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Abstract  
Plants contain large numbers of proteases that fulfil a wide range of functions. 

Cysteine proteases and their endogenous inhibitors, phytocystatins, are involved in 

the control of protein turnover, but their precise functions remain poorly characterized. 

To study cysteine protease/phytocystatin functions in detail, the properties of 

Arabidopsis, wheat and soybean seeds expressing Oryzacystatin I (OC-I) were 

investigated. All of the transgenic seeds contained significantly more protein than the 

wild type, but germination was similar in all lines. The protein profiles of the seeds 

were broadly similar to the wild type, but the wheat and soy flour made from the 

transgenic seeds showed some differences in protein composition compared to that 

of the  wild type. Moreover, a proteomic analysis of the transgenic wheat seeds 

revealed some differences in the accumulation of specific proteins, particularly storage 

proteins. The growth and development of three independent transgenic Arabidopsis 

lines that express the cystatin Oryzacystatin I (OC-I) in the cytosol (CYS lines) and 

three independent lines that express OC-I in the chloroplasts (PC lines) were 

characterised. The CYS and PC lines had a smaller rosette diameter with fewer 

leaves, and they accumulated less biomass than the wild type during vegetative 

growth. However, the transgenic lines had significantly more biomass than the wild 

type at the later (reproductive) stages of development. The CYS lines had less leaf 

chlorophyll and carotenoid pigments than the wild type, particularly at the later stages 

of development. In contrast, the PC rosettes accumulated more leaf pigments than the 

wild type at the later stages of leaf development. The CYS and PC rosettes flowered 

significantly later than the wild type. The abundance of leaf transcripts and 

photosynthetic proteins was changed in the CYS and PC lines. In addition, chloroplast-

to-nucleus signalling, analysed by the changes in the levels of specific transcripts that 

encode photosynthetic proteins in the presence of chloroplast inhibitors, was 

extensively modified in the CYS and PC lines compared to the wild type. Moreover, 

photosynthetic carbon assimilation was less inhibited after exposure to high light 

stress in the CYS and PC lines than in the wild-type. Taken together, these data 

demonstrate that OC-I and its target cysteine proteases play important roles in the 

regulation of photosynthesis, as well as vegetative and reproductive development. 
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Chapter 1 . Introduction   
Agriculture is predicted to face multiple challenges in the coming decades, not least 

because of the negative impacts of climate change, including an increase in the 

frequency of extreme weather events such as flooding and drought. Moreover, global 

agricultural productivity must increase considerably in the coming years to feed a 

growing global population (Mahajan and Tuteja, 2005).  Studies to increase our current 

understanding of how plants tolerate environmental stresses are therefore important 

to identify new markers for the selection of improved crop varieties that can sustain 

yield even when they experience multiple stresses simultaneously (Tuteja, 2007). In 

recent years there has been considerable focus on improving the efficiency of 

photosynthesis as a mechanism to increase carbon gain and hence crop yields, for 

example by accelerating recovery from photoprotection (Kromdijk et al., 2016). A 

different mechanism that might enhance photosynthesis is to limit the proteolysis of 

photosynthetic proteins (Van der Hoorn, Renier AL, 2008).  

 Photosynthesis   

Photosynthesis uses sunlight to drive electron transport with the subsequent 

assimilation of CO2 into carbohydrates (Tanaka and Makino, 2009). Photosynthesis 

also plays a major role in cellular redox metabolism and signaling (Hisabori et al., 

2007), not least by generating significant amounts of reactive oxygen species (ROS). 

Much of the nitrogen assimilated by plants is stored in the leaves as photosynthetic 

proteins during vegetative growth. This nitrogen is then released by regulated 

proteolysis during leaf senescence to support grain filling (Tanaka and Makino, 2009; 

Diaz-Mendoza et al., 2016). Photosynthesis is inhibited by environmental stresses, 

including drought, salinity, high light and high or low temperatures. The stress-induced 
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inhibition of photosynthesis causes a significant reduction in carbon gain and hence 

crop productivity (Chaves et al., 2009; Tuteja, 2007).  

Photosynthesis occurs in the chloroplasts of higher plants. For simplicity, this process 

is often described in terms of light-dependent and light-independent reactions. The 

light-dependent reactions occur in the thylakoid membranes, whereas the light-

independent reactions are localized in the stroma. The light-dependent reactions in 

the thylakoid membranes are driven by two photosystems (PS): PSII, which performs 

the light-dependent splitting of water and the transfer of electrons to plastoquinone, 

and PSI, which drives the light-dependent reduction of NADP to NADPH (Figure 1.1) 

The electron transport chain drives photophosphorylation to produce ATP. ATP and 

NADPH/H+ are then used in the assimilation of carbon dioxide in the Calvin cycle.  

 

  

Figure 1.1: The diagram illustrates the chloroplast electron transport chain pathway and the interaction 
between photosystem I and photosystem II which occurs in the thylakoid membranes. The diagram is 
taken from http://www.mun.ca/biology/desmid/brian/BIOL2060/BIOL2060-11/11_09.jpg 

http://www.mun.ca/biology/desmid/brian/BIOL2060/BIOL2060-11/11_09.jpg
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 The impact of stress conditions in plant growth and development  

The multifaceted challenges faced by global agriculture have be well documented in 

the literature, particularly in the context of the pressing need to expand food production 

capabilities in a sustainable manner (Fischer et al., 2014). Environmental stresses 

such as heat and drought limit crop productivity and threaten global food security (Lesk 

et al., 2016). Moreover, the predicted changes in weather patterns associated with 

climate change will only increase the frequency of extreme heat and drought events. 

These stresses decrease plant growth and induce changes in gene expression that 

facilitate survival during unfavourable environmental conditions (Duan et al., 2007). 

Developmental changes triggered by environmental stress include early leaf 

senescence, a process that requires extensive proteolysis, catalyzed by a range of 

proteases, including cysteine proteases (Carrión et al., 2013). However, increasing 

the breakdown and turnover of photosynthetic proteins will impair essential metabolic 

processes such as carbon assimilation and hence ultimately limit the productivity of 

the plants. High temperatures, for example, inactivate enzymes and increase protein 

degradation, as well as disrupting protein synthesis and membrane functions (Fahad 

et al., 2017).  

The control of plant growth and development relies on an intricate balance between 

protein synthesis and protein degradation (Nelson and Millar, 2015). Regulated protein 

turnover is important at all developmental stages, including germination and 

senescence, as well as in plant defence responses such as programmed cell death 

(PCD) (Beers et al., 2000; Palma et al., 2002). Therefore, it is essential to obtain an 

in-depth understanding of cell maintenance processes, particularly elements such as 

such as protein dynamics, both to increase crop quality and to enhance the efficiency 

of crop production. Proteolysis is particularly important in plant responses to 
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environmental stress. A key challenge is therefore to develop a next generation of 

plants with modified protease activities that are better able to maintain yield over a 

wide range of environmental conditions. 

 Chloroplast protein degradation   

Chloroplasts are complex organelles that fulfil crucial metabolic and signalling 

functions (Sadali et al., 2019). The photosynthetic proteins comprise 70% of the 

protein content of leaves. While a small number of proteins are encoded by the plastid 

genome and synthesised inside the chloroplasts, many photosynthetic proteins are 

encoded by nuclear genes and synthesized in the cytosol and then transported into 

the chloroplasts (Sakamoto et al., 2008). Chloroplast biogenesis is a complex process 

(Wang, F. et al., 2016). Regulated proteolysis is crucial to the maintenance of 

chloroplast quality control, and functions under both favourable and stress conditions 

(Wang, P. et al., 2018). Furthermore, the controlled degradation of chloroplasts is vital 

for the recycling of essential nutrients, such as the nitrogen stored in ribulose-1,5-

bisphosphate carboxylase/oxygenase (Rubisco) (Wang, P. et al., 2018). During 

natural senescence, the number of chloroplasts is decreased by around 17% (Evans 

et al., 2010). Under stress conditions, about 28% of the chloroplast proteins is 

transported to the vacuole for degradation (Evans et al., 2010) through the process of 

autophagy (Otegui, 2018). Autophagy involves at least two specific pathways, which 

involve the production of Rubisco-containing bodies (RCB) and autophagy-dependent 

plastid bodies (PS). The degradation of chloroplast proteins can also occur by two 

other pathways that are independent of autophagy. In the first pathway, the process 

of chloroplast vesiculation (CV) liberates chloroplast proteins in vesicles that are 

targeted for degradation in the vacuole. In the second pathway, stromal proteins are 

degraded in senescence-associated vacuoles (SAVs) that contain cysteine proteases 
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(Schippers et al., 2015). However, the pathways of chloroplast stromal protein 

degradation remain poorly characterized, particularly during stress-induced 

senescence.  

In contrast to the degradation of stromal proteins, the turnover of the PSII reaction 

center protein known as D1 is well characterized. D1 is highly susceptible to light-

induced oxidative damage and has the highest rate of protein turnover of all the 

thylakoid proteins (Wang, F. et al., 2016). D1 protein degradation and repair are 

important in the prevention of the light-induced loss of photosynthetic functions 

(photoinhibition). Damaged D1 proteins must be removed from the membranes and 

replaced by a newly synthesized copy of D1, followed by re-assembly of the PSII 

complex. In vitro studies have suggested that various thylakoid proteases such as 

FtsH (a Zn2+ metallo-protease) and Deg2 (a serine protease) are involved in D1 protein 

degradation in higher plants and in cyanobacteria. In plants, these proteases are 

localized on the stromal side of the thylakoid membrane. Deg2 and other stromal 

peptidases are responsible for the cleavage of the large stromal DE-loop of the D1 

protein, creating new termini that can be recognized by FtsH (Lindahl et al., 2000).  

1.3.1 Rubisco degradation 

Rubisco is perhaps the most abundant protein on earth (Raven, 2013). CO2 is fixed 

by Rubisco catalysis, which uses ribulose-1,5-bisphosphate as the second substrate, 

to produce two molecules of 3-phosphoglycerate (3-PGA). However, Rubisco also 

catalyzes the oxygenation of ribulose-1,5-bisphosphate. When O2 is fixed instead of 

CO2, the reaction produces one molecule of 3-PGA and 2-phosphoglycolate (2PG). 

The production of 2PG marks the start of the pathway called photorespiration, in which 

2PG is converted back to 3-PGA. This pathway involves multiple steps and releases 

previously fixed CO2 and ammonia, and also uses ATP. The rate of the Rubisco 
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reaction is relatively slow, and so this enzyme is required in large amounts in order to 

drive the Calvin cycle. The large amounts of N stored in Rubisco are transferred to the 

seeds during leaf senescence. The expression of photosynthetic genes, including 

those that encode Rubisco and the light-harvesting chlorophyll a/b-binding protein 

(LHC), is decreased during leaf senescence and so they are classed as senescence 

down-regulated genes (Humbeck et al., 1996).  

Rubisco is degraded both inside and outside of the chloroplasts (Irving and Robinson, 

2006). However, key questions remain concerning the pathway of Rubisco 

degradation outside the chloroplasts and how it is controlled (Thoenen et al., 2007). 

The degradation of Rubisco involves the oxidation of specific cysteine residues, which 

alter the susceptibility of the enzyme to proteolysis by facilitating binding to the 

chloroplast envelope, marking it for degradation (Carrión et al., 2013). Rubisco is 

found outside the chloroplast and is localised in RCBs (also called Rubisco vesicular 

bodies (RVBs) (Prins et al., 2008), as shown in Figure 1.2. These vacuole-like 

compartments are thought to contain the enzymes required for Rubisco degradation  

that are also found in vacuoles. This system finctions alongside the 26S proteasome, 

which removes damaged and/or misfolded proteins, in controlled proteolysis (Vierstra, 

2009). However, stress-induced oxidation can lead to carbonylation of the 26S 

proteasome, which favours the degradation pathway involving RCBs (Kurepa et al., 

2009). The metabolite 2-carboxyarabinitol 1-phosphate (CA-1-P) is a competitive 

inhibitor of Rubisco, which protects the Rubisco protein from degradation inside the 

chloroplasts (Parry et al., 2008). 
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Figure 1.2: A scheme showing the degradation pathways of chloroplast proteins during 
senescence. Autophagy can occur through which involve the Rubisco-containing bodies 
(RCB) and autophagy-dependent plastid bodies (PS), respectively. Additionally, the 
degradation of chloroplast proteins is regulated by two other pathways independent of 
autophagy. In the first pathway, chloroplast vesiculation (CV) increases the production of 
vesicles that are liberated from the chloroplasts. These contain chloroplast proteins that are 
targeted for degradation in the vacuole. In the second pathway, stromal proteins are 
translocated into senescence-associated vacuoles (SAVs) containing cysteine proteases. 
Therefore the stromal proteins can be degraded inside the SAVs rather than being transported 
to the central vacuole for degradation (Schippers et al., 2015). 
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 Proteases and their Classification 

Proteolysis is essential for protein turnover, particularly during senescence (Carrión et 

al., 2013; Díaz-Mendoza et al., 2014). Proteases are widely distributed in nature. They 

are found in many different species, including mammals, plants, microorganisms and 

insects. These enzymes can be grouped according to the peptide bonds which are 

their substrates i.e. endopeptidases and exopeptidases. In exopeptidases, the bonds 

that are hydrolysed are located at the N- or C- terminals of the substrate proteins, 

while the endopeptidases target sites distant from the terminal sequences (Rawlings 

et al., 2011; Van der Hoorn, Renier AL, 2008). Proteases are divided into five families: 

Serine, Cysteine, Threonine, Aspartic and Metallo-proteases (Rustgi et al., 2018). 

Sequence and protein folding data have been used to further classify these proteases 

into subfamilies (Table 1.1) (Diaz-Mendoza et al., 2016). The catalytic residues of the 

active sites differ between these families. Serine proteases contain a catalytic triad of 

His-Asp-Ser, while threonine proteases have an active site comprising a threonine 

residue at the N-terminal (Rustgi et al., 2018). Aspartic proteases possess a dyad of 

two aspartates, and the metallo-proteases use a metal cation, usually Zn2+ in the active 

site (Rustgi et al., 2018). The peptidases from these groups are categorised into 

various families based on similarities in the sequences of amino acids. These families 

can be further subdivided into clans based on similarities in both the primary structure 

and the tertiary site, which indicate likely associations in evolutionary development 

(Kidrič et al., 2014).  
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Protease 
classification in plant Identified proteases References 

Serine-proteinases 

DegP protease (Family S1) (Itzhaki et al., 1998) 
Subtilisins (Family S3) (Figueiredo et al., 2014) 

Serine beta-lactamases (Family 
S12) 

(Hall, B.G. and Barlow, 
2004) 

Clp ATP-dependent proteases 
(Family S14) (Yu and Houry, 2007) 

Lon protease (Family S16) (Wickner and Maurizi, 
1999) 

Cysteine-proteinases 

Caspase-like proteins (Chichkova et al., 2004) 

Vacuolar-processing enzyme 
(VPE) 

(Hara-Nishimura et al., 
1998; Nakaune et al., 

2005) 
Papain-like peptides (Richau et al., 2012) 

Cathepsin-type proteases (Gilroy et al., 2007) 
Asparaginyl endopeptidases (Gruis, D. et al., 2004) 

Aspartic-proteinases 
 

Cardosins (Ramalho-Santos et al., 
1996) 

Cathepsin D-like proteins (Marttila et al., 1995) 

Metallo-proteinases 
 

Metallo-proteinases                                        
FtSH (Ito and Akiyama, 2005) 

Matrix-like enzymes (Maidment et al., 1999) 

Threonine proteases The ubiquitin‐proteasome 26S 
proteolytic system (family T1) 

(Kurepa and Smalle, 
2008) 

 The ubiquitin‐proteasome 20S  (Kurepa et al., 2009) 

 Table 1-1: Plant Protease Classification.  
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1.4.1 Intracellular localization of proteases  

Plant proteases are localized in different cellular compartments, including the cytosol, 

nucleus, apoplast, vacuole, chloroplast, mitochondria and the Golgi apparatus (Figure 

1.3). They are particularly abundant in seeds but they are also present in roots and 

leaves (Rogers et al., 1985), where they are regulated by proteinaceous inhibitors 

such as the Bowman-Birk inhibitors and phytocystatins, which are also found in all 

plant tissues (Rawlings et al., 2010a). Some proteases and protease inhibitors are 

specific to certain plant organs (Kidrič et al., 2014).  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

  

Figure 1.3: A scheme showing the localization of different protease types (cysteine, serine, 
metallo and aspartic proteases) in different subcellular compartments (Pillay, Priyen et al., 
2014; Diaz-Mendoza et al., 2016). 
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1.4.2 Cysteine proteases (CPs) 

Cysteine proteases (CPs) are considered to be the most plentiful type of proteases 

because they degrade and mobilize stored proteins (Martinez et al., 2009). These 

protein cleavage enzymes have a molecular mass of 21-30 and their activities are 

optimal in the pH range between 4.0-6.5  kDa (Grzonka et al., 2001). According to the 

MEROPS peptidase database, there are 140 cysteine proteases; these are classified 

into 15 families, which belong to five clans: cabain, caspase, clostripain, papain and 

streptococcal (Grudkowska and Zagdanska, 2004; Rawlings et al., 2011). CPs are 

responsible for between 30-90% of the maximal extractable proteolytic activity 

measured in plants that have been subjected to internal or external stimuli (Pernas et 

al., 2000; Wisniewski and Zagdanska, 2001; Sheokand et al., 2005).  The localization 

of many CPs in the vacuoles is consistent with their acidic pH optima for activity (Callis, 

1995). CPs have a cysteine residue which is activated by a histidine residue to begin 

a nucleophilic attack on the peptide bond of target proteins, as illustrated in Figure 1.4 

  

 

Figure 1.4: A scheme showing the mechanism of cysteine protease activity (adapted from van der Hoorn, 
2008). The substrate (green) is held in place by its R groups in pockets of the CP (grey), with the 
substrate’s carbonyl group in an oxyanion hole.  A histidine residue accepts a proton from the cysteine 
residue, resulting in an anionic sulphur, and this attracts the carbon in the carbonyl group. A temporary 
dipole induced by the CP results in the carbon forming a bond with the sulphur, and the peptide bond is 
subsequently broken, with the donated proton binding with the nitrogen forming an amine group on one of 
the products. A water molecule is required to complete the carboxyl group on the other product (Van der 
Hoorn, Renier AL, 2008). 
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1.4.3 The roles of CPs in plant growth and development  

CPs have been isolated and characterized from different organisms (Hall and 

Richards, 2013). Over 21 families of CPs have been described, with more than 50% 

of those found in viruses alone (Habib and Fazili, 2007). CPs hold a central position in 

the primary and secondary metabolism of plants. They are involved in the synthesis 

and metabolism of phytohormones such as ethylene (Romero et al., 2014). Ethylene 

influences seed germination and seedling growth, root hair development, fruit ripening 

and organ senescence (Bleecker and Kende, 2000; Mattoo and Handa, 2004); it is 

also involved in the plant’s adaption to stress conditions (Ciardi et al., 2000). CPs are 

essential for the synthesis of S-adenosyl methionine (SAM) from methionine in the 

cytosol, which is then converted to 1-aminocyclopropane-1-carboxylic acid (ACC), the 

substrate for ethylene production (Bleecker and Kende, 2000; Iqbal et al., 2013).  

CPs have been shown to have important roles at different stages of plant 

development, particularly in organ senescence and PCD (Solomon et al., 1999), as 

well as in protein storage and the regulation of protein and amino acid turnover 

(Grudkowska and Zagdanska, 2004; Grzonka et al., 2001). For example, vacuolar 

processing enzymes (VPE) are CPs that are found in a range of plant and animal 

organisms (Cai and Gallois, 2015; Sueldo and van der Hoorn, 2017). They were 

initially shown to function in the maturation of seed storage proteins plants (Hara-

Nishimura et al., 1993; Hatsugai et al., 2004). VPEs activate protein precursors that 

operate in the vacuole (Hatsugai et al., 2006). The accumulation of two Arabidopsis 

CPs, RD21 and VPEɣ, in ER bodies was shown to be involved in senescence-induced 

PCD (Rojo et al., 2003). While there is as yet no evidence to link autophagy to ER-

body pathways, the CPs that are stored in ER‐derived compartments of senescing 

tissues are able to reach the vacuole through the Golgi apparatus (Michaeli et al., 
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2014). Although CP functions have been well characterized in model plant species 

such as Arabidopsis, there are relatively few studies in the literature on CP functions 

in cereals such as wheat.  

CPs are also involved in the defence systems that protect plants against herbivores, 

insects (Konno et al., 2004) and fungal pathogens (Krüger et al., 2002), as well as 

abiotic stresses (Rabbani et al., 2003; Groten et al., 2006). For example, the levels of 

transcripts encoding the tobacco (Nicotiana tabacum L.) CP gene called NtCP2, a 

cysteine protease that is expressed in mature and senescing leaves, were increased 

when tobacco plants were exposed to drought (Beyene et al., 2006). Furthermore, 

vacuolar CP activity also plays a role in PCD (Beyene et al., 2006; Martínez, D.E. et 

al., 2007). Stress-induced protein degradation has a negative impact on plant growth, 

leading to reduced crop yields and quality (Fahad et al., 2017).  

As early as the 1990s, it was recognised that CPs from differing families were 

expressed when plants were exposed to different stresses, including drought and low 

temperatures (Brzin and Kidrič, 1996; Ingram and Bartels, 1996). The expression of 

genes that encode for a variety of putative proteases was increased by drought in 

Arabidopsis thaliana and other species (Seki et al., 2002; Bartels and Sunkar, 2005). 

Moreover, the expression of numerous protease inhibitors in response to abiotic 

stresses have been reported. For example, the genes that encode a CP vacuolar 

processing enzyme were expressed in A. thaliana in response to heat shock (Li et al., 

2012). Further analysis of how stress alters the activity and expression of CPs and 

their endogenous protease inhibitors is required to fully understand the stress-induced 

regulation of these proteins (Kidrič et al., 2014). 
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The activity of CPs is highly regulated in plant cells. In particular, the presence of tight 

binding protease inhibitors, known as called cystatins, is important in CP regulation. 

Cystatins, which block CP activity, have been identified and characterized in different 

plant species (Kunert et al., 2015). While transgenic plants expressing the rice cystatin 

OC-I show improved abiotic stress tolerance (Van der Vyver et al., 2003; Quain et al., 

2014; Kunert et al., 2015), relatively little is known about the specificity of cystatins 

(Botha et al., 2017). 

Three hundred and sixty-six cystatin-like sequences have been identified to date along 

with 951 C1 family sequences. These include the papain-like CPs in the Viridiplantae 

kingdom (http://www.phytozome.net/) (Kunert et al., 2015). The C1A family has been 

extensively studied in barley (Hordeum vulgare L.) because of the availability of 

genome information (Botha et al., 2017). The expression and function of individual C1 

cysteine proteases has been investigated in barley (Velasco-Arroyo et al., 2016). 

Recently, the cysteine protease called HvPAP14 was shown to be localized in barley 

chloroplasts (Frank et al., 2019). This enzyme may be responsible for the partial 

degradation of Rubisco within the chloroplasts prior to autophagy (Xiong et al., 2007).  

The CP family in wheat is much less well characterised than that in barley (Botha et 

al., 2017). The absence of extensive genome sequence information hinders the 

possibility of utilising technologies such as RNA-seq to characterise the expression of 

wheat CPs and cystatins. Extensive transcriptional changes have been reported in 

wheat leaves both in response to a range of environmental stresses and during the 

senescence process (Pearce et al., 2014). It would be useful to have better information 

on the wheat genes that encode specific proteases that are induced by environmental 

stresses and that are linked to leaf senescence (Botha et al., 2017). 

http://www.phytozome.net/
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 Plant protease inhibitors 

Protease inhibitors (PIs) have been mainly studied in three families of the plant 

kingdom, including Solanaceae, Gramineae, and Leguminosae (Pillay, P et al., 2012). 

PIs are small proteins which are largely located in storage tissues such as tubers and 

seeds, as well as in shoots and roots (Habib and Fazili, 2007; Diaz-Mendoza et al., 

2016). PIs are found in all the plant organs, where they are located within the cell wall 

and apoplast as well as the internal cellular compartments. PIs are categorised based 

on their functions. They either block the protease active site (competitive) or they alter 

the tertiary structure (non-competitive). Both processes result in a loss of function. PIs 

are most commonly described in relation to their protease targets (Kidrič et al., 2014). 

They are often considered to be anti-metabolic proteins and they have proved to be 

an attractive target for the control of insect pests using transgenic plants because they 

interfere with insect digestion (Grzonka et al., 2001; Diaz-Mendoza et al., 2016). In 

addition, the induction of PIs in plants is a vital response to insect infestation or attack 

by pathogens (Grudkowska and Zagdanska, 2004). PIs also have important roles in 

plant responses to wounding, cold, drought and other abiotic stresses (Pernas et al., 

2000).  

There is a general consensus that CPs and PIs are important components of the 

network of regulated proteolysis pathways in plants, and that PIs prevent uncontrolled 

proteolysis (Kidrič et al., 2014). Environmental stresses elicit changes in the 

expression of genes that encode proteases and PIs, but relatively little mechanistic 

information is available about how they specifically regulate the protein content and 

composition of cells. Most data on proteolytic enzyme and PI functions is interpreted 

in terms of general physiological and developmental functions (Vierstra, 1996; Adam 

and Clarke, 2002; Palma et al., 2002; Schaller, 2004; Vierstra, 2009). For example, it 
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has been the hypothesised that vacuolar proteases are specifically induced by 

developmental senescence and stress-induced senescence in a more general protein 

degradation pathway (Martínez, D.E. et al., 2007). 

1.5.1 Phytocystatins 

Cystatins or phytocystatins (PhyCys), which are proteins that inhibit plant cysteine 

proteases, are expressed in most if not all dicot and monocot cell types, where they 

have been detected in the vacuoles and in the cytoplasm, for example in potato 

(Solanum tuberosum) (Nissen et al., 2009) and tomato (Solanum lycopersicum) 

(Madureira et al., 2006). PhyCys contain a central Gln-Xaa-Val-Xaa-Gly motif in the 

protein sequence, where Xaa stands for any amino acid (Kunert et al.,2015). The C-

terminal region contains either a Pro-Trp or Leu-Trp motif, whereas a conserved 

glycine residue is located in their N-terminal regions (Kunert et al.,2015). 

Phytocystatins and animal cystatins showed similarities in their conserved QxVxG 

motifs and in the mechanisms by which they inhibit the activity of their target enzymes, 

i.e. by interacting and blocking the active sites of their target proteins (Figure 1.5) 

(Christoff and Margis, 2014).  

Several PhyCYSs have been characterized and shown to play important roles in 

processes such as in fruit development (Neuteboom et al., 2009), PCD (Belenghi et 

al., 2003) and seed germination (Hong et al., 2007; Hwang et al., 2010). PhyCys 

functions are most often described in the literature in terms of their functions as 

regulators of endogenous protein turnover and in the defence against herbivores and 

pathogens (Urwin et al., 2003; Outchkourov et al., 2004; Yang and Yeh, 2005; 

Christova et al., 2006; Martinez et al., 2009; Benchabane, M. et al., 2010). Their role 

as defence proteins is perhaps the best characterised. PhyCys were found to inhibit 
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insect and nematode digestive protease activities in in vitro experiments that employ 

artificial diets and in bioassays on plants that had been transformed to express 

different PhyCys genes(Atkinson et al., 2004; Carrillo et al., 2011). Furthermore, these 

inhibitors also show antipathogenic and antimite activities (Gutierrez-Campos et al., 

1999; Martinez, M et al., 2003; Carrillo et al., 2011). However, little is known about the 

specific targets for PhyCys or the types of proteins that subsequently provide 

protection from degradation (Martínez, M. et al., 2012). PhyCYSs are also important 

in plant defences against abiotic stress responses but in most cases their precise 

functions remain poorly characterised (Gaddour et al., 2001; Zhang, X.M. et al., 2009; 

Zhang, X. et al., 2008; Diop et al., 2004).  

A range of transgenic plants that constitutively express cystatins have been used to 

study their roles in abiotic stress responses (Van der Vyver et al., 2003). The 

assumption is that tolerance to stresses is achieved because PhyCys block or partially 

prevent stress-induced protein turnover (Van der Vyver et al., 2003; Zhang, X. et al., 

2008). Hence, although such ‘pleiotropic’ effects are only usually thought to be 

unintentional metabolic interference, they can be useful in crop improvement 

(Benchabane, M. et al., 2010). The ectopic expression of protease inhibitors in leaves 

had negligible effects on plant growth and development (Benchabane, Meriem et al., 

2008). Moreover, recombinant protease inhibitors that operate against specific 

endogenous proteases could be used to modulate in situ proteolytic activities (Faye et 

al., 2005).  

 

 



18 
 

 

 

 

 

 

 

 

 

 

Figure 1.5: Scheme showing the mechanism of phytocystatin action. A cysteine protease-
cystatin complex is formed in which the target protein is inhibited, preventing protein 
degradation (Kunert et al., 2015).  
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1.1.1.1 Rice cystatin, Oryzacystatin, OC-I  

Oryzacystatin I (OC-I) was first identified in rice seeds (Oryza sativa L. japonica) (Abe, 

Keiko et al., 1987). This small protein of 120 amino acids has a molecular mass of 

15,355 Daltons (Dou et al., 2011). The gene encoding OC-I is located on rice 

chromosome 1 (Dou et al., 2011). The three-dimensional structure contains one α-

helix and a five-stranded β-sheet motif, but like other family-1 cystatins (stefins), OC-I 

lacks disulfide bonds (Figure 1.6). OC-I is a competitive inhibitor of papain-like CPs, 

as shown in Figure 1.7 (Benchabane, M. et al., 2010). Transgenic plants expressing 

OC-I were first produced to enhance resistance to weevils (Sitophilus oryzae L.) and 

the red flour beetle (Tribolium castaneum H.) (Lawrence and Koundal, 2002). The 

activities of papain-type enzymes such as oryzains α and β were inhibited by OC-I 

(Quain et al., 2015). In addition, OC-I could be useful in controlling nematodes and 

other pests in plants (Urwin et al., 2001).  
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Figure 1.6: Amino acid sequence of oryzacystatin-I (OC-I) showing the location of the 
secondary structures (a-helix and b-sheets). Cystatin-conserved motifs are shown in bold red 
colour. 

 

Figure 1.7: Scheme showing the 3D structure of OC-I. This inhibitor possesses one α-
helix and a five-stranded β-sheet motif (A). The diagram shows the insertion of the 
conserved cystatin loop structure (yellow) into the active site (grey) of papain (B). 
(Source: Benchabane et al., (2010)).  
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Studies on OC-I expression in transgenic plants showed that abiotic stress tolerance 

and biotic stress tolerance were increased by the presence of the transgene (Van der 

Vyver et al., 2003; Prins et al., 2008). When transgenic OC-I-expressing tobacco 

plants were transiently transformed by an E. coli gene encoding glutathione reductase 

(GR), the resultant glutathione reductase activity was higher than when the wild type 

transformed to express GR, suggesting that OC-I can inhibit the activities of 

endogenous stress-induced cysteine proteases that target GR (Pillay, P et al., 2012). 

The expression of OC-I in tobacco altered shoot growth and development (Figure 1.8). 

Moreover, the transgenic tobacco plants expressing OC-I showed delayed leaf 

senescence, together with greater accumulation of leaf protein, delayed Rubisco 

degradation, and increased shoot biomass production and seed yields (Van der Vyver 

et al., 2003; Prins et al., 2008). Expression of a GFP recombinant OC-I protein in the 

transgenic tobacco plants showed that the protein was present in the leaf cytoplasm, 

chloroplasts and vacuoles (Prins et al., 2008). Transgenic soybean plants expressing 

OC-I had a greater number of root nodules, although the nodules were slightly smaller 

than those on wild type controls (Kunert et al., 2015; Quain et al., 2015). Moreover, A. 

thaliana plants expressing OC-I showed similar results to those obtained with tobacco 

expressing OC-I (Van der Vyver et al., 2003). The transgenic lines had a slower rate 

of growth at the early stages of development but a greater leaf area at flowering than 

the wild type (Quain et al., 2014). Cysteine proteases have not as yet been identified 

in A. thaliana or tobacco chloroplasts. A key question therefore concerns how OC-I 

expression can alter the abundance of chloroplast proteins and enhance the activity 

of Rubisco during age-related or stress-induced senescence (Prins et al., 2008). 

Transgenic Arabidopsis lines have been produced that express OC-I either in the 
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cytosol or the chloroplasts (Quain et al., 2014; Quain et al., 2015) to address the 

question of whether OC-I specifically targets chloroplast proteins.  

 

 

 

 

 

 

 

 

  

Figure 1.8: OC-I expression of tobacco delays senescence and increases biomass production 
and seed yields. Phenotypes of wild-type control and OC-I-expressing tobacco plants at 4 (A) 
and 8 (B) weeks, together with examples of seed pods (C) from control and OC-I-expressing 
tobacco plants, illustrating the larger pods in the latter (Van der Vyver et al., 2003). 
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 Hypothesis and objectives 

Previous studies have shown that OC-I expression resulted in the accumulation of 

chloroplast proteins, particularly in senescent leaves, and that photosynthesis in the 

transgenic plants was better protected against the inhibition caused by exposure to 

cold and drought stress (Quain et al., 2014; Quain et al., 2015). The hypothesis on 

which these studies are based is that CPs with relevant chloroplast functions are 

important in the control of plant growth and abiotic stress tolerance. It is proposed that 

developmentally regulated and stress-induced proteolysis can be limited by 

constitutive expression of OC-I. OC-I has previously been expressed in a range of 

plant species, including tobacco, soya and A. thaliana. In these studies, OC-I was 

expressed without a targeting sequence, and hence the product of the transgene was 

presumed to be located in the cytosol. In an earlier PhD study in the Foyer lab, 

transgenic A. thaliana plants were produced in which OC-I was specifically targeted to 

the chloroplasts (Quain et al., 2014). However, the mechanism of action of OC-I in 

Arabidopsis chloroplasts is unknown because CPs have, as yet, been identified only 

in barley chloroplasts.  

The current research was undertaken to study the effects of OC-I expression in the 

chloroplasts or the cytosol on the growth and shoot phenotypes of Arabidopsis plants 

to determine whether OC-I influences processes within the chloroplasts as well as the 

cytosol. Recently, a cysteine protease inhibitor was described in barley chloroplasts 

(Frank et al., 2019). A key question concerns how OC-I expression alters the 

abundance of chloroplast proteins and enhances the Rubisco activity during age-

related or stress-induced senescence. 

The rice OC-I protein has been identified as having a role in both defence against 

pathogens and abiotic stress. This study will mainly focus on the effects of OC-I on 
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plant growth and development under optimal and stress conditions such as high light. 

1.6.1 Research hypotheses: 

The hypothesis of this thesis is that the expression of OC-I target to chloroplast as well 

as cytosol in Arabidopsis significantly influences plant growth and develpoment under 

optimal and high light conditions (Chapter 3 and 4). Moreover, the expression of OC-I 

affects seed size and seed protein contents in all three of the studied plant species 

(Arabidopsis, wheat and soybean; Chapter 6).Hence, this study will help future 

researchers to identify any chloroplast proteins that are inhibited by OC-I and to 

characterize the possible roles of these proteins in important chloroplast functions 

such as protein turnover and Rubisco degradation.  

The specific objectives of the study were: 

1. To characterise the phenotypes of transgenic Arabidopsis plants expressing 

the rice cystatin, oryzacystatin-I (OC-I), in the cytosol and chloroplasts to that 

of the wild type (Chapter 3 and 4). 

2. To study the effects of OC-I expression on gene expression and the abundance 

of the Rubisco and the photosystem II reaction centre D1 proteins in A. thaliana 

under high light stress (Chapter 3 and 4).  

3. To determine the effects of OC-I expression on retrograde signalling pathways 

that regulate photosynthetic gene expression in A. thaliana (Chapter 3 and 4). 

4. To select T2, T3 and T4 transgenic wheat lines overexpressing OC-I (Chapter5) 

5. To investigate the influence of OC-I on the size and properties of Arabidopsis, 

soybean and wheat seeds (Chapter 6).   

6. To identify all papain-like cysteine proteases in both Arabidopsis and wheat, 

using public databases (Chapter 7).  
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Chapter 2 . Materials and Methods 

 Oryzacystatin-I (OC-I) Constructs  

Various vectors that overexpress the rice (Oryza sativa) cysteine protease inhibitor I 

oryzacystatin-I (OC-I) were constructed in the Christine Foyer Lab, Faculty of 

Biological Sciences, University of Leeds for expression in different plant species 

(Quain et al., 2014) .  

2.1.1 Overexpression of OC-I in Arabidopsis lines 

Transgenic Arabidopsis lines expressing OC-I either without a targeting sequence (for 

expression in the cytosol) or with a chloroplast targeting sequence (for expression in 

the stroma) were prepared. The constructs designated as pLBRCys-1 and 

pLBRPRKCys-1, were prepared by Dr Eugene Makgopa, a former PhD student in the 

Christine Foyer group, Faculty of Biological Sciences, University of Leeds (Quain et 

al., 2014). Both constructs contained the gene encoding OC-I cystatin under the 

control of a double CaMV promoter, and a CaMV terminator sequence (Figure 7A and 

B). Additionally, the plasmids contained a gene (Bar) that confers resistance to the 

herbicide BASTA, also under the control of a double CaMV promoter, and a gene 

(aaDa) encoding spectinomycin resistance to bacterial selection (Quain et al., 2014). 

The pLBRCys-1 is responsible for the expression of OC-I to the cytosol (Figure 2.1A). 

The pLBRPRKCys-1 contains OC-I and the sequence encoding the signal peptide of 

phosphoribulokinase (PRK; Figure 2.1B) leading to targeting of the protein in the 

chloroplast stroma (Figure 2.2; Jonak, AIT Austrian Institute of Technology, 

unpublished data).  

The transgenic plants were prepared by the floral dip method from the Agrobacterium 

tumefaciens strain GV3101 (Clough, S.J. and Bent, 1998). The A. thaliana ecotype 

Columbia (Col-0) was used as the wild-type (WT) in both cases (Quain et al., 2014). 
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Transgenic plants were selected using the leaf painting method (Paz et al., 2006). In 

brief, the glufosinate (an ammonium salt of phosphinothricin, the main active 

ingredient of the herbicide BASTA) was applied on the leaves. It may also be possible 

that high concentrations of glufosinate resulted in a high mortality rate in the transgenic 

plants. Therefore, PCR and qRT-PCR were also used to select successful transformed 

plants (Figure 2.3; (Quain et al., 2014). The T4 generation of transgenic lines was 

analysed in the present studies.  Lines that express OC-I in the cytosol are hereafter 

designated as CYS lines, while those that express OC-I in the chloroplasts are 

designated as PC lines. 
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Figure 2.1: Expression cassettes in destination vectors used to target OC-I to (A) the cytosol 
(pLBRCys-1) and to (B) chloroplast (pLBRPRKCys-1). 

Figure 2.2: Transient expression of yellow fluorescent protein in chloroplasts, demonstrating the 
ability of the PRK signal peptide to target transgenic proteins to plastids. 

 

Figure 2.3: Representative image of transgenic Arabidopsis plants selected using BASTA leaf 
painting. Resistant plants were observed to be green (1), partial resistance in plants were slightly 
yellowed with some partially resistant green patches (2 and 4) and susceptible plants were 
completely yellow (3). 

A 

B 
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2.1.2 Overexpression of OC-I in wheat lines  

The OC-I construct used for expression in wheat plants was prepared by Gloria 

Comadira, a former PhD student in the Christine Foyer group, assisted by Dr Barry 

Causier, a member of the School of Biology, Leeds University (Comadira, 2015).  The 

Gateway cloning system (Invitrogen) was used to produce the OC-I expression vector, 

starting with the removal of the OC-I gene (derived from cDNA) from a pLBR19-OC-I 

construct. In accordance with the Gateway technique, the OC-I sequence was cloned 

into a pENTR1A vector containing a kanamycin resistance gene (Comadira, 2015).   

The pENTR1A-OC-I vector was sent to the National Institute of Agricultural Botany 

(NIAB, Park Farm, 1 Villa Rd, Impington, Histon, Cambridge, UK),  where the 

transgenic wheat lines were generated. The intermediate cassette containing the OC-

I coding sequence was recombined into binary vector pSc4Act-R1R2 to create 

pRMH052 using a Gateway LR Clonase II kit (Thermo Fisher Scientific Inc., Waltham, 

Massachusetts, USA). Following sequence verification, this plasmid was electro-

transformed into the A. tumefaciens strain LBA4404 pSB1 (Hellens et al., 2000; 

Komari et al., 1996).  

Hexaploid spring wheat cv. Fielder plants (USDA ARS) grown in controlled 

environment chambers at 20oC day/15oC night with a 16h-day photoperiod were used 

for the transformation. Transformation of immature embryos isolated for 14-20 days 

post-anthesis was carried out by co-cultivation with Agrobacterium containing 

pRMH052, the rice actin promoter was used in the final construct (Figure 2.4), for two 

days in the dark (Ishida et al., 2015). Subsequent removal of the embryonic axis and 

tissue culture was performed as previously described (Risacher et al., 2009). Thirty-

seven regenerated wheat plants were confirmed as transformed by PCR amplification 

of the OsCrystatin transgene and the T-DNA copy number was determined by qPCR 
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assay (Milner et al., 2018). The T1 generation of transgenic wheat was produced and 

analysed by PCR, which was used to identify the number of independent insertions in 

the genome of 37 independently transformed lines, alongside 4 empty vector controls. 

Plants that contained a single insertion were selected for further analysis (Table 2.1).  

 

 

 

 

 

 

 

 

 

Plant Name Copy Number GOI PCR Plant Name Copy Number GOI PCR 
Line 1 1 + Line 21 1 + 
Line 2 2 + Line 22 4+ + 
Line 3 3 + Line 23 1 + 
Line 4 4+ + Line 24 3 + 
Line 5 4+ + Line 25 2 + 
Line 6 2 + Line 26 1 + 
Line 7 1 + Line 27 2 + 
Line 8 2 + Line 28 1 + 
Line 9 1 + Line 29 1 + 

Line 10 1 + Line 30 2 + 
Line 11 1 + Line 31 4+ + 
Line 12 1 + Line 32 2 + 
Line 13 2 + Line 33 2 + 
Line 14 3 or 4 + Line 34 4+ + 
Line 15 4+ + Line 35 4+ + 
Line 16 4+ + Line 36 4+ + 
Line 17 4+ + Line 37 4+ + 
Line 18 3 or 4 + E. con 3 0 - 
Line 19 4+ + E. con 4 0 - 
Line 20 4 + 

 E. con 1 0 - 
E. con 2 0 - 

pRMH052_T-DNA
6157 bp

Os Cystatin CDS

nptIIFAD2 intron

Actin intron

Left Border Right Border
Sc4 promoter

pActin (rice)

wheat RBS

terAtNos
terAtNos

Figure 2.4: The destination vector, pSc4ActR1R2, used with the pENTR1A-OC-I to create the final binary 
expression vector pRMH052 
Table 2-1: Transgenic wheat lines (T1) were provided by the National Institute of Agricultural Botany 
(NIBA), including 37 independent transformed lines together with 4 empty vector controls (E.con). Copy 
number estimation by qPCR and confirmation by PCR of the transgene are shown and gene of interest 
(GOI) PCR data confirms that the T-DNA has been completely inserted into lines. Blue labels indicate single 
insertion lines that are selected for T2 generation.  
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2.1.3 Overexpression of OC-I in soybean lines  

Using constructs prepared by Dr Eugene Makgopa in the Christine Foyer Lab, Faculty 

of Biological Sciences at the University of Leeds independent transformed transgenic 

lines were produced by Dr Kan Wang at Iowa State University (Plant Transformation 

Facility, Iowa State University, USA) (Quain et al., 2014). Three independent lines 

expressing OC-I (SOC-1, SOC-2 and SOC-3) were selected for further analysis 

together with the soybean wild type (Glycine max cultivar Williams 82) (Makgopa, 

2014).  

 Seed sterilization 

The vapor-phase sterilization protocol (Clough, S. and Bent, 2000) was used to 

sterilize the seeds. Seeds of the Arabidopsis wild type (WT) and transgenic 

Arabidopsis lines were placed in separate opened Eppendorf tubes in a fume hood 

with a beaker containing 100 ml of domestic bleach and 3 ml of concentrated HCl 

(1M). Seeds were then exposed to chlorine gas for two hours. After sterilization, the 

seeds were used immediately for growth on agar plates.  

 Growth conditions 

2.3.1 The growth of transgenic Arabidopsis lines on agar plates 

Seeds of the transgenic Arabidopsis lines and WT were grown in agar on half-strength 

Murashige and Skoog (MS) media containing 2.2 g MS basal medium, 0.1 g L-1 Myo-

inositol, 10 g sucrose and 0.5 g L-1 2-(N-morpholino) ethane sulfonic acid (MES) buffer 

in 1 L dH2O. The pH was adjusted to 5.7 with potassium hydroxide (0.2M: KOH) and 

10 g Agar was then added into it. The medium was autoclaved at 121°C and then 

poured into square sterile plates. Sterilised seeds were grown in the plates and placed 

in the cold-dark room for three days before transfer to controlled environment 
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chambers with a 16/8 h day/night photoperiod at 20°C, 60% humidity and a light 

intensity of 400 µmol m–2 s–1 for 10 days.  

2.3.2 The growth of transgenic Arabidopsis lines on soil  

 Seeds of the transgenic Arabidopsis lines and the WT were sown in pots (5 cm x 5 

cm) containing compost and placed in a dark cold room overnight to encourage 

germination. The pots were then transferred to controlled environment chambers with 

16/8 h day/night photoperiod at 20°C, 60% humidity and a light intensity of 400 µmol 

m–2 s–1.  After 10 days, the plants were transplanted into a new medium potting tray 

(William Sinclair Horticulture Ltd, UK) and grown under glasshouse conditions for a 12 

weeks.    

2.3.3 The growth of transgenic wheat lines on soil 

Seeds of transgenic lines expressing OC-I and WT of wheat were sown in pots (5 cm 

x 5 cm) containing compost and placed in a controlled environment under glasshouse 

conditions with a 16h day/8 night photoperiod at a day/night temperature of 20/15oC 

60% humidity and a light intensity of 400 uEm-2s-1. Every two week, the plants were 

replaced it to a containers that are about 2 to 4 inches larger in diameter. 

 Phenotypic analysis  

Differences between the transgenic Arabidopsis lines and the wild type will be 

explored under optimal conditions. Parameters related to growth and development, 

such as germination, root architecture, shoot biomass, time to flowering, number of 

leaves and rosette diameter will be measured. The transgenic lines and WT were 

grown simultaneously and their relative positions were randomised in the growth 

chamber. Each measurement in the phenotypic analysis involved 24 plants per line 

and three replicates were performed for each experiment. 
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2.4.1 Germination efficiency and seedling survival 

To examine seed germination in the wild-type (WT) and transgenic lines (Arabidopsis, 

soybean and wheat), a number of seeds per line were sown in ager plates or soil and 

placed in a controlled environment chambers.The number of seeds that germinated 

(the appearance of radicles) was then recorded. The seedling survival rate also was 

analysed as the number of viable seedlings after ten days (expressed as a percentage 

as the number of seeds sowed).  

2.4.2 Root architecture 

A Canon digital camera (EOS 450D) was used to capture images of 10 day-old 

seedlings of the WT and the transgenic lines, grown on ½ MS agar media plates. The 

length of the primary roots was measured using the software ImageJ 

(https://imagej.nih.gov/ij/download.html). The number of lateral roots was recorded 

and lateral root density was calculated as the number of lateral roots divided by the 

length of the primary root (Placido et al., 2020). 

2.4.3 Shoot growth analysis  

Transgenic Arabidopsis lines and WT were collected and separated into shoots and 

roots. The fresh shoots were immediately weighed and then placed in an oven at 80ºC 

for two days. The dry shoots were weighed again and the number of leaves (excluding 

cotyledons) per rosette was counted. The time of flowering, which is the age at which 

the plants began to produce flowering stems, also was recorded. In addition, the 

distance was measured between the tips of the largest opposite pairs of leaves on 

each plant to determine the rosette diameter using the software ImageJ.   

https://imagej.nih.gov/ij/download.html
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 Seed yield 

To examine the seed yield of the transgenic Arabidopsis, wheat and soybean lines 

and the WT, plants were harvested by hand after maturity. The whole harvested plant 

was used to estimate seed size, the number of seeds per plant and seed weight. 

Images of seeds were captured using a Canon digital camera (EOS 450D). The 

number of seeds in each of six plants was counted and the average weight of 100 

seeds was recorded.  

 Leaf pigments 

Leaves (100 mg) from both the transgenic and WT Arabidopsis lines were collected 

and ground in liquid nitrogen using a mortar and pestle; 80% (V/V) acetone was then 

added to each tube. The homogenates were centrifuged (Centrifuge 5804R, 

Eppendorf, UK) at 20. 817 × g at 4°C for ten minutes until a white pellet was observed 

in the tubes. The pigment contents (Chl a, Chl b, Chl a + b, and Carotene) were 

measured using a cuvette placed in spectrophotometer at absorbance of 645 nm and 

663 nm. Eighty percent (V/V) acetone was used as a blank. The following equations 

(Lichtenthaler, 1987) were used to determine the pigment concentrations:  

Chl a (µg/ml) = 12.25A663.2 – 2.79646.8 

Chl b (µg/ml) = 21.50A646.8 – 5.10663.2 

Total chlorophyll Chl a + b (µg/ml) = 7.15A663.2 – 18.71A646.8 

Carotene (µg/ml) = (1000A470 – 1.82 Ca – 85.2Cb)/198.  

 Total protein content extracted from Arabidopsis leaves 

Samples of transgenic Arabidopsis lines and WT (three fresh leaves from each lines 

of 4-week-old plants) were ground in liquid N2 using a precooled mortar. One millilitre 

of protein extraction buffer (AS08 300, Agrisera) was added for every 100 mg of fresh 
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weight. Samples were centrifuged at 20. 817 × g for 10 minutes and then the 

supernatants were collected in new 2 ml Eppendorf tubes. Then, the protein 

concentrations (mg/g) were measured using the Pierce Microplate BCA Protein Assay 

Kit (Thermo Scientific). The calibration curve was made using BSA (1 mg/mL) as 

standard with dilutions to 0.5, 0.25, 0.125 and 0.06325 mg/mL. Nine microlitres of 

sample or standard was added to the wells of a microtiter plate and then 4µL of 

compatibility reagent solution was added to the sample in each well. Plate was 

covered and incubated at 37°C for 15 minutes. Then, 260µL of BCA Working Reagent 

(WR) to each well and plate was covered and incubated at 37°C for 30 minutes. The 

plate was kept for cooling at room temperature for five minutes. The absorbance was 

read at 562 nm using a FLUOstar Omega plate reader (BMG Labtech GmbH, 

Ortenberg, Germany). The final concentration was calculated in terms of mg protein/g 

FW. 

 Total protein content extracted from seeds  

Total protein extracts were prepared from dried, mature seeds of the WT and the 

transgenic Arabidopsis, soybean and wheat lines. These seeds were ground in liquid 

nitrogen into a fine powder using a chilled mortar and pestle; 0.2 g was then weighed 

out and placed in a tube containing 20% isopropanol (500 ml). The samples were 

subjected to a tube rotator for one hour and then centrifuged at 20.817 g for 10 minutes 

at 4°C. The supernatants were collected in new tubes, and 10 ml of cold acetone was 

added; the tubes were then thoroughly vortexed. The extracts were incubated at 

−20°C overnight. Next, the samples were centrifuged for 30 minutes at 20.817 g at 

4°C. The pellets were dried at room temperature for one hour and suspended in a 

protein extraction buffer (0.5 ml, Agrisera). This was followed by vortexing until the 
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pellet dissolved. The protein concentrations (mg/g) were measured as described in 

Section 2.8.  

 Production of soy flour and isolation of soy flour protein isolates (SPI)  

The extraction of soy flour was carried out in Professor Brent S. Murray’s Lab, School 

of Food Science and Nutrition, University of Leeds. The extraction was conducted 

under optimal conditions of flour-to-water ratio, temperature and pH etc. Briefly, the 

soybean seeds were ground to a fine powder (soy flour); the defatted soy flour was 

extracted using the solvent hexane (99%) at a ratio of 5:1. An alkali solution (pH 8.5) 

was then added to the defatted soybean flakes to remove carbohydrates and produce 

a soy protein concentrate (SPC). Next, acidic water (pH 4.5) was added and the 

samples were centrifuged to produce the soy protein isolate (SPI).  

 SDS gel electrophoresis and protein staining 

Protein samples (10 µg) of transgenic Arabidopsis, soybean, wheat and WT plants 

were mixed with 4x Laemmli Sample Buffer (Bio-Rad, Herefordshire, UK) containing 

0.1% β-mercaptoethanol and boiled at 80ºC for ten minutes. Protein samples (20 μL) 

and PageRuler™ Pre-stained Protein Ladder (5 μL; Thermoscientific, Paisley, UK) 

were loaded onto 4-20% Mini-PROTEAN® TGX™ precast gels (Bio-Rad, 

Herefordshire, UK). The gels were run using the Bio-Rad system (Bio-Rad, 

Herefordshire, UK) in an SDS running buffer at 120 V for one hour. After separation of 

proteins by SDS-PAGE, the gels were stained in a staining solution, Quick Coomassie 

Stain (Generon, 11 Whittle Pkwy, Slough, UK), for one hour to visualise protein bands, 

and a gel picture was taken using an INGENIUS gel imager (Syngene, Cambridge, 

UK). 
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 Western Blotting  

Western blotting was used to detect specific proteins in the protein mixtures, as 

described in Figure 2.5.  The Trans-Blot Turbo System (Bio-Rad, UK) was used to 

transfer the proteins onto nitrocellulose membrane according to the manufacturer’s 

guidelines. The nitrocellulose membrane was incubated in 5% skimmed milk powder 

(Marvel) prepared in TBS-T (25 mM Tris, 150 mM NaCl, 2 mM KCl, 0.1% Tween, pH 

7.4) overnight on a rocking agitator at 4°C, to block non-specific proteins binding to 

the membrane. The membranes then were incubated with the following primary 

antibodies: RbcL; Rubisco large subunit, form I and form II (AS03 037, Agrisera, 

Sweden) PsbA; D1 protein of PSII (AS05 084, Agrisera, Sweden) and PsbA; D1 

protein of PSII, phosphorylated (AS13 2669, Agrisera, Sweden) in 1:10000 dilution 

were then diluted in 5% skimmed milk powder in TBS-T. The nitrocellulose 

membranes were soaked in solution of primary antibodies and kept on a rocking table 

overnight at 4°C. Next, the membranes were washed in TBS-T three times for 15 

minutes each time and then transferred to TBS-T buffer containing 5% skimmed milk 

powder with a 1:10000 dilution of horseradish peroxidase (HRP)-conjugated anti-

rabbit secondary antibodies (AS09 602, Agrisera, Sweden). This was kept on a rocking 

table for two hours at room temperature. The membranes were then again washed in 

TBS-T three times for 15 minutes each time. Proteins bands were then visualised by 

washing the membranes for 5 minutes in Chemiluminescence substrate 

(SuperSignal™ West Pico PLUS, Thermo Scientific, Leicestershire, UK) and recorded 

using an INGENIUS gel imager (Syngene, Cambridge, UK). 
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Figure 2.5: A flowchart of the steps in the protein extraction method and western blot procedure 
used in this study. Proteins were extracted and SDS-PAGE gels were prepared. After separation 
of proteins by SDS-PAGE, one gel was stained in staining solution Quick Coomassie Stain to 
visualise protein bands. Another gel was used for electrotransfer of the protein to nitrocellulose 
membrane.   
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 Selection on kanamycin plates  

The antibiotic kanamycin A was used as a selection marker to select the T2, T3 and 

T4 generations of transgenic wheat lines expressing OC-I. Transgenic lines and WT 

seeds were grown on ½ MS agar media sterile magenta GA-7 vessel containing 

kanamycin A (50mg/ml) (Pan et al., 2010). These plates were placed in a dark room 

at 20°C for five days and then transferred to controlled environment chambers 

(20/15oC day/night temp., 16hr day length, 350-500 uEm-2s-1) for six hours. The plates 

were then covered with aluminium foil and kept in the dark at 20°C for five days. 

Seedlings resistant to Kan were identified based on the survival phenotypes, i.e. the 

appearance of the coleoptile and the first leaf, and long roots that penetrated into the 

Kan selection media. These seedlings were then transplanted into soil to obtain T2 

generation seeds. The procedures were repeated again thereafter to obtain T3 and 

T4 generations seeds.  

 High light treatments  

Transgenic and WT Arabidopsis plants were grown in compost in controlled 

environment chambers at 20°C and 60% humidity with a 16/8 hour day/night 

photoperiod at low light intensity (250 µmol m-2 s-1) for five weeks. The WT and 

transgenic lines were grown at the same time and their relative positions were 

randomised in the growth chamber. Thereafter, half of the plants were transferred to 

high light (HL) at (800 μmol m-2s-1) for eight hours. Six plants per line were involved in 

each experiment, each of which was repeated three times. Leaf samples were 

collected at each time point and placed in liquid nitrogen. Samples were stored in -

08°C for further analysis. 
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 The use of norflurazon and lincomycin to inhibit chloroplast processes    

Norflurazon (NF), a herbicide that inhibits the carotene biosynthesis pathway (Burhans 

and Heintz, 2009), and lincomycin (LINCO), an antibiotic that inhibits protein synthesis 

in the chloroplasts (Yakandawala et al., 2003) were used to study the effects of OC-I 

on chloroplast to nucleus retrograde signalling. CYS, PC and WT seeds were sterilized 

(see Section 2.2) and grown on half-strength MS media (see Section 2.3.1) 

supplemented with NF (5 µM), LINCO (500 µM) and EtOH as a control. Plates were 

kept for five days in a controlled environment (described in Section 2.3.1). Five-day-

old control and treatment seedlings were photographed with a Canon digital camera 

(EOS 450D). RNA was then extracted from both control and treatment seedlings 

following the NucleoSpin® RNA Plant kit protocol described in Section 2.17.3.  The 

levels of LHCA, LHCB1 and LHCB2 transcripts were measured using quantitative real-

time PCR (QPCR), as described in Section 2.17.3.2.  

 Photosynthetic carbon assimilation 

Photosynthetic CO2 assimilation rates were measured on fully expanded leaves of 

transgenic and WT Arabidopsis plants (three fresh leaves per genotype of 5-week-old 

plants) that had either been maintained for 8 hours under low light conditions or had 

been exposed for eight hours under high-light conditions (800 μmol m-2 s-1) using a 

portable photosynthetic gas exchange system (Model LI-6400XT; LI-COR 

Biotechnology UK Ltd, St. John's Innovation Centre, Cambridge, UK), as described by 

Soares et al. (2008). The LI-6400XT delivered a light intensity of 800 μmol.m-2.s-1 and 

a CO2 level of 400 μmol mol-1. This infrared gas analyser system was set to a light 

intensity of 250 μmol m-2 s-1 and an atmospheric CO2 level of 400 μmol m-2 s-1 in the 

leaf chamber. One leaf of 4- week- old- plant was inserted into a 3x2 cm 6400-02B 

LED gas exchange chamber. Each measurement was performed at 20°C. 
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Photosynthesis was allowed to stabilise under these conditions in the leaf chamber for 

15 minutes prior to measurement. 

 Total protease activity and cysteine protease activity 

Protease activities were determined using the Abcam’s Assay Kit (ab111750, 

Discovery Drive, Cambridge Biomedical Campus, Cambridge, UK). This quantitative 

method uses a highly quenched, fluorescein isothiocyanate (FITC)-labelled casein as 

a general protease substrate. The FITC-casein substrate is broken down into small 

peptides by proteases activities in the plant samples resulting in a decrease in 

fluorescence quenching. The fluorescence of peptide fragments was estimated at an 

excitation/emission (Ex/Em) wavelength of 485/530 nm. The assay was performed 

according to the manufacturer’s instructions. In brief, leaf samples of transgenic 

Arabidopsis lines and WT (three fresh leaves from each lines of 5-week-old plants) 

were extracted using Assay Buffer (1:4 ratio) and placed into microcentrifuge tubes. 

The samples were then centrifuged (Centrifuge 5804R, Eppendorf, UK) at 20. 817 × 

g at 4°C for five minutes until the supernatants were clear. A standard curve was 

produced with FITC (as the protease substrate) at dilutions of 0, 0.05, 0.1, 0.15 0.2, 

and 0.25 nmol/well.  Five microliter samples of control, leaf extracts or standard 

solution were added to each of the wells on a microplate; Assay Buffer was then added 

to a final volume of 100 μL/well. Next, reaction mixture of Assay Buffer (48 µL) and 

protease substrate solution (2 µL) were added to the control and leaf extract wells. To 

determine cysteine protease activity, the specific cysteine protease inhibitor E-64 (5 

mM; Sigma, Aldrich, Dorset, United Kingdom) was added to one set of samples. The 

Ex/Em was read at 485/530 nm using a FLUOstar Omega plate reader (BMG Labtech 

GmbH, Ortenberg, Germany). This measurement was designated reading 1 (R1) at 

time 1 (T1). The plate then was covered and incubated at room temperature for 30 
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minutes and the Ex/Em was read at 485/530 nm; this was designated Reading 2 (R2) 

at time T2. The unquenched FITC fluorescence generated by proteolytic digestion of 

the substrate is represented as ΔRFU = R2 – R1. The FITC standard curve was blotted 

(Figure 2.6A) to obtain the amount (B nmol) of FITC generated between T1 and T2 in 

the reaction wells. Protease activity could then be calculated using the equation shown 

in Figure 2.6B. Then, data were presented as µmol/min/mg. 
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Figure 2.6: The FITC standard curve (A) and equation (B) used to calculate protease activity. 
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 Nucleic acid extraction 

2.17.1 DNA extraction from transgenic Arabidopsis expressing OC-I and WT 

leaves    

Leaf samples were collected from 4-week-old transgenic lines (CYS and PC) and WT 

plants for the extraction of DNA. In total three leaves were harvested from each 

transgenic plant and three leaves from the WT plants. Leaf samples were ground in 

liquid nitrogen. DNA extraction was performed according to the procedure described 

by Lu (2011). Frozen samples were transferred to 1.5 ml Eppendorf tubes and 200 µL 

of extraction buffer (200 mM Tris buffer, 250 mM NaCl, 25 mM EDTA, 0.5% SDS, pH 

7.5) was added to each tube. The tubes were vortexed for five seconds and were then 

centrifuged at 20,817g for two minutes. The supernatant of the samples was 

transferred to a fresh tube and 300 μL isopropanol was added, and the mixtures were 

centrifuged at 20,817g for ten minutes. The pellets were washed with 70% ethanol 

(EtOH) and then centrifuged at 20,817g for 10 minutes. The supernatant was 

removed, then the pellets were re-suspended in 100 μL H2O. The DNA concentrations 

were quantified using the Nanodrop (NanoDrop ND-1000, Thermo) method and 

samples were measured at 260/280 nm.   

2.17.2 DNA extraction from wheat leaves and seeds  

DNA was extracted from wheat leaves and seeds according to the manufacturer’s 

instructions (Qiagen DNeasy plant kit; Qiagen Ltd, Skelton House, Manchester, UK). 

For each sample, one hundred milligrams of tissue was ground in liquid nitrogen using 

a mortar and pestle. Homogenates were then transferred to microfuge tubes. Four 

hundred microliters of Buffer AP1 and 4 µl RNase A were then added to each sample 

tube. Samples were mixed on a vortex and then incubated at 65°C for ten minutes. 

Next, 130 µl of Buffer P3 was added to each of the tubes and then mixed. The tubes 



43 
 

were incubated on ice for five minutes and the lysates were centrifuged (Centrifuge 

5804R, Eppendorf, UK) at 20. 817 × g for five minutes. The lysates were then 

transferred to QIAshredder spin columns, which were placed in 2 ml collection tubes 

and then centrifuged (Centrifuge 5804R, Eppendorf, UK) at 20. 817 × g for two 

minutes. The eluates were collected and transferred to 2 ml microfuge tubes and 1.5 

μL of buffer AW1 were added to each. Six hundred and fifty microlitres of the mixture 

was transferred to a DNeasy spin column that was placed in a 2 ml collection tube and 

centrifuged at 20. 817 × g for one minute. The DNeasy spin column was placed in a 

new 2 ml collection tube to which 500 μl of buffer AW2 was added; the tube was then 

centrifuged at 20. 817 × g for two minutes. Next, the spin column was transferred to a 

new 2 ml microcentrifuge tube and 100 µl of Buffer AE was added to the membrane. 

The column was incubated for five minutes at room temperature, then centrifuged at 

20. 817 × g for one minute. This final step was repeated to remove the column-bound 

DNA. The DNA concentrations were then quantified as described in Section 2.18.1.  

2.17.2.1 The PCR reaction and program  

PCR reactions were carried out in a total reaction mixture volume of 20 µl. Reaction 

mixtures were prepared using manufacturer’s protocol and made up 50% of the 

reaction mixture. The PCR tubes were a master mix comprised of the following (per 

reaction): Biomix™ Red (10 µl; Bioline, London, United Kingdom), 1 µM forward and 

reverse primers (2 µl) and sterile water (6 µl); the DNA sample was then added (2 µl; 

100 ng). Biomix™ Red was used according to the placed in a thermal cycler (Biorad, 

Hemel Hempstead, United Kingdom). The PCR program comprised a 5-second 

melting phase at 94°C, followed by 38 cycles (15 seconds at 94°C, 15 seconds at 

60°C and 40 seconds at 72°C), with a final 5-minute extension step at 72°C. Products 

of PCR were analyzed using agarose gel electrophoresis.  



44 
 

2.17.2.2  Agarose gel electrophoresis  

DNA molecules were amplified after PCR using 1.2% agarose gel electrophoresis. 

Agarose powder (1.2 g) was dissolved in Tris-acetate-EDTA (TAE) buffer (100 ml, pH 

7.8) containing 40 mM Tris, 20 mM acetic acid and 1 mM EDTA. The solution was 

heated by microwave and Sybr®Safe (3 μL; Life Technologies, Paisley, United 

Kingdom) was added to the solution and left to set. Fifteen samples (10 μL) were 

loaded into each well and a 1 kb ladder (Fisher Scientific, Loughborough, UK) was 

used as a marker. Gel electrophoresis was run at 100V in 1x TAE buffer for 40 

minutes. The bands were visualized under ultraviolet (UV) light and photographed by 

an INGENIUS gel imager (Syngene, Cambridge, UK).  

2.17.3 RNA extraction 

RNA was extracted from leaf samples (100 mg) of 4-week-old A. thaliana and control 

and treatment A. thaliana seedlings with inhibitors using the Spectrum™ plant total 

RNA kit (Sigma-Aldrich, Haverhill, UK). The samples were ground in liquid nitrogen 

using a mortar and pestle. Lysis Solution (500 µl) and β-mercaptoethanol (10 µl) were 

then added to the samples and the tubes were vortexed vigorously. The samples were 

incubated at 56°C for five minutes and then centrifuged (Centrifuge 5804R, Eppendorf, 

UK) at 20. 817 × g for five minutes. The clear lysate supernatants were filtered using 

NucleoSpin® filtration columns and placed into collection tubes that were then 

centrifuged (Centrifuge 5804R, Eppendorf, UK) at 20. 817 × g for one minute. The 

clarified flow-through lysate (200 µl) was collected and a binding solution (500 µl) was 

added and mixed by vortex. The mixture was transferred to binding columns and 

placed in collection tubes that were centrifuged (Centrifuge 5804R, Eppendorf, UK) at 

20. 817 × g for one minute. A mixture of DNase digestion buffer (70 µl) and DNase I 

(10 µl) were added to the centre of binding columns filter and the samples were then 
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incubated at room temperature for 15 minutes. A first wash to the bound RNA was 

performed using wash solution 1 (500 µl); the columns then were centrifuged 

(Centrifuge 5804R, Eppendorf, UK) at 20. 817 × g for one minute. A second wash was 

repeated twice using wash solution 2 (500 µl) which was added to the columns before 

they were centrifuged (Centrifuge 5804R, Eppendorf, UK) at 20. 817 × g for 30 

seconds. RNA was transferred to new columns to which elution solution (50 µl) was 

added; the tubes were left to sit for one minute and then were centrifuged (Centrifuge 

5804R, Eppendorf, UK) at 20. 817 × g for one minute. The concentration of RNA was 

measured using a Nanodrop (ND-1000 Spectrophotometer, Labtech International, 

UK), to determine the absorbance ratio of 260/280 nm (A260/A280), which is used to 

estimate RNA purity, and the absorbance ratio of 260/230 nm (A260/A230), which is 

used to estimate DNA quality. RNA samples with A260/A280 ratios of 2.00 were selected 

as pure RNA and stored at -08°C for further analysis. 

2.17.3.1 Synthesis of complementary DNA (cDNA) 

A QuantiTect Reverse Transcription Kit (QIAGEN, Manchester, UK) was used to 

synthesise cDNA in accordance with the manufacturer’s protocol. gDNAse Wipeout 

Buffer (2 µL) was added to RNA samples (1 μg) to remove genomic DNA then RNase-

free water was added to make the final volume of 14 µl. Sample tubes were then 

incubated for two minutes at 42°C. A mixture composed of 1X final concentration of 

Quantiscript RT Buffer (4 µl), Quantiscript Reverse Transcriptase (1 µl) and F/R 

primers mix (1 µL)) was prepared and added to each sample. The same mixture was 

prepared without reverse transcriptase and was used as a negative reverse 

transcriptase control to check RNA contamination with DNA present in the sample. A 

thermal cycler (Biorad, Hemel Hempstead, UK) was used to run a PCR programme of 
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42°C and 95°C for 30 and three minutes, respectively.  cDNA samples were sorted at 

-20°C.  

2.17.4 Quantitative real-time reverse transcription polymerase chain reaction 

(qRT-PCR) 

PCR mixtures were prepared with 2x QuantiFast® SYBR® Green (10 µl; Qiagen, 

Manchester, UK), F/R primers mix (1 µM), cDNA (10 ng). The volume was made to 20 

µl using RNase-free water. Reactions were performed on a low-profile 96-well plate 

(STARLAB, Milton Keynes, UK) and quantified using the Agilent Aria Mx Real-Time 

PCR system (Agilent Technologies LDA UK Limited Stockport, Cheshire,UK) and the 

plate was run according to the manufacturer’s instructions. Three technical replicates 

were performed per sample and the same mixture was used without cDNA as a 

negative control. The PCR amplifications were programmed as follows: 95°C for five 

minutes followed by 95°C for ten seconds, then 60°C for 30 seconds. This cycle was 

repeated 40 times and a final extension was set at 60°C for 30 seconds. The melting 

curve was analysed to determine whether any mispriming had occurred. The data was 

analysed using the delta-delta CT method (ΔΔCt) (Livak and Schmittgen, 2001) and 

the expression ratio (R) was calculated using the equation below:  

 

 

 E represents the amplification efficiency, CP is the crossing point, target is a  measure 

of gene expression and Ref is a measure of  housekeeping gene, Actin and sand were 

used in this study. 

 



47 
 

2.17.5 Semi-quantitative reverse transcription-polymerase chain reaction (RT-

PCR)  

The semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) was 

used as described by Dallman and Porter (1994). Firstly, cDNA and a master mix were 

prepared as described in Sections 2.18 and 2.18.2.1, respectively. Each sample was 

divided into three tubes. The PCR program was run at 95°C  for five minutes, followed 

by 38 cycles (10 seconds at 94°C, 30 seconds at 60°C, and 30 seconds at 60°C), with 

a final extension step of 60°C for 30 seconds. One set of tubes was removed after 20, 

25 and 30 cycles. The PCR products were analyzed using agarose gel 

electrophoresis.  

 Determination of copy number in transformed wheat plants 

The T-DNA copy number was determined by qPCR of the neomycin 

phosphotransferase II (nptII) copy number assay relative to a single copy of the wheat 

gene amplicon, GaMyb, normalised to a known single-copy wheat line (Milner et al., 

2018). A TaqMan™ Copy Number Assay (Thermo Fisher Scientific Inc. Waltham, 

Massachusetts, USA) was used to estimate the copy number of transgenic wheat 

plants. In brief, genomic DNA (gDNA) was prepared as described in Section 2.18.2 

and 5 ng/µL gDNA samples were diluted with 1✕ TE buffer (pH 8). The PCR mixture 

was then prepped to a final volume of 8.8 µL as follows: Master Mix (2X; 5.5 µL), 

TaqMan™ Copy Number Assay (20✕; 0.55 µL), TaqMan™ Copy Number Reference 

Assay (20✕; 0.55 µL) and nuclease-free water (2.2 µL). The mixture was added to a 

low-profile 96-well plate (STARLAB, Milton Keynes, UK) and gDNA was then added 

to the wells. The PCR amplification was quantified using the Mx3005P qPCR System 

(Agilent Technologies, LDA UK Limited, Stockport, Cheshire, UK). The PCR 

programmed was run as at 95°C for ten minutes followed by 95°C for 15 seconds, 
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then 60°C for 60 seconds. This cycle was repeated 40 times and a final extension was 

set at 60°C for 36 seconds. The data was anaylsed using ΔΔCt method (see section 

17.7.4).  

 PCR primers design 

The Primer 3 website (http://primer3.ut.ee/) was used to design the primers used in 

this study (Table 2.2- 2.4). Primers had a length of between 20 to 25 nucleotides, with 

50% GC content. The melting temperature (Tm) of the primers ranged between 60°C 

and 62°C with 1°C as difference between primers pair. Primer specificity was 

confirmed using BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/ ).  

 

 

 

 

  

  

http://primer3.ut.ee/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/


49 
 

 

 

 

  

Genes Primers Sequence 5’-3’ 
(Forward / Reverse) 

CYS. OC-I Arabidopsis CATCGACAGGCTTGAACTCC 
TCACCGAGCACAACAAGAAG 

PC. OC-I Arabidopsis TCA CCG AGC ACA ACA AGA AG 
AGC TCC TTG AAG TCC ATC CA 

OC-I wheat 
CGATCGGGTGAAATTCGGATCC 

GCTTCGTCAGGCTTAGATGT 
 

Genes Primers Sequence 5’-3’ 
(Forward / Reverse) 

Actin 2 GGCTCCTCTTAACCCAAAGG 
GAGAGAACAGCTTGGATGGC 

OC-I TCACCGAGCACAACAAGAAG 
CATCGACAGGCTTGAACTCC 

Sand family protein (SAND) AATTAACAGTCCGCAACAGC 
GACCCAACAGAGTAGAACA 

Photosystem I light harvesting complex A (LHCA) TTGGCCATTGAGTTCTTAGCCA 
AAGCCGACTGTTGCACACAGA 

Light-harvesting chlorophyll a/b-protein 1(LHCB1) GGAACGGAGTCAAGTTTGGA 
CAAAATGCTCTGAGGAA 

Light-harvesting chlorophyll a/b-protein 2(LHCB2) AAGTCGTGAATGTACTTATTGGTG 
GGTGGTGTGGTTCATTAAAGGT 

Ribulose-1,5-bisphosphate 
carboxylase/oxygenase small subunit (rbcS) 

CCTCCGATTGGAAAGAAGAA 
TACACAAATCCGTGCTCCAA 

photosystem II protein D1(psbA) GTGGCTGCTCACGGTTATTT 
CCAAGCAGCCAAGAAGAAGT 

Photosystem I reaction center subunit II (psbD) CCGTCCCAAATCCCTCTCCTTC 
AGAAGACCACCGGTGCTTCCAG 

Genes Primers Sequence 5’-3’ 
(Forward / Reverse) 

Actin wheat CTCTGACAATTTCCCGCTCA 
ACACGCTTCCTCATGCTATCC 

OC-I GGGAATGGGGCTCTCGGATGTA 
GGCATCCCCTTCCTTCACCTCA 

Copy number QPCR CTCCTGCCGAGAAAGTATCCA 
GCCGGATCAAGCGTATGC 

Probe [FAM]TGGCTGATGCAATGCGGCG[TAMRA] 

Table 2-2: List of forward and reverse primers used to amplify OC-I plasmid in Arabidopsis and wheat. 

Table 2-3: Lists of forward and reverse Arabidopsis primers used in qPCR and Semi-quantitative 
(RT-PCR) 

Table 2-4: Lists of forward and reverse wheat primers used in qPCR and copy number. 
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 Label-free quantitative proteomics analysis 

A proteomics analysis was performed using mass spectrometry (MS) on protein 

extracts prepared from transgenic and WT wheat seeds as described previously (Min 

et al., 2016). The samples were prepared as described previously (Sections 2.9, 2.11 

and 2.12). The samples (three biological replicates per line) were sent to the Advanced 

Mass Spectrometry Facility (School of Biosciences, University of Birmingham, 

Birmingham) for proteomic analysis. Trypsin digestion was performed using 10 µL of 

protein spots excised from the gel to which 100mM ammonium bicarbonate (40 µL: 

pH 8) was added. Then, 10 mM dithiothreitol (DTT: 50 µL) was added to the samples 

that were incubated at 56oC for 30 minutes. Samples were then cooled to room 

temperature. Fifty millimetres of iodoacetamide (50 µl) was added to each sample to 

alkylate cysteines; the samples were then incubated in the dark at room temperature 

for 30 minutes. Trypsin gold (Promega, Southampton, Hampshire, UK, 6 ng/µl) was 

added to the samples and incubated at 37oC overnight.  

Following sample preparation, a full Fourier transform-based mass spectrometry (FT-

MS) scan (m/z 360−1600) and subsequent higher-energy collisional dissociation 

(HCD) MS/MS scans of the 20 most abundant ions were performed with a dynamic 

exclusion setting of 15S. The MS and MS/MS scans were searched against Uniprot 

database using Thermo ScientificTM Proteome DiscovererTM version 2.2 software, 

SEQUEST-HT algorithm. Proteins having two or more high confidence unique 

peptides were accepted as a real hit.  

Maxquant software (version 1.5.3.30) followed by Perseus software (version 1.5.8.5) 

were used to analyse MS/MS data. Maxquant software was used to analyse a large 

set of data provided from MS. Using Perseus made it possible to search the imputation 

of missing values of protein intensities from a normal distribution (with a width of 0.3 
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and a downshift of 1.8) and perform statistical analyses. Proteins with a ≥1.5-fold 

change (FC) were considered significantly differentially abundant. 

 Bioinformatics analysis and construction of phylogenetic tree  

The UniProt website (http://www.uniprot.org/) and Ensembl genomes database 

(https://www.ensembl.org/index.html) were used to search for cysteine protease sequences in 

Arabidopsis and wheat, respectively, in which a total of 280 and 431 cysteine protease 

sequences respectively were found. The sequence alignments were made using 

Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/ ). From each alignment, a circular 

phylogenetic tree was constructed using iTol (http://itol.embl.de). Other tools used in this 

study include Phyre2 (http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index) to predict 3D 

structure and conserved domains (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) to identify 

the protein domains.  

 Statistical analysis 

The statistical analysis of the data was carried out using the one-way ANOVA and two-

way ANOVA in order to examine whether there was a significant difference between 

the means of transgenic lines and the control (WT) under normal or stress conditions. 

Tukey’s HSD (honestly significant difference) was used as a post-hoc test at a 

stringency level of p < 0.05. The asterisks indicate statistical significance as follows: 

*P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001. Each measurement in the 

phenotypic analysis involved 24 plants per line and three replicates were performed 

for each experiment. All statistical analysis was performed using SPSS v.13 for 

Windows (Statistical Package for Social Sciences, Chicago). Perseus was used to 

search the imputation of missing values of protein intensities from a normal distribution 

(with a width of 0.3 and a downshift of 1.8) and to perform statistical analyses. Proteins 

with a ≥1.5-fold change (FC) were considered significantly differentially abundant. 

http://www.uniprot.org/
https://www.ensembl.org/index.html
https://www.ebi.ac.uk/Tools/msa/clustalo/
http://itol.embl.de/
http://www.sbg.bio.ic.ac.uk/%7Ephyre2/html/page.cgi?id=index
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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Chapter 3 : The characterisation of transgenic Arabidopsis plants 

expressing the rice cystatin, oryzacystatin-I (OC-I), in the cytosol 
 

 Introduction  

Regulated proteolysis is an important cellular process. In this context, cysteine 

proteases (CPs) have been shown to fulfil crucial roles during seed germination 

(Toyooka et al., 2000), programmed cell death (PCD) (Solomon et al., 1999), root 

development (Quain et al., 2014), flowering (van der Hoorn, R. A. and Jones, 2004) 

and senescence (Belenghi et al., 2003; Beyene et al., 2006). The activities of CPs can 

be involved up- or down-stream regulation of plant responses to biotic and abiotic 

stresses. Cysteine protease inhibitors, which are called cystatins or phytocystatins, 

have been implicated in the control of stress tolerance and lifespan, but their precise 

functions remain poorly characterised. Exposure to abiotic stress during the 

development of transgenic Arabidopsis plants increased CP expression (Huang et al., 

2007). Additionally, Arabidopsis plants that over-express two papain-like cysteine 

protease inhibitors, showed enhanced tolerance to salt, cold and drought (Zhang, X. 

et al., 2008). 

Oryzacystatin I (OC-I), which was first identified in rice seeds (Oryza sativa L. subsp. 

japonica), is perhaps the best-characterised phytocystatin. Early studies on OC-I were 

performed to determine whether it could be used to enhance insect resistance 

(Benchabane, M. et al., 2010). Previous research in the Foyer lab has shown that OC-

I expression in tobacco, soybean and other species has a marked effect on the shoot 

phenotype and increases stress tolerance (Prins et al., 2008; Quain et al., 2015). For 

example, transgenic tobacco plants expressing OC-I showed delayed leaf senescence 

and an accumulation of chloroplast proteins, particularly ribulose-1, 5-bisphosphate 
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carboxylase/oxygenase (Rubisco), together with increased biomass production and 

seed yield (Van der Vyver et al., 2003; Prins et al., 2008; Quain et al., 2015).  

In previous studies OC-I was expressed in a range of plant species, including tobacco, 

soya and Arabidopsis without a specific targeting sequence. Transgenic Arabidopsis 

plants were produced that express OC-I in the cytosol (Quain et al., 2014). Arabidopsis 

plants were prepared by the floral dip method using the Agrobacterium tumefaciens 

strain GV3101 (Clough, S.J. and Bent, 1998) carrying the plasmid pTF101.1-Cys-I 

(see Section 2.1.1: Materials and Methods for details).  

The studies reported in this chapter describe the characterisation of the transgenic 

Arabidopsis plants expressing OC-I in the cytosol. The shoot and root phenotypes of 

these plants were analysed to determine whether cytosolic CPs are important in the 

regulation of shoot and root development. In addition, experiments were performed to 

establish whether OC-I expression alters plant responses to abiotic stress conditions. 

The objectives of this studies reported in this chapter are:  

1. To compare the root and shoot phenotypes of Arabidopsis plants with ectopic 

OCI expression in the cytosol (CYS1, CYS3 and CYS4) relative to the wild type 

(WT).  

2. To determine both the effects of high light stress on gene expression and the 

abundance of the Rubisco and the photosystem II reaction centre D1 proteins 

in the wild type and transgenic plants.  

3. To study the effects of the chloroplast inhibitors, norflurazon (NF) that inhibits 

carotenoid synthesis and Lincomycin that inhibits chloroplast translation, on the 

retrograde signalling pathways between the chloroplasts and nuclei that 

regulate photosynthetic gene expression.  
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 Results  

The present studies were performed on WT Arabidopsis and three independent 

transgenic lines expressing OC-I in the cytosol (CYS1, CYS3 and CYS4).  

3.2.1 Confirmation of OC-I expression in Arabidopsis plants 

The presence of OC-I in the leaves of 4-week-old transgenic Arabidopsis plants was 

confirmed by genomic DNA PCR analysis on a 1.2% agarose gel using the specific 

primers shown in Table 2.2 (see Section 2.19: Materials and Methods). A band with a 

size of 200 bp was present in the CYS lines. This band was absent in both the WT 

and the negative controls (Figure 3.1). Thus, the presence of the 200 bp band in the 

CYS lines but not in the WT confirms that all transgenic plants contained the OC-I 

coding sequence (Figure 3.1).  

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Agarose gel electrophoresis of DNA extracted from the leaves of wild type (WT) and 3 
independent transgenic A. thalina cell lines (CYS1, CYS3, and CYS4). Following PCR analysis, 
10µl DNA (100ng) samples were loaded in the wells of 1.2% agarose gel and electrophoresis was 
performed at 100V for 40 min at room temperature. Lane L contained a ladder (1kb ladder). Lanes 
1 and 2 were the negative controls, Lanes 3 and 4 are WT, Lane 5 contained the plasmid containing  
the 200bp segment of the OC-1 gene which was used to act as a positive control, and Lanes 6, 7 
and 8 are CYS1, CYS3 and CYS4 respectively.    
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The levels of OC-I transcripts were determined using semi-quantitative RT-PCR and 

real-time PCR in the leaves of 4-week-old plants. The presence of OC-I transcripts 

was observed in all the CYS lines but not in the WT (Figure 3.2A). The levels of OC-I 

transcripts was similar in each individual transgenic line (Figure 3.2B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A 

OC-I 
200 bp 

SAND 
102 bp 

Figure 3.2: Expression analysis of OC-I in four-week-old Arabidopsis plants (CYS lines and WT 
plants) compared with SAND as a housekeeping gene. (A) Semi-quantitative PCR products were 
analysed on 1.2% agarose gel, with the expected PCR band of the OC-I gene (200 bp) and the 
expected PCR band of the SAND gene (102bp) as controls. (B) Relative expression of the OC-I 
transgene in three transgenic Arabidopsis plants expressing OC-I in the cytosol. WT was assigned a 
value of 1. The data was normalised to the Arabidopsis SAND gene. Means ± SD for the plants in 
each line are indicated by bars. The asterisks indicate significant differences to WT plants (**p-
value < 0.01, ANOVA). 
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3.2.2 Seed germination  

Seed germination is a crucial stage of plant development. Germination is complete 

when the radicle protrudes through the seed coat. The level of seed germination was 

determined in 100 CYS1, CYC3 ,CYS4  and WT seeds 5 days after sowing on agar 

plates containing half-strength Murashige and Skoog (MS) media. The germination of 

CYS seeds was indistinguishable from that of WT (Figure 3.3A). However, the 

germination rate (the appearance of the radicle) was slightly delayed in the transgenic 

OC-I-expressing seeds compared to the WT.  

The survival rate of the seedling also was analysed. The number of viable seedlings 

after 10 days (expressed as a percentage as the number of seeds sown) was the 

same in CYS lines and the WT. There were no significant differences in the seedling 

survival rates (Figure 3.3B).  
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3.2.3 Root architecture of transgenic line seedlings 

A previous report on the lines studied here showed that the length of the primary roots 

of one-week-old seedlings was changed by OC-I expression in either the cytosol or 

the chloroplasts (Comadira, 2015). The length of the primary roots of 10-day-old-

seedlings grown on MS medium was therefore measured using ImageJ analysis of 

photographs (Figure 3.4A). The primary roots of the WT seedlings were approximately 

2.5 cm in length at this stage whereas the length of the roots of all CYS lines was 

significantly longer (Figure 3.4B). Furthermore, the number of lateral roots and the 

lateral root densities were significantly higher in the CYS lines than the WT (Figure 

3.4C and D). The CYS lines had an average of 7 lateral roots per seedling, whereas 

the WT had an average of 4 (Figure 3.4C). The density of the lateral roots was 

calculated as the number of lateral roots divided by the primary root length. 

 

  



58 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.4: A comparison of root architecture in wild-type (WT) Arabidopsis thaliana and 
transgenic lines expressing OC-I in the cytosol (CYS1, CYS3 and CYS4) in 10-day-old seedlings: 
(A) photographs of 10-day-old seedlings grown on MS medium; (B) primary root length; (C) 
number of lateral roots; and (D) lateral root density. Mean values ± SD (n = 50) are shown. The 
asterisks indicate significant differences to WT plants (*p-value ≤ 0.05, ANOVA). Scale bar 3 mm. 
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3.2.4 Rosette morphology  

Shoot phenotypes were characterised throughout development, using a range of 

parameters that were measured in weeks 4, 6, 8, 10 and 12. 

3.2.4.1 Shoot phenotype, flowering, and biomass production 

Representative images of the plants at 4 and 6 weeks after sowing are shown in Figure 

3.5A and B. There were no visible differences in the vegetative development of the 

CYS lines and the WT at 4 weeks. However, there were clear differences in the time 

to flowering (Figure 3.5B). Whereas 70% of the WT plants flowered at week 5, very 

fewer CYS plants had flowered at this time point (Figure 3.6A). Flowering was clearly 

delayed in CYS lines (Figure 3.6A). 

The biomass of the CYS1, CYS3, and CYS4 rosettes was significantly lower than that 

of the WT at 8 weeks after sowing (Figure 3.6B). However, from week 8 onwards, the 

shoot biomass significantly increased relative to the WT in all the transgenic lines 

expressing OC-I.  The number of leaves and diameter of the rosettes were measured 

in all the lines at 4, 6, 8, 10 and 12 weeks after sowing (Figure 3.6C and D). The CYS 

lines tended to have fewer leaves and smaller rosette diameters than WT plants at all 

stages of shoot development (Figure 3.6C and D). However, the differences between 

the number of leaves and the rosette area in the CYS lines and the WT plants were 

significant only at weeks 10 and 12 (Figure 3.6C and 3.6D).  
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Figure 3.3: A comparison of shoot phenotype in the wild-type (WT) Arabidopsis thaliana and lines 
expressing OC-I in the cytosol (CYS1, CYS3 and CYS4) compared to the WT plants at 4, 6, 8, 10 and 12 
weeks after sowing: (A) flowering time; (B) biomass; (C) number of leaves; (D) rosette diameter. Bars 
show the means ± SD (n=24 plants). The asterisks indicate significant differences to WT plants (*p-
value ≤ 0.05, ANOVA). 
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3.2.4.2 Leaf pigments and protein contents 

The leaf contents of chlorophyll, carotenoid pigments, and protein were compared in 

the WT, CYS1, CYS3, and CYS4 lines. The CYS lines had significantly less leaf 

chlorophyll and carotenoid pigments than the WT, particularly at the later stages of 

development (i.e. 10 and 12 weeks after sowing, Figure 3.7A and B). Leaf protein 

contents were similar in all the lines at 4 and 6 weeks after sowing. At weeks 8, 10 

and 12, however, there was more protein in the leaves of the CYS lines than the WT 

(Figure 3.7C). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: A comparison of the amount of (A) chlorophyll, and (B) carotenoid pigments and 
(C) protein in the leaves of the wild-type (WT) Arabidopsis thaliana and lines expressing OC-
I in the cytosol (CYS1, CYS3 and CYS4). Bars represent means ± SD (n=24 plants). The 
asterisks indicate significant differences to WT plants (*p-value ≤ 0.05, ANOVA). 

*  *  * 
* * * * * * * * * 

* * * 
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3.2.5 The role of OC-I in tolerance to high light stress 

The effect of OC-I on plant responses to HL stress has not been studied previously. 

The effects of HL on photosynthesis rates, leaf protease activities and the abundance 

of proteins involved in photosynthesis were determined in the CYS lines and the WT. 

The levels of the D1 reaction centre protein of PSII and the large subunit of Rubisco 

were measured by Western blot. The CYS lines and the WT plants were grown in 

compost in controlled environment chambers at low light intensity (LL: 250 µmol m–2 

s–1) for five weeks prior to exposure to HL stress (HL: 800 µmol m–2 s–1) for 8 hours 

(see section 2.13; Material and Methods). The rates of photosynthetic carbon 

assimilation rates were similar in the CYS lines and the WT plants grown under LL 

conditions. Photosynthetic carbon assimilation rates were significantly decreased in 

the WT under HL conditions. The CYS lines had significantly higher rates of 

photosynthetic CO2 assimilation than the WT under HL conditions (Figure 3.8).   

 

 

 

 

 

 

 

 

 

Figure 3.5: The effects of the expression of OC-I on photosynthetic CO2 assimilation rates in 
the leaves of CYS lines and WT Arabidopsis plants grown under low light (LL) and high light 
(HL) conditions. Photosynthetic CO2 assimilation in all leaves of the rosette was measured for 
CYS lines and WT plants that had been grown under low light (250 μmol m-2 s-1) and then were 
transferred to a high-light environment (800 μmol m-2 s-1) for 24 hours. Bars represent means 
± SD (n=3 plants). The asterisks indicate significant differences to WT plants (*p-value ≤ 0.05, 
ANOVA). 
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Total protease activities were measured in 5-week-old CYS and WT plants under LL 

and HL conditions using Abcam’s Protease Activity Assay Kit (see Section 2.16: 

Material and Methods). The CYS lines had lower total protease activities than the WT 

under LL conditions. Exposure to HL increased the total protease activities of both 

CYS and WT lines (Figure 3.9A). However, the HL-induced increase of total protease 

activity in the CYS lines was less than observed in the WT (Figure 3.9A). The cysteine 

protease activity was compared in the CYS lines and the WT. The cysteine protease 

activity of the CYS lines significantly lower than the WT under LL conditions (Figure 

3.9B). Exposure to HL increased the cysteine protease activity of the CYS lines but 

this increase was much less marked than that observed in the WT plants. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.6: (A) Total protease activities and (B) cysteine protease activity in the leaves of CYS lines 
and WT Arabidopsis plants grown under low light (LL) and high light (HL) conditions. Bars represent 
means ± SD (n=3). The asterisks indicate significant differences to WT plants (*p-value ≤ 0.05, 
ANOVA). 
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Western-blot analysis using specific antibodies was used to determine the abundance 

of the Rubisco large subunit, the D1 protein and the phosphorylated form of the D1, 

protein in the CYS and WT lines under LL and HL conditions. For these studies, leaf 

samples were harvested after 6h exposure to HL.  The relative amounts of Rubisco, 

the D1 protein and the phosphorylated form of the D1 protein were lower in the CYS 

lines than the WT under LL conditions (Figure 3.10A). In contrast, the relative 

abundance of these proteins was much higher in the leaves of the CYS lines than 

those of the WT under HL stress (Figure 3.10B).  
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Photosynthetic gene expression was compared in the CYS and WT lines. For these 

studies nuclear-encoded photosynthesis genes and chloroplast-encoded 

photosynthesis genes were selected for analysis. Plants were grown under LL and HL 

condition and samples were harvested for analysis by quantitative real-time PCR after 

6h exposure to HL (Figure 3.11A and B). The levels of transcripts encoding the light 

harvesting chlorophyll a-b binding protein (LHCA), the light harvesting chlorophyll a-b 

binding protein 2 (LHCB1), the light harvesting chlorophyll a-b binding protein 2 

(LHCB2), the small subunit of ribulose bisphosphate carboxylase (rbcS) and the 

photosystem II D1 protein (psbA) were significantly higher in the leaves of the CYS 

lines than the WT under LL conditions (Figure 3.11A). However, the levels of 

transcripts encoding the Photosystem II D2 protein (psbD) were not significant 

different in the CYS lines and the WT under LL conditions. Under HL conditions, the 

levels of LHCA, LHCB1, LHCB2, rbcS, psdA and psbD transcripts in CYS lines were 

increased further relative to the WT than under LL conditions (Figure 3.11B). However, 

the levels of psdA transcripts were lower under HL than LL (Figure 3.11A and 3.11B).   
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Figure 3.7: The effect of OC-I expression on the transcripts level of nuclear-encoded 
chloroplast and chloroplast-encoded photosynthesis genes treated under  LL and HL 
conditions in 5-week-old CYS and WT Arabidopsis plants. LHCA: light-harvesting chlorophyll 
a binding protein; LHCB1: light-harvesting chlorophyll a binding B1; LHCB2: chlorophyll a-b 
binding protein 2 Ribulose bisphosphate; rbcS: carboxylase small chain; psbA: photosystem 
II D1 protein; psbD: photosystem II D2 protein. The data were normalized to the actin gene. 
Bars represent means ± SD (n=3 plants). The asterisks indicate significant differences to WT 
plants (*p-value ≤ 0.05, and p-value ≤ 0.01 (**),  ANOVA). 
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To analysis the effects of OC-I expression on chloroplast to nucleus retrograde 

signaling pathways that regulate photosynthetic gene expression the CYS and WT 

lines were grown for 7 days on agar plates containing ½ MS media with ethanol as a 

control (CONT) or media containing either Lincomycin (LINCO; 500 µM), or 

Norflurazon (NF;5 µM) (see Section 2.14: Materials and Methods). The seedlings of 

the CYS and WT lines showed a similar absence of chlorophyll in the presence of 

LINCO and NF compared to the control conditions (Figure 3.12A). However, whereas 

the WT seedlings did not have fully developed hypocotyls and cotyledons after 7 days 

to of LINCO treatment, the CYS lines had expanded hypocotyls and cotyledons in the 

presence of this inhibitor of chloroplast translation (Figure 3.12A).  

The levels of LHCA, LHCB1 and LHCB2 transcripts were measured in the seedlings 

grown either in the absence or in the presence of inhibitors. The abundance of LHCA 

transcripts was lower in the CYS lines in the absence of inhibitors than the WT.  In 

contrast, LHCA expression was significantly higher in the CYS lines than the WT in 

the presence of the inhibitors (Figure 3.12B). In addition, LHCB1 transcripts were 

lower in the CYS lines than the WT in the absence of the inhibitors. However, the 

expression of LHCB1 was higher in the CYS lines than the WT in the presence of 

LINCO or NF (Figure 3.12C). Moreover, the levels of LHCB2 transcripts were lower in 

the CYS lines than the WT in the absence of the inhibitors. (Figure 3.12D). However, 

the LINCO and NF treatments significantly increased the abundance of LHCB2 

transcripts in the CYS lines compared to the WT (Figure 3.12D).   
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Figure 3.8: Arabidopsis thaliana lines expressing OC-I in the cytosol (CYS1, CYS3 and CYS4) and 
the WT were treated with lincomycin (LINCO), a chloroplast protein synthesis inhibitor, or norflurazon 
(NF; 5 µM), an inhibitor that inhibits carotenoid synthesis. (A) Comparison of the representative 
phenotype of seedlings of CYS1, CYS3 and CYS4 and WT grown on MS-agar media containing 
either LINCO (500 µM), or NF (5 µM) for 7 days. The effect of LINC and NF on transcripts level of 
(B) LHCA, (C) LHCB1 and (D) LHCB2 in CYS lines and WT.  Bars represent means ± SD (n=24 
plants). The asterisks indicate significant differences to WT plants (*p-value ≤ 0.05, ANOVA). 
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 Discussion 

Phytocystatins have been implicated in the control of many important plant processes 

including stress tolerance, but their precise functions remain poorly characterized. The 

data presented in this chapter concerns the growth and flowering of T4 generation 

transgenic Arabidopsis thaliana lines, which express the OC-I protein in the cytosol 

(CYS), together with various aspects of leaf physiology and photosynthesis. There 

were clear differences in the growth and development of the CYS lines compared to 

the WT. The growth differences reported here are consistent with those in previous 

reports showing that cysteine proteases fulfil important roles in root and shoot 

development (Abe, K et al., 1987; Prins et al., 2008; Quain et al., 2014).  

OC-I expression resulted in significantly slower seed germination, as defined by the 

appearance of radicle, in the CYS lines compared to the WT. This finding confirms 

previous observations in the Foyer lab (Roa-Roberts, 2014). The overexpression of 

AtCYS6, a phytocystatin that regulates seed germination, resulted in and lower CP 

activities and a slower germination rate in the transgenic Arabidopsis seeds (Hwang 

et al., 2009). In addition, the overexpression of Brassica rapa phytocystatin 1 

(BrCYS1) delayed the germination of transgenic Arabidopsis seeds (Hong et al., 

2007). Similar effects were found in potato tubers with ectopic expression of cereal 

cystatins (Munger et al., 2015). 

OC-I expression increased the growth of the roots of the transgenic CYS lines relative 

to the WT controls. In addition, the CYS lines had more lateral roots and greater lateral 

root densities compared to the WT. It has previously been suggested that OC-I 

expression may influence shoot and root growth through alterations in strigolactone 

synthesis and signalling (Quain et al., 2014). Strigolactones are plant hormones that 

inhibit the branching of shoots but promote root growth.  
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The data presented in this chapter show that OC-I expression in the cytosol changes 

shoot development. The three independent CYS lines had smaller rosette diameters 

than the WT plants during vegetative growth up to the very later stages of 

development. The CYS rosettes accumulated less biomass than the WT during 

vegetative growth but had significantly more biomass than the WT at the later 

(reproductive) stages of development. Furthermore, the CYS lines had significantly 

fewer leaves than the WT throughout rosette development. In line with this 

observation, the time of flowering was delayed in all CYS lines compared to the WT. 

Decreases in cysteine protease activity have previously been associated with delayed 

flowering and delayed leaf senescence (Benchabane, M. et al., 2010). Papain-like 

cysteine proteases (PLCPs) are required for the development of anthers in 

Arabidopsis (Zhang, X.M. et al., 2009; Benchabane, M. et al., 2010). OC-I expression 

in tobacco was shown to delay flowering (Van der Vyver et al., 2003).  

The effects of OC-I expression on shoot biomass accumulation were particularly 

evident in 10- and 12-week-old plants. At this stage, the transgenic plants were visibly 

larger and had significantly more biomass than the WT. These results may suggest 

that OC-I-dependent inhibition of CPs leads to improved biomass accumulation, as 

has been shown in previous studies on OC-I expression in the cytosol of tobacco 

(Prins et al., 2008).  OC-I-dependent inhibition of cysteine protease activity was shown 

to limit protein degradation in the OC-I expressing tobacco leaves, suggesting that 

nitrogen remobilisation was changed. The effects of OC-I on nitrogen remobilisation 

may be responsible for the observed delay in flowering in the OC-I expressing tobacco 

leaves (Van der Vyver et al., 2003). However, the restriction of nitrogen remobilisation 

untimely has a beneficial influence on plant growth and biomass accumulation at the 

later stages of development. OC-I expression was shown to delay leaf senescence in 
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soybean, leading to much greater biomass accumulation, as was observed in the 

transgenic tobacco lines with OC-I expression (Quain et al., 2015). The CYS lines had 

lower leaf chlorophyll levels and lower carotenoid pigment contents than the wild type, 

particularly at the later stages of development. However, the levels of leaf protein were 

significantly higher in the CYS plants than the WT at weeks 8,10 and 12. This finding 

is consistent with previous studies in other species. For example, OC-I expression in 

soybean led to an accumulation of leaf proteins (Quain et al., 2015). Taken together, 

these findings suggest that the expression of OC-I has marked effects on plant growth 

and development.  

Previous studies of the role of OC-I in plant responses to environmental stresses have 

focused on drought (Quain et al., 2014), low nitrogen-induced senescence (Quain et 

al., 2015) and dark chilling (Cooper, 2016). Light is one of the most important 

environmental factors for plant growth, sunlight providing the energy that drives 

photosynthesis and so powers plant growth and development (Jiao et al., 2007; 

Kaiserli et al., 2015). However, exposure to excessive high light (HL) constitutes a 

stress that inhibits photosynthetic capacity (Mishra et al., 2012). The effects of HL 

stress on the photosynthetic CO2 assimilation rates were therefore compared in the 

CYS and WT lines. Data are presented showing that photosynthetic CO2 assimilation 

rates were higher in the CYS lines than the WT after exposure to HL stress. Moreover, 

the CYS lines retained higher levels of photosynthetic pigments than the WT following 

exposure to HL stress. These data suggest that the CYS lines are better protected 

against high light stress than the WT. Moreover, these findings confirm the results 

obtained in other species demonstrating that CYS lines in other species such as 

tobacco have a higher level of tolerance to different abiotic stress conditions (Van der 

Vyver et al., 2003; Prins et al., 2008). Cysteine proteases are activated by numerus 
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abiotic stresses, leading to premature senescence and PCD (Belenghi et al., 2003; 

Quain et al., 2014). OC-I expression in the CYS lines may prevent the stress-induced 

increases cysteine protease activity that occur under stresses such as HL. The 

responses of leaf proteins to HL stress was different n the WT and CYS lines. The 

CYS lines accumulated more Rubisco and D1 proteins than the WT under HL stress. 

In addition, the levels of RBCS and PSBA transcripts were lower in all lines following 

exposure to HL stress. These data suggest that OC-I may prevent the degradation of 

the Rubisco and D1 proteins under HL stress because the observed increases in the 

abundance of these proteins was not a consequence of increased RBCS and PSBA 

expression.  

The term “retrograde signalling”, is used to describe the pathways that transmit 

information from the chloroplasts and/or mitochondria to the nuclei in order to modify 

nuclear gene expression (NGE) (Leister, 2012). Changes in environmental conditions 

that alter photosynthesis or the metabolic state of the chloroplasts or mitochondria can 

influence NGE (Leister, 2012). Chloroplast to nucleus retrograde signalling pathways 

are particularly important in the responses of leaves to changes in irradiance because 

they allow efficient regulation of photosynthetic proteins in response to changing light 

levels. It is possible that signals from the organelles to the nucleus pass through the 

cytosol or they may be transferred through direct organelle/nucleus contast sites. A 

wide range of primary and secondary metabolites are thought to be involved in 

retrograde signalling. For example, peptides produced by the breakdown of damaged 

proteins inside the organelles may contribute to retrograde signalling (Møller and 

Sweetlove, 2010). The Genomes Uncoupled “Gun”, retrograde signalling pathway has 

been extensively characterised. For example, the Arabidopsis gun mutants, which 

were isolated using the chloroplast inhibitors lincomycin (LINCO), a chloroplast protein 
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synthesis inhibitor, and norflurazon, an inhibitor (NF) that inhibits carotenoid synthesis, 

have been extremely useful in the characterisation of retrograde signalling pathways 

(Wu et al., 2019). The LINCO and NF mutant screens involve the expression of 

photosynthesis-associated nuclear genes (PhANGs), which is decreased in the 

presence of these inhibitors (Woodson et al., 2013; Song, L. et al., 2018). The data 

presented here shows that the expression of OC-I in the cytosol exerts a strong 

influence on PhANG expression and hence chloroplast to nucleus retrograde 

signalling pathways. For example, the expression of the LHCA and LHCB genes, 

which were used as marker genes for the analysis of retrograde signalling in this study 

was significantly changed by OC-I expression. The levels of LHCA, LHCB1 and 

LHCB2 transcripts were greatly decreased in the WT plants in the presence of the 

LINCO and NF inhibitors, in agreement with previous studies (Karpinska et al., 2017). 

The data presented in this chapter shows that LINCO and NF treatments significantly 

increased the abundance of LHCA, LHCB1 and LHCB2 transcripts in the CYS lines 

compared to the WT. The gun2, gun4 and gun5 mutants accumulate high levels of 

LHCB1 transcripts compared to the WT in the presence of NF (Voigt et al., 2010). The 

data presented here shows that the expression of photosynthesis-associated nuclear 

genes is upregulated when chloroplast biogenesis is blocked by LINCO and NF in the 

OC-I background, suggesting that cysteine protease-assocaited protein breakdown, 

which is blocked by OC-I, plays a key role in chloroplast to nucleus signalling. Further 

studies are required to determine the mechanisms by which OC-I expression in the 

cytosol regulates the retrograde signalling pathways.  

In conclusion, the data presented in this chapter demonstrate that the cytosolic 

expression of OC-I not only influences plant growth and development but it also 

influences photosynthetic gene expression and leaf responses to HL. The findings 
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presented in this chapter provide new insights into the functions of cysteine proteases 

in physiological processes as well as stress tolerance. In this research and in previous 

studies, OC-I was expressed in transgenic plants without a targeting sequence.  

Hence, we assume that the gene product is located in the cytosol. The next chapter 

presents the findings of studies on transgenic lines in which OC-I is targeted to the 

chloroplasts. This will allow an examination of the effects of OC-I on processes within 

the chloroplasts as well as the cytosol. 

 

 

 

  



76 
 

Chapter 4 . The characterisation of transgenic Arabidopsis plants 

expressing the rice cystatin, oryzacystatin-I (OC-I) in the chloroplasts 
 

 Introduction  

Chloroplasts house the photosynthetic processes that power plant growth and 

metabolism. They also play an important role in plant development (see section 1. 3). 

The degradation of chloroplast proteins in older leaves is crucial in the remobilization 

of resources to sustain the growth of younger leaves and grain filling. The mechanisms 

by which chloroplast proteins are degraded is not fully understood but this process can 

take place in vesicles that are associated with the vacuole as well as in the 

chloroplasts. Cysteine proteases and senescence-associated vacuoles (SAVs) are 

important in the degradation of chloroplast proteins during leaf senescence (see 

Section 1.3). However, the specific proteases and proteolytic mechanisms that are 

responsible for the degradation of chloroplast proteins such as Rubisco remain largely 

uncharacterised. Cysteine proteases are absent from A. thaliana chloroplasts (Majsec 

et al., 2017). However, a cysteine protease of the ovarian tumour-like cysteine 

protease family was detected in a proteomic study of pea chloroplasts by Makarova et 

al. (2000). The targeting of this cysteine protease to chloroplasts was confirmed by 

Bayer et al. (2011) using a transient transformation yellow fluorescent protein fusion 

construct. Earlier studies had shown that cysteine protease activity was present in the 

lumen of spinach chloroplasts (LP27) (Sokolenko et al., 1997). The 32 kDa form of the 

Hordeum vulgare cysteine protease (HvPAP14) was detected in the barley thylakoid 

lumen, indicating that the inhibitory pro-domain cleavage of this protein occurs in the 

lumen, where there is a low pH level that allows the recombinant enzyme to be 

activated (Frank et al., 2019). Furthermore, HvPAP14 activity may be localised at the 
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thylakoid membrane (Kramer et al., 1999; Järvi et al., 2013). It is generally thought 

that the degradation of Rubisco by cysteine proteases occurs in the vacuole (Thoenen 

et al., 2007). Rubisco levels were higher in the chloroplasts of cystatin-overexpressing 

tobacco plants (Prins et al., 2008). The discovery of HvPAP14 in barley chloroplasts 

may help to explain the results obtained with tobacco plants that overexpress cystatin. 

A partial degradation of Rubisco by HvPAP14 in the chloroplasts may precede the 

autophagic processes (Xiong et al., 2007) and the formation of the Rubisco-containing 

vesicles (Prins et al., 2008). Recently, HvPAP14 was confirmed to be a chloroplast 

protease and to have three forms with 40, 32, and 26 kDa proteins, which were 

detected in all stages of barley leaf development (Frank et al., 2019). Cysteine 

proteases are involved in chloroplast protein degradation(Thoenen et al., 2007; 

Carrión et al., 2013). The expression of phytocystatins may therefore effectively 

decrease protein degradation (Buet et al., 2019).  

Oryzacystatin I (OC-I), which was identified in rice seeds (Oryza sativa L. japonica), is 

perhaps the best-characterized phytocystatin. This protein has been expressed in a 

range of transgenic plants, which were used to study the functions of cysteine 

proteases. Soybean plants that overexpress oryzacystatin I (OC-I) show enhanced 

branching and delayed senescence. Over-expression of OC-I slows vegetative growth 

in tobacco, Arabidopsis and soybean (Prins et al., 2008; Quain et al., 2014). In these 

studies OC-I was not expressed with a targeting sequence and it is hence assumed 

that the produce of the transgene is located in the cytosol. Despite the location outside 

the chloroplasts, Rubisco degradation was delayed in OC-expressing plants. Since 

phytocystatin has not previously been targeted to these organelles, the present study 

focussed on transgenic Arabidopsis plants, in which OC-I was targeted to chloroplasts. 

The production of the transgenic Arabidopsis plants expressing OC-I in the 



78 
 

chloroplasts was described previously (see Section 2.1.1: Materials and Methods). 

The following studies therefore address the question of whether OC-I expression in 

the chloroplasts alters shoot growth and development. A key question concerns 

whether OC-I expression in the chloroplasts has similar or different effects on the 

shoot phenotype to when expression is not targeted, and whether the abundance of 

chloroplast proteins is changed to enhances Rubisco protein accumulation particularly 

during age-related or stress-induced senescence.  

The present study has two main aims. The first is to determine the effects of OC-I 

expression in the chloroplasts on the growth and shoot phenotypes of transgenic 

Arabidopsis plants. This analysis should allow the determination of whether OC-I 

influences processes directly within the chloroplasts as well as in the cytosol (Chapter 

3). The second aim was to establish how OC-I expression in the chloroplast alters the 

plant response to stress.  

The specific objectives of this chapter are:  

1. To characterize the Arabidopsis plants with ectopic OC-I expression in the 

chloroplast (PC2, PC7 and PC 9) compared to the wild type (WT).  

2. To determine the effects of high light stress on the abundance of the Rubisco 

and D1 proteins and transcripts in the transgenic plants.  

3. To study the effects of the chloroplast inhibitors, norflurazon and Lincomycin, 

on retrograde signalling in the transgenic plants as well the effects of the presence of 

OC-I on gene expression.  
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 Results  

The present study, which was conducted in order to determine whether chloroplast 

cysteine proteases regulate shoot and root development in Arabidopsis, was 

performed on three independent transgenic lines expressing OC-I in chloroplast (PC2, 

PC7 and PC 9) as well as the WT plants.  

4.2.1 Confirmation of OC-I expression in Arabidopsis plants 

The OC-I protein was targeted to plastids using the, phosphoribulokinase (PRK) signal 

peptide (see Section 2.1.1: Materials and Methods). The presence of OC-I was 

confirmed in the leaves of 4-week-old transgenic Arabidopsis plants using PCR. 

Genomic DNA was analysed on a 1.2% agarose gel using the PRK forward primers 

and OC-I reverse primers shown in Table 2.2 (see Section 2.19: Materials and 

Methods). The presence of a 300 bp band in the PC lines provided evidence that all 

the transgenic plants contained the OC-I coding sequence (Figure 4.1). 

 

 

 

 

 

  



80 
 

Semi-quantitative RT-PCR and qRT-PCR using OC-I primers were performed to 

characterise OC-I expression in the leaves of 4-week-old transgenic plants. OC-I 

transcripts were detected in all the PC lines (Figure 4.2A), the PC7 and PC9 lines 

having the highest transcript levels (Figure 4.2B). Furthermore, the product amplified 

using SAND primers was detected in all samples, indicating that the RT-PCR cDNA 

template was present in the samples of both the WT and transgenic lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A 

OC-I 
200 bp 

SAND 
102 bp 

Figure 4.1: Expression analysis of OC-I in four-week-old Arabidopsis plants (PC lines and WT plants) 
compared with SAND as a housekeeping gene. (A) Semi-quantitative PCR products were analysed 
on a 1.2% agarose gel, with the expected PCR band of the OC-I gene (200 bp) and the expected PCR 
band of the SAND gene (102 bp) as controls. (B) Relative expression of the OC-I transgene in three 
transgenic Arabidopsis plants expressing OC-I in the chloroplast. WT was assigned a value of 1. The 
data was normalised to the Arabidopsis SAND gene. Means ± SD for the plants in each line are 
indicated by bars. The asterisks indicate significant differences to WT plants (**p-value < 0.01, 
ANOVA). 
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4.2.2 Germination efficiency and plant development after germination  

 Seed germination was assessed five days after sowing. In these experiments 100 

seeds of each of the WT and PC lines were germinated on agar plates containing half-

strength Murashige and Skoog (MS) media. The germination of the PC lines showed 

a similar pattern to that of the WT, with no significant differences. However, the 

appearance of the radicle was slower in PC lines than the WT (Figure 4.3A). The 

number of viable seedlings after ten days was measured to assess the survival rates 

of the seedlings on the MS media. Seedling survival rates were similar in all lines 

(Figure 4.3B).  
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4.2.3 Root architecture of transgenic line seedlings 

Photographs of the PC and WT roots were analysed using ImageJ ten days after 

germination (Figure 4.4A). The length of the primary roots of the WT seedlings was 

approximately 2.5 cm at this stage, whereas the primary root length of PC seedlings 

was 1.5 cm in PC2 and 2.0 cm in PC7 and PC9 (Figure 4.4A). In addition, the PC lines 

had a much greater number of lateral roots than the WT (Figure 4.4C). Hence, lateral 

root densities were significantly higher in the PC lines than the WT (Figure 4.4D).  
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Figure 4.2: A comparison of root architecture in wild-type (WT) Arabidopsis thaliana and 
transgenic lines expressing OC-I in the chloroplast (PC2, PC7 and PC9) in 10-day-old seedlings: 
(A) photographs of 2-week-old seedlings grown on MS medium; (B) primary root length; (C) 
number of lateral roots; and (D) lateral root density. Mean values ± SD (n=50) are shown. The 
asterisks indicate significant differences to WT plants (*p-value ≤ 0.05 and p-value < 0.01, 
ANOVA). Scale bar: 3 mm. 
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4.2.4 Rosette morphology  

Shoot phenotypes, flowering time and rosette biomass were measured throughout 

plant development. A range of shoot parameters were measured at weeks 4, 6, 8, 10 

and 12 after germination. 

4.2.4.1 Shoot phenotype, flowering, and biomass production 

Representative images of the rosettes of the WT and PC lines at 4 and 6 weeks after 

sowing are shown in Figure 4.5A and B. The PC2 line and the WT had similar shoot 

phenotypes at week 4. The rosettes of two of the PC lines (PC7 and PC9) were visibly 

smaller than the other lines at this stage. In addition, the time to flowering was different 

in the PC lines and the WT (Figure 4.5B). Whereas 70% of the WT plants had flowered 

at week 5, none of the PC lines showed flowers at this point. Flowering was therefore 

delayed in PC lines compared to the WT (Figure 4.6A). Shoot biomass was 

significantly lower in the PC lines (Figure 4.6B) than the WT at 4, 6 and 8 weeks after 

sowing (Figure 4.6B). At subsequent development stages, however, shoot biomass 

was significantly increased in the PC lines relative to the WT. The number of leaves 

and the diameter of the rosettes were measured in all PC lines and the WT at 4, 6, 8, 

10 and 12 weeks after sowing (Figure 4.6C and D). The PC lines tended to have fewer 

leaves and significantly smaller leaf diameters than the WT plants at all shoot 

development stages (Figure 4.6C and D). 
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A 

B 

Figure 4.3: A comparison of the representative phenotype of plants of the transgenic lines 
overexpressing OC-I in the chloroplast (PC2, PC7 and PC9) to that of WT. The phenotype of (A) four-
week-old and (B) six-week-old plants showed delayed flowering in the PC lines grown on soil in a long-
day photoperiod (LD with 16 h day/8 h night) at 20°C, 60% humidity, at 400 μmol m-2 s-1 light intensity. 
Scale bar: 3 cm. 
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Figure 4.4: A comparison of shoot phenotype in the wild-type (WT) Arabidopsis thaliana and lines 
expressing OC-I in the chloroplast (PC2, PC7 and PC9) at 4, 6, 8, 10 and 12 weeks after sowing: (A) 
flowering time; (B) biomass; (C) number of leaves; (D) rosette diameter. Bars show the means ± SD 
(n=24 plants). The asterisks indicate significant differences to WT plants (*p-value ≤ 0.05, ANOVA). 
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4.2.4.2 Leaf pigments and protein contents 

The amounts of chlorophyll, carotenoid pigments and protein were compared in the 

leaves of the WT and PC lines. The amounts of chlorophyll and carotenoid pigments 

were consistently greater in the rosette leaves of the PC lines at all stages of 

development than the WT (Figure 4.7A and B). There were no differences in leaf 

protein contents in the 4, 6 and 8-week-old PC plants compared to WT plants. 

However, the protein content at 10 weeks and at later stages of development was 

consistently higher in the leaves of the PC lines than the WT (Figure 4.7C).  
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Figure 4.5: A comparison of the amount of (A) chlorophyll, (B) carotenoid pigments and (C) protein in 
the leaves of wild-type (WT) Arabidopsis thaliana and lines expressing OC-I in the chloroplast (PC2, 
PC7 and PC9). Bars represent means ± SD (n=24 plants). The asterisks indicate significant differences 
to WT plants (*p-value ≤ 0.05, ANOVA). 
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4.2.5 A role for OC-I in tolerance to high light stress 

The effects of HL on photosynthesis rates, leaf protease activities and the abundance 

of photosynthetic proteins were determined in the WT and the PC lines. All plants were 

grown in compost in controlled environment chambers at low light intensity (LL: 250 

µmol m–2 s–1) for five weeks prior to exposure to HL stress (HL: 800 μmol m-2 s-1) for 

8 hours (see section 2.13; Material and Methods). Photosynthetic CO2 assimilation 

was measured in fully expanded leaves immediately prior to exposure to HL. The rates 

of photosynthetic CO2 assimilation were similar in all transgenic lines and WT under 

LL conditions. However, photosynthetic carbon assimilation rates were significantly 

decreased in the WT under HL conditions. The PC lines had significantly higher rates 

of photosynthetic CO2 assimilation than the WT under these conditions (Figure 4.8).  

    

Figure 4.6: The effects of the expression of OC-I on photosynthetic CO2 assimilation rates in the leaves 
of PC lines and WT Arabidopsis plants grown under low light (LL) and high light (HL) conditions. 
Photosynthetic CO2 assimilation in all leaves of the rosette was measured for PC lines and WT plants 
that had been grown under low light (250 μmol m-2 s-1) and then were transferred to a high-light 
environment (800 μmol m-2 s-1) for 24 hours. Bars represent means ± SD (n=3 plants). The asterisks 
indicate significant differences to WT plants (*p-value ≤ 0.05, ANOVA). 
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Total protease activities were measured in 5-week-old PC and WT plants under LL 

and HL conditions using Abcam’s Protease Activity Assay Kit (see Section 2.16: 

Materials and Methods). Total leaf protease activity was similar in both PC lines and 

WT under LL conditions. The total protease activities of the leaves increased when the 

plants were exposed to HL (Figure 4.9A). However, the HL-induced increase in total 

protease activity was much less marked in the PC lines than the WT (Figure 4.9A). 

Leaf cysteine protease activities were also measured in the PC lines and the WT. No 

differences in leaf cysteine protease activity were observed between PC lines and WT 

under LL conditions (Figure 4.9B). However, the leaf cysteine protease activity were 

significantly increased in the WT under HL conditions. In contrast, leaf cysteine 

protease activities decreased in the PC lines than in the WT under HL conditions 

(Figure 4.9B). 

 

 

 

 

 

 

 

Figure 4.7: (A) Total protease activities and (B) cysteine protease activity in the leaves of the 
PC lines and WT Arabidopsis plants grown under low light (LL) and high light (HL) conditions. 
Bars represent means ± SD (n=3). The asterisks indicate significant differences to WT plants 
(*p-value ≤ 0.05, ANOVA). 
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Western blot analysis using specific antibodies was used to determine the 

accumulation of the Rubisco large subunit, PSII reaction centre D1 protein and the 

phosphorylated form of the D1 protein in the leaves of the PC lines and WT plants 

under LL and HL conditions. There were no differences in the abundance of the 

Rubisco large subunit protein, the D1 protein and the phosphorylated form of the D1 

protein between the lines under LL conditions (Figure 4.10A). However, the amount of 

these proteins increased markedly in the leaves of the PC lines relative to those of the 

WT after six hours of exposure to HL (Figure 4.10B).    
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The expression of nuclear-encoded photosynthesis genes and of chloroplast-encoded 

photosynthesis genes was compared in the PC lines and the WT. Quantitative real-

time PCR was performed on leaf samples were harvested from plants were grown 

under LL and after six hours of exposure to HL  (Figure 4.11A and B). The levels of 

transcripts encoding the light-harvesting chlorophyll a-b binding protein (LHCA), the 

light-harvesting chlorophyll a-b binding protein 1 (LHCB1), the light-harvesting 

chlorophyll a-b binding protein 2 (LHCB2), the small subunit of ribulose bisphosphate 

carboxylase (rbcS), the photosystem II D1 protein (psbA) and the photosystem II D2 

protein (psbD) were significantly higher in the leaves of the PC lines than the WT under 

LL conditions (Figure 4.11A). The levels of all transcripts were lower under HL than LL 

(Figure 4.11A and 4.11B).  While the levels of LHCA, LHCB1, rbcS, psdA and psbD 

transcripts were significantly higher in the PC lines than the WT than under HL 

conditions (Figure 4.11B), the levels of LHCB2 transcripts were  similar in all lines 

(Figure 4.11B).  
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Figure 4.8: The effect of OC-I expression on the transcript levels of nuclear-encoded chloroplast 
and chloroplast-encoded photosynthesis genes treated under LL and  HL conditions in 5-week-old 
PC and WT Arabidopsis plants. LHCA: light-harvesting chlorophyll a binding protein; LHCB1: light-
harvesting chlorophyll a binding B1; LHCB2: chlorophyll a-b binding protein 2; ribulose 
bisphosphate; rbcS: carboxylase small chain; psbA: photosystem II D1 protein; psbD: photosystem 
II D2 protein. The data were normalized to the actin gene. Bars represent means ± SD (n=3 plants). 
The asterisks indicate significant differences to WT plants (*p-value ≤ 0.05, and **p-value < 0.01, 
ANOVA). 



93 
 

To analyse the effects of OC-I expression on chloroplast-to-nucleus retrograde 

signalling pathways that regulate photosynthetic gene expression, the PC lines and 

WT were grown for seven days on agar plates containing ½ MS media with ethanol 

as a control (CONT) or media containing either Lincomycin (LINCO; 500 µM), or 

Norflurazon (NF; 5 µM) to inhibit photosynthesis (see Section 2.14: Materials and 

Methods). The PC and WT seedlings showed were pale and lacked chlorophyll in the 

presence of LINCO and NF compared to seedlings grown in the absence of these 

inhibitors (Figure 4.12A). In contrast to the control seedlings, none of the lines had 

fully developed hypocotyls and cotyledons after seven days in the presence of 

inhibitors (Figure 4.12A). 

The levels of LHCA, LHCB1 and LHCB2 transcripts were measured in the seedlings 

grown in the absence and presence of these inhibitors. The abundance of LHCA 

transcripts was decreased in PC lines compared to the WT in the absence of inhibitors 

(Figure 4.12B). However, the abundance of LHCA transcripts was significantly 

increased in PC lines in the presence of both inhibitors compared to the WT (Figure 

4.12B). The expression of LHCB1 and LHCB2 was lower in the PC lines than the WT 

in the absence of inhibitors (Figure 4.12B-C). In contrast, the levels of LHCB1 

transcripts were lower in the PC lines compared to the WT in the presence of inhibitors 

(Figure 4.12B). Similarly, the abundance of LHCB2 transcripts was significantly lower 

in the PC lines than the WT in the presence of inhibitors (Figure 4.12D). These results 

show that the presence of OC-I in the chloroplasts increased the expression of the 

LHCA gene in the presence of LINCO and NF, whereas the expression of LHCBs 

genes was repressed in these conditions. 
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Figure 4.9: Arabidopsis thaliana lines expressing OC-I in the chloroplast (PC2, PC7 and PC9) and 
the WT were treated with lincomycin (LINCO), a chloroplast protein synthesis inhibitor, or 
norflurazon (NF; 5 µM), an inhibitor that inhibits carotenoid synthesis. (A) Comparison of the 
representative phenotype of seedlings of PC2, PC7 and PC9 and WT grown on MS-agar media 
containing either LINCO (500 µM), or NF (5 µM) for seven days. The effect of LINC and NF on 
transcript levels of (B) LHCA, (C) LHCB1 and (D) LHCB2 in PC lines and the WT is also shown.  
Bars represent means ± SD (n=24 plants). The asterisks indicate significant differences to WT plants 
(*p-value ≤ 0.05, ANOVA). 



95 
 

  Discussion 

Cysteine protease inhibitors are involved in the control of protein turnover but their 

precise functions remain poorly characterized. Previous reports on the effects of 

constitutive expression of OC-I in transgenic plants have shown that plant growth and 

stress tolerance traits are changed in the presence of the cysteine protease inhibitor. 

The results presented in Chapter 3 showed that the expression of OC-I in the cytosol 

of transgenic Arabidopsis lines has a marked effect on plant growth and development. 

Moreover, OC-I expression exerted a strong influence over photosynthetic gene 

expression and leaf responses to HL. The results presented in this chapter concern 

the phenotypes and gene expression of plants where OC-I expression is targeted to 

the chloroplasts using an appropriate peptide targeting signal. These studies were 

performed on T4 generation transgenic A. thaliana lines, which express OC-I protein 

in the chloroplasts (PC; see Section 2.1.1: Materials and Methods for details).   

Cysteine proteases are likely to fulfil important roles at every stage of plant 

development (Abe, K et al., 1987). OC-I expression in the chloroplasts led to a slower 

germination rate in the PC lines than the WT and the PC plants were smaller and 

accumulated less biomass throughout vegetative development. The phytocystatins 

called AtCYS6 (Hwang et al., 2009) and BrCYS1 (Hong et al., 2007) regulate seed 

germination. In addition, the germination-specific cysteine protease 1 (GCP1; 

At4g36880) is involved in the initial phase of germination in A. thaliana (Tsuji et al., 

2013). OC-I expression may affect germination rate as a result of inhibition of these 

cysteine proteases, as suggested by earlier studies in the Foyer lab (Roa-Roberts, 

2014). The OC-I-dependent inhibition of germination demonstrated here suggests that 

chloroplast-localized cysteine proteases are involved in the mobilisation of seed 

serves. This intriguing observation is hard to explain at a mechanistic level.  Plastid 
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starch degradation is important in driving germination and hence cysteine proteases 

that target starch mobilization enzymes may have a role in this process (Allorent et al., 

2013). 

OC-I expression in the roots of the PC seedling plastids decreased the length of the 

primary root relative to the WT controls. However, the PC lines had more lateral roots 

and greater lateral root density than the WT. This finding suggests that OC-I 

expression in the root plastids alters the metabolism or signalling of hormones such 

as auxin that regulate root architecture. The findings reported here are consistent with 

earlier studies in the Foyer lab showing that OC-I protein was expressed in root 

plastids altered root growth and development (Roa-Roberts, 2014). The senescence-

associated gene 12 (SAG12) is a cysteine protease, which plays important roles in the 

low nitrogen (N)-induced remobilization of resources during leaf senescence in 

Brassica napus L. (Desclos et al., 2008) and A. thaliana (Poret et al., 2016). SAG12 

is present in A. thaliana roots and its expression was observed when plants were 

cultivated under either high nitrogen or low nitrogen conditions (James et al., 2019). 

In addition, the process of primary root elongation involves the CEP2 protein. Primary 

roots were shorter in the absence of CEP2 because of a reduction in the length of 

trichoblasts and other epidermal cells (Höwing et al., 2018). Precisely how OC-I 

expression in plastids is able to inhibit the activities of these CPs is unknown.  

OC-I expression in the chloroplasts delayed the vegetative development of the 

rosettes. The PC lines had a slower phenotype growth throughout vegetative 

development.  However, after flowering had started all the PC lines accumulated much 

greater amounts of shoot biomass than the WT, particularly at the later stages of shoot 

development. The expression of OC-I was slightly higher in the PC7 and PC9 lines 

than PC2. This might explain the differences in shoot growth between the PC lines. 
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Flowering was delayed in all PC transgenic lines compared to the WT suggesting that 

reproductive development was delayed in the OC-I expressing lines because 

vegetative growth was slower. Delayed leaf senescence have been associated with a 

decrease in cysteine protease activity (Benchabane, M. et al., 2010). Moreover, OC-I 

expression in tobacco leaves was shown to delay flowering as well as leaf senescence 

(Van der Vyver et al., 2003). The small ubiquitin-like modifier (SUMO) proteases called 

SPF1 and SPF2 regulate fertility. SPF1 and SPF2 are cysteine proteases that regulate 

flowering time (Rawlings et al., 2006; Morrell and Sadanandom, 2019). Taken 

together, these findings suggest that OC-I expression in plastids may inhibit the activity 

of these proteases, resulting in the delayed rosette growth and flowering in the PC 

lines compared to the WT.  

Although vegetative development was slower in the transgenic lines than the WT, the 

OC-I-dependent inhibition of CPs eventually enabled the transgenic plants to 

accumulate more biomass than the WT, as has been shown in previous studies on 

tobacco (Prins et al., 2008). The trend towards higher biomass accumulation was 

particularly evident in plants grown for 10 and 12 weeks. At this stage, the transgenic 

plants were visibly larger and had significantly more biomass than the WT. The 

cysteine protease responsive-to-dehydration-21 (RD21) is found in roots, leaves and 

flowers (Liu, Y. et al., 2020). It may be that OC-I expression slows down the activity of 

RD21 in order to regulate growth. Taken together, the findings support the conclusion 

that the expression of OC-I in chloroplasts and other types of plastid has a marked 

effect on plant growth and development.   

The PC leaves in which OC-I was targeted to the chloroplasts showed a greater 

accumulation of leaf chlorophyll and carotenoids than the WT. These interesting 

findings are interesting, particularly because OC-I expression in the cytosol does not 
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greatly alter leaf pigment contents, as has been shown for example in soybean (Quain 

et al., 2014). The levels of leaf protein were significantly higher in the PC plants than 

in the WT at weeks 6, 8, 10 and 12, suggesting that OC-I expression in chloroplasts 

delays the turnover of chloroplast proteins such as Rubisco. OC-I expression in the 

cytosol has previously been shown to lead to an accumulation of chloroplast proteins 

(Prins et al., 2008; Quain et al., 2015). The senescence induced decreases in leaf 

protein and chlorophyll is related to the increased activities of cysteine and serine 

proteases (Poret et al., 2017). Taken together, the findings presented in this chapter 

show that the expression of OC-I in chloroplasts leads to an increased accumulation 

of leaf chlorophyll, carotenoids and proteins, indicating that OC-I has a marked effect 

on the turnover of the components in the leaves.  

Proteases are found in the chloroplast stroma, the thylakoid lumen, the thylakoid 

membranes and the chloroplast envelope (Adam et al., 2006; Kato and Sakamoto, 

2010). Exposure to stress increases the activities of the major chloroplast proteases, 

promoting the degradation of chloroplast proteins outside of the plastid (Mamaeva et 

al., 2020). The effect of OC-I expression in the chloroplasts on the abundance of 

chloroplast proteins, particularly Rubisco was examined in the PC lines under LL and 

HL. The levels of the Rubisco large subunit protein were changed in response to 

exposure to HL in the WT and PC lines. However, the HL-dependent decreases in the 

abundance of chloroplast proteins observed in the WT in response HL stress were 

absent from the PC lines, which accumulated chloroplast proteins under these 

conditions. The HL response in the WT is the result of increased chloroplast protein 

degradation as less light-harvesting and other photosynthetic proteins are required in 

plants exposed to HL. However, the PC lines had higher rates of photosynthetic CO2 

assimilation than the WT under HL conditions, indicating that OC-I expression 



99 
 

prevents the reduction in photosynthetic capacity that occurs in the WT in response to 

HL stress. This finding confirms those of previous studies showing that OC-I protect 

photosynthesis from stress induced decreases in capacity(Van der Vyver et al., 2003; 

Prins et al., 2008). Cysteine proteases are activated by numerus abiotic stresses 

(Belenghi et al., 2003; Quain et al., 2014). The HL-induced increases in cysteine 

protease activity observed in the WT under HL conditions were absent from the PC 

lines. This finding is in agreement with the higher levels of accumulation of the Rubisco 

and D1 proteins that was observed in the PC lines under HL compared to the WT. The 

higher accumulation of chloroplast proteins was correlated with higher rbcS and psbA 

transcripts in the PC lines than the WT following exposure to HL stress. To date, the 

only proteases that have been reported to contribute to the degradation of Rubisco 

inside chloroplasts are metallo- and aspartic proteases(Kato et al., 2004; Roberts et 

al., 2012). However, because stromule and vesicle formation, and autophagy 

pathways are considered to play a key role in chloroplast protein degradation, there is 

the intriguing possibility that OC-I expression exerts its effects in chloroplasts through 

interaction with the cellular vesicle trafficking system. Eight putative chloroplast-

localized homologs of known protein components of the COPII cytosolic vesicle 

transport system have been identified in Arabidopsis (Khan et al., 2013). The data 

presented in this chapter suggests that OC-I may prevent the degradation of the 

Rubisco and D1 proteins under HL stress, leading to improved photosynthetic 

capacity. Precisely how OC-I might influence chloroplast gene expression to increase 

the abundance of rbcS and psbA is unknown.  

Plant responses to HL and other stresses are controlled by retrograde signalling 

pathways (Wagner et al., 2004; Rossel et al., 2007; Xiao et al., 2012). The findings 

presented in this chapter show that OC-I expression affects chloroplast-to-nucleus 
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retrograde signalling pathways under both of the light levels used in these studies. 

LINCO and NF inhibitors are often used in experiments that are designed to explore 

the chloroplast-to-nucleus signalling pathways that are required to sustain functional 

chloroplasts through changes in nuclear gene expression (Terry and Smith, 2013). 

Part of the studies reported in this chapter were designed to investigate whether OC-

I protein expressed in chloroplasts affects these retrograde signalling pathways. The 

levels of LHCA, LHCB1 and LHCB2 transcripts were greatly decreased in the WT 

plants in the presence of these inhibitors, as observed in previous studies (Karpinska 

et al., 2017). The presence of OC-I in the chloroplasts decreased the levels of LHCB 

transcripts but enhanced the abundance of LHCA transcripts in the presence of LINCO 

and NF. A lower level of inhibition of LHCB expression was observed in the genomes 

uncoupled (gun 1) mutants after LINCO and NF treatments (Inaba, 2010). Gun 

proteins are involved in retrograde signalling pathways (Wu et al., 2019). The gun 

mutants accumulate lower levels of singlet oxygen than the WT after LINCO and NF 

treatments, and so have lower levels of oxidative stress. This may also be the case 

when OC-I is expressed in the chloroplasts. In the majority of gun mutants, there are 

no significant changes in leaf chlorophyll contents or the expression of nuclear 

photosynthesis-related genes when the mutants are grown in the absence of inhibitors 

(Susek et al., 1993; Mochizuki et al., 2001). The gun phenotype only becomes 

apparent when treated the mutants are treated with norflurazon or other chloroplast 

inhibitors.  Taken together, these studies suggest that the expression of OC-I in 

chloroplasts regulates LHCB expression as it does in the gun 1 mutants. However 

further studies and additional experimental data are required to determine how OC-I 

expression influences retrograde signalling.  
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Taken together, the findings reported in this chapter show that chloroplast targeted 

OC-I-expression has significant effects on plant growth and development. These 

results are difficult to explain because OC-I inhibits papain-like cysteine proteases, 

which are not generally localized in plastids. However, the targeting of OC-I to 

chloroplasts, suggest that papain-like cysteine proteases play a significant role in 

chloroplast processes that exert a wide range of effects on shoot development. The 

data presented here indicates that chloroplast/plastid processes are particularly 

important in this regulation of plant growth and development. In comparison to the data 

presented in Chapter 3, the data presented here demonstrate that OC-I effects on 

plant processes differ depending on whether the protease inhibitor is expressed in the 

chloroplasts or in the cytosol. In the next chapter, the expression of OC-I in one of the 

most consumed cereals in the modern world, hexaploid wheat (Triticum aestivum L.), 

is described.  
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Chapter 5 . Selection of T4 generation transformed wheat plants over-

expressing the rice cystatin, oryzacystatin-I (OC-I) 
 

 Introduction 

 Considered to be one of the ‘big three’ global grains along with maize (Zea mays) and 

rice (Oryza sativa) (Hinchliffe and Harwood, 2019), hexaploid wheat (Triticum 

aestivum L.) is amongst the most widely consumed cereals in the modern world. Of 

all staple food crops, wheat is the most the extensively grown (FAO, 2017), providing 

as much as 20% of human dietary protein and calories worldwide (Alaux et al., 2018). 

The UK and mainland Europe provide excellent environmental conditions for the 

cultivation of wheat (Reynolds et al., 2012) and, consequently, the European Union 

produced around 151.6 million metric tonnes of wheat in 2019/2020 (Figure 5.1).  

Figure 5.1: The top ten producers of wheat globally (2019.2020). Measurement is in metric 
tonnes. Source: https://www.statista.com/statistics/237912/global-top-wheat-producing-countries/.  

https://www.statista.com/statistics/237912/global-top-wheat-producing-countries/
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However, the wide variety of biotic and abiotic stresses from which the crop suffers 

leads to extensive economic losses. Innovative technologies are therefore required to 

reduce the risks posed by these stresses and increase crop yields (Kashyap et al., 

2020). There is therefore a direct link between the ability of wheat to survive these 

stresses to provide food security.  

Genetic engineering has been proposed as a way to improve the characteristics of 

wheat that are related to its economic efficiency (Tester and Langridge, 2010; He et 

al., 2011). It is anticipated that in the future transgenic crop varieties will provide an 

increasing amount of high-quality agricultural produce, as it has already been shown 

that crops expressing certain transgenes suffer less damage caused by biotic and 

abiotic stresses (Chen, H. and Lin, 2013; Parisi et al., 2016; Briefs, 2017). Several 

studies have found that the transgenic suppression or overexpression of certain 

endogenous genes can enhance the agronomic traits of wheat (Fu et al., 2007; Gil-

Humanes et al., 2010; Altenbach et al., 2014; Chen, D. et al., 2018; Mega et al., 2019). 

However, to date there have been no studies evaluating wheat lines overexpressing 

cysteine protease inhibitors. The research hypothesis is based on the notion that the 

expression of OC-I, an inhibitor of papain-like cysteine proteinases might improve 

wheat yields and grain properties. In the following study, transgenic wheat plants that 

overexpress OC-I were produced and characterised to determine whether this 

transgene could improve wheat yields and seed properties.  
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For the experiments reported in this chapter, transgenic wheat lines overexpressing 

OC-I were first produced in the National Institute of Agricultural Botany (NIAB) and T1 

generation transformed plants were supplied for further analysis. The following actions 

are described in this chapter: 

1. The selection of T2, T3 and T4 transgenic plants using kanamycin.  

2. Confirmation of the presence of the OC-I gene in both T2, T3 and T4 generation 

plants using PCR.  

3. Analysis of OC-I transcript levels using qRTPCR.   
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 Results 

The OC-I construct that was prepared in the Foyer lab was sent to National Institute 

of Agricultural Botany (NIAB), where it was used to transform wheat.  T1 selection 

plants were selected as in the procedures described in section 2.1.2:. T1 generation 

seeds were provided by NIAB (Table 2.1: Materials and Methods). Of these, 37 

regenerated wheat plants were confirmed to be transformed by PCR amplification of 

the OC-I coding sequence (Table 2.1: Materials and Methods).  

5.2.1 The overall procedure for generation selection 

The results presented in this section describe the procedures used to select 

transformed plants of the T2, T3 and T4 generations on media containing kanamycin, 

the confirmation of the presence of the OC-I transgene using PCR and finally the level 

of OC-I expression using RT-PCR. In these studies, T4 transgenic wheat seeds were 

selected over a period of two years (Figure 5.2) and more than 600 seeds in total were 

sown on media containing kanamycin. The kanamycin resistant transgenic seedlings 

were transplanted into soil and grown under glass house conditions with a long-day 

photoperiod (16-hour day/8-hour night) at an irradiance of 1000 μmol m-2.s-1  with 

30/25°C day/night temperatures and 60% humidity (Figure 5.3). The production of 

transgenic wheat plants showing three main stages: growing, flowering and 

harvesting. The principal stages are germination (Figure 5.3 A) and seedling growth 

(Figure 5.3 B) , tillering (Figure 5.3 C), stem elongation, booting and heading (Figure 

5.3 D), milk and dough development (Figure 5.3 E) and ripening (Figure 5.3 F). Each 

growth cycle took about five months from germination to harvesting the seeds in the 

Plant Growth Facilities at the University of Leeds (Figure 5.3 G). 
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Figure 5.2: A schematic diagram of the overall procedure for the selection of T4 generation, showing 
selected lines in each generation. A) 10 single insertion (T1) lines provided by the NIAB were chosen to 
select T2 generation. 50 seeds per line (transformed seed) and E 1 (control) grown on media containing 
10mg/ml kanamycin. Seedlings resistant to Kan were transplanted into soil to obtain T2 generation seeds. 
Seeds from plants 1.4, 1.19, 10.1, 10.35, 21.7, 21.8, 26.7, 20.20, E1.8 and E1.17 were chosen based on 
their PCRs and copy number to obtain T3 seeds. Seeds from plants 1.19.7, 21.7.2, 26.20.4 and E1.8.5 
were chosen to obtain T4 seeds. B) An example showing the naming policy of the selected transformed 
wheat plants through T1, T2 and T3 generation.   
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Figure 5.3: Overview of the production of transgenic wheat plants showing three main stages: Growing, 
flowering and harvesting. The principal stages are germination and seedling growth (A and B), tillering 
(C), stem elongation, booting and heading, (D) milk and dough development (E), and Ripening (F). Plants 
were grown in the Plant Growth Facilities at the University of Leeds under glasshouse conditions with a 
16h day/8 night photoperiod at a day/night temperature of 20/15oC 60% humidity and a light intensity of 
400 uEm-2s-1. (G). Each growth cycle, from germination to harvesting the seeds, took about four to five 
months. 
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5.2.2 Selection of kanamycin resistant T2 seeds from T1 seeds  

Seeds of 10 single insertion independently transformed lines (T1; Table 2.1) were 

selected for analysis in the T2 generation (Figure 5.2). A total of 50 seeds per line as 

shown in Figure 5.2 was sown onto ½ MS agar media containing 10mg/ml kanamycin 

(Kan). The construct contained the kanamycin resistance gene Neomycin 

phosphotransferase II (nptII), which was used to identify the transformed plants (see 

Section 2.6: Materials and Methods). Three percent of the germinated T2 seedlings 

were found to be resistant to Kan based on the survival phenotypes i.e. the 

appearance of the coleoptile and first leaf, and long roots that penetrated into the Kan 

selection media (Figure 5.4). These seedlings were then transplanted into soil to 

obtain T2 generation seeds.  

  

Figure 5.4: An example showing kanamycin selection of transformed wheat seeds. A) 
Magenta GA-7 Vessel containing kanamycin media. B) The phenotypes of sensitive (S) and 
resistant (R) seeds after 7 days of treatment with kanamycin. 
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PCR analysis was performed to detect the presence of OC-I transgene using primers 

spanning OC-I (forward primer specific to actin promoter and reverse primer specific 

to Nos terminal; Table 2.2; Materials and Methods). DNA were extracted at the three 

leaf stage. A 600-bp band was present in the samples from the transgenic plants 

(Figure 5.5). In addition, T-DNA copy number was determined in transformed lines by 

TaqMan assay (see section 2.18; Materials and Methods). 8 lines out of 19 transgenic 

lines were showed to be single insertion (Table 5.1). The T2 seeds were harvested 

and eight transgenic (1.4, 1.19, 10.1, 10.35, 21.7, 21.8, 26.7, and 20.20) with wild-type 

(E1.8 and E1.17) plants were chosen for subsequent generation depended on their 

PCRs and copy number as shown in Table 5.2. 

 

 

 

 

 

 

 

 

 

Figure 5.5: PCR amplification of the OC-I transgene (600 bp) using primers Act-GOI and 
NosT-rev (Table 2.5; Materials and Methods) from 3-week-old T1 wheat plants. DNA were 
extracted at the three leaf stage. Plants were grown under a under glasshouse conditions with 
a 16h day/8 night photoperiod at a day/night temperature of 20/15oC 60% humidity and a light 
intensity of 400 uEm-2s-1. Lanes: L shows DNA marker, lanes 1-22 show DNA extracted from 
leaves of lines; L.1.4, L.1.19, L.7.5, L.7.40, L.9.11, L.9.2, L.10.1, L.10.35, L.11.44, E1.8, 
L.11.23, L.12.38, L.12.2, L.21.7, L.21.8, L.23.47, L.23.50, L.26.5, L.26.7, L.26.20, E1.17, 
respectively. 
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Table 5-1: T-DNA copy number of transformed T1 plants of transgenic wheat expressing OC-I 
and WT. Copy number estimation by qPCR of the transgene are shown. Blue labels indicate 
single insertion lines that are selected for subsequent generation work. 
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5.2.3 Selection of T3 seeds and confirmation of the presence of the OC-I 

transgene in T2 plants 

Eight transgenic (1.4, 1.19, 10.1, 10.35, 21.7, 21.8, 26.7, and 20.20) with wild-type 

(E1.8 and E1.17) plants were chosen to select T3 generation, as shown in Figure 5.2. 

Twenty seeds per line were sown onto media containing kanamycin. About 75% of the 

resultant seedlings were resistant to kanamycin, which may indicate the presence of 

OC-I transgene. The remaining 25% did not grow (Table 5.2). Seedlings from 21.8 

and 26.7 lines showed 100% resistance to the antibiotic. Seeds with a segregation 

ratio of 3 (resistant) to 1 (sensitive) were selected to obtain T3 seeds that were 

potentially homozygous. An additional step to determine whether the experimental 

segregation ratio results observed from the selection on kanamycin matches the 

expected results. In order to evaluate this, a chi-square test (goodness-of-fit) was 

performed. The chi-square results fitted a 3 resistant: 1 sensitive segregation ratio in 

which the segregation of transgene was identified in a Mendelian ratio (Table 5.2). The 

segregation ratio of 3:1 that was observed in 7 lines (1.4, 1.19, 10.1, 10.35, 21.8, 26.5 

and 26.20) were segregated in a Mendelian ratio of 3:1 (resistant: sensitive; Table 

5.2). However, all T2 seedlings of lines 21.8 and 26.7 were 100% resistant to Kan 

which could be attributed to the transgene having multiple integrations in the genome. 
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Table 5-2: Overview of the segregation analysis of T2 seeds on kanamycin media and Chi-
square test for the segregation of 3 Resistant: 1 Sensitive in T2 generation of transgenic wheat 
expressing OC-I and WT. 20 seeds per line were grown on media containing 10mg/ml 
kanamycin. 

χ² critical value (P≤0.05), degree of freedom = 1 = 3.83 

5.2.3.1 DNA confirmation the presence of the OC-I transgene in T2 plants:  

To confirm Kan results, genomic DNA was extracted from individual leaves of each 

seedling. PCR analysis was performed to detect the presence of OC-I transgene using 

primers spanning OC-I (forward primer specific to actin promoter and reverse primer 

specific to Nos terminal; Table 2.2; Materials and Methods). A 600-bp band was 

present in the samples from the transgenic plants but not in the plants that were 

susceptible to kanamycin or untransformed control samples. This analysis confirmed 

the presence of the OC-I coding sequence and allowed identification of the 

transformed plants (Figures 5.6-5.10). The results from the selection on kanamycin 

and the PCR analysis indicate that the plants were correctly transformed with OC-I. In 

addition, T-DNA copy number was determined in individual transformed plants of each 

line by TaqMan assay (see section 2.19; Materials and Methods). Most of T2 

transgenic lines were showed to be single insertion (Appendix I).  

 

  

Line No of 
seeds % Germination Resistant Sensitive % 

Resistant X^2 (3:1) p-value 

1.4 20 100 15 5 75 0 1 
1.19 20 100 13 7 65 1.067 0.3017 
10.1 20 100 15 5 75 0 1 

10.35 20 100 15 5 75 0 1 
21.7 20 100 14 6 70 0.267 0.60558 
21.8 20 100 20 0 100 6.667 0.00982 
26.5 20 100 19 1 95 4.267 0.03887 
26.7 20 100 20 0 100 6.667 0.00982 

26.20 20 100 16 4 80 0.267 0.60558 
WT 20 100 0 20 0 60 0.00001 
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Figure 5.6: PCR amplification of the OC-I transgene (600 bp) using primers Act-GOI and 
NosT-rev (Table 2.5; Materials and Methods) from 3-week-old T2 wheat plants. DNA were 
extracted at the three-leaf stage. Plants were grown under a under glasshouse conditions with 
a 16h day/8 night photoperiod at a day/night temperature of 20/15oC, 60% humidity and a light 
intensity of 400 uEm-2s-1.  Lanes: L shows DNA marker, lanes 1-20 show DNA extracted from 
leaves of individual plants of lines 1.4 and 1.19. 
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Figure 5.7: PCR amplification of the OC-I transgene (600 bp) using primers Act-GOI and 
NosT-rev (Table 2.5; Materials and Methods) from 3-week-old T2 wheat plants. DNA were 
extracted at the three leaf stage. Plants were grown under a under glasshouse conditions with 
a 16h day/8 night photoperiod at a day/night temperature of 20/15oC 60% humidity and a light 
intensity of 400 uEm-2s-1. Lanes: L show DNA marker, lanes 1-20 show DNA extracted from 
leaves of individual plants of lines 10.1 and 10.35.  
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Figure 5.8: PCR amplification of the OC-I transgene (600 bp) using primers Act-GOI and 
NosT-rev (Table 2.5; Materials and Methods) from 3-week-old T2 wheat plants. DNA were 
extracted at the three leaf stage. Plants were grown under a under glasshouse conditions with 
a 16h day/8 night photoperiod at a day/night temperature of 20/15oC 60% humidity and a light 
intensity of 400 uEm-2s-1. Lanes: L shows DNA marker, lanes 1-20 show DNA extracted from 
leaves of individual plants of lines 21.7 and 21.8.  
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Figure 5.9: PCR amplification of the OC-I transgene (600 bp) using primers Act-GOI and 
NosT-rev (Table 2.5; Materials and Methods) from 3-week-old T2 wheat plants. DNA were 
extracted at the three leaf stage. Plants were grown under a under glasshouse conditions with 
a 16h day/8 night photoperiod at a day/night temperature of 20/15oC 60% humidity and a light 
intensity of 400 uEm-2s-1. Lanes: L shows DNA marker, lanes 1-20 show DNA extracted from 
leaves of individual plants of lines 26.5 and 26.7.  
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Figure 5.10: PCR amplification of the OC-I transgene (600 bp) using primers Act-GOI and 
NosT-rev (Table 2.5; Materials and Methods) from 3-week-old T2 wheat plants. DNA were 
extracted at the three leaf stage. Plants were grown under a under glasshouse conditions with 
a 16h day/8 night photoperiod at a day/night temperature of 20/15oC 60% humidity and a light 
intensity of 400 uEm-2s-1. Lane L shows DNA marker, lanes 1-20 show DNA extracted from 
leaves of individual plants of lines 26.2 and WT (E1.8). 
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5.2.3.2 Analysis of relative expression level of the OC-I transgene in 

transgenic wheat lines 

The expression of OC-I was analysed in individual transformed plants from each eight 

transgenic lines (1.4, 1.19, 10.1, 10.35, 21.7, 21.8, 26.7, and 20.20) using qPCR 

(Figures 5.11 and 5.12). The data showed that the transcript level of OC-I was higher 

in all plants for the various transgenic lines (Figure 5.12). However, the transcription 

level of OC-I was varied between selected transgenic lines, these differences were not 

found in plants of the same line (Figures 5.11 and 5.12). In addition, transcription level 

of OC-I was compared between lines and an significantly higher transcription (p< 

0.001) was found in plants of transgenic lines 1.19,21,7 and 26.20 (Figure 5.13).The 

seeds of plants 1.19.7, 21.7.2, 26.20.4 and E1.8.5 therefore were used to obtain T4 

seeds depended on their PCRs, copy number and transcription level of OC-I.  
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Figure 5.11: Analysis of relative expression level of the OC-I transgene in individual 
transformed plant from each transgenic wheat lines using specific primers for OC-I (Table 2.5; 
Materials and Methods) from 3-week-old T2 wheat plants. Plants were grown under a under 
glasshouse conditions with a 16h day/8 night photoperiod at a day/night temperature of 
20/15oC 60% humidity and a light intensity of 400 uEm-2s-1. The expression of OC-I in WT is 
assigned a value of 1 and the expression of the individual plant in each line are as follows: A: 
line 1.4; B: line 1.19; C: line 10.1; D: line 10.35; E: line 21.7. The data were normalized to the 
wheat ACTIN gene. 
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Figure 5.12: Analysis of  relative expression level of the OC-I transgene in individual 
transformed plant from each transgenic wheat lines using specific primers for OC-I (Table 
2.5; Materials and Methods) from 3-week-old T2 wheat plants. Plants were grown under a 
under glasshouse conditions with a 16h day/8 night photoperiod at a day/night temperature 
of 20/15oC 60% humidity and a light intensity of 400 uEm-2s-1. The expression of OC-I in WT 
is assigned a value of 1 and the expression of the individual transformed plant of each line 
are as follows: F: line 21.8; G: line 26.5; H: line 26.7; J: line 26.20. The data were normalized 
to the wheat ACTIN gene. 

 



121 
 

  

0

2

4

6

8

R
el

at
iv

e 
ex

pr
es

si
on

 

T2 Lines 

* 

 

 

* 

 

 

* 

 

 

** 
 

 

 

*** 
 
 

 

 

** 
 

 

 

** 
 

 

 

*** 
 
 

 

 

*** 
 
 

 

 

Figure 5.13: A comparison of the expression level of the OC-I transgene in transgenic wheat 
lines as pooled using specific primers for OC-I (Table 2.5; Materials and Methods) from 3-
week-old T2 wheat plants. Plants were grown under a under glasshouse conditions with a 
16h day/8 night photoperiod at a day/night temperature of 20/15oC 60% humidity and a light 
intensity of 400 uEm-2s-1. The expression of OC-I in WT was assigned a value of 1 and each 
line presents the average of total OC-I expression in plants of same line. The data were 
normalized to the wheat ACTIN gene. Mean ± SD for the plants in each line are indicated by 
bars. The asterisks indicate significant differences to WT plants (*p-value ≤ 0.05, **p 
<0.01and ***p-value < 0.001, ANOVA). 
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5.2.4  Confirmation of the presence of OC-I gene in T3 plants and selection of 

T4 generation seeds 

T3 seeds were harvested, and lines of 1.19.7, 21.7.2, and 26.20.4 was selected with 

the WT (E1.8.5) for T4 generation.  A total of 15 seeds were sown for the transgenic 

line and WT onto media containing kanamycin. The T3 generation was 100% resistant 

to kanamycin, suggesting that the plants are homozygous (Table 5.3). Seedlings of 

the same developmental stage were then transplanted into soil. PCR analysis was 

performed to confirm the presence of the OC-I coding sequence in the transformed 

plants (Figure 5.14). In addition, all T3 transgenic plants were showed to be single 

insertion (Appendix II). Moreover, the expression level of OC-I was analysed in 

individual plants for each line using qPCR (Figure 5.15). This analysis showed that 

OC-I transcripts were present in all transgenic plants (Figure 5.15A-5.15C). In addition, 

the level of OC-I transcripts was similar in all lines (Figure 5.15 D). Transformed plants 

were harvested and seeds of lines 1.19.7.7, 21.7.2.3, and 26.20.4.2 which were 

named WOC1, WOC2 and WOC3, respectively. They were selected for further 

characterisation of the properties of the wheat seeds that overexpress OC-I (Figure 

5.16A). PCR analysis was performed to confirm the presence of the OC-I in these 

seeds (Figure 5.16B). The level of OC-I expression was investigated in the WOC1, 

WOC2 and WOC3 seeds (Figure 5.17). The abundance of OC-I was high in the 

transgenic seeds but absent from the WT. These seeds were thereafter used for 

analysis of total protein and the composition of storage proteins (Chapter 6). 

Table 5-3: Overview of segregation analysis of T3 seeds on kanamycin media.     

Line Total No of 
Seeds 

Seeds 
Germinated 

Germination 
%100 Sensitive Resistant %resistant 

1.19.7 15 13 87 0 13 100 
21.7.2 15 15 100 0 15 100 

26.20.4 15 14 93 0 15 100 
WT 15 15 100 15 0 0 
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Figure 5.14: PCR amplification of the OC-I transgene (600 bp) using primers Act-GOI and 
NosT-rev (Table 2.5; Materials and Methods) from 3 old- week- T3 wheat plants. DNA were 
extracted at the three-leaf stage. Plants were grown under a under glasshouse conditions with 
a 16h day/8 night photoperiod at a day/night temperature of 20/15oC 60% humidity and a light 
intensity of 400 uEm-2s-1. Lane L shows the DNA marker; lanes 1-13 show DNA extracted from 
leaves from individual plants of lines 1.19.7(A), 21.7.2 (B) and 26.20.4 (C) and WT (D). Lanes 
14 shows the WT and lane 15 shows the negative control. 
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Figure 5.15: Analysis of relative expression level of the OC-I transgene using specific primers for OC-I 
(Table 2.5; Materials and Methods) from 3-week-old T3 wheat plants. The expression of OC-I in WT was 
assigned a value of 1 and the expression of the individual plant of each line are as follows: A: line 1.19.7; 
B: line 21.7.2; C: line 26.20.4; D: relative expression as pooled for each line. The data were normalized to 
the wheat ACTIN gene. Mean ± SD for the plants in each line are indicated by bars. The asterisks indicate 
significant differences to WT plants (***p-value < 0.001, ANOVA). 
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Figure 5.16: A) A visual comparison of the size of the WOC1,WOC2 and WOC3 seeds compared to 
the WT. B) PCR amplification of the OC-I transgene (600 bp) from T4 wheat seeds. Lane L shows 
the DNA marker; lanes 1: WT, 2: WOC1, 3: WOC2 and 3: WOC3. 

Figure 5.17: Relative expression of the OC-I transgene in transgenic wheat seeds (WOC1, 
WOC2 and WOC3) and WT. The expression of OC-I in WT was assigned a value of 1. The 
data were normalized to the wheat ACTIN gene. Mean ± SD for the seeds are indicated by 
bars. The asterisks indicate significant differences to WT plants (***p-value < 0.001, ANOVA). 
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 Discussion 

The data of the present investigation demonstrated the selection of the T4 generation 

of a number of transgenic wheat lines and showed that the OC-I gene was present 

and stably integrated into the wheat genome through generations. The protocol 

followed in this study was to select transgenic wheat lines on media containing 

kanamycin, followed by confirmation of the presence of the OC-I transgene using 

PCR. Previous studies indicate that it is possible for epigenetic silencing of the 

kanamycin transgene to occur in later generations and, furthermore, that in kanamycin 

sensitive transgenic lines the kanamycin gene should be confirmed by PCR (Yenofsky 

et al., 1990; Bastaki and Cullis, 2015). The results from kanamycin selection and the 

PCR analysis indicate that the plants were correctly transformed with OC-I. In addition, 

it is important to determine copy number which may influence the gene expression 

and stability of the gene. The traditional method to determine copy number is Southern 

blotting, however, it requires large amounts of plant material, it is laborious and time 

consuming (De Preter et al., 2002; Gadaleta et al., 2011). In present study, the 

detection of OC-I transgene copy number was determined using TaqMan assay of the 

nptII gene relative to a single copy wheat gene amplicon (Milner et al., 2018). The 

results obtained in present study confirmed that single insertion lines were selected in 

each generation. The level of OC-I transcripts was determined for plants in each 

generation using qPCR. There were differences between transcripts level of OC-I in 

the transgenic lines as previously observed (Van der Vyver et al., 2003; Quain et al., 

2015). A number of different factors can influence the expression of a transgene for 

example, copy number, methylation, location in the genome and re-arrangement of 

the transgene (Muskens et al., 2000; Lechtenberg et al., 2003; Tang et al., 2007). 

PCR, copy number, and transcripts level of OC-I results were allowed selection of 
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three different transgenic lines (1.19.7, 21.7.2, and 26.20.4) containing the OC-I 

coding sequence and it clearly shows that T4 seeds were able to be collected. Future 

experiments will seek to characterise the phenotypes of the transgenic lines compared 

to the WT under both normal and stress conditions, thereby providing a better 

understanding of the role of OC-I in crop plants and how it could help to improve 

performance and quality traits. In the next chapter, the total protein and the 

composition of storage proteins in transgenic wheat seeds will be examined and 

compared to those of the WT.  
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Chapter 6 : Properties of Arabidopsis, soybean and wheat seeds over-

expressing Oryzacystatin I (OC-I) 
 

 Introduction  

Seed storage proteins are important determinants of crop establishment and yield and 

they are one of the most significant sources of dietary protein. Harvested seeds are 

important in nutritional intakes for humans, livestock and domesticated animals (Li et 

al., 2012). The protein levels in seeds varies between plant species. In many 

monocotyledonous species such as B. distachyon, O. sativa and Z. mays, the seed 

protein level is typically around 10% of the dry weight. In dicotyledonous seeds, such 

as A. thaliana, G. max and C. sativus, the seed protein level can be over 30% of the 

seed dry weight (Jacks et al., 1972; Chileh et al., 2010).  

Pulses, or grain legumes, are a mainstay in the diets of much of the world’s population. 

Beans, chickpeas, lentils and peas are important sources of dietary protein, 

particularly of world’s poorest populations (Boye et al., 2010). Soybean proteins 

contain most if not all of the essential amino acids required in the human diet (Patil et 

al., 2017). They are therefore nutritionally well-balanced. They also contain 

compounds, which have significant health benefits such as a reduced risk of 

cardiovascular disease and hyperlipidaemia (Nishinari et al., 2014). Soybeans contain 

water and oil and are hence also useful for the mass-production of food because of 

their emulsifying properties (Nishinari et al., 2014).  

Cereal grains contribute in excess of 200 million tonnes of protein annually to the diets 

of people and livestock across the world (Shewry and Halford, 2002). This is 

approximately three times more than protein-rich foods, such as legumes, which 

comprise about 20-40% protein. Cereal grain proteins fulfil a plethora of functions. 
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About 80% are storage proteins that are found in the endosperm, together with lipids 

and starch (Shewry et al., 1995; Shewry and Halford, 2002). Storage proteins are 

synthesised throughout the development of the grain and during grain maturation 

(Martinez, Manuel et al., 2019). They are degraded during germination, a process 

which involves the action of various seed proteases. Moreover, the cereal seed 

proteins play an important role in the processing of grain in the food industry. This is 

especially true of wheat, which is used to make bread, pastry, breakfast cereals and 

other products which are common constituents of the human diet. 

6.1.1 Dicot and monocot seed storage proteins   

There are four categories of seed storage protein: albumins and globulins (both of 

which are dicot storage proteins), glutelins and prolamins (both of which are monocot 

storage proteins) (Radhika and Rao, 2015). The 2S albumins are a major class of dicot 

seed storage protein, which have been studied extensively in the Cruciferae, 

particularly B. napus and A. thaliana (Li et al., 2012). With the notable exceptions of 

oats and rice, the main endosperm storage proteins of cereal grains have many 

subgroupings, including the high molecular weight (HMW) prolamins, as well as the 

sulphur-rich (S-rich) and sulphur-poor (S-poor) prolamins (Shewry and Halford, 2002). 

Perhaps the most widely distributed group of storage proteins are the globulins, which 

are part of the cupin superfamily and are present in both dicots and monocots.  

β‑conglycinin (7S) and glycinin (11S) are the two main storage proteins of soybean 

(40% and 60% respectively), make up approximately 70% of the soybean seed protein 

overall (Schmidt et al., 2011; Wei et al., 2020). β-conglycinin is found as various 

combinations of homologous polypeptide subunits (α’, α and β) and has a molecular 

weight of 81, 74 and 50 kDa (Thanh and Shibasaki, 2002; Taski-Ajdukovic et al., 

2010). 
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6.1.2 The degradation of storage proteins 

Seeds store lipids, starch and proteins that are mobilised during germination, and used 

to drive metabolism and seedling growth to the point where photosynthesis is 

established. Seed storage proteins are synthesised in the endoplasmic reticulum (ER) 

and transported to protein storage vacuoles (PSVs) by Golgi-independent pathways 

(Jolliffe et al., 2005; Vitale and Hinz, 2005; Galland et al., 2014). The degradation of 

seed storage portions begins in the imbibition phase of seed germination. Various 

proteases contribute to the process of protein degradation during germination. 

Cysteine proteases (CysProt) are particularly important in the degradation and 

mobilisation of storage proteins (Grudkowska and Zagdanska, 2004; Tan‐Wilson and 

Wilson, 2012; Szewińska et al., 2016). Of these, the most widely studied are the C1A 

papain-like CysProt and the C13 legumain or vacuolar processing enzymes (VPEs) 

(Grudkowska and Zagdanska, 2004; Szewińska et al., 2016; Botha et al., 2017).  

Phytocystatins (PhyCys) are important in the degradation of seed storage proteins and 

also at different stages of plant growth and development (Solomon et al., 1999; Díaz-

Mendoza et al., 2014). However, the precise functions of PhyCys in the regulation of 

seed protein accumulation and composition germination are largely uncharacterised. 

Moreover, the role of PhyCys in the control of proteolysis during seed germination 

remains to be clearly defined.  
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The analysis of leaf protein contents during vegetative growth and development in 

transgenic Arabidopsis plants overexpressing OC-I in the cytosol or the chloroplasts 

reported in Chapters 3 and 4 demonstrates that inhibition of cysteine proteases leads 

to a higher level of protein accumulation in the leaves compared to the wild-type (WT). 

Therefore, it is important to explore the effects of OC-I overexpression in seeds, 

particularly with regard to the accumulation and subsequent mobilisation of storage 

proteins in the seeds with overexpression of OC-I. These may also provide greater 

insights into the mechanisms by which cysteine proteases regulate the degradation of 

storage proteins. In the present study, the transgenic Arabidopsis, soybean and wheat 

seeds that overexpress OC-I were characterised in terms of the content and 

composition of seed protein relative to the WT. 

The research question in this chapter is based on the idea that restricting cysteine 

protease activities may be a general approach to modifying seed protein contents as 

well as the seed size and weight. The objective of the studies reported in this chapter 

was to investigate the role of OC-I on the size and properties of Arabidopsis, soybean 

and wheat seeds, in order to address the following questions: (i) Does OC-I as a 

inhibitor of papain-like cysteine proteinases play a role (or roles) on seed size and 

weight? (ii) Does OC-I influence the extent of storage protein accumulation and 

composition in seeds (iii) Do the transgenic seeds show altered dormancy or 

germination relative to the wild type? 
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 Results 

The following experiments were performed to understand the roles of OC-I in seeds, 

with a particular focus on storage proteins. The properties of Arabidopsis, soybean 

and wheat seeds overexpressing OC-I in comparison to their respective wild types 

were characterised in the following studies. 

6.2.1 Transgenic Arabidopsis seeds overexpression OC-I  

Germination was studied in two type of OC-I expressing lines (CYS lines, where the 

transgene was not targeted and the PC lines, where the transgene was targeted to the 

plastids) relative to the WT. There were some differences in the germination of the 

transgenic seeds compared to the WT.  For example, the appearance of the radicle 

was slower in transgenic lines than in the WT line (see Chapters 3 and 4).  

The weight of 100 CYS seeds and 100 PC seeds was measured and compared to that 

of 100 WT seeds. A significant increase in seed weight was observed in both 

transgenic lines compared to the WT (Fig. 6.1). In particular, there was an increase of 

approximately 0.14 g and 0.9 g in the PC and CYS seeds, respectively compared to 

the WT (Figure 6. 1A).  

The total protein content of dry PC and CYS seeds was increased significantly 

compared to the WT (Figure 6. 1B). The PC lines had three times the protein content 

of the WT, while the CYS lines accumulated twice as much protein as the WT (Figure 

6. 1B).  The protein composition of the transgenic seeds was compared the WT. SDS-

PAGE staining with Coomassie-blue was performed on protein extracts from dry seeds 

of the WT and the transgenic lines (CYS1, CYS3 and CYS4: Figure 6. 1C; PC2, PC7 

and PC9: Figure. 6.1C). The main storage proteins that could be detected in WT 

Arabidopsis seeds are globulin (12S) and albumin (2S). The globulin α and β subunits 
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have a molecular mass of approximately 34 and 20 kDa, respectively, while the L and 

S albumin subunits have a molecular mass of 15 and 3 kDa, respectively. The results 

presented in Fig. 6.1 show that the PC lines accumulate more of the 12S and 2S 

subunits of the seed storage proteins than the CYS lines and the WT (Fig. 6.1C). 

Moreover, the level of albumin protein appeared to be lower in the CYS lines than the 

PC and WT lines (Figure 6. 1C).   
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Figure 6.1: A comparison of the seed weight, total protein content and  the protein composition of the seeds 
of wild type (WT) Arabidopsis and OC-I expressing lines (CYS1, CYS3, CYS4, PC2, PC7 PC9). (A) Dry 
seed weight (n=100 seeds) and (B) total protein content of WT (black bar), CYS lines (grey bar) and PC 
lines (light grey). The data shown represents the mean ± standard deviation. The asterisks indicate 
significant differences to WT plants (**p <0.01and ***p-value < 0.001, ANOVA). (C) SDS-PAGE profiles 
after Coomassie-blue staining of protein extracts from dry seeds of both the WT and the transgenic lines 
(CYS1, CYS3, CYS4, PC2, PC7 and PC9). An equal amount of each extract corresponding to 20µg was 
applied to each lane of a 12% polyacrylamide gel. Lane L is the size of the molecular mass marker (250 
kDa). The arrows mark the migration of the 12S globulin subunits (α and β) and the 2S albumin subunits (L 
and S).  

 



135 
 

6.2.2 The effects of Oryzacystatin I (OC-I) expression in soybean seeds 

6.2.2.1 Seed morphology 

The seeds of three transgenic soybean lines (SOC1, SOC2 and SOC3) and WT plants 

were grown in order to collect the T4 generation seed. Following seed collection, 50 

seeds per line were grown in soil under controlled conditions. The percentage 

germination per transgenic line was estimated as the number of germinated seeds 

divided by the total number of planted seeds (50) multiplied by 100. All seeds had 

have high germination rates, at around 100%. No significant differences were found in 

the germination rate between the lines (Figure 6. 2A).  

All three transgenic lines had a higher grain yield than the WT, as determined by the 

number of seeds per plant. The SOC1 and SOC3 lines had an average of 150 seeds 

per plant, compared to 100 seeds in the WT plants (Figure 6. 2B). In addition, the 

seeds of the transgenic lines were visibly larger than those of the WT (Figure 6. 2C). 

The average weight of 50 seeds was significantly greater for SOC1, SOC2 and SOC3 

lines (with an average of 20g) compared to the WT (at around 14g) (Figure 6. 2D).  
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Figure 6.2: A comparison of seed morphology of soybean seeds of the WT and the three 
independent transformed lines expressing OC-I (SOC-1, SOC-2 and SOC-3). (A) 
Germination (n=100 seeds); (B) number of seeds per plant; (C) seed size; (D) seed weight 
(n=50 seeds). The data shown represents the mean ± standard deviation. The asterisks 
indicate significant differences to WT plants (*p-value ≤ 0.05, ANOVA).  
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6.2.2.2 Soybean seed protein content and composition 

The seeds of the transgenic and WT lines were processed to make soy flour, as used 

in markets (see section 2.10: Method). The protein content of all the transgenic and 

soy flour lines was then measured using three independent samples and compared to 

that of WT. The SOC1, SOC2 and SOC3 flour had a significantly higher protein content 

than the WT (Figure 6. 3A). The results shown above demonstrate that the seeds from 

the SOC1, SOC2 and SOC3 lines had significantly more protein than the wild type. It 

was therefore important to determine whether the composition of the seed proteins 

was changed as well as the protent contents. The composition of the soybean seed 

proteins was then determined in the soybean seeds and the soy flour by SDS-Page 

gel electrophoresis (Figure 6.3B). This analysis revealed that there were no 

differences in between the visible intensity of the bands in the seeds from the SOC1, 

SOC2 and SOC3 lines relative to the WT. However, some differences between the 

lines were observed in the banding pattern of the samples of soy flour (Figure 6.3B). 

For example, the bands equivalent to the α’, α and β subunits of β‑conglycinin (7S) 

have molecular weights of 81, 74 and 50 kDa, respectively. The band equivalent to 

β‑conglycinin (7S) was more enriched in the WT soy flour samples that in the 

transgenic samples (Figure 6. 3B). The acidic and basic subunits of glycinin (11S) 

have molecular weights of approximately 35 and 14 kDa, respectively. The band 

equivalent to the glycinin acidic subunit appeared to be enriched in the SOC1, SOC2 

and SOC3 soy flour compared to the WT flour, whereas the bands equivalent to the 

basic subunits were less intense (Figure 6. 3B). 
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Figure 6.3: Protein content and composition of transgenic soybean seeds. (A) A comparison of protein 
content of the soybean seeds and soy flour with the WT and three independent transformed lines 
expressing OC-I: SOC-1, SOC-2 and SOC-3. The data shown represents the mean ± standard deviation. 
The asterisks indicate significant differences to WT plants (**p-value < 0.01, ANOVA). (B) SDS-PAGE 
profile of the seed and flour proteins of the three transgenic lines (SOC1, SOC2, and SOC3) and the 
WT. An equal amount of each extract (20µg protein) was applied to each lane of 12% polyacrylamide 
gels. Gels were stained with Coomassie-blue. Lane L display the molecular mass marker (120 kDa). The 
arrows mark the bands equivalent to β-conglycinin and glycinin. 
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6.2.3 Wheat lines overexpressing OC-I  

The production of the T4 generation of a large number of independent transgenic lines 

of spring wheat overexpressing OC-I was described in Chapter 5. The properties of 

the seeds of three independent transgenic lines (WOC1, WOC2 and WOC3) were 

then compared to those of the WT.  

6.2.3.1 The seed production and germination 

Firstly, 50 seeds per line were sown in soil to measure germination. No statistical 

differences in seed germination were observed between the transgenic lines and the 

WT seeds (Figure  6. 4A). The WOC1, WOC2 and WOC3 lines produced significanly 

more seeds per plant than the WT. The transgenic lines produced on average 350 

seeds perplant compared to 250 seeds per plant in the WT  (Figure 6 4B). 

Furthermore, the seeds of the transgenic lines were visibly larger than the WT and 

they had a greater dry weight than the WT (Figures 6. 4C and 6.4D). 
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Figure 6.4: A comparison of the seed properties of the WT and three independent 
transformed lines expressing OC-I: WOC-1, WOC-2 and WOC-3. (A) Seed germination 
(n=50 seeds); (B) number of seeds per plant; (C) seed size; (D) seed weight (n=50 seeds). 
The data shown represents the mean ± standard deviation. The asterisks indicate significant 
differences to WT plants (*p-value ≤ 0.05, ANOVA). Scale bar 3 mm. 
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6.2.3.2 Seed protein content and composition on SDS-PAGE gels  

Transgenic wheat seeds overexpressing OC-I and WT seeds were milled to remove 

the germ and bran. This produced a white flour, which was used to determine protein 

content and composition relative to the WT, as described in 2.9 and 2.11. The three 

WOC lines had a significantly higher protein content than the WT (Figure 6. 5A). The 

protein content of the transgenic WOC lines was double that of the WT (Figure 6. 5A).  

The protein composition of seeds of the independent transgenic lines and WT was 

examined using SDS-PAGE. Wheat seed proteins form two major groups: non-

prolamins (non-gluten), consisting of albumins and globulins (ALGL) and prolamins 

(gluten), which include gliadins and glutenins (HMW-GS and LMW-GS). The protein 

bands revealed by Coomassie blue staining showed typical of wheat flour (Schalk et 

al., 2017). These were as follows, starting from the top of the gel: HMW-GS (67–88 

kDa), ω5- gliadins (49–55 kDa), ω1,2- gliadins (39–44 kDa), LMW-GS, α- gliadins and 

γ- gliadins (28–39 kDa) and ALGL (10–25 kDa). A comparison of the bands in the flour 

from the transgenic lines suggests that they have a greater accumulation of albumins 

and globulins than the WT flour (Figure 6. 5B).  
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Figure 6.5: Protein content and composition of transgenic wheat seeds.  (A)  A comparison of the protein 
content of WT wheat flour and three independent transformed lines expressing OC-I: WOC-1, WOC-2 
and WOC-3. The data shown represents the mean ± standard deviation. The asterisks indicate significant 
differences to WT plants (**p-value < 0.01, ANOVA). (B) A comparison of the protein composition of the 
flours prepared from three transgenic lines (WOC1, WOC2, and WOC3) and the WT. An equal amount 
of protein ( 20µg) was applied to each lane of 12% polyacrylamide gels. After SDS-PAGE electrophoresis 
gels were stained with Coomassie-blue. Lane L is the size of the molecular mass marker (200 kDa). The 
arrows mark the migration of seed proteins which are high molecular-weight glutenin subunits (HMW-
GS) (ω5- gliadins and ω1,2- gliadins), and low-molecular-weight glutenin subunits (LMW-GS) (α- gliadins 
and γ- gliadins and albumins/globulins (ALGL)).  
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6.2.4 Proteomic analysis of wheat seeds 

6.2.4.1 Quantification Overview  

The SDS gel electrophoresis analysis reported above suggested that there were 

differences in the protein composition between the WOC1, WOC2 and WOC3 lines 

and the WT. A proteomic analysis of the different seed types was therefore performed 

to investigate these differences further. Label-free quantitative proteomic analysis was 

performed in the Advanced Mass Spectrometry Facility at the School of Biosciences 

at the University of Birmingham (UK). Figures 6.6, 6.7 and 6.8 show the differences in 

protein composition between the WOC1, WOC2 and WOC3 and WT lines.  

A total of 127 proteins were identified in the seeds of all lines (Table 6.1). These were 

divided into two categories as follows. Proteins with a quantitative ratio greater than 

1.5 were considered to have increased in abundance while those with a quantitative 

ratio of less than 1/1.5 were considered to have decreased in abundance. Proteins 

with quantitative ratios above 1.5 or below 1/1.5 were considered to show significant 

changes in abundance. The differentially expressed proteins are shown in Table 6.2, 

which shows that the WOC1, WOC2 and WOC3 lines have 25, 9 and 22 proteins 

respectively that are increased in abundance relative to the WT, with 15, 47 and 34 

proteins respectively that are decreased in abundance relative to the WT.  
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6.2.4.2 Protein identification 

The 127 proteins identified in these studies are involved in a variety of biological 

processes. Of the identified proteins, particular attention was paid to differences in 

seed storage proteins between the OC-I-expressing lines and the WT. A comparative 

analysis of these proteins was performed and they were found to cluster into three 

groups: (i) the total proteins identified in seeds, (ii) storage proteins that wheat allergies 

and coeliac disease in humans, and (iii) storage proteins that are responsible for 

maintaining the quality of the wheat. The intensity profile of seed storage proteins is 

presented as a heat map, together with a hierarchical clustering of the 40 most 

differentially changed proteins (Figure 6. 6). All differentially expressed proteins are 

presented in Appendix III.    

For simplicity the proteins that are differentially changed in all three transgenic lines 

are clustered together (WOC) for comparison to the WT in Figures. 6.6 and 6.7. The 

abundance of some storage proteins that cause wheat allergy and coeliac disease 

was decreased in the WOC seeds relative to the WT (Table 6. 3). For example, 

Avenin-like proteins that belong to the Prolamin superfamily, particularly Avenin-like 

b8, Avenin-like a2 and Avenin-like a5, were much less abundant in the WOC seeds 

than the WT (Figure 6. 7).   
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Figure 6.6: Cluster heat map representing the relative abundance of storage proteins in both the 
WT and WOC lines. The colour scale bar shown in the top left of the heat map presents the 
average fold change. 
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Protein 

accession Protein description Protein abundance 
change (log2FC) 

1 D6QZM5 Avenin-like b8 0.69 

2 P02863 Alpha/beta-gliadin 1.65 

3 P04727 Alpha/beta-gliadin clone PW8142 0.46 

4 P04730 Gamma-gliadin (Gliadin B-III) 0.97 

5 P06659 Gamma-gliadin B 0.27 

6 P0CZ07 Avenin-like a2 0.71 

7 P0CZ09 Avenin-like a5 (LMW-gliadin 1111) 0.73 

8 P10387 Glutenin, high molecular weight subunit 
DY10 0.09 

9 P18573 Alpha/beta-gliadin MM1 0.66 

10 W5A8E0 60S ribosomal protein L 0.62 

Table 6-3: A comparison of differential abundance of storage proteins that can cause wheat 

allergy and coeliac disease between the WT and OCI-expressing lines. 

Figure 6.7: Cluster heat map of the abundance of the different storage proteins in the WT and 
WOC lines that can cause wheat allergy and coeliac disease. The colour scale bar shown in top 
left of the heat map presents the average fold change. 
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Protein 

accession Protein description Protein abundance 
change 

1 D2KFG9 Gliadin/avenin-like seed protein 0.68 

2 P08453 Gamma-gliadin 0.72 

3 P10385 Glutenin, low molecular weight subunit 1.16 

4 Q2A784 Avenin-like a1 (LMW-gliadin 2482) 1.19 

5 Q43659 15kDa grain softness protein 0.96 

Table 6-4: A comparison of differential abundance of storage proteins that are important for 
wheat quality between the WT and WOC lines. 

 

 

Figure 6.8: Cluster heat map of the relative abundance of various storage proteins in the WOC lines 
and the WT that are important for wheat quality. The colour scale bar shown in the top left of the heat 
map presents the average fold change. 
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 Discussion 

Cysteine proteases play important roles in seeds and seed germination. They are 

required for the processing of seed storage proteins, which they hydrolyse to deliver 

essential amino acids for the growth and development of the embryo (Gruis, D.F. et 

al., 2002). Moreover, they are important in the remobilisation of storage proteins during 

seed germination, morphogenesis and hormone signalling (Grudkowska and 

Zagdanska, 2004; Cambra et al., 2012; Diaz-Mendoza et al., 2016; Szewińska et al., 

2016; Liu, H. et al., 2018; Martinez, Manuel et al., 2019).  Cysteine proteases of the 

C1A and C13 families are responsible for most of the proteolytic activities in cereal 

and legumain seeds, respectively leading to the mobilisation of storage proteins 

(Zhang and Jones, 1995; Hara-Nishimura et al., 1998; Cambra et al., 2012; Diaz-

Mendoza et al., 2016). The activities of these cysteine proteases is regulated by 

endogenous phytocystatins (PhyCys) (Diaz-Mendoza et al., 2016). Since PhyCys 

regulate papain-like cysteine protease activities during seed germination and seedling 

development (Hong et al., 2007), the roles of OC-I in seed germination and 

development were compared in the model species (Arabidopsis thaliana), a grain 

legume crop (soybean; Glycine max) and a cereal crop (wheat; Triticum aestivum). 

The data presented here reveal the constitutive expression of OC-I has a strong effect 

on seed production (in terms of yield), seed size and seed protein content. Moreover, 

there were some significant differences in the composition of seed storage proteins in 

the transgenic lines expressing OC-I compared to the WT. Taken together, these 

findings suggest that OC-I expression improves seed production and quality in 

soybean and wheat, two major crop species, as well as in Arabidopsis. 

There were no differences in the germination of the OCI-expressing Arabidopsis, 

soybean or wheat seeds relative to the wild type. This suggests that despite the 
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important role of cysteine proteases in seed germination, constitutive OC-I expression 

has no negative effects on this process. However, the germination rate (the 

appearance of radicle) was slower in the transgenic Arabidopsis seeds with 

overexpression of OC-I compared to the WT (Chapter 3), confirming the results of a 

previous study investigating the properties of transgenic Arabidopsis seeds 

overexpressing OC-I (Roa-Roberts, 2014). Moreover, research on the overexpression 

of AtCYS6, a phytocystatin that regulates seed germination, showed that 

transgenic Arabidopsis plants expressing AtCYS6 had a slowed germination rate and 

lower CP activities (Hwang et al., 2009). In addition, the overexpression of Brassica 

rapa phytocystatin 1 (BrCYS1) was shown to delay the germination of 

transgenic Arabidopsis seeds (Hong et al., 2007). Similar effects were shown in potato 

tubers with ectopic expression of cereal cystatins (Munger et al., 2015). However, no 

adverse effects on seed germination were observed in transgenic soybean lines with 

OC-I expression (Quain et al., 2014). Taken together, these results of the studies 

reported here suggest that OC-I has no negative effects on germination in the 

transgenic soybean and wheat seeds. Furthermore, although seedling development 

was slower in the transgenic Arabidopsis seeds compared to the WT, the total number 

of germinating seeds was not decreased. Such differences may be due to the 

interaction of OC-I with the various cysteine proteases present in each species and 

the affinities of OC-I to the CPs that bind this inhibitor (Quain et al., 2014). 

Seed yield and seed size are essential for a plant survival and are, therefore, important 

agronomic traits in flowering plants. Ectopic overexpression of phytocystatins has 

previously been shown to improve seed yields (Pillay, P et al., 2012). The data 

presented here clearly demonstrate that OC-I expression significantly increases seed 

yield, and seed size and weight in two important crop species. OC-I expression led to 
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significant increases in seed production per plant in the transgenic lines of all three 

species (Arabidopsis, soybean and wheat) relative to the WT. These increases in seed 

yield may be a result from increased shoot branching or a delay in the senescence as 

previously reported (Prins et al., 2008; Quain et al., 2014). Moreover, OC-I expression 

also improves tolerance to abiotic stresses, for example, drought and low temperature 

(Prins et al., 2008; Quain et al., 2014). OCI-expression in tobacco significantly 

increased the pod size, with a significantly greater average seed pod dry weight and 

a higher number of seeds per plant compared to the WT (Quain et al., 2014). Taken 

together, these findings suggest that OC-I expression has the potential to significantly 

improve both grain yield and grain weight in crop species. 

Cysteine proteases are abundant in seeds. They are responsible for the mobilisation 

and degradation of seed storage proteins (Grudkowska and Zagdanska, 2004). 

Cysteine protease-dependent hydrolysis is responsible for up to 90% of the total 

prolamin activity in germinated-wheat sourdough (Grudkowska and Zagdanska, 

2004). In addition, globulins proteins, which are major protein in Arabidopsis seeds, 

are degraded by cysteine proteases (Jinka et al., 2009). The abundance of both 

β‑conglycinin and glycinin, which are the main components responsible for seed 

protein quality in soybean, are influenced by OC-I expression. Protease C2 is a 

cysteine protease enzyme responsible for the degradation of the β subunit of the 

β‑conglycinin storage protein, whereas cysteine protease C1 degrades the α′ and α 

subunit (Seo et al., 2001). The data presented here demonstrate that the expression 

of OC-I enhanced the seed protein content of all transgenic lines compared to the WT. 

These results confirm and elaborate the data reported previously for transformed 

soybean lines, which showed that the SOC lines had significantly more seed protein 

than the WT (Quain et al., 2014). In addition to total seed protein content, the 
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composition of seed proteins was investigated using Coomassie blue staining of 

proteins separated by SDS-PAGE electrophoresis. These studied indicate that the 

protein composition of the seeds of all the species was changed by OCI-expression in 

the transgenic lines. The PC lines that express OC-I that is specifically targeted to 

plastids accumulate more storage proteins than the CYS lines, where OC-I is 

expressed without a targeting sequence and the WT. An analysis of changes in the 

intensty of bands on the Coomassie blue stained gels of soybean seed flour proteins 

suggests that β‑conglycinin bands were enriched compared to the WT. Moreover, the 

Coomassie blue stained gels of wheat seed flour proteins, suggests that the wheat 

flour contains more albumins and globulins than the flour prepared from the WT seeds. 

These results suggest that OC-I may still exert specific effects during flour production, 

preventing the degradation of some storage proteins but not others.  

Taken together, these findings provide new insights into the role of OC-I in increasing 

seed protein content. The reasons why seed protein is increased in the seeds of all 

three species by OCI-expression are unknown but one may speculate that processes 

such as protein metabolism and futile cycling of proteins is constrained or inhibited 

during grain filling leading to a greater level of seed protein accumulation. These 

findings provide new insights into the functions of OC-I in the accumulation of seed 

proteins that merits further investigation.  Moreover, while the potential of use of these 

lines by the food industry is constrained by public unease about GM technology, there 

is clear potential for the use of this information in soybean and wheat breeding 

programs, in which high yield and high seed protein content, as well as high protein 

extractability are often preferred traits. 

Proteomic analysis of the transgenic wheat seeds overexpressing OC-I revealed that 

there were some significant differences in seed protein composition compared to the 



153 
 

WT. Cereal grains have lower protein levels (approximately 10-12% dry weight on 

average) than grain legumes (Shewry and Halford, 2002). However, because of food 

preferences cereals contribute approximately three times as much protein (in excess 

of 200mt annually) to the diets of both people and livestock across the world compared 

to the protein-rich grain legumes (which are about 20-40% protein) (Shewry and 

Halford, 2002). Moreover, the cereal seed proteins play a crucial role in the processing 

of grains such as wheat, which is used to make bread, pastry, breakfast cereals and 

other products which are commonly consumed by humans. A key question therefore 

concerns the effect of OC-I expression on the abundance of gluten content in the 

wheat seeds and flour, since cysteine proteases are involved in the degradation of 

seed storage proteins. Of the 127 individual proteins that were identified in the 

proteomic analysis of the wheat seeds, five classes of storage protein (15 kD grain 

softness protein, glutenin, avenin-like a1, gliadin/avenin and gamma-gliadin) were 

more abundant in the WOC seeds compared to the WT. These proteins not only 

provide energy for seed germination (Song, X.-J. et al., 2007) but they are also 

important determinants of wheat flour quality and are hence important to the food 

industry.  In contrast, some storage proteins that cause allergies to wheat and coeliac 

disease were less abundant in WOC relative to the WT. The studies reported here on 

the overexpression of OC-I in seeds have therefore yielded some potentially 

interesting results, with wide implications for agroindustry, the food industry and 

medicine. The effects of overexpression of OC-I on seed properties are generally 

similar in all three species studied, suggesting that the overexpression of OC-I may be 

a generic approach to crop improvement.  
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Chapter 7 . Genome-wide analysis of cysteine proteases in Arabidopsis 

and wheat 
 

 Introduction 

Plant proteases are crucial for proteolysis and play an active role in a wide range of 

processes throughout the plant life cycle (Van der Hoorn, Renier AL, 2008). For 

example, they are essential for optimal plant growth, senescence and seed and fruit 

ripening, and programmed cell death (PCD) (Grudkowska and Zagdanska, 2004; Van 

der Hoorn, Renier AL, 2008; Liu, H. et al., 2018; Tornkvist et al., 2019). They are 

localized in different cellular compartments, including the vacuole, plasma membrane 

and endoplasmic reticulum (see section 1.4.1). 

Plant proteases belong to a diverse group of 61 clans and 253 families including 

aspartic-, cysteine-, metallo-, serine- and threonine-proteases, dependent on their 

catalytic mechanisms as described in the MEROPS database (Rawlings et al., 2016). 

Over 800 proteases belonging to 60 families are found in A. thaliana (Van der Hoorn, 

Renier AL, 2008). Papain-like cysteine proteases (PLCPs), which are the most 

abundant group of cysteine proteases, are characterised by the presence of a 

nucleophilic cysteine thiol at the active site (Rawlings et al., 2010b). PLCPs or C1A 

cysteine proteases are one of the largest classes of proteolytic enzymes that are 

involved in plant development, including flowering (Shahri and Tahir, 2014) 

embryogenesis (Van der Hoorn, Renier AL, 2008). They also play a key role in 

immunity and senescence, as well as plant responses to biotic and abiotic stresses 

(Zamyatnin, 2015). The C1A cysteine proteases belong to the C1A subfamily of the 

C1 family of the CA clan (Liu, H. et al., 2018). The properties of several PLCPs have 
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been investigated in different plant species (Zou et al., 2017). However, the genome-

wide analysis of PLCPs is limited to a few species. 

The current analysis is limited to the PLCPs families that have been identified in the 

genomes of Arabidopsis and wheat. The phylogenetic analysis of plant PLCPs was 

constructed by utilising the large number of sequences which have been made publicly 

available. The objectives of the present study are:  

1. To identify all PLCPs in both Arabidopsis and wheat using public databases 

and determine whether there is literature evidence of their involvement in plant 

development. 

2. To generate up-to-date phylogenetic trees for PLCPs in Arabidopsis and wheat.   

3. To attempt to find an ortholog of HvPAP14, a recently identified cysteine 

protease from barley (Hordeum vulgare) chloroplasts, in Arabidopsis. 
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 Results 

7.2.1 Phylogenetic analysis of cysteine protease in Arabidopsis 

About 280 cysteine proteases were identified in the Arabidopsis data bank. Entire 

amino acid sequences were used to determine phylogenetic relationships in most 

cases. From these alignments, circular phylogenetic trees were constructed using iTol 

(Figure 7.1). Figure 7.1 shows several sequences that are designated either as 

“putative” or “probable” candidates. Many such sequences do not have well-defined 

activities. In some cases, the identified fragments appeared to contain almost full 

sequences. The sequences were clustered into five families: C1, C2, C13, C14, C48 

and C54. The majority of the sequences were identified as C1 proteases.  
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Figure 7.1: Phylogenetic tree providing an overview of the cysteine protease family of Arabidopsis in 
which 280 cysteine protease sequences have clustered into five families: C1, C2, C13, C14, C48 and C54. 
The majority of the sequences were identified as C1 proteases. 
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7.2.2 Phylogenetic analysis of well-characterized cysteine proteases in 

Arabidopsis 

 To enable a detailed examination of the evolution of cysteine proteases in 

Arabidopsis, specific sequences were selected based on a UniProt annotation score 

of 3-5 out of 5, as described in the protocol (Boutet et al., 2016). The UniProt 

annotation score provides information such as protein properties and function, enzyme 

regulation and catalytic activity of the more well-characterized proteins (Boutet et al., 

2016). In addition, it also highlights sequence similarities that suggest which family a 

protein belongs (Boutet et al., 2016). Sixty-five cysteine proteases belonging to five 

families: C1, C2, C13, C14, C48 and C54 were found to be well-characterized proteins 

(Figure 7.2). A small number of these cysteine proteases have been identified and 

characterised previously (Figure 7.2).   
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Figure 7.2: Phylogenetic overview of the well-characterized cysteine proteases in Arabidopsis, in 
which 65 cysteine protease sequences have clustered into five families: C1, C2, C13, C14, C48 
and C54. 
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7.2.3 Phylogeny of selected representative cysteine proteases from different 

subfamilies of C1A encoded by Arabidopsis 

A small number of protein sequences was used here to characterise the features of 

C1A proteases. However, future studies would benefit from the use of more 

sequences. In total, 13 cysteine proteases were selected from different subfamilies of 

the C1A proteases that were identified in the Arabidopsis genome (Table 7.1). Their 

sub-cellular localizations are presented in Table 7.1. These sequences were aligned 

and a phylogenetic tree for C1A proteases was generated to determine the 

relationships between each subfamily and its functions (Figure 7.3). The sequences 

of 13 Cysteine proteases can be divided into four diverse subgroups according to their 

enzymatic functions (Figure 7.3). The first group is comprised of proteases involved in 

senescence and/or programmed cell death (Figure 7.3: Group 1). The second group 

contains KDEL-tailed cysteine endopeptidases, which are involved in developmental 

cell death (Figure 7.3: Group 2). The third group, which is very diverse, consists of 

proteases that are involved in germination and/or secondary growth (Figure 7.3: Group 

3). Some of these are present in the vascular tissues and are also involved in 

developmental cell death. The cysteine protease known as SAG12, which is a well-

characterised marker of leaf senescence, is the only member of the fourth group that 

is known to have specific functions in this process (Figure 7.3: Group 4).  
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No. Gene 
Name Protein Name Location Reference 

1  RD21A Cysteine proteinase 
RD21A Golgi apparatus / Vacuole (Hayashi et al., 2001; 

Gu et al., 2012) 

2 GCP1 Germination-specific 
cysteine protease 1 Lysosome / Vacuole (Tsuji et al., 2013; 

Ernest, 2015) 
3 XCP2 Cysteine protease XCP2 Plasma membrane / Vacuole (Zhao et al., 2000) 
4 XCP1 Cysteine protease XCP1 Plasma membrane / Vacuole (Funk et al., 2002) 

5 RD19B Probable cysteine protease 
RD19B Vacuole (Bernoux et al., 2008) 

6 RD19C Probable cysteine protease 
RD19C Vacuole (Bernoux et al., 2008) 

7 SAG12 Senescence-specific 
cysteine protease SAG12 Vacuole (Lohman et al., 1994) 

8 CEP1 KDEL-tailed cysteine 
endopeptidase CEP1 

Vacuole / Endoplasmic 
reticulum 

(Höwing et al., 2014; 
Zhang, D. et al., 2014) 

9 CEP2 KDEL-tailed cysteine 
endopeptidase CEP2 Endoplasmic reticulum (Hierl et al., 2014) 

10 CEP3 KDEL-tailed cysteine 
endopeptidase CEP3 Endoplasmic reticulum (Hierl et al., 2014) 

11 XBCP3 Papain-like cysteine 
peptidase Lysosome / Vacuole (Beers et al., 2004) 

12 RD19A Cysteine protease RD19A Vacuole / Nucleus (Koizumi et al., 1993) 
13 ALEU Thiol protease aleurain Vacuole (Ahmed et al., 2000) 

Figure 7.3: Phylogenetic tree for 13 cysteine proteases selected from different subfamilies of C1A in 
Arabidopsis. The figure shows that 13 cysteine proteases sequences have clustered into four groups 
based on their enzymatic functions. 

Table 7-1: Selected representative cysteine proteases from different subfamilies of C1A involved in 
different stages of growth in Arabidopsis, showing their localization in plant cells. These proteases are 
located in vacuoles, plasma membrane and endoplasmic reticulum 
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7.2.4 Homology between protein sequences in Arabidopsis and the barley 

PAP14 cysteine protease  

A recent study by Frank et al. (2019) reported that the barley cysteine protease called 

PAP14 is a chloroplast protein and that it is involved in the degradation of chloroplast 

proteins. To examine the potential homology of HvPAP14 with Arabidopsis cysteine 

proteases, searches of selected amino acid sequences of Arabidopsis cysteine 

proteases were performed on the basis of homology to the barley PAP14. This 

analysis highlighted differences as well as similarities between the sequences (Table 

7.2). The greatest degree of identity and similarity was found between HvPAP14 and 

the CEP group. Group 2 contains cysteine proteases that are involved in 

developmental cell death. All sequences were included in the phylogenetic tree that 

was constructed using iTol. This analysis showed that the sequences of the CEP 

group, which are clustered together, seem to be more related to HvPAP14 than to 

other sequences (Figure 7.4).  
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Cysteine protease Similarity to APA14 Cysteine protease Similarity to APA14 

RD21A 49.8% 
 CEP1 74.0% 

 

RDL1 61.5% 
 CEP2 68.3% 

 

XCP2 63.4% 
 CEP3 66.5% 

 

XCP1 61.5% 
 XBCP3 46.9% 

 

RD19B 41.8% 
 RD19A 42.5% 

RD19C 47.0% 
 ALEU 50.8% 

 

SAG12 57.5% 
   

Figure 7.4: Phylogenetic tree showing the relationships between 13 Arabidopsis cysteine proteases 
and HvPAP14, particularly the clustering of HvPAP14 to the CEP group.     

Table 7-2: Degree of similarity between selected representative cysteine proteases from different 
subfamilies of C1A in Arabidopsis and HvPAP14, a recently identified cysteine protease in a 
Hordeum vulgare chloroplast, showing a high similarity in the CEP group. 
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To further investigate the relationships between HvPAP14 and the CEP group, 

conserved domains were compared between HvPAP14 and CEP1 using the 

Conserved Domain Database. This analysis showed that HvPAP14 and CEP contain 

the same domains, namely Peptidase_C1, a Papain family cysteine protease, and 

Inhibitor_I29, a cathepsin propeptide inhibitor domain (I29). The longer domain is the 

peptidase_C1 superfamily, as shown in Figure 7.5.    

A 

B 

Figure 7.5: A comparison of conserved protein domains in HvPAP14 (A) and CEP1 (B), 
showing the peptidase_C1 superfamily domain (yellow) and the Inhibitor_I29 domain (pink). 
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To predict the 3D structure of both HvPAP14 and CEP1 proteins, Phyre2 

(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=help) was used. The prediction 

of 3D structure is primarily based on the similarity of protein sequences and their 

domains (Kelley et al., 2015). The structure of these proteins was predicted with 100% 

confidence and 89% query coverage to the template cysteine protease PDB, c5egwA. 

Both proteins showed a 3D structure in rainbow colours starting from the N terminal to 

the C terminal that contains 6 α-helix domains and 9 β-sheets that form the substrate-

binding cleft, with the catalytic triad Cys-His-Asn located in between these structures 

(Figure 7.6). As Figure 7.6 clearly shows, the 3D structure of the CEP1 protein is 

similar to that of the HvPAP14 protein.  

  
HvPAP14 CEP1 B A 

Figure 7.6: Prediction of 3D structure of (A) HvPAP14 and (B) CEP1 proteins using phyre2. 
The 3D structure of HvPAP14 and CEP1 proteins are modelled on a sequence of 325 and 323 
residues, respectively. The proteins are presented in rainbow colours from the N terminal to 
the C terminal. 

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=help


166 
 

7.2.5 Phylogenetic analysis of cysteine protease in wheat  

The cysteine proteases from wheat have not yet been well characterized (Botha et al., 

2017). A total of 431 CA cysteine protease sequences were identified in T. aestivum 

obtained from the UniProt website and the Ensembl genomes database, in order to 

gain new insights into the classification of the CA subfamilies in wheat. The wheat 

protein sequences were aligned and used to produce the circular phylogenetic tree 

shown in Figure 7.7. The majority of cysteine proteases in the T. aestivum genome, 

consisting of around 236 members, belong to the С1 family. This family is largely 

represented by the C1A subfamily of papain-like cysteine proteases (PLCPs) 

according to the MEROPS database. Two further families, C48 and C2, were identified 

in the wheat genome. These analysis provides an overview of the cysteine proteases 

in wheat, which indicates that most members of these families have either not been 

well characterized or they have not been characterized at all. These data were then 

used to look for homology between the wheat cysteine proteases and those in other 

species such as Arabidopsis, with the aim of identifying as many of them as possible. 

The sequences and classification data will be available to use in Christine Foyer’s lab.   
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 Discussion 

This chapter describes the first steps towards a comprehensive analysis of plant 

PLCPs.  Two plant species that are available from databanks were used for the 

clustering analysis and classification into different subfamilies. Phylogenetic analysis 

identified the cysteine protease family members encoded in the Arabidopsis and wheat 

genomes. Moreover, this analysis used selected representative cysteine proteases 

from different Arabidopsis C1A subfamilies to establish the relationships between the 

sequences and their functions. Finally, the homological relationships between AtCEP1 

and HvPAP14 were investigated. The data presented in this chapter provide a 

foundation for the development of a framework, through which the characteristics and 

functions of these gene families can be investigated in the future.  

There is a very difference in the sizes of the Arabidopsis and wheat (125 Mb and 1700 

Mb respectively) genomes (Kaul et al., 2000; Thind et al., 2018). Phylogenetic trees 

were constructed for both species so that the cysteine protease families in Arabidopsis 

and wheat could be investigated. This analysis provides new insights into the 

relationships between the different cysteine protease sequences and illustrates the 

relationships between the CA cysteine proteases in Arabidopsis and, albeit less 

clearly, those in wheat (280 and 431 sequences respectively). The analysis of wheat 

protein sequences produced a phylogenetic tree that did not allow the clustering of 

sequences into distinct branches for the different proposed families. Divergence into 

different groups may have occurred early in evolution (Beers et al., 2004).  

PLCPs have a number of specific features. For example, they have a signal peptide 

that is essential for their transport to the apoplast. Furthermore, the C1-protease 

domain has an inhibitory pro-domain which is detached upon post-translational 

activation (Groves et al., 1996). Moreover, the prodomain contains the ERFNIN motif, 



169 
 

which provides structure in a number of PLCP subfamilies (Karrer et al., 1993). In 

addition, the active site of the protease domain contains an N-terminal Gln and the 

catalytic triad Cys-His-Asn (Zou et al., 2018).  

The activities of PLCPs are likely to be repressed by cystatins, a set of proteins that, 

inhibit cysteine proteases from the papain C1A family through tight binding and 

reversible interactions (Otto and Schirmeister, 1997; Grzonka et al., 2001). Cystatins 

are exosite-binding inhibitors i.e. they bind next to the active site, preventing the 

substrate from accessing the enzyme except through direct interactions with the 

catalytic centre (Bode and Huber, 2000). Cystatins avoid proteolysis and remain intact 

and unchanged while attached to the enzyme because they bind in a substrate-like 

fashion but facing away from the active site of the enzyme (Stubbs et al., 1990). 

The data presented in this chapter show that Arabidopsis CEP1 is the closest ortholog 

of the barley HvPAP14 protein. AtCEP1 carries a C-terminal KDEL motif, which leads 

to localisation in the endoplasmic reticulum (Zou et al., 2018). A putative cleavage site 

that results in the loss of the KDEL motif has been identified, suggesting that AtCEP1 

may be active in the cytosol, i.e. outside the ER (Höwing et al., 2014; Höwing et al., 

2017). The barley PLCP, HvPAP14, is located in the ER, as well as vesicular bodies 

and the chloroplasts, where it is closely associated with the thylakoid membranes 

(Frank et al., 2019). This enzyme may be responsible for the cleavage of the large 

subunit of Rubisco, particularly during leaf senescence (Frank et al., 2019).  

This study was carried out in part to identify the putative targets for OC-I, which is a 

cysteine protease inhibitor belonging to the cystatin family. The results presented here 

suggest that, like HVPAP14, CEP1 may be located in the chloroplasts. Moreover, OC-

I might inhibit CEP1 activity. Taken together, the orthology relationships between 
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CEP1 and HvPAP14 are interesting and reveal new information about potential 

cysteine proteases that could be located in Arabidopsis chloroplasts, and hence be 

possible targets for OC-I. Several techniques could be used to identify possible protein 

targets for OC-I, including anti-tag antibodies. These possibilities will be discussed in 

the next chapter, within the context of opportunities for future research (Section 8.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



171 
 

Chapter 8 : General Discussion 
 

Plants contain large numbers of proteases that perform a wide range of functions, 

including the regulation of metabolism, enzyme activation, transcription factor 

cleavage and the removal of membrane receptors. The in vivo activity of proteases is, 

in many cases, controlled by endogenous protease inhibitors. Cysteine protease 

activity can be regulated by the cystatin superfamily proteins. This superfamily is 

comprised of four families, three of which are cystatins found only in animals. The 

fourth family are the phytocystatins, which are plant-specific cysteine protease 

inhibitors (Barrett, 1987). Classification within this family is determined by the 

presence of disulphide bonds, signal peptides, molecular mass, and sequence 

homologies (Turk and Bode, 1991). Early studies on phytocystatins focussed primarily 

on their use as pest control agents (Schlütera et al., 2009). The expression of protease 

inhibitors improved plant responses to herbivores such as beetles and nematodes 

(Liang et al., 1991; Davies et al., 2015). Although phytocystatins have been implicated 

in the control of many important plant processes such as development and stress 

tolerance, the precise functions of many of these proteins remains poorly 

characterized. This is particularly important because genetic engineering can be used 

to alter the structure of phytocystatins to improve binding ability to specific cysteine 

protease targets. This strategy has great potential in crop improvement programs that 

are designed to improve stress tolerance (Kunert et al., 2015).  

The studies reported in this thesis was that targeting OC-I to Arabidopsis chloroplasts 

(as well as the cytosol) would influence plant growth and development. The results 

presented in thesis add new information concerning the functions of phytocystatins in 

plants, making a useful contribution to the literature on the topic  (Schlütera et al., 
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2009). They also highlight putative new roles of cysteine proteases in plants, 

particularly in functions such as chloroplast to nucleus signalling.  

  Plant growth and development 

Although oryzacystatin I from Oryza sativa L. japonica (OC-I) is perhaps the best-

characterised phytocystatin, with data obtained from the characterisation of transgenic 

plants including tobacco (Prins et al., 2008) and soybean (Quain et al., 2014), much 

remains uncertain concerning the precise roles of the in vivo OCI-targets in plant 

growth and development. Moreover, earlier studies have focussed only transgenic 

plants with OC-I expression that was not targetted to specific organelles. In the studies 

described in this thesis, the phenotypes of the wild type plants was compared to 

transgenic Arabidopsis lines that express OC-I either in the cytosol (CYS) or in the 

chloroplasts (PC). Moreover, the effects of the expression of OC-I on seed properties 

was studied in a range of OC-I expressing species (Arabidopsis, wheat and soybean).  

The data presented in this thesis addressed the question of whether OC-I expression 

in chloroplasts has similar effects on shoot growth and development to expression in 

the cytosol. Although the three independent CYS lines and three independent PC lines 

had a smaller rosette diameter than wild-type (WT) plants up the very last stages of 

development, the CYS and PC rosettes accumulated less biomass than the WT 

throughout the vegetative growth period. However, the transgenic lines accumulated 

significantly more biomass than the WT at the later (reproductive) stages of 

development. In contrast to the CYS lines, which had significantly fewer leaves than 

the WT throughout rosette development, PC rosettes had fewer leaves only during the 

vegetative growth phase. Slow vegetative growth has also been reported in transgenic 

tobacco plants expressing OC-I in cytosol (Prins et al., 2008). Taken together, these 

data show that OC-I exerts an effect on vegetative and reproductive development, and 
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that expression in the chloroplasts has different effects to expression in the cytosol. 

Moreover, both the CYS and PC rosettes flowered significantly later than the WT, the 

delay in flowering being most marked in the PC plants suggesting that reproductive 

development was delayed in the OC-I expressing lines because vegetative growth 

was slower.  

The phenotyping data show that expression of OC-I in the chloroplasts has a marked 

effect on shoot growth and development, suggesting that there are targets for OC-I in 

the chloroplasts that have functions related to plant growth and development. The OC-

I dependent changes in shoot phenotypes were accompanied by changes in the 

contents of leaf proteins and pigments. In particular, the CYS and PC rosettes 

accumulated more leaf protein than the WT and differential effects were observed 

depending on the intracellular localization of OC-I. The CYS lines had less chlorophyll 

and carotenoid pigments than the WT, particularly in the later stages of development. 

In contrast, the PC rosettes accumulated more leaf pigments than the WT at the later 

stages of leaf development. These results provide further evidence that OC-I is 

inhibiting different protease targets in the chloroplasts to those in the cytosol. 

Moreover, the OC-I targets in the chloroplasts regulate the pathways that lead to 

pigment accumulation. This finding is linked to the observations that the expression of 

genes that encode photosynthetic proteins is changed in plants expressing OC-I, as 

well as the responses of photosynthetic gene expression to HL.  

Data presented in this thesis showing that photosynthesis is better protected against 

HL stress in the CYS and PC lines than the WT. This may be explained at least in part 

by the observation that in contrast to the wild type the Rubisco and D1 proteins 

accumulate in the OC-I lines under HL stress. Enhanced photosynthetic protein 

accumulation in these circumstances could lead to improved photosynthetic capacity, 
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as was observed in the PC lines compared to the WT under HL conditions. The PC 

lines showed a higher accumulation of Rubisco and D1 proteins than the WT, as well 

as a greater accumulation of rbcS and psbA transcripts. These findings are surprising 

given that no cysteine proteases have been reported in Arabidopsis chloroplasts. A 

phylogenetic analysis was undertaken in these studies to identify the cysteine 

protease family members encoded in the Arabidopsis genomes to determine if there 

were any proteins with homology to the chloroplast-localised HvPAP14. The 

Arabidopsis CEP1 was found to be the closest orthologue to the barley HvPAP14 

protein. However, AtCEP1 carries a C-terminal KDEL motif, which leads to localisation 

in the endoplasmic reticulum (Zou et al., 2018). While AtCEP1 may also be active in 

the cytosol (Höwing et al., 2014; Höwing et al., 2017), these findings cannot explain 

why OC-I expression in the chloroplasts has wide ranging effects on leaf pigment and 

protein accumulation, as well as chloroplast to nucleus signalling. This means that 

there is either an as yet unidentified cysteine protease in chloroplasts or other 

mechanisms that modify chloroplast processes involve cysteine processes that are or 

become assessable to OC-I. 

Chloroplast proteins are degraded through different pathways, as described in Chapter 

1 (Section 1.3). These pathways may become more active when plants are exposed 

to stresses such as high light leading to a more rapid turnover of Rubisco and stromal 

proteins through for example Rubisco-containing bodies (RCBs) and senescence-

associated vacuoles (SAVs) (Figure 8.1). Autophagy is the major system responsible 

for bulk protein degradation in the vacuole/lysosome (Yoshimoto et al., 2004). If such 

pathways involve cysteine proteinases, the functions of OC-I in blocking chloroplast 

protein turnover are likely to be more pronounced under stress conditions leading to a 

greater accumulation of chloroplast proteins in the OC-I-expressing lines, as was 
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observed in the studies reported here. Future studies might consider how OC-I 

expression may affect the autophagy and CVV pathways (Figure 8.1). This could be 

achieved by crossing the OC-I lines with autophagy mutants, for example, Arabidopsis 

atg5 mutants. It is possible to use in vivo tracking systems such as GFP-ATG8, in 

which the expression of ATG8 is linked to a fluorescent marker to enable visualisation 

of the autophagosomes in the leaves of the WT and OC-I expressing A. thaliana lines 

by confocal microscopy.  

Further studies are required to determine how OC-I expression in the chloroplasts 

leads to increased leaf protein accumulation and associated effects on chloroplast to 

nucleus signalling, Future investigations are also required to determine the 

mechanisms that underpin OC-I-dependent regulation of flowering, and particularly 

how OC-I expression in plastids can exert these effects.  
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  Seed quality and properties 

Wheat is already one of the most commonly grown cereals worldwide. As the global 

population continues to grow, a 40% increase in wheat production will be needed to 

meet demand by 2050 (Hall and Richards, 2013). Despite recent developments in 

biotechnology, improving the relevant traits in wheat remains a challenge. Cysteine 

protease inhibitors could play an important role in crop improvement strategies, 

particularly with regards to stress tolerance (Van der Vyver et al., 2003). Transgenic 

wheat lines overexpressing OC-I were produced and analysed in the present studies, 

with a particular focus on seed properties (Chapter 5). However, further studies are 

required to analyse the growth phenotypes and stress tolerance of the independent 

T4 generation wheat lines expressing OC-I that were prepared here. Future work 

related to the production of T4 transgenic wheat seeds will be aimed at (i) improving 

the quality of wheat grains and seed yields and (ii) characterising the shoot and root 

phenotypes of the transgenic lines in the absence and presence of abiotic stress (e.g. 

drought) to determine whether the expression of OC-I delays leaf senescence and 

increases biomass and enhance tolerance to abiotic stress, as has been previously 

shown in other plant species such as soybean (Quain et al., 2014) . 

Cysteine proteases are the main proteases implicated in the germination processes 

of dicot species, such as Arabidopsis, and monocot species, such as Barley (Zhang 

and Jones, 1995; Szewińska et al., 2016). In particular, they are responsible for the 

mobilization and degradation of storage proteins (Grudkowska and Zagdanska, 2004; 

Martinez et al., 2009). Proteolysis is essential for the activation of storage proteins and 

their hydrolysis in germinating seeds, as well as cereal tissue development. The 

growth of cereal seeds is controlled by the balance between proteases and their 

inhibitors. However, this balance can be disturbed if environmental conditions are 
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detrimental to the plants, as in the case of high humidity, for example, leading to 

germination of underdeveloped seeds. The expression of OC-I in wheat seeds may 

help to address this shortfall by improving yield and quality. Moreover, wheat 

orthologues of OC-I may be useful potential targets in marker-assisted selection for 

improved traits in wheat breeding programs.   

OC-I expression increased seed yields and seed protein contents in all of the three 

plant species studied in these experiments: Arabidopsis, soybean and wheat. These 

data are surprising because OC-I expression led to significant changes in these 

important traits. Taken together, these findings indicate that the overexpression of OC-

I may be an effective generic approach to crop improvement. The proteomic analysis 

presented in Chapter 6 provided evidence that the relative abundance of storage 

proteins was affected in WOC lines compared to the WT. Most of the proteins identified 

in WOC lines play an important role in providing energy for seed germination as well 

as determining wheat flour quality, both of which are important to the food industry.  

Further work is required to determine the targets for OC-I in wheat seeds and to 

explore the mechanism involved in cysteine protease-dependent increases in seed 

yields and seed protein contents.  
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  Identification of papain-like cysteine proteases (PLCPs) in Arabidopsis 

and wheat 

A first step towards a comprehensive analysis of plant PLCPs in Arabidopsis and 

wheat was reported in Chapter 7.  Wheat (Triticum aestivum L.) is allohexaploid with 

large and complex genomes compared to the Arabidopsis genome (Peng et al., 2015). 

The wheat genome database information is limited, and so the identification of PLCPs 

in wheat was a challenge. The research reported in this thesis identified 280 and 431 

sequences in Arabidopsis and wheat, respectively. Bioinformatics approaches will 

continue to be important in future studies and enable the improved identification of 

wheat PLCPs orthologues of Arabidopsis.  

The data presented in Chapter 7 also provide new information about the CEP1 

cysteine protease. Further studies are required to determine if CEP1 is located in 

Arabidopsis chloroplasts, as well as other locations. However, in the absence of a 

chloroplast targeting sequence, chloroplast localisation seems highly unlikely. 

Nevertheless, these studies strongly suggest that chloroplast proteins are targets for 

OC-I. It is therefore important to identify OC-I targets and characterize the roles of 

these proteins in chloroplast functions such as protein turnover and Rubisco 

degradation in particular. The stock of anti-OC-I antibodies has run out in the Christine 

Foyer’s lab. Therefore, more antibodies need to be made for future experiments 

designed to identify the protein targets for OC-I for example using anti-OC-I antibodies 

to fish for interacting proteins. In such experiments, cytosolic and chloroplastic OC-I 

sequences could be cloned in frame with a tag sequence such as Human influenza 

hemagglutinin (HA) or green fluorescent protein (GFP) using an immunoprecipitation 

(IP) technique to isolate interacting proteins with an anti-HA or anti-GFP antibody that 

are commercially available. Although anti-tag antibodies have the advantage of being 
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specific for a tag sequence that is not native to plants, the tag can alter the structure 

and behaviour of the bait protein. Nevertheless, HA and GFP can provide positive 

outcomes, particularly the short version split GFP and constructs, which can be used 

to transform the plant or cell culture. It is possible to extract proteins from transgenic 

plants that express the OCI-tag in plastids or cytosol. Differential centrifugation and a 

Percoll gradient can be used to purify the protein extraction from plastids and cytosol. 

Anti-tag antibodies are usually bound to magnetic beads coated with antibodies. 

Protein extracts can be either mixed with these beads or passed through the column; 

after repeating this step a number of times, the proteins which have become bound to 

the column or beads can be extracted. Candidates can then be recognised by mass 

spectrometry. Further validation of the OC-I interactome could involve the use of a 

range of techniques such as the two-hybrid system or split-YFP. 
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 Conclusion and perspective 

This thesis has provided new evidence of the importance of cysteine proteinases and 

their inhibitors such as OC-I in the control of plant growth and development. The 

findings reported in this thesis not only provide corroborative support for previous 

reports on the roles of phytocystatins in improving crop yield, but they also provide 

new evidence for the presence of OC-I targets in the chloroplasts. The comparison of 

the effects of the expression of OC-I in either the cytosol or chloroplasts, shows that 

the intracellular compartmentation of OC-I is important in determining the effects on 

plant growth and development. The data presented in this thesis concerning the 

expression of OC-I in the cytosol are consistent with previous reports on the effects of 

similar expression of OC-I in tobacco (Van der Vyver et al., 2003) and soybean (Quain 

et al., 2014). Moreover, the data presented here demonstrate that overexpression of 

the OC-I exerts a strong influence on plant performance and grain quality. These 

findings are important for future plant breeding strategies that are designed to improve 

the sustainability of yield and quality traits. These findings are particularly important in 

relation to producing more resilient crop plants that are better able to cope with climate 

change-induced abiotic stresses. Moreover, they show that phytocystatins such as 

OC-I are important targets for improving stress tolerance as well as seed production 

and quality traits. It is noteworthy that phytocystatins are considered to be safe to use 

for crop improvement as they have no negative effects on humans, when they are 

present in food that is part of the diet (Atkinson et al., 2004).    
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Appendix 
  

Line Estimated Copy Number 
By RT- PCR 

Line Estimated Copy Number 
By RT-PCR 

Line Estimated Copy Number 
By RT-PCR 

1.4.2 1 10.35.5 1 26.5.9 1 
1.4.3 1 10.35.6 1 26.5.10 1 
1.4.5 1 10.35.7 1 26.5.11 1 
1.4.6 1 10.35.8 1 26.5.13 1 
1.4.8 3 10.35.10 1 26.5.14 1 
1.4.10 1 10.35.12 1 26.5.15 1 
1.4.11 1 10.35.14 1 26.5.16 1 
1.4.12 1 10.35.15 1 26.5.17 1 
1.4.13 1 10.35.2 1 26.5.18 1 
1.4.14 1 10.35.3 1 26.5.19 1 
1.4.15 1 10.35.4 1 26.5.20 1 
1.4.16 2 10.35.5 1 26.7.1 1 
1.4.17 1 21.7.2 1 26.7.2 1 
1.4.18 1 21.7.3 1 26.7.4 1 
1.4.20 1 21.7.4 1 26.7.5 1 
1.19.1 1 21.7.6 1 26.7.6 1 
1.19.3 1 21.7.8 1 26.7.7 1 
1.19.6 1 21.7.9 2 26.7.8 1 
1.19.7 1 21.7.10 1 26.7.9 1 
1.19.8 1 21.7.12 1 26.7.10 1 
1.19.9 1 21.7.13 1 26.7.12 2 

1.19.12 1 21.7.15 1 26.7.13 1 
1.19.13 1 21.7.17 1 26.7.14 1 
1.19.14 1 21.7.18 1 26.7.16 1 
1.19.15 1 21.7.19 1 26.7.18 1 
1.19.16 1 21.7.20 1 26.7.19 1 
1.19.17 1 21.8.1 1 26.7.20 1 
1.19.19 1 21.8.2 1 26.20.1 1 
10.1.1 1 21.8.3 1 26.20.2 1 
10.1.3 2 21.8.4 1 26.20.3 1 
10.1.4 1 21.8.5 1 26.20.4 1 
10.1.6 1 21.8.6 2 26.20.5 1 
10.1.7 1 21.8.8 1 26.20.6 1 
10.1.8 1 21.8.10 1 26.20.7 1 
10.1.9 1 21.8.11 1 26.20.8 2 

10.1.10 2 21.8.12 1 26.20.9 1 
10.1.12 1 21.8.16 1 26.20.10 1 
10.1.13 1 21.8.18 1 26.20.11 1 
10.1.15 1 21.8.19 1 26.20.12 1 
10.1.17 1 26.5.1 1 26.20.13 1 
10.1.18 1 26.5.2 1 26.20.14 1 
10.1.19 1 26.5.3 1 26.20.15 1 
10.1.20 2 26.5.4 1 26.20.16 1 
10.35.2 1 26.5.5 1 26.20.17 2 
10.35.3 1 26.5.6 1 26.20.18 1 
10.35.4 1 26.5.7 1 26.20.19 1 

  26.5.8 1 26.20.20 1 

Appendix I. T-DNA copy number of transformed T2 plants of transgenic wheat expressing OC-I. Copy 
number estimation by qPCR of the transgene are shown.  

 



202 
 

 

  

Line Estimated Copy 
Number By RT- PCR 

Line Estimated Copy Number 
By RT-PCR 

Line Estimated Copy 
Number By RT-PCR 

21.7.2.1 1 21.8.12.1 1 26.20.4.1 1 
21.7.2.2 1 21.8.12.2 1 26.20.4.2 1 
21.7.2.3 1 21.8.12.3 1 26.20.4.3 1 
21.7.2.4 1 21.8.12.4 1 26.20.4.4 1 
21.7.2.5 1 21.8.12.5 1 26.20.4.5 1 
21.7.2.6 1 21.8.12.6 1 26.20.4.6 1 
21.7.2.7 1 21.8.12.7 1 26.20.4.7 1 
21.7.2.8 1 21.8.12.8 1 26.20.4.8 1 
21.7.2.9 1 21.8.12.9 1 26.20.4.9 1 

21.7.2.10 1 21.8.12.10 1 26.20.4.10 1 
21.7.2.11 1 21.8.12.11 1 26.20.4.11 1 
21.7.2.12 1 21.8.12.12 1 26.20.4.12 1 
21.7.2.13 1 21.8.12.13 1 26.20.4.13 1 

Appendix II. T-DNA copy number of transformed T3 plants of transgenic wheat expressing OC-I. Copy 
number estimation by qPCR of the transgene are shown.  
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ID Protein IDs Protein names WT WOC log2FC 
D6QZM5 D6QZM5 Avenin-like b8 2.502163887 -0.192098618 -0.5819 
F8RP11 F8RP11 Hsp70-Hsp90 organizing protein (TaHop) -1.023381233 -2.387369156 -2.475008726 
O22263 O22263 Protein disulfide-isomerase like 2-1 (AtPDIL2-1) -2.555577278 -4.048570633 -0.673859596 
P00068 P01083 Alpha-amylase inhibitor 0.28 (CIII) (WMAI-1) -2.615328789 -3.565031052 -0.297087669 
P01084 P01084 Alpha-amylase inhibitor 0.53 4.266724586 3.455438614 -0.47729969 
P02276 P02276 Histone H2A.2.1 -3.179215431 -1.95889473 -0.427746773 
P02277 P02277 Histone H2A.2.2 -0.445025444 1.136207581 -0.227780342 
P02863 P02863 Alpha/beta-gliadin (Prolamin) -1.593827248 -3.246582031 -2.956627369 
P04464 P04464 Calmodulin (CaM) -0.222107887 -2.049617767 -1.671975136 
P04568 P04568 Em protein 2.553992271 1.869394302 -1.035862922 
P04730 P04730 Gamma-gliadin (Gliadin B-III) 0.075388908 -0.892576218 -0.524403572 
P08453 P08453 Gamma-gliadin 0.894663811 0.176197052 -0.693205834 
P08819 P08819 Carboxypeptidase 2 (CPDW-II) 1.755984306 0.385379791 -0.415101051 

P09863 P09863 Bowman-Birk type proteinase inhibitor I-2B 
(Fragment) -3.133357286 -0.466344833 1.171717882 

P0CZ07 P0CZ07 Avenin-like a2 -2.782131433 -2.068267822 -0.414573432 

P12299 P12299 "Glucose-1-phosphate adenylyltransferase 
large subunit, chloroplastic/amyloplastic -0.027422905 -0.94455719 0.53665638 

P12810 P12810 16.9 kDa class I heat shock protein 1 (HSP 
16.9) -0.552893639 0.409864426 1.430567742 

P26759 P26759 Oxalate oxidase GF-3.8 (Germin GF-3.8) -0.272873878 -3.093029022 -2.376269341 
P27807 P27807 Histone H2B.1 0.613600731 2.108633041 0.170847893 
P29546 P29546 Elongation factor 1-beta (EF-1-beta) -0.287636757 -4.472923279 -0.544034004 
P30569 P30569 EC protein I/II 0.924546242 -0.231773376 -1.526717186 
P30570 P30570 EC protein III -2.004546165 -3.064739227 -1.890892983 
P33432 P32032 Alpha-2-purothionin -3.313580513 -1.85632515 0.677100182 
P38076 P38076 Cysteine synthase (CSase A) -3.003450394 -3.807922363 -0.506597519 
P49232 P49232 Profilin-1 -3.49399662 -5.47774744 0.58794117 
P68428 P68428 Histone H3.2 -3.589554548 1.467556 2.830841779 
P69326 P69326 Ubiquitin 1.691996574 -0.588293076 0.162022591 
P80602 P80602 "2-Cys peroxiredoxin BAS1, chloroplastic -1.647233009 -3.073799133 0.512352943 
P82900 P82900 Non-specific lipid-transfer protein 2G (LTP2G) 2.629384041 -4.679842949 -0.019534111 
P82901 P82901 Non-specific lipid-transfer protein 2P (LTP2P) 3.975031853 -0.003356934 0.043276787 

Q03968 Q03968 "Late embryogenesis abundant protein, group 3 
(LEA) (PMA2005)" 2.272679329 -1.274335861 -1.786332131 

Q05806 Q05806 Type-5 thionin 0.027422905 -2.908853292 -0.027422905 
Q10464 Q10464 Puroindoline-B -2.191935539 -0.54958725 1.898844719 
Q6TCF2 Q6TCF2 Actin -1.063479424 0.5629673 2.223593712 
Q6W8Q2 Q6W8Q2 1-Cys peroxiredoxin PER1 4.013039589 1.491491318 0.166697502 
Q8L5C6 Q8L5C6 Xylanase inhibitor protein 1 (XIP-1) 4.106137276 1.997665405 -0.256577492 

Q8LRM8 Q8LRM8 Translationally-controlled tumor protein 
homolog (TCTP) -0.277401924 -1.266302109 -0.232527733 

Q949H0 Q949H0 40S ribosomal protein S7 -0.911036491 -4.534479141 -0.233460427 
Q9ZRB0 Q9ZRB0 Tubulin beta-3 chain (Beta-3-tubulin) -3.633214951 -5.016537189 1.742761612 

 

Appendix III. Differential abundance of storage proteins expressed in the WT and OCI-expressing line 
(WOC).   
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Appendix IV. Examples of the original gels used for Western-blot analysis of the Rubisco, D1 and 
phosphorylated D1 proteins in the leaves of the CYS and PC lines compared to WT Arabidopsis plants 
grown under moderate light (LL) and high light (HL) conditions. This analysis included a gel stained with 
Commassie Brilliant Blue and gel of the loading control to ensure appropriate quantitation 

 

 

10µg 5µg 2µg 

Loading control  
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