNy−1. (6.2.23)

If we allow inter-node communication, the classical rate of a 1 × Ny erasure

network is obtained by considering all of the possible paths from sender to receiver,

while prioritizing the backup route in upper blocks and accounting for possible

channel failures. The classical rates for the 1 × Ny network are shown in Fig. 6.5

and compared with the quantum bound RQ which does not depend on Ny. The

value of the crossing point η′ decreases rapidly as Ny increases, but there is still a

significant gap between the upper bound on the quantum rate and the achievable

classical rate.

6.2.3 Butterfly blocks connected in series and parallel

Finally, we come to the most complex case in which we consider a general Nx ×Ny

grid of butterfly network blocks. This means that we have r = Nx + 1 receivers.

Again, we calculate the classical rates of the erasure network, accounting for how

the additional bottlenecks may be exploited. By allowing each sender (excluding

the one at the right edge of the network) to use the backup route to its right in

(Ny−1) upper blocks, we obtain the following unassisted classical rate (per use and
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receiver) for a general grid

RC =
1

Nx + 1
{Nx(1− ε)λNy−1 + (1− ε)Ny + 2(Nx − 1)(1− ε)5λ2(Nx−1)

+ 2(1− ε)5(1− ε)Ny−1λNy−1}. (6.2.24)

For the inter-node assisted rate, we repeat the strategy of the series-only case

and obtain values of η′ for different configurations. The top panel of Fig. 6.6 shows

the relative increase in the critical point η′ with respect to the series-only case. The

increase is significant and increases with the number of blocks we have in series.

The lower panel shows η′ as a function of Ny. The point η′ decreases rapidly as

we increase the number of blocks between the sender and the receiver, however,

the results show that we always have a finite range over which the classical rate

exceeds the quantum bound. These results demonstrate that by adding more blocks

in parallel we can increase η′ up to a convergence point, increasing by more than

60% in some cases.

6.3 Conclusions

Our analysis of the butterfly network has revealed an important discrepancy be-

tween quantum and classical communication rates under single-message multiple

multicasts. We have demonstrated that this discrepancy can be monotonically in-

creased by adding butterfly blocks in parallel, up to an asymptotic value of one

bit/qubit per use and receiver for networks constructed using ideal channels.

By exploiting inter-node classical communication in erasure networks, we have

shown that the discrepancy is increased more rapidly due to the increased number

of routing paths that can be employed to facilitate the communication of classical

data. Additionally, in this case, we observe a notable discrepancy even when we add

blocks in series and the number of butterfly blocks separating senders from receivers

is large. By adding further blocks in series and parallel, we can increase the value of

the critical point, at which the classical rate exceeds the quantum bound, by more

than 60%.

Our results demonstrate that duplicating certain existing classical network struc-
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6.3. Conclusions
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Figure 6.6: Upper panel: relative increase in the critical point η′ as compared to

the Nx = 1 case for various values of Ny. Lower panel: variation of η′ with Ny for

various values of Nx.

tures containing butterfly blocks in order to build quantum counterparts can result

in significantly reduced performance. It may be possible to exploit this performance

discrepancy to create a system in which quantum communication cannot beat a

classical equivalent. In this sense, our results provide a theoretical guide with which

to engineer such a system.
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Chapter 7

Conclusions and future directions

In this thesis, we have addressed two of the most prominent issues facing the field

of quantum information theory: the need for a long-distance QKD protocol that

alleviates the security risks quantum supremacy poses to classical cryptography,

and the need for a more complete understanding of the performance of quantum

networking on classical network infrastructure.

We have introduced two original continuous-variable quantum key distribution

protocols that employ the technique of post-selection. We have demonstrated that

our protocols achieve a range that exceeds that of the equivalent protocols in the

literature for both QKD at terahertz frequencies and CV-MDI QKD with coherent

states. Our results add value to the field of CV QKD as a means of provably secure

communications that can, in theory, be brought to fruition in a very short timescale

due to the simplicity of the hardware implementation. In the particular case of MDI

QKD, our protocol can be implemented with coherent states of light that can easily

be generated in the laboratory. By providing a regime that increases the range

of CV-MDI QKD, we have started to bridge the gap between the continuous- and

discrete-variable regimes.

With the introduction of our one-way protocol at terahertz frequencies, we have

provided a significant improvement in the achievable range under atmospheric condi-

tions compared with the current state-of-the-art protocol with direct reconciliation.

This improvement allows for the possibility of CV-QKD within a larger variety of

short-range high-frequency communication scenarios and it builds a strong case for
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CV-QKD as the primary method of secure communications at terahertz frequencies

in the atmosphere.

We hope that in the near future, proof-of-concept experiments demonstrating our

CV-QKD protocols in a realistic setting will emerge. This is a reasonable expectation

particularly in the case of our MDI protocol due to the simplicity of the states

involved. Despite the merits of using coherent states in our MDI protocol, another

avenue for future work is to extend the mathematical framework to allow for thermal

states as information carriers. Finally, for both protocols, we would like to perform

a finite-size analysis to obtain more realistic estimates for the secret key rate of

possible future implementations in the field.

Our analysis of the butterfly network has outlined a little-known difficulty that

must be considered in future quantum network infrastructure. We have shown that

this network structure is particularly detrimental to quantum networking which per-

forms badly when compared with its classical counterpart. Moreover, we have shown

that a network structure that contains multiple butterfly blocks may experience an

even larger discrepancy between the two regimes.

Our quantification of the performance discrepancies between quantum and clas-

sical networking in the most general networks constructed with butterfly blocks

provides a useful reference when designing quantum network infrastructure with

particular regard to situations that should be avoided. Our particular analysis of

networks constructed with realistic noisy channels, namely the erasure and depo-

larizing channel, add strength to this reference as they reveal the performance in

a more realistic scenario. In the future, we hope to investigate the inferiority of

quantum networking in the butterfly network in the hope that it may be exploited

in quantum devices.
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Appendix A

Entropy approximation of a

non-Gaussian state

To avoid complex treatment of non-Gaussian states in the Fock basis, we will intro-

duce an approximation for the entropy of a particular type of non-Gaussian state

that is composed of the average of two Gaussian states with the same CM and

different mean values. We use the CM and mean values of the constituent states

to write a formula for the CM of the total state, then, by treating it as Gaussian,

we use this CM to estimate its entropy. This approximation is most accurate for

states with small higher-order moments, but the Gaussian assumption ensures that

it is an upper bound on the entropy of any state of this form. This fact makes the

approximation particularly useful in quantum key distribution when calculating the

total entropy of an eavesdropper’s non-Gaussian state in the Holevo bound.

We will label the constituent states of the global state ρ̂ as ρ̂+ and ρ̂− with

associated probabilities p(+) and p(−), respectively. The general non-Gaussian

state can then be written as

ρ̂ =
∑
κ=±

p(κ)ρ̂κ. (A.0.1)

Let us now recall the definitions of the mean value and CM of a Gaussian state ρ̂ by

referring back to equations (2.2.44) and (2.2.45). The mean value of the quadrature

operator x̂i is given by

x̄i = 〈x̂i〉 = tr(x̂iρ̂) (A.0.2)
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and the covariance matrix of a state is given by

Vij =
1

2
〈{∆x̂i,∆x̂j}〉 =

1

2
tr [{x̂i, x̂j}ρ̂]− x̄ix̄j. (A.0.3)

Using Eq. (A.0.3), we can express the elements Vij of the CM, V of a constituent

state ρ̂κ with mean value x̄κ as

V κ
ij + x̄κi x̄

κ
j =

1

2
tr [{x̂i, x̂j}ρ̂κ] , (A.0.4)

and we can also write the elements V ′ij of the CM V′ of the total state ρ̂ as

V ′ij =
1

2
tr

[
{x̂i, x̂j}

(∑
κ=±

p(κ)ρ̂κ

)]
− x̄ix̄j

=
∑
κ=±

p(κ)
1

2
tr [{x̂i, x̂j}ρ̂κ]− x̄ix̄j. (A.0.5)

We then substitute into this expression the right hand side of Eq. (A.0.4) to obtain

V ′ij =
∑
κ=±

p(κ)
(
V κ
ij + x̄κi x̄

κ
j

)
− x̄ix̄j

= Vij +
∑
κ=±

p(κ)x̄κi x̄
κ
j − x̄ix̄j, (A.0.6)

where we have made use of the requirement that the CMs of the constituent states

are identical. Now by writing the mean values as x̄i = tr(x̂iρ̂) =
∑

κ p(κ) tr(x̂iρ̂k),

and substituting into Eq. (A.0.6), we obtain

V ′ij = Vij +
∑
κ=±

p(κ)x̄κi x̄
κ
j −

∑
κ=±

∑
κ′=±

p(κ)p(κ′)x̄κi x̄
κ′

j (A.0.7)

and by factoring out one of the sums we obtain

V ′ij = Vij +
∑
κ=±

p(κ)

[
x̄κi x̄

κ
j −

∑
κ′=±

p(κ′)x̄κi x̄
κ′

j

]

= Vij +
∑
κ=±

p(κ)
[
x̄κi x̄

κ
j − p(κ)x̄κi x̄

κ
j − p(−κ)x̄κi x̄

−κ
j

]
= Vij +

∑
κ=±

p(κ)p(−κ)x̄κi
(
x̄κj − x̄−κj

)
, (A.0.8)

where we have used 1 − p(κ) = p(−κ). Now note that p(κ)p(−κ) = p(+)p(−) for

either value of κ, and
∑

κ x̄
κ
i (x̄

κ
j − x̄−κj ) = (x̄+

j − x̄−j )
∑

κ κx̄
κ
i . Therefore we obtain

V ′ij = V +
ij + p(+)p(−)(x̄+

j − x̄−j )
∑
κ=±

κx̄κi

= V +
ij + p(+)p(−)(x̄+

j − x̄−j )
(
x̄+
i − x̄−i

)
. (A.0.9)
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Appendix A. Entropy approximation of a non-Gaussian state

We can write this in compact outer product form as

V′ = V + p(+)p(−)∆x̄ ·∆x̄T, (A.0.10)

where ∆x̄ = x̄+ − x̄−.
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Abbreviations

BSC Binary symmetric channel.

CC Classical communication.

CM Covariance matrix.

CV Continuous variable.

DR Direct reconciliation.

DV Discrete variable.

EPR Einstein Podolsky Rosen.

GHZ Greenberger Horne Zeilinger.

IID Independent and identically distributed.

LO Local operation.

LOCC Local operation and classical communication.

MDI Measurement-device independent.

OPA Optical parametric amplification.

PLOB Pirandola Laurenza Ottaviani Banchi.

QIT Quantum information theory.
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Abbreviations

QKD Quantum key distribution.

QNC Quantum network coding.

REE Relative entropy of entanglement.

RR Reverse reconciliation.

RSA Rivest Shamir Adleman.

SNU Shot-noise units.

TF Twin field.

TMSV Two-mode squeezed vacuum.

VNE von Neumann entropy.
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las J Cerf, and Philippe Grangier. Quantum key distribution using gaussian-

modulated coherent states. Nature, 421(6920):238–241, 2003.

[47] Frédéric Grosshans, Nicolas J Cerf, Jérôme Wenger, Rosa Tualle-Brouri, and

Ph Grangier. Virtual entanglement and reconciliation protocols for quantum

cryptography with continuous variables. arXiv preprint quant-ph/0306141,

2003.

[48] Christian Weedbrook, Andrew M Lance, Warwick P Bowen, Thomas Symul,

Timothy C Ralph, and Ping Koy Lam. Quantum cryptography without switch-

ing. Physical review letters, 93(17):170504, 2004.

[49] Igor Devetak and Andreas Winter. Distillation of secret key and entanglement

from quantum states. Proceedings of the Royal Society A: Mathematical,

Physical and engineering sciences, 461(2053):207–235, 2005.
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[86] Raúl Garćıa-Patrón and Nicolas J Cerf. Unconditional optimality of gaussian

attacks against continuous-variable quantum key distribution. Physical review

letters, 97(19):190503, 2006.

[87] Carlo Ottaviani, Gaetana Spedalieri, Samuel L Braunstein, and Stefano Pi-

randola. Continuous-variable quantum cryptography with an untrusted relay:

Detailed security analysis of the symmetric configuration. Physical Review A,

91(2):022320, 2015.

[88] Leonardo Banchi, Samuel L Braunstein, and Stefano Pirandola. Quantum

fidelity for arbitrary gaussian states. Physical review letters, 115(26):260501,

2015.

[89] Stefano Pirandola and Seth Lloyd. Computable bounds for the discrimination

of gaussian states. Physical Review A, 78(1):012331, 2008.

[90] Chao Zhou, Xiangyu Wang, Yichen Zhang, Zhiguo Zhang, Song Yu, and Hong

Guo. Continuous-variable quantum key distribution with rateless reconcilia-

tion protocol. Physical Review Applied, 12(5):054013, 2019.

[91] Yadong Wu, Jian Zhou, Xinbao Gong, Ying Guo, Zhi-Ming Zhang, and

Guangqiang He. Continuous-variable measurement-device-independent multi-

partite quantum communication. Physical Review A, 93(2):022325, 2016.

[92] Carlo Ottaviani, Cosmo Lupo, Riccardo Laurenza, and Stefano Pirandola.

Modular network for high-rate quantum conferencing. Communications

Physics, 2(1):1–6, 2019.

[93] William K Wootters and Wojciech H Zurek. A single quantum cannot be

cloned. Nature, 299(5886):802–803, 1982.

[94] Masahito Hayashi, Kazuo Iwama, Harumichi Nishimura, Rudy Raymond, and

Shigeru Yamashita. Quantum network coding. In Annual Symposium on

Theoretical Aspects of Computer Science, pages 610–621. Springer, 2007.

[95] Vladimir Bužek and Mark Hillery. Quantum copying: Beyond the no-cloning

theorem. Physical Review A, 54(3):1844, 1996.

136



Bibliography

[96] Avinash Jain, Massimo Franceschetti, and David A Meyer. On quantum net-

work coding. Journal of Mathematical Physics, 52(3):032201, 2011.

[97] Masahito Hayashi. Prior entanglement between senders enables perfect quan-

tum network coding with modification. Physical Review A, 76(4):040301,

2007.

[98] He Lu, Zheng-Da Li, Xu-Fei Yin, Rui Zhang, Xiao-Xu Fang, Li Li, Nai-Le Liu,

Feihu Xu, Yu-Ao Chen, and Jian-Wei Pan. Experimental quantum network

coding. npj Quantum Information, 5(1):1–5, 2019.

[99] Takahiko Satoh, François Le Gall, and Hiroshi Imai. Quantum network coding

for quantum repeaters. Physical Review A, 86(3):032331, 2012.

[100] Harumichi Nishimura. Quantum network coding-how can network coding

be applied to quantum information? In 2013 International Symposium on

Network Coding (NetCod), pages 1–5. IEEE, 2013.

[101] Zhen-Zhen Li, Gang Xu, Xiu-Bo Chen, Zhiguo Qu, Xin-Xin Niu, and Yi-

Xian Yang. Efficient quantum state transmission via perfect quantum network

coding. Science China Information Sciences, 62(1):12501, 2019.

[102] Hirotada Kobayashi, François Le Gall, Harumichi Nishimura, and Martin
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