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Abstract

This thesis concerns the use of a bi-intuitionistic modal logic, UBiSKt, in the
field of Knowledge Representation and Reasoning. The logic is shown to be able
to represent qualitative spatial relations between subgraphs at different levels
of detail, or granularity. The level of detail is provided by the modal accessibil-
ity relation R defined on the set of nodes and edges. The connection between
modal logic and mathematical morphology is exploited to study notions of gran-
ulation on subgraphs, namely the process of changing granularity, and to define
qualitative spatial relations between these “granular” regions. In addition, a
special case of graph and hypergraph granularity is analysed, namely when the
accessibility relation gives rise to a partition of the underlying set of nodes and
edges. Different S5 extensions of intuitionistic modal logic are considered and
compared in the thesis. It is shown that these logics, and their associated se-
mantics, provide different ways of partitioning a graph, a hypergraph, or, more
generally, a partially ordered set.
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Introduction

General aim

This thesis concerns the use of a bi-intuitionistic modal logic with universal
modalities, UBiSKt, in the field of Knowledge Representation and Reasoning.
The thesis is divided into three parts, each treating a distinct but related topic.
The first part concerns the use of the logic to express discrete spatial relations on
graphs and hypergraphs. The second part concerns the study of the phenomenon
of granularity for graphs and hypergraphs, and how spatial relations under
granularity can be expressed within the logic. The third part concerns the
study of graph and hypergraph partitions. In what follows, the three parts will
be introduced.

Part 1. The logic UBiSKt is an extension of BiSKt, first introduced in [74].
Under certain conditions the intuitionistic frame (U,H), where U is a set and
H ⊆ U × U is a partial order, can be seen as forming an undirected graph, or
more generally a hypergraph, i.e. a structure made of edges and nodes where
an edge is possibly incident with more than two nodes. The set U is the union
of the set of edges and the set of nodes, whilst the partial order arises from the
reflexive closure of the incidence relation between edges and nodes. In this work
this fact is used to express discrete topological spatial relations (RCC-8 style,
from [57]) between subgraphs of a (hyper)graph, within the bi-intuitionistic
modal logic UBiSKt. Expressing spatial relations in discrete space is different
from expressing spatial relations in dense space. It appears to be the case that
little work has been done previously on spatial relations that apply to graphs and
hypergraphs. The calculus of UBiSKt can be implemented, using the theorem
prover generator Mettel [85], [71] (see [68] for the implementation). Thus it is
also possible to automate spatial reasoning about regions in a network, using
this tool.

Part 2. Mathematical morphology is a discipline within the field of image
processing that provides a set of tools to analyse images at different levels of
detail. The level of detail is parametrised by the structuring element, a shape
that acts as a probe [65] through which an image is looked at. As Dougherty
reports [19], according to George Matheron, who together with Jean Serra can
be considered the originator of mathematical morphology, knowledge about an
object is relative to the way we probe it, i.e. how we observe it. In the context
of mathematical morphology for image processing, where images are usually
interpreted as subsets of the grid of pixels, the basic operations are dilation and
erosion by a structuring element. From these, two other fundamental operations
are defined: opening, obtained by applying erosion followed by dilation, and
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closing, obtained by applying dilation followed by erosion. The opening can be
described as the operation of fitting copies of the structuring elements within
the image. The closing can be described as fitting copies of the structuring
element, rotated by a half turn, on the complement of the image, and then
take the complement of this [9]. This idea of describing an image by a certain
shape, can be seen as a way to approximate the image, thus a way to change the
level of detail. Mathematical morphology has been situated in a more general
context than the pixels grid. Heijmans and Ronse [37] develop a general theory
of mathematical morphology on complete lattices, where dilation and erosion
are respectively join and meet preserving functions on complete lattices. It is
well known that modal logic is closely connected to mathematical morphology,
[6], [77]. A structuring element gives rise to a relation on the set and this relation
can be interpreted as the accessibility relation of modal logic (more details about
this can be found in Section 4.1). Moreover, morphological dilation corresponds
to the diamond modal operator �, arising from the associate relation, whilst
erosion corresponds to the box modal operator �1. It is well known that the
theory of mathematical morphology can be extended to complex structures,
such as graphs [86], [15] [14], hypergraphs, and simplicial complexes [17].

This thesis investigates how to represent graph regions at different levels
of detail, or granularity. The term granularity refers to the presence of some
granules, or clusters in the information. We exploit the connection between
modal logic and mathematical morphology to define, within UBiSKt, the spa-
tial relations between subgraphs under granularity, i.e. when the subgraphs
have undergone a granulation process, which is a type of approximation. The
idea is that, instead of being able to see individual nodes and edges of a sub-
graph, only groups of those that can be described by a structuring element can
be seen. We express all the RCC-8 spatial relations between subgraphs in terms
of R-dilates, i.e. copies of the structuring element. R-dilates can be seen as
the new atomic parts of the space, the granules of information. In this way
we can check what spatial relations occur between subgraphs, not only at the
detailed level, i.e. when we consider every single node and edge as a singleton
of the representation, but also when we look at subgraphs through the probe
of a certain structuring element. As far as we know, the use of intuitionistic
modal logic for expressing spatial relations between subgraphs at different levels
of detail is new.
Part 3. In rough set theory, introduced for the first time by Pawlak [54] as
an extension of set theory, elements of a set are grouped together whenever
they share certain attributes. This yields an equivalence relation between the
elements, that in turn gives rise to a partition of the set and to its quotient
structure. The quotient structure is the set of blocks of the partition, the
collection of the subsets of elements that cannot be distinguished on the basis
of the available information provided by certain attributes. Looking at the
quotient stucture, we get a coarser view of the initial set. It is well known that
rough set theory connects with the classical modal logic S5, where the semantic
frame is a set U plus an equivalence relation R ⊆ U × U , [53], [92]. Two
kinds of subset approximations are considered in rough set theory, the lower
approximation X, that has the same semantics of the modality S5-�, and the

1Usually in modal logic the modalities ♦ and � are considered. In the temporal reading of
modal logic, they express possibility and necessity in the future respectively, whilst � and �
are used to express possibility and necessity in the past.
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upper approximation X, linked in the same way to the modality S5-�. Notice
that usually the white diamond ♦ is considered alongside the white box �, in
the modal logic S5. However, as the relation R is an equivalence relation and
thus symmetric, white diamond and black diamond are equivalent.

As we will see, partitions of graphs and hypergraphs are important, as they
give a way to look at these structures at a coarser level of detail. Equivalence
relations, which are reflexive, symmetric and transitive, are well known to cor-
respond to partitions on sets. This work considers these questions: (i) are there
analogous properties of relations on hypergraphs that correspond to partitions
on hypergraphs? (ii) what properties does the associated quotient function,
linking the hypergraph to its quotient structure, have? An obvious possibil-
ity is considering simply equivalence relations on hypergraphs, so relations on
hypergraphs that are reflexive, symmetric and transitive. But, as we will see,
things are not so simple, as observed in [66], where question i is also addressed,
but the properties of the quotient function are not considered. As we model
a hypergraph as a poset (U,H), and thus as an intuitionistic frame, we look
at different versions of the intuitionistic modal logic S5. These are indeed the
intuitionistic analogues of classical modal logic S5, that, as mentioned, can be
described as the logic of equivalence relations on sets. Many systems have been
proposed as intuitionistic analogues of S5, as in [52]. Whilst there is agree-
ment on imposing reflexivity and transitivity on the S5 accessibility relation
R, different constraints substituting symmetry have been proposed. We will
consider some constraints on R substituting symmetry, appearing in [52] and
[66], and we will see that each of them corresponds to a different constraint on
the quotient function, linking the initial poset to its quotient structure. They
all give rise to different types of partition and quotient structure of a poset.
Finally, the thesis goes on to discuss a new S5 intuitionistic logic, extending
UBiSKt. Its semantics describes an intuitionistic frame (U,H,R), where R
has all the properties that we believe are fundamental to give a satisfactory ac-
count of hypergraph partition, and to build the related quotient structure, i.e.
a coarser view on the starting hypergraph. Thus, the main contribution of this
part of the thesis is looking at intuitionistic analogues of S5 under the light of
a theory of hypergraph partition, or more generally poset partition. Different
axioms, and corresponding properties that have been proposed in the literature,
are evaluated and compared, under the light of this application.

Structure

This thesis is structured as follows.

• Chapter 1 introduces the background and analyses in detail the motiva-
tions for this work.

• Chapter 2 introduces the logic BiSKt, and its extension UBiSKt.

• Chapter 3 shows how UBiSKt can be used as a spatial logic, where
topological spatial relations between subgraphs can be defined.

• Chapter 4 puts forward a notion of granulation for subgraphs based on
mathematical morphology, and spatial relations between granular regions
within UBiSKt are defined and analysed.
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• Chapter 5 looks at a special case of hypergraph granularity, or more gen-
erally poset granularity, namely when a partition of the underlying of set
is obtained.

• Chapter 6 provides a conclusion and further work.

Contribution

During her PhD studies, the author of the present work has collaborated with
other researchers, thus results disseminated in this work come from these collab-
orations. This is why the author believes it is important to explicitly underline
her independent contributions. The use of the logic UBiSKt to express discrete
spatial relations and predicates between subgraphs, and the analysis of this, pre-
sented in Chapter 3, are contributions of the author, as well as the definitions
and analysis of the granular spatial relations between granular subgraphs pre-
sented in Chapter 4. The use of the two formulae presented in Theorem 21 and
25, to express the notions of hypergraphs and graphs in UBiSKt is the contri-
bution of the author. The work on the tableau-style calculus for UBiSKt and
its implementation within the theorem-prover generator Mettel is the contribu-
tion of the author. The proof of completeness of a logic containing UBiSKt
and the formula expressing the notion of graphs with respect to the graph’s
class of H-frames (Lemma 42 and Theorem 43) is the contribution of the au-
thor. The analysis of the different constraints yielding to different intuitionistic
modal logics S5, under the light of a theory of poset partitions in Chapter 5
is the contribution of the author, as well as the definitions of the spatial rela-
tions in the new S5 system for UBiSKt. Results achieved in collaboration are
explicitly indicated in the thesis.



Chapter 1

Background and Related
Work

1.1 Modal logic

Modal logic is an extension of classical logic that enables the evaluation of the
truth of statements expressing necessity and possibility. Many approaches have
been taken to develop the semantics of modal logic, one of the most well known
being the relational semantics approach developed by Kripke in [41].

Definition 1. A Kripke relational frame F is a pair (U,R), where U is a set
and R ⊆ U × U is a binary relation.

The syntax of classical modal logic provides propositional variables p, q, r, . . .,
the usual logical connectives ∨, ∧, →, ¬, and the modalities � and ♦. In the
context of tense logics, i.e. when the relation R models some temporal order
over the elements of U , � and ♦ are interpreted as necessity and possibility in
the future. So a statement like �p can be read as “p will definitely hold in the
future” and ♦p can be read as “p will possibly hold in the future”. Thus in
tense logics two further modalities have been considered: � and �, and they
express necessity and possibility in the past. We also remark that, in a classical
modal logic, � and ♦ are inter-definable as ♦p ↔ ¬�¬p and �p ↔ ¬♦¬p
are theorems, an analogous relationship holds between � and �. Formulae are
defined by stipulating that propositional variables are formulae, and if ϕ, ψ are
formulae then so are ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, ¬ϕ, ∗ϕ, with ∗ ∈ {�,♦,�,� }.
The semantics for this logic allows an interpretation of atomic propositions as
subsets of U , and formulae correspond to subsets constructed out of these.

Definition 2. A Kripke relational model M is a tuple (U,R, V ) where (U,R)
is a frame and V : Prop→ P(U), assigns each propositional variable p ∈ Prop
to a subset of U .

V can then be extended to a function J KM taking as input generic formulae.
The set JϕKM is usually called the truth set of ϕ, and, when a model is defined
and a valuation is given, JϕKM = {u ∈ U | u |= ϕ }, where ‘|=’ is the usual
relation of satisfiability between elements of U and formulae, or semantic truth.
We will omit the subscript M when no confusion arises.

5
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Formulae in the language of modal logic are assigned to subsets of U , and
truth and falsity in the language, denoted as usual as > and ⊥, are inter-
preted respectively as U and ∅. The logical connectives ∨, ∧, ¬ are classically
interpreted as the set-theoretic operations of union ∪, intersection ∩, and com-
plement −. Implication → is handled by defining Jϕ→ ψK = −JϕK ∪ JψK. This
means Jϕ → ψK holds in a given interpretation if and only if JϕK ⊆ JψK. The
semantics for the modalities can be expressed as follows:

Definition 3. Given a model M = (U,R, V ), given a subset X ⊆ U , such that
X = JpKM for some propositional variable p, we define

J�pK = {u ∈ U | ∀v(u R v implies v ∈ JpK)}
J♦pK = {u ∈ U | ∃v(u R v and v ∈ JpK)}
J� pK = {u ∈ U | ∀v(v R u implies v ∈ JpK)}
J� pK = {u ∈ U | ∃v(v R u and v ∈ JpK)}

We also introduce the following notation about binary relations1 that is
going to be used in the thesis.

Definition 4. Given sets U , V and W and relations R ⊆ U×V and S ⊆ V ×W ,
R ; S ⊆ U ×W is the relation composition of R and S, that is:
{ (u,w) ∈ U ×W | ∃v ∈ V such that u R v S w }. The converse of a relation
R ⊆ U × V is R̆ = { (u, v) ∈ V × U | (v, u) ∈ R }. The relational complement of
R is R = {(u, v) ∈ U × V | (u, v) /∈ R}. The identity relation I ⊆ U × U on a
set U , is the set { (u, u) | u ∈ U }.

We also remind the reader about the following facts regarding relations: R ⊆ S
iff R̆ ⊆ S̆ and ˘̄R =

¯̆
R. Also

˘̆
R = R and ¯̄R = R. (cf. [45] page 6).

1.2 Modal Logic and Mathematical Morphology

Mathematical morphology is a discipline in the field of image processing, that
has been applied to the analysis of the structure of materials in different fields,
such as mineralogy, petrography, cytology and so on [37]. Mathematical mor-
phology uses mainly concepts from set theory, and a prominent aspect of the
discipline is its algebraic basis. This is explored in [37] and [60], whilst for a
general introduction we refer to [65]. Modal logic and mathematical morphology
are two different disciplines that are now being recognised as closely connected
[6], [8],[9]. The connection between them comes from the fact that the two
basic operations in mathematical morphology, dilation and erosion, have the
same algebraic properties of the modalities � and �. Both these pairs form an
adjunction, an algebraic concept that we will shortly introduce. Let U be a set
with X ⊆ U and R ⊆ U × U .

Definition 5. Dilation⊕ and erosion	 are operations with signature P(U),P(U×
U) 7→ P(U) and P(U × U),P(U) 7→ P(U) respectively.

X ⊕R = {u ∈ U | ∃v(v R u and v ∈ X}
R	X = {u ∈ U | ∀v(u R v implies v ∈ X}

1In the following definition we assumethe general case of a relation R ⊆ U × V where the
sets U and V are possibly different. When U = V we talk about a homogeneous relation.
When U 6= V , the relation R is known in the literature as a heterogeneous relation, see [63].
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From Definition 3 it is immediate the connection that � is associated to X 7→
R 	 X, and � is associated to X 7→ X ⊕ R. We can also consider converse
erosion and dilation, giving � associated to X 7→ R̆ 	X, and ♦ associated to
X 7→ X ⊕ R̆.

Usually in mathematical morphology the operations of dilation and erosion
are defined in terms of a structuring element, a small shape acting as a sort of
probe, by which images, that can be interpreted as subsets of a set of pixels, can
be modified. However a structuring element gives rise to relation defined on the
set (details of this are given in Section 4.1), and, on this basis, the relational
approach to mathematical morphology has been developed, [9] and [77]. An
example of a structuring element and associated relation on the pixel grid, with
operations of dilation and erosion over a subset of pixels is given in Figure 1.1

X R

X ⊕R R	X

Figure 1.1: A subset of a set of pixels X with its dilation, X ⊕ R (blue and
purple area) and erosion, R 	 X (brown area). A structuring element can be
seen as a way to generate a relation. In this case, the cross-shape structuring
element can be seen as (the reflexive closure of) of the 4-adjacency relation on
the grid of pixels.

For a fixed relation R ⊆ U×U , the operations ⊕R and R	 with signatures
P(U) 7→ P(U) form an adjunction on the lattice of P(U). The dilation by R,
⊕ R, is called the left adjoint and the erosion by R, R 	 , is the right

adjoint, in the following sense.

Definition 6. Let (V,≤V ) and (W,≤W ) be partially ordered sets. An adjunc-
tion between V and W is a pair of functions f : V 7→ W and g : W 7→ V such
that f(v) ≤W w iff v ≤V g(w), for all v ∈ V and w ∈ W . The function f is
called the left adjoint and g is the right adjoint.

If (f, g) is an adjunction with f left adjoint and g right adjoint, then we
have that, whenever join

∨
and meet

∧
operations for the posets (V,≤V ) and

(W,≤W ) exist, the left adjoint f preserves the join of any subset of V , and the
right adjoint preserves the meet, so for any family vi, i ∈ I, where vi ⊆ V , we
have that f(

∨
i∈I vi) =

∨
i∈I f(vi), and for any family wi, i ∈ I, where wi ⊆W ,

we have that g(
∧

i∈I wi) =
∧

i∈I g(wi).
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Then as the pair ( ⊕R,R	 ) forms an adjunction on the lattice P(U),
they will have the following property: given X,Y ⊆ U , (X ⊕ R) ⊆ Y iff X ⊆
(R	Y ). This translates into modal logic by the fact that given any modal frame
(U,R), given any formulae ϕ and ψ, if the implication �ϕ → ψ is valid (i.e.
true for any valuation V at any u ∈ U), then we can derive that ϕ→ �ψ, is also
valid, and vice-versa. Analogous reasoning holds for the pair ( ⊕R̆, R̆	 ) and
(♦,�). By the property of preservation of join and meet operations, that in the
case of the lattice formed by P(U) with the relation ⊆ are union and intersection
between subsets, given X,Y ⊆ U we have that (X∪Y )⊕R = (X⊕R)∪(Y ⊕R),
and R	 (X ∩ Y ) = (R	X) ∩ (R	 Y ).

We remark that, in the literature, the concept of adjunction is more general
than the one presented in Definition 6, and it comes from category theory,
where it expresses a certain relationship between functors, i.e. mapping between
categories (see [31] for an introduction to category theory).

1.3 Modal Logic + Intuitionistic Logic = ?

Intuitionistic logic is a non classical logic, based on the notion of provability more
than on the notion of truth. It can be described as the logic done without the
law of excluded middle, p ∨ ¬p. Its semantics framework, developed by Kripke
in [42] consists of a set U ordered by a relation of partial order H ⊆ U ×U , i.e.
a relation that is reflexive, transitive and antisymmetric.

Classical modal logics are classical in the sense that they are built on top
of classical propositional logic. Similarly, intuitionistic modal logics, IML for
brevity, have intuitionistic logic as a base. The study of IML is motivated by
various applications. Some examples are philosophical applications as the devel-
opment of temporal intuitionistic logic by Ewald [23], and epistemic intuition-
istic logic by Williamson [89]. Computational applications are mentioned by
Plotkin and Stirling [56], and also studied by Wijesekera in [88], and Nishimura
[50] who studies constructive variants of propositional dynamic logic. As pointed
out by Simpson [67] and Kojima [39], although a notable amount of work has
been done on IML, there is no agreement on what an IML should be, and there’s
not a unique semantic framework. Both modal and intuitionistic logic rely on a
relational frame. Thus a common approach to build a semantic framework for
IML is to put together the two Kripkeian accounts. Indeed, the common ground
for the majority of approaches to IML found in the literature is a bi-relational
semantic frame of the form (U,H,R).

The reason for such a variety of approaches comes from the fact that the
classical interpretation of modalities as given in Definition 3 has to agree with the
monotonicity of the valuation function proper of intuitionistic logic, according to
which information about states is preserved w.r.t. H-successor. The valuation
function V of an intuitionistic model M = (U,H, V ), defined for propositional
variables, requires that for any u, v ∈ U , if u ∈ V (p) and u H v then v ∈ V (p).
This monotonicity has to extend to valuation of generic formulae, thus if u ∈
JϕKM and u H v then v ∈ JϕKM . We can say that the valuation of formulae in
intuitionistic formulae is closed under H-successor, or that it assigns formulae
to H-sets, where X ⊆ U is an H-set if, whenever u ∈ X and u H v, then v ∈ X.
In Figure 1.2 we give an example showing that the classical semantic clauses for
� and � might disagree with the above mentioned monotonicity rule.
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Figure 1.2: Let us consider the frame on the left. Suppose we have a model M
such that V (p) = {w }. Notice that V (p) is closed under H successor, as w is the
only H-successor of w. Then J�pKM = {w, u }. By intuitionistic monotonicity,
as u H v and u ∈ J�pK, we should have that v ∈ J�pK. However v /∈ J�pK, as
v R v and v /∈ V (p). This is an example of disagreement between the classical
interpretation of � and the intuitionistic monotonicity. Let us consider the
frame on the right. Suppose a model where V (p) = {u }. Also here V (p) is
closed under H-successor. Thus J� pKM = {w }. Then by monotonicity we
should have that v ∈ J� pK. But then we should have that for some j ∈ U , j R v
and j ∈ V (p). Such a j is not present in this model. Thus, here’s another case
of disagreement between classical modalities and intuitionistic monotonicity.

There are different ways to solve this problem, and from this stems the
variety of approaches taken towards IML. Roughly, we can make the following
categorisation of approaches for IML, even if they are not mutually exclusive
as, as we are going to see, both the approaches are taken at the same time by
some authors:

1. The agreement between modalities and monotonicity of the valuation func-
tion is obtained by modifying the semantic clauses for the modalities.

2. Some connecting properties are imposed between the modal accessibility
relation R and the intuitionistic partial order H.

The first approach is taken for example from Wijesekera in [88]. Here the
author defines the semantic clauses for � and ♦ in a different way from their
classical counter-parts (he considers only these two modalities in his work):

J�pK = {u ∈ U | ∀w∀v(u H w R v implies v ∈ JpK) } (1.1)

J♦pK = {u ∈ U | ∀w(u H w implies (∃v s. t. w R v and v ∈ JpK)) } (1.2)

Wijesekera’s semantics clause for �, equation 1.1, can be translated in terms
of mathematical morphology as follows: J�pK = H ; R 	 JpK. It is hard to see
what the “morphological translation” for equation 1.2 would be. Simpson [67]
actually criticises Wijesekera’s semantics for ♦ as bringing “some rather strange
properties” to the system, as the fact that � and ♦ don’t seem related at
all, and that even after adding the law of the excluded middle to Wijesekera’s
system, the two modalities are still not inter-definable. Thus the rule of excluded
middle doesn’t yield, in Wijesekera’s system, a classical modal logic. Simpson
[67] considers this feature an important requirement for IML, and thus criticises
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Wisekejera’s choice. He suggests to substitute the semantic clause for ♦ with
the following one:

J♦pK = {u ∈ U | ∃w∃v(u H̆ w R v and v ∈ JpK)) } (1.3)

This gives rise to the following morphological definition: J♦ϕK = JϕK⊕R̆ ;H.

The second approach has been taken in the majority of cases, with some
differences, as the connecting properties may vary from work to work. The
difference in the chosen connecting properties depends also on which fragment
of intuitionistic modal logic one chooses to consider. For example one could work
on the ♦-free modal fragment, or vice-versa on the �-free modal fragment. Also
one could choose whether or not to consider the modalities � and � as well.

A first strand starts with a series of papers by Fischer Servi [24], [25] and
[26]. Here the following connecting properties for a modal intuitionistic frame
are introduced: R ;H ⊆ H ;R and R̆ ;H ⊆ H ;R̆. We refer to these constraints as
FS1 and FS2. Plotkin and Stirling [56] consider the FS conditions alongside
two additional conditions that, as they say, “spring to mind” when looking at bi-
relational frames: H ;R ⊆ R ;H and H ; R̆ ⊆ R̆ ;H. However the authors don’t
discuss these latter constraints, and, for their IML semantics, adopt the FS
conditions. They motivate their choice by the fact that FS1 and FS2 ensure
the validity of two modal formulae that the authors call “very natural”, and
thus according to them, desirable in IML: ¬♦p→ �¬p and ♦p→ ¬�¬p. They
say that, more generally, FS2 ensures that J♦pK is closed under H-successor.
Plotkin and Stirling also define the � semantic clause in the intuitionistic way
as in equation 1.1, to make sure that also boxed formulae are closed under H-
successor. Thus they actually take a mixed approach between approach 1 and
2. Ewalds [23], Simpson [67], and Amati and Pirri [1] take the same mixed
approach. A similar approach is taken also by Goré et al. in [33], with the
difference that two accessibility relations R and S on U are considered, one
defining the semantics for � and � and the other one defining � and ♦. The
FS1 condition is imposed on R and FS2 is imposed on S. Moreover, the clause
for J�pK is defined intuitionistically as in equation 1.1, and J� pK is defined in
the analogous way by H ; S̆ 	 JpK. The approach of imposing the connecting
property H ; R ⊆ R ; H, instead of adopting equation 1.1 for J�pK is taken by
Božić and Došen in [10] and by Došen in [18] for the semantics of their ♦-free
fragment of IML. They then adopt FS2 for the semantics of the �-free fragment.
The two approaches are equivalent.

Different connecting properties from the ones seen so far are considered by
Nishimura [50], Wolter and Zakharyaschev [91], Kojima [39] and Stell et al.
[74]. An equivalent approach is taken also by Ono [52], for his intuitionistic
modal logics S4 and S5. Also Božić and Došen [10], analyse this approach to
the semantics for IML, as an alternative to the approach mentioned above, that
imposes the FS-like conditions. In this second strand of works the connecting
property between R and H is H ;R ;H ⊆ R. We call this property stability of R,
following [74]. Notice that this condition is equivalent to the conjunction of two
conditions: H ;R ⊆ R and R ;H ⊆ R. Moreover R ⊆ H ;R ;H always holds by
I ⊆ H, and thus imposing stability means imposing the identity R = H ;R ;H.
In [91] actually two relations are introduced, one for �, R�, and one for ♦, R♦.
Stability is imposed on R�, and on the converse of R♦, giving the constraints
H ; R� ; H ⊆ R� and H ; R̆♦ ; H ⊆ R̆♦. On the other hand, in [74], only one
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stable relation is considered (besides the partial order H, that is trivially stable
by transitivity of H). Stability ensures that J�pK = R	 JpK and J� pK = R⊕ JpK
are H-sets. However, given a stable relation R, its standard converse R̆ is not
necessarily stable. Thus in [74], in order to make sure that ♦ and � give rise
to H-sets, the authors consider the smallest stable relation containing R̆, i.e.
H ; R̆ ;H. They call it the left converse of R, in symbols yR, and the semantic
clauses of ♦ and � are defined by using dilation and erosion by yR respectively.
As explained in [74], thanks to the use of the left converse, the intuitionistic
modal logic that they consider has a feature that other intuitionistic modal
logics don’t have: the ♦-modality is definable in terms of �. Indeed the formula
♦p ↔ ¬�¬p is a theorem in the logic. However � is not definable in terms of
♦, and thus the two modalities are still “independent”, as it is expected in IML,
see [67]. Similarly, the modality � is definable in terms of �, as � p ↔ ¬�¬ p
is a theorem, but not viceversa.

In [74] the authors consider the relationship between the approach to IML
with stable relations and the approach of imposing the FS-like conditions. They
compare their system to the one presented by Goré et al. [33]. They notice that
the FS1 condition is more general than stability. Indeed stability implies FS1:
R ;H ⊆ I ;R ;H ⊆ H ;R ;H ⊆ R ⊆ I ;R ⊆ H ;R. But not vice-versa. However
it is shown that this generality is not essential, as it is possible to rephrase the
semantics of modalities from [33] in terms of stable relations. Whilst the stable
relation R giving rise to � (and its adjoint �) and the stable relation S giving
rise to ♦ (and its adjoint �) would be unrelated in the approach from [33],
the system of [74] is the special case where the relation giving rise to ♦ is not
just any stable relation, but it is the left converse of the relation giving rise to
�, thus a function of the first relation considered. Thus, in [74], all the four
modalities can be seen as arising from a single relation, and it is for this reason
that the novel definability of ♦ from � holds there.

Also Božić and Došen [10] mention stability as an alternative to the FS
conditions, and they show that their IML is sound and complete w.r.t. both
semantics frames, with the FS-like conditions and with the stability. This is
again evidence of the fact that the generality provided by the FS-like conditions
is not essential, as the two types of frames compared in [10] validate the same
set of formulae.

Moreover, we notice that stability on R is an “analytical” constraint, in the
sense that the conclusion of the constraint is simpler than its premise. Stability
says: every time we find an H ; R ; H path, we need to add an R path. On
the other hand, in the case of the FS’s conditions, and the related conditions
H ; R ⊆ R ; H and H ; R̆ ⊆ R̆ ; H, every time we find the path stated in the
hypothesis, we have to introduce the existence of a new u ∈ U that makes the
conclusion of the constraint true. In this sense, all these rules are non-analytical.
Analyticity is a very important feature when implementing some forms of proof
systems for modal logic as, for example, tableau-style proof systems.

1.3.1 Bi-intuitionistic Logic

The logics used in this work, BiSKt and UBiSKt, are bi-intuitionistic modal
logics. Propositional bi-intuitionistic logic was studied by Rauzser in [58]. Here
it is called Heyting-Brouwer (H-B) logic. Bi-intuitionistic logic is obtained
by adding to intuitionistic logic the dual operator of implications, called co-
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implication �. Using this, a new negation operator can be defined, whose se-
mantics differs from the intuitionistic standard negation ¬. It is usually called
co-negation or dual negation, and we can indicate it with the symbol ¬.

In the same way that Heyting algebra was introduced to formalise intu-
itionistic logic, bi-intuitionistic logic relates to bi-Heyting algebra. For formal
definitions of these concepts we refer to [80]. As the author explains there,
bi-Heyting algebras are both Heyting algebras and co-Heyting algebras. The
study of co-Heyting algebra starts with Lawvere in [43], where it is described
as a generalisation of a Boolean algebra where the conjunction of a proposition
p and its negation is not necessarily a contradictory formula. Lawvere states
that this concept deserves to be called the boundary of p. We will see how this
applies to subgraphs and their spatial boundaries in Section 3.3. An analysis of
modal extensions of bi-intuitionistic logic can be found in [90].

1.4 Stable Relations as Relations on Hypergraphs

In this thesis, we will take the approach of imposing the stability condition.
Indeed we make use of the logic introduced in [74] called BiSKt, and its exten-
sion with universal modalities UBiSKt, introduced in [71]. The main objects of
investigation of this thesis are undirected graphs (with possibly multiple edges
and self-loops), or, more generally, hypergraphs. A hypergraph is a generali-
sation of the idea of a graph, where an edge can be incident with more than
two nodes. We are going to see in Chapter 2 in more detail how a hypergraph
always gives rise to a partially ordered set (U,H), and thus to an intuitionistic
Kripke frame. For now we just say that we can consider U = E ∪N , where E
is the set of edges and N is the set of nodes, and the partial-order H ⊆ U × U
is the reflexive closure of the incidence relation from edges to nodes. Under
this semantics, formulae in the BiSKt logic can be assigned to subgraphs of
the hypergraph-domain (U,H), i.e. to subsets of U closed under H-successor:
whenever an edge is present in a subgraph, all the nodes it is incident with are
present. This is analogous to the requirement that interpretation of formulae
is closed under H-successor in intuitionistic logic. Operations of dilation and
erosion on subgraphs can be considered, by adding a relation R ⊆ U × U to
the frame (U,H). Thus we have a modal-intuitionistic frame (U,H,R). The
relation R is stable w.r.t. H.

The account of stable relations as relation on hypergraphs has been de-
veloped by Stell in [77], [78], [79] and [80]. The main motivation there was
developing a theory of mathematical morphology for graphs and hypergraphs,
following a fruitful strand of works [36], [15], [14], but in terms of relations on
hypergraphs. Thus, an account of a relation on hypergraphs was needed. The
fact that imposing a relation R on U = E ∪ N without any extra property is
not a satisfactory account, relates to the problem of interpreting modalities,
i.e. dilation and erosion, classically in an intuitionistic context, as discussed in
Section 1.3. The starting point of [77], [78] to develop a satisfactory notion of
relations on hypergraph, is noticing that all relations on a set U have an impor-
tant property: they correspond to union-preserving functions on the lattice of
all subsets of U , P(U).

Definition 7. A function f from P(U) to itself is union preserving if and
only if for any indexed family of sets Zi, i ∈ I, such that Zi ⊆ P(U) we have
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f(∪i∈IZi) = ∪i∈If(Zi).

Every relation R on U gives rise to a union-preserving function on U (namely
the dilation by R), and vice-versa given every union-preserving function on
P(U) defines a relation on U as follows: given u, v ∈ U , we have that u R v
if v ∈ f({u }). Thus there is a correspondence between relations on a set and
union-preserving functions on the lattice of its subsets. Relations on a set can
be characterised by this correspondence.

Let us consider the lattice of all the subgraphs of a hypergraph (U,H). It is
clear that this is not the same as the lattice of all the subsets of U . Indeed, as
we said, subgraphs are subsets that are closed under H-successor, thus not all
subsets of U are subgraphs of (U,H). A simple example is given in Figure 1.3.

u

v

w

H H

w

v

u

{u, v, w }

{ v, w }{u,w }{u, v }

{w } { v } {u }

∅

{u, v, w }

{u,w }

{w } {u }

∅

Figure 1.3: A graph with two nodes u and w, and one edge v, with its poset
representation (U,H). As we can see, the lattice of all subsets of U is different
from the lattice of all subgraphs of (U,H). Whilst { v } is a subset of U , it
is not a subgraph of (U,H), as it a set made of a “naked” edge. Notice that
the lattice of all subgraphs is not complemented, as there’s no element x in the
lattice such that x∨{u,w } = {u, v, w } and x∧{u,w } = ∅. Hence the lattice
of all subgraphs of a graph is not necessarily Boolean; we remind the reader
that a Boolean lattice is always complemented, and thus the associated logical
system is not classical.

In [77] and [78] the correspondence between relations on a set and union-
preserving functions on the lattice of its subsets is exploited, and extended to the
hypergraph context. It is shown that union-preserving functions on the lattice
of all subgraphs of a hypergraph correspond to those relations R ⊆ U × U
that are stable: H ; R ; H ⊆ R. This result eventually motivates the account
of stable relations as the correct account for defining relations on graphs and
hypergraphs, and associated morphological operations of dilation and erosion
on hypergraphs.
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1.5 Qualitative approach to Spatial Representa-
tion

One contribution of this thesis is the use of the bi-intuitionistic modal logic
UBiSKt to define qualitative spatial relations between subgraphs. As we will
see, thanks to the modal part of the logic, and exploiting its connection to
mathematical morphology, appropriate definitions of spatial relations at differ-
ent levels of detail can also be given within this logic. The level of detail is
parametrised by the modal accessibility relation that can be seen as a probe
according to which the underlying graph is structured. Thus this contribution
can be considered within the subfield of knowledge representation known as
qualitative spatial representation and reasoning, QSR for short.

QSR is concerned with providing formal methods for encoding and reason-
ing about spatial knowledge. Examples of the importance of QSR in computer
science are given by Bennett [2], and they are reasoning about physical sys-
tems, robot’s navigation and planning, and computer vision, as this is primarly
concerned with extracting information from sensor data, that are usually 2-d
images.

Qualitative methods for representing space are called so as opposed to quan-
titative methods. It is hard to strictly define what is qualitative and what is
quantitative; however, to quote Galton, [28] “the divisions of qualitative space
correspond to salient discontinuities in our apprehension of quantitative space”.
What the author seems to mean here, is that space has measurable, quantita-
tive properties2, but these are often very hard to grasp and process for humans.
And, for some purposes, we don’t even need to have such detailed information
to be able to describe space in an effective way, and make inferences about it.
For example, we don’t need to know the exact set of coordinates two objects oc-
cupy (in the ideal Cartesian plane of space) to know whether the two objects lie
next to each other, or whether they are apart. Similarly, we don’t need detailed
numerical information to know that, if two objects touch each other boundaries
and a third object is contained in the core part of the second one, then the first
and the third object must be disconnected, apart from each other (notice that
this example is more complex and involves some reasoning, however, this doesn’t
have to be numerical reasoning, but logical reasoning). Qualitative descriptions
of space, in this sense, aim to model the way humans see and reason about space,
in order to provide artificial agents with the same power, without overloading
them with quantitative information that is, for many tasks, unnecessary. This
type of knowledge is sometimes referred to as “common sense knowledge” and
many recognize its importance in developing true intelligent artificial agents [2].

Spatial situations are usually represented in a qualitative way by specifying
spatial predicates on the spatial entities involved. Extracting information from
qualitative data requires logical reasoning about the objects and the relations
involved, and thus the development of formal theories of spatial representation
[2]. Spatial predicates can be of different kinds, depending on which aspect of
space we are interested in. For example we might want to investigate the way

2It is a philosophical question whether space actually possesses quantitative properties, and
it is at the centre of the debate between platonic and constructive interpretation of space. We
don’t mean here to take one, or the other position. But, in any case, we can say that space has
quantitative properties, leaving open whether they are human constructions or actual entities
with ontological status, independent from who sees them.
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spatial entities connect to each other. This kind of spatial relations is known as
topological, as topology mainly concerns how things are connected. Topological
properties are those properties that do not change after continuous deformation
of the objects; they depend more on the way objects are put together. As op-
posed to topological properties, we have geometrical properties, that concern
exactly the shape of the objects. Another strand is mereology, meaning, from
Greek, the theory of parts and wholes. Mereological spatial relations are the
relations of parthood, equality, or partial overlapping. Other types of spatial
predicates and relations might involve the orientation of objects in the space,
as as “X is at the left of Y ”, or “X is north in respect to Y ”. In this the-
sis we are going to focus on the so called mereotopological spatial relations.
Mereotopology comes, obviously, from putting together topology with mereol-
ogy. Within mereotopology, for example, the predicate of part can be enhanced
by distinguishing between a peripheral, or tangential part, and a non-tangential
one.

There are a few works that have been particularly important to the devel-
opment of mereotopology: the work of Whitehead [87], and De Laguna [16],
as they present a region-based account where the spatial relation of connection
plays a central role, and the work of Clark [12] that is based on Whitehead’s
work, and that in turn provides the basis for the development of the Region
Connection Calculus, RCC for short [57]. For a more detailed history of quali-
tative spatial reasoning see [76]. Nowadays, we can single out two major strands
in mereotopology: the logical approach started with the RCC by Randell et al.
[57], and the 9-intersection approach started by Egenhofer and Herring [22]. In
this work we are interested in the logical approach.

RCC is a first-order logic theory with a primitive predicate of Connection C
between regions of the space. The predicate of Parthood is defined using Con-
nection, as follows: P (x, y) := ∀z(C(x, z) =⇒ C(y, z)). Using Parthood and
Connection, a set of eight jointly-exhaustive and pairwise-disjoint spatial rela-
tions is definable. This is known as RCC-8, and it is as in Figure 1.4. As we are
shortly going to see, RCC is applied to reasoning in continuous space. Although
RCC is a first-order logic theory, Bennett [2] shows that propositional logic is
enough. He uses classical propositional logic to represent the mereological side
of the theory. Then he uses modal propositional logic to define the topolog-
ical side of the RCC, using the connection between the � operator and the
interior operator of topology. Another direction in the modelling of qualitative
relations in continuous space using modal logic was initiated by Bloch [7]. She
exploited the connection of modal logic with the image processing techniques of
mathematical morphology, mentioned earlier.

Our use of modal logic within spatial representation also builds on the link
between modal operators and dilation and erosion, by which, as we will see, we
can define a closure topological operator, as well as a interior topological oper-
ator. However, differently from Bloch and the RCC approach, we are interested
in developing spatial relations for a kind of space that is discrete, i.e. a graph
(actually, we use the more general account of a hypergraph). Thus, we present
new results in the area of mereotopology for discrete space.
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Figure 1.4: RCC-8 can express disjointness, or Disconnection (DC), and con-
nection on the boundaries, or External Connection (EC), as well as the relation
of sharing only a part, or Partial Overlapping (PO). RCC-8 can distinguish
Tangential Proper Part (TPP ) from Non-Tangential Proper Part (NTPP ).
Equality (EQ), and the inverses of TPP and NTPP are also included in RCC-
8 relations.

1.6 Discrete Space

When developing spatial theories, besides having in mind which kinds of spatial
properties to model (topological, geometrical, etc...), one has also to make some
choices about the nature of the space itself. One of these choices is about
discreteness versus density of space. If we model regions as, for example, subsets
of R2, we assume the space to be dense: between any two distinct points x, y,
we can always find a third point z that is closer to x, than y is to x. On the
other hand, discrete space, as for example the one induced by Z2, is such that
every point has its “nearest” neighbours. In discrete space there are regions
with a special status, i.e. atomic regions. Atomic regions do not have any
proper part, they are the points at which space stops being dividable. For some
purpose it is better to model space as discrete, instead of as continuous. Any
kind of network (road networks, railway networks, airlines networks, cable or
pipelines networks) is naturally represented by a discrete structure like a graph,
where nodes are the atomic regions. Images in image processing are in the form
of pixel arrays, and pixel is the atomic component of space. In Geographical
Information Science many kinds of data are classified as discrete, for examples
objects with distinct boundaries, like cities and districts linked by roads.

It is well known that RCC is not able to represent discrete space, as shown
in [57]. Indeed a theorem in the theory is that every region has a non-tangential
proper part. It is immediate to see how the assumption of an atomic region, i.e.
a region without any proper part, leads to contradiction. The authors suggest
that the culprit is the RCC definition of parthood, done in terms of connection.
We can see that this definition cannot be applied to discrete space. Indeed, let
us take a graph with two nodes u and v and one edge between them. Then
each node is connected to itself, to the other node, and to the whole underlying
graph. Thus, the definition of parthood from the RCC holds between u and v
(and vice-versa between v and u), however, it is clear that neither node is part
of the other one.

A solution to this is put forward by Galton [27], [30], and by Li and Ying,
[44]. Here we focus on Galton’s approach, who develops a theory named Discrete
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Mereotopology, i.e. a version of the RCC for discrete space. The kind of discrete
space that Galton considers is an adjacency space, so a set of primitive elements
N called nodes, or sometimes cells, and a relation A ⊆ N × N reflexive and
symmetric, called the adjacency relation. This approach is in turn inspired by
the digital topology theory developed by Rosenfeld [61]. From this, two subsets
of the set of nodes X and Y are connected iff there are x ∈ X and y ∈ Y and
x = y or x A y. Besides connection, Galton defines all the RCC-8 relations
between regions of an adjacency space.

Adjacency space can be seen as graphs (undirected graphs without self-loops
nor multiple edges), but there are actually differences between graph theory
and adjacency theory, as Galton underlines ([30], page 6). These differences are
clear when one considers substructures of one and the other. We know that a
subgraph is determined by a subset of nodes, as well as a subset of edges (with
the proviso that if an edge is in the subgraph, then all the nodes it is incident
with are in the subgraph as well). For example given a graph with two nodes
and one edge between them, the subgraph made by the union of the two nodes
and the empty set of edges, is different from the subgraph made by the two
node plus the edge as well. Once we determine which subset of nodes is in the
subgraph we want to consider, we still need to determine which subset of edges,
between these nodes, we want to consider. Different subgraphs can share the
same set of nodes. In an adjacency space the story is different: its substructures
are automatically determined by its subsets of nodes. In an adjacency space the
edges of the graph are reduced to be just the elements of the symmetric relation
A. They do not figure as spatial elements of the domain, and thus they cannot
carry any additional information, beside the fact that they relate certain pairs
of nodes. There’s no difference between the subgraph made by the two nodes,
and the subgraph made by the same nodes and the edge between them.

fault

X = faulty region

¬X

¬X

Figure 1.5: Example of a rail network with a fault occurring on one edge. If
the faulty region of the network is X, the working part of the network could be
¬X or ¬X.

However, being able to distinguish between subgraphs that share the same
set of nodes, but have a different set of edges, and thus giving importance to
edges as well, is relevant for some purpose. For example, if we have a transport
network, represented by a graph, we might have a fault occurring on some links
between some stations (for example a fault on the rail tracks). The information
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about the fault is assigned to, say, an edge where the fault occurs (see Figure
1.5). Then we might want to single out the “working” part of the network,
that is the complement of the faulty edge, thus the whole graph without this
edge. The whole network is distinguished by the working part of the network
by a single edge, having the two regions exactly the same set of nodes. On the
other hand the “faulty” subregion of the network, i.e. the region of the network
affected by the fault, could be the edge where the fault is plus the pair of nodes
it connects, as these nodes, i.e. the stations, are affected by the fault: travelling
between these two stations is not possible. This region is different from the
union of the two nodes alone, as no fault occurs directly in either of the two
nodes (it is still possible to travel from and to these nodes) but precisely on the
edge between them. Notice that if X is the faulty region of the network, then
we can distinguish between two type of complement-subgraphs of X: (−X)⊕H
and H 	 (−X), where −X is the set-theoretical complement of X. Notice that
−X is not a subgraph itself as it contains a “naked” edge. We are going to
see that these two operations on the complement of a subgraph give rise to
the two negations in BiSKt: the dual pseudo-complement ¬X, also called,
co-negation, and the pseudo-complement ¬X respectively. The working part of
the network could be ¬X, as it includes all the working links, and the stations
these links lead to. We have that X ∩ ¬X 6= ∅ as there are two nodes, that,
is a sense, belong both to the faulty part of the network, as a fault occurs on
one of the links they are incident with, and to the working part of it as well,
as travelling from and to these nodes is still possible. On the other hand, if
we want to consider as the working part of the network the subgraph that is
totally “unaffected” by the fault, then we use ¬X. This includes indeed exactly
all the stations that are not linked to any of the faulty links. We have that
X ∩ ¬X = ∅, and in this sense ¬X is totally unaffected by the fault. Notice
that these two types of complements are possible exactly because we are able to
consider edges as elements of the domain, as, in this simple case, ¬ can be seen
as the complement w.r.t. the edges (take the edges in −X and then complete
with the nodes between them) and ¬ can be seen as the complement w.r.t. the
nodes (take the nodes in −X and then complete with the edges between them).
Thus we have demonstrated the importance of edges in a discrete spatial theory,
and the difference between adjacency spaces and graphs. As Galton says [28,
page 93], adjacency spaces are a special case of closure spaces, a notion that we
will introduce in Section 3.2, and, as we will see, any model of the logic we use
UBiSKt, can be associated to a closure space.

The fact that edges are important in defining a graph, and might carry
additional information about it, is one of the main motivations of a strand of
works, aimed to generalise the theory of mathematical morphology for image
processing beyond sets, and precisely to graphs. This strand was initiated by
Hejmans and Vincent in [86] and [36], and had increasing attention in more
recent times with the work of Najman et al. [48], Cousty et al. [14], and Najman
et al. [47]. As Cousty et al. [14] say, although usually in image processing
images are interpreted as subsets of Z2, and thus the space is essentially made
of adjacent pixels, there is a growing interest in considering digital objects not
only composed of points, but also composed of elements lying between points,
i.e. edges, that might carry additional information about how the points are
glued together. Najmans [47] also names an interesting extension of the study of
mathematical morphology on graphs: extension of this to hypergraphs. Indeed
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red line yellow line 

Figure 1.6: Representation of an underground network as a hypergraph: the
two hyperedges are the red line and the yellow line. They connect to each other
more than a pair of nodes (stations on the lines).

with hypergraphs it is possible to generalise the idea of edge-connection beyond
pairs of nodes: we could have three nodes all incident with the same hyperedge,
and thus all connected by the same edges. For example in an underground
network, we might want to represent several stations belonging to the same
line. In this case we need not just edges, but hyperedges, and thus not graphs,
but hypergraphs. An example of this is given in Figure 1.6.

Another type of generalisation of graph that the idea of adjacency space
cannot capture, is the one of a multi-graph, i.e. when we have possible multiple
edges between the same pair of nodes. These multiple connections could be
important, for example, to model two cities connected by two different roads,
or two different types of transportation, or two airports connected by flights
operated by different airlines. Also, a multi-graph allows the presence of self-
loops, i.e. when an edge is incident with a single node. This sort of graph could
represent, at another level of detail, a network that is self connected, i.e. any
pair of nodes is connected by a path in the graph.

Within our approach to incidence spaces of nodes and edges as posets (U,H),
we can represent all the above mentioned structures: undirected graphs, undi-
rected multi-graphs, and hypergraphs. Thus the encoding of the spatial relations
within BiSKt is suitable for all these types of discrete spaces, and not just for
adjacency spaces. Finally, as we are going to see in Chapter 6, the structure of
a partial order, by which we represent graphs and hypergraphs, can extend to
incidency structures with more that two layers (not just nodes and edges): we
talk, in this sense of simplicial complexes [17], and simplicial sets [51]. With
these constructions we can represent not only 0 and 1-dimensional objects as
nodes and edges, but also 2 dimensional cells, and 3 dimensional volumes. Even
though we do not explore this direction, it is worth mentioning it as direction
for future work in modelling spatial relations in a discrete setting.

1.7 Granularity

As stated in [21], every observation is subject to imprecision. Granularity is
related to imprecision, as it refers to the presence of grains or clusters in the
information: individual elements within the same grain cannot be distinguished.
Granulation is the process of going from the information at a more detailed level
to a coarser level, i.e. the result of distinct entities becoming indistinguishable.
The representation of information at a coarser granularity offers fewer details,
as things that were distinguishable from each other earlier, are no longer such.
This is why we can refer to a change in granularity as a change in the level of
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detail. The study of change in granularity with respect to certain structures
is a central topic of this work. However, it is important to stress that change
in granularity is not the only type of change in the level of detail that one
might adopt on some information. Stell and Worboys [82] consider another
type of this change, namely a selection process. This consists of forgetting
details of a representation. A less detailed view can be adopted by selecting
some information we want to focus on, and forgetting about the rest3. As we
are interested in graphs, in their general form of multigraphs and hypergraphs,
and as we represent them as posets, we will study granularity of objects that
can be seen as posets. We will explore the theme of hypergraph and poset
granularity in Chapters 4 and 5.

As Galton [28] suggests, granularity is a property of the representation in-
stead of a property of the data itself. Viewing a situation in a less detailed
way is a commonplace. Here’s an example. If we look at a bowl full of sugar
cubes from a very close distance, we can distinguish each grain of each sugar
cube. At a further distance, we distinguish the single cubes from each other,
but we cannot see (or we are not interested in seeing) the sugar grains. At an
even further distance we can see that the bowl contains sugar, but we cannot
distinguish how the sugar is composed. This is an example of taking a gradually
coarser view on some information, thus an example of granulation. The same
process is known in cartography as generalisation: as Kraak and Ormeling [40]
say (cited by Galton [28]), generalisation is “the process of reducing the amount
of details in a map in a meaningful way”. For example, we could have maps
where the data is represented with a great amount of detail, so considering all
the roads and buildings in a city, for every city of the region at issue, or we
could just collapse all the details of a city into a single block, and look at each
city as a unique element, a singleton of our representation, where no further
information about what is within a city is revealed.

Mathematical morphology offers an approach to images where it is possible
to parametrise the level of detail, thanks to the structuring element. It is indeed
common to talk about the structuring element as a probe [65], through which
the image processed. When zooming out from an image (seen as a subset of a
set of pixels) we intuitively expect narrow spikes to fuse and narrow cracks and
holes to disappear. This intuitive expectation can be formalised in mathematical
morphology. The idea is that, instead of being able to see individual pixels, only
certain groups of pixels can be seen. These groups of pixels are copies of the
structuring element. Given a structuring element and the associated relation
R on the set of pixels (we will see in Section 4.1 how a structuring element
generates a relation on the pixel grid), and a subset X ⊆ U , the following
operations are defined using dilation and erosion by R: the opening of X that
is (R 	X) ⊕ R, and the closing of X that is R 	 (X ⊕ R). The opening of X
consists of the subset formed by fitting copies of the structuring element within
X. Only the subset of pixels of X that can be described the structuring element
will be included in the opening, see Figure 1.7. The closing of X consists in
overlapping copies of the structuring element (rotated by half a turn) wholly
outside X, and then taking the complement of this. Thus, it will have the effect
of filling the holes that are small enough that the rotated structuring element

3Stell and Worboys [82] also consider the topic of granularity, and they call amalgamation
what here we referred to as granulation.
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doesn’t fit in them (Figure 1.7). Combining these two operations, we can obtain
a coarser view on the starting image. Compositions of closing and openings are
known in mathematical morphology as filters [65]. The idea in Figure 1.7 is that,
performing an opening and then a closing on X, instead of being able to see
every single pixel, we are able to see only groups of four pixels arranged as in the
structuring element (obviously, using a different structuring element, a different
effect on the same image would have been obtained). Thus the composition of
these two operations gives an intuitive way to visualise an image (represented
by a subset of the grid of pixels) in a coarser way. We will analyse this idea in
more detail in Section 4.1.

Structuring element a subset of pixels X

opening closing of opening
of X of X

Figure 1.7: Granulation of a subset X of Z2 by a 2 × 2 structuring element.
The application of the opening to X will make the narrow spikes present in X
disappear. The closing will fill the holes present in X (figure adapted from [71]).

In Section 4.1 we will explain in detail how the opening and the closing
operations on subgraphs provide with a coarser description on them. For now it
suffices to say that when we move to graphs, and to mathematical morphology
on graphs, the idea of a structuring element can be generalised to the concept
of an R-dilate, i.e. any {u } ⊕ R for any u ∈ U . In this case, the idea of the
opening of a subgraph as fitting copies of R-dilates within the subgraph, remains
meaningful. R-dilates can be seen as the new atomic parts of a space coarser
than the starting graph. Notice that when we consider the partial order H, the
H-dilates are exactly the minimal subgraphs a graph is composed of. Indeed an
element of the set of all {u } ⊕H for any u ∈ U will be either a singleton of a
node, i.e. { of } if u is a node, or the set formed by an edge with all the nodes
incident with it, if u is an edge. Thus it makes sense the idea that, at the very
detailed level, the atomic parts of a graph, or hypergraph, are its H-dilates, i.e.
its minimal subgraphs. In Chapter 4 we put forward some ideas for a notion of
granulation of a subgraph, as the opening followed by the closing (as in Figure
1.7), or the closing followed by the opening. There’s no definite answer for which
sequence of morphological operations, i.e. which sequence of modalities, is the
“correct” notion of granulation for subgraphs. This very much depends on the
application, and on the properties of the structuring element and thus of the
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relation R that we wish to consider (reflexivity, symmetry and so on). Then
we study spatial relations under granulation, that is how we should express for
example that two granular subgraphs are connected, or disconnected, or one
is part of the other and so on. Indeed, when we zoom out on subgraphs, we
consider also the underlying space being made of R-dilates, and no longer H-
dilates. Then we might find out that two regions that are disconnected at the
detailed level become connected at another level of detail. Indeed, as noticed by
Galton [29], who also studies spatial relations under granulation, some spatial
attributes are sensitive to granulation. The information about the attributes
holding or not depends on the level of detail. Information about certain spatial
attributes and relations can be gained, or lost, whenever we change the level
of detail. Thus, being able to define spatial relations for subgraphs both at a
detailed level , and at “granular” level, will give us finer ways to describe space.

As with mathematical morphology, also rough set theory, first described by
Pawlak [54], can be seen as an approach to information at different levels of
detail. This theory has indeed been developed to deal with imprecision and
vagueness in information. Also the framework of rough set theory is essentially
based on a set, and a relation R imposed on that set. But differently from
mathematical morphology, where no properties are imposed a priori on the
structuring element and thus on the relation, rough set theory usually considers
equivalence relations, thus reflexive, transitive and symmetric relations.

We might call the kind of granularity that rough set theory deals with con-
ceptual granularity. The basic framework of rough set theory is a set with a
partition, and thus with an equivalence relation. These are obtained usually
as follows: a set of attributes on the elements of the set is chosen. Each at-
tribute hold with a certain value for each element4. Whenever two elements
share the same values for all the attributes considered, they are regarded as in-
distinguishable, and they are grouped within the same “granule” of information.
It is clear that the relation between pairs of elements in the same granule is an
equivalence relation, and also gives a partition of the set. Looking at the set of
granules formed in this way, instead of looking at the initial set elements, we
obtain a coarser view of the initial set. As a simple example, suppose we have
a database of living things. We can classify them as mammals, birds, fishes,
insects, and so on. We can then consider a new set made of these categories of
living things. This provides a coarser description of the original database. The
coarser description of the initial set, formed in this way is usually referred to as
the quotient structure.

A central part of rough set theory is concerned with the idea of a rough set, as
opposed to a crisp set. A crisp set is a subset X ⊆ U in the classical sense. When
an equivalence relation, and thus a partition, is imposed on U , we can build two
kinds of approximations for any subset X ⊆ U : the lower approximation, X and
the upper approximation X. Rough sets arise from those X ⊆ U that are not
(union of collections of) blocks of the partition. Indeed these subsets contain
elements that are indistinguishable from other elements that are not in X, on
the basis of the equivalence relation. See Figure 1.8 for an example of a subset
with its lower and upper approximations.

It is well known that rough set theory has connections with the modal logic

4Usually we have “true or false” values, for qualitative attributes as color, shape as so on,
but we can also have degree values as “high, medium, low” if the attributes concerns some
measurable quantity, as for example the temperature of a body.
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X XX

Figure 1.8: A set U and a subset X with its lower and upper approximations,
X and X, generated by the given partition. X contains some imprecision, or
vagueness under the imposed partition, as it doesn’t cover full blocks. Thus, at
the coarser level, we can’t “see” X, and we have two ways of building collec-
tions of blocks out of X, i.e. approximating X: completing with the missing
information, X, or forgetting the incomplete information, X.

S5 [53], [92]. Indeed S5 Kripke-frames are of the form (U,R) where R is an
equivalence relation. We have that S5-� is associated to X 7→ X and S5-� is
associated to X 7→ X (and, by symmetry of R, S5-� has the same semantics of
S5-�, and analogously for S5-� and S5-♦).

Equivalence Relation Partition Surjective quotient function

Figure 1.9: Three equivalent ways to produce a coarser view on a set: an
equivalence relation, the associated partition, and the surjective function, called
the quotient function, that maps each element into its block (figure adapted from
[75]).

There are three distinct forms of conceptual granulation for a set. We have
already mentioned equivalence relations and partitions, but we also have sur-
jective functions, Figure 1.9. With an equivalence relation we compare pairs
of elements and we say whether they are indistinguishable under certain at-
tributes. With a partition, we decompose the whole domain into disjoint blocks,
or granules, i.e. the equivalence classes, and elements within the same block are
indistinguishable. With a surjective function from the set to its quotient struc-
ture we categorise the elements of the domain. These three ways of granulation
can be distinguished conceptually but they are mathematically equivalent [75].
However, it is through the surjective function, that we call the quotient function,
that the relationship between the two levels of detail becomes evident.
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1.8 Graph and Hypergraph Granularity

The approach to conceptual granularity with equivalence relations is appropriate
if the kind of structures we are interested in can be seen simply as a collection
of data, as the example of the database of living things given earlier. However,
what if the set we are looking at carries some additional structure? This is the
case of graphs and hypergraphs, where the underlying set is made of two types
of objects, nodes and edges, and they are related by a partial order, i.e. the
(reflexive closure of the) incidence relation from edges to nodes. What kind
of relation on hypergraphs is associated to partitions on hypergraphs, and to
their quotient structures? What properties does this relation have, and what
properties does the associated quotient function, linking the hypergraph to its
quotient structure, have? We are going to explore these questions in Chapter
5. First we motivate the importance of conceptual granularity for graphs and
hypergraphs.

Looking at graphs and hypergraphs at different levels of detail is common
place. Stell and Worboys [82] give many examples of looking at a transport
network at different levels of detail. Two different users of a transport network
might need to adopt different views on it. An engineer needs very detailed
information about all the routes of a network, in order to maintain it and fix
issues. But a passenger needs a much coarser view, that is its start point, its
end point, and the fact that there is some route between them. If a user has to
travel between two stations, they are not interested in all the stops occurring
between them, but just on the fact that the two stations are connected via some
link. Their point of view can be represented at a coarser level, collapsing several
stations and links into a single path, see Figure 1.10 (left) for an example of
this. Another example could be a granulation on a transport network or a map
where we want to distinguish its north region from the south. In this case it
is possible that different nodes and edges will be clustered into a single node,
i.e. the region with a certain attribute, see Figure 1.10 (right). We might also
want to cluster nodes, and the edges between them, depending on how close
they are to each other. Nodes that are within a certain distance will be merged
together into a single node, and so the edges between these nodes, see Figure
1.11. This “node-merging” action is widely used within elastic fibre network
modelling [35], [38], where nodes are cross-links between the fibres, and thus a
netweork of fibres generated a undirected graph.

These examples have demonstrated that nodes and edges might be clustered
into a single block, and this block might play the role of either an edge (first
example) or a node (second and third example) in the quotient structure, in
the sense that the block a node belongs to might be an edge in the quotient
structure, and vice-versa the block in which an edge is put, might be a node.
Notice that it is also possible that a coarser view on a graph gives rise to a
quotient structure that is a hypergraph, as in Figure 1.12.

There are many other works that use graphs and hypergraphs at different
levels of detail for practical applications. We mention some of them: [46], [82],
[84], [20], [83], [81]. Here graphs and hypergraphs are considered at multiple
levels of detail, in contexts like way-finding, pedestrian and car navigation, geo-
graphical information systems, and ordered information systems. The theory of
graph partition seems to be relevant also for ontologies [4]. An ontology is not
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Figure 1.10: Two examples of graph granulation generated by a partition. A
coarser view on the graph is obtained by collapsing different elements together.
In the first case several nodes and edges are clustered into a single edge, rep-
resenting the path between a start point and an end point. The start and end
points are still distinguishable as single elements in the quotient structure, i.e.
they do not merge with anything else. In the second case, nodes and edges
get clustered together into nodes, representing the north region and the south
region respectively. Also the two edges between the two regions collapse into a
single edge, in this example, representing the simpler fact that the two regions
are connected, instead of considering connection by each single edge.

Figure 1.11: Another example of graph granulation by merging elements to-
gether, used in modelling large networks of fibres. The network is naturally
represented by a graph, where the edges compose the fibres and a nodes repre-
sent the cross-links between them. In this context it is typical to merge tuples
of nodes, and the edges between them, into a single node, whenever their re-
ciprocal distance is smaller than a certain parameter. The tuple of nodes and
edges in the same block will be seen as a single node.
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Figure 1.12: Hyper-edges might arise when moving between two levels of detail.
In this example we have an underground network, and we merge together two
edges whenever they belong to the same line, and thus we obtain a hypergraph
quotient structure. For simplicity we don’t draw the blocks of the partition in
this case, but it is clear that edges are in the same block whenever they have
the same colour. Each node goes in a block containing just the node itself.

just a set of data: ontologies are often represented as knowledge graphs 5 i.e.
some data connected by certain relationships. Also in this case there is a struc-
ture more complex than a set. As we have already mentioned, generalisation of
incidence structures as graphs and hypergraphs are simplicial complexes [48].
Thus, giving foundation to a theory of graph and hypergraph partition, based
on the sole assumption that they are posets, as we will to do in Chapter 5, we
can build a foundation of a theory of partition of objects that can be represented
as posets. We will briefly look at simplicial complexes in Section6.1.1.

From the examples above, one thing is evident: when we look at a graph
(or hypergraph) at another level of detail, we still expect to see an incidence
structure. In all the previous examples we have gone from a graph to another
graph or to a hypergraph. The quotient structure is made of blocks that are
represented as edges and nodes, and they are incident in a certain way with
each other. We know we can model this as a partial order. Thus we can say
that the quotient structure of a poset (U,H) is of the form (U ′, H ′) where U ′

is the set of blocks, that are certain subsets of U , and H ′ is a partial order on
U ′. The quotient structure of a poset is a poset. The fact that the same type of
structures (posets) are present at both levels can also be seen as an extension
of the intuition that, when a partition is applied to a set, the resulting quotient
structure is still a set.

Now that we have motivated the importance of granularity of objects like
graphs and hypergraphs, and we have seen that a coarser view on a poset
should give a poset as well, we can go back to the original question asked at the
beginning of this section. What kind of relations on graphs and hypergraphs,
or more generally on posets, are associated to a partition of the underlying set,
and to their quotient structures? What kind of properties does the associated
quotient function, linking (U,H) to (U ′, H ′), have?

For the reasons discussed in Sections 1.3 and 1.4, we work with stable re-
lations. Thus an obvious idea would be to consider stable relations that are

5In this case the term graph is used in the sense of directed graph, as an ontology can be
represented as data linked by certain relations.
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Figure 1.13: A poset (U,H) with a single component. If we require a stable
relation R ⊆ U × U that is reflexive, symmetric and transitive, we end up with
the universal relation U ×U . Notice that when R is stable, imposing reflexivity,
i.e. I ⊆ R, is equivalent to impose H ⊆ R. We are going to see this in details
in Chapter 5.

additionally reflexive, transitive and symmetric, i.e. equivalence relations on
hypergraphs. These relations have the advantage that they are just ordinary
equivalence relations that are additionally stable. After all, in the set case, it is
precisely equivalence relations that correspond to partitions. However, as shown
by Shaheen and Stell [66] if we consider these relations as defining partitions on
hypergraphs, we will have quite a limited range of relations to choose from. As
they show ([66], Theorem 6), in a hypergraph with only one connected compo-
nent (i.e. every node is reachable by a path from any other node), there is only
one relation with those properties: the universal relation U × U . This result
doesn’t hold just for hypergraphs, i.e. two-levels posets, but for posets in gen-
eral, where the idea of poset with a single connected component is that (U,H)
is made of “one piece”. In Figure 1.13 we can see that if a stable relation R is
reflexive, transitive and symmetric, then it will be the relation U × U . Thus,
the only possible partition arising from this would be the one where everything
collapses into one block, U ′ = {U }. It is clear that this is very restrictive,
and it wouldn’t allow any of the partitions we have seen earlier in Figures 1.10,
1.11 and 1.12. These partitions and quotient structures must then come from
another relation, somewhat weaker than a standard equivalence on posets.

Clearly, things are not so simple when from a set U we move to the more
general case of a poset (U,H). We can already see that parallelism between
classical logic (framework is a set, and operations are applied to subsets) and
intutionistic logic (framework is a poset, and operations are applied to sub-
sets closed under H), and, as we are talking about an additional relation R
on these structures, the parallelism is actually between classical modal logic
frames (U,R), and intuitionistic modal logic frames (U,H,R). The classical
Kripke-frame (U,R) where R is an equivalence relation is the base of the se-
mantics for the system S5. So the question is: is there an intuitionistic version
of S5, whose semantics is therefore based on a bi-relational frame (U,H,R)?
What properties does R have here? This system, and its semantics, could help
us to answer to the questions asked before. The answer is yes, there is an intu-
itionistic version of S5. But it turns out there is not just one, there are many.
In just one work, [52], Ono mentions several possiblities for the intuitionistic
analogous of classical S5. Different sets of axioms, i.e. different logics, are
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considered as intuitionistic equivalent of S5. The axioms correspond, by cor-
respondence theorem, to different constraints on R. We are going to compare
these constraints, and thus the axioms nd the logics, under the light of a specific
application: R gives rise to a partition on (U,H) and to its quotient structure,
i.e. to a coarser view on the inital poset. As far as we are aware, no such a thing
has been done in the literature before. Intuitionistic modal logic S5 has never
been seen as the logic describing poset partitions and their quotient structures,
even if the connection between partitions on sets and equivalence relations is
a basic part of maths, and their connection to classical modal logic S5 is well
known [53], [92].

As we will see in Chapter 5, Section 5.3, reflexive and transitive relations
on (U,H) already give an account of partitions on the underlying set U . These
relations are also used in [81] to give partitions of ordered information systems,
even if in a different way from us. Also other works on intuitionistic modal logic
start from reflexive and transitive relations, i.e. from S4 intuitionistic frames,
and then build S5 as an extension of this (see [52] and [18]). The other reason
we keep reflexivity and transitivity, beside the fact that the same approach has
been taken in the literature is that from reflexive and transitive relations we
can define a partition of (U,H) and we can prove that the related quotient
structure (U ′, H ′) is also a poset (Theorem 108). Then we ask the question
whether any additional constraint on R is needed. We are going to look at some
examples (Section 5.4) where a reflexive and transitive relation alone might
not give a satisfactory account of hypergraphs partitions and their quotient
structures. Thus we discuss additional constraints substituting symmetry, to
impose on a stable preorder R. We talk about these constraints as “weaker forms
of symmetry” as, when H = I and thus we are in a classical modal logic context,
all these constraints on R that substitute symmetry of R, are actually equivalent
to symmetry. Thus in the case of H = I all these intutionistic analogues of S5
collapse to classical S5, as expected. We consider mainly three forms of “weak”

symmetry found in the literature: R ⊆ H ;
Ø

R, R ⊆
Ø

R;H, and R ⊆
Ø

R;H ;
Ø

R, where
Ø

R = R∩R̆, i.e. the symmetric part of R. The first two constraints are considered
in Ono [52], and the first one is also considered by Dosën [18] in intuitionistic
version of S5 proposed there. The third constraint is introduced in [66] and
it is known as symmetry-generation. Also their aim is generating partitions
on hypergraphs by a stable relation. However the logic of an intuitionistic
frame (U,H,R) where R is reflexive, transitive and symmetrically-generated
is not investigated there, and symmetry-generation constraint is not compared
with other similar constraints appearing in the literature, as the ones already
mentioned from [52] and [18], and from [52]. We do both of these things in the
present work. Moreover we investigate what all these weaker forms of symmetry
mean in terms of the quotient function, and what effects each of them will have
on the type of partition and quotient structure that can be generated after
imposing them. Indeed, as we will see in Section 5.4, each of these constraints on
R arises from imposing a particular condition on the quotient function, linking
the starting poset (U,H) to its quotient structure (U ′, H ′). These conditions on
the quotient function, in turn, express a “dependency” of the resulting partial
order H ′ from the original partial order H.

We will see that the two constraints proposed by Ono [52], might be too

restrictive in the kind of partitions they allow. The first one, R ⊆ H ;
Ø

R, implies
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that a partition and a quotient structure like the one in Figure 1.10 (left) is not
allowed. Indeed in this granulation we have nodes that get clustered into an
element that is an edge in the quotient structure. We are going to see that this
is not allowed under the above mentioned constraint (Proposition 112). On the

other hand, the other constraint considered by Ono, R ⊆
Ø

R ;H, will disallow the
partitions in Figure 1.10 (right) and Figure 1.11, as there we have an edge that
gets clustered into a block that plays the role of a node. We will see (Proposi-
tion 115) that this is not possible under the R-constraint at issue. Being able to
connect these constraints on R to certain quotient function properties enabled
us to see the potential restrictions with the constraints proposed by Ono. We
will also see symmetry-generation constraint is equivalent to imposing a desir-
able property of the quotient function linking (U,H) and (U ′, H ′) (Theorem
117). This property doesn’t imply any restriction on the type of elements of the
quotient structure (node or edge) that nodes and edges of a hypergraph can get
mapped to. Thus we will settle on stable relations that are reflexive, transitive
and symmetrically-generated, as corresponding to partitions on posets and gen-
erating their quotient structures. All the partitions given in Figures 1.10, 1.11
and 1.12 arise from a relation on the graphs that has the three above mentioned
properties. We will finally show that symmetry-generation corresponds to an
axiom, in the sense of correspondence theorem for modal logic, expressible in
the BiSKt logic. Thus a new intuitionistic S5 logic, developed with the aim
of a theory for hypergraphs partitions, or more in general poset partitions, is
obtained.

With this work, we hope to shed light on the intricate question of what is
the intuitionistic analogous of the modal logic S5. As mentioned above, other
works suggest axioms substituting symmetry but they don’t say why an axiom
might be more appropriate than another one in certain situations. We evaluate
S5 axioms and corresponding constraints on R under the light of a theory of
poset partition.
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Chapter 2

The logic UBiSKt

In this chapter we will introduce the logic UBiSKt and its proof-
systems, a Hilbert-style proof system and an equivalent tableau proof
system. We will also show some correspondence results concerning this
logic, such as the definability of the notions of hypergraph and graph
within the logic.

2.1 Graphs and Hypergraphs as Posets

The notions of graphs and hypergraphs are central concepts in this work, so let
us introduce them.

Definition 8. An edge-node hypergraph is a triple (E,N, i). E and N are
disjoint sets, E is called the set of edges, N is called the set of nodes, and
i : E → P(N) is a function where P(N) denotes the power-set of N . For each
e ∈ E we have that i(e) 6= ∅.

An alternative notion of hypergraph is definable, with a set U being the
union set of the edges set and the nodes set, and a relation expressing the
edge-node incidence:

Definition 9. A hypergraph (U,H) consists of a set U and a reflexive relation
H ⊆ U ×U such that for all u, v, w ∈ U , uHv and vHw implies v = u or w = v.
Given u ∈ U , u is an edge if there is some v ∈ U such that uHv and u 6= v. An
element u ∈ U that is not an edge, is called a node.

It is clear that the relation H is transitive and anti-symmetric, thus it is a
partial-order. The following result is shown in [66]:

Proposition 10. There is a bijective correspondence between edge-node hy-
pergraphs in the sense of Definition 8 and hypergraphs in the sense of Definition
9.

Proposition 10 states that any edge-node hypergraph uniquely corresponds to a
poset (U,H) where U is the set of edges and nodes together and H describes the
edge-node incidence. Let us briefly explain how we can go from one construction
to the other one, and vice-versa. Let K = (E,N, i) be an edge-node hypergraph.
We construct a hypergraph (UK , HK) as follows: UK = E ∪ N and given two

31
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elements u, v ∈ UK , the relation u HK v holds iff u = v or u ∈ E and v ∈ N
and v ∈ i(u). We need to check that u HK v and v HK w implies that u = v or
v = w, so that (UK , HK) satisfies Definition 9. Suppose that (u, v) and (v, w)
are both in HK and that u 6= v. Then u ∈ E and v ∈ N and v ∈ i(u) by
our definition of HK . Now if also v 6= w holds, we have that v ∈ E, but this
is impossible as E and N are disjoint sets. Hence we conclude that v = w.
In the opposite direction, let G = (U,H) be a hypergraph. We can construct
an edge-node hypergraph (EG, NG, iG) as follows. EG is the set of all edges
of G, so EG = {u ∈ U | ∃v(u H v and u 6= v) }, and similarly NG is the set
of all nodes of G. Then we can define the function iG : EG → P(NG) by:
iG(u) = { v ∈ U | u H v and u 6= v }. We can easily check that no node in G is
also an edge, by Definition 9, thus the sets EG and NG are disjoint, and iG(u)
is always non-empty for any edge u. Thus (EG, NG, iG) satisfies Definition 8,
and it is an edge-node hypergraph. Finally it is possible to check that the
constructions are inverse of each other, namely that if from G = (U,H) we
construct K = (EG, NG, iG), then (UK , HK) = G, and if from K = (E,N, i) we
construct G = (UK , HK), then (EG, NG, iG) = K. For a detailed proof of this
fact, we refer the reader to [66] (p. 79-80).

A graph is a special case of a hypergraph, where every edge is incident with
at most two nodes. By specialising Definition 9, we can define the notion of
graph as follows:

Definition 11. A graph is a hypergraph (U,H) where for all u ∈ U , the set
{v ∈ U | u H v and u 6= v} has at most cardinality 2.

As the two notions of hypergraph from Definitions 8 and 9 are equivalent, the
above definition of graph is equivalent to the following one, more common in
the literature.

Definition 12. An edge-node graph (E,N, i) is an edge-node hypergraph where
for all e ∈ E, 1 ≤ |i(e)| ≤ 2

A graph in this sense is undirected and might have multiple edges between the
same pair of nodes as well as loops on nodes. These structures are also known as
multi-graphs, or pseudo-graphs [34], but we will refer to them simply as graphs.
In Fig. 2.1 we give an example of an edge-node graph, its representation as
edge-node hypergraph, and the associated poset (U,H).

u v
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u x t

w

v
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u x
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t
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w v y z
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Figure 2.1: The edge-node graph on the left has four nodes, u, x, t, k, and four
edges w, v, y, z. It can also be represented as an edge-node hypergraph, shown
in the middle. The corresponding poset for this graph is the reflexive closure of
the relation on the set U = {u, x, t, k, w, v, y, z}, shown on the right hand side
(figure adapted from [72]).
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A subgraph of a hypergraph as in Definition 9, and thus of a graph, can be
seen a subset of U such that if an edge is present, then all its end-points are
present as well. This idea can be formalised by the following definition.

Definition 13. Given a hypergraph (U,H) and a set K ⊆ U , K is a subgraph
if u ∈ K and uHv jointly imply v ∈ K, for any u, v ∈ U .

2.2 Kripke Semantics for UBiSKt

The logic UBiSKt is a bi-intuitionistic modal logic with universal modalities,
that we introduced in [73] and we have also studied in [71]. It is an extension
of the logic BiSKt, [74], [62]. The name of the logic stands for bi-intuitionistic
stable tense logic, and the letter “K” indicates the basic normal modal system
K. The semantics of UBiSKt is given by a set U with a preorder relation1

H ⊆ U × U . Modal operators in UBiSKt are interpreted with respect to a
stable relation R ⊆ U×U , for the reason discussed in Section 1.4. The universal
modalities A and E are interpreted with respect to the universal relation U ×U ,
that is trivially stable.

Let Prop be a countable set of propositional variables. Our syntax L for
UBiSKt consists of all logical connectives of bi-intuitionistic logic, i.e., two
constant symbols ⊥ and >, disjunction ∨, conjunction ∧, implication →, coim-
plication �, and a finite set {�,�,A,E} of modal operators. The set FormL of
all well formed formulas in L is defined inductively as follows:

ϕ ::= > |⊥ | p |ϕ ∧ ϕ |ϕ ∨ ϕ |ϕ→ ϕ |ϕ � ϕ | �ϕ |�ϕ | Eϕ | Aϕ (p ∈ Prop).

We define the following abbreviations (see [74]):

¬ϕ := ϕ→ ⊥, ¬ϕ := > � ϕ, ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ),

♦ϕ := ¬�¬ϕ, �ϕ := ¬�¬ϕ.

Definition 14. Let H be a preorder on a set U . We say that X ⊆ U is an
H-set if X is closed under H-successors, i.e., u H v and u ∈ X jointly imply
v ∈ X for all elements u, v ∈ U . Given a preorder (U,H), a binary relation
R ⊆ U × U is stable, if it satisfies H ;R ;H ⊆ R.

Stability is displayed diagrammatically in Figure 2.2. It is easy to see that a
relation R on U is stable, if and only if, H ; R ⊆ R and R ; H ⊆ R. Indeed we
have that H ;R ;H ⊆ R ;H ⊆ R by application of H ;R ⊆ R and R ;H ⊆ R, and
H ;R ⊆ H ;R ; I ⊆ H ;R ;H ;R, by reflexivity of H (I ⊆ H), and application of
H ;R ;H ⊆ R. Similarly we can deduce R ;H ⊆ R from stability. When (U,H)
is a graph, or a hypergraph, the two parts of stability imply the following facts:
R ;H ⊆ R implies that every time an element u ∈ U (edge or node) is related by
R to an edge v ∈ U , then u is related by R to all the nodes that v is H-incident
with. H ;R ⊆ R implies that every time a node u ∈ U is related to an element
v ∈ U (edge or node), then all the edges H-incident with u are R-related to v
as well.

1The relation H was originally assumed to be a preorder in the first paper where BiSKt
appeared, [74]. However, we will often talk about the frame (U,H) as a partially ordered set,
poset for short, thus with H being a preorder that is additionally antisymmetric, because our
main objects of interest are graphs and hypergraphs. We have already seen that they give rise
to posets. Also generalisations of these, i.e. simplicial complexes, that we will briefly look at
in Chapter 6, can be modelled as posets.
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R

H

Figure 2.2: The inclusion conditions H ; R ⊆ R and R ; H ⊆ R represented
by a diagram. Imposing both these conditions is equivalent to impose stability,
i.e. H ; R ; H ⊆ R. The diagram has to be read as follows: whenever a pair of
elements of U belong to the relational composition of the relations represented
by thick arrows, then the pair belongs to the relation represented by the dashed
arrow.

H R

u

v

Figure 2.3: Example of a stable relation R such that its converse is not stable
(reflexive loops of H are left implicit). We have that R = H ; R ; H hence
stability of R. However (v, v) ∈ R̆ ; H but (v, v) /∈ R̆. Thus R̆ ; H * R̆, and so

R̆ is not stable.

Even if R is a stable relation on U , its converse R̆ may be not stable, as Figure
2.3 shows. Thus we introduce the concept of the left converse of a relation R,
that is the smallest stable relation containing R̆.

Definition 15 ([74]). The left converse yR of a stable relation R is H ; R̆ ;H.

Definition 16. We say that F = (U,H,R) is an H-frame if U is a nonempty
set, H is a preorder on U , and R is a stable binary relation on U . A valuation
on an H-frame F = (U,H,R) is a mapping V from Prop to the set of all H-sets
on U . M = (F, V ) is an H-model if F = (U,H,R) is an H-frame and V is a
valuation. Given an H-model M = (U,H,R, V ), a state u ∈ U and a formula
ϕ, the satisfaction relation M,u |= ϕ is defined inductively as follows:
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M,u |= p ⇐⇒ u ∈ V (p),
M, u |= >,
M, u 6|= ⊥,
M, u |= ϕ ∨ ψ ⇐⇒ M,u |= ϕ or M,u |= ψ,
M, u |= ϕ ∧ ψ ⇐⇒ M,u |= ϕ and M,u |= ψ,
M, u |= ϕ→ ψ ⇐⇒ For all v ∈ U ((uHv and M,v |= ϕ) imply M,v |= ψ),
M, u |= ϕ � ψ ⇐⇒ For some v ∈ U (vHu and M, v |= ϕ and M,v 6|= ψ),
M, u |= �ϕ ⇐⇒ For some v ∈ U (vRu and M,v |= ϕ),
M, u |= �ϕ ⇐⇒ For all v ∈ U (uRv implies M,v |= ϕ),
M, u |= Eϕ ⇐⇒ For some v ∈ U (M,v |= ϕ),
M, u |= Aϕ ⇐⇒ For all v ∈ U (M,v |= ϕ).

The truth set JϕKM of a formula ϕ in an H-model M is defined by JϕKM :=
{u ∈ U |M,u |= ϕ }. If the underlying model M in JϕKM is clear from the
context, we drop the subscript and simply write JϕK. We say that ϕ is valid in
M (in symbols M |= ϕ) when M,u |= ϕ for all u ∈ U . If Γ is a set of formulas,
M |= Γ means that M |= γ for all γ ∈ Γ.

Given any H-frame F = (U,H,R), we say that a formula ϕ is valid in F (in
symbols F |= ϕ) when (F, V ) |= ϕ for any valuation V and any u ∈ U .

As for the abbreviated symbols, we may derive the following satisfaction
conditions:

M,u |= ¬ϕ ⇐⇒ For all v ∈ U (uHv implies M,v 6|= ϕ),
M, u |= ¬ϕ ⇐⇒ For some v ∈ U (vHu and M,v 6|= ϕ),
M, u |= ♦ϕ ⇐⇒ For some v ∈ U ((v, u) ∈yR and M, v |= ϕ),
M, u |= �ϕ ⇐⇒ For all v ∈ U ((u, v) ∈yR implies M, v |= ϕ).

Proposition 17. Given any H-model M , the truth set JϕKM is an H-set.

Proof. By induction on ϕ. When ϕ is of the form �ψ, �ψ, ♦ψ or �ψ, we need
to use R ; H ⊆ R, and H ; R ⊆ R, and yR ; H ⊆ yR and H ; yR ⊆ yR
respectively, and all these facts hold as R and yR are stable relations. When
ϕ is of the form Eψ, Aψ, we remark that JϕKM = U or JϕKM = ∅, which are
both trivially H-sets. �

The semantics of UBiSKt is built upon a set with a relation of preorder.
We have seen how a hypergraph gives rise to a poset, that is also a preorder. So
a special case of an H-model as in Definition 16 is when (U,H) is a hypergraph.

K ¬K ¬K

Figure 2.4: The two kinds of complement of a subgraph K (figure adapted
from [71]).



36 CHAPTER 2. THE LOGIC UBISKT

By Definition 13, the subgraphs of a hypergraph (U,H) are the subsets of
U that are closed under H-successor, therefore they are H-sets as in Defini-
tion 14. Since any formula ϕ in the logic is interpreted on the H-set JϕKM ,
formulae in the logic can be regarded as names for subgraphs of an underlying
hypergraph (U,H). Similarly, operations in the logic provide operations on sub-
graphs, following the semantics from Definition 16 . Figure 2.4 shows a graph
with a subgraph and the two operations of complement ¬ and ¬, where the
leftmost is a graph (U,H) with subgraph K and the remaining graphs are the
subgraphs obtained by the operation ¬ and ¬. We note that ¬K is the largest
subgraph disjoint from K, i.e. the largest subgraph such that K ∩¬K = ∅ and
¬K is the smallest subgraph whose union with K gives all of the underlying
graph G, i.e. the smallest subgraph such that K ∪ ¬K = U . We call ¬K the
pseudo-complement of K, and ¬K the dual pseudo-complement of K.

Definition 18. Given a set Γ ∪ {ϕ} of formulas and a class F of H-frames, ϕ
is a semantic consequence of Γ in F (in symbols Γ |=F ϕ) if, whenever M |= Γ,
M |= ϕ holds, for allH-modelsM = (U,H,R, V ) such that (U,H,R) ∈ F. When
Γ is a singleton {ψ} formula, we simply write ψ |=F ϕ instead of {ψ } |=F ϕ.
When Γ is empty, we also simply write |=F ϕ instead of ∅ |=F ϕ. If F is the class
of all H-frames, we drop the subscript to write Γ |= ϕ provided no confusion
arises.

Definition 19. We say that a set Γ of formula defines a class F of H-frames
if for all H-frames F , F ∈ F iff F |= ϕ for all formulas ϕ ∈ Γ. When Γ is a
singleton {ϕ }, we simply say that ϕ defines a class F.

The following frame definability result was already established in [74, The-
orem 10].

Proposition 20 ([74]). Let F = (U,H,R) be an H-frame. Let Si ∈ {R,yR }
for i = 1, . . . ,m and for each i let

Bi =

{
� if Si = R

� if Si = yR
and let Di =

{
� if Si = R

♦ if Si = yR

Let 0 6 k 6 m (where the composition of a sequence of length 0 is understood
as H). Then the following are equivalent: (1) S1 ; · · · ; Sk ⊆ Sk+1 ; · · · ; Sm; (2)
F |= Dk · · ·D1p→ Dm · · ·Dk+1p; (3) F |= Bk+1 · · ·Bm → B1p · · ·Bkp.

2.2.1 Alternative semantics in terms of morphological op-
erations

It is useful to see how we can express the semantics of some connectives and
operators in UBiSKt in terms of dilation and erosion. From Definition 14 we
have that given X ⊆ U , X is an H-set iff X ⊕H ⊆ X. By reflexivity of H it
follows that this condition is equivalent to X = X ⊕H. Moreover, as ⊕H
and H 	 form an adjunction in the sense of Definition 6, and by reflexivity
of H again, we have that X = X ⊕ H iff X = H 	 X. Given an H-model
M = (U,H,R, V ), given formulae ϕ and ψ interpreted over some H-sets JϕKM
and JψKM , the semantics of the connectives and operators in UBiSKt involving
a relation in their definition, can be expressed by using dilation and erosion as
follows (U is the universal relation U × U).
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J¬ϕK = H 	 (−JϕK) J¬ϕK = (−JϕK)⊕H
Jϕ→ ψK = H 	 ((−JϕK) ∪ JψK) Jϕ � ψK = (JϕK ∩ (−JψK))⊕H
J�ϕK = R	 JϕK J�ϕK = JϕK⊕R
J�ϕK = yR	 JϕK J♦ϕK = JϕK⊕yR
JAϕK = U	 JϕK JEϕK = JϕK⊕ U

The remaining connectives, conjunction and disjunction, can be expressed
in a similar set-theoretic fashion as Jϕ ∧ ψK = JϕK ∩ JψK, and Jϕ ∨ ψK = JϕK ∪
JψK. Let us take the example of an implication ϕ → ψ. From Definition 16
we have that given a u ∈ U , M,u |= ϕ → ψ iff for all v such that u H v,
if v |= ϕ then v |= ψ. Using the truth-set notation, this can be written as
u ∈ Jϕ → ψK iff for all v such that u H v, v /∈ JϕK or v ∈ JψK, that is
v ∈ (−JϕK) ∪ JψK. So using this fact and Definition 5 of erosion we have that
Jϕ→ ψK = {u ∈ U | ∀v(u H v implies v ∈ (−JϕK ∪ JψK) } = H 	 (−JϕK ∪ JψK).

2.3 Defining the notion of Graph and Hyper-
graph with the logic

Hypergraphs can be regarded as posets where only two kinds of elements occur:
0-dimensional elements, i.e. nodes, H-related only to themselves by reflexivity
of H, and 1-dimensional elements, i.e. edges, H-related to the nodes they are
incident with, and to themselves by reflexivity. Given a poset (U,H), this

property can be expressed as a constraint on H: (H ∩ ˘̄H)2 = ∅. Indeed this

constraint expresses the fact that the non-symmetric part of H, i.e. H ∩ ˘̄H is
at most “one step long” (we also remind the reader that as a hypergraph is a
poset and thus H is antisymmetric and reflexive, the symmetric part of H, i.e.
(H ∩ H̆) is the identity relation I on U). We can reformulate the relational
constraint as follows: for any u, v and w ∈ U , if uHvHw holds then at least one
of the following must hold: vHu or wHv. When the preorder H is additionally
antisymmetric, so when the symmetric steps are just identity loops, it is clear
the constraint implies that U has only layers, the edges layer H incident with
the nodes layer.

In what follows we are going to show that there is a formula in UBiSKt
that corresponds to this constraint on a preorder H, so that when we restrict
our attention to H-frames where H is also antisymmetric, the formula singles
out the class of H-frames that are hypergraphs. The following results are valid
for any H-frame F = (U,H,R), but are independent from the relation R.

Theorem 21. Let F = (U,H,R) be an H-frame. Then F |= q∨ (q → (p∨¬p))
iff (H ∩ ˘̄H)2 = ∅.

Proof. For the right-to-left direction: let us assume that (H∩ ˘̄H)2 = ∅ and that
F 2 q ∨ (q → (p ∨ ¬p)). We are going to derive a contradiction. If the formula
q ∨ (q → (p ∨ ¬p)) is not valid at the H-frame F , then there is a valuation V
and a world u such that F, V, u 2 q ∨ (q → (p ∨ ¬p)). Let us fix F and u. Then
F, V, u 2 q and F, V, u 2 q → (p ∨ ¬p). Then there is a v ∈ U such that u H v
and F, V, v |= q and F, V, v 2 p ∨ ¬p, so F, V, v 2 p and F, V, v 2 ¬p. Thus there

is a w ∈ U such that v H w and F, V,w |= p. Since (H ∩ ˘̄H)2 = ∅ holds by
assumption and u H v H w, we have that i) v H u, or ii) w H v. Let us assume
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the first case. F, V, v |= q and v H u jointly imply F, V, u |= q, by monotonicity
of knowledge w.r.t. the preorder H. But this contradicts the assumption that
F, V, u 2 q. Then ii) must be the case. But F, V,w |= p and w H v jointly imply
F, V, v |= p, that contradicts F, V, v 2 p. As the initial assumption has been

contradicted, we have proved that (H ∩ ˘̄H)2 = ∅ implies F |= q∨ (q → (p∨¬p))
for any valuation V and world u ∈ U .

For the left-to-right direction: we prove the converse. Let us assume that

(H ∩ ˘̄H)2 6= ∅ for an H-frame F = (U,H,R). Our goal is to show that F 2
q∨(q → (p∨¬p)), so that it is always possible to find a valuation V and a world

u ∈ U such that F, V, u 2 q∨ (q → (p∨¬p)). Since (H ∩ ˘̄H)2 6= ∅ we know that
there are u, v and w ∈ U such that u H v and v H w holds and both v H u and
w H v fail. Let us define the following valuation V : V (p) = {x ∈ U | w H x },
and V (q) = {x ∈ U | v H x }. It is clear that both V (p) and V (q) are H-set.
Now we have: F, V,w |= p, as, by reflexivity of H we have that w H w . Then,
since v H w, F, V, v 2 ¬p. But also F, V, v 2 p, as w H v fails. Therefore
F, V, v 2 (p ∨ ¬p). Moreover F, V, v |= q, as, by reflexivity of H we have that
v H v. So by u H v, we have that F, V, u 2 q → (p ∨ ¬p). Moreover F, V, u 2 q
because v H u fails. Therefore F, V, u 2 q ∨ (q → (p ∨ ¬p)), as desired. �

Corollary 22. Let H be a partial order, and let F = (U,H,R) be an H-frame.
Then F |= q ∨ (q → (p ∨ ¬p)) iff F is a hypergraph.

Proof. The condition (H ∩ ˘̄H)2 = ∅ says that for all u, v, w ∈ U , u H v and
v H w implies v H u or w H v, so that for all u, v, w ∈ U , u H v and v H w
then u (H ∩ H̆) v or v (H ∩ H̆) w. When H is antisymmetric and reflexive, as
for a partial order, then H ∩ H̆ = I. So we have that for all u, v, w ∈ U , u H v
and v H w then v = u or w = v. Thus, under this condition, a poset (U,H) is
a hypergraph by Definition 9. �

It is well known that the law of excluded middle, p∨¬p, defines the property
of symmetry of a preorder H, H ⊆ H̆ . When H is also anti-symmetric, the
validity of this formula implies that (U,H) is a set, i.e. a hypergraph without
any hyper-edges but with only nodes, namely discrete points.

Theorem 23. Let F = (U,H,R) be an H-frame. Then F |= p∨¬p iff H ⊆ H̆.

Corollary 24. Let H be a partial order, and let F = (U,H,R) be an H-frame.
Then F |= p ∨ ¬p iff H = I.

Proof. The condition H ⊆ H̆ expresses symmetry of H and it is equivalent to
H = H ∩ H̆. When H is a partial-order we have that H ∩ H̆ = I. Therefore for
F = (U,H), with H partial order, F |= p ∨ ¬p iff H = H ∩ H̆ = I. �

It is clear that if H = (H ∩ H̆) then the non-symmetric part of H is empty:

(H ∩ ˘̄H) = ∅. Thus also (H ∩ ˘̄H)2 = ∅ holds, so if (U,H) is a poset, then under
this condition, it will also be a hyperhraph, and a special type of hypergraph:
one where only one type of elements are presents, i.e. nodes. Indeed, the
incidence relation H is simply the identity, and from Definition 9, an element
of U is an edge iff it is H-predecessor of an element distinct from itself. Thus
in these cases such elements cannot exists, that means we are in the presence
of a hypergraph without edges, that we can consider simply as a set of points.
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The frame (U,H) is fully determined by a set U with its identity relation I. It
is indeed well known that, when adding the validity of excluded middle axiom
to intuitionistic logic, we obtain classical logic.

The results show that, by adding the extra assumption of antisymmetry, by
the formula q ∨ (q → (p ∨ ¬p)) or with the formula p ∨ ¬p, we can restrict our
attention to the class of H-frames that are hypergraphs and sets respectively.
We note that the formulae q∨ (q → (p∨¬p)) and p∨¬p and their generalisation
are also studied in [11], where Kripke frames for intuitionistic logic are already
considered posets, and not generic pre-orderings. Here we have interpreted these
frame correspondence results in terms of a preorder H and partial order H, and
we have noticed that in the case of H being a partial order, the formulae at
issue define the notions hypergraph and set.

A graph is a special case of a hypergraph where each edge is incident with
at most two nodes (see Definition 11). We are going to show now that there
is a formula in UBiSKt that defines the following property of an H-frame:
any element u of U is H-incident with at most two distinct elements that are
not in turn H-accessible from each others. This means that the width of H
is bounded to a maximum size of 2. A general version of this formula and
the corresponding frame property expressing the width size of an intuitionistic
frame is already studied in [11]. Here we are going to see that, with the extra
assumption that (U,H) is a hypergraph, imposing the validity of this formula,
and thus the corresponding property, is equivalent to require that (U,H) is a
graph.

Theorem 25. Let F = (U,H) be an H-frame. Then F |= (p→ (q ∨ r))∨ (q →
(p∨ r))∨ (r → (p∨ q)) iff ∀u, v, w, t ((u H v ∧ u H w ∧ u H t)→ (v H w ∨w H
v ∨ v H t ∨ t H v ∨ w H t ∨ t H w)).

Proof. For the right-to-left direction, let us assume that the frame condition is
true for an H-frame F = (U,H) and that the axiom is not valid at F . The
goal is to show that this leads to contradiction. If F 2 (p → (q ∨ r)) ∨ (q →
(p ∨ r)) ∨ (r → (p ∨ q)) then there is a u ∈ U and a valuation V such that
F, V, u 2 (p → (q ∨ r)), and F, V, u 2 (q → (p ∨ r)) and F, V, u 2 (r → (p ∨ q)).
Then there are v, w, t such that u H v and u H w and u H t such that:
F, V, v |= p and F, V, v 2 q, F, V, v 2 r; F, V,w |= q and F, V,w 2 p, F, V,w 2 r;
and F, V, t |= r and F, V, t 2 p, F, V, t 2 q. By our frame condition, since u H v
and u H j and u H t hold, at least one of the following possibilities must hold:
i) v H w, ii) w H v, iii) v H t, iv) t H v, v) w H t, vi) t H w. But it is easy
to see that all of i–vi lead to contradiction. Suppose i is the case. v H w and
F, V, v |= p jointly imply F, V,w |= p. But this contradicts with F, V,w 2 p.
Suppose ii is the case. w H v and F, V,w |= q jointly imply that F, V, v |= q.
This contradicts with F, V, v 2 q. Similar reasoning holds for the remaining
case. Therefore we have shown that if the frame condition at issue holds at F ,
then the formula must be valid at F , as desired.

For the left-to-right direction: let us suppose that the frame condition
doesn’t hold. The goal is to show that the formula is not valid at such an
H-frame, so that it is always possible to find a valuation V and a world u such
that F, V, u 2 (p → (q ∨ r)) ∨ (q → (p ∨ r)) ∨ (r → (p ∨ q)). Since the frame
condition doesn’t hold, there are u, v, w, t ∈ U such that u H v and u H w



40 CHAPTER 2. THE LOGIC UBISKT

and u H t, and v H̄ ∩ ˘̄H w , and v H̄ ∩ ˘̄H t, and w H̄ ∩ ˘̄H t2. Let us choose
the following valuation V : V (p) = {x ∈ U | v H x }, V (q) = {x ∈ U | w H x }
and V (r) = {x ∈ U | t H x }. Put M = (F, V ). It is clear that V (p), V (q)
and V (r) are all H-sets. Now, we have that M, v |= p. Also, since w H̄ v,
i.e. v is not an H-successor of w, we have that M,v 2 q, and since t H̄ v, we
have that M,v 2 r. Thus M, v 2 q ∨ r, that implies that M,u 2 p → (q ∨ r).
Similarly, M,w |= q, and since v H̄ w, we have that M,w 2 p. Since t H̄ w, we
have that M,w 2 r. Thus M,w 2 p ∨ r, that implies that M,u 2 q → (p ∨ r).
Analogous reasoning on t leads to the conclusion that M,u 2 r → (p∨ q). Thus
M,u 2 (p→ (q ∨ r)) ∨ (q → (p ∨ r)) ∨ (r → (p ∨ q)), as desired. �

Corollary 26. Let F = (U,H) be a hypergraph. Then F |= (p→ (q∨r))∨(q →
(p ∨ r)) ∨ (r → (p ∨ q)) iff F is a graph.

Proof. For the left to right direction, suppose (U,H) is a hypergraph and sup-
pose the formula at issue holds. By Theorem 25 we know then for all u, v, w, t ∈
U , ((u H v∧u H w∧u H t)→ (v H w∨w H v∨v H t∨ t H v∨w H t∨ t H w))
holds. The goal is to show that under this conditions, (U,H) is a graph, i.e. by
Definition 11, the cardinality of the set {u ∈ U | v H u and v 6= u } is at most
2, for any u ∈ U . So let us assume that for some u, v, w, t ∈ U , u H v and
u 6= v, u H w and u 6= w, and u H t and u 6= t. The goal is to show that then
v = w or w = t or v = t. Since u H v and u H w and u H t hold, then we
must have one of these cases: (i) v H w, (ii) w H v, (iii) w H t, (iv) t H w, (v)
v H t, (vi) t H v. Suppose (i) is the case. Then we have u H v H w. Then as

(U,H) is a hypergraph and then (H ∩ ˘̄H)2 holds, we have that u = v or v = w.
But u 6= v by assumption. Thus it must be that v = w. Case (ii) implies the
same. Suppose (iii) is the case. Then u H w H t. Thus, by the assumption
of working with hypergraphs, we have that u = w or w = t. But u 6= w, thus
it must be that w = t. Case (iv) implies the same. Finally suppose (v) is the
case. Then by u H v H t we have that u = v or v = t. As the first is impossible
it must be the second, and the same result will be obtained analysing case (vi).
Thus we have proved that v = w or w = t or v = t, as desired. Thus, given any
u ∈ U , the cardinality of the set {u ∈ U | v H u and v 6= u } is at most 2, and
thus (U,H) is a graph.

The other direction is trivial. �

2.4 Axiomatisation and Tableau calculus for UBiSKt

2.4.1 Hilbert-style axiomatisation

HUBiSKt is an Hilbert-style axiomatization for the logic UBiSKt, introduced
in [71]. The set of axioms and rules forming HUBiSKt is provided in Table
2.1. In what follows we assume that the reader is familiar with theorems and
derived inference rules in intuitionistic logic (see [3] for an introduction to the
topic).

2The relation x (H̄ ∩ ˘̄H) y means indeed that the pair (x, y) belongs neither to H nor to

H̆.
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Table 2.1: Hilbert System HUBiSKt

Axioms and Rules for Intuitionistic Logic
(A0) p→ (q → p)
(A1) (p→ (q → r))→ ((p→ q)→ (p→ r))
(A2) p→ (p ∨ q) (A3) q → (p ∨ q)
(A4) (p→ r)→ ((q → r)→ (p ∨ q → r)) (A5) (p ∧ q)→ p
(A6) (p ∧ q)→ q (A7) (p→ (q → p ∧ q))
(A8) ⊥ → p (A9) p→ >
(MP) From ϕ and ϕ→ ψ, infer ψ
(US) From ϕ, infer a substitution instance ϕ′ of ϕ
Additional Axioms and Rules for Bi-intuitionistic Logic
(A10) p→ (q ∨ (p � q)) (A11) ((q ∨ r) � q)→ r
(Mon�) From δ1 → δ2, infer (δ1 � ψ)→ (δ2 � ψ)
Additional Axioms and Rules for Tense Operators
(A12) p→ ��p (A13) ��p→ p
(Mon�) From ϕ→ ψ, infer �ϕ→ �ψ (Mon�) From ϕ→ ψ, infer �ϕ→ �ψ
Additional Axioms and Rules for Universal Modalities
(A14) p→ AE p (A15) EA p→ p
(A16) A p→ p (A17) A p→ AA p
(A18) A¬p↔ ¬E p (A19) (A p ∧ E q)→ E(p ∧ q)
(A20) A p→ �p (A21) (A p ∧ �q)→ �(p ∧ q)
(A22) (A p ∧ (q � r))→ ((p ∧ q) � r)
(MonA) From ϕ→ ψ, infer Aϕ→ Aψ (MonE) From ϕ→ ψ, infer Eϕ→ Eψ
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Definition 27. Let ϕ ∈ FormL and Γ ⊆ FormL. A derivation in HUBiSKt ϕ
from Γ, in symbols Γ `HUBiSKt ϕ, is a finite sequence of formulae ϕ1, . . . , ϕn

with the following properties:

1. each ϕi, 1 ≤ i ≤ n is either:

– an axiom of HUBiSKt or

– a member of Γ or

– it follows from some previous formula ϕj , j < i, by application of a
rule of HUBiSKt.

2. ϕn = ϕ.

When Γ `HUBiSKt ϕ we say that ϕ is provable from Γ in HUBiSKt. If
Γ `HUBiSKt ϕ and Γ = ∅, then ϕ is a theorem in HUBiSKt, in symbols
`HUBiSKt ϕ.

The following results on HUBiSKt are shown in [71].

Theorem 28 (Soundness of HUBiSKt). Given any formula ϕ, `HUBiSKt ϕ
implies |= ϕ.

Proposition 29. All the following hold for HUBiSKt.

1. ` (ψ � γ)→ ρ iff ` ψ → (γ ∨ ρ).

2. If ` ϕ↔ ψ then ` (γ � ϕ)↔ (γ �
ψ).

3. ` ¬(ϕ � ϕ).

4. ` ϕ ∨ ¬ϕ.

5. ` ¬¬ϕ→ ϕ.

6. ` ¬ϕ→ ¬ϕ.

7. ` ϕ→ ¬ψ iff ` ψ → ¬ϕ.

8. ` ¬ϕ→ ψ iff ` ¬ψ → ϕ.

9. ` ¬¬ϕ→ ψ iff ` ϕ→ ¬¬ψ.

10. ` ϕ→ ¬¬ϕ.

11. ` ¬¬ϕ→ ϕ.

12. If ` ϕ→ ψ then ` ¬ψ → ¬ϕ.

13. ` ¬(ϕ ∧ ¬ϕ).

14. ` Eϕ→ ψ iff ` ϕ→ Aψ.

15. ` ϕ→ Eϕ.

16. ` EEϕ→ Eϕ.

17. ` AEϕ↔ Eϕ.

18. ` ¬Aϕ↔ ¬Aϕ.

19. ` Aϕ ∨ ¬Aϕ.

20. ` ¬Eϕ↔ ¬Eϕ.

21. ` Eϕ ∨ ¬Eϕ.

22. ` Eϕ↔ ¬A¬ϕ.

23. ` A(¬ϕ→ ψ)↔ A(¬ψ → ϕ).

24. ` E(¬¬ϕ ∧ ψ)↔ E(ϕ ∧ ¬¬ψ).

Strong completeness of HUBiSKt (Theorem 37) is shown in [71] and [72],
using the canonical model method and it is contribution of the second author
of the papers, as well as decidability of UBiSKt (Theorem 44). We introduce
here the main definitions and lemmas needed for the canonical model construc-
tion, and thus for the completeness theorem, and we refer the reader to [71]
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and [72] for the full proofs. Moreover we have completeness of some extensions
of HUBiSKt: (i) completeness of any logic ubist logic extended with the for-
mula used for defining hypergraphs, introduced in Section 2.3 w.r.t the class
of H-frames that are hypergraphs (Lemma 39 and Theorem 40), and (ii) com-
pleteness of any ubist logic extended with the formula used for defining graphs,
introduced in Section 2.3 w.r.t the class of H-frames that are graphs (Lemma
42 and Theorem 43). The first point is already presented in [72] and it is con-
tribution of the second author of the paper, whilst the second point is a novel
contribution of the author of the present work.

Definition 30. A ubist logic is any set Λ of formulae satisfying the following
conditions: i) Λ contains all the axioms of Table 2.1 and ii) Λ is closed under all
the rules of Table 2.1. The term ubist logic is used as short for bi-intuitionistic
stable tense logic with universal modalities. Given a ubist logic Λ, a pair of
formulae (Γ,∆) is Λ-provable if Γ `Λ

∨
∆′, i.e. when for some finite ∆′ ⊆ ∆

and some finite Γ′ ⊆ Γ, we have that
∧

Γ′ →
∨

∆′ ∈ Λ. (Γ,∆) is Λ-unprovable
if it is not Λ-provable. It is complete, if for all formulae ϕ, ϕ ∈ Γ, or ϕ ∈ ∆.

The following lemmas hold because Λ contains intuitionistic logic.

Lemma 31. Let Λ be a ubist logic, and (Γ,∆) a complete and Λ-unprovable
pair. Then:

1. For all formulas ϕ, Γ `Λ ϕ implies ϕ ∈ Γ.

2. Λ ⊆ Γ.

3. If ϕ ∈ Γ and ϕ→ ψ, then ψ ∈ Γ.

4. ⊥ /∈ Γ.

5. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ.

6. ϕ ∨ ψ ∈ Γ iff ϕ ∈ Γ or ψ ∈ Γ.

Lemma 32. Let ∆ be a ubist-logic. Given a Λ-unprovable pair (Γ,∆), there
exists a Λ-unprovable and complete pair (Γ+,∆+) such that Γ ⊆ Γ+ and ∆ ⊆
∆+.

Definition 33. Let Λ be a ubist-logic and (Γ,∆) be a complete and Λ-unprovable
pair. The Λ-canonical H-model MΛ

(Γ,∆) = (UΛ, HΛ, RΛ, V Λ) is defined as:

– UΛ := { (Σ,Θ) | (Σ,Θ) is a complete and Λ− unprovable pair and (Γ,∆)SΛ(Σ,Θ) }
where the relation SΛ is defined as:

(Γ,∆)SΛ(Σ,Θ) ⇐⇒ (Aϕ ∈ Γ ⇐⇒ Aϕ ∈ Σ) for all formulas ϕ.

– (Σ1,Θ1)HΛ(Σ2,Θ2) iff Σ1 ⊆ Σ2.

– (Σ1,Θ1)RΛ(Σ2,Θ2) iff (�ϕ ∈ Σ1 implies ϕ ∈ Σ2) for all formulas ϕ.

– (Σ,Θ) ∈ V Λ(p) iff p ∈ Σ.

Let FΛ
(Γ,∆) = (UΛ, HΛ, RΛ) be the Λ-canonical H-model.
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It is clear that HΛ is not just a preorder but it is also a partial order.

Lemma 34. Let (Σ1,Θ1), (Σ2,Θ2) ∈ UΛ. The following are equivalent:

1. (Σ1,Θ1) RΛ (Σ2,Θ2)

2. (ϕ ∈ Σ1 implies �ϕ ∈ Σ2) for all formulas ϕ.

Proof. From Definition 33 we know that (Σ1,Θ1)RΛ(Σ2,Θ2) iff (�ϕ ∈ Σ1 im-
plies ϕ ∈ Σ2) for all formulas ϕ. Thus we need to prove that this is equivalent
to item 2. For one direction, suppose that �ϕ ∈ Σ1. The goal is to show that
ϕ ∈ Σ2 using item 2. If �ϕ ∈ Σ1, then ��ϕ ∈ Σ2. Then as ��ϕ → ϕ ∈ Λ,
and Λ ⊆ Σ2, we have that ��ϕ → ϕ ∈ Σ2, and thus ϕ ∈ Σ2, as desired. For
the other direction, suppose that ϕ ∈ Σ1, the goal is to show that �ϕ ∈ Σ2

using the definition of RΛ. Suppose by contradiction that ϕ ∈ Σ1 and �ϕ /∈ Σ2.
Then ��ϕ /∈ Σ1. But then as ϕ→ ��ϕ ∈ Λ ⊆ Σ1, we have that ϕ /∈ Σ1. This
is a contradiction as we assumed that ϕ ∈ Σ1. Thus �ϕ ∈ Σ2 as wanted. �

Lemma 35. RΛ is stable in the canonical model H-model MΛ
(Γ,∆).

Proof. The goal is to prove that (i) HΛ ; RΛ ⊆ RΛ, and (ii) RΛ ; HΛ ⊆ RΛ.
For (i), suppose (Γ1,∆1) HΛ (Γ2,∆2) RΛ (Γ3,∆3). Suppose �ϕ ∈ Γ1 for any
formula ϕ. The goal is to show that ϕ ∈ Γ3. (Γ1,∆1) HΛ (Γ2,∆2) implies that
�ϕ ∈ Γ2. As (Γ2,∆2) RΛ (Γ3,∆3), we have that ϕ ∈ Γ3. Similar argument
proves (ii). �

For full proof of the following truth lemma we refer to [72].

Lemma 36 (Truth Lemma). Let Λ be a ubist-logic and (Γ,∆) be a complete
and Λ-unprovable pair. Then, for any formula ϕ and any complete Λ-unprovable
pair (Σ,Θ), the following equivalence holds:

ϕ ∈ Σ ⇐⇒ MΛ
(Γ,∆), (Σ,Θ) |= ϕ.

Theorem 37 (Strong Completeness of HUBiSKt). If Γ |= ϕ then Γ `HUBiSKt

ϕ, for every set Γ ∪ {ϕ} of formulas.

Proof. Put Λ := UBiSKt. Fix any set Γ ∪ {ϕ } of formulas. We prove the
contrapositive implication and so assume that Γ 6`Λ ϕ. It follows that (Γ, {ϕ })
is Λ-unprovable. By Lemma 32, we can find a complete and Λ-unprovable pair
(Σ,Θ) ∈ UΛ such that Γ ⊆ Σ and ϕ ∈ Θ. By Lemma 36 (Truth Lemma),
MΛ

(Σ,Θ), (Σ,Θ) |= γ for all γ ∈ Γ and MΛ
(Σ,Θ), (Σ,Θ) 6|= ϕ. Since MΛ is an

H-model by Lemma 35, we can conclude Γ 6|= ϕ, as desired. �

Moreover, we can prove that by extending UBiSKt with the formula q∨(q →
(p∨¬p)), expressing the property (H∩ ˘̄H)2 = ∅ by Theorem 21, we get a sound
and complete system w.r.t. the class of H-frames that are hypergraphs.

Definition 38. We define HG as the class of all H-frames (U,H,R) such that
(U,H) is a hypergraph, and let bd2 be the formula q ∨ (q → (p ∨ ¬p)).

Lemma 39. Given a ubist-logic Λ such that bd2 ∈ Λ, the Λ-canonical H-frame

FΛ
(Γ,∆) = (UΛ, HΛ, RΛ) satisfies (HΛ ∩ ˘

HΛ)2 = ∅, i.e. FΛ
(Γ,∆) ∈ HG.
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Proof. We prove that (Γ1,∆1)HΛ(Γ2,∆2)HΛ(Γ3,∆3) implies (Γ2,∆2)HΛ(Γ1,∆1)
or (Γ3,∆3)HΛ(Γ2,∆2). Suppose that (Γ1,∆1)HΛ(Γ2,∆2)HΛ(Γ3,∆3) and as-
sume that (Γ2,∆2)HΛ(Γ1,∆1) fails, i.e., Γ2 6⊆ Γ1. To show that (Γ3,∆3)HΛ(Γ2,∆2),
let us suppose that ϕ ∈ Γ3. Our goal is to establish ϕ ∈ Γ2. Since Γ2 6⊆ Γ1,
there exists a formula ψ such that ψ ∈ Γ2 but ψ /∈ Γ1. By bd2 ∈ Λ, ψ ∨ (ψ →
(ϕ ∨ ¬ϕ)) ∈ Γ1 hence ψ → (ϕ ∨ ¬ϕ) ∈ Γ1 by ψ /∈ Γ1. It follows from ψ ∈ Γ2

that ϕ ∨ ¬ϕ ∈ Γ2. Since ϕ ∈ Γ3 and (Γ2,∆2)HΛ(Γ3,∆3), we obtain ¬ϕ /∈ Γ2

by Lemma 31 item 4. Therefore, we deduce from ϕ ∨ ¬ϕ ∈ Γ2 that ϕ ∈ Γ2, as
desired. Because HΛ is antisymmetric, we conclude that FΛ

(Γ,∆) ∈ HG. �

By Theorem 21 and Lemmas 36 and 39, we can establish the following.

Theorem 40 (Soundness and Strong Completeness of HUBiSKtbd2). The
logic HUBiSKt extended with bd2 is sound and complete for the class HG,
i.e. Γ `HUBiSKtbd2

ϕ iff Γ |=HG ϕ, for every set Γ ∪ {ϕ} of formulas.

We can obtain the same result for the class of H-frames that have width
bounded to maximum size of 2, in the sense of Theorem 25.

Definition 41. We define W2 as the class of H-frames (U,H,R) such that H
has width of maximum size 2, i.e. ∀u, v, w, t ((u H v ∧ u H w ∧ u H t) →
(v H w ∨ w H v ∨ v H t ∨ t H v ∨ w H t ∨ t H w)). Let w2 be the formula
(p→ (q ∨ r)) ∨ (q → (p ∨ r)) ∨ (r → (p ∨ q)).

Lemma 42. Given a ubist logic Λ such that w2 ∈ Λ, the Λ-canonical H-frame
FΛ

(Γ,∆) = (UΛ, HΛ, RΛ) satisfies the fact that HΛ has width of maximum size 2,

i.e. FΛ ∈W2.

Proof. Suppose (Γ1,∆1) HΛ (Γ2,∆2) and (Γ1,∆1) HΛ (Γ3,∆3), and (Γ1,∆1) HΛ

(Γ4,∆4). We need to show that (i) (Γ2,∆2) HΛ (Γ3,∆3), or (ii) (Γ3,∆3) HΛ

(Γ2,∆2), or (iii) (Γ2,∆2) HΛ (Γ4,∆4), or (iv) (Γ4,∆4) HΛ (Γ2,∆2), or (v)
(Γ3,∆3) HΛ (Γ4,∆4), or (vi) (Γ4,∆4) HΛ (Γ3,∆3). Suppose that none of (i),
(ii), (iii) and (v) hold. We need to show that then at least one of (iv) and (vi)
holds. Thus the goal is to show that given any formula θ ∈ Γ4, θ ∈ Γ2, or
θ ∈ Γ3. From the fact that neither (i) nor (iii) hold, we have that Γ2 * Γ3 and
Γ2 * Γ4, thus there is a ϕ1 ∈ Γ2 such that ϕ1 /∈ Γ3 and there is a ϕ2 ∈ Γ2

such that ϕ2 /∈ Γ4. So by Lemma 31 item 5, we have that ϕ1 ∧ ϕ2 ∈ Γ2

and ϕ1 ∧ ϕ2 /∈ Γ3 and ϕ1 ∧ ϕ2 /∈ Γ4. Put ϕ = ϕ1 ∧ ϕ2. From the fact that
neither (ii) nor (v) hold, we have that Γ3 * Γ2 and Γ3 * Γ4, thus there is
a ψ1 ∈ Γ3 such that ψ1 /∈ Γ2 and there is a ψ2 ∈ Γ3 such that ψ2 /∈ Γ4.
So by Lemma 31 item 5, we have that ψ1 ∧ ψ2 ∈ Γ3 and ψ1 ∧ ψ2 /∈ Γ2 and
ψ1 ∧ ψ2 /∈ Γ4. Put ψ = ψ1 ∧ ψ2. As w2 ∈ Γ1 by Lemma 31 item 2, and as
any substitution instance of w2 is in Γ1 by Lemma 31 item 1, we have that
the formula (ϕ → (ψ ∨ θ)) ∨ (ψ → (ϕ ∨ θ)) ∨ (θ → (ψ ∨ θ)) ∈ Γ1, then by
Lemma 31 item 6, at least one of the three disjuncts must be in Γ1. Suppose
that (ϕ → (ψ ∨ θ)) ∈ Γ1. Then as (Γ1,∆1) HΛ (Γ2,∆2) and thus Γ1 ⊆ Γ2,
we have that (ϕ → (ψ ∨ θ)) ∈ Γ2. But ϕ ∈ Γ2, thus (ψ ∨ θ) ∈ Γ2 by Lemma
31 item 3, and thus ψ ∈ Γ2 or θ ∈ Γ2. But ψ /∈ Γ2, thus θ ∈ Γ2 must be the
case. Suppose that (ψ → (ϕ ∨ θ)) ∈ Γ1. Then as (Γ1,∆1) HΛ (Γ3,∆3) and
thus Γ1 ⊆ Γ3, we have that (ψ → (ϕ ∨ θ)) ∈ Γ3. As ψ ∈ Γ3, we have that
(ϕ ∨ θ) ∈ Γ3, i.e. ϕ ∈ Γ3 or θ ∈ Γ3. But ϕ /∈ Γ3, thus θ ∈ Γ3 must be the
case. Finally suppose that (θ → (ψ ∨ θ)) ∈ Γ1. Then as Γ1 ⊆ Γ4, we have that
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(θ → (ψ ∨ θ)) ∈ Γ4, and as θ ∈ Γ4 by assumption, ϕ ∈ Γ4 or ψ ∈ Γ4. But this
is impossible as we have already seen that, by construction, neither ϕ nor ψ is
in Γ4. Thus we can conclude that, given a formula θ ∈ Γ4, we have θ ∈ Γ2 or
θ ∈ Γ3, and thus Γ4 ⊆ Γ2 or Γ4 ⊆ Γ3 holds, i.e. case (iv) holds or case (vi)
holds, as desired. We can conclude that the canonical frame FΛ

(Γ,∆) ∈W2.

Finally we notice that, as HΛ is antisymmetric, the canonical frame is also
in the class of W2 H-frames that are additionally partial orders. �

By Theorem 25 and Lemmas 36 and 42, we can establish the following.

Theorem 43 (Soundness and Strong Completeness of HUBiSKtw2). The
logic HUBiSKt extended with w2 is sound and complete for the class W2,
i.e. Γ `HUBiSKtw2

ϕ iff Γ |=W2 ϕ, for every set Γ ∪ {ϕ} of formulas.

Thus, from Theorems 40 and 43, we can conclude that UBiSKt extended
with both bd2 and w2 is sound and complete for the class of H-frames HG∩W2,
i.e. the class of hypergraphs that are also graphs.

Finally in [71], decidability of UBiSKt has been proved.

Theorem 44 (Decidability of HUBiSKt). For every non-theorem ϕ of HUBiSKt,
there is a finite frame F such that F 6|= ϕ. Therefore, HUBiSKt is decidable.

Questions about the size of the finite frames needed for Theorem 44 haven’t
been explored yet, and this is left as an open problem.

2.4.2 Tableau-style calculus

The calculus TabUBiSKt is a tableau-style calculus for UBiSKt. It has been
implemented using the theorem-prover generator MetTel [85]. Our implemen-
tation of TabUBiSKt is available at [68]. In this section we are going to show
that it is formally equivalent to HUBiSKt, so the tableau calculus can be seen
as a computational tool for reasoning with UBiSKt. TabUBiSKt is the exten-
sion of the tableau-style calculus for BiSKt, as described in [74], with the rules
contained in Table 2.2, that are the rules handling truth and falsity of formulae
where the main operators are the universal modalities A and E (for the full
tableau calculus, see Table A.1 in Appendix A.3. Expressions in TabUBiSKt
have one of these forms:

s : Sϕ ⊥ sHt sRt s ≈ t s 6≈ t

where S denotes a sign, either T for true or F for false, and s, t are names or
labels from a fixed set Label in the tableau language whose intended meaning
are elements of U .

As in ordinary tableau calculi, rules in TabUBiSKt are used to decompose
formulae analysing their main connective. As some rules are branching, i.e. two
possible conclusions are derivable from the rule premise, the tableau derivation
process constructs a tree-structure. When contradiction⊥ is derived on a branch
then the branch is said to be closed, and no more rules are applied to that branch.
If a branch is not closed, then it is open. If a branch is open and no more rules
can be applied to it, as all the formulae have been analysed, then the branch is
said to be fully-expanded. A tableau derivation is closed when all its branches are
closed, it is open otherwise. The derivation process is said to be fully expanded
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s : T (Aϕ), t : Sψ
(T A)

t : Tϕ

s : F (Aϕ)
(F A) m is fresh in the branch

m : Fϕ

s : T (Eϕ)
(T E) m is fresh in the branch

m : Tϕ

s : F (Eϕ), t : Sψ
(F E)

t : Fϕ

Table 2.2: Rules for handling truth and falsity of universal modalities in
TabUBiSKt.

when any the branch in the tableau derivation is either closed or open and fully
expanded. An open fully expanded branch will give the information for building
model for a set of tableau expressions given as derivation input. The goal of
the derivation process is to produce a closed tableau, or to find at least one
open fully expanded branch, given some input formulae. If for example we are
interested in the validity of a formula ϕ, then the input to tableau derivation will
be the set { a : Fϕ }, where ‘a’ is a constant label which is intended to represent
the initial world. If an open and fully expanded branch can be constructed,
then a model for this input is found, i.e. a counter-model for the validity of ϕ.
If on the other hand a closed tableau derivation is constructed, then the validity
of ϕ is proved. A formula ϕ is a theorem in TabUBiSKt if a tableau derivation
for the input set {a : Fϕ}, gives a closed tableau derivation. A formula ϕ is
provable from a finite set Γ of formulae if a tableau derivation for the input set
{a : TΓ}∪{a : Fϕ} gives a closed tableau derived, where a : TΓ means (a : Tγ),
for all γ ∈ Γ.

Theorem 45 (Soundness of TabUBiSKt). Given a finite set Γ ∪ {ϕ } of for-
mulae, if ϕ is provable from Γ in TabUBiSKt then Γ |= ϕ.

Before giving a proof, we ‘lift’ our semantics based on an H-model for formu-
lae to tableau expressions. As already explained in [74], the semantics of tableau
expressions and the corresponding relation of satisfaction, , is defined by an
H-model (M, ι) with an assignment ι, where M = (U,H,R, V ) is an H-model
and an assignment ι : Label → U is a function mapping labels of the tableau
language to elements u ∈ U . Satisfaction of tableau expressions is defined as
follows:

M, ι 1 ⊥,
M, ι  s : Tϕ iff M, ι(s) |= ϕ,
M, ι  s : Fϕ iff M, ι(s) 2 ϕ,
M, ι  sHt iff ι(s) H ι(t),
M, ι  sRt iff ι(s) R ι(t),
M, ι  s ≈ t iff ι(s) = ι(t),
M, ι  s 6≈ t iff ι(s) 6= ι(t).

Let us say that a set of tableau expression is satisfiable if there exists an H-
model M = (U,H,R, V ) and an assignment ι : Label → U such that all the
tableau expressions are satisfied in the pair (M, ι).

Now we proceed to our proof of Theorem 45.

Proof. Suppose that ϕ is provable from Γ, that is, the input set {a : TΓ} ∪ {a :
Fϕ} has a closed tableau derivation. Let us fix this closed tableau and let us
suppose by contradiction that Γ 2 ϕ. So there is an H-model M = (U,H,R, V )
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and state u ∈ U such tha M,u |= γ for all γ ∈ Γ, and M,u 2 ϕ. Consider
an assignment function ι such that ι(a) = u, then M, ι(a) |= Γ and M, ι(a) 2
ϕ. But then, under the assumption that the rules of the calculus preserve
satisfiability, there should be at least one open branch for the set of labelled
expressions {a : TΓ} ∪ {a : Fϕ}. This is impossible by the initial assumption
that {a : TΓ} ∪ {a : Fϕ} has a closed tableau. So the proof of soundness boils
down to show that the rules of the calculus preserve satisfiability, that is, if
the premise of a rule is satisfiable, so is at least one of its conclusions. Since
TabBiSKt has already been proved sound in [74], we focus only on the new
rules T A, F A. Our arguments for T E and F E are similarly shown.

(i) T A: assume that the premise of the rule is satisfiable, so for some H-
model and for some assignment ι we have M, ι(s) |= Aϕ and M, ι(t) |=∗ ψ where
|=∗ is either |= or 2. By the former, we have that M,u |= ϕ for all u ∈ U . But
ι(t) ∈ U . So M, ι(t) |= ϕ. So M, ι  t : Tϕ and an expanded branch with the
rule’s conclusion is satisfiable.

(ii) F A: assume that the premise of the rule is satisfiable, so for some H-
model and for some assignment ι we have M, ι(s) 6|= Aϕ. But then there is some
world v ∈ W such that M,v 6|= ϕ. Fix such world v. Recall that m is a fresh
label in the rule as underlined in Table 2.2. We define a new label assignment
ρ by ρ(m) = v and ρ(x) = ι(x) for all labels x 6= m. Then it follows from
M,v 6|= ϕ that M,ρ(m) 6|= ϕ, that is M,ρ  m : Fϕ. Therefore, the tableau
expression m : Fϕ is satisfiable in the pair (M,ρ), and thus an expanded branch
with the rule’s conclusion is satisfiable. �

Theorem 46. Given a formula ϕ the following are equivalent:

1. ϕ is a theorem in HUBiSKt,

2. ϕ is a theorem in TabUBiSKt,

3. ϕ is valid in all H-models.

Proof. The proof of equivalence of items 1 and 3 are due to the soundness
and completeness results for HUBiSKt. So we need to show: (i) if ϕ is a
theorem in HUBiSKt then ϕ is a theorem in TabUBiSKt, and (ii) if ϕ is a
theorem in TabUBiSKt then ϕ is a theorem in HUBiSKt. Proof of (ii) follows
from theorem 45 (soundness of TabUBiSKt) and theorem 37 (completeness of
HUBiSKt). So we focus on (i).

Proof of (i): Recall that ϕ is a theorem HUBiSKt when ϕ follows from a set
of axioms and rules given in Table 2.1. To show this direction, we reformulate
our Hilbert-system into an equivalent system in the following two respects. First
of all, to avoid the rule of uniform substitutions, we formulate our system in
terms of axioms schemes, so instead of propositional variables we use generic
formulae as variables of the axioms. Second, we reformulate the inference rules
of Table 2.1 into an axiom as follows: for a rule of the form “from ϕ infer ψ”,
we can derive a formula Aϕ→ Aψ. Instead of showing an inference rule “from
ϕ infer ψ” preserves theoremhood in TabUBiSKt, we show that Aϕ → Aψ
is a theorem of TabUBiSKt. Then we can show that all the axiom schemes
constructed from Table 2.1 are theorems in TabUBiSKt and that the above
derived formula from an inference rule of Table 2.1 is a theorem in TabUBiSKt.
We give here our proof for Mon � as an example. The rule states that if (ϕ→ ψ)
is a theorem then (�ϕ → �ψ) is a theorem. That means that the following
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implication must be a theorem: A(ϕ→ ψ)→ A(�ϕ→ �ψ). For a proof of this
formula using TabUBiSKt, see Table 2.3.

s : F A(ϕ→ ψ)→ A(�ϕ→ �ψ)

s H t, t : T A(ϕ→ ψ), t : F A(�ϕ→ �ψ)

m : F (�ϕ→ �ψ)

m H k, k : T �ϕ, k : F �ψ

x R k, x : Tϕ

x : Fψ

x : T (ϕ→ ψ)

x H x;

x : Tψ

⊥
closure

x : Fϕ

⊥
closure

[T →]

H reflexive

[T A]

[F �]

[T �], x fresh

[F →], k fresh

[F A], m fresh

[F →], t fresh

Table 2.3: Proof of the formula A(ϕ→ ψ)→ A(�ϕ→ �ψ) in TabUBiSKt.

The input set {s : F A(ϕ → ψ) → A(�ϕ → �ψ)} gives a closed tableau
derivation. Therefore the formula A(ϕ → ψ) → A(�ϕ → �ψ) is a theorem in
TabUBiSKt.

We also note that axioms and rules of HUBiSKt have been proved using our
implementation of TabUBiSKt by the theorem prover generator MetTel [85],
in terms of the idea above on our reformulation. This can be checked following
the link at [68]. �

Theorem 46 shows that the proof systems HUBiSKt and TabUBiSKt cap-
ture the same set of theorems. Since HUBiSKt is decidable (Theorem 44),
the tableau-system TabUBiSKt can be seen as the specification of a concrete
algorithm for deciding whether a formula ϕ ∈ FormL is a theorem in HUBiSKt.
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Chapter 3

UBiSKt for Discrete Spatial
Representation

In this chapter we will show how the logic UBiSKt can be used to rep-
resent and reason with topological spatial relations between subgraphs,
i.e. spatial relations in a discrete setting.

3.1 Mereotopological connection

In the work Mereotopological Connection [13] the authors aim to provide with
a unifying framework for comparing mereotopological theories, so theories for
representing space, but also time, based on the notion of topological connection.
As the authors say, there are many of these accounts, that are not always in
agreement on basic terms. The framework of [13] is a topological space. They
study how spatial predicates from different mereotopological theories get inter-
preted when the variables these predicates apply to range over the elements of a
topological space. In this section we review the approach of Cohn and Varzi [13]
and show that it needs to be generalized if it is to capture discrete connection
as the one defined by Galton [27].

There are many ways to define a topological space, and one of these is the
definition via Kuratowski closure axioms.

Definition 47. Let U be a set and let c : P(U)→ P(U) be a function. We say
c is a Kuratowski closure if it satisfies the following axioms (Kuratowski axioms)
for all X,Y ∈ P(U).

K1 c(∅) = ∅

K2 X ⊆ c(X)

K3 c(c(X)) ⊆ c(X)

K4 c(X ∪ Y ) = c(X) ∪ c(Y )

Given a set U together with an operator c satisfying K1-K4 axioms, the set
τ = {X ⊆ U | c(X) = X } is the topology on U associated with c, and the pair
(U, τ) is called a topological space. The elements of τ are the closed sets of the
topological space.

51
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It follows from axiom K4 that a Kuratowski closure is monotone, i.e. for
any X,Y ∈ P(U), if X ⊆ Y then c(X) ⊆ c(Y ), see [55]. A dual notion of the
Kuratowski closure operator is known as Kuratowski interior, which is also a
function from P(U) to itself such that is satisfies: (1): i(U) = U , (2): i(X) ⊆ X,
(3): i(X) ⊆ i(i(X)) and (4): i(X ∩ Y ) = i(X) ∩ i(Y ), [55]

Cohn and Varzi [13] give three definitions of connection which all depend on
the above defined notion of topological closure.

Definition 48. Let c be a Kuratowski closure on U , and X,Y ⊆ U . Three
binary relations of connection between subsets X,Y are defined as follows.

1. C1(x, y) := x ∩ y 6= ∅

2. C2(x, y) := c(x) ∩ y 6= ∅ or x ∩ c(y) 6= ∅

3. C3(x, y) := c(x) ∩ c(y) 6= ∅

An important model of the RCC [57] consists in taking regions to be non-
empty regular closed subsets of R2 [59], with the usual topology. A subset is
called regular closed when it is equal to the closure of its interior In particular,
this means that although a single point, or a line including its endpoints, is a
closed set in R2, it is not regular closed, as its interior is empty. Therefore,
such elements are not considered as regions in this context, and RCC belongs
to those theories which do not allow boundary elements in their domain. In the
regular-closed model of RCC, all three connections above yield the same relation
between regions1. However, in other models of RCC and in other mereotopo-
logical systems the three notions of connection can have substantially different
properties.

Although Cohn and Varzi [13, p359] aim for neutrality with respect to den-
sity of space, that is whether space can be repeatedly sub-divided ad infinitum,
we shall see next that the use of Kuratowski closure prevents the expression of
some notions of connection including one of the most straightforward examples
of connection in a discrete space.

3.1.1 Example of Discrete Connection

As we have seen in Section 1.6, Galton [27] studied a notion of connection
between subsets of a particular kind of discrete space, i.e. an adjacency space,
defined by set N together with a symmetric and reflexive relation of adjacency
A ⊆ N × N . Connection, CA, is defined for subsets X,Y ⊆ N by X CA Y if
there are x ∈ X and y ∈ Y such that x A y. We shall show next that there are
spaces (N,A) where this connection is not expressible as any Ci, in the sense of
Cohn and Varzi, for any topological closure on N . A specific example appears
in Figure 3.1 where the links indicate adjacencies between distinct elements of
the five element set N = {m,n, p, q, r }.

First, CA cannot be C1 as two adjacent nodes give disjoint singleton subsets
which are CA connected. So suppose that CA = C2 for some closure c. If x is any
node in N then {x} is CA connected to no singletons except those {y} such that
x A y. Thus, as CA is C2 by assumption, c({x}) contains only nodes which are

1Indeed if we can quantify only over regular closed regions X and Y , we have that X ∩ Y
is equivalent to c(i(X) ∩ c(i(Y )) that is in turn the same as c(c(i(X))) ∩ c(i(Y )), equivalent
to c(c(i(X))) ∩ c(c(i(Y ))) by axioms K2 and K3, where i is the interior operator.
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m n p

qr

Figure 3.1: A discrete space where connection cannot be defined in terms of
Kuratwoski closure (figure adapted from [73]).

adjacent to x. Hence for the specific nodes m and n we have c({m}) ⊆ {r,m, n}
and c({n}) ⊆ {m,n, p}. Now {m} and {n} are connected in the connection CA

so if they are C2 connected we must have (i) n ∈ c({m}) or (ii) m ∈ c({n}).
Consider first the case (i). This implies {n} ⊆ c({m}) so, by monotonicity of
c and axiom K3 we have that c({n}) ⊆ c(c({m})) ⊆ c({m}). So c({m }) ⊆
{m,n, p } and c({n }) ⊆ { r,m, n }. But p /∈ c({m}) and r /∈ {m,n, p }, so
c({n}) ⊆ {m,n}. But {n} and {p} are connected in CA, so n ∈ c({p}), and
hence c({n}) ⊆ c({p}) (it can’t be that p ∈ c({n }) as we have established that
this is subset of {m,n }). As m /∈ c({p}) ⊆ {n, p, q } we conclude c({n}) = {n}
in the case that case (i) holds, i.e. n ∈ c({m}). If we consider case (ii), i.e. that
m ∈ c({n}), we can argue in analogous way and conclude that c({m}) = {m}.
Thus in either case one of the sets {m} and {n} is a closed set, and they cannot
both be closed at the same time since they need to be C2 connected, as they
are adjacent.

This applies to each pair of adjacent nodes in N ; one of them is a closed
set and the other is not. With an odd number of nodes in total this is a
contradiction, as we will always have two adjacent nodes that are both closed,
and thus they won’t be connected in C2. Hence no such topological closure, c,
can generate a C2 connection equal to CA. There remains the possibility that CA

is of the form C3. Suppose then that some topological closure c on N generates
CA as C3. We must have c({m}) ∩ c({n}) 6= ∅. For similar reasons to the C2

case we must have c({m}) ⊆ {r,m, n} and c({n}) ⊆ {m,n, p}, so to obtain the
non-empty intersection either (i) n ∈ c({m}) or (ii) m ∈ c({n}). If (ii) is the
case, from n ∈ c({m}) we get that c({n }) ⊆ c({m }). Thus p /∈ c({n}) and
c({n }) ⊆ {m,n }. But n and p are adjacent so their singletons are connected
singletons and thus c({n}) and c({p}) must intersect. The only possibility for
this intersection is n. Thus {n } ∈ c({ p }), hence c{n } ⊆ c(c({ p })) ⊆ c({ p }).
But as m /∈ c({ p }) as m and p are not adjacent, thus we have that c({n }) can
only be {n }. Again case (i) implies that {n } is closed and case (ii) implies,
by analogous reasoning, that {m } is closed. This applies again to any pair of
adjacent nodes, and in the case of an odd number of node it is straightforward
to continue to a contradiction as in the C2 case.

Thus we can conclude that this type of discrete connection CA is neither C1,
C2 nor C3 type.
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3.2 Discrete Connection in UBiSKt

We have seen that connection in Galton’s sense cannot always be expressed as
one of the connections by Kuratowski closure in the framework of Cohn and
Varzi. However there is a weaker notion of closure. This is known as Čech
closure, and it satisfies axioms K1, K2 and K4 but not necessarily K3. As we
are going to see there is an operator in UBiSKt that is a Čech closure, and it
can be used to encode a satisfactory notion of connection in discrete space.

Definition 49. Let X be a Heyting Algebra2 with bottom element 0 and top
element 1, and let c : X → X be a function. We say the (X, c) is a Čech closure
algebra if for all x, y ∈ X:

C1 c(0) = 0,

C2 x ≤ c(x),

C3 c(x ∪ y) = c(x) ∪ c(y).

Let i : X → X be a function. We say that (X, i) is a Čech interior algebra
if for all x, y ∈ X:

I1 i(1) = 1,

I2 i(x) ≤ x,

I3 i(x ∩ y) = i(x) ∩ i(y).

In what follows we are going to consider two functions from the set of all
H-sets in an H-model M , i.e. { JϕKM | ϕ ∈ Form }, to itself.

Definition 50. Let HsetsM be the set of all H-sets in an H-model M , i.e.
{ JϕKM | ϕ ∈ Form } . We define the functions ¬¬ : HsetsM → HsetsM and
¬¬ : HsetsM → HsetsM by following mapping respectively: JϕKM 7→ J¬¬ϕKM
and JϕKM 7→ J¬¬ϕKM (given a formula ϕ interpreted over the H-set JϕKM )3.

Theorem 51. Let M be an H-model. Then the set of H-sets HSetsM with ¬¬
defines a Čech closure algebra. HsetsM with ¬¬ defines a Čech interior algebra.

Proof. Since UBiSKt is an extension of intuitionistic logic, we have that given
an H-model M = (U,H, V ), the set HsetsM = { JϕKM | ϕ ∈ Form } forms a
Heyting algebra with J⊥KM = ∅ as the bottom element 0 and J>KM = U as the
top element 1. Then we can show using the axiomatisation that the following
holds:

1. ` ¬¬⊥ ↔ ⊥,

2We remind the reader that a Heyting algebra can be defined as a tuple (A,∨,∧,→,⊥,>),
where (A,∨,∧,⊥,>) is a lattice and for all x, y, z ∈ A we have that x ≤ (y → z) iff (x∧y) ≤ z.
This definition of a Heyting algebra is found in [80]. As explained in [74], given a set (U,H),
the set of all its H-sets is a Heyting algebra, and thus also the set of all H-sets that are named
by some formula in an H-model is a Heyting algebra.

3It is clear that the functions are well defined as given any formula ϕ ∈ Form such JϕKM ∈
HsetsM (i.e. ϕ is “name” of some H-set in the model) we can always build J¬¬ϕKM , and the
H-set J¬¬ϕKM must be in HsetsM as it is the H-set to which the formula ¬¬ϕ ∈ Form is
assigned to. Same for ¬¬.
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2. ` p→ ¬¬p,

3. ` ¬¬(p ∨ q)↔ ¬¬p ∨ ¬¬q.

4. ` ¬¬> ↔ >,

5. ` ¬¬ p→ p,

6. ` ¬¬(p ∧ q)↔ ¬¬ p ∧ ¬¬ q.

Proof of items 1 and 4. By item 9 of Proposition 29 we have that ` ⊥ → ¬¬⊥
iff ` ¬¬⊥ → ⊥. But ` ⊥ → ¬¬⊥ holds as ⊥ → ϕ is a theorem in intuitionistic
logic. Therefore ` ¬¬⊥ → ⊥ holds. The direction ` ⊥ → ¬¬⊥ trivially holds.
Thus we have proved item 1. Similarly for item 4 we have: ` ¬¬> → > as
ϕ → > is a theorem in intuitionistic logic. Thus we have that ` > → ¬¬>
holds. The other direction trivially holds, we have proved item 1.
Proof of items 3 and 6. We note that item 9 of Proposition 29 implies that the
pair (¬¬,¬¬) forms an adjunction, with ¬¬ left adjoint and ¬¬ right adjoint.
Thus the first preserves disjunctions and the second preserves conjunctions.
This proves items 3 and 6.
Finally items 2 and 5 follow from items 10 and 11 of Proposition 29. By sound-
ness of HUBiSKt (Theorem 28) it follows that (HsetsM ,

¬¬) is a Čech closure
algebra and (HsetsM ,¬¬) is a Čech interior algebra. �

The following theorem shows that the operators ¬¬ and ¬¬ acting onH-sets
can be also expressed respectively as dilation and erosion by a specific stable,
i.e. yH.

Theorem 52. Let M be an H-model and JϕKM ∈ HsetM . Then JϕKM⊕yH =
J¬¬ϕKM , and yH 	 JϕKM = J¬¬ϕKM .

Proof. Theorem 4 from [74] states that given any stable relation R and H-set
X we have that we have that X ⊕yR = (−(R 	 (H 	 (−X)))) ⊕ H, and
yR	X = H 	 (−(((−X)⊕H)⊕R)). Now suppose R = H and take any H-
set JϕKM in an H-model M . Then, as H is stable we have that JϕKM ⊕yH =
(−(H 	 (H 	 (−JϕKM ))))⊕H = (−(H 	 (J¬ϕKM )))⊕H = (−J¬ϕKM )⊕H =
J¬¬ϕKM by the semantics in terms of dilation and erosion given in Section 2.2.1
and because JϕKM is an H-set. Similarly for the erosion, if R = H we have that
yH 	 JϕKM = H 	 (−(((−JϕKM ) ⊕ H) ⊕ H)) = H 	 (−(J¬ϕKM ⊕ H)) =
H 	 (−J¬ϕKM ) = J¬¬ϕKM . �

Theorem 52 shows that the two operations can be seen in terms of dilation
and erosion, and therefore they are equivalent to the two modalities � and �
when R = yH or to ♦ and � when R = H, following the semantic definitions
given in Section 2.2.1. Figure 3.2 shows the effect of the relation yH on edges
and nodes. Indeed when (U,H) is a graph or a hypergraph, thus a poset made
of nodes and edges, taking the dilation by yH of a subgraph K consists of
taking its one-edge extension. In turn, the eroding a subgraph by yH can be
seen as a one-edge retraction. See Figure 3.3 for an example.

Hence, using the closure operator ¬¬ the spatial relation of connection be-
tween discrete regions JϕKM and JψKM in an H-model M can be expressed by
an appropriate formula in UBiSKt:

C(ϕ,ψ) := E(¬¬ϕ ∧ ψ).
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Figure 3.2: Effect of the left converse of H on one node and on one edge (figure
adapted from [73]).

K

¬¬K

¬¬K

Figure 3.3: An example of a graph (U,H) with subgraph K in bold, with the
Čech closure generated by ¬¬ and the associated Čech interior generated by
¬¬.

Indeed two discrete regions are connected if they are one edge apart, in the
limit case. This is equivalent to require the closure of the first region, that
is indeed its one-edge extension, intersect the second region. The predicate of
connection is reflexive and symmetric, as expected. Reflexivity of connection is
restricted to non-empty regions (see [13]), thus the theorem that we aim to prove
is that every region is connected to itself whenever the region is non-empty:

Proposition 53. The following hold for HUBiSKt:

1. ` E(ϕ)→ E(ϕ ∧ ¬¬ϕ).

2. ` E(¬¬ϕ ∧ ψ)↔ E(ϕ ∧ ¬¬ψ).

Proof. Item 1: ` ϕ→ ϕ and ` ϕ→ ¬¬ϕ both hold for HUBiSKt (the second
one is item 2 of Theorem 51). Thus ` ϕ → (ϕ ∧ ¬¬ϕ). Thus by (MonE) rule
from Table 2.1 we have that ` E(ϕ)→ E(ϕ ∧ ¬¬ϕ) as desired.
Item 2: ` A¬(¬¬ϕ∧ψ)↔ A(¬¬ϕ→ ¬ψ), as ¬(α∧β)↔ (α→ ¬β) is a theorem
in intuitionistic logic. ` A(¬¬ϕ → ¬ψ) ↔ A(ϕ → ¬¬¬ψ), by adjunction
between ¬¬ and ¬¬, from item 9 of Proposition 29. ` A(ϕ → ¬¬¬ψ) ↔
A¬(ϕ ∧ ¬¬ψ). So by concatenation ` A¬(¬¬ϕ ∧ ψ)↔ A¬(ϕ ∧ ¬¬ψ), that is
` ¬A¬(¬¬ϕ ∧ ψ) ↔ ¬A¬(ϕ ∧ ¬¬ψ) by contraposition. Therefore E(¬¬ϕ ∧
ψ)↔ E(ϕ ∧ ¬¬ψ) by item 22 of Proposition 294. �

Item 2 of Proposition 53 implies that, given two subgraphs JϕKM and JψKM
in an H-model M , whenever the formula C(ϕ,ψ) holds in M , then C(ϕ,ψ) or

4Notice that here we use the adjunction rule between ¬¬ and ¬¬, that is `HUBiSKt¬¬ϕ → ψ iff `HUBiSKt ϕ → ¬¬ψ, in the form of the syntactic equivalence `HUBiSKt

A(¬¬ϕ→ ψ)↔ A(ϕ→ ¬¬ψ).
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C(ψ,ϕ) hold. Thus our idea of discrete connection is equivalent to the second
notion of connection by closure proposed by Cohn and Varzi, C2, with the differ-
ence that a Čech closure is considered instead of the usual notion of Kuratowski
closure. The first notion of connection from Cohn and Varzi is equivalent to
the idea of two subgraphs overlapping, so sharing at least a node, and the third
idea of connection is expressed by the formula E(¬¬ϕ∧¬¬ψ) that means that
the two subgraphs are, at most, two edges apart.

Lemma 54 ([74]). Let M be an H-model and JϕKM and JψKM ∈ HsetM . Then
JϕKM ⊆ JψKM iff M |= A(ϕ→ ψ)

We now introduce the concept of an H-dilate.

Definition 55. Given a poset (U,H) and an element u ∈ U , we call H-dilate
the set { v ∈ U | u H v }, i.e. the set {u } ⊕H.

In the case of a graph, where H-sets are the subgraphs, H-dilates can be
seen as the smallest possible subgraphs contained in a graphs, the “minimal”
H-sets built upon a single element of the domain. See Figure 3.4 for an example
of H-dilates when the graph (U,H) is the infinite Z2 grid.

(U,H) is infinite grid Dilates of H

Figure 3.4: Shapes of the dilates of H when (U,H) is the graph shown (figure
adapted from [71]).

Proposition 56. Given X,Y ⊆ U such that X and Y are H-sets, the following
are equivalent:

1. X ⊆ Y ,

2. for all u ∈ U , {u } ⊕H ⊆ X implies {u } ⊕H ⊆ Y

Proof. The proof of the fact that item 1 implies item 2 is trivial and it holds
for any subset X and Y , as we don’t need to use the assumption that they are
H-sets. Indeed assume 1, so that X ⊆ Y , and suppose {u } ⊕H ⊆ X for some
u ∈ U . Then, by transitivity of the subset relation ⊆, we immediately have that
{u } ⊕H ⊆ Y . The proof of the fact that item 2 implies item 1 is as follows.
Let us assume 2, and suppose that for some u ∈ U , u ∈ X. Then, as X is an
H-set, {u } ⊕ H ⊆ X. Then, by item 2, {u } ⊕ H ⊆ Y . By reflexivity of H,
u ∈ {u } ⊕H, thus u ∈ Y , so X ⊆ Y , as wanted. �

Proposition 3.2, together with Lemma 54, shows that the formula A(ϕ→ ψ)
holding at a model M truly expresses the idea that all the “minimal” subgraphs
in JϕKM are also in JψKM , so that JϕK is a subgraph of JψK.
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Lemma 57. Let M be an H-model and JϕKM and JψKM ∈ HsetM . Then
JϕKM 6⊆ JψKM iff M |= E(ϕ � ψ).

Proof. Let ϕ and ψ be formulae and JϕKM and JψKM the associated H-sets in a
given model M . In what follows we omit the subscription M . JϕK 6⊆ JψK iff for
some u ∈ U , u ∈ JϕK and u /∈ JψK. Since H is reflexive, uHu holds, hence there
is a v ∈ U such that vHu and v ∈ JϕK and v /∈ JψK. By definition 16 this means
that M,u |= ϕ�ψ, hence M |= E(ϕ�ψ). On the other direction, M |= E(ϕ�ψ)
iff for some u ∈ U M,u |= ϕ � ψ. Hence there is a v ∈ U such that vHu and
M, v |= ϕ and M,v 2 ψ, that means that v ∈ JϕK and v /∈ JψK, for some v ∈ U .
Therefore JϕK 6⊆ JψK. �

Lemmas 54 and 57 justify our choice of expressing the spatial relations
of parthood and non-parthood as follows: P (ϕ,ψ) := A(ϕ → ψ), and non-
P (ϕ,ψ) := E(ϕ � ψ).

Using connection, parthood and non-parthood, and overlapping, expressed
by the formula E(ϕ ∧ ψ) meaning that the intersection of JϕKM and JψKM in a
given model M is non-empty, the RCC-8 spatial relations can be translated into
UBiSKt language, and therefore applied to discrete regions as adjacency space
and, more in general, graphs and hypergraphs. These spatial relations are listed
in Table 3.1. Notice that we are actually using only the propositional part of
UBiSKt, thus we can say that the discrete spatial relations are definable in a
bi-intuitionistic logic with universal modalities.

Table 3.1: Spatial Relations and the corresponding formulae
Spatial Relation Formula

P (ϕ,ψ) A(ϕ→ ψ)
non-P (ϕ,ψ) E(ϕ � ψ)
O(ϕ,ψ) E(ϕ ∧ ψ)
PP (ϕ,ψ) P (ϕ,ψ) ∧ non-P(ψ,ϕ)

NTPP (ϕ,ψ) PP (ϕ,ψ) ∧ P (¬¬ϕ,ψ)
TPP (ϕ,ψ) PP (ϕ,ψ) ∧ non-P(¬¬ϕ,ψ)
EC(ϕ,ψ) C(ϕ,ψ) ∧ ¬O(ϕ,ψ)
DC(ϕ,ψ) ¬C(ϕ,ψ)
PO(ϕ,ψ) O(ϕ,ψ) ∧ non-P(ϕ,ψ)

∧non-P(ψ,ϕ)
EQ(ϕ,ψ) P (ϕ,ψ) ∧ P (ψ,ϕ)

NTPP i(ϕ,ψ) NTPP (ψ,ϕ)
TPP i(ϕ,ψ) TPP (ψ,ϕ)

Notice that classically the formula A(ϕ→ ψ), i.e. our definition of parthood,
is equivalent to A¬(ϕ ∧ ¬ψ) as ` (ϕ → ψ) ↔ ¬(ϕ ∧ ¬ψ) is a theorem in
classical logic. Therefore the spatial relation of parthood could be expressed
as P (ϕ,ψ) := A¬(ϕ ∧ ¬ψ), using classical propositional logic with universal
modalities. Is this a good definition for parthood between two subgraphs? Let
us take the example of a simple graph (U,H), with U = { a, b, c } and H =
I ∪ { (b, a), (b, c) }. Suppose we have a valuation V such that for propositional
variables p and q, V (p) = U and V (q) = { a, b }. Both V (p) and V (q) are H-sets
thus M = (U,H, V ) is an H-model. Now J¬qKM = H	 (−{ a, c }) = H	{ b } =
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∅. So Jp∧¬qKM = ∅, and J¬(p∧¬q)KM = H	(−∅) = H	U = U . So we have
that M |= A¬(p∧¬q). Thus, if this is also our definition of parthood, we would
be compelled to say that U , i.e. the whole graph, is a part of the subgraph
made of the two nodes { a, b }. This is counter-intuitive. However in UBiSKt
the implication ¬(ϕ∧¬ψ)→ (ϕ→ ψ) is not a theorem (as in intuitionistic logic
this is not necessarily a theorem), thus we can have that M |= A¬(ϕ ∧ ¬ψ)
holds, without compelling us to accept that JϕKM is part of JψKM , as in this
case for JpKM and JqKM . Indeed although M |= A¬(p ∧ ¬q), it is not the case
that M |= A(p→ q) as b H b and M, b |= p and M, b 2 q. The fact that the two
formulae are not equivalent in UBiSKt enables us to express that whole graph
is not a part of a subgraph made of two nodes. This is a difference between the
properties of spatial relations on graphs from the spatial relations on adjacency
spaces and on sets.

We remark that the computation of the composition table for the discrete
spatial relations defined in UBiSKt hasn’t been considered yet, but we expect
that the implementation of TabUBiSKt (see [68] [69] and [70]) will facilitate
this task.

3.3 Graph-Boundary

The boundary of a region is the part of that region that is adjacent to both
the inside and to the outside of that region5. Whilst specifying what is inside
a subgraph seems easy, as an element is inside X if it simply belongs to X,
specifying what the outside of a subgraph is, might be more subtle. There seem
to be three options. (1)We might consider an element that doesn’t belong to a
subgraph X, and thus belongs to its complement −X, as being outside of X.
Or we might consider as the outside of X one of the two negations of X, i.e.
(2) ¬X or (3) ¬X. All these operations on X, its complement and the two
intuitionistic way of negating of X, are all equivalent in a boolean context but
not in our context. Moreover we might think of the boundary of a subgraph as
made of only nodes, or as made of both nodes and edges.

A first notion of boundary that can be adapted to the graph context and
that can be expressed in UBiSKt is found already in Lawvere [43]: they call
the boundary of any element X of a co-Heyting algebra, the meet of X and its
dual pseudo-complement ¬X. We call this set the boundary-nodes of X:

β•(X) := X ∧ ¬X

This set can be described as follows: {u ∈ U | u ∈ X and ∃v(v H u and v /∈ X) }.
This is the set of nodes6 of X that are immediately incident with at least one
edge that does not belong to X. In this sense, these nodes lead outside X, and
the idea of the outside of X is simply everything that is not in X. Thus the first

5Notice that Galton [27], [28] says that the boundary of a region X might lie partly within
and partly outside that region, as it is the set of points that are adjacent to both points within
X, and to points outside X. The part of the boundary of X that lies fully within X is called
there the margin of X. Thus the idea of idea of boundary we are describing here corresponds
to what Galton defines as margin, and not to what he actually calls the boundary.

6It is clear β•(X), if not empty, will only include nodes, and not edges of X. Indeed if u
is an edge in X then asking that u ∈ ¬X means asking that there is a v such that vHu and
v /∈ X. But the only H-predecessor of edge u is u itself, as we are in a 2-tier poset. Thus as
the edge u is in X, it can’t be in ¬X
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idea of outside of X, namely −X, is employed here. Figure 3.5 (left and centre)
shows a subgraph X with its boundary-nodes subgraph. As we are working
with graphs, and they are made of both nodes and edges, an idea of boundary
that inlcudes nodes only might seem unsatisfactory: it is reasonable to ask that
also the edges of X that lie between any tuple of boundary-nodes are considered
part of the boundary. We can then refine the notion of boundary-nodes of a
subgraph X as follows, and we call this the general boundary of X

β(X) = ¬¬(X ∧ ¬X) ∧X

Indeed the operator ¬¬ on subgraphs can be seen as associating to a subgraph
X its “regular” subgraph: if any two edge-adjacent nodes belong to X, but
not the edge between them, then ¬¬X will be X plus these missing edges7.
It can thus be seen as associating to each subgraph X its adjacency subspace
¬¬X, as we have seen that an adjacency subspace needs to define only the
nodes included in it, and the edges (the adjacency) automatically come. By
intersecting ¬¬(X ∧ ¬X) with X again, we will make sure that we include in
the general boundary of X only edges that actually belong to X: in Figure 3.5
(right), we can see that the edge c is incident with only boundary nodes a and
d, and thus it is in ¬¬(X∧¬X), but wasn’t originally in the subgraph X. Thus
intersecting with X again will get rid of this kind of edges.

a

b c

d d

b c

a

d

b c

a
X β•(X) β(X)

Figure 3.5: A graph X with its node boundary β•(X), and its general boundary
β(X) (figure adapted from [73]).

Let us look at the ideas of boundary represented in Figure 3.5. The node
a qualifies to be in β•(X) as it is incident with the edge c that is not in X.
However, travelling along c we still end up in nodes that belong to X, as both a
and d are in X. Such an account of boundary might be unsatisfactory if we want
to consider the boundary of X made of those parts that lead “properly outside”
of X, where by “properly outside” we mean in the biggest region that does not
share any point with X, i.e. ¬X. In this sense the boundary of X are the parts
of X that are adjacent to ¬X. To single out this notion of boundary we apply
the one-edge expansion to ¬X, namely ¬¬¬X, and see where this intersects X.
Thus we put forward two alternative ideas of boundary of a subgraph X, the
first one referring to the nodes of X such that they are within ¬¬¬X , i.e. they
are adjacent to ¬X ( obviously this is not the case for node a in Figure 3.5), and

7This is another difference between using classical propositional logic and intuitionistic
logic. In UBiSKt we have that ` p → ¬¬p but 0 ¬¬p → p. A formula is not equivalent to
its double negation, just like a subgraph X is not equal to its “regular” version ¬¬X. The
latter will include all the edges between any tuple of nodes in X, whilst the first might not
include all these edges.
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the second one adding the edges between these boundary-nodes as well. They
are:

β•¬(X) := X ∧ ¬¬¬X

and

β¬(X) := ¬¬(X ∧ ¬¬¬X) ∧X

In this case the outside of X is understood as the pseudo-complement of X,
¬X, and the second idea of outside of X is employed. Examples of these ideas
of boundary for a subgraph X are given in Figure 3.6.

d

a
b c

d

b c
a

d

b c
a

β•¬(X) β¬(X) β¬(X)

Figure 3.6: Additional notions for boundary (figure adapted from [73].

Eventually, if the outside of X was to be understood as ¬X, and we are
looking to the part of X that are adjacent to ¬X, we would have another
possible notion of boundary β¬(X) = (X ∧ ¬¬¬X), as in Figure 3.6 (right).

So we have seen that there are many possibilities for the notion of boundary
of a subgraphs of a graph (U,H) (obviously the same ideas apply to the more
general case of hypergraphs and their subgraphs). The choice of one or the
other depends on which idea of boundary a user of the discrete spatial relations
is interested in capturing.

3.4 Reasoning with Spatial Relations in UBiSKt

In this section we are going to show some entailments between spatial prop-
erties of subgraphs, that can be derived syntactically in UBiSKt. Indeed all
the following have been proved using HUBiSKt. For these axiomatic proofs
the reader is referred to Appendix A.1. The propositions are also mechanically
verified using the implementation of TabUBiSKt using Mettel [68]. In what
follows we use the term “region” to mean any H-set in an H-model M , repre-
sented by any formula ϕ in the language. Thus when the model we have in mind
is a graph or a hypergraph, regions are its subgraphs. We also remark that the
formula Eϕ holds at a model M iff JϕKM 6= ∅, Aϕ holds at M iff JϕKM = U ,
and A¬ϕ or ¬Eϕ hold at M iff JϕKM = ∅.

Proposition 58. `HUBiSKt β
•(ϕ)↔ β•(ϕ)∧¬β•(ϕ). The boundary-nodes of

a region are always boundary-nodes of itself.

We might want to distinguish between regions whose interior is empty and
regions whose interior is non-empty. The following propositions show that re-
quiring that the interior of a (non-empty) region is empty is the same as requiring
that the region is (non-empty and) equal to its own boundary.
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Definition 59. BR(ϕ) := E(ϕ)∧EQ(ϕ, β(ϕ)). A region is a Boundary-Region
in a model if it is not empty and it is equal to its own general-boundary.

In what follows we use the term “exterior” to mean the dual pseudo-complement
J¬ϕKM of a region JϕKM in a given H-model M .

Proposition 60. (i) `HUBiSKt BR(ϕ)→ P (ϕ,¬(¬¬ϕ)). If ϕ is a Boundary-
Region then it is part of the exterior of its own interior.
(ii) `HUBiSKt P (ψ,¬δ) → ¬E(ψ ∧ δ). If a region is part of the exterior of
another region, then the two regions do not overlap.
(iii) `HUBiSKt E(ψ)∧¬E(ψ∧¬¬ψ)→ A¬(¬¬ψ). If a region is non-empty and
it does not overlap its own interior, then the interior of that region is empty.

From the results contained in Proposition 60 we can infer the following.

Proposition 61. `HUBiSKt BR(ϕ) → A¬(¬¬ϕ). Any boundary-region has
an empty interior.

Proposition 62. `HUBiSKt A¬(¬¬ϕ) → EQ(ϕ, β(ϕ)). If the interior of a
region is empty, then the region is equal to its own boundary. With the extra
assumption that the region is non-empty we have that if its interior is empty
then it is a Boundary-region.

Propositions 61 and 62 show that our notion of Boundary-region is equivalent
to the notion of non-empty region whose interior is empty:

Proposition 63. `HUBiSKt BR(ϕ)↔ Eϕ ∧ A¬(¬¬ϕ)

Definition 64. A region is a Substantial-region if its interior is not empty:
SR(ϕ) := E¬¬ϕ.

We do not need to add the assumption that the Substantial region is non-
empty, as this follows from the predicate itself:

Proposition 65. `HUBiSKt E(¬¬ϕ) → E(ϕ). If the interior of a region is
non-empty, then the region is non-empty.

Proposition 66. `HUBiSKt SR(ϕ) → not-P (ϕ, β(ϕ)). If a region has a non-
empty interior then it is not part of its own boundary. Therefore it is not a
Boundary-region.

Proposition 67. 0HUBiSKt E(¬¬ϕ) ∧ E(¬ϕ) → Eβ(ϕ). If a region has a
non-empty interior and it is not the whole graph, it does not necessarily have a
boundary.

Proof. A counter-H-model for this formula is the following. Suppose U =
{u, v } and H = I. Suppose a valuation V , such that V (p) = {u }. In the model
M = (U,H, V ), JpKM = {u }. Then J¬¬ pKM = JpKM and J¬¬(p∧¬ p)∧ pKM =
∅: since the region is a node not connected to anything else except itself, its
interior is the region itself and, for the same reason, its boundary is empty. �

Thanks to the distinction between Boundary regions and Substantial Re-
gions, we are able to refine the spatial relations given above, by limiting the
domain of the regions considered. As an example, the relation of Partial Over-
lapping PO can be defined only between regions with non-empty interior, and
be distinguished into three different relations.

Let ϕ, ψ represent substantial regions:
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PO1(ϕ,ψ) := E(ϕ ∧ ψ) ∧ not-P (ϕ,ψ) ∧ not-P (ψ,ϕ) ∧ E(β(ϕ) ∧ β(ψ)),

PO2(ϕ,ψ) := E(ϕ ∧ ψ)not-P (ϕ,ψ) ∧ not-P (ψ,ϕ) ∧ E(¬¬ϕ ∧ ¬¬ψ) ∧
BR(¬¬ϕ ∧ ¬¬ψ),

PO3(ϕ,ψ) := E(ϕ ∧ ψ)not-P (ϕ,ψ) ∧ not-P (ψ,ϕ) ∧ E(¬¬ϕ ∧ ¬¬ψ) ∧
SR(¬¬ϕ ∧ ¬¬ψ).

where PO1(ϕ,ψ) expresses the idea that the two regions overlap in their bound-
aries, PO2(ϕ,ψ) expresses that two regions overlap in their interior and region
where they overlap is a Boundary-region, PO3(ϕ,ψ) expresses that two re-
gions overlap in their interior, and the region where they overlap is in turn a
Substantial-region.

Proposition 68. `HUBiSKt ¬SR(β•(ϕ)∧β•(ψ)) The intersection of the Node-
boundaries of two regions is not a Substantial-Region.

Proposition 69. `HUBiSKt EQ(¬β•(ϕ),¬β(ϕ)). The exterior of the Node-
Boundary is equal to the exterior of the General-Boundary.

Proposition 70. `HUBiSKt SR(ϕ)∧A¬β•(ϕ)↔ Eϕ∧P (ϕ,¬¬ϕ) A region is
a Substantial region and its Node-Boundary is empty iff the region is non-empty
and it is part of its own interior.

By the results in Proposition 69, we can generalise the results obtained in
Propositions 70 to the general-Boundary of a region.

Proposition 71. `HUBiSKt SR(ϕ) ∧ A¬β(ϕ)↔ Eϕ ∧ P (ϕ,¬¬ϕ).
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Chapter 4

Spatial Relations on Graphs
under Granularity

Change in the level of granularity according to which a scene is visualised
is a type of qualitative spatial change. In this chapter we will see how
mathematical morphology can help to represent granularity on graphs
and we are going to see how the spatial relations between subgraphs
under granularity should be expressed.

4.1 Evolution of Mathematical Morphology

Mathematical morphology is usually presented as a discipline in the field of im-
age processing. In this context, a two dimensional image can be understood as
a subset of the pixel grid. The structuring element is a certain arrangement of
pixels with a specified origin or centre, that placed on the chosen image gen-
erates a new one, by the basic operations of dilation and erosion, by the more
complex ones of opening, closing, and by different compositions of these, known
as morphological filters. The operation of opening is often described as a way
to delete narrow portions of an image, and the closing as a way of filling small
holes in an image, see for example [37]. Thus we can say that mathematical
morphology was conceived with the intent to analyse an image at different lev-
els of detail, where the level of detail is provided by the structuring element.
For example Hejmans and Ronse in [37] explain that an image “contains an
unstructured wealth of information, most of which is of no use to us”, and us-
ing the tools from mathematical morphology we can “extract what interests us,
obtaining thus a structure which is in fact a simplified sketch, a caricature, of
the original image”. The use of terms like sketch, or caricature, to describe the
result of applying morphological operations, shows that these operations have
always been thought of as a way to approximate images, and thus it connects
to the level of detail according to which an image is visualised.

Although it was first conceived as a discipline to analyse images, and these
are usually interpreted as subsets of the set of the pixel grid, mathematical
morphology can be placed in a more general context. The relational approach
to mathematical morphology and its connection to modal logic [7], [77], is based
on the abstraction of morphological operations from a set with some additional

65
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structure (as the pixel grid) to a generic set. A structuring element on the pixel
grid gives rise to a relation on the set, and this relation can be seen as the modal
accessibility relation. We can go from structuring element to the associated
relation as follows. A structuring element E is an certain arrangement of pixels
with a designated origin. We can see the structuring element E as a subset of
Z2, with its origin as the origin of Z2, not necessarily belonging to E. Then,
given any x ∈ Z2, consider the translations of the form x+E = {x+ e | e ∈ E }.
Each set of the form x+ E places the structuring element with its origin at x,
and the pixels in E lie over some pixels in Z2. Then dilation and erosion of a
subset X ⊆ Z2 can be defined as follows: the dilation of X by E is X ⊕ E =⋃
{x+ E | x ∈ X } = { y ∈ Z2 | ∃x(y ∈ (x+ E) and x ∈ X) }. The erosion of

X by E is E 	 X = { y ∈ Z2 | ∀x(x ∈ (y + E) implies x ∈ X) }. We can now
define a binary relation over Z2 from E as follows: for any u, v ∈ Z2, u RE v iff
v ∈ u+E. Then it is clear that given a structuring element E and its associated
relation RE , X⊕E = X⊕RE , and E	X = RE	X, where X⊕RE and RE	X
are dilation and erosion by a binary relaion on a set, as in Definition 5. Notice
that relations are more general than structuring elements, as it is clear that
not every relation on Z2 can be generated from a structuring element. Finally,
we can abstract from the pixel grid and generalise morphological operations of
dilation and erosion to any set U and relation R ⊆ U × U , where given any
subset X ⊆ U , dilation and erosion by R are defined as in Definition 5. As we
have seen in Section 1.2, dilation and erosion by R have the same semantics of
the classical modalities � and � arising from R when this is the accessibility
relation of a modal frame (U,R), whilst the converse relation R̆ gives rise to
corresponding converse dilation ♦ and converse erosion �.

Furthermore, morphological operations can be placed in a more general con-
text than operations on subsets of a set. One of the main contributions of
Heijmans and Ronse in [37] and [60], is indeed to show that most of the theory
can be based on the idea of complete lattices, and that dilation and erosion are
respectively join and meet preserving functions on complete lattices. A com-
plete lattice is a set L with a relation of partial order, such that any non-empty
subset X of L has a supremum in L, also called least upper bound or join,
and an infimum in L, also called greatest lower bound or meet. In the case of
the lattice formed by the powerset of a set U , namely P(U), and the partial
order ⊆ between its elements, the supremum of any collection of subsets of U
is the operation of union, and the infimum is the intersection. Dilations and
erosions here are operations on P(U) that preserve union (join) and intersection
(meet) respectively. For every dilation, or join preserving function on a complete
lattice, there is a unique associated erosion, or meet preserving function [49].
Dilation and erosion are indeed linked by the concept of adjunction (see Defini-
tion 6). The set of all subgraphs of a graph, or of a hypergraph, is a complete
lattice with the join operation being the union between subgraphs and the meet
being intersection1. Mathematical morphology for graphs and hypergraphs has
been studied in a variety of works as [86] (which actually considers the com-
plete lattice formed by the set of all nodes of a graph only), [15], [47], [14]. The
relational approach to mathematical morphology on graphs and hypergraphs,
based on the idea of stable relations, as well as its connection to intuitionistic

1More generally, the set of all H-sets of an H-frame (U,H) with the partial order ⊆ forms
a complete lattice.



4.1. EVOLUTION OF MATHEMATICAL MORPHOLOGY 67

modal logic, has been studied in [74], where, however the use of morphological
operations to represent granularity has not been explored.

We have already seen the concept ofH-dilates in Definition 55. If we consider
a generic stable relation R instead of H, we obtain the more general idea of R-
dilate.

Definition 72. Given an H-frame (U,H,R) and an element u ∈ U we call an
R-dilate the set { v ∈ U | u R v }, namely the set {u} ⊕R.

As R is a stable relation, the R-dilates are always H-sets, so when (U,H) is a
graph or s hypergraph, R-dilates are subgraphs, and not just generic subsets, of
U . In the context of mathematical morphology on the pixel grid Z2, where the
relation comes from a structuring element, R-dilates can be seen as its copies,
i.e. as the translations of the form x+ E introduced earlier2. To give concrete
examples of an R-dilate on a graph, let (U,H) be the graph with Z2 for nodes
and two nodes are connected by an edge if exactly one of their coordinates
differs by 1. We refer to this as the graph Z2, visualized as in Fig 4.1. The
dilates by

x

H of a node, a horizontal edge, and a vertical edge are also shown
in Figure 4.1. The significance is that any node in the graph (U,H) represented
in the figure is linked to itself, to the four adjacent nodes, and to all the edges
between them, by the relation

x

H = H ; H̆ ;H, and any horizontal or vertical
edge is linked to itself, to the nodes it is H-incident to, and finally to their four
perpendicularly adjacent nodes and to all the edges between them.

(U,H) is infinite grid, Z2 Shapes of

x

H-dilates

Figure 4.1: Shapes of dilates when R =

x

H and when (U,H) is the graph
shown. We can see the shape of {u } ⊕ x

H when u is a node (in bold) in
(U,H), when u is a horizontal edge (in bold) in (U,H), and when u is a vertical
edge (in bold) in (U,H) (figure adapted from [71]).

We have already mentioned the operations of opening and closing on subsets
in Section 1.7. The opening of a subset X is (R 	 X) ⊕ R. The closing of X
is R 	 (X ⊕ R). The same operations can be defined for any H-set of (U,H)
and stable relation R. Let us denote the opening of X as X ◦R and the closing
of X as X • R. It is clear that from a modal logic point of view the opening
is associate to the sequence of modalities ��, and the closing is associated to
the sequence of modalities ��. Thus given an H-model M where JϕKM = X
for some formula ϕ and H-set X, we have that X ◦ R = J��ϕKM and X • R
= J��ϕKM . The opening of a set X, and thus also of an H-set X, can be
expressed in terms of R-dilates, as the following lemma shows:

Lemma 73. X ◦R =
⋃
{ {x } ⊕R | {x } ⊕R ⊆ X }

2Indeed for x, y ∈ Z2 pixel grid, y ∈ x+ E iff xREy iff y ∈ {x } ⊕RE
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Proof. For the following proofs we remind the reader of the definitions of dilation
and erosion by a relation R as in Definition 5. Given any x ∈ U⋃

{ {x } ⊕R | {x } ⊕R ⊆ X },

= {u ∈ U | ∃x(x R u and {x } ⊕R ⊆ X) },
= {u ∈ U | ∃x(x R u and ∀y(x R y implies y ∈ X)) },
= {u ∈ U | ∃x(x R u and x ∈ R	X },
= (R	X)⊕R.

�

In Section 1.7 we have described the opening of a subset X of a set of pixels
as it is common in mathematical morphology for image processing, as providing
a description of X not using individual pixels but by fitting copies of structuring
elements within X. It is clear from Lemma 73 that, taking the more general
idea of R-dilates instead of copies of the structuring element, this description of
opening of an H-set X of (U,H) still holds: the Lemma proves that the opening
of X is the union set of all the R-dilates lying within X. Thus we can say that
the opening of a subgraph X of (U,H) provides a coarse description of X, as
it describes X not in terms of its H-dilates but in terms of its R-dilates. What
we can see of X will be its R-dilates only. Parts of X that can’t be described in
this way will be “forgotten”, left out, performing an opening on X. We can see
an example of opening of two H-sets by the relation

x

H on a specific graph
(U,H), in Figure 4.3 (middle).

On the other hand the operation closing was described, in the pixel-based
context, as fitting copies of the structuring element, rotated by a half turn,
outside X, i.e. performing an opening by the rotated structuring element on
the complement of X, and then take the complement of this. In this way the
closing will have the effect of “filling holes” on the background of X where the
rotated structuring element doesn’t fit. This description of the closing still holds
in the context of a set U with a relation R, i.e. when we calculate the closing
of any X ⊆ U by R. Generalising from structuring elements to R-dilates, the
action of rotating a structuring element by a half turn corresponds to the idea
of using the converse relation R̆. Then the closing of a subset X ⊆ U can be
described as before, as taking the complement of X, performing an opening
by R̆, i.e. an erosion by R̆ followed by a dilation by R̆, and then take the
complement of this. This is formally proved by the following lemma.

Lemma 74. X •R = −(−X ◦ R̆)

Proof. Let x ∈ −(−X ◦ R̆).

⇔ x /∈ (−X ◦ R̆),

⇔ x /∈ ((R̆	 (−X))⊕ R̆),

⇔ ∀y(y R̆ x implies y /∈ R̆	 (−X)),

⇔ ∀y(y R̆ x implies ∃z(y R̆ z and z /∈ −X)),

⇔ ∀y(x R y implies ∃z(z R y and z ∈ X)),

⇔ ∀y(x R y implies y ∈ X ⊕R)),

⇔ x ∈ R	 (X ⊕R).
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�

This connection between the closing of a subset and the opening by the
converse relation can also be derived in classical modal logic. Indeed in clas-
sical modal logic the formula ��ϕ ↔ ¬♦�¬ϕ is a theorem. Thus for any
Kripke relational model M as in Definition 2 and any formula ϕ, we have that
J��ϕKM = J¬♦�¬ϕKM , which expresses the fact that the closing of any sub-
set JϕKM is equal to the complement of the opening by R̆ of the complement
of JϕKM : as we have seen in Section 1.2, dilation by R̆ is associated to ♦ and
erosion by R̆ is associated to �. This equivalence is derivable using the fact
that, in classical modal logic, the pairs of modalities (�,♦) and (�,�) are
inter-definable: �ϕ ↔ ¬♦¬ϕ, and ♦ϕ ↔ ¬�¬ϕ hold for any formula ϕ, and
analogous property holds for the modalities in the pair (�,�).

When we move to a graph, or a hypergraph (U,H), where subgraphs are the
H-sets, it is still correct to say that the closing of an H-set X by a stable relation
R, X •R, is equivalent to the idea of taking the complement of X, performing
an opening by R̆, and then take the complement of this. Indeed the result from
Lemma 74 holds for any set X ⊆ U and any relation R on U , thus it still holds
for any H-set of (U,H), as these are still subsets of U , and any stable relation
on U . So we can say that the closing of an H-set X gives a coarser description
of X as it corresponds to the idea of “filling holes” in the background of X,
namely −X, where R̆-dilates do not fit. Notice that it makes perfect sense to
analyse the complement of an H-set X by the converse of a stable relation R̆.
Indeed, if X is an H-set then its complement −X is an H̆-set (a set closed under
H̆-successor), i.e. if u ∈ −X and u H̆ v then v ∈ −X. Thus we will analyse this
set by a relation closed under H̆. Given a stable relation R = H ;R ;H, then its
converse is R̆ = H̆ ; R̆ ; H̆. The idea is that holes visible in an H-set X are the
H̆-dilates of the background of X, that is −X, and thus they are H̆-sets. Thus
we need to analyse these holes by a relation that sends H̆-sets to H̆-set, namely
R̆. Applying the opening by R̆ to −X we will have this effect: if the dilates
by R̆ fit in a certain hole, then it means that this hole is “big enough” to be
visible after granulation, so applying the complement operation will not fill this
hole– the area is not part of the granulation of X, as there is still a hole there.
If the converse dilates do not fit in a certain hole, then it is small enough to
be forgotten after the applying granulation, and thus the complement operation
will fill its area: in the granulation of X these parts of −X are no longer holes.

However, we notice that in this context it is no longer the case that J��ϕKM =
J¬♦�¬ϕKM , when M is an H-model and JϕKM is an H-set in M . Indeed, first
of all the complement of an H-set is not necessarily its negation ¬X. Moreover,
when we are looking for the right notion of converse opening of an H-set, this is
not just applying the opening by R̆. Indeed, as already explained in Section 2.2,
the converse R̆ of a stable relation R is not necessarily stable, thus operations
by this relation might not map H-sets to H-sets. The right notion of converse
opening for H-sets is provided by the composition of dilation and erosion by the
stable relation

x

R, i.e. the smallest stable relation containing R̆. Indeed for
any H-model M we have that J♦�ϕKM = (

x

R	(JϕKM ))⊕ x

R = JϕKM ◦ x

R
(see Section 2.2.1). In UBiSKt, being an intuitionistic modal logic, we don’t
have the inter-definability of � and ♦, and of � and �, as in classical modal logic.
Thus the equality J��ϕKM = J¬♦�¬ϕKM doesn’t necessarily hold, when M
is an H-model and JϕKM is an H-set in M A counter-model to the equality of
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these two formulae is given in Figure 4.2, where R = H, and thus

x

R =

x

H.
This shows that morphological operations on graphs and hypergraphs are quite
different from morphological operations on sets.

X = ��X

¬♦�¬X = ¬¬¬¬¬¬X

Figure 4.2: A model showing that the equality ��X = ¬♦�¬X doesn’t
hold intuitionistically. In this model we consider R = H, X = ��X, and
¬♦�¬X = ¬¬¬¬¬¬X as the modal operator ♦ is the dilation by

x

H, that
maps X to ¬¬X, as we have seen in Theorem 52 and similarly � is erosion by

x

H, that maps X to ¬¬X.

In conclusion, we can think of (X ◦ R) • R as a granular version of X in
which we cannot ‘see’ arbitrary H-sets, but only ones that can be described
in terms of the R-dilates, in the way specified by Lemmas 73 and 74. We
give an example of two H-sets and their granular version obtained by applying
( ◦ R) • R in Figure 4.3, where R =

x

H. As we have seen, opening and
closing correspond to specific sequences of modalities in the logic. So, given an
H-model M = (U,H,R) and an H-set X = JϕKM for some formula ϕ in the
language, we can capture its granular version by a formula in the logic.

Two H-sets The opening by The closing of the opening
in the infinite grid Z2 by

x

H by

x

H

Figure 4.3: Granular view provided by the relation

x

H. On the left, two H-sets
in the given graph (U,H). In the middle, the operation of opening of the two
H-sets by the stable relation

x

H. Only

x

H-dilates lying in the H-sets will
be selected by this operation. On the right, the closing by

x

H applied after
the opening by

x

H. Small gaps within the H-sets are filled by the closing.

Definition 75. The formula ‘coarsely ϕ’ is defined by Gϕ := ����ϕ.

This definition of granulation is just one of many possible ones, and it comes
from generalising ideas from mathematical morphology in the set based context,
to graphs and hypergraphs. Alternative notions of granulation of a subgraph
X could be applying the same operations in the reverse order, namely applying
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a closing first and then an opening, or simply applying an opening, thus con-
sidering the union of all the R-dilates present in the subgraph X as adopting a
granular view on X.

4.2 Granular Connection

The operation of opening followed by closing on H-sets, and thus on subgraphs
when (U,H) is a graph or a hypergraph, gives a possible way of zooming-out
for a subgraph region. But how should we define connection between coarse
regions, i.e. between regions that have undergone a granulation process? The
issue is that the space underlying the regions should become coarser – regions
disconnected may become connected for example. In the same way that coarse
regions are described in terms of R-dilates using opening and closing, a coarse
version of connection can be formulated using R-dilates. To motivate this,
consider Fig 4.4 which shows the idea that coarse regions are coarsely connected
if there is a dilate intersecting both, or visually and informally that the gap
between can be bridged by an R-dilate. Requiring an R-dilate joining two
regions seems a suitable notion of coarse connection, as it extends the intuition
of connection at the detailed level given in Section 3.2. Indeed two subgraphs
X and Y are connected at the detailed level if the gap between them can be
bridged by an H-dilate, so if they are an edge apart, in the limit case (see
Figure 3.4 for an example of H-dilates on a graph). Going to the granular level,
single H-dilates are no longer “visible”, and the space has coarser atomic parts:
R-dilates.

Two H-sets Their approximations by The approximations can
by

x

H be joined by an

x

H-dilate

Figure 4.4: Example of granular connection provided by Relation

x

H. On the
left, two H-sets in the given graph (U,H). In the middle, their approximation by

x

H. On the right we can see that the resulting H-sets are coarsely connected:
there is indeed an

x

H-dilate intersecting the two H-sets. Notice that they are
not connected in the sense of connection given in Table 3.1. However, the new
atomic parts of the representation are now

x

H-dilates, and the gap between
the H-sets can be bridged by this. Thus, at this level of detail, the subgraphs
are connected. We can say that the subgraphs are “one edge apart” where the
new idea of edge is the

x

H-dilate displayed in the Figure (figure adapted from
[71]).

Definition 76. An R-dilate, D, joins H-sets X and Y if X ∩ D 6= ∅ and
Y ∩D 6= ∅.
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It is easy to see that requiring the existence of an R-dilate that joins X and
Y amounts to require that, given the union of the R-dilates intersecting X, at
least one of them intersects Y . Before showing how to formally encode this
idea, we need to introduce the following lemma, containing some facts about
relational dilation on sets. They obviously extend to H-sets and stable relations.

Lemma 77. Given R and S relations on a set U and X,Y ⊆ U , the following
holds:

1. X ⊆ Y implies X ⊕R ⊆ Y ⊕R (monotonicity of dilation).

2. X ⊕ (R;S) = (X ⊕R)⊕ S.

3. R ⊆ S implies X ⊕R ⊆ X ⊕ S.

Proof. The proof of item 1 is easy: suppose u ∈ X ⊕R. Then there is a v ∈ U
such that v R u and v ∈ X. Then v ∈ Y , as X ⊆ Y . Thus u ∈ Y ⊕R.

The proof of item 2 is as follows:

(X ⊕R)⊕ S,
= {u ∈ U | ∃y(y S u and y ∈ X ⊕R) },
= {u ∈ U | ∃y(y S u and ∃z(z R y and z ∈ X)) },
= {u ∈ U | ∃z∃y(z R y S u and z ∈ X) },
= {u ∈ U | ∃z(z R ; S u and z ∈ X) },
= X ⊕R ; S.

The proof of item 3 is easy: suppose u ∈ X ⊕ R. Then there is a v ∈ U such
that v R u and v ∈ X. As R ⊆ S, we have that v S u, and thus u ∈ X ⊕ S. �

Now we can show that, given an H-set X, the union of all the R-dilates
intersecting X can be expressed as a function of X, using dilation by

x

R and
by R.

Lemma 78. Let X be an H-set and R a stable relation. The union of the
R-dilates intersecting X is X ⊕ (yR;R).

Proof. First we show that the union of the R-dilate intersecting X is X⊕R̆⊕R.
If {u} ⊕ R intersects X, for some u ∈ U , then there is a x ∈ X such that
{u} ⊆ {x}⊕ R̆. Hence {u}⊕R ⊆ {x}⊕ R̆⊕R ⊆ X ⊕ R̆⊕R by Lemma 77 item
1. In the other direction, if y ∈ X⊕ R̆⊕R, then there is some u ∈ U and x ∈ X
such that uRy and uRx, so that y ∈ {u}⊕R with {u}⊕R intersecting X. Now,
since R̆ ⊆yR (see Definition 15), X ⊕ R̆ ⊕R ⊆ X ⊕yR ⊕R = X ⊕yR;R
by Lemma 77 item 3, item 1 and item 2. Also X ⊕yR;R = X ⊕H; R̆;H;R =
X ⊕ R̆;H;R ⊆ X ⊕ R̆;R = X ⊕ R̆⊕R because X is an H-set and R is stable.
So X ⊕ R̆⊕R = X ⊕yR;R. �

Finally, we can formally encode the idea of the existence of an R-dilate
intersecting both the H-sets X and Y , and then we can express this idea as the
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validity of a UBiSKt formula in an H-model3.

Proposition 79. There is an R-dilate joining H-sets X and Y iff (X ⊕ (

x

R ;
R)) ∩ Y 6= ∅.

Proof. The union of R-dilates intersecting X is X ⊕ (yR;R) from Lemma 78.
This intersects Y iff (X ⊕ (yR;R)) ∩ Y 6= ∅ . �

The above discussion provides a semantic justification for the following defini-
tion.

Definition 80 (Coarse connection). CG(ϕ,ψ) := E(�♦Gϕ ∧ Gψ).

Note that in an H-model M where R = H, we have that JGϕKM = JϕKM .
Indeed from the semantics given in Section 2.2.1, we know that J�ϕKM = R 	
JϕKM that is H 	 JϕKM if R = H. Similarly J�ϕKM = JϕKM ⊕H. As JϕKM is
always an H-set for any formula ϕ in the language, we have that H 	 JϕKM =
JϕKM = JϕKM ⊕H, because, as we have already noticed in Section 2.2.1, an H-
set is always equal to both its dilation and its erosion by the relation H. Thus,
in the special case of an H-model where R = H, JGϕKM is simply equivalent
to JϕKM . Moreover in this special case we have that for any JϕKM , J�♦ϕKM =
(JϕKM ⊕ yH) ⊕ H = JϕKM ⊕ yH = J¬¬ϕKM , using the result proved in
Theorem 52 and the fact that JϕKM is an H-set. Thus we can conclude that in
an H-model M where R = H, thus where we are adopting the view of H-dilates,
two regions are coarsely connected if and only if they are connected in the sense
of connection from Table 3.1, as CG(ϕ,ψ) is equivalent to C(ϕ,ψ), as expected.
This supports the definition of coarse connection given above, as we expect that
when the granular view adopted on a graph is given H, i.e. the smallest stable
relation containing the identity I, zooming-out by H is simply the action of
“staying there”, and the idea of coarse connection becomes the standard idea
of connection from Table 3.1.

The spatial relation of connection is always assumed to be symmetric. Our
notion of coarse connection is symmetric as follows.

Proposition 81. `HUBiSKt E(�♦ϕ ∧ ψ)↔ E(ϕ ∧ �♦ψ).

Proof. We have the following derivation in HUBiSKt. ` ¬(�♦ϕ ∧ ψ) ↔
(�♦ϕ → ¬ψ) because ¬(α ∧ β) ↔ (α → ¬β) is a theorem in intuitionistic
logic. Thus by (MonA) we have that ` A¬(�♦ϕ ∧ ψ)↔ A(�♦ϕ→ ¬ψ).
Now ` A(�♦ϕ → ¬ψ) ↔ A(♦ϕ → �¬ψ) and ` A(♦ϕ → �¬ψ) ↔ A(ϕ →
��¬ψ) by adjunction between � and �, and between ♦ and �.
Then ` A(ϕ → ��¬ψ) ↔ A(ϕ → ¬�¬�¬ψ) and A(ϕ → ¬�¬�¬ψ) ↔
A(ϕ → ¬�♦ψ) because �α ↔ ¬�¬α and ♦α ↔ ¬�¬α are both abbrevia-
tions in the syntax. ` (ϕ→ ¬�♦ψ)↔ ¬(ϕ∧�♦ψ) and thus by (MonA) we have
that ` A(ϕ→ ¬�♦ψ)↔ A¬(ϕ∧�♦ψ), and then ` A¬(�♦ϕ∧ψ)↔ A¬(ϕ∧
�♦ψ) by concatenation. Therefore ` ¬A¬(�♦ϕ∧ψ)↔ ¬A¬(ϕ∧�♦ψ) that
is ` E(�♦ϕ ∧ ψ)↔ E(ϕ ∧ �♦ψ) by item 22 of Proposition 29. �

3Notice that the formal definition of the idea of an R-dilate intersecting X and Y , given in
Proposition 79, is worked out for two generic H-sets X and Y . Then, as we expect to apply
the predicate of coarse connection to regions resulting from some granulation process, so to
coarse regions, we can apply this predicate to coarse regions only. So we can say that our
predicate of coarse connection, as well as all the other coarse spatial relations introduced in
this Chapter, is actually independent from the notion of granulation used, as they have been
worked out for any pair of regions.
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The proof of symmetry of granular connection is shown using generic for-
mulae ϕ and ψ, so it will also hold for granular regions Gϕ and Gϕ. It will also
hold applying any other notion of granulation– thus not necessarily the open-
ing followed by the closing as proposed in Definition 75, but also using another
combination of these operations for example.

It is usually assumed that the spatial relation of connection is reflexive,
namely that every region is connected to itself. This property of connection
is actually restricted to non-empty regions, as clearly the empty region won’t
be connected to any other region, and thus it won’t be connected to itself.
It has been shown in Section 3.2, Proposition 53 item 1, that spatial rela-
tion of connection between subgraphs is reflexive when we consider non-empty
regions. Thus the same question arises for the spatial relation of coarse con-
nection presented in Definition 80. The formula that we want to test in this
case is E(ϕ) → E(�♦ϕ ∧ ϕ). The hypothesis of the implication stands for the
assumption that self-connection is restricted to non-empty regions. As for sym-
metry, proved in Proposition 81, we first try to prove the property for a generic
formula ϕ, and thus without assuming any specific notion of granulation. We
are going to see next the formula is not a theorem. As we want to exhibit a
counter-model, we are going to use the tableau system TabUBiSKt instead of
the axiomatic system. The full tableau calculus can be found in Table A.1 the
Appendix A.3.

Proposition 82. 0TabUBiSKt (Eϕ)→ E(�♦ϕ ∧ ϕ)

Proof.

s : F (E(ϕ)→ E(�♦ϕ ∧ ϕ))

s H i, i : T (Eϕ), i : F (E(�♦ϕ ∧ ϕ))

j : T (ϕ)

j : F (�♦ϕ ∧ ϕ)

j : F (�♦ϕ)

no rule applicable: open branch

j : F (ϕ)

⊥
closure

[F∧]

[F E]

[T E], j new on the branch

[F →]

As we can see from the tableau proof, there is an open branch for the input
formula s : F (E(ϕ) → E(�♦ϕ)). Thus the formula is not a theorem in the
calculus. From the open branch we can extract the information needed to
build a counter-model M for E(ϕ) → E(�♦ϕ). We have a set U = { s, i, j },
H = I ∪ { (s, i) }, and JϕKM = { j } therefore JϕKM is not empty. However in
this model R = ∅, thus J�♦ϕKM = ∅ and then JϕKM ∩ J�♦ϕKM = ∅. Thus
M, s |= E(ϕ), s H i, and M, i 2 E(ϕ ∧ �♦ϕ), i.e. M, s 2 E(ϕ) → E(ϕ ∧ �♦ϕ)
(same holds for worlds i and j). If we look carefully at the tableau proof we
notice that once we get to j : F (�♦ϕ) no more rule is applicable. Indeed
the only possibility is to apply the rule [F �]. However this rule has also a
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second premise, namely that j has R-predecessor (see rule [F �] in Table A.1,
Appendix A.3). This premise is missing on the tableau, as R = ∅. The world
j is a dead-end world w.r.t. R̆: it doesn’t have any R-predecessor. Thus j will
automatically make false all �ϕ, for any formula ϕ, namely j /∈ J�ϕKM for
any JϕKM . This hints that, in order to proceed towards a closed tableau, we
need to be able to create an R predecessor for j. The fact that any world as an
R-predecessor is a specific property that we might impose on the accessibility
relation R, named surjectivity (see [74]). We can express this property in first-
order logic as ∀u∃v(v R u), or as inclusion of relations as I ⊆ R̆ ;R. When R is
stable, surjectivity is equivalent to the inclusion H ⊆yR ;R.

Proposition 83. If R is stable, then I ⊆ R̆ ;R iff H ⊆yR ;R.

Proof. Assume that I ⊆ R̆ ; R. We have the following chain of inclusion: H ⊆
I ;H ⊆ R̆ ;R ;H by our assumption. R̆ ;R ;H ⊆ R̆ ;R ⊆yR ;R by stability of R
and by the fact that R̆ ⊆yR. Thus H ⊆yR ;R, under the assumption that
I ⊆ R̆ ; R and R is stable. For the other direction, assume that H ⊆ yR ; R.
Since I ⊆ H, then I ⊆ yR ; R. Therefore for any u ∈ U there are elements
x, y, z such that u H x R̆ y H z R u. Thus for all u ∈ U there is some z such
that z R u. So I ⊆ R̆ ;R. �

Proposition 84. Assume that R is surjective. Then `TabUBiSKt (Eϕ) →
E(�♦ϕ ∧ ϕ)

Proof.

s : F (E(ϕ)→ E(�♦ϕ))

s H i, i : T (Eϕ), i : F (E(�♦ϕ ∧ ϕ))

j : T (ϕ), j : F (�♦ϕ ∧ ϕ)

j : F (�♦ϕ)

k R j

k : F (♦ϕ)

j : Fϕ

⊥
closure

[F♦]

[F �]

R is surjective

j : F (ϕ)

⊥
closure

[F∧]

[T E], j new on the branch

[F →]

Notice that in this tableau proof we implicitly use the fact that R̆ ⊆ yR.
Indeed, since k R j we have that jR̆k, and thus jyRk. This, and the fact
that k : F♦ϕ provides the two premises for the application of [F♦] rule, whose
conclusion is j : Fϕ (see rule [F♦] in Table A.1).

Proposition 84 shows that imposing surjectivity on R is sufficient in order
to prove that the relation of coarse connection is reflexive for any non-empty
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region JϕK. Thus the following question arises: is surjectivity both sufficient and
necessary in order to have reflexivity of coarse connection? It turns out that
this is not the case. Given an H-frame F = (U,H,R), there is property of R,
that is the is necessary and sufficient condition for having reflexivity of coarse
connection. We call this property weak surjectivity as surjectivity implies this
condition but not the other way around.

Definition 85. Given an H-frame F = (U,H,R), R is weakly surjective if
∀u∃v∃w(u H v and w R v).

The intuition behind weak surjectivity is that every element in U has at
least one H-successor that in turn has at least one R-predecessor. We notice
the following facts about the weak surjectivity constraint: (i) when H = I,
thus in the context of classical modal logic, weak surjectivity and surjectivity
are equivalent, (ii) since H is reflexive, namely I ⊆ H, surjectivity implies
weak surjectivity, (iii) the other direction doesn’t hold, as we can have frames
where R is weakly surjective but not surjective, for example if U = {x, y },
H = I ∪ { (x, y) } and R = { (y, y), (x, y) }, and (iv) the property can also be
expressed as follows: for all u ∈ U , {u } ⊕H ; R̆ 6= ∅.

Now we are going to prove that, if weak surjectivity of R is assumed, then
a tableau proof of (Eϕ) → E(�♦ϕ ∧ ϕ) can be accomplished, as we did in
Proposition 84 using surjectivity of R. Given the nature of the tableau calculus,
attempting to build a counter-model for a given formula, we can say that this
means that whenever an H-frame F is weakly reflexive, then F |= E(ϕ) →
E(�♦ϕ∧ϕ), as the closed tableau proof shows that we can’t find any model M
based on F where this formula is not valid.

Proposition 86. Assume thatR is weakly surjective. Then `TabUBiSKt (Eϕ)→
E(�♦ϕ ∧ ϕ)

Proof.
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s : F (E(ϕ)→ E(�♦ϕ ∧ ϕ))

s H i, i : T (Eϕ), i : F (E(�♦ϕ ∧ ϕ))

j : T (ϕ), j : F (�♦ϕ ∧ ϕ)

j H y, z R y

y : Tϕ

y : F (�♦ϕ ∧ ϕ)

y : F (�♦ϕ)

z : F♦ϕ

y : F (ϕ)

⊥
closure

[F♦]

[F �]

y : F (ϕ)

⊥
closure

[F∧]

[F E]

monotonicity H

R weakly surjective, y and z new on the branch

[T E], [F E], j new on the branch

[F →]

Finally we show that if the spatial relation of coarse connection is valid in a
frame F , then R in F is weakly surjective.

Proposition 87. Given an H-frame F = (U,H,R), if F |= (E(ϕ)→ E(�♦ϕ ∧
ϕ)) then R is weakly surjective.

Proof. We are going to show the contrapositive, namely that if R in F is not
weakly surjective than there is a model M = (F, V ), such that M 2 (E(ϕ) →
E(�♦ϕ∧ϕ)), and thus F 2 (E(ϕ)→ E(�♦ϕ∧ϕ)). If R is not weakly surjective
then there is an x ∈ U such that {x } ⊕H ; R̆ = ∅. Let us fix this x. Suppose
a model M based on this frame F where JϕKM = {x } ⊕ H (notice that this
is an H-set). Now we prove that J♦ϕKM = JϕKM ⊕ x

R = ∅, and hence
J�♦ϕKM = (JϕKM ⊕ x

R)⊕R = ∅. This is shown as follows:

J♦ϕKM = JϕKM ⊕ x

R,

= ({x } ⊕H)⊕H ; R̆ ;H,

= {x } ⊕H ; R̆ ;H,

= ({x } ⊕H ; R̆)⊕H,
= ∅⊕H = ∅.

The key point is that {x } ⊕H ; R̆ = ∅, that, as already noticed, is implied by
the assumption that R is not weakly surjective. Hence we have that J�♦ϕK =
(JϕK ⊕ x

R) ⊕ R = ∅. So we can conclude that M,x |= ϕ, as x H x and then
x ∈ JϕKM , and thus M,x |= Eϕ. Also M,x,2 E(�♦ϕ ∧ ϕ), as J�♦ϕ ∧ ϕKM =
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J�♦ϕK ∩ JϕKM = ∅ ∩ JϕKM = ∅. Thus M,x 2 E(ϕ)→ E(�♦ϕ ∧ ϕ), and thus
F 2 E(ϕ) → E(�♦ϕ ∧ ϕ), under the assumption that R in F is not weakly
surjective. �

In the above discussion we have taken into consideration a generic non-
empty region JϕKM , and we have shown that the formula expressing reflexivity
of coarse connection for non-empty regions is not a theorem in the logic. Hence,
by completeness, that there are models where the formula does not hold. We
have seen a simple counter-model of the formula. However it is possible that
if the notion of granulation G proposed in Definition 75 is considered, then the
notion of connection for non-empty granular regions is reflexive. We wanted to
show reflexivity for a generic non-empty region JϕKM , so that the result could
apply to non-empty granular regions, where any notion of granulation could be
specified, as done in the proof of symmetry of coarse connection. But maybe
if we consider a specific notion of granulation, for instance the one introduced
in Definition 75, then the reflexivity of coarse connection, for these kinds of
non-empty regions, could be proved. Hence the question is: is the formula

E(Gϕ)→ E(�♦Gϕ ∧ Gϕ) a theorem in TabUBiSKt? It is easy to see, without
even attempting a tableau proof, that this is not the case. Given the frame
F = (U,H,R) where U = {u }, H = I, and R = ∅, any model M based on F
works as a counter-model for the formula.

Another possible notion of granulation for regions could be formalised by
applying the closing followed by the opening. So let G′ϕ := ����ϕ. Is it
the case that, for this notion of granulation, that E(G′ϕ)→ E(�♦G′ϕ ∧ G′ϕ) a
theorem in UBiSKt? It turns out to be so.

Proposition 88. Let G′ϕ := ����ϕ. Then `TabUBiSKt E(G′ϕ)→ E(�♦G′ϕ∧
Gϕ).

Proof. s : F (E(G′ϕ)→ E(�♦G′ϕ ∧ G′ϕ))

s H i, i : T E(G′ϕ)), i : F (E(�♦G′ϕ ∧ G′ϕ))

j : T (G′ϕ), j : F (�♦G′ϕ ∧ G′ϕ)

j : F (�♦G′ϕ)

k R j, k : T���ϕ

k : F♦G′ϕ

j : FG′ϕ

⊥
closure

[F♦]

[F �]

T �, k new on the branch

j : F (G′ϕ)

⊥
closure

[F∧]

[T E], j new on the branch

[F →]

�

Notice here the key-point of the proof: we will always be able to find an
R-predecessor for any element belonging to a non-empty granular region G′ϕ.
Indeed in this case the first prefix of the new granularity predicate is �. Thus
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the rule [T �] will be applied, and this will create an R-predecessor to any point
belonging to the granular region G′ϕ. This will allow the accomplishment of
the proof. So, using this alternative notion of granulation, we can prove that all
non-empty granular regions are coarsely connected to themselves. Finally, we
notice that if the notion of granulation assumed is the opening of a region, then
a proof for reflexivity of coarse connection similar to the one of Proposition 88
presented above can be obtained.

The above discussion shows that the reflexivity property of coarse connection
is not independent from the notion of granulation chosen. If we want to guaran-
tee reflexivity of coarse connection for any region, and thus independently from
the notion of granulation chosen, some property on the accessibility relation R
has to be imposed. Imposing weak surjectivity on R is a necessary and sufficient
condition for this to hold.

4.3 Beyond Granular Connection

In the previous section we have considered a way to look at a subgraph at a
different level of detail and we have seen how the function mapping a region
to its granular version can be expressed in modal logic, giving a syntactic no-
tion of granulation (we have seen that that is not the only possible notion of
granulation). We have then proposed a compatible idea of granular connection,
and we have justified our choice, as it generalises the idea of detailed connection
between subgraphs in terms of H-dilates, to R-dilates. We can extend the same
reasoning to all the spatial relations between subgraphs defined in Section 3.2.
We will start from defining a notion of coarse parthood in terms of R-dilates.
The standard notion of parthood at the detailed level (Table 3.1) says that,
given H-sets X and Y , X is part of Y if and only if all the H-dilates in X lie in
Y (see Proposition 56). A suitable notion of coarse parthood will require that
X is coarse part of Y if and only if all the R-dilates in X lie also in Y .

Proposition 89. LetX and Y beH-sets, andR a stable relation. The following
are equivalent: 1) all the R-dilates in X lie in Y and 2) R	 (X) ⊆ R	 (Y ).

Proof. The union of all the R-dilates in X is the opening of X: X ◦ R =
(R 	X) ⊕ R. Hence, requiring the all the R-dilates in X lie in Y amounts to
require that (R 	 X) ⊕ R ⊆ Y . By properties of adjunction this is equivalent
to R	X ⊆ R	 Y . �

The above reasoning together with Lemma 54 provides a semantic justifica-
tion for the following definition of coarse parthood between coarse regions.

Definition 90 (Coarse parthood). PG(ϕ,ψ) := A(�Gϕ→ �Gψ).

It is easy to see that the notion of coarse parthood is reflexive: `UBiSKt

A(�Gϕ → �Gϕ) (the same will clearly holds choosing a different notion of
granulation). The following proposition shows that coarse parthood is also
transitive, as expected.

Proposition 91. `TabUBiSKt A(�Gϕ→ �Gψ)∧A(�Gψ → �Gδ)→ A(�Gϕ→
�Gδ).

Proof. See Appendix A.2. �
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The negation of the notion of coarse parthood will give a notion of coarse
non-parthood: this requires that there is at least an R-dilate in X such that it is
not in Y . From Proposition 89, we know that this is equivalent to R	X 6⊆ R	Y .
Because of Lemma 57 we propose the following definition.

Definition 92 (Coarse non-parthood). non-PG(ϕ,ψ) := E(�Gϕ ��Gψ).

We now analyse how to extend the spatial relation of overlapping to the
granular level. Two H-sets X and Y overlap at the detailed level if and only if
there is an H-dilate that lies both in X and Y . Indeed the intersection of two
H-sets X and Y is always an H-set, thus if X ∩ Y 6= ∅, then there is at least
u ∈ U such that {u } ⊕ H ∈ X and {u } ⊕ H ∈ Y (notice that H-dilates are
always non-empty by reflexivity of H: u ∈ {u } ⊕H for any u ∈ U). Following
this idea, a suitable notion of coarse overlapping requires the existence of a
non-empty R-dilate that lies both in X and Y .

Proposition 93. Let X and Y be H-sets and R a stable relation. The following
are equivalent: 1) there is a non-empty R-dilate that lies both in X and in Y
and 2) (X ∩ Y ) ◦R 6= ∅.

Proof. (X ∩ Y ) ◦R is the opening of X ∩ Y , so the union of all R-dilates both
in X and in Y . Hence requiring that there is a non empty R-dilate that lies
both in X and in Y amounts to require that the opening of X∩Y is non-empty:
(X ∩ Y ) ◦R 6= ∅. �

Thus we define coarse overlapping between coarse regions as follows.

Definition 94 (Coarse overlapping). OG(ϕ,ψ) := E(��(Gϕ ∧ Gψ)).

As an example, in Fig. 4.5 on the left we show two H-sets (red and black)
that intersect, but an R-dilate will not fit inside the region of intersection (in
this example we take R = yH). Therefore the spatial relation OG does not
hold. If the region of intersection is at least as big as an R-dilate, as it happens
on the right of the figure, then the relation OG does hold.

Given H-sets X and Y , X is non-tangential part of Y at the detailed level if
X is part of Y and the closure of X, ¬¬X, is still part of Y . This means that
all the H-dilates that intersect X lie in Y (indeed now we can see from Lemma
78 that the union of all H-dilates intersecting X is X ⊕ x

H ⊕H i.e. X ⊕ x

H
that is ¬¬X by theorem 52). Hence, a suitable notion of coarse non-tangential
part between H-sets X and Y is obtained by requiring that X is coarse part of
Y and all the R-dilates intersecting X lie in Y .

Proposition 95. Let X and Y be H-sets and R a stable relation. The following
are equivalent: 1) all the R-dilates overlapping X lie in Y , and 2) X ⊕yR ⊆
R	 Y .

Proof. Requiring that the union of the R-dilates overlapping X lie in Y is (X⊕
yR ⊕ R) ⊆ Y by Lemma 78. This is equivalent to X ⊕yR ⊆ R 	 Y by
properties of adjunctions. �

The above reasoning provides a semantic justification for the following defi-
nition.
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Two H-sets not sharing a whole R-dilate Two H-sets sharing a whole R-dilate

Figure 4.5: Cases of coarse non-overlapping and of coarse overlapping, where
R is

x

H (figure adapted from [71]).

Definition 96 (Coarse non-tangential part). NTPG(ϕ,ψ) := A(�Gϕ→ �Gψ)∧
A(♦Gϕ→ �Gψ).

Finally, we analyse the notion of coarse tangential part. At the detailed
level, an H-set X is tangential part of Y if X is part of Y and there is at
least an H-dilate intersecting X that does not lie in Y . This is obtained by
requiring that ¬¬X, that is the union of all H-dilates intersecting X, is not
part of Y . Hence, at the granular level we will require that the union of all R-
dilates intersecting X is not part of Y . This means that we have to negate the
requirement for NTPG: by Proposition 95 this is X ⊕yR 6⊆ R 	 Y . Because
of this and Lemma 57 we propose the following.

Definition 97 (Coarse tangential part). TPG(ϕ,ψ) := A(�Gϕ → �Gψ) ∧
E(♦Gϕ ��Gψ).

Using the predicates CG, PG, non-PG, OG, NTPG and TPG, a set of RCC-8
style coarse spatial relations between coarse subgraphs can be obtained in the
obvious way, as in Table 4.1. For example the coarse spatial relation of external
connection ECG(ϕ,ψ) will be defined as CG(ϕ,ψ) ∧ ¬OG(ϕ,ψ).

Notice that all the definitions of the coarse spatial relations above have been
worked out for generic X and Y . they will be applied to regions that have
undergone a granulation process, as for example the opening followed by the
closing as proposed in Definition 75, but the definition of the coarse spatial
relations are independent from this choice of granulation, thus they will apply
also when another notion of granulation (as for example the closing followed by
the opening, or just the opening) is chosen.

To conclude this chapter, we present in Figure 4.6 and Figure 4.7 additional
examples of coarse connection and coarse overlapping between H-sets, based on
a new relation R defined on the graph (U,H).
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Two H-sets coarsely connected by an R-dilate Shapes of R-dilates

Figure 4.6: An additional example of coarse connection between two H-sets
(on the left), based on new shapes of R-dilates {u } ⊕ R (on the right). The
relation R on the graph (U,H) associated to these shapes can be constructed
as follows: every node is related to all the elements belonging to the R-dilate
when the node is the origin, and analogous reasoning holds for horizontal and
vertical edges. The possible origins (a node, an horizontal edge, and a vertical
edge) are highlighted in the figure (right). We notice that the two H-sets are
not connected in the sense of connection presented in Section 3.2. However,
there is an R-dilate intersecting the two H-sets, hence they are connected at
the level of detail provided by this choice of R.

Two H-sets not sharing a whole R-dilate Two H-sets sharing an R-dilate

Figure 4.7: Another example of coarse non-overlapping and of coarse overlap-
ping, based on the R-dilates from Figure 4.6.
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Table 4.1: Granular Relations and corresponding formulae
Granular Relation Formula

CG(ϕ,ψ) E(�♦Gϕ ∧ Gψ)
OG(ϕ,ψ) E(��(Gϕ,Gψ))
PG(ϕ,ψ) A(�Gϕ→ �Gψ)
DCG(ϕ,ψ) ¬CG(ϕ,ψ)

non-PG(ϕ,ψ) E(�Gϕ ��Gψ)
POG(ϕ,ψ) OG(ϕ,ψ) ∧ non-PG(ϕ,ψ) ∧ non-PG(ψ,ϕ)
PPG(ϕ,ψ) PG(ϕ,ψ) ∧ not-PG(ψ,ϕ)
EQG(ϕ,ψ) PG(ϕ,ψ) ∧ PG(ψ,ϕ)

NTPPG(ϕ,ψ) PPG(ϕ,ψ) ∧ A(♦Gϕ→ �Gψ)
NTPP i

G(ϕ,ψ) NTPPG(ψ,ϕ)
TPPG(ϕ,ψ) PPG(ϕ,ψ) ∧ E(♦Gϕ ��Gψ)
TPP i

G(ϕ,ψ) TPPG(ψ,ϕ)
ECG(ϕ,ψ) CG(ϕ,ψ)¬OG(ϕ,ψ)
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Chapter 5

Modal Logic for
Hypergraph Partitions

In this chapter we will present and discuss different possibilities for an
S5 version of UBiSKt. On the semantics side, this corresponds to the
logic of H-frames where the stable relation R on (U,H) provides with
a partition on (U,H).

5.1 Introduction

In the previous section we explored the idea of looking at subgraphs at a different
level of detail. The intuition is that instead of being able to see all H-dilates of a
graph – single nodes and single edges with their end-points nodes – only groups
of these that can be described by R-dilates are “visible”. The modal accessibility
relation R on the graph, provides a granular view on it. The notion of R-dilate
comes from generalising the notion of a structuring element on the pixel grip,
known from mathematical morphology. No special constraint on R has been
imposed, except for stability as we are working with relations on graphs and
hypergraphs (see Section 1.4).

A specific way of grouping elements of information together is when they
share certain attributes. In rough set theory [54], attributes defined on a set
U provide an equivalence relation on the set, and thus a partition of the set.
Indistinguishable elements, namely elements that cannot be distinguished on
the basis of the available attributes, coalesce into “granules”, the blocks of the
partition. This process gives a coarser view of the initial set. Then, given any
subset X ⊆ U two kinds of approximation can be considered in rough set theory:
X or the lower approximation of X, and X or the upper approximation of X.
The first one can be informally described as taking those clusters containing
some elements in the initial set. The latter can be described as taking those
clusters that contains only elements from the initial set. It is well known that
rough set theory has connections with the modal logic S5, where indeed R is
an equivalence relation, with S5-� associated to X 7→ X and S5-� associated
to X 7→ X, [92], [53] (notice that R being an equivalence relation, and thus
symmetric, the box modalities � and � are equivalent, and the same holds for
the diamonds � and ♦). Thus an equivalence relation on a set provides with

85
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specific way to take a coarser look on that set, and on its subsets, i.e. a specific
form of a granulation.

As already explained in Section 1.7, a partition on a set is always associated
to an equivalence relation as well as to a function that maps each element to
its equivalence class, or block in the partition. This is known as the quotient
function.

In [66] the correspondence between partitions and relations on hypergraphs
is studied. It is shown that equivalence relations on hypergraphs are too re-
strictive in the kind of partitions they give rise to. We have already discussed
this in Section 1.8. An alternative approach is proposed in [66]. Whilst the
relations considered are still reflexive and transitive (as well as stable, as the
approach of stable relations as relations on graphs and hypergraphs is taken also
in this work), a constraint weaker than symmetry is imposed on R, referred as
“symmetric generation”.

In [52] the goal is to study some S5 extension of intuitionistic modal logic.
The author starts from an H-frame (U,H,R), where R is additionally reflexive
and transitive. Besides reflexivity and transitivity, other constraints substi-
tuting symmetry are considered, and they yield what the author describes as
different intuitionistic analogues of the modal logic S5.

In this chapter we are going to discuss and compare these different con-
straints on R, that can be seen as substitutes for symmetry1. We will see that
all the constraints on R under consideration arise from imposing specific condi-
tions on the quotient function f that links (U,H) to its quotient structure. We
call this type of condition back conditions on the quotient function. The goal of
the chapter is to study graph and hypergraph partitions and the associated rela-
tions. However most of the theory presented doesn’t need the assumption that
(U,H) is specifically a hypergraph, but the fact that it is a poset is enough. Spe-
cific examples will usually be two-levels posets, namely hypergraphs, as these
are the objects of interest. The chapter is structured as follows. Section 5.2
presents the S4 extension of UBiSKt, that is the modal logic that captures the
class of reflexive and transitive H-frames. In Section 5.3 we show that a reflexive
and transitive relation R on a poset (U,H) already gives rise to a partition of
the underlying set U , hence in the special case of (U,H) being a hypergraph a
graph, reflexive and transitive relations can be used to obtain a partition of the
set of nodes and edges U . The quotient structure is a partial order (Theorem
108). Hence, given a poset (U,H), we have a way to take a “coarser look” at
it, using a preorder R, and obtaining a quotient structure (U ′, H ′) that is still
a poset. However, in Section 5.4 we are going to look at some cases of poset
partitions that hint that reflexive and transitive relations might not give a fully
satisfactory account of poset partitions. We will focus on the missing link not
discussed in [66], i.e. the quotient function between a poset and its quotient
structure. We will show that the constraint of symmetry-generation considered
in [66] corresponds to imposing an important property on the quotient function
f (Theorem 117). We call this property the weak-zag constraint. It will make

1It should be mentioned that Ono in [52] considers an additional constraint as a substitute

for symmetry, i.e. R ⊆ H ; R̆. We don’t analyse in this constraint in this work, as it is not
of a certain form (it doesn’t come from one of the back conditions on f w.r.t. H and H′).
However we can already notice that this constraint will cause the same restriction on the type

of allowed partitions R ⊆ H ;
Ø

R, that we do analyse, i.e. a node in a hypergraph can only go
be assigned to a node in the quotient structure (Proposition 112).
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sure that an important intuition from the theory of set partitions is preserved in
a more general theory of poset partitions, i.e. that the quotient structure of a set
is still a set. More generally, as we are going to see in Section 5.4, this property
will impose a dependency between the resulting partial order H ′ from the initial
partial order H. We will also look at other constraints to impose on the quotient
function that also imply a dependency of H ′ from H. We show that they are
equivalent to some constraints on R considered by Ono in [52], (Propositions
113 and 116). However imposing the constraints proposed by Ono, and thus
considering the intuitionistic S5 systems presented in [52], might be too restric-
tive in the kind of hypergraph partitions, and more generally posets partitions,
that would be allowed there (Propositions 112 and 115). We remark that Ono’s
intuitionistic frames, for the modal logic S4, on the top of which the different S5
systems are built, are H-frames where R is a preorder, thus they are equivalent
to the UBiSKt frames for the S4 extension of UBiSKt, introduced in section
5.2. Indeed in [52, page 695], the author considers frames F = (U,H,R) where
H is a partial order and R is a reflexive and transitive relation such that H ⊆ R.
This implies stability of R by H ; R ; H ⊆ R ; R ; R ⊆ R. Ultimately in this
section we show that the two-tierness constraint on R from [66] is equivalent
to imposing that the quotient structure is not just a poset, but it is indeed a
hypergraph (Theorem 119). Indeed the construction presented in Section 5.3
holds not just for hypergraphs, but more generally for posets. But if we want to
make sure that, when we start from a hypergraph, its quotient structure is also
a hypergraph, then we need an extra constraint on the preorder R from which
the partition arises.

Finally, in Section 5.5, we are going to show that there is an extension of
UBiSKt that captures the semantics of the class of H-frames such that R has
all the above mentioned properties, i.e. it is a symmetrically generated, two-tier
preorder. And in Section 5.6 we work out what the new definitions of the coarse
spatial relations (from Sections 4.2 and 4.3) in this extension of UBiSKt.

We introduce a lemma that we are going to use throughout the chapter.

Lemma 98. Let V and W be sets and P ⊆ V ×W . Let IV and IW be the
identity relations on V and W respectively. Then IV ; P = P and P ; IW = P .
Moreover we say that P is functional iff P̆ ; P ⊆ IW , and that P is total iff
IV ⊆ P ; P̆ , and that P is surjective iff IW ⊆ P̆ ; P , and finally that P is
injective iff P ; P̆ ⊆ IV .

We have already seen the property of surjectivity of a (stable) relation R ⊆
U × U in Chapter 4. Here the definition is generalised to when a relation is
not necessarily defined on the same set (an homogeneous relation) but on two
possibly different sets (an heterogeneous relation).

We also remind the reader that the following properties of relations holds:
given a set W and relations S ⊆W ×W and P ⊆W ×W , S ⊆ P implies S̆ ⊆ P̆
and

˘̆
S = S (see [45]).

Next we will consider the logic of the class of H-frames where R is reflexive
and transitive, and then we will build upon this to obtain the desired system.
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5.2 System S4 for UBiSKt

Reflexivity of an arbitrary relation R can be expressed as the relational inclusion
I ⊆ R. Transitivity can be expressed as R ;R ⊆ R. When, additionally, R is a
stable relation, as in the context of this work, we have the following fact, that
can be found already in [74].

Proposition 99. If R is stable then I ⊆ R iff H ⊆ R.

Proof. Let us assume that H ⊆ R. Since I ⊆ H by reflexivity of H, we have
that I ⊆ R. On the other direction, let us assume that I ⊆ R. We have the
following chain of inclusion: H ⊆ I ; H ⊆ R ; H ⊆ R by stability of R and
Lemma 98. Thus H ⊆ R. �

So the relations that are reflexive and transitive in the classical sense, and
that are additionally stable, are those relations that satisfy H ⊆ R and the
normal condition for transitivity. It is also useful to note that, if R is transitive
and H ⊆ R, then H;R;H ⊆ R;R;R ⊆ R, which means that R is stable, from
Definition 14).

From the correspondence theorem in [74] we have that the properties of
reflexivity and transitivity of a stable relation R can be expressed as a formula
in the logic BiSKt, and therefore in UBiSKt, as this latter is an extension
of the former. We will refer to the formula p → � p (or to its equivalent box-
form �p → p) as the reflexivity axiom, as this formula is valid in a H-frames
F = (U,H,R) iff H ⊆ R holds, i.e. F is a reflexive H-frame. We will refer
to the formula �� p → � p (or to its equivalent box-form �p → ��p) as the
transitivity axiom, as this formula is valid in a H-frames F = (U,H,R) iff
R;R ⊆ R holds.

Definition 100. We define S4 be the set {p → � p,�� p → � p} and S4 be
the class of H-frames (U,H,R) such that R is reflexive (i.e., H ⊆ R) and R is
transitive.

Theorem 101. Let Λ be a ubist-logic such that S4 ⊆ Λ. Then all the following
hold in Λ.

1. ��p↔ �p

2. �� p↔ � p

3. ����p↔ �p

4. ����↔ � p

Proof. Proof of item 1.: for the left to right direction: �p→ ��p is the transi-
tivity axiom. By adjunction between � and � this is equivalent to ��p→ �p.
For the right to left direction: �p→ ��p is an instance of the reflexivity axiom.
Proof of item 2: for the left to right direction: �� p→ � p is the transitivity ax-
iom. By adjunction between � and � this is equivalent to � p→ �� p. For the
right to left direction: �� p→ � p is an instantiation of reflexivity axiom. Proof
of item 3: ����p ↔ ���p ↔ ��p ↔ �p by item 2, reflexivity and transi-
tivity axioms and item 1. Proof of item 4: ���� p ↔ ��� p ↔ �� p ↔ � p
by item 1, reflexivity and transitivity axioms and item 2. �

Theorem 101 shows that when we assume S4-axioms, the notion of gran-
ulation presented in Section 4.2 corresponds to the lower approximation as in
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Rough Set Theory, and the other order of composition of closing and opening
corresponds to upper approximation. In terms of mathemathical morphology,
we can say that, given a structuring element on a graph (U,H) and the as-
sociated stable relation, if this is transitive and reflexive, then the operation
opening followed by closing will give the same results of simply performing an
opening, which in turn is equivalent to take the erosion of the subgraph. Same
link occurs between the operation of closing followed by opening, the closing,
and the dilation.

The S4 system for UBiSKt is sound and complete w.r.t. the class S4.
These results are contained in [72] and they were achieved in collaboration with
Katsuhiko Sano.

Lemma 102. Given a ubist-logic Λ such that S4 ⊆ Λ, the Λ-canonical H-
frame FΛ

(Γ,∆) = (UΛ, HΛ, RΛ) satisfies both HΛ ⊆ RΛ and RΛ;RΛ ⊆ RΛ, i.e.,

FΛ
(Γ,∆) ∈ S4.

Proof. First we establish HΛ ⊆ RΛ. Suppose that (Σ1,Θ1)HΛ(Σ2,Θ2), i.e.,
Σ1 ⊆ Σ2. Assume that ϕ ∈ Σ1. Our goal is to show �ϕ ∈ Σ2, as by Lemma
34 this is equivalent to (Σ1,Θ1)RΛ(Σ2,Θ2). But this is clear as ϕ→ �ϕ ∈ Σ1
by S4 ⊆ Λ, and thus �ϕ ∈ Σ1, hence �ϕ ∈ Σ2, as Σ1 ⊆ Σ2. Second, we prove
RΛ;RΛ ⊆ RΛ. Assume that (Σ1,Θ1)RΛ(Σ2,Θ2) and (Σ2,Θ2)RΛ(Σ3,Θ3). To
show that (Σ1,Θ1)RΛ(Σ3,Θ3), suppose that ϕ ∈ Σ1. We show that �ϕ ∈ Σ3.
By assumption, we have ��ϕ ∈ Σ3, which implies �ϕ ∈ Σ3 by ��ϕ→ �ϕ ∈
Σ3 (by S4 ⊆ Λ). �

By Lemmas 36, 39 and 102, Theorem 21 and Proposition 20 we can estabilish
the following.

Theorem 103. 1. UBiSKt extended with S4 is sound and strongly com-
plete for the class S4, i.e., Γ |=S4 ϕ iff Γ `UBiSKtS4 ϕ for every set Γ∪{ϕ}
of formulas.

2. UBiSKt extended with S4 and bd2 is sound and strongly complete for
the class of H-frames (U,H,R) ∈ S4 where (U,H) is a hypergraph, i.e.,
Γ |=HG∩S4 ϕ iff Γ `UBiSKtS4bd2 ϕ for every set Γ ∪ {ϕ} of formulas.

5.3 Hypergraph Partitions and Quotient Func-
tion

Given a set U , it is well known that a partition of it can be obtained by a reflexive
and transitive relation R on U , by considering the symmetric part of R, namely
(R∩ R̆) (see for example [32] Chapter 8). This is indeed an equivalence relation
in the classical sense, and it will have an associated partition. Thus, given an
hypergraph (U,H) and a stable relation R on U that is additionally reflexive and
transitive, we can obtain a partition of the underlying set U of edges and node.
Although we are interested in “two-level” posets, namely hypergraphs, in what
follows we just need the assumption that (U,H) is a poset. The corresponding
quotient structure, arising from (R ∩ R̆) can be defined as follows (notice that,
as we work with stable relations R, reflexivity of R is equivalent to H ⊆ R as
already noticed in Section 5.2, Proposition 99):
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Figure 5.1: Top-left: a hypergraph (U,H), (reflexive loops of H are left im-
plicit). Top-right: a reflexive and transitive relation R ⊆ U × U (tran-

sitive arrows are left implicit). The symmetric part of R,
Ø

R = I ∪
{(b, c), (c, b), (b, d), (d, b), (d, c), (c, d)} generates a partition of U (bottom-left).
Bottom-right: the quotient structure (U ′, H ′). The elements of U ′ are X = {a},
Y = {b, c, d} and Z = {e}. H ′, that is the reflexive closure of the relation on
the set U ′.

Definition 104. Given a poset (U,H) and a reflexive and transitive relation
R ⊆ U × U , the quotient structure (U ′, H ′) is obtained by taking as elements
of U ′ those X ⊆ U such that there is an u ∈ U such that X = {u} ⊕ (R ∩ R̆).
Given X,Y ∈ U ′, XH ′Y iff there are x ∈ X and y ∈ Y such that xRy.

An example of a poset partition and associated quotient structure generated
by a transitive and reflexive relation is given in Fig. 5.1.

In what follows we will use the following abbreviation: (R ∩ R̆) =
Ø

R.

Every element u ∈ U can be associated to the block of the partition it

contributes to form by the assignment u 7→ {u}⊕
Ø

R. We can look at the function

{ } ⊕
Ø

R : U → U ′ as the quotient function. Blocks are equivalence classes in
the classical sense 2. For sake of simplicity, we will indicate the quotient function

{ } ⊕
Ø

R simply as f . It is clear from Definition 104 that f will be surjective,
so for any element X ∈ U ′, we can find a u ∈ U such that X = f(u). It will not
be injective, except in the trivial case in which each element in U is mapped
onto a block containing only the element itself. Being a function, f will be both
functional, i.e. every element in U is uniquely mapped into an element in U ′,
and total, i.e. all the elements in U get mapped into some element in U ′. We

2Notice that the quotient function differs slightly from the standard dilation function ⊕
Ø

R : P(U) → P(U), as introduced in Section 1.2. Whilst the quotient function takes as
argument an element of u ∈ U , the standard dilation takes as argument subsets of X ⊆ U .
When a singleton-subset {u} for u ∈ U is considered, then the two functions will return

the same value {u} ⊕
Ø

R, where the quotient function takes u as argument, and the dilation
function takes {u} as argument.
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know how to express all these properties of f as inclusion of relations, from
Lemma 98.

For any element u ∈ U and block X ∈ U ′, if u ∈ X then u can be taken as

representative of X: X = {u } ⊕
Ø

R = f(u). As blocks, namely elements of U ′,
are equivalence classes in the classical sense, we have the following lemma.

Lemma 105. The following statements hold and they express the same fact, i.e.
that two elements are in the same block iff they are related by the equivalence

relation
Ø

R:

1. for any x, y ∈ U : f(x) = f(y) iff x
Ø

R y.

2. f ; f−1 =
Ø

R.

The relation f−1 ⊆ U ′ × U is the converse of f , thus it relates any block of
X ∈ U ′ to all the elements x ∈ U that coalesce into that block. Notice that this
is just a relation, and not a function, as f is not necessarily injective, as already
noticed, and thus a block X ∈ U ′ is possibly related by f−1 to many different

elements in U . By properties of dilation by symmetry of
Ø

R, we also know that

x
Ø

Ry iff y ∈ f(x) iff x ∈ f(y), for any element x and y.
The quotient function can be seen as a link between the structures (U,R)

and (U ′, H ′), but also between (U,H) and (U,H ′), i.e. the initial poset and
its quotient structure. Now we are going to introduce some properties concern-
ing relations between structures, and we are going to investigate whether the
quotient function f has these properties, with respect to the pair of structures
((U,R), (U ′, H ′)), and ((U,H), (U ′, H ′)). We are going to use some of these
properties to show that the quotient structure (U ′, H ′) arising from (U,H,R)
as in Definition 104 is a poset as well, i.e. that H ′ built in that way is a partial
order. This extends the intuition of the theory of rough sets, where the quotient
structure of a set is also a set, to a theory of rough posets, where then we would
expect that the quotient structure of a poset is a poset as well.

Definition 106. Given sets W and V and relations P, S and Q such that
P ⊆ W ×W , S ⊆ V × V , and Q ⊆ W × V , Q is order-preserving with respect
to P and S if Q̆;P ;Q ⊆ S, and Q is order-reflecting with respect to P and S if
Q;S; Q̆ ⊆ P .

See Fig. 5.2 for a diagrammatic representation of order-preserving and order-
reflecting conditions. Notice that usually the adjectives “order-preserving” and
“order-reflecting” are used to describe mappings between posets (see [64]), but
we will use this terminology in this more general setting, where (W,P ) and
(V, S) are just a pair of a set and a relation defined on the set.

From Definition 104 it immediately follows that f is order-preserving with
respect to R and H ′, that is f−1 ;R ; f ⊆ H ′. Notice that f is order-preserving
also w.r.t. H and H ′. This is an easy consequence of the fact that R is reflexive,
and thus H ⊆ R, and f is order-preserving w.r.t. R and H ′, as already noticed:
f−1 ;H ; f ⊆ f−1 ;R ; f ⊆ H ′. Moreover we have the following.

Proposition 107. f is order-reflecting with respect to R and H ′.

Proof. From Definition 104 it follows that H ′ ⊆ f−1 ; R ; f . So f ; H ′ ; f−1 ⊆
f ; f−1 ; R ; f ; f−1 ⊆

Ø

R;R;
Ø

R by Lemma 105, item 2, and
Ø

R;R;
Ø

R ⊆ R by
transitivity of R. Therefore f ;H ′ ; f−1 ⊆ R, as wanted. �
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Figure 5.2: On the left, the order-preserving condition represented by a diagram.
On the right the order-reflecting condition represented by a diagram. Read it
as: vQ̆wPuQz implies vSz, and wQvSzQ̆u implies wPu.

We are now going to use order-reflecting and order-reflecting properties of f
w.r.t. R and H ′, to show that the quotient structure (U ′, H ′) is a poset.

Theorem 108. Let (U,H) be a hypergraph and R ⊆ U × U a reflexive and
transitive relation. Let (U ′, H ′) be the quotient structure generated by R. Then:

1. H ′ is reflexive

2. H ′ is transitive.

3. H ′ is anti-symmetric.

Proof. Proof of item 1: let us indicate with I ′ the identity relation on the set
U ′. Then we have I ′ ⊆ f−1 ; f ⊆ f−1 ; I ; f ⊆ f−1 ; R ; f ⊆ H ′, by surjectivity
of f , reflexivity of R and Definition 104.

Proof of item 2: we need to show that H ′;H ′ ⊆ H ′. It follows from Definition
104 that H ′ ⊆ f−1 ;R ; f . So H ′;H ′ ⊆ f−1 ;R ; f ; f−1 ;R ; f ⊆
f−1 ; R ;

Ø

R ; R ; f ⊆ f−1 ; R ; f , by item 2 of Lemma 105 and transitivity of R.
Finally we have that f−1 ;R;f ⊆ H ′ as the quotient functions is order-preserving
with respect to R and H ′, as we have already noticed. Therefore H ′;H ′ ⊆ H ′,
as wanted.

Proof of item 3: suppose for some X and Y in U ′, XH ′Y and Y H ′X holds.
We need to show that X = Y . By surjectivity of f and Proposition 107 we
have that there are x, y, x′, y′ ∈ U such that f(x) = X and f(y) = Y and xRy,

and f(y′) = Y and f(x′) = X and y′Rx′. Thus x′
Ø

Rx by Lemma 105 item 1,

and y′
Ø

Ry. Thus we have that y
Ø

Ry′Rx′
Ø

Rx that by transitivity of R implies that

yRx. Therefore x
Ø

Ry that implies that X = f(x) = f(y) = Y by item 1 of
Lemma 105. Therefore X = Y as wanted. �

As H ′ is reflexive, transitive and antisymmetric, (U ′, H ′) is a poset.

5.4 Is a Preorder Enough? Weaker Forms of
Symmetry

All the properties seen so far follow from the only assumption that the quotient
structure is built from a transitive and reflexive relation R. Given a poset (U,H)
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– and thus given a hypergraph (U,H) as hypergraphs are posets – we can take
a “coarser look” at it by using a preorder R. The resulting structure (U ′, H ′)
will also be a poset. Let us now look at the situation depicted in Figure 5.3.a.

R
x y {y}{x}

H'

R
x y

z

H

{y}{x}

H'

{z}

H'

a

b

Figure 5.3: On the top: a poset (U,H) where H = I (i.e. a set) is associated to
a quotient structure that is a proper graph (H 6= I), by a preorder R. On the
bottom, a simple generalisation of the situation above: even if the initial poset
is not a set, an extra H ′ step appears in the quotient structure (reflexive loops
of R, H and H ′ are left implicit).

The relation R is a preorder (reflexive loops of R, H and H ′ are left implicit).
The starting poset (U,H) is just a set, i.e. H = I. However, its quotient
structure is a two-level poset, where {x } is an edge and { y } is a node: the
quotient structure is a hypergraph. The aim is to extend ideas of rough set
theory, to hypergraphs and more generally to posets. The situation depicted
in Figure 5.3.a seems counter-intuitive from the point of view of rough set
theory. Indeed in rough set theory, or more generally in the theory of set
partitions, the quotient structure of set, providing a coarser description of the
initial set, is always a set itself. By modular reasoning, if the situation as in
Figure 5.3.a is considered counter-intuitive, so it should be the one depicted in
Figure 5.3.b (all we have done is we added an edge incident with one of the
two nodes). After all, a set is a hypergraph, and more generally is poset, so
a theory of hypergraph partitions, or even more generally a theory of poset
partitions, should be conservative with respect to the theory of set partitions.
By “conservative” we mean that what holds true in the first theory should
still hold true in the new, extended theory. If we look carefully at the two
examples in Figure 5.3, we can see that a relation H ′ between two elements
in the quotient structure might arise, without it corresponding, via quotient
function, to any H incidence in U . There is an H ′ step that has come “out of
nowhere”, as a corresponding H step is not present in the initial posets. This
idea can be formalised by saying that there is the lack of a back condition on
the quotient function f w.r.t. the two partial orders H and H ′. We can think
of a back condition on f relating (U,H) and (U ′, H ′) as follows: for any H ′ step
in U ′×U ′ there must be a corresponding H step in U ×U . The correspondence
must happen via the quotient function, as this is the link between (U,H) and
(U ′, H ′). Thus the possible back conditions to impose on f w.r.t. H and H ′ are
built as follows: an H ′ relation is always assumed (thick arrow in the Figure
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5.4), and an H relation must be inferred (dotted arrow in the Figure 5.4). The
two quotient function steps (there are two because we need to link two pairs,
one in U ′ × U ′ and one in U × U), might or might not be assumed (inferred).
This gives us an exhaustive set of four possible back conditions on f w.r.t. H
and H ′, drawn in Figure 5.4. The idea of a back condition has probably never
been formalised in the literature, but it is not new. Examples of back conditions
on relations between structures are the order-reflecting property on a mapping
between posets (order-preserving being a forth condition in turn) [64], or the
zag-condition on a bisimulation between modal frames (zig-condition being a
forth condition), see [5].

In what follows, we are going to analyse all the possible back conditions to
impose on f w.r.t. H and H ′ from Figure 5.4. We will see that they all corre-
spond to specific constraints on R. Whilst the first condition is too restrictive
to be considered, the following two conditions on f correspond to constraints on
R that have been proposed by Ono in [52]. Here, the author’s goal is to study
intuitionistic analogues of the modal logic S5. Each of two constraints on R at
issue substitutes symmetry of R, and they give rise respectively to two different
intuitionistic analogues of the modal logic S5. The last constraint on f w.r.t. H
and H ′ that we will analyse, corresponds in turn to a constraint on R that has
been proposed in [66], called symmetry-generation, as we will show. In [66] the
aim was to study relations on hypergraphs corresponding to partitions. How-
ever, the role of the quotient function, mapping the initial hypergraph (U,H) to
its quotient structure (U ′, H ′), is not analysed there, and symmetry-generation
is not compared to other similar constraints on R, as those analysed by Ono [52].
Our analysis will make this comparison and we will also underline the different
effects that each of these constraints will imply, in the type of partitions that
can be generated from a poset (U,H).
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Figure 5.4: The four back-conditions on f w.r.t. H and H ′. They can be written
as inclusion of relations, as follows: i) f ;H ′ ; f−1 ⊆ H. ii) f ;H ′ ⊆ H ; f . iii)
H ′ ; f−1 ⊆ f−1 ;H. iv) H ′ ⊆ f−1 ;H ; f .

Let us look at the first back condition from Figure 5.4. It is the order-
reflecting condition on f w.r.t. H and H ′ (from Definition 106). It is obvious
from Figure 5.3, that this condition does not hold already. Is this the right back
condition to impose on f w.r.t. H and H ′? As we are going to see, imposing this
constraint is equivalent to requiring that R ⊆ H will follow (and vice-versa).
As H ⊆ R already holds by assumption of reflexivity of R, we will have that
R = H. To prove this fact, we need an auxiliary lemma.

Lemma 109. Let P , S and Q be relations, and W , V be sets, such that
P ⊆ W ×W , S ⊆ V × V and Q ⊆ W × V , and let Q be a i) total relation, so
IW ⊆ Q ; Q̆, and ii) order-preserving w.r.t. P and S. Then P ⊆ Q ; S ; Q̆
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Proof. P ⊆ IW ;P ; IW ⊆ Q ; Q̆ ;P ;Q ; Q̆ ⊆ Q ;S ; Q̆. This holds by Lemma 98,
by totality of Q, and by Q being order-preserving w.r.t. P and S. �

Now, as f is a function, and thus is a total relation between U and U ′ and
as it follows from Definition 104 that it is order-preserving w.r.t. R and H ′, we
have that R ⊆ f ;H ′ ; f−1 holds.

Proposition 110. f is order-reflecting w.r.t. H and H ′ iff R ⊆ H

Proof. First we prove that if f is order-reflecting w.r.t. H and H ′ then R ⊆ H.
We have that: R ⊆ f ; H ′ ; f−1 by application of Lemma 109 to R, H ′ and f ,
and f ;H ′ ; f−1 ⊆ H is the assumption of order-reflecting of f w.r.t. H and H ′.
Thus R ⊆ H.
For the other direction, suppose that R ⊆ H. Then R = H, by reflexivity of R.
Then we can substitute H to R in the result stated in Proposition 107 (this holds
for any preorder relation, so also for H). Thus we have that f ; H ′ ; f−1 ⊆ H,
as wanted (notice that here f is dilation by (H ∩ H̆), i.e. dilation by I, as we
are assuming that R = H). �

Thus, imposing this back condition on f w.r.t. H and H ′ seems to have a
big drawback. We would be restricted to a unique and quite trivial choice of
preorder R for poset partitions, namely H. Every element will be mapped by
the quotient function f into a block containing only the element itself, as f will
be given by the dilation by H ∩ H̆ = I, by antisymmetry of H.

Let us consider the next back condition as in Figure 5.4. We will call this con-
straint the zag constraint as it is equivalent to imposing on f the zag-condition
of a bounded morphism, w.r.t. modal frames (U,H) and (U ′, H ′) (see [5] p.
17). It can be written as the following inclusion of relations: f ;H ′ ⊆ H ; f .

Definition 111. Let (U,H) be a poset. An element u ∈ U is minimal if for
every v ∈ U , u H v implies v = u.

It is clear that, in poset (U,H) that is a hypergraph, minimal elements are the
nodes, as in Definition 9.

Now, if we impose the zag condition on f w.r.t. H and H ′, we have the
following effect.

Proposition 112. Let f satisfy the zag condition, and let u be minimal in the
poset (U,H). Then f(u) is minimal in the poset (U ′, H ′).

Proof. Suppose the zag condition holds and u is minimal. Suppose f(u)H ′Y
for some Y ∈ U . Then the zag condition gives that there is a v ∈ U such that
f(v) = Y and u H v. As u is minimal, v = u, and hence Y = f(u). Thus f(u)
is minimal in (U ′, H ′) �

As shown from Proposition 112, imposing the zag-constraint might also be
quite restrictive. Under this condition, we would have that nodes of a hyper-
graph (U,H) can only get mapped into blocks of the quotient structure (U ′, H ′)
that are nodes as well. Partitions of a hypergraph like the one presented in Fig-
ure 5.1 would not be allowed. Indeed there the node c of the initial hypergraph
(U,H) is assigned to a block of U ′ that plays the roles of an edge in (U ′, H ′),
namely Y . We have a minimal element, c, that gets mapped onto a non-minimal
element, Y , by f . Thus the zag condition is not respected. If we want to allow
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these kinds of partitions, then the zag has to be ruled out as a candidate for a
back condition to impose on f w.r.t. H and H ′. We have seen in Section 1.8,
Figure 1.10 (left) a practical example of graph granulation, showing that a node
might get clustered, with other elements, into a block that plays the role of an
edge in the coarser description provided by the quotient structure. In that case
indeed we had a graph representing a certain journey with a start point and an
end point. Then, we wanted to get a coarser description of this just by looking
at all the middle points between the start and the end, simply as a path between
them.

We are now going to show that the zag condition corresponds to a constraint
on R. This constraint on R is also found in [52], where the author proposes it
alongside with transitivity and reflexivity of a stable relation R, to define the
semantic frame of an intuitionistic analogue of the modal logic S5.

Proposition 113. Imposing the zag condition is equivalent to imposing the

following constraint on R: R ⊆ H ;
Ø

R.

Proof. First we prove that R ⊆ H ;
Ø

R implies that f ;H ′ ⊆ H ; f . We have the

following: f ;H ′ ⊆ f ;H ′ ; I ′ ⊆ f ;H ′ ; f−1 ; f ⊆ R ; f ⊆ H ;
Ø

R ; f ⊆ H ; f ; f−1f ⊆
H ; f ; I ′ = H ; f by Lemma 98 being f surjective, Proposition 107, R constraint

R ⊆ H ;
Ø

R, Lemma 105, Lemma 98 being f functional, and by Lemma 98 again.

Thus f ;H ′ ⊆ H ; f , under the assumption that R ⊆ H ;
Ø

R holds.
Now we prove the other direction. We have that R ⊆ I ;R;I ⊆ f ;f−1 ;R;f ;f−1 ⊆
f ;H ′ ;f−1 ⊆ H ;f ;f−1 ⊆ H ;

Ø

R. This is by Lemma 98, being f total, by f being
order-preserving w.r.t. R and H ′, by zag-constraint, and finally by Lemma 105.

Thus R ⊆ H ;
Ø

R, under the assumption that f ;H ′ ⊆ H ; f holds. �

So we can identify the zag condition on f as a constraint on R. When R = H,

R ⊆ H ;
Ø

R holds, as we have that H ⊆ H ; I ⊆ H ; (H ∩ H̆). Therefore, by
Proposition 110 and Proposition 113 we can establish that the order-reflecting
constraint implies the zag-constraint. In the other direction, the implication
does not hold. A very simple example is a graph with only two nodes x and
y with H = I, where they both get clustered into a unique block X = {x, y }.
We can therefore establish a strict order between the first two back-conditions
that we have analysed so far.

The third candidate for a back-condition on f w.r.t. H and H ′ (Figure 5.4)
can be expressed as follows: H ′ ; f−1 ⊆ f−1 ; H. We are going to refer to this
condition as co-zag-condition.

Definition 114. Let (U,H) be a poset. An element u ∈ U is maximal if for
every v ∈ U , v H u implies v = u.

It is clear that, in a poset (U,H) that is a hypergraph, the maximal elements
are edges and isolated nodes (i.e. those nodes such that there’s no edge that is
H-incident with them).

If f satisfies the co-zag condition, then we have the following.

Proposition 115. Let f satisfy the co-zag condition, and let u be a maximal
element in the poset (U,H). Then f(u) is maximal in the poset (U ′, H ′)



5.4. IS A PREORDER ENOUGH? WEAKER FORMS OF SYMMETRY 97

Proof. Suppose the co-zag condition holds and u is maximal. Suppose Y H ′

f(u) for some Y ∈ U ′. Then the co-zag condition gives that there is a v ∈ U
such that f(v) = Y and v H u. As u is maximal, v = u, and hence Y = f(u).
Thus f(u) is maximal in (U,H ′). �

The co-zag puts a restriction on the kind of allowed partitions: in a hy-
pergraph (U,H), an edge, that is a maximal element in (U,H), can only get
clustered to an element of the quotient structure that is an edge, or, at most,
isolated nodes, i.e. to maximal elements of the quotient structure. An edge can
never get mapped to a node like in Figure 5.5, making such a partition impos-
sible to obtain. Hence, if we want to allow the kind of partitions of Figure 5.5,
the co-zag has to be ruled out as a candidate for a back condition on f w.r.t
H and H ′. We have seen in Section 1.8, Figure 1.10 (right) and Figure 1.11,
other practical examples of edges of a graph that get clustered, together with
other elements, in a block that plays the role of a node in the coarser view of
the starting graph.

a

b

c

d

e

H

a

b

c

d

e

R

X

Y

Z

H'

Figure 5.5: Example of a partition on hypergraph arising from a preorder R
that does not respect the co-zag condition. We have the edge b, i.e. a maximal
element in the poset (U,H), that gets mapped by f to the node X = { a, b, c }
that is not maximal in (U ′, H ′). This type of partition is not allowed if we
impose the co-zag condition on f .

Next, we are going to show that imposing the cozag condition on f w.r.t. H
and H ′ is equivalent to imposing a constraint on R. Also this constraint is pro-
posed in [52], and it contributes to define the semantic frame of an intuitionistic
analogue of S5.

Proposition 116. Imposing the co-zag is equivalent to imposing the following

constraint on R: R ⊆
Ø

R ;H.

Proof. First we prove that if R ⊆
Ø

R ;H holds, then co-zag holds. We have the
following chain of inclusions: H ′ ; f−1 ⊆ I ′ ; H ′ ; f−1 ⊆ f−1 ; f ; H ′ ; f−1 ⊆
f−1 ;R ⊆ f−1 ;

Ø

R ;H ⊆ f−1 ; f ; f−1 ;H ⊆ I ′ ; f−1 ;H = f−1 ;H, by Lemma 98

since f is surjective, by Proposition 107, by R ⊆
Ø

R ;H, Lemma 105, by Lemma
98 f being functional.
For the other direction, let us assume that the co-zag holds. We have the
following chain of inclusion: R ⊆ I ;R ; I ⊆ f ; f−1 ;R ; f ; f−1 ⊆ f ;H ′ ; f−1 ⊆
f ; f−1 ; H ⊆

Ø

R ; H by Lemma 105, by Lemma 98 because of totality of f , by
f being order-preserving w.r.t R and H ′, by the assumption of co-zag, and by
Lemma 105. �
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It is easy to see that if R = H then R ⊆
Ø

R ; H holds (by reflexivity and
anti-symmetry of H), but not the other way around (an example is again a set
with only two nodes, where they both get clustered into a single node). Thus,
in terms of the quotient function, we can say that if f is order-reflecting w.r.t.
H and H ′, then f respects the co-zag condition, but not the other way around.

Also in Figure 5.6 we have situations where R ⊆ H ;
Ø

R holds but R ⊆
Ø

R ; H
does not (top), and vice versa (bottom). Thus we can deduce that the zag and
the co-zag condition are not comparable, neither of them implies the other one.

H

a

b

R

c

a

b c

H

a

b

R

c

a

b c

Figure 5.6: In the situation depicted on the top we have that R ⊆ H ;
Ø

R, but

R *
Ø

R ;H. Indeed a R b R c implies a R c by transitivity of R (left implicit in

the figure), but there’s no x such that a
Ø

RxHc. So R ⊆ H ;
Ø

R does not imply

R ⊆
Ø

R ; H. In the situation depicted on the bottom we have that R ⊆
Ø

R ; H,

and R * H ;
Ø

R. Thus R ⊆
Ø

R ;H does not imply R ⊆ H ;
Ø

R

The last candidate for a back-condition on f w.r.t. H and H ′ is the following
(see Figure 5.4): H ′ ⊆ f−1 ; H ; f . Let us call it weak-zag condition. The
weak-zag won’t impose any restriction on what type of elements of (U ′, H ′)
each element of a hypergraph (U,H) gets mapped to. Indeed we can see from
Figure 5.1, where the weak-zag is respected, that it is possible for a node to
become an edge in the quotient structure, and from Figure 5.5, where again the
weak-zag is satisfied, that an edge becomes a node in the quotient structure.
More generally, the weak-zag won’t impose the same restrictions as the zag
and the co-zag conditions, implying that minimal and maximal elements “stay”
minimal and maximal, respectively, in the quotient structure. Still, imposing
this condition on f will create a dependency of H ′ from the initial partial order
H, so that cases like the ones presented in Figure 5.3, won’t be allowed (the
weak-zag is indeed not respected there).

Now we are going to prove that imposing the weak-zag condition on f is
equivalent to imposing a constraint on R called symmetry generation, presented
in [66].
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Theorem 117. Imposing the weak-zag on f w.r.t. H and H ′ is equivalent to

imposing that R ⊆
Ø

R ;H
Ø

R.

Proof. First we prove that symmetry generation of R implies that f respects
the weak-zag w.r.t. H and H ′. We have the following chain of inclusions:

H ′ ⊆ f−1 ;R ;f ⊆ f−1 ;
Ø

R ;H
Ø

R ;f ⊆ f−1 ;f ;f−1 ;H ;f ;f−1 ;f ⊆ I ′ ;f−1 ;H ;f ;I ′ ⊆
f−1 ; H ; f by Definition 104, symmetry-generation of R, Lemma 105, Lemma
98 by functionality of f , and by Lemma 98 again.
For the other direction, we have the following chain of inclusion: R ⊆ f ; H ′ ;

f−1 ⊆ f ; f−1 ; H ; f ; f−1 ⊆
Ø

R ; H
Ø

R by Lemma 109 applied to R, H ′ and f ,
weak-zag, and by Lemma 105. �

It is easy to see that if either R ⊆
Ø

R ; H or R ⊆ H ;
Ø

R holds, then R is

symmetrically generated. This follows by the fact that I ⊆
Ø

R. Both these
implications do not hold in the other direction. For example in Figure 5.1 and

Figure 5.5, we have that the symmetry-generation constraint holds but R ⊆ H ;
Ø

R

and R ⊆
Ø

R ; H do not, respectively. We can draw the following diagram, to
frame the implications between these constraints on preorder R.

R ⊆ H

R ⊆
Ø

R ;H R ⊆ H ;
Ø

R

R ⊆
Ø

R ;H ;
Ø

R

Summing up, we have analysed all the possibilities for a back-condition on f
w.r.t. H and H ′. We have seen that imposing order-reflecting is very restrictive,
as the only relation that satisfies this is H, and thus the only possible partition
would be the one generated by ⊕ I, where each element is clustered with
itself only. The two middle possibilities are not as restrictive but they still rule
out some kinds of partitions that one might want to allow. We have seen that
these two conditions on f correspond to R-constraints, and to modal axioms,
already occuring in the literature, in Ono’s work [52]. However, for the effects
we have seen in Proposition 112 and Proposition 115, the S5 intuitionistic logics
arising from considering these constraints on R alongside reflexivity and tran-
sitivity, might be too restrictive to represent hypergraph and poset partitions.
If one wishes to impose a back-condition on f w.r.t. H and H ′, that is some
dependency of partial order H ′ from H, via f , we need to impose the weak-zag
condition. Notice that as f−1 ;H ;f ⊆ H ′ already holds, then imposing weak-zag
is equivalent to imposing the identity H ′ = f−1 ;H ;f , and thus the partial order
H ′ will be a “function” of both R (as the quotient function f is defined from
R) and the initial partial order H. We have seen that weak-zag corresponds
to a constraint on R, already appearing in [66], known as symmetry-generation
of R. Thus if we want to obtain a poset partition from a stable relation R
with this property, then we need R to be a symmetrically generated preorder.
In Table 5.1 we can see all the back conditions of f w.r.t. H and H ′, with
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the corresponding constraint on R. By Proposition 20, we can establish that
R ⊆ H corresponds to the validity of the axiom p → �p in an H-frame. For

what concerns the middle constraints R ⊆
Ø

R ;H and R ⊆ H ;
Ø

R, the correspond-
ing axioms are presented in [52]. And in Section 5.5 we are going to see that
the symmetry-generation constraint, and thus the weak-zag, corresponds to the
axiom shown in Table 5.1.

Table 5.1: The back conditions on f w.r.t. H and H ′, with the corresponding
constraint on R, and the corresponding axiom in intuitionistic modal logic.

Back condition on f Constraint on R Modal axiom

f ;H ′ ; f ⊆ H R ⊆ H p→ �p

f ;H ′ ⊆ H ; f R ⊆ H ;
Ø

R (�p→ �q)→ �(�p→ �q)

H ′ ; f−1 ⊆ f−1 ;H R ⊆
Ø

R ;H �(�p ∨ q)→ (�p ∨�q)

H ′ ⊆ f−1 ;H ; f R ⊆
Ø

R ;H ;
Ø

R (�(�p ∨ (�q → �r)))→
(�p ∨�(�q → �r))

We can consider these conditions on the preorder R as weaker forms of
symmetry in the following sense. First of all, symmetry of R implies any of
these properties (except for the first one R ⊆ H, but we have seen that imposing
this constraint on R is highly restrictive), but not the other way around. As an

example, if R is symmetric, i.e. R ⊆ R̆, then we have that R ⊆
Ø

R, and thus

R ⊆ I ;
Ø

R ⊆ H ;
Ø

R. There is another sense in which the constraints, substituting
symmetry, can be seen as weaker forms of symmetry: when H = I, thus in the
context of classical modal logic, all these constraints imply symmetry (they are
actually equivalent to symmetry, except for R ⊆ H). As an example, if H = I

then R ⊆ H ;
Ø

R that is R ⊆
Ø

R that is symmetry of R.
The fact that (U,H) is not just a poset, but it is indeed a hypergraph, doesn’t

play a role in the construction presented in Definition 104. So we can say that
we have a method to partition a poset in a way that its quotient structure is
also a poset, as proved in Theorem 108. However, we might wish to ensure
that, if we start from a poset (U,H) that is also a hypergraph, then the arising
quotient structure is not just a poset, but it is a hypergraph. This is what
happens when partitioning a set: its quotient structure is still a set. In [66], an

extra condition on R is considered. It is two-tierness of R: (R ∩ ˘̄R)2 = ∅. We
are going to show that this property ensures that the quotient structure (U ′, H ′)
is not just a generic poset, but it is indeed a hypergraph. We introduce first the
following Lemma. For sake of simplicity, we indicated the non-symmetric part

of the partial order H ′, namely (H ′ ∩ ˘̄H ′) simply as J ′.
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Lemma 118. Let (U,H) be a a poset and R a stable preorder on U . Let
(U ′, H ′) be the associated quotient structure as in Definition 104. Then we
have the following:

1. J ′ ⊆ f−1 ; (R ∩ ˘̄R) ; f .

2. (R ∩ ˘̄R) ⊆ f ; J ′ ; f−1.

Proof. Item 1: From Definition 104, we have that H ′ ⊆ f−1 ; R ; f . So J ′ ⊆
H ′ ⊆ f−1 ; R ; f . So it must be that J ′ ⊆ f−1 ;

Ø

R ; f or J ′ ⊆ f−1 ; (R ∩ ˘̄R) ; f .

Suppose it is the first. Then J ′ ⊆ f−1 ;
Ø

R ; f ⊆ f−1 ; f ; f−1 ; f ⊆ I ′ ; I ′ ⊆ I ′,
by Lemma 105 and by functionality of f . But J ′ ⊆ I ′ iff J ′ = ∅, as J ′ is the

non-symmetric part of H and I ′ is its symmetric part. So J ′ ⊆ f−1 ;
Ø

R ; f iff

J ′ = ∅. But when J ′ = ∅, we have that J ′ ⊆ f−1 ; (R ∩ ˘̄R) ; f holds. Thus

J ′ ⊆ f−1 ; (R ∩ ˘̄R) ; f holds.

Item 2 : Very similar to proof of item 1. We know that (R∩ ˘̄R) ⊆ R ⊆ f ;H ′ ;f−1,

by Proposition 109. Then it must be (R∩ ˘̄R) ⊆ f ;I ′ ;f−1 or (R∩ ˘̄R) ⊆ f ;J ′ ;f−1,

as H ′ = I ′∪J ′. If we assume that the first inclusion holds, we get (R∩ ˘̄R) ⊆
Ø

R,

which is only possible when (R ∩ ˘̄R) = ∅. Then if the first inclusion holds, the

second one will hold. So, in any case, (R ∩ ˘̄R) ⊆ f ; J ′ ; f−1 holds. �

Theorem 119. Let (U,H) be a poset and R a stable preorder on U . Let
(U ′, H ′) be its quotient structure associated by the quotient function f , defined

in the usual way. (R ∩ ˘̄R)2 = ∅ iff J ′2 = ∅.

Proof. This follows from Lemma 118. In order to prove (R ∩ ˘̄R)2 = ∅ implies
J ′2 = ∅, we prove the contrapositive, i.e. we suppose that J ′2 6= ∅ and we show

that (R ∩ ˘̄R)2 6= ∅. If J ′2 6= ∅, then, by Lemma 118 item 1, f−1 ; (R ∩ ˘̄R) ; f ;

f−1 ; (R ∩ ˘̄R) ; f 6= ∅. So, by Lemma 105, f−1 ; (R ∩ ˘̄R) ;
Ø

R ; (R ∩ ˘̄R) ; f 6= ∅,

and by transitivity of R we have that f−1 ; (R ∩ ˘̄R)2 ; f 6= ∅. But then there

are X,Y ∈ U ′, and x, y ∈ U , such that Xf−1x(R ∩ ˘̄R)2yfY , so (R ∩ ˘̄R)2 6= ∅,
as wanted.
The proof of the other direction is analogous. We can prove the contrapositive

form, i.e. assuming that (R∩ ˘̄R)2 6= ∅, it will follow that J ′2 6= ∅. To do so we
employ Lemma 118 item 2, and the fact that f is functional. �

We have seen in Section 2.3, Corollary 22, that a 2-tier partial order on a
set defines a hypergraph as in Definition 9. We have already proved that H ′ is
a partial-order on U ′ (Theorem 108). Then, with the proviso that R is 2-tier,
we get that (U ′, H ′) is a hypergraph.

5.5 System S5 for UBiSKt

In this section we will see that, given an H-frame F such that F ∈ S4, there
are two formulas corresponding to the property of R in F being two-tier and
symmetrically generated. These results are presented in [72], and they were
achieved in collaboration with Katsuhiko Sano.
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Theorem 120. Let F = (U,H,R) be an H-frame where R is reflexive and

transitive. Then F |= �q ∨�(�q → (�p ∨�¬�p)) iff (R ∩ R̆)2 = ∅.

We note that the following equivalence holds: (R ∩ R̆)2 = ∅ iff xRy and yRz
jointly imply yRx or zRy for all x, y, z ∈ U .

Proof. Right-to-left direction: Assume that (R∩R̆)2 = ∅. Fix any valuation
V and any w ∈ U . Put M = (F, V ) and assume that M,w 6|= �q. To show that
M,w |= �(�q → (�p ∨�¬�p)), fix any v such that wRv and M, v |= �q. We
show that M,v |= �p∨�¬�p. So suppose that M,v 6|= �p and let us show that
M,v |= �¬�p. Let us fix any u such that v R u.To show that M,u |= ¬�p, let
us fix any u H i. Our goal is to show that M, i 6|= �p. By v R ;H i, we have
v R i. Since w R v and v R i, two-tierness implies v R w or i R v. If v R w,
we should have M,w |= �q by transitivity of R and M, v |= �q. But this is a
contradiction with M,w 6|= �q. So we have iRv. By M, v 6|= �p, we can find
a state x ∈ U such that vRx and M,x 6|= p. By transitivity of R and iRv, we
have M, i 6|= �p.
Left-to-right direction: Suppose that F |= �q ∨�(�q → (�p ∨�¬�p)). To
show the two-tierness of R, let us suppose that wRv and vRu and that vRw fails.
Our goal is to show that uRv. Define V (p) = {u }⊕R and V (q) = { v }⊕R, where
we note that both sets are H-sets by stability of R. Let us write M = (F, V ).
We have M,w 6|= q and wRw hence M,w 6|= �q. By the initial supposition (the
validity of the formula), we obtain M,w |= �(�q → (�p ∨ �¬�p)). Because
wRv and M,v |= �q by our definition of V , we obtain M,v |= �p∨�¬�p). Let
us establish M,v 6|= �¬�p. It suffices to show M,u 6|= ¬�p. This is clear from
uHu and M,u |= �p by our definition of V . It follows from M,v |= �p∨�¬�p
that M, v |= �p, which implies { v } ⊕ R ⊆ {u } ⊕ R. Since vRv, and thus
v ∈ { v } ⊕ R we have that v ∈ {u } ⊕ R, and then we conclude uRv, as
required. �

Definition 121. We use t2 to mean the formula �q ∨�(�q → (�p∨�¬�p)).
Let T2 be be the class of H-frames F = (U,H,R) such that R is a preorder, i.e.

F ∈ S4, and (R ∩ ˘̄R)2 = ∅.

Lemma 122. Given a ubist-logic Λ such that S4 ∪ { t2 } ⊆ Λ, the Λ-canonical
H-frame FΛ

(Γ,∆) = (UΛ, HΛ, RΛ) is a preorder and it also satisfies two-tierness,

i.e., ((R ∩ R̆)Λ)2 = ∅.

Proof. It suffices to prove the two-tierness of RΛ alone. Suppose that
(Σ1,Θ1)RΛ(Σ2,Θ2) and (Σ2,Θ2)RΛ(Σ3,Θ3). We need to prove that
(Σ2,Θ2)RΛ(Σ1,Θ1) or (Σ3,Θ3)RΛ(Σ2,Θ2). Suppose that (Σ2,Θ2)RΛ(Σ1,Θ1)
fails, i.e., we can find a formula ψ such that �ψ ∈ Σ2 and ψ /∈ Σ1. To show
(Σ3,Θ3)RΛ(Σ2,Θ2), fix any �ϕ ∈ Σ3. Our goal is to establish ϕ ∈ Σ2. Since
�ψ ∈ Σ2 and �ψ → ψ, then ψ ∈ Σ2 (because S4 ⊆ Λ ⊆ Σ2 by item 2 of
Lemma 31). Since ψ /∈ Σ1, we get �ψ /∈ Σ1. Because any substitution instance
of t2 is in Σ1, we deduce from �ψ /∈ Σ1 that �(�ψ → (�ϕ ∨ �¬�ϕ)) ∈ Σ1.
By (Σ1,Θ1)RΛ(Σ2,Θ2), we obtain �ψ → (�ϕ ∨�¬�ϕ) ∈ Σ2. Since �ψ ∈ Σ2,
we have �ϕ ∨ �¬�ϕ ∈ Σ2. Recall that our goal is to show ϕ ∈ Σ2. By our
assumption of �ϕ ∈ Σ3 we have that ¬�ϕ /∈ Σ3, by item 4 of Lemma 31. Since
(Σ2,Θ2)RΛ(Σ3,Θ3), we get �¬�ϕ /∈ Σ2. It follows from �ϕ∨�¬�ϕ ∈ Σ2 that
�ϕ ∈ Σ2, and then ϕ ∈ Σ2, because S4 ⊆ Λ, as desired. �
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We can establish the following strong completeness result by Lemmas 36,
122 and 102, Theorem 120 and Proposition 20.

Theorem 123. The logic HUBiSKt extended with S4 and t2 is sound and
strongly complete for the class T2, i.e., Γ |=T2

ϕ iff Γ `HUBiSKtS4t2 ϕ for every
set Γ ∪ {ϕ} of formulas.

The proof of the following lemma comes from the general fact that the com-
plement of a lower set is an upset3.

Lemma 124. Given u ∈ U , the set −({u } ⊕ H̆), namely the complement of
an H̆-dilate, is an H-set.

Proof. By Definition 14 of H-set, we need to show that (−({u } ⊕ H̆)) ⊕H ⊆
−({u } ⊕ H̆). Suppose v ∈ (−({u } ⊕ H̆))⊕H. Then there is w ∈ U such that
w H v and w ∈ −({u } ⊕ H̆), namely w /∈ {u } ⊕ H̆. Hence it is not the case
that u H̆ w, i.e. it is not the case that w H u. Therefore, as w H v and by
transitivity of H we have that also v /∈ {u } ⊕ H̆, hence v ∈ −({u } ⊕ H̆), as
wanted. �

Theorem 125. Let F = (U,H,R) be an H-frame where R is reflexive and
transitive. Then the following equivalence holds:

F |= (�(�p ∨ (�q → �r)))→ (�p ∨�(�q → �r)) iff R ⊆
Ø

R;H;
Ø

R.

Proof. Right-to-left direction: Let us fix any valuation V . Let M = (F, V ).
Let us fix u ∈ U . We need to show that M,u |= (�(�p ∨ (�q → �r))) →
(�p ∨ �(�q → �r)). Let us take any v ∈ U such that u H v and M,v |=
�(�p ∨ (�q → �r)). We need to show that M, v |= �p ∨�(�q → �r). Let us
assume that M,v 2 �p, i.e., we can find a w ∈ U such that v R w and M,w 2 p.
Now we need to show that M,v |= �(�q → �r). Let us fix any x ∈ U such
that v R x. We show that M,x |= �q → �r. Fix any a ∈ U such that x H a
and M,a |= �q. To show that M,a |= �r, fix any b ∈ U such that a R b. Our
goal is to establish M, b |= r. By R being transitive and reflexive, we know that
vRa. By R being symmetrically generated, we also know that there are z, t ∈ U
such that v

Ø

R z H t
Ø

R a. See the model in Fig. 5.7.

w

u x a bv
H
R

H

R H R
R

R

Figure 5.7: Model constructed for proving the right-to-left direction of Theorem
125.

3We haven’t used the terms upper set and lower set so far, but it is well known that
upper sets are the subsets of a partially ordered set closed under partial-order successor, thus
in (U,H) they are our H-sets. Lower sets are the dual notions, i.e. X is a lower set if

X ⊕ H̆ ⊆ X
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Since v R z and M,v |= �(�p ∨ (�q → �r)), we have that M, z |= �p ∨
(�q → �r). Since M,v 2 �p and z R v, we know that M, z 2 ��p. Then, by
transitivity of R, M, z 2 �p. Thus it must be the case that M, z |= �q → �r.
Then, as z H t, we have if M, t |= �q we can deduce that M, t |= �r. Since
a R t and M,a |= �q by assumption, we deduce from transitivity of R that
M, t |= �q. Therefore M, t |= �r. By transitivity t R b holds from t R a and
a R b, and then M, b |= r, as wanted.
Left-to-right direction: Assume the validity of the formula in F = (U,H,R).

Suppose that xRy. We need to show that x
Ø

R ;H ;
Ø

R y. Consider the following
valuation: V (p) = −({x }⊕H̆), V (q) = { y }⊕R and V (r) = −({ y }⊕H̆). These
sets are H-sets by Lemma 124 and by stability of R. Let us write M = (F, V ).
By our assumption, we get M,x |= (�(�p∨(�q → �r)))→ (�p∨�(�q → �r)).
By x /∈ V (p) and xRx, we have M,x 6|= �p. Moreover we can prove that
M,x 6|= �(�q → �r) as follows: by xRy and yHy, it suffices to show that
M,y |= �q and M,y 6|= �r. By our definition of V , the former is easy and the
latter holds by yRy and M,y 6|= r. This finishes showing M,x 6|= �(�q → �r).
Therefore, M,x 6|= �p∨�(�q → �r) hence M,x 6|= �(�p∨ (�q → �r)). So we
can find a state z ∈ U such that x R z and M, z 6|= �p and M, z 6|= �q → �r. It
follows from M, z 6|= �p that there is a k such that z R k and M,k 6|= p, hence
k ∈ {x } ⊕ H̆, that is k H x. Then we have that z R ;H x and so z R x by

stability of R. Thus we have x
Ø

Rz. On the other hand, from M, z 6|= �q → �r
we can find a state w such that z H w and M,w |= �q and M,w 6|= �r.
By M,w 6|= �r, we know that w R ;H y and so w R y. But it follows from
M,w |= �q that {w } ⊕ R ⊆ { y } ⊕ R. As w R w, we have that w ∈ { y } ⊕ R
that is y R w. Hence w

Ø

R y. Therefore, we have x
Ø

R z, z H w and w
Ø

R y, i.e.,

x
Ø

R ;H ;
Ø

R y, as desired. �

Definition 126. We use sg to mean the formula (�(�p ∨ (�q → �r))) →
(�p ∨ �(�q → �r)). We also use S5 to mean the set S4 ∪ { sg }. Let S5 be
the class of all H-frames F = (U,H,R) such that R is a symmetry generated
preorder, i.e., F ∈ S4, and F is symmetry generated. We also use HGT2S5 to
mean HG ∩ T2 ∩ S5, where recall that T2 ⊆ S4.

By Proposition 20, Corollary 22 and Theorems 120 and 125, we obtain the
following.

Theorem 127. The logic HUBiSKt extended with bd2, t2 and with S5 is
sound for the class HGS5.

Conjecture 128. Given a ubist-logic Λ such that S5 ⊆ Λ, the Λ-canonical
H-frame FΛ

(Γ,∆) = (UΛ, HΛ, RΛ) is a preorder and it also satisfies symmetrical

generation, i.e., RΛ ⊆
Ø

R
Λ

;HΛ ;
Ø

R
Λ

.

In order to accomplish proof of Conjecture 128 we need to show that, given
pairs (Σ1,Θ1) and (Σ2,Θ2) in the canonical frame FΛ, if (Σ1,Θ1) RΛ (Σ2,Θ2),
then there are two elements of the canonical frame (Σ3,Θ3) and (Σ4,Θ4) such

that (Σ1,Θ1)
Ø

R
Λ

(Σ3,Θ3), and (Σ3,Θ3) HΛ (Σ4,Θ4), and (Σ4,Θ4)
Ø

R
Λ

(Σ2,Θ2).
The challenge of this proof is that the constraint of R at issue, namely symmetry
generation, is non-analytical. We call a constraint on a relation R analytical,
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when its conclusion is simpler than its assumption. An example of an analyt-
ical constraint is transitivity of R, where from the assumption that x R y R z
holds for some elements x, y and z, we can infer that x R z holds. On the
other hand, for symmetry generation, from the assumption that x R y holds
for some elements x and y of the domain, we then need to prove the existence
of new elements z and t, that relate to each other and to x and y in a certain
way. There is not much literature on canonical model proofs and related com-
pleteness proofs, where the constraints at issue are non-analytical, and where,
additionally, the modal logic has intuitionistic logic as base. An exception to
this is Ono’s work [52] (p. 698-700). As we know he considers two constraints

related to symmetry generation, namely R ⊆ H ;
Ø

R and R ⊆
Ø

R ; H. Thus a
proof of Conjecture 128 could be inspired by Ono’s method, although symmetry
generation has a higher degree of non-analyticity than Ono’s constraints, as we
need to prove existence of not just one, but two elements of the canonical frame
that relate to existing elements and to each other in the expected way. Thus
the proof of Conjecture 128 seems more challenging and it is left as future work,
together with the possibility of exploring new methods for proving completeness
of intuitionistic modal logics with non-analytical constraints.

Hence, if Conjecture 128 is proved, together with Lemma 39, 122 and the
truth lemma 36, we would have the following completeness theorem.

Conjecture 129. The logic HUBiSKt extended with bd2, t2 and S5 is
strongly complete for the class HGT2S5 i.e. for the class of H-frames where
(U,H) is a hypergraph and where R is a two-tier, symmetrically generated pre-
order.

In this logic we can represent and reason about hypergraph partitions and
related quotient structures. If the constraints bd2, making (U,H) a hypergraph,
and the related constraint t2, making the quotient structure a hyprgraph, are
dropped, then we have a new intuitionistic version of the modal logic S5, where
poset partitions can be represented. We have seen in Section 5.4 how this logic
relates to other intuitionistic analogues of S5, namely the ones studied by Ono
in [52].

5.6 Expressing Coarse Spatial Relations

In Chapter 4 we have seen how connection and other spatial relations can be
expressed when we look at regions of a graph at another level of detail, induced
by a stable relation R. But what happens when the relation R has the properties
discussed in Section 5.5? This section is going to answer this question. We have
already seen in Section 5.2 that when R is reflexive and transitive the notion
of granulation as it was presented in Section 4.2, Definition 75 is equivalent
to taking the lower approximation, or erosion, of the subgraph at issue. So
‘coarsely p’ will be equivalent to �p in the logic HUBiSKt extended with S5
as well as in HUBiSKt extended with S5, bd2 and t2, namely when both
(U,H) and (U ′, H ′) are hypergraphs. This leads to the following notion of
coarse connection:

Proposition 130 (S5 Coarse Connection). CG(ϕ,ψ) ↔ E(�♦�ϕ ∧ �ψ) is a
theorem of HUBiSKtS5. Therefore we can define coarse connection in this
system as follows: CGS5(ϕ,ψ) := E(�♦�ϕ ∧�ψ).



106 CHAPTER 5. MODAL LOGIC FOR HYPERGRAPH PARTITIONS

Proof. E(�♦Gϕ ∧ Gψ) ↔ E(�♦�ϕ ∧ �ψ) is a theorem in HUBiSKtS5, by
Theorem 101, item 3. �

A remark is important. This predicate of coarse connection gives more
evidence of the fact that imposing the classical notion of equivalence relation
as corresponding to a partition on a poset is too restrictive, as argued in [66].
Indeed symmetry of R in an H-frame corresponds to the property R =

x

R,
that corresponds in turn to the validity of the formula � p↔ ♦ p in all symmetric
H-frames (see correspondence results from [74]). Therefore E(�♦�ϕ ∧�ψ)↔
E(���ϕ∧�ψ)↔ E(��ϕ∧�ψ)↔ E(�ϕ∧�ψ) is a theorem in the extension
of HUBiStS4 with the symmetry axiom � p ↔ ♦ p. The notion of coarse
connection collapses with a notion of overlapping, since the formula E(�ϕ∧�ψ)
means that the granulation of ϕ overlaps with the granulation of ψ. Cases of
external-connection, i.e. edge-connection in a hypergraph, will no longer happen
in such a setting.

To give an example of S5-connection, let us look at the graph partition in Fig.
5.1. R is transitive, reflexive and symmetrically generated, but not symmetric,
and (U,H,R) is an H-frame, let us call it F . Let us impose a valuation V
such that V (p) = { a } and V (q) = { e } for propositional variables p, q in the
language. We remark that these sets are H-sets. Let M = (F, V ). Then the
granulation of the subgraph {a} is J�pKM = R 	 JpKM = R 	 {a} = {a}
and the granulation of subgraph {e} is J�qKM = R 	 JpKM = R 	 {e} =
{e}. Also J�♦�pKM = U , (notice that here we have evidence of the fact
that the formula �♦�p↔ �p is not valid in HUBiStS5, therefore connection
can be distinguished from overlapping) and M |= E(�♦�p ∧ �q). Indeed the
granulations of {a} and {e} are connected by the edge Y = {b, c, d} in the
quotient structure. Notice also that when H = I, so when (U,H) is a set,
the symmetry generation property of R is equivalent to symmetry of R, as

R ⊆
Ø

R ; H ;
Ø

R iff R ⊆ R̆ iff R = R̆ iff R =

x

R since R̆ =

x

R when H = I.
Indeed in this case it is correct to assume that coarse connection collapses to a
form of overlapping, as no elements other than nodes, i.e. discrete points, are
present in a set, so the only possible form of connection between two sets is
when they overlap.

Now we look at the notion of coarse parthood in this system.

Proposition 131 (S5 Coarse Parthood). PG(ϕ,ψ)↔ A(�ϕ→ �ψ) is a theo-
rem in HUBiSKtS5. Therefore PGS5(ϕ,ψ) := A(�ϕ→ �ψ).

Proof. A(�Gϕ → �Gψ) ↔ A(��ϕ → ��ψ) ↔ A(�ϕ → �ψ) is a theorem in
HUBiSKtS5 by reflexivity and transitivity axioms and by Theorem 101. �

Proposition 132 (S5 Coarse Overlapping). OG(ϕ,ψ) ↔ E(�ϕ ∧ �ψ) is a
theorem in HUBiSKtS5. Therefore OGS5(ϕ,ψ) := E(�ϕ ∧�ψ)

Proof. E(��(Gϕ ∧Gψ))↔ E(��(�ϕ ∧�ψ))↔ E(�(�ϕ ∧�ψ))↔ E(��ϕ ∧
��ψ)↔ E(�ϕ∧�ψ) is a theorem in HUBiSKtS5 by transitivity and reflexivity
axioms and by Theorem 101. �

Proposition 133 (S5 Coarse Non-tangential part). NTPG(ϕ,ψ) ↔ A(�ϕ →
�ψ)∧A(♦�ϕ→ �ψ) is a theorem in HUBiSKtS5. ThereforeNTPGS5(ϕ,ψ) :=

A(�ϕ→ �ψ) ∧ A(♦�ϕ→ �ψ)
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Proof. The first part of the conjunction is the predicate of parthood, that has
already been shown. A(♦Gϕ → �Gψ) ↔ A(♦�ϕ → ��ψ) ↔ A(♦�ϕ → �ψ)
is a theorem in HUBiSKtS5 by Theorem 101 item 3 and by reflexivity and
transitivity axioms. �

Also here a remark is important, as for coarse connection. A(♦�ϕ→ �ψ)↔
A(��ϕ→ �ϕ)↔ A(�ϕ→ �ψ) is a theorem in the extension of HUBiSKtS4
with the symmetry axiom �ϕ ↔ ♦ϕ and by item 1 of Theorem 101. In this
extension the predicate of non-tangential parthood collapses with the predicate
of parthood, showing that, if we choose to impose symmetry on R instead
of a weaker property as symmetry generation, then we wouldn’t be able to
distinguish a generic spatial relation of parthood from the more specific notion
of non-tangential parthood. When H = I, so when (U,H) is a set, thus when
symmetrically generated property of R is equivalent to symmetry of R, it is
correct to say that non-tangential parthood is just parthood: a set has no
elements other than nodes, thus it has no edges and therefore it has no boundary-
nodes. Hence any of its subsets is a non-tangential part.

Finally, let us look at the predicate of tangential-part in HUBiSKtS5.

Proposition 134. (S5 Coarse Tangential part.) TPG(ϕ,ψ)↔ A(�ϕ→ �ψ)∧
E(♦�ϕ � �ψ) is a theorem in HUBiSKtS5. Therefore NTPGS5(ϕ,ψ) :=

A(�ϕ→ �ψ) ∧ E(♦�ϕ ��ψ)

Proof. The first conjunct is parthood. Then we have E(♦Gϕ��Gψ)↔ E(♦�ϕ�
��ψ) ↔ E(♦�ϕ � �ψ) is a theorem in HUBiSKtS5 by Theorem 101 item 3
and transitivity and reflexivity axioms. �

When R is reflexive, transitive and additionally symmetric, the predicate
of tangential part becomes A(�ϕ → �ψ) ∧ E(�ϕ � �ψ), and this leads to
contradiction, as �ϕ would be a part and a non-part of �ψ at the same time.
The spatial relation of tangential parthood wouldn’t occur, indeed, as we have
already seen that all spatial relations of parthood are non-tangential, if R is
a preorder and additionally symmetric. When (U,H) is a set, it is correct
to assume that the predicate of tangential part is contradictory as only non-
tangential parts of a set exist.

5.7 Conclusions

The problem of representing graph and hypergraph partitions by a relation is
addressed in [66]. There, the authors show that an equivalence relation in the
classical sense, so a reflexive, transitive and symmetric relation, is too strong to
generate a partition on hypergraphs. The constraint of symmetry is substituted
by a weaker constraint, referred to as symmetry-generation of R.

In this chapter we have addressed the issue of hypergraph partitions, or more
generally poset partitions, by looking at the quotient function. Although given
a poset (U,H), a partition of U can be obtained by simply imposing a stable
preorder R on U , we have seen that certain properties of the quotient function
f , linking the resulting quotient structure (U ′, H ′), to the initial poset (U,H),
are missing when R is simply a preorder, as shown from the examples in Figure
5.3. We have called this type of property back-conditions on f w.r.t. H and H ′.
We have seen that all the back conditions on f correspond to some constraint
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on R, that can be seen as a weak form of symmetry. The first one is trivial as
it is imposing the identity R = H. The middle two correspond to constraints
on R that have been considered in the work of Ono [52], where the author
considers several intuitionistic analogues of the modal logic S5. Imposing either
of these constraints puts some significant restrictions on the type of partition
and quotient structure arising from a poset (U,H) as with the first constraint
at issue minimal elements of (U,H) can be assigned just to minimal elements of
(U ′, H ′) by f (Propositions 112), and similarly for maximal elements of (U,H),
when imposing the latter constraint (Proposition 115). The last back condition
on f w.r.t. H and H ′, that we named weak-zag, corresponds to the property
of symmetry generation on R proposed in [66]. If a back condition on f , and
thus a dependency of the partial order H ′ from the initial partial order H,
is desirable the weak-zag constraint on f , namely symmetry generation on R,
is the best choice, as it imposes the link between H ′ and H and it does not
cause any restriction on what type of elements of quotient structure (U ′, H ′),
every element of the initial poset (U,H) can be assigned to, by the quotient
function f , as it happens for the constraints on R, and associated property on
f , considered by [52]. We have also shown that two-tierness on R will imply that
the quotient structure, which is already a poset by reflexivity and transitivity of
R, is actually a hypergraph. Thus one might wish to impose this extra condition
on R if, when starting from a poset (U,H) that is a hypergraph, the desired
quotient structure (U ′, H ′) needs to be a hypergraph.

We have seen that there are formulas in UBiSKt that correspond to the
property of an H-frame to be symmetry generated and two-tiers. Thus a logic
where hypergraph or, more generally, poset partitions can be represented is ob-
tainable. Finally we have introduced the definitions of hypergraph granulation
and coarse spatial relations, developed in a more general context in Chapter 4,
in the new S5 extension of UBiSKt.



Chapter 6

Further Work and
Conclusions

6.1 Further Work

6.1.1 Simplicial Complex

The main objects of investigation of the present work are graphs and hyper-
graphs, represented as a posets. We considered one-tier structures made only
of 0-dimensional elements, i.e. nodes, and two-tier structures where also edges,
i.e. 1-dimensional elements incident with the nodes, occur. However, there’s no
reason why we should stop there. There are interesting kinds of structure with
more than two tiers, that can be represented by a poset.

A first example are simplicial complexes (see [17] for a concise introduction
to simplicial complexes). To understand the idea of a simplicial complex, or sim-
ply a complex, we need to introduce its building block, i.e. a simplex. A simplex
is any finite non-empty set. It has a dimension, that is given by its cardinality
minus one. A simplex of dimension n, is called an n-simplex. A complex is any
set U of simplices such that, for any u ∈ U , any non-empty subset of u is also in
U . So for example the set { { a }, { b }, { a, b } } is a complex, { { a }, { a, b } } is
not a complex, and { { a }, { b }, { b, c } } is not a complex. Also a simplicial com-
plex has a dimension, that is the highest dimension of its simplices. A complex
of dimension n is called an n-complex. With complexes, we can represent not
just points and lines, but also higher dimensional spatial objects, as cells. In
Figure 6.1, an example of a cell represented as a 2-d complex. Given a complex

a

b

c

Figure 6.1: A 2-d cell represented as a 2-d simplicial complex. It is composed
by three 0-d simplices ({ a }, { b }, and { c }), three 1-d simplices ({ a, b }, { b, c },
and { a, b }), and one 2-d simplex ({ a, b, c }).

109
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C, a subset of C that is also a complex is called a subcomplex.

It is clear that a complex C can be seen as an H-frame (U,H), where U is
the set of all simplices forming C, and H ⊆ U × U is a partial order defined
as follows: given u, v ∈ U , u H v iff u ⊇ v. Given X ⊆ C, X is a subcomplex
of C if it is a complex itself. That means all its elements are such that any of
their subsets is in X: for all x ∈ X, for all y such that xHy, y ∈ X. Hence
subcomplexes of C are exactly its H-sets. It is easy to see the analogy between
the idea of H as reflexive closure of the incidence relation between edges and
nodes, introduced in Section 2.1, and this idea of H as the ⊇ relation on the
set of simplices. To clear this up, let us represent a graph (without multiple-
edges and loops), both as a set with its incidence relation, and as a complex,
in the way just described. Say we want to represent a graph with two nodes
and one edge connecting them. Then, in the first case we have U = { a, b, c }
and H = I ∪ { (c, a), (c, b) }. The element c is the edge incident with nodes
a and b. If we represent the same structure as a complex, we need two 0-
d simplices, and one 1-d simplex, so we have: U = { { a }, { b }, { a, b } }, and
H = I ∪ { ({ a, b }, { a }), ({ a, b }, { b }) }. We can see that the two structures
represent the same thing, with the assignments a 7→ { a }, b 7→ { b }, and c 7→
{ a, b }. Notice that the representation as a poset (U,H) where H is the incidence
relation is more general than the representation as a complex, as it allows also
to have hyperedges, thus hypergraphs, multiple edges between two nodes and
self loops. In the context of complexes, 1-dimension complexes are undirected
graphs without multiple edges and loops. They are made of 0-dimensional
elements, i.e. nodes, and 1-dimensional elements, i.e. edges. However, there
is a notion that generalises, i.e. the notion of simplicial set. Using this, also
graphs with multiple edges and hypergraphs can be represented, and these still
give rise to a poset (U,H). See [51] for an introduction to simplicial sets.

So any complex C can be represented by an H-frame, and subcomplexes of
C are H-sets. Hence the topological spatial relations presented in Chapter 3, as
well as the coarse spatial relations presented in Chapter 4 and the various notions
of granulation, could be applied to simplicial complexes of any dimensions, and
not just to graphs and hypergraphs. Indeed mathematical morphology has
been extended beyond sets and graphs, to simplicial complex spaces in [17].
We have seen how mathematical morphology relates to modal logic, and how
the modal operators on graphs and hypergraphs are dilations and erosion by
a stable relations. Dilation and erosion by a stable relation R map H-sets of
the hypergraph (U,H) to H-sets. So in the case of simplicial complexes they
will map subcomplexes to subcomplexes. It seems that the logic UBiSKt has
the right semantics to represent and reason with simplicial complex spaces, and
morphological operators on them correspond to UBiSKt modalities. Moreover,
we could extend the theory of graph and hypergraph partitions and associated
relations to simplicial complexes. Indeed we have seen that most of the theory
works for any poset (U,H), and it is not restricted to posets with only two
types of elements. Being able to take a coarser view on simplicial complexes
seems to be important, as with these structure we can represent not only 0-
dimensional and 1-dimensional elements as nodes and edges, but also objects
of higher dimensions as surfaces and volumes. An example of a 2-d simplicial
complex partition with the associated quotient structure, providing a coarser
description of the initial complex, is given in Figure 6.2.
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Figure 6.2: Example of a simplicial complex partition and the associated quo-
tient structure providing a coarser description of initial complex.

6.1.2 Dependency-graphs

Another interesting type of structure that give rise to a poset is a dependency
graph1. A dependency graph is usually defined as a finite set U plus a transitive
relation D ⊆ U × U . D is understood as a dependency relation, so given
u, v ∈ U , u D v is read as “an evaluation of u needs an evaluation of v first”,
or, more simply “u depends on v”. The dependency relation can also be seen
as reflexive (any item trivially depends on itself). From a dependency graph it
is possible to derive an evaluation order, or the absence of an evaluation order,
that respects the dependencies. An evaluation order within a dependency graph
becomes impossible if there are circular dependencies in (U,D). We can think
of circular dependencies as a cycles of the dependency relation D, other than
a self-loops, so when for x, y ∈ U such that x 6= y we have that x D y and
y D x: the two elements are dependent from each other. These circularities
make any evaluation orders impossible, as none of the items in the circular
dependency can be evaluated first. It is clear that requiring the absence of
circular dependencies makes the dependency relation also anti-symmetric. Thus,
if we consider dependency graphs without circularity, then dependency relation
is a partial order, being transitive, reflexive and anti-symmetric.

There are many objects that can be abstractly seen as dependency graphs.
Here are some examples. Collections of events ordered in time and their influ-
ence on each others. Genealogical trees, with family members as vertices and
the ancestor-successor relation between them. Sets of functions and their depen-
dencies on each other: vertices are the functions, and dependency edges f1 D f2

are present every time a function f1 needs f2 to be defined. Spreadsheets, where
the vertices are cells, and c1 D c2 iff c1 uses the values from c2. Hierarchies of
concepts of a theory: the vertices are the definitions of the concepts, and the
dependency relation holds between c1 and c2 if an understanding of concept c2
is needed to grasp concepts c1.

As dependency graphs are represented by a set plus a relation of partial or-
der, they can be represented by a UBiSKt frame2. The H-sets of a dependency

1Notice that here we use the term “graph”, but it doesn’t have to be confused with a
undirected multigraph investigated in the body of this work. In this case by graph we mean
a set with a relation, specifically a dependency relation, i.e. a directed graph.

2Notice that, even if there are circular dependencies in a dependency graph, and thus the
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graph, i.e. the interpretation of formulae, will be the subsets of the depen-
dency graph that are dependency graphs themselves. Thus naturally arises the
question about the significance of the spatial relations applied to dependency
graphs. Let us give some examples. Suppose we have a dependency graph
U = { {α }, {β }, { γ }, { δ }, {α, β, γ }, {α, δ } }, and x H y iff x ⊇ y. This could
be interpreted as a concepts graph, visualising the concepts occurring in a cer-
tain theory, and the way their definitions depend on each other. The singletons
are basic concepts, like axioms, and the 1-level concepts are built upon the basic
concepts. H-sets are fully defined concepts. Then let us look at some of the
UBiSKt operations and spatial relation analysed in Chapter 3. Let us calcu-
late the closure of the basic concept {α }, i.e. ¬¬{α } (with a slight abuse of
notation, as the right way to write this would be {α }⊕yH, by Theorem 52).
That is { {α }, {β }, { γ }, { δ }, {α, β, γ }, {α, δ } }. Thus we can see the closure
of an H-set as the complete set of concepts it contributes to define. Thus, in this
situation, we have the formula C({α }, { δ }) holds, as ¬¬{α }∩{ δ } 6= ∅. This
assertion can be seen as the fact, even if {α } and { δ } are two different concepts,
they both contribute to the definition of (at least) one common concept, in this
case {α, δ }. Let us look at the spatial relation of Tangential-part.What are the
tangential parts of the full-concept X = { {α }, {β }, { γ }, {α, β, γ } }? They
are the subsets Y of U such that Y ⊆ X and ¬¬Y * X. So, for example, {α }
is a tangential part of X; the meaning of this assertion is that {α } contributes
to form X, being its part, but it contributes to form concepts that are “outside”
X, i.e. different from it. To evaluate X we need to evaluate α first, but α builds
bits of information that are not X, as well. One last example: we have that the
spatial relation of disconnection DC holds between {β } and { δ }. Indeed the
formula ¬A(¬¬{β } ∧ { δ }) holds in the model. This means that none of the
concepts that {β } contributes to define, need { δ } to be defined.

These are just some examples of the meaning that spatial relations on depen-
dency graphs might have. Exploring more of these cases could be a direction for
future work, as well as applying the ideas developed in Chapter 4 and thus ap-
plying the coarse spatial relations to subgraphs of dependency graphs that have
been approximated by means of some stable relation R defined on the depen-
dency graph. As a special case of this, the theory of poset partition developed
in Chapter 5 could be applied to dependency graphs. We give an example that
shows that, when we impose a partition on a dependency graph, the symmetry
generation constraint on the associated preorder is important.

Example 135. Partitioning a set of functions dependent on each oth-
ers, Figure 6.3. In Figure 6.3 there are some examples of dependency graphs
with functions depending on each others in different ways. H is the dependency
relation. For example in the case on the left we have fx H fy meaning that
the function fx depends on fy to be defined. Let us suppose that we need to
impose a partition on the dependency graphs, because we need to split the work
of implementing each function across a group of people, as in a group project.
Say there are three members in the group, A, B and C. Every function will
be assigned to one and only one member of the group. The reflexive and tran-
sitive closure of the relation R = { (fx, fy), (fy, fz), (fz, fy), (fz, fk) } gives rise

dependency relation is not anti-symmetric, the graph is still an H-frame as these need to be
preordered sets, and not necessarily posets, although we focused on posets because graphs
and hypergraphs are (two-tier) posets.
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Figure 6.3: Example of three dependency graphs representing functions and
their dependencies. The underlying set U is the same but the partial order
H, i.e. the dependency relation, varies. The reflexive and transitive closure of
R = { (fx, fy), (fy, fz), (fz, fy), (fz, fk) } produces the partition shown and the
quotient structure shown. The quotient structure can be seen as expressing how
the work has been split among the members of the group, and H ′ how each of
them depends on others.

to the partitions shown in the figure (this R is the smallest relation that gives
rise to this partition). Notice we are imposing the same preorder on the three
dependency graphs, indeed they give rise to the same quotient structure. The
quotient structure represents how the work has been split across the members
of the group (U ′), and how the work of each member is dependent on the work
of everybody else (H ′). Now notice what happens in the first case: we have
that the work of A is dependent on the work of C, however there’s no function
assigned to A that depends on a function assigned to C. There is a “false”
H ′ dependency in (U ′, H ′) in the sense that it is not justified by any H de-
pendency in (U,H). Indeed we have that R1 is not symmetrically generated
w.r.t. the partial order H1, as fx R fk, but there are no fi and fj such that

fx
Ø

R fi H fj
Ø

R fk. This tells us that the chosen partition might not the best
one to split the work among the members, as in this way the work of A will
be “unnecessarily” dependent on the work of C. In the remaining cases, all the
H ′ dependencies between members’ work are justified by the existence of some
functions in each partition that are actually H dependent on each other. Thus
we can conclude that the symmetry generation constraint is relevant, also in a
theory of dependency graphs partitions.

6.1.3 Automated Reasoning

As already mentioned, the tableau calculus for UBiSKt has been implemented
using the theorem prover generator Mettel [85]. The implementation can be
found at [68]. This is very useful as it makes it possible to automate spatial
reasoning using UBiSKt.

A special type of rule can be added to the Mettel implementation, known as
blocking rules. They can be found already in the implementation of the tableau
calculus for BiSKt in Mettel, presented in [74]. These are two examples of
blocking rules:

s H t
H blocking

s ≈ t | s 6≈ t
s R t

R blocking
s ≈ t | s 6≈ t
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The idea is that every time a new element of U is added during the tableau
construction, for example by the [T �] rule that adds an R-predecessor for some
v ∈ U , or by [F¬] that adds an H-successor from some v ∈ U , the blocking
rules split the branch into two different branches. In the first branch one checks
whether the new element that needs to be added can instead be unified with
an existing element. If this is not possible, and thus this branch gets closed,
the second branch is explored, where an element that is actually new is added.
When a counter-model for a formula exists, blocking rules are useful as they
help to build “minimal counter-models”, in the sense that they try first to avoid
assuming the existence of new elements, action that will increase the cardinality
of U . For example, if we input the formula s : F¬p, the tableau rule [F¬] is
applied and a new t such that s H t and t : Tp is added. The H blocking rule
will then unify s with t. This doesn’t cause any contradiction as s can carry
the information that should be carried by t, i.e. that s : Tp and s H s. Hence
the model will be made of a set U = { s }, instead of having U = { s, t }. Thus,
blocking rules are a useful mechanism.

However the blocking rules seem to be problematic with the Mettel imple-
mentation of UBiSKt. Indeed we have experienced cases where, for a formula
ϕ that we know is a theorem, when the blocking rules are not in the implemen-
tation, then input s : F (ϕ) correctly produces a closed tableau. But when the
blocking rules are added to the calculus the input formula s : F (ϕ) produces
a model, thus a counter-model for ϕ. This counter-model has a contradiction
somewhere that is not detected, as ϕ is a theorem. This is the case for ex-
ample with the formula E(¬¬ϕ ∧ ψ) → E(ϕ ∧ ¬¬ψ). We have already seen
that this formula is a theorem in HUBiSKt (53 item 2), and a tableau proof,
thus a closed tableau for s : F (E(¬¬ϕ ∧ ψ) → E(ϕ ∧ ¬¬ψ)), can be produced
with TabUBiSKt by hand as well. If the blocking rules are not added within
the Mettel implementation of TabUBiSKt, this works correctly and produces
a closed tableau. However, when the blocking rules for H and R are added,
a counter-model appears to be produced (this will be a false counter-model
as contradiction must be found somewhere). Thus this is evidence that the
blocking rules, whilst useful, are problematic with the Mettel implementation
of TabUBiSKt.

Motivated by this, as a joint work between the author of this thesis and
Brandon Bennett, TabUBiSKt has been implemented using the language Pro-
log. Initial work has been presented in [70]. The implementation can be found
at [69]. Initial tests have shown that the implementation can prove, or disprove,
UBiSKt formulae in the expected way. The goal of a working implementation
of the blocking rules, in order to ensure minimal models construction, is still to
achieve and it is left as future work.

The proof procedure is implemented by a recursive algorithm. Rules will be
applied until no “active” formula with a logical connective or operator remains.
For some of the rules, we adopt a non-destructive-tableau approach: once a
formula (or group of formulae) that matches the premise of a rule has been
analysed by that rule and the corresponding conclusion has been added to the
branch, the formula-premise is kept in the branch. However the formula will not
be analysed again by the same rule, as the conclusion is already present in the
branch. A non-destructive approach is preferable for the rules handling truth of
a box, and falsity of a diamond. For example, consider the rule handling truth
of the universal box A. It needs to be applied every time a new label for a new
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w : T (ϕ), w : Fϕ
(⊥)

⊥

refute( Formulae, [tf_close] ) :-

select( W:(Phi=t), Formulae, Rest ),

member( W:(Phi=f), Rest ), !.

w : F (¬ϕ)
v new on the branch (F¬)

w H v, v : Tϕ

refute(Formulae, [f_nneg| Rules] ) :-

select(W:(nneg(Phi)=f),

Formulae, Rest ), !,

V = @nneg(Phi, W),

refute( [h(W,V), h(V,V),

V:(Phi=t) | Rest],

Rules )).

w : T (Aϕ), v : Sψ
(T A)

v : Tϕ

refute(Formulae, [t_ubox| Rules] ) :-

select( _W:(ubox(Phi)=t),

Formulae, Rest ),

member( V:(_), Formulae ),

\+(member( V:(Phi=t), Rest) ),!,

refute( [V:(Phi=t) | Formulae], Rules).

Table 6.1: The top row shows the branch closing rule used to derive contradic-
tion. The middle row shows the rule for the falsity of intuitionistic negation ¬.
The bottom row shows the rule handling the truth of the universal box A.

world is added to the tree. The fact the rule will be blocked if the conclusion of
the rule is already present in the branch, will stop the program from applying
the rule over again, as this might cause the program to loop. Table 6.1 shows
some examples of tableau rules from TabUBiSKt and the way they have been
implemented in Prolog.

Our initial work has indicated many possibilities for enhancing tableau-based
reasoning in this kind of modal calculus, by constraining the ordering of rule
applications and by special handling of formulae relating to the relational struc-
ture of possible worlds. A further challenge is to automate a theorem-prover for
the S5 extension of UBiSKt, where graphs and hypergraphs partitions can be
represented. Blocking rules would also be useful in the implementation of S5.
Indeed the rule for expressing symmetry generation of R will have a premise

(x R y), more complex than the conclusion (x
Ø

R ;H ;
Ø

R y), as in the conclusion
we have to infer the existence of one or more element of U , related to x and y
in a certain way. Avoiding the addition of unnecessary new elements during the
model construction, using a blocking mechanism, would enhance the calculus.

Moreover this seems an interesting direction of future work as implemen-
tation of calculi for intuitionistic modal logics seems a relatively unexplored
field.

6.2 Conclusions

This thesis has explored the use of a bi-intuitionistic modal logic with universal
modalities, UBiSKt, within the field of qualitative spatial representation. A
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special case of an H-frame is a graph, or more generally, a hypergraph. Topolog-
ical spatial relations that apply to these kinds of discrete structures have been
expressed within the logic. As the logic comes with an axiomatic calculus and an
equivalent tableau calculus, it is possible to prove properties about the spatial
relations, and thus reasoning about spatial relations on graphs and hypergraphs.
The tableau calculus has been implemented using Mettel (implementation avail-
able at [68]), thus the spatial reasoning can also be automated. An enhanced
implementation of the calculus within Prolog, is a promising direction of future
work.

The topic of graph and hypergraph granularity has been explored. Gran-
ularity refers to the presence of granules in the information. The process of
changing level of granularity, or level of detail according to which information
is visualised, is a type of approximation, that we called granulation. Thanks
to the connection between modal logic and mathematical morphology, morpho-
logical operations have been used to put forward some notions for subgraphs
granulation, in order to visualise subgraphs at a different granularity. The level
of granularity on subgraphs is provided by a stable relation R on the set U
of nodes and edges. Moreover, topological spatial relations under granularity,
i.e. occurring between regions that have undergone a granulation process, have
been defined and the definitions have been justified by a parallelism with the
spatial relations at a “detailed” level. The detailed level is the one provided
by the smallest stable relation containing the identity relation I, namely the
(reflexive closure of) the incidence relation H. In this case the spatial relations
are computed in terms of H-dilates, i.e. every single node, and every edge with
all its end-points, as these are the smallest subgraphs a graph is composed of. If
we take a granular view provided by some stable relation R, then the “atomic”
parts of the graph are R-dilates, that can be seen as an abstraction of the mor-
phological structuring element. The spatial relations can be expressed in terms
of R-dilates, instead of in terms of H-dilates. A set of coarse spatial relations
between coarse subgraphs has been defined in this way. Coarse spatial relations
have been analysed; in particular it has been proved that coarse connection is
always symmetric, as expected. For what concerns reflexivity of coarse connec-
tion, we have seen that this doesn’t hold for any R, but there is a necessary
and sufficient condition imposing which coarse connection will be reflexive. In
classical modal logic this condition is the surjectivity of R, whilst in an intu-
itionistic modal logic like UBiSKt, it is a more subtle condition, called weak
surjectivity as the latter is implied, but does not imply, the former. This is
evidence of the fact that spatial relations on sets and spatial relations on graphs
and hypergraphs are different.

Finally, a special case of hypergraph granularity has been considered, i.e.
when a partition over the set of nodes and edges is obtained. The quotient
structure is the coarser description of the initial hypergraph. As explained in
[66], a stable preorder R on U that is additionally symmetric is too restrictive
in the kinds of partitions it generates. In the present work, different constraints,
substituting symmetry, have been considered. They arise from imposing some
back condition on the quotient function f , that is the link between the ini-
tial poset (U,H) and its quotient structure (U ′, H ′). Some of the constraints
analysed are equivalent to properties on R studied in [52], where intuitionistic
analogues of the modal logic S5 are studied. These properties on R, or equiv-
alently on f , rule out some poset partitions that one might wish to consider.



6.2. CONCLUSIONS 117

Indeed with the first constraint considered in [52], minimal elements of (U,H)
can be assigned by f just to minimal elements of (U ′, H ′), and with the sec-
ond constraint maximal elements of (U,H) can be assigned just to maximal
elements of (U ′, H ′). The last back condition on f , the weak-zag, corresponds
to the symmetry generation constraint on R introduced in [66]. This imposes a
dependency of H ′ from H the weak-zag on f , but doesn’t put the same restric-
tions as the constraints adopted in [52], thus minimal and maximal elements of
(U,H) can be assigned to both minimal and maximal elements of (U ′, H ′). Thus
we settle for a stable preorder on U that is additionally symmetrically gener-
ated, as giving rise to partitions on a poset (U,H), and to its quotient structure
(U ′, H ′), with the right properties. This motivates the choices made in [66].
Moreover we have seen that there is a formula in UBiSKt corresponding to
symmetry-generation. This formula is valid in all and only the H-frames that
are symmetrically generated, namely the formula singles out the class of frames
where R is symmetrically generated (and additionally a preorder). This gives
a new intuitionistic analogue of S5, where poset partitions can be represented,
that has never been considered before. With this work the author hopes to
have given an evaluation of different intuitionistic modal systems, that can all
be considered analogues of classical modal logic S5, under the light of a theory
of poset partitions.

As the objects of interest were 2-tier posets, namely graphs and hypergraphs,
we have considered as additional constraint on R, also presented in [66], the 2-
tierness of R. Imposing this constraint ensures that the quotient structure of
a hypergraph is a hypergraph too. Then we have see that there is a formula
in UBiSKt whose validity singles out the 2-tier H-frame, i.e. R in F is 2-tier
preorder. Finally, we have seen how the coarse spatial relations can be expressed
in the S5 extension of UBiSKt.

With this work the author hopes to have contributed to the foundation of a
theory of rough things, where the objects of study are not necessarily simple sets.
Sets carrying additional structure are used everywhere. Taxonomies, knowledge
graphs and ontologies, are examples of data linked in a certain way. In this
work we have focused on the case where the link can be modelled as a partial
order. We have seen how graphs and hypergraphs can be represented in this
way. However, a theory of granularity and partition of relational structures
different from a poset, providing a coarser description of the initial structure,
could be an interesting direction of research. Modal logic, given its long history,
could be used as a guide to develop it. These objects can be seen as modal
frames, and an additional relation, providing the coarser view of the underlying
set, would be considered.
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Appendix A

A.1 Proof of Propositions 58 - 71 of Section 3.4

Proposition 58 :β•(ϕ)↔ β•(ϕ)∧¬β•(ϕ) := (ϕ∧¬ϕ)↔ (ϕ∧¬ϕ)∧¬(ϕ∧¬ϕ).
1. `HUBiSKt

¬(ϕ ∧ ¬ϕ) by item 13 of Proposition 29.
2. ` ¬(ϕ ∧ ¬ϕ)→ ((ϕ ∧ ¬ϕ)→ ¬(ϕ ∧ ¬ϕ)) by axiom A0.
3. ` (ϕ ∧ ¬ϕ)→ ¬(ϕ ∧ ¬ϕ) by MP.
4. ` (ϕ ∧ ¬ϕ)→ (ϕ ∧ ¬ϕ) ∧ ¬(ϕ ∧ ¬ϕ).
5. ` (ϕ ∧ ¬ϕ) ∧ ¬(ϕ ∧ ¬ϕ)→ (ϕ ∧ ¬ϕ) follows as an instance of A5
6. ` (ϕ ∧ ¬ϕ)↔ (ϕ ∧ ¬ϕ) ∧ ¬(ϕ ∧ ¬ϕ) by lines 4 and 5.
Proposition 60 item i: `HUBiSKt BR(ϕ)→ P (ϕ,¬¬¬ϕ)
i) BR(ϕ)→ P (ϕ,¬¬¬ϕ) := Eϕ∧A(ϕ↔ (¬¬(ϕ∧¬ϕ)))→ A(ϕ→ ¬¬¬ϕ)
1. ` Eϕ ∧ A(ϕ↔ ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)→ (ϕ↔ ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ) by A16.
2. ` (ϕ↔ ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)→ (ϕ→ ¬¬(ϕ ∧ ¬ϕ))
3. ` (ϕ→ ¬¬(ϕ∧¬ϕ))→ (ϕ→ ¬¬ϕ∧¬¬¬ϕ), as ¬¬(α∧β)↔ ¬¬α∧¬¬β

is a theorem in intuitionistic logic.
4. ` (ϕ→ ¬¬ϕ ∧ ¬¬¬ϕ)→ (ϕ→ ¬¬¬ϕ)
5. ` Eϕ ∧ A(ϕ↔ ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)→ (ϕ→ ¬¬¬ϕ) by concatenating 1-4.
6. ` A(Eϕ ∧ A(ϕ↔ ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ))→ A(ϕ→ ¬¬¬ϕ) by MonA rule.
So we have shown A(BR(ϕ))→ P (ϕ,¬¬¬ϕ). But:
7. ` A(Eϕ∧A(ϕ↔ (¬¬(ϕ∧¬ϕ)∧ϕ)))↔ (AEϕ∧AA(ϕ↔ (¬¬(ϕ∧¬ϕ)∧

ϕ))) because ` A(α ∧ β)↔ A(α) ∧ A(β) due to the adjunction “E a A” by item
14 of Proposition 29.

8. ` (AEϕ∧AA(ϕ↔ (¬¬(ϕ∧¬ϕ)∧ϕ)))↔ Eϕ∧A(ϕ↔ (¬¬(ϕ∧¬ϕ)∧ϕ))
by ` AAα ↔ Aα (due to A16 and A17) and ` AEα ↔ Eα (due to item 17 of
Proposition 29).

9. ` Eϕ ∧ A(ϕ↔ ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)→ A(ϕ→ ¬¬¬ϕ) by lines 6, 7 and 8.
Proposition 60 item ii: `HUBiSKt A(ψ → ¬δ)→ ¬E(ψ ∧ δ).
1. ` A(ψ → ¬δ) → A¬(ψ ∧ δ) because (α → ¬β) ↔ ¬(α ∧ β) is a theorem

of intuitionistic logic.
2. ` A¬(ψ ∧ δ)→ ¬E(ψ ∧ δ) by A18.
3. ` A(ψ → ¬δ)→ ¬E(ψ ∧ δ) by concatenating lines 1 and 2.
Proposition 60 item iii: it suffices to show `HUBiSKt ¬E(ϕ ∧ ¬¬ϕ) →

A¬¬¬ϕ.
1. ` ¬¬ϕ→ (ϕ ∧ ¬¬ϕ) by item 11 of Proposition 29.
2. ` ¬(ϕ ∧ ¬¬ϕ)→ ¬¬¬ϕ by intuitionistic logic from line 1.
3. ` A¬(ϕ ∧ ¬¬ϕ)→ A¬¬¬ϕ by Mon A.
4. ` ¬E(ϕ ∧ ¬¬ϕ)→ A¬¬¬ϕ. by A18.

119
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Proposition 62: `HUBiSKt A¬(¬¬ϕ) → EQ(ϕ, ∂(ϕ)) := A¬(¬¬ϕ) →
A(ϕ↔ (¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)).

1. ` ¬¬¬ϕ→ (ϕ→ ¬¬¬ϕ) by A0.
2. ` A(¬¬¬ϕ)→ A(ϕ→ ¬¬¬ϕ) by Mon A.
3. ` A(¬¬¬ϕ)→ A(ϕ→ ¬¬ϕ) because α→ ¬¬α is a theorem in intuition-

istic logic.
4. ` A(¬¬¬ϕ)→ A(ϕ→ ¬¬¬ϕ) ∧ A(ϕ→ ¬¬ϕ) from lines 3 and 4.
5. ` A(¬¬¬ϕ) → A(ϕ → ¬¬ϕ ∧ ¬¬¬ϕ) because A preserves conjunction

by adjunction between E and A, Proposition 29 item 14.
6. ` A(¬¬¬ϕ) → A(ϕ → ¬¬(ϕ ∧ ¬ϕ)), because ¬¬(α ∧ β) ↔ ¬¬α ∧ ¬¬β

is a theorem in intuitionistic logic.
7. ` A(¬¬¬ϕ)→ A(ϕ→ ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)
8.` A(¬¬(ϕ ∧ ¬ϕ) ∧ ϕ→ ϕ)
9. ` A(¬¬¬ϕ)→ A(ϕ↔ ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ) from lines 7 and 8.
Proposition 65 `HUBiSKt E(¬¬ϕ)→ Eϕ:
1. ` (¬¬ϕ)→ ϕ item 11 of Proposition 29.
2. ` E(¬¬ϕ)→ Eϕ by Mon E rule.
Proposition 66: SR(ϕ) → not-P (ϕ, β(ϕ)) := E(¬¬ϕ) → E(ϕ � (¬¬(ϕ ∧

¬ϕ) ∧ ϕ)).
First we show that
` (α ∧ ¬β)→ (α � β):
1. ` α→ (β ∨ (α � β)) by axiom A10.
2. ` (α ∧ ¬β)→ (α � β) by intuitionistic logic.
By putting
α := ϕ, β := ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)
we obtain:
3. ` (ϕ ∧ ¬(¬¬(ϕ ∧ ¬ϕ) ∧ ϕ))→ (ϕ � ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)
4. ` ¬¬ϕ→ (ϕ ∧ ¬(¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)).
5. ` ¬¬ϕ→ ϕ by item 11 of Proposition 29.
6. ` ¬¬ϕ ∧ ¬ϕ→ ⊥
7. ` ¬¬ϕ ∧ (ϕ ∧ ¬ϕ) ∧ ϕ→ ⊥
8. ` ¬¬ϕ ∧ ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ→ ⊥
9. ` ¬¬ϕ→ ¬(¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)
10. ` ¬¬ϕ→ (ϕ ∧ ¬(¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)) by lines 5 and 9
11. ` ¬¬ϕ→ (ϕ � ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ) by concatenating lines 10 and 3.
12. ` E(¬¬ϕ)→ E((ϕ � ¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)) by Mon-E rule
Proposition 68: ¬SR(β•ϕ ∧ β•(ψ)) := ¬E¬¬((ϕ ∧ ¬ϕ) ∧ (ψ ∧ ¬ψ))
1. ` ¬(ψ ∧ ¬ψ) from item 13 of Proposition 29.
2. ` ¬¬¬(ψ ∧ ¬ψ) by intuitionistic logic.
3. ` A¬¬¬(ψ ∧ ¬ψ) by necessitation rule.
4. ` ((ψ ∧ ¬ψ) ∧ (ϕ ∧ ¬ϕ))→ (ψ ∧ ¬ψ) by A6

5. ` ¬(ψ ∧ ¬ψ)→ ¬((ϕ ∧ ¬ϕ) ∧ (ψ ∧ ¬ψ)) by item 12 of Proposition 29
6. ` A¬¬¬(ψ ∧¬ψ)→ A¬¬¬((ϕ∧¬ϕ)∧ (ψ ∧¬ψ)) by intuitionistic logic

and Mon A

7. ` A¬¬¬((ϕ ∧ ¬ϕ) ∧ (ψ ∧ ¬ψ)) by concatenation of lines 3 and 6.
Proposition 69: EQ(¬β•(ϕ),¬β(ϕ) := A((¬(ϕ∧¬ϕ))↔ (¬((¬¬(ϕ∧¬ϕ)∧

ϕ))))
1. ` (¬(ϕ ∧ ¬ϕ) ∧ (¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)) → ⊥ because ¬α ∧ ¬¬α → ⊥ is a

theorem in intuitionistic logic.
2. ` ¬(¬(ϕ ∧ ¬ϕ) ∧ (¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)) from line 1.
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3. ` ¬(ϕ ∧ ¬ϕ)→ (¬(¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)) because ¬(α ∧ β)↔ (α→ ¬β) is a
theorem in intuitionistic logic.

4. ` (ϕ ∧ ¬ϕ)→ (¬¬(ϕ ∧ ¬ϕ) ∧ ϕ) because ` α→ ¬¬α.
5. ` (¬(¬¬(ϕ ∧ ¬ϕ) ∧ ϕ))→ ¬(ϕ ∧ ¬ϕ) by line 4.
6. ` ¬(ϕ ∧ ¬ϕ)↔ (¬(¬¬(ϕ ∧ ¬ϕ) ∧ ϕ)) by lines 3 and 5.
7. ` A(¬(ϕ ∧ ¬ϕ)↔ (¬(¬¬(ϕ ∧ ¬ϕ) ∧ ϕ))) by necessitation rule.
Proposition 70: we divide the proof of this formula in the two→ directions,

(i) and (ii).
i) `HUBiSKt SR(ϕ) ∧ A¬∂N (ϕ) → Eϕ ∧ P (ϕ,¬¬ϕ) := E¬¬ϕ ∧ A¬(ϕ ∧

¬ϕ)→ Eϕ ∧ A(ϕ→ ¬¬ϕ).
1. ` E¬¬ϕ→ Eϕ by Proposition 10.
2. ` A¬(ϕ ∧ ¬ϕ) → A(ϕ → ¬¬ϕ) because ¬(α ∧ β) → (α → ¬β) is a

theorem in intuitionistic logic.
3. ` E¬¬ϕ ∧ A¬(ϕ ∧ ¬ϕ)→ Eϕ ∧ A(ϕ→ ¬¬ϕ). from 1 and 2.
ii) `HUBiSKt P (ϕ,¬¬ϕ) ∧ Eϕ → SR(ϕ) ∧ A¬∂N (ϕ) := A(ϕ → ¬¬ϕ) ∧

Eϕ→ E(¬¬ϕ) ∧ A¬(ϕ ∧ ¬ϕ).
1. ` A(ϕ→ ¬¬ϕ) ∧ Eϕ→ E((ϕ→ ¬¬ϕ) ∧ ϕ)→ E(¬¬ϕ) by A19 and MP.
2. ` A(ϕ→ ¬¬ϕ) ∧ Eϕ→ E(¬¬ϕ) from 1.
3. ` (A(ϕ→ ¬¬ϕ)∧Eϕ)→ (A¬(ϕ∧¬ϕ)∧(E¬¬ϕ)) because (α→ ¬β)↔

¬(α ∧ β) is a theorem in intuitionistic logic.

A.2 Proof of Proposition 91

s : F (A(α→ β) ∧ A(β → γ))→ A(α→ γ)

s H i, i : T A(α→ β) ∧ A(β → γ), i : F → A(α→ γ)

i : T A(α→ β), i : T A(β → γ)

j : T (α→ β), j : T (β → γ), j : F (α→ γ)

j H k, k : Tα, k : Fγ, k:T (α→ β), k : T (β → γ)

k : Tβ

k : Tγ

⊥
closure

k : Fβ

⊥

closure

[T →]

k : Fα

⊥

closure

[T →]

[F →], [T A]

[T A], [F A], j new on the branch

[T∧]

[F →]

A.3 Tableau Calculus

In Table A.1 the full set of rules composing TabUBiSKt is introduced. This is
obtained by adding the rules for universal modalities to the tableau calculus for
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BiSKt, presented in [74].

Table A.1: Tableau calculus TabUBiSKt

s : Tϕ s : Fϕ
closure⊥

s : T (⊥)
(T⊥)

⊥
s : Tϕ ∧ ψ

(T∧)
s : Tϕ s : Tψ

s : F (ϕ ∧ ψ)
(F∧)

s : Fϕ | s : Fψ

s : Fϕ ∧ ψ
(F∨)

s : Fϕ s : Fψ

s : T (ϕ ∨ ψ)
(T∨)

s : Tϕ | s : Tψ
s : T¬ϕ, s H t

(T¬)
t : Fϕ

s : F¬ϕ
† (F¬)
s H m m : Tϕ

s : F ¬ϕ t H s
(F ¬)

t : Tϕ
s : T ¬ϕ

s : Tϕ→ ψ s H t
(T →)

t : Fϕ | t : Tψ

s : Fϕ→ ψ
† (F →)
s H m m : Tϕ m : Fψ

s : Fϕ � ψ t H s
(F�)

t : Fϕ | t : Tψ

s : Tϕ � ψ
† (T�)
m H s m : Tϕ m : Fψ

s : T�ϕ s R t
(T�)

t : Tϕ

s : F�ϕ
† (F�)
s R m m : Fϕ

s : F �ϕ t R s
(F �)

t : Fϕ

s : T �ϕ
† (T �)
m R s m : Tϕ

s : F♦ϕ t H m n R m n H s
(F♦)

t : Fϕ

s : T♦ϕ
‡ (T♦)
m H n t R n t H s m : Tϕ

s : T �ϕ s H m n R m n H t
(T �)

t : Tϕ

s : F �ϕ
‡ (F �)
s H n t R n t H m m : Fϕ

s : T Aϕ, t : Sψ
(T A)

t : Tϕ

s : F Aϕ
† F A

m : Fϕ

s : F Eϕ t : Sψ
F E

t : Fϕ

s : T Eϕ
† (T E)

m : Tϕ

s : Sϕ
refl-H

s H s

s H t t H j
trans-H

s H j

s : Tϕ s H t
mon-H

t : Tϕ

s H t t R j j H k
stab-R

s R k

† m is fresh on the branch.
‡ m, n and t are fresh on the branch.
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