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Abstract

Being a superposition of photons and excitons in the strong coupling regime, exciton-
polaritons inherit properties from both the constituents. We are interested in the interaction
arising from their matter component, since the enhancement of the interaction strength
compared to that in nonlinear optical materials in the weak coupling regime might lead to the
development of new technological platforms, where light can be controlled by light thanks to
Kerr-like nonlinearity.

In Chapter 1, we define exciton-polaritons and introduce the fundamental many-body
phenomena in which they are involved, like Bose-Einstein condensation and solitons.

In Chapter 2, we describe the active media used in polaritonics, especially the two
employed in this thesis, i.e. transition-metal dichalcogenide (TMDC) monolayers and GaN.

In Chapter 3, we outline the different geometries utilised to confine the light and make it
interacts with excitons, specifically microcavities and waveguides.

In Chapter 4, we detail the experimental setups we used to study exciton-polaritons in
TMDC-microcavities and GaN-waveguides.

In Chapter 5, we report on the preliminary results obtained on bare MoSe2 monolayers
and when we embedded them in our open-access microcavity.

In Chapter 6, we narrate about the interesting results achieved on TMDC-polaritons,
focusing on the giant trion-polariton interaction strength, which lays the foundation for a
new generation of nonlinear devices in the IR spectral range, foreshadowing highly efficient
polariton blockade.

In Chapter 7, we observe for the first time nonlinear self-modulation of UV pulses
operating up to room temperature, opening the way for potential technological platform for
ultrafast nonlinear optics without cryogenics in the UV spectral range.

Finally, in Chapter 8, we summarise all the results obtained and trace possible future
outcome in polaritonics, ranging from topological studies to superconductivity.

Appedices A and B are the theoretical models underneath the two experimental Chapters
6 and 7, respectively.
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Chapter 1

Background on polariton physics

1.1 Introduction

The current electronic devices, that we all use in everyday life, are intrinsically limited by
their very nature. Because of the resistance experienced by electrons in wires, they are
characterised by high heating and energy consumption, the information is carried over short
distances and logic operations are slow. From this point of view, the use of all-optical
elements would represent a milestone for future information processing in order to overcome
all the above-mentioned restrictions [1]. Indeed, the information would be carried faster and
over longer distances thanks to the lack of interaction with the surrounding environment,
providing long coherence time and then making photons suitable candidates for quantum bits
(i.e. qubits).

However, at the same time, the interaction between photonic signals is crucial for the
realization and the development of novel technological devices for quantum optics applica-
tions [2]. Since there is no interaction between photons in free space, we can make them
interact through nonlinear optical processes inside nonlinear optical materials. Because the
nonlinearity in bulk materials is very weak, intense light beams are necessary to modify
their refractive index, inducing Kerr-like nonlinearity. Nevertheless, it is vital to work at
extremely low signal intensities (preferably at single photon level) for new quantum practical
applications. Ideally one photon in one optical mode should vary the phase of another photon
in another optical mode by π , i.e. they should interact strongly. Thus, in order to dramatically
enhance photon interaction and then considerably increase this nonlinear response, coupling
with matter systems is necessary.
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It is then possible to couple photons to artificial atoms such as quantum dots (QDs)
[3]. Their discrete energy level structure allows highly nonlinear optical response, since the
absorption of a single photon significantly modifies the response to a second incident photon.
Although these systems can reach a large phase shift up to ∼ π/10 [4], they unfortunately
manifest intrinsic problems of scalability, since they cannot be positioned deterministically
and show large spread in energy. Moreover, their operation time is limited by the system "re-
set" time arising from the radiative recombination lifetime, which is in the ns range. However,
this latter limitation can be partially overcome using cross-phase modulation (XPM) due to
Kerr-like nonlinearity, speeding up the operation in the ps timescale [5] (this phenomenon
will be deepened in Section 8.3).

Providentially, this impediment for practical applications can be overcome by employing
micrometric exciton-polariton systems: as a matter of fact, micrometric structures are less
sensitive to energy fluctuations and allow deterministic positioning, making them scalable.
Furthermore, thanks to the limited polariton lifetime (∼ 10 ps), they still guarantee the
short operation time needed for technological implementation [6]. In the light of the above,
and as we are going to demonstrate throughout this thesis, exciton-polaritons can certainly
play a major role in the realisation of tomorrow’s technology, favouring the transition from
electronic to optical devices thanks to their unique characteristics.

Theoretically predicted in 3D bulk more than sixty years ago [7, 8] and experimentally
observed for the first time in 2D quantum-well (QW) about thirty years later [9], exciton-
polaritons are part-light part-matter quasi-particles originating from the strong coupling
between photons and excitons. They inherit interesting properties from both the constituents,
such as very low effective mass (4-5 orders of magnitude smaller than the electron mass
me) and light speed propagation (1−10% of the speed of light c) from photons, and strong
interaction from excitons. The latter produces nonlinear effects at relatively small absorption,
then lowering the power thresholds and diminishing the length-scales, leading to smaller
energy consumption and device size.

Specifically, it was already shown that the polariton-polariton interaction is 103 −104

times larger than the photon-photon interaction in nonlinear optical materials weakly coupled
to light [10], thanks to its excitonic nature. This aspect is fundamental in the development of
more compact (micrometric) and efficient all-optical devices such as switches and modulators,
since the power needed decreases by 3-4 orders of magnitude.

This enhanced interaction might lead to the development of new technological platforms,
for example ultrafast quantum source of light [11, 12] and photonic signal processing cir-
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cuitry [13, 14], where light can be controlled by light thanks to Kerr-like nonlinearity, on fast
timescales and low powers.

It is also possible to confine polaritons in all three dimensions implementing appropriate
photonic resonators, as opposed to the more classic 2D geometry. This leads to discretisation
of the polariton modes, further increasing the interaction strength to the point of being sensi-
tive to the presence of few quanta, as happens for QDs, but overcoming the above-mentioned
limitation of scalability and operation speed.

Moreover, exciton-polaritons have already revealed their importance in studying basic
physics concepts, exploring fundamental many-body phenomena, for instance Bose-Einstein
condensation [15], superfluidity [16], optical parametric oscillation [17] and solitons [18],
just to name a few that we are going to deepen in Section 1.2.3.

1.2 Exciton-polaritons

1.2.1 Excitons

An atom is composed of a nucleus and electrons, that occupy the innermost discrete atomic
orbitals around the nucleus. When two atoms are moved to a close proximity, these electronic
orbitals overlap and split, as derived by the properties of two coupled classical oscillators.
Considering the huge number of atoms forming a crystal (∼ 1023 atoms/cm3), this energy
splitting creates a band structure, where a moving electron is described by the Bloch wave-
function ψ(r) = eik·ru(r), representing a plane wave (where k is the crystal wavevector)
multiplied by a periodic function u(r) with the same periodicity of the crystal [19].
The highest filled band is called the valence band (VB) and the lowest unfilled band is
called the conduction band (CB). Depending on the value of the energy gap (bandgap Eg)
between them, we classify: metals (Eg = 0 eV ), semiconductors (Eg < 6 eV ) and insulators
(Eg > 6 eV ). We also distinguish between direct and indirect bandgap materials: in the
former, VB maximum and CB minimum have the same k (we refer to the energy minimum as
a valley) and an electron can jump from one to the other when a photon with energy Eph > Eg

is absorbed; in the latter, such as Si, the VB maximum and the CB minimum have different k,
so the electron transition requires also a phonon to have conservation of both energy E and
momentum p = h̄k.
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In both cases, the electron leaves a vacancy in the VB, called a hole, with opposite
charge, spin and momentum, and the Coulomb interaction between them may form a new
quasi-particle, called an exciton. This hydrogen-like bound state can be described by the
Schrödinger equation [

− h̄2

2mX
∇

2 − e2

4πεε0r

]
ψX(r) = EψX(r) (1.1)

where mX =
m∗

e m∗
h

m∗
e+m∗

h
is the reduced mass of the bound electron (effective mass m∗

e) and hole
(effective mass m∗

h), and r is their separation. Then, the exciton wavefunction of the ground
state is

ψ1s(r) =
1√
πa3

B

e−
r

aB (1.2)

where

aB(3D) =
4π h̄2

εε0

mX e2 (1.3)

is the Bohr radius, while the binding energy of the ground state is

EB(3D) =
h̄2

2mX a2
B

(1.4)

So, the bigger the Bohr radius, the smaller the binding energy. More generally, the energy
for each exciton state (ground state given by n = 1 and excited states given by n > 1) is

En
X(3D) =−RX

n2 , n = 1, 2, ... (1.5)

where the reduced Rydberg energy RX reads [20]

RX =
mX e4

32π2ε2
0 ε2h̄2 (1.6)

The size of the Bohr radius allows us to distinguish between Wannier-Mott and Frenkel
excitons, whether they are larger or smaller than the crystal unit cell respectively, while
the binding energy gives a measure of their stability: excitons can be observed when their
binding energy is bigger than the thermal energy kBT , which is 25 meV at room temperature
(RT).

Another important quantity, since we are interested in exciton-photon coupling, is the
excitonic oscillator strength, which measures the probability of the optical transition:
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fX(3D) = fcv
V

πa3
B

(1.7)

where

fcv =
2mX ωcv|rcv|2

h̄
(1.8)

is the interband oscillator strength, multiplied by the factor V
πa3

B
, which takes into account

the enhanced electron-hole interaction within an exciton compared to a free electron-hole
pair. In Equation 1.8, ωcv is the interband transition frequency and rcv = ⟨uv|r · e|uc⟩ is the
matrix element representing the interaction of the exciton dipole (electron and hole with
Bloch wavefunction |uc⟩ and |uv⟩, respectively) with an electromagnetic field [21].

1.2.2 Light-matter interaction

To further enhance exciton-photon coupling, excitons can be spatially confined (for example
in QWs) and photons can be trapped in small volumes using different geometries, like
microcavities and waveguides. The spatial confinement increases the oscillator strength and
the binding energy of excitons, while the trapped photons can interact repeatedly with the
active medium. These two concepts are going to be addressed in Chapter 2 and Chapter 3,
respectively.

Studying the light-matter interaction with a classical approach, an exciton and a photon
can be considered as two oscillators coupled through a spring, with damping rate γX and
γph, respectively. When the coupling constant g0 << γX ,γph, we enter in the so-called weak
coupling regime, characterised by irreversible energy transfer between the two oscillators.
On the contrary, when g0 >> γX ,γph, the energy transfer is reversible and we get into the
strong coupling regime [22].

Using a quantum approach, we can define the Hamiltonian of the system

Ĥ = (EX − iγX) â+â+
(
Eph − iγph

)
b̂+b̂+g0

[
â+b̂+ b̂+â

]
(1.9)

where

g0 ∝

√
fX ·NQW

Ve f f
(1.10)
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is the coupling constant (with number of QWs NQW and effective volume Ve f f ), â+, b̂+

are the creation operators and â, b̂ are the annihilation operators for exciton and photon,
respectively. We can represent this Hamiltonian as a matrix

Ĥ =

[
EX − iγX g0

g0 Eph − iγph

]
(1.11)

and thus obtain its two eigenvalues for the Upper and Lower Polariton Branches (UPB and
LPB, respectively)

EUPB,LPB =
Eph +EX − i

(
γph + γX

)
2

± 1
2

√
4g2

0 +
[
Eph −EX − i

(
γph − γX

)]2 (1.12)

We can then define two important quantities, the detuning

∆ = Eph −EX (1.13)

and, when ∆ = 0, the Rabi splitting

h̄ΩX =

√
4g2

0 −
(
γph − γX

)2 (1.14)

We can now easily distinguish between the weak and the strong coupling regime: when

g0 <
|γph − γX |

2
(1.15)

the Rabi splitting h̄ΩX becomes imaginary and we enter in the weak coupling regime, while
when

g0 >
|γph − γX |

2
(1.16)

the Rabi splitting h̄ΩX becomes real and we get into the strong coupling regime [23], with
the characteristic anticrossing between the two polariton branches (Figure 1.1, top panel).

We can also calculate the eigenvectors of Equation 1.11, whose squares give the Hopfield
coefficients (γph = γX = 0 for simplicity)

|CX |2 =
1
2

1+
∆√

4g2
0 +∆2

 (1.17)
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|Cph|2 =
1
2

1− ∆√
4g2

0 +∆2

 (1.18)

which represent the excitonic and the photonic fraction of the polariton mode respectively,
where |CX |2 + |Cph|2 = 1. Being a superposition of photons and excitons, polariton mass and
linewidth depend on those of its constituents [24]:

1
mUPB

=
|Cph|2

mX
+

|CX |2

mph
,

1
mLPB

=
|CX |2

mX
+

|Cph|2

mph
(1.19)

and

γUPB = |Cph|2γX + |CX |2γph, γLPB = |CX |2γX + |Cph|2γph (1.20)

Fig. 1.1 Top panel: anticrossing of upper and lower polariton branches (UPB and LPB, red
and green respectively) as function of the detuning ∆, tuning the photon energy Eph (blue)
across the exciton resonance EX (orange). Bottom panels: Hopfield coefficients of photonic
(blue) and excitonic (orange) fraction in upper (left) and lower (right) polariton branches.
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In Section 2.2.1, we will briefly introduce the concept of charged excitons (or trions) in
transition metal dichalcogenides (TMDCs). This will be useful later on since we will also
experimentally observe strong coupling between photons and trions (leading to formation
of the so-called trion-polaritons) when placing a MoSe2 monolayer (ML) within our open-
access microcavity (see Section 3.2.1). Only in this case, we will adopt the three-coupled
oscillator model, that expands the theory just described (see Section 5.3.1).

1.2.3 Nonlinear optical effects

As already mentioned in Section 1.1, a material under an optical field can respond nonlinearly:

P(t) = ε0

[
χ
(1)E(t)+χ

(2)E2(t)+χ
(3)E3(t)+ ...

]
(1.21)

where χ(2) is the second-order nonlinear optical susceptibility and χ(3) is the third-order
nonlinear optical susceptibility. To observe this nonlinear response, the optical field should
be strong enough to be comparable with the field of the nucleus acting on its electrons [25].

For exciton-polaritons, as declared in Section 1.1, the optical nonlinearity is due to
their excitonic component |CX |2. Polaritons with opposite spins interact attractively, while
those with identical spins repel each other, but the latter interaction is approximately 10
times stronger [26]. So, the polariton-polariton interaction, related to χ(3) [27], causes the
renormalisation of the polariton energy state. In particular, this blueshift of the polariton
energy state is a consequence of two different phenomena related both to excitons.
The first one is the blueshift of the exciton resonance due to the Coulomb interaction between
excitons, represented by [28]

ge f f
X =

dEX

dnX
= gpol

NQW

|CX |4
(1.22)

where nX is the exciton density and gpol is the polariton-polariton interaction. Theoretically,
the exciton-exciton interaction strength is given by gX ∼ 3 EB a2

B, which results in gX ∼
3 µeV · µm2 in GaAs QW, the most studied optically active material in polaritonics [29].
Higher values were experimentally obtained [30], but the build-up of the incoherent exciton
reservoir (see Section 1.2.3.1) was not taken into account, underestimating the particle
density.
The second one is the phase-space filling effect, represented by [28]

β
e f f
X =

d(h̄ΩX)

dnX
= gpol

NQW

|Cph| |CX |3
(1.23)
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Increasing the pump power, more carriers are injected in the system, offering less states for
exciton formation (as a result of the Pauli exclusion principle) and so causing a reduction of
the collective exciton oscillator strength, consequently diminishing the Rabi splitting.

Further increasing the pump power (i.e. increasing the exciton density), the distance
between excitons decreases, approaching the exciton Bohr radius. The resulting screening of
the Coulomb interaction leads to dissociation of excitons themselves, creating an electron-
hole plasma with the consequent loss of bosonic behaviour. The critical density for this
transition is the so-called Mott density [20]

nMott(3D) =
1

4
3πa3

B
(1.24)

As previously stated in Section 1.1, the nonlinear response of a medium under an intense
optical excitation can be characterised by the optical Kerr effect, showing a change in the
refractive index that is proportional to the intensity of the excitation field

n = n0 +n2I (1.25)

where n2 ∝
χ(3)

n2
0

is the nonlinear refractive index. When n2 > 0, a self-focusing behaviour
is noticed because the refractive index grows at the centre of the beam, working as a lens.
As already outlined in Section 1.1, the nonlinear refractive index measured in a GaAs-
waveguide in the strong coupling regime is n2 =−1.6×10−14 m2/W [10], three orders of
magnitude larger than that obtained in a AlGaAs-waveguide in the weak coupling regime
(n2 = 1.8×10−17 m2/W ) [31] and four orders of magnitude larger than that achieved in Si-
[32] and InGaP-based [33] photonic crystal geometries (n2 ∼ 6×10−18 m2/W ).
In case of optical excitation through a pulsed laser, this variation of the refractive index
provokes a time dependent phase shift, phenomenon known as self-phase modulation (SPM),
which induces spectral broadening [34]. SPM is going to be deepened in Chapter 7, once
waveguides are fully introduced in Chapter 3.

1.2.3.1 Relaxation mechanism and bottleneck

Let us consider a polariton system under non-resonant excitation, one of the most common
configurations used to investigate the physics behind it. The whole process that we are
going to describe is depicted in Figure 1.2. The laser creates electron-hole pairs, which
relax to lower energies via optical phonon emission. As an outcome of this process, the
laser coherence is lost and an exciton reservoir at high momentum is formed. Now, further
relaxation can be possible only by scattering with acoustic phonons, because at this point
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excitons have to lose momentum above all. Once excitons reach the light cone
(
kX < ω

c

)
,

they can couple with light and form polaritons.
Looking at GaAs QWs in microcavities, the most studied polariton system so far, polariton-
phonon interaction lasts 10 ps and causes an energy loss of about 1 meV . However, polariton
lifetime is usually around 5 ps and also they have to dissipate approximately 10 meV in order
to reach the ground state [35]. Ergo, polaritons accumulate at high-k states [36]. In spite
of that, this bottleneck effect can be overcome via polariton-electron and elastic polariton-
polariton interaction at high density. The former process plays an important role in relaxing
the polariton gas in the lowest part of the dispersion, where the electron gas reservoir mimics
the previously described behaviour of acoustic phonons in the relaxation process, showing
however a greater efficiency [23, 37, 38].

Fig. 1.2 Schematic of the relaxation mechanism. A non-resonant excitation (purple) creates
an electron-hole continuum (blue), which relaxes through optical and then acoustic phonons
(dark and light red respectively). Polariton-polariton scattering (dark green) overcomes the
bottleneck region. The grey area shows the optical inactive region outside the light cone.
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1.2.3.2 Bose-Einstein condensation

Given the dual nature of the particles, they can be related to a wave linked to their momentum
p

λdB =
h
p
=

√
2π h̄2

mkBT
(1.26)

whose (de Broglie) wavelength is inversely proportional to both mass m and temperature
T . When the de Broglie wavelength becomes comparable to the interparticle distance, the
particles wavefunctions overlap and a macroscopic occupation of the lowest energy state
described by a single wavefunction is possible [39]. To observe this condensation, the
particles taken into consideration must be bosons, which are indistinguishable and obey the
Bose-Einstein distribution (hence the name Bose-Einstein condensation - BEC)

f (k,T,µ) =
1

e
E(k)−µ

kBT −1
(1.27)

where µ is the chemical potential.
Since polaritons arise from two particles with integer spins, they are bosonic quasi-particles
and so they fulfil this basic requirement. Moreover, their low effective mass (10−5 me)
enlarges the de Broglie wavelength, making them an ideal candidate to study BEC. The other
two necessary conditions in order to observe BEC are low temperature and high particle
density, whose critical values for condensation to occur are linked by the following equation

Tc =
2π h̄2

m

( nc

2.612

) 2
3 (1.28)

where the critical density is given by

nc = lim
µ→0

1
(2π)d

∫
∞

0
f (k,T,µ) dk (1.29)

It is possible to show that this integral converges for systems with more than two dimensions
(d > 2) and diverges for systems with less than three-dimensions (d ≤ 2).

Polaritons in microcavities (which are going to be completely described in Chapter 3)
have two-dimensional characteristics because their motion is confined in the orthogonal
direction, so they cannot condense in the strict sense. Indeed, in pure 2D geometries, BEC
characterised by long range spatial coherence cannot be observed. However, formation of a
condensate with a finite spatial coherence extending over a finite distance is possible. Talking
about waveguides, they do not present any ground state, so they cannot show BEC at all.
Furthermore, BEC is defined in conservative systems of ideal boson gases in thermodynamic
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equilibrium, while polaritons interact with each other and have to continuously be replaced
in the system because of their finite lifetime, which is usually shorter than the thermalisation
time.
However, it is worth to note that recently BEC of polaritons in thermal equilibrium was
observed [40]. To obtain that, a very long polariton lifetime was needed to achieve full
thermalisation (thermalisation time is at least 40 ps for exciton-like polaritons and longer for
photon-like polaritons, which are less interacting), so a GaAs high-Q microcavity was grown
with a quality factor of about 3×105 and a polariton lifetime of 270 ps (for the definition of
the quality factor Q, see Section 3.2).

In spite of those lacks, polaritons certainly manifest many fundamental characteristics
of BEC [15], first of all the macroscopic occupation of the lowest energy state through a
threshold behaviour, as shown in Figure 1.3.
Below threshold: the population enlarges linearly with the pump power; a broad distribution
is detected looking at the energy-momentum emission; since the laser phase is lost in the
non-resonant excitation configuration (as stated in Section 1.2.3.1), a short-range correlation
is observed, with a size comparable to that of the de Broglie wavelength; emission from the
polariton is completely depolarised.
Above threshold: the population enlarges nonlinearly with the pump power; a narrow distri-
bution is detected looking at the energy-momentum emission, and this spectral narrowing
leads to temporal coherence; a long-range spatial coherence is observed, with a finite size
comparable to that of the entire condensate; emission from the polariton is linearly polarised,
regardless of laser polarisation [41].
Given the macroscopic phase coherence, the macroscopic wavefunction for the polariton
ground state reads

ψpol(r, t) =
√

npol(r, t) eiφ(r,t) (1.30)

and the polariton dynamics are described with a nonlinear Schrödinger equation, known as
Gross-Pitaevskii equation

ih̄
∂ψpol(r, t)

∂ t
=

{
− h̄2

∇2

2mpol
+Vext(r, t)+

ih̄
2
[
R(nR(r, t))− γpol

]
+

+gpol|ψpol(r, t)|2 +gRnR(r, t)

}
ψpol(r, t) (1.31)

where Vext(r, t) is an external potential due to disorder, R(nR(r, t)) represents the creation
of polaritons through scattering from the exciton reservoir with density nR(r, t), γpol is the
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polariton linewidth, gR is the strength of the interaction between polaritons and excitons in
the reservoir. The rate equation for the exciton reservoir is given by

∂nR(r, t)
∂ t

= PR(r, t)− γR (nR(r, t))−R(nR(r, t)) |ψpol(r, t)|2 (1.32)

where PR represents the external pump rate to feed the polariton system and γR is the reservoir
lifetime [39].

Fig. 1.3 Far-field emission for increasing pump powers (from left to right). Below threshold
(left panel), the emission is broad in energy and momentum, while above threshold (right
panel), the emission shrinks to the lowest energy state. It is also possible to see blueshift for
increasing pump power, sign of polariton behaviour. Source: [15]

1.2.3.3 Superfluidity, vortices and solitons

It is extremely informative to investigate the behaviour of the polariton fluid through the
interaction with some obstacle, from which several many-body phenomena closely related to
BEC have been studied [42].

Let us first consider a defect smaller than the polariton-polariton interaction length,
known as the healing length

ξ =
h

mpol vsound
(1.33)

where
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vsound =

√
h̄gpol|ψpol|2

mpol
(1.34)

is the sound velocity.
At low power (i.e. low polariton density), the interaction between polaritons is negligible
and we are in the linear regime, where the polariton dispersion is parabolic and so the elastic
scattering is still possible (Figure 1.4, top-left panel). Looking at the real-space image,
parabolic waves are detected (Figure 1.5, left panel). Increasing the pump power (i.e. higher
polariton density), the interaction between polaritons is no longer negligible and we move
into the nonlinear regime, where the dispersion curve modifies as shown in the right panels
of Figure 1.4: it blueshifts to the pump level (yellow dot in Figure 1.4) and becomes linear
(red curves in Figure 1.4, right panels) due to polariton-polariton interaction.
Now, we need to distinguish two different regimes, whether the group velocity

vpol =
h̄kpol

mpol
(1.35)

is smaller or bigger than the speed of sound, where the fluid velocity depends on the excitation
angle θ through

kpol =
ωpol

c
sinθ (1.36)

As shown in Figure 1.4 (top-right panel), when vpol < vsound , there are no states available for
polaritons to elastically scatter into, the fluid does not see the defect anymore and parabolic
waves are no longer detected (Figure 1.5, middle panel). Thus, we get into the superfluidity
regime, that is the fluid flows with zero viscosity [43], when the Landau criterion for the
critical velocity

vc = min
k

ω(k)
k

(1.37)

is fulfilled.
When vpol > vsound , we enter in the supersonic regime and we observe the characteristic
linear density wavefronts of the C̆erenkov waves (Figure 1.5, right panel), where the angle ϑ

of the fringes

ϑ = arcsin
vsound

vpol
(1.38)

may be used to extract the speed of sound.
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Fig. 1.4 Dispersion of LPB, where the yellow dot shows the pump wavevector (Ep is the
pump energy). Top-left panel: at low density, polaritons elastically scatter to the states
specified by the green arrow, at the same energy. Top-right panel: at high density the
LPB blueshifts and, for vpol < vsound , the Landau criterion represented by Equation 1.37 is
fulfilled, thus polaritons do no longer have states available for elastic scattering. Bottom-left
panel: the pump wavevector is larger than before in order to increase the fluid velocity
vpol , as shown by Equation 1.36. Bottom-right panel: at high density and for vpol > vsound ,
polaritons enter into the supersonic (C̆erenkov) regime. Source: [16]

Fig. 1.5 Near-field imaging of a polariton fluid impinging on a small obstacle. Left panel:
at low density, polaritons elastically scatter when hitting the defect, creating parabolic
fringes. Middle panel: at high density and for vpol < vsound , superfluidity regime is attained,
where scattering with the obstacle is no longer present. Right panel: at high density and
for vpol > vsound , polaritons enter into the supersonic regime, with its characteristic linear
C̆erenkov waves. Source: [16]
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Let now consider an obstacle (Figure 1.6, panel (a), red circle) larger than the healing
length ξ (which is around 5 µm in GaAs) and vary the ratio between group velocity and
speed of sound, changing the excitation angle or the polariton density.
For vpol << vsound , we are in the superfluid regime, as revealed in Figure 1.6 (panel (b)).
At higher vpol (or lower |ψpol|2), the Landau criterion is locally violated because of the
acceleration of the fluid in the vicinity of the obstacle [44]. These currents can give rise
to turbulences, such as quantised vortices and vortex-antivortex pairs (Figure 1.6, panel
(c), red and blue circles). Vortices represent a fluid that rotates around a core of minimum
density, whose dimension is indicated by the healing length ξ . Their circulation is quantised
because the phase of the condensate wavefunction changes as a multiple of 2π [45]. A vortex
and an antivortex (a vortex with opposite circulation) move in pairs since they attract each
other, while vortices with the same spin repel, as a Coulomb-like interaction, and they can
annihilate. The presence of free vortices or vortex-antivortex pairs depends on the temperature
of the system, whether it is higher or lower than the Berezinskii-Kosterlitz-Thouless (BKT)
temperature

kBTBKT =
π h̄2ns. f .

2mpol
(1.39)

where ns. f . is the superfluid density. When T > TBKT a disordered phase is observed, while
for T < TBKT the phase fluctuations are cancelled out thanks to pairs formation and both
long-range order of BEC and superfluidity are restored [46].

At even greater vpol (or smaller |ψpol|2), vortices start to overlap, creating another topo-
logical excitation called oblique dark solitons (Figure 1.6 (panels (d), (e) and (f)), which are
represented by a π shift in phase [47]. More generally, solitons are defined as non-spreading
non-decaying wave, localised in space (spatial solitons) or time (temporal solitons). They do
not spread as a result of some sort of nonlinear effect, such as the repulsive polariton-polariton
interaction or optical Kerr effect, that introduces a nonlinear refractive index and SPM (Sec-
tion 1.2.3). They can be further distinguished as dark or bright solitons, whether they are
a localised minimum or maximum in intensity compared to a homogeneous background,
respectively. In the specific case of repulsive polariton-polariton interaction, dark solitons
manifest when the polariton effective mass mpol is positive, while bright solitons need a
negative polariton effective mass [18]. They can be also differentiated between conservative
and dissipative solitons, whether they are created in low or high losses systems, that is
the number of particles remains constant or an external pump is needed to compensate the
decreasing of particle number.
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Fig. 1.6 Panel (a): obstacle (red circle) larger than the healing length ξ . Panel (b): for
vpol << vsound , we are in the superfluid regime. Panel (c): at higher vpol (or lower |ψpol|2),
nucleation of turbulences such as quantised vortices and vortex-antivortex pairs is observed.
Panels (d), (e), (f): at even greater vpol (or smaller |ψpol|2), vortices start to overlap, creating
another topological excitation called oblique dark solitons. Source: [48]

1.2.3.4 Parametric oscillation and bistability

The polariton-polariton scattering introduced in Section 1.2.3.1 is a four-wave mixing (FWM)
process [24]: two particles scatter to two distinct states, conserving both energy and momen-
tum. Specifically, when polaritons are injected approximately at the inflection point of the
LPB (kp is the pump laser wavevector), they undergo through optical parametric oscillation
(OPO) and scatter to signal (ksignal = 0) and idler (kidler = 2kp) states (see Figure 1.7, left
panel) [17]. When a probe is used to populate the ground state in order to stimulate the
polariton scattering with a rate given by (N+1), where N is the number of polaritons already
in the state, we refer to optical parametric amplification (OPA) [49].

Polariton-polariton interaction also leads to bistability [50, 51], which consists in the
hysteresis cycle shown in Figure 1.7 (right panel), when the condition

ωp −ωLPB(kp)>
√

3γp (1.40)

is satisfied. Here, ωp is the pump frequency, ωLPB(kp) is the frequency of the LPB cor-
responding to the wavevector of the pump kp and γp is the pump linewidth. The laser is
blue-detuned compared to the LPB, so increasing the pump power, the LPB blueshifts be-
cause of the renormalisation of the dispersion via FWM [52]. When it reaches the pump
energy, the signal intensity suddenly increases (see Figure 1.7, right panel, curve 1 in blue).
Now, the decreasing of the pump power causes a redshift of the LPB, but the transmission
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moves back to the previous value at a lower power than before (see Figure 1.7, right panel,
curve 2 in red). The interplay between the two phenomena analysed in this section was
demonstrated in [53].

Fig. 1.7 Left panel: schematic of the OPO process. The pump (purple) injects two polaritons
(dark green) in the LPB at kp. The two polaritons scatter to the signal (red at k = 0) and
idler (blue at k = 2kp) states. Right panel: schematic of the bistability process. The blue
(red) curve shows the transition from low (high) to high (low) signal intensity increasing
(decreasing) the pump power, in a two step operation (labelled as 1 and 2).



Chapter 2

Optical active media

2.1 Introduction

Many materials have been used throughout the years as active media in polaritonics, but
without a shadow of doubt GaAs-based systems have been the most investigated thanks
to its mature fabrication techniques [6]. The large dielectric constant characterising this
III-V material (as well as CdTe, a II-VI material) leads to small exciton binding energy
(5− 25 meV ) and then small Rabi splitting (3− 25 meV ), making necessary to work at
cryogenic temperature [54]. Because of the interest for technological applications, alternative
platforms operating at RT need to be found. Still looking at inorganic semiconductors, GaN
[55, 56], ZnO [57, 58] and two-dimensional transition-metal dichalcogenides (2D TMDCs)
[59, 60] show excitons with binding energies large enough (30−500 meV ) to be stable at RT,
with consequent large Rabi splitting (30−150 meV ). Hybrid inorganic-organic perovskites
can be part of this category of platforms suitable for practical implementation, as they showed
polariton existence at high temperature [61]. Considering organic materials [62, 63], it is
true that the exciton binding energy and so the Rabi splitting are even higher (0.5− 1 eV
and 0.1−1 eV , respectively), however the very small Bohr radius of their Frenkel excitons
implies an increased sensitivity to sample inhomogeneity, causing linewidth broadening
of the exciton resonance (25− 200 meV in organic materials compared to 0.1− 10 meV
in inorganic materials) and polariton localization in potential minima, frustrating their in-
teraction [64]. Indeed, organic compounds have manifested much smaller nonlinearities
(10−3 µeV ·µm2) than inorganic materials (1−10 µeV ·µm2) so far [6].
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Table 2.1 Excitonic properties of the different active media used in polaritonics, from [65].

GaAs GaN organic TMDC ML 2D
QW QW (Lumogen) (MoSe2) Perovskites

Exciton resonance (eV ) 1.5 3.5 2 1.6 2.4
Binding energy (meV ) ∼ 10 40 830 480 370
Bohr radius (nm) 12.5 3.5 1 1 4.5
Oscillator strength (µm−2) ∼ 104 ∼ 105 ∼ 107 ∗ ∼ 106 ∼ 105

Linewidth (meV ) ∼ 0.01 ∼ 0.1 ∼ 10 ∼ 1 ∼ 10
Interaction (µeV ·µm2) ∼ 1 ∼ 0.1 ∼ 0.01 ∼ 0.01 ∼ 1

* Oscillator strength of organic (Lumogen) is in µm−3.

2.2 Transition-metal dichalcogenides

Despite all the most fundamental physical and optical properties of 2D TMDCs were already
known in the early 1970s on a theoretical level [66], they were experimentally revived after
the fabrication of graphene (single layer of carbon atoms) in 2004 by mechanical exfoliation
[67], that was awarded the Nobel Prize in 2010. Dozens of MX2 compounds, where M
stands for transition-metal atom sandwiched between two chalcogen atoms X, fall into the
category of TMDCs, ranging from insulators, semiconductors and metals, according to the
way electrons fill the bands [68].
Since we are interested in the coupling between light and matter for device applications, we
are going to focus on the semiconductor materials, in particular those where M = Mo, W
and X = S, Se, which present a trigonal prismatic geometry (Figure 2.1(a)). Because of the
weak van der Waals (vdW) inter-layer bonds and the strong covalent bonds within a layer,
it is possible to isolate a monolayer (ML) with a thickness of 0.6− 0.7 nm using simple
techniques as bare mechanical exfoliation, as previously done for graphene (Figure 2.1(a))
[69].
These materials undergo a transition from indirect to direct bandgap in the ML limit, as
shown in Figure 2.2(a), where it is possible to notice that the K valley is almost unaffected by
the decrease in size, while the indirect transition increases. This behaviour, like many others,
mostly depends on the d-orbitals of the metal atom. This strong confinement in a plane
reduces the dielectric screening (see Figure 2.2(b)), leading to attractive optical properties
linked to exciton resonance, such as high binding energy and large oscillator strength, which
is a hundred times stronger than that of the band-to-band transition [70]. The transition from
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indirect to direct bandgap is certified by the massive increase in the photo-luminescence (PL)
emission from the ML, which is two (four) orders of magnitude higher than that in bilayers
(bulk) [71].

Fig. 2.1 (a): on the left hand side, a view of the trigonal prismatic geometry of a MX2
compound, where M = Mo, W is depicted in red and X = S, Se is represented in green.
The intralayer covalent bonds are shown in yellow, and a single layer is represented on the
right hand side. (b): views of the different planes are presented, in particular the xy plane
manifests a hexagonal lattice structure.
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Fig. 2.2 (a): energy-momentum dispersion for bulk, bilayer and monolayer MoSe2. While the
VB at the Γ point and the CB at the Q point change with decreasing the dimensionality, the K
valley is almost unaffected, provoking the transition from indirect to direct bandgap. Source:
[72]. (b): in the left column, a representation of an exciton in bulk and ML displaying the
different dielectric environment and the Bohr radius reduction. In the right column, the
increase of both bandgap and exciton binding energy with reducing dimensionality. Source:
[73].

2.2.1 Valley excitons

It is also interesting to notice that, in spite of the small Bohr radius (1 nm) and large binding
energy (up to 0.5 eV ), which would suggest the presence of Frenkel excitons, the exciton
wavefuction is still that of Wannier-Mott excitons [74]. Moreover, the spatial dependence of
the dielectric constant due to the quantum confinement causes a significant deviation from
the hydrogen model usually used to describe excitons [73].

As displayed in Figure 2.1(b), MoS2, MoSe2, WS2 and WSe2 also have a hexagonal
lattice structure in the xy plane. Consequently, the Brillouin zone in the momentum space
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is hexagonal as well, as shown in Figure 2.3(a), where the two valleys K+ and K− show
different characteristics.
Because of the broken inversion symmetry in MLs (restored in a bilayer), the exciton transi-
tions at the K+ and K− points are degenerate, but the spin-orbit coupling (SOC) splits the
spin degeneracy at each valley. The spin splitting for different valleys is opposite, as a result
of the time-reversal symmetry. In this way, spin and valley degrees of freedom are linked
and thus it is possible to select an individual valley using circularly polarised light: σ+ and
σ− for K+ and K−, respectively (see Figure 2.3(b)) [75, 76].

As depicted in Figure 2.3(b), the degeneracy splitting is different between the CB (15−
30 meV ) and the VB (0.2−0.5 eV ) and the sign of the CB splitting depends on the metal
atom, producing an optically bright (same spin for VB and CB) ground state for MoX2 and
an optically dark (opposite spin for VB and CB) ground state for WX2.

Since the two valleys are well separated in momentum space, the valley depolarisation
arising from inter-valley carrier interactions is strongly suppressed: to move from one valley
to the other, the carriers need large momentum and energy, or a spin-flip, leading to high
polarisation retention once the two valleys are initialised by the corresponding circularly
polarised light.

This robust polarisation retention has been experimentally detected in MoS2, WS2 and
WSe2, but not in MoSe2. This different behaviour of MoSe2 could be attributed to the darkish
nature of the lowest energy state of the other three TMDC compounds (SOC splitting for
MoS2 is negative, but extremely small, as shown in Table 2.2) [77].

We can also observed two different kind of excitons, labelled in Figure 2.3(b) as XA and
XB, depending on the transition energy. While the radiative lifetime of XA is of the order
of 1 ps (linewidth of about 1 meV ), the XB lifetime is shorter due to its relaxation to lower
energy states through non-radiative channels [78], including exciton-exciton annihilation
via Auger recombination, carrier-phonon scattering into dark states outside the light cone
(creating an exciton reservoir with a lifetime of the order of 1 ns) and exciton complexes
formation [74].
Indeed, thanks to the strong overlap of electron and hole wavefunctions, it is also possible
to observe trions T (i.e. charged excitons, so also labelled as X∗) [79], biexcitons XX and
charged biexcitons XT (or equivalently XX∗) [80]. Since unintentional doping in TMDCs
is usually n-type, we refer to negative trions X−. In Table 2.2 is presented a summary of
the most important electronic and optical properties of the four TMDC semiconductors
considered so far.
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Exciton and trion states were unambiguously observed using a MoSe2-based field effect
transistor (FET) [81]. Performing gate-dependent measurements, the neutral and charged
(both positive and negative) exciton resonances were electrostatically tune. Specifically,
studying their PL peak intensities as function of the gate voltage, it is remarkable to notice
that the maximum intensity of X resonance is equal to that of X∗ when the X peak disappears,
indicating the conservation of the total number of neutral excitons, since the PL intensity
represents the amount of that particular species. So, the existing excitons simply bind to
the excess electrons (holes) to form trions. Then, looking at the absorption area, which is
proportional to the oscillator strength [59], for increasing gate voltages the exciton resonance
disappears while the trion resonance gradually increases its weight [79]: as the electron
density (i.e. Fermi energy) is increased, the oscillator strength is transferred from X to T
[82].
Another interesting result obtained from this kind of structure is related to the redshift of the
PL peak for increasing doping level (i.e. Fermi energy) compared to the absorption peak,
called Stokes shift (for further details on this phenomenon, see Section 5.3.1).
Moreover, since the CB and VB curvatures are roughly the same, we aspect that the elec-
tron and hole effective masses are approximately the same. This is further confirm by the
measured charging energies of both positively (X+) and negatively (X−) charged excitons in
this kind of gated sample, which are almost identical. This similar value is approximately 10
times bigger than that in QWs (a quasi-2D system) thanks to the reduced dielectric screening
guaranteed by the 2D nature of MLs, with consequent enlarged Coulomb interaction, and the
heavy effective masses of excitonic components [79].

Another difference between these four TMDCs is given by the PL spectrum: MoSe2, the
TMDC we investigated in our tunable open-access microcavity, shows only two peaks arising
from excitons and trions, while WX2 compounds manifest many peaks at lower energy than
X−, usually attributed to localised excitons [77].



2.2 Transition-metal dichalcogenides 27

Fig. 2.3 (a): hexagonal first Brillouin zone of TMDCs, with Γ, M and K valleys, as shown in
Figure 2.2(a). (b): schematic in a single-particle picture of the difference between MoX2
and WX2 valleys, which arises from the opposite value of the CB splitting due to spin-orbit
coupling (SOC). This leads to opposite optical characteristic of their ground state, bright
for MoX2 and dark for WX2, yellow and grey respectively. It is also emphasised the non-
identical splitting between the K+ and K− valleys in both compounds, causing the divergent
polarisation behaviour (σ+ for K+ and σ− for K−). Moreover, two exciton resonances XA
and XB are indicated in green and purple for increasing energy, respectively.

Table 2.2 Electronic and optical properties of monolayer TMDC compounds, from [70, 83].

MoS2 MoSe2 WS2 WSe2

Bandgap Eg (eV ) 2 1.7 2.1 1.8
SOC for CB (meV ) -3 -20 30 35
SOC for VB (meV ) 150 180 430 470
X binding energy (meV ) ∼ 530 ∼ 480 ∼ 520 ∼ 470
X− binding energy (meV ) 32 28 33 29
XX binding energy (meV ) 23 19 24 21
XX− binding energy (meV ) 17 16 15 15

2.2.2 Fabrication techniques

Many approaches can be employed to fabricate TMDC-MLs, but here we are going to quickly
deepen the two used to make the sample studied in this thesis.
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2.2.2.1 Mechanical exfoliation

Historically, the very first fabrication techniques utilised for TMDCs is mechanical exfolia-
tion, a top-down method where a scotch tape is used to cleave the bulk crystal [84]. Once
the procedure is applied a few times, the exfoliated materials is placed onto a SiO2 substrate
to find MLs. The flake-search can be performed using different equipment, for example an
optical microscope, as done in our case (it is going to be described in Section 4.2.1). Once
the MLs are found, they are picked up using poly-dimethylsiloxane (PDMS), a visco-elastic
polymer whose vdW forces with the flakes are stronger than those between MLs and the SiO2

substrate. The polymer is then pressed onto the desired substrate (distributed Bragg reflector,
described in Chapter 3) and peeled off [85]. Since the small thickness of MLs, they are really
sensitive to the local environment and so the roughness of the substrate surface becomes
a fundamental parameter. In order to improve flatness, and also to prevent contamination
from the surrounding environment, a ML can be encapsulated between two hexagonal boron
nitride (hBN) layers, a wide-bandgap semiconductor (Eg ∼ 6 eV ). In this configuration,
flakes reveal a better linewidth [86].

2.2.2.2 Chemical vapour deposition

Chemical vapour deposition (CVD) is a bottom-up method which is starting to play an
important role in TMDC fabrication. The whole procedure is carried out inside a quartz tube,
where Ar and H2 can be used as carrier gasses. However, it was noticed that Ar produces
few-layer flakes, while H2 gives rise to MLs. In the case of MoSe2, Se and MoO3 powder
precursors are heated to 300 ◦C and 750 ◦C, respectively [87]. Then, they decompose, diffuse
and are adsorbed onto the heated substrate. Two fundamental parameters influencing the
flake size and the substrate coverage are the H2 flow rate and the substrate temperature, which
favour the diffusion of the precursors onto the substrate but may also cause their desorption
[88].

2.3 III-nitride semiconductors

Another group of materials that is acquiring a fundamental role in the development of
advanced technologies is represented by III-nitride wide-bandgap semiconductors, as demon-
strated by the Nobel Prize won in 2014 [89]. This family consists of InN, GaN and AlN.
Given the energy bandgaps of these three materials (shown in Table 2.4) and taking into
account their ternary alloys, it is also possible to continuously tune the bandgap and explore
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a wide range of wavelengths, from the IR to the UV [90]. Indeed, considering the lattice
parameters aA and aB of two different binary compounds A and B, we can derive the alloy
lattice parameter from Vegard’s law [90]

aAxB1−x = x ·aA +(1− x) ·aB (2.1)

where x represents the content of that particular element, and then we can extract the bandgap
variation for the alloy

EgAB = x ·EgA +(1− x) ·EgB +b · x(1− x) (2.2)

where the bowing parameter b gives a correction factor compared to the bare linear interpola-
tion (see Table 2.3).

Table 2.3 Bowing parameter for the ternary compounds from [90].

Bowing parameter AlGaN InGaN AlInN

b (eV ) -0.7 -1.7 -5.4

Since we performed temperature dependence studies, it is also important to consider the
bandgap variation as a function of the temperature through the Varshni’s law [91]

Eg(T ) = Eg(T = 0 K)− αT 2

T +β
(2.3)

where the values for the parameters α and β are listed in Table 2.4. The bandgap of GaN
changes from ∼ 3.4 eV at 300 K to ∼ 3.5 eV at 4 K, due to the reduction of the lattice
parameter decreasing the temperature.
An even better model is given by [92]

EX(T ) = EX(T = 0 K)− 2αB

e
ΘB
T −1

(2.4)

where EX(T = 0 K) is the exciton energy at 0 K and the second term is the Bose-Einstein
distribution for phonons, where αB ∼ 70 meV and ΘB ∼ 322 K represent the electron-phonon
interaction constant and the phonon temperature, respectively [93].
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2.3.1 Polarity

Table 2.4 Parameters of III-nitride binary compounds at RT. Eg, α and β from [94]; a, c and
u from [95, 96].

Parameters (T = 300 K) AlN GaN InN

Eg (eV ) 6.2 3.4 0.7
a (Ȧ) 3.112 3.189 3.545
c (Ȧ) 4.982 5.185 5.703
u (Ȧ) 1.903 1.950 2.150
α (meV/K) 1.799 0.909 0.245
β (K) 1462 830 624

Fig. 2.4 Schematic representation of the wurtzite crystal structure of a III-nitride semiconduc-
tor, where the N atom is in light blue and the group-III atom is in yellow. The ionic-covalent
bonds between the anion (N) and the cation (group-III) are shown in black. The two lattice
constants a and c are labelled in dark grey, while the distance u between N and the group-III
atom along c is labelled in light grey. The principal planes c, a and m are shown in green,
blue and red, respectively.
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The stable phase of these wide-bandgap semiconductors is represented by the wurtzite crystal
structure, consisting of a hexagonal unit cell, as depicted in Figure 2.4. In this structure
we have two lattice constants: the basal length a and the prism height c, while the distance
between the anion (N) and the cation (group-III) along c is labelled as u (Figure 2.4). The
values of these three parameters are shown in Table 2.4.
The wurtzite crystal shows a lack of inversion symmetry which, together with the big dif-
ference in electronegativity between anions and cations and the consequent ionicity of the
covalent bond between them, leads to different centres of gravity for N and group-III atom
charges. This situation causes the built-up of an intrinsic polarisation, called pyroelectricity
[97], which can be further increased by lattice strain (the latter is called piezoelectric polari-
sation). Because of the different polarisation in the different III-nitride materials, electric
charge accumulates at the interface between them (when creating a heterostructure), as
happens in a capacitor. The c-plane (green in Figure 2.4) is a polar plane, while the a-plane
and the m-plane (blue and red in Figure 2.4, respectively) are non-polar planes.

2.3.2 GaN optical properties

Specifically looking at the band structure of GaN, which is the active medium in our waveg-
uides, the CB minimum and the VB maximum both lie at the centre of the Brillouin zone, at
the Γ-point, where the properties are governed by the s-orbital and the p-orbital, respectively.
The spin-orbit interaction and the crystal field split the VB into three, labelled as A for heavy
holes, B for light holes and C is the split-off band, from lower to higher energies of the holes
[98]. The three different exciton resonances arising from the Coulomb interaction between
CB electrons and the different kind of VB holes, however, show the same binding energy of
approximately 25 meV (in bulk) and high oscillator strength [99]. It is also important to note
that only an electric field orthogonal to the c-plane allows formation of A-excitons, while B-
and C-excitons do not have this restriction.
As it happens for TMDCs, we further distinguish between bright and dark excitons depending
on their spin. Considering that the electron spin is ±1

2 , while heavy and light holes have
spins ±3

2 and ±1
2 respectively, the exciton spin can be 0,±1,±2. Since photons have a ±1

spin, exclusively excitons with identical spin can couple with them, while the others are
optically inactive, as well as excitons with a wavevector outside the light cone.

Observing a PL spectrum of GaN, it is also possible to note an emission peak at lower
energy than A-exciton, attributed to excitons bound to donors. In particular, a substitutional Si
atom in a Ga site creates an exciton with a binding energy of 6.2 meV , while a substitutional
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O atom in a N site creates an exciton with a binding energy of 7.0 meV [100].

2.3.3 QW excitons

As stated in Section 1.2.2, to further improve the light-matter interaction, we can confine
excitons in 2D QW systems. These are nanoscale heterostructure, where a smaller bandgap
material is sandwiched between two layers of a bigger bandgap material in order to spatially
trap the exciton in the first one.

Fig. 2.5 Schematic representation of a GaN/AlxGa1−xN QW, where x = 0.1 in our samples.
The Al0.1Ga0.9N bandgap is EAlGaN

g ≈ 3.7 eV , while the GaN bandgap is EGaN
g ≈ 3.5 eV

at 4K. Electrons (full red dot) and holes (empty red dot) are then confined in GaN. The
discrete energy levels in both bands arise from the nanoscale thickness of the heterostructure
(1.5 nm for GaN layer and 3.5 nm for Al0.1Ga0.9N layer). Electrons (e) and heavy holes (hh)
occupy their respective ground states (labelled as 1) and, interacting attractively, give rise to
A-excitons, with binding energy EXA

B ≈ 50 meV .

In the waveguides studied in this thesis, we used GaN/AlxGa1−xN QWs (where x = 0.1)
as the active medium (Figure 2.5). Excitons are confined in a 1.5nm-thick GaN layer encom-
passed in the growth direction by two 3.5nm-thick Al0.1Ga0.9N layers [101] thanks to their
different bandgap (∼ 3.5 eV and ∼ 3.7 eV , respectively).
This kind of design is also convenient because the lattice mismatch of just 2.5% between
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AlN and GaN prevents dislocation formation (at least in nanoscale structures) thanks to the
small lattice strain [102].

Thanks to this quantum confinement of the carriers, their radiative recombination rate is
enhanced. Moreover, the exciton binding energy in 2D now reads

En
X(2D) =− RX

(n−0.5)2 , n = 1, 2, ... (2.5)

which is four times larger than that in 3D bulk (only in a fully, ideal 2D system). Correspond-
ingly, the Bohr radius is two times smaller in a QW than in bulk and so the oscillator strength
increases even further

fX(2D) = fcv
A

πa2
B

(2.6)

while the Mott density, because of the reduced dimensionality, reads

nMott(2D) =
1

πa2
B

(2.7)

2.3.4 Fabrication techniques

In order to fabricate the GaN/Al0.1Ga0.9N heterostructures used as active medium in our
waveguides, metal-organic chemical vapour deposition (MOCVD) was employed [103]. In
this case, trimethyl- Ga (TMGa), In (TMIn), Al (TMIn) and ammonia (NH3) were used as
precursors, while H2 and N2 were the carrier gases. Because of the strong bonding between
group-III and N atoms, higher temperatures are needed (∼ 900 ◦C). Moreover, the growth
of III-nitride heterostructure is of course affected by the lattice mismatch with the substrate,
eventually creating dislocation. In order to prevent defect creation, and ensure best sample
quality, a freestanding GaN substrate was utilised. Besides, a homogeneous Al0.1Ga0.9N
composition is necessary, as well as smooth hetero-interfaces, to reduce alloy disorder and
decrease inhomogeneous broadening [104].

Since a waveguide works thanks to total internal reflection (see Chapter 3), the active
medium needs to be enclosed between two smaller refractive index materials. In light of
the above, Al0.83In0.17N was employed as a cladding to optically isolate QWs from the GaN
substrate [105], while the top cladding is guaranteed by SiO2. In addition, Al0.83In0.17N is
characterised by a higher bandgap than GaN [106], which also favours the active medium
isolation, and same lattice constant, avoiding dislocation formation.





Chapter 3

Photonic microstructures

3.1 Introduction

As stated in Section 1.2.2, a number of design can be employed to increase the interaction
between light and matter [107]. Certainly, the most used geometry adopted for this purpose
has been the monolithic planar microcavity (discussed in Section 3.2), since the birth of
experimental polaritonics [9]. In this configuration, the electric field is trapped between two
mirrors on a scale of the emitter wavelength only in the orthogonal direction. To completely
enclose the light in the other two dimensions, spherical mirrors (detailed in Section 3.2.1)
or etched micropillars can be utilised, leading to the discrete optical modes whose energy
separation depends on the confinement length [23]. In the latter configuration, the lateral
confinement is achieved by total internal reflection (TIR) thanks to the difference in the
refractive indices between the optical resonator and the surrounding vacuum. This method
is also applied in waveguides (described in Section 3.3) and whispering-gallery resonators
[108], where the light is guided around the structure. The disadvantage of this geometry is
represented by the impossibility to create small structures because diffraction comes into play
[23]. Another possible solution to imprison the electric field is given by photonic crystals,
periodic structures where a small asymmetry is produced through the creation of a nanoscale
defect [65]. In this way, the light propagation is influenced by multiple scattering arising
from the difference in the refractive indices. The overall design simulates the behaviour of an
electron moving in the periodic potential of a crystal, mimicking a solid state configuration
[109]. Because of the difficulties in the fabrication process of such a structure, array of
micropillars can be implemented instead [110].
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3.2 Planar Fabry-Pérot microcavities

As stated in Section 3.1, a planar microcavity is formed by two high reflectivity mirrors with
an active medium between them. Specifically, the mirrors are two distributed Bragg reflectors
(DBRs), characterised by two alternating λ

4n layers of high and low refractive indices n1 and
n2 respectively, where λ is the emitter wavelength. The reflectivity of a mirror is given by

R =

1−
(

n2
n1

)2N

1+
(

n2
n1

)2N


2

(3.1)

which shows that the bigger the refractive index difference and the higher the number N
of layer pairs, the higher the reflectivity. When the two DBRs are brought together, with a
separation of just few wavelengths, an optical resonator is formed. The π phase shift of the
reflected light between layer interfaces leads to constructive interference, creating a region of
high reflectivity which extends over a large range of wavelengths, called the stopband

∆λ ≈ 2 λ̄ (n1 −n2)

π ne f f
(3.2)

where λ̄ is the central wavelength of the stopband and ne f f = 2 ( 1
n1
+ 1

n2
)−1 is the effective

refractive index.

Because of the light confinement, the photon dispersion is modified compared to the free
space case, where it is linear: E = h̄ω = h̄ck. The microcavity geometry causes a quantisation
of the light wavevector in the DBR growth direction (perpendicular to the mirror), while k in
the parallel direction is still unaffected:

E =
h̄ck
ncav

=
h̄c

ncav

√
k2
⊥+ k2

q (3.3)

where

k⊥ =
qπ

Lcav
(3.4)

The quantity q is called the order of the cavity mode and represents the integer number of half
wavelengths of the light confined between the two mirrors so that a stationary wave survives
within the cavity. Depending on the order q of the longitudinal mode, we refer to different
qλ

2 cavities. Substituting Equation 3.4 in Equation 3.3, we get the dispersion relation for a
microcavity (see Figure 3.1):
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E(kq) =
h̄c

ncav

qπ

Lcav

√
1+
(

Lcav kq
qπ

)2

≈

≈ h̄c
ncav

qπ

Lcav

[
1+

1
2

(
Lcav kq

qπ

)2
]
= E0 +

h̄2 k2
q

2mph
(3.5)

where

E0 =
qπ h̄c

ncav Lcav
(3.6)

and

mph =
qπ h̄ncav

cLcav
(3.7)

is the cavity photon effective mass of about 10−4 − 10−5 me, arising from the parabolic
dispersion in a Fabry-Pérot cavity [21].
A fundamental parameter used to describe a microcavity is the quality factor Q, denoted as
the fraction between the energy stored and the energy dissipated within a round trip of a
photon between the two mirrors

Q =
Eph

γph
= ωph · τph (3.8)

So, the quality factor depends on the lifetime of photons within the cavity, which leak out
through the mirrors. Detecting these photons, it is possible to measure polariton characteris-
tics, retained by them [111].

Linked to the Q-factor, there is another important parameter used to specify the spectral
resolution of the cavity, the finesse [23]

F =
∆ωcav

γph
(3.9)

where ∆ωcav is the longitudinal mode separation, which depends on the cavity length LC

through

∆ωcav =
2πc
Lcav

(3.10)

Because of the electric field penetration inside the DBRs, as shown by transfer-matrix method
simulations in Figure 3.2 of our tunable open-access microcavity (consisting of 13 pairs of
SiO2/Ta2O5 quarter-wave layers), the real cavity length is actually given by
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Le f f = Lcav +LDBR1 +LDBR2 (3.11)

where the penetration length of the electric field in a single DBR can be quantify by [112]

LDBR =
n1 n2 λ̄

2(n1 −n2)
(3.12)

Fig. 3.1 Negatively (left panel), zero (middle panel) and positively (right panel) detuned
GaAs-microcavity dispersion with Hopfield coefficients for the LPB.

Fig. 3.2 Transfer-matrix method simulations of our tunable open-access microcavity consist-
ing of 13 pairs of SiO2/Ta2O5 quarter-wave layers, with refractive indices nSiO2 = 1.46 and
nTa2O5 = 2.13, respectively. Left panel: The electric field is calculated in the case of a 5λ

2
cavity configuration, with nair = 1. Right panel: Reflectivity of the system showing a cavity
resonance at ∼ 750 nm, corresponding to A-exciton energy in MoSe2 ML.
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3.2.1 Hemispherical tunable open-access microcavities

Looking in slightly more detail at the microcavity used to study polaritons with TMDCs, the
two DBRs were mounted separately to vary the distance between them and therefore tune
the photon energy to select a specific exciton-photon detuning. Moreover, the hemispherical
geometry guaranteed by the concave shape of one of the two mirrors (the other one with
the active medium on top is planar) provides 3-dimensional confinement of the photonic
mode, leading to 0-dimensional polaritons. This lateral confinement should also yield a high
Q-factor and small mode volume, depending on the radius of curvature (RoC) of the concave
mirror [113]. In particular, the smaller the RoC, the smaller the mode volume and so the
stronger the polariton-polariton interaction, but at the same it has a detrimental effect on the
Q-factor [114], which is also reduced by not perfect mirror alignment and coupling with
leaky modes [23].

Fig. 3.3 Schematic of our hemispherical tunable open-access microcavity, with a bottom
planar DBR with deposited MoSe2, an air gap and a top concave DBR, under infrared laser
excitation.
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To further illustrate the behaviour of the electric field inside our hemispherical tunable
open-access microcavity [115], let us consider the electric field in a vacuum, represented by
the wave equation

∇
2E(r, t)− 1

c2
∂ 2

∂ t2 E(r, t) = 0 (3.13)

Applying the separation of variables to this partial differential equation (PDE), we get that a
trivial solution is represented by the monochromatic wave

E(r, t) = E(r) e−iωt (3.14)

and so we obtain the time-independent wave equation, called the Helmholtz equation

∇
2E(r)+ k2E(r) = 0 (3.15)

A trial solution is now the plane wave

E(r) = E0 e−ik·r (3.16)

In the paraxial (small-angle) approximation, where z is the wave propagation direction, it
is possible to show that the complete solution of the PDE is given by the Gaussian beam (a
rigorous derivation is provided in [115])

E(r) = E0
w0

w(zR)
e−

(x2+y2)
w(z) e−ikz eik (x2+y2)

2R(z) eiΦ(z) (3.17)

where:

• w0 is the beam waist at the beam focus;

• w(zR) =
√

2 w0 is the real spot size at the Rayleigh length zR ≡
π w2

0
λ

;

• R(z) is the radius of curvature of the beam wavefront;

• Φ(z) = arctan
z
zR

is the Gouy phase shift.

In particular, Φ(z) = −π through the waist for the lowest-order mode TEM00, so that the
apparent change of wavelength does not affect the longitudinal mode but might become
relevant for higher-order transverse modes. Specifically, the latter can be described by (see
Figure 3.4):
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• Hermite-Gaussian HGm,n modes in Cartesian coordinates, where (m,n) refer to x
and y directions respectively, and modes with the same |m+n| are degenerate in energy,

• Laguerre-Gaussian LGl,p modes in cylindrical coordinates, where (l, p) refer to
azimuthal and radial direction respectively, and modes with the same |2l + p| are
degenerate in energy.

Fig. 3.4 The electric field profiles of the first 16 Hermite-Gaussian HG(m,n) (left panel) and
Laguerre-Gaussian LG(l,p) (right panel) modes.

Since our hemispherical cavity is circularly symmetric, it should ideally show LG modes,
but the defects in the cavity create asymmetry, actually leading to the observation of HG
modes.

Previous simulations performed in our research group show that [114]:

• the beam waist of the planar DBR is w1 ∼ 1 µm for Lcav < RoC;

• the beam waist of the concave DBR w2 diverges for Lcav > RoC;

• w1 ∼ w2 for Lcav ∼ 1 µm;

• the beam waist is w ∼ 1 µm for RoC ∼ 20 µm, as used in our work.

3.2.2 Fabrication techniques

The λ

4n layers that make up the DBRs are fabricated using Molecular Beam Epitaxy (MBE).
The deposition of these thin layers onto a heated sapphire substrate is performed inside
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a high vacuum chamber, where the constituent materials are stored in separate Knudsen
effusion cells in the solid phase. After being heated, they sublime and then condense onto
the substrate. The layer thickness depends on the deposition rate, which represents one of
the most important parameters to obtain DBRs with high reflectivity.

The hemispherical surface of the concave mirror is attained using focused ion beam (FIB)
milling, where a Ga beam is focussed down to 5 nm onto the DBR surface, achieving a rough-
ness of about 1 nm. Employing this technique, many concave mirrors with different RoCs
can be fabricated onto the plinth, whose values are checked using atomic force microscopy
(AFM), where the variation in height of an atomic-sized tip that scans the surface of the
sample is probed by a laser reflected from the tip itself [116].

3.3 Waveguides

Fig. 3.5 Schematic of our GaN polariton waveguide under an UV laser, whose parts were
fabricated as indicated in Section 7.1. The strips depict the grating couplers (described in
Section 3.3.1) on top of the 100nm-thick SiO2 cladding. Underneath the active medium,
formed by 22 QWs of GaN/Al0.1Ga0.9N and sketched with alternating grey (1.5 nm) and
green (3.5 nm) layers respectively, the purple zone represents the 400nm-thick Al0.83In0.17N
cladding. Finally, the grey section reproduces the GaN substrate. Source: [117]
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As mentioned in Section 3.1, waveguides work through TIR (see Figure 3.6). In general,
this phenomenon manifests when the incident angle of light to the planar interface between
a high refractive index (n1) material and a low refractive index (n2) material exceeds the
critical angle

θc = arcsin
n2

n1
(3.18)

as derived by the Snell’s law

n1 sinθ1 = n2 sinθ2 (3.19)

when θ2 =
π

2 .
Therefore, to build up an optical waveguide, we enclose a core of high refractive index
material of thickness dcore between two low refractive index cladding layers. Alternatively,
since k1 =

2π

λ
n1 =

ω

c n1 and k2 =
2π

λ
n2 =

ω

c n2 are the wavevectors in the two media, Equation
3.19 can be written as

k1 sinθ1 = k2 sinθ2 (3.20)

In order to have TIR and enter in the waveguide regime, the in-plane wavevector kx, defined
as

kx ≡ k1 sinθ1 =
ω

c
n1 sinθ1 =

ω

c
ne f f (3.21)

where ne f f ≡ n1 sinθ1, must satisfy the following condition

kx > k2 =
ω

c
n2 (3.22)

otherwise we get into the Fabry-Pérot regime (already described in Section 3.2). Satisfaction
of the condition represented by Equation 3.18 follows directly from Equations 3.21 and 3.22.
The in-plane wavevector kx is usually called the propagation constant and labelled as β (see
Figure 3.6) [104].

The wave inside the waveguide must constructively interfere with itself after two reflec-
tions in order to survive within the system and form a standing wave. Taking into account
that the path length of a round trip is 2dcore

ω

c n1 cosθm and the π phase shift due to each
reflection, we get the condition

2dcore
ω

c
n1 cosθm = 2πm, m = 1, 2, ... (3.23)
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where m is the mode order surviving within the waveguide, i.e. the number of the standing
wave nodes. It is usually possible to discriminate between transverse-electric (TE) and
transverse-magnetic (TM) modes along the propagation direction x, but in our specific case
we only consider the TE00 mode, since it is the only one to strongly couple to QW A-excitons
(see Section 2.3.2).

Despite the fact that waveguides are theoretically lossless, the dissipation experimentally
observed may arise from different causes, such as absorption, scattering and radiative losses.
Absorption is mainly due to intra- and inter-band transitions, while scattering is a consequence
of defects in the structure itself (that can be reduced using the MBE fabrication technique),
and finally radiative losses into the cladding ascribable to evanescence waves can be neglected
for well confined modes into the core. In any case, losses are described through the loss
coefficient α (dB · cm−1) from [118]

Iout = Iin · e−αx (3.24)

3.3.1 Grating couplers

Since the waveguide modes are outside the air light cone and it is very challenging to collect
the light from the end of the sample in a flow cryostat, grating couplers with a periodicity
Λ etched onto the waveguide surface are necessary to couple the incoming light inside the
system. As usual, the contribution from the different grooves of the grating must interfere
constructively, with a total phase difference equal to a multiple integer of 2π . Looking at
Figure 3.6, the purple path gives a phase shift of βΛ, while the green path results in a phase
shift of koutΛ cos(90◦−Θ) = koutΛ sin(Θ) = kx,outΛ. Combining the two together, we then
obtain

βΛ− kx,outΛ = 2πq, q =±1, ±2, ... (3.25)

where q is the diffraction order. Rearranging Equation 3.25, we finally derive

kx,out ≡
ω

c
sinΘ = β − 2π

Λ
q (3.26)

which allows us to calculate β from the emission angle Θ. First-order gratings are used to
maximise the output light and their period Λ is chosen to have modes within the light cone
[104].
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Fig. 3.6 Schematic of our GaN polariton waveguide under an ultraviolet laser to show how
TIR and grating couplers work. The light that is shined onto the system is coupled to the
waveguide thanks to the gratings etched in the SiO2 cladding. To have propagation of
light inside the waveguide, TIR must occur. As depicted on the left hand side of the 22
GaN/Al0.1Ga0.9N QWs core of thickness dcore = 130 nm and high refractive index n1, when
the incident angle θ1 on the interface with the low refractive index n2 cladding is smaller
than the critical angle θc, the light propagates into the cladding itself. When θ1 = θc, then
θ2 =

π

2 and the light does not propagate in the Al0.83In0.17N layer anymore. Finally, when
θ1 > θc, we enter in the TIR regime. The in-plane wavevector kx ≡ k1 sinθ1 is usually called
propagation constant and labelled as β . Once the light reaches the output grating coupler, it
can be collected and β can be calculated from the emission angle Θ through Equation 3.26.
The purple path gives a phase shift of βΛ, while the green path results in a phase shift of
koutΛ sin(Θ) = kx,outΛ which give the constructive interference of the contributions from the
different grooves (with a total phase difference equal to a multiple integer of 2π), necessary
for the light to come out of the waveguide, as shown in Equation 3.25.

3.3.2 Fabrication techniques

The grating couplers for light input and output are realized after the deposition of SiO2

top cladding onto the active medium, consisting of 22 QWs of GaN/Al0.1Ga0.9N. A thin
resist layer (∼ 120 nm) is spun onto the sample and the grating pattern is then exposed
to electron-beam lithography (EBL) and developed, where the electron beam changes the
solubility of the resist deposited on the desired area. Before the residual resist is removed by
a solvent, a 20nm-thick nickel metallisation deposition is performed. Finally, a 175nm-thick
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SiO2 passivation as anti-reflection (AR) and protective coating is carried out.
Specifically, the grating couplers have the following characteristics:

• their size is 100 µm×100 µm;

• their linewidth is 65 nm;

• their periodicity is 130 nm;

• their separation is 50, 100 or 200 µm.

3.4 Waveguides vs microcavities

In this last section, we have a look at the differences between the two optical confinement
structures used in this thesis.

The large penetration depth of the electric field into the microcavity DBRs provokes large
Le f f , while the small penetration depth of the electric field into the waveguide cladding layer
thanks to TIR leads to small Le f f and so to better spatial confinement [101] and stronger
coupling, i.e. higher Rabi splitting h̄ΩX (see Figure 3.7).

The photon lifetime is longer in waveguides, which should be theoretically lossless
(unless there is absorption, as mentioned in Section 3.3), compared to a microcavity, where
the DBRs reflectivity is around 99% in the best scenario.

The photon dispersion in waveguides is given by [118]

Eph = E0 + h̄vc
gβ (3.27)

where E0 is the energy at β = 0, and vc
g is the group velocity inside the waveguide. Since it

is linear, the waveguide LPB does not show a ground state, preventing the observation of
BEC, in contrast to what happens in microcavities, where the dispersion is parabolic (see
Section 3.2 and Figures 3.1, 3.7).

Whereas anticrossing occurs at k ≈ 0 in microcavities and at higher values in waveguides,
the latter exhibits a 10 times higher group velocity, leading to higher polariton speed [119,
120] and longer propagation distances (see Figure 3.7). The group velocity of light can be
calculated through its definition
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vk ≡
∂ω

∂k
=

1
h̄

∂Eph

∂k
(3.28)

where k is the in-plane wavevector and Eph is the photon energy given by Equation 3.5 and
3.27 for microcavities and waveguides, respectively. The polariton group velocity is then
obtained weighting Equation 3.28 with the photonic fraction |Cph|2.

Finally, in terms of practical applications, the waveguide geometry manifests ease of
fabrication. For example, while the resonance of the photonic mode with excitons is not
affected by this structure, it is dramatically influenced by cavity length and DBR thickness in
microcavities.

Fig. 3.7 Left panel: a negatively detuned GaAs-microcavity dispersion with Rabi splitting
and polariton group velocity. Right panel: a GaAs-waveguide dispersion with higher Rabi
splitting and higher polariton group velocity compared to a GaAs-microcavity. Numerical
values taken from [119, 120].





Chapter 4

Experimental setups

4.1 Introduction

In this chapter, we are going to describe the experimental setups used to study both MoSe2

MLs (in Chapters 5 and 6, on their own inside a flow cryostat or within a tunable open-access
microcavity inside a bath cryostat) and GaN-waveguides (in Chapter 7, inside a flow cryostat),
under non-resonant or resonant excitation.

4.2 MoSe2 experiments

4.2.1 Microscope for flake search

First of all, once the MoSe2 MLs are fabricated as described in Section 2.2.2, they have to be
located on the DBR in order to easily find their position once put inside a cryostat. To do
that, the LV150N bright-field microscope (produced by Nikon) shown in Figure 4.1 was used
[121].
It consists of a white light source, whose IR emission is cut out by the 550 nm short-pass
filter (550 SPF) in the excitation path. A beam-splitter (labelled as BS) is implemented
to work in reflection. Then, to detect only the PL signal emitted by the MLs and exclude
the source reflection, a 600 nm long-pass filter (600 LPF) is placed before the detector, a
charge-coupled device (CCD).
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Fig. 4.1 Schematic of our LV150N bright-field microscope, produced by Nikon. A white
light source, whose IR spectrum is cut out by the 550 nm short-pass filter (550 SPF), excites
the MLs. The PL emission is collected by a charge-coupled device (CCD). To block the WL
reflection, a 600 nm long-pass filter (600 LPF) is positioned in the collection path.

4.2.2 Excitation paths

Once the MLs were located, the samples were placed inside a cryostat (flow or bath, de-
scribed in Section 4.2.3) and excited with different lasers, depending on the experiment we
wanted to perform. To conduct power dependence studies, a gradient ND filter was employed.

4.2.2.1 Excitation lasers

For off-resonant measurements, we utilised a red Helium-Neon (He-Ne) laser, a gas laser
that uses the transition between electronic states of the atoms. The He atoms are pumped
to long-lived excited states and transfer their energy to specific Ne states, whose relaxation
gives the emission at 632.8 nm. A 700 nm short-pass filter is placed in front of this laser to
cut out its tale when measuring the PL emission from the sample.

For resonant measurements, several lasers were used for different experiments and
purposes. Because of the photoinduced lattice heating and material damage verified despite
the implementation of a chopper under continuous-wave (CW) excitation (as we are going to
show in Chapter 5), we needed to operate with pulsed lasers.
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Consequently, we employed two different kind of pulsed lasers: the first one with 2− ps
pulse duration and 80 MHz repetition rate; the second one with 100− f s pulse duration and
1 kHz repetition rate. The first one was used to investigate both the bare MoSe2 MLs and the
polariton states quasi-resonantly (see Chapter 5), while the second one was used only in the
microcavity configuration (see Chapter 6): its lower repetition rate prevents photoinduced
lattice heating and material damage (at least at low powers) and its broader energy spectrum
(due to shorter pulse duration) allows resonant excitation of the polariton state (for more
details, see Sections 5.3.2 and 5.3.3).
The first laser is a tunable mode-locked titanium:sapphire (Ti:sapphire) laser, produced by
Spectra-Physics and pumped by a green Ar laser. Its emission ranges from ∼ 700 nm to
∼ 1100 nm, but manifests absorption from oxygen and water vapour at ∼ 750 nm, namely
the MoSe2 exciton wavelength. Instead of circulating with a random phase and so hav-
ing a constant output intensity, as happens in CW lasers, here the cavity modes oscillate
with a defined phase, constructively interfering [122]. In order to obtain a single pulse,
an acousto-optic modulator (AOM) is implemented: a standing wave is created inside the
material thanks to a piezoelectric transducer, with a frequency equal to half of the laser
repetition rate ∆ν = c

2L , namely the distance between two consecutive cavity modes (where
L is the cavity length). For fine adjustments of the pulse when the wavelength is changed,
a Gires-Tournois interferometer (GTI) comes into play in order to compensate the pulse
spreading, arising from SPM (described in Section 7.4) and group velocity dispersion (GVD,
see again Section 7.4): different frequencies of the pulse experience a different refractive
index of the gain medium, leading to pulse stretching. The pulse duration is then checked
with an autocorrelator, similar to a Michelson interferometer, where the overlap of the two
beams provides information on the pulse width.
The second laser (depicted in Figure 4.2) is obtained from the frequency-doubled output
of an optical parametric amplifier (Light-Conversion TOPAS), used to acquire wavelength
extension. It is pumped by 800 nm pulses from a Ti:sapphire regenerative amplifier system
(Spectra-Physics Spitfire), which is seeded by Spectra-Physics Mai-Tai Ti:sapphire Oscillator
to provide the original pulses at 800 nm with a repetition rate of 80 MHz and pumped by
Spectra-Physics Empower, a Nd:YLF green laser (527 nm) with a repetition rate of 1 kHz.
The initial pulse generated by the Mai:Tai enters into the Spitfire, which amplifies the short
laser pulse by virtue of the chirped pulse amplification (CPA) technique, developed 35 years
ago [123], whose inventors won the Nobel Prize in 2018. The pulse is spectrally stretched
using a pair of gratings in order to prevent gain medium damaging due to self-focusing, since
the peak intensity is now reduced. In this way, the gain medium (a Ti:sapphire crystal pumped
by Spectra-Physics Empower to get population inversion) can safely amplify the pulse, which
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is then recompressed by another pair of gratings [124]. After exiting the Spitfire, the beam
reaches the TOPAS to be converted into the desired wavelength, varying the phase-matching
conditions.

Fig. 4.2 Schematic of the optical parametric amplifier (TOPAS) pumped by the Spitfire
amplifier system, that works thanks to chirped pulse amplification (CPA), once seeded by
Mai-Tai to provide the original pulse at 800 nm with a repetition rate of 80 MHz and pumped
by Empower, a green laser (527 nm) with a repetition rate of 1 kHz.

4.2.3 Cryostats

As mentioned in Section 4.2.2, the MoSe2 samples were placed inside a cryostat in order to
vary their temperature. All our experiments on TMDCs (on their own or within the open-
access microcavity), were performed at RT or at liquid-He temperature (∼ 4 K). Specifically,
when we analysed the behaviour of bare flakes, we decided to benefit from the ease of use of
the continuous-flow cryostat, while to study TMDC-polaritons in our tunable microcavity, a
bath cryostat was necessary.
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4.2.3.1 Continuous-flow cryostat

This kind of cryostat is connected to a storage dewar that continuously replenishes the
boiled-off liquid-He by means of a vacuum pump. The evaporated helium is then collected
in the recovery line of the building and transferred to a compressor in order to get liquid-He
back. The sample is placed onto a cold finger to reach the desired temperature and, since we
work at ∼ 4 K, another pump is needed to keep a good vacuum level inside the cryostat.

4.2.3.2 Bath cryostat

Unlike the previous cryostat, in this one the boiled-off helium is replenished periodically
(approximately everyday in our custom-built bath cryostat). Since our goal was to resonantly
pump the polariton states, our design allows transmission measurements, so avoiding the
reflection of the resonant laser, which is orders of magnitude stronger than the signal we
wanted to detect (see Figure 4.3).
The main part of the cryostat is the sample chamber, which is in contact with a 10-litres
helium vessel through a copper plate. The three piezo stacks, employed to move the two
lenses and one of the two mirrors forming the microcavity, are placed on another copper
plate and the whole sample chamber is filled with a small amount of He gas utilised as
an exchange gas. The sample room cap is attached to the main body of the cryostat by
an indium seal. It is thermally isolated from the surrounding environment thanks to an
external radiation shield, formed by alternating layers of aluminium foils and a net of a super
insulator material, which is further covered by another shield, where a high vacuum is created.

To move the piezoelectric nanopositioners inside the sample chamber, have a readout of
their position and control the temperature, 50 thin wires connected to external controllers
by a 50 pin SUB-D are implemented. These wires are twisted to avoid cross-talk between
them when a voltage is applied through the controllers. Each of the 11 nanopositioners needs
5 connections, 2 for the control and 3 for the readout, so the feedback of some of them
was disabled. It is possible to check the chamber temperature using the piezos capacitance
(1.3 µF at RT and 0.2 µF at 4 K), but this method is definitely less accurate than using a
proper controller.
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Fig. 4.3 Schematic of the cross-section in the vertical axis of our custom-built helium bath
cryostat for transmission measurements. On top, the 50 pin SUB-D to connect all the
nanopositioners (produced by Attocube) with their controllers, the two valves to create
vacuum in the outer and inner chambers, inputs and outputs for both the 8-litres LN2-vessel
and 10-litres LHe-vessel. At the bottom, the indium sealed sample space filled with exchange
gas inside the high vacuum outer jacket.
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Tunable open-access microcavity setup

The two DBRs forming the microcavity are mounted vertically on individual holders. One
of them is fixed on top of a five Attocube closed-loop nanopositioner stack to control their
relative position (see Figure 4.4). Indicating with z the beam axis, ANPx101 are used for x-
and z-positioning and ANPz101 for y-positioning (with a travel range of 5 mm), while the
angles between the mirrors can be controlled by a goniometer stage (ANGp101, with a travel
range of 5.4◦) as tilt and a rotator stage (ANR101, with a travel range of 360◦), labelled as
P and ROT in Figure 4.4. The two lenses of 7.5 mm focal length are both manoeuvred by
ANPx51 for x- and z-positioning and ANPz51 for y-positioning (with a travel range of 3 mm)
and are located at each side of the cavity for excitation and collection. The fine position
of the piezoelectric nanopositioners can be manipulated applying a DC voltage (0−70 V ),
whose value is known thanks to their resistive readout. They are made from titanium, as well
as the sample holders, to reduce the thermal contraction when the system is cooled down to
very low temperature.

To form the cavity, the concave mirrors are moved close to the flat DBR using the
z-nanopositioner. Shining white light, fringes appear when the mirrors are close enough
because of the angle between them. Looking at these fringes, we are able to adjust and
minimise the relative angle employing the rotation and the tilt stages. After that, the mirrors
can be moved closer in order to observe the cavity modes. This happens when their distance is
smaller than the RoC of the concave mirror (20 µm). Now, the cavity length can be modified
allowing the tunability of the photonic modes through the exciton and trion resonances,
leading to polariton formation.
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Fig. 4.4 Picture of the three Attocube piezoelectric nanopositioner stacks employed in our
TMDC-polariton studies. From left to right: the detection lens (focal length of 7.5 mm) with
ANPx51 for x- and z-positioning and ANPz51 for y-positioning; the central stack to move
the concave mirrors with ANPx101 for x- and z-positioning, ANPz101 for y-positioning,
ANGp101 for tilt angle and ANR101 for rotation angle, labelled as P and ROT ; the fixed
flat DBR with MoSe2 MLs on top; the excitation lens, with the same characteristics of the
detection lens. z refers to the beam axis.
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4.2.4 Detection path

Since the geometry of the concave-planar microcavity setup, we only performed real space
(near-field) imaging measurements. A 700 nm long-pass filter was always implemented in
front of the detector to cut out the He-Ne emission.

Specifically, we employed a 4 cm focal length objective for all the measurements effec-
tuated on bare MLs in the flow cryostat to characterise the active medium. Thanks to the
∼ 7.5 cm diameter of this collection lens, we could work in reflection, exciting the sample
at a big angle and then cutting out the reflected laser, collecting only the PL emission, as
depicted in Figure 4.5 (top panel). To further exclude the reflected laser, we also implemented
a combination of linear polariser and half-waveplate (λ/2) in both excitation and detection
path in order to perform measurements in cross-polarisation configuration. The aforemen-
tioned 7.5 mm focal length lens was utilised for the microcavity measurements inside the
bath cryostat. In the reflection setup we made use of a 100 cm focal length imaging lens to
focus into the spectrometer slit, while in the transmission setup we operated with a 50 cm
focal length imaging lens, obtaining a magnification M =

fimaging
fcollection

= 25 /∼ 67, respectively
(see Figure 4.6).

4.2.4.1 Spectrometer and streak camera

To detect emission from our samples, an Acton SpectraPro SP-2500 spectrometer (pro-
duced by Princeton Instruments), equipped with an interchangeable triple grating turret
(600,1200,1800 grooves/mm), was used. A Pixis:256 CCD (produced by Princeton Instru-
ments), characterised by a 1026×256 pixel array, with 26 µm pixel size, was employed as a
camera.

We also carried out time resolved measurements on polaritons using a streak camera,
produced by Hamamatsu, with a resolution of 2 ps (see Figure 4.7). The light passing
through the side exit slit of the Acton SpectraPro SP-2500 spectrometer is focused on a
photocathode, that converts impinging photons into electrons, whose number is proportional
to the light intensity. They are then accelerated by the accelerating mesh and proceed through
a sweep electrode, whose applied voltage change is triggered by a signal synchronised with
the employed laser. In this way, electrons arriving at different times are deflected at different
angles. After being further multiplicated by a micro-channel plate (MCP), they are converted
back to photons when hitting a phosphor screen and finally detected.
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Fig. 4.5 Top panel: schematic of the reflection setup. Bottom panel: schematic of the
transmission setup. Note the use of gold mirrors, which are characterised by high reflectivity
in the near-IR range. Semi-transparent mirrors are placed onto flip mounts.
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Fig. 4.6 Schematic of the real space (near-field) detection path implemented for TMDC
measurements.

Fig. 4.7 Schematic of the operation principles of the streak camera. Source: Hamamatsu
Guide to Streak Cameras

4.3 GaN experiments

4.3.1 Excitation path

A half-waveplate (λ/2) allows to maximise the laser power passing through the vertically
polarised Glan-Thomson polariser, that couples the light to the grating and the waveguide.
The last mirror before the cryostat was placed onto a translation stage to change the excitation
angle (i.e. polariton wavevector, according to Equation 1.36) when performing power depen-
dences in resonant experiment. Alternatively, by moving into the beam path a 30 cm lens
placed on a flip mount, the translation stage enabled to change the position of the laser spot
on the waveguide. A LMU-20X-UVB (produced by Thorlabs), with 1 cm focal length and
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numerical aperture NA= 0.40, was used as an objective (the setup is illustrated in Figure 4.8).

4.3.1.1 Excitation lasers

As an off-resonant CW excitation, we used a Helium-Cadmium (He-Cd) laser produced
by Kimmon, whose emission is in the UV range (325 nm) and principles of operation are
those illustrated for He-Ne laser (in this case the excited He atoms collide with Cd atoms,
transferring energy to the emitting state).
As a pulsed excitation, we utilised the Spitfire-TOPAS output described in Section 4.2.2.1,
tuned in the UV range.

4.3.1.2 Pulse shaper

To change the pulse width (i.e. duration), we added in the excitation path a pulse shaper,
consisting of two diffraction gratings, two lenses and one spatial filter (represented by a pair
of adjustable slits), as outlined in Figure 4.8. The first grating diffracts the input laser in
different wavelength components depending on the diffraction angle. After being collimated
with the first lens, the diffracted laser is spectrally filtered by passing through mechanical
slits placed on the Fourier plane. The uncut beam is then focused onto the second grating by
the second lens [125]. So, varying the slits size, we were able to get an output pulse different
in both energy width and duration.

4.3.2 Detection path

A dove-prism allows image rotation in order to have the grating edge along the spectrometer
slits and properly measure the spectral broadening, described in Section 7.3.
The light coming out from the sample went through a half-waveplate and a vertically aligned
linear polariser (the reflection efficiency of vertically polarised light is higher than for hori-
zontally polarised light because grooves on the spectrometer diffraction gratings are vertical).
Since in this experiment it is possible to study the propagating polaritons into the waveguide,
we performed both real space (near-field) and momentum space (far-field) imaging measure-
ments.
In the near-field imaging detection, the magnification was M =

fimaging
freal

fFourier
fcollection

= 15 cm
50 cm

30 cm
1 cm =

9. A spatial filter (represented by a pinhole and placed on a flip mount on the real space
plane) allowed the detection of the incoming light from a specific spot of the grating coupler,
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when necessary in resonant measurements (see Figure 4.9).
In the far-field imaging detection, the real space lens is flipped out of the path in order to
focus the Fourier plane of the collection lens onto the spectrometer slit. In this way, rays
emitted from the sample at the same angle represent a single point in the image (see Figure
4.10), permitting angle resolved measurements, where changing the angle is equivalent to
changing the polariton momentum. We then got dispersion curves, representing intensity as
a function of energy and momentum.
We used the same spectrometer described in Section 4.2.4.1, but for GaN experiments we
moved to a Newton 940 CCD - Andor (produced by Oxford Instruments) with 26 µm pixel
size and 1024×255 pixel array.

Fig. 4.8 Schematic of the reflection setup, with the detail of the pulse shaper. Note the use of
silver mirrors, which are characterised by high reflectivity in the UV range. Semi-transparent
mirrors are placed onto flip mounts.
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Fig. 4.9 Schematic of the real space (near-field) detection path.

Fig. 4.10 Schematic of the momentum space (far-field) detection path.



Chapter 5

Characterisation of TMDC-polaritons in
a tunable open-access microcavity

5.1 Introduction

Excitons in bare TMDCs have already shown their interesting nonlinear properties [126],
making these new materials suitable for optoelectronic applications. After being integrated
into a monolithic microcavity and observed in the strong coupling regime [127], great effort
has been put to investigate this regime. Though small nonlinearity of exciton-polaritons
in TMDCs was already discovered [128], they have not been studied in detail. Thanks to
our more versatile experimental setup that allows transmission measurements (i.e. resonant
excitation) and tuning of the light-matter polariton content, we aim to further and fully
examine nonlinearity of TMDC-polaritons, in particular by focusing on the emerging and
unexplored trion-polaritons [129].

In this chapter, we first investigate the nonlinear behaviour of the exciton resonance of a
MoSe2 ML under non-resonant CW and pulsed excitation. We detect a redshift using a CW
laser for increasing pump powers, symptom of sample heating, accompanied by irreversible
degradation after few power cycles. Conversely, a blueshift of the exciton resonance due to
exciton-exciton interaction was noted under pulsed excitation, before permanent deterioration
occurred. The different energy shift arises from the duty cycle guaranteed by the pulsed laser.
Once the bare single layer is optically characterised, we place it in our tunable open-access
microcavity to observe TMDC-polaritons. Thanks to the peculiar large oscillator strength
of exciton complexes in TMDC, we are able to observe trion-polariton resonance, which
manifests stronger nonlinearities than exciton-polaritons at low pump powers. After the qual-
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itative study of the nonlinear behaviour of these two quasi-particles in this chapter, in the next
one we will quantify the interaction strength of both, also extrapolating the corresponding
nonlinear refractive index n2.

First of all, the optical properties of the bare active medium were experimentally studied,
using the experimental setup depicted in the top panel of Figure 4.5. Specifically, we
compared the PL emission of exfoliated and CVD samples of MoSe2 at both RT and ∼ 4 K,
to understand what kind of sample was more suitable to our final purpose, namely studying
TMDC-polariton nonlinearity. The former samples were provided by Dr. A. Catanzaro,
using the technique described in Section 2.2.2.1, while the latter were furnished by Prof. A. I.
Tartakovskii. Moreover, power dependence studies were performed to deepen the nonlinear
behaviour and resistance of TMDC to photoinduced damage. The latter measurements were
carried out on CVD speciments, since this technique guarantees a large-scale coverage of the
substrate with a huge amount of deposited MLs.

Once the naked MoSe2 flakes were characterised, they were put into the cavity setup
illustrated in Figure 4.4 inside the bath cryostat described in Section 4.2.3.2 and examined us-
ing the transmission setup sketched in the bottom panel of Figure 4.5. Various measurements
under different configurations were then performed in order to characterise TMDC-polariton
formation (non-resonant CW excitation) and outline their nonlinear behaviour (quasi-resonant
pulsed excitation), as we are going to gradually specify throughout this chapter.

5.2 Characterisation of bare MoSe2 monolayers

5.2.1 Exfoliated vs CVD sample

As mentioned above, we first deepened the optical quality of the available MoSe2 samples,
as shown in Figure 5.1, employing the setup sketched in the top panel of Figure 4.5.



5.2 Characterisation of bare MoSe2 monolayers 65

Fig. 5.1 Left column: PL image and spectra of an exfoliated flake. Right column: PL image
and spectra of a CVD flake. Top row: PL images acquired with the optical microscope
described in Section 4.2.1 for both samples. Middle row: PL emission spectrum at room
temperature (RT) from both samples, excited with He-Ne laser. Bottom row: PL emission
spectrum at 4 K (liquid-He temperature) from both samples, excited with He-Ne laser. In dark
and light blue the peak position and the full width at half maximum (FWHM) of excitons,
respectively. In dark and light red the peak position and the FWHM of trions, respectively.
These values are obtained through Gaussian fitting, since the inhomogeneous broadening of
the two resonances in both samples. Inset of top-right panel: low magnification PL image
to show the homogeneous coverage of CVD MLs on the DBR surface.

The PL images obtained with the LV150N Nikon microscope (schematic in Figure 4.1)
show the irregular shape of exfoliated samples, while the CVD ones appear to be triangular
with different sizes. This peculiar shape depends on thermodynamic and unit cell symmetry
reasons [130].
Referring to the PL spectra of Figure 5.1, the variation in the peak position of excitonic reso-
nances in different MLs and within the same flake arises from thermodynamically inevitable
point defects and distinct strain conditions during the growth process [131], which strongly
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affect the TMDC band structure [132, 133].
Looking at RT spectra, the exciton resonance linewidth is quite broad mainly due to in-
teraction with phonons [134], preventing observation of strong coupling regime at high
temperature. As suggested in [135], in order to overcome this limitation, stacks of multiple
MLs separated by hBN layers could be implemented, since the coupling strength g0 is given
by Equation 1.10.
Reducing the temperature down to ∼ 4 K, we observe a blueshift of the exciton peak as
predicted by the Varshni’s law (Equation 2.4) and the appearance of a second peak at higher
wavelengths due to trion emission. As emerges from temperature-dependence studies in [81],
the charged exciton feature actually emerges at ∼ 150 K. The long tail at higher wavelength
characterising the trion arises from electron recoil effect [136]. The reduction of the exciton
linewidth due to the freezing of the phonon bath favours the formation of polariton states.
In this perspective, exfoliated MLs are still superior in quality than CVD flakes despite the
effort of recent years to improve the fabrication technique. Their smaller exciton linewidth
(2 meV in [137]) and their higher intensity guarantee a larger Rabi splitting, since the higher
the number of available bright excitons the higher the collective oscillator strength (see Equa-
tion 1.14), leading to stronger nonlinear effects (see Equation 1.23). It is also interesting to
note that the trion peak is two to four times higher than the exciton peak, indicating that both
samples were already slightly doped, as we are going to investigate further in the next section.

5.2.2 Power dependence studies

Once the best type of sample was identified, keeping in mind the ultimate purpose of studying
the nonlinear behaviour of exciton resonances at different excitation density, we performed
power dependence studies. Doing that, we were also able to estimate the damage threshold
under CW and pulsed excitation.

5.2.2.1 CW laser

First of all, we studied exciton PL emission under off-resonant CW excitation. We carried
out these experiments employing the He-Ne laser mentioned above, whose emission is at
∼ 635 nm, well above the MoSe2 exciton resonance.
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Fig. 5.2 PL spectra at 4 K obtained through multiple power scans under off-resonant CW
excitation (for brevity, only the 1st and the 10th are shown). The bottom curve of the
waterfall represents the lowest pump power P = 0.83 mW , that corresponds to a photon flux
n = 1.85×1020 cm−2 s−1. The top curve of the waterfall represents the highest pump power
P = 416 mW , that corresponds to a photon flux n = 9.27×1022 cm−2 s−1. The 1st scan is
blue, while the 10th scan is green, referring to Figure 5.3. X and T indicate exciton and trion
peak, respectively.

As shown in Figure 5.2, this set of measurements consisted of many consecutive power
scans, each of them lasting around three minutes. The bottom curve of the waterfall repre-
sents the lowest pump power (P = 0.83 mW ), while the top one represents the highest pump
power (P = 416 mW ). According to our calibration, which takes into account the actual
power at the region of interest (detected with the spectrometer grating at ’0-order mode’) and
∼ 90 % of cryostat window transmission, we get that 1 mW of nominal power corresponds
to a power density of ∼ 70 W · cm−2. Considering that the energy of the impinging photon is
1.953 eV , we finally obtain a photon flux of 2.23×1020 cm−2 · s−1. The peak intensity, peak
position and linewidth for both exciton and trion resonance are then plotted as a function of
the photon flux in Figure 5.3, where blue illustrates the first scan, while green illustrates the
last scan.

As it is demonstrated in Figures 5.2 and 5.3, the CW excitation degrades the ML optical
properties, even though we already implemented a chopper in the reflection setup (see Figure
4.5, top panel) to prevent photoinduced substrate heating. This heating effect can be noted
in the redshift of both exciton and trion peak position. This irreversible deterioration under
high-power excitation, as revealed by the subsequent scans, appeared at a critical photon flux
of ∼ 3×1022 cm−2 · s−1, or equivalently at a power density of ∼ 10 kW ·cm−2. This deterio-
ration affects the trion to a lesser extent, as shown by the same behaviour of all the scans.
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The massive oscillations in the peak position and linewidth for the last scans (especially at
low pump powers) related to excitons is a clear manifestation of this degradation to a greater
extent. Finally, we can attribute the linewidth broadening mechanism to the lattice heating,
for increasing pump powers [126].

Fig. 5.3 Same set of measurements shown in Figure 5.2. Left column: data corresponding to
the exciton resonance. Right column: data corresponding to the trion resonance. Top row:
peak intensity for increasing photon flux, i.e. pump power. Middle row: peak position for
increasing photon flux. Bottom row: linewidth for increasing photon flux. The blue curve
always illustrates the first scan, while the green curve always illustrates the last scan.

5.2.2.2 Pulsed laser

We then moved to the Ti:sapphire pulsed laser with a repetition rate of 80 MHz described
in Section 4.2.2.1, with a pulse duration of ∼ 1.7 ps detected by the autocorrelator. Since
the quasi-resonant excitation at 713.5 nm, for this specific measurement we implemented
polarisers and half-waveplates in the excitation and detection path in order to measure in the
cross-polarised configuration to cut out the scattered light of the excitation laser. With the
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same procedure explained in Section 5.2.2.1, we get that 1 mW average power corresponded
to ∼ 22.5 kW · cm−2 average power density. Dividing this value by the repetition rate, we
obtain a fluence of 280 µJ · cm−2 per pulse, and further dividing by the photon energy, we
derive a photon density of ∼ 1015 cm−2 per pulse. This power scan is displayed in Figure
5.4.

Fig. 5.4 Power scan under pulsed laser (713.5 nm excitation and 80 MHz repetition rate). On
the y-axis the average power measured before the cryostat window, where 1 mW corresponds
to 280 µJ · cm−2 fluence and ∼ 1015 cm−2 photon density, per pulse. Exciton X emission
disappears at around 6 mW , the maximum power before irreversible damage. Inset: peaks
positions for the lowest pump powers (from 1 mW to 6 mW ), showing the blueshift of the
exciton resonance.

Excitons (X) blueshift by ∼ 2 nm at low powers until they disappear around 6 mW , corre-
sponding to ∼ 1.7 mJ · cm−2. At higher pump powers, the flake experience an irreversible
photoinduced damage, manifested not only by the above mentioned bleaching of the excitonic
resonance, but also by photoinduced doping [138] and consequent appearance of emission
from localised defect states [139] above the trions (T ). This means that nonlinear effects are
expected at lower powers (∼ 10−100 µJ · cm−2), as reported in [140, 141]. In the case of
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pulsed excitation, the nonlinear blueshift can be attributed to exciton-exciton interaction, as
opposed to the redshift observed under CW excitation arising from lattice heating [126].

We then concluded that low pulsed excitation is needed to avoid irreversible sample
damage during our exploration of nonlinear physics in TMDC-polariton systems under
resonant excitation. However, low CW off-resonant excitation is still valid in performing
very basic polariton states characterisation, namely their formation.

5.3 MoSe2 monolayers in a hemispherical open cavity

5.3.1 Characterisation of polariton states formation

Once the optical quality and the damage threshold of the bare MoSe2 MLs had been char-
acterised, we started our studies on TMDC-polaritons. We then moved to the transmission
setup (illustrated in Figure 4.5, bottom panel), employing the bath cryostat and the tunable
open-access microcavity, both described in Section 4.2.3.2.

The top mirror consisting of a 13-pair DBR deposited on a hemispherical surface (see
Section 3.2.2) was moved onto the planar DBR. The two mirrors were then aligned and
brought into a close proximity to each other (the distance between the mirrors was set to
1 µm) using the piezo nanopositioners described in Section 4.2.3.2, forming the open-cavity
system with the resulting formation of discrete microcavity Laguerre-Gaussian (LGmn) pho-
tonic modes, evoked in Section 3.2.1. The excitation beam was focused into the spot size of
about 5−10 µm on the flat mirror, so that only a fraction of the incident photons couples to
the highly confined LG00 cavity mode.
To characterise the polaritons, the open-access microcavity was excited with the He-Ne laser
at 1.95 eV and polariton emission was recorded as a function of the detuning between the
excitons and photonic mode LG00 mode.



5.3 MoSe2 monolayers in a hemispherical open cavity 71

Fig. 5.5 Top panel: PL emission as function of piezo voltage (i.e. cavity length and so
photon-exciton detuning) under off-resonant excitation shows anticrossing of the different
cavity modes LGl,p with both excitons X and trions T , leading to formation of upper, middle
and lower polariton branches (UPB, MPB and LPB, respectively). Biexcitons XX and
charged biexcitons XT are also indicated, whose values are taken from [80]. Bottom panels:
photonic |C|2, excitonic |X |2 and trionic |T |2 fraction of upper, middle and lower polariton
branches (from top to bottom).
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To describe the polariton system where the photonic mode is strongly coupled to both
excitons and trions we employ a model of three-coupled oscillators, which can be described
in a compact way by the matrix equationEC(L) 1

2 h̄ΩX
1
2 h̄ΩT

1
2 h̄ΩX EX 0
1
2 h̄ΩT 0 ET

ψ = Eψ, (5.1)

where EC(L), EX, ET are the cavity photon, exciton, and trion energies; h̄ΩX and h̄ΩT are the
cavity mode-exciton and the cavity mode-trion coupling strength. ψ is a three-component
basis vector. Eigenvalues of the matrix in the left-hand side of Equation (5.1) give the
polariton mode resonances of the upper, middle, and lower polariton branches (UPB, MPB,
and LPB, respectively). Their eigenvectors provide the Hopfield coefficients.

It is interesting to note the different energy values for both exciton and trion resonances
when measured first on bare flake and then inside the cavity, as summarised in Table 5.1.

Table 5.1 Exciton and trion resonances outside and inside the cavity.

X (meV ) T (meV )

Bare flake 1659 1627
Inside cavity 1662 1630

This difference in the energy values is called Stokes shift and manifests itself as an offset
between absorption (inside cavity) and emission (bare flake) spectra. It originates from the
opposite nature of the two processes (excitons creation and recombination, respectively),
where the luminescence peak is at lower energy because of the excitons interaction with other
particles before their decay [142]. Specifically in TMDCs, this phenomenon was attributed
to MLs doping [79], further confirmation of the photoinduced charge transfer into MoSe2

flake. Its small value (∼ 3 meV ) indicates a low doping level [143] and consequently the
high quality of the exfoliated sample under investigation [144].

It is also worth to mention at this stage one of the biggest issues found in the open-cavity
geometry: mechanical vibrations. As shown in Figure 5.6, we observe a periodic oscillation
(every ∼ 30 minutes) of the cavity length, due to light contact between the two DBRs, indi-
cating the poor mechanical stability of the system. This periodicity of the relative tremor of
the two halves of the open cavity is due to the connection of the bath cryostat to the recovery
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line and then to the He compressor, as mentioned in Section 4.2.3.1. In order to overcome
this problem, we have been obliged to put the two DBRs in contact. In this way, we have
dramatically reduced the vibrations, which cause broadening (i.e. decreasing in Q-factor) and
energy shift of the cavity mode, having a detrimental effect especially in long exposure time
experiments. As a drawback, the relative angle between the two halves of the open cavity
implies a reduction of the coupling efficiency of the excitation laser to the cavity mode.

Fig. 5.6 Three examples of polariton mode oscillations due to poor mechanical stability of
the open-cavity system, causing relative vibration of the two halves.

5.3.2 Pumping LG01 and detecting LG00

We then performed another kind of experiment, where we pumped the first-excited polariton
state with the 2− ps pulsed resonant laser at different detunings and detected the population
of the ground polariton mode, as we previously did in [145]. In that case, the active medium
was a GaAs QW, excited with a CW laser, not employed in this experiment since the lattice
heating noticed in TMDCs (see Section 5.2.2.1). Since the 2− ps pump laser is narrower
(FWHM ∼ 1 meV ) than the polariton resonance itself (FWHM ∼ 4 meV ), in resonant
transmission we do not detect the mode but the envelope function of the mode with the
pump laser, so any effect of broadening or energy shift is concealed and reduced in detection.
Pumping LG01 and detecting LG00 as a "probe" implies that the energy shift and the linewidth
changes are then real. Given the above mentioned limitation of the laser wavelength tuning
(see Section 4.2.2.1), we explored two different configurations:

• LG01 and LG00 both in the MPB (see Figure 5.7, top panel);
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• LG01 in the MPB while LG00 in the LPB (see Figure 5.7, bottom panel).

Fig. 5.7 Top panel: on the LHS, schematic of the energy level configuration, where the
pumped mode LG01 and the detected mode LG00 are both in the MPB. On the RHS, power
dependent spectra of the ground mode. Bottom panel: on the LHS, schematic of the energy
level configuration, where the pumped mode LG01 is in the MPB and the detected mode
LG00 is in the LPB. On the RHS, power dependent spectra of the ground mode. All the
excitonic-like resonances values in the LHS are taken from [80].

For the two different configurations, both measured on the very same point of the flake,
we detect a blueshift of ∼ 0.1 nm and ∼ 0.4 nm, respectively. This behaviour implies the
importance of the trion component in the polariton interactions, as further confirmed by the
subsequent measurements at two different points of the same ML (see Figure 5.8). These
measurements were performed in the same energy level configuration that showed the biggest
blueshift, where the pumped mode LG01 is in the MPB and the detected mode LG00 is in the
LPB (see Figure 5.7, bottom panel).
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Fig. 5.8 Top row: PL emissions of the bare flake at two different points of the same ML.
Bottom row: power dependent spectra of the ground mode in the same two different points
of the same ML. Left column: PL emission of the bare flake and power dependent spectra
of the ground state in the first point. Right column: PL emission of the bare flake and power
dependent spectra of the ground state in the second point.

The top row of Figure 5.8 shows that the optical properties vary along the same ML,
i.e. depend on the specific point of the flake under investigation. The trion peak is at
∼ 761.8 nm and ∼ 763 nm for position 1 and 2, with a linewidth of ∼ 3.6 nm and ∼ 4 nm,
respectively. Looking at the LG00, nominally fixed at ∼ 763.5 nm as detected under off-
resonant excitation, we observe a blueshift of ∼ 0 nm and ∼ 0.2 nm for position 1 and 2,
with a linewidth of ∼ 0.3 nm and ∼ 0.6 nm, respectively. That means that polariton interac-
tion increases when the ground mode is closer to the trion resonance, as happens in position 2.

5.3.3 Resonantly pumping LG00 at different detunings

Given the interesting role of trions just detected, we decided to further investigate these
trion-polaritons. Because of the difficulty in quantifying the actual polariton number in the
quasi-resonant configuration adopted so far, this time we employed the 100− f s pulsed laser
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described in Section 4.2.2. Thanks to its spectrum being much broader (FWHM ∼ 15 meV )
than the polariton resonance (FWHM ∼ 4 meV ), we could resonantly excite the ground mode,
contrary to what we previously did (see Section 5.3.2) with the narrower 2− ps laser (FWHM
∼ 1 meV ). Table 5.2 shows the energy shift of the resonantly pumped LG00 for different
detunings, varying the excitation power over two orders of magnitude (from 0.04 µW to
4 µW ) and back, to verify that the process is reversible. Blueshift is observed for the more
excitonic-like mode (exciton energy EX ∼ 1658 meV ), while a redshift is interesting detected
for the more trionic-like mode in the MPB (trion energy ET ∼ 1632 meV ). Looking at the
LPB, the more trionic-like detuning shows again a strong blueshift, that reduces moving to
more photonic-like detunings, until it disappears because of the lack of polariton interactions.

Table 5.2 Resonantly pumped LG00 at different detunings.

Polariton branch LG00 energy (meV ) Energy shift (meV )

1649 0.64 ± 0.05
MPB 1642 0.13 ± 0.12

1636 -0.59 ± 0.17

1627 1.12 ± 0.12
LPB 1621 0.39 ± 0.08

1610 0.03 ± 0.06

This last preliminary qualitative study, performed on simple exfoliated ML, paves the
way to a quantitative investigation of this redshift-blueshift behaviour of the polariton mode
in MPB and LPB, respectively, that foreshadows the quenching of the trion-photon strong
coupling. As we are going to study in greater detail in the next chapter, using a higher quality
sample encapsulated in hBN to improve the exciton complexes linewidths, the trion-polariton
nonlinearity here prefigured is ∼ 100 higher than that of exciton-polaritons, leading to a
nonlinear refractive index n2 three to five orders of magnitude greater than that measured in
the weak coupling regime.

The last measurement before moving to the more detailed quantitative analysis, reported
in next chapter, we executed a sanity check to quickly evaluate whether our claims and
results are really related to trion- and exciton-polariton nonlinearities. We performed a power
dependence (in the same range of Figure 6.10) without the active medium, i.e. for the bare
cavity mode. LG00 was tuned at ∼ 1636 meV , energy belonging to the MPB, if we were in
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the strong coupling regime. As shown in Figure 5.9, no energy shift is observed, confirming
that the nonlinear behaviour we previously measured was due to polariton interactions.

Fig. 5.9 Spectra of the bare cavity LG00 mode (in grey) for the pump powers from 1 to
10 µW (power increases from bottom to top) and respective Gaussian fit (in blue).

5.4 Summary

To sum up, in this chapter we first characterised bare MoSe2 monolayers, performing power
dependence studies under both CW and pulsed excitation (see Section 5.2.2). We observed
redshift of the excitonic resonances in the first case, arising from sample heating and lead-
ing to irreversible degradation of the sample under investigation. In contrast, we detected
blueshift for increasing pump powers under ps-pulsed excitation, signature of exciton-exciton
interaction.
After these preliminary investigations of the naked optically active medium, we moved the
sample into the open-cavity setup, where we investigated TMDC-polariton nonlinearities
under pulsed laser in different configurations, varying pump scheme, exciton-photon detuning
of the polariton resonance and pulsed laser. Overall, we recognised the relevant role played
by charged excitons in polariton nonlinear behaviour compared to that of neutral excitons,
which will be further deepened in the next chapter.





Chapter 6

Nonlinear exciton- and trion-polaritons
in TMDCs under resonant pulsed
excitation

6.1 Introduction

In light of what we observed about trion-polaritons in the previous chapter, we further
explored the physics behind these interesting quasi-particles.

In this chapter, the main result we report is a very large Kerr-like nonlinearity by em-
ploying the strong optical transition of these charged excitons observed in semiconducting
TMDCs. The large oscillator strength of trions enables formation of well-resolved trion-
polariton resonances at relatively small electron density, which, as we show here, leads to a
pronounced phase-space filling effect enabling nonlinearity of one to two orders of magnitude
bigger (depending on exciton-photon detuning) than that of neutral exciton-polaritons in
TMDC platforms.

By hybridising trions (in a brand new MoSe2 ML fabricated by Dr. F. Whithers) at low
electron densities with the ground open-access microcavity mode, trion-polaritons exhibit
significant energy shifts at very small photon fluxes due to phase-space filling. We found that
the ratio of trion- to neutral exciton-polariton interaction strength is in the range from 10 to
100 in TMDC materials and that the trion-polariton nonlinearity at least is comparable to
that in other polariton systems (see Section 6.4).

Furthermore, the nonlinear refractive index (n2) per single TMDC ML due to trion-
polaritons is estimated to exceed by 3 to 5 orders of magnitude the Kerr-nonlinearity in bare
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TMDCs, graphene and other widely used optical materials (e.g. Si, AlGaAs etc.) in weak
light-matter coupling regimes (see Section 6.4.1).

We probe nonlinearities due to neutral exciton-polaritons, which are observed to decrease
by more than an order of magnitude with power. Such a result is explained by three-exciton
and possibly trion-mediated exciton-exciton scattering processes (see Section 6.5).

The results are in good agreement with a theory provided by Dr. O. Kyriienko, Dr. V.
Shahnazaryan and Prof. I. A. Shelykh, which accounts for the composite nature of excitons
and trions and deviation of their statistics from that of ideal bosons and fermions (see Ap-
pendix A).

The results shown in this chapter and in the respective Appendix A are published in
Reference [146].

6.2 Sample characterisation

Fig. 6.1 Left panel: bright field image of the MoSe2 flake, highlighted with a red border,
encapsulated in hBN and clamped with two golden contacts on top of the planar mirror, using
the green filter provided within the optical microscope shown in Figure 4.1. Right panel:
PL emission of the flake under off-resonant He-Ne excitation with exciton (X) and trion
(T) peaks highlighted, in the half-cavity configuration (no concave mirrors on top of the flat
DBR). The observed order of magnitude difference for the intensity of the PL of the trion
relative to the exciton arises from fast neutral exciton to trion states relaxation processes due
to scattering with phonons and electrons.
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In this experiment, as mentioned in Section 6.1, we employed a brand new ML of MoSe2

covered with a single layer of hBN, to protect it from contamination (see Figure 6.1, left
panel). The heterostructure of hBN/MoSe2 was fabricated using the standard mechanical
exfoliation technique described in Section 2.2.2.1 and dry transfer methods. To subsequently
form the microcavity, the hBN/MoSe2 structure was positioned on top of a planar DBR
consisting of 13 pairs SiO2/Ta2O5 quarter-wave layers. Figure 6.1 (right panel) shows the
spectrum of PL emission from the ML. The strong peak at lower energy ∼ 1.62 eV arises
from the trion (T) emission due to the natural doping in the sample, while the weaker peak at
∼ 1.65 eV corresponds to neutral (X) excitons.

Once the bare MoSe2 ML was optically characterised, a cavity scan was performed in
order to observe coupling of cavity photons with excitonic resonances under off-resonant
excitation, specifically using the He-Ne laser, as already fully described in Section 5.3.1.

In Figure 6.2 (left panel), the lower, middle and upper polariton branches (labelled as
LPB, MPB and UPB, respectively) are observed due to the strong coupling of the photon
mode with T and X, respectively. The peak polariton positions (red dots in Figure 6.2, right
panel) were fitted using the model of three-coupled oscillators described in Section 5.3.1. We
started by fitting this model to the experimental data shown in Figure 6.2, and obtained the fol-
lowing values for the ground LG00 mode: EX = 1646.0±0.5 meV , ET = 1621.2±0.5 meV ,
h̄ΩX = 17.2± 0.5 meV , and h̄ΩT = 5.8± 0.5 meV . Using these parameters, we can plot
polariton resonances and Hopfield coefficients for the different values of cavity resonance
energies EC expressed as a cavity-exciton detuning (δC−X in Figure 6.2). Note that this
three-oscillator model is valid for the low-density case. In the high-density regime, as we
are going to discuss in Section 6.5, the nonlinearity quenches photon-trion coupling, and the
polariton system can be described by the two-oscillator model outlined in Section 1.2.2.
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Fig. 6.2 Left panel: PL emission as a function of the detuning between the bare cavity
LG00 mode (C) and exciton (X) plotted on a logarithmic colour scale; black points (dots)
are experimental peak positions of the polariton resonances extracted from the fitting of
experimental spectra at each detuning with a Gaussian; solid lines are theoretical polariton
branches. Higher order transverse LGmn modes are also observed on the left and right-hand
side of the LG00 polariton states. Right panel: normalised PL spectra around trion resonance,
showing anticrossing behaviour.

6.3 Polariton nonlinearity

In order to probe the polariton nonlinearity, the polaritons were excited resonantly using the
laser with 100− f s pulse duration described in Section 4.2.2. The excited polaritons then
decay via photon emission through the DBRs with a rate γC · |C|2 given by the cavity mode
linewidth γC ∼ 0.4 meV (|C|2 is the photonic fraction) or are absorbed in the 2D material
with a rate given by the polariton linewidth γpol (γpol ∼ 3− 5 meV >> γC · |C|2) due to
scattering with exciton disorder, resulting in creation of an exciton-trion reservoir (see Figure
6.3). Measurements of the intensity of transmitted light enable us to estimate the polariton
density excited inside the microcavity and the density of the reservoir. Monitoring the energy
shift of the polariton resonance with increasing pump power, we observe the influence of
interaction between polaritons and the exciton-trion reservoir (see Figure 6.3), and can extract
the strength of exciton- and trion-based nonlinearity.
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The scattering of polaritons by the excitonic disorder potential (which we estimate in the order
of 10−15 meV from the inhomogeneous linewidths of exciton/trion emission) effectively
populates the reservoir states [147, 148, 149, 150] with a scattering rate of the order of
the polariton linewidth γpol . The polariton nonlinearity is driven by the total density of
excitons and trions ntot excited in the system with a single pulse, i.e excitons and trions due
to polariton density and due to the reservoir. By measuring the total number of photons
transmitted through the microcavity in a single pulse nphot , we can deduce this density as

ntot = nphot ·
(
|X |2 + |T |2 +

γpol

γC · |C|2

)
(6.1)

Here |X |2, |T |2, |C|2 are exciton, trion and photon fractions of polaritons. The bare cavity
mode linewidth γC ∼ 0.4 meV corresponds to the photon lifetime of τC ∼ 3 ps. The third
term in Equation 6.1 is dominant. It describes the ratio of absorbed to radiatively escaped
polaritons as follows from a simple rate equation model, assuming that the lifetime of the
reservoir is much longer than the cavity photon lifetime and that there is no backscattering
from the reservoir to polariton states. Indeed, suppose the density of polaritons excited with
a short 100− f s pulse in the cavity is equal to N. This density may decay in the system
by absorption due to scattering into the reservoir or by escape through the Bragg mirrors.
The absorption rate into the reservoir is given by dnR/dt = N/τR , where the scattering rate
1/τR = γpol/h, since γpol >> γC and nR is the density of polaritons absorbed into the reservoir.
The escape rate into free space through the Bragg mirrors is given by dnphot/dt = N/τC,
where 1/τC = |C|2 · γC/h, and nphot is the detected number of photons normalised to the
cavity mode area A. Dividing the two equations above, we obtain dnR/dnphot = τC/τR =

γpol/(|C|2 · γC) or dnR = γpol/(γC · |C|2) dnphot . Integrating this equation over the duration
of a single pulse, we obtain the population of the reservoir with respect to the total number
of the emitted photons within a single pulse nR = γpol/(γC · |C|2) nphot , which corresponds to
the third term in Equation 6.1.

There is a possibility that we may slightly overestimate the total excited exciton/trion
density and hence underestimate polariton nonlinearity if there are backscattering processes
from the reservoir to polariton mode. On the other hand, since the absorption rate of the
resonantly excited polaritons cannot occur at a rate larger than that given by the measured
polariton linewidth γpol , we exclude an experimental underestimation of ntot and hence
overestimation of polariton nonlinearity.

Finally, we note some uncertainty of ∼ 20% in the deduction of the the total excited
exciton/trion density may arise from the deduction of polariton linewidths of the transmission
spectra. While the trion-polariton spectra in Figure 6.6 can be well fitted with a Gaussian
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profile, the fitting of the neutral exciton-polariton spectra in Figure 6.10 (panels a and b)
is not perfect, where the tails of the polariton spectra cannot be accounted for by a simple
Gaussian form. This uncertainty in γpol could lead to the ∼ 20% uncertainty of the absolute
values of the polariton nonlinear coefficients.

Fig. 6.3 Schematic showing emission and absorption of driven polariton resonance and
interactions with the reservoir of trions and excitons.

To deduce ntot , one has to measure the number of photons nphot emitted by the cavity in a
single pulse after the resonant excitation with the 100− f s pulsed laser. To do that, we shifted
the position of the photon mode to the very negative detuning about 10 nm below the trion
level and ramped up the power of the laser, so that the power of the light transmitted through
the microcavity is about 50 nW . The corresponding photon counts of the transmitted light
on the CCD were measured as a reference value. By relating the measured photon counts
of light emitted by polariton microcavity to this reference value, it is possible to deduce
the average power of the polariton emission in W , Ipol . The density of photons emitted by
microcavity in a single pulse is then calculated as

nphot =
Ipol

f · h̄ω ·A
(6.2)

where h̄ω is the polariton energy, f = 103 Hz is the repetition rate of our pulsed laser and
A ≈ 3 µm2 is the mode area. Importantly, the very low repetition rate of our laser prevents
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the effect of dark exciton/trion reservoir excited in previous pulses.

The bare cavity mode decay rate (γC) was deduced from the temporal decay of the emis-
sion intensity of the bare LG00 mode (without the flake in the cavity) excited resonantly with
100− f s pulse. The measurements were performed using the streak-camera described in
Section 4.2.4, with the resolution time of 2 ps (see Figure 6.4). We obtained the experimental
cavity lifetime of approximately 3 ps, which corresponds to the FWHM of the bare cavity
mode ∼ 400 µeV , the value we measured on the spectrometer.

Fig. 6.4 Microcavity lifetime measured using the streak camera described in Section 4.2.4.
Blue response measured with resonant transmission of a 100− f s pump pulse, when the
cavity was on the flake. Orange curve corresponds to the bare cavity, off the flake, with no
active region. Note that the detected signal profile is limited by the streak camera resolution
of 1−2 ps and possible laser pulse jitter.

6.4 Trion-polariton nonlinearity

We first present the results for interacting trion-polaritons. In this experiment, the laser energy
was fixed at approximately the trion level, Ep = 1.62 eV and the transmission spectrum was
recorded as the energy of the photon LG00 mode is scanned through the trion resonance.
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Since the linewidth of the pulsed laser (∼ 15 meV ) is significantly larger than the observed
photon-trion Rabi splitting of h̄ΩT ∼ 5.8 meV , it was possible to inject a similar number of
polaritons in the vicinity of the trion resonance for each cavity mode position. Excitation
of the UPB is negligible, since it is located at energies more than ∼ 30 meV above the
trion-polariton states.

Fig. 6.5 Cavity scan of the LG00 mode across the trion resonance for different pump powers:
(a) 10, (b) 20, and (c) 70 nW, respectively. The peak energy of the pump laser is fixed at
∼ 1.62 eV . Pseudo-colour scale is logarithmic. Estimates for the trion Rabi splittings are
obtained by fitting extracted peak positions for each piezo step with a coupled oscillator
model. Inset: schematic diagram showing how the energies MPB and LPB renormalise in
the case of phase-space filling effect, leading to reduction of the Rabi splitting between the
trion level and the bare photon mode.

Figure 6.5 shows the results of three cavity scans performed for different pump powers.
At the lowest pulse power, 10 nW (Figure 6.5, panel a), an anticrossing between the cavity
mode and the trion level is clearly observed, as in the case under the non-resonant excitation.
With an increase of the pump power, the photon-trion Rabi splitting is reduced (Figure 6.5,
panel b), leading to the the blueshift and redshift of the LPB and MPB states in the vicinity of
the trion resonance (Figure 6.5, inset in panel a), respectively. At P = 70 nW , no anticrossing
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is observed (Figure 6.5, panel c), with the MPB and the LPB merging together and forming a
single polariton branch.

Fig. 6.6 Spectra of the MPB and LPB for the excitation power from 5 to 50 nW (power
increases from bottom to top) for detuning δC−X = −15.4 meV (left panel) and δC−X =
−21.6 meV (right panel). The MPB and LPB peaks are fitted with Gaussians. The fitting
of the exciton-like LPB peak (lower energy peak) is performed for the first 4 and 5 powers
respectively, since it becomes broad and weak at higher densities and the fitting procedure is
not reliable.

To quantify the strength of the nonlinearity, we recorded the spectra of the transmitted
light as a function of pump power at a fixed photon mode energy near the trion resonance (Fig-
ure 6.6), at a fixed photon-exciton detuning, δC−X =−15,4 meV and δC−X =−21.6 meV ,
for left and right panel of Figure 6.6, respectively. Specifically, in the left panel of Figure 6.6,
two peaks are observed at low power of 5 nW ; the MPB peak has a higher intensity due to
the higher photonic fraction. With increase of the pulse power, the MPB peak exhibits a fast
redshift. The intensity of the trion-like LPB quickly reduces down to zero with power, due to
reduction of its photon fraction as the strong trion-photon coupling collapses. Conversely, in
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the right panel of Figure 6.6, for more negative detuning, we can clearly see the blueshift of
the LPB for increasing pump powers.

The collapse of the strong coupling is driven by the population of both polaritons inside
the cavity and reservoir, determining the total density of excited excitons and trions ntot

(see Equation 6.1). The reservoir may consist of localised or dark exciton/trion states as
well as high-momenta trions degenerate with trion-polariton resonances [120, 145]. For the
case of resonantly driven trion-polaritons, ntot is dominated mostly by the trion density nT

(ntot ≈ nT ), since the peak of the exciton density of states is blue-detuned by ∼ 30 meV from
the trion.

The Hopfield coefficients used in Equation 6.1 for the total reservoir density also have
to be determined for each pump power, since the change of cavity-trion (or cavity-exciton,
in Section 6.5) Rabi splitting would change these values. To illustrate this, we fix the
cavity-exciton Rabi splitting and plot theoretical peak positions of LPB and MPB modes as
a function of cavity-trion Rabi splitting, which is shown in Figure 6.7 (top panel) for the
cavity mode-exciton detuning used in Figure 6.6 (left panel). The theoretical dependence of
the photonic fraction of the polariton branches on the cavity-trion Rabi splitting is shown
in Figure 6.7 (middle panel). Combining these two sets of data, one can produce the "cal-
ibration" dependencies of the Hopfield coefficients. The photonic fractions |C|2 vs MPB
and LPB energies are shown in Figure 6.7 (bottom panel). This can be used to infer the
values of the actual Hopfield coefficients of the MPB in Figure 6.8 for each pump power.
This method is valid since in the experiment the cavity-trion Rabi splitting is completely
quenched before any effect is seen on the cavity-exciton Rabi splitting. Thus, to deduce the
total reservoir density, we first determined the peak position of the MPB mode by fitting
each measured spectra, and then, using this value, we determined effective photon, exciton,
and trion fractions of the MPB mode from the calibration curves. Finally, the total reservoir
density for each pump power was calculated using Equation 6.1.
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Fig. 6.7 Top panel: LG00 peak positions as function of h̄ΩC/T at a fixed cavity detuning,
δC−X =−15.4 meV . Middle panel: photonic fraction, |C|2, of the MPB and LPB as function
of h̄ΩC/T at a fixed cavity detuning, δC−X =−15.4 meV . Bottom panel: Combined ELG00

vs |C|2 calibration curves for MPB and LPB for a fixed cavity detuning, δC−X =−15.4 meV .
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Fig. 6.8 Left panel: extracted peak positions of the MPB mode vs estimated total exciton-
trion density, for δC−X =−15.4 meV . Right panel: trion-polariton Rabi splitting vs exciton-
trion density (range highlighted by green box in left panel). Red solid curves in both panels
correspond to the theoretical modelling results. The error bars (95% CI) are estimated taking
into account the random error in determination of the peak positions in Figure 6.6 (left panel)
as well as possible systematic error (∆ΩT = 0.5 meV ) due to the uncertainty of the fitting
parameters in the coupled oscillators model.

Figure 6.8 (left panel) shows that the MPB energy shifts rapidly to the red wavelengths
with ntot at densities ntot < 2 · 102 µm−2 and then exhibits a plateau corresponding to the
quenching of the trion-photon coupling, followed by a gradual increase. From the redshift of
the MPB branch in Figure 6.8 (left panel, green box), we plot the value of the Rabi splitting
h̄ΩT vs ntot in Figure 6.8 (right panel). The collapse of trion-photon coupling occurs at a
small density of ntot ∼ 2 ·102 µm−2 very close to half the estimated density of free electrons
ne/2 ≈ 2 · 102 µm−2 (see Section A.3.2). Remembering that the effective strength of the
trion-polariton nonlinearity β

e f f
T responsible for the quenching of strong coupling (and large

energy shifts) is defined by Equation 1.23 [28], in the first order approximation β
e f f
T can

alternatively be related directly to the redshift of the MPB branch in Figure 6.8 (left panel) as
follows

β
e f f
T =−ηT

δEMPB

δntot
(6.3)

where ηT =
√

δ 2
P−T +(h̄ΩT )2/(h̄ΩT/2) and δP−T =+5.3 meV is the energy detuning be-

tween the trion energy level and the LPB arising from coupling between the photon and
the neutral exciton only for ntot < 2 ·102 µm−2. In Equation 6.3, the minus sign explicitly
accounts that Rabi frequency is decreasing function of density. From Figure 6.8, we deduce
an average value of β

e f f
T ≃ 37±3 µeV ·µm2 (further details from Figure 6.9). Note that the

3 µeV ·µm2 error above is a random error arising from the uncertainty in h̄ΩT in Figure 6.8
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(right panel) and does not include possible systematic error, as discussed in Section 6.3.

To explain the observed result, we account for phase-space filling effects, which become
important at increasing excited trion density (see Section A.3). This leads to the quenching of
the collective trion oscillator strength: as more and more trions are excited in the system, the
extra injected photons have less electrons and trions to couple to and to form trion-polaritons.
As a result the collapse of strong photon-trion coupling occurs at the density of excited trions
equal to half the density of available free electrons, nT ≈ ne/2. The results of the theoretical
modelling (see Appendix A) are shown by the red solid curves in Figure 6.8, reproducing the
experimental redshift of EMPB and the corresponding reduction of h̄ΩT . Overall, the trion
Rabi splitting can be approximated as

ΩT (nT ) = ΩT (0)
(

1− nT

ne/2

)
(6.4)

and the value of theoretical nonlinearity is then given by

β
e f f
T =

h̄ΩT (0)
ne/2

≈ 30 µeV ·µm2 (6.5)

for ne ≈ 400 µm−2 and h̄ΩT (0)≈ 5.8 meV (see Section A.3.5), in agreement with the exper-
imental value of 37±3 µeV ·µm2. It is the low electron density and high oscillator strength
per single trion (large h̄ΩT (0)), that lead to the high value of trion-polariton nonlinearity.

In the first order approximation, our theory predicts a constant value of β
e f f
T with density,

or, in other words, a linear reduction of the trion-polariton Rabi-splitting with density (see
Section A.3). As it is seen in Figure 6.8 (right panel), there is a good qualitative agreement
between the dependence of the trion Rabi splitting and the theoretical prediction as a function
of trion density: the experimental average value of β

e f f
T = 37±3 µeV ·µm2 is in quantitative

agreement with the theoretical estimate of 30 µeV · µm2. Nevertheless, it is seen that the
experimental points in Figure 6.8 (right panel) are not precisely positioned on the straight
theoretical line. This is reflected by the fact that the experimental values of β

e f f
T (deduced

from the experimental data in Figure 6.8, right panel) vary from 120 to 20 µeV ·µm2 over
the density range ntot from 0 to 200 µm2, which is shown in Figure 6.9. We believe that this
variation of β

e f f
T with ntot observed in the experiment may arise from the higher order effects

due to composite nature of trions, not included in the theoretical treatment (see Section A.3).
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Fig. 6.9 β
e f f
T as a function of ntot . The error bars are 95% CI deduced taking into account

the random error in the determination of the trion-polariton peak position at each power from
the fitting procedure.

6.4.1 Nonlinear refractive index n2 due to trion-polaritons

6.4.1.1 Nonlinear refractive index n2 of hybrid microcavity-MoSe2 polariton system

We note that applications of 2D materials imply that they would be integrated into photonic
structures made of bulk semiconductors/dielectrics. Therefore, when characterising nonlinear
optical properties of 2D materials, it is useful to consider the nonlinearity of the whole hybrid
2D materials-semiconductor/dielectric photonic system and compare it with that of bulk
photonic materials.

In order to compare trion-polariton nonlinearity with Kerr-like optical nonlinearity ob-
served in bulk materials, we can treat our open-access microcavity (MC) system with
embedded MoSe2 as a microcavity filled with a bulk of some nonlinear optical material, char-
acterised by the effective nonlinear refractive coefficient n2(MC). The n2(MC) coefficient
due to trion-polariton nonlinearity can be estimated taking into account the effective optical
path covered by a photon during the round trip between the two mirrors of the microcavity,
which must be equal to an integer number of polariton wavelengths

2
(

ne f f +n2(MC)
Npol h c2

Lcav λ

)
Lcav = m(λ +δλ ) (6.6)

Here ne f f is the effective refractive index of the microcavity, Npol is the total number of
polaritons excited inside the MC with a single pulse, Lcav is the effective cavity length, λ

is the wavelength of the trion-polariton emission in free space, δλ is the nonlinear shift of
trion-polariton resonance, m is the order of the longitudinal cavity mode coupled with the
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trion. 2 n2(MC) (Npol h c2)/(Lcav λ ) Lcav is the nonlinear optical path acquired by photon
during the round trip between the two mirrors. Given absorption is the dominant process in
our system, Npol ≈ ntot . Using Equations 6.3 and 6.6, we get the following expression

n2(MC) =
ne f f Lcav β

e f f
T λ 2

h2 c3 ηT
(6.7)

Taking into account the effective cavity refractive index ne f f ≈ 1 (since most of the cavity elec-
tromagnetic field is confined in the gap between the two mirrors), the wavelength of the trion-
polariton resonance λ ≈ 760 nm, the effective cavity size Lcav ≈ 1 µm, β

e f f
T = 37 µeV ·µm2

and ηT = 2 (δP−T = 0), we estimate n2(MC) ∼ 1.4 · 10−13 m2/W . This n2(MC) is about
four to five orders of magnitude larger than 1.82 ·10−17 m2/W in planar AlGaAs-waveguides
in the weak coupling regime [31] and 6 ·10−18 m2/W in silicon [32] and InGaP [33], which
have been used in a suspended membrane photonic crystal geometry. Kerr nonlinear effects
(optical bistability) have been investigated in slab photonic crystal Si microcavities with
an embedded graphene layer [151]. The effective n2 of a hybrid graphene-Si microcavity
system has been derived to be of the order n2 ≃ 7.7 ·10−17 m2/W , which is ∼ 3−4 orders
of magnitude less than n2(MC) due to trion-polariton nonlinearity. Finally, we note that the
value n2(MC)∼ 1.4 ·10−13 m2/W due to trion-polariton nonlinearity is an order of magni-
tude higher than n2 ∼ 1 ·10−14 m2/W reported in a neutral exciton-polariton GaAs-based
system [10].

6.4.1.2 Effective nonlinear refractive index n2(MoSe2) per single TMDC monolayer
arising from trion-polariton nonlinearity

To the best of our knowledge, no Kerr-like nonlinear optical effects were studied in microcav-
ities with embedded TMDC materials in the weak light-matter coupling regime. However,
there were several studies of the effects associated with Kerr-like optical nonlinearity of bare
layers of TMDCs and graphene in the weak light-matter coupling regime on a picosecond
timescale [152]. The values of n2 coefficients for TMDCs layers were measured in the range
10−16 − 10−17m2/W depending on the excitation energy (above or below bandgap). The
reference [153] reports the n2 coefficient for WS2 monolayer to be about 1.1 ·10−15 m2/W
The value of the n2 coefficient for pure graphene flakes was measured about 2 ·10−15 m2/W
[152]. The reference [151], which studied a nonlinear hybrid Si-graphene microcavity,
deduced an n2 coefficient for a single graphene layer to be of the order 10−13m2/W .

In our trion-polariton microcavity system, we can derive the effective nonlinear refrac-
tive index n2(MoSe2) per single TMDC monolayer taking into account that in reality the
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nonlinear optical phase is acquired by light only on the passage of the monolayer during
the round trip between the mirrors. Therefore, n2(MoSe2) can be simply obtained by nor-
malising n2(MC) to dMoSe2/Lcav, where dMoSe2 ∼ 1 nm is the MoSe2 thickness, yielding
n2(MoSe2)∼ 1.4 ·10−10 m2/W . This value is at least five (three) orders of magnitude larger
than in TMDC 2D materials (graphene) studied in the weak light-matter coupling regime
without formation of polaritons.

6.5 Exciton-polariton nonlinearity

Next, we studied the neutral exciton-polariton nonlinearity, which may arise from (see
Section 1.2.3):

1. the reduction of exciton-photon Rabi splitting h̄ΩX , and/or

2. the blueshift of the neutral exciton level EX .

Mechanism (1) is characterized by the rate of reduction of the Rabi splitting h̄ΩX with
exciton density, as already shown by Equations 1.23 and 6.3. Mechanism (2) is characterised
by the rate of the blueshift of the exciton level with exciton density, as already shown by
Equation 1.22. Similarly to what was done in Section 6.4, assuming that only mechanism (2)
contributes to polariton blueshift, ge f f

X can be related to the polariton energy shift [28]:

ge f f
X = ξX

δEMPB

δntot
(6.8)

where ξX = [1/2+δC−X/(2
√

δ 2
C−X +(h̄ΩX)2)]−1 is the inverse of the excitonic fraction.

Both mechanisms should lead to blueshift of the MPB. The blueshift of the MPB peak
associated with the neutral exciton-polariton nonlinearity is observed in Figure 6.8 (left panel)
for δC−X = −15.4 meV at ntot > 5 · 102 µm2, above the threshold of strong trion-photon
coupling collapse. We further studied neutral exciton-polariton nonlinearity for several
photon-exciton detunings in the range from +8.8 meV to −2.4 meV , where the trion fraction
is negligible (∼ 3% or less). The central laser frequency was shifted to be in resonance with
the MPB in each case. Substantial blueshifts of the MPB mode of the order of 2 meV are
observed at much higher excitation power in the range from 1 to 9 µW (see Figure 6.10,
panels a and c). The MPB energy depends sublinearly on the total exciton/trion density
ntot , as shown in Figure 6.10 (panels b and d). In this power range, the density of excited
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neutral excitons nX is much higher than that of trions and ntot is dominated mostly by neutral
excitons (ntot >> ne, ntot ≃ nX ).

Fig. 6.10 a, b: δC−X =+2.0 meV . a: spectra of the MPB LG00 mode for the pump powers
from 1 to 9 µW (power increases from bottom to top). b: extracted peak positions of the
mode vs exciton density. c, d: δC−X = −2.4 meV . c: spectra of the MPB LG00 mode for
the pump powers from 1 to 9 µW (power increases from bottom to top). d: extracted peak
positions of the mode vs estimated exciton density. The error bars (95% CI) in b-d are
deduced from the fitting procedure in a-c. Red solid curves correspond to the theoretical
modelling results. Inset: schematic diagrams showing how the MPB and UPB shift in the
case of phase-space filling [mechanism (1)], leading to reduction of Rabi splitting between the
neutral exciton level and the bare photon mode, and the neutral exciton blueshift [mechanism
(2)].
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As mentioned above, since the neutral exciton-polariton nonlinearities are weak in com-
parison to trion-polaritons, they are studied at high pump (in the range from 1 to 9 µW ),
when the strong coupling between photons and trions is quenched. In this case, the polariton
system can now be described by the simpler two-oscillator model presented in Section 1.2.2,
which results in two polariton branches UPB and LPB. Separate MPB and LPB do not longer
exist, since they recombine into a single MPB. This model is applicable for all polariton
densities > 200 µm2, which is the case for all data shown in Figure 6.10 and portion (above
200 µm2) in Figure 6.8 (left panel). Using the same approach as discussed in Section 6.4, one
can obtain the calibration curves (EMPB vs |C|2) for different cavity mode-exciton detunings
by using this two-oscillator model and varying cavity-exciton Rabi splitting. The data for the
detunings used in the experiment are summarised in Figure 6.11. Finally, the total exciton
density for each exciton-photon detuning is deduced using Equation 6.1 (there, we assume
that the trion fraction T = 0, since at high excitation density the trion-photon strong coupling
is quenched).

Fig. 6.11 Calibration curves ELG00 vs |C|2 for the MPB with a two-coupled oscillator model,
obtained by varying the cavity-exciton Rabi splitting from 0 to 19 meV for the four ex-
perimental cavity-exciton detunings. Bold solid sections of the curves correspond to the
experimentally observed ranges of MPB peak positions for the corresponding detunings.
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In the experiment, we can measure only the nonlinear behaviour (blueshift) of the MPB.
The UPB cannot be measured due to tunability of our laser. Therefore, experimentally
we cannot separate the contributions to the neutral exciton-polariton optical nonlinearity
from mechanisms (1) and (2). However, assuming that either only mechanism (1) or (2) is
responsible for the blueshift of MPB, we can deduce the dependencies of the upper limits of
β

e f f
X =−d(h̄ΩX)/dntot and ge f f

X = dEX/dntot factors on exciton density [28], respectively.
In Figure 6.12 (top panel), we show that the theoretical gth

X parameter is in semi-quantitative
agreement with the experimental values of the upper limit of ge f f

X in the range of exciton
densities 3 ·103 < ntot < 3 ·104 µm−2. So, at intermediate densities, the optical nonlinearity
arises mainly from the exciton blueshift (Mechanism 2) [28], which is characterised by the
parameter ge f f

X = dEX/dntot . The ge f f
X is expected to be constant in a system where only pair

exciton-exciton interactions are important [28]. By contrast, Figure 6.12 (top panel) shows
that the experimental ge f f

X decreases with ntot from ≃ 2−5 µeV ·µm2 at ntot ∼ 103 µm−2

to ≃ 0.01 µeV · µm2 at ntot ∼ 105 µm−2, which suggests the importance of higher-order
exciton-exciton interactions. Overall, in TMDC, the neutral exciton-polariton nonlinearity
is one to three orders of magnitude lower than that of trion-polaritons. The lower values
≃ 0.05 µeV · µm2 are similar to the values reported in WS2-waveguide structures, where
only very high excitation powers were used [128].

To describe the observed neutral-exciton nonlinearity, we developed a model taking
into account the two- and three-exciton exchange processes [29, 154] (see Section A.2).
At 3 ·103 < ntot < 3 ·104 µm−2, within an experimental error, there is agreement between
theory and experiment (Figure 6.12, top panel). The values of ge f f

X in exciton density are
also in agreement with the values of the exciton-exciton interaction parameter in monolayer
WSe2 characterising excitation induced exciton broadening in the same density range [134].
The theory also qualitatively reproduces the sublinear shifts in Figure 6.10 (panels b and
d). At ntot > 3 ·104 µm−2, our theory is not applicable anymore, since in this case higher-
order nonlinearities should be taken into account. By contrast, at ntot < 3 ·103 µm−2, the
model accounting only for exciton-exciton interactions results in the very weak theoretical
blueshift of EMPB, much smaller than that observed in the experiment in Figure 6.8 (left
panel). This is also reflected in Figure 6.12 (top panel), where at ntot < 3 · 103 µm−2 the
theoretical gth

X ∼ 0.3 µeV · µm2 is observed to be below the corresponding experimental
values ge f f

X ∼ 0.5−3 µeV ·µm2. Such a discrepancy indicates that at these exciton densities
the trion-mediated exciton-exciton interactions, which are characterised by increased scat-
tering cross-section and number of exchange processes, might play an important role in the
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observed large polariton blueshift (see Appendix A).

Fig. 6.12 The experimental effective interaction constants ge f f
X (top panel) and β

e f f
X (bottom

panel) as a function of the estimated exciton density, ntot . The data correspond to four
different cavity-exciton detunings (δ ): +8.8 meV (olive), +2.0 meV (purple), −2.4 meV
(orange), and −15.4 meV (blue). The error bars (95% CI) are deduced taking into account
errors in determining the MPB peak positions at each pump power (exciton density). The red
solid curve corresponds to the theoretical values.

Now, let us assume instead that the Mechanism (1) is the only dominant mechanism over
the whole density range. In this case, we can observe that the theoretical β th

X -factor is well
below the experimental values of the upper limit of β

e f f
X at ntot < 104 µm−2 as shown in
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Figure 6.12 (bottom panel). β th
X approaches the experimental values only at higher densities

ntot > 3 ·104 µm−2. Such a discrepancy between the experiment and theory indicates that
our assumption is incorrect: phase-space filling for neutral exciton-polaritons [Mechanism
(1)] becomes important only at very high exciton densities ntot > 3 · 104 µm−2, when the
average distance between excited excitons is less than 5−6 nm and becomes comparable to
the exciton Bohr radius aB ∼ 1 nm. By contrast, Mechanism (2) is the dominant mechanism
at intermediate exciton densities ntot < 3 ·104 µm−2.

6.6 Summary

In summary, the main result shown in this chapter consists in the experimentally measured
significant energy shift of trion-polaritons at low photon fluxes under on-resonant 100fs-
pulsed excitation. It arises from the phase-space filling effect at the low electron density in
our hBN-encapsulated MoSe2 sample due to natural doping, leading to the quenching of the
strong coupling. The value of the trion-polariton nonlinearity (β e f f

T ≈ 37 µeV ·µm2) is 2 to
3 orders of magnitude higher than that related to exciton-polaritons, with the latter that is
overall dominated by the exciton resonance blueshift (ge f f

X ).
From that, it was possible to extrapolate the nonlinear refractive index n2 per single flake in
the strong coupling regime. Its value of ∼ 10−10 m2/W is 103 −105 times bigger than that
previously measured in systems weakly coupled to light [152].





Chapter 7

Nonlinear UV pulse propagation in a
GaN-waveguide up to room temperature

7.1 Introduction

As stated in Section 1.1, the small Kerr-like nonlinearity in systems weakly coupled to
light is a strong limitation for practical devices, since they should preferably work at low
power. GaAs-waveguides in the strong coupling regime have already solved this problem
[10], but they still need cryogenic cooling, not ideal for technological applications. Emerging
GaN-waveguides [101] are promising to overcome this limitation, thanks to the high binding
energy of its excitons. Furthermore, this material operates in the UV spectral range, where
currently there is no on-chip platform. Therefore, we aim to study nonlinear properties of
exciton-polaritons in GaN-based waveguides.

In this chapter, we present the first experimental measurements of nonlinear UV pulse
propagation in a AlInGaN-based device. Our GaN/AlGaN QW polariton waveguide structure
allows us to observe strong light-matter coupling and nonlinearity up to room temperature.
From the spectral broadening arising from SPM, we deduce an effective nonlinear refractive
index three orders of magnitude larger than those measured in other materials commonly used
for ultrafast nonlinear optics in the UV [155] which are in the weak light-matter coupling
regime. This enables nonlinear effects with three orders of magnitude lower power pulses.
Our nonlinearity arises from excitonic interactions with strength comparable to those in
polariton devices in other material systems such as GaAs which, however, do not operate in
the UV up to room temperature.



102 Nonlinear UV pulse propagation in a GaN-waveguide up to room temperature

First of all, we characterised the polariton resonance under off-resonant excitation through
k-space measurements in the GaN-waveguides designed and grown by Dr. J.-F. Carlin and
Dr. J. Ciers at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. We then
injected optical pulses into the waveguide through the grating couplers fabricated by Dr. Z.
Zaidi, where they evolve over a length of 100 µm and become strongly modulated, leading
to spectral widths at the output up to 80 meV . This spectral broadening, which cannot occur
in the linear regime, is the essential signature of pulse temporal envelope modulation [156].
We find that the spectral broadening depends strongly on the detuning of the pulses from
the temperature dependent exciton frequency, as expected for an interaction based on strong
photon-exciton coupling.

Picosecond nonlinear dynamics are evidenced by the complex broadband spatio-temporal
envelopes of the generated light, which are consistent with numerical modelling of the cou-
pled photon-exciton field equations, performed by Dr. A. V. Yulin and reported in Appendix
B, as well as FDTD simulation to quantify the coupling efficiency of our system, executed
by Dr. P. M. Walker.

The results shown in this chapter and in the respective Appendix B are published in
Reference [117].

7.2 Dispersion measurement and fitting

We first confirmed the presence of the strong light-matter coupling regime by studying the
waveguide dispersion relation using non-resonant excitation and measuring angle-resolved
PL.

For the measurements of dispersion curves the sample was excited at various points
between two grating couplers set 200 µm apart (see Figure 7.1, left panel), using a CW
He-Cd laser emitting at λ0 = 325 nm, i.e. well above the bandgap. So, all polariton states
are populated by hot carrier relaxation (see Section 1.2.3.1). Polaritons then propagate
to the grating couplers and are scattered out at angles near normal to the sample surface
(0◦ in Figure 7.1, middle and right panel). The incident laser spot for these non-resonant
measurements had FWHM 12.5 µm.

We measured the polariton waveguide frequency (wavelength) vs. wavenumber (angle)
dispersion relation along the propagation direction x. Considering that the spectrometer
resolution depends on the width of its input slit, for these measurements the spectrometer
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resolution was 6.7 meV due to the 200 µm entrance slit size used to collect more light from
the sample and obtain a good signal to noise ratio, owing to the low PL intensity. Projecting
the Fourier plane of the emission onto an entrance slit of this size corresponds in our case
to averaging over a transverse angular range (angle in the y direction, orthogonal to the
propagation direction x, as shown in Figure 3.5) of θT ∼±0.4◦ inside the waveguide. This
is equivalent to a frequency change ω sin2

θT of only 0.2 meV and so the averaging over
transverse angles has a negligible effect on resolution.

The relation between CCD pixel number and emission angle was carefully calibrated by
placing a commercial 300 lines/mm UV diffraction grating in the position of the sample and
recording the diffraction pattern.

To make the polariton modes more visible, spectra were resolved in polarisation using a
broadband UV half-waveplate and a linear polariser, presented in Section 4.3. The spectra
cross-polarised with the TE-polarised polariton mode were subtracted from the co-polarised
spectra to remove the exciton luminescence while retaining the polariton mode emission.

The luminescence spectra are shown for temperatures T = 4 K and 300 K in Figure
7.1 (middle and right panels, respectively). We were able to extract the wavelength of the
emission peak for each angle with low uncertainty (the exact value of uncertainty depends
on the emission strength at the angle in question but is typically less than ± 0.5 meV ),
much lower than the spectrometer resolution, by fitting the peaks with Gaussian functions.
The lower polariton branch modes (LPB1,2) are symmetric about zero angle, which is due
to polaritons propagating in the forward and backward directions in the waveguide. Both
dispersion relations show a clear anticrossing and are well fit by a coupled oscillator model
(solid white lines) with Rabi splitting 91 ± 4 and 70 ± 20 meV at 4 K and 300 K respectively,
demonstrating that the system is strongly coupled up to room temperature. The white dashed
curves give the exciton wavelength (X) and the uncoupled waveguide photon dispersion (Γ)
calculated from a transfer matrix model of the planar waveguide structure.

The fitting parameters of the coupled oscillator model were: the exciton frequency EX ,
the Rabi splitting Ω (which gives the photon-exciton coupling rate), and a rigid frequency
offset EΓ of the uncoupled photon mode Γ compared to the raw uncoupled photon mode
dispersion obtained from the transfer matrix code. The last parameter accounts for the fact
that there are inevitably small differences between the nominal and actual layer thicknesses
and/or temperature dependent refractive indexes. Including all three was essential to obtain
a good quality fit, as can be seen from the good agreement between the model and the
luminescence spectra in Figure 7.1. We note that including EΓ as a fitting parameter was
vital to minimise the square error of the fit r2. Without it, we obtained smaller values for the



104 Nonlinear UV pulse propagation in a GaN-waveguide up to room temperature

Rabi splitting but much worse fits, e.g. 3.5 times the r2 error when fitting with 2 parameters
rather than 3. The additional uncertainty in Rabi splitting Ω and the exciton frequency EX

due to including EΓ as a fitting parameter is included in the quoted values. The values of
EΓ obtained from the fit are less than 15 meV or 0.5% of the photon frequency, consistent
with small errors in the material parameters entering into the transfer matrix model. For this
reason, we believe that our Rabi splitting values ∼ 90 meV are reliable, even though they are
larger than those found in [101], which were effectively fit using the raw photonic modes
from FDTD simulations.

The slight blueshift of LPB2 compared to the model in Figure 7.1 (middle panel) is due
to the repulsive polariton interactions directly under the excitation laser spot. Going into
detail, for these data the laser excitation spot overlapped the edge of one of the gratings.
LPB1 corresponds to the polariton mode that propagates away from the excitation onto the
main body of the grating and couples out. By contrast, the emission from LPB2 can only
come from the section of grating directly under the excitation spot, since the spot is on the
edge of the grating and polaritons propagating away in the LPB2 direction simply enter the
un-grated region and are never detected. LPB2 thus presents a nonlinear frequency blueshift
of up to ∼ 0.7 nm compared to LPB1 and to the modelled LPB dispersion, which arises from
the relatively high exciton and polariton density generated directly under the spot. We noted
that we measured the dispersion for a number of spot positions relative to the gratings and
confirmed that the spectra are symmetrical when the excitation spot is not very close to one
of the gratings.

Fig. 7.1 Left panel: scanning electron microscope (SEM) image of the sample showing the
100 µm×100 µm gratings and the 50 µm, 100 µm and 200 µm waveguides, with x and y
axes as reference. Angle-resolved luminescence spectra at T = 4 K (middle panel) and T =
300 K (right panel). Solid white curves denote the best fit lower polariton branch (LPB),
dashed curves give the uncoupled photon (Γ) and exciton (X). The exciton emission has been
subtracted to highlight the polariton modes.
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7.3 Resonant excitation and detection of propagating po-
lariton pulses

In order to study the pulse propagation through the waveguide, we excited our structure with
laser pulses of the same frequency and incidence angle as the polariton mode. Contrary to the
dispersion curve measurements, in this case we directly inject particles into the polaritonic
guided mode and there is no need for carrier relaxation. We inject pulses with a range of
central frequencies (and corresponding angles) through an input grating coupler and detect
the output from a second grating placed at a distance L = 100 µm. The incident laser spot
size on the input grating was 6.5 µm.

As described in Chapter 4, the UV laser pulses were obtained from the system depicted
in Figure 4.2. To match the bandwidth of the sample grating couplers, the initially ∼ 100 f s
pulses were spectrally filtered using a diffractive 4f pulse shaper. The beam polarisation
was controlled using a Glan polariser and half-wave plate. The angle of the incident light
was controlled to match the guided mode on the grating coupler by translating the incident
beam through the Fourier plane of the objective. The incident laser angle, polarisation,
and position relative to the input coupler edge were optimised by maximising the observed
transmitted intensity at the output coupler for low incident powers. The light coming out of
the waveguide was collected by the same microscope objective used for excitation and sent
to the detection apparatus by means of a non-polarising beamsplitter cube. The light was
imaged onto the entrance slit of an imaging spectrometer using a pair of relay lenses and
recorded on a thermo-electrically cooled CCD camera (for further details, see Figure 4.8).

The laser powers used for the experiments were obtained by measurement using a com-
mercial laser power meter. For low laser powers at the sample surface, below the sensitivity
limit of the power meter, the power was measured at a position in the beam path before
the laser beam was attenuated using commercial pre-calibrated UV-fused-silica reflective
metallic neutral density (ND) filters (FRQ series from Newport/MKS) so as not to saturate the
CCD. We confirmed that the attenuation factor of the ND filters was equal to that specified
in the calibration data provided by the manufacturer. Thus we could measure the beam
power at a position where it was well above the sensitivity limit of the power meter while
having highly accurate knowledge of the much lower power at the sample surface. For these
measurements, the slit was set to 50 µm width and the resolution was 1.7 meV , well below
the initial pulse spectral FWHM of 4.2 meV .
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The color maps in Figure 7.2 show the spectrum of the pulses at the output for T = 10 K
and 200 K (left and right panel, respectively), for increasing pulse energy coupled into the
waveguide. The intensity is plotted vs. wavelength λ and the spatial position y transverse to
the propagation direction x. At the lowest pulse energy the unmodulated transmitted spectrum
can be seen in the ∼±3 µm region near y = 0 (red), surrounded by a background of a few
percent of the peak (green) extending out to large y. This background comes from scatter of
the incoming UV laser beam from the optics and is not related to the light transmitted through
the waveguide. As the energy of the injected laser pulses increases, the spectra broaden both
in wavelength λ and along y, resulting in spectra with a complex inter-dependence of y vs.
λ at the highest powers. We note that the spectral shape of the background scatter remains
constant. As we confirm by comparison with simulations (see Section B.3), the broadening of
the waveguided light arises due to simultaneous nonlinear modulation of the pulse temporal
and spatial (y) envelope [156]. The large spectral width and non-trivial y(λ ) dependence
imply an optical field with features that vary rapidly, on a timescale equal to the inverse of
the spectral width, which can only be produced by sub-picosecond nonlinear dynamics.

Fig. 7.2 Spectra after nonlinear pulse propagation. Colour maps of the output intensity vs.
wavelength, λ , and position y transverse to the propagation direction for increasing pulse
energy coupled into the waveguide and at temperatures T = 10 K (left panel) and at T = 200
K (right panel). The injected pulses had central wavelength λ = 355 nm and the propagation
distance L = 100 µm.

We now explore the overall broadening in λ for a range of parameters.
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Figure 7.3 show the y-integrated spectra for a wide range of temperatures T = 8 - 300
K and for a constant detuning ∆ ∼−90 meV of the laser pulses from the exciton frequency.
With increasing pulse energy we observe spectral broadening over the whole temperature
range with spectral widths at the highest measured powers of 58 meV for T = 8 K, 45 meV for
T = 250 K, and 29 meV for T = 300 K (Figure 7.3, left, middle and right panels, respectively).
These compare to initial pulse widths of less than 16 meV .

Fig. 7.3 Spectra integrated along y for a range of temperatures, T = 8 K (left panel), 250 K
(middle panel), and 300 K (right panel) all at pulse-exciton detuning ∆ ∼−90 meV .

In Figure 7.4 we show the integrated spectra at T = 200 K for three different detunings
∆. For the smallest detuning of −60 meV (Figure 7.4, left panel), the spectra are broadened
asymmetrically with stronger broadening on the long λ side of the pulse peak. We attribute
this asymmetry to the strong absorption of wavelengths on the short λ side which are very
close to the exciton. When the detuning is increased to ∆ =−80 meV (Figure 7.4, middle
panel) the spectra broaden on both sides of the peak with a slight asymmetry in the height
of the spectral side-lobes on either side. Finally, at ∆ =−100 meV (Figure 7.4, right panel),
the broadening is strong on the short wavelength side but weak for long wavelengths. This
kind of asymmetry is known to arise from a frequency dependent nonlinearity due to the
excitonic component of the polaritons [157]. Our observations show that the nonlinearity
varies strongly on the scale of a few tens of meV, comparable to the Rabi splitting, which is ex-
pected for a nonlinearity arising from the strong photon-exciton coupling [119, 156]. Overall,
we manage to achieve spectral broadening above 50 meV for different detunings at T = 200 K.

We were also able to obtain a spectral broadening of up to 80 meV at T = 8 K and of up
to 66 meV at T = 100 K (see Figure 7.5).
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Fig. 7.4 Spectra integrated along the y-direction for a range of detunings ∆ ∼−60 meV (left
panel), −80 meV (middle panel), and −100 meV (right panel), all at T = 200 K.

Fig. 7.5 Spectra after nonlinear pulse propagation. Top row: colour maps of the output
intensity vs. wavelength, λ , and position y transverse to the propagation direction for
increasing pulse energy coupled into the waveguide and at temperatures T = 8 K (left panel)
and T = 100 K (right panel). The injected pulses had central wavelength λ = 355 nm and
the propagation distance L = 100 µm. Bottom row: spectra integrated along y for T = 8 K
(left panel) and 100 K (right panel), both at pulse-exciton detuning ∆ ∼−80 meV .
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7.4 Self-phase modulation

Before going into detail on the analysis of the experimental results just shown, it is necessary
to fully introduce the nonlinear phenomenon that characterises pulse propagation within a
waveguide, called self-phase modulation (SPM), already discussed in Section 1.2.3.
Once the propagation constant

β =
ω

c
ne f f (7.1)

has been defined in Section 3.3, as well as the nonlinear refractive index n2 arising from the
optical Kerr effect

n = n0 +n2 I (7.2)

in Section 1.2.3, it is possible to show that the phase shift characterising SPM is given by
[34]

δφ =
2π

λpeak
δne f f Le f f (7.3)

where λpeak is the excitation wavelength, and

δne f f = n2 Ie f f (t) = n2
Ppeak

Ae f f
= n2

1
Ae f f

Epeak

τpulse
(7.4)

is the correction to the effective index arising from the Kerr nonlinearity, with Ae f f the mode
area, Ppeak the laser pulse peak power, Epeak the laser pulse peak energy and τpulse the laser
pulse duration, while

Le f f = Lloss

(
1− e−

L
Lloss

)
(7.5)

is the effective length including the decay length Lloss. Considering a phase change with
time, we get a change in frequency

∆ω =− ∂

∂ t
δφ(t) =− 2π

λpeak
n2 Le f f

∂

∂ t
Ie f f (t) (7.6)

Then, using a Gaussian temporal intensity distribution [124]

Ie f f (t) = Iine
− t2

τ2
pulse (7.7)

we finally obtain
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∆ω =+
2π

λpeak
n2 Le f f

2t
τ2

pulse
Iine

− t2

τ2
pulse =

2π

λpeak
n2 Le f f

2t
τ2

pulse

Ppeak

Ae f f
(7.8)

This equation implies that the guiding tail (for t < 0) of the pulse manifests a decreased
frequency, while the trailing tail (for t > 0) of the pulse manifests an increased frequency,
leading to the spectral broadening mentioned in Section 1.2.3 caused by the nonlinear Kerr
effect. So, a light pulse travelling through a nonlinear medium accumulates a nonlinear phase
which leads to a characteristic broadened spectrum.

In order to evaluate the role of the SPM on the spectral broadening and then obtain the
values of the nonlinear refractive index n2, it is necessary to determine the coupling efficiency
and propagation losses, as clearly arises from the discussion above. To do that, we use a
combination of measurements and electromagnetic modelling (finite-difference time-domain
method, FDTD), performed using Luminal 3D FDTD solver, whose details are given in the
Section B.2.

We deduce the strength of the nonlinearity by comparing the lowest pulse energy experi-
mental spectra to a SPM model [158].
The time-varying phase then corresponds to new spectral components. Combining Equations
7.3 and 7.4, the accumulated nonlinear phase at the peak of the pulse can be written as

δφ =
2π

λpeak
n2

Ppeak

Ae f f
Le f f (7.9)

where λpeak = 353.4 nm is the wavelength at the centre of the pulse spectrum, Ae f f = 1 µm2

is the waveguide effective nonlinear cross-sectional area, obtained from Ae f f ≈ ∆z ∆y π

2 ln(2)
[158] and Le f f is the effective distance over which the nonlinearity acts accounting for loss
(see Equation 7.5). The device length is L = 100 µm and Lloss is the characteristic decay
length due to loss. In calculating Ae f f , we have used the 79 nm FWHM waveguide mode
profile obtained from Lumerical FDTD simulations (see Section B.2) for the intensity profile
in the growth direction and the 6.5 µm FWHM gaussian spot at the input as the transverse
intensity profile, noting that the spot did not diffract significantly over the 100 µm device
length at the low powers where we perform this fitting.

Before describing the fitting, we briefly comment on the validity of the model. But
first, we need to introduce another fundamental concept related to waveguides. Because of
the dependence of the refractive index n(ω) on the optical frequency ω , different spectral
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components of a propagating short pulse travel at different phase velocities v = c/n(ω),
leading to dispersion-induced pulse broadening. Calculating the Taylor series expansion
about the central frequency ω0 of the propagation constant β (ω) = n(ω) ω/c, it is possible
to show that the second derivative is β2 = 1/c (2 dn/dω +ω d2n/dω2) and it is called
group-velocity dispersion (GVD) parameter, causing pulse broadening. When β2 < 0, the
system is said to have anomalous dispersion and the high-frequency components travel faster
than the low-frequency components (i.e. dn/dω < 0).
From the measured polariton dispersion relation (see Section 7.2), we obtain the second order
dispersion coefficient |β2|< 250 ps2 m−1. Combined with the spectral FWHM h̄∆ω < 5 meV ,
the characteristic dispersion length [158] LD = 4log(2)/(β2 ∆ω2)> 200 µm is much larger
than the loss length and the device length, so the dispersion can be neglected. For low powers,
where the pulses accumulate small nonlinear phase, only the third order term in the system
nonlinear response is significant so that the waveguide can be described as an effective
Kerr-like waveguide with nonlinear refractive index n2. We remember that in the polariton
system both the exciton blueshift and oscillator strength saturation effects are third order
nonlinear processes (see Section 1.2.3). In this regime of low power and negligible dispersion,
the model of SPM may be applied and used to find n2. We note that at the higher pulse
energies shown in Figure 7.6, the experimental spectra become slightly asymmetric, which
arises due to the frequency dependent polariton nonlinearity. This effect cannot be captured
by a simple SPM model, but least squares fitting averages over the spectral components on
either side of the peak to give an average value of the phase. The phases obtained for these
higher pulse energies lie on a straight line with those at lower pulse energy (Figures 7.6(c)
and (d)), where the asymmetry is negligible, showing that this approach works well.

For each pulse energy, we deduce the nonlinear phase δφ at the peak of the pulse by
fitting the experimental spectrum with modelled SPM-broadened spectra. The experimental
spectra and fits are shown in Figures 7.6(a) and (b) on a logarithmic scale as dotted lines
and points respectively for two temperatures. Good agreement is achieved over a range of
pulse energies. At the lowest powers, SPM manifests as a growth of low intensity spectral
side-bands which eventually become comparable to the main peak as the power is increased
[158]. We therefore fit the model to the logarithm of the spectra (as shown in Figure 7.6),
since this maximises the sensitivity to these low intensity side-bands. The fit was performed
using experimental points down to −20 dB, where the data is at least a factor of 2 above the
noise floor. The initial (zero power limit) pulse used in the SPM model was the unchirped
Gaussian pulse whose spectrum was the best fit for the experimental one in the linear regime,
having temporal FWHM τpulse = 425±4 f s. Using an unchirped Gaussian pulse shape is
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equivalent to assuming a maximum pulse peak power for a given pulse energy. If the pulse
was chirped or had a different shape, then the peak power would be lower and the actual
values of n2 would be larger than those we deduce.

We plot the obtained δφ vs. pulse energy in Figure 7.6(c) and (d) for two temperatures
along with the best fit straight lines. The points lie on a straight line within the uncertainty,
as expected for an SPM spectral broadening mechanism, which confirms the validity of our
approach. The linear fitting gives a slope of 50±10 pJ ·rad−1 for 100 K and 32±9 pJ ·rad−1

for 200 K. From this, n2 can be obtained using

n2 =
δφ

δEpulse
τpulse

λpeak

2π

Ae f f

Lloss[1− exp(−L/Lloss)]
(7.10)

given by the combination of Equations 7.5 and 7.9, where δφ/δEpulse is the rate of change
of nonlinear phase with pulse energy obtained from the SPM fitting. The pulse width
τpulse < 430±40 f s (independent of temperature) was obtained from the measured spectrum
at low power under the assumption that the pulses are unchirped and Gaussian. The values
of δφ/δEpulse are obtained by fitting the experimental spectra with theoretical spectra of
SPM-broadened Gaussian pulse [158].

So, from the slope, we deduce an effective nonlinear refractive index n2 = (1.9±0.3)×
10−17 m2/W for 100 K and n2 = (3.7± 1.0)× 10−17 m2/W for 200 K. Here the quoted
uncertainty accounts for the random errors in the fitting, coupling efficiency, waveguide
losses and all other parameters entering into the model. As well as these, there may be some
systematic overestimation of the pulse peak power leading to underestimation of n2 (see
Section B.2). We note that we rigorously propagated statistical uncertainties in all model
parameters to the final quoted values of n2. In principle, disorder in the fabricated grating
couplers could lead to lower coupling efficiency than that obtained via FDTD, while our
assumption of unchirped Gaussian pulses is equivalent to assuming the minimum possible
τpulse for our measured spectrum. Thus there may be a small systematic underestimation in
our values of n2. We finally note that we quote the coupled pulse energy which is the product
of the measured incident pulse energy and the coupling efficiency.
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Fig. 7.6 Spectral broadening in the low power limit. a, b: comparison of experimental spectra
(points) and best fit of SPM model (dotted lines) for two temperatures and several pulse
energies. c, d: peak phase with corresponding error bars from the SPM fits in (a) and (b).
Solid lines show the linear best fit. Error bars give the uncertainty in phase obtained from the
fitting procedure. Further details on the discussion of how the coupled pulse energies were
deduced can be found in Section B.2.
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7.5 Estimate of nonlinear refractive index from
first-principle calculations

We finally note that it is also possible to estimate n2 in our polariton waveguide from
first-principle calculations. The nonlinearity in our polariton waveguide is due to the renor-
malisation of the exciton frequency (exciton blueshift) ∆EX and saturation of the exciton
oscillator strength resulting in a change in Rabi splitting ∆(h̄ΩX) as the exciton density
nX increases [28], as stated in Section 1.2.3. Both of these effects lead to a frequency
blueshift of the lower polariton branch for a given wavenumber or, equivalently, a decrease in
wavenumber for any given frequency. This nonlinear change in wavenumber vs. frequency
is equivalent to a nonlinear change in refractive index. Remembering that the blueshift and
change in Rabi splitting are (to first order) ∆EX = gX nX and ∆(h̄ΩX) = βX nX , where gX and
βX are the interaction constants already introduced in Section 1.2.3, we will first consider
the size of the excitonic blueshift and oscillator strength parameters following the method
given in [28] and using the GaN QW exciton Bohr radius [159]. We will then express the
nonlinear response as a nonlinear refractive index.

The exciton-exciton interaction constant is given by [28]:

gX =
3e2aB

4πε0ε
(7.11)

where e is the electron charge, aB is the exciton effective Bohr radius, ε ∼ 10.28 is the static
dielectric constant [160], and ε0 is the vacuum permittivity. The exciton effective Bohr radius
can be expressed as:

aB = a3D
B

(
1+

d −3
2

)2

(7.12)

where a3D
B ∼ 3.2 nm is the bulk exciton Bohr radius and d is the fractional dimensionality of

the excitonic system [56], in turn given by

d = 1+2
√

RX

EB
(7.13)

where RX = 25 meV is the bulk exciton Rydberg constant [161], and EB = 40 meV is the ex-
citon binding energy [101], which in our case yields a fractional dimensionality of d = 2.58.
This then gives an effective Bohr radius of aB = 2.0 nm.
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The interaction constant dealing with the saturation density of the system is given by
[28]:

βX =−8π

7
h̄ΩX a2

B (7.14)

where h̄ΩX ∼ 90 meV is the Rabi splitting.

We finally obtain the exciton blueshift per unit density per quantum well gX ∼ 0.85 µeV ·
µm2 and the change in Rabi splitting per unity density per quantum well is βX ∼−1.3 µeV ·
µm2. These values are comparable with those predicted and measured in GaAs (gX ∼ βX ∼
2.5 µeV ·µm2 for linear polarisation) [28], when one accounts for the much smaller exciton
Bohr radius of GaN [56]. However, in our GaN device the nonlinearity is not restricted to
cryogenic temperatures. The total nonlinearity (gX and βX ) for a single QW is comparable
with that observed per inorganic layer in hybrid inorganic-organic perovskites at around
516 nm [61]. Here we take such strong polariton interactions into the UV in a robust material
system which does not suffer from photo-bleaching.

When one considers the total system of waveguide photonic mode coupled to NQW = 22
QWs, the theoretical value of the effective nonlinear refractive index, n2, may be derived
from the change in frequency vs. wavenumber of the polariton dispersion. It is given by:

|n2|=
n2

g ∆z
c(h̄ω)2

|CX |4

|Cph|4

(
gX

NQW
− βX

NQW

|Cph|
|CX |

)
(7.15)

where ng = 4.9 (5.4) is the uncoupled-photon group velocity index at 100 K (200 K) (with
the frequency dependence coming from the nitride material dispersion), ∆z = 79 nm is
the guided mode width (FWHM) in the z direction obtained from FDTD calculations, c
is the light speed in vacuum, h̄ω = 3.51 eV is the frequency of the pulse in energy units,
and |CX |2/|Cph|2 = 0.31± 0.05 (0.42± 0.06) is the ratio of excitonic and photonic frac-
tions of the polaritons at 100 K (200 K). From these, we obtain the theoretical values of
n2 = (3.3± 0.9)× 10−17 m2/W and (6.5± 1.5)× 10−17 m2/W at T = 100 K and 200 K,
respectively. These are in good agreement, within a factor of 1.8, of the measured values.
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7.6 Comparison of nonlinear refractive index with litera-
ture values

In our polariton waveguide, we measure n2 = (1.9± 0.3)× 10−17 m2/W for 100 K and
n2 = (3.7±1.0)×10−17 m2/W for 200 K using propagating sub-picosecond pulses. These
are three orders of magnitude larger than values in other materials commonly used for UV
nonlinear optics [155]. Values quoted for GaN are typically in the range 1−7×10−18 m2/W
for the near-infrared to visible spectral region [162, 163] but values greater than 10−16 m2/W
have been reported in the UV close to the bandgap [164]. This latter result, however, was
measured using high repetition rate (82 MHz) laser pulses and Z-scan measurements where
the nonlinearity is probed by nonlinear modulation of the refractive index in space. Under
these conditions the nonlinearity is probed at the same spatial position as the system is
pumped. Combined with the high repetition rate these types of experiment can be strongly
influenced by thermal lensing effects or free carrier excitation. The latter was shown to make
a very strong contribution to nonlinear refraction even in the green spectral range [162, 165]
with the effects lasting on the order of 1 ns [165], compared to only 12 ns between excitation
pulses, so that a significant population could build up during a typical 1 s (8×107 pulses)
time-averaged measurement at 82 MHz. This would lead to a spatial nonlinear modulation
detected by the Z-scan measurement, but since the relaxation time of this free-carrier type of
nonlinearity is long [165], it is not clear how useful it is for applications requiring ultrafast
pulse self- and cross-phase modulations (XPM).

In our work we avoid these pitfalls by using 1 kHz repetition rate and pulses which prop-
agate 100 µm between pump and detection positions (the pump spot was 6.5 µm FWHM).
Even if a free carrier background develops in our device, it would not vary with the ∼ ps
temporal shape of the pulse and so would not lead to the characteristic SPM spectra we
observe. This is the first time the UV nonlinear refractive index in a GaN-based device has
been measured using such a propagating pulse modulation which directly evidences its ultra-
fast timescale. So, we obtain values approximately an order magnitude larger than those
typically found in bulk GaN for the near-infrared to visible spectral region (excluding slow-
free carrier related nonlinearity) [162, 163]. This is expected since strong photon-exciton
coupling enhances nonlinearity for frequencies close to the exciton resonance compared to
the Rabi splitting [156].
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7.7 Summary

In conclusion, in this chapter we showed the first experimental measurements of nonlinear
phase-modulation in a sub-millimeter AlInGaN-based waveguide, working in the UV spectral
range and in the strong coupling regime up to room temperature. We detected a maximum
spectral broadening due to SPM at the output grating of a 100µm-waveguide up to 80 meV ,
depending on the exciton-photon detuning and the temperature. From that, we got a nonlinear
refractive index n2 ∼ 10−17 m2/W , which is 103 times larger than that measured in other
materials used in the UV [155].
The same value was obtained from first-principle calculations, with nonlinearity arising from
both exciton blueshift (gX ) and Rabi splitting reduction (βX ). Remarkably, this value is also
comparable to that in the IR GaAs-polariton waveguide [10], but this GaN-based device is
able to work up to room temperature.





Chapter 8

Conclusions and future perspectives

8.1 Summary

The main aim of this thesis is to investigate the nonlinearity of exciton-polaritons in differ-
ent spectral range (from infrared to ultraviolet), adopting different active media (TMDC,
specifically MoSe2, and GaN, respectively) and photonic microstructures (hemispherical
tunable open-access microcavity and waveguide, respectively), with the ultimate purpose of
exploiting the acquired knowledge for near future devices.

Bare TMDC MLs have already demonstrated their emerging role for practical applica-
tions. Implementing them into microcavities, exciton-polaritons certainly further increase
the TMDC appeal for the development of new technological platforms, thanks to the dual
nature of these quasi-particles, superposition of light and matter.

Another interesting active material to be investigated for its technological importance
is represented by AlInGaN compounds. Their tunability across the UV range and the
stability up to room temperature of their excitons make them ideal for practical applica-
tions of nonlinear optics. The implementation in polariton waveguides can certainly further
exalt these peculiar properties, paving the way towards a new generation of nonlinear devices.

In this last chapter, we first summarise the experimental results obtained in both systems
and then present possible future directions of our work.
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8.2 Discussion on experimental results

8.2.1 MoSe2-microcavity

In Chapter 5, we presented the preliminary measurements performed to fully characterise
TMDC-polaritons in a tunable open-access hemispherical microcavity within our brand
new custom-built helium bath cryostat that allows transmission experiments to resonantly
excite the polariton state, with the ultimate purpose of exploring nonlinear TMDC-polariton
interactions.

We first compared the bare MoSe2 MLs fabricated using the two techniques highlighted
in Section 2.2.2. Exfoliated samples appear to have a better optical quality than CVD samples
thanks to their brightness and narrower exciton linewidth, promising characteristics for a
stronger coupling with cavity photons. Unfortunately, the exciton resonance of the exfoliated
sample at RT was too broad to guarantee polariton formation, preventing interesting practical
application in the near future. Further improvements are needed in the sample fabrication
process for this purpose, that could be guaranteed by a fully encapsulation with hBN.

We then performed power dependence studies on the bare flake, noting an irreversible
photoinduced damage (and lattice heating even with the implementation of a chopper) under
CW excitation, while pulsed lasers seemed to be safer below a certain pump power threshold
in preserving the optical integrity of the TMDC ML. Importantly, we detected redshift of
the exciton resonance under CW excitation due to sample heating, while blueshift was
observed under pulsed excitation (that prevents heating thanks to its duty cycle) arising from
exciton-exciton interaction. As a consequence, we then decided to explore TMDC-polariton
nonlinearities only under pulsed excitation.

Once the bare flakes were characterised, we moved them in the open-cavity setup to
study exciton-polaritons. Changing the distance between the two mirrors under off-resonant
excitation, we observed photon coupling with both exciton and trion resonances, which
undergo an energy shift (so-called Stokes shift) that can be used as a qualitative indicator of
the MoSe2 doping level.

Finally, performing a resonant experiment under different excitation configurations (see
Sections 5.3.2 and 5.3.3), we note the importance of trions over excitons in nonlinear
TMDC-polariton behaviour: the closer to the former resonance, the stronger the energy
shift. Moreover, the redshift (blueshift) of the ground mode when resonantly excited in MPB
(LPB) anticipates the quench of the trion-photon coupling, that leads to the high nonlinearity
quantitatively studied in Chapter 6.
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In Chapter 6, we measured the nonlinearity due to trion-polaritons with respect to that
due to neutral exciton-polaritons. We observed that, depending on the exciton-photon
energy detuning, the trion-polariton nonlinearity is 10 to ∼ 100 times larger than that due
to neutral exciton-polaritons, where the variation of neutral exciton-polariton nonlinearity
with density is attributed to higher order exciton-exciton and trion-exciton interactions.
For example, the trion-polariton energy redshift of the order of 1 meV is observed at an
excitation power of ∼ 20 nW (see Figure 6.6, left panel) at δC−X ∼−15 meV , whereas in
the case of neutral exciton-polaritons the same energy shift is observed at excitation powers
of ∼ 400 nW and ∼ 4 µW at δC−X ∼ −15 meV and δC−X ∼ 2 meV in Figures 6.8 (left
panel) and 6.10, respectively. This is consistent with fact that the deduced average value of
β

e f f
T ≈ 37 µeV · µm2 is 10 to ∼ 100 times larger than the values ge f f

X observed in Figure
6.12 (top panel) at ntot < 104 µm−2.

Determination of the measured absolute values β
e f f
T and ge f f

X requires careful deduction
of the total polariton (exciton/trion) density excited with a single resonant pulse in the system
in order to minimise possible systematic errors. The most accurate way to do this would be
to use the incident energy of the excitation pulse and the coupling efficiency of the external
radiation to the 0D polariton mode. In our experiment, this coupling efficiency is not known,
since the excitation beam does not match well the spatial profile of the polariton mode.
Instead, we deduce the total exciton/trion density using the transmitted power and the ratio
of the measured polariton linewidth to that of the bare cavity mode linewidth. The latter
gives an upper bound on the ratio of the polaritons absorbed into the reservoir to polaritons
emitted into free space since scattering into the reservoir cannot be faster than the total
loss rate of polaritons. The accuracy of this method can be judged by the fact the values
of ge f f

X of about 1− 0.3 µeV · µm2 at exciton densities in the range 103 − 104 µm−2 are
consistent within a factor of 2 to 3 with ge f f

X ∼ 1± 0.4 µeV · µm2 measured in [166] for
neutral exciton-polaritons realised in a slab waveguide photonic crystal in the same density
range. In [166], the exciton density was derived accurately using femtosecond excitation and
detection and measurement of the absolute power of the resonant excitation pulse and the
coupling efficiency of the incident radiation to the polariton mode. In that case polariton
absorption is not relevant. Since in the current work the trion-polariton nonlinearity is
measured with respect to the neutral exciton-polariton nonlinearity, we can take ge f f

X as
a reference point and confirm that the value β

e f f
T ≃ 37 µeV · µm2 is likely to be accurate

within a factor of 2 to 3 as well. Good agreement between our theory of the trion-polariton
nonlinearity (which does not use fitting parameters) and the experiment (Figure 6.8, right
panel) further supports this statement.
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It is also useful to relate parameter β
e f f
T to nonlinear refractive index coefficient n2 widely

used in the field of nonlinear optics to characterise Kerr-like nonlinearity of materials. We
estimated the value of n2 per single flake associated with strong trion-photon coupling to be
around ∼ 10−10 m2/W (see Section 6.4.1.2). This value is 3−5 orders of magnitude greater
than the nonlinear refractive coefficient of 2D TMDC materials and graphene studied in the
weak light-matter coupling regime (see Section 6.4.1.2). The nonlinear refractive index n2

due to trion-polaritons of a hybrid monolayer-cavity system is also found to be 3−4 orders
magnitude larger than the n2 coefficient of widely used bulk optical materials (see Section
6.4.1.1).

8.2.2 GaN-waveguide

In Chapter 7, we first characterised our GaN-based waveguides under off-resonant excitation.
We observed in far-field experiments that GaN excitons strongly coupled to TE waveguided
mode up to room temperature, with an obvious decreasing of the Rabi splitting with temper-
ature (from ∼ 90 meV at 4 K to ∼ 70 meV at 300 K), making this platform promising for
practical devices.

We then explored the nonlinear behaviour of this structure under resonant excitation,
coupling the pulse-shaped laser to the waveguide through suitably designed gratings. We
performed these measurements by varying different parameters in order to fully characterised
the nonlinear modulation, specifically temperature, pump power and exciton-photon detuning.
We detected a spectral broadening that decreases with temperature (reduction of the Rabi
splitting) from 58 meV at T = 8 K to 29 meV at T = 300 K for the same exciton-photon
detuning. As expected from a polariton system, the nonlinearity is also affected by the
exciton content of the quasi-particles. Indeed, the resulting spectra manifest asymmetry
on the long (short) wavelength side for small (big) negative detuning, for strong exciton
absorption and frequency dependent nonlinearity respectively.

The corresponding nonlinear refractive index n2, that we deducted by measured SPM,
has a value of ∼ 10−16 m2/W at T = 200 K, which is 1000 times higher than the values
already reported in UV systems [155] and comparable to that of IR GaAs-polariton devices
[10], however obtained at cryogenic temperatures.

This value was further confirmed by first-principle calculations, through which we got
nonlinear interaction strengths arising from both exciton blueshift (gX ) and Rabi splitting
reduction (βX ) of ∼ 1 µeV ·µm2 per unit exciton density per QW, comparable to the values
characterising GaAs [28].
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We experimentally demonstrated for the first time the ultrafast picosecond nonlinear SPM
in the UV range up to room temperature, with an effective nonlinear refractive index three
orders of magnitude higher than that measured in other UV systems [155].

8.3 Outlook

The results obtained in Chapters 5 and 6 demonstrate the potential to establish polariton
blockade. Notably, the deduced trion-polariton nonlinearity is of the same order as that
observed in microcavities with a single quantum dot [167, 168], where strong renormalisation
of Rabi-splitting (∼ 100 µeV ) occurs at a single photon level [167]. The average value of
β

e f f
T ≃ 37 µeV · µm2 is also ∼ 5− 10 times larger [10, 28] or comparable [169, 30] to

the reported coefficients characterising neutral exciton-polariton nonlinearity in a GaAs
system. So, the value of β eff

T can be further verified by studying the second-order correlation
function (g(2)(τ)) of the emission from the resonantly driven polariton mode [12, 170].
Strong interactions can lead to polariton blockade and antibunching [12]. As we elaborate
theoretically in Section A.4, polariton quantum effects can potentially be realised in high-Q
microcavities with embedded high quality homogeneous TMDC samples [137], where very
narrow polariton resonances with a linewidth given just by the cavity mode lifetime could
be achieved. Such a high-quality sample would also lead to strong coupling even at room
temperature, as allowed by the high binding energy of excitons in TMDCs.

Instead of taking advantage of only the natural doping of MoSe2 to observe trions,
applying a gate voltage it would be possible to electrically control their amount by converting
neutral excitons into charged excitons. In order to do that, a heterostructure similar to that
employed in [82] can be used (see Figure 8.1). To further improve that design for a MoSe2

gated structure, we could use a flat DBR terminating with a high-refractive index λ/(4n)
layer of Nb2O5. After the deposition of a graphene layer, used as a bottom gate to control the
electron density in the ML, a low-refractive index λ/(4n) layer of SiO2 could be deposited
by e-beam evaporation, in order to preserve the surface quality and not damage the graphene
underneath. With this configuration, the MoSe2 would be located at the antinode of the
electric-field, while the graphene would be at the node of the cavity, avoiding degradation of
the cavity Q-factor. To improve the emitter linewidth, encapsulation with hBN layers would
be necessary: in this case, a great precision in hBN thickness choice, achievable with AFM,
would be mandatory.

Given the dependence of conventional polariton blockade on the electron density, this
configuration may lead to lower g(2)(0) values.
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Qualitatively, the trion-polariton blockade can be understood in the following way: the
effective beta-factor, which we derived, defines the energy renormalisation of the polariton
resonance with adding of one excitation to the system. If the polariton linewidth is narrower
than this energy renormalisation then the effect of the polariton blockade and photon anti-
bunching would be possible (see Figure 8.2).
However, there is another phenomenon that allows to relax the stringent conditions on strong
trion-polariton energy shift just mentioned, namely unconventional polariton blockade. It
takes advantage of the existence of two possible ways to populate the two-photon state that
could destructively interfere: the direct optical excitation and the trion-mediated path (see
Figure 8.3).

Our work paves the way towards development of scalable active nanophotonic devices
based on 2D materials (where the exciton level is the same across large areas in contrast to
0D quantum dots) utilising the polariton nonlinearity for control of light by light, potentially
at quantum level.

Fig. 8.1 MoSe2 sample sandwiched between hBN layers. This gated structure permits to vary
the electron density in the TMDC. Source: [82]
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Fig. 8.2 a: the two-polariton state |p, p⟩ is blue-shifted in energy by U = polariton–polariton
interaction. If this quantity is larger than the polariton linewidth γLP, the injection of a second
(slightly red-detuned) photon is inhibited, resulting in antibunching due to conventional
polariton blockade. On the other hand, the presence of a second photon is enhanced for
a blue-detuned pump, giving rise to bunching. b: consequently, we observe antibunching
(bunching) for a pump which is red- (blue-)detuned compared to the polariton resonance.
Source: [12]

Fig. 8.3 (a): schematic of trion formation, where a cavity photon produces an electron-hole
pair and catches an electron. (b): energy level scheme in photon-trion basis |NC,NT ⟩, where
the unconventional polariton blockade arises from the destructive interference between the
direct excitation path and trion-mediated path thanks to the coupling reduction in the presence
of two trions. Source: [171]
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Another fascinating future research might involve a little investigated mixed state called
dipolar polariton (or dipolariton), shown in Figure 8.4. Apparently, they could enhance the
nonlinear exciton-exciton interaction up to two orders of magnitude compared to standard
exciton-polaritons. For example, they can be created by applying a static electric field
orthogonally to the waveguide plane [172]. This huge increasing in the interaction strength
could allow observation of nonlinear phenomena at lower powers and shorter length scales.
Therefore, to do that, we can take advantage of indirect excitons. They can be formed by
employing multiple QWs (MQWs) [173] or atomically thin heterostructures [60]. Indeed,
since their constituent electrons and holes belong to different QWs (or MLs) [174], these
long-lived indirect excitons show permanent out-of-plane electric dipole moments all aligned
with each other, causing a repulsive interaction between them. The tunability of the TMDC
heterostructures using different materials, changing the angle of the moiré lattice [175] and
varying the composition of their alloys, offers a great flexibility which is still unexplored.

This amazing characteristic of TMDC heterostructures can also be exploited to obtain las-
ing at different wavelengths in a grating cavity [176]. These interlayer excitons (that maintain
large oscillator strength) could be interesting for ultrafast lasing at low power threshold. As
shown in Figure 8.5(b), the whole structure creates the classical three-level system necessary
to reach population inversion for photon lasing, thanks to the rapid electron transfer from one
CB to the other and the long lifetime of the subsequent indirect exciton. But a further use of
this photonic crystal slab would be of course represented by the implementation of polaritons.
Indeed, realisation of polariton lasing (linked to BEC) would avoid the need of population
inversion, reducing even more the lasing power threshold. In order to do that, coupling of the
active medium with optical bound states in the continuum could be exploited [177]. Properly
designing the confinement structure, it is possible to open a bandgap at the exciton resonance,
then creating polaritons with negative effective mass and so negative GVD, also leading to
soliton formation [166].
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Fig. 8.4 (a): schematic of a possible sample structure, with MQWs to exploit indirect excitons
(IXs). (b): spectrum as a function of gate voltage VG showing changes in direct exciton (DX
- green dashed line) and IX (blue dashed lines) energies, leading to variation in the energies
of the polariton branches. Source: [173]

Fig. 8.5 a: schematic of sample structure, consisting in a grating cavity with a TMDC
heterostructure on top. b: indirect exciton formation, with consequent population inversion
for lasing. Source: [176]

Intensively studied in GaAs-based waveguides (see Figure 8.6) [10, 120], optical solitons
(introduced in Section 1.2.3) could be also investigated in GaN-waveguides up to room
temperature.

For polariton in the LPB of a waveguide in the strong coupling regime, the GVD
parameter β2 (introduced in Section 7.4) is negative. In this scenario, if the dispersion-
induced broadening is balanced by SPM nonlinear effect, optical solitons can exist [158].



128 Conclusions and future perspectives

They already manifest in optical fibers, but for on-chip applications we want them to form
over short length scale. To do so, the large nonlinearity provided by exciton-polaritons make
them potentially interesting for ultrafast communication technologies.

A ridge waveguide, providing lateral confinement, would inhibit propagation in all direc-
tions and then increase nonlinear interactions.

Fig. 8.6 Schematic of a waveguide under low and high pump power. Source: [10]

Another interesting emerging field, where polaritons can play an important role thanks
to their increased photon-photon interactions, is that of topological photonics, where the
protected edge states guarantee unidirectional propagation of light [178]. The corresponding
topological polaritons (or topolaritons) mix, as usual, the characteristics of both the con-
stituents: in this specific case, we are interested in the Zeeman splitting arising from the
non-negligible magnetic moment due to the the electron-hole spins of the exciton component
and the TE-TM splitting of the photon component, which acts as an effective magnetic field.
The combination of both these phenomena conducts to the opening of a topological gap [179].
Two proposal have been made to make the most of it: employ an honeycomb lattice under a
magnetic field [180] or manipulate the exciton-photon coupling phase in microcavities or
dielectric slab waveguides [181]. However, taking advantage from the valley properties of
TMDCs described in Secion 2.2.1, there would be no need for an external magnetic field
[182]. The structure shown in Figure 8.7 could be used for this kind of study.
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Fig. 8.7 Schematic of (a) expanded and (b) shrunken unit cells, with corresponding band
diagram. Note the opening of the bandgap for this new configuration. (c): the edge modes at
the interface between the two different unit cells show band crossing. Source: [183]

As reported in Reference [1], an all-optical ultrafast switching device could be realised
implementing the symmetric Mach-Zehnder (SMZ) interferometer depicted in Figure 8.8.
In this scheme, the switching operation arises from the phase shift due to the control beam,
leading to interference between the two branches of the interferometer. From this point of
view, our highly nonlinear GaN-based waveguides in the strong coupling regime might play
an important role.

Fig. 8.8 Schematic of a switch device based on nonlinear waveguides (NLWGs) in a Mach-
Zehnder interferometer. The switching process for the signal arises from the phase shift
due to the change in the refractive index caused by the control pulses in the two arms,
consecutively injected after a short interval T .

However, for phase shift, it would be also possible to exploit two different polarisation
states instead of two waveguides. But we need to always remember that, as alluded in Sec-
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tion 1.1, pure photonic approach to quantum computation is limited by the extremely weak
interactions between photons. Indeed, a photon in one optical mode should ideally change
the phase of a different photon in another optical mode by π , so strong interaction would
be needed. Given the scalability limitation of cavity photon systems coupled to atoms and
QDs (keep in mind what stated in Section 1.1), an alternative approach might be represented
by XPM arising from Kerr-like nonlinearity [158]. This nonlinear phase shift is generated
by another field with different wavelength and/or polarisation, where the presence of one
photon in the medium changes the refractive index perceived by the other photon. In order to
exploit this phenomenon, quantum effects can be enhanced by using systems with discrete
optical modes, since they can reduce the quantum noise due to the reduction of available
energy states for scattering [184]. Having said that, 0D micropillars (shown in Figure 8.9)
and hemispherical microcavities, with reduced mode area and linewidths, could be the most
effective systems thanks to their scalability and quantised optical modes. Moreover, they
allow ultrafast operation due to their characteristic lifetimes (∼ 10 ps). The linear polarisation
of a signal photon in the excited state would rotate because of the presence of a circularly
polarised control photon in the ground state, giving rise to a phase shift at single-particle level.

Fig. 8.9 (a): scanning electron microscope (SEM) image of a micropillar. Source: [185]. (b):
PL emission of the first three discrete modes. (c): 2D far-field patterns for the first three
discrete modes. Source: [186]
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Last but not least, exciton-polaritons could be used to reach high temperature super-
conductivity. Indeed, according to Bardeen-Cooper-Schrieffer (BCS) theory, the attractive
electron-electron interaction necessary to form a Cooper pair is mediated by a phonon.
Given its weak coupling, superconductivity is observed at cryogenic temperatures. Instead
of this kind of boson, microcavity exciton-polaritons can be exploited. Specifically, these
new quasi-particles formed by two attractively interacting electrons and a polariton, called
"quatrons" (or quadrions), present the fundamental characteristic of being boson with electric
charge, leading to a superfluid propagation of current, i.e. superconductivity [187]. Moreover,
the critical temperature to observe this transition only depends on that of the BEC and the
electron-electron interaction strength would just be affected by the polaritons density, so by
the pump power. Theoretically, the critical density to achieve superfluidity was shown to be
lower that the Mott density, especially for TMDCs due to their small exciton Bohr radius. A
suitable structure might be the one shown in Figure 8.10. Another possible configuration
could be given by n-doped QW (containing a two-dimensional degenerate electron gas -
2DEG) sandwiched between two undoped QWs (containing a BEC) [188].

Fig. 8.10 Possible configuration to observe exciton-polariton superconductivity, where the
BEC can strongly interact with the 2DEG within a microcavity in a TMDC monolayer.
Source: [189]
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Appendix A

Theory on TMDC-polaritons in
microcavities

A.1 Introduction

In this appendix, we describe the microscopic theory for exciton-polaritons (Section A.2)
and trion-polaritons (Section A.3) which were used for the theoretical modelling employed
in Chapter 6. In Section A.4, we discuss possible quantum effect with trion-polaritons in
transition metal dichalcogenides materials.

To describe the observed polariton nonlinearity, we begin with the conceptually more
simple case of a neutral exciton-polariton, where the trion fraction is negligible.

Gaining the knowledge from the exciton case, we consider the trion-dominated regime.
The excitation process then corresponds to the creation of a trion from a free electron. We
account for phase space filling effects, which become important at increasing excited trion
density. This leads to the quenching of the collective trion oscillator strength. Taking into
account the deviation of statistics for trions from that of ideal fermions, we calculate the
influence of phase-space filling on the trion Rabi frequency.

The whole theoretical model was provided by Dr. O. Kyriienko, Dr. V. Shahnazaryan
and Prof. I. A. Shelykh.

The theory provided in this appendix refers to Chapter 6 and it is published in Reference
[146].
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A.2 Nonlinear neutral exciton-polaritons

In the first section we describe the exciton-photon coupled system, accounting for the
composite electron-hole (e-h) nature of the neutral exciton. The case of a trion mode coupled
to the optical mode is considered in the next section.

A.2.1 Exciton-polariton Rabi splitting

To start, we consider an optical cavity described by the bosonic annihilation and creation
operators ĉ and ĉ†, such that their commutation relations are [ĉ, ĉ†] = 1, [ĉ†, ĉ†] = [ĉ, ĉ] = 0.
Coupled to a semiconducting medium, an optical photon creates an exciton, corresponding
to the bound electron-hole pair. The creation of an electron with the momentum q is
described by the fermionic operator â†

q, and hole creation is described by the operator
b̂†

q. Their corresponding anti-commutation relations read {âq, â
†
q′}= âqâ†

q′ + â†
q′ âq = δq,q′ ,

{âq, âq′} = {â†
q, â

†
q′} = 0, where δq,q′ is Kronecker delta function (and the same holds for

b̂q). Accounting for the attractive Coulomb interaction between an electron and a hole, the
excitonic operator can be written as a composite boson X̂ν , where ν is a general index which
denotes the center-of-mass (CM) and internal degrees of freedom. The transition between
electron-hole and composite exciton picture follows as X̂†

ν = ∑kα ,kβ
⟨kβ ,kα |ν⟩â†

kα
b̂†

kβ
. Here,

kα,β correspond to electron and hole momenta, and ⟨kβ ,kα |ν⟩ is an exciton wave function
written in the momentum space. The reversed transformation for describing an electron-hole
pair in bosonic language can be written as â†

kα
b̂†

kβ
= ∑ν⟨ν |kβ ,kα⟩X̂†

ν , where summation
goes over possible states of composite excitons ν in the appropriate orthonormal basis, such
that ∑ν |ν⟩⟨ν |= 1.

In the following we are interested in the system with strong light-matter coupling, where a
composite exciton of certain CM momentum is coupled to the cavity mode. The Hamiltonian
for the considered system reads

Ĥ = Ĥcav + ĤX + Ĥcoupl (A.1)

where the first and second terms describe the free energy for the cavity photon mode,
Ĥcav = ∑q ωcav,qĉ†

qĉq (h̄ = 1 hereafter), and composite exciton ĤX (i.e. coupled electron-
hole) Hamiltonians. ωcav,q denotes the two-dimensional dispersion for the planar cavity
mode, with typically ultralow mass, such that only small q’s are considered. The third term
describes the coupling between light and matter excitations. It can be written as a creation of
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an electron-hole pair by the cavity field with a coupling constant g,

Ĥcoupl = ∑
kα ,kβ ,q

(gâ†
kα+qb̂†

kβ
ĉq +h.c.) = ∑

kα ,kβ ,q
∑

i
(g⟨i|kβ ,kα⟩X̂†

i ĉ+h.c.) (A.2)

where in the second equality we have exploited excitonic form for the electron-hole pair, and
considered a dipolar transition with negligible transferred cavity momentum, ĉq→0 ≡ ĉ, being

a usual assumption for description of strong coupling. Here, g = epcv
m

√
h̄2

2εε0ωcavLcavA , where
pcv is a matrix element for a valence-to-conduction band transition, m is a free electron mass,
Lcav is a cavity length, A is an area of the system. We consider an exciton mode at the fixed
center-of-mass momentum, which for brevity is set to zero, X̂0, and derive the corresponding
Heisenberg equations of motion. It reads

i
dX̂0

dt
= [X̂0, ĤX ]+ [X̂0, Ĥcoupl] = [X̂0, ĤX ]+g ∑

kα ,kβ

∑
i
⟨i|kβ ,kα⟩

[
X̂0, X̂

†
i

]
ĉ (A.3)

The first term generally describes the energy ωX at which the excitonic mode oscillates. The
second, being proportional to ĉ operator, provides the coupling to photonic mode, which
we generally denote as G = g∑kα ,kβ

∑i⟨i|kβ ,kα⟩
[
X̂0, X̂

†
i

]
. If the exciton corresponds to

an ideal boson, i.e. [X̂ , X̂†] = 1, the coupling term reduces to G = g∑kα ,kβ
⟨i|kβ ,kα⟩ ≡

g∑k φ∗
k = Ω

(0)
X /2, where we introduced the relative electron-hole momentum k and the

Fourier transform of the exciton wave function φk. This energy corresponds directly to the
Rabi energy for the light-matter coupled system. Performing the diagonalization of the
system at zero detuning (ωcav = ωX ), the Rabi-splitting between normal modes of the system
is equal to Ω

(0)
X .

We proceed by considering the composite structure of an exciton, which is formed by
two fermions. This comes from the fact that creation of a (correlated) electron-hole pair is
not equivalent to a boson creation, as long as number of created pairs grows. It originates
from the Pauli exclusion principle, which does not allow certain pair configurations in the
full fermionic treatment, while disregarded in the purely bosonic picture [190, 191]. The
details for the difference between two cases were worked out by Monique Combescot and
co-workers, and summarized in the so-called coboson approach to excitonic systems [190].
In the following, we apply the coboson formalism to find corrections to Rabi and exciton
energy appearing due to effects of non-bosonicity.

The main consequence of the composite nature of an exciton is its peculiar statistics,
which resembles bosonic one for small e-h pair concentration n ≡ N/A, but changes once it
becomes comparable to the inverse of the effective exciton area. The generic commutation
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relations between composite bosons can be formulated as (see [190], Equation [4.16])

[X̂m, X̂
†
i ]≡ δm,i − D̂mi (A.4)

where an operator D̂mi describes the deviation from bosonicity for excitons due to its com-
posite nature.

In particular, this can be observed when one writes the commutator in Equation (A.4)
using the expression for composite exciton with zero CM momentum and relative momentum
k, which is described by X̂†

0 = ∑k⟨k|0⟩âkb̂−k ≡ ∑k φkâkb̂−k. The commutator reads

[X̂0, X̂
†
0 ] = ∑

k1

∑
k2

(φk1φ
∗
k2

âk1 b̂−k1 b̂†
−k2

â†
k2
−φ

∗
k2

φk1 b̂†
−k2

â†
k2

âk1 b̂−k1) = ∑
k1

∑
k2

φk1φ
∗
k2
×

× (δk1,k2 − â†
k1

âk2δk1,k2 − b̂†
−k1

b̂−k2δk1,k2) = 1−∑
k
|φk|2(â†

kâk + b̂†
kb̂k) (A.5)

The explicit form for the deviation operator is D̂00 = ∑k |φk|2(â†
kâk + b̂†

kb̂k). Its structure
thus hints that the deviation depends on the electron (or exciton) number N.

To calculate the influence of the non-bosonicity on Rabi energy renormalization we need
to estimate the expectation value of the last term in Eq. (A.3) considering the (unnormalized)
many-coboson state |N⟩ = (X̂†

0 )
N |ø⟩, and singling out the prefactor in front of the cavity

photon operator ĉ. Here, |ø⟩ denotes coboson vacuum state, and corresponding norm reads√
⟨N|N⟩ = ⟨ø|X̂N

0 (X̂†
0 )

N |ø⟩1/2. Note that in the case of composite bosons it was shown to
differ exponentially from an ideal boson normalization for large N,[190] though for physical
observables the difference appears as higher order terms in the small N expansion.

The expectation value for the commutator can be written as

G(N) =
⟨N|g∑kα ,kβ

∑i⟨i|kβ ,kα⟩
[
X̂0, X̂

†
i

]
|N⟩

⟨N|N⟩
=

= g
⟨N|∑k φ∗

k |N⟩
⟨N|N⟩

−g
⟨N|∑kα ,kβ

∑i⟨i|kβ ,kα⟩D̂0i|N⟩
⟨N|N⟩

(A.6)

The first term in Eq. (A.6) yields g∑k φ∗
k and is simply a Rabi frequency in the dilute

system limit. The second term, however, involves the non-bosonicity operator. Accounting
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for the many-coboson state explicitly, it can be rewritten as

g
⟨ø|X̂N

0 ∑kα,β
∑i⟨i|kβ ,kα⟩D̂0i(X̂

†
0 )

N |ø⟩
⟨N|N⟩

= g
⟨ø|∑kα,β

∑i⟨i|kβ ,kα⟩X̂N
0

[
D̂0i,(X̂

†
0 )

N
]
|ø⟩

⟨N|N⟩
(A.7)

where we have accounted for the fact that the action of the deviation operator on the ground
state gives 0, i.e. D̂0i|ø⟩ = 0 · |ø⟩. Thus, its estimation relies on the commutator of the
deviation operator with an exciton creation operator to the power N. For the first power, this
can be derived as[190]

[
D̂mi, X̂

†
j

]
= ∑

n

[
λ

(
n j
m i

)
+λ

(
m j
n i

)]
X̂†

n (A.8)

where λ denotes the Pauli scattering element for input indices (i, j) and output (n,m). It
reads explicitly

λ

(
n j
m i

)
=
∫

drα1drα2drβ1drβ2φ
∗
m(rα1,rβ2)φ

∗
n (rα2,rβ1)φi(rα1,rβ1)φ j(rα2,rβ2) (A.9)

where φi(rα1,rβ1) is a generic coboson wavefunction written in the real space representa-
tion. It can be rewritten as a product of CM and relative motion component, φi(rα ,rβ ) =

(eiQi·Rαβ /
√

A)⟨rαβ |i⟩, where Rαβ and rαβ are CM and relative coordinates for e-h pair,
which correspond to coboson with CM momentum Qi and relative motion quantum num-
ber i. The relative motion wavefunction can be also rewritten in the momentum space as
⟨r|i⟩= ∑k⟨r|k⟩⟨k|i⟩= ∑k(eik·r/

√
A)⟨k|i⟩, which we will use in future.

Proceeding with the estimation for the influence of the deviation in the many-coboson
state, the commutator with N-exciton creation operator reads

[
D̂0i,(X̂

†
j )

N
]
= N(X̂†

0 )
N−1

∑
n

[
λ

(
n i
0 0

)
+λ

(
0 i
n 0

)]
X̂†

n (A.10)

Using this, Equation (A.6) can be rewritten as

G(N) = g∑
k

φ
∗
k −gN ∑

kα,β

∑
i,n
⟨i|kβ ,kα⟩

{
λ

(
n i
0 0

)
+λ

(
0 i
n 0

)}
⟨ø|X̂N

0 X̂†
n (X̂

†
0 )

N−1|ø⟩
⟨N|N⟩

(A.11)
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One can immediately see in the second term on the RHS that the Rabi frequency depends on
the exciton concentration N, times the prefactors coming from Pauli scattering elements.

First, let us consider the intuitively easy case where the internal coboson index i coincides
with the mode of interest, labeled as 0. Later, we show that this corresponds to the lower-
order-in-N correction. In this case the expectation value ⟨ø|X̂N

0 X̂†
n (X̂

†
0 )

N−1|ø⟩/⟨N|N⟩|n=0 = 1.
Considering the first Pauli scattering term λ (0, i; 0, 0), the summation over internal coboson
index is performed as

∑
k

∑
i

λ

(
0 i
0 0

)
⟨i|k⟩= 1

A2 ∑
k

∫
drα1drα2drβ1drβ2⟨0|rα1 −rβ2⟩⟨0|rα2 −rβ1⟩⟨rα1 −rβ1|0⟩×

×∑
i
⟨rα2 − rβ2|i⟩⟨i|k⟩= ∑

k,k1,k2,k3

1
A4

∫
drα1drα2drβ1drβ2e−ik1·(rα1−rβ2

)e−ik2·(rα2−rβ1
)×

× eik3·(rα1−rβ1
)eik·(rα2−rβ2

)⟨0|k1⟩⟨0|k2⟩⟨k3|0⟩= ∑
k
|φk|2φk (A.12)

Here, for passing through the first equation sign we used that: 1) coboson states form a full
orthonormal basis, ∑i |i⟩⟨i|= 1; 2) transition element between between real and momentum
space reads ⟨rα2 − rβ2|k⟩ = eik·(rα2−rβ2

)/
√

A. For the second equality we exploited Dirac
delta function definition in 2D, being

∫
dreik·r = Aδk,0, which reduces summation to a single

index, and recall our definition ⟨k|0⟩ ≡ φk. The second Pauli scattering term gives the same
contribution.

In the case of 1s neutral exciton in a two-dimensional material the relative motion part

of wavefunction in real space can be written as φ(r) =
√

2/πa2
B e−r/aB , with r being the

relative (e-h) coordinate. The momentum space version then reads

φk =

√
8πa2

B
A

(1+a2
Bk2)−3/2 (A.13)

where aB corresponds to the 2D variational parameter.
Collecting everything together and performing summation as ∑k → A

(2π)2

∫
dk, the renor-

malized Rabi frequency as a function of concentration (in lowest order of na2
B) reads

G(n) = G(0)
(

1−2N
∑k |φk|2φk

∑k′ φ∗
k′

+O[N2]

)
= G(0)

(
1− 16πna2

B
7

+O[n2a4
B]

)
(A.14)

where G(0) = g
√

2A/πa2
B = epcv

maB

√
h̄2

πεε0ωcavLcav
. Finally, we need to account for the fact that

G(n) is a derived term in the equations of motion, which includes ∝ n correction. Thus it
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originates from the effective nonlinear Hamiltonian Ĥ(nonlin)
coupl which contains three excitonic

operators and a photonic one, and on the contrary to the linear case provides extra factor of 2
in the equations of motion. The modified Hamiltonian with exciton density-dependent Rabi
frequency then reads (at fixed momentum)

Ĥcoupl =
ΩX(nX)

2
(X̂†ĉ+ ĉ†X̂) (A.15)

where the renormalized Rabi frequency is

ΩX(nX)

2
=

Ω
(0)
X
2

(
1− 8πnX a2

B
7

+O[n2
X a4

B]

)
(A.16)

where we denoted the exciton concentration as nX . The result above coincides with the
estimates by Tassone and Yamamoto,[29] and Rochat et al.,[192] although derived in a
different way, without involving Usui transformation.

We can proceed to calculate the terms being higher order in (na2
B). This relies on the

exact calculation of the average as [190]

⟨ø|X̂N
0 X̂†

j (X̂
†
0 )

N−1|ø⟩/⟨N|N⟩= δ0, j
FN−1

FN
− (N −1)λ

(
0 0
0 j

)
FN−2

FN
+O[n3a6

B] (A.17)

where FN is a coefficient which defines the deviation of statistics through ⟨N|N⟩ ≡ N!FN ,
with FN being 1 for purely bosonic states. Exploiting coboson theory, the ratio reads

FN−1

FN
= 1+N ∑

k
|φk|4 (A.18)

and FN−2/FN ≈ (FN−1/FN)
2. The first term in Equation (A.18) corresponds to the previously

obtained case with ∼ na2
B scaling. Performing the same procedure as before, we extend the

results to include n2a4
B contribution. After some algebra, we obtain

G(n) = G(0)
(

1−2N
∑k |φk|2φk

∑k′ φ∗
k′

−2N2 (∑k |φk|4)(∑k′′ |φk′′ |2φk′′)

∑k′ φ∗
k′

+2N2 (∑k |φk|4φk)

∑k′ φ∗
k′

+

+O[N3]

)
= G(0)

(
1− 16πna2

B
7

+
1152π2n2a4

B
455

+O[n3a6
B]

)
(A.19)
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where the derivation was performed up to ∼ n3a6
B terms. The corresponding modified

Rabi frequency then reads

ΩX(nX)

2
=

Ω
(0)
X
2

(
1− 8πnX a2

B
7

+
384π2n2

X a4
B

455
+O[n3

X a6
B]

)
(A.20)

Interestingly, we observe that the light-matter coupling strength is a monotonically
decreasing function of density, and its expansion has a sign-changing pattern. It is thus
tempting to suggest that it has the exponential dependence. Namely, we can express it
as G(n) = G(0) e−(16π/7)na2

B ≈ G(0)
{

1− (16π/7)na2
B +(128π2/49)n2a4

B +O[n3a6
B]
}

, and
observe that the expansion of the exponent gives nearly the same quadratic term, with their
ratio being 1.03175 ≈ 1. This gives us confidence in the conjectured dependence.

A.2.2 Nonlinear exciton energy shift

In the previous section, we have considered the renormalization of the light-matter coupling
term, which gains n-dependence. Now, let us consider similar effects which provide nonlinear
energy term for composite excitons. To do so, we write the exciton Hamiltonian in terms of
basic constituents, being electrons and holes. This is given by

ĤX = Ĥ(0)
e + Ĥ(0)

h + Ĥe−h + Ĥe−e + Ĥh−h (A.21)

where the first two terms correspond to energies of the electrons and holes, and read
Ĥ(0)

e = ∑kα
ε
(e)
kα

â†
kα

âkα
and Ĥ(0)

h = ∑kβ
ε
(h)
kβ

b̂†
kβ

b̂kβ
. The dispersions can be written in the

quadratic form, being ε
(e)
kα

= Ec + k2
α/2me and ε

(h)
kβ

= Ev + k2
β
/2mh. (Ec −Ev) = Eg corre-

sponds to the bandgap energy, and me,h are effective electron and hole masses, respectively,
measured in units of free electron mass. The third term in Equation (A.21) corresponds to
electron-hole Coulomb interaction, which ultimately leads to the formation of the bound
state. It reads Ĥe−h =−∑p,p′,qVqâ†

p+qb̂†
p′−qb̂p′ âp, where Vq = 2πe2/(AqSq) is the standard

Fourier transform for Coulomb interaction in 2D, Sq denotes the screening function (so
far unspecified), and we accounted explicitly for attraction between an electron and a hole.
Finally, the terms Ĥe−e and Ĥh−h correspond to Coulomb interaction with only electrons
and only holes. When accounting for the excitonic structure of e-h complexes, these lead to
Kerr-type exciton-exciton interaction.

To account for the non-bosonicity and exchange-based Coulomb scattering between the
cobosons on the equal footing, we can derive the total energy of the system, EX = ⟨ĤX⟩, where
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expectation value is taken over N-exciton state. Following [190], the nonlinear (quadratic
and higher) contribution to the energy of N excitons reads

⟨ĤX⟩N = N

[
E(0)

X +
N
2

FN−2

FN

{
ξ

(
0 0
0 0

)
−ξ

in

(
0 0
0 0

)}
+

N2

4
FN−3

FN
×

×

{
−2∑

n
λ

(
0 n
0 0

)
ξ

(
n 0
0 0

)
+∑

mn
λ

 0 0
0 n
0 m

ξ

(
n 0
m 0

)}]
(A.22)

where E(0)
X = Eg−Eb is a density independent exciton energy, and nonbosonicity factor reads

FN−3/FN ≈ (FN−1/FN)
3. Here,

ξ

(
n j
m i

)
=
∫

drα1drα2drβ1drβ2φ
∗
m(rα1 ,rβ1)φ

∗
n (rα2,rβ2)φi(rα1,rβ1)φ j(rα2,rβ2)×

×
[
Vαα(rα1 ,rα2)+Vββ (rβ1,rβ2)+Vαβ (rα1,rβ2)+Vαβ (rα2,rβ1)

]
(A.23)

is a direct Coulomb scattering term between excitons [see Equation (A.9) for comparison],
and V f f ′(r f1,r f ′2

) corresponds to the real space Coulomb potential between carriers f , f ′. The
ξ in term denotes exchange Coulomb scatterings, where either electron or hole is swapped
between two composite excitons,

ξ
in

(
n j
m i

)
=
∫

drα1drα2drβ1drβ2φ
∗
m(rα1 ,rβ2)φ

∗
n (rα2,rβ1)φi(rα1,rβ1)φ j(rα2,rβ2)×

×
[
Vαα(rα1 ,rα2)+Vββ (rβ1,rβ2)+Vαβ (rα1,rβ2)+Vαβ (rα2,rβ1)

]
(A.24)

which combines Pauli scattering and Coulomb interaction. Finally, the exchange term
between three composite excitons (where carriers are swapped but no Coulomb vertex is
included) yields

λ

 p k
n j
m i

=
∫

drα1drα2drα3drβ1drβ2drβ3×

×φ
∗
m(rα1,rβ2)φ

∗
n (rα3 ,rβ1)φ

∗
p(rα2,rβ3)φi(rα1 ,rβ1)φ j(rα2,rβ2)φk(rα3,rβ3) (A.25)

For composite excitons with Vαβ (r) =−Vαα(r), which is true for the electron-hole potential,
the direct term vanishes, ξ (0, 0; 0, 0) = 0. This can be seen as well-known absence of direct
contribution at zero exchanged momentum, valid both for III-V semiconductors and TMDs.
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Similarly, ∑n λ (0, 0; 0, 0)ξ (0, 0; 0, 0) = 0, and only exchange terms shall be accounted.
They can be calculated as

ξ
in

(
n j
m i

)
= 2 ∑

k,k′
Vk−k′

{
|φk|2|φk′|2 −|φk|2φ

∗
k φk′

}
(A.26)

and

∑
mn

λ

 0 0
0 n
0 m

ξ

(
n 0
m 0

)
= 2 ∑

k,k′
Vk−k′|φk|4

{
|φk′|2 −φ

∗
k φk′

}
. (A.27)

The sums (A.26) and (A.27) can be converted into intergrals, and evaluated numerically for
the exciton wavefunction in the form (A.13). As an important consequence of the monolayer
structure of the TMDC, the potential is chosen to be screened,[193, 194, 73] and has the
form

Vq =
2πe2

(4πε0)κq(1+ r0q/κ)
, (A.28)

where e is an electron charge, ε0 is a vacuum permittivity (note that SI units are used), r0 is a
screening length, and κ = (εs1 + εs2)/2 is an average dielectric permittivity for substrates
from two sides.[73] This directly follows from the well-known Keldysh potential of the form

Vee(r) =
e2

(4πε0)r0

π

2

[
H0

(
κr
r0

)
−Y0

(
κr
r0

)]
, (A.29)

defined with the help of Struve and Bessel functions of the second kind, and shown for the
case of two electrons.

Finally, collecting the terms up to N2 order, the nonlinear energy of the excitonic mode
(as appearing in the Hamiltonian) can be written as

EX(nX) = E0 +
8
π

e2

4πε0κaB
I4(r0)nX a2

B −
128

5
e2

4πε0κaB

[
5I6(r0)−2I4(r0)

]
n2

X a4
B,

(A.30)

where exchange integrals for dimensionless length (x = r/aB) depend on the screening length
r0 and read

I4(r0) =
∫

∞

0

∫ 2π

0

dxdx′dθ2πxx′√
x2 + x′2 −2xx′ cosθ(1+ r0

κaB

√
x2 + x′2 −2xx′ cosθ)

×
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× (−1)
(1+ x2)3

(
1

(1+ x′2)3 −
1

(1+ x2)3/2
1

(1+ x′2)3/2

)
(A.31)

I4(r0) =
∫

∞

0

∫ 2π

0

dxdx′dθ2πxx′√
x2 + x′2 −2xx′ cosθ(1+ r0

κaB

√
x2 + x′2 −2xx′ cosθ)

×

× (−1)
(1+ x2)6

(
1

(1+ x′2)3 −
1

(1+ x2)3/2
1

(1+ x′2)3/2

)
(A.32)

where in the case of TMDC materials the dimensionless parameter r0/(κaB) enters the
integrals. We perform the calculations considering MoSe2 on hBN, where r0 = 4 nm [194],
κ = (εs1 + εs2)/2 = 4 for hBN substrates, and leaving aB as a tuning parameter.

A.2.3 Exciton-polaritons at increasing density

Taking our previously derived results for the renormalization of coupling and exciton prop-
erties, let us translate it to the case of polaritons.[28] In the cases where trion mode can be
excluded out considerations (it is weakly coupled and/or largely detuning), we use the two
coupled modes Hamiltonian, concentrating on the exciton-photon coupling. This is justified
by the experimental data at large detuning, where the trion fraction at X-C anti-crossing is
estimated to be small (< 2%). The normal modes of neutral exciton-polariton system read

E±(nX) =
EC +EX(nX)

2
± 1

2

√
ΩX(nX)2 +[EC −EX(nX)]2 (A.33)

where E−(nX)≡ EMPB(nX) corresponds to the middle polariton mode we are interested in.
We proceed with applying the presented theory to explain the nonlinear blueshift of the

middle polariton branch as function of an exciton concentration, for the case where trion
resonance is largely detuned. Using the coefficients derived above, and corresponding density
dependences for the coupling ΩX(nX) and exciton energy EX(n) terms, we plot the nonlinear
energy shift as function of concentration. The theoretical results are shown in Figure 6.10 by
red solid curves. Taking the exciton Bohr radius as the only fitting parameter, we set it to
be aB = 0.85 nm, which allows to qualitatively the behavior of the system. Furthermore, we
verify the obtained value performing the variational procedure to obtain exciton properties
in MoSe2 covered with hBN. This can be done using the standard procedure with screened
Keldysh potential with r0 = 4 nm, κ = 4, and the effective electron mass me = 0.8 m0, [195]
which was measured to be rather large in MoSe2 and similar to the effective mass of the hole,
taken mh = 0.84 m0. This leads to the reduced mass µ = 0.41 m0. Performing minimization,
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we get a(calc)
B = 0.93 nm and binding energy E(calc)

b = 259 meV . These values lie close to
the fitted value and experimentally measured energy, respectively. (As a bonus, in the next
section devoted to trions we explicitly show how the same result can be easily obtained in
the momentum space.)

We note that the ability to reproduce measured energy shift of EMPB is only possible once
both Rabi frequency reduction and nonlinear interactions are considered, while otherwise
failing to provide required scaling. Namely, the inclusion of Coulomb-based exchange can
only explain the observed behavior (2 meV shift within at order of magnitude change for
the density) for either largely increased exciton Bohr radius in TMDC, which is unlikely, or
much higher concentration going into ∼ 1013 cm−2 range. At the same time, if only Rabi
renormalization is accounted, the saturation of nonlinear shift cannot be reproduced.

A.3 Nonlinear trion-polaritons

A.3.1 Trion-polariton Rabi splitting

We consider the system with an initial doping, and study the effects of light-matter coupling
with a multiparticle bound state. In the MoSe2 TMDC this corresponds to a negatively
charged exciton (trion) which is spectroscopically located 30 meV below the excitonic
resonance. We aim to estimate of the Rabi-splitting change for the case of a trion. In the
similar fashion, the deviation from ideal statistics changes the value of trion-photon coupling.
However, we note that the strong light-matter coupling regime for trion is much less studied,
and its treatment requires extra care.

We begin with the interaction between the cavity and the trion mode. The latter can be
generally described by a composite creation operator which creates two electrons and a hole
from the vacuum state, â†

ke,se
â†

ke′ ,se′
b̂†

kh,sh
|ø⟩. Here, ke,e′,h are the momenta of the respective

individual constituents (so-called carrier coordinates [196]), and se,e′,h are the spin indices.
We note that the most favorable trion configuration in MoSe2 monolayer is the singlet state
with two electrons having anti-parallel spin.[197] The operator corresponding to the creation
of a singlet state can be written as[198]

T̂ †
K,↑ = ∑

k1,k2

φ
T
βeK−k1,βeK−k2

(â†
k1,↑â†

k2,↓− â†
k2,↓â†

k1,↑)√
2

b̂†
K−k1−k2,↑ (A.34)

with wavefunction being separated into a trivial center-of-mass part with momentum K,
βe = 1−βX = me/(2me +mh), and the relative motion part described by trial wavefunction
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for the relative motion φ T
k1,k2

(we consider zero CM momentum case). The wavefunction
is written for the relative electron-hole coordinates r1 and r2, being radius-vectors between
the first electron and the hole, and the second electron and the hole, respectively. In the real
space it corresponds to the two exponentially decaying functions

φ
T (r1,r2) =

1√
2

1√
1+χ2

{√
2

πλ 2
1

e−r1/λ1

√
2

πλ 2
2

e−r2/λ2 +

√
2

πλ 2
2

e−r1/λ2

√
2

πλ 2
1

e−r2/λ1

}
(A.35)

where λ1 and λ2 are the variational parameters corresponding to the distances between
electrons and a hole. Note, that φ T (r1,r2) is symmetrized and is normalized to unity, with
χ = 4λ1λ2/(λ1 +λ2)

2. The momentum space version then reads

φ
T
k1,k2

=
1√
2

1√
1+χ2

{√
8πλ 2

1
A

(1+λ
2
1 k2

1)
−3/2

√
8πλ 2

2
A

(1+λ
2
2 k2

2)
−3/2+

+

√
8πλ 2

2
A

(1+λ
2
2 k2

1)
−3/2

√
8πλ 2

1
A

(1+λ
2
1 k2

2)
−3/2

}
≡ N

{
φ
(1)
k1

φ
(2)
k2

+φ
(2)
k1

φ
(1)
k2

}
(A.36)

where we defined N = [2(1+ χ2)]−1/2 and φ
( j)
k =

√
8πλ 2

j /A (1+ λ 2
j k2)−3/2. Finally,

reordering the electron operators in Equation (A.34), and considering CM momentum much
smaller then typical relative momenta, we can write trion creation operator as

T̂ †
K,↑ = ∑

k1,k2

N
{

φ
(1)
k1

φ
(2)
k2

+φ
(2)
k1

φ
(1)
k2

}
â†

k1,↑â†
k2,↓b̂†

K−k1−k2,↑ (A.37)

The choice of the wavefunction (A.36) is of course far from optimal, as to describe
quantitatively the shape of trion solution, more complicated ansatzes with hundreds of
orbitals shall be used.[199] However, in order to get any sensible result for Rabi frequency
renormalization, this is the form we shall adopt.

Once there is a non-zero number of free electrons, the absorption of a circularly polarized
photon can then allow a creation of a trion. The Hamiltonian of the system can be written as
the sum Ĥ T = Ĥ T

0 +Ĥ T
coupl of non-interaction cavity/electron/trion Hamiltonian Ĥ T

0

Ĥ T
0 = ∑

q
ωcav,qĉ†

qĉq +∑
K

ω
T
KT̂ †

KT̂K +∑
k

εkâ†
kâk (A.38)
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and the coupling Hamiltonian for light and matter,

Ĥ T
coupl = ∑

k,q,k1,k2

gφ
T
k1,k2

T̂ †
k+q,↑âk,↓ĉq,⇑+h.c. (A.39)

with g being conduction-to-valence band transition matrix element, previously defined in the
exciton case. εk is an electron dispersion, ωT

K is a trion dispersion, and in Equation (A.38)
the summation over spin is assumed. In Equation (A.39), similarly to the exciton case, the
wavefunction of the relative motion appears due to the fact that out of free electron-hole
complex the bound trion state appears. The process in Equation (A.39) in simple terms can
be seen as a creation of electron-hole pair attached to the electron in a Fermi sea, while the
electron state is (slightly) changed. This can be conveniently described by the quasi-bosonic
excitation, defined by the operator B̂ j, which reads

B̂†
K|FS⟩= 1√

Ne
∑
k

T̂ †
K+kâk|FS⟩ (A.40)

It creates an excitation out of Fermi sea state |FS⟩, and Ne is a number of free electrons
available for trion creation, which can correspond to the selected spin configuration, meaning
that the total number of electrons in the system reads as Ntot

e = 2Ne. The combinatorial
prefactor 1/

√
Ne comes from the number of different ways the excitation can be created,[200]

and we note that Equation (A.40) holds for low temperatures where electron gas is degenerate.
As the excitation operator B̂†

K represents a composite boson, similarly to excitons described
in the previous section B, it is prone to the phase space filling effects. At the same time, it is
not a bound state, and thus exhibits different statistics deviation behaviour. We will describe
this point in details later, when trion-based saturation effects are considered.

We note that previously the light-matter coupling in MoSe2 TMDC material was also
considered for the case of exciton-polarons.[82] This corresponds to similar creation operator
B̂†

j , but different ansatz for the wave function, which accounts for dressing of photo-created
exciton with electrons in the Fermi sea. We stress that both trion-dominated or polaron-
dominated regimes can be possible, as considered in [201]. Recent predictions for the GaAs
samples estimate the cross-over into exciton-polaron regime to happen for Fermi wave vector
to be comparable with inverse Bohr radius for the system, kcr ∼ 0.8 a−1

B .[202] As we show
later, the experiment is conducted in the kF ≪ a−1

B limit of small concentration, which
corresponds to the trion-dominated regime.

Next, we proceed with the estimation of trion Rabi-splitting, or conversely the free
electron density. It is given by the bare coupling constant g multiplied by the square root of
electron density and the wave function part responsible for absorption renormalization due to
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the confinement. First, we account for the fact that photon momentum has typically small
values q, being much less than other relevant wavevectors. This also translates into nearly
zero center-of-mass momentum of the generated exciton, where an electron and a hole are
located close to each other. Here, we follow the approach introduced in [203, 204], where
the so-called electron-exciton coordinates are used. These correspond to the electron-hole
relative coordinate (seen as an exciton) and the relative coordinate of the CM for “exciton”
to the second electron. They are generally described by length parameters λ and λ ′. Due
to complex symmetrization requirements, they do not allow to choose wavefunction in the
simple form, thus preventing the analytical calculation. However, in the limit of large λ2 ≫ λ1

the e-h and e-X coordinates become nearly equivalent, and we can set λ ≈ λ1 and λ ′ ≈ λ2.
Taking the trion wavefunction to be Fourier transformed with respect to an exciton

internal motion,

φ
T
k1,k2

=
∫

dr1
eik1·r1
√

A
N

{√
2

πλ 2
1

exp(−r1/λ1)

√
8πλ 2

2
A

(1+λ
2
2 k2

2)
−3/2+

+

√
2

πλ 2
2

exp(−r1/λ2)

√
8πλ 2

1
A

(1+λ
2
1 k2

2)
−3/2

}
(A.41)

the coupling then can be estimated setting r1 = 0 (i.e. for the closely located photocreated
e-h pair). Simultaneously, we shall account that Fermi wavevector kF ≪ λ

−1
1 ,λ−1

2 , and thus
the wavefunction in Eq. (A.39) can be considered as a constant at k2 λ2,1 = 0, going in front
of the sum. Altogether, the coupling Hamiltonian can be rewritten as

Ĥ T
coupl =

ΩT

2 ∑
q
(B̂†

qĉq +h.c.) (A.42)

where the trion Rabi frequency reads

ΩT

2
= g

√
Ne4N

(
λ2

λ1
+

λ1

λ2

)
=

ΩX

2

√
8πa2

BN

(
λ2

λ1
+

λ1

λ2

)
√

ne (A.43)

where we used the Rabi frequency definition for the neutral exciton case, ΩX/2= g
√

2A/πa2
B,

and ne = Ne/A is a concentration of free electrons which can form trions. Equation (A.43)
then allows to estimate ne using

ne =

(
ΩT

ΩX

)2 1
4πa2

B

[1+16λ 2
1 λ 2

2 /(λ1 +λ2)
4]

(λ2/λ1 +λ1/λ2)2 (A.44)
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once the variational parameters are known.

A.3.2 Trion binding energy and variation

Next, we proceed to define λ1 and λ2 for trions in TMDC. We follow the approach outlined
in [198], using the wavefunction from Equation (A.37). The expectation value for the trion
Hamiltonian (includes kinetic terms for relative motion and Coulomb interaction) then can
be written as

E(T ) =
I1 +2χI2 +J1 +J2

1+χ2 (A.45)

where we define auxiliary quantities:

I1 =

(
1

λ 2
1
+

1
λ 2

2

)
(1+ γ)− 4

λ1

∫
∞

0

dx

(1+ 2r0
κλ1

x)

1
[1+ x2]3/2 −

4
λ2

∫
∞

0

dx

(1+ 2r0
κλ2

x)

1
[1+ x2]3/2

(A.46)

I2 =
4(1+ γ)

(λ1 +λ2)2 −
(λ1 +λ2)χ

2

2λ̃ 2

∫
∞

0
dx

1
(1+ r0

κλ̃
x)

1
[1+ x2]3/2 (A.47)

J1 =
4
λ1

∫
∞

0
dx

1

(1+ 2r0
κλ1

x)

1
[1+ x2]3/2

1
[1+(λ2/λ1)2x2]3/2 (A.48)

J2 =
2χ2

λ̃

∫
∞

0
dx

1
(1+ r0

κλ̃
x)

1
[1+ x2]3

(A.49)

where γ = me/mh, λ̃ = λ1λ2/(λ1 +λ2), and we remind that r0 is screening parameter, κ is
average dielectric permittivity of the substrate. Here, all length parameters are measured in
the units of

a0 =
h̄2

ε04πκ

e2me
(A.50)

and energies are measured in units of

E0 =
h̄2

2mea2
0

(A.51)

To obtain the binding energy for the trion complex, we minimize E(T )[λ1,λ2] with respect to
variational parameters, and subtract the exciton binding energy contribution EX

b . The latter is
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obtained from minimization of

E(X)[λ0] =
(1+ γ)

λ 2
0

− 4
λ0

∫
∞

0
dx

1

(1+ 2r0
κλ0

x)

1
[1+ x2]3/2 (A.52)

which for previously defined parameters of me = 0.8 m0, mh = 0.84 m0, r0 = 4 nm, κ = 4,
gives λ0 = 0.93 nm and binding energy of EX

b = −min{E(X)[λ0]} = 259 meV . The varia-
tional procedure for the trion then gives the binding energy of ET

b =−min{E(T )[λ1,λ2]}−
EX

b = 26 meV for λ1 = 0.87 nm and λ2 = 2.54 nm. These are the parameters which will be
used in the following. Although we remind that considered variation with two parameters is
oversimplistic, it provides energy estimate to be very close experimentally measured trion
binding energy of 30 meV .

Finally, substituting obtained radii λ1,2, aB = 0.93 nm, and experimentally measured
Rabi-splittings ΩT = 5.8 meV , ΩX = 17.2 meV , using Equation (A.44) we estimate the
electron concentration available for trion creation to be ne = 4.05×1010 cm−2, with the full
concentration corresponding to ntot

e = 8.1×1010 cm−2. Note that so far only variation and
parameters obtained from the exciton-polariton case were used, with no fitting involved.

A.3.3 Trion Rabi splitting quench

We continue with the calculation of the modified trion Rabi frequency due to the deviation of
statistics. For this, similarly to excitonic case [Equation (A.3)], we derive the equations of
motion for the excitation mode B̂ j using Hamiltonian (A.42). The nontrivial dynamics part
comes from the light-matter coupling term

i
dB̂q′

dt

∣∣∣
coupl

= [B̂q′,Ĥ T
coupl] =

ΩT

2 ∑
q

ĉq[B̂q′, B̂†
q] (A.53)

and relies on the calculation of commutator [B̂q′, B̂†
q]. To do so, it is instructive to rewrite the

excitation operator in terms of trion and electron, yielding[
B̂q′, B̂†

q

]
=

1
Ne

[
∑
k′

â†
k′T̂q′+k′,∑

k
T̂ †

q+kâk

]
=

=
1

Ne
∑
k,k′

(
â†

k′

{
T̂q′+k′, T̂ †

q+k

}
âk − T̂ †

q+kT̂q′+k′δk,k′

)
(A.54)
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In the case of low pumping intensity, the trion anti-commutation relations resemble that of
ideal fermions, {T̂i, T̂

†
j }= δi, j, and the number of trions goes to zero. Then, the commutator

for q = q′ reduces to integral over distribution function fk and gives unity,[
B̂q, B̂†

q

]
=

1
Ne

∑
k

fk = 1 (A.55)

as it should be for an ideal bosonic mode. However, for the increase of pumping we observe
two contributions which change the commutation relation. First contribution comes from
deviation of fermionicity for composite trion operator, such that {T̂q′+k′, T̂ †

q+k} is not a simple
delta function anymore. For equal momenta this starts at the value of unity, and decreases
with powers of nT λ 2.

The second contribution comes from the composite nature of the quasi-bosonic operator
B̂q, which ultimately depends on the ratio between number of trions and available free
electrons for their creation. To demonstrate this point, let us rewrite Equation (A.54) as[

B̂q′, B̂†
q

]
= δq,q′ − D̂q,q′ (A.56)

where the deviation operator is formally introduced as

D̂q,q′ = δq,q′ − 1
Ne

∑
k<kF

(
â†

k+q−q′ âk − T̂ †
q+kT̂q′+k

)
(A.57)

where we have considered the limit of nT λ 2 ≪ 1, such that trions can be approximately treated
as ideal fermions. We observe that while conceptually the deviation operator resembles the
one used for excitons in the previous section, the fact that trion-electron excitation is not
bound leads to different closure relations and statistics. In this case, it is reminiscent to
intersubband excitations [205] with trion being an excitation over the Fermi sea. We proceed
by deriving the commutation relations for the devation operator and excitation operator,
which reads [

D̂q,q′, B̂†
q′′

]
=

2
Ne

B̂†
q′′+q−q′ (A.58)

and it can be recursively generalized to the case of NT particles as[
D̂q,q′,(B̂†

q′′)
NT
]
=

2NT

Ne
(B̂†

q′′)
NT−1B̂†

q′′+q−q′ (A.59)
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The derived commutation relations, which are dependent on NT/Ne ratio, will be later shown
to ultimately lead to the quench of trion Rabi frequency, where the commutator ⟨

[
B̂q′, B̂†

q

]
⟩

averaged over highly-excited many-body state vanishes.
In the following, we proceed with considering the two aforementioned contributions

one-by-one.

A.3.4 Deviation from fermionicity for the composite trion
anti-commutator

To account for the deviation of statistics, we use the generalized many-body formalism for
composite n-particles [206]. This allows to calculate anti-commutator for the composite
fermion (trion in our case), which consists of three particles of different flavor (opposite spin
electrons an a hole). In the general form, it reads{

T̂m, T̂
†

i

}
= δm,i − Ξ̂mi (A.60)

where deviation from fermionicity operator Ξ̂mi is defined as

[
Ξ̂mi, T̂

†
j

]
= ∑

n
T̂ †

n ∑
ρ

(
λρ

(
n j
m i

)
−λρ

(
n i
m j

))
+ Ξ̂

†
mi j (A.61)

and the operator Ξ̂
†
mi j is defined through the anticommutator{

Ξ̂
†
mi j, T̂

†
k

}
= ∑

p,n
T̂ †

p T̂ †
n Λp,k,n, j,m,i (A.62)

Here single exchange integrals λρ( j, i,n,m) are as in Equation (A.9) (though with three
particle wavefunction), and ρ denotes the carrier to be exchanged. In total, it provides six
contributions, which in the case of zero exchanged momentum we expect to be the same.
The last term in Equation (A.61) corresponds to three-particle exchanges Λp,k,n, j,m,i with all
permutations. As it typically corresponds to ∼ λ 4 scaling, which shall be accompanied by
the quadratic density contribution, we refrain from considering it, and concentrate on lower
order terms only. However, we note that the missing term might still effect the quench of a
trion Rabi, as at increasing concentration the terms in all orders become important.
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The trion exchange is calculated using the trial wavefunction

Φ
T
p,k =

√
8πλ 2

A
(1+λ

2 p2)−3/2

√
8πλ ′2

A
(1+λ

′2k2)−3/2 (A.63)

in the electron-exciton basis without symmetrization, which is accounted at latter stage, and
we take hole exchange as an example. In analogy to the case of trion interaction [207] it
reads

λh

(
0 0
0 0

)
= ∑

k,p,p′
|ΦT

p,k|2|ΦT
p′,k+αh(p−p′)|

2 = λT (A.64)

To evaluate Equation (A.64), we use new coordinates p−p′ = δp,(p+p′)/2 = P, make
momenta dimensionless multiplying it by λ , and define ξ = λ ′/λ . Finally, following
the same procedure as for composite excitons, the anti-commutator ⟨NT |{T̂q′, T̂ †

q }|NT ⟩ is
averaged over a state of NT composite particles (now fermions), such that NT contributions is
obtained. This leads to the estimate for the deviation

⟨
[
B̂q, B̂†

q

]
nF
⟩ ≡ 1

Ne
⟨∑

k,k′
â†

k′Ξ̂q′+k′,q+kâk⟩=−
{

6
128
π

(
λ ′4

λ 2

)
NT

A
IT +(λ ↔ λ

′)

}
=−∆nF

(A.65)

where the dimensionless exchange integral reads

IT =
∫

∞

0

∫ 2π

0
dxdx′dydθ1dθ2xx′y

1
(1+ x2 + x′2/4+ xx′ cosθ1)3×

× 1
(1+ξ 2y2)3

1
(1+ x2 + x′2/4− xx′ cosθ1)3

1
(1+ξ 2[y2 + x′2/4− yx′ cosθ2])3 (A.66)

and we account for symmetrization between λ and λ ′ parameter as a separate term. As in
the case of excitons, we observe that first order correction in nT λ̃ 2 reduces the coupling as
a function of composite particle density (λ̃ is an effective parameter of length dimensionality).

A.3.5 Effects of medium saturation

Next, we find that the increased number of trions as a consequence of increasing pump
intensity provides another contribution for the trion Rabi frequency reduction. To derive
the trion-density dependence for ΩT , we employ the same strategy as previously used for
composite excitons in Section A.2.1. For this, we consider the ground state of the system as
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a Fermi sea of free electrons |FS⟩ available for the trion creation. The relevant excited states
then correspond to multi-trion states |NT ⟩ ≡ (B̂†

q′′)NT |FS⟩. The nonlinear contribution to the
trion Rabi frequency associated to the composite nature of B̂q′′ comes from the average

⟨NT |
[
B̂q′, B̂†

q

]
|NT ⟩= ⟨NT |NT ⟩−⟨FS|B̂NT

q′′

[
D̂q,q′, B̂†NT

q′′

]
|FS⟩ ≈ 1−2NT Ne +O[(NT/Ne)

2]

(A.67)

where we used Equation (A.59) and the fact that q,q′,q′′ are small. The analysis of Equation
(A.67) shows that modified commutation relations can ultimately leads to the quench of the
strong coupling once the number of trions becomes comparable to half the number of free
electrons NT = Ne/2. However, this only corresponds to the lowest order corrections, and
higher terms shall be accounted for increasing NT/Ne ratio to get the full treatment. In this
case, smooth reduction of ΩT is expected up to NT = Ne.

Finally, collecting all contributions together (including the one described in Section
A.3.4), we can write the effective commutator at growing trion density nT = NT/A as a
function

⟨
[
B̂q, B̂†

q

]
⟩= 1− 2nT

ne
−∆nF +∆

2
nF/2+O[nT λ̃

2] := fT (nT ,ne,λ ,λ
′) (A.68)

where similarly to exciton case we conjectured the appearance of the quadratic term ∆2
nF/2,

which appears in the expansion of the exponent. The function fT (NT ,Ne,λ ,λ
′) is decreasing

from 1 to 0, and we consider it zero after the quench. The important parameter then is the
half of available electron density ne/2, which defines the excitation density at which quench
is observed. The resulting density dependent trion Rabi frequency, defined as in Equation
(A.53), then reads

ΩT (nT )

2
=

ΩT (0)
2

(
1− 2nT

ne
−∆nF +∆

2
nF/2

)
(A.69)

and is used later to calculate the density dependence for the polariton modes.

Intuitive explanation. To explain the leading trend of linearly decreased coupling for the
number of trion equal to half the number of free electrons, we note that the coupling of the
trion mode to the cavity bares analogy to the atom-photon coupling[200, 208] (contrary to the
neutral exciton case). This is readily seen in the ∝

√
ne dependence for the coupling constant,

similarly to the common square root enhancement for the N two-level emitters.[209] Given
this correspondence, we show how the coupling between trion and photon changes for high
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excitation power. For the trion case, the state |g⟩ corresponds to a free electron, while excited
state |e⟩ corresponds to the created trion. The total number of available excitations is thus
equal to the number of free electrons ne ≡ N. Using the analogy, we write the Hamiltonian
of the system as

Ĥ = ωcâ†â+
N

∑
j

{
∆|e⟩ j⟨e|+g(|e⟩ j⟨g|â+h.c.)

}
(A.70)

where â† (â) is a creation (annihilation) operator for a cavity mode, and j corresponds to the
considered two level system. The coupling term ∝ g thus describes polaritonic physics. For
simplicity, we can take ∆ = 0 and measure cavity mode energy ωc from this value.

The usual way to treat light-matter coupling in Equation (A.70) is to assume weak
excitation conditions and perform effective bosonization [209] (i.e. make Holstein-Primakoff
transformation). For this, the excitation creation operator reads

b̂† =
1√
N ∑

j
|e⟩ j⟨g| (A.71)

where 1/
√

N corresponds to the normalization condition, and b̂ can be written similarly.
The overall meaning of b̂† is the creation of excitation out available two-level emitters (free
electrons) as a superposition. With the new operators Hamiltonian (A.70) can be recast in
the familiar form

Ĥ = ωcâ†â+g
√

N(b̂†â+h.c.) (A.72)

where the last term corresponds to the usual polaritonic coupling with the superradiant
enhancement, as for coupling to an ensemble of emitters. To see the influence of the light-
matter coupling on the energy of the system (polaritonic shift), we take the many-body wave
function in the form

|ΨG⟩= {|nph,nexc⟩, |nph,nexc −1⟩, |nph −1,nexc⟩, |nph −1,nexc −1⟩, ...} (A.73)

where nph corresponds to the number of photons and nexc to the number of excitations
(i.e. number of |1⟩ j atomic states). Only certain states will be coupled by the off-diagonal
light-matter interaction term. The expectation value for the Hamiltonian (A.72) yields

⟨Ĥ⟩= ωcnph + ⟨nph −1,nexc|g
√

Nb̂†â|nph,nexc −1⟩=
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= ωcnph +g
√

N⟨nph −1,nexc|
√

nph
√

nexc|nph −1,nexc⟩= nph(ωc +g
√

N)

where we considered number of excitations to be equal to number of photons. One observes
that the expectation value contains the same value of coupling g

√
N as before, which is equal

to Rabi frequency.
The situation is however different when weak excitation conditions are not met. In this

case effective bosonic picture (and Holstein-Primakoff transform) is not longer valid. To
compare the two cases, the full basis in Equation (A.70) must be considered. Choosing the
wave function with N −m states to excited, and m states be in ground state {0m

i }, we can
write it as

|ΨE⟩= {|nph⟩⊗ |11,12, ..,0i1, ..0i2, ..,1N⟩, ...} (A.74)

We note that Equation (A.74) is of course an approximation, and the full state may con-
tain components with different number of excited stated. However, as the coherent state
distribution is expected, their influence is suppressed.

Taking the expectation value for Equation (A.70), for Equation (A.74) one gets

⟨Ĥ⟩= ωcnph + ⟨ΨE |
N

∑
j

g|e⟩ j⟨g|â|ΨE⟩= ωcnph +g
√

nph
√

m = nph(ωc +g
√

m/nph)

(A.75)

where the coupling reduced by the factor
√

m/N. For growing number of excitations nexc

(and increasing number of atom in ground state), this prefactor can be expanded into series,
leading to ∝

√
m/N ≈ 1−2nexc/N +O[nexc/N]2 dependence. Finally, it is easy to see that

for all states being excited (m = 0) the coupling goes to zero, as there are no states to couple.
This leads to the conclusion that for the inverted medium (maximal number of trions), the
cavity becomes decoupled from the matter. Of course, in reality other effects coming from
non-fermionicity play the role, and linear quech to zero is expected to change into a smooth
function.

A.3.6 Trion-polaritons at increasing density

Finally, we describe the process of trion Rabi quench, evidenced by the behavior of the
middle polariton branch. To describe Figure 6.8 (left panel), we perform the diagonalization
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of the full photon-trion-exciton system, which can be written as

HT−pol =

 EC
1
2ΩX(nX)

1
2ΩT (nT )

1
2ΩX(nX) EX(nX) 0
1
2ΩT (nT ) 0 ET

 (A.76)

Here we consider the nonlinear contributions to both trion and exciton modes, taking experi-
mentally measured values E(0)

T = 1621.02 meV , EC = 1630.32 meV , E(0)
X = 1645.72 meV ,

ΩT = 5.8 meV , ΩX = 17.2 meV , obtained exciton Bohr radius aB = 0.85 nm, variation
parameters λ1 ≈ λ = 0.87 nm, λ2 ≈ λ ′ = 2.54 nm, and using the estimated electron con-
centration ne = 4.05×1010 cm−2. The result is shown in Figure 6.8 (left panel) by the red
solid curve, and allows to reproduce the initial red shift of EMPB due to quenched trion
Rabi-splitting, followed by the weak blue shift caused by exciton-exciton interactions.

Finally, we notice that in experiment the energy blue shift of the MPB at small exciton
concentrations (see Figures 6.8, left panel and6.12, top panel) is about one order of magnitude
larger than that predicted by the theory. The missing blueshift contribution, which manifests
as a plateau due to competition with ΩT quench and subsequent linear growth, is identified as
a trion-exciton interaction. Indeed, the full trion Rabi quench appears when high order terms
are neglected, with function fT (nT ) reaching zero non-smoothly. However, their account
shall provide non-zero ΩT even for nT ≈ ne/2, leading to residual coupling and small trion
admixture. This for instance can lead to several percent fraction of the trion in MPB branch,
and contribute as trion-exciton exchange. The interaction can substantially increase the
energy of MPB state even for the trion being weakly coupled to light. As a result, at exciton
densities 5−10 times above the maximum density of the excited trions, the MPB can exhibit
substantial blueshift well above that predicted by the theory, which considers only neutral
exciton-exciton interactions.

The full calculation of trion-exciton interaction energy is formidable and is typically
limited due to its large dependence on the trion wavefunction ansatz [207]. Nevertheless, the
overall strength of trion-exciton interaction is estimated to be one-to-two orders of magnitude
stronger than that of exciton-exciton exchange. This is because of the following reasons: 1)
Firstly, the number of electron and hole exchange processes is increased compared to the
X-X exchange case; 2) the outer shell of the trion, described by λ2, defines the scattering
cross-section, which is larger than for exciton; 3) the direct Coulomb term is expected to play
a role, unlike for the neutral exciton-exciton interaction case.
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A.4 Quantum trion-polaritons

We now present a theoretical estimate of how a system analogous to the one considered in the
current paper can be used to observe strong nonlinear response at the quantum level of a few
photons. The experimental signature of such behavior is a pronounced antibunching of the
photon emission, which can be monitored by measuring the second order coherence function.
To calculate the latter, we consider a system described by the trion-photon Hamiltonian,
where the coupling is between a single photonic mode of the cavity, described by the bosonic
operators ĉ, ĉ†, and a trion mode with zero in-plane momentum K = 0, characterized by the
operators B̂0, B̂

†
0 [see definition in Equation (A.40)]. The Hamiltonian can be written in the

rotating frame as

Ĥ = ωcĉ†ĉ+ωT B̂0
†B̂0 +

ΩT

2
(B̂†

0ĉ+ B̂0ĉ†)+P(ĉeiωpt + ĉ†e−iωpt) (A.77)

where P denotes the pump strength for a cw coherent optical drive of frequency ωp. In
Equation (A.77) the first two terms correspond to free cavity photons and trions and the third
term describes the photon-trion coupling. The Rabi splitting ΩT is given by Equation (A.43).
The effective polariton energies in the weak excitation limit read ωL,U = (ωc +ωT )/2∓√

Ω2
T +(ωc −ωT )2/2. Finally, it is convenient to go to the rotating frame with respect to

the last term in Equation (A.77), such that the system is described by the detuning from the
pump frequency.

The non-bosonic operator B̂†
0 is characterized by its matrix elements in the Hilbert space

spanned by the Fock states for trions, |NT ⟩. The matrix elements read

⟨NT −1|B̂0|NT ⟩=
⟨Ø|B̂NT−1

0 B̂q→0(B̂
†
0)

NT |Ø⟩√
(NT −1)!FNT−1

√
NT !FNT

(A.78)

where FNT ≡ ⟨Ø|B̂NT
0 B̂†NT

0 |Ø⟩/NT ! corresponds to the correction factor accounting for the
composite nature of the trion excitation (in the case of bosonic excitations FNT = 1). Its
explicit form can be derived using the recursive relation

FNT−n =
(Ne −NT )!Nn

e
(Ne −NT +n)!

FNT (A.79)

which is similar to those reported earlier for Frenkel excitons [210] and intersubband excita-
tions [205].
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As for the numerator, it can be evaluated using the commutation relation

[B̂q, B̂
†N
q′ ] = N(B̂†

q′)
N−1(δq,q′ − D̂q,q′)− N(N −1)

Ne
B̂†

2q′−q(B̂
†
q′)

N−2 (A.80)

derived iteratively from Equation (A.54). A careful treatment of recursion in arbitrary order
gives a closed expression for the matrix elements

⟨NT −1|B̂0|NT ⟩=

√
NT

(
1− NT

Ne +1

)√
Ne

Ne +1

[
1− (−1)NT

(Ne −NT )!NT !
Ne!

]
(A.81)

and a similar expression can be derived for its complex conjugate. Importantly, Equation
(A.81) works for the relevant case of few trion excitations NT ≤ Ne (contrary to the Holstein-
Primakoff approach [211, 212, 213] which fails in the limit where NT = 1). This will be
important for obtaining correct quantum statistical properties for the cavity emission.

The dynamics is studied by numerically solving the master equation for the full density
matrix of the system in the truncated trion-photon Hilbert space. It reads

∂ ρ̂

∂ t
= i[ρ̂, Ĥ]+ γc

[
ĉρ̂ ĉ† − 1

2

(
ĉ†ĉρ̂ + ρ̂ ĉ†ĉ

)]
+ γT

[
B̂0ρ̂B̂†

0 −
1
2

(
B̂†

0B̂0ρ̂ + ρ̂B̂†
0B̂0

)]
(A.82)

where the first term on the right hand side corresponds to the coherent part of the evolution,
the second term describes photonic dissipation (characterized by the finite broadening of the
cavity mode related to the finite lifetime of the cavity photons), γc = τ−1

c , and the third term
describes trion dissipation characterized by non-radiative broadening γT = τ

−1
T .

To characterize the statistics of the cavity output we evaluated the second order coherence
function at zero delay for the cavity photons, defined as

g(2)(0) =
Tr
[
ĉ†ĉ†ĉĉρ̂s

]
Tr [ĉ†ĉρ̂s]

2 (A.83)

where ρ̂s denotes the steady state density matrix for the continuously driven dissipative
system.

In the current experiment we measured a Rabi frequency ΩT = 5.8 meV and estimated
the free electron density ne = 4×1010 cm−2, with the corresponding number of electrons
being ∼ 1200 in the cavity of area A = 3 µm2. These experimental values already imply the
expected trion-photon coupling strength for the case of a single electron in the cavity area,
gc = ΩT/

√
Ne = 0.17 meV . In improved devices the photonic mode area can potentially be

reduced to A= 1 µm2 using a curved top mirror with smaller radius of curvature [214, 215] so
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that the coupling strength is enhanced by a factor of
√

3, giving gc = 0.29 meV . Meanwhile,
the photon decay rates for an open cavity routinely reach ∼ 0.1 meV values, and can be as low
as γc = 10 µeV (∼ 65 ps lifetime) in the state-of-the-art samples [216, 215]. Furthermore,
electron concentrations down to ne = 1010 cm−2 can be realised in gated samples. In this
case the expected Rabi splitting will be ∼ 3 meV for an average cavity occupation of 100
electrons, making phase-space filling effects even more pronounced and going far beyond
the electronic confinement regime. Finally, in TMDC samples of high purity, which are
encapsulated between thick hBN-layers, the trion inhomogeneous broadening as well as
non-radiative recombination may become negligible such that the trion nonradiative linewidth
γT will be determined by pure dephasing due to scattering with phonons[217]. This may
result in nonradiative trion linewidths as small as γT ∼ 10 µeV at a temperature T of 1 K
[217].

While studying the second-order coherence in the system, we note two possible mecha-
nisms which can reduce the multi-photon component and facilitate single photon emission.
The first mechanism corresponds to the conventional blockade-type antibunching, where
two-photon occupation is suppressed by strong trion-photon coupling at the single particle
level, gc/γc,T ≫ 1. In the following we show that this shall be possible in future high-quality
samples. The second mechanism can be identified as an unconventional-type single photon
blockade [218, 219] due to phase space filling effects, which does not require strong coupling
and works at optimal parameters of gc ∼ γT and ωp ≈ ωc (see [171] for the full analysis). It
relies on destructive interference between the direct coherent optical excitation two photons
and the trion-mediated excitation path [219], thus relaxing the requirement for strong energy
shift. At the same time, it causes oscillations of the second-order coherence as a function of
delay, and generally has smaller emission probability. Below, we consider the two regimes as
long-term and near-term goals for nonlinear trion-polaritonics with TMDC materials.

The results of the second-order coherence calculations are shown in Figure A.1. First,
in Figure A.1 (panel a) we plot g(2)(0) for a range of pump frequencies close to the cavity
transition. For this, we consider cavity linewidth γc = 0.05 meV , ωc =ωT , and gc = 0.29 meV
with 100 electrons. Studying the dependence for different values of the non-radiative trion
decay rate γT we observe the appearance of an antibunching window when gc ≈ γT . At
the same time, for narrow linewidths γT ≪ gc the antibunching behaviour disappears from
the ωp ≈ ωc region, signifying the resonant interference-based nature of the effect and the
modest coupling requirement. At the same time, we note the limited efficiency of the single
photon emission in this window, as cavity occupation is typically in ⟨ĉ†ĉ⟩ ∼ 10−3 −10−4.
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We envisage that in practise the optimal parameters would be tuned using sample positioning
in an open cavity as a tool.

In Figure A.1 (panel b), we consider a different range of pump detunings, where the
coherent drive is nearly resonant with the lower trion-polariton, ωp ≈ ωL, which corresponds
to non-zero ωc −ωp detuning. In the calculations we assume a high-quality cavity with
γc = 10 µeV and improved values of the trion linewidth limited by thermal effects. The
plot for g(2)(0) shows an antibunching for pump frequencies slightly below the transition,
with single photon purity gradually improving as the coupling ratio gc/γc,T increases. The
Fano-shape profile of the g(2)(0) dependence draws the connection to conventional Kerr-
based polariton blockade [220], which can be accessed in structures of larger lateral size and
favours the strong binding energy limit for excitons.

Finally, Figure A.1 (panel c) shows the minimal value of g(2)(0), minimized over a wide
range of pump detunings spanning both regimes, as a function of the trion nonradiative
linewidth γT . For trion decay rate comparable to the light-matter coupling constant gc the
unconventional antibunching can be observed (γT > 0.1 meV). For long-lived trions with
small non-radiative decay (0.01 meV) we also observe pronounced antibunching due to
conventional blockade, which is limited by the cavity quality factor. This shows that single
photon emission with trion-polaritons in MoSe2 is possible in high quality samples.

Fig. A.1 Second order coherence at zero delay for the MoSe2 trion-polariton system. (a)
g(2)(0) as a function of pump detuning plotted in the vicinity of the cavity resonance
(we consider ωc = ωT ), for several values of the nonradiative decay rate γT of the trion
mode (Ne = 100). The destructive interference leads to the appearance of antibunching as
γT ∼ gc = ΩT/

√
Ne, corresponding to unconventional photon blockade. (b) g(2)(0) for pump

frequencies close to the lower polariton frequency, ωp ∼ ωL. Conventional photon blockade
leads to the appearance of antibunching at small γT,c. (c) The minimal g(2)(0), minimized
over pump detuning, and shown as a function of trion decay γT for several cavity quality
factors. Qualitatively different behaviour is visible for γT ≪ gc = 0.29 meV and γT ∼ gc.



Appendix B

Theory on GaN-based polariton
waveguides

B.1 Introduction

In this Appendix, we describe both the FDTD and numerical simulations performed by Dr. P.
M. Walker and Dr. A. V. Yariv, respectively. They are separately presented in Section B.2
and in Section B.3. The former technique was used to quantify the coupling efficiency of the
investigated GaN-waveguides, while the latter was employed to deepen the experimentally
observed spectral broadening.

The theory provided in this appendix refers to Chapter 7 and it is published in Reference
[117].

B.2 Coupling efficiency and losses

Deduction of n2 requires accurate deduction of the pulse energy Epulse inside the waveguide,
which is proportional to the measured incident pulse energy and the coupling effciency of the
input grating coupler. We determine the coupling efficiency and propagation losses by com-
plementing the finite-difference time-domain (FDTD) calculations with direct measurements
of the output power from the waveguide vs. incident power. In this way, we minimised the
uncertainty in our values of n2, which strongly constrain the values of the product of Epulse

and Lloss[1− exp(−L/Lloss)] appearing in Equation 7.9, and so reduce the dependence on n2

on the coupling efficiency. Here we explain our method by way of an example using the data
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presented in Figure 7.6.

We first measured the ratio of power coming out from the output coupler vs. that incident
on the input coupler. The incident power was measured directly using a power meter. The
power coming out the output coupler was below the sensitivity of the power meter and so
it was measured using the count rate on the CCD camera (as already described in Section
7.3). The CCD count rate vs. laser power at the sample surface was calibrated by sending the
excitation laser at a know power to the CCD along exactly the same path used for detection.
We obtained the ratio output power divided by input power η = (4.3± 0.4)× 10−5 and
(1.8±0.2)×10−5 for temperatures 100 K and 200 K respectively.

The output vs. incident power ratio η arises from the input and output coupling efficiency
and the propagation losses and can be expressed as η = (κup/κ)2 ·F · exp(−L/Lloss). The
lengths L and Lloss are, respectively, device length and the characteristic propagation loss
length. The rate κup is the coupling rate of the guided mode to the free space propagating
mode above the sample used for excitation/detection, while κ gives the coupling of the
guided mode to all channels including to the excitation/detection mode and into the substrate.
It also includes ohmic losses in the metallic coupler. The ratio κup/κ is squared since, by
reciprocity, this factor is the same for the input and output couplers. The factor F accounts for
the imperfect mode matching of the Gaussian excitation beam to the exponentially decaying
guided mode at the input coupler. The optimal value of F is 0.8, which occurs when the
Gaussian spot size is matched to the decay length of the mode on the grating and the spot is
positioned optimally with respect to the grating edge. In our experiment, the spot size and
decay length were comparable at 6.5 µm and 3.5±0.4µm respectively, and in each experi-
ment we carefully optimised the spot position and incidence angle (as already mentioned in
Section 7.3). We therefore assume optimal coupling, F = 0.8 and note that if the real value
is smaller then less power would be coupled into the waveguide than we assume so that the
value of n2 would be larger than we deduce.

To evaluate κup/κ , we performed FDTD simulations of the waveguide and grating
structure using the commercial Lumerical FDTD package. We used the full 3D solver
but, since our structure is homogeneous in the y direction (transverse to the propagation)
we assumed plane-wave behaviour in the y direction to allow achievable simulation run
times. This is well justified for the non-diffracting spot sizes we have in the experiment in
the low power regime where we calibrate the coupling efficiencies. The guided mode of
the (simulated) waveguide was excited away from the output coupler and the fraction of
power in the guided mode which is coupled into the free space above the output grating
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was recorded. The nitride material refractive indexes were taken from [101]. The exact
values of complex permittivity chosen for the nickel grating coupler were found to make
some difference to the results so we performed the simulation using a range of experimental
values from the literature and took an average. We obtain κup/κ = (5±1)% and (6±1)%
for 100 K and 200 K temperature, respectively, where the uncertainties include the spread
due to variation in material parameters between sources. The corresponding input coupling
efficiencies are F · (κup/κ) = (4.2±0.9)% and (5±1)% for 100 K and 200 K, respectively.
The uncertainties come from variations in material parameters obtained from different sources
in the literature. To check for consistency, the simulated decay length on the grating was
4.6±0.2(4.9 ±0.2) µm for 100 K (200 K) which agrees well with the experimental value
suggesting that the effect of the grating is accurately modelled. The simulated emission angle
of the out-coupled light also agrees well with the experimentally measured values.

Taking these values of F , κup/κ and the experimentally measured values of η we are
then able to deduce the losses in the waveguide. We obtain characteristic loss lengths
Lloss = 25±3 µm for 100 K and 21±2 µm for 200 K. These are slightly smaller than the
values ∼ 50±15 µm reported for similar exciton fractions in [101] which were, however,
measured between 4 K and 30 K. This difference could arise from the increased homoge-
neous exciton linewidth at elevated temperatures. These can even exceed the inhomogeneous
broadening and begin to dominate below-bandgap absorption. The increase in propagation
losses between 100 K and 200 K may be due to a reduction in internal quantum efficiency
of the MQWs, which was previously observed in photoluminescence measurements on the
near-identical sample of [101]. It originates due to increased scattering of excitons away
from the radiatively coupled states at higher temperatures [104].

We finally note that the uncertainties in all the parameters we discuss in this section are
robustly incorporated into the uncertainty we give for the nonlinear parameter n2.

B.3 Numerical simulations

The experimental spectra are in agreement with numerical simulations of propagating polari-
tons, shown in Figure B.1(a) for parameters corresponding to T = 100 K, ∆ =−92 meV and
incident pulse energies 200 pJ (black lines) and 750 pJ (blue). We found good agreement
between the widths of the numerical and experimental spectra for pulse energies up to 225 pJ
(see Figures B.2, B.3 and B.4 for further details). The spatio-temporal distributions of the
field intensity corresponding to the spectra in Figure B.1(a) are shown in Figures B.1(b-c).
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As the pulse energy is increased from Figure B.1(b) to B.1(c), we observe an increasing
modulation of the field intensity coinciding with increasing spectral broadening, confirming
that the spectral broadening arises from the sub-picosecond nonlinear modulation. At pulse
energies higher than 225 pJ the simulations continue to show this qualitative trend although
the spectral broadening no longer agrees quantitatively with the experiment. This may be
due to failure of the slowly varying amplitude approximation for large broadening.

Fig. B.1 Simulated nonlinear pulse propagation. (a) Numerically calculated normalized
spectra of the output field corresponding to T = 100 K, ∆ =−92 meV and pulse energies of
200 pJ (black lines) and 750 pJ (blue). (b,c) The numerically calculated spatio-temporal
distributions of the intensity of the field after 100 µm propagation in the planar waveguide
for incident pulse energies 200 pJ (b) and 750 pJ (c).

The manifestation of strong nonlinear effects, in particular spectral broadening, is also
observed in direct numerical simulations. The dynamics of the photons and the excitons
is described by a simple model of coupled equations for the slow varying amplitude of the
photonic mode U and the excitonic mode ψ (see [10]), where this approach is used to describe
the propagation of nonlinear pulses in GaAs-waveguides. In this work we use a very similar
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model but take into account the dispersion of the photon mode and the dependence of the
photon-exciton interaction strength (Rabi splitting) on the density of the excitons. We assume
that the vertical structure (along the z coordinate) of the mode is fixed and the dispersion of
the guided modes is known from the experiment. Let us mention that in spatially uniform
systems the frequency of a plane wave depends only on the absolute value of the wavevector
and thus the dispersion ω(kx,ky) reduces to ω(k) with k =

√
k2

x + k2
y . In what follows we

consider wave envelopes of finite duration and aperture propagating along the x coordinate.
Assuming that the duration and the aperture are large (so that in the spectral domain the
pulse is narrow) we can look for a solution in the form E =U(t,x,y)exp(iω0 − ik0x) for the
electric field and Ψ = ψ(t,x,y)exp(iω0 − ik0x) for the exciton field. The frequency ω0 is the
frequency of the exciton resonance and k0 is the wavevector of the uncoupled photon mode
at which it crosses ω0, such that ω0 = ω(k0). Then for the slow varying amplitudes U(t,x,y)
and ψ(t,x,y) we can write the system of coupled equations

∂tU = ω̂U − γpU + i
Ω

1+β |ψ|2
ψ + p(t,x,y) (B.1)

∂tψ = iα|ψ|2ψ − γxψ + i
Ω

1+β |ψ|2
U (B.2)

where ω̂ is the operator accounting for the photon subsystem dispersion and diffraction
in the slow varying amplitudes representation, γp and γx account for the losses in the photon
and in the exciton subsystems respectively, and Ω is the Rabi splitting in the linear regime.
We assume that both the exciton frequency and the Rabi splitting depend on the exciton
density |ψ|2. This is accounted for by the Kerr like term in (B.2) and by the dependence of
the photon-exciton interaction strength Ω

1+β |ψ|2 on the exciton density, where the parameter
β controls the closing of the gap at high exciton densities. In the Fourier representation
the operator ω̂ can be approximated by a Taylor expansion in the vicinity of the point
kx = k0, ky = 0. Then the polynomial approximation of the operator can be written as
ω(kx,ky) = ∑n ∑m

1
n!m!∂

m
kx

∂ n
ky

ω|kx=k0,ky=0qm
x kn

y , where qx = kx − k0. The approximation of
the dependency ω(k) is known from the experiment and this allows us to calculate the
coefficients in the expansion. In coordinate representation the operator ω̂ has the form
ω̂ = ∑n ∑m

1
n!m!∂

m
kx

∂ n
ky

ω|kx=k0,ky=0(i∂x)
m(i∂y)

n. Let us mention that if the dispersion of the
photon mode is neglected and so ω = vgk then, accounting only for the terms up to second
order, we obtain ω̂ = vg(∂x +

1
2k0

∂ 2
y ). In this simple case the model coincides exactly with

the model used in [10]. In this work we take into account the real photon dispersion and we
use the time as an evolution coordinate. If the problem is posed in this way then the initial
condition is the spatial distribution of the field. It is also possible to account for the excitation
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pulse by a source p in Figure B.2. Then we can set the zero initial condition and excite the
field by the source to reproduce the effect of the incident pulse in the experiment. The pulse
duration and the frequency detuning of the pulse from the linear exciton resonance is taken
into account by the temporal dependency of the source p. The spatial dependency of the
source p accounts for the spatial distribution of the incident pulse and the structure of the
coupler. For the numerical simulations the parameters were tuned to fit the experiment at
temperature T = 100 K and pump wavelength λ = 354 nm.

Fig. B.2 Calculated spatio-temporal distributions of the intensity of the field propagating
in the planar waveguide for pulse parameters corresponding to the experiment and central
wavelength λ = 354 nm. The left column (panels (a)-(c)) shows the nonlinear propagation
with pulse energy W0 = 200 pJ while the right column (panels (d)-(f)) shows the same for
W0 = 750 pJ. No significant change in pulse was observed in the linear propagation regime
(W0 = 2.5 pJ). Time t = 0 corresponds to the intensity peak of the incident pulse.

The evolution of the pulse as it propagates is shown in Figure B.2 for two different
pulse energies. For GaN systems it is expected that the prevailing nonlinearity is caused
by the dependence of the coupling strength (Rabi splitting) on the exciton concentration
(see Section 7.5) so the simulations presented here are done for the case α = 0. We later
show that both types of nonlinearity give qualitatively the same behaviour. It is seen that
during propagation in the nonlinear regime the pulse becomes slightly broader in the y
direction but gets significantly compressed in the x direction because of the interplay of the
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normal dispersion, diffraction and effective defocusing nonlinearity. Figures B.2 (b) and (e)
correspond to the experimental device length of 100. Even at pulse energy W0 = 200 pJ the
pulse has compressed and become modulated by then end of the device. At W0 = 750 pJ the
pulse is strongly modulated even by 50 propagation (see Figure B.2(d)). After the initial
compression and modulation the pulse begins to spread out due to dispersion and diffraction
as can be seen by comparing the intensity envelopes for 150 (Figures B.2 (c) and (f)) with
those at 100 (Figures B.2 (b) and (e)). This is because system losses reduce the total intensity
so that, at longer propagation distances, the nonlinearity cannot compensate the dispersion.

We assume that light is rapidly coupled out by the output coupler over a length scale small
compared to the coupler size. In this case the size of the output coupler is not important. This
is justified by the experimental measurment of 3.5 decay length on the coupler, compared
to 100 size. To reproduce the experimental conditions the output coupler in numerical
simulations is situated on the axis of the radiation propagation (y0 = 0) at the distance of x0

from the excitation spot. The calculated time-dependencies of the normalized field intensity
|U |2 at x = x0, y = 0 are shown in Figure B.3(a) for different energies of the initial pulse. It
is seen that for higher pulse energies the compression of the pulse takes place. It is worth
mentioning here that the exciton frequency blueshift can lead to a similar effect. The field
intensity distributions calculated for the case of pure nonlinear exciton blueshift are shown in
Figure B.3(b). It is seen that the compression of the pulse is very much similar to the one
observed in the case where Rabi splitting depends on the density of excitons.

Fig. B.3 The calculated temporal intensity profiles at the transverse centre of the output
coupler (y = 0, x = x0 = 100) for different pulse energies. (a) The case where the nonlinearity
is caused by the density dependent photon-exciton coupling (Rabi splitting). (b) The case
where the nonlinearity is caused by density dependent exciton frequency. Time t = 0
corresponds to the arrival of the pulse at the input coupler. Simulations are done pulse central
wavelength λ = 354 µm.
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Now let us discuss the spectra of the output field. We define the temporal spectrum of the
field measured at point x as S(ω) =

∫
|
∫

U(x = x0,y, t)exp(−iωt)dt|2dy. This quantity is
equivalent to the experimental value obtained by the integration of the spectra measured at all
points across the coupler. The spectra calculated for the incident pulse energies W0 = 115 pJ
and W0 = 750 pJ are shown in Figures B.4(a),(b) for the case where the exciton-photon
coupling depends on the exciton density.

For relatively low intensities the calculated dependencies of the pulse spectral width
match the experimental one well. At the same time the comparison shows that for higher
intensities the model no longer has quantitative agreement with the experiment. One of
the reasons explaining this fact is that the GaN samples have complex nonlinearity and the
assumption that the main contribution comes from the dependency of the effective Rabi
splitting on the exciton density does not apply for high energy pulses. Another reason of
the discrepancy between the theoretical and the experimental results is that at higher powers
the broadening of the spectrum becomes significant (in both the frequencies and the wave
vectors) and therefore the slow varying amplitude approach fails to account for the dispersion
of the generated frequencies.

It is instructive to show the dependencies of the pulse spectral width on the energy
in the incident pulse. We define the spectral width as ∆S = λ1 − λ2, where λ2 = 2πc

ω2+ω0
,

λ1 =
2πc

ω1+ω0
and ω1,2 are found from the condition

∫
ω1
−∞

S(ω)dω = 1
4W ,

∫
∞

ω2
S(ω)dω = 1

4W ,
W =

∫
∞

−∞
S(ω)dω . Physically it means that a quarter of pulse energy is in the frequencies

higher than ω2 and a quarter of the pulse energy is in the frequencies lower then ω1.
The theoretical and experimental dependencies of the spectrum width are shown in Figure

B.4(c). It is seen that for relatively low pulse energies the numerical dependency matches
the experimental one well, however at higher energy levels the deviation increases. This
can be seen in more detail in Figure B.4(d) which shows the experimental and theoretical
dependencies over a large range of pulse energies.

As already mentioned above, the effective defocusing nonlinearity has two contributions -
from the dependency of the exciton resonance frequency on the exciton density and from
the dependency of the Rabi splitting on the exciton density. We have modelled the spec-
tral broadening for both types of nonlinearity. We find that the nonlinearity arising from
the exciton frequency blueshift does not lead to any qualitative differences in the spectral
broadening of the pulse compared to that arising from Rabi splitting reduction. This can be
seen in Figure B.4(d) where the dependencies of the spectral width on the pulse energy are
presented for the pure nonlinear Rabi splitting, pure exciton blueshift and for the case where
the nonlinearities contribute equally to the spectrum broadening. It is seen that the curves are
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very much similar. However, it is good to note that the nonlinear Rabi splitting gives slightly
better fit to the experimental dependency, which can be seen as an indication that this is the
dominating source of the nonlinearity.

Fig. B.4 Comparison of numerically calculated and experimental spectra at the output. (a) and
(b) compare numerical (black lines) and experimental (open red circles) spectra for incident
pulse energies W = 115 pJ and W = 750 pJ respectively. (c) and (d) compare numerical and
experimental dependence of the spectral width on pulse energy for small and large ranges
of pulse energy respectively. The simulations for (a)-(c) are done for the case when the
nonlinearity is caused solely by the dependence of the Rabi splitting on the exciton density.
(d) compares nonlinearities caused by the density dependent Rabi splitting (black curve),
density dependent exciton frequency (blue curve), and an equal contribution of both (green
curve).
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